Science.gov

Sample records for azole antifungal agents

  1. Synthesis and activities of naphthalimide azoles as a new type of antibacterial and antifungal agents.

    PubMed

    Zhang, Yi-Yi; Zhou, Cheng-He

    2011-07-15

    Naphthalimide-derived azoles as a new type of antimicrobial agents were synthesized and evaluated for their efficiency in vitro against eight bacteria and two fungi by two fold serial dilution technique. Most title compounds exhibited good antimicrobial potency with low MIC values ranging from 1 to 16μg/mL. Notably, some synthesized compounds displayed comparable or even better antibacterial and antifungal activities against some tested strains than the reference drugs Orbifloxacin, Chloromycin and Fluconazole, respectively.

  2. Overview of medically important antifungal azole derivatives.

    PubMed Central

    Fromtling, R A

    1988-01-01

    Fungal infections are a major burden to the health and welfare of modern humans. They range from simply cosmetic, non-life-threatening skin infections to severe, systemic infections that may lead to significant debilitation or death. The selection of chemotherapeutic agents useful for the treatment of fungal infections is small. In this overview, a major chemical group with antifungal activity, the azole derivatives, is examined. Included are historical and state of the art information on the in vitro activity, experimental in vivo activity, mode of action, pharmacokinetics, clinical studies, and uses and adverse reactions of imidazoles currently marketed (clotrimazole, miconazole, econazole, ketoconazole, bifonazole, butoconazole, croconazole, fenticonazole, isoconazole, oxiconazole, sulconazole, and tioconazole) and under development (aliconazole and omoconazole), as well as triazoles currently marketed (terconazole) and under development (fluconazole, itraconazole, vibunazole, alteconazole, and ICI 195,739). PMID:3069196

  3. Biochemical approaches to selective antifungal activity. Focus on azole antifungals.

    PubMed

    Vanden Bossche, H; Marichal, P; Gorrens, J; Coene, M C; Willemsens, G; Bellens, D; Roels, I; Moereels, H; Janssen, P A

    1989-01-01

    Azole antifungals (e.g. the imidazoles: miconazole, clotrimazole, bifonazole, imazalil, ketoconazole, and the triazoles: diniconazole, triadimenol, propiconazole, fluconazole and itraconazole) inhibit in fungal cells the 14 alpha-demethylation of lanosterol or 24-methylenedihydrolanosterol. The consequent inhibition of ergosterol synthesis originates from binding of the unsubstituted nitrogen (N-3 or N-4) of their imidazole or triazole moiety to the heme iron and from binding of their N-1 substituent to the apoprotein of a cytochrome P-450 (P-450(14)DM) of the endoplasmic reticulum. Great differences in both potency and selectivity are found between the different azole antifungals. For example, after 16h of growth of Candida albicans in medium supplemented with [14C]-acetate and increasing concentrations of itraconazole, 100% inhibition of ergosterol synthesis is achieved at 3 x 10(-8) M. Complete inhibition of this synthesis by fluconazole is obtained at 10(-5) M only. The agrochemical imidazole derivative, imazalil, shows high selectivity, it has almost 80 and 98 times more affinity for the Candida P-450(s) than for those of the piglet testes microsomes and bovine adrenal mitochondria, respectively. However, the topically active imidazole antifungal, bifonazole, has the highest affinity for P-450(s) of the testicular microsomes. The triazole antifungal itraconazole inhibits at 10(-5) M the P-450-dependent aromatase by 17.9, whereas 50% inhibition of this enzyme is obtained at about 7.5 x 10(-6)M of the bistriazole derivative fluconazole. The overall results show that both the affinity for the fungal P-450(14)DM and the selectivity are determined by the nitrogen heterocycle and the hydrophobic N-1 substituent of the azole antifungals. The latter has certainly a greater impact. The presence of a triazole and a long hypdrophobic nonligating portion form the basis for itraconazole's potency and selectivity.

  4. Chloroquine sensitizes biofilms of Candida albicans to antifungal azoles.

    PubMed

    Shinde, Ravikumar Bapurao; Raut, Jayant Shankar; Chauhan, Nitin Mahendra; Karuppayil, Sankunny Mohan

    2013-01-01

    Biofilms formed by Candida albicans, a human pathogen, are known to be resistant to different antifungal agents. Novel strategies to combat the biofilm associated Candida infections like multiple drug therapy are being explored. In this study, potential of chloroquine to be a partner drug in combination with four antifungal agents, namely fluconazole, voriconazole, amphotericin B, and caspofungin, was explored against biofilms of C. albicans. Activity of various concentrations of chloroquine in combination with a particular antifungal drug was analyzed in a checkerboard format. Growth of biofilm in presence of drugs was analyzed by XTT-assay, in terms of relative metabolic activity compared to that of drug free control. Results obtained by XTT-metabolic assay were confirmed by scanning electron microscopy. The interactions between chloroquine and four antifungal drugs were determined by calculating fractional inhibitory concentration indices. Azole resistance in biofilms was reverted significantly (p<0.05) in presence of 250μg/mL of chloroquine, which resulted in inhibition of biofilms at very low concentrations of antifungal drugs. No significant alteration in the sensitivity of biofilms to caspofungin and amphotericin B was evident in combination with chloroquine. This study for the first time indicates that chloroquine potentiates anti-biofilm activity of fluconazole and voriconazole. PMID:23602464

  5. Candida tropicalis Antifungal Cross-Resistance Is Related to Different Azole Target (Erg11p) Modifications

    PubMed Central

    Forastiero, A.; Mesa-Arango, A. C.; Alastruey-Izquierdo, A.; Alcazar-Fuoli, L.; Bernal-Martinez, L.; Pelaez, T.; Lopez, J. F.; Grimalt, J. O.; Gomez-Lopez, A.; Cuesta, I.; Zaragoza, O.

    2013-01-01

    Candida tropicalis ranks between third and fourth among Candida species most commonly isolated from clinical specimens. Invasive candidiasis and candidemia are treated with amphotericin B or echinocandins as first-line therapy, with extended-spectrum triazoles as acceptable alternatives. Candida tropicalis is usually susceptible to all antifungal agents, although several azole drug-resistant clinical isolates are being reported. However, C. tropicalis resistant to amphotericin B is uncommon, and only a few strains have reliably demonstrated a high level of resistance to this agent. The resistance mechanisms operating in C. tropicalis strains isolated from clinical samples showing resistance to azole drugs alone or with amphotericin B cross-resistance were elucidated. Antifungal drug resistance was related to mutations of the azole target (Erg11p) with or without alterations of the ergosterol biosynthesis pathway. The antifungal drug resistance shown in vitro correlated very well with the results obtained in vivo using the model host Galleria mellonella. Using this panel of strains, the G. mellonella model system was validated as a simple, nonmammalian minihost model that can be used to study in vitro-in vivo correlation of antifungals in C. tropicalis. The development in C. tropicalis of antifungal drug resistance with different mechanisms during antifungal treatment has potential clinical impact and deserves specific prospective studies. PMID:23877676

  6. In vitro antifungal synergy between amphiphilic aminoglycoside K20 and azoles against Candida species and Cryptococcus neoformans.

    PubMed

    Shrestha, Sanjib K; Grilley, Michelle; Anderson, Thomas; Dhiman, Christine; Oblad, John; Chang, Cheng-Wei T; Sorensen, Kevin N; Takemoto, Jon Y

    2015-11-01

    Several azoles are widely used to treat human fungal infections. Increasing resistance to these azoles has prompted exploration of their synergistic antifungal activities when combined with other agents. The amphiphilic aminoglycoside, K20, was recently shown to inhibit filamentous fungi, yeasts and heterokonts, but not bacteria. In this study, in vitro synergistic growth inhibition by combinations of K20 and azoles (fluconazole, itraconazole, voriconazole, clotrimazole, or posaconazole) were examined against Candida species and Cryptococcus neoformans. Checkerboard microbroth dilution, time-kill curve, and disk diffusion assays revealed that K20 has synergistic inhibitory activities with all five azoles against C. albicans including azole-resistant C. albicans strains ATCC 64124 and ATCC 10231. Four (fluconazole, itraconazole, clotrimazole, posaconazole) and three (fluconazole, itraconazole, voriconazole) azoles were synergistically inhibitory with K20 against C. lusitaniae and C. tropicalis, respectively. Only posaconazole showed synergy with K20 against two Cryptococcus neoformans strains (90-26 and VR-54). Time-kill curves with azole-resistant C. albicans 64124 and azole-sensitive C. albicans MYA-2876 confirmed the K20-azole synergistic interactions with a ≥ 2 log10 decrease in colony-forming units (CFU)/ml compared with the corresponding azoles alone. These results suggest that combinations of K20 and azoles offer a possible strategy for developing therapies against candidiasis.

  7. Novel micelle formulations to increase cutaneous bioavailability of azole antifungals.

    PubMed

    Bachhav, Y G; Mondon, K; Kalia, Y N; Gurny, R; Möller, M

    2011-07-30

    Efficient topical drug administration for the treatment of superficial fungal infections would deliver the therapeutic agent to the target compartment and reduce the risk of systemic side effects. However, the physicochemical properties of the commonly used azole antifungals make their formulation a considerable challenge. The objective of the present investigation was to develop aqueous micelle solutions of clotrimazole (CLZ), econazole nitrate (ECZ) and fluconazole (FLZ) using novel amphiphilic methoxy-poly(ethylene glycol)-hexyl substituted polylactide (MPEG-hexPLA) block copolymers. The CLZ, ECZ and FLZ formulations were characterized with respect to drug loading and micelle size. The optimal drug formulation was selected for skin transport studies that were performed using full thickness porcine and human skin. Penetration pathways and micellar distribution in the skin were visualized using fluorescein loaded micelles and confocal laser scanning microscopy. The hydrodynamic diameters of the azole loaded micelles were between 70 and 165nm and the corresponding number weighted diameters (d(n)) were 30 to 40nm. Somewhat surprisingly, the lowest loading efficiency (<20%) was observed for CLZ (the most hydrophobic of the three azoles tested); in contrast, under the same conditions, ECZ was incorporated with an efficiency of 98.3% in MPEG-dihexPLA micelles. Based on the characterization data and preliminary transport experiments, ECZ loaded MPEG-dihexPLA micelles (concentration 1.3mg/mL; d(n)<40nm) were selected for further study. ECZ delivery was compared to that from Pevaryl® cream (1% w/w ECZ), a marketed liposomal formulation for topical application. ECZ deposition in porcine skin following 6h application using the MPEG-dihexPLA micelles was >13-fold higher than that from Pevaryl® cream (22.8±3.8 and 1.7±0.6μg/cm(2), respectively). A significant enhancement was also observed with human skin; the amounts of ECZ deposited were 11.3±1.6 and 1.5±0.4μg/cm(2

  8. Structural Basis of Human CYP51 Inhibition by Antifungal Azoles

    SciTech Connect

    Strushkevich, Natallia; Usanov, Sergey A.; Park, Hee-Won

    2010-09-22

    The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B{prime} helix and F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51.

  9. The Hsp90 Co-chaperones Sti1, Aha1, and P23 Regulate Adaptive Responses to Antifungal Azoles

    PubMed Central

    Gu, Xiaokui; Xue, Wei; Yin, Yajing; Liu, Hongwei; Li, Shaojie; Sun, Xianyun

    2016-01-01

    Heat Shock Protein 90 (Hsp90) is essential for tumor progression in humans and drug resistance in fungi. However, the roles of its many co-chaperones in antifungal resistance are unknown. In this study, by susceptibility test of Neurospora crassa mutants lacking each of 18 Hsp90/Calcineurin system member genes (including 8 Hsp90 co-chaperone genes) to antifungal drugs and other stresses, we demonstrate that the Hsp90 co-chaperones Sti1 (Hop1 in yeast), Aha1, and P23 (Sba1 in yeast) were required for the basal resistance to antifungal azoles and heat stress. Deletion of any of them resulted in hypersensitivity to azoles and heat. Liquid chromatography–mass spectrometry (LC-MS) analysis showed that the toxic sterols eburicol and 14α-methyl-3,6-diol were significantly accumulated in the sti1 and p23 deletion mutants after ketoconazole treatment, which has been shown before to led to cell membrane stress. At the transcriptional level, Aha1, Sti1, and P23 positively regulate responses to ketoconazole stress by erg11 and erg6, key genes in the ergosterol biosynthetic pathway. Aha1, Sti1, and P23 are highly conserved in fungi, and sti1 and p23 deletion also increased the susceptibility to azoles in Fusarium verticillioides. These results indicate that Hsp90-cochaperones Aha1, Sti1, and P23 are critical for the basal azole resistance and could be potential targets for developing new antifungal agents. PMID:27761133

  10. Synergy Between Polyvinylpyrrolidone-Coated Silver Nanoparticles and Azole Antifungal Against Drug-Resistant Candida albicans.

    PubMed

    Sun, Lingmei; Liao, Kai; Li, Yiping; Zhao, Lei; Liang, Sai; Guo, Dan; Hu, Jun; Wang, Dayong

    2016-03-01

    In the clinical practice, resistance of Candida albicans to antifungal agents has frequently emerged. Silver-nanoparticles (Ag-NPs) have been demonstrated to have the antifungal property. We investigated the potential for synergy between polyvinylpyrrolidone (PVP)-coated Ag-NPs and azole antifungal, such as fluconazole or voriconazole, against drug-resistant C. albicans strain CA10. When antifungal agent was examined alone, fluconazole and voriconazole did not kill drug-resistant C. albicans, and PVP-coated Ag-NPs had only the moderate killing ability. In contrast, the combinational treatment of PVP-coated Ag-NPs with fluconazole or voriconazole was effective in being against the drug-resistant C. albicans. After the combinational treatment, we detected the disruption of cell membrane integrity, the tendency of PVP-coated Ag-NPs to adhere to cell membrane, and the inhibition of budding process. Moreover, after the combinational treatment, the defects in ergosterol signaling and efflux pump functions were detected. Our results suggest that the combinational use of engineered nanomaterials (ENMs), such as PVP-coated Ag-NPs, with the conventional antifungal may be a viable strategy to combat drug-resistant fungal infection.

  11. Synergy Between Polyvinylpyrrolidone-Coated Silver Nanoparticles and Azole Antifungal Against Drug-Resistant Candida albicans.

    PubMed

    Sun, Lingmei; Liao, Kai; Li, Yiping; Zhao, Lei; Liang, Sai; Guo, Dan; Hu, Jun; Wang, Dayong

    2016-03-01

    In the clinical practice, resistance of Candida albicans to antifungal agents has frequently emerged. Silver-nanoparticles (Ag-NPs) have been demonstrated to have the antifungal property. We investigated the potential for synergy between polyvinylpyrrolidone (PVP)-coated Ag-NPs and azole antifungal, such as fluconazole or voriconazole, against drug-resistant C. albicans strain CA10. When antifungal agent was examined alone, fluconazole and voriconazole did not kill drug-resistant C. albicans, and PVP-coated Ag-NPs had only the moderate killing ability. In contrast, the combinational treatment of PVP-coated Ag-NPs with fluconazole or voriconazole was effective in being against the drug-resistant C. albicans. After the combinational treatment, we detected the disruption of cell membrane integrity, the tendency of PVP-coated Ag-NPs to adhere to cell membrane, and the inhibition of budding process. Moreover, after the combinational treatment, the defects in ergosterol signaling and efflux pump functions were detected. Our results suggest that the combinational use of engineered nanomaterials (ENMs), such as PVP-coated Ag-NPs, with the conventional antifungal may be a viable strategy to combat drug-resistant fungal infection. PMID:27455637

  12. Transcription Factor ADS-4 Regulates Adaptive Responses and Resistance to Antifungal Azole Stress

    PubMed Central

    Wang, Kangji; Zhang, Zhenying; Chen, Xi; Sun, Xianyun

    2015-01-01

    Azoles are commonly used as antifungal drugs or pesticides to control fungal infections in medicine and agriculture. Fungi adapt to azole stress by rapidly activating the transcription of a number of genes, and transcriptional increases in some azole-responsive genes can elevate azole resistance. The regulatory mechanisms that control transcriptional responses to azole stress in filamentous fungi are not well understood. This study identified a bZIP transcription factor, ADS-4 (antifungal drug sensitive-4), as a new regulator of adaptive responses and resistance to antifungal azoles. Transcription of ads-4 in Neurospora crassa cells increased when they were subjected to ketoconazole treatment, whereas the deletion of ads-4 resulted in hypersensitivity to ketoconazole and fluconazole. In contrast, the overexpression of ads-4 increased resistance to fluconazole and ketoconazole in N. crassa. Transcriptome sequencing (RNA-seq) analysis, followed by quantitative reverse transcription (qRT)-PCR confirmation, showed that ADS-4 positively regulated the transcriptional responses of at least six genes to ketoconazole stress in N. crassa. The gene products of four ADS-4-regulated genes are known contributors to azole resistance, including the major efflux pump CDR4 (Pdr5p ortholog), an ABC multidrug transporter (NcAbcB), sterol C-22 desaturase (ERG5), and a lipid transporter (NcRTA2) that is involved in calcineurin-mediated azole resistance. Deletion of the ads-4-homologous gene Afads-4 in Aspergillus fumigatus caused hypersensitivity to itraconazole and ketoconazole, which suggested that ADS-4 is a functionally conserved regulator of adaptive responses to azoles. This study provides important information on a new azole resistance factor that could be targeted by a new range of antifungal pesticides and drugs. PMID:26100701

  13. De-repression of CSP-1 activates adaptive responses to antifungal azoles

    PubMed Central

    Chen, Xi; Xue, Wei; Zhou, Jun; Zhang, Zhenying; Wei, Shiping; Liu, Xingyu; Sun, Xianyun; Wang, Wenzhao; Li, Shaojie

    2016-01-01

    Antifungal azoles are the major drugs that are used to treat fungal infections. This study found that in response to antifungal azole stress, Neurospora crassa could activate the transcriptional responses of many genes and increase azole resistance by reducing the level of conidial separation 1 (CSP-1), a global transcription repressor, at azole-responsive genes. The expression of csp-1 was directly activated by the transcription factors WC-1 and WC-2. Upon ketoconazole (KTC) stress, the transcript levels of wc-1 and wc-2 were not changed, but csp-1 transcription rapidly declined. A chromatin immunoprecipitation-quantitative polymerase chain reaction analysis revealed a rapid reduction in the WC-2 enrichment at the csp-1 promoter upon KTC treatment, which might be responsible for the KTC-induced csp-1 downregulation. Deletion of csp-1 increased resistance to KTC and voriconazole, while csp-1 overexpression increased KTC susceptibility. CSP-1 transcriptionally repressed a number of azole-responsive genes, including genes encoding the azole target ERG11, the azole efflux pump CDR4, and the sterol C-22 desaturase ERG5. Deletion of csp-1 also reduced the KTC-induced accumulation of ergosterol intermediates, eburicol, and 14α-methyl-3,6-diol. CSP-1 orthologs are widely present in filamentous fungi, and an Aspergillus fumigatus mutant in which the csp-1 was deleted was resistant to itraconazole. PMID:26781458

  14. In Vitro Activities of 35 Double Combinations of Antifungal Agents against Scedosporium apiospermum and Scedosporium prolificans▿

    PubMed Central

    Cuenca-Estrella, Manuel; Alastruey-Izquierdo, Ana; Alcazar-Fuoli, Laura; Bernal-Martinez, Leticia; Gomez-Lopez, Alicia; Buitrago, Maria J.; Mellado, Emilia; Rodriguez-Tudela, Juan L.

    2008-01-01

    Activities of 35 combinations of antifungal agents against Scedosporium spp. were analyzed by a checkerboard microdilution design and the summation of fractional concentration index. An average indifferent effect was detected apart from combinations of azole agents and echinocandins against Scedosporium apiospermum. Antagonism was absent for all antifungal combinations against both species. PMID:18195067

  15. Cinnamaldehyde and its derivatives, a novel class of antifungal agents.

    PubMed

    Shreaz, Sheikh; Wani, Waseem A; Behbehani, Jawad M; Raja, Vaseem; Irshad, Md; Karched, Maribasappa; Ali, Intzar; Siddiqi, Weqar A; Hun, Lee Ting

    2016-07-01

    The last few decades have seen an alarming rise in fungal infections, which currently represent a global health threat. Despite extensive research towards the development of new antifungal agents, only a limited number of antifungal drugs are available in the market. The routinely used polyene agents and many azole antifungals are associated with some common side effects such as severe hepatotoxicity and nephrotoxicity. Also, antifungal resistance continues to grow and evolve and complicate patient management, despite the introduction of new antifungal agents. This suitation requires continuous attention. Cinnamaldehyde has been reported to inhibit bacteria, yeasts, and filamentous molds via the inhibition of ATPases, cell wall biosynthesis, and alteration of membrane structure and integrity. In this regard, several novel cinnamaldehyde derivatives were synthesized with the claim of potential antifungal activities. The present article describes antifungal properties of cinnamaldehyde and its derivatives against diverse classes of pathogenic fungi. This review will provide an overview of what is currently known about the primary mode of action of cinnamaldehyde. Synergistic approaches for boosting the effectiveness of cinnamaldehyde and its derivatives have been highlighted. Also, a keen analysis of the pharmacologically active systems derived from cinnamaldehyde has been discussed. Finally, efforts were made to outline the future perspectives of cinnamaldehyde-based antifungal agents. The purpose of this review is to provide an overview of current knowledge about the antifungal properties and antifungal mode of action of cinnamaldehyde and its derivatives and to identify research avenues that can facilitate implementation of cinnamaldehyde as a natural antifungal. PMID:27259370

  16. Chiral profiling of azole antifungals in municipal wastewater and recipient rivers of the Pearl River Delta, China.

    PubMed

    Huang, Qiuxin; Wang, Zhifang; Wang, Chunwei; Peng, Xianzhi

    2013-12-01

    Enantiomeric compositions and fractions (EFs) of three chiral imidazole (econazole, ketoconazole, and miconazole) and one chiral triazole (tebuconazole) antifungals were investigated in wastewater, river water, and bed sediment of the Pearl River Delta, South China. The imidazole pharmaceuticals in the untreated wastewater were racemic to weakly nonracemic (EFs of 0.450-0.530) and showed weak enantioselectivity during treatment in the sewage treatment plant. The EFs of the dissolved azole antifungals were usually different from those of the sorbed azoles in the suspended particulate matter, suggesting different behaviors for the enantiomers of the chiral azole antifungals in the dissolved and particulate phases of the wastewater. The azole antifungals were widely present in the rivers. The bed sediment was a sink for the imidazole antifungals. The imidazoles were prevalently racemic, whereas tebuconazole was widely nonracemic in the rivers. Seasonal effects were observed on distribution and chirality of the azole antifungals. Concentrations of the azole antifungals in the river water were relatively higher in winter than in spring and summer while the EF of miconazole in the river water was higher in summer. The mechanism of enantiomeric behavior of the chiral azole antifungals in the environment warrants further research.

  17. Genesis of Azole Antifungal Resistance from Agriculture to Clinical Settings.

    PubMed

    Azevedo, Maria-Manuel; Faria-Ramos, Isabel; Cruz, Luísa Costa; Pina-Vaz, Cidália; Rodrigues, Acácio Gonçalves

    2015-09-01

    Azole fungal resistance is becoming a major public health problem in medicine in recent years. However, it was known in agriculture since several decades; the extensive use of these compounds results in contamination of air, plants, and soil. The increasing frequency of life-threatening fungal infections and the increase of prophylactical use of azoles in high-risk patients, taken together with the evolutionary biology evidence that drug selection pressure is an important factor for the emergence and spread of drug resistance, can result in a dramatic scenario. This study reviews the azole use in agricultural and medical contexts and discusses the hypothetical link between its extensive use and the emergence of azole resistance among human fungal pathogens. PMID:26289797

  18. Genesis of Azole Antifungal Resistance from Agriculture to Clinical Settings.

    PubMed

    Azevedo, Maria-Manuel; Faria-Ramos, Isabel; Cruz, Luísa Costa; Pina-Vaz, Cidália; Rodrigues, Acácio Gonçalves

    2015-09-01

    Azole fungal resistance is becoming a major public health problem in medicine in recent years. However, it was known in agriculture since several decades; the extensive use of these compounds results in contamination of air, plants, and soil. The increasing frequency of life-threatening fungal infections and the increase of prophylactical use of azoles in high-risk patients, taken together with the evolutionary biology evidence that drug selection pressure is an important factor for the emergence and spread of drug resistance, can result in a dramatic scenario. This study reviews the azole use in agricultural and medical contexts and discusses the hypothetical link between its extensive use and the emergence of azole resistance among human fungal pathogens.

  19. Azole Antifungal Agents To Treat the Human Pathogens Acanthamoeba castellanii and Acanthamoeba polyphaga through Inhibition of Sterol 14α-Demethylase (CYP51)

    PubMed Central

    Lamb, David C.; Warrilow, Andrew G. S.; Rolley, Nicola J.; Parker, Josie E.; Nes, W. David; Smith, Stephen N.; Kelly, Diane E.

    2015-01-01

    In this study, we investigate the amebicidal activities of the pharmaceutical triazole CYP51 inhibitors fluconazole, itraconazole, and voriconazole against Acanthamoeba castellanii and Acanthamoeba polyphaga and assess their potential as therapeutic agents against Acanthamoeba infections in humans. Amebicidal activities of the triazoles were assessed by in vitro minimum inhibition concentration (MIC) determinations using trophozoites of A. castellanii and A. polyphaga. In addition, triazole effectiveness was assessed by ligand binding studies and inhibition of CYP51 activity of purified A. castellanii CYP51 (AcCYP51) that was heterologously expressed in Escherichia coli. Itraconazole and voriconazole bound tightly to AcCYP51 (dissociation constant [Kd] of 10 and 13 nM), whereas fluconazole bound weakly (Kd of 2,137 nM). Both itraconazole and voriconazole were confirmed to be strong inhibitors of AcCYP51 activity (50% inhibitory concentrations [IC50] of 0.23 and 0.39 μM), whereas inhibition by fluconazole was weak (IC50, 30 μM). However, itraconazole was 8- to 16-fold less effective (MIC, 16 mg/liter) at inhibiting A. polyphaga and A. castellanii cell proliferation than voriconazole (MIC, 1 to 2 mg/liter), while fluconazole did not inhibit Acanthamoeba cell division (MIC, >64 mg/liter) in vitro. Voriconazole was an effective inhibitor of trophozoite proliferation for A. castellanii and A. polyphaga; therefore, it should be evaluated in trials versus itraconazole for controlling Acanthamoeba infections. PMID:26014948

  20. In Vitro Activity of the Antifungal Azoles Itraconazole and Posaconazole against Leishmania amazonensis

    PubMed Central

    de Macedo-Silva, Sara Teixeira; Urbina, Julio A.; de Souza, Wanderley; Rodrigues, Juliany Cola Fernandes

    2013-01-01

    Leishmaniasis, caused by protozoan parasites of the Leishmania genus, is one of the most prevalent neglected tropical diseases. It is endemic in 98 countries, causing considerable morbidity and mortality. Pentavalent antimonials are the first line of treatment for leishmaniasis except in India. In resistant cases, miltefosine, amphotericin B and pentamidine are used. These treatments are unsatisfactory due to toxicity, limited efficacy, high cost and difficult administration. Thus, there is an urgent need to develop drugs that are efficacious, safe, and more accessible to patients. Trypanosomatids, including Leishmania spp. and Trypanosoma cruzi, have an essential requirement for ergosterol and other 24-alkyl sterols, which are absent in mammalian cells. Inhibition of ergosterol biosynthesis is increasingly recognized as a promising target for the development of new chemotherapeutic agents. The aim of this work was to investigate the antiproliferative, physiological and ultrastructural effects against Leishmania amazonensis of itraconazole (ITZ) and posaconazole (POSA), two azole antifungal agents that inhibit sterol C14α-demethylase (CYP51). Antiproliferative studies demonstrated potent activity of POSA and ITZ: for promastigotes, the IC50 values were 2.74 µM and 0.44 µM for POSA and ITZ, respectively, and for intracellular amastigotes, the corresponding values were 1.63 µM and 0.08 µM, for both stages after 72 h of treatment. Physiological studies revealed that both inhibitors induced a collapse of the mitochondrial membrane potential (ΔΨm), which was consistent with ultrastructural alterations in the mitochondrion. Intense mitochondrial swelling, disorganization and rupture of mitochondrial membranes were observed by transmission electron microscopy. In addition, accumulation of lipid bodies, appearance of autophagosome-like structures and alterations in the kinetoplast were also observed. In conclusion, our results indicate that ITZ and POSA are potent

  1. In vitro activity of the antifungal azoles itraconazole and posaconazole against Leishmania amazonensis.

    PubMed

    de Macedo-Silva, Sara Teixeira; Urbina, Julio A; de Souza, Wanderley; Rodrigues, Juliany Cola Fernandes

    2013-01-01

    Leishmaniasis, caused by protozoan parasites of the Leishmania genus, is one of the most prevalent neglected tropical diseases. It is endemic in 98 countries, causing considerable morbidity and mortality. Pentavalent antimonials are the first line of treatment for leishmaniasis except in India. In resistant cases, miltefosine, amphotericin B and pentamidine are used. These treatments are unsatisfactory due to toxicity, limited efficacy, high cost and difficult administration. Thus, there is an urgent need to develop drugs that are efficacious, safe, and more accessible to patients. Trypanosomatids, including Leishmania spp. and Trypanosoma cruzi, have an essential requirement for ergosterol and other 24-alkyl sterols, which are absent in mammalian cells. Inhibition of ergosterol biosynthesis is increasingly recognized as a promising target for the development of new chemotherapeutic agents. The aim of this work was to investigate the antiproliferative, physiological and ultrastructural effects against Leishmania amazonensis of itraconazole (ITZ) and posaconazole (POSA), two azole antifungal agents that inhibit sterol C14α-demethylase (CYP51). Antiproliferative studies demonstrated potent activity of POSA and ITZ: for promastigotes, the IC50 values were 2.74 µM and 0.44 µM for POSA and ITZ, respectively, and for intracellular amastigotes, the corresponding values were 1.63 µM and 0.08 µM, for both stages after 72 h of treatment. Physiological studies revealed that both inhibitors induced a collapse of the mitochondrial membrane potential (ΔΨm), which was consistent with ultrastructural alterations in the mitochondrion. Intense mitochondrial swelling, disorganization and rupture of mitochondrial membranes were observed by transmission electron microscopy. In addition, accumulation of lipid bodies, appearance of autophagosome-like structures and alterations in the kinetoplast were also observed. In conclusion, our results indicate that ITZ and POSA are potent

  2. Simultaneous determination of seven azole antifungal drugs in serum by ultra-high pressure liquid chromatography and diode array detection.

    PubMed

    Mistretta, V; Dubois, N; Denooz, R; Charlier, C

    2014-01-01

    Azole antifungals are a group of fungistatic agents that can be administered orally or parenterally. The determination of the concentrations of these antifungals (miconazole, fluconazole, ketoconazole, posaconazole, voriconazole, itraconazole, and its major active metabolite, hydroxy-itraconazole) in serum can be useful to adapt the doses to pharmacological ranges because of large variability in the absorption and metabolism of the drugs, multiple drug interactions, but also potential resistance or toxicity. A method was developed and validated for the simultaneous determination of these drugs in serum utilizing ultra-high pressure liquid chromatography and diode array detection (UHPLC-DAD). After a simple and rapid liquid-liquid extraction, the pre-treated sample was analysed on an UHPLC-DAD system (Waters Corporation(®)). The chromatographic separation was carried out on an Acquity BEH C18 column (Waters Corporation) with a gradient mode of mobile phase composed of acetonitrile and aqueous ammonium bicarbonate 10·0 M pH10. The flow rate was 0·4 ml/min and the injection volume was 5 μl. The identification wavelength varied according to the drug from 210 to 260 nm. The method was validated by the total error method approach by using an analytical validation software (e•noval V3·0 Arlenda(®)). The seven azole antifungals were identified by retention time and specific UV spectra, over a 13-minute run time. All calibration curves showed good linearity (r(2)>0·99) in ranges considered clinically adequate. The assay was linear from 0·05 to 10 mg/l for voriconazole, posaconazole, itraconazole, hydroxy-itraconazole, and ketoconazole, from 0·3 to 10 mg/l for fluconazole, and from 0·1 to 10 mg/l for miconazole. The bias and imprecision values for intra- and inter-assays were lower than 10% and than 15%, respectively. In conclusion, a simple, sensitive, and selective UHPLC-DAD method was developed and validated to determine seven azole antifungal drugs in human

  3. Haloprogin: a Topical Antifungal Agent

    PubMed Central

    Harrison, E. F.; Zwadyk, P.; Bequette, R. J.; Hamlow, E. E.; Tavormina, P. A.; Zygmunt, W. A.

    1970-01-01

    Haloprogin was shown to be a highly effective agent for the treatment of experimentally induced topical mycotic infections in guinea pigs. Its in vitro spectrum of activity also includes yeasts, yeastlike fungi (Candida species), and certain gram-positive bacteria. The in vitro and in vivo antifungal activity of haloprogin against dermatophytes was equal to that observed with tolnaftate. The striking differences between the two agents were the marked antimonilial and selective antibacterial activities shown by haloprogin, contrasted with the negligible activities found with tolnaftate. Addition of serum decreased the in vitro antifungal activity of haloprogin to a greater extent than that of tolnaftate; however, diminished antifungal activity was not observed when haloprogin was applied topically to experimental dermatophytic infections. Based on its broad spectrum of antimicrobial activity, haloprogin may prove to be a superior topical agent in the treatment of dermatophytic and monilial infections in man. PMID:5422306

  4. The yeast Saccharomyces cerevisiae Pdr16p restricts changes in ergosterol biosynthesis caused by the presence of azole antifungals.

    PubMed

    Šimová, Zuzana; Poloncová, Katarína; Tahotná, Dana; Holič, Roman; Hapala, Ivan; Smith, Adam R; White, Theodore C; Griač, Peter

    2013-06-01

    Pdr16p belongs to the family of phosphatidylinositol transfer proteins in yeast. The absence of Pdr16p results in enhanced susceptibility to azole antifungals in Saccharomyces cerevisiae. In the major fungal human pathogen Candida albicans, CaPDR16 is a contributing factor to clinical azole resistance. The current study was aimed at better understanding the function of Pdr16p, especially in relation to azole resistance in S. cerevisiae. We show that deletion of the PDR16 gene increased susceptibility of S. cerevisiae to azole antifungals that are used in clinical medicine and agriculture. Significant differences in the inhibition of the sterol biosynthetic pathway were observed between the pdr16Δ strain and its corresponding wild-type (wt) strain when yeast cells were challenged by sub-inhibitory concentrations of the azoles miconazole or fluconazole. The increased susceptibility to azoles, and enhanced changes in sterol biosynthesis upon exposure to azoles of the pdr16Δ strain compared to wt strain, are not the results of increased intracellular concentration of azoles in the pdr16Δ cells. We also show that overexpression of PDR17 complemented the azole susceptible phenotype of the pdr16Δ strain and corrected the enhanced sterol alterations in pdr16Δ cells in the presence of azoles. Pdr17p was found previously to be an essential part of a complex required for intermembrane transport of phosphatidylserine at regions of membrane apposition. Based on these observations, we propose a hypothesis that Pdr16p assists in shuttling sterols or their intermediates between membranes or, alternatively, between sterol biosynthetic enzymes or complexes.

  5. The rare case of Alternaria alternata cutaneous and pulmonary infection in a heart transplant recipient treated by azole antifungals.

    PubMed

    Sečníková, Zuzana; Jůzlová, Kateřina; Vojáčková, Naděžda; Kazakov, Dmitry V; Hošková, Lenka; Fialová, Jorga; Džambová, Martina; Hercogová, Jana

    2014-01-01

    We report a case of Alternaria alternata cutaneous and pulmonary infection in a 62-year-old man after heart transplantation treated by azole antifungals. Alternaria spp. belong to a group of opportunistic dematiaceous fungi with worldwide distribution. The cutaneous form of the infection in human is very rare and occurs predominantly among immunosuppressed patients. Therefore, diagnosis is often delayed or not reached at all. Appropriate treatment is not standardized and remains a matter of discussion. According to current studies, the best results are obtained with systemic azole antifungal therapy combined with surgical intervention.

  6. Effect of Nitric Oxide on the Antifungal Activity of Oxidative Stress and Azoles Against Candida albicans.

    PubMed

    Li, De-Dong; Yang, Chang-Chun; Liu, Ping; Wang, Yan; Sun, Yan

    2016-06-01

    Nitric oxide (NO) is a small molecule with a wide range of biological activities in mammalian and bacteria. However, the role of NO in fungi, especially Candida albicans, is not clear. In this study, we confirmed the generation of endogenous NO in C. albicans, and found that the production of endogenous NO in C. albicans was associated with nitric oxide synthase pathway. Our results further indicated that the production of endogenous NO in C. albicans was reduced under oxidative stress such as menadione or H2O2 treatment. Meanwhile, exogenous NO donor, sodium nitroprusside (SNP), synergized with H2O2 against C. albicans. Interestingly, SNP could inhibit the antifungal effect of azoles against C. albicans in vitro, suggesting that NO might be involved in the resistance of C. albicans to antifungals. Collectively, this study demonstrated the production of endogenous NO in C. albicans, and indicated that NO may play an important role in the response of C. albicans to oxidative stress and azoles. PMID:27570314

  7. Nectar yeasts of the Metschnikowia clade are highly susceptible to azole antifungals widely used in medicine and agriculture.

    PubMed

    Álvarez-Pérez, Sergio; de Vega, Clara; Pozo, María I; Lenaerts, Marijke; Van Assche, Ado; Herrera, Carlos M; Jacquemyn, Hans; Lievens, Bart

    2016-02-01

    The widespread use of azole antifungals in medicine and agriculture and the resulting long-persistent residues could potentially affect beneficial fungi. However, there is very little information on the tolerance of non-target environmental fungi to azoles. In this study, we assessed the susceptibility of diverse plant- and insect-associated yeasts from the Metschnikowia clade, including several ecologically important species, to widely used medical and agricultural azoles (epoxiconazole, imazalil, ketoconazole and voriconazole). A total of 120 strains from six species were tested. Minimum inhibitory concentrations (MICs) were determined by the EUCAST broth microdilution procedure after some necessary modifications were made. The majority of species tested were highly susceptible to epoxiconazole, ketoconazole and voriconazole (>95% of strains showed MICs ≤ 0.125 mg l(-1)). Most strains were also very susceptible to imazalil, although MIC values were generally higher than for the other azoles. Furthermore, certain Metschnikowia reukaufii strains displayed a 'trailing' phenotype (i.e. showed reduced but persistent growth at antifungal concentrations above the MIC), but this characteristic was dependent on test conditions. It was concluded that exposure to azoles may pose a risk for ecologically relevant yeasts from the Metschnikowia clade, and thus could potentially impinge on the tripartite interaction linking these fungi with plants and their insect pollinators.

  8. Nectar yeasts of the Metschnikowia clade are highly susceptible to azole antifungals widely used in medicine and agriculture.

    PubMed

    Álvarez-Pérez, Sergio; de Vega, Clara; Pozo, María I; Lenaerts, Marijke; Van Assche, Ado; Herrera, Carlos M; Jacquemyn, Hans; Lievens, Bart

    2016-02-01

    The widespread use of azole antifungals in medicine and agriculture and the resulting long-persistent residues could potentially affect beneficial fungi. However, there is very little information on the tolerance of non-target environmental fungi to azoles. In this study, we assessed the susceptibility of diverse plant- and insect-associated yeasts from the Metschnikowia clade, including several ecologically important species, to widely used medical and agricultural azoles (epoxiconazole, imazalil, ketoconazole and voriconazole). A total of 120 strains from six species were tested. Minimum inhibitory concentrations (MICs) were determined by the EUCAST broth microdilution procedure after some necessary modifications were made. The majority of species tested were highly susceptible to epoxiconazole, ketoconazole and voriconazole (>95% of strains showed MICs ≤ 0.125 mg l(-1)). Most strains were also very susceptible to imazalil, although MIC values were generally higher than for the other azoles. Furthermore, certain Metschnikowia reukaufii strains displayed a 'trailing' phenotype (i.e. showed reduced but persistent growth at antifungal concentrations above the MIC), but this characteristic was dependent on test conditions. It was concluded that exposure to azoles may pose a risk for ecologically relevant yeasts from the Metschnikowia clade, and thus could potentially impinge on the tripartite interaction linking these fungi with plants and their insect pollinators. PMID:26703195

  9. Evaluation of the genotoxicity of the imidazole antifungal climbazole: comparison to published results for other azole compounds.

    PubMed

    Pérez-Rivera, Alex A; Hu, Ting; Aardema, Marilyn J; Nash, J F

    2009-01-01

    Climbazole is an imidazole antifungal agent that can provide anti-dandruff benefits when incorporated into a shampoo matrix. A series of genotoxicity studies were performed to support the human safety of this azole antifungal drug. Climbazole was not mutagenic in the Salmonella typhimurium or Escherichia coli Ames assay and did not induce micronuclei in human lymphocytes. In the mouse lymphoma assay (MLA), climbazole was negative (non-mutagenic) with and without metabolic (S9) activation after a 4 h exposure; an increase in small colony mutants was observed without metabolic activation after a 24 h exposure at concentrations of 15 and 17.5 μg/mL. An in vivo mouse micronucleus test was negative up to a maximum tolerated dose (MTD) of 150 mg/kg climbazole administered orally. In the in vivo/in vitro unscheduled DNA synthesis assay, climbazole showed no evidence of DNA damage in the livers of rats at doses up to the MTD of 200 mg/kg orally. A toxicokinetic study was performed in mice with oral administration of [14C]-climbazole (150 mg/kg). Radioactivity (20.42 μg-equiv./g plasma) was detected 15 min after oral administration of [14C]-climbazole, and the peak concentration was 62.96 μg-equiv./g plasma at 8 h after dosing. The measured amounts of radioactivity in plasma, at all sample times from 15 min up to 24 h, exceeded the concentrations that induced increases in mutation frequency after 24 h exposure of mouse lymphoma cells in vitro (15 and 17.5 μg/mL). These observations lend support to the conclusion that climbazole does not present a genotoxic risk in vivo. Furthermore, these data are consistent with the published data for other azole antifungals that work by preventing the synthesis of ergosterol and, as a class, are generally non-genotoxic, except some isolated positive results of questionable significance. Collectively, these data are supportive of the view that climbazole does not present a genotoxic or carcinogenic risk to humans. PMID:18950734

  10. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity

    PubMed Central

    Gupta, Deepa; Jain, D. K.

    2015-01-01

    Much research has been carried out with the aim to discover the therapeutic values of chalcone derivatives. Chalcones possess wide range of pharmacological activity such as antibacterial, antimalarial, antiprotozoal, antitubercular, anticancer, and antifungal agents etc. The presence of reactive α,β-unsaturated keto group in chalcones is found to be responsible for their biological activity. The rapid developments of resistance to antifungal agents, led to design, and synthesize the new antifungal agents. The derivatives of chalcones were prepared using Claisen–Schmidt condensation scheme with appropriate tetralone and aldehyde derivatives. Ten derivatives were synthesized and were biologically screened for antifungal activity. The newly synthesized derivatives of chalcone showed antifungal activity against fungal species, Microsporum gypseum. The results so obtained were superior or comparable to ketoconazole. It was observed that none of the compounds tested showed positive results for fungi Candida albicans nor against fungi Aspergillus niger. Chalcone derivatives showed inhibitory effect against M. gypseum species of fungus. It was found that among the chalcone derivatives so synthesized, two of them, that is, 4-chloro derivative, and unsubstituted derivative of chalcone showed antifungal activity superior to ketoconazole. Thus, these can be the potential new molecule as antifungal agent. PMID:26317075

  11. Azole Antifungal Sensitivity of Sterol 14α-Demethylase (CYP51) and CYP5218 from Malassezia globosa

    PubMed Central

    Warrilow, Andrew G. S.; Price, Claire L.; Parker, Josie E.; Rolley, Nicola J.; Smyrniotis, Christopher J.; Hughes, David D.; Thoss, Vera; Nes, W. David; Kelly, Diane E.; Holman, Theodore R.; Kelly, Steven L.

    2016-01-01

    Malassezia globosa cytochromes P450 CYP51 and CYP5218 are sterol 14α-demethylase (the target of azole antifungals) and a putative fatty acid metabolism protein (and a potential azole drug target), respectively. Lanosterol, eburicol and obtusifoliol bound to CYP51 with Kd values of 32, 23 and 28 μM, respectively, catalyzing sterol 14α-demethylation with respective turnover numbers of 1.7 min−1, 5.6 min−1 and 3.4 min−1. CYP5218 bound a range of fatty acids with linoleic acid binding strongest (Kd 36 μM), although no metabolism could be detected in reconstitution assays or role in growth on lipids. Clotrimazole, fluconazole, itraconazole, ketoconazole, voriconazole and ketaminazole bound tightly to CYP51 (Kd ≤ 2 to 11 nM). In contrast, fluconazole did not bind to CYP5218, voriconazole and ketaminazole bound weakly (Kd ~107 and ~12 μM), whereas ketoconazole, clotrimazole and itraconazole bound strongest to CYP5218 (Kd ~1.6, 0.5 and 0.4 μM) indicating CYP5218 to be only a secondary target of azole antifungals. IC50 determinations confirmed M. globosa CYP51 was strongly inhibited by azole antifungals (0.15 to 0.35 μM). MIC100 studies showed itraconazole should be considered as an alternative to ketoconazole given the potency and safety profiles and the CYP51 assay system can be used in structure-activity studies in drug development. PMID:27291783

  12. Azole antifungal inhibition of buprenorphine, methadone and oxycodone in vitro metabolism.

    PubMed

    Moody, David E; Liu, Fenyun; Fang, Wenfang B

    2015-06-01

    Opioid-related mortality rates have escalated. Drug interactions may increase blood concentrations of the opioid. We therefore used human liver microsomes (HLMs) and cDNA-expressed human cytochrome P450s (rCYPs) to study in vitro inhibition of buprenorphine metabolism to norbuprenorphine (CYP3A4 and 2C8), oxycodone metabolism to noroxycodone (CYP3A4 and 2C18) and oxymorphone (CYP2D6), and methadone metabolism to R- and S-2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP; CYP3A4 and 2B6). In this study, we have examined the inhibitory effect of 12 (mostly antifungal) azoles. These compounds have a wide range of solubility; to keep organic solvent ≤1%, there was an equally wide range of highest concentration tested (e.g., itraconazole 5 µM to fluconazole 1000 µM). Inhibitors were first incubated with HLMs at three concentrations with or without preincubation of inhibitor with reducing equivalents to also screen for time-dependent inhibition (TDI). Posaconazole displayed evidence of TDI; metronidazole and albendazole had no significant effect. Azoles were next screened at the highest achievable concentration for non-CYP3A4 pathways. IC50 values (µM) were determined for most CYP3A4 pathways (ranges) and other pathways as dictated by screen results: clotrimazole (0.30 - 0.35; others >30 µM); econazole (2.2 - 4.9; 2B6 R-EDDP - 9.5, S-EDDP - 6.8; 2C8 - 6.0; 2C18 - 1.0; 2D6 - 1.2); fluconazole (7.7 - 66; 2B6 - 313, 361; 2C8 - 1240; 2C18 - 17; 2D6 - 1000); itraconazole (2.5 to >5; others >5); ketoconazole (0.032 - 0.094; 2B6 - 12, 31; 2C8 - 78; 2C18 - 0.98; 2D6 - 182); miconazole (2.3 - 7.6; 2B6 - 2.8, 2.8; 2C8 - 5.3; 2C18 - 3.1; 2D6 - 5.9); posaconazole (3.4 - 20; 2C18 - 3.8; others >30); terconazole (0.48 to >10; 2C18 - 8.1; others >10) and voriconazole (0.40 - 15; 2B6 - 2.4, 2.5; 2C8 - 170; 2C18 - 13; 2D6 >300). Modeling based on estimated Ki values and plasma concentrations from the literature suggest that the orally administered azoles, particularly

  13. TM-02IDENTIFICATION OF THE AZOLE CLASS OF ANTIFUNGALS AS POTENT INHIBITORS OF HEXOKINASE II MEDIATED TUMOUR METABOLISM IN GLIOBLASTOMA

    PubMed Central

    Agnihotri, Sameer; Vartanian, Alenoush; Burrell, Kelly; Singh, Sanjay; Alamsahebpour, Amir; Aldape, Kenneth; Zadeh, Gelareh

    2014-01-01

    Rapidly proliferating tumour cells preferentially use aerobic glycolysis over oxidative phosphorylation (OXPHOS) to support growth and survive unfavorable microenvironment conditions. This metabolic reprogramming is referred to as the “Warburg effect” and offers a novel way to target cancer cells including glioblastoma (GBM), the most common malignant brain tumor. Here we demonstrate that Hexokinase 2 (HK2) but not HK1 or HK3 is a critical mediator of metabolic reprograming in GBMs and its inhibition is a potential therapeutic strategy for sensitization of GBM tumors to radiation (RAD) and temozolomide (TMZ). In GBM xenografts, conditional HK2 loss sensitizes tumors to concomitant RAD/TMZ and results in a significant survival benefit. Loss of HK2 resulted in increased necrosis, hypoxia, inflammatory infiltration and reduced vascularization. Currently, no direct inhibitor of HK2 exists so we explored whether a system biology approach to identify gene networks associated with HK2 could lead to the identification of HK2 inhibitors. Using HK2 knockdown in established GBM cell lines and primary cultures we established gene signatures and networks associated with HK2 expression. Loss of HK2 led to attenuation of several pro GBM signaling pathways affecting tumour cell invasion, glucose metabolism and proliferation. Using a small drug screen targeting potential HK2 regulated gene expression networks we identified the azole class of antifungals as inhibitors of tumour metabolism by reducing proliferation, lactate production, glucose uptake in GBM cells but not primary normal human astrocytes or normal neural stem cells. Interestingly, several azole compounds were more potent at killing GBM cells in hypoxic conditions. Azoles in combination with further HK2 knockdown, RT or in combination with other metabolic therapeutics including pyruvate kinase M2 (PKM) activators led to synergistic tumour cell death. In summary, the azole class of antifungals may represent a new way

  14. Multidrug Transporters and Alterations in Sterol Biosynthesis Contribute to Azole Antifungal Resistance in Candida parapsilosis.

    PubMed

    Berkow, Elizabeth L; Manigaba, Kayihura; Parker, Josie E; Barker, Katherine S; Kelly, Stephen L; Rogers, P David

    2015-10-01

    While much is known concerning azole resistance in Candida albicans, considerably less is understood about Candida parapsilosis, an emerging species of Candida with clinical relevance. We conducted a comprehensive analysis of azole resistance in a collection of resistant C. parapsilosis clinical isolates in order to determine which genes might play a role in this process within this species. We examined the relative expression of the putative drug transporter genes CDR1 and MDR1 and that of ERG11. In isolates overexpressing these genes, we sequenced the genes encoding their presumed transcriptional regulators, TAC1, MRR1, and UPC2, respectively. We also sequenced the sterol biosynthesis genes ERG3 and ERG11 in these isolates to find mutations that might contribute to this phenotype in this Candida species. Our findings demonstrate that the putative drug transporters Cdr1 and Mdr1 contribute directly to azole resistance and suggest that their overexpression is due to activating mutations in the genes encoding their transcriptional regulators. We also observed that the Y132F substitution in ERG11 is the only substitution occurring exclusively among azole-resistant isolates, and we correlated this with specific changes in sterol biosynthesis. Finally, sterol analysis of these isolates suggests that other changes in sterol biosynthesis may contribute to azole resistance in C. parapsilosis.

  15. Candida rugosa, an Emerging Fungal Pathogen with Resistance to Azoles: Geographic and Temporal Trends from the ARTEMIS DISK Antifungal Surveillance Program

    PubMed Central

    Pfaller, M. A.; Diekema, D. J.; Colombo, A. L.; Kibbler, C.; Ng, K. P.; Gibbs, D. L.; Newell, V. A.

    2006-01-01

    Candida rugosa is a fungus that appears to be emerging as a cause of infection in some geographic regions. We utilized the extensive database of the ARTEMIS DISK Antifungal Surveillance Program to describe the geographic and temporal trends in the isolation of C. rugosa from clinical specimens and the in vitro susceptibilities of 452 isolates to fluconazole and voriconazole. C. rugosa accounted for 0.4% of 134,715 isolates of Candida, and the frequency of isolation increased from 0.03% to 0.4% over the 6.5-year study period (1997 to 2003). C. rugosa was most common in the Latin American region (2.7% versus 0.1 to 0.4%). Decreased susceptibility to fluconazole (40.5% susceptible) was observed in all geographic regions; however, isolates from Europe and North America were much more susceptible (97 to 100%) to voriconazole than those from other geographic regions (55.8 to 58.8%). C. rugosa was most often isolated from blood and urine in patients hospitalized at the Medical and Surgical inpatient services. Notably, bloodstream isolates were the least susceptible to both fluconazole and voriconazole. C. rugosa should be considered, along with the established pathogens Candida krusei and Candida glabrata, as a species of Candida with reduced susceptibility to the azole antifungal agents. PMID:17021085

  16. Impact of brief exposure to antifungal agents on the post-antifungal effect and hemolysin activity of oral Candida albicans

    PubMed Central

    ELLEPOLA, Arjuna Nishantha; KHAJAH, Rana; JAYATILAKE, Sumedha; SAMARANAYAKE, Lakshman; SHARMA, Prem; KHAN, Zia

    2015-01-01

    Post-antifungal effect (PAFE) of Candida and its production of hemolysin are determinants of candidal pathogenicity. Candida albicans is the foremost aetiological agent of oral candidosis, which can be treated with polyene, azole, and echinocandin antifungals. However, once administered, the intraoral concentrations of these drugs tend to be subtherapeutic and transient due to the diluent effect of saliva and cleansing effect of the oral musculature. Hence, intra-orally, Candida may undergo a brief exposure to antifungal drugs. Objective Therefore, the PAFE and hemolysin production of oral C. albicans isolates following brief exposure to sublethal concentrations of the foregoing antifungals were evaluated. Material and Methods A total of 50 C. albicans oral isolates obtained from smokers, diabetics, asthmatics using steroid inhalers, partial denture wearers and healthy individuals were exposed to sublethal concentrations of nystatin, amphotericin B, caspofungin, ketoconazole and fluconazole for 60 min. Thereafter, the drugs were removed and the PAFE and hemolysin production were determined by previously described turbidometric and plate assays, respectively. Results Nystatin, amphotericin B, caspofungin and ketoconazole induced mean PAFE (hours) of 2.2, 2.18, 2.2 and 0.62, respectively. Fluconazole failed to produce a PAFE. Hemolysin production of these isolates was suppressed with a percentage reduction of 12.27, 13.47, 13.33, 8.53 and 4.93 following exposure to nystatin, amphotericin B, caspofungin, ketoconazole and fluconazole, respectively. Conclusions Brief exposure to sublethal concentrations of antifungal drugs appears to exert an antifungal effect by interfering with the growth as well as hemolysin production of C. albicans. PMID:26398514

  17. Quinone derivatives isolated from the endolichenic fungus Phialocephala fortinii are Mdr1 modulators that combat azole resistance in Candida albicans

    PubMed Central

    Xie, Fei; Chang, Wenqiang; Zhang, Ming; Li, Ying; Li, Wei; Shi, Hongzhuo; Zheng, Sha; Lou, Hongxiang

    2016-01-01

    One of the main azole-resistance mechanisms in Candida pathogens is the upregulation of drug efflux pumps, which compromises the efficacy of azoles and results in treatment failure. The combination of azole-antifungal agents with efflux pump inhibitors represents a promising strategy to combat fungal infection. High-throughput screening of 150 extracts obtained from endolichenic fungal cultures led to the discovery that the extract of Phialocephala fortinii exhibits potent activity for the reversal of azole resistance. From P. fortinii cultures, a total of 15 quinone derivatives, comprising 11 new derivatives and 4 known compounds, were obtained. Among these compounds, palmarumycin P3 (3) and phialocephalarin B (8) specifically modulate the expression of MDR1 to inhibit the activity of drug efflux pumps and therefore reverse azole resistance. The present study revealed Mdr1 targeting as an alternative mechanism for the discovery of new agents to fight antifungal drug resistance. PMID:27650180

  18. Quinone derivatives isolated from the endolichenic fungus Phialocephala fortinii are Mdr1 modulators that combat azole resistance in Candida albicans.

    PubMed

    Xie, Fei; Chang, Wenqiang; Zhang, Ming; Li, Ying; Li, Wei; Shi, Hongzhuo; Zheng, Sha; Lou, Hongxiang

    2016-01-01

    One of the main azole-resistance mechanisms in Candida pathogens is the upregulation of drug efflux pumps, which compromises the efficacy of azoles and results in treatment failure. The combination of azole-antifungal agents with efflux pump inhibitors represents a promising strategy to combat fungal infection. High-throughput screening of 150 extracts obtained from endolichenic fungal cultures led to the discovery that the extract of Phialocephala fortinii exhibits potent activity for the reversal of azole resistance. From P. fortinii cultures, a total of 15 quinone derivatives, comprising 11 new derivatives and 4 known compounds, were obtained. Among these compounds, palmarumycin P3 (3) and phialocephalarin B (8) specifically modulate the expression of MDR1 to inhibit the activity of drug efflux pumps and therefore reverse azole resistance. The present study revealed Mdr1 targeting as an alternative mechanism for the discovery of new agents to fight antifungal drug resistance. PMID:27650180

  19. Pickering emulsions based on cyclodextrins: A smart solution for antifungal azole derivatives topical delivery.

    PubMed

    Leclercq, Loïc; Nardello-Rataj, Véronique

    2016-01-20

    Surfactants are usually used for the preparation of emulsions. Potential drawbacks on the human body or on the environment can be observed for some of them(e.g. skin irritation, hemolysis, protein denaturation, etc.). However, it is possible to use biocompatible emulsifiers such as native cyclodextrins (CDs). The mixture of oil (paraffin oil or isopropyl myristate), water and native CDs results in the formation of Pickering emulsions. The emulsion properties were investigated by ternary phase diagrams elaboration, multiple light scattering, optical and transmission microscopies. The results prove that these Pickering emulsions were very stable against coalescence due to the dense film format the oil/water interface. The rheological behavior has shown that these emulsions remain compatible for topical applications. This kind of emulsions (biocompatibility, stability and surfactant free) has been used to obtain sustainable formulations for antifungal econazole derivatives delivery. Our results prove that these new formulations are at least as active as commercially available formulations.

  20. Synthesis and investigation of novel benzimidazole derivatives as antifungal agents.

    PubMed

    Chandrika, Nishad Thamban; Shrestha, Sanjib K; Ngo, Huy X; Garneau-Tsodikova, Sylvie

    2016-08-15

    The rise and emergence of resistance to antifungal drugs by diverse pathogenic fungal strains have resulted in an increase in demand for new antifungal agents. Various heterocyclic scaffolds with different mechanisms of action against fungi have been investigated in the past. Herein, we report the synthesis and antifungal activities of 18 alkylated mono-, bis-, and trisbenzimidazole derivatives, their toxicities against mammalian cells, as well as their ability to induce reactive oxygen species (ROS) in yeast cells. Many of our bisbenzimidazole compounds exhibited moderate to excellent antifungal activities against all tested fungal strains, with MIC values ranging from 15.6 to 0.975μg/mL. The fungal activity profiles of our bisbenzimidazoles were found to be dependent on alkyl chain length. Our most potent compounds were found to display equal or superior antifungal activity when compared to the currently used agents amphotericin B, fluconazole, itraconazole, posaconazole, and voriconazole against many of the strains tested. PMID:27301676

  1. Research to Identify Effective Antifungal Agents, 1991 Annual Report.

    SciTech Connect

    Schreck, Carl

    1991-09-01

    This study is a continuation of ``Research to Identify Effective Antifungal Agents'' sponsored by Bonneville Power Administration (Schreck et al. 1990). The objectives of the present study was to evaluate up to 10 candidate fungicides.

  2. Research to Identify Effective Antifungal Agents, 1993 Annual Report.

    SciTech Connect

    Schreck, Carl

    1993-10-01

    This study is a continuation of ``Research to Identify Effective Antifungal Agents'' sponsored by Bonneville Power Administration (Schreck et al. 1990, 1991, and 1992). The objectives of the present study were to select and evaluate candidate fungicides.

  3. Chemosensitization as a Means to Augment Commercial Antifungal Agents

    PubMed Central

    Campbell, Bruce C.; Chan, Kathleen L.; Kim, Jong H.

    2012-01-01

    Antimycotic chemosensitization and its mode of action are of growing interest. Currently, use of antifungal agents in agriculture and medicine has a number of obstacles. Foremost of these is development of resistance or cross-resistance to one or more antifungal agents. The generally high expense and negative impact, or side effects, associated with antifungal agents are two further issues of concern. Collectively, these problems are exacerbated by efforts to control resistant strains, which can evolve into a treadmill of higher dosages for longer periods. This cycle in turn, inflates cost of treatment, dramatically. A further problem is stagnation in development of new and effective antifungal agents, especially for treatment of human mycoses. Efforts to overcome some of these issues have involved using combinations of available antimycotics (e.g., combination therapy for invasive mycoses). However, this approach has had inconsistent success and is often associated with a marked increase in negative side effects. Chemosensitization by natural compounds to increase effectiveness of commercial antimycotics is a somewhat new approach to dealing with the aforementioned problems. The potential for safe natural products to improve antifungal activity has been observed for over three decades. Chemosensitizing agents possess antifungal activity, but at insufficient levels to serve as antimycotics, alone. Their main function is to disrupt fungal stress response, destabilize the structural integrity of cellular and vacuolar membranes or stimulate production of reactive oxygen species, augmenting oxidative stress and apoptosis. Use of safe chemosensitizing agents has potential benefit to both agriculture and medicine. When co-applied with a commercial antifungal agent, an additive or synergistic interaction may occur, augmenting antifungal efficacy. This augmentation, in turn, lowers effective dosages, costs, negative side effects and, in some cases, countermands resistance

  4. Characterization of Tamoxifen as an Antifungal Agent Using the Yeast Schizosaccharomyces Pombe Model Organism.

    PubMed

    Zhang, Xibo; Fang, Yue; Jaiseng, Wurentuya; Hu, Lingling; Lu, Yabin; Ma, Yan; Furuyashiki, Tomoyuki

    2015-01-01

    Tamoxifen, a selective estrogen receptor modulator used for managing breast cancer, is known to have antifungal activity. However, its molecular mechanism remains unknown. Using the fission yeast Schizosaccharomyces pombe as a model organism, we have explored the mechanism involved in antifungal action of tamoxifen. Since tamoxifen was shown to inhibit the binding of calmodulin to calcineurin in fungi, we first examined involvement of these molecules and found that overexpression of a catalytic subunit of calcineurin and its constitutively active mutant as well as calmodulin increases tamoxifen sensitivity. Since terbinafine and azoles inhibit enzymes for ergosterol biosynthesis, Erg1 and Erg11, for their antifungal actions, we also examined involvement of these molecules. Overexpression of Erg1 and Erg11 reduced the sensitivity to terbinafine and azoles, respectively, but increased tamoxifen sensitivity, suggesting that ergosterol biosynthesis is differently related to the action of tamoxifen and those of terbinafine and azoles. To elucidate molecules involved in tamoxifen action, we performed a genome-wide screen for altered sensitivity to tamoxifen using a fission yeast gene deletion library, and identified various hypersensitive and resistant mutants to this drug. Notably, these mutants are rarely overlapped with those identified in similar genetic screens with currently used antifungals, suggesting a novel mode of antifungal action. Furthermore, tamoxifen augmented antifungal actions of terbinafine and azoles, suggesting synergetic actions between these drugs. Therefore, our findings suggest that calmodulin-calcineurin pathway and ergosterol biosynthesis are related to antifungal action of tamoxifen, and propose novel targets for antifungal development as well as combined therapy with tamoxifen for fungal diseases.

  5. Characterization of Tamoxifen as an Antifungal Agent Using the Yeast Schizosaccharomyces Pombe Model Organism.

    PubMed

    Zhang, Xibo; Fang, Yue; Jaiseng, Wurentuya; Hu, Lingling; Lu, Yabin; Ma, Yan; Furuyashiki, Tomoyuki

    2015-01-01

    Tamoxifen, a selective estrogen receptor modulator used for managing breast cancer, is known to have antifungal activity. However, its molecular mechanism remains unknown. Using the fission yeast Schizosaccharomyces pombe as a model organism, we have explored the mechanism involved in antifungal action of tamoxifen. Since tamoxifen was shown to inhibit the binding of calmodulin to calcineurin in fungi, we first examined involvement of these molecules and found that overexpression of a catalytic subunit of calcineurin and its constitutively active mutant as well as calmodulin increases tamoxifen sensitivity. Since terbinafine and azoles inhibit enzymes for ergosterol biosynthesis, Erg1 and Erg11, for their antifungal actions, we also examined involvement of these molecules. Overexpression of Erg1 and Erg11 reduced the sensitivity to terbinafine and azoles, respectively, but increased tamoxifen sensitivity, suggesting that ergosterol biosynthesis is differently related to the action of tamoxifen and those of terbinafine and azoles. To elucidate molecules involved in tamoxifen action, we performed a genome-wide screen for altered sensitivity to tamoxifen using a fission yeast gene deletion library, and identified various hypersensitive and resistant mutants to this drug. Notably, these mutants are rarely overlapped with those identified in similar genetic screens with currently used antifungals, suggesting a novel mode of antifungal action. Furthermore, tamoxifen augmented antifungal actions of terbinafine and azoles, suggesting synergetic actions between these drugs. Therefore, our findings suggest that calmodulin-calcineurin pathway and ergosterol biosynthesis are related to antifungal action of tamoxifen, and propose novel targets for antifungal development as well as combined therapy with tamoxifen for fungal diseases. PMID:26628015

  6. Identification of Candida species and susceptibility testing with Sensititre YeastOne microdilution panel to 9 antifungal agents

    PubMed Central

    Kucukates, Emine; Gultekin, Nuh N.; Alisan, Zeynep; Hondur, Nur; Ozturk, Recep

    2016-01-01

    Objectives: To determine the species incidence and susceptibility pattern to 9 antifungal agents of yeasts isolated from various clinical specimens of colonized or infected patients treated in the coronary and surgical intensive care units (ICU). Methods: A total of 421 ICU patients were treated at the Cardiology Institute, Istanbul University, Istanbul, Turkey between June 2013 and May 2014, and 44 Candida species were isolated from blood, urine, endotracheal aspiration fluid, sputum, and wounds of 16 ICU patients. Identification of Candida was performed using CHROMagar. Antifungal susceptibility was determined by a Sensititre YeastOne colorimetric microdilution panel. Results: Candida albicans (C. albicans) was the most commonly observed microorganism 23 (54%); the other microorganisms isolated were Candida tropicalis 12 (27%), Candida glabrata 5 (11%), Candida parapsilosis 1 (2%), Candida lusitaniae 1 (2%), Candida sake 1 (2%), and Geotrichum capitatum 1 (2%). All isolates were susceptible to amphotericin B and 5-flucytosine. Geotrichum capitatum excepted, the other isolates were also susceptible to anidulafungin, micafungin, and caspofungin. Candida parapsilosis was found to be susceptible to all the studied antifungals. High MIC rates for azole group of antifungal drugs were found for C. albicans, C. tropicalis, and C. glabrata. The rate of colonisation was 3.8% (16/421). Only 0.7% (3/421) patients out of a total of 421 developed candidemia. Conclusion: We found that the yeast colonization and infection rates of patients in our ICUs are very low. Candida albicans is still the most common species. We detected a decreasing susceptibility to azole compounds. PMID:27381534

  7. Enhancement of Commercial Antifungal Agents by Kojic Acid

    PubMed Central

    Kim, Jong H.; Chang, Perng-Kuang; Chan, Kathleen L.; Faria, Natália C. G.; Mahoney, Noreen; Kim, Young K.; Martins, Maria de L.; Campbell, Bruce C.

    2012-01-01

    Natural compounds that pose no significant medical or environmental side effects are potential sources of antifungal agents, either in their nascent form or as structural backbones for more effective derivatives. Kojic acid (KA) is one such compound. It is a natural by-product of fungal fermentation commonly employed by food and cosmetic industries. We show that KA greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations of commercial medicinal and agricultural antifungal agents, amphotericin B (AMB) and strobilurin, respectively, against pathogenic yeasts and filamentous fungi. Assays using two mitogen-activated protein kinase (MAPK) mutants, i.e., sakAΔ, mpkCΔ, of Aspergillus fumigatus, an agent for human invasive aspergillosis, with hydrogen peroxide (H2O2) or AMB indicate such chemosensitizing activity of KA is most conceivably through disruption of fungal antioxidation systems. KA could be developed as a chemosensitizer to enhance efficacy of certain conventional antifungal drugs or fungicides. PMID:23203038

  8. Research to Identify Effective Antifungal Agents, 1992 Annual Report.

    SciTech Connect

    Schreck, Carl

    1993-03-01

    This study is a continuation of ``Research to Identify Effective Antifungal Agents'' sponsored by Bonneville Power Administration (Schreck et al. 1990 and Schreck et al. 1991). The objectives of the present study were to select and evaluate up to 10 candidate fungicides.

  9. Chemosensitization as a means to augment commercial antifungal agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is growing list of papers on antimycotic chemosensitization and the mechanisms by which they function. Currently, antifungal agents used in agriculture and in human or veterinary medicine are confronted by a number of obstacles, the main one being continual development of resistance to one, or...

  10. Emergence of Azole Resistance in Aspergillus.

    PubMed

    Wiederhold, Nathan P; Patterson, Thomas F

    2015-10-01

    Resistance to the azole antifungals itraconazole, voriconazole, and posaconazole in Aspergillus species is a growing concern. This is especially alarming for A. fumigatus, where acquired resistance has been documented in patients with invasive disease caused by this species that were exposed to these agents, as well as in azole-naive individuals. The primary mechanisms of resistance that have been described in clinical strains include different point mutations in the CYP51A gene, which encodes the enzyme responsible for converting lanosterol to ergosterol via demethylation. Some resistant isolates also contain a tandem repeat in the promoter region of this gene that causes increased expression. These mutations, including TR34/L98H and TR46/Y121F/T289A have also been found in the environment in several areas of the world and have been demonstrated to cause resistance to azole fungicides used in agriculture, thus raising the concern of environmental spread of resistance. Treatment options are limited in patients with infections caused by azole-resistant isolates and include amphotericin B formulations or combination therapy involving an echinocandin. However, there are few clinical data available to help guide therapy, and infections caused by resistant A. fumigatus isolates have been reported to have high mortality rates. PMID:26398534

  11. Experimental evaluation of antifungal and antiseptic agents against Rhodotorula spp.

    PubMed

    Preney, L; Théraud, M; Guiguen, C; Gangneux, J P

    2003-12-01

    We studied the susceptibility of 21 strains of Rhodotorula rubra and nine strains of R. glutinis to eight antifungals and tested eight antiseptic agents on one strain of R. rubra. The tested strains were susceptible to ketoconazole, 5-fluorocytosine, amphotericin B, and nystatin, intermediate to econazole and resistant to fluconazole, itraconazole and miconazole. After 5-min contact, six of the eight antiseptic agents tested showed a fungicidal activity on the tested R. rubra strain.

  12. Recent advances in topical formulation carriers of antifungal agents.

    PubMed

    Bseiso, Eman Ahmed; Nasr, Maha; Sammour, Omaima; Abd El Gawad, Nabaweya A

    2015-01-01

    Fungal infections are amongst the most commonly encountered diseases affecting the skin. Treatment approaches include both topical and oral antifungal agents. The topical route is generally preferred due to the possible side effects of oral medication. Advances in the field of formulation may soon render outdated conventional products such as creams, ointments and gels. Several carrier systems loaded with antifungal drugs have demonstrated promising results in the treatment of skin fungal infections. Examples of these newer carriers include micelles, lipidic systems such as solid lipid nanoparticles and nanostructured lipid carriers, microemulsions and vesicular systems such as liposomes, niosomes, transfersomes, ethosomes, and penetration enhancer vesicles. PMID:26261140

  13. Antiviral, antifungal and antiprotozoal agents in the cinema.

    PubMed

    García-Sánchez, Jose Elias; García-Sánchez, E; Merino Marcos, M L

    2007-03-01

    Among the antimicrobial agents, antibacterials are the most frequently mentioned in cinematographic plots. Nevertheless, it is not uncommon to come across other antiviral agents, especially antiretrovirals and antiprotozoals. We analyzed the presence of antiviral and antifungal agents in different commercial films, both when they were merely mentioned in passing and when they played a major role in the film. This review essentially aims to address the historical portrayal of these agents in film and to list their appearances. The fictional treatments that appear in some films are not addressed.

  14. International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus.

    PubMed

    Verweij, Paul E; Ananda-Rajah, Michelle; Andes, David; Arendrup, Maiken C; Brüggemann, Roger J; Chowdhary, Anuradha; Cornely, Oliver A; Denning, David W; Groll, Andreas H; Izumikawa, Koichi; Kullberg, Bart Jan; Lagrou, Katrien; Maertens, Johan; Meis, Jacques F; Newton, Pippa; Page, Iain; Seyedmousavi, Seyedmojtaba; Sheppard, Donald C; Viscoli, Claudio; Warris, Adilia; Donnelly, J Peter

    2015-01-01

    An international expert panel was convened to deliberate the management of azole-resistant aspergillosis. In culture-positive cases, in vitro susceptibility testing should always be performed if antifungal therapy is intended. Different patterns of resistance are seen, with multi-azole and pan-azole resistance more common than resistance to a single triazole. In confirmed invasive pulmonary aspergillosis due to an azole-resistant Aspergillus, the experts recommended a switch from voriconazole to liposomal amphotericin B (L-AmB; Ambisome(®)). In regions with environmental resistance rates of ≥10%, a voriconazole-echinocandin combination or L-AmB were favoured as initial therapy. All experts recommended L-AmB as core therapy for central nervous system aspergillosis suspected to be due to an azole-resistant Aspergillus, and considered the addition of a second agent with the majority favouring flucytosine. Intravenous therapy with either micafungin or L-AmB given as either intermittent or continuous therapy was recommended for chronic pulmonary aspergillosis due to a pan-azole-resistant Aspergillus. Local and national surveillance with identification of clinical and environmental resistance patterns, rapid diagnostics, better quality clinical outcome data, and a greater understanding of the factors driving or minimising environmental resistance are areas where research is urgently needed, as well as the development of new oral agents outside the azole drug class. PMID:26282594

  15. In vitro interactions of antifungal agents and tacrolimus against Aspergillus biofilms.

    PubMed

    Gao, Lujuan; Sun, Yi

    2015-11-01

    Aspergillus biofilms were prepared from Aspergillus fumigatus, Aspergillus flavus, and Aspergillus terreus via a 96-well plate-based method, and the combined antifungal activity of tacrolimus with azoles or amphotericin B against Aspergillus biofilms was investigated via a broth microdilution checkerboard technique system. Our results suggest that combinations of tacrolimus with voriconazole or amphotericin B have synergistic inhibitory activity against Aspergillus biofilms. However, combinations of tacrolimus with itraconazole or posaconazole exhibit no synergistic or antagonistic effects.

  16. Breakpoints for antifungal agents: an update from EUCAST focussing on echinocandins against Candida spp. and triazoles against Aspergillus spp.

    PubMed

    Arendrup, Maiken C; Cuenca-Estrella, Manuel; Lass-Flörl, Cornelia; Hope, William W

    2013-12-01

    Candida and Aspergillus infections have emerged as significant pathogens in recent decades. During this same time, broad spectrum triazole and echinocandin antifungal agents have been developed and increasingly used. One consequence of widespread use is leading to the emergence of mutants with acquired resistance mutations. Therefore, accurate susceptibility testing and appropriate clinical breakpoints for the interpretation of susceptibility results have become increasingly important. Here we review the underlying methodology by which breakpoints have been selected by EUCAST (European Committee on Antimicrobial Susceptibility Testing). Five parameters are evaluated: dosing regimens used; EUCAST MIC distributions from multiple laboratories, species and compound specific epidemiological cut off values (upper MIC limits of wild type isolates or ECOFFs), pharmacokinetic/pharmacodynamic relationships and targets associated with outcome and finally clinical data by species and MIC when available. The general principles are reviewed followed by a detailed review of the individual aspects for Candida species and the three echinocandins and for Aspergillus and the three mould-active azoles. This review provides an update of the subcommittee on antifungal susceptibility testing (AFST) of the EUCAST methodology and summarises the current EUCAST breakpoints for Candida and Aspergillus. Recommendations about applicability of antifungal susceptibility testing in the routine setting are also included. PMID:24618110

  17. Azole antimycotics--a highway to new drugs or a dead end?

    PubMed

    Musiol, R; Kowalczyk, W

    2012-01-01

    Azole antimycotics are a well-known and important class of agents that are used in hospital practice, everyday health care, veterinary medicine and for crop protection. The era of azole fungicides began with the breakthrough of chlormidazole roughly 50 years ago. Since then, more than 20 drugs of this group, including triazoles, have been brought to the market. The specific chemical structure and mechanism of the action of azoles along with the eukaryotic character of fungal pathogens raise several serious issues. Resistance to drugs and disturbance to metabolic pathways are among the most important. On the other hand, these same features are responsible for unique and novel applications of these drugs. As a result, old and ineffective antifungal drugs can be successfully used in the treatment of parasitic diseases, bacterial infections or cancers. Are azoles getting their second wind? PMID:22257053

  18. Efficacy of some natural compounds as antifungal agents

    PubMed Central

    Vengurlekar, Sudha; Sharma, Rajesh; Trivedi, Piyush

    2012-01-01

    Natural sources have been important for the development of new active molecules for many years. Various small molecules with unique chemical skeleton and potent bioactivities were discovered through various sources like plants, marine products, and microorganisms, etc., which are considered as very important part of the nature. A number of potent antifungals have been originated from various natural sources. This account describes structure and activities of selected agents isolated from various natural sources. PMID:23055634

  19. Susceptibilities of Candida albicans mouth isolates to antifungal agents, essentials oils and mouth rinses.

    PubMed

    Carvalhinho, Sara; Costa, Ana Margarida; Coelho, Ana Cláudia; Martins, Eugénio; Sampaio, Ana

    2012-07-01

    Forty Candida albicans strains isolated from patient's mouth with fixed orthodontic appliances were analyzed to their susceptibilities to antifungal agents, mouth rinses and essential oils. Susceptibility to fluconazole, econazole, miconazole and ketoconazole, amphotericin B and nystatin was assessed by the disk diffusion (DD) method based on the Clinical and Laboratory Standards Institute M44-A protocol, and by Etest (fluconazole and amphotericin B). The susceptibilities to mouth rinses and essential oils were also determined by the DD technique. All isolates tested were susceptible (S) to amphotericin B, nystatin and fluconazole. The overall concordance between the DD and the Etest was 100% for amphotericin and fluconazole. One isolate was resistant to econazole (2.5%) and the other to ketoconazole (2.5%). Econazole and ketoconazole had the highest percentages of susceptible dose dependent (SDD), 55 and 95%, respectively. Regarding to the susceptibility isolates profile, seven phenotypes were detected, and the 3 more represented (90% of the isolates) of them were SDD to one, two or three azoles. The study of mouth rinses showed a high variability of efficacy against C. albicans. The results showed that the isolates susceptibility to essential oils differed (P < 0.05). The profile activity was: cinnamon > laurel > mint > eucalyptus > rosemary > lemon > myrrh > tangerine. The main finding was that the susceptibility to cinnamon and laurel varied among the three more representative antifungal phenotypes (P < 0.05). The susceptibility of econazole-SDD isolates to cinnamon and lemon was higher than those of the econazole-S yeasts (P < 0.05). In contrast, econazole-SDD isolates were less affected by laurel than econazole-S counterparts (P < 0.05).

  20. An overview about the medical use of antifungals in Portugal in the last years.

    PubMed

    Manuel da S Azevedo, Maria; Cruz, Luisa; Pina-Vaz, Cidália; Gonçalves-Rodrigues, Acácio

    2016-05-01

    Despite the introduction of new antifungal agents, the frequency of invasive and mucocutaneous fungal infections as well as resistance to antifungal drugs continues to increase. Over 300 million persons are infected annually with fungi. Resistance to antimicrobials is one of today's major health threats. Can the possible causes of fungal antimicrobial resistance be understood and prevented to minimize risks to public health. We provide an overview of antifungal drug use in European countries, particularly Portugal. We reviewed prescriptions for and over-the-counter sales (OTC) of azoles in Portuguese pharmacies and in alternative shops. We conclude that in Portugal, azole antifungal sales, as well as medical prescribed azoles are very high. The Portuguese population consumes more antifungal drugs per capita than others in Europe. PMID:26865319

  1. Antifungal agents, Part 11. Biphenyl analogues of naftifine: synthesis and antifungal activities.

    PubMed

    Porretta, G C; Fioravanti, R; Biava, M; Artico, M; Villa, A; Simonetti, N

    1995-09-01

    A series of naftifine analogues having the biphenyl instead of the naphthyl moiety have been synthesized in a search devoted to study bioanalogues of clinically efficacious antifungal agents. The new derivatives were tested against Candida albicans by the direct contact method. They were also assayed against Gram-positive and Gram-negative bacteria and against some isolates of plant pathogenic fungi. Derivatives 8a, 8c, and 9a were found to be active against Candida albicans, derivative 5a was active against E. coli, a very resistant species to antimycotic agents, and derivatives 8a and 8b inhibited the plant pathogenic Rhizoctonia solani.

  2. Synthesis and biological evaluation of hydrazone derivatives as antifungal agents.

    PubMed

    Casanova, Bruna B; Muniz, Mauro N; de Oliveira, Thayse; de Oliveira, Luís Flavio; Machado, Michel M; Fuentefria, Alexandre M; Gosmann, Grace; Gnoatto, Simone C B

    2015-05-20

    Emerging yeasts are among the most prevalent causes of systemic infections with high mortality rates and there is an urgent need to develop specific, effective and non-toxic antifungal agents to respond to this issue. In this study 35 aldehydes, hydrazones and hydrazines were obtained and their antifungal activity was evaluated against Candida species (C. parapsilosis, C. tropicalis, C. krusei, C. albicans, C. glabrata and C. lusitaneae) and Trichosporon asahii, in an in vitro screening. The minimum inhibitory concentrations (MICs) of the active compounds in the screening was determined against 10 clinical isolates of C. parapsilosis and 10 of T. asahii. The compounds 4-pyridin-2-ylbenzaldehyde] (13a) and tert-butyl-(2Z)-2-(3,4,5-trihydroxybenzylidine)hydrazine carboxylate (7b) showed the most promising MIC values in the range of 16-32 μg/mL and 8-16 μg/mL, respectively. The compounds' action on the stability of the cell membrane and cell wall was evaluated, which suggested the action of the compounds on the fungal cell membrane. Cell viability of leukocytes and an alkaline comet assay were performed to evaluate the cytotoxicity. Compound 13a was not cytotoxic at the active concentrations. These results support the discovery of promising candidates for the development of new antifungal agents.

  3. Pyridine-grafted chitosan derivative as an antifungal agent.

    PubMed

    Jia, Ruixiu; Duan, Yunfei; Fang, Qiang; Wang, Xiangyang; Huang, Jianying

    2016-04-01

    Pyridine moieties were introduced into chitosan by nucleophilic substitution to afford N-(1-carboxybutyl-4-pyridinium) chitosan chloride (pyridine chitosan). The resulting chitosan derivative was well characterized, and its antifungal activity was examined, based on the inhibition of mycelial growth and spore germination. The results indicated that pyridine chitosan exhibited enhanced antifungal activity by comparison with pristine chitosan. The values of the minimum inhibitory concentration and the minimal fungicidal concentration of pyridine chitosan against Fulvia fulva were 0.13 mg/ml and 1 mg/ml, respectively, while the corresponding values against Botrytis cinerea were 0.13 mg/ml and 4 mg/ml, respectively. Severe morphological changes of pyridine chitosan-treated B. cinerea were observed, indicative that pyridine chitosan could damage and deform the structure of fungal hyphae and subsequently inhibit strain growth. Non-toxicity of pyridine chitosan was demonstrated by an acute toxicity study. These results are beneficial for assessing the potential utilization of this chitosan derivative and for exploring new functional antifungal agents with chitosan in the food industry. PMID:26593505

  4. Pyridine-grafted chitosan derivative as an antifungal agent.

    PubMed

    Jia, Ruixiu; Duan, Yunfei; Fang, Qiang; Wang, Xiangyang; Huang, Jianying

    2016-04-01

    Pyridine moieties were introduced into chitosan by nucleophilic substitution to afford N-(1-carboxybutyl-4-pyridinium) chitosan chloride (pyridine chitosan). The resulting chitosan derivative was well characterized, and its antifungal activity was examined, based on the inhibition of mycelial growth and spore germination. The results indicated that pyridine chitosan exhibited enhanced antifungal activity by comparison with pristine chitosan. The values of the minimum inhibitory concentration and the minimal fungicidal concentration of pyridine chitosan against Fulvia fulva were 0.13 mg/ml and 1 mg/ml, respectively, while the corresponding values against Botrytis cinerea were 0.13 mg/ml and 4 mg/ml, respectively. Severe morphological changes of pyridine chitosan-treated B. cinerea were observed, indicative that pyridine chitosan could damage and deform the structure of fungal hyphae and subsequently inhibit strain growth. Non-toxicity of pyridine chitosan was demonstrated by an acute toxicity study. These results are beneficial for assessing the potential utilization of this chitosan derivative and for exploring new functional antifungal agents with chitosan in the food industry.

  5. Synthesis, In Vitro Biological Evaluation, and Molecular Docking of New Triazoles as Potent Antifungal Agents.

    PubMed

    Li, Xiang; Liu, Chao; Tang, Sheng; Wu, Qiuye; Hu, Honggang; Zhao, Qingjie; Zou, Yan

    2016-01-01

    Based on the structure of the active site of CYP51 and the structure-activity relationships of azole antifungal compounds that we designed in a previous study, a series of 1-{1-[2-(substitutedbenzyloxy)ethyl]-1H-1,2,3-triazol-4-yl}-2-(2,4-difluorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ols (6a-n) were designed and synthesized utilizing copper-catalyzed azide-alkyne cycloaddition. Preliminary antifungal tests against eight human pathogenic fungi in vitro showed that all the title compounds exhibited excellent antifungal activities with a broad spectrum in vitro. Molecular docking results indicated that the interaction between the title compounds and CYP51 comprised π-π interactions, hydrophobic interactions, and the narrow hydrophobic cleft. PMID:26641629

  6. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology

    PubMed Central

    Ashbee, H. Ruth; Barnes, Rosemary A.; Johnson, Elizabeth M.; Richardson, Malcolm D.; Gorton, Rebecca; Hope, William W.

    2014-01-01

    The burden of human disease related to medically important fungal pathogens is substantial. An improved understanding of antifungal pharmacology and antifungal pharmacokinetics–pharmacodynamics has resulted in therapeutic drug monitoring (TDM) becoming a valuable adjunct to the routine administration of some antifungal agents. TDM may increase the probability of a successful outcome, prevent drug-related toxicity and potentially prevent the emergence of antifungal drug resistance. Much of the evidence that supports TDM is circumstantial. This document reviews the available literature and provides a series of recommendations for TDM of antifungal agents. PMID:24379304

  7. Azole-carbodithioate hybrids as vaginal anti-Candida contraceptive agents: design, synthesis and docking studies.

    PubMed

    Kumar, Lalit; Lal, Nand; Kumar, Vikash; Sarswat, Amit; Jangir, Santosh; Bala, Veenu; Kumar, Lokesh; Kushwaha, Bhavana; Pandey, Atindra K; Siddiqi, Mohammad I; Shukla, Praveen K; Maikhuri, Jagdamba P; Gupta, Gopal; Sharma, Vishnu L

    2013-01-01

    Azole and carbodithioate hybrids were synthesized as alkyl 1H-azole-1-carbodithioates (7-27) and evaluated for spermicidal/microbicidal activities against human sperm, Trichomonas vaginalis and Candida species. Seventeen compounds (7-14, 16-18 and 20-25) showed spermicidal activity at MEC 1.0% (w/v) and permanently immobilized 100% normal human spermatozoa within ∼30 s. Seventeen compounds (7-11, 13-18 and 20-25) exhibited anti-Candida activity (IC50 1.26-47.69 μg/mL). All compounds were devoid of bactericidal activity against four bacterial strains (50.00 μg/mL) and antiprotozoal activity against Trichomonas vaginalis (200.00 μg/mL). Four promising compounds (10, 17, 20 and 22) have better safety profile as compared to Nonoxynol-9 (N-9). Docking study was done to visualize the possible interaction of designed scaffold with prospective receptor (Cyp51) of Candida albicans. PMID:24140949

  8. 9-O-butyl-13-(4-isopropylbenzyl)berberine, KR-72, is a potent antifungal agent that inhibits the growth of Cryptococcus neoformans by regulating gene expression.

    PubMed

    Bang, Soohyun; Kwon, Hyojeong; Hwang, Hyun Sook; Park, Ki Duk; Kim, Sung Uk; Bahn, Yong-Sun

    2014-01-01

    In this study we explored the mode of action of KR-72, a 9-O-butyl-13-(4-isopropylbenzyl)berberine derivative previously shown to exhibit potent antifungal activity against a variety of human fungal pathogens. The DNA microarray data revealed that KR-72 treatment significantly changed the transcription profiles of C. neoformans, affecting the expression of more than 2,000 genes. Genes involved in translation and transcription were mostly upregulated, whereas those involved in the cytoskeleton, intracellular trafficking, and lipid metabolism were downregulated. KR-72 also exhibited a strong synergistic effect with the antifungal agent FK506. KR-72 treatment regulated the expression of several essential genes, including ECM16, NOP14, HSP10 and MGE1, which are required for C. neoformans growth. The KR-72-mediated induction of MGE1 also likely reduced the viability of C. neoformans by impairing cell cycle or the DNA repair system. In conclusion, KR-72 showed antifungal activity by modulating diverse biological processes through a mode of action distinct from those of clinically available antifungal drugs such as polyene and azole drugs.

  9. Synthesis and biological evaluation of fluconazole analogs with triazole-modified scaffold as potent antifungal agents.

    PubMed

    Hashemi, Seyedeh Mahdieh; Badali, Hamid; Irannejad, Hamid; Shokrzadeh, Mohammad; Emami, Saeed

    2015-04-01

    In order to find new azole antifungals, we have recently designed a series of triazole alcohols in which one of the 1,2,4-triazol-1-yl group in fluconazole structure has been replaced with 4-amino-5-aryl-3-mercapto-1,2,4-triazole motif. In this paper, we focused on the structural refinement of the primary lead, by removing the amino group from the structure to achieve 5-aryl-3-mercapto-1,2,4-triazole derivatives 10a-i and 11a-i. The in vitro antifungal susceptibility testing of title compounds demonstrated that most compounds had potent inhibitory activity against Candida species. Among them, 5-(2,4-dichlorophenyl)triazole analogs 10h and 11h with MIC values of <0.01 to 0.5μg/mL were 4-256 times more potent than fluconazole against Candida species.

  10. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several benzoic acid analogs showed antifungal activity against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids increased by addition of a methyl, methoxyl...

  11. Calcium signaling mediates antifungal activity of triazole drugs in the Aspergilli.

    PubMed

    Liu, Fei-fei; Pu, Li; Zheng, Qing-qing; Zhang, Yuan-wei; Gao, Rong-sui; Xu, Xu-shi; Zhang, Shi-zhu; Lu, Ling

    2015-08-01

    Azoles are widely applied and largely effective as antifungals; however, the increasing prevalence of clinically resistant isolates has yet to be matched by approaches to improve the efficacy of antimicrobial therapy. In this study, using the model fungus Aspergillus nidulans and one of the most common human pathogen Aspergillus fumigatus as research materials, we present the evidence that calcium signaling is involved in the azole-antifungals-induced stress-response reactions. In normal media, antifungal-itraconazole (ITZ) is able to induce the [Ca(2+)]c increased sharply but the addition of calcium chelator-EGTA or BAPTA almost blocks the calcium influx responses, resulted in the dramatically decreasing of [Ca(2+)]c transient. Real-time PCR analysis verified that six-tested Ca(2+)-inducible genes-two calcium channels (cchA/midA), a calmodulin-dependent phosphatase-calcineurin (cnaA), a transcription factor-crzA, and two calcium transporters (pmrA/pmcA)-could be transiently up-regulated by adding ITZ, indicating these components are involved in the azole stress-response reaction. Defect of cnaA or crzA caused more susceptibility to azole antifungals than did single mutants or double deletions of midA and cchA. Notably, EGTA may influence Rh123 accumulation as an azole-mimicking substrate through the process of the drug absorption. In vivo studies of a Galleria mellonella model identified that the calcium chelator works as an adjunct antifungal agent with azoles for invasive aspergillosis. Most importantly, combination of ITZ and EGTA or ITZ with calcium signaling inhibitor-FK506 greatly enhances the ITZ efficacy. Thus, our study provides potential clues that specific inhibitors of calcium signaling could be clinically useful adjuncts to conventional azole antifungals in the Aspergilli.

  12. Porosity of temporary denture soft liners containing antifungal agents

    PubMed Central

    Lima, Jozely Francisca Mello; Maciel, Janaína Gomes; Hotta, Juliana; Vizoto, Ana Carolina Pero; Honório, Heitor Marques; Urban, Vanessa Migliorini; Neppelenbroek, Karin Hermana

    2016-01-01

    ABSTRACT Incorporation of antifungals in temporary denture soft liners has been recommended for denture stomatitis treatment; however, it may affect their properties. Objective: To evaluate the porosity of a tissue conditioner (Softone) and a temporary resilient liner (Trusoft) modified by minimum inhibitory concentrations (MICs) of antifungal agents for Candida albicans biofilm. Material and Methods: The porosity was measured by water absorption, based on exclusion of the plasticizer effect. Initially, it was determined by sorption isotherms that the adequate storage solution for specimens (65×10×3.3 mm) of both materials was 50% anhydrous calcium chloride (S50). Then, the porosity factor (PF) was calculated for the study groups (n=10) formed by specimens without (control) or with drug incorporation at MICs (nystatin: Ny-0.032 g, chlorhexidine diacetate: Chx-0.064 g, or ketoconazole: Ke-0.128 g each per gram of soft liner powder) after storage in distilled water or S50 for 24 h, seven and 14 d. Data were statistically analyzed by 4-way repeated measures ANOVA and Tukey's test (α=.05). Results: Ke resulted in no significant changes in PF for both liners in water over 14 days (p>0.05). Compared with the controls, Softone and Trusoft PFs were increased at 14-day water immersion only after addition of Ny and Chx, and Chx, respectively (p<0.05). Both materials showed no significant changes in PF in up to 14 days of S50 immersion, compared with the controls (p>0.05). In all experimental conditions, Softone and Trusoft PFs were significantly lower when immersed in S50 compared with distilled water (p<0.05). Conclusions: The addition of antifungals at MICs resulted in no harmful effects for the porosity of both temporary soft liners in different periods of water immersion, except for Chx and Ny in Softone and Chx in Trusoft at 14 days. No deleterious effect was observed for the porosity of both soft liners modified by the drugs at MICs over 14 days of S50 immersion

  13. Characterization of Antifungal Activity and Nail Penetration of ME1111, a New Antifungal Agent for Topical Treatment of Onychomycosis.

    PubMed

    Tabata, Yuji; Takei-Masuda, Naomi; Kubota, Natsuki; Takahata, Sho; Ohyama, Makoto; Kaneda, Kaori; Iida, Maiko; Maebashi, Kazunori

    2016-02-01

    Fungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate the in vitro antifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 showed potent antifungal activity against Trichophyton rubrum and Trichophyton mentagrophytes (the major etiologic agents of onychomycosis) strains isolated in Japan and reference fungal strains with an MIC range of 0.12 to 0.5 mg/liter and an MIC50 and MIC90 of 0.5 mg/liter for both. Importantly, none of the tested isolates showed an elevated ME1111 MIC. Moreover, the antifungal activity of ME1111 was minimally affected by 5% wool keratin powder in comparison to the other antifungals tested. The ME1111 solution was able to penetrate human nails and inhibit fungal growth in a dose-dependent manner according to the TurChub assay. In contrast, 8% ciclopirox and 5% amorolfine nail lacquers showed no activity under the same conditions. ME1111 demonstrated approximately 60-fold-greater selectivity in inhibition of Trichophyton spp. than of human cell lines. Our findings demonstrate that ME1111 possesses potent antidermatophyte activity, maintains this activity in the presence of keratin, and possesses excellent human nail permeability. These results suggest that ME1111 is a promising topical medication for the treatment of onychomycosis and therefore warrants further clinical evaluation. PMID:26643333

  14. Characterization of Antifungal Activity and Nail Penetration of ME1111, a New Antifungal Agent for Topical Treatment of Onychomycosis

    PubMed Central

    Takei-Masuda, Naomi; Kubota, Natsuki; Takahata, Sho; Ohyama, Makoto; Kaneda, Kaori; Iida, Maiko; Maebashi, Kazunori

    2015-01-01

    Fungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate the in vitro antifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 showed potent antifungal activity against Trichophyton rubrum and Trichophyton mentagrophytes (the major etiologic agents of onychomycosis) strains isolated in Japan and reference fungal strains with an MIC range of 0.12 to 0.5 mg/liter and an MIC50 and MIC90 of 0.5 mg/liter for both. Importantly, none of the tested isolates showed an elevated ME1111 MIC. Moreover, the antifungal activity of ME1111 was minimally affected by 5% wool keratin powder in comparison to the other antifungals tested. The ME1111 solution was able to penetrate human nails and inhibit fungal growth in a dose-dependent manner according to the TurChub assay. In contrast, 8% ciclopirox and 5% amorolfine nail lacquers showed no activity under the same conditions. ME1111 demonstrated approximately 60-fold-greater selectivity in inhibition of Trichophyton spp. than of human cell lines. Our findings demonstrate that ME1111 possesses potent antidermatophyte activity, maintains this activity in the presence of keratin, and possesses excellent human nail permeability. These results suggest that ME1111 is a promising topical medication for the treatment of onychomycosis and therefore warrants further clinical evaluation. PMID:26643333

  15. Characterization of Antifungal Activity and Nail Penetration of ME1111, a New Antifungal Agent for Topical Treatment of Onychomycosis.

    PubMed

    Tabata, Yuji; Takei-Masuda, Naomi; Kubota, Natsuki; Takahata, Sho; Ohyama, Makoto; Kaneda, Kaori; Iida, Maiko; Maebashi, Kazunori

    2016-02-01

    Fungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate the in vitro antifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 showed potent antifungal activity against Trichophyton rubrum and Trichophyton mentagrophytes (the major etiologic agents of onychomycosis) strains isolated in Japan and reference fungal strains with an MIC range of 0.12 to 0.5 mg/liter and an MIC50 and MIC90 of 0.5 mg/liter for both. Importantly, none of the tested isolates showed an elevated ME1111 MIC. Moreover, the antifungal activity of ME1111 was minimally affected by 5% wool keratin powder in comparison to the other antifungals tested. The ME1111 solution was able to penetrate human nails and inhibit fungal growth in a dose-dependent manner according to the TurChub assay. In contrast, 8% ciclopirox and 5% amorolfine nail lacquers showed no activity under the same conditions. ME1111 demonstrated approximately 60-fold-greater selectivity in inhibition of Trichophyton spp. than of human cell lines. Our findings demonstrate that ME1111 possesses potent antidermatophyte activity, maintains this activity in the presence of keratin, and possesses excellent human nail permeability. These results suggest that ME1111 is a promising topical medication for the treatment of onychomycosis and therefore warrants further clinical evaluation.

  16. Design, Synthesis and Structure-Activity Relationships of Novel Chalcone-1,2,3-triazole-azole Derivates as Antiproliferative Agents.

    PubMed

    Zhang, Sai-Yang; Fu, Dong-Jun; Yue, Xiao-Xin; Liu, Ying-Chao; Song, Jian; Sun, Hui-Hui; Liu, Hong-Min; Zhang, Yan-Bing

    2016-01-01

    A series of novel chalcone-1,2,3-triazole-azole hybrids were designed, synthesized and evaluated for their antiproliferative activity against three selected cancer cell lines (SK-N-SH, EC-109 and MGC-803). Most of the synthesized compounds exhibited moderate to good activity against all the cancer cell lines selected. Particularly, compound I-21 showed the most excellent antiproliferative activity with an IC50 value of 1.52 μM against SK-N-SH cancer cells. Further mechanism studies revealed that compound I-21 induced morphological changes of SK-N-SH cancer cells possibly by inducing apoptosis. Novel chalcone-1,2,3-triazole-azole derivatives in this work might be a series of promising lead compounds to develop anticancer agents for treating neuroblastoma. PMID:27213317

  17. Design, Synthesis and Structure-Activity Relationships of Novel Chalcone-1,2,3-triazole-azole Derivates as Antiproliferative Agents.

    PubMed

    Zhang, Sai-Yang; Fu, Dong-Jun; Yue, Xiao-Xin; Liu, Ying-Chao; Song, Jian; Sun, Hui-Hui; Liu, Hong-Min; Zhang, Yan-Bing

    2016-05-19

    A series of novel chalcone-1,2,3-triazole-azole hybrids were designed, synthesized and evaluated for their antiproliferative activity against three selected cancer cell lines (SK-N-SH, EC-109 and MGC-803). Most of the synthesized compounds exhibited moderate to good activity against all the cancer cell lines selected. Particularly, compound I-21 showed the most excellent antiproliferative activity with an IC50 value of 1.52 μM against SK-N-SH cancer cells. Further mechanism studies revealed that compound I-21 induced morphological changes of SK-N-SH cancer cells possibly by inducing apoptosis. Novel chalcone-1,2,3-triazole-azole derivatives in this work might be a series of promising lead compounds to develop anticancer agents for treating neuroblastoma.

  18. Antifungal activities of SCY-078 (MK-3118) and standard antifungal agents against clinical non-Aspergillus mold isolates.

    PubMed

    Lamoth, Frédéric; Alexander, Barbara D

    2015-07-01

    The limited armamentarium of active and oral antifungal drugs against emerging non-Aspergillus molds is of particular concern. Current antifungal agents and the new orally available beta-1,3-d-glucan synthase inhibitor SCY-078 were tested in vitro against 135 clinical non-Aspergillus mold isolates. Akin to echinocandins, SCY-078 showed no or poor activity against Mucoromycotina and Fusarium spp. However, SCY-078 was highly active against Paecilomyces variotii and was the only compound displaying some activity against notoriously panresistant Scedosporium prolificans.

  19. Testing conditions for determination of minimum fungicidal concentrations of new and established antifungal agents for Aspergillus spp.: NCCLS collaborative study.

    PubMed

    Espinel-Ingroff, A; Fothergill, A; Peter, J; Rinaldi, M G; Walsh, T J

    2002-09-01

    Standard conditions are not available for evaluating the minimum fungicidal concentrations (MFCs) of antifungal agents. This multicenter collaborative study investigated the reproducibility in three laboratories of itraconazole, posaconazole, ravuconazole, voriconazole, and amphotericin B MFCs for 15 selected isolates of Aspergillus spp. After MIC determinations for the 15 isolates in each center by the NCCLS M38-A broth microdilution method with four media, standard RPMI 1640 (RPMI), RPMI with 2% dextrose, antibiotic medium 3 (M3), and M3 with 2% dextrose, MFCs were determined for each isolate-medium-drug combination. MFCs were defined as the lowest drug dilutions that yielded <3 colonies (approximately 99 to 99.5% killing activity). The highest reproducibility (96 to 100%) was for amphotericin B MFCs with the four media. Although reproducibility was more variable and medium dependent for the azoles (91 to 98%), agreement was good to excellent for itraconazole, ravuconazole, and voriconazole MFCs with RPMI and M3 (93 to 98%). For posaconazole, the agreement was higher with M3 media (91 to 96%) than with RPMI media (91%). These data extend the refinement of testing guidelines for susceptibility testing of Aspergillus spp. and warrant consideration for introduction into future versions of the M38 document. The role of the MFC under these standardized testing conditions as a predictor of clinical outcome needs to be established in clinical trials.

  20. A case of fungal keratitis caused by Scopulariopsis brevicaulis: treatment with antifungal agents and penetrating keratoplasty.

    PubMed Central

    Ragge, N K; Hart, J C; Easty, D L; Tyers, A G

    1990-01-01

    A case of fungal keratitis caused by Scopulariopsis brevicaulis following a penetrating eye injury is described. Treatment with antifungal agents and keratoplasty resulted in a favourable outcome. Images PMID:2168203

  1. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans

    PubMed Central

    Cui, Jinhui; Ren, Biao; Tong, Yaojun; Dai, Huanqin; Zhang, Lixin

    2015-01-01

    Candida albicans, one of the pathogenic Candida species, causes high mortality rate in immunocompromised and high-risk surgical patients. In the last decade, only one new class of antifungal drug echinocandin was applied. The increased therapy failures, such as the one caused by multi-drug resistance, demand innovative strategies for new effective antifungal drugs. Synergistic combinations of antifungals and anti-virulence agents highlight the pragmatic strategy to reduce the development of drug resistant and potentially repurpose known antifungals, which bypass the costly and time-consuming pipeline of new drug development. Anti-virulence and synergistic combination provide new options for antifungal drug discovery by counteracting the difficulty or failure of traditional therapy for fungal infections. PMID:26048362

  2. Acquired multi-azole resistance in Candida tropicalis during persistent urinary tract infection in a dog.

    PubMed

    Álvarez-Pérez, Sergio; García, Marta E; Cutuli, María Teresa; Fermín, María Luisa; Daza, María Ángeles; Peláez, Teresa; Blanco, José L

    2016-03-01

    Multi-azole resistance acquisition by Candida tropicalis after prolonged antifungal therapy in a dog with urinary candidiasis is reported. Pre- and post-azole treatment isolates were clonally related and had identical silent mutations in the ERG11 gene, but the latter displayed increased azole minimum inhibitory concentrations. A novel frameshift mutation in ERG3 was found in some isolates recovered after resistance development, so it appears unlikely that this mutation is responsible for multi-azole resistance.

  3. Optimization of Azoles as Anti-Human Immunodeficiency Virus Agents Guided by Free-Energy Calculations

    PubMed Central

    Zeevaart, Jacob G.; Wang, Ligong; Thakur, Vinay V.; Leung, Cheryl S.; Tirado-Rives, Julian; Bailey, Christopher M.; Domaoal, Robert A.; Anderson, Karen S.; Jorgensen, William L.

    2009-01-01

    Efficient optimization of an inactive 2-anilinyl-5-benzyloxadiazole core has been guided by free energy perturbation (FEP) calculations to provide potent non-nucleoside inhibitors of human immunodeficiency virus (HIV) reverse transcriptase (NNRTIs). An FEP “chlorine scan” was performed to identify the most promising sites for substitution of aryl hydrogens. This yielded NNRTIs 8 and 10 with activities (EC50) of 820 and 310 nM for protection of human T-cells from infection by wild-type HIV-1. FEP calculations for additional substituent modifications and change of the core heterocycle readily led to oxazoles 28 and 29, which were confirmed as highly potent anti-HIV agents with activities in the 10–20 nM range. The designed compounds were also monitored for possession of desirable pharmacological properties by use of additional computational tools. Overall, the trends predicted by the FEP calculations were well borne out by the assay results. FEP-guided lead optimization is confirmed as a valuable tool for molecular design including drug discovery; chlorine scans are particularly attractive since they are both straightforward to perform and highly informative. PMID:18588301

  4. Isavuconazole, micafungin, and 8 comparator antifungal agents' susceptibility profiles for common and uncommon opportunistic fungi collected in 2013: temporal analysis of antifungal drug resistance using CLSI species-specific clinical breakpoints and proposed epidemiological cutoff values.

    PubMed

    Pfaller, M A; Rhomberg, P R; Messer, S A; Jones, R N; Castanheira, M

    2015-08-01

    The in vitro activities of isavuconazole, micafungin, and 8 comparator antifungal agents were determined for 1613 clinical isolates of fungi (1320 isolates of Candida spp., 155 of Aspergillus spp., 103 of non-Candida yeasts, and 35 non-Aspergillus molds) collected during a global survey conducted in 2013. The vast majority of the isolates of the 21 different species of Candida, with the exception of Candida glabrata (MIC90, 2 μg/mL), Candida krusei (MIC90, 1 μg/mL), and Candida guilliermondii (MIC90, 8 μg/mL), were inhibited by ≤0.25 μg/mL of isavuconazole. C. glabrata and C. krusei were largely inhibited by ≤1 μg/mL of isavuconazole. Resistance to fluconazole was seen in 0.5% of Candida albicans isolates, 11.1% of C. glabrata isolates, 2.5% of Candida parapsilosis isolates, 4.5% of Candida tropicalis isolates, and 20.0% of C. guilliermondii isolates. Resistance to the echinocandins was restricted to C. glabrata (1.3-2.1%) and C. tropicalis (0.9-1.8%). All agents except for the echinocandins were active against 69 Cryptococcus neoformans isolates, and the triazoles, including isavuconazole, were active against the other yeasts. Both the mold active triazoles as well as the echinocandins were active against 155 Aspergillus spp. isolates belonging to 10 species/species complex. In general, there was low resistance levels to the available systemically active antifungal agents in a large, contemporary (2013), global collection of molecularly characterized yeasts and molds. Resistance to azoles and echinocandins was most prominent among isolates of C. glabrata, C. tropicalis, and C. guilliermondii.

  5. Resistance to antifungal agents in the critical care setting: problems and perspectives.

    PubMed

    Martins, M D; Rex, J H

    1996-08-01

    As is the case with antibacterial agents, the increasing use of antifungal agents has led to development of antifungal resistance, the most clinically important of which is the resistance of Candida to fluconazole. While mutation to high-level fluconazole resistance is possible, the most important aspect of fluconazole resistance for patients in the ICU is the possibility of an epidemiologic shift away from such susceptible species as C. albicans and C. parapsilosis toward the most resistant species, such as C. glabrata and C. krusei. Resistance to amphotericin B by Candida is also possible, but less frequent. Strategies for treating invasive Candida infections must consider the relative rates of non-C. albicans Candida infection and the likelihood of antifungal resistance. The agents that cause invasive mold infections in the ICU are intrinsically moderately resistant to the available antifungal agents, and therapy depends less on the choice of antifungal therapy than on the correction of predisposing factors. The role of susceptibility testing as a guide in selecting appropriate therapy for all of these infections is as yet incompletely defined, but testing for resistance to fluconazole may soon be ready for clinical use. PMID:8856751

  6. Analysis Of Volatile Fingerprints: A Rapid Screening Method For Antifungal Agents For Efficacy Against Dermatophytes

    NASA Astrophysics Data System (ADS)

    Naraghi, Kamran; Sahgal, Natasha; Adriaans, Beverley; Barr, Hugh; Magan, Naresh

    2009-05-01

    The potential of using an electronic nose (E. nose) for rapid screening dermatophytes to antifungal agents was studied. In vitro, the 50 and 90% effective concentration (EC) values of five antifungal agents for T. rubrum and T. mentagrophytes were obtained by mycelial growth assays. Then, the qualitative volatile production patterns of the growth responses of these fungi to these values were incorporated into solid medium were analysed after 96-120 hrs incubation at 25° C using headspace analyses. Overall, results, using PCA and CA demonstrated that it is possible to differentiate between various treatments within 96-120 hrs. This study showed that potential exists for using qualitative volatile patterns as a rapid screening method for antifungal agents for microorganism. This approach could also facilitate the monitoring of antimicrobial drug activities and infection control programmes and perhaps drug resistance build up in microbial species.

  7. Isavuconazole: Pharmacology, Pharmacodynamics, and Current Clinical Experience with a New Triazole Antifungal Agent.

    PubMed

    Rybak, Jeffrey M; Marx, Kayleigh R; Nishimoto, Andrew T; Rogers, P David

    2015-11-01

    Coinciding with the continually increasing population of immunocompromised patients worldwide, the incidence of invasive fungal infections has grown over the past 4 decades. Unfortunately, infections caused by both yeasts such as Candida and molds such as Aspergillus or Mucorales remain associated with unacceptably high morbidity and mortality. In addition, the available antifungals with proven efficacy in the treatment of these infections remain severely limited. Although previously available second-generation triazole antifungals have significantly expanded the spectrum of the triazole antifungal class, these agents are laden with shortcomings in their safety profiles as well as formulation and pharmacokinetic challenges. Isavuconazole, administered as the prodrug isavuconazonium, is the latest second-generation triazole antifungal to receive U.S. Food and Drug Administration approval. Approved for the treatment of both invasive aspergillosis and invasive mucormycosis, and currently under investigation for the treatment of candidemia and invasive candidiasis, isavuconazole may have therapeutic advantages over its predecessors. With clinically relevant antifungal potency against a broad range of yeasts, dimorphic fungi, and molds, isavuconazole has a spectrum of activity reminiscent of the polyene amphotericin B. Moreover, clinical experience thus far has revealed isavuconazole to be associated with fewer toxicities than voriconazole, even when administered without therapeutic drug monitoring. These characteristics, in an agent available in both a highly bioavailable oral and a β-cyclodextrin-free intravenous formulation, will likely make isavuconazole a welcome addition to the triazole class of antifungals.

  8. Sulfonyl Azoles in the Synthesis of 3-Functionalized Azole Derivatives.

    PubMed

    Palmieri, Alessandro; Petrini, Marino

    2016-06-01

    Sulfonyl indoles, as well as related azolyl derivatives, have been recently introduced in synthesis as stable precursors of reactive indolenine intermediates. This personal account reports on the discovery of sulfonyl azoles and their practical utilization in many synthetic processes for the preparation of functionalized 3-substituted indoles, indazoles, and pyrroles. The indolenine intermediates obtained by treatment of sulfonyl azoles with Brønsted bases or Lewis acids can be considered as vinylogous imino derivatives that can be made to react with different nucleophilic reagents. These include organometallic reagents, reducing agents, stabilized carbanions, and heteronucleophiles. The controlled and mild conditions for the generation of indolenines from sulfonyl azoles make these substrates particularly useful in asymmetric synthesis, exploiting organo- or metal-catalyzed processes. Although less exploited, sulfonyl indoles can also be involved in photochemical processes for the preparation of polycyclic derivatives. PMID:27147297

  9. Synthesis of heterocycle-attached methylidenebenzenesulfonohydrazones as antifungal agents.

    PubMed

    Gao, Zhinan; Lv, Min; Li, Qin; Xu, Hui

    2015-11-15

    A series of heterocycle-attached methylidenebenzenesulfonohydrazone derivatives were synthesized and evaluated for their antifungal activities against seven phytopathogenic fungi such as Fusarium graminearum, Alternaria solani, Valsa mali, Phytophthora capsici, Fusarium solani, Botrytis cinerea, and Glomerella cingulata. Compounds 7b, 8d, 9a, 9b and 9d exhibited a good and broad-spectrum of antifungal activities against at least five phytopathogenic fungi at the concentration of 100 μg/mL. It demonstrated that addition of one double bond between the phenylsulfonylhydrazone fragment and the furan ring of 6a,b,d could afford more active compounds 9a,b,d; however, introduction of the nitro group on the phenyl ring of 6a-9a gave less potent compounds 6e-9e. PMID:26471091

  10. Inhibitors of amino acids biosynthesis as antifungal agents.

    PubMed

    Jastrzębowska, Kamila; Gabriel, Iwona

    2015-02-01

    Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.

  11. Synergistic combination of violacein and azoles that leads to enhanced killing of major human pathogenic dermatophytic fungi Trichophyton rubrum

    PubMed Central

    Anju, S.; Kumar, Nishanth S.; Krishnakumar, B.; Kumar, B. S. Dileep

    2015-01-01

    Superficial mycoses caused by dermatophytic fungi such as Trichophyton rubrum represent the most common type of worldwide human infection affecting various keratinized tissues in our body such as the skin, hair, and nails, etc. The dermatophytic infection is a significant public health threat due to its persistent nature and high recurrence rates, and thus alternative treatments to cure this fungal infection are urgently required. The present study mainly focused on the synergistic activity of violacein with four azole drugs (ketoconazole, fluconazole, clotrimazole, and itraconazole) against T. rubrum. The synergistic antifungal activities of violacein and azoles were measured by checkerboard microdilution and time-kill assays. In our study, combinations of violacein and azoles predominantly recorded synergistic effect (FIC index < 0.5). Significant synergistic value was recorded by the combination of violacein and clotrimazole. Time-kill assay by the combination of MIC concentration of violacein and azoles recorded that the growth of the T. rubrum was significantly arrested after 4–12 h of treatment. The combination of violacein and azoles leads to the enhanced inhibition of mycelial growth and conidial germination. Moreover combination enhanced the rate of release of intracellular materials. Morphological changes by SEM analysis were also prominent with the combination. A normal human cell line [Foreskin (FS) normal fibroblast] was used to check the cytotoxicity of violacein. Interestingly violacein recorded no cytotoxicity up to 100 μg/ml. The in vitro synergistic effect of violacein and azoles against clinically relevant fungi, T. rubrum, is reported here for the first time. Finally, our findings support the potential use of the violacein as an antifungal agent especially against dermatophytic fungi T. rubrum. PMID:26322275

  12. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids were increased against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis, by addition of a methyl, methoxyl or a chloro group at position 4 of the aromatic ri...

  13. Screening of Pharmacologically Active Small Molecule Compounds Identifies Antifungal Agents Against Candida Biofilms

    PubMed Central

    Watamoto, Takao; Egusa, Hiroshi; Sawase, Takashi; Yatani, Hirofumi

    2015-01-01

    Candida species have emerged as important and common opportunistic human pathogens, particularly in immunocompromised individuals. The current antifungal therapies either have toxic side effects or are insufficiently effect. The aim of this study is develop new small-molecule antifungal compounds by library screening methods using Candida albicans, and to evaluate their antifungal effects on Candida biofilms and cytotoxic effects on human cells. Wild-type C. albicans strain SC5314 was used in library screening. To identify antifungal compounds, we screened a small-molecule library of 1,280 pharmacologically active compounds (LOPAC1280TM) using an antifungal susceptibility test (AST). To investigate the antifungal effects of the hit compounds, ASTs were conducted using Candida strains in various growth modes, including biofilms. We tested the cytotoxicity of the hit compounds using human gingival fibroblast (hGF) cells to evaluate their clinical safety. Only 35 compounds were identified by screening, which inhibited the metabolic activity of C. albicans by >50%. Of these, 26 compounds had fungistatic effects and nine compounds had fungicidal effects on C. albicans. Five compounds, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate, ellipticine and CV-3988, had strong fungicidal effects and could inhibit the metabolic activity of Candida biofilms. However, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine were cytotoxic to hGF cells at low concentrations. CV-3988 showed no cytotoxicity at a fungicidal concentration. Four of the compounds identified, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine, had toxic effects on Candida strains and hGF cells. In contrast, CV-3988 had fungicidal effects on Candida strains, but low cytotoxic effects on hGF cells. Therefore, this screening reveals agent, CV-3988 that was previously unknown to be antifungal agent, which could be a novel therapies for superficial mucosal candidiasis. PMID

  14. Antifungal susceptibility profile of cryptic species of Aspergillus.

    PubMed

    Alastruey-Izquierdo, Ana; Alcazar-Fuoli, Laura; Cuenca-Estrella, Manuel

    2014-12-01

    The use of molecular tools has led to the description of new cryptic species among different Aspergillus species complexes. Their frequency in the clinical setting has been reported to be between 10 and 15%. The susceptibility to azoles and amphotericin B of many of these species is low, and some of them, such as Aspergillus calidoustus or Aspergillus lentulus, are considered multi-resistant. The changing epidemiology, the frequency of cryptic species, and the different susceptibility profiles make antifungal susceptibility testing an important tool to identify the optimal antifungal agent to treat the infections caused by these species.

  15. In vitro activities of new triazole antifungal agents, posaconazole and voriconazole, against oral Candida isolates from patients suffering from denture stomatitis.

    PubMed

    Marcos-Arias, Cristina; Eraso, Elena; Madariaga, Lucila; Carrillo-Muñoz, Alfonso Javier; Quindós, Guillermo

    2012-01-01

    Denture stomatitis is often treated with antifungal agents but recurrences or new episodes are common, and certain episodes can be resistant. New triazoles, such as posaconazole and voriconazole, may represent useful alternatives for management. In vitro activities of amphotericin B, nystatin, miconazole, fluconazole, itraconazole, posaconazole and voriconazole against 150 oral Candida (101 C. albicans, 18 C. tropicalis, 12 C. glabrata, 11 C. guilliermondii, 4 C. parapsilosis, 2 Saccharomyces cerevisiae, 1 C. dubliniensis and 1 C. krusei) from 100 denture wearers were tested by the CLSI M27-A3 method. Resistant isolates were retested by Sensititre YeastOne and Etest. Most antifungal agents were very active. However, 4 C. glabrata (33.3%), 2 C. tropicalis (11.1%), 6 C. albicans (5.6%) and 1 C. krusei were resistant to itraconazole. Posaconazole was active against 143 yeast isolates (95.3%): 6 C. albicans (5.9%) and 1 C. tropicalis (5.6%) were resistant. Geometric mean MICs were 0.036 μg/ml for C. parapsilosis, 0.062 μg/ml for C. albicans, 0.085 μg/ml for C. tropicalis, 0.387 μg/ml for C. guilliermondii and 0.498 μg/ml for C. glabrata. Voriconazole was active against 148 isolates (98.7%) with geometric mean MICs ranging from 0.030 μg/ml for C. parapsilosis, 0.042 μg/ml for C. albicans, 0.048 μg/ml for C. tropicalis, 0.082 μg/ml for C. guilliermondii, to 0.137 μg/ml for C. glabrata. Only 2 C. albicans (2%) were resistant to voriconazole showing cross-resistance to other azoles. Posaconazole and voriconazole have excellent in vitro activities against all Candida isolates and could represent useful alternatives for recalcitrant or recurrent candidiasis.

  16. Triterpenoid glycosides from Medicago sativa as antifungal agents against Pyricularia oryzae.

    PubMed

    Abbruscato, Pamela; Tosi, Solveig; Crispino, Laura; Biazzi, Elisa; Menin, Barbara; Picco, Anna M; Pecetti, Luciano; Avato, Pinarosa; Tava, Aldo

    2014-11-19

    The antifungal properties of saponin mixtures from alfalfa (Medicago sativa L.) tops and roots, the corresponding mixtures of prosapogenins from tops, and purified saponins and sapogenins against the causal agent of rice blast Pyricularia oryzae isolates are presented. In vitro experiments highlighted a range of activities, depending upon the assayed metabolite. The antifungal effects of the most promising prosapogenin mixture from alfalfa tops were confirmed by means of in planta tests using three different Italian cultivars of rice (Oryza sativa L. ssp. japonica), known to possess high, medium, and low blast resistance. The evidenced antifungal properties of the tested metabolites allowed some considerations on their structure-activity relationship. Results indicate that prosapogenins are active compounds to prevent the fungal attack of P. oryzae on different rice cultivars. Therefore, if properly formulated, these substances could represent a promising and environmentally friendly treatment to control rice blast. PMID:25361378

  17. Gene Expression Response of Trichophyton rubrum during Coculture on Keratinocytes Exposed to Antifungal Agents

    PubMed Central

    Komoto, Tatiana Takahasi; Bitencourt, Tamires Aparecida; Silva, Gabriel; Beleboni, Rene Oliveira; Marins, Mozart; Fachin, Ana Lúcia

    2015-01-01

    Trichophyton rubrum is the most common causative agent of dermatomycoses worldwide, causing infection in the stratum corneum, nails, and hair. Despite the high prevalence of these infections, little is known about the molecular mechanisms involved in the fungal-host interaction, particularly during antifungal treatment. The aim of this work was to evaluate the gene expression of T. rubrum cocultured with keratinocytes and treated with the flavonoid trans-chalcone and the glycoalkaloid α-solanine. Both substances showed a marked antifungal activity against T. rubrum strain CBS (MIC = 1.15 and 17.8 µg/mL, resp.). Cytotoxicity assay against HaCaT cells produced IC50 values of 44.18 to trans-chalcone and 61.60 µM to α-solanine. The interaction of keratinocytes with T. rubrum conidia upregulated the expression of genes involved in the glyoxylate cycle, ergosterol synthesis, and genes encoding proteases but downregulated the ABC transporter TruMDR2 gene. However, both antifungals downregulated the ERG1 and ERG11, metalloprotease 4, serine proteinase, and TruMDR2 genes. Furthermore, the trans-chalcone downregulated the genes involved in the glyoxylate pathway, isocitrate lyase, and citrate synthase. Considering the urgent need for more efficient and safer antifungals, these results contribute to a better understanding of fungal-host interactions and to the discovery of new antifungal targets. PMID:26257814

  18. In Vitro Activity of ASP2397 against Aspergillus Isolates with or without Acquired Azole Resistance Mechanisms

    PubMed Central

    Jensen, Rasmus Hare; Cuenca-Estrella, Manuel

    2015-01-01

    ASP2397 is a new compound with a novel and as-yet-unknown target different from that of licensed antifungal agents. It has activity against Aspergillus and Candida glabrata. We compared its in vitro activity against wild-type and azole-resistant A. fumigatus and A. terreus isolates with that of amphotericin B, itraconazole, posaconazole, and voriconazole. Thirty-four isolates, including 4 wild-type A. fumigatus isolates, 24 A. fumigatus isolates with alterations in CYP51A TR/L98H (5 isolates), M220 (9 isolates), G54 (9 isolates), and HapE (1 isolate), and A. terreus isolates (2 wild-type isolates and 1 isolate with an M217I CYP51A alteration), were analyzed. EUCAST E.Def 9.2 and CLSI M38-A2 MIC susceptibility testing was performed. ASP2397 MIC50 values (in milligrams per liter, with MIC ranges in parentheses) determined by EUCAST and CLSI were 0.5 (0.25 to 1) and 0.25 (0.06 to 0.25) against A. fumigatus CYP51A wild-type isolates and were similarly 0.5 (0.125 to >4) and 0.125 (0.06 to >4) against azole-resistant A. fumigatus isolates, respectively. These values were comparable to those for amphotericin B, which were 0.25 (0.125 to 0.5) and 0.25 (0.125 to 0.25) against wild-type isolates and 0.25 (0.125 to 1) and 0.25 (0.125 to 1) against isolates with azole resistance mechanisms, respectively. In contrast, MICs for the azole compounds were elevated and highest for itraconazole: >4 (1 to >4) and 4 (0.5 to >4) against isolates with azole resistance mechanisms compared to 0.125 (0.125 to 0.25) and 0.125 (0.06 to 0.25) against wild-type isolates, respectively. ASP2397 was active against A. terreus CYP51A wild-type isolates (MIC 0.5 to 1), whereas MICs of both azole and ASP2397 were elevated for the mutant isolate. ASP2397 displayed in vitro activity against A. fumigatus and A. terreus isolates which was independent of the presence or absence of azole target gene resistance mutations in A. fumigatus. The findings are promising at a time when azole-resistant A. fumigatus

  19. In Vitro Activity of ASP2397 against Aspergillus Isolates with or without Acquired Azole Resistance Mechanisms.

    PubMed

    Arendrup, Maiken Cavling; Jensen, Rasmus Hare; Cuenca-Estrella, Manuel

    2016-01-01

    ASP2397 is a new compound with a novel and as-yet-unknown target different from that of licensed antifungal agents. It has activity against Aspergillus and Candida glabrata. We compared its in vitro activity against wild-type and azole-resistant A. fumigatus and A. terreus isolates with that of amphotericin B, itraconazole, posaconazole, and voriconazole. Thirty-four isolates, including 4 wild-type A. fumigatus isolates, 24 A. fumigatus isolates with alterations in CYP51A TR/L98H (5 isolates), M220 (9 isolates), G54 (9 isolates), and HapE (1 isolate), and A. terreus isolates (2 wild-type isolates and 1 isolate with an M217I CYP51A alteration), were analyzed. EUCAST E.Def 9.2 and CLSI M38-A2 MIC susceptibility testing was performed. ASP2397 MIC50 values (in milligrams per liter, with MIC ranges in parentheses) determined by EUCAST and CLSI were 0.5 (0.25 to 1) and 0.25 (0.06 to 0.25) against A. fumigatus CYP51A wild-type isolates and were similarly 0.5 (0.125 to >4) and 0.125 (0.06 to >4) against azole-resistant A. fumigatus isolates, respectively. These values were comparable to those for amphotericin B, which were 0.25 (0.125 to 0.5) and 0.25 (0.125 to 0.25) against wild-type isolates and 0.25 (0.125 to 1) and 0.25 (0.125 to 1) against isolates with azole resistance mechanisms, respectively. In contrast, MICs for the azole compounds were elevated and highest for itraconazole: >4 (1 to >4) and 4 (0.5 to >4) against isolates with azole resistance mechanisms compared to 0.125 (0.125 to 0.25) and 0.125 (0.06 to 0.25) against wild-type isolates, respectively. ASP2397 was active against A. terreus CYP51A wild-type isolates (MIC 0.5 to 1), whereas MICs of both azole and ASP2397 were elevated for the mutant isolate. ASP2397 displayed in vitro activity against A. fumigatus and A. terreus isolates which was independent of the presence or absence of azole target gene resistance mutations in A. fumigatus. The findings are promising at a time when azole-resistant A. fumigatus

  20. In Vitro Activity of ASP2397 against Aspergillus Isolates with or without Acquired Azole Resistance Mechanisms.

    PubMed

    Arendrup, Maiken Cavling; Jensen, Rasmus Hare; Cuenca-Estrella, Manuel

    2015-11-09

    ASP2397 is a new compound with a novel and as-yet-unknown target different from that of licensed antifungal agents. It has activity against Aspergillus and Candida glabrata. We compared its in vitro activity against wild-type and azole-resistant A. fumigatus and A. terreus isolates with that of amphotericin B, itraconazole, posaconazole, and voriconazole. Thirty-four isolates, including 4 wild-type A. fumigatus isolates, 24 A. fumigatus isolates with alterations in CYP51A TR/L98H (5 isolates), M220 (9 isolates), G54 (9 isolates), and HapE (1 isolate), and A. terreus isolates (2 wild-type isolates and 1 isolate with an M217I CYP51A alteration), were analyzed. EUCAST E.Def 9.2 and CLSI M38-A2 MIC susceptibility testing was performed. ASP2397 MIC50 values (in milligrams per liter, with MIC ranges in parentheses) determined by EUCAST and CLSI were 0.5 (0.25 to 1) and 0.25 (0.06 to 0.25) against A. fumigatus CYP51A wild-type isolates and were similarly 0.5 (0.125 to >4) and 0.125 (0.06 to >4) against azole-resistant A. fumigatus isolates, respectively. These values were comparable to those for amphotericin B, which were 0.25 (0.125 to 0.5) and 0.25 (0.125 to 0.25) against wild-type isolates and 0.25 (0.125 to 1) and 0.25 (0.125 to 1) against isolates with azole resistance mechanisms, respectively. In contrast, MICs for the azole compounds were elevated and highest for itraconazole: >4 (1 to >4) and 4 (0.5 to >4) against isolates with azole resistance mechanisms compared to 0.125 (0.125 to 0.25) and 0.125 (0.06 to 0.25) against wild-type isolates, respectively. ASP2397 was active against A. terreus CYP51A wild-type isolates (MIC 0.5 to 1), whereas MICs of both azole and ASP2397 were elevated for the mutant isolate. ASP2397 displayed in vitro activity against A. fumigatus and A. terreus isolates which was independent of the presence or absence of azole target gene resistance mutations in A. fumigatus. The findings are promising at a time when azole-resistant A. fumigatus

  1. Biogenic silver nanoparticles: efficient and effective antifungal agents

    NASA Astrophysics Data System (ADS)

    Netala, Vasudeva Reddy; Kotakadi, Venkata Subbaiah; Domdi, Latha; Gaddam, Susmila Aparna; Bobbu, Pushpalatha; Venkata, Sucharitha K.; Ghosh, Sukhendu Bikash; Tartte, Vijaya

    2016-04-01

    Biogenic synthesis of silver nanoparticles (AgNPs) by exploiting various plant materials is an emerging field and considered green nanotechnology as it involves simple, cost effective and ecofriendly procedure. In the present study AgNPs were successfully synthesized using aqueous callus extract of Gymnema sylvestre. The aqueous callus extract treated with 1nM silver nitrate solution resulted in the formation of AgNPs and the surface plasmon resonance (SPR) of the formed AgNPs showed a peak at 437 nm in the UV Visible spectrum. The synthesized AgNPs were characterized using Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and X-ray diffraction spectroscopy (XRD). FTIR spectra showed the peaks at 3333, 2928, 2361, 1600, 1357 and 1028 cm-1 which revealed the role of different functional groups possibly involved in the synthesis and stabilization of AgNPs. TEM micrograph clearly revealed the size of the AgNPs to be in the range of 3-30 nm with spherical shape and poly-dispersed nature; it is further confirmed by Particle size analysis that the stability of AgNPs is due its high negative Zeta potential (-36.1 mV). XRD pattern revealed the crystal nature of the AgNPs by showing the braggs peaks corresponding to (111), (200), (220) and (311) planes of face-centered cubic crystal phase of silver. Selected area electron diffraction pattern showed diffraction rings and confirmed the crystalline nature of synthesized AgNPs. The synthesized AgNPs exhibited effective antifungal activity against Candida albicans, Candida nonalbicans and Candida tropicalis.

  2. Optically active antifungal azoles. V. Synthesis and antifungal activity of stereoisomers of 3-azolyl-2-(substituted phenyl)-1-(1H-1,2,4-triazol-1-yl)-2- butanols.

    PubMed

    Tasaka, A; Tsuchimori, N; Kitazaki, T; Hiroe, K; Hayashi, R; Okonogi, K; Itoh, K

    1995-03-01

    The (2S,3S)-, (2R,3S)- and (2S,3R)-stereoisomers of (2R,3R)-3-azolyl-2-(substituted phenyl)-1-(1H-1,2,4-triazol-1-yl)-2-butanols [(2R,3R)-1a--d] were prepared and evaluated for antifungal activity against Candida albicans in vitro and in vivo to clarify the relationships between stereochemistry and biological activities. The results revealed that the in vitro antifungal activity in each set of the four stereoisomers [(2R,3R)-, (2S,3S)-, (2R,3S)- and (2S,3R)-1a--d] definitely paralleled the in vivo antifungal activity against candidosis in mice, and the order of potency was (2R,3R) > (2R,3S) > or = (2S,3S) > or = (2S,3R). In addition, the four stereoisomers in each set were assessed for sterol biosynthesis-inhibitory activities in C. albicans and rat liver. The (2R,3R)-isomer was found to exert a strong and selective inhibitory effect on the sterol synthesis in C. albicans as compared with that in rat liver.

  3. Gluconic acid: an antifungal agent produced by Pseudomonas species in biological control of take-all.

    PubMed

    Kaur, Rajvinder; Macleod, John; Foley, William; Nayudu, Murali

    2006-03-01

    Pseudomonas strain AN5 (Ps. str. AN5), a non-fluorescent Australian bacterial isolate, is an effective biological control (biocontrol) agent of the take-all disease of wheat caused by the fungus Gaeumannomyces graminis var. tritici (Ggt). Ps. str. AN5 controls Ggt by producing an antifungal compound which was purified by thin layer and column chromatography, and identified by NMR and mass spectroscopic analysis to be d-gluconic acid. Commercially bought pure gluconic acid strongly inhibited Ggt. Two different transposon mutants of Ps. str. AN5 which had lost take-all biocontrol did not produce d-gluconic acid. Gluconic acid production was restored, along with take-all biocontrol, when one of these transposon mutants was complemented with the corresponding open reading frame from wild-type genomic DNA. Gluconic acid was detected in the rhizosphere of wheat roots treated with the wild-type Ps. str. AN5, but not in untreated wheat or wheat treated with a transposon mutant strain which had lost biocontrol. The antifungal compounds phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol, produced by other Pseudomonads and previously shown to be effective in suppressing the take-all disease, were not detected in Ps. str. AN5 extracts. These results suggest that d-gluconic acid is the most significant antifungal agent produced by Ps. str. AN5 in biocontrol of take-all on wheat roots.

  4. An evaluation of antifungal agents for the treatment of fungal contamination in indoor air environments.

    PubMed

    Rogawansamy, Senthaamarai; Gaskin, Sharyn; Taylor, Michael; Pisaniello, Dino

    2015-06-01

    Fungal contamination in indoor environments has been associated with adverse health effects for the inhabitants. Remediation of fungal contamination requires removal of the fungi present and modifying the indoor environment to become less favourable to growth.  This may include treatment of indoor environments with an antifungal agent to prevent future growth. However there are limited published data or advice on chemical agents suitable for indoor fungal remediation. The aim of this study was to assess the relative efficacies of five commercially available cleaning agents with published or anecdotal use for indoor fungal remediation. The five agents included two common multi-purpose industrial disinfectants (Cavicide® and Virkon®), 70% ethanol, vinegar (4.0%-4.2% acetic acid), and a plant-derived compound (tea tree (Melaleuca alternifolia) oil) tested in both a liquid and vapour form. Tea tree oil has recently generated interest for its antimicrobial efficacy in clinical settings, but has not been widely employed for fungal remediation. Each antifungal agent was assessed for fungal growth inhibition using a disc diffusion method against a representative species from two common fungal genera, (Aspergillus fumigatus and Penicillium chrysogenum), which were isolated from air samples and are commonly found in indoor air. Tea tree oil demonstrated the greatest inhibitory effect on the growth of both fungi, applied in either a liquid or vapour form. Cavicide® and Virkon® demonstrated similar, although less, growth inhibition of both genera. Vinegar (4.0%-4.2% acetic acid) was found to only inhibit the growth of P. chrysogenum, while 70% ethanol was found to have no inhibitory effect on the growth of either fungi. There was a notable inhibition in sporulation, distinct from growth inhibition after exposure to tea tree oil, Virkon®, Cavicide® and vinegar. Results demonstrate that common cleaning and antifungal agents differ in their capacity to inhibit the growth

  5. An evaluation of antifungal agents for the treatment of fungal contamination in indoor air environments.

    PubMed

    Rogawansamy, Senthaamarai; Gaskin, Sharyn; Taylor, Michael; Pisaniello, Dino

    2015-06-02

    Fungal contamination in indoor environments has been associated with adverse health effects for the inhabitants. Remediation of fungal contamination requires removal of the fungi present and modifying the indoor environment to become less favourable to growth.  This may include treatment of indoor environments with an antifungal agent to prevent future growth. However there are limited published data or advice on chemical agents suitable for indoor fungal remediation. The aim of this study was to assess the relative efficacies of five commercially available cleaning agents with published or anecdotal use for indoor fungal remediation. The five agents included two common multi-purpose industrial disinfectants (Cavicide® and Virkon®), 70% ethanol, vinegar (4.0%-4.2% acetic acid), and a plant-derived compound (tea tree (Melaleuca alternifolia) oil) tested in both a liquid and vapour form. Tea tree oil has recently generated interest for its antimicrobial efficacy in clinical settings, but has not been widely employed for fungal remediation. Each antifungal agent was assessed for fungal growth inhibition using a disc diffusion method against a representative species from two common fungal genera, (Aspergillus fumigatus and Penicillium chrysogenum), which were isolated from air samples and are commonly found in indoor air. Tea tree oil demonstrated the greatest inhibitory effect on the growth of both fungi, applied in either a liquid or vapour form. Cavicide® and Virkon® demonstrated similar, although less, growth inhibition of both genera. Vinegar (4.0%-4.2% acetic acid) was found to only inhibit the growth of P. chrysogenum, while 70% ethanol was found to have no inhibitory effect on the growth of either fungi. There was a notable inhibition in sporulation, distinct from growth inhibition after exposure to tea tree oil, Virkon®, Cavicide® and vinegar. Results demonstrate that common cleaning and antifungal agents differ in their capacity to inhibit the growth

  6. An Evaluation of Antifungal Agents for the Treatment of Fungal Contamination in Indoor Air Environments

    PubMed Central

    Rogawansamy, Senthaamarai; Gaskin, Sharyn; Taylor, Michael; Pisaniello, Dino

    2015-01-01

    Fungal contamination in indoor environments has been associated with adverse health effects for the inhabitants. Remediation of fungal contamination requires removal of the fungi present and modifying the indoor environment to become less favourable to growth.  This may include treatment of indoor environments with an antifungal agent to prevent future growth. However there are limited published data or advice on chemical agents suitable for indoor fungal remediation. The aim of this study was to assess the relative efficacies of five commercially available cleaning agents with published or anecdotal use for indoor fungal remediation. The five agents included two common multi-purpose industrial disinfectants (Cavicide® and Virkon®), 70% ethanol, vinegar (4.0%−4.2% acetic acid), and a plant-derived compound (tea tree (Melaleuca alternifolia) oil) tested in both a liquid and vapour form. Tea tree oil has recently generated interest for its antimicrobial efficacy in clinical settings, but has not been widely employed for fungal remediation. Each antifungal agent was assessed for fungal growth inhibition using a disc diffusion method against a representative species from two common fungal genera, (Aspergillus fumigatus and Penicillium chrysogenum), which were isolated from air samples and are commonly found in indoor air. Tea tree oil demonstrated the greatest inhibitory effect on the growth of both fungi, applied in either a liquid or vapour form. Cavicide® and Virkon® demonstrated similar, although less, growth inhibition of both genera. Vinegar (4.0%–4.2% acetic acid) was found to only inhibit the growth of P. chrysogenum, while 70% ethanol was found to have no inhibitory effect on the growth of either fungi. There was a notable inhibition in sporulation, distinct from growth inhibition after exposure to tea tree oil, Virkon®, Cavicide® and vinegar. Results demonstrate that common cleaning and antifungal agents differ in their capacity to inhibit the

  7. Effect of chitosan and its derivatives as antifungal and preservative agents on postharvest green asparagus.

    PubMed

    Qiu, Miao; Wu, Chu; Ren, Gerui; Liang, Xinle; Wang, Xiangyang; Huang, Jianying

    2014-07-15

    The antifungal activity and effect of high-molecular weight chitosan (H-chitosan), low-molecular weight chitosan (L-chitosan) and carboxymethyl chitosan (C-chitosan) coatings on postharvest green asparagus were evaluated. L-chitosan and H-chitosan efficiently inhibited the radial growth of Fusarium concentricum separated from postharvest green asparagus at 4 mg/ml, which appeared to be more effective in inhibiting spore germination and germ tube elongation than that of C-chitosan. Notably, spore germination was totally inhibited by L-chitosan and H-chitosan at 0.05 mg/ml. Coated asparagus did not show any apparent sign of phytotoxicity and maintained good quality over 28 days of cold storage, according to the weight loss and general quality aspects. Present results inferred that chitosan could act as an attractive preservative agent for postharvest green asparagus owing to its antifungal activity and its ability to stimulate some defense responses during storage.

  8. Synthesis and biological evaluation of novel trichodermin derivatives as antifungal agents.

    PubMed

    Zheng, Min; Yao, Ting-Ting; Xu, Xiao-Jun; Cheng, Jing-Li; Zhao, Jin-Hao; Zhu, Guo-Nian

    2014-08-01

    To discover more potential antifungal agents, 17 novel trichodermin derivatives were designed and synthesized by modification of 3 and 4a. The structures of all the synthesized compounds were confirmed by (1)H NMR, ESI-MS and HRMS. Their antifungal activities against Ustilaginoidea oryzae and Pyricularia oryzae were evaluated. Most of the target compounds showed potent inhibitory activity, in which 4g showed superior inhibitory effects than 4a and commercial fungicide prochloraz. Furthermore, 4h demonstrated comparable inhibitory activity to 4a. Moreover, 4i and 4l exhibited excellent inhibitory activity for Pyricularia oryzae. Additionally, compound 9 was found to be more active against all tested fungal strains than 3, with EC50 values of 0.47 and 3.71 mg L(-1), respectively. PMID:24908609

  9. Clinical evaluation of a frozen commercially prepared microdilution panel for antifungal susceptibility testing of seven antifungal agents, including the new triazoles posaconazole, ravuconazole, and voriconazole.

    PubMed

    Pfaller, M A; Diekema, D J; Messer, S A; Boyken, L; Huynh, H; Hollis, R J

    2002-05-01

    A commercially prepared frozen broth microdilution panel (Trek Diagnostic Systems, Westlake, Ohio) was compared with a reference microdilution panel for antifungal susceptibility testing of two quality control (QC) strains and 99 clinical isolates of Candida spp. The antifungal agents tested included amphotericin B, flucytosine, fluconazole, itraconazole, posaconazole, ravuconazole, and voriconazole. Microdilution testing was performed according to NCCLS recommendations. MIC endpoints were read visually after 48 h of incubation and were assessed independently for each microdilution panel. The MICs for the QC strains were within published limits for both the reference and Trek microdilution panels. Discrepancies among MIC endpoints of no more than 2 dilutions were used to calculate the percent agreement. Acceptable levels of agreement between the Trek and reference panels were observed for all antifungal agents tested against the 99 clinical isolates. The overall agreement for each antifungal agent ranged from 96% for ravuconazole to 100% for amphotericin B. The Trek microdilution panel appears to be a viable alternative to frozen microdilution panels prepared in-house. PMID:11980944

  10. Activity of Isavuconazole and Other Azoles against Candida Clinical Isolates and Yeast Model Systems with Known Azole Resistance Mechanisms

    PubMed Central

    Coste, Alix T.

    2015-01-01

    Isavuconazole is a novel, broad-spectrum, antifungal azole. In order to evaluate its interactions with known azole resistance mechanisms, isavuconazole susceptibility among different yeast models and clinical isolates expressing characterized azole resistance mechanisms was tested and compared to those of fluconazole, itraconazole, posaconazole, and voriconazole. Saccharomyces cerevisiae expressing the Candida albicans and C. glabrata ATP binding cassette (ABC) transporters (CDR1, CDR2, and CgCDR1), major facilitator (MDR1), and lanosterol 14-α-sterol-demethylase (ERG11) alleles with mutations were used. In addition, pairs of C. albicans and C. glabrata strains from matched clinical isolates with known azole resistance mechanisms were investigated. The expression of ABC transporters increased all azole MICs, suggesting that all azoles tested were substrates of ABC transporters. The expression of MDR1 did not increase posaconazole, itraconazole, and isavuconazole MICs. Relative increases of azole MICs (from 4- to 32-fold) were observed for fluconazole, voriconazole, and isavuconazole when at least two mutations were present in the same ERG11 allele. Upon MIC testing of azoles with clinical C. albicans and C. glabrata isolates with known resistance mechanisms, the MIC90s of C. albicans for fluconazole, voriconazole, itraconazole, posaconazole, and isavuconazole were 128, 2, 1, 0.5, and 2 μg/ml, respectively, while in C. glabrata they were 128, 2, 4, 4, and 16 μg/ml, respectively. In conclusion, the effects of azole resistance mechanisms on isavuconazole did not differ significantly from those of other azoles. Resistance mechanisms in yeasts involving ABC transporters and ERG11 decreased the activity of isavuconazole, while MDR1 had limited effect. PMID:26482310

  11. Mitigation of human-pathogenic fungi that exhibit resistance to medical agents: can clinical antifungal stewardship help?

    PubMed

    Hull, Claire M; Purdy, Nicola J; Moody, Suzy C

    2014-01-01

    Reducing indiscriminate antimicrobial usage to combat the expansion of multidrug-resistant human-pathogenic bacteria is fundamental to clinical antibiotic stewardship. In contrast to bacteria, fungal resistance traits are not understood to be propagated via mobile genetic elements, and it has been proposed that a global explosion of resistance to medical antifungals is therefore unlikely. Clinical antifungal stewardship has focused instead on reducing the drug toxicity and high costs associated with medical agents. Mitigating the problem of human-pathogenic fungi that exhibit resistance to antimicrobials is an emergent issue. This article addresses the extent to which clinical antifungal stewardship could influence the scale and epidemiology of resistance to medical antifungals both now and in the future. The importance of uncharted selection pressure exerted by agents outside the clinical setting (agricultural pesticides, industrial xenobiotics, biocides, pharmaceutical waste and others) on environmentally ubiquitous spore-forming molds that are lesserstudied but increasingly responsible for drug-refractory infections is considered.

  12. Plant-derived antifungal agent poacic acid targets β-1,3-glucan.

    PubMed

    Piotrowski, Jeff S; Okada, Hiroki; Lu, Fachuang; Li, Sheena C; Hinchman, Li; Ranjan, Ashish; Smith, Damon L; Higbee, Alan J; Ulbrich, Arne; Coon, Joshua J; Deshpande, Raamesh; Bukhman, Yury V; McIlwain, Sean; Ong, Irene M; Myers, Chad L; Boone, Charles; Landick, Robert; Ralph, John; Kabbage, Mehdi; Ohya, Yoshikazu

    2015-03-24

    A rise in resistance to current antifungals necessitates strategies to identify alternative sources of effective fungicides. We report the discovery of poacic acid, a potent antifungal compound found in lignocellulosic hydrolysates of grasses. Chemical genomics using Saccharomyces cerevisiae showed that loss of cell wall synthesis and maintenance genes conferred increased sensitivity to poacic acid. Morphological analysis revealed that cells treated with poacic acid behaved similarly to cells treated with other cell wall-targeting drugs and mutants with deletions in genes involved in processes related to cell wall biogenesis. Poacic acid causes rapid cell lysis and is synergistic with caspofungin and fluconazole. The cellular target was identified; poacic acid localized to the cell wall and inhibited β-1,3-glucan synthesis in vivo and in vitro, apparently by directly binding β-1,3-glucan. Through its activity on the glucan layer, poacic acid inhibits growth of the fungi Sclerotinia sclerotiorum and Alternaria solani as well as the oomycete Phytophthora sojae. A single application of poacic acid to leaves infected with the broad-range fungal pathogen S. sclerotiorum substantially reduced lesion development. The discovery of poacic acid as a natural antifungal agent targeting β-1,3-glucan highlights the potential side use of products generated in the processing of renewable biomass toward biofuels as a source of valuable bioactive compounds and further clarifies the nature and mechanism of fermentation inhibitors found in lignocellulosic hydrolysates. PMID:25775513

  13. Synthesis and biological evaluation of new naphthalene substituted thiosemicarbazone derivatives as potent antifungal and anticancer agents.

    PubMed

    Altıntop, Mehlika Dilek; Atlı, Özlem; Ilgın, Sinem; Demirel, Rasime; Özdemir, Ahmet; Kaplancıklı, Zafer Asım

    2016-01-27

    New thiosemicarbazone derivatives (1-10) were obtained via the reaction of 4-(naphthalen-1-yl)thiosemicarbazide with fluoro-substituted aromatic aldehydes. The synthesized compounds were evaluated for their in vitro antifungal effects against pathogenic yeasts and molds using broth microdilution assay. Ames and umuC assays were carried out to determine the genotoxicity of the most effective antifungal derivatives. Furthermore, all compounds were evaluated for their cytotoxic effects on A549 human lung adenocarcinoma and NIH/3T3 mouse embryonic fibroblast cell lines using XTT test. Among these derivatives, 4-(naphthalen-1-yl)-1-(2,3-difluorobenzylidene)thiosemicarbazide (1) and 4-(naphthalen-1-yl)-1-(2,5-difluorobenzylidene)thiosemicarbazide (3) can be identified as the most promising antifungal derivatives due to their notable inhibitory effects on Candida species and no cytotoxicity against NIH/3T3 mouse embryonic fibroblast cell line. According to Ames and umuC assays, compounds 1 and 3 were classified as non-mutagenic compounds. On the other hand, 4-(naphthalen-1-yl)-1-(2,4-difluorobenzylidene)thiosemicarbazide (2) can be considered as the most promising anticancer agent against A549 cell line owing to its notable inhibitory effect on A549 cells with an IC50 value of 31.25 μg/mL when compared with cisplatin (IC50 = 16.28 μg/mL) and no cytotoxicity against NIH/3T3 cells.

  14. Plant-derived antifungal agent poacic acid targets β-1,3-glucan

    PubMed Central

    Piotrowski, Jeff S.; Okada, Hiroki; Lu, Fachuang; Li, Sheena C.; Hinchman, Li; Ranjan, Ashish; Smith, Damon L.; Higbee, Alan J.; Ulbrich, Arne; Coon, Joshua J.; Deshpande, Raamesh; Bukhman, Yury V.; McIlwain, Sean; Ong, Irene M.; Myers, Chad L.; Boone, Charles; Landick, Robert; Ralph, John; Kabbage, Mehdi; Ohya, Yoshikazu

    2015-01-01

    A rise in resistance to current antifungals necessitates strategies to identify alternative sources of effective fungicides. We report the discovery of poacic acid, a potent antifungal compound found in lignocellulosic hydrolysates of grasses. Chemical genomics using Saccharomyces cerevisiae showed that loss of cell wall synthesis and maintenance genes conferred increased sensitivity to poacic acid. Morphological analysis revealed that cells treated with poacic acid behaved similarly to cells treated with other cell wall-targeting drugs and mutants with deletions in genes involved in processes related to cell wall biogenesis. Poacic acid causes rapid cell lysis and is synergistic with caspofungin and fluconazole. The cellular target was identified; poacic acid localized to the cell wall and inhibited β-1,3-glucan synthesis in vivo and in vitro, apparently by directly binding β-1,3-glucan. Through its activity on the glucan layer, poacic acid inhibits growth of the fungi Sclerotinia sclerotiorum and Alternaria solani as well as the oomycete Phytophthora sojae. A single application of poacic acid to leaves infected with the broad-range fungal pathogen S. sclerotiorum substantially reduced lesion development. The discovery of poacic acid as a natural antifungal agent targeting β-1,3-glucan highlights the potential side use of products generated in the processing of renewable biomass toward biofuels as a source of valuable bioactive compounds and further clarifies the nature and mechanism of fermentation inhibitors found in lignocellulosic hydrolysates. PMID:25775513

  15. Sordarin, an antifungal agent with a unique mode of action

    PubMed Central

    2008-01-01

    Summary The sordarin family of compounds, characterized by a unique tetracyclic diterpene core including a norbornene system, inhibits protein synthesis in fungi by stabilizing the ribosome/EF2 complex. This mode of action is in contrast to typical antifungals, which target the cell membrane. This unusual bioactivity makes sordarin a promising candidate for the development of new fungicidal agents, and provided the motivation for extensive research. Three total syntheses (by the Kato, Mander and Narasaka groups), modifications of the glycosyl unit, and changes to the diterpene core (Cuevas and Ciufolini models) will also be discussed in this review. PMID:18941619

  16. Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products.

    PubMed

    Ryan, Liam A M; Zannini, Emanuele; Dal Bello, Fabio; Pawlowska, Agata; Koehler, Peter; Arendt, Elke K

    2011-04-29

    Mould spoilage is the main cause of substantial economic loss in bakery industry and might also cause public health problems due to the production of mycotoxins. The reduction of mould growth in bakery products is thus of crucial importance and there is great interest to develop safe and efficient strategies for this purpose. In this study Lactobacillus amylovorus DSM19280 has been shown to produce a wide spectrum of antifungal compounds active against common bread spoilage fungi. Among the indicator moulds, Aspergillus fumigatus and Fusarium culmorum were the most sensitive organisms. Several antifungal compounds were found to be present in synthetic medium inoculated with L. amylovorus DSM19280 strain, some of them being reported here for the first time. Wheat doughs fermented with L. amylovorus DSM19280 had good rheological properties and the breads thereof were of high quality as shown by rheofermentometer and texture analyser measurements. The results were compared with those obtained with a control non-antifungal L. amylovorus DSM20531(T) strain, a non-acidified and a chemically acidified dough. The quality of sourdough and bread fermented with L. amylovorus DSM 19280 was comparable to that obtained by using L. amylovorus DSM20531 (T). Additionally, breads were evaluated for the ability to retard the growth of Fusarium culmorum FST 4.05, Aspergillus niger FST4.21, Penicillium expansum FST 4.22, Penicillium roqueforti FST 4.11 and fungal flora from the bakery environment. The biological preservation of bread with L. amylovorus DSM 19280 was also compared to the most commonly used antifungal agent Calcium propionate. Breads containing sourdough fermented with L. amylovorus DSM 19280 were more effective in extending the shelf life of bread than the calcium propionate.

  17. Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products.

    PubMed

    Ryan, Liam A M; Zannini, Emanuele; Dal Bello, Fabio; Pawlowska, Agata; Koehler, Peter; Arendt, Elke K

    2011-04-29

    Mould spoilage is the main cause of substantial economic loss in bakery industry and might also cause public health problems due to the production of mycotoxins. The reduction of mould growth in bakery products is thus of crucial importance and there is great interest to develop safe and efficient strategies for this purpose. In this study Lactobacillus amylovorus DSM19280 has been shown to produce a wide spectrum of antifungal compounds active against common bread spoilage fungi. Among the indicator moulds, Aspergillus fumigatus and Fusarium culmorum were the most sensitive organisms. Several antifungal compounds were found to be present in synthetic medium inoculated with L. amylovorus DSM19280 strain, some of them being reported here for the first time. Wheat doughs fermented with L. amylovorus DSM19280 had good rheological properties and the breads thereof were of high quality as shown by rheofermentometer and texture analyser measurements. The results were compared with those obtained with a control non-antifungal L. amylovorus DSM20531(T) strain, a non-acidified and a chemically acidified dough. The quality of sourdough and bread fermented with L. amylovorus DSM 19280 was comparable to that obtained by using L. amylovorus DSM20531 (T). Additionally, breads were evaluated for the ability to retard the growth of Fusarium culmorum FST 4.05, Aspergillus niger FST4.21, Penicillium expansum FST 4.22, Penicillium roqueforti FST 4.11 and fungal flora from the bakery environment. The biological preservation of bread with L. amylovorus DSM 19280 was also compared to the most commonly used antifungal agent Calcium propionate. Breads containing sourdough fermented with L. amylovorus DSM 19280 were more effective in extending the shelf life of bread than the calcium propionate. PMID:21429613

  18. In vitro antifungal susceptibility of Malassezia pachydermatis from dogs with and without skin lesions.

    PubMed

    Cafarchia, Claudia; Figueredo, Luciana A; Iatta, Roberta; Montagna, Maria Teresa; Otranto, Domenico

    2012-03-23

    Canine Malassezia dermatitis is frequently treated with systemic ketoconazole (KTZ) and itraconazole (ITZ). However, no information is available on the antifungal susceptibility to azoles and allilamine of Malassezia pachydermatis isolates from dogs with or without skin lesions. The present study was designed to evaluate the in vitro antifungal susceptibility of M. pachydermatis strains from dogs with or without skin lesions to KTZ, ITZ, miconazole (MICO), fluconazole (FLZ), posaconazole (POS), voriconazole (VOR) and terbinafine (TER) using the Clinical and Laboratory Standards Institute reference Broth Microdilution Method (CLSI M27-A2). The association between the susceptibility to antifungal compounds and the origin of M. pachydermatis, from skin with or without lesions has been also assessed. A total of 62 M. pachydermatis strains from healthy dogs (i.e., Group A=30) or with skin lesions (i.e., Group B=32) were tested. ITZ, KTZ and POS showed the highest activity against M. pachydermatis strains, whereas MICO TER and FLZ the lowest. A higher number of Malassezia resistant strains were registered among isolates from Group B than those from Group A. This study indicates that M. pachydermatis strains were susceptible to ITZ, KTZ, and POS. However, dogs with lesions may harbour strains with low susceptibility to antifungal agents and displaying cross-resistance phenomena to azole. The antifungal therapy in Malassezia infections requires careful appraisal of choice of drugs especially in cases of unresponsiveness to antifungal treatment or recurrent infections. PMID:21962411

  19. Evaluation of coumarin derivatives as anti-fungal agents against soil-borne fungal pathogens.

    PubMed

    Brooker, N L; Kuzimichev, Y; Laas, J; Pavlis, R

    2007-01-01

    Development of new and safer pesticides that are target-specific is backed by a strong Federal, public and commercial mandate. In order to generate a new generation of pesticides that are more ecologically friendly and safe, natural products are being evaluated for pesticidal activities. Many plant-derived chemicals have proven pesticidal properties, including compounds like sesamol (3,4-Methylenedioxyphenol), a lipid from sesame oil and coumarins (1,2-Benzopyrone) found in a variety of plants such as clover, sweet woodruff and grasses. Both of these plant-derived compounds have been shown to inhibit a range of fungi and bacteria and it is believed that these cyclic compounds behave as natural pesticidal defense molecules for plants. These compounds represent a starting point for the exploration of new derivative compounds possessing a range of antifungal activity and for use as seed protectants. Within this study, six derivatives of coumarin that resembled sesamol's structure were screened for their antifungal activity against a range of soil-bome plant pathogenic fungi. Fungi in this in vitro screen included Macrophomina phaseolina (causal agent of charcoal rot) and Pythium spp. (causal agent of seedling blight), two phylogenetically diverse and economically important plant pathogens. Preliminary studies indicate that many of these novel coumarin derivatives work very effectively in vitro to inhibit fungal growth and several coumarin derivatives have higher antifungal activity and stability as compared to either the original coumarin or sesamol compounds alone. Interestingly, several of these highly active coumarin derivatives are halogenated compounds with solubility in water, and they are relatively easy and inexpensive to synthesize. These halogenated coumarin derivatives remained active for extended periods of time displaying 100% inhibition of fungal growth for greater than 3 weeks in vitro. In addition to the in vitro fungal inhibition assays, preliminary

  20. Antifungal drug resistance among Candida species: mechanisms and clinical impact.

    PubMed

    Sanguinetti, Maurizio; Posteraro, Brunella; Lass-Flörl, Cornelia

    2015-06-01

    The epidemiology of Candida infections has changed in recent years. Although Candida albicans is still the main cause of invasive candidiasis in most clinical settings, a substantial proportion of patients is now infected with non-albicans Candida species. The various Candida species vary in their susceptibility to the most commonly used antifungal agents, and the intrinsic resistance to antifungal therapy seen in some species, along with the development of acquired resistance during treatment in others, is becoming a major problem in the management of Candida infection. A better understanding of the mechanisms and clinical impact of antifungal drug resistance is essential for the efficient treatment of patients with Candida infection and for improving treatment outcomes. Herein, we report resistance to the azoles and echinocandins among Candida species.

  1. In vitro antifungal activity of 2-(2'-hydroxy-5'-aminophenyl)benzoxazole in Candida spp. strains.

    PubMed

    Daboit, Tatiane Caroline; Stopiglia, Cheila Denise Ottonelli; Carissimi, Mariana; Corbellini, Valeriano Antonio; Stefani, Valter; Scroferneker, Maria Lúcia

    2009-11-01

    The development of azole antifungals has allowed for the treatment of several fungal infections. However, the use of these compounds is restricted because of their hepatotoxicity or because they need to be administered together with other drugs in order to prevent resistance to monotherapy. Benzoxazole derivatives are among the most thriving molecular prototypes for the development of antifungal agents. 2-(2'-hydroxyphenyl) benzoxazoles are versatile molecules that emit fluorescence and have antibacterial, antiviral and antifungal properties. 2-(2'-hydroxy-5'-aminophenyl) benzoxazole (HAMBO) was tested against Candida yeast. The inhibition provided by HAMBO was lower than that of fluconazole, showing low antifungal activity against Candida spp., but equivalent to that of benzoxazoles tested in similar studies. HAMBO showed fungistatic activity against all analysed strains. This class of novel benzoxazole compounds may be used as template to produce better antifungal drugs.

  2. In Vitro Antifungal Activities against Moulds Isolated from Dermatological Specimens

    PubMed Central

    Mohd Nizam, Tzar; Binting, Rabiatul Adawiyah AG.; Mohd Saari, Shafika; Kumar, Thivyananthini Vijaya; Muhammad, Marianayati; Satim, Hartini; Yusoff, Hamidah; Santhanam, Jacinta

    2016-01-01

    Background This study aimed to determine the minimum inhibitory concentrations (MICs) of various antifungal agents against moulds isolated from dermatological specimens. Methods We identified 29 moulds from dermatological specimens between October 2012 and March 2013 by conventional methods. We performed antifungal susceptibility testing on six antifungal agents, amphotericin B, clotrimazole, itraconazole, ketoconazole, miconazole and terbinafine, according to the Clinical and Laboratory Standards Institute guidelines contained in the M38-A2 document. Results Most antifungal agents were active against the dermatophytes, except for terbinafine against Trichophyton rubrum (geometric mean MIC, MICGM 3.17 μg/mL). The dematiaceous moulds were relatively susceptible to amphotericin B and azoles (MICGM 0.17–0.34 μg/mL), but not to terbinafine (MICGM 3.62 μg/mL). Septate hyaline moulds showed variable results between the relatively more susceptible Aspergillus spp. (MICGM 0.25–4 μg/mL) and the more resistant Fusarium spp. (MICGM 5.66–32 μg/mL). The zygomycetes were susceptible to amphotericin B (MICGM 0.5 μg/mL) and clotrimazole (MICGM 0.08 μg/mL), but not to other azoles (MICGM 2.52–4 μg/mL). Conclusion Amphotericin B and clotrimazole were the most effective antifungal agents against all moulds excepting Fusarium spp., while terbinafine was useful against dermatophytes (except T. rubrum) and Aspergillus spp. However, a larger study is required to draw more solid conclusions. PMID:27418867

  3. Optically active antifungal azoles. IV. Synthesis and antifungal activity of (2R,3R)-3-azolyl-2-(substituted phenyl)-1-(1H-1,2,4-triazol-1-yl)-2-butanols.

    PubMed

    Tasaka, A; Tamura, N; Matsushita, Y; Kitazaki, T; Hayashi, R; Okonogi, K; Itoh, K

    1995-03-01

    (2R,3R)-3-Azolyl-2-(substituted phenyl)-1-(1H-1,2,4-triazol-1-yl)-2-butanols (III) were prepared from (2R,3S)-3-methyl-2-(substituted phenyl)-2-(1H-1,2,4-triazol-1-yl)methyloxiranes (21a-f) by a ring-opening reaction with 1H-1,2,3-triazole and 1H-tetrazole and evaluated for antifungal activity against Candida albicans in vitro and in vivo. The optically active oxiranes (21a--f) which serve as the key synthetic intermediates, were synthesized from 1-[(2R)-2-(3,4,5,6-tetrahydro-2H-pyran-2-yl)oxypropanoyl]morpholin e (24) and substituted phenylmagnesium bromide (23) via six steps in a stereocontrolled manner. The 3-(1H-1,2,3,-triazol-1-yl)-(IIIa) and 3-(2H-2-tetrazolyl)-2-butanol (IIId) derivatives showed strong protective effects against candidosis in mice.

  4. [Ajoene the main active compound of garlic (Allium sativum): a new antifungal agent].

    PubMed

    Ledezma, Eliades; Apitz-Castro, Rafael

    2006-06-01

    The curative properties of garlic in medicine have been known for a long time. But, it was only in the last three decades when garlic properties were seriously investigated confirming its potential as therapeutic agent. Allicin, ajoene, thiosulfinates and a wide range of other organosulphurate compounds, are known to be the constituents linked to the garlic properties. Regarding the biochemical properties of these compounds, ajoene [(E,Z)-4,5,9 Trithiadodeca 1,6,11 Triene 9-oxide] is stable in water, and it can be obtained by chemical synthesis. There is evidence that some of the garlic constituents exert a wide variety of effects on different biological systems. However, ajoene is the garlic compound related to more biological activities, as showed in in vitro and in vivo systems. Those studies found that ajoene has antithrombotic, anti-tumoral,antifungal, and antiparasitic effects. This study deals with a recently described antifungal property of ajoene, and its potential use in clinical trails to treat several fungal infections.

  5. A Chemically Modified Tetracycline (CMT-3) Is a New Antifungal Agent

    PubMed Central

    Liu, Yu; Ryan, Maria E.; Lee, Hsi-Ming; Simon, Sanford; Tortora, George; Lauzon, Carol; Leung, Michael K.; Golub, Lorne M.

    2002-01-01

    Several chemically modified tetracycline analogs (CMTs), which were chemically modified to eliminate their antibacterial efficacy, were unexpectedly found to have antifungal properties. Of 10 CMTs screened in vitro, all exhibited antifungal activities, although their efficacies varied. Among these compounds, CMT-315, -3, and -308 were found to be the most potent as antifungal agents. The MICs of CMT-3 against 47 strains of fungi in vitro were determined by using amphotericin B (AMB) and doxycycline as positive and negative controls, respectively. The MICs of CMT-3 were generally found to be between 0.25 and 8.00 μg/ml, a range that approximates the blood levels of this drug when administrated orally to humans. Of all the yeast species tested to date, Candida albicans showed the greatest sensitivity to CMT-3. The filamentous species most susceptible to CMT-3 were found to be Epidermophyton floccosum, Microsporum gypseum, Pseudallescheria boydii, a Penicillium sp., Scedosporium apiospermum, a Tricothecium sp., and Trichophyton rubrum. Growth inhibition of C. albicans by CMT-3, determined by a turbidity assay, indicated a 50% inhibitory concentration of 1 μg/ml. Thirty-nine strains, including 20 yeasts and 19 molds, were used to measure viability (the ability to grow after treatment with a drug) inhibition by CMT-3 and AMB. CMT-3 exhibited fungicidal activity against most of these fungi, especially the filamentous fungi. Eighty-four percent (16 of 19) of the filamentous fungi tested showed more than 90% inhibition of viability by CMT-3. In contrast, AMB showed fungicidal activity against all yeasts tested. However, most of the filamentous fungi (16 of 19) showed less than 50% inhibition of viability by AMB, indicating that AMB is fungistatic against most of these filamentous fungi. To begin to identify the sites in fungal cells affected by CMT-3, C. albicans and a Penicillium sp. were incubated with the compound at 35°C, and then the fluorescence of CMT-3 was

  6. Improved method for azole antifungal susceptibility testing.

    PubMed Central

    Gordon, M A; Lapa, E W; Passero, P G

    1988-01-01

    A reproducible method is described for the determination of the MICs of ketoconazole, miconazole, fluconazole, and itraconazole with sharp endpoints when employed with either yeasts or molds. A semisolid medium is used with controlled pH and standardized inoculum. The time of reading results is a critical factor in the conduct of this test. The medium is simple to prepare and has a relatively long refrigerator shelf life in a user-ready state, requiring only the addition of a freshly prepared inoculum after restoration to room temperature. Images PMID:2846651

  7. Biodirected synthesis of Miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles.

    PubMed

    Kumar, C Ganesh; Poornachandra, Y

    2015-01-01

    The recent strategy to improve the efficacy of drugs is to combine them with metal nanoparticles for the control of microbial infections. Considering this fact, we developed a low cost and eco-friendly method for silver nanoparticles synthesis using the cell free supernatant of Delftia sp. strain KCM-006 and their application as antifungal agents and as a drug carrier. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical and monodispersed silver nanoparticles with an average size of 9.8 nm. The synthesized nanoparticles were found to be photoluminescent, highly stable and crystalline in nature having a zeta potential of -31 mV. The silver nanoparticles exhibited very good antifungal activity against various pathogenic Candida strains. Furthermore, the efficacy of nanoparticles was increased by conjugating the antifungal drug Miconazole to silver nanoparticles which exhibited significant fungicidal activity, inhibition of ergosterol biosynthesis and biofilm inhibition by increasing ROS levels. In addition, the cell viability and immunocytochemistry analysis against different normal cell lines including Chinese hamster ovary cells (CHO), human lung cell line (MRC5) and human vascular endothelial cells (HUVEC) demonstrated that these nanoparticles were non-toxic up to a concentration of 20 μM. In conclusion, these results suggest that the synthesized nanoparticles find application as both antifungal agents and drug delivery vehicles. This is a first report on the preparation of silver nanoparticles using culture supernatant from Delftia sp. and also on the conjugation of Miconazole, an antifungal drug, to the bacterial silver nanoparticles.

  8. Natamycin as a selective antifungal agent in media for growth of Legionella spp.

    PubMed Central

    Edelstein, P H; Edelstein, M A

    1996-01-01

    The growth of 18 different Legionella sp. strains and 76 different yeast isolates was tested on buffered charcoal yeast extract medium supplemented with alpha-ketoglutarate (BCYE alpha medium) and with natamycin, an antifungal agent. Bacterial growth was no different on BCYE alpha medium made with or without natamycin, whereas complete inhibition of yeasts occurred in BCYE alpha medium containing 200 to 500 micrograms of natamycin per ml. Selective BCYE alpha media made with natamycin rather than anisomycin had no (formulation with vancomycin, polymyxin B, and agar) or little (formulation with cefamandole, polymyxin B, and agar) inhibitory effect on the growth of 14 different Legionella sp. bacteria. Natamycin is an inexpensive alternative to anisomycin in the formulation of selective BCYE alpha media. PMID:8748300

  9. Adsorptive behavior and electrochemical determination of the anti-fungal agent ketoconazole.

    PubMed

    Peng, T Z; Cheng, Q; Yang, C F

    2001-08-01

    The adsorptive properties and electrochemical behavior of ketoconazole, an oral anti-fungal agent, are demonstrated at a glassy carbon electrode. The adsorption of the compound obeys the Frumkin isotherm with an interaction factor (alpha) of 0.985 and adsorptive coefficient (beta) of 1.98 x 10(6) L mol(-1). The Gibbs energy of adsorption (deltaG) is -3.59 x 10(4) J mol(-1) at 25 degrees C. A very sensitive electroanalytical method has been developed for determination of the drug with a detection limit of 4.0 x 10(-11) mol L(-1). Relationships between stripping current and concentration of ketoconazole were linear in the range 10(-6)-10(-10) mol L(-1) with different preconcentration periods. The method has been used to measure the ketoconazole content of tablets.

  10. Lipopeptides as the Antifungal and Antibacterial Agents: Applications in Food Safety and Therapeutics

    PubMed Central

    Meena, Khem Raj; Kanwar, Shamsher S.

    2015-01-01

    A lot of crops are destroyed by the phytopathogens such as fungi, bacteria, and yeast leading to economic losses to the farmers. Members of the Bacillus genus are considered as the factories for the production of biologically active molecules that are potential inhibitors of growth of phytopathogens. Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and thus cause extended environmental pollution. Moreover, an increasing number of phytopathogens have developed resistance to antimicrobial agents. The lipopeptides have been tried as potent versatile weapons to deal with a variety of phytopathogens. All the three families of Bacillus lipopeptides, namely, Surfactins, Iturins and Fengycins, have been explored for their antagonistic activities towards a wide range of phytopathogens including bacteria, fungi, and oomycetes. Iturin and Fengycin have antifungal activities, while Surfactin has broad range of potent antibacterial activities and this has also been used as larvicidal agent. Interestingly, lipopeptides being the molecules of biological origin are environmentally acceptable. PMID:25632392

  11. Cilofungin (LY121019), an antifungal agent with specific activity against Candida albicans and Candida tropicalis.

    PubMed Central

    Hall, G S; Myles, C; Pratt, K J; Washington, J A

    1988-01-01

    Cilofungin (LY121019) is an antifungal agent that interferes with beta-glucan synthesis in the cells walls of fungi. The activity of this agent against 256 clinical isolates of yeasts was determined. It was found to be very active in vitro against Candida albicans (MIC for 90% of isolates [MIC90], less than or equal to 0.31 microgram/ml; minimal fungicidal concentration for 90% of isolates [MFC90], less than or equal to 0.31 micrograms/ml) and C. tropicalis (MIC90, less than or equal to 0.31 microgram/ml; MFC90, less than or equal to 0.31 microgram/ml) and moderately active against Torulopsis glabrata (MIC90 and MFC90, less than or equal to 20 micrograms/ml). All C. parapsilosis, Cryptococcus, and Saccharomyces cerevisiae strains were resistant. The activity of cilofungin was affected by medium and inoculum size. Antibiotic medium no. 3 was used as the standard medium. Isolates of C. albicans and C. tropicalis demonstrated a paradoxical effect in Sabouraud dextrose broth and yeast nitrogen base broth in that growth was partially inhibited at MICs equivalent to those in antibiotic medium no. 3, but growth continued, in many instances, throughout all concentrations tested. There was decreased activity of cilofungin with inocula greater than 10(5) CFU/ml. The temperature and duration of incubation did not affect its activity. Images PMID:3058017

  12. Antifungal susceptibilities of Candida, Cryptococcus neoformans and Aspergillus fumigatus from the Asia and Western Pacific region: data from the SENTRY antifungal surveillance program (2010-2012).

    PubMed

    Pfaller, Michael A; Messer, Shawn A; Jones, Ronald N; Castanheira, Mariana

    2015-09-01

    The SENTRY Antifungal Surveillance Program monitors global susceptibility rates of newer and established antifungal agents. We report the in vitro activity of seven antifungal agents against 496 contemporary clinical isolates of yeasts and molds. The isolates were obtained from 20 laboratories in the Asia-Western Pacific (APAC) region during 2010 through 2012. Anidulafungin, caspofungin, micafungin, fluconazole, itraconazole, posaconazole and voriconazole were susceptibility tested using CLSI methods and species-specific interpretive criteria. Sequencing of fks hot spots was performed for echinocandin-resistant strains. Isolates included 13 species of Candida (n=460), 5 species of non-Candida yeasts (21), 5 species of Aspergillus (11) and 4 other molds. Echinocandin resistance was uncommon among eight species of Candida and was only detected in three isolates of Candida glabrata, two from Australia harboring mutations in fks1 (F625S) and fks2 (S663P). Resistance to the azoles was much more common and was observed among all species with the exception of Candida dubliniensis. Fluconazole resistance rates observed with C. glabrata (6.8%) was comparable to that seen with Candida parapsilosis (5.7%) and Candida tropicalis (3.6%). Cross resistance among the triazoles was seen with each of these three species. The mold-active azoles and the echinocandins were all active against isolates of Aspergillus fumigatus. Azole resistance was not detected among the isolates of Cryptococcus neoformans. Antifungal resistance is uncommon among isolates of fungi causing invasive fungal infections in the APAC region. As in other regions of the world, emerging resistance to the echinocandins among invasive isolates of C. glabrata bears close monitoring.

  13. QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents.

    PubMed

    Medina Marrero, R; Marrero-Ponce, Y; Barigye, S J; Echeverría Díaz, Y; Acevedo-Barrios, R; Casañola-Martín, G M; García Bernal, M; Torrens, F; Pérez-Giménez, F

    2015-01-01

    The QuBiLs-MAS approach is used for the in silico modelling of the antifungal activity of organic molecules. To this effect, non-stochastic (NS) and simple-stochastic (SS) atom-based quadratic indices are used to codify chemical information for a comprehensive dataset of 2478 compounds having a great structural variability, with 1087 of them being antifungal agents, covering the broadest antifungal mechanisms of action known so far. The NS and SS index-based antifungal activity classification models obtained using linear discriminant analysis (LDA) yield correct classification percentages of 90.73% and 92.47%, respectively, for the training set. Additionally, these models are able to correctly classify 92.16% and 87.56% of 706 compounds in an external test set. A comparison of the statistical parameters of the QuBiLs-MAS LDA-based models with those for models reported in the literature reveals comparable to superior performance, although the latter were built over much smaller and less diverse datasets, representing fewer mechanisms of action. It may therefore be inferred that the QuBiLs-MAS method constitutes a valuable tool useful in the design and/or selection of new and broad spectrum agents against life-threatening fungal infections. PMID:26567876

  14. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola.

    PubMed

    Beatty, Perrin H; Jensen, Susan E

    2002-02-01

    A bacterial isolate capable of inhibiting the growth of Leptosphaeria maculans (Desmaz.) Ces. & De Not., the causative agent of blackleg disease of canola (Brassica napus L. and Brassica rapa L.), was identified as a potential biological control agent. This environmental isolate was determined to be Paenibacillus polymyxa based on its (i) biochemical and growth characteristics and (ii) 16S rRNA sequence similarity, and was given the strain designation PKB1. Antifungal peptides were produced by P. polymyxa PKB1 around the onset of sporulation, with optimal production on potato dextrose broth. The antifungal peptides were extracted from P. polymyxa PKB1 cells and (or) spores using methanol and were purified using size exclusion and reverse-phase chromatography. Characterization of the antifungal peptides was done using amino acid compositional analysis, Edman degradation sequencing from partially hydrolyzed material, and a variety of mass spectrometric methods. The purified antifungal material was found to be a mixture of related peptides of molecular masses 883, 897, 948, and 961 Da, with the most likely structure of the 897 Da component determined to be a cyclic depsipeptide with an unusual 15-guanidino-3-hydroxypentadecanoic acid moiety bound to a free amino group. These compounds are therefore members of the fusaricidin group of cyclic depsipeptides.

  15. QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents.

    PubMed

    Medina Marrero, R; Marrero-Ponce, Y; Barigye, S J; Echeverría Díaz, Y; Acevedo-Barrios, R; Casañola-Martín, G M; García Bernal, M; Torrens, F; Pérez-Giménez, F

    2015-01-01

    The QuBiLs-MAS approach is used for the in silico modelling of the antifungal activity of organic molecules. To this effect, non-stochastic (NS) and simple-stochastic (SS) atom-based quadratic indices are used to codify chemical information for a comprehensive dataset of 2478 compounds having a great structural variability, with 1087 of them being antifungal agents, covering the broadest antifungal mechanisms of action known so far. The NS and SS index-based antifungal activity classification models obtained using linear discriminant analysis (LDA) yield correct classification percentages of 90.73% and 92.47%, respectively, for the training set. Additionally, these models are able to correctly classify 92.16% and 87.56% of 706 compounds in an external test set. A comparison of the statistical parameters of the QuBiLs-MAS LDA-based models with those for models reported in the literature reveals comparable to superior performance, although the latter were built over much smaller and less diverse datasets, representing fewer mechanisms of action. It may therefore be inferred that the QuBiLs-MAS method constitutes a valuable tool useful in the design and/or selection of new and broad spectrum agents against life-threatening fungal infections.

  16. Augmenting antifungal activity of oxidizing agent with kojic acid: Control of Penicillium strains infecting crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative treatment is a strategy for preventing Penicillium contamination in foods or crops. Antifungal efficacy of oxidant [hydrogen peroxide (H2O2)], biotic effector [kojic acid (KA)] and abiotic stress (heat), alone or in combination, was investigated in Penicillium. The levels of antifungal int...

  17. Biodirected synthesis of Miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles.

    PubMed

    Kumar, C Ganesh; Poornachandra, Y

    2015-01-01

    The recent strategy to improve the efficacy of drugs is to combine them with metal nanoparticles for the control of microbial infections. Considering this fact, we developed a low cost and eco-friendly method for silver nanoparticles synthesis using the cell free supernatant of Delftia sp. strain KCM-006 and their application as antifungal agents and as a drug carrier. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical and monodispersed silver nanoparticles with an average size of 9.8 nm. The synthesized nanoparticles were found to be photoluminescent, highly stable and crystalline in nature having a zeta potential of -31 mV. The silver nanoparticles exhibited very good antifungal activity against various pathogenic Candida strains. Furthermore, the efficacy of nanoparticles was increased by conjugating the antifungal drug Miconazole to silver nanoparticles which exhibited significant fungicidal activity, inhibition of ergosterol biosynthesis and biofilm inhibition by increasing ROS levels. In addition, the cell viability and immunocytochemistry analysis against different normal cell lines including Chinese hamster ovary cells (CHO), human lung cell line (MRC5) and human vascular endothelial cells (HUVEC) demonstrated that these nanoparticles were non-toxic up to a concentration of 20 μM. In conclusion, these results suggest that the synthesized nanoparticles find application as both antifungal agents and drug delivery vehicles. This is a first report on the preparation of silver nanoparticles using culture supernatant from Delftia sp. and also on the conjugation of Miconazole, an antifungal drug, to the bacterial silver nanoparticles. PMID:25460601

  18. The use of SLN and NLC as topical particulate carriers for imidazole antifungal agents.

    PubMed

    Souto, E B; Müller, R H

    2006-05-01

    Two different imidazole antifungal agents have been used as model drugs to be incorporated into solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), once they are very well established as anti-mycotics for the treatment of topical fungal infections. Because of the high mucoadhesive properties and the strong in situ gelling properties of polyacrylic acid polymers, hydrogels prepared with those macromolecules might be a promising vehicle for imidazole-loaded lipid nanoparticles, such as the above-mentioned SLN and NLC. Thus, in this study Carbopol 934 has been selected for the preparation of semi-solid formulations based on SLN and NLC. Formulations have been stored at three different temperatures before and after particle incorporation into polyacrylate hydrogels. The particle size and the chemical stability of incorporated model drugs have been monitored by HPLC analysis for two years. On the day of production 91.7% and 98.7% of clotrimazole, but only 62.1% and 70.3% of ketoconazole have been recovered from SLN and NLC, respectively. More than 95% of clotrimazole but less than 30% of ketoconazole were detected in the developed formulations after a shelf life of two years. Those values showed to be higher than those obtained with reference emulsions of similar composition and droplet sizes. By rheological measurements a pseudoplastic behaviour with thixotropic properties has been characterized for all semi-solid systems. PMID:16724541

  19. Graphene Oxide-Silver Nanocomposite: Novel Agricultural Antifungal Agent against Fusarium graminearum for Crop Disease Prevention.

    PubMed

    Chen, Juanni; Sun, Long; Cheng, Yuan; Lu, Zhicheng; Shao, Kang; Li, Tingting; Hu, Chao; Han, Heyou

    2016-09-14

    Nanoparticle-based antibacterial agents have emerged as an interdisciplinary field involving medicine, material science, biology, and chemistry because of their size-dependent qualities, high surface-to-volume ratio, and unique physiochemical properties. Some of them have shown great promise for their application in plant protection and nutrition. Here, GO-AgNPs nanocomposite was fabricated through interfacial electrostatic self-assembly and its antifungal activity against phytopathogen Fusarium graminearum was investigated in vitro and in vivo for the first time. The results demonstrated that the GO-AgNPs nanocomposite showed almost a 3- and 7-fold increase of inhibition efficiency over pure AgNPs and GO suspension, respectively. The spore germination inhibition was stimulated by a relatively low concentration of 4.68 μg/mL (minimum inhibition concentration (MIC)). The spores and hyphae were damaged, which might be caused by an antibacterial mechanism from the remarkable synergistic effect of GO-AgNPs, inducing physical injury and chemical reactive oxygen species generation. More importantly, the chemical reduction of GO mediated by fungal spores was possibly contributed to the high antimicrobial activity of GO-AgNPs. Furthermore, the GO-AgNPs nanocomposite showed a significant effect in controlling the leaf spot disease infected by F. graminearum in the detached leaf experiment. All the results from this research suggest that the GO-AgNPs nanocomposite developed in this work has the potential as a promising material for the development of novel antimicrobial agents against pathogenic fungi or bacteria.

  20. Graphene Oxide-Silver Nanocomposite: Novel Agricultural Antifungal Agent against Fusarium graminearum for Crop Disease Prevention.

    PubMed

    Chen, Juanni; Sun, Long; Cheng, Yuan; Lu, Zhicheng; Shao, Kang; Li, Tingting; Hu, Chao; Han, Heyou

    2016-09-14

    Nanoparticle-based antibacterial agents have emerged as an interdisciplinary field involving medicine, material science, biology, and chemistry because of their size-dependent qualities, high surface-to-volume ratio, and unique physiochemical properties. Some of them have shown great promise for their application in plant protection and nutrition. Here, GO-AgNPs nanocomposite was fabricated through interfacial electrostatic self-assembly and its antifungal activity against phytopathogen Fusarium graminearum was investigated in vitro and in vivo for the first time. The results demonstrated that the GO-AgNPs nanocomposite showed almost a 3- and 7-fold increase of inhibition efficiency over pure AgNPs and GO suspension, respectively. The spore germination inhibition was stimulated by a relatively low concentration of 4.68 μg/mL (minimum inhibition concentration (MIC)). The spores and hyphae were damaged, which might be caused by an antibacterial mechanism from the remarkable synergistic effect of GO-AgNPs, inducing physical injury and chemical reactive oxygen species generation. More importantly, the chemical reduction of GO mediated by fungal spores was possibly contributed to the high antimicrobial activity of GO-AgNPs. Furthermore, the GO-AgNPs nanocomposite showed a significant effect in controlling the leaf spot disease infected by F. graminearum in the detached leaf experiment. All the results from this research suggest that the GO-AgNPs nanocomposite developed in this work has the potential as a promising material for the development of novel antimicrobial agents against pathogenic fungi or bacteria. PMID:27563750

  1. Analytical and Clinical Evaluation of the PathoNostics AsperGenius Assay for Detection of Invasive Aspergillosis and Resistance to Azole Antifungal Drugs during Testing of Serum Samples.

    PubMed

    White, P Lewis; Posso, Raquel B; Barnes, Rosemary A

    2015-07-01

    The commercially developed PathoNostics AsperGenius species assay is a multiplex real-time PCR capable of detecting aspergillosis and genetic markers associated with azole resistance. The assay is validated for testing bronchoalveolar lavage fluids, replacing the requirement for culture and benefiting patient management. Application of this assay to less invasive, easily obtainable samples (e.g., serum) might be advantageous. The aim of this study was to determine the analytical and clinical performance of the AsperGenius species and resistance assays for testing serum samples. For the analytical evaluations, serum samples were spiked with various concentrations of Aspergillus genomic DNA for extraction, following international recommendations. For the clinical study, 124 DNA extracts from 14 proven/probable invasive aspergillosis (IA) cases, 2 possible IA cases, and 33 controls were tested. The resistance assay was performed on Aspergillus fumigatus PCR-positive samples when a sufficient fungal burden was evident. The limits of detection of the species and resistance assays for A. fumigatus DNA were 10 and ≥75 genomes/sample, respectively. Nonreproducible detection at lower burdens was achievable for all markers. With a positivity threshold of 39 cycles, the sensitivity and specificity of the species assay were 78.6% and 100%, respectively. For 7 IA cases, at least one genetic region potentially associated with azole resistance was successfully amplified, although no resistance markers were detected in this small cohort. The AsperGenius assay provides good clinical performance with the added ability to detect azole resistance directly from noninvasive samples. While the available burden will limit application, it remains a significant advancement in the diagnosis and management of aspergillosis.

  2. Combinatorial synthesis of benzimidazole-azo-phenol derivatives as antifungal agents.

    PubMed

    Ke, Yazhen; Zhi, Xiaoyan; Yu, Xiang; Ding, Guodong; Yang, Chun; Xu, Hui

    2014-01-01

    A chemically diverse library of benzimidazole-azo-phenol derivatives was efficiently prepared and screened for their antifungal activities against five phytopathogenic fungi. Some compounds exhibited potent antifungal activities. As compared with a commercially available agricultural fungicide, hymexazol, especially compound V-5 showed the most promising broad-spectrum antifungal activities against five phytopathogenic fungi. The EC50 values of V-5 against F. graminearum, A. solani, V. mali, B. cinerea, and C. lunata were 0.09, 0.08, 0.06, 0.07, and 0.11 μmol/mL, respectively. PMID:24152176

  3. Evaluation of Antifungal Activity and Mode of Action of New Coumarin Derivative, 7-Hydroxy-6-nitro-2H-1-benzopyran-2-one, against Aspergillus spp.

    PubMed

    Guerra, Felipe Queiroga Sarmento; de Araújo, Rodrigo Santos Aquino; de Sousa, Janiere Pereira; Pereira, Fillipe de Oliveira; Mendonça-Junior, Francisco J B; Barbosa-Filho, José M; de Oliveira Lima, Edeltrudes

    2015-01-01

    Aspergillus spp. produce a wide variety of diseases. For the treatment of such infections, the azoles and Amphotericin B are used in various formulations. The treatment of fungal diseases is often ineffective, because of increases in azole resistance and their several associated adverse effects. To overcome these problems, natural products and their derivatives are interesting alternatives. The aim of this study was to examine the effects of coumarin derivative, 7-hydroxy-6-nitro-2H-1-benzopyran-2-one (Cou-NO2), both alone and with antifungal drugs. Its mode of action against Aspergillus spp. Cou-NO2 was tested to evaluate its effects on mycelia growth and germination of fungal conidia of Aspergillus spp. We also investigated possible Cou-NO2 action on cell walls (0.8 M sorbitol) and on Cou-NO2 to ergosterol binding in the cell membrane. The study shows that Cou-NO2 is capable of inhibiting both the mycelia growth and germination of conidia for the species tested, and that its action affects the structure of the fungal cell wall. At subinhibitory concentration, Cou-NO2 enhanced the in vitro effects of azoles. Moreover, in combination with azoles (voriconazole and itraconazole) Cou-NO2 displays an additive effect. Thus, our study supports the use of coumarin derivative 7-hydroxy-6-nitro-2H-1-benzopyran-2-one as an antifungal agent against Aspergillus species.

  4. Evaluation of Antifungal Activity and Mode of Action of New Coumarin Derivative, 7-Hydroxy-6-nitro-2H-1-benzopyran-2-one, against Aspergillus spp.

    PubMed Central

    Guerra, Felipe Queiroga Sarmento; de Araújo, Rodrigo Santos Aquino; de Sousa, Janiere Pereira; Pereira, Fillipe de Oliveira; Mendonça-Junior, Francisco J. B.; Barbosa-Filho, José M.; de Oliveira Lima, Edeltrudes

    2015-01-01

    Aspergillus spp. produce a wide variety of diseases. For the treatment of such infections, the azoles and Amphotericin B are used in various formulations. The treatment of fungal diseases is often ineffective, because of increases in azole resistance and their several associated adverse effects. To overcome these problems, natural products and their derivatives are interesting alternatives. The aim of this study was to examine the effects of coumarin derivative, 7-hydroxy-6-nitro-2H-1-benzopyran-2-one (Cou-NO2), both alone and with antifungal drugs. Its mode of action against Aspergillus spp. Cou-NO2 was tested to evaluate its effects on mycelia growth and germination of fungal conidia of Aspergillus spp. We also investigated possible Cou-NO2 action on cell walls (0.8 M sorbitol) and on Cou-NO2 to ergosterol binding in the cell membrane. The study shows that Cou-NO2 is capable of inhibiting both the mycelia growth and germination of conidia for the species tested, and that its action affects the structure of the fungal cell wall. At subinhibitory concentration, Cou-NO2 enhanced the in vitro effects of azoles. Moreover, in combination with azoles (voriconazole and itraconazole) Cou-NO2 displays an additive effect. Thus, our study supports the use of coumarin derivative 7-hydroxy-6-nitro-2H-1-benzopyran-2-one as an antifungal agent against Aspergillus species. PMID:26175794

  5. In Vitro Antifungal Activity of ME1111, a New Topical Agent for Onychomycosis, against Clinical Isolates of Dermatophytes

    PubMed Central

    Isham, N.; Long, L.

    2015-01-01

    The treatment of onychomycosis has improved considerably over the past several decades following the introduction of the oral antifungals terbinafine and itraconazole. However, these oral agents suffer from certain disadvantages, including drug interactions and potential liver toxicity. Thus, there is a need for new topical agents that are effective against onychomycosis. ME1111 is a novel selective inhibitor of succinate dehydrogenase (complex II) of dermatophyte species, whose small molecular weight enhances its ability to penetrate the nail plate. In this study, we determined the antifungal activity of ME1111 against dermatophyte strains, most of which are known to cause nail infections, as measured by the MIC (n = 400) and the minimum fungicidal concentration (MFC) (n = 300). Additionally, we examined the potential for resistance development in dermatophytes (n = 4) following repeated exposure to ME1111. Our data show that the MIC90 of ME1111 against dermatophyte strains was 0.25 μg/ml, which was equivalent to that of the comparators amorolfine and ciclopirox (0.25 and 0.5 μg/ml, respectively). ME1111 was fungicidal at clinically achievable concentrations against dermatophytes, and its MFC90s against Trichophyton rubrum and Trichophyton mentagrophytes were 8 μg/ml, comparable to those of ciclopirox. Furthermore, ME1111, as well as ciclopirox, did not induce resistance in 4 dermatophytes tested. Our studies show that ME1111 possesses potent antifungal activity and suggest that it has low potential for the development of resistance in dermatophytes. PMID:26055386

  6. Self-assembled cardanol azo derivatives as antifungal agent with chitin-binding ability.

    PubMed

    Mahata, Denial; Mandal, Santi M; Bharti, Rashmi; Gupta, Vinay Krishna; Mandal, Mahitosh; Nag, Ahindra; Nando, Golok B

    2014-08-01

    Cardanol is a non-isoprenoic phenolic lipid-mixture of distilled cashew nut shell liquid obtained from Anacardium occidentale. Herein, cardanol is purified from cashew nut shell liquid (CNSL) and synthesized to new compounds with different azo amphiphiles. These synthesized compounds are allowed to self-assembled in hydrophobic environment and checked antifungal activity against Candida albicans. Self-assembled structure of CABA showed higher antifungal activity (16μg/mL) and chitin-binding ability in comparison to CAP and CANB. Furthermore, the self-assembled azo amphiphiles are immobilized with silver ions to prepare hydrogel which showed eight folds enhanced antifungal activity. Toxicity is reduced by several folds of self-assembled or hydrogel structure in comparison to pure compounds. Thus, the self-assembled structure of amphiphiles and their hydrogels have been found to be new macromolecules of interest with potential use as antifungal drugs. PMID:24836571

  7. Candida urinary tract infection and Candida species susceptibilities to antifungal agents.

    PubMed

    Osawa, Kayo; Shigemura, Katsumi; Yoshida, Hiroyuki; Fujisawa, Masato; Arakawa, Soichi

    2013-11-01

    The purpose of this study is to review Candida isolation from urine of urinary tract infection (UTI) patients over the recent 3 years at the Kobe University Hospital. We recorded the type of strain, the department where the patient was treated such as the intensive care unit (ICU), and combined isolation of Candida with other microorganisms. We investigated Candida isolation and susceptibilities to antifungal agents and analyzed the risk factors for combined isolation with other microorganisms. The most frequently isolated Candida was Candida albicans, which showed good (100%) susceptibilities to 5-fluorocytosine (5-FC) and fluconazole (FLCZ) but not to voriconazole (VRCZ), followed by C. glabrata. ICU was the greatest source of Candida-positive samples, and the most relevant underlying diseases of ICU patients were pneumonia followed by renal failure and post liver transplantation status. Combined isolation with other bacteria was seen in 27 cases (42.9%) in 2009, 25 (33.3%) in 2010 and 31 (31.3%) in 2011 and comparatively often seen in non-ICU patients. Other candidas than C. albicans showed significantly decreased susceptibility to FLCZ over these 3 years (P=0.004). One hundred (97.1%) of 103 ICU cases were given antibiotics at the time of Candida isolation, and the most often used antibiotics were cefazolin or meropenem. In conclusion, C. albicans was representatively isolated in Candida UTI and showed good susceptibilities to 5-FC, FLCZ and VRCZ, but other candidas than C. albicans showed significantly decreased susceptibility to FLCZ in the change of these 3 years.

  8. Synthesis and biological evaluation of novel fluconazole analogues bearing 1,3,4-oxadiazole moiety as potent antifungal agents.

    PubMed

    Liao, Jun; Yang, Fan; Zhang, Lei; Chai, Xiaoyun; Zhao, Qingjie; Yu, Shichong; Zou, Yan; Meng, Qingguo; Wu, Qiuye

    2015-04-01

    A novel series of fluconazole based mimics incorporating 1,3,4-oxadiazole moiety were designed and synthesized. All the title compounds were characterized by (1)H-NMR, (13)C-NMR, and Q-TOF-MS. Preliminary results revealed that most of analogues exhibited significant antifungal activity against seven pathogenic fungi. Compounds 9g and 9k (MIC80 ≤ 0.125 μg/mL, respectively) were found more potent than the positive controls itraconazole and fluconazole as broad-spectrum antifungal agents. The observed docking results showed that the 1,3,4-oxadiazole moiety enhanced the affinity binding to the cytochrome P450 14α-demethylase (CYP51).

  9. Environmental azole fungicide, prochloraz, can induce cross-resistance to medical triazoles in Candida glabrata.

    PubMed

    Faria-Ramos, Isabel; Tavares, Pedro R; Farinha, Sofia; Neves-Maia, João; Miranda, Isabel M; Silva, Raquel M; Estevinho, Letícia M; Pina-Vaz, Cidalia; Rodrigues, Acácio G

    2014-11-01

    Acquisition of azole resistance by clinically relevant yeasts in nature may result in a significant, yet undetermined, impact in human health. The main goal of this study was to assess the development of cross-resistance between agricultural and clinical azoles by Candida spp. An in vitro induction assay was performed, for a period of 90 days, with prochloraz (PCZ) - an agricultural antifungal. Afterward, the induced molecular resistance mechanisms were unveiled. MIC value of PCZ increased significantly in all Candida spp. isolates. However, only C. glabrata developed cross-resistance to fluconazole and posaconazole. The increased MIC values were stable. Candida glabrata azole resistance acquisition triggered by PCZ exposure involved the upregulation of the ATP binding cassette multidrug transporter genes and the transcription factor, PDR1. Single mutation previously implicated in azole resistance was found in PDR1 while ERG11 showed several synonymous single nucleotide polymorphisms. These results might explain why C. glabrata is so commonly less susceptible to clinical azoles, suggesting that its exposure to agricultural azole antifungals may be associated to the emergence of cross-resistance. Such studies forward potential explanations for the worldwide increasing clinical prevalence of C. glabrata and the associated worse prognosis of an infection by this species.

  10. Mitochondrial Complex I Is a Global Regulator of Secondary Metabolism, Virulence and Azole Sensitivity in Fungi.

    PubMed

    Bromley, Mike; Johns, Anna; Davies, Emma; Fraczek, Marcin; Mabey Gilsenan, Jane; Kurbatova, Natalya; Keays, Maria; Kapushesky, Misha; Gut, Marta; Gut, Ivo; Denning, David W; Bowyer, Paul

    2016-01-01

    Recent estimates of the global burden of fungal disease suggest that that their incidence has been drastically underestimated and that mortality may rival that of malaria or tuberculosis. Azoles are the principal class of antifungal drug and the only available oral treatment for fungal disease. Recent occurrence and increase in azole resistance is a major concern worldwide. Known azole resistance mechanisms include over-expression of efflux pumps and mutation of the gene encoding the target protein cyp51a, however, for one of the most important fungal pathogens of humans, Aspergillus fumigatus, much of the observed azole resistance does not appear to involve such mechanisms. Here we present evidence that azole resistance in A. fumigatus can arise through mutation of components of mitochondrial complex I. Gene deletions of the 29.9KD subunit of this complex are azole resistant, less virulent and exhibit dysregulation of secondary metabolite gene clusters in a manner analogous to deletion mutants of the secondary metabolism regulator, LaeA. Additionally we observe that a mutation leading to an E180D amino acid change in the 29.9 KD subunit is strongly associated with clinical azole resistant A. fumigatus isolates. Evidence presented in this paper suggests that complex I may play a role in the hypoxic response and that one possible mechanism for cell death during azole treatment is a dysfunctional hypoxic response that may be restored by dysregulation of complex I. Both deletion of the 29.9 KD subunit of complex I and azole treatment alone profoundly change expression of gene clusters involved in secondary metabolism and immunotoxin production raising potential concerns about long term azole therapy. PMID:27438017

  11. Mitochondrial Complex I Is a Global Regulator of Secondary Metabolism, Virulence and Azole Sensitivity in Fungi

    PubMed Central

    Bromley, Mike; Johns, Anna; Davies, Emma; Fraczek, Marcin; Mabey Gilsenan, Jane; Kurbatova, Natalya; Keays, Maria; Kapushesky, Misha; Gut, Marta; Gut, Ivo; Denning, David W.; Bowyer, Paul

    2016-01-01

    Recent estimates of the global burden of fungal disease suggest that that their incidence has been drastically underestimated and that mortality may rival that of malaria or tuberculosis. Azoles are the principal class of antifungal drug and the only available oral treatment for fungal disease. Recent occurrence and increase in azole resistance is a major concern worldwide. Known azole resistance mechanisms include over—expression of efflux pumps and mutation of the gene encoding the target protein cyp51a, however, for one of the most important fungal pathogens of humans, Aspergillus fumigatus, much of the observed azole resistance does not appear to involve such mechanisms. Here we present evidence that azole resistance in A. fumigatus can arise through mutation of components of mitochondrial complex I. Gene deletions of the 29.9KD subunit of this complex are azole resistant, less virulent and exhibit dysregulation of secondary metabolite gene clusters in a manner analogous to deletion mutants of the secondary metabolism regulator, LaeA. Additionally we observe that a mutation leading to an E180D amino acid change in the 29.9 KD subunit is strongly associated with clinical azole resistant A. fumigatus isolates. Evidence presented in this paper suggests that complex I may play a role in the hypoxic response and that one possible mechanism for cell death during azole treatment is a dysfunctional hypoxic response that may be restored by dysregulation of complex I. Both deletion of the 29.9 KD subunit of complex I and azole treatment alone profoundly change expression of gene clusters involved in secondary metabolism and immunotoxin production raising potential concerns about long term azole therapy. PMID:27438017

  12. Antifungal testing and high-throughput screening of compound library against Geomyces destructans, the etiologic agent of geomycosis (WNS) in bats.

    PubMed

    Chaturvedi, Sudha; Rajkumar, Sunanda S; Li, Xiaojiang; Hurteau, Gregory J; Shtutman, Michael; Chaturvedi, Vishnu

    2011-01-01

    Bats in the northeastern U.S. are affected by geomycosis caused by the fungus Geomyces destructans (Gd). This infection is commonly referred to as White Nose Syndrome (WNS). Over a million hibernating bats have died since the fungus was first discovered in 2006 in a cave near Albany, New York. A population viability analysis conducted on little brown bats (Myotis lucifugus), one of six bat species infected with Gd, suggests regional extinction of this species within 20 years. The fungus Gd is a psychrophile ("cold loving"), but nothing is known about how it thrives at low temperatures and what pathogenic attributes allow it to infect bats. This study aimed to determine if currently available antifungal drugs and biocides are effective against Gd. We tested five Gd strains for their susceptibility to antifungal drugs and high-throughput screened (HTS) one representative strain with SpectrumPlus compound library containing 1,920 compounds. The results indicated that Gd is susceptible to a number of antifungal drugs at concentrations similar to the susceptibility range of human pathogenic fungi. Strains of Gd were susceptible to amphotericin B, fluconazole, itraconazole, ketoconazole and voriconazole. In contrast, very high MICs (minimum inhibitory concentrations) of flucytosine and echinocandins were needed for growth inhibition, which were suggestive of fungal resistance to these drugs. Of the 1,920 compounds in the library, a few caused 50%--to greater than 90% inhibition of Gd growth. A number of azole antifungals, a fungicide, and some biocides caused prominent growth inhibition. Our results could provide a theoretical basis for future strategies aimed at the rehabilitation of most affected bat species and for decontamination of Gd in the cave environment. PMID:21399675

  13. Does farm fungicide use induce azole resistance in Aspergillus fumigatus?

    PubMed

    Kano, Rui; Kohata, Erina; Tateishi, Akira; Murayama, Somay Yamagata; Hirose, Dai; Shibata, Yasuko; Kosuge, Yasuhiro; Inoue, Hiroaki; Kamata, Hiroshi; Hasegawa, Atsuhiko

    2015-02-01

    Azole resistance of Aspergillus fumigatus isolates has been reported worldwide and it would appear to be mainly due to a point mutation in the 14α-sterol demethylase (CYP51A) gene, which is the target enzyme for azoles. The mutation has been confirmed in isolates from patients who received long-term itraconazole (ITZ) therapy and from agricultural fields where high levels of azole fungicides were employed. However, the relationship between farm environments and azole-resistant A. fumigatus has not been fully studied. In this investigation, 50 isolates of A. fumigatus were obtained from a farm where tetraconazole has been sprayed twice a year for more than 15 years. The mean minimum inhibitory concentration (MIC) of isolates was 0.74 (0.19-1.5) mg/L against ITZ, which was below the medical resistance level of ITZ. The sequence of CYP51A from isolates indicated no gene mutations in isolates from the farm. Antifungal susceptibility of isolates to tetraconazole showed that spraying with tetraconazole did not induce resistance to tetraconazole or ITZ in A. fumigatus.

  14. Candida Infections, Causes, Targets, and Resistance Mechanisms: Traditional and Alternative Antifungal Agents

    PubMed Central

    Spampinato, Claudia

    2013-01-01

    The genus Candida includes about 200 different species, but only a few species are human opportunistic pathogens and cause infections when the host becomes debilitated or immunocompromised. Candida infections can be superficial or invasive. Superficial infections often affect the skin or mucous membranes and can be treated successfully with topical antifungal drugs. However, invasive fungal infections are often life-threatening, probably due to inefficient diagnostic methods and inappropriate initial antifungal therapies. Here, we briefly review our current knowledge of pathogenic species of the genus Candida and yeast infection causes and then focus on current antifungal drugs and resistance mechanisms. An overview of new therapeutic alternatives for the treatment of Candida infections is also provided. PMID:23878798

  15. Screening of antifungal agents using ethanol precipitation and bioautography of medicinal and food plants.

    PubMed

    Schmourlo, Gracilene; Mendonça-Filho, Ricardo R; Alviano, Celuta Sales; Costa, Sônia S

    2005-01-15

    In the search for bioactive compounds, bioautography and ethanol precipitation of macromolecules (proteins, polysaccharides, etc.) of plant aqueous extracts were associated in an antifungal screening. Thus, the supernatants, precipitates (obtained by ethanol precipitation) and aqueous extracts were investigated of medicinal and fruit bearing plants used against skin diseases by the Brazilian population. The agar diffusion and broth dilution methods were used to assess the activity against three fungi: Candida albicans, Trichophyton rubrum and Cryptococcus neoformans. The results, evaluated by the diameter of the inhibition zone of fungal growth, indicate that six plant species, among the 16 investigated, showed significant antifungal activity. The minimal inhibitory concentration (MIC) was determined on plant extracts that showed high efficacy against the tested microorganisms. The most susceptible yeast was Trichophyton rubrum and the best antifungal activity was shown by Xanthosoma sagittifolium supernatant. The bioautography was performed only for the aqueous extracts and supernatants of those plants that showed antifungal activity against Candida albicans and Cryptococcus neoformans, using n-butanol/acetic acid/water (BAW) 8:1:1 to develop silica gel TLC plates. Clear inhibition zones were observed for aqueous extracts of Schinus molle (R(f) 0.89) and Schinus terebinthifolius (R(f) 0.80) against Candida albicans, as for supernatant of Anacardium occidentale (R(f) 0.31) against Cryptococcus neoformans. The separation of macromolecules from metabolites, as in the case of Anacardium occidentale, Solanum sp. and Xanthosoma sagittifolium, enhances antifungal activity. In other cases, the antifungal activity is destroyed, as observed for Momordica charantia, Schinus molle and Schinus terebinthifolius. PMID:15619579

  16. Screening of antifungal agents using ethanol precipitation and bioautography of medicinal and food plants.

    PubMed

    Schmourlo, Gracilene; Mendonça-Filho, Ricardo R; Alviano, Celuta Sales; Costa, Sônia S

    2005-01-15

    In the search for bioactive compounds, bioautography and ethanol precipitation of macromolecules (proteins, polysaccharides, etc.) of plant aqueous extracts were associated in an antifungal screening. Thus, the supernatants, precipitates (obtained by ethanol precipitation) and aqueous extracts were investigated of medicinal and fruit bearing plants used against skin diseases by the Brazilian population. The agar diffusion and broth dilution methods were used to assess the activity against three fungi: Candida albicans, Trichophyton rubrum and Cryptococcus neoformans. The results, evaluated by the diameter of the inhibition zone of fungal growth, indicate that six plant species, among the 16 investigated, showed significant antifungal activity. The minimal inhibitory concentration (MIC) was determined on plant extracts that showed high efficacy against the tested microorganisms. The most susceptible yeast was Trichophyton rubrum and the best antifungal activity was shown by Xanthosoma sagittifolium supernatant. The bioautography was performed only for the aqueous extracts and supernatants of those plants that showed antifungal activity against Candida albicans and Cryptococcus neoformans, using n-butanol/acetic acid/water (BAW) 8:1:1 to develop silica gel TLC plates. Clear inhibition zones were observed for aqueous extracts of Schinus molle (R(f) 0.89) and Schinus terebinthifolius (R(f) 0.80) against Candida albicans, as for supernatant of Anacardium occidentale (R(f) 0.31) against Cryptococcus neoformans. The separation of macromolecules from metabolites, as in the case of Anacardium occidentale, Solanum sp. and Xanthosoma sagittifolium, enhances antifungal activity. In other cases, the antifungal activity is destroyed, as observed for Momordica charantia, Schinus molle and Schinus terebinthifolius.

  17. Synergy and antagonism between iron chelators and antifungal drugs in Cryptococcus.

    PubMed

    Lai, Yu-Wen; Campbell, Leona T; Wilkins, Marc R; Pang, Chi Nam Ignatius; Chen, Sharon; Carter, Dee A

    2016-10-01

    Fungal infections remain very difficult to treat, and developing new antifungal drugs is difficult and expensive. Recent approaches therefore seek to augment existing antifungals with synergistic agents that can lower the therapeutic dose, increase efficacy and prevent resistance from developing. Iron limitation can inhibit microbial growth, and iron chelators have been employed to treat fungal infections. In this study, chequerboard testing was used to explore combinations of iron chelators with antifungal agents against pathogenic Cryptococcus spp. with the aim of determining how disruption to iron homeostasis affects antifungal susceptibility. The iron chelators ethylenediaminetetraacetic acid (EDTA), deferoxamine (DFO), deferiprone (DFP), deferasirox (DSX), ciclopirox olamine and lactoferrin (LF) were paired with the antifungal agents amphotericin B (AmB), fluconazole, itraconazole, voriconazole and caspofungin. All chelators except for DFO increased the efficacy of AmB, and significant synergy was seen between AmB and LF for all Cryptococcus strains. Addition of exogenous iron rescued cells from the antifungal effect of LF alone but could not prevent inhibition by AmB + LF, indicating that synergy was not due primarily to iron chelation but to other properties of LF that were potentiated in the presence of AmB. Significant synergy was not seen consistently for other antifungal-chelator combinations, and EDTA, DSX and DFP antagonised the activity of azole drugs in strains of Cryptococcus neoformans var. grubii. This study highlights the range of interactions that can be induced by chelators and indicates that most antifungal drugs are not enhanced by iron limitation in Cryptococcus. PMID:27474467

  18. Antifungal Susceptibility and Phylogeny of Opportunistic Members of the Order Mucorales

    PubMed Central

    Vitale, Roxana G.; de Hoog, G. Sybren; Schwarz, Patrick; Dannaoui, Eric; Deng, Shuwen; Machouart, Marie; Voigt, Kerstin; van de Sande, Wendy W. J.; Dolatabadi, Somayeh; Meis, Jacques F.

    2012-01-01

    The in vitro susceptibilities of 66 molecularly identified strains of the Mucorales to eight antifungals (amphotericin B, terbinafine, itraconazole, posaconazole, voriconazole, caspofungin, micafungin, and 5-fluorocytosine) were tested. Molecular phylogeny was reconstructed based on the nuclear ribosomal large subunit to reveal taxon-specific susceptibility profiles. The impressive phylogenetic diversity of the Mucorales was reflected in susceptibilities differing at family, genus, and species levels. Amphotericin B was the most active drug, though somewhat less against Rhizopus and Cunninghamella species. Posaconazole was the second most effective antifungal agent but showed reduced activity in Mucor and Cunninghamella strains, while voriconazole lacked in vitro activity for most strains. Genera attributed to the Mucoraceae exhibited a wide range of MICs for posaconazole, itraconazole, and terbinafine and included resistant strains. Cunninghamella also comprised strains resistant to all azoles tested but was fully susceptible to terbinafine. In contrast, the Lichtheimiaceae completely lacked strains with reduced susceptibility for these antifungals. Syncephalastrum species exhibited susceptibility profiles similar to those of the Lichtheimiaceae. Mucor species were more resistant to azoles than Rhizopus species. Species-specific responses were obtained for terbinafine where only Rhizopus arrhizus and Mucor circinelloides were resistant. Complete or vast resistance was observed for 5-fluorocytosine, caspofungin, and micafungin. Intraspecific variability of in vitro susceptibility was found in all genera tested but was especially high in Mucor and Rhizopus for azoles and terbinafine. Accurate molecular identification of etiologic agents is compulsory to predict therapy outcome. For species of critical genera such as Mucor and Rhizopus, exhibiting high intraspecific variation, susceptibility testing before the onset of therapy is recommended. PMID:22075600

  19. Plant latex: a promising antifungal agent for post harvest disease control.

    PubMed

    Sibi, G; Wadhavan, Rashmi; Singh, Sneha; Shukla, Abhilasha; Dhananjaya, K; Ravikumar, K R; Mallesha, H

    2013-12-01

    Bioactive compounds from plant latex are potential source of antifungic against post harvest pathogens. Latex from a total of seven plant species was investigated for its phytochemical and antifungal properties. Six fungi namely Aspergillus fumigatus, A. niger, A. terreus, F. solani, P. digitatum and R. arrhizus were isolated from infected fruits and vegetables and tested against various solvent extracts of latex. Analysis of latex extracts with phytochemical tests showed the presence of alkaloids, flavonoids, glycosides, phenols, saponins, steroids, tannins and terpenoids. Antifungal assay revealed the potential inhibitory activity of petroleum ether extracts against the postharvest fungal isolates. Various degree of sensitivity was observed irrespective of plant species studied with A. terreus and P. digitatum as the most susceptible ones. F. solani and A. fumigatus were moderately sensitive to the latex extracts tested. Among the plants, latex of Thevetia peruviana (75.2%) and Artocarpus heterophyllus (64.8%) were having potential antifungal activity against the isolates followed by Manilkara zapota (51.1%). In conclusion, use of plant latex makes interest to control postharvest fungal diseases and is fitting well with the concept of safety for human health and environment. PMID:24506041

  20. Plant latex: a promising antifungal agent for post harvest disease control.

    PubMed

    Sibi, G; Wadhavan, Rashmi; Singh, Sneha; Shukla, Abhilasha; Dhananjaya, K; Ravikumar, K R; Mallesha, H

    2013-12-01

    Bioactive compounds from plant latex are potential source of antifungic against post harvest pathogens. Latex from a total of seven plant species was investigated for its phytochemical and antifungal properties. Six fungi namely Aspergillus fumigatus, A. niger, A. terreus, F. solani, P. digitatum and R. arrhizus were isolated from infected fruits and vegetables and tested against various solvent extracts of latex. Analysis of latex extracts with phytochemical tests showed the presence of alkaloids, flavonoids, glycosides, phenols, saponins, steroids, tannins and terpenoids. Antifungal assay revealed the potential inhibitory activity of petroleum ether extracts against the postharvest fungal isolates. Various degree of sensitivity was observed irrespective of plant species studied with A. terreus and P. digitatum as the most susceptible ones. F. solani and A. fumigatus were moderately sensitive to the latex extracts tested. Among the plants, latex of Thevetia peruviana (75.2%) and Artocarpus heterophyllus (64.8%) were having potential antifungal activity against the isolates followed by Manilkara zapota (51.1%). In conclusion, use of plant latex makes interest to control postharvest fungal diseases and is fitting well with the concept of safety for human health and environment.

  1. Antifungal Therapy in Hematopoietic Stem Cell Transplant Recipients.

    PubMed

    Busca, Alessandro; Pagano, Livio

    2016-01-01

    Invasive fungal infections (IFI) represent a major hindrance to the success of hematopoietic stem cell transplantation (HSCT), contributing substantially to morbidity and infection-related mortality. During the most recent years several reports indicate an overall increase of IFI among hematologic patients, in particular, invasive aspergillosis, that may be explained, at least partially, by the fact that diagnoses only suspected in the past, are now more easily established due to the application of serum biomarkers and early use of CT scan. Along with new diagnostic options, comes the recent development of novel antifungal agents that expanded the spectrum of activity over traditional treatments contributing to the successful management of fungal diseases. When introduced in 1959, Amphotericin B deoxycholate (d-AmB) was a life-saving drug, and the clinical experience over 50 years has proven that this compound is effective although toxic. Given the superior safety profile, lipid formulations of AmB have now replaced d-AmB in many circumstances. Similarly, echinocandins have been investigated as initial therapy for IA in several clinical trials including HSCT recipients, although the results were moderately disappointing leading to a lower grade of recommendation in the majority of published guidelines. Azoles represent the backbone of therapy for treating immunocompromised patients with IFI, including voriconazole and the newcomer isavuconazole; in addition, large studies support the use of mold-active azoles, namely voriconazole and posaconazole, as antifungal prophylaxis in HSCT recipients. The aim of the present review is to summarize the clinical application of antifungal agents most commonly employed in the treatment of IFI. PMID:27648202

  2. Antifungal Therapy in Hematopoietic Stem Cell Transplant Recipients

    PubMed Central

    Busca, Alessandro; Pagano, Livio

    2016-01-01

    Invasive fungal infections (IFI) represent a major hindrance to the success of hematopoietic stem cell transplantation (HSCT), contributing substantially to morbidity and infection-related mortality. During the most recent years several reports indicate an overall increase of IFI among hematologic patients, in particular, invasive aspergillosis, that may be explained, at least partially, by the fact that diagnoses only suspected in the past, are now more easily established due to the application of serum biomarkers and early use of CT scan. Along with new diagnostic options, comes the recent development of novel antifungal agents that expanded the spectrum of activity over traditional treatments contributing to the successful management of fungal diseases. When introduced in 1959, Amphotericin B deoxycholate (d-AmB) was a life-saving drug, and the clinical experience over 50 years has proven that this compound is effective although toxic. Given the superior safety profile, lipid formulations of AmB have now replaced d-AmB in many circumstances. Similarly, echinocandins have been investigated as initial therapy for IA in several clinical trials including HSCT recipients, although the results were moderately disappointing leading to a lower grade of recommendation in the majority of published guidelines. Azoles represent the backbone of therapy for treating immunocompromised patients with IFI, including voriconazole and the newcomer isavuconazole; in addition, large studies support the use of mold-active azoles, namely voriconazole and posaconazole, as antifungal prophylaxis in HSCT recipients. The aim of the present review is to summarize the clinical application of antifungal agents most commonly employed in the treatment of IFI.

  3. Antifungal Therapy in Hematopoietic Stem Cell Transplant Recipients

    PubMed Central

    Busca, Alessandro; Pagano, Livio

    2016-01-01

    Invasive fungal infections (IFI) represent a major hindrance to the success of hematopoietic stem cell transplantation (HSCT), contributing substantially to morbidity and infection-related mortality. During the most recent years several reports indicate an overall increase of IFI among hematologic patients, in particular, invasive aspergillosis, that may be explained, at least partially, by the fact that diagnoses only suspected in the past, are now more easily established due to the application of serum biomarkers and early use of CT scan. Along with new diagnostic options, comes the recent development of novel antifungal agents that expanded the spectrum of activity over traditional treatments contributing to the successful management of fungal diseases. When introduced in 1959, Amphotericin B deoxycholate (d-AmB) was a life-saving drug, and the clinical experience over 50 years has proven that this compound is effective although toxic. Given the superior safety profile, lipid formulations of AmB have now replaced d-AmB in many circumstances. Similarly, echinocandins have been investigated as initial therapy for IA in several clinical trials including HSCT recipients, although the results were moderately disappointing leading to a lower grade of recommendation in the majority of published guidelines. Azoles represent the backbone of therapy for treating immunocompromised patients with IFI, including voriconazole and the newcomer isavuconazole; in addition, large studies support the use of mold-active azoles, namely voriconazole and posaconazole, as antifungal prophylaxis in HSCT recipients. The aim of the present review is to summarize the clinical application of antifungal agents most commonly employed in the treatment of IFI. PMID:27648202

  4. Using Aspergillus nidulans to identify antifungal drug resistance mutations.

    PubMed

    He, Xiaoxiao; Li, Shengnan; Kaminskyj, Susan G W

    2014-02-01

    Systemic fungal infections contribute to at least 10% of deaths in hospital settings. Most antifungal drugs target ergosterol (polyenes) or its biosynthetic pathway (azoles and allylamines), or beta-glucan synthesis (echinocandins). Antifungal drugs that target proteins are prone to the emergence of resistant strains. Identification of genes whose mutations lead to targeted resistance can provide new information on those pathways. We used Aspergillus nidulans as a model system to exploit its tractable sexual cycle and calcofluor white as a model antifungal agent to cross-reference our results with other studies. Within 2 weeks from inoculation on sublethal doses of calcofluor white, we isolated 24 A. nidulans adaptive strains from sectoring colonies. Meiotic analysis showed that these strains had single-gene mutations. In each case, the resistance was specific to calcofluor white, since there was no cross-resistance to caspofungin (echinocandin). Mutation sites were identified in two mutants by next-generation sequencing. These were confirmed by reengineering the mutation in a wild-type strain using a gene replacement strategy. One of these mutated genes was related to cell wall synthesis, and the other one was related to drug metabolism. Our strategy has wide application for many fungal species, for antifungal compounds used in agriculture as well as health care, and potentially during protracted drug therapy once drug resistance arises. We suggest that our strategy will be useful for keeping ahead in the drug resistance arms race. PMID:24363365

  5. Comparison of antifungal activities of various essential oils on the Phytophthora drechsleri, the causal agent of fruit decay

    PubMed Central

    Mohammadi, Ali; Hashemi, Maryam; Hosseini, Seyed Masoud

    2015-01-01

    Background and Objectives: The efficacy of Mentha piperita L, Zataria multiflora Boiss and Thymus vulgaris L essential oils (EOs) was evaluated for controlling the growth of Phytophthora drechsleri, the causative agent of damage to many crops that is consumed directly by humans. Materials and Methods: The EOs used in this study was purchased from Magnolia Co, Iran. The pour plate method in petri dishes containing Potato Dextrose Agar (PDA) was used to evaluate the antifungal properties of EOs. The minimal inhibitory concentrations (MIC), minimum fungicidal concentration (MFC) as well as mycelial growth inhibition (MGI) were measured. The IC50 value (the concentration inhibited 50% of the mycelium growth) was calculated by probit analysis. Results and Conclusion: The fungal growth was significantly reduced by increasing concentrations of tested EOs. The complete reduction was obtained with Shirazi thyme at all concentrations, whereas the complete reduction for peppermint and thyme was observed at 0.4% and 0.8% (v/v) concentrations, respectively. Meanwhile, the minimum inhibition was observed when 0.1% peppermint (MGI values of 9.37%) was used. The IC50, MIC and MFC values of Shirazi thyme was 0.053, 0.1% and 0.2%, respectively. Similarly, MIC and MFC values of peppermint and thyme were recorded 0.4% and 0.8%, respectively. The results obtained from this study may contribute to the development of new antifungal agents to protect the crops from this pathogenic fungus and many agricultural plant pathogens causing drastic crop losses. PMID:26644871

  6. A D-octapeptide drug efflux pump inhibitor acts synergistically with azoles in a murine oral candidiasis infection model.

    PubMed

    Hayama, Kazumi; Ishibashi, Hiroko; Ishijima, Sanae A; Niimi, Kyoko; Tansho, Shigeru; Ono, Yasuo; Monk, Brian C; Holmes, Ann R; Harding, David R K; Cannon, Richard D; Abe, Shigeru

    2012-03-01

    Clinical management of patients undergoing treatment of oropharyngeal candidiasis with azole antifungals can be impaired by azole resistance. High-level azole resistance is often caused by the overexpression of Candida albicans efflux pump Cdr1p. Inhibition of this pump therefore represents a target for combination therapies that reverse azole resistance. We assessed the therapeutic potential of the D-octapeptide derivative RC21v3, a Cdr1p inhibitor, in the treatment of murine oral candidiasis caused by either the azole-resistant C. albicans clinical isolate MML611 or its azole-susceptible parental strain MML610. RC21v3, fluconazole (FLC), or a combination of both drugs were administered orally to immunosuppressed ICR mice at 3, 24, and 27 h after oral inoculation with C. albicans. FLC protected the mice inoculated with MML610 from oral candidiasis, but was only partially effective in MML611-infected mice. The co-application of RC21v3 (0.02 μmol per dose) potentiated the therapeutic performance of FLC for mice infected with either strain. It caused a statistically significant decrease in C. albicans cfu isolated from the oral cavity of the infected mice and reduced oral lesions. RC21v3 also enhanced the therapeutic activity of itraconazole against MML611 infection. These results indicate that RC21v3 in combination with azoles has potential as a therapy against azole-resistant oral candidiasis.

  7. Topical anti-inflammatory properties of flutrimazole, a new imidazole antifungal agent.

    PubMed

    Merlos, M; Vericat, M L; García-Rafanell, J; Forn, J

    1996-01-01

    The topical anti-inflammatory properties of flutrimazole, a new imidazole antifungal, have been evaluated. Flutrimazole inhibited mouse ear oedema induced by arachidonic acid, tetradecanoylphorbol-acetate and dithranol, with IC50 values of 3.32, 0.55 and 2.42 mumols/ear, respectively. Ketoconazole showed similar potency in arachidonic acid and dithranol models (IC50 = 3.76 and 2.41 mumols/ear) whereas it was less active against tetradecanoylphorbol acetate (IC50 = 1.96 mumols/ear). The standard anti-inflammatory sodium diclofenac was overall slightly more potent than antifungals (IC50 = 2.23, 0.57 and 0.57 mumols/ear against arachidonic acid, tetradecanoylphorbol acetate and dithranol, respectively). Both 2% flutrimazole and 2% ketoconazole creams, applied topically, inhibited carrageenan-induced rat paw oedema by about 40%. Under the same conditions, 1% flutrimazole and diclofenac creams inhibited by 26 and 54%, respectively. Flutrimazole may work through the inhibition of 5-lipoxygenase, as it inhibited LTB4 production by human granulocytes with an IC50 value of 11 microM (IC50 value for ketoconazole was 17 microM), whereas ram seminal vesicle cyclooxygenase was only inhibited by 16% at a concentration of 25 microM. Drugs such as flutrimazole, with dual anti-inflammatory/antifungal activity, may be advantageous in the treatment of topical fungal infections with an inflammatory component.

  8. Efflux-Mediated Antifungal Drug Resistance†

    PubMed Central

    Cannon, Richard D.; Lamping, Erwin; Holmes, Ann R.; Niimi, Kyoko; Baret, Philippe V.; Keniya, Mikhail V.; Tanabe, Koichi; Niimi, Masakazu; Goffeau, Andre; Monk, Brian C.

    2009-01-01

    Summary: Fungi cause serious infections in the immunocompromised and debilitated, and the incidence of invasive mycoses has increased significantly over the last 3 decades. Slow diagnosis and the relatively few classes of antifungal drugs result in high attributable mortality for systemic fungal infections. Azole antifungals are commonly used for fungal infections, but azole resistance can be a problem for some patient groups. High-level, clinically significant azole resistance usually involves overexpression of plasma membrane efflux pumps belonging to the ATP-binding cassette (ABC) or the major facilitator superfamily class of transporters. The heterologous expression of efflux pumps in model systems, such Saccharomyces cerevisiae, has enabled the functional analysis of efflux pumps from a variety of fungi. Phylogenetic analysis of the ABC pleiotropic drug resistance family has provided a new view of the evolution of this important class of efflux pumps. There are several ways in which the clinical significance of efflux-mediated antifungal drug resistance can be mitigated. Alternative antifungal drugs, such as the echinocandins, that are not efflux pump substrates provide one option. Potential therapeutic approaches that could overcome azole resistance include targeting efflux pump transcriptional regulators and fungal stress response pathways, blockade of energy supply, and direct inhibition of efflux pumps. PMID:19366916

  9. Fungal peritonitis in patients undergoing peritoneal dialysis (PD) in Brazil: molecular identification, biofilm production and antifungal susceptibility of the agents.

    PubMed

    Giacobino, Juliana; Montelli, Augusto Cezar; Barretti, Pasqual; Bruder-Nascimento, Ariane; Caramori, Jacqueline Teixeira; Barbosa, Luciano; Bagagli, Eduardo

    2016-10-01

    This paper presents data on fungal peritonitis (FP) in patients undergoing peritoneal dialysis (PD) at the University Hospital of Botucatu Medical School, São Paulo, Brazil. In a total of 422 patients, 30 developed FP, from which the medical records and the fungal isolates of 23 patient cases were studied. All patients presented abdominal pain, cloudy peritoneal effluent, needed hospitalization, had the catheter removed and were treated with fluconazole or fluconazole plus 5-flucitosine; six of them died due to FP. Concerning the agents, it was observed that Candida parapsilosis was the leading species (9/23), followed by Candida albicans (5/23), Candida orthopsilosis (4/23), Candida tropicalis (3/23), Candida guilliermondii (1/23), and Kodamaea ohmeri (1/23). All the isolates were susceptible to amphotericin B, voriconazole and caspofungin whereas C. albicans isolates were susceptible to all antifungals tested. Resistance to fluconazole was observed in three isolates of C. orthopsilosis, and dose-dependent susceptibility to this antifungal was observed in two isolates of C. parapsilosis and in the K. ohmeri isolate. Biofilm production estimates were high or moderate in most isolates, especially in C. albicans species, and low in C. parapsilosis species, with a marked variation among the isolates. This Brazilian study reinforces that FP in PD is caused by a diverse group of yeasts, most prevalently C. parapsilosis sensu stricto species. In addition, they present significant variation in susceptibility to antifungals and biofilm production, thus contributing to the complexity and severity of the clinical features.

  10. Synthesis and biological evaluation of novel phosphoramidate derivatives of coumarin as chitin synthase inhibitors and antifungal agents.

    PubMed

    Ji, Qinggang; Ge, Zhiqiang; Ge, Zhixing; Chen, Kaizhi; Wu, Hualong; Liu, Xiaofei; Huang, Yanrong; Yuan, Lvjiang; Yang, Xiaolan; Liao, Fei

    2016-01-27

    A series of novel phosphoramidate derivatives of coumarin have been designed and synthesized as chitin synthase (CHS) inhibitors. All the synthesized compounds have been screened for their chitin synthase inhibition activity and antimicrobial activity in vitro. The bioactive assay manifested that most of the target compounds exhibited good efficacy against CHS and a variety of clinically important fungal pathogens. In particular, compound 7t with IC50 of 0.08 mM against CHS displayed stronger efficiency than the reference Polyoxin B with IC50 of 0.16 mM. In addition, the apparent Ki values of compound 7t was 0.096 mM while the Km of Chitin synthase prepared from Candida tropicalis was 3.86 mM for UDP-N-acetylglucosamine, and the result of the Ki showed that the compounds was a non-competitive inhibitor of the CHS. As far as the antifungal activity is concerned, compounds 7o, 7r and 7t were highly active against Aspergillus flavus with MIC values in the range of 1 μg/mL to 2 μg/Ml while the results of antibacterial screening showed that these compounds have negligible actions to the tested bacteria. These results indicated that the design of these compounds as antifungal agents was rational.

  11. Interaction of antifungal peptide BP15 with Stemphylium vesicarium, the causal agent of brown spot of pear.

    PubMed

    Puig, Mireia; Moragrega, Concepció; Ruz, Lídia; Calderón, Claudia E; Cazorla, Francisco M; Montesinos, Emilio; Llorente, Isidre

    2016-01-01

    Peptide BP15 has shown antifungal activity against several plant pathogenic fungi, including Stemphylium vesicarium, the causal agent of brown spot of pear. BP15 inhibits the germination, growth and sporulation of S. vesicarium and displays post-infection activity by stopping fungal infection in pear leaves. In this work, live-cell imaging was undertaken to understand the antifungal mechanism of BP15. A double-staining method based on the combination of calcofluor white and SYTOX green coupled with epifluorescence microscopy was used to investigate fungal cell permeabilization and alterations in fungal growth induced by BP15. GFP-transformants of S. vesicarium were obtained and exposed to rhodamine-labelled BP15. Confocal laser microscopy provided evidence of peptide internalization by hyphae, resulting in fungal cell disorganization and death. S. vesicarium membrane permeabilization by BP15 was found to be peptide-concentration dependent. BP15 at MIC and sub-MIC concentrations (10 and 5 μM, respectively) inhibited S. vesicarium growth and produced morphological alterations to germ tubes, with slow and discontinuous compromise of fungal cell membranes. Fungal cell membrane disruption was immediately induced by BP15 at 100 μM, and this was accompanied by rapid peptide internalization by S. vesicarium hyphae. Peptide BP15 interacted with germ tubes and hyphae of S. vesicarium but not with conidial cells.

  12. Clerodane type diterpene as a novel antifungal agent from Polyalthia longifolia var. pendula.

    PubMed

    Bhattacharya, Asish K; Chand, Hemender R; John, Jyothis; Deshpande, Mukund V

    2015-04-13

    Bioactivity-guided chemical examination of methanolic extract of leaves of Polyalthia longifolia var. pendula led to the isolation of the active constituent, a diterpene 1 which was identified as 16α-hydroxycleroda-3,13(14)Z-dien-15,16-olide on the basis of its spectral data. Among the tested strains, diterpene 1 was found to exhibit antifungal activities having MIC90 values of 50.3, 100.6 and 201.2 μM against Candida albicans NCIM3557, Cryptococcus neoformans NCIM3542 (human pathogens) and Neurospora crassa NCIM870 (saprophyte), respectively. Initial, structure-activity-relationship (SAR) data generated by synthesizing some derivatives revealed that the double bond between C3-C4 and the free hydroxyl group at C16 are crucial for the antifungal activity of the diterpene 1. The mode of action of 1 in C. albicans is due to compromised cell membrane permeability and also probably due to disruption of cell wall structures. The red blood cell haemolysis of all the compounds (1-4) did not show any significant haemolysis and was found to be less than 15% for all the compounds when tested at highest concentration, i.e. 1200 μM. Interestingly, all the tested compounds inhibited Y-H transition in dimorphic C. albicans NCIM3557 at much lower concentration than their MIC90 values. Determination of ROS generation by diterpene 1 using DCFH-DA and DHR123 (dihydrorhodamine) staining of C. albicans NCIM3557 indicated production of intracellular ROS as a mechanism of antifungal activity.

  13. The Aspergillus fumigatus Damage Resistance Protein Family Coordinately Regulates Ergosterol Biosynthesis and Azole Susceptibility

    PubMed Central

    Song, Jinxing; Zhai, Pengfei; Zhang, Yuanwei; Zhang, Caiyun; Sang, Hong; Han, Guanzhu; Keller, Nancy P.

    2016-01-01

    ABSTRACT Ergosterol is a major and specific component of the fungal plasma membrane, and thus, the cytochrome P450 enzymes (Erg proteins) that catalyze ergosterol synthesis have been selected as valuable targets of azole antifungals. However, the opportunistic pathogen Aspergillus fumigatus has developed worldwide resistance to azoles largely through mutations in the cytochrome P450 enzyme Cyp51 (Erg11). In this study, we demonstrate that a cytochrome b5-like heme-binding damage resistance protein (Dap) family, comprised of DapA, DapB, and DapC, coordinately regulates the functionality of cytochrome P450 enzymes Erg5 and Erg11 and oppositely affects susceptibility to azoles. The expression of all three genes is induced in an azole concentration-dependent way, and the decreased susceptibility to azoles requires DapA stabilization of cytochrome P450 protein activity. In contrast, overexpression of DapB and DapC causes dysfunction of Erg5 and Erg11, resulting in abnormal accumulation of sterol intermediates and further accentuating the sensitivity of ΔdapA strains to azoles. The results of exogenous-hemin rescue and heme-binding-site mutagenesis experiments demonstrate that the heme binding of DapA contributes the decreased azole susceptibility, while DapB and -C are capable of reducing the activities of Erg5 and Erg11 through depletion of heme. In vivo data demonstrate that inactivated DapA combined with activated DapB yields an A. fumigatus mutant that is easily treatable with azoles in an immunocompromised mouse model of invasive pulmonary aspergillosis. Compared to the single Dap proteins found in Saccharomyces cerevisiae and Schizosaccharomyces pombe, we suggest that this complex Dap family regulatory system emerged during the evolution of fungi as an adaptive means to regulate ergosterol synthesis in response to environmental stimuli. PMID:26908577

  14. Differential effects of antifungal agents on expression of genes related to formation of Candida albicans biofilms.

    PubMed

    Chatzimoschou, Athanasios; Simitsopoulou, Maria; Antachopoulos, Charalampos; Walsh, Thomas J; Roilides, Emmanuel

    2016-01-01

    The purpose of this study was to analyse specific molecular mechanisms involved in the intrinsic resistance of C. albicans biofilms to antifungals. We investigated the transcriptional profile of three genes (BGL2, SUN41, ECE1) involved in Candida cell wall formation in response to voriconazole or anidulafungin after the production of intermediate and mature biofilms. C. albicans M61, a well-documented biofilm producer strain, was used for the development of intermediate (12 h and 18 h) and completely mature biofilms (48 h). After exposure of cells from each biofilm growth mode to voriconazole (128 and 512 mg l(-1)) or anidulafungin (0.25 and 1 mg l(-1)) for 12-24 h, total RNA samples extracted from biofilm cells were analysed by RT-PCR. The voriconazole and anidulafungin biofilm MIC was 512 and 0.5 mg l(-1) respectively. Anidulafungin caused significant up-regulation of SUN41 (3.7-9.3-fold) and BGL2 (2.2-2.8 fold) in intermediately mature biofilms; whereas, voriconazole increased gene expression in completely mature biofilms (SUN41 2.3-fold, BGL2 2.1-fold). Gene expression was primarily down-regulated by voriconazole in intermediately, but not completely mature biofilms. Both antifungals caused down-regulation of ECE1 in intermediately mature biofilms.

  15. Successful Treatment of Aspergillus Empyema Using Open Window Thoracostomy Salvage Treatment and the Local Administration of an Antifungal Agent.

    PubMed

    Ashizawa, Nobuyuki; Nakamura, Shigeki; Ide, Shotaro; Tashiro, Masato; Takazono, Takahiro; Imamura, Yoshifumi; Miyazaki, Taiga; Izumikawa, Koichi; Yamamoto, Yoshihiro; Yanagihara, Katsunori; Miyazaki, Yoshitsugu; Kohno, Shigeru

    2016-01-01

    A 76-year-old woman received long-term immunosuppressive treatment for collagen vascular disease-associated interstitial pneumonia. The patient developed a cavitary mass lesion in the right lower lung field, and both nontuberculous mycobacteria and Aspergillus spp. were isolated after bronchial washing. The patient underwent a right lower lobectomy but developed Aspergillus empyema. Empyema due to Aspergillus spp. is a rare and life-threatening condition; however, the standard therapeutic strategies for treating Aspergillus empyema are not clear. We herein report a case of Aspergillus empyema that was successfully treated with a combination therapy which included open-window thoracostomy and the administration of antifungal agents (systemic micafungin and local amphotericin-B). PMID:27477422

  16. An azole-resistant isolate of Malassezia pachydermatis.

    PubMed

    Nijima, Misako; Kano, Rui; Nagata, Masahiko; Hasegawa, Atsuhiko; Kamata, Hiroshi

    2011-04-21

    Canine Malassezia dermatitis (MD) is frequently treated with systemic ketoconazole (KTZ) and itaconazole (ITZ). However, the antifungal susceptibility of clinical isolates of M. pachydermatis from dogs and cats to the azoles has not been well investigated. In the present study, the in vitro susceptibility of the standard strain (CBS1879: the neotype strain of M. pachydermatis) and 29 clinical isolates of M. pachydermatis to the azoles was measured by a modified CLSI M27-A2 test using modified Dixon medium as well as by the E-test. The minimum inhibitory concentrations (MICs) of the 30 isolates of M. pachydermatis (including the neotype strain) against KTZ and ITZ were <0.03 μg/ml by the two methods. The MICs of 1 clinical isolate (ASC-11) were 1 and 2 μg/ml against KTZ, and 2 and 8 μg/ml against ITZ, by the modified CLSI M27-A2 test and the E-test, respectively. Thus, isolate ASC-11 may be resistant to these azoles, making this the first report of a resistant isolate of M. pachydermatis to KTZ and ITZ. PMID:21074337

  17. Targeting efflux pumps to overcome antifungal drug resistance.

    PubMed

    Holmes, Ann R; Cardno, Tony S; Strouse, J Jacob; Ivnitski-Steele, Irena; Keniya, Mikhail V; Lackovic, Kurt; Monk, Brian C; Sklar, Larry A; Cannon, Richard D

    2016-08-01

    Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps. PMID:27463566

  18. Design, synthesis, and structure-activity relationship studies of benzothiazole derivatives as antifungal agents.

    PubMed

    Zhao, Shizhen; Zhao, Liyu; Zhang, Xiangqian; Liu, Chunchi; Hao, Chenzhou; Xie, Honglei; Sun, Bin; Zhao, Dongmei; Cheng, Maosheng

    2016-11-10

    A series of compounds with benzothiazole and amide-imidazole scaffolds were designed and synthesized to combat the increasing incidence of drug-resistant fungal infections. The antifungal activity of these compounds was evaluated in vitro, and their structure-activity relationships (SARs) were evaluated. The synthesized compounds showed excellent inhibitory activity against Candida albicans and Cryptococcus neoformans. The most potent compounds 14o, 14p, and 14r exhibited potent activity, with minimum inhibitory concentration (MIC) values in the range of 0.125-2 μg/mL. Preliminary mechanism studies revealed that the compound 14p might act by inhibiting the CYP51 of Candida albicans. The SARs and binding mode established in this study are useful for further lead optimization. PMID:27494168

  19. Synthesis of new pyrazolyl-2, 4-thiazolidinediones as antibacterial and antifungal agents

    PubMed Central

    2011-01-01

    Background Thiazolidine-2, 4-diones (TZDs) have become a pharmacologically important class of heterocyclic compounds since their introduction in the form of glitazones into the clinical use for the treatment of type 2 diabetes. TZDs lower the plasma glucose levels by acting as ligands for gamma peroxisome proliferators-activated receptors. In addition, this class of heterocyclic compounds possesses various other biological activities such as antihyperglycemic, antimicrobial, anti-inflammatory, anticonvulsant, insecticidal, etc. TZDs are also known for lowering the blood pressure thereby reducing the chances of heart failure and micro-albuminuria in the patients with type 2 diabetes. Results We have described herein the synthesis of three series of compounds, namely, ethyl 2-((Z)-5-((3-aryl-1-phenyl-1H-pyrazol-4-yl)methylene)-2, 4-dioxothiazolidin-3-yl)acetates (4), methyl 2-((Z)-5-((3-aryl-1-phenyl-1H-pyrazol-4-yl)methylene)-2, 4-dioxothiazolidin-3-yl)acetates (5), and 2-((Z)-5-((3-aryl-1-phenyl-1H-pyrazol-4-yl)methylene)-2, 4-dioxothiazolidin-3-yl)acetic acids (6). The compounds 4 and 5 were synthesized by Knoevenagel condensation between 3-aryl-1-phenyl-1H-pyrazole-4-carbaldehydes (1) and ethyl/methyl 2-(2, 4-dioxothiazolidin-3-yl)acetates (3, 2) in alcohol using piperidine as a catalyst. The resultant compounds 4 and 5 having ester functionality were subjected to acidic hydrolysis to obtain 6. All the new compounds were tested for their in vitro antibacterial and antifungal activity. Conclusions Knoevenagel condensation approach has offered an easy access to new compounds 4-6. Antimicrobial evaluation of the compounds has shown that some of the compounds are associated with remarkable antifungal activity. In case of antibacterial activity, these were found to be effective against Gram-positive bacteria. However, none of the compounds were found to be effective against Gram-negative bacteria. PMID:22373217

  20. Antifungal resistance in yeast vaginitis.

    PubMed Central

    Dun, E.

    1999-01-01

    The increased number of vaginal yeast infections in the past few years has been a disturbing trend, and the scientific community has been searching for its etiology. Several theories have been put forth to explain the apparent increase. First, the recent widespread availability of low-dosage, azole-based over-the-counter antifungal medications for vaginal yeast infections encourages women to self-diagnose and treat, and women may be misdiagnosing themselves. Their vaginitis may be caused by bacteria, parasites or may be a symptom of another underlying health condition. As a result, they may be unnecessarily and chronically expose themselves to antifungal medications and encourage fungal resistance. Second, medical technology has increased the life span of seriously immune compromised individuals, yet these individuals are frequently plagued by opportunistic fungal infections. Long-term and intense azole-based antifungal treatment has been linked to an increase in resistant Candida and non-Candida species. Thus, the future of limiting antifungal resistance lies in identifying the factors promoting resistance and implementing policies to prevent it. PMID:10907778

  1. Selection of orally active antifungal agents from 3,5-substituted isoxazolidine derivatives based on acute efficacy-safety profiles.

    PubMed

    Palmer, G C; Ordy, M J; Simmons, R D; Strand, J C; Radov, L A; Mullen, G B; Kinsolving, C R; St Georgiev, V; Mitchell, J T; Allen, S D

    1989-06-01

    Routine in vitro screening of a new synthetic series of 3,5-substituted 2-methylisoxazolidines revealed that three imidazole analogs (PR 967-248, PR 967-234, and PR 969-566) and, to a lesser extent, a triazole analog (PR 988-399) exerted rather potent antifungal activity against three systemic and four dermatophytic classes of fungi. When tested in vivo for ability to eradicate Candida vaginitis in the rat, the triazole derivative, PR 988-399, was effective after oral administration. In this in vivo test for efficacy, PR 967-234 and PR 969-566 reduced but did not eradicate the infection, while PR 967-248 was inactive. PR 988-399 was, moreover, 4- to 13-fold less potent than the three imidazoles in inhibiting testosterone synthesis in isolated rat Leydig cells. After oral or intravenous administration, PR 988-399 and PR 969-566 elicited the fewest cardiovascular and behavioural side effects in conscious dogs. The rat safety study consisted of oral dosing followed by evaluation of the exploratory motor activity of the naive animals in a novel environment. Motor activity was suppressed least by PR 988-399 and most by PR 969-566. In a battery of mouse behavioural-neuromuscular-drug interaction tests, PR 988-399 and PR 969-566 produced the fewest central-behavioural-neuromuscular signs. These efficacy-safety evaluations were performed with ketoconazole as a positive reference standard. The sequence of drug testing with respect to efficacy-safety considerations appears to be a suitable approach for early detection of orally active antifungal agents such as PR 988-399 for more advanced development.

  2. Azole-resistant Candida albicans from a wild Brazilian porcupine (Coendou prehensilis): a sign of an environmental imbalance?

    PubMed

    Castelo-Branco, D S C M; Brilhante, R S N; Paiva, M A N; Teixeira, C E C; Caetano, E P; Ribeiro, J F; Cordeiro, R A; Sidrim, J J C; Monteiro, A J; Rocha, M F G

    2013-07-01

    This study aimed at evaluating the in vitro antifungal susceptibility of Candida albicans isolates obtained during necropsy of a wild Brazilian porcupine and the mechanism of azole resistance. Initially, we investigated the in vitro susceptibility of the three isolates to amphotericin B, caspofungin, fluconazole, itraconazole, ketoconazole and voriconazole. Afterwards, three sub-inhibitory concentrations (47, 21 and 12 mg/l) of promethazine, an efflux pump inhibitor, were tested in combination with the antifungal drugs in order to evaluate the role of these pumps in the development of antifungal resistance. In addition, the three isolates were submitted to RAPD-PCR and M13-fingerprinting analyses. The minimum inhibitory concentrations (MICs) obtained with the isolates were 1, 0.03125, 250, 125, 8 and 250 mg/l for amphotericin B, caspofungin, fluconazole, itraconazole, ketoconazole and voriconazole, respectively, and the isolates were found to be resistant to all tested azoles. The addition of the three subinhibitory concentrations of promethazine resulted in statistically significant (P < 0.05) reductions in the MICs for all tested drugs, with decreases to azoles being statistically greater than those for amphotericin B and caspofungin (P < 0.05). The molecular analyses showed a genetic similarity among the three tested isolates, suggesting the occurrence of candidemia in the studied animal. These findings highlight the importance of monitoring antifungal susceptibility of Candida spp. from veterinary sources, especially as they may indicate the occurrence of primary azole resistance even in wild animals.

  3. Azole-resistant Candida albicans from a wild Brazilian porcupine (Coendou prehensilis): a sign of an environmental imbalance?

    PubMed

    Castelo-Branco, D S C M; Brilhante, R S N; Paiva, M A N; Teixeira, C E C; Caetano, E P; Ribeiro, J F; Cordeiro, R A; Sidrim, J J C; Monteiro, A J; Rocha, M F G

    2013-07-01

    This study aimed at evaluating the in vitro antifungal susceptibility of Candida albicans isolates obtained during necropsy of a wild Brazilian porcupine and the mechanism of azole resistance. Initially, we investigated the in vitro susceptibility of the three isolates to amphotericin B, caspofungin, fluconazole, itraconazole, ketoconazole and voriconazole. Afterwards, three sub-inhibitory concentrations (47, 21 and 12 mg/l) of promethazine, an efflux pump inhibitor, were tested in combination with the antifungal drugs in order to evaluate the role of these pumps in the development of antifungal resistance. In addition, the three isolates were submitted to RAPD-PCR and M13-fingerprinting analyses. The minimum inhibitory concentrations (MICs) obtained with the isolates were 1, 0.03125, 250, 125, 8 and 250 mg/l for amphotericin B, caspofungin, fluconazole, itraconazole, ketoconazole and voriconazole, respectively, and the isolates were found to be resistant to all tested azoles. The addition of the three subinhibitory concentrations of promethazine resulted in statistically significant (P < 0.05) reductions in the MICs for all tested drugs, with decreases to azoles being statistically greater than those for amphotericin B and caspofungin (P < 0.05). The molecular analyses showed a genetic similarity among the three tested isolates, suggesting the occurrence of candidemia in the studied animal. These findings highlight the importance of monitoring antifungal susceptibility of Candida spp. from veterinary sources, especially as they may indicate the occurrence of primary azole resistance even in wild animals. PMID:23286353

  4. Burkholderia terrae BS001 migrates proficiently with diverse fungal hosts through soil and provides protection from antifungal agents

    PubMed Central

    Nazir, Rashid; Tazetdinova, Diana I.; van Elsas, Jan Dirk

    2014-01-01

    Soil bacteria can benefit from co-occurring soil fungi in respect of the acquisition of carbonaceous nutrients released by fungal hyphae and the access to novel territories in soil. Here, we investigated the capacity of the mycosphere-isolated bacterium Burkholderia terrae BS001 to comigrate through soil along with hyphae of the soil fungi Trichoderma asperellum, Rhizoctonia solani, Fusarium oxysporum, F. oxysporum pv lini, Coniochaeta ligniaria, Phanerochaete velutina, and Phallus impudicus. We used Lyophyllum sp. strain Karsten as the reference migration-inciting fungus. Bacterial migration through presterilized soil on the extending fungal hyphae was detected with six of the seven test fungi, with only Phallus impudicus not showing any bacterial transport. Much like with Lyophyllum sp. strain Karsten, intermediate (106–108 CFU g-1 dry soil) to high (>108 CFU g-1 dry soil) strain BS001 cell population sizes were found at the hyphal migration fronts of four fungi, i.e., T. asperellum, Rhizoctonia solani, F. oxysporum and F. oxysporum pv lini, whereas for two fungi, Coniochaeta ligniaria and Phanerochaete velutina, the migration responses were retarded and population sizes were lower (103–106 CFU g-1 dry soil). Consistent with previous data obtained with the reference fungus, migration with the migration-inciting fungi occurred only in the direction of the hyphal growth front. Remarkably, Burkholderia terrae BS001 provided protection from several antifungal agents to the canonical host Lyophyllum sp. strain Karsten. Specifically, this host was protected from Pseudomonas fluorescens strain CHA0 metabolites, as well as from the anti-fungal agent cycloheximide. Similar protection by strain BS001was observed for T. asperellum, and, to a lower extent, F. oxysporum and Rhizoctonia solani. The protective effect may be related to the consistent occurrence of biofilm-like cell layers or agglomerates at the surfaces of the protected fungi. The current study represents

  5. Emerging aspergillosis by azole-resistant Aspergillus fumigatus at an intensive care unit in the Netherlands, 2010 to 2013.

    PubMed

    van Paassen, Judith; Russcher, Anne; In 't Veld-van Wingerden, Astrid Wm; Verweij, Paul E; Kuijper, Eduard J

    2016-07-28

    The prevalence of invasive aspergillosis (IA) at the intensive care unit (ICU) is unknown and difficult to assess since IA also develops in patients lacking specific host factors. In the Netherlands, increasing azole-resistance in Aspergillus fumigatus complicates treatment of patients with IA. The aim of this study was to determine the prevalence of IA by azole-resistant A. fumigatus at the ICU among patients receiving antifungal treatment and to follow their clinical outcome and prognosis. A retrospective cohort study was conducted in a university hospital ICU from January 2010 to December 2013. From all patients who received antifungal treatment for suspected IA, relevant clinical and microbiological data were collected using a standardised questionnaire. Of 9,121 admitted ICU-patients, 136 had received antifungal treatment for suspected IA, of which 38 had a positive A. fumigatus culture. Ten of the 38 patients harboured at least one azole-resistant isolate. Resistance mechanisms consisted of alterations in the cyp51A gene, more specific TR34/L98H and TR46/T289A/Y121F. Microsatellite typing did not show clonal relatedness, though isolates from two patients were genetically related. The overall 90-day mortality of patients with IA by azole-resistant A. fumigatus and patients with suspicion of IA by azole-susceptible isolates in the ICU was 100% (10/10) vs 82% (23/28) respectively. We conclude that the changing pattern of IA in ICU patients requires appropriate criteria for recognition, diagnosis and rapid resistance tests. The increase in azole resistance rates also challenges a reconsideration of empirical antifungal therapy. PMID:27541498

  6. Synthesis and Biological Evaluation of New Eugenol Mannich Bases as Promising Antifungal Agents.

    PubMed

    Abrão, Pedro Henrique O; Pizi, Rafael B; de Souza, Thiago B; Silva, Naiara C; Fregnan, Antonio M; Silva, Fernanda N; Coelho, Luiz Felipe L; Malaquias, Luiz Cosme C; Dias, Amanda Latercia T; Dias, Danielle F; Veloso, Marcia P; Carvalho, Diogo T

    2015-10-01

    New Mannich base-type eugenol derivatives were synthesized and evaluated for their anticandidal activity using a broth microdilution assay. Among the synthesized compounds, 4-allyl-2-methoxy-6-(morpholin-4-ylmethyl) phenyl benzoate (7) and 4-{5-allyl-2-[(4-chlorobenzoyl)oxy]-3-methoxybenzyl}morpholin-4-ium chloride (8) were found to be the most effective antifungal compounds with low IC50 values, some of them well below those of reference drug fluconazole. The most significant IC50 values were those of 7 against C. glabrata (1.23 μm), C. albicans and C. krusei (both 0.63 μm). Additionally, the synthesized compounds were evaluated for their in vitro cytotoxic effects on human mononuclear cells. As result, the cytotoxic activity of eugenol in eukaryotic cells decreased with the introduction of the morpholinyl group. Given these findings, we point out compounds 7 and 8 as the most promising derivatives because they showed potency values greater than those of eugenol and fluconazole and they also presented high selectivity indexes.

  7. Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole.

    PubMed

    Ahmad, Aijaz; Khan, Amber; Manzoor, Nikhat

    2013-01-23

    Thymol (THY) and carvacrol (CARV), the principal chemical components of thyme oil have long been known for their wide use in medicine due to antimicrobial and disinfectant properties. This study, however, draws attention to a possible synergistic antifungal effect of these monoterpenes with azole antimycotic-fluconazole. Resistance to azoles in Candida albicans involves over-expression of efflux-pump genes MDR1, CDR1, CDR2 or mutations and over-expression of target gene ERG11. The inhibition of drug efflux pumps is considered a feasible strategy to overcome clinical antifungal resistance. To put forward this approach, we investigated the combination effects of these monoterpenes and FLC against 38 clinically obtained FLC-sensitive, and eleven FLC-resistant Candida isolates. Synergism was observed with combinations of THY-FLC and CARV-FLC evaluated by checkerboard microdilution method and nature of the interactions was calculated by FICI. In addition, antifungal activity was assessed using agar-diffusion and time-kill curves. The drug efflux activity was determined using two dyes, Rhodamine6G (R6G) and fluorescent Hoechst 33342. No significant differences were observed in dye uptakes between FLC-susceptible and resistant isolates, incubated in glucose free buffer. However, a significantly higher efflux was recorded in FLC-resistant isolates when glucose was added. Both monoterpenes inhibited efflux by 70-90%, showing their high potency to block drug transporter pumps. Significant differences, in the expression levels of CDR1 and MDR1, induced by monoterpenes revealed reversal of FLC-resistance. The selectively fungicidal characteristics and ability to restore FLC susceptibility in resistant isolates signify a promising candidature of THY and CARV as antifungal agents in combinational treatments for candidiasis. PMID:23111348

  8. Species Distribution and Susceptibility to Azoles of Vaginal Yeasts Isolated Prostitutes

    PubMed Central

    Gross, Norma T.; Arias, M. L.; Moraga, M.; Baddasarow, Y.; Jarstrand, C.

    2007-01-01

    Objective. We investigated the use of miconazole among female prostitutes in Costa Rica as well as the distribution of vaginal yeasts and the susceptibility pattern to azoles of strains obtained from this population. Our intention was to relate a frequent use of miconazole to occurrence of vaginal yeasts resistant to azoles. Methods. Vaginal samples were taken from 277 patients that have previously used azoles. Vaginal swabs were obtained for direct microscopy and culture. Yeast isolates were identified by germ tube test and assimilation pattern. Susceptibility testing was determined using a tablet diffusion method. Results. The number of clinical Candida isolates (one from each patient) was 57 (20.6%). C. albicans was the predominant species (70%), followed by C. parapsilosis (12%), C. tropicalis (5.3%), C. glabrata and C. famata (3.5% each), C. krusei, C. inconspicua and C. guilliermondii (1.7% each). The majority of vaginal Candida isolates were susceptible to ketoconazole (91%), fluconazole (96.5%), and itraconazole (98%). A lower susceptibility of some isolates to miconazole (63%) was observed as compared to the other azoles tested. Moreover, the strains, nonsusceptible to miconazole, were more often obtained from patients that have used this antifungal at least four times within the last year before taking the samples as compared to those with three or less treatments (P<.01). Conclusion. An indiscriminate use of miconazole, such as that observed among female prostitutes in Costa Rica, results in a reduced susceptibility of vaginal yeasts to miconazole but not to other azoles. PMID:18273407

  9. [Molecular epidemiologic surveillance and antifungal agent sensitivity of Candida albicans isolated from anesthesia intensive care units].

    PubMed

    Gülay, Zeynep; Ergon, Cem; Ozkütük, Aydan; Yücesoy, Mine; Biçmen, Meral

    2002-01-01

    Patients in intensive care units (ICU) are at risk of nosocomial infections. The incidence of nosocomial fungal infections has increased in parallel with the increase of nosocomial infections. Candida albicans is the most frequent pathogenic species among the fungi. The aim of this study was to make an epidemiological surveillance of C. albicans urine isolates which were isolated from patients who were hospitalized in ICU between June 2000 and October 2001 by antifungal susceptibility testing and Randomly Amplified Polymorphic DNA (RAPD) analysis. For this purpose, 38 C. albicans which were isolated from 29 patients were investigated for amphotericin B and fluconazole susceptibility with the microdilution method. The range of minimal inhibitory concentration (MIC) of amphotericin B was between 0.25-1 microgram/ml and MIC50 value was 0.5 microgram/ml and none of the isolates had high (MIC > 1 microgram/ml) MIC values. The MIC values for fluconazole varied between 0.25-16 micrograms/ml and MIC50 value was 1 microgram/ml. While none of the isolates was resistant to fluconazole, two isolates were detected as dose dependent susceptible. RAPD analysis was performed with two different primers in order to investigate clonal relationship, and 22 patterns were detected with one of the primers and 24 patterns were detected with the other. In conclusion, it is thought that the origin of the C. albicans urine isolates were mostly endogenous but exogenous spread might also be considered as isolates that were clonally related were isolated from different patients at the same time interval.

  10. Efficient synthesis of novel 3-aryl-5-(4-chloro-2-morpholinothiazol-5-yl)-4,5-dihydro-1H-pyrazoles and their antifungal activity alone and in combination with commercial antifungal agents.

    PubMed

    Ramírez, Juan; Rodríguez, María Victoria; Quiroga, Jairo; Abonia, Rodrigo; Sortino, Maximiliano; Zacchino, Susana A; Insuasty, Braulio

    2014-08-01

    The α,β-unsaturated carbonyl compounds 5a-f were prepared by reaction between 2-chloro-4-morpholinothiazol-5-carbaldehyde 3 and substituted acetophenones 4a-f. Treatment of compounds 5a-f with hydrazine hydrate employing mild reaction conditions led to the formation of 4,5-dihydro-1H-pyrazoles 6a-f. Then the treatment with acetic anhydride or formic acid afforded the expected 4,5-dihydro-1H-pyrazoles 7a-f and 8a-f. The antifungal activity of each series of synthesized compounds was determined against the clinically important fungi Candida albicans and Cryptococcus neoformans. In addition, the most active compounds 7e and 7f were tested in combination with the commercial antifungal agents: fluconazole, itraconazole, and amphotericin B. Compound 7e showed a synergistic effect with fluconazole against C. albicans while 7f showed synergistic activities with all tested antifungal drugs against the same yeast. PMID:24895219

  11. Antifungal polypeptides

    DOEpatents

    Altier, Daniel J.; Ellanskaya, Irina; Ellanskaya, legal representative, Natalia; Gilliam, Jacob T.; Hunter-Cevera, Jennie; Presnail, James K.; Schepers, Eric; Simmons, Carl R.; Torok, Tamas; Yalpani, Nasser

    2009-09-15

    The invention relates to antifungal compositions and methods for protecting a plant from a fungal pathogen. Compositions including antifungal polypeptides isolated from a fungal fermentation broth are provided.

  12. Expression of Efflux Pumps and Fatty Acid Activator One Genes in Azole Resistant Candida Glabrata Isolated From Immunocompromised Patients.

    PubMed

    Farahyar, Shirin; Zaini, Farideh; Kordbacheh, Parivash; Rezaie, Sassan; Falahati, Mehraban; Safara, Mahin; Raoofian, Reza; Hatami, Kamran; Mohebbi, Masoumeh; Heidari, Mansour

    2016-07-01

    Acquired azole resistance in opportunistic fungi causes severe clinical problems in immunosuppressed individuals. This study investigated the molecular mechanisms of azole resistance in clinical isolates of Candida glabrata. Six unmatched strains were obtained from an epidemiological survey of candidiasis in immunocompromised hosts that included azole and amphotericin B susceptible and azole resistant clinical isolates. Candida glabrata CBS 138 was used as reference strain. Antifungal susceptibility testing of clinical isolates was evaluated using Clinical and Laboratory Standards Institute (CLSI) methods. Complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) technology, semi-quantitative RT-PCR, and sequencing were employed for identification of potential genes involved in azole resistance. Candida glabrata Candida drug resistance 1 (CgCDR1) and Candida glabrata Candida drug resistance 2 (CgCDR2) genes, which encode for multidrug transporters, were found to be upregulated in azole-resistant isolates (≥2-fold). Fatty acid activator 1 (FAA1) gene, belonging to Acyl-CoA synthetases, showed expression in resistant isolates ≥2-fold that of the susceptible isolates and the reference strain. This study revealed overexpression of the CgCDR1, CgCDR2, and FAA1 genes affecting biological pathways, small hydrophobic compounds transport, and lipid metabolism in the resistant clinical C.glabrata isolates. PMID:27424018

  13. Antifungal nanoparticles and surfaces.

    PubMed

    Paulo, Cristiana S O; Vidal, Maria; Ferreira, Lino S

    2010-10-11

    Nosocomial fungal infections, an increasing healthcare concern worldwide, are often associated with medical devices. We have developed antifungal nanoparticle conjugates that can act in suspension or attach to a surface, efficiently killing fungi. For that purpose, we immobilized covalently amphotericin B (AmB), a potent antifungal agent approved by the FDA, widely used in clinical practice and effective against a large spectrum of fungi, into silica nanoparticles. These antifungal nanoparticle conjugates are fungicidal against several strains of Candida sp., mainly by contact. In addition, they can be reused up to 5 cycles without losing their activity. Our results show that the antifungal nanoparticle conjugates are more fungistatic and fungicidal than 10 nm colloidal silver. The antifungal activity of the antifungal nanoparticle conjugates is maintained when they are immobilized on a surface using a chemical adhesive formed by polydopamine. The antifungal nanocoatings have no hemolytic or cytotoxic effect against red blood cells and blood mononuclear cells, respectively. Surfaces coated with these antifungal nanoparticle conjugates can be very useful to render medical devices with antifungal properties. PMID:20845938

  14. Use of antifungal drugs in hematology

    PubMed Central

    Nucci, Marcio

    2012-01-01

    Invasive fungal disease represents a major complication in hematological patients. Antifungal agents are frequently used in hematologic patients for different purposes. In neutropenic patients, antifungal agents may be used as prophylaxis, as empiric or preemptive therapy, or to treat an invasive fungal disease that has been diagnosed. The hematologist must be familiar with the epidemiology, diagnostic tools and strategies of antifungal use, as well as the pharmacologic proprieties of the different antifungal agents. In this paper the principal antifungal agents used in hematologic patients will be discussed as will the clinical scenarios where these agents have been used. PMID:23125547

  15. Synthesis and evaluation of new quinazolone derivatives of nalidixic acid as potential antibacterial and antifungal agents.

    PubMed

    Grover, Gaurav; Kini, Suvarna G

    2006-02-01

    In continuation of our work on synthesis of biheterocycles carrying the biodynamic heterocyclic systems at position 3, a series of new nalidixic acid derivatives having quinazolones moiety were synthesised to achieve enhanced biological activity and wide spectrum of activity. Nalidixic acid was first converted into its acid chloride using thionyl chloride as an acylating agent at laboratory temperature. Later it was converted to methyl ester. Nalidixoyl chloride formed vigorously reacts with methanol to give a methyl ester of nalidixic acid. The ester on addition of hydrazine hydrate furnished nalidixic acid hydrazide. Appropriate anthranilic acid was refluxed with acetic anhydride to form Benzoxazine/Acetanthranil. 5-iodo-derivative of anthranilic acid was prepared and also utilised to obtain 6-iodo-Benzoxazine/Acetanthranil. Also, 6-nitro-Benzoxazine/Acetanthranil was obtained by nitration of acetanthranil using conc. H(2)SO(4) and fuming HNO(3). Equimolar proportions of the appropriate synthesised acetanthranils and nalidixic acid hydrazide in the presence of ethanol were refluxed to synthesise quinazolones. Elemental analysis and IR spectra confirmed nalidixic acid hydrazide formation. The structures of the compounds obtained have been established on the basis of Spectral (IR, (1)H NMR and mass) data. The current study also involves in vitro antimicrobial screening (using Agar dilution and Punch well diffusion method) of synthesised quinazolone derivatives bearing nalidixic acid moiety on randomly collected microbial strains. The derivatives Ga (NAH), Gb (QN) and Gd (NiQNA) showed marked inhibitory activity against enteric pathogen like Aeromonas hydrophila, a causative agent of diarrhoea in both children as well as adults. Among the respiratory pathogens included in study, derivative Gd (NiQNA) was found to be active against Streptococcus pyogenes. No significant inhibitory activity was seen by any of synthesised derivatives against Coagulase negative

  16. In vitro and in vivo study on the effect of antifungal agents on hematopoietic cells in mice

    PubMed Central

    Bougiouklis, Dimitris; Vyzantiadis, Timoleon-Achilleas; Meletiadis, Joseph; Monokrousos, Nikolaos; Siotou, Eleni; Sivropoulou, Afroditi; Anagnostopoulos, Achilles; Sotiropoulos, Damianos

    2015-01-01

    Liposomal amphotericin B, voriconazole, and caspofungin are currently used for systemic and severe fungal infections. Patients with malignant diseases are treated with granulocyte-colony stimulating factor (G-CSF) for the recovery of granulocytes after chemotherapy or hematopoietic cell (HC) transplantation. Since they have a high incidence of fungal infections, they inevitably receive antifungal drugs for treatment and prophylaxis. Despite their proven less toxicity for various cell types comparatively with amphotericin B and the decrease in the number of leukocytes that has been reported as a possible complication in clinical studies, the effect of liposomal amphotericin B, voriconazole, and caspofungin on HCs has not been clarified. The present study aimed to examine the in vitro and in vivo effect of these three modern antifungals on HCs. Colony-forming unit (CFU) assays of murine bone marrow cells were performed in methylcellulose medium with or without cytokines and in the presence or absence of various concentrations of liposomal amphotericin B, voriconazole, and caspofungin. In the in vivo experiments, the absolute number of granulocytes was determined during leukocyte recovery in sublethally irradiated mice receiving each antifungal agent separately, with or without G-CSF. In vitro, all three antifungal drugs were nontoxic and, interestingly, they significantly increased the number of CFU-granulocyte-macrophage colonies in the presence of cytokines, at all concentrations tested. This was contrary to the concentration-dependent toxicity and the significant decrease caused by conventional amphotericin B. In vivo, the number of granulocytes was significantly higher with caspofungin plus G-CSF treatment, higher and to a lesser extent higher, but not statistically significantly, with voriconazole plus G-CSF and liposomal amphotericin B plus G-CSF treatments, respectively, as compared with G-CSF alone. These data indicate a potential synergistic effect of

  17. Management of symptomatic erosive-ulcerative lesions of oral lichen planus in an adult Egyptian population using Selenium-ACE combined with topical corticosteroids plus antifungal agent

    PubMed Central

    Belal, Mahmoud Helmy

    2015-01-01

    Aim: Oral lichen planus (OLP) is a chronic mucocutaneous disease with an immunological etiology. This study was conducted to evaluate the effect of selenium combined with Vitamins A, C & E (Selenium-ACE) in the treatment of erosive-ulcerative OLP as an adjunctive to topical corticosteroids plus antifungal agent. Subjects and Methods: Thirty patients with a confirmed clinical and histopathologic diagnosis of OLP participated in this clinical trial. Patients were randomly allocated into one of three groups and treated as follows: (I) Topical corticosteroids, (II) topical corticosteroids plus antifungal, and (III) SE-ACE combined with topical corticosteroids plus antifungal. The patients were followed for 6 weeks. The pain and severity of the lesions were recorded at the initial and follow-up visits. All recorded data were analyzed using paired t-test and ANOVA test. A P ≤ 0.05 was considered significant. Results: The experimental groups showed a marked reduction in pain sensation and size of lesions, particularly in the final follow-up period, but there was no significant difference between the first two Groups I and II. However, healing of lesions and improvement of pain sensation was effective in Group III since a significant difference was found favoring Group III over both Groups I and II. Conclusion: No significant difference was found in treating erosive-ulcerative lesions of OLP by topical corticosteroids alone or combined with antifungal. However, when using SE-ACE in combination with topical corticosteroids plus antifungal, this approach may be effective in managing ulcerative lesions of OLP; but more research with a larger sample size and a longer evaluation period may be recommended. PMID:26681847

  18. Novel macrocyclic molecules based on 12a-N substituted 16-membered azalides and azalactams as potential antifungal agents.

    PubMed

    Wang, Xiaolei; Zhang, Shun; Pang, Yanlong; Yuan, Huihui; Liang, Xiaomei; Zhang, Jianjun; Wang, Daoquan; Wang, Mingan; Dong, Yanhong

    2014-02-12

    Novel macrocyclic molecules comprising sulfonyl and acyl moiety at the position N-12a of 16-membered azalides (6a-n) and azalactams (10a-r) scaffold were synthesized from cyclododecanone 1 as starting material via 5 steps and 4 steps, respectively. The antifungal activity of these compounds against Sclerotinia sclerotiorum, Pyricularia oryzae, Botrytis cinerea, Rhizoctonia solani and Phytophthora capsici were evaluated and found that compounds possessing α-exomethylene (6c, 6d, 6e and 6g) showed antifungal activity comparable to commercial fungicide Chlorothalonil against P. oryzae and compounds possessing p-chlorobenzoyl exhibited enhanced antifungal activity than those with other substituents against S. sclerotiorum, P. oryzae, and B. cinerea. These findings suggested that the α-exomethylene and p-chlorobenzoyl may be two potential pharmacological active groups with antifungal activities. PMID:24469079

  19. The in vitro antifungal activity of sudanese medicinal plants against Madurella mycetomatis, the eumycetoma major causative agent.

    PubMed

    Elfadil, Hassabelrasoul; Fahal, Ahmed; Kloezen, Wendy; Ahmed, Elhadi M; van de Sande, Wendy

    2015-03-01

    Eumycetoma is a debilitating chronic inflammatory fungal infection that exists worldwide but it is endemic in many tropical and subtropical regions. The major causative organism is the fungus Madurella mycetomatis. The current treatment of eumycetoma is suboptimal and characterized by low cure rate and high recurrence rates. Hence, an alternative therapy is needed to address this. Here we determined the antifungal activity of seven Sudanese medicinal plant species against Madurella mycetomatis. Of these, only three species; Boswellia papyrifera, Acacia nubica and Nigella sativa, showed some antifungal activity against M. mycetomatis and were further studied. Crude methanol, hexane and defatted methanol extracts of these species were tested for their antifungal activity. B. papyrifera had the highest antifungal activity (MIC50 of 1 ug/ml) and it was further fractionated. The crude methanol and the soluble ethyl acetate fractions of B. papyrifera showed some antifungal activity. The Gas-Liquid-Chromatography hybrid Mass-Spectrophotometer analysis of these two fractions showed the existence of beta-amyrin, beta-amyrone, beta-Sitosterol and stigmatriene. Stigmatriene had the best antifungal activity, compared to other three phytoconstituents, with an MIC-50 of 32 μg/ml. Although the antifungal activity of the identified phytoconstituents was only limited, the antifungal activity of the complete extracts is more promising, indicating synergism. Furthermore these plant extracts are also known to have anti-inflammatory activity and can stimulate wound-healing; characteristics which might also be of great value in the development of novel therapeutic drugs for this chronic inflammatory disease. Therefore further exploration of these plant species in the treatment of mycetoma is encouraging. PMID:25768115

  20. The In Vitro Antifungal Activity of Sudanese Medicinal Plants against Madurella mycetomatis, the Eumycetoma Major Causative Agent

    PubMed Central

    Elfadil, Hassabelrasoul; Fahal, Ahmed; Kloezen, Wendy; Ahmed, Elhadi M.; van de Sande, Wendy

    2015-01-01

    Eumycetoma is a debilitating chronic inflammatory fungal infection that exists worldwide but it is endemic in many tropical and subtropical regions. The major causative organism is the fungus Madurella mycetomatis. The current treatment of eumycetoma is suboptimal and characterized by low cure rate and high recurrence rates. Hence, an alternative therapy is needed to address this. Here we determined the antifungal activity of seven Sudanese medicinal plant species against Madurella mycetomatis. Of these, only three species; Boswellia papyrifera, Acacia nubica and Nigella sativa, showed some antifungal activity against M. mycetomatis and were further studied. Crude methanol, hexane and defatted methanol extracts of these species were tested for their antifungal activity. B. papyrifera had the highest antifungal activity (MIC50 of 1 ug/ml) and it was further fractionated. The crude methanol and the soluble ethyl acetate fractions of B. papyrifera showed some antifungal activity. The Gas-Liquid-Chromatography hybrid Mass-Spectrophotometer analysis of these two fractions showed the existence of beta-amyrin, beta-amyrone, beta-Sitosterol and stigmatriene. Stigmatriene had the best antifungal activity, compared to other three phytoconstituents, with an MIC-50 of 32 μg/ml. Although the antifungal activity of the identified phytoconstituents was only limited, the antifungal activity of the complete extracts is more promising, indicating synergism. Furthermore these plant extracts are also known to have anti-inflammatory activity and can stimulate wound-healing; characteristics which might also be of great value in the development of novel therapeutic drugs for this chronic inflammatory disease. Therefore further exploration of these plant species in the treatment of mycetoma is encouraging. PMID:25768115

  1. Ibuprofen potentiates the in vivo antifungal activity of fluconazole against Candida albicans murine infection.

    PubMed

    Costa-de-Oliveira, Sofia; Miranda, Isabel M; Silva-Dias, Ana; Silva, Ana P; Rodrigues, Acácio G; Pina-Vaz, Cidália

    2015-07-01

    Candida albicans is the most prevalent cause of fungemia worldwide. Its ability to develop resistance in patients receiving azole antifungal therapy is well documented. In a murine model of systemic infection, we show that ibuprofen potentiates fluconazole antifungal activity against a fluconazole-resistant strain, drastically reducing the fungal burden and morbidity. The therapeutic combination of fluconazole with ibuprofen may constitute a new approach for the management of antifungal therapeutics to reverse the resistance conferred by efflux pump overexpression.

  2. Ibuprofen Potentiates the In Vivo Antifungal Activity of Fluconazole against Candida albicans Murine Infection

    PubMed Central

    Miranda, Isabel M.; Silva-Dias, Ana; Silva, Ana P.; Rodrigues, Acácio G.; Pina-Vaz, Cidália

    2015-01-01

    Candida albicans is the most prevalent cause of fungemia worldwide. Its ability to develop resistance in patients receiving azole antifungal therapy is well documented. In a murine model of systemic infection, we show that ibuprofen potentiates fluconazole antifungal activity against a fluconazole-resistant strain, drastically reducing the fungal burden and morbidity. The therapeutic combination of fluconazole with ibuprofen may constitute a new approach for the management of antifungal therapeutics to reverse the resistance conferred by efflux pump overexpression. PMID:25845879

  3. Combination effects of (tri)azole fungicides on hormone production and xenobiotic metabolism in a human placental cell line.

    PubMed

    Rieke, Svenja; Koehn, Sophie; Hirsch-Ernst, Karen; Pfeil, Rudolf; Kneuer, Carsten; Marx-Stoelting, Philip

    2014-09-01

    Consumers are exposed to multiple residues of different pesticides via the diet. Therefore, EU legislation for pesticides requires the evaluation of single active substances as well as the consideration of combination effects. Hence the analysis of combined effects of substances in a broad dose range represents a key challenge to current experimental and regulatory toxicology. Here we report evidence for additive effects for (tri)azole fungicides, a widely used group of antifungal agents, in the human placental cell line Jeg-3. In addition to the triazoles cyproconazole, epoxiconazole, flusilazole and tebuconazole and the azole fungicide prochloraz also pesticides from other chemical classes assumed to act via different modes of action (i.e., the organophosphate chlorpyrifos and the triazinylsulfonylurea herbicide triflusulfuron-methyl) were investigated. Endpoints analysed include synthesis of steroid hormone production (progesterone and estradiol) and gene expression of steroidogenic and non-steroidogenic cytochrome-P-450 (CYP) enzymes. For the triazoles and prochloraz, a dose dependent inhibition of progesterone production was observed and additive effects could be confirmed for several combinations of these substances in vitro. The non-triazoles chlorpyrifos and triflusulfuron-methyl did not affect this endpoint and, in line with this finding, no additivity was observed when these substances were applied in mixtures with prochloraz. While prochloraz slightly increased aromatase expression and estradiol production and triflusulfuron-methyl decreased estradiol production, none of the other substances had effects on the expression levels of steroidogenic CYP-enzymes in Jeg-3 cells. For some triazoles, prochloraz and chlorpyrifos a significant induction of CYP1A1 mRNA expression and potential combination effects for this endpoint were observed. Inhibition of CYP1A1 mRNA induction by the AhR inhibitor CH223191 indicated AhR receptor dependence this effect. PMID

  4. Effects of azole treatments on the physical properties of Candida albicans plasma membrane: a spin probe EPR study.

    PubMed

    Sgherri, Cristina; Porta, Amalia; Castellano, Sabrina; Pinzino, Calogero; Quartacci, Mike F; Calucci, Lucia

    2014-01-01

    EPR spectroscopy was applied to investigate the effects of the treatment of Candida albicans cells with fluconazole (FLC) and two newly synthesized azoles (CPA18 and CPA109), in a concentration not altering yeast morphology, on the lipid organization and dynamics of the plasma membrane. Measurements were performed in the temperature range between 0°C and 40°C using 5-doxyl- (5-DSA) and 16-doxyl- (16-DSA) stearic acids as spin probes. 5-DSA spectra were typical of lipids in a highly ordered environment, whereas 16-DSA spectra consisted of two comparable components, one corresponding to a fluid bulk lipid domain in the membrane and the other to highly ordered and motionally restricted lipids interacting with integral membrane proteins. A line shape analysis allowed the relative proportion and the orientational order and dynamic parameters of the spin probes in the different environments to be determined. Smaller order parameters, corresponding to a looser lipid packing, were found for the treated samples with respect to the control one in the region close to the membrane surface probed by 5-DSA. On the other hand, data on 16-DSA indicated that azole treatments hamper the formation of ordered lipid domains hosting integral proteins and/or lead to a decrease in integral protein content in the membrane. The observed effects are mainly ascribable to the inhibition of ergosterol biosynthesis by the antifungal agents, although a direct interaction of the CPA compounds with the membrane bilayer in the region close to the lipid polar head groups cannot be excluded. PMID:24184423

  5. In vivo activity of Sapindus saponaria against azole-susceptible and -resistant human vaginal Candida species

    PubMed Central

    2011-01-01

    Background Study of in vivo antifungal activity of the hydroalcoholic extract (HE) and n-BuOH extract (BUTE) of Sapindus saponaria against azole-susceptible and -resistant human vaginal Candida spp. Methods The in vitro antifungal activity of HE, BUTE, fluconazole (FLU), and itraconazole (ITRA) was determined by the broth microdilution method. We obtained values of minimal inhibitory concentration (MIC) and minimum fungicide concentration (MFC) for 46 strains of C. albicans and 10 of C. glabrata isolated from patients with vulvovaginal candidiasis (VVC). VVC was induced in hyperestrogenic Wistar rats with azole-susceptible C. albicans (SCA), azole-resistant C. albicans (RCA), and azole-resistant C. glabrata (RCG). The rats were treated intravaginally with 0.1 mL of HE or BUTE at concentrations of 1%, 2.5% and 5%; 100 μg/mL of FLU (treatment positive control); or distilled water (negative control) at 1, 24, and 48 h after induction of the infection, and the progress of VVC was monitored by culturing and scanning electron microscopy (SEM). The toxicity was evaluated in cervical cells of the HeLa cell line. Results The extracts showed in vitro inhibitory and fungicidal activity against all the isolates, and the MIC and MFC values for the C. glabrata isolates were slightly higher. In vivo, the SCA, RCA, and RCG infections were eliminated by 21 days post-infection, with up to 5% HE and BUTE, comparable to the activity of FLU. No cytotoxic action was observed for either extract. Conclusions Our results demonstrated that HE and BUTE from S. saponaria show inhibitory and fungicidal activity in vitro, in addition to in vivo activity against azole-resistant vaginal isolates of C. glabrata and azole-susceptible and resistant isolates of C. albicans. Also considering the lack of cytotoxicity and the low concentrations of the extracts necessary to eliminate the infection in vivo, HE and BUTE show promise for continued studies with purified antifungal substances in VVC yeast

  6. Design, Synthesis, and Structure--Activity Relationship of New 2-Aryl-3,4-dihydro-β-carbolin-2-ium Salts as Antifungal Agents.

    PubMed

    Hou, Zhe; Zhu, Li-Fei; Yu, Xin-chi; Sun, Ma-Qiang; Miao, Fang; Zhou, Le

    2016-04-13

    Twenty-two 2-aryl-9-methyl-3,4-dihydro-β-carbolin-2-ium bromides along with four 9-demethylated derivatives were synthesized and characterized by spectroscopic analysis. By using the mycelium growth rate method, the compounds were evaluated for antifungal activities in vitro against six plant pathogenic fungi, and structure-activity relationships (SAR) were derived. Almost all of the compounds showed obvious inhibition activity on each of the fungi at 150 μM. For all of the fungi, 10 of the compounds showed average inhibition rates of >80% at 150 μM, and most of their EC50 values were in the range of 2.0-30.0 μM. SAR analysis showed that the substitution pattern of the N-aryl ring significantly influences the activity; N9-alkylation improves the activity, whereas aromatization of ring-C reduces the activity. It was concluded that the present research provided a series of new 2-aryl-9-alkyl-3,4-dihydro-β-carbolin-2-iums with excellent antifungal potency and structure optimization design for the development of new carboline antifungal agents. PMID:27004437

  7. Application of "Hydrogen-Bonding Interaction" in Drug Design. Part 2: Design, Synthesis, and Structure-Activity Relationships of Thiophosphoramide Derivatives as Novel Antiviral and Antifungal Agents.

    PubMed

    Lu, Aidang; Ma, Yuanyuan; Wang, Ziwen; Zhou, Zhenghong; Wang, Qingmin

    2015-11-01

    On the basis of the structure of natural product harmine, lead compound 18, and the structure of compounds in part 1, a series of thiophosphoramide derivatives 1-17 were designed and synthesized from various amines in one step. Their antiviral and antifungal activities were evaluated. Most of the compounds showed significantly higher antiviral activity against tobacco mosaic virus (TMV) than commercial virucide ribavirin. Compound (R,R)-17 showed the best anti-TMV activity in vitro (70%/500 μg/mL and 33%/100 μg/mL) and in vivo (inactivation effect, 68%/500 μg/mL and 30%/100 μg/mL; curative effect, 64%/500 μg/mL and 31%/100 μg/mL; protection effect, 66%/500 μg/mL and 31%/100 μg/mL), which is higher than that of ningnanmycin and lead compound 18. The antiviral activity of (R,R)-17·HCl is about similar to that of (R,R)-17. However, the antifungal activity of (R,R)-17·HCl against Puccinia sorghi is slightly lower than that of (R,R)-17. The systematic study provides compelling evidence that these simple thiophosphoramide compounds could become efficient antiviral and antifungal agents.

  8. Application of "Hydrogen-Bonding Interaction" in Drug Design. Part 2: Design, Synthesis, and Structure-Activity Relationships of Thiophosphoramide Derivatives as Novel Antiviral and Antifungal Agents.

    PubMed

    Lu, Aidang; Ma, Yuanyuan; Wang, Ziwen; Zhou, Zhenghong; Wang, Qingmin

    2015-11-01

    On the basis of the structure of natural product harmine, lead compound 18, and the structure of compounds in part 1, a series of thiophosphoramide derivatives 1-17 were designed and synthesized from various amines in one step. Their antiviral and antifungal activities were evaluated. Most of the compounds showed significantly higher antiviral activity against tobacco mosaic virus (TMV) than commercial virucide ribavirin. Compound (R,R)-17 showed the best anti-TMV activity in vitro (70%/500 μg/mL and 33%/100 μg/mL) and in vivo (inactivation effect, 68%/500 μg/mL and 30%/100 μg/mL; curative effect, 64%/500 μg/mL and 31%/100 μg/mL; protection effect, 66%/500 μg/mL and 31%/100 μg/mL), which is higher than that of ningnanmycin and lead compound 18. The antiviral activity of (R,R)-17·HCl is about similar to that of (R,R)-17. However, the antifungal activity of (R,R)-17·HCl against Puccinia sorghi is slightly lower than that of (R,R)-17. The systematic study provides compelling evidence that these simple thiophosphoramide compounds could become efficient antiviral and antifungal agents. PMID:26485246

  9. Inhibitors of the Glyoxylate Cycle Enzyme ICL1 in Candida albicans for Potential Use as Antifungal Agents

    PubMed Central

    Cheah, Hong-Leong; Lim, Vuanghao; Sandai, Doblin

    2014-01-01

    Candida albicans is an opportunistic pathogen that causes candidiasis in humans. In recent years, metabolic pathways in C. albicans have been explored as potential antifungal targets to treat candidiasis. The glyoxylate cycle, which enables C. albicans to survive in nutrient-limited host niches and its. Key enzymes (e.g., isocitrate lyase (ICL1), are particularly attractive antifungal targets for C. albicans. In this study, we used a new screening approach that better reflects the physiological environment that C. albicans cells experience during infection to identify potential inhibitors of ICL. Three compounds (caffeic acid (CAFF), rosmarinic acid (ROS), and apigenin (API)) were found to have antifungal activity against C. albicans when tested under glucose-depleted conditions. We further confirmed the inhibitory potential of these compounds against ICL using the ICL enzyme assay. Lastly, we assessed the bioavailability and toxicity of these compounds using Lipinski's rule-of-five and ADMET analysis. PMID:24781056

  10. Aspergillus fumigatus in the cystic fibrosis lung: pros and cons of azole therapy

    PubMed Central

    Burgel, Pierre-Régis; Paugam, André; Hubert, Dominique; Martin, Clémence

    2016-01-01

    Aspergillus fumigatus is the main fungus cultured in the airways of patients with cystic fibrosis (CF). Allergic bronchopulmonary aspergillosis occurs in ~10% of CF patients and is clearly associated with airway damage and lung function decline. The effects of A. fumigatus colonization in the absence of allergic bronchopulmonary aspergillosis are less well established. Retrospective clinical studies found associations of A. fumigatus-positive cultures with computed tomography scan abnormalities, greater risk of CF exacerbations and hospitalizations, and/or lung function decline. These findings were somewhat variable among studies and provided only circumstantial evidence for a role of A. fumigatus colonization in CF lung disease progression. The availability of a growing number of oral antifungal triazole drugs, together with the results of nonrandomized case series suggesting positive effects of azole therapies, makes it tempting to treat CF patients with these antifungal drugs. However, the only randomized controlled trial that has used itraconazole in CF patients showed no significant benefit. Because triazoles may have significant adverse effects and drug interactions, and because their prolonged use has been associated with the emergence of azole-resistant A. fumigatus isolates, it remains unclear whether or not CF patients benefit from azole therapy. PMID:27703383

  11. Molecular structures and biological evaluation of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone derivatives as potent antifungal agents

    NASA Astrophysics Data System (ADS)

    Pawar, Omkar; Patekar, Ashwini; Khan, Ayesha; Kathawate, Laxmi; Haram, Santosh; Markad, Ganesh; Puranik, Vedavati; Salunke-Gawali, Sunita

    2014-02-01

    Derivatives of 2-chloro-3-(n-alkylamino)-1,4-naphthoquinone {n-alkyl: methyl; L-1, ethyl; L-2, propyl; L-3 and butyl; L-4} have been synthesized and characterized by elemental analysis, FT-IR, 1H NMR, UV-visible spectroscopy, LC-MS and single crystal X-ray diffraction studies. Antifungal activity of L-1 to L-4 has been evaluated against Candida tropicalis, Candida albicans and Cladosporium herbarum. The intramolecular hydrogen bonding affects the N-H vibrational frequency in L-2 (3273 cm-1). The single crystal X-ray structure reveal that L-1 and L-3 crystallizes in triclinic P-1, whereas L-2 crystallizes in orthorhombic Pca21 space group. An extensive intra and intermolecular hydrogen bonding interactions were observed in L-1 to L-3 which leads to molecular association. Intramolecular N-H⋯O hydrogen bonding were observed in L-1 to L-3. Moreover π-π stacking interactions were observed between the quinonoid rings of L-1 and L-3, however no such interactions were observed in L-2. An electrochemical study showed molecular association of L-1 to L-4 in DMSO solution. Compounds L-1 to L-4 were found to be potent antifungal agents against all the three strains, especially against C. tropicalis. Amongst these promising antifungal candidates, L-1 showed better activity compared to the clinically administered antifungal drug Amphotericin B and Nitrofurantoin with MIC = 1.25 μg ml-1 and MIC = 0.025 μg ml-1 respectively against C. albicans. Structure and activity relationship (SAR) study suggest a Log P value of ˜2.0 and the cyclic voltammetry studies reveals additional chemical processes for L-1, which exhibits maximum activity against all fungal strains.

  12. Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose-lipid composite edible coatings for plums.

    PubMed

    Karaca, Hakan; Pérez-Gago, María B; Taberner, Verònica; Palou, Lluís

    2014-06-01

    Common food preservative agents were evaluated in in vitro tests for their antifungal activity against Monilinia fructicola, the most economically important pathogen causing postharvest disease of stone fruits. Radial mycelial growth was measured in Petri dishes of PDA amended with three different concentrations of the agents (0.01-0.2%, v/v) after 7 days of incubation at 25 °C. Thirteen out of fifteen agents tested completely inhibited the radial growth of the fungus at various concentrations. Among them, ammonium carbonate, ammonium bicarbonate and sodium bicarbonate were the most effective while sodium acetate and sodium formate were the least effective. The effective agents and concentrations were tested as ingredients of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings against brown rot disease on plums previously inoculated with M. fructicola (curative activity). 'Friar' and 'Larry Ann' plums were inoculated with the pathogen, coated with stable edible coatings about 24h later, and incubated at 20 °C and 90% RH. Disease incidence (%) and severity (lesion diameter) were determined after 4, 6, and 8 days of incubation and the 'area under the disease progress stairs' (AUDPS) was calculated. Coatings containing bicarbonates and parabens significantly reduced brown rot incidence in plums, but potassium sorbate, used at 1.0% in the coating formulation, was the most effective agent with a reduction rate of 28.6%. All the tested coatings reduced disease severity to some extent, but coatings containing 0.1% sodium methylparaben or sodium ethylparaben or 0.2% ammonium carbonate or ammonium bicarbonate were superior to the rest, with reduction rates of 45-50%. Overall, the results showed that most of the agents tested in this study had significant antimicrobial activity against M. fructicola and the application of selected antifungal edible coatings is a promising alternative for the control of postharvest brown rot in plums.

  13. Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose-lipid composite edible coatings for plums.

    PubMed

    Karaca, Hakan; Pérez-Gago, María B; Taberner, Verònica; Palou, Lluís

    2014-06-01

    Common food preservative agents were evaluated in in vitro tests for their antifungal activity against Monilinia fructicola, the most economically important pathogen causing postharvest disease of stone fruits. Radial mycelial growth was measured in Petri dishes of PDA amended with three different concentrations of the agents (0.01-0.2%, v/v) after 7 days of incubation at 25 °C. Thirteen out of fifteen agents tested completely inhibited the radial growth of the fungus at various concentrations. Among them, ammonium carbonate, ammonium bicarbonate and sodium bicarbonate were the most effective while sodium acetate and sodium formate were the least effective. The effective agents and concentrations were tested as ingredients of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings against brown rot disease on plums previously inoculated with M. fructicola (curative activity). 'Friar' and 'Larry Ann' plums were inoculated with the pathogen, coated with stable edible coatings about 24h later, and incubated at 20 °C and 90% RH. Disease incidence (%) and severity (lesion diameter) were determined after 4, 6, and 8 days of incubation and the 'area under the disease progress stairs' (AUDPS) was calculated. Coatings containing bicarbonates and parabens significantly reduced brown rot incidence in plums, but potassium sorbate, used at 1.0% in the coating formulation, was the most effective agent with a reduction rate of 28.6%. All the tested coatings reduced disease severity to some extent, but coatings containing 0.1% sodium methylparaben or sodium ethylparaben or 0.2% ammonium carbonate or ammonium bicarbonate were superior to the rest, with reduction rates of 45-50%. Overall, the results showed that most of the agents tested in this study had significant antimicrobial activity against M. fructicola and the application of selected antifungal edible coatings is a promising alternative for the control of postharvest brown rot in plums. PMID:24742996

  14. Etiologic Agents and Antifungal Susceptibility of Oral Candidosis from Romanian patients with HIV-infection or type 1 diabetes mellitus.

    PubMed

    Minea, Bogdan; Nastasa, Valentin; Kolecka, Anna; Mares, Magdalena; Marangoci, Narcisa; Rosca, Irina; Pinteala, Mariana; Hancianu, Monica; Mares, Mihai

    2016-01-01

    This is the first Romanian investigation of oral candidosis in patients suffering of HIV-infection or type 1 diabetes mellitus (T1DM). Candida albicans was the dominant species in both types of isolates: n = 14 (46.7%) in T1DM, n = 60 (69.8%) in HIV. The most frequent non-albicans Candida spp. were Candida kefyr (n = 6; 20%) in T1DM and Candida dubliniensis (n = 8; 9.3%) in HIV. Resistance to fluconazole was detected only in the HIV non-albicans Candida group (n = 8; 9.3%). All isolates were susceptible to VOR. The experimental drug MXP had MIC values equal or close to the ones of VOR. Echinocandin resistance was more frequent than azole resistance. PMID:27282005

  15. An overview of topical antifungal therapy in dermatomycoses. A North American perspective.

    PubMed

    Gupta, A K; Einarson, T R; Summerbell, R C; Shear, N H

    1998-05-01

    Dermatophytes cause fungal infections of keratinised tissues, e.g. skin, hair and nails. The organisms belong to 3 genera, Trichophyton, Epidermophyton and Microsporum. Dermatophytes may be grouped into 3 categories based on host preference and natural habitat. Anthropophilic species predominantly infect humans, geophilic species are soil based and may infect both humans and animals, zoophilic species generally infect non-human mammals. It is important to confirm mycologically the clinical diagnosis of onychomycosis and other tinea infections prior to commencing therapy. The identity of the fungal organism may provide guidance about the appropriateness of a given topical antifungal agent. Special techniques may be required to obtain the best yield of fungal organisms from a given site, especially the scalp and nails. It is also important to realise the limitations of certain diagnostic aids e.g., Wood's light examination is positive in tinea capitis due to M. canis and M. audouinii (ectothrix organisms); however, Wood's light examination is negative in T. tonsurans (endothrix organism). Similarly, it is important to be aware that cicloheximide in culture medium will inhibit growth of non-dermatophytes. Appropriate media are therefore required to evaluate the growth of some significant non-dermatophyte moulds. For tinea infections other than tinea capitis and tinea unguium, topical antifungals may be considered. For effective therapy of tinea capitis an oral antifungal is generally necessary. Similarly, oral antifungals are the therapy of choice, especially if onychomycosis is moderate to severe. Furthermore, where the tinea infection involves a large area, in an immunocompromised host or if infection is recurrent with poor response to topical agents, then oral antifungal therapy may be necessary. Topical antifungal agents may be broadly divided into specific and nonspecific agents. The former group includes the polyenes, azoles, allylamines, amorolfine, ciclopirox

  16. Azole fungicides - understanding resistance mechanisms in agricultural fungal pathogens.

    PubMed

    Price, Claire L; Parker, Josie E; Warrilow, Andrew G S; Kelly, Diane E; Kelly, Steven L

    2015-08-01

    Plant fungal pathogens can have devastating effects on a wide range of crops, including cereals and fruit (such as wheat and grapes), causing losses in crop yield, which are costly to the agricultural economy and threaten food security. Azole antifungals are the treatment of choice; however, resistance has arisen against these compounds, which could lead to devastating consequences. Therefore, it is important to understand how these fungicides are used and how the resistance arises in order to tackle the problem fully. Here, we give an overview of the problem and discuss the mechanisms that mediate azole resistance in agriculture (point mutations in the CYP51 amino acid sequence, overexpression of the CYP51 enzyme and overexpression of genes encoding efflux pump proteins). © 2015 Society of Chemical Industry.

  17. Antifungal Susceptibility Analysis of Clinical Isolates of Candida parapsilosis in Iran

    PubMed Central

    LOTFALI, Ensieh; KORDBACHEH, Parivash; MIRHENDI, Hossein; ZAINI, Farideh; GHAJARI, Ali; MOHAMMADI, Rasoul; NOORBAKHSH, Fatemeh; MOAZENI, Maryam; FALLAHI, Aliakbar; REZAIE, Sassan

    2016-01-01

    Background: Candida parapsilosis is an emergent agent of invasive fungal infections. This yeast is one of the five most widespread yeasts concerned in invasive candidiasis. C. parapsilosis stands out as the second most common yeast species isolated from patients with bloodstream infections especially in neonates with catheter. Recently several reports suggested that its reduced susceptibility to azoles and polyene might become a cause for clinical concern, although C. parapsilosis is not believed to be intensely prone to the development of antifungal resistance. Methods: In the present report, One hundred and twenty clinical isolates of C. parapsilosis complex were identified and differentiated by using PCR-RFLP analysis. The isolates were then analyzed to determine their susceptibility profile to fluconazole (FLU), itraconazole (ITC) and amphotericin B. The minimum inhibitory concentration (MIC) results were analyzed according to the standard CLSI guide. Results: All of isolates were identified as C. parapsilosis. No C. metapsilosis and C. orthopsilosis strains were found. Evaluation of the antifungal susceptibility profile showed that only three (2.5%) C. parapsilosis were resistant to fluconazole, three (2.5%) C. parapsilosis were resistant to itraconazole and two (1.7%) C. parapsilosis were amphotericin B resistant. Conclusion: Profiles in clinical isolates of C. parapsilosis can provide important information for the control of antifungal resistance as well as distribution and susceptibility profiles in populations. PMID:27141494

  18. Asexual sporulation facilitates adaptation: The emergence of azole resistance in Aspergillus fumigatus.

    PubMed

    Zhang, Jianhua; Debets, Alfons J M; Verweij, Paul E; Melchers, Willem J G; Zwaan, Bas J; Schoustra, Sijmen E

    2015-10-01

    Understanding the occurrence and spread of azole resistance in Aspergillus fumigatus is crucial for public health. It has been hypothesized that asexual sporulation, which is abundant in nature, is essential for phenotypic expression of azole resistance mutations in A. fumigatus facilitating subsequent spread through natural selection. Furthermore, the disease aspergilloma is associated with asexual sporulation within the lungs of patients and the emergence of azole resistance. This study assessed the evolutionary advantage of asexual sporulation by growing the fungus under pressure of one of five different azole fungicides over seven weeks and by comparing the rate of adaptation between scenarios of culturing with and without asexual sporulation. Results unequivocally show that asexual sporulation facilitates adaptation. This can be explained by the combination of more effective selection because of the transition from a multicellular to a unicellular stage, and by increased mutation supply due to the production of spores, which involves numerous mitotic divisions. Insights from this study are essential to unravel the resistance mechanisms of sporulating pathogens to chemical compounds and disease agents in general, and for designing strategies that prevent or overcome the emerging threat of azole resistance in particular. PMID:26315993

  19. Clotrimazole as a Potent Agent for Treating the Oomycete Fish Pathogen Saprolegnia parasitica through Inhibition of Sterol 14α-Demethylase (CYP51)

    PubMed Central

    Warrilow, Andrew G. S.; Hull, Claire M.; Rolley, Nicola J.; Parker, Josie E.; Nes, W. David; Smith, Stephen N.

    2014-01-01

    A candidate CYP51 gene encoding sterol 14α-demethylase from the fish oomycete pathogen Saprolegnia parasitica (SpCYP51) was identified based on conserved CYP51 residues among CYPs in the genome. It was heterologously expressed in Escherichia coli, purified, and characterized. Lanosterol, eburicol, and obtusifoliol bound to purified SpCYP51 with similar binding affinities (Ks, 3 to 5 μM). Eight pharmaceutical and six agricultural azole antifungal agents bound tightly to SpCYP51, with posaconazole displaying the highest apparent affinity (Kd, ≤3 nM) and prothioconazole-desthio the lowest (Kd, ∼51 nM). The efficaciousness of azole antifungals as SpCYP51 inhibitors was confirmed by 50% inhibitory concentrations (IC50s) of 0.17 to 2.27 μM using CYP51 reconstitution assays. However, most azole antifungal agents were less effective at inhibiting S. parasitica, Saprolegnia diclina, and Saprolegnia ferax growth. Epoxiconazole, fluconazole, itraconazole, and posaconazole failed to inhibit Saprolegnia growth (MIC100, >256 μg ml−1). The remaining azoles inhibited Saprolegnia growth only at elevated concentrations (MIC100 [the lowest antifungal concentration at which growth remained completely inhibited after 72 h at 20°C], 16 to 64 μg ml−1) with the exception of clotrimazole, which was as potent as malachite green (MIC100, ∼1 μg ml−1). Sterol profiles of azole-treated Saprolegnia species confirmed that endogenous CYP51 enzymes were being inhibited with the accumulation of lanosterol in the sterol fraction. The effectiveness of clotrimazole against SpCYP51 activity (IC50, ∼1 μM) and the concentration inhibiting the growth of Saprolegnia species in vitro (MIC100, ∼1 to 2 μg ml−1) suggest that clotrimazole could be used against Saprolegnia infections, including as a preventative measure by pretreatment of fish eggs, and for freshwater-farmed fish as well as in leisure activities. PMID:25085484

  20. Azole resistance in Candida spp. isolated from Catú Lake, Ceará, Brazil: an efflux-pump-mediated mechanism

    PubMed Central

    Brilhante, Raimunda S.N.; Paiva, Manoel A.N.; Sampaio, Célia M.S.; Castelo-Branco, Débora S.C.M.; Teixeira, Carlos E.C.; de Alencar, Lucas P.; Bandeira, Tereza J.P.G.; Monteiro, André J.; Cordeiro, Rossana A.; Pereira-Neto, Waldemiro A.; Sidrim, José J.C.; Moreira, José L.B.; Rocha, Marcos F.G.

    2016-01-01

    Since, there is no study reporting the mechanism of azole resistance among yeasts isolated from aquatic environments; the present study aims to investigate the occurrence of antifungal resistance among yeasts isolated from an aquatic environment, and assess the efflux-pump activity of the azole-resistant strains to better understand the mechanism of resistance for this group of drugs. For this purpose, monthly water and sediment samples were collected from Catú Lake, Ceará, Brazil, from March 2011 to February 2012. The obtained yeasts were identified based on morphological and biochemical characteristics. Of the 46 isolates, 37 were Candida spp., 4 were Trichosporon asahii, 3 were Cryptococcus laurentii, 1 Rhodotorula mucilaginosa, and 1 was Kodamaea ohmeri. These isolates were subjected to broth microdilution assay with amphotericin B, itraconazole, and fluconazole, according to the methodology standardized by the Clinical and Laboratory Standards Institute (CLSI). The minimum inhibitory concentrations (MICs) of amphotericin B, itraconazole, and fluconazole were 0.03125–2 μg/mL, 0.0625 to ≥16 μg/mL, and 0.5 to ≥64 μg/mL, respectively, and 13 resistant azole-resistant Candida isolates were detected. A reduction in the azole MICs leading to the phenotypical reversal of the azole resistance was observed upon addition of efflux-pump inhibitors. These findings suggest that the azole resistance among environmental Candida spp. is most likely associated with the overexpression of efflux-pumps. PMID:26887224

  1. In Vitro Interactions between Non-Steroidal Anti-Inflammatory Drugs and Antifungal Agents against Planktonic and Biofilm Forms of Trichosporon asahii

    PubMed Central

    Cong, Lin; Lu, Xuelian

    2016-01-01

    Increasing drug resistance has brought enormous challenges to the management of Trichosporon spp. infections. The in vitro antifungal activities of non-steroidal anti-inflammatory drugs (NSAIDs) against Candida spp. and Cryptococcus spp. were recently discovered. In the present study, the in vitro interactions between three NSAIDs (aspirin, ibuprofen and diclofenac sodium) and commonly used antifungal agents (fluconazole, itraconazole, voriconazole, caspofungin and amphotericin B) against planktonic and biofilm cells of T. asahii were evaluated using the checkerboard microdilution method. The spectrophotometric method and the XTT reduction assay were used to generate data on biofilm cells. The fractional inhibitory concentration index (FICI) and the ΔE model were compared to interpret drug interactions. Using the FICI, the highest percentages of synergistic effects against planktonic cells (86.67%) and biofilm cells (73.33%) were found for amphotericin B/ibuprofen, and caspofungin/ibuprofen showed appreciable percentages (73.33% for planktonic form and 60.00% for biofilm) as well. We did not observe antagonism. The ΔE model gave consistent results with FICI (86.67%). Our findings suggest that amphotericin B/ibuprofen and caspofungin/ibuprofen combinations have potential effects against T. asahii. Further in vivo and animal studies to investigate associated mechanisms need to be conducted. PMID:27275608

  2. Structure-activity relationships of 1,3-benzoxazole-4-carbonitriles as novel antifungal agents with potent in vivo efficacy.

    PubMed

    Kuroyanagi, Jun-ichi; Kanai, Kazuo; Horiuchi, Takao; Takeshita, Hiroshi; Kobayashi, Shozo; Achiwa, Issei; Yoshida, Kumi; Nakamura, Koichi; Kawakami, Katsuhiro

    2011-01-01

    A series of 1,3-benzoxazole-4-carbonitriles was synthesized and evaluated for its antifungal activity, solubility, and metabolic stability. Among those compounds, 4-cyano-N,N,5-trimethyl-7-[(3S)-3-methyl-3-(methylamino)pyrrolidin-1-yl]-6-phenyl-1,3-benzoxazole-2-carboxamide (16b) exhibited potent in vitro activity against Candida species, higher water solubility, and improved metabolic stability compared to lead compound 1. Compound 16b showed potent in vivo efficacy against mice Candida infection models and good bioavailability in rats.

  3. Amphotericin B-copper(II) complex as a potential agent with higher antifungal activity against Candida albicans.

    PubMed

    Chudzik, Barbara; Tracz, Izabela B; Czernel, Grzegorz; Fiołka, Marta J; Borsuk, Grzegorz; Gagoś, Mariusz

    2013-08-16

    Amphotericin B (AmB) is a polyene antibiotic produced by Streptomyces nodosus used for more than 50 years in the treatment of acute systemic fungal infections. It exhibits a broad spectrum of activity against fungal and protozoan pathogens with relatively rare resistance. The aim of this study was to prepare and evaluate the utility of the AmB-Cu(2+) complex as a potential compound with a high fungicidal activity at lower concentrations, compared with conventional AmB. It was hypothesized that insertion of copper ions into fungal cell membranes, together with the AmB-Cu(2+) complex bypassing the natural homeostatic mechanisms of this element, may contribute to the increased fungicidal activity of AmB. The analysis of results indicates the increased antifungal activity of the AmB-Cu(2+) complex against Candida albicans in comparison with the pure AmB and Fungizone. Additionally, it was stated that the increased antifungal activity of the AmB-Cu(2+) complex is not the sum of the toxic effects of AmB and Cu(2+) ions, but is a result of the unique structure of this compound.

  4. In Vitro Biochemical Study of CYP51-Mediated Azole Resistance in Aspergillus fumigatus

    PubMed Central

    Warrilow, Andrew G. S.; Parker, Josie E.; Price, Claire L.; Nes, W. David

    2015-01-01

    The incidence of triazole-resistant Aspergillus infections is increasing worldwide, often mediated through mutations in the CYP51A amino acid sequence. New classes of azole-based drugs are required to combat the increasing resistance to existing triazole therapeutics. In this study, a CYP51 reconstitution assay is described consisting of eburicol, purified recombinant Aspergillus fumigatus CPR1 (AfCPR1), and Escherichia coli membrane suspensions containing recombinant A. fumigatus CYP51 proteins, allowing in vitro screening of azole antifungals. Azole-CYP51 studies determining the 50% inhibitory concentration (IC50) showed that A. fumigatus CYP51B (Af51B IC50, 0.50 μM) was 34-fold more susceptible to inhibition by fluconazole than A. fumigatus CYP51A (Af51A IC50, 17 μM) and that Af51A and Af51B were equally susceptible to inhibition by voriconazole, itraconazole, and posaconazole (IC50s of 0.16 to 0.38 μM). Af51A-G54W and Af51A-M220K enzymes were 11- and 15-fold less susceptible to inhibition by itraconazole and 30- and 8-fold less susceptible to inhibition by posaconazole than wild-type Af51A, confirming the azole-resistant phenotype of these two Af51A mutations. Susceptibility to voriconazole of Af51A-G54W and Af51A-M220K was only marginally lower than that of wild-type Af51A. Susceptibility of Af51A-L98H to inhibition by voriconazole, itraconazole, and posaconazole was only marginally lower (less than 2-fold) than that of wild-type Af51A. However, Af51A-L98H retained 5 to 8% residual activity in the presence of 32 μM triazole, which could confer azole resistance in A. fumigatus strains that harbor the Af51A-L98H mutation. The AfCPR1/Af51 assay system demonstrated the biochemical basis for the increased azole resistance of A. fumigatus strains harboring G54W, L98H, and M220K Af51A point mutations. PMID:26459890

  5. Intermolecular interaction of voriconazole analogues with model membrane by DSC and NMR, and their antifungal activity using NMR based metabolic profiling.

    PubMed

    Kalamkar, Vaibhav; Joshi, Mamata; Borkar, Varsha; Srivastava, Sudha; Kanyalkar, Meena

    2013-11-01

    The development of novel antifungal agents with high susceptibility and increased potency can be achieved by increasing their overall lipophilicity. To enhance the lipophilicity of voriconazole, a second generation azole antifungal agent, we have synthesized its carboxylic acid ester analogues, namely p-methoxybenzoate (Vpmb), toluate (Vtol), benzoate (Vbz) and p-nitrobenzoate (Vpnb). The intermolecular interactions of these analogues with model membrane have been investigated using nuclear magnetic resonance (NMR) and differential scanning calorimetric (DSC) techniques. The results indicate varying degree of changes in the membrane bilayer's structural architecture and physico-chemical characteristics which possibly can be correlated with the antifungal effects via fungal membrane. Rapid metabolite profiling of chemical entities using cell preparations is one of the most important steps in drug discovery. We have evaluated the effect of synthesized analogues on Candida albicans. The method involves real time (1)H NMR measurement of intact cells monitoring NMR signals from fungal metabolites which gives Metabolic End Point (MEP). This is then compared with Minimum Inhibitory Concentration (MIC) determined using conventional methods. Results indicate that one of the synthesized analogues, Vpmb shows reasonably good activity.

  6. Novel point mutations in the ERG11 gene in clinical isolates of azole resistant Candida species.

    PubMed

    Silva, Danielly Beraldo dos Santos; Rodrigues, Luana Mireli Carbonera; Almeida, Adriana Araújo de; Oliveira, Kelly Mari Pires de; Grisolia, Alexéia Barufatti

    2016-03-01

    The azoles are the class of medications most commonly used to fight infections caused by Candida sp. Typically, resistance can be attributed to mutations in ERG11 gene (CYP51) which encodes the cytochrome P450 14α-demethylase, the primary target for the activity of azoles. The objective of this study was to identify mutations in the coding region of theERG11 gene in clinical isolates of Candida species known to be resistant to azoles. We identified three new synonymous mutations in the ERG11 gene in the isolates of Candida glabrata (C108G, C423T and A1581G) and two new nonsynonymous mutations in the isolates of Candida krusei--A497C (Y166S) and G1570A (G524R). The functional consequence of these nonsynonymous mutations was predicted using evolutionary conservation scores. The G524R mutation did not have effect on 14α-demethylase functionality, while the Y166S mutation was found to affect the enzyme. This observation suggests a possible link between the mutation and dose-dependent sensitivity to voriconazole in the clinical isolate of C. krusei. Although the presence of the Y166S in phenotype of reduced azole sensitivity observed in isolate C. krusei demands investigation, it might contribute to the search of new therapeutic agents against resistant Candida isolates. PMID:26982177

  7. Novel point mutations in the ERG11 gene in clinical isolates of azole resistant Candida species.

    PubMed

    Silva, Danielly Beraldo dos Santos; Rodrigues, Luana Mireli Carbonera; Almeida, Adriana Araújo de; Oliveira, Kelly Mari Pires de; Grisolia, Alexéia Barufatti

    2016-03-01

    The azoles are the class of medications most commonly used to fight infections caused by Candida sp. Typically, resistance can be attributed to mutations in ERG11 gene (CYP51) which encodes the cytochrome P450 14α-demethylase, the primary target for the activity of azoles. The objective of this study was to identify mutations in the coding region of theERG11 gene in clinical isolates of Candida species known to be resistant to azoles. We identified three new synonymous mutations in the ERG11 gene in the isolates of Candida glabrata (C108G, C423T and A1581G) and two new nonsynonymous mutations in the isolates of Candida krusei--A497C (Y166S) and G1570A (G524R). The functional consequence of these nonsynonymous mutations was predicted using evolutionary conservation scores. The G524R mutation did not have effect on 14α-demethylase functionality, while the Y166S mutation was found to affect the enzyme. This observation suggests a possible link between the mutation and dose-dependent sensitivity to voriconazole in the clinical isolate of C. krusei. Although the presence of the Y166S in phenotype of reduced azole sensitivity observed in isolate C. krusei demands investigation, it might contribute to the search of new therapeutic agents against resistant Candida isolates.

  8. Candida haemulonii and closely related species at 5 university hospitals in Korea: identification, antifungal susceptibility, and clinical features.

    PubMed

    Kim, Mi-Na; Shin, Jong Hee; Sung, Heungsup; Lee, Kyungwon; Kim, Eui-Chong; Ryoo, Namhee; Lee, Jin-Sol; Jung, Sook-In; Park, Kyung Hwa; Kee, Seung Jung; Kim, Soo Hyun; Shin, Myung Geun; Suh, Soon Pal; Ryang, Dong Wook

    2009-03-15

    Background. Candida haemulonii, a yeast species that often exhibits antifungal resistance, rarely causes human infection. During 2004-2006, unusual yeast isolates with phenotypic similarity to C. haemulonii were recovered from 23 patients (8 patients with fungemia and 15 patients with chronic otitis media) in 5 hospitals in Korea. Methods. Isolates were characterized using D1/D2 domain and ITS gene sequencing, and the susceptibility of the isolates to 6 antifungal agents was tested in vitro. Results. Gene sequencing of the blood isolates confirmed C. haemulonii group I (in 1 patient) and Candida pseudohaemulonii (in 7 patients), whereas all isolates recovered from the ear were a novel species of which C. haemulonii is its closest relative. The minimum inhibitory concentration (MIC) ranges of amphotericin B, fluconazole, itraconazole, and voriconazole for all isolates were 0.5-32 microg/mL (MIC(50), 1 microg/mL), 2-128 microg/mL (MIC(50), 4 microg/mL), 0.125-4 microg/mL (MIC(50), 0.25 microg/mL), and 0.03-2 microg/mL (MIC(50), 0.06 microg/mL), respectively. All isolates were susceptible to caspofungin (MIC, 0.125-0.25 microg/mL) and micafungin (MIC, 0.03-0.06 microg/mL). All cases of fungemia occurred in patients with severe underlying diseases who had central venous catheters. Three patients developed breakthrough fungemia while receiving antifungal therapy, and amphotericin B therapeutic failure, which was associated with a high MIC of amphotericin B (32 microg/mL), was observed in 2 patients. Conclusions. Candida species that are closely related to C. haemulonii are emerging sources of infection in Korea. These species show variable patterns of susceptibility to amphotericin B and azole antifungal agents.

  9. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea.

    PubMed

    Soylu, Emine Mine; Kurt, Sener; Soylu, Soner

    2010-10-15

    The aim of this study was to find an alternative to synthetic fungicides currently used in the control of devastating fungal pathogen Botrytis cinerea, the causal agent of grey mould disease of tomato. Antifungal activities of essential oils obtained from aerial parts of aromatic plants, which belong to the Lamiacea family such as origanum (Origanum syriacum L. var. bevanii), lavender (Lavandula stoechas L. var. stoechas) and rosemary (Rosmarinus officinalis L.), were investigated against B. cinerea. Contact and volatile phase effects of different concentrations of the essential oils were found to inhibit the growth of B. cinerea in a dose-dependent manner. Volatile phase effects of essential oils were consistently found to be more effective on fungal growth than contact phase effect. A volatile vapour of origanum oil at 0.2 μg/ml air was found to completely inhibit the growth of B. cinerea. Complete growth inhibition of pathogen by essential oil of lavender and rosemary was, however, observed at 1.6 μg/ml air concentrations. For the determination of the contact phase effects of the tested essential oils, origanum oil at 12.8 μg/ml was found to inhibit the growth of B. cinerea completely. Essential oils of rosemary and lavender were inhibitory at relatively higher concentrations (25.6 μg/ml). Spore germination and germ tube elongation were also inhibited by the essential oils tested. Light and scanning electron microscopic (SEM) observations revealed that the essential oils cause considerable morphological degenerations of the fungal hyphae such as cytoplasmic coagulation, vacuolations, hyphal shrivelling and protoplast leakage and loss of conidiation. In vivo assays with the origanum essential oil, being the most efficient essential oil, under greenhouse conditions using susceptible tomato plants resulted in good protection against grey mould severity especially as a curative treatment. This study has demonstrated that the essential oils are potential and

  10. Sterol Biosynthesis and Azole Tolerance Is Governed by the Opposing Actions of SrbA and the CCAAT Binding Complex

    PubMed Central

    Gsaller, Fabio; Furukawa, Takanori; Carr, Paul D.; Rash, Bharat; Capilla, Javier; Müller, Christoph; Bracher, Franz; Bowyer, Paul; Haas, Hubertus; Brakhage, Axel A.; Bromley, Michael J.

    2016-01-01

    Azole drugs selectively target fungal sterol biosynthesis and are critical to our antifungal therapeutic arsenal. However, resistance to this class of drugs, particularly in the major human mould pathogen Aspergillus fumigatus, is emerging and reaching levels that have prompted some to suggest that there is a realistic probability that they will be lost for clinical use. The dominating class of pan-azole resistant isolates is characterized by the presence of a tandem repeat of at least 34 bases (TR34) within the promoter of cyp51A, the gene encoding the azole drug target sterol C14-demethylase. Here we demonstrate that the repeat sequence in TR34 is bound by both the sterol regulatory element binding protein (SREBP) SrbA, and the CCAAT binding complex (CBC). We show that the CBC acts complementary to SrbA as a negative regulator of ergosterol biosynthesis and show that lack of CBC activity results in increased sterol levels via transcriptional derepression of multiple ergosterol biosynthetic genes including those coding for HMG-CoA-synthase, HMG-CoA-reductase and sterol C14-demethylase. In agreement with these findings, inactivation of the CBC increased tolerance to different classes of drugs targeting ergosterol biosynthesis including the azoles, allylamines (terbinafine) and statins (simvastatin). We reveal that a clinically relevant mutation in HapE (P88L) significantly impairs the binding affinity of the CBC to its target site. We identify that the mechanism underpinning TR34 driven overexpression of cyp51A results from duplication of SrbA but not CBC binding sites and show that deletion of the 34 mer results in lack of cyp51A expression and increased azole susceptibility similar to a cyp51A null mutant. Finally we show that strains lacking a functional CBC are severely attenuated for pathogenicity in a pulmonary and systemic model of aspergillosis. PMID:27438727

  11. Controlled nail delivery of a novel lipophilic antifungal agent using various modern drug carrier systems as well as in vitro and ex vivo model systems.

    PubMed

    Naumann, Sandy; Meyer, Jean-Philippe; Kiesow, Andreas; Mrestani, Yahya; Wohlrab, Johannes; Neubert, Reinhard H H

    2014-04-28

    The penetration behavior into human nails and animal hoof membranes of a novel antifungal agent (EV-086K) for the treatment of onychomycosis was investigated in this study. The new drug provides a high lipophilicity which is adverse for penetration into nails. Therefore, four different formulations were developed, with particular focus on a colloidal carrier system (CCS) due to its penetration enhancing properties. On the one hand, ex vivo penetration experiments on human nails were performed. Afterwards the human nail plates were cut by cryomicrotome in order to quantify the drug concentration in the dorsal, intermediate and ventral nail layer using high-performance liquid chromatography (HPLC) with UV detection. On the other hand, equine and bovine hoof membranes were used to determine the in vitro penetration of the drug into the acceptor compartment of an online diffusion cell coupled with Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy. In combination, both results should exhibit a correlation between the EV-086K penetration behavior in human nail plates and animal hoof membranes. The investigations showed that the developed CCS could increase drug delivery through the human nail most compared to other formulations (nail lacquer, solution and hydrogel). Using animal hooves in the online diffusion cell, we were able to calculate pharmacokinetic data of the penetration process, especially diffusion and permeability coefficients. Finally, a qualitative correlation between the penetration results of human nails and equine hooves was established. PMID:24560884

  12. Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: A low cytotoxic photocatalyst with antibacterial and antifungal properties.

    PubMed

    Ghayempour, Soraya; Montazer, Majid; Mahmoudi Rad, Mahnaz

    2016-01-20

    Tragacanth, a natural gum, has been used for centuries as emulsifier, thickener, stabilizer and binder in various fields such as food, medical and cosmetic industries. In this study, Tragacanth gum was used as a clean and natural reducing and stabilizing agent for preparation of urchin-like ZnO nanorod arrays at low-temperature using ultrasonic irradiation. The morphology and structure of urchin-like ZnO nanorod arrays was investigated by XRD, FESEM images, EDX, UV-vis and FT-IR spectroscopy. The hexagonal zinc oxide nanorods were synthesized with the average diameter of 55-80 nm and length of 240 nm. The peak appeared in 447 cm(-1) in FTIR spectra and the peak around 362.3 nm in UV-vis spectra of ZnO nanorods confirmed the successful synthesis of ZnO nanorods. The urchin-like ZnO nanorod arrays indicated a good photocatalytic activity through degradation of methylene blue with 92.2% efficiency and rate constant of 0.0027 min(-1) at 120 min. Finally, the synthesized urchin-like ZnO nanorod arrays indicated 100% antibacterial activity against S. aureus and E. coli and 93% antifungal activity against C. albicans with a low cytotoxicity.

  13. Controlled nail delivery of a novel lipophilic antifungal agent using various modern drug carrier systems as well as in vitro and ex vivo model systems.

    PubMed

    Naumann, Sandy; Meyer, Jean-Philippe; Kiesow, Andreas; Mrestani, Yahya; Wohlrab, Johannes; Neubert, Reinhard H H

    2014-04-28

    The penetration behavior into human nails and animal hoof membranes of a novel antifungal agent (EV-086K) for the treatment of onychomycosis was investigated in this study. The new drug provides a high lipophilicity which is adverse for penetration into nails. Therefore, four different formulations were developed, with particular focus on a colloidal carrier system (CCS) due to its penetration enhancing properties. On the one hand, ex vivo penetration experiments on human nails were performed. Afterwards the human nail plates were cut by cryomicrotome in order to quantify the drug concentration in the dorsal, intermediate and ventral nail layer using high-performance liquid chromatography (HPLC) with UV detection. On the other hand, equine and bovine hoof membranes were used to determine the in vitro penetration of the drug into the acceptor compartment of an online diffusion cell coupled with Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy. In combination, both results should exhibit a correlation between the EV-086K penetration behavior in human nail plates and animal hoof membranes. The investigations showed that the developed CCS could increase drug delivery through the human nail most compared to other formulations (nail lacquer, solution and hydrogel). Using animal hooves in the online diffusion cell, we were able to calculate pharmacokinetic data of the penetration process, especially diffusion and permeability coefficients. Finally, a qualitative correlation between the penetration results of human nails and equine hooves was established.

  14. In vitro evaluation of various antifungal agents alone and in combination by using an automatic turbidimetric system combined with viable count determinations.

    PubMed Central

    Van der Auwera, P; Ceuppens, A M; Heymans, C; Meunier, F

    1986-01-01

    A new method combining automatic turbidimetry and sequential viable count determinations was developed to evaluate the in vitro activity of various antifungal agents alone and in combination against three clinical isolates of Candida spp. (two Candida albicans and one C. tropicalis) at two inocula (10(-5) and 10(-6) CFU/ml). Specific parameters were derived from the time-kill curves: the maximal rate of killing, the lowest biomass, and the overnight biomass. Their intra-assay and between-assay reproducibilities were high, with respective standard deviations of 0.4 and 0.25 to 1.4 log CFU/ml. Amphotericin B alone showed a linear relationship between rate of killing or lowest biomass and the log of concentration from 0.03 to 4 mg/liter that was similar for the three strains tested. 5-Fluorocytosine (flucytosine) alone showed a dose-related reduction of overnight biomass for concentrations up to 8 mg/liter with no further increase at higher concentrations for one strain of C. albicans and a paradoxical decrease for one strain of C. tropicalis. Ketoconazole alone was found to be only fungistatic with no increased activity at concentrations up to 16 mg/liter. Amphotericin B plus flucytosine interacted synergistically in 46 to 60% of the combinations tested against C. tropicalis depending on the initial inoculum. Indifference was observed for the two strains of C. albicans. Amphotericin B or flucytosine plus ketoconazole was usually indifferent against the three tested strains. PMID:3729367

  15. Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: A low cytotoxic photocatalyst with antibacterial and antifungal properties.

    PubMed

    Ghayempour, Soraya; Montazer, Majid; Mahmoudi Rad, Mahnaz

    2016-01-20

    Tragacanth, a natural gum, has been used for centuries as emulsifier, thickener, stabilizer and binder in various fields such as food, medical and cosmetic industries. In this study, Tragacanth gum was used as a clean and natural reducing and stabilizing agent for preparation of urchin-like ZnO nanorod arrays at low-temperature using ultrasonic irradiation. The morphology and structure of urchin-like ZnO nanorod arrays was investigated by XRD, FESEM images, EDX, UV-vis and FT-IR spectroscopy. The hexagonal zinc oxide nanorods were synthesized with the average diameter of 55-80 nm and length of 240 nm. The peak appeared in 447 cm(-1) in FTIR spectra and the peak around 362.3 nm in UV-vis spectra of ZnO nanorods confirmed the successful synthesis of ZnO nanorods. The urchin-like ZnO nanorod arrays indicated a good photocatalytic activity through degradation of methylene blue with 92.2% efficiency and rate constant of 0.0027 min(-1) at 120 min. Finally, the synthesized urchin-like ZnO nanorod arrays indicated 100% antibacterial activity against S. aureus and E. coli and 93% antifungal activity against C. albicans with a low cytotoxicity. PMID:26572351

  16. In vitro antifungal susceptibility profile and correlation of mycelial and yeast forms of molecularly characterized Histoplasma capsulatum strains from India.

    PubMed

    Kathuria, Shallu; Singh, Pradeep K; Meis, Jacques F; Chowdhary, Anuradha

    2014-09-01

    The antifungal susceptibility profiles of the mycelial and yeast forms of 23 Histoplasma capsulatum strains from pulmonary and disseminated histoplasmosis patients in India are reported here. The MIC data of this dimorphic fungus had good agreement between both forms for azoles, amphotericin B, and caspofungin. Therefore, the use of mycelial inocula for H. capsulatum antifungal susceptibility testing is suggested, which is less time-consuming vis-à-vis the yeast form, which requires 6 to 8 weeks for conversion. PMID:24982084

  17. Azole Drug Import into the Pathogenic Fungus Aspergillus fumigatus

    PubMed Central

    Esquivel, Brooke D.; Smith, Adam R.; Zavrel, Martin

    2015-01-01

    The fungal pathogen Aspergillus fumigatus causes serious illness and often death when it invades tissues, especially in immunocompromised individuals. The azole class of drugs is the most commonly prescribed treatment for many fungal infections and acts on the ergosterol biosynthesis pathway. One common mechanism of acquired azole drug resistance in fungi is the prevention of drug accumulation to toxic levels in the cell. While drug efflux is a well-known resistance strategy, reduced azole import would be another strategy to maintain low intracellular azole levels. Recently, azole uptake in Candida albicans and other yeasts was analyzed using [3H]fluconazole. Defective drug import was suggested to be a potential mechanism of drug resistance in several pathogenic fungi, including Cryptococcus neoformans, Candida krusei, and Saccharomyces cerevisiae. We have adapted and developed an assay to measure azole accumulation in A. fumigatus using radioactively labeled azole drugs, based on previous work done with C. albicans. We used this assay to study the differences in azole uptake in A. fumigatus isolates under a variety of drug treatment conditions, with different morphologies and with a select mutant strain with deficiencies in the sterol uptake and biosynthesis pathway. We conclude that azole drugs are specifically selected and imported into the fungal cell by a pH- and ATP-independent facilitated diffusion mechanism, not by passive diffusion. This method of drug transport is likely to be conserved across most fungal species. PMID:25824209

  18. Treating chromoblastomycosis with systemic antifungals.

    PubMed

    Bonifaz, Alexandro; Paredes-Solís, Vanessa; Saúl, Amado

    2004-02-01

    Chromoblastomycosis is a subcutaneous mycosis for which there is no treatment of choice but rather, several treatment options, with low cure rates and many relapses. The choice of treatment should consider several conditions, such as the causal agent (the most common one being Fonsecaea pedrosoi ), extension of the lesions, clinical topography and health status of the patient. Most oral and systemic antifungals have been used; the best results have been obtained with itraconazole and terbinafine at high doses, for a mean of 6 - 12 months. In extensive and refractory cases, chemotherapy with oral antifungals may be associated with thermotherapy (local heat and/or cryosurgery). Limited or early cases may be managed with surgical methods, always associated with oral antifungal agents. It is important to determine the in vitro sensitivity of the major causal agents to the various drugs, by estimating the minimum inhibitory concentration, as well as drug tolerability and drug interactions.

  19. Determination of antifungal susceptibility patterns among the environmental isolates of Aspergillus fumigatus in Iran

    PubMed Central

    Mohammadi, Faezeh; Dehghan, Parvin; Nekoeian, Shahram; Hashemi, Seyed Jamal

    2016-01-01

    Background: In recent years, triazole-resistant environmental isolates of Aspergillus fumigatus have emerged in Europe and Asia. Azole resistance has been reported in patients who are treated with long-term azole therapy or exposure of the fungus spores to the azole fungicides used in agriculture. To date, a wide range of mutations in A. fumigatus have been described conferring azole-resistance, which commonly involves modifications in the cyp51A gene. We investigated antifungal susceptibility pattern of environmental isolates of A. fumigatus. Materials and Methods: In this study, 170 environmental samples collected from indoors surfaces of three hospitals in Iran. It was used β-tubulin gene to confirm the all of A. fumigatus isolates, which was identified by conventional methods. Furthermore, the antifungal susceptibility of itraconazole, voriconazole, and posaconazole was investigated using broth microdilution test, according to European Committee on Antimicrobial Susceptibility testing reference method. Results: From a total of 158 environmental molds fungi obtained from the hospitals, 58 isolates were identified as A. fumigatus by amplification of expected size of β-tubulin gene (~500 bp). In this study, in vitro antifungal susceptibility testing has shown that there were not high minimum inhibitory concentration values of triazole antifungals in all of the 58 environmental isolates of A. fumigatus. Conclusion: Our findings demonstrated that there was not azole-resistant among environmental isolates of A. fumigatus. Medical triazoles compounds have structural similarity with triazole fungicide compounds in agriculture, therefore, resistance development through exposure to triazole fungicide compounds in the environment is important but it sounds there is not a serious health problem in drug resistance in environmental isolates in Iran.

  20. Determination of antifungal susceptibility patterns among the environmental isolates of Aspergillus fumigatus in Iran

    PubMed Central

    Mohammadi, Faezeh; Dehghan, Parvin; Nekoeian, Shahram; Hashemi, Seyed Jamal

    2016-01-01

    Background: In recent years, triazole-resistant environmental isolates of Aspergillus fumigatus have emerged in Europe and Asia. Azole resistance has been reported in patients who are treated with long-term azole therapy or exposure of the fungus spores to the azole fungicides used in agriculture. To date, a wide range of mutations in A. fumigatus have been described conferring azole-resistance, which commonly involves modifications in the cyp51A gene. We investigated antifungal susceptibility pattern of environmental isolates of A. fumigatus. Materials and Methods: In this study, 170 environmental samples collected from indoors surfaces of three hospitals in Iran. It was used β-tubulin gene to confirm the all of A. fumigatus isolates, which was identified by conventional methods. Furthermore, the antifungal susceptibility of itraconazole, voriconazole, and posaconazole was investigated using broth microdilution test, according to European Committee on Antimicrobial Susceptibility testing reference method. Results: From a total of 158 environmental molds fungi obtained from the hospitals, 58 isolates were identified as A. fumigatus by amplification of expected size of β-tubulin gene (~500 bp). In this study, in vitro antifungal susceptibility testing has shown that there were not high minimum inhibitory concentration values of triazole antifungals in all of the 58 environmental isolates of A. fumigatus. Conclusion: Our findings demonstrated that there was not azole-resistant among environmental isolates of A. fumigatus. Medical triazoles compounds have structural similarity with triazole fungicide compounds in agriculture, therefore, resistance development through exposure to triazole fungicide compounds in the environment is important but it sounds there is not a serious health problem in drug resistance in environmental isolates in Iran. PMID:27656605

  1. Species Distribution and In Vitro Antifungal Susceptibility of Vulvovaginal Candida Isolates in China

    PubMed Central

    Wang, Feng-Juan; Zhang, Dai; Liu, Zhao-Hui; Wu, Wen-Xiang; Bai, Hui-Hui; Dong, Han-Yu

    2016-01-01

    Background: Vulvovaginal candidiasis (VVC) was a common infection associated with lifelong harassment of woman's social and sexual life. The purpose of this study was to describe the species distribution and in vitro antifungal susceptibility of Candida species (Candida spp.) isolated from patients with VVC over 8 years. Methods: Species which isolated from patients with VVC in Peking University First Hospital were identified using chromogenic culture media. Susceptibility to common antifungal agents was determined using agar diffusion method based on CLSI M44-A2 document. SPSS software (version 14.0, Inc., Chicago, IL, USA) was used for statistical analysis, involving statistical description and Chi-square test. Results: The most common strains were Candida (C.) albicans, 80.5% (n = 1775) followed by C. glabrata, 18.1% (n = 400). Nystatin exhibited excellent activity against all species (<4% resistant [R]). Resistance to azole drugs varied among different species. C. albicans: clotrimazole (3.1% R) < fluconazole (16.6% R) < itraconazole (51.5% R) < miconazole (54.0% R); C. glabrata: miconazole (25.6% R) < clotrimazole (50.5% R) < itraconazole (61.9% R) < fluconazole (73.3% R); Candida krusei: clotrimazole (0 R) < fluconazole (57.7% R) < miconazole (73.1% R) < itraconazole (83.3% R). The susceptibility of fluconazole was noticeably decreasing among all species in the study period. Conclusions: Nystatin was the optimal choice for the treatment of VVC at present. The species distribution and in vitro antifungal susceptibility of Candida spp. isolated from patients with VVC had changed over time. PMID:27174323

  2. In Vitro Susceptibility and Trailing Growth Effect of Clinical Isolates of Candida Species to Azole Drugs

    PubMed Central

    Zomorodian, Kamiar; Bandegani, Azadeh; Mirhendi, Hossein; Pakshir, Keyvan; Alinejhad, Navvab; Poostforoush Fard, Ali

    2016-01-01

    Background: Emergence of resistance to respective antifungal drugs is a primary concern for the treatment of candidiasis. Hence, determining antifungal susceptibility of the isolated yeasts is of special importance for effective therapy. For this purpose, the clinical laboratory standard institute (CLSI) has introduced a broth microdilution method to determine minimum inhibitory concentration (MIC). However, the so-called “Trailing effect” phenomenon might sometimes pose ambiguity in the interpretation of the results. Objectives: The present study aimed to determine the in vitro susceptibility of clinical isolates of Candida against azoles and the frequency of the Trailing effect. Materials and Methods: A total of 193 Candida isolates were prospectively collected and identified through the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Using a broth microdilution test, according to the guidelines of CLSI M27-A3, antifungal susceptibilities of the isolated yeasts against Fluconazole (FLU), Itraconazole (ITR), Ketoconazole (KET) and Voriconazole (VOR) were assessed. Moreover, trailing growth was determined when a susceptible MIC was incubated for 24 hours, and turned into a resistant one after 48 hours of incubation. Results: Among the tested antifungal drugs in this study, the highest rate of resistance was observed against ITR (28.5%) followed by VOR (26.4%), FLU (20.8%) and KET (1.5%). The trailing effect was induced in 27 isolates (14.0%) by VOR, in 26 isolates (13.5%) by ITR, in 24 isolates (12.4%) by FLU, and in 19 isolates (9.8%) by KET. Conclusions: The monitoring of antifungal susceptibilities of Candida species isolated from clinical sources is highly recommended for the efficient management of patients. Moreover, the trailing effect should be taken into consideration once the interpretation of the results is intended. PMID:27127587

  3. Antifungal agent susceptibilities and interpretation of Malassezia pachydermatis and Candida parapsilosis isolated from dogs with and without seborrheic dermatitis skin.

    PubMed

    Yurayart, Chompoonek; Nuchnoul, Noppawan; Moolkum, Pornsawan; Jirasuksiri, Supitcha; Niyomtham, Waree; Chindamporn, Ariya; Kajiwara, Susumu; Prapasarakul, Nuvee

    2013-10-01

    Malassezia pachydermatis and Candida parapsilosis are recognized as commensal yeasts on the skin of healthy dogs but also causative agents of eborrheic dermatitis, especially in atopic dogs. We determined and compared the susceptibility levels of yeasts isolated from dogs with and without seborrheic dermatitis (SD) using the disk diffusion method (DD) for itraconazole (ITZ), ketoconazole (KTZ), nystatin (NYS), terbinafine (TERB) and 5-fluorocytosine (5-FC) and the broth microdilution method (BMD) for ITZ and KTZ. The reliability between the methods was assessed using an agreement analysis and linear regression. Forty-five M. pachydermatis and 28 C. parapsilosis isolates were identified based on physiological characteristics and an approved molecular analysis. By DD, all tested M. pachydermatis isolates were susceptible to ITZ, KTZ, NYS and TERB but resistant to 5-FC. Only 46 - 60% of the tested C. parapsilosis isolates were susceptible to KTZ, TERB and 5-FC, but ITZ and NYS were effective against all. By BMD, over 95% of M. pachydermatis isolates were susceptible to KTZ and ITZ with an MIC90 < 0.03 and 0.12 μg/ml, respectively. The frequency of KTZ- and ITZ-resistant C. parapsilosis was 29% and 7%, and the MIC90 values were 1 μg/ml and 0.5-1 μg/ml, respectively. Regarding the agreement analysis, 2.2% of minor errors were observed in M. pachydermatis and 0.2-1% of very major errors occurred among C. parapsilosis. There were no significant differences in the yeast resistance rates between dogs with and without SD. KTZ and ITZ were still efficacious for M. pachydermatis but a high rate of KTZ resistant was reported in C. parapsilosis. PMID:23547880

  4. Prevalence, Distribution, and Antifungal Susceptibility Profiles of Candida parapsilosis, C. orthopsilosis, and C. metapsilosis in a Tertiary Care Hospital▿

    PubMed Central

    Silva, Ana P.; Miranda, Isabel M.; Lisboa, Carmen; Pina-Vaz, Cidália; Rodrigues, Acácio G.

    2009-01-01

    Candida parapsilosis, an emergent agent of nosocomial infections, was previously made up of a complex of three genetically distinct groups (groups I, II, and III). Recently, the C. parapsilosis groups have been renamed as distinct species: C. parapsilosis sensu stricto, C. orthopsilosis, and C. metapsilosis. In Portugal, no data pertaining to the distribution and antifungal susceptibility of these Candida species are yet available. In the present report, we describe the incidence and distribution of C. parapsilosis sensu stricto, C. orthopsilosis, and C. metapsilosis among 175 clinical and environmental isolates previously identified by conventional methods as C. parapsilosis. We also evaluated the in vitro susceptibilities of the isolates to fluconazole, voriconazole, posaconazole, amphotericin B, and two echinocandins, caspofungin and anidulafungin. Of the 175 isolates tested, 160 (91.4%) were identified as C. parapsilosis sensu stricto, 4 (2.3%) were identified as C. orthopsilosis, and 5 (2.9%) were identified as C. metapsilosis. Six isolates corresponded to species other than the C. parapsilosis group. Interestingly, all isolates from blood cultures corresponded to C. parapsilosis sensu stricto. Evaluation of the antifungal susceptibility profile showed that only nine (5.6%) C. parapsilosis sensu stricto strains were susceptible-dose dependent or resistant to fluconazole, and a single strain displayed a multiazole-resistant phenotype; two (1.3%) C. parapsilosis sensu stricto strains were amphotericin B resistant. All C. orthopsilosis and C. metapsilosis isolates were susceptible to azoles and amphotericin B. A high number of strains were nonsusceptible to the echinocandins (caspofungin and anidulafungin). PMID:19494078

  5. Antifungal miconazole induces cardiotoxicity via inhibition of APE/Ref-1-related pathway in rat neonatal cardiomyocytes.

    PubMed

    Won, Kyung-Jong; Lin, Hai Yue; Jung, Soohyun; Cho, Soo Min; Shin, Ho-Chul; Bae, Young Min; Lee, Seung Hyun; Kim, Hyun-Jung; Jeon, Byeong Hwa; Kim, Bokyung

    2012-04-01

    Effects of miconazole, an azole antifungal, have not been fully determined in cardiomyocytes. We therefore identified the transcriptome in neonatal rat cardiomyocytes responding to miconazole using DNA microarray analysis and selected a gene and investigated its role in cardiomyocytes. Miconazole dose-dependently increased the levels of superoxide (O(2)(-)) and apoptosis in cardiomyocytes; these increases were inhibited by treatment with antioxidants. The DNA microarray revealed that 4163 genes were upregulated and 4829 genes downregulated by more than threefold in miconazole-treated cardiomyocytes compared with the vehicle-treated control. Moreover, redox homeostasis-, oxidative stress-, and reactive oxygen species (ROS)-related categories of genes were strongly affected by miconazole treatment. Among genes overlapped in all these categories, apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1), a redox-related gene, was prominent and was diminished in the miconazole-treated group. Changes in the O(2)(-) production and apoptosis induction in response to miconazole were inhibited in cardiomyocytes transfected with adenoviral APE/Ref-1. Overexpression of APE/Ref-1 reversed the reduction in beating frequency induced by miconazole. Our results demonstrate that miconazole may induce rat cardiotoxicity via a ROS-mediated pathway, which is initiated by the inhibition of APE/Ref-1 expression. This possible new adverse event in cardiomyocyte function caused by miconazole may provide a basis for the development of novel antifungal agents.

  6. Cross-resistance to fluconazole induced by exposure to the agricultural azole tetraconazole: an environmental resistance school?

    PubMed

    Rocha, Marcos Fábio Gadelha; Alencar, L P; Paiva, M A N; Melo, Luciana Magalhães; Bandeira, Silviane Praciano; Ponte, Y B; Sales, Jamille Alencar; Guedes, G M M; Castelo-Branco, D S C M; Bandeira, T J P G; Cordeiro, R A; Pereira-Neto, W A; Brandine, G S; Moreira, José Luciano Bezerra; Sidrim, José Júlio Costa; Brilhante, Raimunda Sâmia Nogueira

    2016-05-01

    This study aimed to investigate the influence of tetraconazole and malathion, both used in agricultural activities, on resistance to fluconazole, itraconazole and voriconazole in Candida parapsilosis ATCC 22019. The susceptibility to tetraconazole, malathion, fluconazole, itraconazole and voriconazole, through broth microdilution. Then, 12 independent replicates, were separated and exposed to four treatment groups, each one containing three replicates: G1: tetraconazole; G2: malathion; G3: fluconazole (positive control); G4: negative control. Replicates from G1, G2 and G3, were exposed to weekly increasing concentrations of tetraconazole, malathion and fluconazole, respectively, ranging from MIC/2 to 32 × MIC, throughout 7 weeks. The exposure to tetraconazole, but not malathion, decreased susceptibility to clinical azoles, especially fluconazole. The tetraconazole-induced fluconazole resistance is partially mediated by the increased activity of ATP-dependent efflux pumps, considering the increase in antifungal susceptibility after the addition of the efflux pump inhibitor, promethazine, and the increase in rhodamine 6G efflux and CDR gene expression in the G1 replicates. Moreover, MDR expression was only detected in G1 and G3 replicates, suggesting that MDR pumps are also involved in tetraconazole-induced fluconazole resistance. It is noteworthy that tetraconazole and fluconazole-treated replicates behaved similarly, therefore, resistance to azoles of clinical use may be a consequence of using azoles in farming activities. PMID:26864989

  7. [Pharmacology of the antifungals used in the treatment of aspergillosis].

    PubMed

    Azanza, José Ramón; Sádaba, Belén; Gómez-Guíu, Almudena

    2014-01-01

    The treatment of invasive aspergillosis requires the use of drugs that characteristically have complex pharmacokinetic properties, the knowledge of which is essential to achieve maximum efficacy with minimal risk to the patient. The lipid-based amphotericin B formulations vary significantly in their pharmacokinetic behaviour, with very high plasma concentrations of the liposomal form, probably related to the presence of cholesterol in their structure. Azoles have a variable absorption profile, particularly in the case of itraconazole and posaconazole, with the latter very dependent on multiple factors. This may also lead to variations in voriconazole, which requires considering the possibility of monitoring plasma concentrations. The aim of this article is to review some of the most relevant aspects of the pharmacology of the antifungals used in the prophylaxis and treatment of the Aspergillus infection. For this reason, it includes the most relevant features of some of the azoles normally prescribed in this infection (itraconazole, posaconazole and voriconazole) and the amphotericin B formulations.

  8. Deletion of the Uracil Permease Gene Confers Cross-Resistance to 5-Fluorouracil and Azoles in Candida lusitaniae and Highlights Antagonistic Interaction between Fluorinated Nucleotides and Fluconazole

    PubMed Central

    Gabriel, Frédéric; Sabra, Ayman; El-Kirat-Chatel, Sofiane; Pujol, Sophie; Fitton-Ouhabi, Valérie; Brèthes, Daniel; Dementhon, Karine; Accoceberry, Isabelle

    2014-01-01

    We characterized two additional membrane transporters (Fur4p and Dal4p) of the nucleobase cation symporter 1 (NCS1) family involved in the uptake transport of pyrimidines and related molecules in the opportunistic pathogenic yeast Candida lusitaniae. Simple and multiple null mutants were constructed by gene deletion and genetic crosses. The function of each transporter was characterized by supplementation experiments, and the kinetic parameters of the uptake transport of uracil were measured using radiolabeled substrate. Fur4p specifically transports uracil and 5-fluorouracil. Dal4p is very close to Fur4p and transports allantoin (glyoxyldiureide). Deletion of the FUR4 gene confers resistance to 5-fluorouracil as well as cross-resistance to triazoles and imidazole antifungals when they are used simultaneously with 5-fluorouracil. However, the nucleobase transporters are not involved in azole uptake. Only fluorinated pyrimidines, not pyrimidines themselves, are able to promote cross-resistance to azoles by both the salvage and the de novo pathway of pyrimidine synthesis. A reinterpretation of the data previously obtained led us to show that subinhibitory doses of 5-fluorocytosine, 5-fluorouracil, and 5-fluorouridine also were able to trigger resistance to fluconazole in susceptible wild-type strains of C. lusitaniae and of different Candida species. Our results suggest that intracellular fluorinated nucleotides play a key role in azole resistance, either by preventing azoles from targeting the lanosterol 14-alpha-demethylase or its catalytic site or by acting as a molecular switch for the triggering of efflux transport. PMID:24867971

  9. Comparative Lipidomics in Clinical Isolates of Candida albicans Reveal Crosstalk between Mitochondria, Cell Wall Integrity and Azole Resistance

    PubMed Central

    Singh, Ashutosh; Yadav, Vipin; Prasad, Rajendra

    2012-01-01

    Prolonged usage of antifungal azoles which target enzymes involved in lipid biosynthesis invariably leads to the development of multi-drug resistance (MDR) in Candida albicans. We had earlier shown that membrane lipids and their fluidity are closely linked to the MDR phenomenon. In one of our recent studies involving comparative lipidomics between azole susceptible (AS) and azole resistant (AR) matched pair clinical isolates of C. albicans, we could not see consistent differences in the lipid profiles of AS and AR strains because they came from different patients and so in this study, we have used genetically related variant recovered from the same patient collected over a period of 2-years. During this time, the levels of fluconazole (FLC) resistance of the strain increased by over 200-fold. By comparing the lipid profiles of select isolates, we were able to observe gradual and statistically significant changes in several lipid classes, particularly in plasma membrane microdomain specific lipids such as mannosylinositolphosphorylceramides and ergosterol, and in a mitochondrial specific phosphoglyceride, phosphatidyl glycerol. Superimposed with these quantitative and qualitative changes in the lipid profiles, were simultaneous changes at the molecular lipid species levels which again coincided with the development of resistance to FLC. Reverse transcriptase-PCR of the key genes of the lipid metabolism validated lipidomic picture. Taken together, this study illustrates how the gradual corrective changes in Candida lipidome correspond to the development of FLC tolerance. Our study also shows a first instance of the mitochondrial membrane dysfunction and defective cell wall (CW) in clinical AR isolates of C. albicans, and provides evidence of a cross-talk between mitochondrial lipid homeostasis, CW integrity and azole tolerance. PMID:22761908

  10. Contribution of CgPDR1-regulated genes in enhanced virulence of azole-resistant Candida glabrata.

    PubMed

    Ferrari, Sélène; Sanguinetti, Maurizio; Torelli, Riccardo; Posteraro, Brunella; Sanglard, Dominique

    2011-03-09

    In Candida glabrata, the transcription factor CgPdr1 is involved in resistance to azole antifungals via upregulation of ATP binding cassette (ABC)-transporter genes including at least CgCDR1, CgCDR2 and CgSNQ2. A high diversity of GOF (gain-of-function) mutations in CgPDR1 exists for the upregulation of ABC-transporters. These mutations enhance C. glabrata virulence in animal models, thus indicating that CgPDR1 might regulate the expression of yet unidentified virulence factors. We hypothesized that CgPdr1-dependent virulence factor(s) should be commonly regulated by all GOF mutations in CgPDR1. As deduced from transcript profiling with microarrays, a high number of genes (up to 385) were differentially regulated by a selected number (7) of GOF mutations expressed in the same genetic background. Surprisingly, the transcriptional profiles resulting from expression of GOF mutations showed minimal overlap in co-regulated genes. Only two genes, CgCDR1 and PUP1 (for PDR1 upregulated and encoding a mitochondrial protein), were commonly upregulated by all tested GOFs. While both genes mediated azole resistance, although to different extents, their deletions in an azole-resistant isolate led to a reduction of virulence and decreased tissue burden as compared to clinical parents. As expected from their role in C. glabrata virulence, the two genes were expressed as well in vitro and in vivo. The individual overexpression of these two genes in a CgPDR1-independent manner could partially restore phenotypes obtained in clinical isolates. These data therefore demonstrate that at least these two CgPDR1-dependent and -upregulated genes contribute to the enhanced virulence of C. glabrata that acquired azole resistance.

  11. Human and ecological risk assessment of a crop protection chemical: a case study with the azole fungicide epoxiconazole.

    PubMed

    Chambers, Janice E; Greim, Helmut; Kendall, Ronald J; Segner, Helmut; Sharpe, Richard M; Van Der Kraak, Glen

    2014-02-01

    Conventional risk assessments for crop protection chemicals compare the potential for causing toxicity (hazard identification) to anticipated exposure. New regulatory approaches have been proposed that would exclude exposure assessment and just focus on hazard identification based on endocrine disruption. This review comprises a critical analysis of hazard, focusing on the relative sensitivity of endocrine and non-endocrine endpoints, using a class of crop protection chemicals, the azole fungicides. These were selected because they are widely used on important crops (e.g. grains) and thereby can contact target and non-target plants and enter the food chain of humans and wildlife. Inhibition of lanosterol 14α-demethylase (CYP51) mediates the antifungal effect. Inhibition of other CYPs, such as aromatase (CYP19), can lead to numerous toxicological effects, which are also evident from high dose human exposures to therapeutic azoles. Because of its widespread use and substantial database, epoxiconazole was selected as a representative azole fungicide. Our critical analysis concluded that anticipated human exposure to epoxiconazole would yield a margin of safety of at least three orders of magnitude for reproductive effects observed in laboratory rodent studies that are postulated to be endocrine-driven (i.e. fetal resorptions). The most sensitive ecological species is the aquatic plant Lemna (duckweed), for which the margin of safety is less protective than for human health. For humans and wildlife, endocrine disruption is not the most sensitive endpoint. It is concluded that conventional risk assessment, considering anticipated exposure levels, will be protective of both human and ecological health. Although the toxic mechanisms of other azole compounds may be similar, large differences in potency will require a case-by-case risk assessment. PMID:24274332

  12. Antifungal prophylaxis during neutropenia and immunodeficiency.

    PubMed Central

    Lortholary, O; Dupont, B

    1997-01-01

    Fungal infections represent a major source of morbidity and mortality in patients with almost all types of immunodeficiencies. These infections may be nosocomial (aspergillosis) or community acquired (cryptococcosis), or both (candidiasis). Endemic mycoses such as histoplasmosis, coccidioidomycosis, and penicilliosis may infect many immunocompromised hosts in some geographic areas and thereby create major public health problems. With the wide availability of oral azoles, antifungal prophylactic strategies have been extensively developed. However, only a few well-designed studies involving strict criteria have been performed, mostly in patients with hematological malignancies or AIDS. In these situations, the best dose and duration of administration of the antifungal drug often remain to be determined. In high-risk neutropenic or bone marrow transplant patients, fluconazole is effective for the prevention of superficial and/or systemic candidal infections but is not always able to prolong overall survival and potentially selects less susceptible or resistant Candida spp. Primary prophylaxis against aspergillosis remains investigative. At present, no standard general recommendation for primary antifungal prophylaxis can be proposed for AIDS patients or transplant recipients. However, for persistently immunocompromised patients who previously experienced a noncandidal systemic fungal infection, prolonged suppressive antifungal therapy is often indicated to prevent a relapse. Better strategies for controlling immune deficiencies should also help to avoid some potentially life-threatening deep mycoses. When prescribing antifungal prophylaxis, physicians should be aware of the potential emergence of resistant strains, drug-drug interactions, and the cost. Well-designed, randomized, multicenter clinical trials in high-risk immunocompromised hosts are urgently needed to better define how to prevent severe invasive mycoses. PMID:9227863

  13. Multicenter comparison of the ISO standard 20776-1 and the serial 2-fold dilution procedures to dilute hydrophilic and hydrophobic antifungal agents for susceptibility testing.

    PubMed

    Gomez-Lopez, Alicia; Arendrup, Maiken Cavling; Lass-Floerl, Cornelia; Rodriguez-Tudela, Juan-Luis; Cuenca-Estrella, Manuel

    2010-05-01

    A multicenter study was conducted to assess the accuracy of the ISO standard 20776-1 and the serial 2-fold dilution procedures for antifungal susceptibility testing. Fluconazole trays can be accurately prepared by following ISO and serial dilution schemes. However, itraconazole trays showed a significant lack of reproducibility that was independent of which method was followed.

  14. The Lysosome and HER3 (ErbB3) Selective Anticancer Agent Kahalalide F: Semisynthetic Modifications and Antifungal Lead-Exploration Studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kahalalide F shows remarkable anti-tumor activity against different carcinomas and has recently completed phase I clinical trials and is being evaluated in phase II clinical studies. The antifungal activity of this molecule has not been thoroughly investigated. In this report, we focused on acetylat...

  15. Candida guilliermondii, an Opportunistic Fungal Pathogen with Decreased Susceptibility to Fluconazole: Geographic and Temporal Trends from the ARTEMIS DISK Antifungal Surveillance Program

    PubMed Central

    Pfaller, M. A.; Diekema, D. J.; Mendez, M.; Kibbler, C.; Erzsebet, P.; Chang, S.-C.; Gibbs, D. L.; Newell, V. A.

    2006-01-01

    Although a rare cause of invasive candidiasis, Candida guilliermondii has been reported to exhibit decreased susceptibility to antifungal agents. Aside from case reports and small surveys, there is little information regarding the epidemiology and antifungal susceptibility profile of C. guilliermondii. We report geographic and temporal trends in the isolation and antifungal susceptibilities of 1,029 C. guilliermondii clinical isolates collected from 127 medical centers as part of the ARTEMIS DISK Antifungal Surveillance Program. In addition, we report the in vitro susceptibility of 132 bloodstream isolates of C. guilliermondii to caspofungin. C. guilliermondii represented 1.4% of the 75,761 isolates collected from 2001 to 2003 and was most common among isolates from Latin America (3.7% versus 0.6 to 1.1%). Decreased susceptibility to fluconazole was noted (75% susceptible; range, 68 to 77% across regions), and voriconazole was more active in vitro against C. guilliermondii than fluconazole (91% susceptible; range, 88 to 93% across regions). Fluconazole was least active against isolates from dermatology (58%) and surgical (69%) services and against isolates associated with skin and soft tissue infection (68%, compared to 85% susceptible for bloodstream isolates). There was no evidence of increasing azole resistance over time among C. guilliermondii isolates tested from 2001 to 2003. Of 132 bloodstream isolates of C. guilliermondii tested against caspofungin, most were inhibited by ≤2 μg/ml (96%; MIC50/MIC90, 0.5/1.0 μg/ml). C. guilliermondii, a species that exhibits reduced susceptibility to fluconazole, is the sixth most frequently isolated Candida species from this large survey and may be an emerging pathogen in Latin America. PMID:17021081

  16. The antifungal action of dandruff shampoos.

    PubMed

    Bulmer, A C; Bulmer, G S

    1999-01-01

    The disease commonly known as "dandruff" is caused by numerous host factors in conjunction with the normal flora yeast Malassezia furfur (Pityrosporum ovale). Indeed, clinical studies have shown that administration of antifungal agents correlates with an improved clinical condition. Almost all commercially available hair shampoos publicize that they contain some form of antifungal agent(s). However, few studies have been published in which antifungal activity of commercially available hair shampoos have been contrasted experimentally. In this study six commercially available shampoos (in the Philippines) were assessed for antifungal activity against a human (dandruff) isolate of M. furfur: (a) Head & Shoulders (Proctor & Gamble); (b) Gard Violet (Colgate-Palmolive); (c) Nizoral 1% (Janssen); (d) Nizoral 2% (Janssen); (e) Pantene Blue (Proctor & Gamble); and (f) Selsun Blue (Abbott). The results demonstrated that all six of the assayed hair shampoos have some antifungal effect on the test yeast. However, there was consider variation in potency of antifungal activity. Nizoral 1% and Nizoral 2% shampoo preparations were the most effective. The 1% Nizoral shampoo was consistently 10X better at killing yeast cells than the next closest rival shampoo. The 2% Nizoral shampoo was 10X better than the Nizoral 1% product and 100 times better than any of the other products assayed. The study demonstrated that shampoos containing a proven antifungal compound were the most effective in controlling the causative yeast.

  17. Antifungal Prophylaxis in Immunocompromised Patients.

    PubMed

    Vazquez, Lourdes

    2016-01-01

    Invasive fungal infections (IFIs) represent significant complications in patients with hematological malignancies. Chemoprevention of IFIs may be important in this setting, but most antifungal drugs have demonstrated poor efficacy, particularly in the prevention of invasive aspergillosis. Antifungal prophylaxis in hematological patients is currently regarded as the gold standard in situations with a high risk of infection, such as acute leukemia, myelodysplastic syndromes, and autologous or allogeneic hematopoietic stem cell transplantation. Over the years, various scientific societies have established a series of recommendations for antifungal prophylaxis based on prospective studies performed with different drugs. However, the prescription of each agent must be personalized, adapting its administration to the characteristics of individual patients and taking into account possible interactions with concomitant medication. PMID:27648203

  18. Antifungal Prophylaxis in Immunocompromised Patients

    PubMed Central

    Vazquez, Lourdes

    2016-01-01

    Invasive fungal infections (IFIs) represent significant complications in patients with hematological malignancies. Chemoprevention of IFIs may be important in this setting, but most antifungal drugs have demonstrated poor efficacy, particularly in the prevention of invasive aspergillosis. Antifungal prophylaxis in hematological patients is currently regarded as the gold standard in situations with a high risk of infection, such as acute leukemia, myelodysplastic syndromes, and autologous or allogeneic hematopoietic stem cell transplantation. Over the years, various scientific societies have established a series of recommendations for antifungal prophylaxis based on prospective studies performed with different drugs. However, the prescription of each agent must be personalized, adapting its administration to the characteristics of individual patients and taking into account possible interactions with concomitant medication.

  19. Antifungal Prophylaxis in Immunocompromised Patients

    PubMed Central

    Vazquez, Lourdes

    2016-01-01

    Invasive fungal infections (IFIs) represent significant complications in patients with hematological malignancies. Chemoprevention of IFIs may be important in this setting, but most antifungal drugs have demonstrated poor efficacy, particularly in the prevention of invasive aspergillosis. Antifungal prophylaxis in hematological patients is currently regarded as the gold standard in situations with a high risk of infection, such as acute leukemia, myelodysplastic syndromes, and autologous or allogeneic hematopoietic stem cell transplantation. Over the years, various scientific societies have established a series of recommendations for antifungal prophylaxis based on prospective studies performed with different drugs. However, the prescription of each agent must be personalized, adapting its administration to the characteristics of individual patients and taking into account possible interactions with concomitant medication. PMID:27648203

  20. Antifungal Activity of C-27 Steroidal Saponins

    PubMed Central

    Yang, Chong-Ren; Zhang, Ying; Jacob, Melissa R.; Khan, Shabana I.; Zhang, Ying-Jun; Li, Xing-Cong

    2006-01-01

    As part of our search for new antifungal agents from natural resources, 22 C-27 steroidal saponins and 6 steroidal sapogenins isolated from several monocotyledonous plants were tested for their antifungal activity against the opportunistic pathogens Candida albicans, Candida glabrata, Candida krusei, Cryptococcus neoformans, and Aspergillus fumigatus. The results showed that the antifungal activity of the steroidal saponins was associated with their aglycone moieties and the number and structure of monosaccharide units in their sugar chains. Within the 10 active saponins, four tigogenin saponins (compounds 1 to 4) with a sugar moiety of four or five monosaccharide units exhibited significant activity against C. neoformans and A. fumigatus, comparable to the positive control amphotericin B. The antifungal potency of these compounds was not associated with cytotoxicity to mammalian cells. This suggests that the C-27 steroidal saponins may be considered potential antifungal leads for further preclinical study. PMID:16641439

  1. Natural and synthetic peptides with antifungal activity.

    PubMed

    Ciociola, Tecla; Giovati, Laura; Conti, Stefania; Magliani, Walter; Santinoli, Claudia; Polonelli, Luciano

    2016-08-01

    In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections. PMID:27502155

  2. Fitness Studies of Azole-Resistant Strains of Aspergillus fumigatus

    PubMed Central

    Valsecchi, Isabel; Mellado, Emilia; Beau, Rémi; Raj, Shriya

    2015-01-01

    Isogenic bar-coded strains of Aspergillus fumigatus carrying the G54W or M220K mutation in Cyp51A were constructed. In vitro, the growth and conidiation capacities of the mutants were similar to those of the parental strain. Competition studies in the absence of azoles showed that there was no adverse fitness cost for the azole-resistant A. fumigatus strains in vitro or in vivo compared to the parental strain. PMID:26416854

  3. Reactivity of azole anions with CO₂ from the DFT perspective.

    PubMed

    Tang, Huarong; Wu, Chao

    2013-06-01

    Azole anions are key components in CO₂ capture materials that include ionic liquids and porous solids. Herein, we use density functional theory (DFT) and a Langmuir-type adsorption model to study azole anion-CO₂ interactions. Linear CO₂ has to be bent by approximately 45° to form an N-C bond within the azole ring. The energy cost of bending renders CO₂ absorption much more difficult compared to SO₂ absorption. For different azole anions, the number of nitrogen atoms in the ring and the natural bond orbital energy of the reacting nitrogen lone pair, both linearly correlate with the calculated reaction enthalpy and are useful handles for new sorbent designs. Unlike for SO₂, the azole parent architecture (unsubstituted) does not allow successive CO₂ absorption under mild conditions (<0.12 MPa and at room temperature). Experimental CO₂ and SO₂ absorption isotherms are reproduced by using the Langmuir model parameterized with the calibrated DFT reaction enthalpies. This study provides insight for designing azole-based CO₂-capture materials. PMID:23640877

  4. Efficient Production of the Flavoring Agent Zingerone and of both (R)- and (S)-Zingerols via Green Fungal Biocatalysis. Comparative Antifungal Activities between Enantiomers

    PubMed Central

    Svetaz, Laura A.; Di Liberto, Melina G.; Zanardi, María M.; Suárez, Alejandra G.; Zacchino, Susana A.

    2014-01-01

    Zingerone (1) and both chiral forms of zingerol (2) were obtained from dehydrozingerone (3) by biotransformation with filamentous fungi. The bioconversion of 3 with A. fumigatus, G. candidum or R. oryzae allowed the production of 1 as the sole product at 8 h and in 81%–90% at 72 h. In turn, A. flavus, A. niger, C. echinulata, M. circinelloides and P. citrinum produced 1 at 8 h, but at 72 h alcohol 2 was obtained as the major product (74%–99%). Among them, A. niger and M. circinelloides led to the anti-Prelog zingerol (R)-2 in only one step with high conversion rates and ee. Instead, C. echinulata and P. citrinum allowed to obtain (S)-2 in only one step, with high conversion rates and ee. Both chiral forms of 2 were tested for antifungal properties against a panel of clinically important fungi, showing that (R)-, but not (S)-2 possessed antifungal activity. PMID:25470023

  5. Exploring the molecular basis of antifungal synergies using genome-wide approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a review article summarizing genomic profiling strategies for determining the mechanism of action of antifungal synergies, and highlighting the potential applications of these technologies. Given the limitations of currently available antifungal agents and the development of drug resistance...

  6. Complex mechanism of relaxation in solid chloroxylenol (antibacterial/antifungal agent) studied by ¹H NMR spectroscopy and density functional theory calculations.

    PubMed

    Latosińska, Jolanta Natalia; Latosińska, Magdalena; Tomczak, Marzena Agnieszka; Medycki, Wojciech

    2014-03-27

    Molecular relaxation in antibacterial/antifungal agent: chloroxylenol (4-chloro-3,5-dimethylphenol, PCMX) in the solid state was studied by the (1)H NMR and quantum chemistry calculations. The temperature dependencies of the proton spin-lattice relaxation time (T1) in the ranges 15-273 K (at 24.667 MHz), 77-295 K (at 15 MHz), and 112-291 K at 90 MHz and the second moment (M2) of (1)H NMR resonant line in the range 106-380 K were measured. The two minima in the temperature dependence of T1 revealed two activation processes, whereas the M2 dependence in the studied range was quite flat and revealed the only significant reduction at 380 K. The low temperature part of T1(T) dependence indicated the occurrence of two processes characteristic of methyl bearing solids; the quantum mechanics governed incoherent tunneling (responsible for the low temperature flattening of T1) and the classical Arrhenius dependence governed hindered rotation (related to the wide low temperature minimum of 0.066 s at 57 K, 24.667 MHz). The 2D potential energy surface obtained using DFT/B3LYP/6-311++G(2d,p) calculations revealed the inequivalence of methyl groups and the lack of their interplay/coupling. The activation energies of classical hindered rotation are 3.35 and 2.5 kJ/mol, whereas temperatures at which the proton tunneling T(tun) finally ceases are 52 and 63 K, for inequivalent methyl groups. C(p)(T) required for the estimation of T(tun) was calculated purely theoretically on the basis of the Einstein and Debye models of specific heat and 51 modes of atomic vibrations, 4 internal rotations, and 3 torsions calculated by DFT. The -CH3 motion (tunneling and classical) results in the reduction in the (1)H NMR line second moment from 17.3 G(2) (rigid) to approximately 11.05 G(2). The pointed high temperature minimum T1(T) of 0.109 s at 89 K, 24.667 MHz, which shifts with frequency, was assigned to small-angle libration jumps, by the Θ2 = ±15° between two positions of equilibrium. The

  7. Synthesis of certain heteroaryl-fused pyrimidines and pyridines and selena- and thia-diazoles with naphthyl substituent as potential antifungal agents.

    PubMed

    Moawad, E B; Yousif, M Y; Metwally, M A

    1989-12-01

    A convenient route is reported for the synthesis of 1,2,3-selenadiazole, 1,2,3-thiadiazole, 1,2,4-triazolo[4,3-a]pyrimidine, tetrazolo[4,5-a]pyrimidine, benzimidazolo[1,2-a]pyrimidine and pyrazolo[3,4-b]pyridine derivatives in which the naphthyl nucleus is incorporated. The preliminary results of antifungal testing are reported.

  8. Antifungal susceptibility patterns of a global collection of fungal isolates: results of the SENTRY Antifungal Surveillance Program (2013).

    PubMed

    Castanheira, Mariana; Messer, Shawn A; Rhomberg, Paul R; Pfaller, Michael A

    2016-06-01

    Among 1846 fungal clinical isolates from 31 countries, echinocandin resistance in Candida spp. ranged from 0.0% to 2.8% (highest for anidulafungin versus Candida glabrata), and fluconazole resistance was noted among 11.9% and 11.6% of the C. glabrata and Candida tropicalis, respectively. Two isolates of Aspergillus fumigatus displayed elevated MICs for itraconazole and carried cyp51a mutations encoding TR34 L98H. All Cryptococcus neoformans had azole MIC values below epidemiological cutoff values. The increasing resistance among certain species and more frequent reports of breakthrough infections in patients undergoing antifungal therapy highlights the importance of antifungal surveillance to guide therapy for patients with invasive fungal infections. PMID:27061369

  9. Azole resistance in canine and feline isolates of Aspergillus fumigatus.

    PubMed

    Talbot, Jessica J; Kidd, Sarah E; Martin, Patricia; Beatty, Julia A; Barrs, Vanessa R

    2015-10-01

    Azole resistance is an emerging cause of treatment failure in humans with aspergillosis. The aim of this study was to determine if azole resistance is emerging in Aspergillus fumigatus isolates from canine and feline sino-nasal aspergillosis cases. Susceptibilities of isolates collected between 1988 and 2014 from 46 dogs and 4 cats to itraconazole, posaconazole, voriconazole, fluconazole and ketoconazole were assessed using Sensititre YeastOne microdilution trays; and to enilconazole and clotrimazole, following the CLSI M38-A2 standard. For the majority of isolates MICs were high for ketoconazole, low for enilconazole and clotrimazole, and less than established epidemiological cut-off values for itraconazole, posaconazole and voriconazole. One canine isolate from 1992 had multiazole resistance and on Cyp51A gene sequencing a mutation associated with azole resistance (F46Y) was detected. There is no evidence of emerging azole resistance among A. fumigatus isolates from dogs and cats and topical azole therapy should be effective against most isolates. PMID:26387063

  10. Antifungal susceptibility of Malassezia pachydermatis biofilm.

    PubMed

    Figueredo, Luciana A; Cafarchia, Claudia; Otranto, Domenico

    2013-11-01

    Antifungal resistance has been associated with biofilm formation in many microorganisms, but not yet in Malassezia pachydermatis. This saprophytic yeast can cause otitis and dermatitis in dogs and has emerged as an important human pathogen, responsible for systemic infections in neonates in intensive care units. This study aims to evaluate the in vitro antifungal susceptibility of M. pachydermatis strains, in both their planktonic and sessile forms, to fluconazole, miconazole, ketoconazole, itraconazole, posaconazole, terbinafine and voriconazole using the XTT assay and Clinical and Laboratory Standards Institute (CLSI) microdilution method. The minimum inhibitory concentration (MIC) values recorded for each drug were significantly higher for sessile cells relative to planktonic cells to the extent that ≥ 90% of M. pachydermatis strains in their sessile form were classified as resistant to all antifungal agents tested. Data suggest that M. pachydermatis biofilm formation is associated with antifungal resistance, paving the way towards investigating drug resistance mechanisms in Malassezia spp. PMID:23834283

  11. In Vitro Susceptibilities of Clinical Yeast Isolates to the New Antifungal Eberconazole Compared with Their Susceptibilities to Clotrimazole and Ketoconazole

    PubMed Central

    Torres-Rodríguez, Josep M.; Mendez, Raúl; López-Jodra, Olga; Morera, Yolanda; Espasa, Mateu; Jimenez, Teresa; Lagunas, Carme

    1999-01-01

    The antifungal activity of eberconazole, a new imidazole derivative, against 124 clinical isolates of Candida comprising eight different species and to 34 isolates of Cryptococcus neoformans was compared to those of clotrimazole and ketoconazole. MICs of eberconazole, determined by the National Committee for Clinical Laboratory Standards standardized microbroth method, were equal to or lower than those of other azoles, especially for Candida krusei and Candida glabrata, which are usually resistant to triazoles. PMID:10223946

  12. [Evaluation of the antifungal effect of a new propiconazole derivative against 64 yeast strains isolated from vaginal mycosis].

    PubMed

    Mareş, M; Stefanache, Alina; Popovici, Iuliana; Valica, V; Buiuc, D

    2007-01-01

    Worldwide, vaginal candidosis represents a significant health problem in women of childbearing age. The aim of this paper is to evaluate under in vitro conditions resembling the vaginal microenvironment, the antifungal activity of a new propiconazole derivative against 64 strains of yeast species isolated from vulvovaginitis. The tests exhibited low MICs for all strains and this finding may be useful in using of this new azole compound for treatment of mycotic vaginitis.

  13. The calcineurin inhibitor cyclosporin A exhibits synergism with antifungals against Candida parapsilosis species complex.

    PubMed

    Cordeiro, Rossana de Aguiar; Macedo, Ramila de Brito; Teixeira, Carlos Eduardo Cordeiro; Marques, Francisca Jakelyne de Farias; Bandeira, Tereza de Jesus Pinheiro Gomes; Moreira, José Luciano Bezerra; Brilhante, Raimunda Sâmia Nogueira; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa

    2014-07-01

    Candida parapsilosis complex comprises three closely related species, C. parapsilosis sensu stricto, Candida metapsilosis and Candida orthopsilosis. In the last decade, antifungal resistance to azoles and caspofungin among C. parapsilosis sensu lato strains has been considered a matter of concern worldwide. In the present study, we evaluated the synergistic potential of antifungals and the calcineurin inhibitor cyclosporin A (Cys) against planktonic and biofilms of C. parapsilosis complex from clinical sources. Susceptibility assays with amphotericin, fluconazole, voriconazole, caspofungin and Cys were performed by microdilution in accordance with Clinical and Laboratory Standards Institute guidelines. Synergy testing against planktonic cells of C. parapsilosis sensu lato strains was assessed by the chequerboard method. Combinations formed by antifungals with Cys were evaluated against mature biofilms in microtitre plates. No differences in the antifungal susceptibility pattern among species were observed, but C. parapsilosis sensu stricto strains were more susceptible to Cys than C. orthopsilosis and C. metapsilosis. Synergism between antifungals and Cys was observed in C. parapsilosis sensu lato strains. Combinations formed by antifungals and Cys were able to prevent biofilm formation and showed an inhibitory effect against mature biofilms of C. parapsilosis sensu stricto, C. metapsilosis and C. orthopsilosis. These results strengthen the potential of calcineurin inhibition as a promising approach to enhance the efficiency of antifungal drugs. PMID:24722799

  14. Direct N-acylation of azoles via a metal-free catalyzed oxidative cross-coupling strategy.

    PubMed

    Zhao, Jingjing; Li, Pan; Xia, Chungu; Li, Fuwei

    2014-05-11

    The KI-catalyzed N-acylation of azoles via direct oxidative coupling of C-H and N-H bonds has been developed. It could be smoothly scaled up to gram synthesis of acyl azoles. The reaction occurred by the coupling of acyl radicals and azoles to form the acyl azole radical anion, followed by its further oxidation.

  15. Synthesis of novel thiazole-based 8,9-dihydro-7H-pyrimido[4,5-b][1,4]diazepines as potential antitumor and antifungal agents.

    PubMed

    Ramírez, Juan; Svetaz, Laura; Quiroga, Jairo; Abonia, Rodrigo; Raimondi, Marcela; Zacchino, Susana; Insuasty, Braulio

    2015-03-01

    A new series of novel thiazole-based 8,9-dihydro-7H-pyrimido[4,5-b][1,4]diazepines 6a-g and 7a-g were obtained with high regioselectivity from the reaction of triamino- or tetraaminopyrimidines 4 and 5 with α,β-unsaturated carbonyl compounds 3a-g based on 2,4-dichlorothiazol-5-carbaldehyde 1. Twelve of the synthesized compounds were selected and tested by US National Cancer Institute (NCI) for their antitumor activity against 60 different human tumor cell lines. Compounds 7d and 7g showed important GI50 ranges of 1.28-2.98 μM and 0.35-2.78 μM respectively under in vitro assays. In addition, 6a-g and 7a-g were tested for antifungal properties against the clinical important fungi Candida albicans and Cryptococcus neoformans. Although these compounds showed moderate activities against C. albicans, the 2-amino derivatives 7a-g and mainly 7a and 7b, showed high activity against standardized and clinical isolates of C. neoformans with MIC50 = 7.8-31.2 μg/mL, MIC80 = 15.6-31.2 μg/mL and MIC100 = 15.6-62.5 μg/mL. In addition, since both compounds were fungicide rather than fungistatic these thiazole-based 8,9-dihydro-7H-pyrimido[4,5-b][1,4]diazepines appear as good candidates for further development not only as antifungal but also as antitumor drugs.

  16. New therapeutic strategies for invasive aspergillosis in the era of azole resistance: how should the prevalence of azole resistance be defined?

    PubMed

    Alanio, Alexandre; Denis, Blandine; Hamane, Samia; Raffoux, Emmanuel; Peffault de la Tour, Régis; Touratier, Sophie; Bergeron, Anne; Bretagne, Stéphane

    2016-08-01

    Given reports showing a high prevalence of azole resistance in Aspergillus fumigatus, alternatives to azole therapy are discussed when a threshold of 10% of azole-resistant environmental isolates is reached. This raises the issue of calculation of this threshold, either on the prevalence of azole-resistant isolates as a whole or on the prevalence of azole-resistant cases in populations at risk of invasive aspergillosis (IA). For isolate evaluation, there are high disparities in routine microbiological procedures for the isolation of A. fumigatus and azole resistance detection. There are also huge differences between the microbiological work-up for diagnosing IA. Some centres rely on galactomannan detection alone without actively trying to culture appropriate samples, which affects reliability of the figures on the prevalence of resistance and thus the threshold of resistance. Moreover, reports from the laboratory could mix up figures from completely different patient populations: frequent azole-resistant isolates from pneumology patients and rare azole-resistant isolates from haematology patients. Therefore, to sum isolates from different specimens and different wards can lead to erroneous calculations for the restricted populations at risk of developing IA. In conclusion, assessing the incidence of azole resistance in A. fumigatus should be based on harmonized consensual microbiological methods and reports should be restricted to IA episodes in identified populations at risk of IA when the issue is to define an operational threshold for modifying recommendations. PMID:27494830

  17. Epidemiology and Antifungal Susceptibility of Bloodstream Fungal Isolates in Pediatric Patients: a Spanish Multicenter Prospective Survey ▿

    PubMed Central

    Pemán, Javier; Cantón, Emilia; Linares-Sicilia, María José; Roselló, Eva María; Borrell, Nuria; Ruiz-Pérez-de-Pipaon, María Teresa; Guinea, Jesús; García, Julio; Porras, Aurelio; García-Tapia, Ana María; Pérez-del-Molino, Luisa; Suárez, Anabel; Alcoba, Julia; García-García, Inmaculada

    2011-01-01

    Data on fungemia epidemiology and antifungal susceptibility of isolates from children are scarce, leading frequently to pediatric empirical treatment based on available adult data. The present study was designed to update the epidemiological, mycological, and in vitro susceptibility data on fungal isolates from children with fungemia in Spain. All fungemia episodes were identified prospectively by blood culture over 13 months at 30 hospitals. Tests of susceptibility to amphotericin B, flucytosine, fluconazole, itraconazole, posaconazole, voriconazole, anidulafungin, caspofungin, and micafungin were performed at participant institutions by a microdilution colorimetric method. New species-specific clinical breakpoints for fluconazole, voriconazole, and echinocandins were also applied. A total of 203 episodes of fungemia in 200 children were identified. A higher proportion of fungal isolates was from general wards than intensive care units (ICU). Candida parapsilosis (46.8%), Candida albicans (36.5%), Candida tropicalis (5.9%), Candida glabrata (3.9%), and Candida guilliermondii (2.5%) were the leading species. C. parapsilosis was the predominant species except in neonates. C. albicans was the most frequent in neonatal ICU settings (51.9%). Intravascular catheter (79.3%), surgery (35%), prematurity (30%), and neutropenia (11%) were the most frequent predisposing factors. Most Candida isolates (95.1%) were susceptible to all antifungals. When the new species-specific clinical breakpoints were applied, all C. parapsilosis isolates were susceptible to echinocandins except one, which was micafungin resistant. This is the largest published series of fungemia episodes in the pediatric setting. C. parapsilosis is the most prevalent species in Spain, followed by C. albicans and C. tropicalis. Resistance to azole and echinocandin agents is extremely rare among Candida species. The fluconazole resistance rate in Spain has decreased in the last 10 years. PMID:22012014

  18. Epidemiological changes with potential implication for antifungal prescription recommendations for fungaemia: data from a nationwide fungaemia surveillance programme.

    PubMed

    Arendrup, M C; Dzajic, E; Jensen, R H; Johansen, H K; Kjaeldgaard, P; Knudsen, J D; Kristensen, L; Leitz, C; Lemming, L E; Nielsen, L; Olesen, B; Rosenvinge, F S; Røder, B L; Schønheyder, H C

    2013-08-01

    Significant changes in the management of fungaemia have occurred over the last decade with increased use of fluconazole prophylaxis, of empirical treatment and of echinocandins as first-line agents for documented disease. These changes may impact the epidemiology of fungaemia. We present nationwide data for Denmark from 2010 to 2011. A total of 1081 isolates from 1047 episodes were recorded in 995 patients. The numbers of patients, episodes and recovered isolates increased by 13.1%, 14.5% and 14.1%, respectively, from 2010 to 2011. The incidence rate was significantly higher in 2011 (10.05/100 000) than in 2010 (8.82/100 000), but remained constant in the age groups 0-79 years. The incidence rate was highest at the extremes of age and in males. Candida albicans accounted for 52.1% but declined during 2004-11 (p 0.0155). Candida glabrata accounted for 28% and increased during 2004-2011 (p <0.0001). Candida krusei, Candida tropicalis and Candida parapsilosis remained rare (3.3-4.2%). The species distribution changed with increasing age (fewer C. parapsilosis and more C. glabrata) and by study centre. Overall, the susceptibility rates were: amphotericin B 97.3%, anidulafungin 93.8%, fluconazole 66.7%, itraconazole 69.6%, posaconazole 64.2% and voriconazole 85.0%. Acquired echinocandin resistance was molecularly confirmed in three isolates. The use of systemic antifungals doubled over the last decade (2002-2011) (from 717 000 to 1 450 000 defined daily doses/year) of which the vast majority (96.9%) were azoles. The incidence of fungaemia continues to increase in Denmark and is associated with a decreasing proportion being susceptible to fluconazole. Changes in demography, higher incidence in the elderly and higher antifungal consumption can at least in part explain the changes. PMID:23607326

  19. Predictors of choice of initial antifungal treatment in intraabdominal candidiasis.

    PubMed

    Lagunes, L; Borgatta, B; Martín-Gomez, M T; Rey-Pérez, A; Antonelli, M; Righi, E; Merelli, M; Brugnaro, P; Dimopoulos, G; Garnacho-Montero, J; Colombo, A L; Luzzati, R; Menichetti, F; Muñoz, P; Nucci, M; Scotton, G; Viscoli, C; Tumbarello, M; Bassetti, M; Rello, J

    2016-08-01

    Intraabdominal candidiasis (IAC) is the second most frequent form of invasive candidiasis, and is associated with high mortality rates. This study aims to identify current practices in initial antifungal treatment (IAT) in a real-world scenario and to define the predictors of the choice of echinocandins or azoles in IAC episodes. Secondary analysis was performed of a multinational retrospective cohort at 13 teaching hospitals in four countries (Italy, Greece, Spain and Brazil), over a 3-year period (2011-2013). IAC was identified in 481 patients, 323 of whom received antifungal therapy (classified as the treatment group). After excluding 13 patients given amphotericin B, the treatment group was further divided into the echinocandin group (209 patients; 64.7%) and the azole group (101 patients; 32.3%). Median APACHE II scores were significantly higher in the echinocandin group (p 0.013), but IAT did not differ significantly with regard to the Candida species involved. Logistic multivariate stepwise regression analysis, adjusted for centre effect, identified septic shock (adjusted OR (aOR) 1.54), APACHE II >15 (aOR 1.16) and presence in surgical ward at diagnosis (aOR 1.16) as the top three independent variables associated with an empirical echinocandin regimen. No differences in 30-day mortality were observed between groups. Echinocandin regimen was the first choice for IAT in patients with IAC. No statistical differences in mortality were observed between regimens, but echinocandins were administered to patients with more severe disease. Some disagreements were identified between current clinical guidelines and prescription of antifungals for IAC at the bedside, so further educational measures are required to optimize therapies. PMID:27432766

  20. [Recent advances in the study of antifungal lead compounds with new chemical scaffolds].

    PubMed

    Shao, Lü-cheng; Sheng, Chun-quan; Zhang, Wan-nian

    2007-11-01

    In recent years, the incidence of infections caused by invasive fungal pathogens has increased dramatically. However, most antifungal agents used in clinic have many drawbacks and cannot meet the demand of the clinical use. Therefore, for the development of new generation of antifungal agents, it is of great significance to find antifungal lead compounds with novel chemical scaffolds and new mode of action. Novel antifungal lead compounds reported in recent years are reviewed. Their chemical structures, antifungal activity and structure-activity relationship are discussed in detail, and current problems and trends in future research are also emphasized. PMID:18300466

  1. Nationwide Surveillance of Azole Resistance in Aspergillus Diseases.

    PubMed

    Vermeulen, Edith; Maertens, Johan; De Bel, Annelies; Nulens, Eric; Boelens, Jerina; Surmont, Ignace; Mertens, Anna; Boel, An; Lagrou, Katrien

    2015-08-01

    Aspergillus disease affects a broad patient population, from patients with asthma to immunocompromised patients. Azole resistance has been increasingly reported in both clinical and environmental Aspergillus strains. The prevalence and clinical impact of azole resistance in different patient populations are currently unclear. This 1-year prospective multicenter cohort study aimed to provide detailed epidemiological data on Aspergillus resistance among patients with Aspergillus disease in Belgium. Isolates were prospectively collected in 18 hospitals (April 2011 to April 2012) for susceptibility testing. Clinical and treatment data were collected with a questionnaire. The outcome was evaluated to 1 year after a patient's inclusion. A total of 220 Aspergillus isolates from 182 patients were included. The underlying conditions included invasive aspergillosis (n = 122 patients), allergic bronchopulmonary aspergillosis (APBA) (n = 39 patients), chronic pulmonary aspergillosis (n = 10 patients), Aspergillus bronchitis (n = 7 patients), and aspergilloma (n = 5 patients). The overall azole resistance prevalence was 5.5% (95% confidence interval [CI] 2.8 to 10.2%) and was 7.0% (4/57; 95% CI, 2.3 to 17.2%) in patients with APBA, bronchitis, aspergilloma, or chronic aspergillosis and 4.6% in patients with invasive aspergillosis (5/108; 95% CI, 1.7 to 10.7%). The 6-week survival in invasive aspergillosis was 52.5%, while susceptibility testing revealed azole resistance in only 2/58 of the deceased patients. The clinical impact of Aspergillus fumigatus resistance was limited in our patient population with Aspergillus diseases.

  2. Modelling inhibition of avian aromatase by azole pesticides

    PubMed Central

    Saxena, A.K.; Devillers, J.; Bhunia, S.S.; Bro, E.

    2015-01-01

    The potential effects of pesticides and their metabolites on the endocrine system are of major concern to wildlife and human health. In this context, the azole pesticides have earned special attention due to their cytochrome P450 aromatase inhibition potential. Cytochrome P450 aromatase (CYP19) catalyses the conversion of androstenedione and testosterone into oestrone and oestradiol, respectively. Thus, aromatase modulates the oestrogenic balance essential not only for females, but also for male physiology, including gonadal function. Its inhibition affects reproductive organs, fertility and sexual behaviour in humans and wildlife species. Several studies have shown that azole pesticides are able to inhibit human and fish aromatases but the information on birds is lacking. Consequently, it appeared to be of interest to estimate the aromatase inhibition of azoles in three different avian species, namely Gallus gallus, Coturnix coturnix japonica and Taeniopygia guttata. In the absence of the crystal structure of the aromatase enzyme in these bird species, homology models for the individual avian species were constructed using the crystal structure of human aromatase (hAr) (pdb: 3EQM) that showed high sequence similarity for G. gallus (82.0%), T. guttata (81.9%) and C. japonica (81.2%). A homology model with Oncorhynchus mykiss (81.9%) was also designed for comparison purpose. The homology-modelled aromatase for each avian and fish species and crystal structure of human aromatase were selected for docking 46 structurally diverse azoles and related compounds. We showed that the docking behaviour of the chemicals on the different aromatases was broadly the same. We also demonstrated that there was an acceptable level of correlation between the binding score values and the available aromatase inhibition data. This means that the homology models derived on bird and fish species can be used to approximate the potential inhibitory effects of azoles on their aromatase. PMID

  3. Comparison of echinocandin antifungals

    PubMed Central

    Eschenauer, Gregory; DePestel, Daryl D; Carver, Peggy L

    2007-01-01

    The incidence of invasive fungal infections, especially those due to Aspergillus spp. and Candida spp., continues to increase. Despite advances in medical practice, the associated mortality from these infections continues to be substantial. The echinocandin antifungals provide clinicians with another treatment option for serious fungal infections. These agents possess a completely novel mechanism of action, are relatively well-tolerated, and have a low potential for serious drug–drug interactions. At the present time, the echinocandins are an option for the treatment of infections due Candida spp (such as esophageal candidiasis, invasive candidiasis, and candidemia). In addition, caspofungin is a viable option for the treatment of refractory aspergillosis. Although micafungin is not Food and Drug Administration-approved for this indication, recent data suggests that it may also be effective. Finally, caspofungin- or micafungin-containing combination therapy should be a consideration for the treatment of severe infections due to Aspergillus spp. Although the echinocandins share many common properties, data regarding their differences are emerging at a rapid pace. Anidulafungin exhibits a unique pharmacokinetic profile, and limited cases have shown a potential far activity in isolates with increased minimum inhibitory concentrations to caspofungin and micafungin. Caspofungin appears to have a slightly higher incidence of side effects and potential for drug–drug interactions. This, combined with some evidence of decreasing susceptibility among some strains of Candida, may lessen its future utility. However, one must take these findings in the context of substantially more data and use with caspofungin compared with the other agents. Micafungin appears to be very similar to caspofungin, with very few obvious differences between the two agents. PMID:18360617

  4. Defensins: antifungal lessons from eukaryotes

    PubMed Central

    Silva, Patrícia M.; Gonçalves, Sónia; Santos, Nuno C.

    2014-01-01

    Over the last years, antimicrobial peptides (AMPs) have been the focus of intense research toward the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantae, and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components) are presented. Additionally, recent works on antifungal defensins structure, activity, and cytotoxicity are also reviewed. PMID:24688483

  5. Topical antifungals for seborrhoeic dermatitis

    PubMed Central

    Okokon, Enembe O; Verbeek, Jos H; Ruotsalainen, Jani H; Ojo, Olumuyiwa A; Bakhoya, Victor Nyange

    2015-01-01

    Background Seborrhoeic dermatitis is a chronic inflammatory skin condition that is distributed worldwide. It commonly affects the scalp, face and flexures of the body. Treatment options include antifungal drugs, steroids, calcineurin inhibitors, keratolytic agents and phototherapy. Objectives To assess the effects of antifungal agents for seborrhoeic dermatitis of the face and scalp in adolescents and adults. A secondary objective is to assess whether the same interventions are effective in the management of seborrhoeic dermatitis in patients with HIV/AIDS. Search methods We searched the following databases up to December 2014: the Cochrane Skin Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (2014, Issue 11), MEDLINE (from 1946), EMBASE (from 1974) and Latin American Caribbean Health Sciences Literature (LILACS) (from 1982). We also searched trials registries and checked the bibliographies of published studies for further trials. Selection criteria Randomised controlled trials of topical antifungals used for treatment of seborrhoeic dermatitis in adolescents and adults, with primary outcome measures of complete clearance of symptoms and improved quality of life. Data collection and analysis Review author pairs independently assessed eligibility for inclusion, extracted study data and assessed risk of bias of included studies. We performed fixed-effect meta-analysis for studies with low statistical heterogeneity and used a random-effects model when heterogeneity was high. Main results We included 51 studies with 9052 participants. Of these, 45 trials assessed treatment outcomes at five weeks or less after commencement of treatment, and six trials assessed outcomes over a longer time frame. We believe that 24 trials had some form of conflict of interest, such as funding by pharmaceutical companies. Among the included studies were 12 ketoconazole trials (N = 3253), 11 ciclopirox trials (N = 3029), two lithium trials (N = 141

  6. Laboratory tests of antifungal drugs.

    PubMed Central

    Holt, R J

    1975-01-01

    The procedures evolved in the author's laboratory over the past 20 years for the microbiological assessment of antifungal drugs are described; methods are detailed for the estimation of the sensitivity of pathogenic fungi to therapeutic agents and for the assay of those agents in body fluids. The preparation and maintenance of stock reference solutions of the drugs, the culture media used, and the incubation temperature and time are discussed. Sensitivity tests by paper disc and by liquid titration for minimal inhibitory and cidal concentrations estimated are described, and the importance of standardized initial inocula is emphasized. Two groups of assay procedures are given, the liquid dilution and the agar diffusion methods, and suitable indicator organisms for both methods are named. The paper concludes with a discussion on the problem of differential assays when two antimycotic agents are in simultaneous clinical use. Images PMID:765359

  7. The Zinc Finger Protein Mig1 Regulates Mitochondrial Function and Azole Drug Susceptibility in the Pathogenic Fungus Cryptococcus neoformans.

    PubMed

    Caza, Mélissa; Hu, Guanggan; Price, Michael; Perfect, John R; Kronstad, James W

    2016-01-01

    The opportunistic pathogen Cryptococcus neoformans causes fungal meningoencephalitis in immunocompromised individuals. In previous studies, we found that the Hap complex in this pathogen represses genes encoding mitochondrial respiratory functions and tricarboxylic acid (TCA) cycle components under low-iron conditions. The orthologous Hap2/3/4/5 complex in Saccharomyces cerevisiae exerts a regulatory influence on mitochondrial functions, and Hap4 is subject to glucose repression via the carbon catabolite repressor Mig1. In this study, we explored the regulatory link between a candidate ortholog of the Mig1 protein and the HapX component of the Hap complex in C. neoformans. This analysis revealed repression of MIG1 by HapX and activation of HAPX by Mig1 under low-iron conditions and Mig1 regulation of mitochondrial functions, including respiration, tolerance for reactive oxygen species, and expression of genes for iron consumption and iron acquisition functions. Consistently with these regulatory functions, a mig1Δ mutant had impaired growth on inhibitors of mitochondrial respiration and inducers of ROS. Furthermore, deletion of MIG1 provoked a dysregulation in nutrient sensing via the TOR pathway and impacted the pathway for cell wall remodeling. Importantly, loss of Mig1 increased susceptibility to fluconazole, thus further establishing a link between azole antifungal drugs and mitochondrial function. Mig1 and HapX were also required together for survival in macrophages, but Mig1 alone had a minimal impact on virulence in mice. Overall, these studies provide novel insights into a HapX/Mig1 regulatory network and reinforce an association between mitochondrial dysfunction and drug susceptibility that may provide new targets for the development of antifungal drugs. IMPORTANCE Fungal pathogens of humans are difficult to treat, and there is a pressing need to identify new targets for antifungal drugs and to obtain a detailed understanding of fungal proliferation in

  8. The Zinc Finger Protein Mig1 Regulates Mitochondrial Function and Azole Drug Susceptibility in the Pathogenic Fungus Cryptococcus neoformans

    PubMed Central

    Caza, Mélissa; Hu, Guanggan; Price, Michael; Perfect, John R.

    2016-01-01

    ABSTRACT The opportunistic pathogen Cryptococcus neoformans causes fungal meningoencephalitis in immunocompromised individuals. In previous studies, we found that the Hap complex in this pathogen represses genes encoding mitochondrial respiratory functions and tricarboxylic acid (TCA) cycle components under low-iron conditions. The orthologous Hap2/3/4/5 complex in Saccharomyces cerevisiae exerts a regulatory influence on mitochondrial functions, and Hap4 is subject to glucose repression via the carbon catabolite repressor Mig1. In this study, we explored the regulatory link between a candidate ortholog of the Mig1 protein and the HapX component of the Hap complex in C. neoformans. This analysis revealed repression of MIG1 by HapX and activation of HAPX by Mig1 under low-iron conditions and Mig1 regulation of mitochondrial functions, including respiration, tolerance for reactive oxygen species, and expression of genes for iron consumption and iron acquisition functions. Consistently with these regulatory functions, a mig1Δ mutant had impaired growth on inhibitors of mitochondrial respiration and inducers of ROS. Furthermore, deletion of MIG1 provoked a dysregulation in nutrient sensing via the TOR pathway and impacted the pathway for cell wall remodeling. Importantly, loss of Mig1 increased susceptibility to fluconazole, thus further establishing a link between azole antifungal drugs and mitochondrial function. Mig1 and HapX were also required together for survival in macrophages, but Mig1 alone had a minimal impact on virulence in mice. Overall, these studies provide novel insights into a HapX/Mig1 regulatory network and reinforce an association between mitochondrial dysfunction and drug susceptibility that may provide new targets for the development of antifungal drugs. IMPORTANCE Fungal pathogens of humans are difficult to treat, and there is a pressing need to identify new targets for antifungal drugs and to obtain a detailed understanding of fungal

  9. Systematic phenotyping of a large-scale Candida glabrata deletion collection reveals novel antifungal tolerance genes.

    PubMed

    Schwarzmüller, Tobias; Ma, Biao; Hiller, Ekkehard; Istel, Fabian; Tscherner, Michael; Brunke, Sascha; Ames, Lauren; Firon, Arnaud; Green, Brian; Cabral, Vitor; Marcet-Houben, Marina; Jacobsen, Ilse D; Quintin, Jessica; Seider, Katja; Frohner, Ingrid; Glaser, Walter; Jungwirth, Helmut; Bachellier-Bassi, Sophie; Chauvel, Murielle; Zeidler, Ute; Ferrandon, Dominique; Gabaldón, Toni; Hube, Bernhard; d'Enfert, Christophe; Rupp, Steffen; Cormack, Brendan; Haynes, Ken; Kuchler, Karl

    2014-06-01

    The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes.

  10. Systematic Phenotyping of a Large-Scale Candida glabrata Deletion Collection Reveals Novel Antifungal Tolerance Genes

    PubMed Central

    Hiller, Ekkehard; Istel, Fabian; Tscherner, Michael; Brunke, Sascha; Ames, Lauren; Firon, Arnaud; Green, Brian; Cabral, Vitor; Marcet-Houben, Marina; Jacobsen, Ilse D.; Quintin, Jessica; Seider, Katja; Frohner, Ingrid; Glaser, Walter; Jungwirth, Helmut; Bachellier-Bassi, Sophie; Chauvel, Murielle; Zeidler, Ute; Ferrandon, Dominique; Gabaldón, Toni; Hube, Bernhard; d'Enfert, Christophe; Rupp, Steffen; Cormack, Brendan; Haynes, Ken; Kuchler, Karl

    2014-01-01

    The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes. PMID:24945925

  11. The monoamine oxidase A inhibitor clorgyline is a broad-spectrum inhibitor of fungal ABC and MFS transporter efflux pump activities which reverses the azole resistance of Candida albicans and Candida glabrata clinical isolates.

    PubMed

    Holmes, Ann R; Keniya, Mikhail V; Ivnitski-Steele, Irena; Monk, Brian C; Lamping, Erwin; Sklar, Larry A; Cannon, Richard D

    2012-03-01

    Resistance to the commonly used azole antifungal fluconazole (FLC) can develop due to overexpression of ATP-binding cassette (ABC) and major facilitator superfamily (MFS) plasma membrane transporters. An approach to overcoming this resistance is to identify inhibitors of these efflux pumps. We have developed a pump assay suitable for high-throughput screening (HTS) that uses recombinant Saccharomyces cerevisiae strains hyperexpressing individual transporters from the opportunistic fungal pathogen Candida albicans. The recombinant strains possess greater resistance to azoles and other pump substrates than the parental host strain. A flow cytometry-based HTS, which measured increased intracellular retention of the fluorescent pump substrate rhodamine 6G (R6G) within yeast cells, was used to screen the Prestwick Chemical Library (PCL) of 1,200 marketed drugs. Nine compounds were identified as hits, and the monoamine oxidase A inhibitor (MAOI) clorgyline was identified as an inhibitor of two C. albicans ABC efflux pumps, CaCdr1p and CaCdr2p. Secondary in vitro assays confirmed inhibition of pump-mediated efflux by clorgyline. Clorgyline also reversed the FLC resistance of S. cerevisiae strains expressing other individual fungal ABC transporters (Candida glabrata Cdr1p or Candida krusei Abc1p) or the C. albicans MFS transporter Mdr1p. Recombinant strains were also chemosensitized by clorgyline to other azoles (itraconazole and miconazole). Importantly, clorgyline showed synergy with FLC against FLC-resistant C. albicans clinical isolates and a C. glabrata strain and inhibited R6G efflux from a FLC-resistant C. albicans clinical isolate. Clorgyline is a novel broad-spectrum inhibitor of two classes of fungal efflux pumps that acts synergistically with azoles against azole-resistant C. albicans and C. glabrata strains. PMID:22203607

  12. Nosocomial Candidiasis: Antifungal Stewardship and the Importance of Rapid Diagnosis.

    PubMed

    Pfaller, Michael A; Castanheira, Mariana

    2016-01-01

    Candidemia and other forms of candidiasis are associated with considerable excess mortality and costs. Despite the addition of several new antifungal agents with improved spectrum and potency, the frequency of Candida infection and associated mortality have not decreased in the past two decades. The lack of rapid and sensitive diagnostic tests has led to considerable overuse of antifungal agents resulting in increased costs, selection pressure for resistance, unnecessary drug toxicity, and adverse drug interactions. Both the lack of timely diagnostic tests and emergence of antifungal resistance pose considerable problems for antifungal stewardship. Whereas antifungal stewardship with a focus on nosocomial candidiasis should be able to improve the administration of antifungal therapy in terms of drug selection, proper dose and duration, source control and de-escalation therapy, an important parameter, timeliness of antifungal therapy, remains a victim of slow and insensitive diagnostic tests. Fortunately, new proteomic and molecular diagnostic tools are improving the time to species identification and detection. In this review we will describe the potential impact that rapid diagnostic testing and antifungal stewardship can have on the management of nosocomial candidiasis.

  13. INK128 Exhibits Synergy with Azoles against Exophiala spp. and Fusarium spp.

    PubMed Central

    Gao, Lujuan; Sun, Yi; He, Chengyan; Li, Ming; Zeng, Tongxiang; Lu, Qiaoyun

    2016-01-01

    Infections of Exophiala spp. and Fusarium spp. are often chronic and recalcitrant. Systemic disseminations, which mostly occur in immunocompromised patients, are often refractory to available antifungal therapies. The conserved target of rapamycin (TOR) orchestrates cell growth and proliferation in response to nutrients and growth factors, which are important for pathogenicity and virulence. INK128 is a second-generation ATP-competitive TOR inhibitor, which binds the TOR catalytic domain and selectively inhibits TOR. In the present study, we investigated the in vitro activities of INK128 alone and the interactions of INK128 with conventional antifungal drugs including itraconazole, voriconazole, posaconazole, and amphotericin B against 18 strains of Exophiala spp. and 10 strains of Fusarium spp. via broth microdilution checkerboard technique system adapted from Clinical and Laboratory Standards Institute broth microdilution method M38-A2. INK128 alone was inactive against all isolates tested. However, favorable synergistic effects between INK128 and voriconazole were observed in 61% Exophiala strains and 60% Fusarium strains, despite Fusarium strains exhibited high MIC values (4–8 μg/ml) against voriconazole. In addition, synergistic effects of INK128/itraconazole were shown in 33% Exophiala strains and 30% Fusarium strains, while synergy of INK128/posaconazole were observed in 28% Exophiala strains and 30% Fusarium strains. The effective working ranges of INK128 were 0.125–2 μg/ml and 1–4 μg/ml against Exophiala isolates and Fusarium isolates, respectively. No synergistic effect was observed when INK128 was combined with amphotericin B. No antagonism was observed in all combinations. In conclusion, INK128 could enhance the in vitro antifungal activity of voriconazole, itraconazole and posaconazole against Exophiala spp. and Fusarium spp., suggesting that azoles, especially voriconazole, combined with TOR kinase inhibitor might provide a potential strategy

  14. Phylogenetic Relationships Matter: Antifungal Susceptibility among Clinically Relevant Yeasts

    PubMed Central

    Schmalreck, A. F.; Becker, K.; Fegeler, W.; Czaika, V.; Ulmer, H.; Lass-Flörl, C.

    2014-01-01

    The objective of this study was 2-fold: to evaluate whether phylogenetically closely related yeasts share common antifungal susceptibility profiles (ASPs) and whether these ASPs can be predicted from phylogeny. To address this question, 9,627 yeast strains were collected and tested for their antifungal susceptibility. Isolates were reidentified by considering recent changes in taxonomy and nomenclature. A phylogenetic (PHYLO) code based on the results of multilocus sequence analyses (large-subunit rRNA, small-subunit rRNA, translation elongation factor 1α, RNA polymerase II subunits 1 and 2) and the classification of the cellular neutral sugar composition of coenzyme Q and 18S ribosomal DNA was created to group related yeasts into PHYLO groups. The ASPs were determined for fluconazole, itraconazole, and voriconazole in each PHYLO group. The majority (95%) of the yeast strains were Ascomycetes. After reclassification, a total of 23 genera and 54 species were identified, resulting in an increase of 64% of genera and a decrease of 5% of species compared with the initial identification. These taxa were assigned to 17 distinct PHYLO groups (Ascomycota, n = 13; Basidiomycota, n = 4). ASPs for azoles were similar among members of the same PHYLO group and different between the various PHYLO groups. Yeast phylogeny may be an additional tool to significantly enhance the assessment of MIC values and to predict antifungal susceptibility, thereby more rapidly initiating appropriate patient management. PMID:24366735

  15. Antifungal effect and action mechanism of antimicrobial peptide polybia-CP.

    PubMed

    Wang, Kairong; Jia, Fengjing; Dang, Wen; Zhao, Yanyan; Zhu, Ranran; Sun, Mengyang; Qiu, Shuai; An, Xiaoping; Ma, Zelin; Zhu, Yuanyuan; Yan, Jiexi; Kong, Ziqing; Yan, Wenjin; Wang, Rui

    2016-01-01

    The incidence of life-threatening invasive fungal infections increased significantly in recent years. However, the antifungal therapeutic options are very limited. Antimicrobial peptides are a class of potential lead chemical for the development of novel antifungal agents. Antimicrobial peptide polybia-CP was purified from the venom of the social wasp Polybia paulista. In this study, we synthesized polybia-CP and determined its antifungal effects against a series of Candidian species. Our results showed that polybia-CP has potent antifungal activity and fungicidal activity against the tested fungal cells with a proposed membrane-active action mode. In addition, polybia-CP could induce the increase of cellular reactive oxygen species production, which would attribute to its antifungal activity. In conclusion, the present study suggests that polybia-CP has potential as an antifungal agent or may offer a new strategy for antifungal therapeutic option. PMID:26680221

  16. Antifungal effect and action mechanism of antimicrobial peptide polybia-CP.

    PubMed

    Wang, Kairong; Jia, Fengjing; Dang, Wen; Zhao, Yanyan; Zhu, Ranran; Sun, Mengyang; Qiu, Shuai; An, Xiaoping; Ma, Zelin; Zhu, Yuanyuan; Yan, Jiexi; Kong, Ziqing; Yan, Wenjin; Wang, Rui

    2016-01-01

    The incidence of life-threatening invasive fungal infections increased significantly in recent years. However, the antifungal therapeutic options are very limited. Antimicrobial peptides are a class of potential lead chemical for the development of novel antifungal agents. Antimicrobial peptide polybia-CP was purified from the venom of the social wasp Polybia paulista. In this study, we synthesized polybia-CP and determined its antifungal effects against a series of Candidian species. Our results showed that polybia-CP has potent antifungal activity and fungicidal activity against the tested fungal cells with a proposed membrane-active action mode. In addition, polybia-CP could induce the increase of cellular reactive oxygen species production, which would attribute to its antifungal activity. In conclusion, the present study suggests that polybia-CP has potential as an antifungal agent or may offer a new strategy for antifungal therapeutic option.

  17. Metabolism and resistance of Fusarium spp. to the manzamine alkaloids via a putative retro pictet-spengler reaction and utility of the rational design of antimalarial and antifungal agents.

    PubMed

    Kasanah, Noer; Farr, Lorelei Lucas; Gholipour, Abbas; Wedge, David E; Hamann, Mark T

    2014-08-01

    As a part of our continuing investigation of the manzamine alkaloids we studied the in vitro activity of the β-carboline containing manzamine alkaloids against Fusarium solani, Fusarium oxysporium, and Fusarium proliferatum by employing several bioassay techniques including one-dimensional direct bioautography, dilution, and plate susceptibility, and microtiter broth assays. In addition, we also studied the metabolism of the manzamine alkaloids by Fusarium spp. in order to facilitate the redesign of the compounds to prevent resistance of Fusarium spp. through metabolism. The present research reveals that the manzamine alkaloids are inactive against Fusarium spp. and the fungi transform manzamines via hydrolysis, reduction, and a retro Pictet-Spengler reaction. This is the first report to demonstrate an enzymatically retro Pictet-Spengler reaction. The results of this study reveal the utility of the rational design of metabolically stable antifungal agents from this class and the development of manzamine alkaloids as antimalarial drugs through the utilization of Fusarium's metabolic products to reconstruct the molecule.

  18. Molecular Epidemiology and In-Vitro Antifungal Susceptibility of Aspergillus terreus Species Complex Isolates in Delhi, India: Evidence of Genetic Diversity by Amplified Fragment Length Polymorphism and Microsatellite Typing

    PubMed Central

    Kathuria, Shallu; Sharma, Cheshta; Singh, Pradeep Kumar; Agarwal, Puneet; Agarwal, Kshitij; Hagen, Ferry; Meis, Jacques F.; Chowdhary, Anuradha

    2015-01-01

    Aspergillus terreus is emerging as an etiologic agent of invasive aspergillosis in immunocompromised individuals in several medical centers in the world. Infections due to A. terreus are of concern due to its resistance to amphotericin B, in vivo and in vitro, resulting in poor response to antifungal therapy and high mortality. Herein we examined a large collection of molecularly characterized, geographically diverse A. terreus isolates (n = 140) from clinical and environmental sources in India for the occurrence of cryptic A. terreus species. The population structure of the Indian A. terreus isolates and their association with those outside India was determined using microsatellite based typing (STR) technique and Amplified Fragment Length Polymorphism analysis (AFLP). Additionally, in vitro antifungal susceptibility of A. terreus isolates was determined against 7 antifungals. Sequence analyses of the calmodulin locus identified the recently described cryptic species A. hortai, comprising 1.4% of Aspergillus section Terrei isolates cultured from cases of aspergilloma and probable invasive aspergillosis not reported previously. All the nine markers used for STR typing of A. terreus species complex proved to be highly polymorphic. The presence of high genetic diversity revealing 75 distinct genotypes among 101 Indian A. terreus isolates was similar to the marked heterogeneity noticed in the 47 global A. terreus population exhibiting 38 unique genotypes mainly among isolates from North America and Europe. Also, AFLP analysis showed distinct banding patterns for genotypically diverse A. terreus isolates. Furthermore, no correlation between a particular genotype and amphotericin B susceptibility was observed. Overall, 8% of the A. terreus isolates exhibited low MICs of amphotericin B. All the echinocandins and azoles (voriconazole, posaconazole and isavuconazole) demonstrated high potency against all the isolates. The study emphasizes the need of molecular

  19. Solderability perservative coatings: Electroless tin vs. organic azoles

    SciTech Connect

    Artaki, I.; Ray, U.; Jackson, A.M.; Gordon, H.M.; Vianco, P.T.

    1993-07-01

    This paper compares the solderability performance and corrosions ion protection effectiveness of electroless tin coatings versus organic azole films after exposure to a series of humidity and thermal (lead-free solders) cycling conditions. The solderability of immersion tin is directly related to the tin oxide growth on the surface and is not affected by the formation of Sn-Cu intermetallic phases as long as the intermetallic phase is protected by a Sn layer. For a nominal tin thickness of 60{mu}inches, the typical thermal excursions associated with assembly are not sufficient to cause the intermetallic phase to consume the entire tin layer. Exposure to humidity at moderate to elevated temperatures promotes heavy tin oxide formation which leads to solderability loss. In contrast, thin azole films are more robust to humidity exposure; however upon heating in the presence of oxygen, they decompose and lead to severe solderability degradation. Evaluations of lead-free solder pastes for surface mount assembly applications indicate that immersion tin significantly improves the spreading of Sn:Ag and Sn:Bi alloys as compared to azole surface finishes.

  20. Azole fungicides: occurrence and fate in wastewater and surface waters.

    PubMed

    Kahle, Maren; Buerge, Ignaz J; Hauser, Andrea; Müller, Markus D; Poiger, Thomas

    2008-10-01

    The mode of action of azole compounds implies a potential to affect endocrine systems of different organisms and is reason for environmental concern. The occurrence and fate of nine agricultural azole fungicides, some of them also used as biocides, and four azole pharmaceuticals were studied in wastewater treatment plants (WWTPs) and lakes in Switzerland. Two pharmaceuticals (fluconazole, clotrimazole, 10-110 ng L(-1)) and two biocides (propiconazole, tebuconazole, 1-30 ng L(-1)) were consistently observed in WWTP influents. Loads determined in untreated and treated wastewater indicated thatfluconazole, propiconazole, and tebuconazole were largely unaffected by wastewater treatment, but clotrimazole was effectively eliminated (> 80%). Incubation studies with activated sludge showed no degradation for fluconazole and clotrimazole within 24 h, but strong sorption of clotrimazole to activated sludge. Slow degradation and some sorption were observed for tebuconazole and propiconazole (degradation half-lives, 2-3 d). In lakes, fluconazole, propiconazole, and tebuconazole were detected at low nanogram-per-liter levels. Concentrations of the pharmaceutical fluconazole correlated with the expected contamination by domestic wastewater, but not those of the biocides. Per capita loads of propiconazole and tebuconazole in lakes suggested additional inputs; for example, from agricultural use or urban runoff rainwater.

  1. Advances in synthetic approach to and antifungal activity of triazoles

    PubMed Central

    Kumar, Nitin; Drabu, Sushma; Sharma, Pramod Kumar

    2011-01-01

    Summary Several five membered ring systems, e.g., triazole, oxadiazole dithiazole and thiadiazole with three heteroatoms at symmetrical or asymmetrical positions have been studied because of their interesting pharmacological properties. In this article our emphasis is on synthetic development and pharmacological activity of the triazole moiety which exhibit a broad spectrum of pharmacological activity such as antifungal, antibacterial, anti-inflammatory and anticancer etc. Triazoles have increased our ability to treat many fungal infections, for example, candidiasis, cryptococcal meningitis, aspergillosis etc. However, mortality due to these infections even with antifungal therapy is still unacceptably high. Therefore, the development of new antifungal agents targeting specific fungal structures or functions is being actively pursued. Rapid developments in molecular mycology have led to a concentrated search for more target antifungals. Although we are entering a new era of antifungal therapy in which we will continue to be challenged by systemic fungal diseases, the options for treatment will have greatly expanded. PMID:21804864

  2. Evaluation of the Effects of Photodynamic Therapy Alone and Combined with Standard Antifungal Therapy on Planktonic Cells and Biofilms of Fusarium spp. and Exophiala spp.

    PubMed

    Gao, Lujuan; Jiang, Shaojie; Sun, Yi; Deng, Meiqi; Wu, Qingzhi; Li, Ming; Zeng, Tongxiang

    2016-01-01

    Infections of Fusarium spp. and Exophiala spp. are often chronic, recalcitrant, resulting in significant morbidity, causing discomfort, disfigurement, social isolation. Systemic disseminations happen in compromised patients, which are often refractory to available antifungal therapies and thereby lead to death. The antimicrobial photodynamic therapy (aPDT) has been demonstrated to effectively inactivate multiple pathogenic fungi and is considered as a promising alternative treatment for mycoses. In the present study, we applied methylene blue (8, 16, and 32 μg/ml) as a photosensitizing agent and light emitting diode (635 ± 10 nm, 12 and 24 J/cm(2)), and evaluated the effects of photodynamic inactivation on five strains of Fusarium spp. and five strains of Exophiala spp., as well as photodynamic effects on in vitro susceptibility to itraconazole, voriconazole, posaconazole and amphotericin B, both planktonic and biofilm forms. Photodynamic therapy was efficient in reducing the growth of all strains tested, exhibiting colony forming unit-reductions of up to 6.4 log10 and 5.6 log10 against planktonic cultures and biofilms, respectively. However, biofilms were less sensitive since the irradiation time was twice longer than that of planktonic cultures. Notably, the photodynamic effects against Fusarium strains with high minimal inhibitory concentration (MIC) values of ≥16, 4-8, 4-8, and 2-4 μg/ml for itraconazole, voriconazole, posaconazole and amphotericin B, respectively, were comparable or even superior to Exophiala spp., despite Exophiala spp. showed relatively better antifungal susceptibility profile. MIC ranges against planktonic cells of both species were up to 64 times lower after aPDT treatment. Biofilms of both species showed high sessile MIC50 (SMIC50) and SMIC80 of ≥16 μg/ml for all azoles tested and variable susceptibilities to amphotericin B, with SMIC ranging between 1 and 16 μg/ml. Biofilms subjected to aPDT exhibited a distinct reduction in

  3. Evaluation of the Effects of Photodynamic Therapy Alone and Combined with Standard Antifungal Therapy on Planktonic Cells and Biofilms of Fusarium spp. and Exophiala spp.

    PubMed Central

    Gao, Lujuan; Jiang, Shaojie; Sun, Yi; Deng, Meiqi; Wu, Qingzhi; Li, Ming; Zeng, Tongxiang

    2016-01-01

    Infections of Fusarium spp. and Exophiala spp. are often chronic, recalcitrant, resulting in significant morbidity, causing discomfort, disfigurement, social isolation. Systemic disseminations happen in compromised patients, which are often refractory to available antifungal therapies and thereby lead to death. The antimicrobial photodynamic therapy (aPDT) has been demonstrated to effectively inactivate multiple pathogenic fungi and is considered as a promising alternative treatment for mycoses. In the present study, we applied methylene blue (8, 16, and 32 μg/ml) as a photosensitizing agent and light emitting diode (635 ± 10 nm, 12 and 24 J/cm2), and evaluated the effects of photodynamic inactivation on five strains of Fusarium spp. and five strains of Exophiala spp., as well as photodynamic effects on in vitro susceptibility to itraconazole, voriconazole, posaconazole and amphotericin B, both planktonic and biofilm forms. Photodynamic therapy was efficient in reducing the growth of all strains tested, exhibiting colony forming unit-reductions of up to 6.4 log10 and 5.6 log10 against planktonic cultures and biofilms, respectively. However, biofilms were less sensitive since the irradiation time was twice longer than that of planktonic cultures. Notably, the photodynamic effects against Fusarium strains with high minimal inhibitory concentration (MIC) values of ≥16, 4-8, 4-8, and 2-4 μg/ml for itraconazole, voriconazole, posaconazole and amphotericin B, respectively, were comparable or even superior to Exophiala spp., despite Exophiala spp. showed relatively better antifungal susceptibility profile. MIC ranges against planktonic cells of both species were up to 64 times lower after aPDT treatment. Biofilms of both species showed high sessile MIC50 (SMIC50) and SMIC80 of ≥16 μg/ml for all azoles tested and variable susceptibilities to amphotericin B, with SMIC ranging between 1 and 16 μg/ml. Biofilms subjected to aPDT exhibited a distinct reduction in SMIC

  4. Evaluation of the Effects of Photodynamic Therapy Alone and Combined with Standard Antifungal Therapy on Planktonic Cells and Biofilms of Fusarium spp. and Exophiala spp.

    PubMed

    Gao, Lujuan; Jiang, Shaojie; Sun, Yi; Deng, Meiqi; Wu, Qingzhi; Li, Ming; Zeng, Tongxiang

    2016-01-01

    Infections of Fusarium spp. and Exophiala spp. are often chronic, recalcitrant, resulting in significant morbidity, causing discomfort, disfigurement, social isolation. Systemic disseminations happen in compromised patients, which are often refractory to available antifungal therapies and thereby lead to death. The antimicrobial photodynamic therapy (aPDT) has been demonstrated to effectively inactivate multiple pathogenic fungi and is considered as a promising alternative treatment for mycoses. In the present study, we applied methylene blue (8, 16, and 32 μg/ml) as a photosensitizing agent and light emitting diode (635 ± 10 nm, 12 and 24 J/cm(2)), and evaluated the effects of photodynamic inactivation on five strains of Fusarium spp. and five strains of Exophiala spp., as well as photodynamic effects on in vitro susceptibility to itraconazole, voriconazole, posaconazole and amphotericin B, both planktonic and biofilm forms. Photodynamic therapy was efficient in reducing the growth of all strains tested, exhibiting colony forming unit-reductions of up to 6.4 log10 and 5.6 log10 against planktonic cultures and biofilms, respectively. However, biofilms were less sensitive since the irradiation time was twice longer than that of planktonic cultures. Notably, the photodynamic effects against Fusarium strains with high minimal inhibitory concentration (MIC) values of ≥16, 4-8, 4-8, and 2-4 μg/ml for itraconazole, voriconazole, posaconazole and amphotericin B, respectively, were comparable or even superior to Exophiala spp., despite Exophiala spp. showed relatively better antifungal susceptibility profile. MIC ranges against planktonic cells of both species were up to 64 times lower after aPDT treatment. Biofilms of both species showed high sessile MIC50 (SMIC50) and SMIC80 of ≥16 μg/ml for all azoles tested and variable susceptibilities to amphotericin B, with SMIC ranging between 1 and 16 μg/ml. Biofilms subjected to aPDT exhibited a distinct reduction in

  5. Point prevalence, microbiology and antifungal susceptibility patterns of oral Candida isolates colonizing or infecting Mexican HIV/AIDS patients and healthy persons.

    PubMed

    Sánchez-Vargas, Luis Octavio; Ortiz-López, Natalia Guadalupe; Villar, María; Moragues, María Dolores; Aguirre, José Manuel; Cashat-Cruz, Miguel; Lopez-Ribot, Jose Luis; Gaitán-Cepeda, Luis Alberto; Quindós, Guillermo

    2005-06-01

    We have conducted a longitudinal study over a 3-year period to address the point prevalence, microbiological characteristics and antifungal susceptibility patterns of yeast isolates colonizing or infecting the oral cavities of 111 HIV-infected (51 adults, 60 children) and 201 non HIV-infected (109 adults, 92 children) Mexican persons. Regarding the epidemiology of oral candidiasis, Candida albicans was the most frequent species isolated. Seventy-one out of 85 isolates from colonized persons were C. albicans (83.5%), 27 isolates of them were from HIV-infected children and 44 from non HIV-infected patients. Sixty-two isolates belonged to serotype A which was the most prevalent serotype of C. albicans. Non-albicans species (Candida glabrata, Candida tropicalis and Candida parapsilosis, and Saccharomyces cerevisiae) were isolated from 16.5% of colonized patients and from 38.5% patients with candidiasis or Candida-related lesions. There were nine episodes of infection or colonization by at least 2 different yeast species. In the case of HIV/AIDS patients, it was determined that yeast carriage was not associated with the number of CD4+ cells or the viral load, but HAART reduced the prevalence of oral candidiasis. Overall, most patients harbored strains in vitro susceptible to fluconazole, however 10.8% of the yeasts were resistant to one or more azole antifungal agents and 29% were intermediate susceptible to them. On the contrary, 5-fluorocytosine was very active against all isolates tested, and amphotericin B was active against 97.9% of them.

  6. Interaction of gelatin with polyenes modulates antifungal activity and biocompatibility of electrospun fiber mats

    PubMed Central

    Lakshminarayanan, Rajamani; Sridhar, Radhakrishnan; Loh, Xian Jun; Nandhakumar, Muruganantham; Barathi, Veluchamy Amutha; Kalaipriya, Madhaiyan; Kwan, Jia Lin; Liu, Shou Ping; Beuerman, Roger Wilmer; Ramakrishna, Seeram

    2014-01-01

    Topical application of antifungals does not have predictable or well-controlled release characteristics and requires reapplication to achieve therapeutic local concentration in a reasonable time period. In this article, the efficacy of five different US Food and Drug Administration-approved antifungal-loaded (amphotericin B, natamycin, terbinafine, fluconazole, and itraconazole) electrospun gelatin fiber mats were compared. Morphological studies show that incorporation of polyenes resulted in a two-fold increase in fiber diameter and the mats inhibit the growth of yeasts and filamentous fungal pathogens. Terbinafine-loaded mats were effective against three filamentous fungal species. Among the two azole antifungals compared, the itraconazole-loaded mat was potent against Aspergillus strains. However, activity loss was observed for fluconazole-loaded mats against all of the test organisms. The polyene-loaded mats displayed rapid candidacidal activities as well. Biophysical and rheological measurements indicate strong interactions between polyene antifungals and gelatin matrix. As a result, the polyenes stabilized the triple helical conformation of gelatin and the presence of gelatin decreased the hemolytic activity of polyenes. The polyene-loaded fiber mats were noncytotoxic to primary human corneal and sclera fibroblasts. The reduction of toxicity with complete retention of activity of the polyene antifungal-loaded gelatin fiber mats can provide new opportunities in the management of superficial skin infections. PMID:24920895

  7. Stepwise emergence of azole, echinocandin and amphotericin B multidrug resistance in vivo in Candida albicans orchestrated by multiple genetic alterations

    PubMed Central

    Jensen, Rasmus Hare; Astvad, Karen Marie Thyssen; Silva, Luis Vale; Sanglard, Dominique; Jørgensen, Rene; Nielsen, Kristian Fog; Mathiasen, Estella Glintborg; Doroudian, Ghazalel; Perlin, David Scott; Arendrup, Maiken Cavling

    2015-01-01

    Objectives The objective of this study was to characterize the underlying molecular mechanisms in consecutive clinical Candida albicans isolates from a single patient displaying stepwise-acquired multidrug resistance. Methods Nine clinical isolates (P-1 to P-9) were susceptibility tested by EUCAST EDef 7.2 and Etest. P-4, P-5, P-7, P-8 and P-9 were available for further studies. Relatedness was evaluated by MLST. Additional genes were analysed by sequencing (including FKS1, ERG11, ERG2 and TAC1) and gene expression by quantitative PCR (CDR1, CDR2 and ERG11). UV-spectrophotometry and GC-MS were used for sterol analyses. In vivo virulence was determined in the insect model Galleria mellonella and evaluated by log-rank Mantel–Cox tests. Results P-1 + P-2 were susceptible, P-3 + P-4 fluconazole resistant, P-5 pan-azole resistant, P-6 + P-7 pan-azole and echinocandin resistant and P-8 + P-9 MDR. MLST supported genetic relatedness among clinical isolates. P-4 harboured four changes in Erg11 (E266D, G307S, G450E and V488I), increased expression of ERG11 and CDR2 and a change in Tac1 (R688Q). P-5, P-7, P-8 and P-9 had an additional change in Erg11 (A61E), increased expression of CDR1, CDR2 and ERG11 (except for P-7) and a different amino acid change in Tac1 (R673L). Echinocandin-resistant isolates harboured the Fks1 S645P alteration. Polyene-resistant P-8 + P-9 lacked ergosterol and harboured a frameshift mutation in ERG2 (F105SfsX23). Virulence was attenuated (but equivalent) in the clinical isolates, but higher than in the azole- and echinocandin-resistant unrelated control strain. Conclusions C. albicans demonstrates a diverse capacity to adapt to antifungal exposure. Potentially novel resistance-inducing mutations in TAC1, ERG11 and ERG2 require independent validation. PMID:26017038

  8. Optimization of Polyene-Azole Combination Therapy against Aspergillosis Using an In Vitro Pharmacokinetic-Pharmacodynamic Model

    PubMed Central

    Siopi, Maria; Siafakas, Nikolaos; Vourli, Sophia; Zerva, Loukia

    2015-01-01

    Although amphotericin B-azole combination therapy has traditionally been questioned due to potential antagonistic interactions, it is often used successfully to treat refractory invasive aspergillosis. So far, pharmacodynamic (PD) interactions have been assessed with conventional in vitro tests, which do not mimic human serum concentrations and animal models using limited doses. We therefore simulated the human serum concentration profiles of amphotericin B and voriconazole in an in vitro dialysis/diffusion closed pharmacokinetic-pharmacodynamic (PK-PD) model and studied the pharmacodynamic interactions against an azole-resistant and an azole-susceptible Aspergillus fumigatus isolate, using Bliss independence and canonical mixture response surface analyses. Amphotericin B dosing regimens with the drug administered every 24 h (q24h) were combined with voriconazole q12h dosing regimens. In vitro PK-PD combination data were then combined with human PK data by using Monte Carlo analysis. The target attainment rate and the serum concentration/MIC ratio were calculated for isolates with different MICs. Synergy (20 to 31%) was observed at low amphotericin B-high voriconazole exposures, whereas antagonism (−6 to −16%) was found at high amphotericin B-low voriconazole exposures for both isolates. Combination therapy resulted in 17 to 48% higher target attainment rates than those of monotherapy regimens for isolates with voriconazole/amphotericin B MICs of 1 to 4 mg/liter. Optimal activity was found for combination regimens with a 1.1 total minimum concentration of drug in serum (tCmin)/MIC ratio for voriconazole and a 0.5 total maximum concentration of drug in serum (tCmax)/MIC ratio for amphotericin B, whereas the equally effective monotherapy regimens required a voriconazole tCmin/MIC ratio of 1.8 and an amphotericin B tCmax/MIC ratio of 2.8. Amphotericin B-voriconazole combination regimens were more effective than monotherapy regimens. Therapeutic drug monitoring can

  9. Soluble material secreted from Penicillium chrysogenum isolate exhibits antifungal activity against Cryphonectria parasitica- the causative agent of the American Chestnut Blight

    PubMed Central

    Florjanczyk, Aleksandr; Barnes, Rebecca; Kenney, Adam; Horzempa, Joseph

    2016-01-01

    The American chestnut (Castanea dentata) was once the dominant canopy tree along the eastern region of the United States. Cryphonectria parasitica, the causative agent of chestnut blight, was introduced from Asia in the early 1900's, and obliterated the chestnut population within 50 years. We sought to identify environmental microbes capable of producing factors that were fungicidal or inhibited growth of C. parasitica in the hopes developing a biological control of chestnut blight. We isolated a filamentous fungus that significantly inhibited the growth of C. parasitica upon co-cultivation. Extracellular fractions of this fungal isolate prevented C. parasitica growth, indicating that a potential fungicide was produced by the novel isolate. Sequence analysis of 18S rRNA identified this inhibitory fungus as Penicillium chrysogenum. Furthermore, these extracellular fractions were tested as treatments for blight in vivo using chestnut saplings. Scarred saplings that were treated with the P. chrysogenum extracellular fractions healed subjectively better than those without treatment when inoculated with C. parasitica. These data suggest that material secreted by P. chrysogenum could be used as a treatment for the American chestnut blight. This work may assist the reclamation of the American chestnut in association with breeding programs and blight attenuation. Specifically, treatment of small groves under the right conditions may allow them to remain blight free. Future work will explore the mechanism of action and specific target of the extracellular fraction. PMID:27274909

  10. Production and characterization of Iturinic lipopeptides as antifungal agents and biosurfactants produced by a marine pinctada martensii-derived Bacillus mojavensis B0621A.

    PubMed

    Ma, Zongwang; Hu, Jiangchun

    2014-06-01

    Bacillus mojavensis B0621A was isolated from a pearl oyster Pinctada martensii collected from South China Sea. While screening for cyclic lipopeptides potentially useful as lead compounds for biological control against soil-bone fungal plant pathogens, three lipopeptides were isolated and purified from the fermentation broth of B. mojavensis B0621A via vacuum flash chromatography coupled with reversed-phase high performance liquid chromatography (RP-HPLC). The structural characterization and identification of these cyclic lipopeptides were performed by tandem mass spectrometry (MS/MS) combined with gas chromatography-mass spectrometry (GC-MS) analysis as well as chemical degradation. These lipopeptides were finally characterized as homologues of mojavensins, which contained identical amino acids back bones of asparagine1, tyrosine2, asparagine3, glutamine4, proline5, asparagine6, and asparagine7 and differed from each other by their saturated β-amino fatty acid chain residues, namely, iso-C14 mojavensin, iso-C16 mojavensin, and anteiso-C17 mojavensin, respectively. All lipopeptide isomers, especially iso-C16 mojavensin and anteiso-C17 mojavensin, displayed moderate antagonism and dose-dependent activity against several formae speciales of Fusarium oxysporum and presented surface tension activities. These properties demonstrated that the lipopeptides produced by B. mojavensis B0621A may be useful as biological control agent to fungal plant pathogens.

  11. Antifungal activities of ethanolic extract from Jatropha curcas seed cake.

    PubMed

    Saetae, Dolaporn; Suntornsuk, Worapot

    2010-02-01

    Phorbol ester extraction was carried out from Jatropha curcas seed cake, a by-product from the bio-diesel fuel industry. Four repeated extractions from 5 g J. curcas seed cake using 15 ml of 90% (v/v) ethanol and a shaking speed of 150 rev/min gave the highest yield of phosbol esters. The ethanolic extract of J. curcas seed cake showed antifungal activities against important phytofungal pathogens: Fusarium oxysporum, Pythium aphanidermatum, Lasiodiplodia theobromae, Curvularia lunata, Fusarium semitectum, Colletotrichum capsici and Colletotrichum gloeosporiodes. The extract contained phorbol esters mainly responsible for antifungal activities. The extract could therefore be used as an antifungal agent for agricultural applications. PMID:20208435

  12. Antifungal compounds from cyanobacteria.

    PubMed

    Shishido, Tânia K; Humisto, Anu; Jokela, Jouni; Liu, Liwei; Wahlsten, Matti; Tamrakar, Anisha; Fewer, David P; Permi, Perttu; Andreote, Ana P D; Fiore, Marli F; Sivonen, Kaarina

    2015-04-13

    Cyanobacteria are photosynthetic prokaryotes found in a range of environments. They are infamous for the production of toxins, as well as bioactive compounds, which exhibit anticancer, antimicrobial and protease inhibition activities. Cyanobacteria produce a broad range of antifungals belonging to structural classes, such as peptides, polyketides and alkaloids. Here, we tested cyanobacteria from a wide variety of environments for antifungal activity. The potent antifungal macrolide scytophycin was detected in Anabaena sp. HAN21/1, Anabaena cf. cylindrica PH133, Nostoc sp. HAN11/1 and Scytonema sp. HAN3/2. To our knowledge, this is the first description of Anabaena strains that produce scytophycins. We detected antifungal glycolipopeptide hassallidin production in Anabaena spp. BIR JV1 and HAN7/1 and in Nostoc spp. 6sf Calc and CENA 219. These strains were isolated from brackish and freshwater samples collected in Brazil, the Czech Republic and Finland. In addition, three cyanobacterial strains, Fischerella sp. CENA 298, Scytonema hofmanni PCC 7110 and Nostoc sp. N107.3, produced unidentified antifungal compounds that warrant further characterization. Interestingly, all of the strains shown to produce antifungal compounds in this study belong to Nostocales or Stigonematales cyanobacterial orders.

  13. Antifungal Compounds from Cyanobacteria

    PubMed Central

    Shishido, Tânia K.; Humisto, Anu; Jokela, Jouni; Liu, Liwei; Wahlsten, Matti; Tamrakar, Anisha; Fewer, David P.; Permi, Perttu; Andreote, Ana P. D.; Fiore, Marli F.; Sivonen, Kaarina

    2015-01-01

    Cyanobacteria are photosynthetic prokaryotes found in a range of environments. They are infamous for the production of toxins, as well as bioactive compounds, which exhibit anticancer, antimicrobial and protease inhibition activities. Cyanobacteria produce a broad range of antifungals belonging to structural classes, such as peptides, polyketides and alkaloids. Here, we tested cyanobacteria from a wide variety of environments for antifungal activity. The potent antifungal macrolide scytophycin was detected in Anabaena sp. HAN21/1, Anabaena cf. cylindrica PH133, Nostoc sp. HAN11/1 and Scytonema sp. HAN3/2. To our knowledge, this is the first description of Anabaena strains that produce scytophycins. We detected antifungal glycolipopeptide hassallidin production in Anabaena spp. BIR JV1 and HAN7/1 and in Nostoc spp. 6sf Calc and CENA 219. These strains were isolated from brackish and freshwater samples collected in Brazil, the Czech Republic and Finland. In addition, three cyanobacterial strains, Fischerella sp. CENA 298, Scytonema hofmanni PCC 7110 and Nostoc sp. N107.3, produced unidentified antifungal compounds that warrant further characterization. Interestingly, all of the strains shown to produce antifungal compounds in this study belong to Nostocales or Stigonematales cyanobacterial orders. PMID:25871291

  14. Uptake of azoles by lamb's lettuce (Valerianella locusta L.) grown in hydroponic conditions.

    PubMed

    García-Valcárcel, Ana I; Loureiro, Iñigo; Escorial, Concepción; Molero, Encarnación; Tadeo, José L

    2016-02-01

    An uptake and translocation study of azole compounds was performed in lamb's lettuce (Valerianella locusta L.) grown in nutrient solution fortified with different azoles. Three azoles, (clotrimazole, fluconazole and propiconazole), which have different physico-chemical properties and are ubiquitous in the aquatic environment, were the compounds selected. An analytical method, based on matrix solid phase dispersion (MSPD) followed by LC-MS/MS determination, was developed to quantify these compounds in aqueous solution and in roots and leaves. The physicochemical properties of azoles are the main factors governing the uptake and plant accumulation. These azoles were detected in leaves indicating their transport within lamb's lettuce. Translocation from nutrient solution to the aerial part of lamb's lettuce was found to be highly dependent on the hydrophobicity of the azole. Clotrimazole accumulates in roots causing necrosis in roots and leaves, whereas fluconazole was the azole with the highest concentration in leaves without causing apparent phytotoxicity symptoms. The assessment of the levels of these azoles in leaves indicates that the risk for human health is negligible. PMID:26513529

  15. Uptake of azoles by lamb's lettuce (Valerianella locusta L.) grown in hydroponic conditions.

    PubMed

    García-Valcárcel, Ana I; Loureiro, Iñigo; Escorial, Concepción; Molero, Encarnación; Tadeo, José L

    2016-02-01

    An uptake and translocation study of azole compounds was performed in lamb's lettuce (Valerianella locusta L.) grown in nutrient solution fortified with different azoles. Three azoles, (clotrimazole, fluconazole and propiconazole), which have different physico-chemical properties and are ubiquitous in the aquatic environment, were the compounds selected. An analytical method, based on matrix solid phase dispersion (MSPD) followed by LC-MS/MS determination, was developed to quantify these compounds in aqueous solution and in roots and leaves. The physicochemical properties of azoles are the main factors governing the uptake and plant accumulation. These azoles were detected in leaves indicating their transport within lamb's lettuce. Translocation from nutrient solution to the aerial part of lamb's lettuce was found to be highly dependent on the hydrophobicity of the azole. Clotrimazole accumulates in roots causing necrosis in roots and leaves, whereas fluconazole was the azole with the highest concentration in leaves without causing apparent phytotoxicity symptoms. The assessment of the levels of these azoles in leaves indicates that the risk for human health is negligible.

  16. Effects of the azole fungicide imazalil on the fathead minnow (Pimephales promelas) steroidogenesis pathway

    EPA Science Inventory

    Azole fungicides, used for both agriculture and human therapeutic applications may disrupt endocrine function of aquatic life. Azole fungicides are designed to inhibit the fungal enzyme lanosterol 14 á-demethylase (cytochrome P450 [CYP] 51). However, they can also interact...

  17. Antifungal susceptibility and molecular typing of 115 Candida albicans isolates obtained from vulvovaginal candidiasis patients in 3 Shanghai maternity hospitals.

    PubMed

    Ying, Chunmei; Zhang, Hongju; Tang, Zhenhua; Chen, Huifen; Gao, Jing; Yue, Chaoyan

    2016-05-01

    In our multicenter study, we studied the distribution of Candida species in vulvovaginal candidiasis patients and investigated antifungal susceptibility profile and genotype of Candida albicans in vaginal swab. A total of 115 Candida albicans strains were detected in 135 clinical isolates. Minimum inhibitory concentration determinations showed that 83% and 81% of the 115 Candida albicans strains were susceptible to fluconazole and voriconazole. Randomly amplified polymorphic DNA analysis (RAPD) was applied to identify clonally related isolates from different patients at the local level. All tested strains were classified into genotype A (77.4%), genotype B (18.3%), and genotype C (4.3%). Genotype A was further classified into five subtypes and genotype B into two subtypes.Candida albicans was the dominant pathogen of vulvovaginal candidiasis, the majority belonging to genotype A in this study. Exposure to azoles is a risk factor for the emergence of azole resistance among Candida albicans isolated from VVC patients.

  18. In Vitro Antifungal Susceptibilities of Five Species of Sporothrix▿

    PubMed Central

    Marimon, Rita; Serena, Carolina; Gené, Josepa; Cano, Josep; Guarro, Josep

    2008-01-01

    Ninety-two isolates belonging to five species of the Sporothrix schenckii complex were tested in vitro against 12 antifungal agents, using a reference microdilution method. There were significant differences among the species; Sporothrix brasiliensis was the species that showed the best response to antifungals, and S. mexicana had the worst response. In general, terbinafine was the most active drug, followed by ketoconazole and posaconazole. PMID:18039919

  19. Environmental study of azole-resistant Aspergillus fumigatus and other aspergilli in Austria, Denmark, and Spain.

    PubMed

    Mortensen, Klaus Leth; Mellado, Emilia; Lass-Flörl, Cornelia; Rodriguez-Tudela, Juan Luis; Johansen, Helle Krogh; Arendrup, Maiken Cavling

    2010-11-01

    A single mechanism of azole resistance was shown to predominate in clinical and environmental Aspergillus fumigatus isolates from the Netherlands, and a link to the use of azoles in the environment was suggested. To explore the prevalence of azole-resistant A. fumigatus and other aspergilli in the environment in other European countries, we collected samples from the surroundings of hospitals in Copenhagen, Innsbruck, and Madrid, flowerbeds in an amusement park in Copenhagen, and compost bags purchased in Austria, Denmark, and Spain and screened for azole resistance using multidish agars with itraconazole, voriconazole, and posaconazole. EUCAST method E.DEF 9.1 was used to confirm azole resistance. The promoter and entire coding sequence of the cyp51A gene were sequenced to identify azole-resistant A. fumigatus isolates. A. fumigatus was recovered in 144 out of 185 samples (77.8%). Four A. fumigatus isolates from four Danish soil samples displayed elevated azole MICs (8%), and all harbored the same TR/L98H mutation of cyp51A. One A. lentulus isolate with voriconazole MIC of 4 mg/liter was detected in Spain. No azole-resistant aspergilli were detected in compost. Finally, A. terreus was present in seven samples from Austria. Multi-azole-resistant A. fumigatus is present in the environment in Denmark. The resistance mechanism is identical to that of environmental isolates in the Netherlands. No link to commercial compost could be detected. In Spain and Austria, only Aspergillus species with intrinsic resistance to either azoles or amphotericin B were found.

  20. Epidemiological and Genomic Landscape of Azole Resistance Mechanisms in Aspergillus Fungi

    PubMed Central

    Hagiwara, Daisuke; Watanabe, Akira; Kamei, Katsuhiko; Goldman, Gustavo H.

    2016-01-01

    Invasive aspergillosis is a life-threatening mycosis caused by the pathogenic fungus Aspergillus. The predominant causal species is Aspergillus fumigatus, and azole drugs are the treatment of choice. Azole drugs approved for clinical use include itraconazole, voriconazole, posaconazole, and the recently added isavuconazole. However, epidemiological research has indicated that the prevalence of azole-resistant A. fumigatus isolates has increased significantly over the last decade. What is worse is that azole-resistant strains are likely to have emerged not only in response to long-term drug treatment but also because of exposure to azole fungicides in the environment. Resistance mechanisms include amino acid substitutions in the target Cyp51A protein, tandem repeat sequence insertions at the cyp51A promoter, and overexpression of the ABC transporter Cdr1B. Environmental azole-resistant strains harboring the association of a tandem repeat sequence and punctual mutation of the Cyp51A gene (TR34/L98H and TR46/Y121F/T289A) have become widely disseminated across the world within a short time period. The epidemiological data also suggests that the number of Aspergillus spp. other than A. fumigatus isolated has risen. Some non-fumigatus species intrinsically show low susceptibility to azole drugs, imposing the need for accurate identification, and drug susceptibility testing in most clinical cases. Currently, our knowledge of azole resistance mechanisms in non-fumigatus Aspergillus species such as A. flavus, A. niger, A. tubingensis, A. terreus, A. fischeri, A. lentulus, A. udagawae, and A. calidoustus is limited. In this review, we present recent advances in our understanding of azole resistance mechanisms particularly in A. fumigatus. We then provide an overview of the genome sequences of non-fumigatus species, focusing on the proteins related to azole resistance mechanisms. PMID:27708619

  1. Posttreatment Antifungal Resistance among Colonizing Candida Isolates in Candidemia Patients: Results from a Systematic Multicenter Study

    PubMed Central

    Jensen, R. H.; Johansen, H. K.; Søes, L. M.; Lemming, L. E.; Rosenvinge, F. S.; Nielsen, L.; Olesen, B.; Kristensen, L.; Dzajic, E.; Astvad, K. M. T.

    2015-01-01

    The prevalence of intrinsic and acquired resistance among colonizing Candida isolates from patients after candidemia was investigated systematically in a 1-year nationwide study. Patients were treated at the discretion of the treating physician. Oral swabs were obtained after treatment. Species distributions and MIC data were investigated for blood and posttreatment oral isolates from patients exposed to either azoles or echinocandins for <7 or ≥7 days. Species identification was confirmed using matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) and internal transcribed spacer (ITS) sequencing, susceptibility was examined by EUCAST EDef 7.2 methodology, echinocandin resistance was examined by FKS sequencing, and genetic relatedness was examined by multilocus sequence typing (MLST). One hundred ninety-three episodes provided 205 blood and 220 oral isolates. MLST analysis demonstrated a genetic relationship for 90% of all paired blood and oral isolates. Patients exposed to azoles for ≥7 days (n = 93) had a significantly larger proportion of species intrinsically less susceptible to azoles (particularly Candida glabrata) among oral isolates than among initial blood isolates (36.6% versus 12.9%; P < 0.001). A similar shift toward species less susceptible to echinocandins among 85 patients exposed to echinocandins for ≥7 days was not observed (4.8% of oral isolates versus 3.2% of blood isolates; P > 0.5). Acquired resistance in Candida albicans was rare (<5%). However, acquired resistance to fluconazole (29.4%; P < 0.05) and anidulafungin (21.6%; P < 0.05) was common in C. glabrata isolates from patients exposed to either azoles or echinocandins. Our findings suggest that the colonizing mucosal microbiota may be an unrecognized reservoir of resistant Candida species, especially C. glabrata, following treatment for candidemia. The resistance rates were high, raising concern in general for patients exposed to antifungal

  2. Posttreatment Antifungal Resistance among Colonizing Candida Isolates in Candidemia Patients: Results from a Systematic Multicenter Study.

    PubMed

    Jensen, R H; Johansen, H K; Søes, L M; Lemming, L E; Rosenvinge, F S; Nielsen, L; Olesen, B; Kristensen, L; Dzajic, E; Astvad, K M T; Arendrup, M C

    2016-03-01

    The prevalence of intrinsic and acquired resistance among colonizing Candida isolates from patients after candidemia was investigated systematically in a 1-year nationwide study. Patients were treated at the discretion of the treating physician. Oral swabs were obtained after treatment. Species distributions and MIC data were investigated for blood and posttreatment oral isolates from patients exposed to either azoles or echinocandins for <7 or ≥ 7 days. Species identification was confirmed using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and internal transcribed spacer (ITS) sequencing, susceptibility was examined by EUCAST EDef 7.2 methodology, echinocandin resistance was examined by FKS sequencing, and genetic relatedness was examined by multilocus sequence typing (MLST). One hundred ninety-three episodes provided 205 blood and 220 oral isolates. MLST analysis demonstrated a genetic relationship for 90% of all paired blood and oral isolates. Patients exposed to azoles for ≥ 7 days (n = 93) had a significantly larger proportion of species intrinsically less susceptible to azoles (particularly Candida glabrata) among oral isolates than among initial blood isolates (36.6% versus 12.9%; P < 0.001). A similar shift toward species less susceptible to echinocandins among 85 patients exposed to echinocandins for ≥ 7 days was not observed (4.8% of oral isolates versus 3.2% of blood isolates; P > 0.5). Acquired resistance in Candida albicans was rare (<5%). However, acquired resistance to fluconazole (29.4%; P < 0.05) and anidulafungin (21.6%; P < 0.05) was common in C. glabrata isolates from patients exposed to either azoles or echinocandins. Our findings suggest that the colonizing mucosal microbiota may be an unrecognized reservoir of resistant Candida species, especially C. glabrata, following treatment for candidemia. The resistance rates were high, raising concern in general for patients exposed to antifungal

  3. Microbiological screening of Irish patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy reveals persistence of Candida albicans strains, gradual reduction in susceptibility to azoles, and incidences of clinical signs of oral candidiasis without culture evidence.

    PubMed

    McManus, Brenda A; McGovern, Eleanor; Moran, Gary P; Healy, Claire M; Nunn, June; Fleming, Pádraig; Costigan, Colm; Sullivan, Derek J; Coleman, David C

    2011-05-01

    Patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) are prone to chronic mucocutaneous candidiasis, which is often treated with azoles. The purpose of this study was to characterize the oral Candida populations from 16 Irish APECED patients, who comprise approximately half the total number identified in Ireland, and to examine the effect of intermittent antifungal therapy on the azole susceptibility patterns of Candida isolates. Patients attended between one and four clinical evaluations over a 5-year period, providing oral rinses and/or oral swab samples each time. Candida was recovered from 14/16 patients, and Candida albicans was the only Candida species identified. Interestingly, clinical diagnosis of candidiasis did not correlate with microbiological evidence of Candida infection at 7/22 (32%) clinical assessments. Multilocus sequence typing analysis of C. albicans isolates recovered from the same patients on separate occasions identified the same sequence type each time. Fluconazole resistance was detected in isolates from one patient, and isolates exhibiting a progressive reduction in itraconazole and/or fluconazole susceptibility were identified in a further 3/16 patients, in each case correlating with the upregulation of CDR- and MDR-encoded efflux pumps. Mutations were also identified in the ERG11 and the TAC1 genes of isolates from these four patients; some of these mutations have previously been associated with azole resistance. The findings suggest that alternative Candida treatment options, other than azoles such as chlorhexidine, should be considered in APECED patients and that clinical diagnosis of oral candidiasis should be confirmed by culture prior to the commencement of anti-Candida therapy.

  4. Evaluation of antifungal combination against Cryptococcus spp.

    PubMed

    Reichert-Lima, Franqueline; Busso-Lopes, Ariane F; Lyra, Luzia; Peron, Isabela Haddad; Taguchi, Hideaki; Mikami, Yuzuru; Kamei, Katsuiko; Moretti, Maria Luiza; Schreiber, Angelica Z

    2016-09-01

    The second cause of death among systemic mycoses, cryptococcosis treatment represents a challenge since that 5-flucytosine is not currently available in Brazil. Looking for alternatives, this study evaluated antifungal agents, alone and combined, correlating susceptibility to genotypes. Eighty Cryptococcus clinical isolates were genotyped by URA5 gene restriction fragment length polymorphism. Antifungal susceptibility was assessed following CLSI-M27A3 for amphotericin (AMB), 5-flucytosine (5FC), fluconazole (FCZ), voriconazole (VRZ), itraconazole (ITZ) and terbinafine (TRB). Drug interaction chequerboard assay evaluated: AMB + 5FC, AMB + FCZ, AMB + TRB and FCZ + TRB. Molecular typing divided isolates into 14 C. deuterogattii (VGII) and C. neoformans isolates were found to belong to genotype VNI (n = 62) and VNII (n = 4). C. neoformans VNII was significantly less susceptible than VNI (P = 0.0407) to AMB; C. deuterogattii was significantly less susceptible than VNI and VNII to VRZ (P < 0.0001). C. deuterogattii was less susceptible than C. neoformans VNI for FCZ (P = 0.0170), ITZ (P < 0.0001) and TRB (P = 0.0090). The combination FCZ + TRB showed 95.16% of synergistic effect against C. neoformans genotype VNI isolates and all combinations showed 100% of synergism against genotype VNII isolates, suggesting the relevance of cryptococcal genotyping as it is widely known that the various genotypes (now species) have significant impact in antifungal susceptibilities and clinical outcome. In difficult-to-treat cryptococcosis, terbinafine and different antifungal combinations might be alternatives to 5FC. PMID:27135278

  5. Design, synthesis, and biological evaluation of 1,2,3-trisubstituted-1,4-dihydrobenzo[g]quinoxaline-5,10-diones and related compounds as antifungal and antibacterial agents.

    PubMed

    Tandon, Vishnu K; Yadav, Dharmendra B; Maurya, Hardesh K; Chaturvedi, Ashok K; Shukla, Praveen K

    2006-09-01

    A series of (S)-N-(3-chloro-1,4-naphthoquinon-2-yl)-alpha-amino acid ethyl esters 3 and 1,2,3-trisubstituted-1,4-dihydrobenzo[g]quinoxaline-5,10-diones 6-23 were synthesized and evaluated for antifungal and antibacterial activities. The structure-activity relationship of these compounds was studied and the results show that the compounds 3a and 3b exhibited in vitro antifungal activity against Candida albicans, Cryptococcus neoformans, and Sporothrix schenckii whereas compounds 12 and 22 showed in vitro antibacterial activity against Klebsiella pneumoniae and Escherichia coli.

  6. Additive and synergistic antiandrogenic activities of mixtures of azol fungicides and vinclozolin

    SciTech Connect

    Christen, Verena; Crettaz, Pierre; Fent, Karl

    2014-09-15

    Objective: Many pesticides including pyrethroids and azole fungicides are suspected to have an endocrine disrupting property. At present, the joint activity of compound mixtures is only marginally known. Here we tested the hypothesis that the antiandrogenic activity of mixtures of azole fungicides can be predicted by the concentration addition (CA) model. Methods: The antiandrogenic activity was assessed in MDA-kb2 cells. Following assessing single compounds activities mixtures of azole fungicides and vinclozolin were investigated. Interactions were analyzed by direct comparison between experimental and estimated dose–response curves assuming CA, followed by an analysis by the isobole method and the toxic unit approach. Results: The antiandrogenic activity of pyrethroids deltamethrin, cypermethrin, fenvalerate and permethrin was weak, while the azole fungicides tebuconazole, propiconazole, epoxiconazole, econazole and vinclozolin exhibited strong antiandrogenic activity. Ten binary and one ternary mixture combinations of five antiandrogenic fungicides were assessed at equi-effective concentrations of EC{sub 25} and EC{sub 50}. Isoboles indicated that about 50% of the binary mixtures were additive and 50% synergistic. Synergism was even more frequently indicated by the toxic unit approach. Conclusion: Our data lead to the conclusion that interactions in mixtures follow the CA model. However, a surprisingly high percentage of synergistic interactions occurred. Therefore, the mixture activity of antiandrogenic azole fungicides is at least additive. Practice: Mixtures should also be considered for additive antiandrogenic activity in hazard and risk assessment. Implications: Our evaluation provides an appropriate “proof of concept”, but whether it equally translates to in vivo effects should further be investigated. - Highlights: • Humans are exposed to pesticide mixtures such as pyrethroids and azole fungicides. • We assessed the antiandrogenicity of

  7. Potato Dextrose Agar Antifungal Susceptibility Testing for Yeasts and Molds: Evaluation of Phosphate Effect on Antifungal Activity of CMT-3

    PubMed Central

    Liu, Yu; Tortora, George; Ryan, Maria E.; Lee, Hsi-Ming; Golub, Lorne M.

    2002-01-01

    The broth macrodilution method (BMM) for antifungal susceptibility testing, approved by the National Committee for Clinical Laboratory Standards (NCCLS), was found to have deficiencies in testing of the antifungal activity of a new type of antifungal agent, a nonantibacterial chemically modified tetracycline (CMT-3). The high content of phosphate in the medium was found to greatly increase the MICs of CMT-3. To avoid the interference of phosphate in the test, a new method using potato dextrose agar (PDA) as a culture medium was developed. Eight strains of fungi, including five American Type Culture Collection strains and three clinical isolates, were used to determine the MICs of amphotericin B and itraconazole with both the BMM and the PDA methods. The MICs of the two antifungal agents determined with the PDA method showed 99% agreement with those determined with the BMM method within 1 log2 dilution. Similarly, the overall reproducibility of the MICs with the PDA method was above 97%. Three other antifungal agents, fluconazole, ketoconazole, and CMT-3, were also tested in parallel against yeasts and molds with both the BMM and the PDA methods. The MICs of fluconazole and ketoconazole determined with the PDA method showed 100% agreement within 1 log2 dilution of those obtained with the BMM method. However, the MICs of CMT-3 determined with the BMM method were as high as 128 times those determined with the PDA method. The effect of phosphate on the antifungal activity of CMT-3 was evaluated by adding Na2HPO4 to PDA in the new method. It was found that the MIC of CMT-3 against a Penicillium sp. increased from 0.5 μg/ml (control) to 2.0 μg/ml when the added phosphate was used at a concentration of 0.8 mg/ml, indicating a strong interference of Na2HPO4 with the antifungal activity of CMT-3. Except for fluconazole, all the other antifungal agents demonstrated clear end points among the yeasts and molds tested. Nevertheless, with its high reproducibility, good

  8. Antifungal effect of (+)-pinoresinol isolated from Sambucus williamsii.

    PubMed

    Hwang, Bomi; Lee, Juneyoung; Liu, Qing-He; Woo, Eun-Rhan; Lee, Dong Gun

    2010-05-14

    In this study, we investigated the antifungal activity and mechanism of action of (+)-pinoresinol, a biphenolic compound isolated from the herb Sambucus williamsii,used in traditional medicine. (+)-Pinoresinol displays potent antifungal properties without hemolytic effects on human erythrocytes. To understand the antifungal mechanism of (+)-pinoresinol, we conducted fluorescence experiments on the human pathogen Candida albicans. Fluorescence analysis using 1,6-diphenyl-1,3,5-hexatriene (DPH) indicated that the (+)-pinoresinol caused damage to the fungal plasma membrane. This result was confirmed by using rhodamine-labeled giant unilamellar vesicle (GUV) experiments. Therefore, the present study indicates that (+)-pinoresinol possesses fungicidal activities and therapeutic potential as an antifungal agent for the treatment of fungal infectious diseases in humans.

  9. Antifungal susceptibilities of Candida species isolated from the patients with vaginal candidiasis.

    PubMed

    Nagashima, Masahito; Yamagishi, Yuka; Mikamo, Hiroshige

    2016-02-01

    There have been the current Japanese data on susceptibility testing for Candida isolates from vaginal candidiasis. The in vitro activities of therapeutic antifungal drugs for vulvovaginal candidiasis (VVC); miconazole (MCZ), itraconazole (ITCZ), fluconazole (FLCZ), clotrimazole (CTZ), oxiconazole (OCZ), isoconazole (ICZ) and bifonazole (BFZ) against vaginal isolates. Fifty-four strains Candida albicans and 19 strains of Candida glabrata were evaluated using a broth microdilution method specified by Clinical Laboratories Standard Institute (CLSI) document M27-A3. The MIC90 of each drug, MCZ, ITCZ, FLCZ, CTZ, OCZ, ICZ and BFZ, against C. albicans and C. glabrata isolates were 0.25, 0.12, 1, 0.06, 0.12, 0.12 and 1 μg/ml and 1, 1, 8, 0.5, 0.25, 0.5 and 1 μg/ml respectively. The activities of these drugs, except for BFZ, against C. glabrata were lower than that of C. albicans. There was one azole-resistant isolate in C. glabrata of which MIC of FLCZ is > 64 μg/ml and this isolate had cross resistance to other antifungal drugs tested. These results suggest that antifungal drugs for treatment of VVC continues to have potent antifungal activities against C. albicans and C. glabrata isolates from vaginitis. CTZ, OCZ and ICZ susceptibility of FLCZ low susceptibility C. glabrata are relatively higher than MCZ, ITCZ and FLCZ.

  10. Optimization of Spore and Antifungal Lipopeptide Production during the Solid State Fermentation of Bacillus subtilis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus subtilis strain TrigoCor 1448 was grown on wheat middlings in 0.5-liter solid state fermentation (SSF) bioreactors for the production of an antifungal biological control agent. Total antifungal activity was quantified using a 96-well microplate bioassay against the plant pathogen Fusarium ...

  11. Antifungal activity of diethyldithiocarbamate.

    PubMed

    Allerberger, F; Reisinger, E C; Söldner, B; Dierich, M P

    1989-10-01

    Sodium diethyldithiocarbamate (DTC) was evaluated for its ability to combat four different species of fungi in vitro. Using a microtiter-broth-dilution method we were able to demonstrate an antifungal activity against Candida albicans, Cryptococcus neoformans, Aspergillus fumigatus and Mucor mucedo in doses achievable by intravenous administration in man.

  12. Benzoic acid derivatives with improved antifungal activity: Design, synthesis, structure-activity relationship (SAR) and CYP53 docking studies.

    PubMed

    Berne, Sabina; Kovačič, Lidija; Sova, Matej; Kraševec, Nada; Gobec, Stanislav; Križaj, Igor; Komel, Radovan

    2015-08-01

    Previously, we identified CYP53 as a fungal-specific target of natural phenolic antifungal compounds and discovered several inhibitors with antifungal properties. In this study, we performed similarity-based virtual screening and synthesis to obtain benzoic acid-derived compounds and assessed their antifungal activity against Cochliobolus lunatus, Aspergillus niger and Pleurotus ostreatus. In addition, we generated structural models of CYP53 enzyme and used them in docking trials with 40 selected compounds. Finally, we explored CYP53-ligand interactions and identified structural elements conferring increased antifungal activity to facilitate the development of potential new antifungal agents that specifically target CYP53 enzymes of animal and plant pathogenic fungi. PMID:26154240

  13. Identification and characterization of the antifungal substances of a novel Streptomyces cavourensis NA4.

    PubMed

    Pan, Hua-Qi; Yu, Su-Ya; Song, Chun-Feng; Wang, Nan; Hua, Hui-Ming; Hu, Jiang-Chun; Wang, Shu-Jin

    2015-03-01

    A new actinomycete strain NA4 was isolated from a deep-sea sediment collected from the South China Sea and showed promising antifungal activities against soilborne fungal pathogens. It was identified as Streptomyces cavourensis by morphological, physiological, and phylogenetic analyses based on its 16S rRNA gene sequence. The main antifungal components were isolated and identified from the fermentation culture as bafilomycins B1 and C1. These compounds exhibited significant antifungal activities and a broad antifungal spectrum. The results suggest that the Streptomyces cavourensis NA4 and bafilomycins B1 and C1 could be used as potential biocontrol agents for soilborne fungal diseases of plants.

  14. In vitro antifungal activity and mechanism of essential oil from fennel (Foeniculum vulgare L.) on dermatophyte species.

    PubMed

    Zeng, Hong; Chen, Xinping; Liang, Jingnan

    2015-01-01

    Fennel seed essential oil (FSEO) is a plant-derived natural therapeutic against dermatophytes. In this study, the antifungal effects of FSEO were investigated from varied aspects, such as MIC and minimum fungicidal concentration, mycelia growth, spore germination and biomass. The results indicated that FSEO had potent antifungal activities on Trichophyton rubrum ATCC 40051, Trichophyton tonsurans 10-0400, Microsporum gypseum 44693-1 and Trichophyton mentagrophytes 10-0060, which is better than the commonly used antifungal agents fluconazole and amphotericin B. Flow cytometry and transmission electron microscopy experiments suggested that the antifungal mechanism of FSEO was to damage the plasma membrane and intracellular organelles. Further study revealed that it could also inhibit the mitochondrial enzyme activities, such as succinate dehydrogenase, malate dehydrogenase and ATPase. With better antifungal activity than the commonly used antifungal agents and less possibility of inducing drug resistance, FSEO could be used as a potential antidermatophytic agent.

  15. In vitro antifungal activity and mechanism of essential oil from fennel (Foeniculum vulgare L.) on dermatophyte species.

    PubMed

    Zeng, Hong; Chen, Xinping; Liang, Jingnan

    2015-01-01

    Fennel seed essential oil (FSEO) is a plant-derived natural therapeutic against dermatophytes. In this study, the antifungal effects of FSEO were investigated from varied aspects, such as MIC and minimum fungicidal concentration, mycelia growth, spore germination and biomass. The results indicated that FSEO had potent antifungal activities on Trichophyton rubrum ATCC 40051, Trichophyton tonsurans 10-0400, Microsporum gypseum 44693-1 and Trichophyton mentagrophytes 10-0060, which is better than the commonly used antifungal agents fluconazole and amphotericin B. Flow cytometry and transmission electron microscopy experiments suggested that the antifungal mechanism of FSEO was to damage the plasma membrane and intracellular organelles. Further study revealed that it could also inhibit the mitochondrial enzyme activities, such as succinate dehydrogenase, malate dehydrogenase and ATPase. With better antifungal activity than the commonly used antifungal agents and less possibility of inducing drug resistance, FSEO could be used as a potential antidermatophytic agent. PMID:25351709

  16. Antifungal Susceptibility Profiles of Bloodstream Yeast Isolates by Sensititre YeastOne over Nine Years at a Large Italian Teaching Hospital

    PubMed Central

    Posteraro, Brunella; Spanu, Teresa; Fiori, Barbara; De Maio, Flavio; De Carolis, Elena; Giaquinto, Alessia; Prete, Valentina; De Angelis, Giulia; Torelli, Riccardo; D'Inzeo, Tiziana; Vella, Antonietta; De Luca, Alessio; Tumbarello, Mario; Ricciardi, Walter

    2015-01-01

    Sensititre YeastOne (SYO) is an affordable alternative to the Clinical and Laboratory Standards Institute (CLSI) reference method for antifungal susceptibility testing. In this study, the MICs of yeast isolates from 1,214 bloodstream infection episodes, generated by SYO during hospital laboratory activity (January 2005 to December 2013), were reanalyzed using current CLSI clinical breakpoints/epidemiological cutoff values to assign susceptibility (or the wild-type [WT] phenotype) to systemic antifungal agents. Excluding Candida albicans (57.4% of all isolates [n = 1,250]), the most predominant species were Candida parapsilosis complex (20.9%), Candida tropicalis (8.2%), Candida glabrata (6.4%), Candida guilliermondii (1.6%), and Candida krusei (1.3%). Among the non-Candida species (1.9%), 7 were Cryptococcus neoformans and 17 were other species, mainly Rhodotorula species. Over 97% of Candida isolates were susceptible (WT phenotype) to amphotericin B and flucytosine. Rates of susceptibility (WT phenotype) to fluconazole, itraconazole, and voriconazole were 98.7% in C. albicans, 92.3% in the C. parapsilosis complex, 96.1% in C. tropicalis, 92.5% in C. glabrata, 100% in C. guilliermondii, and 100% (excluding fluconazole) in C. krusei. The fluconazole-resistant isolates consisted of 6 C. parapsilosis complex isolates, 3 C. glabrata isolates, 2 C. albicans isolates, 2 C. tropicalis isolates, and 1 Candida lusitaniae isolate. Of the non-Candida isolates, 2 C. neoformans isolates had the non-WT phenotype for susceptibility to fluconazole, whereas Rhodotorula isolates had elevated azole MICs. Overall, 99.7% to 99.8% of Candida isolates were susceptible (WT phenotype) to echinocandins, but 3 isolates were nonsusceptible (either intermediate or resistant) to caspofungin (C. albicans, C. guilliermondii, and C. krusei), anidulafungin (C. albicans and C. guilliermondii), and micafungin (C. albicans). However, when the intrinsically resistant non-Candida isolates were included

  17. Diversity and antifungal susceptibility of Norwegian Candida glabrata clinical isolates

    PubMed Central

    Andersen, Kari-Mette; Kristoffersen, Anne Karin; Ingebretsen, André; Vikholt, Katharina Johnsen; Örtengren, Ulf Thore; Olsen, Ingar; Enersen, Morten; Gaustad, Peter

    2016-01-01

    Background Increasing numbers of immunocompromised patients have resulted in greater incidence of invasive fungal infections with high mortality. Candida albicans infections dominate, but during the last decade, Candida glabrata has become the second highest cause of candidemia in the United States and Northern Europe. Reliable and early diagnosis, together with appropriate choice of antifungal treatment, is needed to combat these challenging infections. Objectives To confirm the identity of 183 Candida glabrata isolates from different human body sites using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and VITEK®2, and to analyze isolate protein profiles and antifungal susceptibility. The minimum inhibitory concentration (MIC) of seven antifungal drugs was determined for the isolates to elucidate susceptibility. Design A total of 183 C. glabrata isolates obtained between 2002 and 2012 from Norwegian health-care units were analyzed. For species verification and differentiation, biochemical characterization (VITEK®2) and mass spectrometry (MALDI–TOF) were used. MIC determination for seven antifungal drugs was undertaken using E-tests®. Results Using VITEK®2, 92.9% of isolates were identified as C. glabrata, while all isolates (100%) were identified as C. glabrata using MALDI-TOF. Variation in protein spectra occurred for all identified C. glabrata isolates. The majority of isolates had low MICs to amphotericin B (≤1 mg/L for 99.5%) and anidulafungin (≤0.06 mg/L for 98.9%). For fluconazole, 18% of isolates had MICs >32 mg/L and 82% had MICs in the range ≥0.016 mg/L to ≤32 mg/L. Conclusions Protein profiles and antifungal susceptibility characteristics of the C. glabrata isolates were diverse. Clustering of protein profiles indicated that many azole resistant isolates were closely related. In most cases, isolates had highest susceptibility to amphotericin B and anidulafungin. The results confirmed previous observations of high

  18. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2005: an 8.5-Year Analysis of Susceptibilities of Candida Species and Other Yeast Species to Fluconazole and Voriconazole Determined by CLSI Standardized Disk Diffusion Testing▿

    PubMed Central

    Pfaller, M. A.; Diekema, D. J.; Gibbs, D. L.; Newell, V. A.; Meis, J. F.; Gould, I. M.; Fu, W.; Colombo, A. L.; Rodriguez-Noriega, E.

    2007-01-01

    Fluconazole in vitro susceptibility test results for 205,329 yeasts were collected from 134 study sites in 40 countries from June 1997 through December 2005. Data were collected for 147,776 yeast isolates tested with voriconazole from 2001 through 2005. All investigators tested clinical yeast isolates by the CLSI M44-A disk diffusion method. Test plates were automatically read and results recorded with a BIOMIC image analysis system. Species, drug, zone diameter, susceptibility category, and quality control results were collected quarterly. Duplicate (same patient, same species, and same susceptible-resistant biotype profile during any 7-day period) and uncontrolled test results were not analyzed. Overall, 90.1% of all Candida isolates tested were susceptible (S) to fluconazole; however, 10 of the 22 species identified exhibited decreased susceptibility (<75% S) on the order of that seen with the resistant (R) species C. glabrata and C. krusei. Among 137,487 isolates of Candida spp. tested against voriconazole, 94.8% were S and 3.1% were R. Less than 30% of fluconazole-resistant isolates of C. albicans, C. glabrata, C. tropicalis, and C. rugosa remained S to voriconazole. The non-Candida yeasts (8,821 isolates) were generally less susceptible to fluconazole than Candida spp. but, aside from Rhodotorula spp., remained susceptible to voriconazole. This survey demonstrates the broad spectrum of these azoles against the most common opportunistic yeast pathogens but identifies several less common yeast species with decreased susceptibility to antifungal agents. These organisms may pose a future threat to optimal antifungal therapy and emphasize the importance of prompt and accurate species identification. PMID:17442797

  19. Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity.

    PubMed

    Khan, Amber; Ahmad, Aijaz; Akhtar, Feroz; Yousuf, Snowber; Xess, Immaculata; Khan, Luqman A; Manzoor, Nikhat

    2010-12-01

    The increasing incidence of drug-resistant pathogens and host toxicity of existing antifungals attracts attention toward the efficacy of natural products as antifungals in mucocutaneous infections and combinational therapies. The composition and antifungal activity of the essential oil obtained from Ocimum sanctum (OSEO) was studied. On GC-MS analysis, OSEO showed a high content of methyl chavicol (44.63%) and linalool (21.84%). Antifungal activity of OSEO and its two main constituents was determined against sixty clinical and five standard laboratory isolates of Candida. OSEO, methyl chavicol and linalool showed inhibitory activity toward all tested strains. The mechanism of their fungicidal action was assessed by studying their effect on the plasma membrane using flow cytometry, confocal imaging and determination of the levels of ergosterol, a fungal-specific sterol. Propidium iodide rapidly penetrated a majority of yeast cells when they were treated with OSEO concentrations just above MIC, implying that fungicidal activity resulted from extensive lesions of the plasma membrane. OSEO and its components also caused a considerable reduction in the amount of ergosterol. The present study indicates that OSEO, methyl chavicol and linalool have significant antifungal activity against Candida, including azole-resistant strains, advocating further investigation for clinical applications in the treatment of fungal infections. PMID:20868749

  20. Topical antifungals for seborrhoeic dermatitis

    PubMed Central

    Okokon, Enembe O; Verbeek, Jos H; Ruotsalainen, Jani H; Ojo, Olumuyiwa A; Bakhoya, Victor Nyange

    2015-01-01

    Background Seborrhoeic dermatitis is a chronic inflammatory skin condition that is distributed worldwide. It commonly affects the scalp, face and flexures of the body. Treatment options include antifungal drugs, steroids, calcineurin inhibitors, keratolytic agents and phototherapy. Objectives To assess the effects of antifungal agents for seborrhoeic dermatitis of the face and scalp in adolescents and adults. A secondary objective is to assess whether the same interventions are effective in the management of seborrhoeic dermatitis in patients with HIV/AIDS. Search methods We searched the following databases up to December 2014: the Cochrane Skin Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (2014, Issue 11), MEDLINE (from 1946), EMBASE (from 1974) and Latin American Caribbean Health Sciences Literature (LILACS) (from 1982). We also searched trials registries and checked the bibliographies of published studies for further trials. Selection criteria Randomised controlled trials of topical antifungals used for treatment of seborrhoeic dermatitis in adolescents and adults, with primary outcome measures of complete clearance of symptoms and improved quality of life. Data collection and analysis Review author pairs independently assessed eligibility for inclusion, extracted study data and assessed risk of bias of included studies. We performed fixed-effect meta-analysis for studies with low statistical heterogeneity and used a random-effects model when heterogeneity was high. Main results We included 51 studies with 9052 participants. Of these, 45 trials assessed treatment outcomes at five weeks or less after commencement of treatment, and six trials assessed outcomes over a longer time frame. We believe that 24 trials had some form of conflict of interest, such as funding by pharmaceutical companies. Among the included studies were 12 ketoconazole trials (N = 3253), 11 ciclopirox trials (N = 3029), two lithium trials (N = 141

  1. Antifungal susceptibility testing.

    PubMed Central

    Rex, J H; Pfaller, M A; Rinaldi, M G; Polak, A; Galgiani, J N

    1993-01-01

    Unlike antibacterial susceptibility testing, reliable antifungal susceptibility testing is still largely in its infancy. Many methods have been described, but they produce widely discrepant results unless such factors as pH, inoculum size, medium formulation, incubation time, and incubation temperature are carefully controlled. Even when laboratories agree upon a common method, interlaboratory agreement may be poor. As a result of numerous collaborative projects carried out both independently and under the aegis of the Subcommittee on Antifungal Susceptibility Testing of the National Committee for Clinical Laboratory Standards, the effects of varying these factors have been extensively studied and a standard method which minimizes interlaboratory variability during the testing of Candida spp. and Cryptococcus neoformans has been proposed. This review summarizes this work, reviews the strengths and weaknesses of the proposed susceptibility testing standard, and identifies directions for future work. PMID:8269392

  2. Update from the Laboratory: Clinical Identification and Susceptibility Testing of Fungi and Trends in Antifungal Resistance.

    PubMed

    Albataineh, Mohammad T; Sutton, Deanna A; Fothergill, Annette W; Wiederhold, Nathan P

    2016-03-01

    Despite the availability of new diagnostic assays and broad-spectrum antifungal agents, invasive fungal infections remain a significant challenge to clinicians and are associated with marked morbidity and mortality. In addition, the number of etiologic agents of invasive mycoses has increased accompanied by an expansion in the immunocompromised patient populations, and the use of molecular tools for fungal identification and characterization has resulted in the discovery of several cryptic species. This article reviews various methods used to identify fungi and perform antifungal susceptibility testing in the clinical laboratory. Recent developments in antifungal resistance are also discussed. PMID:26739605

  3. [In vitro antifungal resistance in Candida albicans from HIV-infected patients with and without oral candidosis.].

    PubMed

    Ceballos Salobreña, A; Gaitán Cepeda, L A; Orihuela Cañada, F; Olea Barrionuevo, D; Ceballos García, L; Quindós, G

    1999-12-01

    The main purpose of this study has been to determine the in vitro antifungal susceptibility of clinical isolates from HIV-infected or AIDS patients, depending on the presence of oral candidosis. The oral cavity of 307 HIV-infected or AIDS patients was examined and an oral swab was cultured on Sabouraud glucose agar and studied by conventional mycological methods. In vitro antifungal susceptibility to amphotericin B, nystatin, fluconazole, itraconazole and ketoconazole was tested by disk diffusion with Neo-Sensitabs tablets (Rosco Diagnostica, Dinamarca). One hundred and thirty five Candida albicans isolates (91 serotype A, 38 serotype B, three C. albicans variety stellatoidea and three untyped isolates), three Candida krusei and two Candida glabrata were obtained. All the isolates were susceptible to nystatin and amphotericin B. However, 7.9% isolates were resistant to fluconazole and 2.9% isolates were resistant to ketoconazole or itraconazole. Nearly all C. krusei and C. glabrata isolates, 31% patients with candidosis and 20% Candida-colonized patients showed decreased susceptibility to azoles. This study shows that polyenes had a great in vitro efficacy against clinical isolates from HIV-infected patients and that in vitro resistance to azoles is not as high as observed in other countries.

  4. Chemical modification of antifungal polyene macrolide antibiotics

    NASA Astrophysics Data System (ADS)

    Solovieva, S. E.; Olsufyeva, E. N.; Preobrazhenskaya, M. N.

    2011-02-01

    The review summarizes advances in the methods for the synthesis of polyene antibiotics (amphotericin B, partricin A, etc.) and investigations of the structure-activity relationship made in the last 15 years. State-of-the-art approaches based on the combination of the chemical synthesis and genetic engineering are considered. Emphasis is given to the design of semisynthetic antifungal agents against chemotherapy-resistant pathogens having the highest therapeutic indices. Recent results of research on the mechanisms of action of polyenes are outlined.

  5. Candida tropicalis from veterinary and human sources shows similar in vitro hemolytic activity, antifungal biofilm susceptibility and pathogenesis against Caenorhabditis elegans.

    PubMed

    Brilhante, Raimunda Sâmia Nogueira; Oliveira, Jonathas Sales de; Evangelista, Antônio José de Jesus; Serpa, Rosana; Silva, Aline Lobão da; Aguiar, Felipe Rodrigues Magalhães de; Pereira, Vandbergue Santos; Castelo-Branco, Débora de Souza Collares Maia; Pereira-Neto, Waldemiro Aquino; Cordeiro, Rossana de Aguiar; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha

    2016-08-30

    The aim of this study was to evaluate the in vitro hemolytic activity and biofilm antifungal susceptibility of veterinary and human Candida tropicalis strains, as well as their pathogenesis against Caenorhabditis elegans. Twenty veterinary isolates and 20 human clinical isolates of C. tropicalis were used. The strains were evaluated for their hemolytic activity and biofilm production. Biofilm susceptibility to itraconazole, fluconazole, voriconazole, amphotericin B and caspofungin was assessed using broth microdilution assay. The in vivo evaluation of strain pathogenicity was investigated using the nematode C. elegans. Hemolytic factor was observed in 95% of the strains and 97.5% of the isolates showed ability to form biofilm. Caspofungin and amphotericin B showed better results than azole antifungals against mature biofilms. Paradoxical effect on mature biofilm metabolic activity was observed at elevated concentrations of caspofungin (8-64μg/mL). Azole antifungals were not able to inhibit mature C. tropicalis biofilms, even at the higher tested concentrations. High mortality rates of C. elegans were observed when the worms were exposed to with C. tropicalis strains, reaching up to 96%, 96h after exposure of the worms to C. tropicalis strains. These results reinforce the high pathogenicity of C. tropicalis from veterinary and human sources and show the effectiveness of caspofungin and amphotericin B against mature biofilms of this species. PMID:27527785

  6. Antifungal activity of Brevibacillus laterosporus JX-5 and characterization of its antifungal components.

    PubMed

    Jiang, Hongxia; Wang, Xiaohui; Xiao, Chengze; Wang, Weiyan; Zhao, Xu; Sui, Junkang; Sa, Rongbo; Guo, Tai L; Liu, Xunli

    2015-10-01

    The establishment of safe and effective methods for controlling fungal disease is an urgent issue in agriculture and forestry. Microbiological control of plant disease is expected to achieve better results than use of chemically derived fungicides. This study aimed to establish Brevibacillus laterosporus JX-5 as a potential microbiological control agent of poplar canker. The bacterium was isolated from the poplar rhizosphere and demonstrated significant growth inhibition of several pathogenic fungi in vitro. The antifungal components of Br. laterosporus JX-5 were isolated and identified. The fermentation broth of Br. laterosporus JX-5 and its main antifungal component, designated as component B, reduced Botryosphaeria dothidea associated canker of the excised poplar branch by 70 and 90%, respectively. Component B is considerably heat-stable, adaptable to a broad pH range, and UV-resistant. It could inhibit Bo. dothidea by permeating the fungal membrane, fracturing the nuclei, damaging the cell wall, and eventually killing the pathogenic fungus. The antifungal activity exhibited by Br. laterosporus JX-5 and its bioactive metabolic products indicate its feasibility as a potential biocontrol agent for plant diseases. PMID:26265360

  7. Antifungal Drugs for Onychomycosis: Efficacy, Safety, and Mechanisms of Action.

    PubMed

    Rosen, Theodore; Stein Gold, Linda F

    2016-03-01

    In 1996, oral terbinafine joined itraconazole and fluconazole on the short list of systemic medications that could be used to treat onychomycosis (although fluconazole was not approved for this indication by the US Food and Drug Administration [FDA], it was commonly used for this purpose). In 1999, ciclopirox was the first topical treatment to be FDA approved. The addition of the topical antifungal agents efinaconazole and tavaborole in 2014 expanded the roster of medications available to more effectively manage onychomycosis in a wide range of patients, including those for whom comorbid conditions, concomitant medications, or patient preference limited the use of systemic antifungals. PMID:27074700

  8. Mechanochemical Synthesis and Antioxidant Activity of Curcumin-Templated Azoles.

    PubMed

    Sherin, Daisy R; Rajasekharan, Kallikat N

    2015-12-01

    A solvent-free, mechanochemical method for the synthesis of curcumin (1) derived 3,5-bis(styryl)pyrazoles and 3,5-bis(styryl)isoxazole (2a-g) at room temperature, with very short reaction time, is reported. Such earlier structural modifications of curcumin, at its β-diketone unit by transforming it into an isosteric pyrazole or isoxazole unit, required prolonged heating. The evaluation of the antioxidant activity of these compounds, based on DPPH, FRAP, and β-carotene bleaching assays, showed that several of these azoles are better antioxidants than curcumin, with the isoxazole derivative 2g being overall the best. Typically, the inhibition of 2,2-diphenyl-1-picrylhydrazyl (10(-2) mmol), expressed as EC50 values, by curcumin (1), 3,5-bis(4-hydroxy-3-methoxystyryl)pyrazole (2a), and 3,5-bis(4-hydroxy-3-methoxystyryl)isoxazole (2g) are 40 ± 0.06, 14 ± 0.18, and 8 ± 0.11 μmol, respectively. Moreover, the reported method is useful in accessing 3,5-bis(4-hydroxy-3-methoxystyryl)-1-phenylpyrazole (2b), which is important in studies related to neuroprotection and Alzheimer's disease, and 2a and 2g, which are inhibitors of protein kinases involved in neuronal excitotoxicity.

  9. Azole susceptibility of Malassezia pachydermatis and Malassezia furfur and tentative epidemiological cut-off values.

    PubMed

    Cafarchia, Claudia; Iatta, Roberta; Immediato, Davide; Puttilli, Maria Rita; Otranto, Domenico

    2015-09-01

    This study aims to determine the minimal inhibitory concentration (MIC) distribution and the epidemiological cut-off values (ECVs) of Malassezia pachydermatis and Malassezia furfur isolates for fluconazole (FLZ), itraconazole (ITZ), posaconazole (POS), and voriconazole (VOR). A total of 62 M. pachydermatis strains from dogs with dermatitis and 78 M. furfur strains from humans with bloodstream infections (BSI) were tested by a modified broth microdilution Clinical and Laboratory Standards Institute (CLSI) method. ITZ and POS displayed lower MICs than VOR and FLZ, regardless of the Malassezia species. The MIC data for azoles of M. pachydermatis were four two-fold dilutions lower than those of M. furfur. Based on the ECVs, about 94% of Malassezia strains might be categorized within susceptible population for all azoles, except for FLZ, and azole cross-resistance was detected in association with FLZ in M. pachydermatis but not in M. furfur.The study proposes, for the first time, tentative azole ECVs for M. pachydermatis and M. furfur for monitoring the emergence of isolates with decreased susceptibilities and shows that the azole MIC distribution varied according to the Malassezia species tested, thus suggesting the usefulness of determining the susceptibility profile for effective treatment of each species. PMID:26162472

  10. Synthesis of isosteric triterpenoid derivatives and antifungal activity.

    PubMed

    Innocente, Adrine; Casanova, Bruna B; Klein, Fernanda; Lana, Aline D; Pereira, Dariane; Muniz, Mauro N; Sonnet, Pascal; Gosmann, Grace; Fuentefria, Alexandre M; Gnoatto, Simone C B

    2014-03-01

    Dermatomycoses are among the most widespread and common superficial and cutaneous fungal infections in humans. There is an urgent need to develop efficient and non-toxic antimycotic agents with a specific spectrum of activity. Triterpenes have been demonstrated to exhibit a wide range of biological activities, including antifungal activities. In this study, through hemisynthesis, we aimed to obtain triterpene-isosteric molecules from betulinic and ursolic acids to improve the antifungal activity and spectrum of action of these compounds. Six compounds were resynthesized and tested against eleven mucocutaneous and cutaneous mycotic agents. The results of the susceptibility assays were expressed as the minimal inhibitory concentration (MIC). The MIC values of the piperazinyl derivatives of ursolic and betulinic acids that were active against pathogenic yeasts were in the range of 16-32 μg/mL and 4-16 μg/mL, respectively, whereas fungicidal effects were observed at concentrations ranging from 16 to 128 μg/mL and 8 to 128 μg/mL, respectively. The piperazinyl derivative of betulinic acid exhibited an antifungal profile similar to that of terbinafine and was the most effective derivative against dermatophytes. This strategy led to a promising candidate for the development of a new antifungal agent.

  11. Genotyping of Fusarium Isolates from Onychomycoses in Colombia: Detection of Two New Species Within the Fusarium solani Species Complex and In Vitro Antifungal Susceptibility Testing.

    PubMed

    Guevara-Suarez, Marcela; Cano-Lira, José Francisco; de García, María Caridad Cepero; Sopo, Leticia; De Bedout, Catalina; Cano, Luz Elena; García, Ana María; Motta, Adriana; Amézquita, Adolfo; Cárdenas, Martha; Espinel-Ingroff, Ana; Guarro, Josep; Restrepo, Silvia; Celis, Adriana

    2016-04-01

    Fusariosis have been increasing in Colombia in recent years, but its epidemiology is poorly known. We have morphologically and molecularly characterized 89 isolates of Fusarium obtained between 2010 and 2012 in the cities of Bogotá and Medellín. Using a multi-locus sequence analysis of rDNA internal transcribed spacer, a fragment of the translation elongation factor 1-alpha (Tef-1α) and of the RNA-dependent polymerase subunit II (Rpb2) genes, we identified the phylogenetic species and circulating haplotypes. Since most of the isolates studied were from onychomycoses (nearly 90 %), we carried out an epidemiological study to determine the risk factors associated with such infections. Five phylogenetic species of the Fusarium solani species complex (FSSC), i.e., F. falciforme, F. keratoplasticum, F. lichenicola, F. petroliphilum, and FSSC 6 as well as two of the Fusarium oxysporum species complex (FOSC), i.e., FOSC 3 and FOSC 4, were identified. The most prevalent species were FOSC 3 (38.2%) followed by F. keratoplasticum (33.7%). In addition, our isolates were distributed into 23 haplotypes (14 into FOSC and nine into FSSC). Two of the FSSC phylogenetic species and two haplotypes of FSSC were not described before. Our results demonstrate that recipients of pedicure treatments have a lower probability of acquiring onychomycosis than those not receiving such treatments. The antifungal susceptibility of all the isolates to five clinically available agents showed that amphotericin B was the most active drug, while the azoles exhibited lower in vitro activity. PMID:26943726

  12. Genotyping of Fusarium Isolates from Onychomycoses in Colombia: Detection of Two New Species Within the Fusarium solani Species Complex and In Vitro Antifungal Susceptibility Testing.

    PubMed

    Guevara-Suarez, Marcela; Cano-Lira, José Francisco; de García, María Caridad Cepero; Sopo, Leticia; De Bedout, Catalina; Cano, Luz Elena; García, Ana María; Motta, Adriana; Amézquita, Adolfo; Cárdenas, Martha; Espinel-Ingroff, Ana; Guarro, Josep; Restrepo, Silvia; Celis, Adriana

    2016-04-01

    Fusariosis have been increasing in Colombia in recent years, but its epidemiology is poorly known. We have morphologically and molecularly characterized 89 isolates of Fusarium obtained between 2010 and 2012 in the cities of Bogotá and Medellín. Using a multi-locus sequence analysis of rDNA internal transcribed spacer, a fragment of the translation elongation factor 1-alpha (Tef-1α) and of the RNA-dependent polymerase subunit II (Rpb2) genes, we identified the phylogenetic species and circulating haplotypes. Since most of the isolates studied were from onychomycoses (nearly 90 %), we carried out an epidemiological study to determine the risk factors associated with such infections. Five phylogenetic species of the Fusarium solani species complex (FSSC), i.e., F. falciforme, F. keratoplasticum, F. lichenicola, F. petroliphilum, and FSSC 6 as well as two of the Fusarium oxysporum species complex (FOSC), i.e., FOSC 3 and FOSC 4, were identified. The most prevalent species were FOSC 3 (38.2%) followed by F. keratoplasticum (33.7%). In addition, our isolates were distributed into 23 haplotypes (14 into FOSC and nine into FSSC). Two of the FSSC phylogenetic species and two haplotypes of FSSC were not described before. Our results demonstrate that recipients of pedicure treatments have a lower probability of acquiring onychomycosis than those not receiving such treatments. The antifungal susceptibility of all the isolates to five clinically available agents showed that amphotericin B was the most active drug, while the azoles exhibited lower in vitro activity.

  13. Solid lipid nanoparticles for antifungal drugs delivery for topical applications.

    PubMed

    Trombino, Sonia; Mellace, Silvia; Cassano, Roberta

    2016-09-01

    Systemic and local infections caused by fungi, in particular those concerning the skin and nails, are increasing. Various drugs are used for mycoses treatment such as amphotericin B, nystatin and ketoconazole, fluconazole, itraconazole and fluconazole, among others. Unfortunately, many of these antifungal agents can cause side effects such as allergic and severe skin reaction. With the aim to reduce these side effects and maximize the antifungal drug activity, various drug-delivery systems have been formulated and been investigated in the last few years. In this context, solid lipid nanoparticles are attracting great attention. The aim of this review is to highlight the role of solid lipid nanoparticles as carriers of antifungal drugs for topical applications. PMID:27582235

  14. [Treatment of dermatoses : Significance and use of glucocorticoids in fixed combination with antifungals].

    PubMed

    Mayser, P

    2016-09-01

    Treating eczema with fungal and/or bacterial superinfections or superficial mycoses are a common problem in daily practice. A fungal superinfection as a consequence of a diminished skin barrier might complicate the course of eczema. In addition, in an inflammatory superficial mycotic infection a delayed-type hypersensitivity reaction may result in healing of the lesion, but might also be responsible for irreversible damage of epidermal structures. An example is permanent hair loss by scarring alopecia in the context of inflammatory tinea capitis. In both cases, combination of an antifungal and a glucocorticoid is appropriate in therapy, preferentially in topical application. The use of azole antimycotics is especially helpful, as they are also effective against gram-positive bacteria. PMID:27411685

  15. Heptaketides from an Endolichenic Fungus Biatriospora sp. and Their Antifungal Activity.

    PubMed

    Zhou, Yan-Hui; Zhang, Ming; Zhu, Rong-Xiu; Zhang, Jiao-Zhen; Xie, Fei; Li, Xiao-Bin; Chang, Wen-Qiang; Wang, Xiao-Ning; Zhao, Zun-Tian; Lou, Hong-Xiang

    2016-09-23

    Twelve new heptaketides, biatriosporins A-L (1-12), biatriosporin M (13) (a ramulosin derivative), and 19 known compounds (14-32) were isolated from the endolichenic fungus Biatriospora sp. (8331C). The structures of these compounds were determined by analyzing MS and NMR data. The absolute configurations of compounds 1, 2, 7, and 9 were determined by single-crystal X-ray diffraction analysis, whereas compound 10 was deduced with Mosher's method. Four of the compounds were active in an antifungal assay. The most potent compound, compound 4, also sensitized clinically derived azole-resistant Candida albicans strains to fluconazole (FLC). A mechanistic investigation revealed that 4 inhibited the function of efflux pumps and reduced the transcriptional expression of the efflux-pump-related genes CDR1 and CDR2. PMID:27556953

  16. Imidazolylchromanones containing non-benzylic oxime ethers: synthesis and molecular modeling study of new azole antifungals selective against Cryptococcus gattii.

    PubMed

    Babazadeh-Qazijahani, Mojtaba; Badali, Hamid; Irannejad, Hamid; Afsarian, Mohammad Hosein; Emami, Saeed

    2014-04-01

    A series of imidazolylchromanone oximes containing phenoxyethyl ether moiety, as found in omoconazole, were synthesized and evaluated against yeasts (Candida albicans and Cryptococcus gattii) and filamentous fungi (Aspergillus fumigatus and Exophiala dermatitidis). Although the title compounds showed marginal activity against filamentous fungi but all of them exhibited potent activity against C. gattii (MIC values ≤4 μg/mL). Among them, (3-chlorophenoxy)ethyl analog 7c with MIC value of 0.5 μg/mL was the most potent compound. Further molecular docking studies provided a better insight into the binding of designed compounds within the homology modeled active site of CnCYP51 (Cryptococcus CYP51-14α-demethylase). PMID:24583607

  17. Antifungal prophylaxis with posaconazole vs. fluconazole or itraconazole in pediatric patients with neutropenia.

    PubMed

    Döring, M; Eikemeier, M; Cabanillas Stanchi, K M; Hartmann, U; Ebinger, M; Schwarze, C-P; Schulz, A; Handgretinger, R; Müller, I

    2015-06-01

    Pediatric patients with hemato-oncological malignancies and neutropenia resulting from chemotherapy have a high risk of acquiring invasive fungal infections. Oral antifungal prophylaxis with azoles, such as fluconazole or itraconazole, is preferentially used in pediatric patients after chemotherapy. During this retrospective analysis, posaconazole was administered based on favorable results from studies in adult patients with neutropenia and after allogeneic hematopoietic stem cell transplantation. Retrospectively, safety, feasibility, and initial data on the efficacy of posaconazole were compared to fluconazole and itraconazole in pediatric and adolescent patients during neutropenia. Ninety-three pediatric patients with hemato-oncological malignancies with a median age of 12 years (range 9 months to 17.7 years) that had prolonged neutropenia (>5 days) after chemotherapy or due to their underlying disease, and who received fluconazole, itraconazole, or posaconazole as antifungal prophylaxis, were analyzed in this retrospective single-center survey. The incidence of invasive fungal infections in pediatric patients was low under each of the azoles. One case of proven aspergillosis occurred in each group. In addition, there were a few cases of possible invasive fungal infection under fluconazole (n = 1) and itraconazole (n = 2). However, no such cases were observed under posaconazole. The rates of potentially clinical drug-related adverse events were higher in the fluconazole (n = 4) and itraconazole (n = 5) groups compared to patients receiving posaconazole (n = 3). Posaconazole, fluconazole, and itraconazole are comparably effective in preventing invasive fungal infections in pediatric patients. Defining dose recommendations in these patients requires larger studies.

  18. Metal-Based Antibacterial and Antifungal Agents: Synthesis, Characterization, and In Vitro Biological Evaluation of Co(II), Cu(II), Ni(II), and Zn(II) Complexes With Amino Acid-Derived Compounds

    PubMed Central

    Chohan, Zahid H.; Arif, M.; Akhtar, Muhammad A.; Supuran, Claudiu T.

    2006-01-01

    A series of antibacterial and antifungal amino acid-derived compounds and their cobalt(II), copper(II), nickel(II), and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, and IR, and electronic spectral measurements. Ligands (L1)−(L5) were derived by condensation of β-diketones with glycine, phenylalanine, valine, and histidine and act as bidentate towards metal ions (cobalt, copper, nickel, and zinc) via the azomethine-N and deprotonated-O of the respective amino acid. The stoichiometric reaction between the metal(II) ion and synthesized ligands in molar ratio of M : L (1 : 1) resulted in the formation of the metal complexes of type [M(L)(H2O)4]Cl (where M = Co(II), Cu(II), and Zn(II)) and of M : L (1 : 2) of type [M(L)2(H2O)2] (where M = Co(II), Cu(II), Ni(II), and Zn(II)). The magnetic moment data suggested for the complexes to have an octahedral geometry around the central metal atom. The electronic spectral data also supported the same octahedral geometry of the complexes. Elemental analyses and NMR spectral data of the ligands and their metal(II) complexes agree with their proposed structures. The synthesized ligands, along with their metal(II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexeneri, Pseudomonas aeruginosa, and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, and Candida glaberata. The results of these studies show the metal(II) complexes to be more antibacterial/antifungal against one or more species as compared to the uncomplexed ligands. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties. Five compounds, (3), (7), (10), (11), and (22), displayed

  19. Metal-Based Antibacterial and Antifungal Agents: Synthesis, Characterization, and In Vitro Biological Evaluation of Co(II), Cu(II), Ni(II), and Zn(II) Complexes With Amino Acid-Derived Compounds.

    PubMed

    Chohan, Zahid H; Arif, M; Akhtar, Muhammad A; Supuran, Claudiu T

    2006-01-01

    A series of antibacterial and antifungal amino acid-derived compounds and their cobalt(II), copper(II), nickel(II), and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, and IR, and electronic spectral measurements. Ligands (L(1))-(L(5)) were derived by condensation of beta-diketones with glycine, phenylalanine, valine, and histidine and act as bidentate towards metal ions (cobalt, copper, nickel, and zinc) via the azomethine-N and deprotonated-O of the respective amino acid. The stoichiometric reaction between the metal(II) ion and synthesized ligands in molar ratio of M : L (1 : 1) resulted in the formation of the metal complexes of type [M(L)(H(2)O)(4)]Cl (where M = Co(II), Cu(II), and Zn(II)) and of M : L (1 : 2) of type [M(L)(2)(H(2)O)(2)] (where M = Co(II), Cu(II), Ni(II), and Zn(II)). The magnetic moment data suggested for the complexes to have an octahedral geometry around the central metal atom. The electronic spectral data also supported the same octahedral geometry of the complexes. Elemental analyses and NMR spectral data of the ligands and their metal(II) complexes agree with their proposed structures. The synthesized ligands, along with their metal(II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexeneri, Pseudomonas aeruginosa, and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, and Candida glaberata. The results of these studies show the metal(II) complexes to be more antibacterial/antifungal against one or more species as compared to the uncomplexed ligands. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties. Five compounds, (3), (7), (10), (11), and (22

  20. In Vitro and In Vivo Activity of a Novel Antifungal Small Molecule against Candida Infections

    PubMed Central

    Yuen, Kwok Yong; Wang, Yu; Yang, Dan; Samaranayake, Lakshman Perera

    2014-01-01

    Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC) 0.2 – 1.6 µg/ml). In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use. PMID:24465737

  1. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections.

    PubMed

    Wong, Sarah Sze Wah; Kao, Richard Yi Tsun; Yuen, Kwok Yong; Wang, Yu; Yang, Dan; Samaranayake, Lakshman Perera; Seneviratne, Chaminda Jayampath

    2014-01-01

    Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC) 0.2-1.6 µg/ml). In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use. PMID:24465737

  2. Identification of Ebsulfur Analogues with Broad-Spectrum Antifungal Activity.

    PubMed

    Ngo, Huy X; Shrestha, Sanjib K; Garneau-Tsodikova, Sylvie

    2016-07-19

    Invasive fungal infections are on the rise due to an increased population of critically ill patients as a result of HIV infections, chemotherapies, and organ transplantations. Current antifungal drugs are helpful, but are insufficient in addressing the problem of drug-resistant fungal infections. Thus, there is a growing need for novel antimycotics that are safe and effective. The ebselen scaffold has been evaluated in clinical trials and has been shown to be safe in humans. This makes ebselen an attractive scaffold for facile translation from bench to bedside. We recently reported a library of ebselen-inspired ebsulfur analogues with antibacterial properties, but their antifungal activity has not been characterized. In this study, we repurposed ebselen, ebsulfur, and 32 additional ebsulfur analogues as antifungal agents by evaluating their antifungal activity against a panel of 13 clinically relevant fungal strains. The effect of induction of reactive oxygen species (ROS) by three of these compounds was evaluated. Their hemolytic and cytotoxicity activities were also determined using mouse erythrocytes and mammalian cells. The MIC values of these compounds were found to be in the range of 0.02-12.5 μg mL(-1) against the fungal strains tested. Notably, yeast cells treated with our compounds showed an accumulation of ROS, which may further contribute to the growth-inhibitory effect against fungi. This study provides new lead compounds for the development of antimycotic agents. PMID:27334363

  3. Synthesis, Characterization and Antifungal Evaluation of Novel Thiochromanone Derivatives Containing Indole Skeleton.

    PubMed

    Han, Xiao-Yan; Zhong, Yi-Fan; Li, Sheng-Bin; Liang, Guo-Chao; Zhou, Guan; Wang, Xiao-Ke; Chen, Bao-Hua; Song, Ya-Li

    2016-09-01

    Invasive fungal disease constitutes a growing health problem and development of novel antifungal drugs with high potency and selectivity against new fungal molecular targets are urgently needed. In order to develop potent antifungal agents, a novel series of 6-alkyl-indolo[3,2-c]-2H-thiochroman derivatives were synthesized. Microdilution broth method was used to investigate antifungal activity of these compounds. Most of them showed good antifungal activity in vitro. Compound 4o showed the best antifungal activity, which (inhibition of Candida albicans and Cryptococcus neoformans) can be achieved at the concentration of 4 µg/mL. Compounds 4b (inhibition of Cryptococcus neoformans), 4j (inhibition of Cryptococcus neoformans), 4d (inhibition of Candida albicans) and 4h (inhibition of Candida albicans) also showed the best antifungal activity at the concentrations of 4 µg/mL. The molecular interactions between 4o and the N-myristoyltransferase of Candida albicans (PDB ID: 1IYL) were finally investigated through molecular docking. The results indicated that these thiochromanone derivatives containing indole skeleton could serve as promising leads for further optimization as novel antifungal agents. PMID:27373770

  4. Enhancement of the Antifungal Activity of Antimicrobial Drugs by Eugenia uniflora L.

    PubMed Central

    Santos, Karla K.A.; Matias, Edinardo F.F.; Tintino, Saulo R.; Souza, Celestina E.S.; Braga, Maria F.B.M.; Guedes, Gláucia M.M.; Costa, José G.M.; Menezes, Irwin R.A.

    2013-01-01

    Abstract Candidiasis is the most frequent infection by opportunistic fungi such as Candida albicans, Candida tropicalis, and Candida krusei. Ethanol extract from Eugenia uniflora was assayed, for its antifungal activity, either alone or combined with four selected chemotherapeutic antimicrobial agents, including anphotericin B, mebendazole, nistatin, and metronidazole against these strains. The obtained results indicated that the association of the extract of E. uniflora to metronidazole showed a potential antifungal activity against C. tropicalis. However, no synergistic activity against the other strains was observed, as observed when the extract was associated with the other, not enhancing their antifungal activity. PMID:23819641

  5. Bioassay-guided isolation and identification of antifungal compounds from ginger.

    PubMed

    Ficker, C; Smith, M L; Akpagana, K; Gbeassor, M; Zhang, J; Durst, T; Assabgui, R; Arnason, J T

    2003-09-01

    A bioassay-guided isolation of antifungal compounds from an African land race of ginger, Zingiber officinale Roscoe, led to the identification of [6], [8] and [10]-gingerols and [6]-gingerdiol as the main antifungal principles. The compounds were active against 13 human pathogens at concentrations of <1 mg/mL. The gingerol content of the African land race was at least 3 x higher than that of typical commercial cultivars of ginger. Therefore, ginger extracts standardized on the basis of the identified compounds, could be considered as antifungal agents for practical therapy. PMID:13680820

  6. Population-based survey of filamentous fungi and antifungal resistance in Spain (FILPOP Study).

    PubMed

    Alastruey-Izquierdo, A; Mellado, E; Peláez, T; Pemán, J; Zapico, S; Alvarez, M; Rodríguez-Tudela, J L; Cuenca-Estrella, M

    2013-07-01

    A population-based survey was conducted to investigate the epidemiology of and antifungal resistance in Spanish clinical strains of filamentous fungi isolated from deep tissue samples, blood cultures, and respiratory samples. The study was conducted in two different periods (October 2010 and May 2011) to analyze seasonal variations. A total of 325 strains were isolated in 29 different hospitals. The average prevalence was 0.016/1,000 inhabitants [corrected]. Strains were identified by sequencing of DNA targets and susceptibility testing by the European Committee for Antimicrobial Susceptibility Testing reference procedure. The most frequently isolated genus was Aspergillus, accounting for 86.3% of the isolates, followed by Scedosporium at 4.7%; the order Mucorales at 2.5%; Penicillium at 2.2%, and Fusarium at 1.2%. The most frequent species was Aspergillus fumigatus (48.5%), followed by A. flavus (8.4%), A. terreus (8.1%), A. tubingensis (6.8%), and A. niger (6.5%). Cryptic/sibling Aspergillus species accounted for 12% of the cases. Resistance to amphotericin B was found in 10.8% of the isolates tested, while extended-spectrum triazole resistance ranged from 10 to 12.7%, depending on the azole tested. Antifungal resistance was more common among emerging species such as those of Scedosporium and Mucorales and also among cryptic species of Aspergillus, with 40% of these isolates showing resistance to all of the antifungal compounds tested. Cryptic Aspergillus species seem to be underestimated, and their correct classification could be clinically relevant. The performance of antifungal susceptibility testing of the strains implicated in deep infections and multicentric studies is recommended to evaluate the incidence of these cryptic species in other geographic areas. PMID:23669377

  7. Breakthrough candidaemia in the era of broad-spectrum antifungal therapies.

    PubMed

    Cuervo, G; Garcia-Vidal, C; Nucci, M; Puchades, F; Fernández-Ruiz, M; Obed, M; Manzur, A; Gudiol, C; Pemán, J; Aguado, J M; Ayats, J; Carratalà, J

    2016-02-01

    We aimed to assess the characteristics, treatment, risk factors and outcome of patients with breakthrough candidaemia (BrC) in the era of broad-spectrum antifungal therapies. We carried out a multicentre study of hospitalized adults with candidaemia at six hospitals in three countries. BrC episodes were compared with the remaining episodes (non-BrC). Of 409 episodes of candidaemia, 37 (9%) were BrC. Among them, antifungal treatment was administered as prophylaxis in 26 severely immunosuppressed patients (70%) and as a fever-driven approach in 11 (30%). Candida albicans was significantly less common in patients with BrC (24% versus 46%, p 0.010) whereas Candida krusei was more frequent (16% versus 2.4%, p < 0.001). BrC was associated with infections caused by fluconazole non-susceptible isolates (50% versus 18%, p < 0.001). Candida albicans BrC was associated with previous fluconazole treatment whereas Candida parapsilosis candidaemia was mostly catheter-related and/or associated with previous echinocandin therapy. The empirical antifungal therapy was more often appropriate in the non-BrC group (57% versus 74%, p 0.055). No significant differences were found in outcomes (early and overall mortality: 11% versus 13% p 0.802 and 40% versus 40% p 0.954, respectively). Fluconazole non-susceptibility was independently associated with the risk of BrC (adjusted OR 5.57; 95% CI 1.45-21.37). In conclusion, BrC accounted for 9% of the episodes in our multicentre cohort. The Candida spp. isolated were different depending on the previous antifungal therapy: previous azole treatment was associated with fluconazole non-susceptible strains and previous echinocandin treatment was associated with BrC caused by C. parapsilosis. These results should be taken into account to improve the empirical treatment of BrC.

  8. Population-Based Survey of Filamentous Fungi and Antifungal Resistance in Spain (FILPOP Study)

    PubMed Central

    Mellado, E.; Peláez, T.; Pemán, J.; Zapico, S.; Alvarez, M.; Rodríguez-Tudela, J. L.; Cuenca-Estrella, M.

    2013-01-01

    A population-based survey was conducted to investigate the epidemiology of and antifungal resistance in Spanish clinical strains of filamentous fungi isolated from deep tissue samples, blood cultures, and respiratory samples. The study was conducted in two different periods (October 2010 and May 2011) to analyze seasonal variations. A total of 325 strains were isolated in 29 different hospitals. The average prevalence was 0.0016/1,000 inhabitants. Strains were identified by sequencing of DNA targets and susceptibility testing by the European Committee for Antimicrobial Susceptibility Testing reference procedure. The most frequently isolated genus was Aspergillus, accounting for 86.3% of the isolates, followed by Scedosporium at 4.7%; the order Mucorales at 2.5%; Penicillium at 2.2%, and Fusarium at 1.2%. The most frequent species was Aspergillus fumigatus (48.5%), followed by A. flavus (8.4%), A. terreus (8.1%), A. tubingensis (6.8%), and A. niger (6.5%). Cryptic/sibling Aspergillus species accounted for 12% of the cases. Resistance to amphotericin B was found in 10.8% of the isolates tested, while extended-spectrum triazole resistance ranged from 10 to 12.7%, depending on the azole tested. Antifungal resistance was more common among emerging species such as those of Scedosporium and Mucorales and also among cryptic species of Aspergillus, with 40% of these isolates showing resistance to all of the antifungal compounds tested. Cryptic Aspergillus species seem to be underestimated, and their correct classification could be clinically relevant. The performance of antifungal susceptibility testing of the strains implicated in deep infections and multicentric studies is recommended to evaluate the incidence of these cryptic species in other geographic areas. PMID:23669377

  9. o-Iodoxybenzoic acid mediated oxidative desulfurization initiated domino reactions for synthesis of azoles.

    PubMed

    Chaudhari, Pramod S; Pathare, Sagar P; Akamanchi, Krishnacharaya G

    2012-04-20

    A systematic exploration of thiophilic ability of o-iodoxybenzoic acid (IBX) for oxidative desulfurization to trigger domino reactions leading to new methodologies for synthesis of different azoles is described. A variety of highly substituted oxadiazoles, thiadiazoles, triazoles, and tetrazoles have been successfully synthesized in good to excellent yields, starting from readily accessible thiosemicarbazides, bis-diarylthiourea, 1,3-disubtituted thiourea, and thioamides.

  10. Does fungicide application in vineyards induce resistance to medical azoles in Aspergillus species?

    PubMed

    Lago, Magali; Aguiar, Ana; Natário, André; Fernandes, Carla; Faria, Miguel; Pinto, Eugénia

    2014-09-01

    This study assessed if the use of sterol demethylase inhibitor fungicides in vineyard production can induce resistance to azoles in Aspergillus strains and if it can induce selection of resistant species. We also tried to identify the Aspergillus species most prevalent in the vineyards. Two vineyards from northern Portugal were selected from "Vinhos Verdes" and "Douro" regions. The vineyards were divided into plots that were treated or not with penconazole (PEN). In each vineyard, air, soil, and plant samples were collected at three different times. The strains of Aspergillus spp. were isolated and identified by morphological and molecular techniques. We identified 46 Aspergillus section Nigri, eight Aspergillus fumigatus, seven Aspergillus lentulus, four Aspergillus wentii, two Aspergillus flavus, two Aspergillus terreus, one Aspergillus calidoustus, one Aspergillus westerdijkiae, one Aspergillus tamarii, and one Eurotium amstelodami. Aspergillus strains were evaluated for their susceptibility to medical azoles used in human therapy (itraconazole, posaconazole, and voriconazole) and to agricultural azoles (PEN) used in the prevention and treatment of plant diseases. The isolates showed moderate susceptibility to voriconazole. We did not observe any decrease of susceptibility to the medical azoles tested throughout the testing period in any of the treated plots, although some of the resistant species were isolated from there.

  11. Erg11 mutations associated with azole resistance in clinical isolates of Candida albicans.

    PubMed

    Xiang, Ming-Jie; Liu, Jin-Yan; Ni, Pei-Hua; Wang, Shengzheng; Shi, Ce; Wei, Bing; Ni, Yu-Xing; Ge, Hai-Liang

    2013-06-01

    The widespread use of azoles has led to increasing azole resistance among Candida albicans strains. One mechanism of azole resistance involves point mutations in the ERG11 gene, which encodes the target enzyme (cytochrome P450 lanosterol 14α-demethylase). In the present study, we amplified and sequenced the ERG11 gene of 23 C. albicans clinical isolates. Seventeen mutations encoding distinct amino acid substitutions were found, of which seven (K143Q, Y205E, A255V, E260V, N435V, G472R, and D502E) were novel. We further verified the contribution of the amino acid substitutions to azole resistance using site-directed mutagenesis of the ERG11 gene to recreate these mutations for heterologous expression in Saccharomyces cerevisiae. We observed that substitutions A114S, Y132H, Y132F, K143R, Y257H, and a new K143Q substitution contributed to significant increases (≧fourfold) in fluconazole and voriconazole resistance; changes in itraconazole resistance were not significant (≦twofold).

  12. Dimeric fluorescent energy transfer dyes comprising asymmetric cyanine azole-indolenine chromophores

    DOEpatents

    Glazer, Alexander N.; Benson, Scott C.

    1996-01-01

    Novel fluorescent DNA-staining dyes are provided combining asymmetric cyanine azole-indolenine dyes, which provide for strong DNA affinity, large Stokes shifts and emission in the red region of the spectrum. The dyes find particular application in gel electrophoresis and for labels which may be bound to a variety of compositions in a variety of contexts.

  13. A Global Analysis of CYP51 Diversity and Azole Sensitivity in Rhynchosporium commune.

    PubMed

    Brunner, Patrick C; Stefansson, Tryggvi S; Fountaine, James; Richina, Veronica; McDonald, Bruce A

    2016-04-01

    CYP51 encodes the target site of the azole class of fungicides widely used in plant protection. Some ascomycete pathogens carry two CYP51 paralogs called CYP51A and CYP51B. A recent analysis of CYP51 sequences in 14 European isolates of the barley scald pathogen Rhynchosporium commune revealed three CYP51 paralogs, CYP51A, CYP51B, and a pseudogene called CYP51A-p. The same analysis showed that CYP51A exhibits a presence/absence polymorphism, with lower sensitivity to azole fungicides associated with the presence of a functional CYP51A. We analyzed a global collection of nearly 400 R. commune isolates to determine if these findings could be extended beyond Europe. Our results strongly support the hypothesis that CYP51A played a key role in the emergence of azole resistance globally and provide new evidence that the CYP51A gene in R. commune has further evolved, presumably in response to azole exposure. We also present evidence for recent long-distance movement of evolved CYP51A alleles, highlighting the risk associated with movement of fungicide resistance alleles among international trading partners.

  14. In vitro resistance of Aspergillus fumigatus to azole farm fungicide.

    PubMed

    Kano, Rui; Sobukawa, Hideto; Murayama, Somay Yamagata; Hirose, Dai; Tanaka, Yoko; Kosuge, Yasuhiro; Hasegawa, Atsuhiko; Kamata, Hiroshi

    2016-03-01

    Azole resistance in Aspergillus fumigatus is mainly due to a point mutation in the 14α-sterol demethylase (CYP51A) gene, which encodes the target of azole fungicides. Moreover, overexpression of CYP51B or multidrug resistance (MDR) gene is supposedly related to the mechanism of azole resistance in A. fumigatus. In this study, we tried to induce resistance to tetraconazole, an azole fungicide, in strains of A. fumigatus from a farm and then investigated mutation and expression of their CYP51A, CYP51B, and multidrug resistance (MDR) genes. Three tetraconazole resistant strains were induced and their minimum inhibitory concentration (MIC) for tetraconazole was 145 mg/L. However, the MICs of itraconazole (ITZ), posaconazole (POS), and voriconazole (VRZ) obtained by an E-test of the three tetraconazole resistant strains were 0.064-0.19 mg/L for ITZ, 0.023-0.32 mg/L for POS, and 0.047-0.064 mg/L for VRZ. No gene mutations were detected in the CYP 51A sequence amplified in these strains. RT-PCR of cyp51A and cyp51B indicated that the tetraconazole resistant strains more highly expressed these genes than the susceptible strain in tetraconazole containing medium.

  15. Augmenting the efficacy of antifungal intervention via chemo-biological approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycotic infection is becoming a serious health problem since effective antifungal agents for control of pathogenic fungi, especially drug-resistant pathogens, is often very limited. Fungal resistance to antimycotic agents frequently involves mutations caused by environmental stressors. In fungal pat...

  16. Mechanisms of echinocandin antifungal drug resistance

    PubMed Central

    Perlin, David S.

    2015-01-01

    Fungal infections due to Candida and Aspergillus species cause extensive morbidity and mortality, especially among immunosuppressed patients, and antifungal therapy is critical to patient management. Yet only a few drug classes are available to treat invasive fungal diseases, and this problem is compounded by the emergence of antifungal resistance. Echinocandin drugs are the preferred choice to treat candidiasis. They are the first cell wall–active agents and target the fungal-specific enzyme glucan synthase, which catalyzes the biosynthesis of β-1,3-glucan, a key cell wall polymer. Therapeutic failures occur rarely among common Candida species, with the exception of Candida glabrata, which are frequently multidrug resistant. Echinocandin resistance in susceptible species is always acquired during therapy. The mechanism of resistance involves amino acid changes in hot-spot regions of Fks subunits of glucan synthase, which decrease the sensitivity of the enzyme to drug. Cellular stress response pathways lead to drug adaptation, which promote the formation of resistant fks strains. Clinical factors promoting echinocandin resistance include empiric therapy, prophylaxis, gastrointestinal reservoirs, and intra-abdominal infections. A better understanding of the echinocandin resistance mechanism, along with cellular and clinical factors promoting resistance, will promote more effective strategies to overcome and prevent echinocandin resistance. PMID:26190298

  17. Synergistic Antifungal Effect of Glabridin and Fluconazole

    PubMed Central

    Liu, Wei; Li, Li Ping; Zhang, Jun Dong; Li, Qun; Shen, Hui; Chen, Si Min; He, Li Juan; Yan, Lan; Xu, Guo Tong; An, Mao Mao; Jiang, Yuan Ying

    2014-01-01

    The incidence of invasive fungal infections is increasing in recent years. The present study mainly investigated glabridin (Gla) alone and especially in combination with fluconazole (FLC) against Cryptococcus neoformans and Candida species (Candida albicans, Candida tropicalis, Candida krusei, Candida parapsilosis and Candida Glabratas) by different methods. The minimal inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) indicated that Gla possessed a broad-spectrum antifungal activity at relatively high concentrations. After combining with FLC, Gla exerted a potent synergistic effect against drug-resistant C. albicans and C. tropicalis at lower concentrations when interpreted by fractional inhibitory concentration index (FICI). Disk diffusion test and time-killing test confirming the synergistic fungicidal effect. Cell growth tests suggested that the synergistic effect of the two drugs depended more on the concentration of Gla. The cell envelop damage including a significant decrease of cell size and membrane permeability increasing were found after Gla treatment. Together, our results suggested that Gla possessed a synergistic effect with FLC and the cell envelope damage maybe contributed to the synergistic effect, which providing new information for developing novel antifungal agents. PMID:25058485

  18. Ciclopirox: recent nonclinical and clinical data relevant to its use as a topical antimycotic agent.

    PubMed

    Subissi, Alessandro; Monti, Daniela; Togni, Giuseppe; Mailland, Federico

    2010-11-12

    Ciclopirox is a topical antimycotic agent belonging to the chemical class of hydroxypyridones and not related to azoles or any other class of antifungal agents. Its antimicrobial profile includes nearly all of the clinically relevant dermatophytes, yeasts and moulds, and is therefore broader than that of most other antimycotics. It is also active against certain frequently azole-resistant Candida species and against some bacteria. The mechanism of action of ciclopirox is different from that of other topical antifungal drugs, which generally act through ergosterol inhibition. The high affinity of ciclopirox for trivalent metal cations, resulting in inhibition of the metal-dependent enzymes that are responsible for the degradation of peroxides within the fungal cell, appears to be the major determinant of its antimicrobial activity. This unique and multilevel mechanism of action provides a very low potential for the development of resistance in pathogenic fungi, with cases of resistance rarely reported. Ciclopirox also displays mild anti-inflammatory effects in biochemical and pharmacological models; effects also shown in small clinical studies. Scavenging of reactive oxygen species released from inflammatory cells is a likely contributor to these anti-inflammatory effects. Ciclopirox, and its olamine salt, is available in multiple topical formulations, suitable for administration onto the skin and nails and into the vagina. The pharmaceutical forms most widely investigated are 1% ciclopirox olamine cream and 8% ciclopirox acid nail lacquer, but lotion, spray, shampoo, pessary, solution, gel and douche formulations have also been used. Ciclopirox penetrates into the deep layers of the skin, mucosal membranes and nail keratin, reaching concentrations exceeding the minimal fungicidal concentrations for most medically important fungi. A large number of clinical trials were and are still being performed with ciclopirox, starting in the early 1980s. Ciclopirox was first

  19. Geographic and Temporal Trends in Isolation and Antifungal Susceptibility of Candida parapsilosis: a Global Assessment from the ARTEMIS DISK Antifungal Surveillance Program, 2001 to 2005▿

    PubMed Central

    Pfaller, M. A.; Diekema, D. J.; Gibbs, D. L.; Newell, V. A.; Ng, K. P.; Colombo, A.; Finquelievich, J.; Barnes, R.; Wadula, J.

    2008-01-01

    We examined data from the ARTEMIS DISK Antifungal Surveillance Program to describe geographic and temporal trends in the isolation of Candida parapsilosis from clinical specimens and the in vitro susceptibilities of 9,371 isolates to fluconazole and voriconazole. We also report the in vitro susceptibility of bloodstream infection (BSI) isolates of C. parapsilosis to the echinocandins, anidulafungin, caspofungin, and micafungin. C. parapsilosis represented 6.6% of the 141,383 isolates of Candida collected from 2001 to 2005 and was most common among isolates from North America (14.3%) and Latin America (9.9%). High levels of susceptibility to both fluconazole (90.8 to 95.8%) and voriconazole (95.3 to 98.1%) were observed in all geographic regions with the exception of the Africa and Middle East region (79.3 and 85.8% susceptible to fluconazole and voriconazole, respectively). C. parapsilosis was most often isolated from blood and skin and/or soft tissue specimens and from patients hospitalized in the medical, surgical, intensive care unit (ICU) and dermatology services. Notably, isolates from the surgical ICU were the least susceptible to fluconazole (86.3%). There was no evidence of increasing azole resistance over time among C. parapsilosis isolates tested from 2001 to 2005. Of BSI isolates tested against the three echinocandins, 92, 99, and 100% were inhibited by concentrations of ≤2 μg/ml of anidulafungin (621 isolates tested), caspofungin (1,447 isolates tested), and micafungin (539 isolates tested), respectively. C. parapsilosis is a ubiquitous pathogen that remains susceptible to the azoles and echinocandins; however, both the frequency of isolation and the resistance of C. parapsilosis to fluconazole and voriconazole may vary by geographic region and clinical service. PMID:18199791

  20. Searching new antifungals: The use of in vitro and in vivo methods for evaluation of natural compounds.

    PubMed

    Scorzoni, Liliana; Sangalli-Leite, Fernanda; de Lacorte Singulani, Junya; de Paula E Silva, Ana Carolina Alves; Costa-Orlandi, Caroline Barcelos; Fusco-Almeida, Ana Marisa; Mendes-Giannini, Maria José Soares

    2016-04-01

    In the last decades, the increased number of immunocompromised patients has led to the emergence of many forms of fungal infections. Furthermore, there are a restricted arsenal of antifungals available and an increase in the development of resistance to antifungal drugs. Because of these disadvantages, the search for new antifungal agents in natural sources has increased. The development of these new antifungal drugs involves various steps and methodologies. The evaluation of the in vitro antifungal activity and cytotoxicity are the first steps in the screening. There is also the possibility of antifungal combinations to improve the therapy and reduce toxicity. Despite that, the application of the new antifungal candidate could be used in association with photodynamic therapy or using nanotechnology as an ally. In vivo tests can be performed to evaluate the efficacy and toxicity using conventional and alternative animal models. In this work, we review the methods available for the evaluation of the antifungal activity and safety of natural products, as well as the recent advances of new technology in the application of natural products for antifungal therapy.

  1. First description of Candida nivariensis in Brazil: antifungal susceptibility profile and potential virulence attributes

    PubMed Central

    Figueiredo-Carvalho, Maria Helena Galdino; Ramos, Livia de Souza; Barbedo, Leonardo Silva; Chaves, Alessandra Leal da Silva; Muramoto, Ilda Akemi; dos Santos, André Luis Souza; Almeida-Paes, Rodrigo; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    This study evaluated the antifungal susceptibility profile and the production of potential virulence attributes in a clinical strain of Candida nivariensis for the first time in Brazil, as identified by sequencing the internal transcribed spacer (ITS)1-5.8S-ITS2 region and D1/D2 domains of the 28S of the rDNA. For comparative purposes, tests were also performed with reference strains. All strains presented low planktonic minimal inhibitory concentrations (PMICs) to amphotericin B (AMB), caspofungin (CAS), and voriconazole. However, our strain showed elevated planktonic MICs to posaconazole (POS) and itraconazole, in addition to fluconazole resistance. Adherence to inert surfaces was conducted onto glass and polystyrene. The biofilm formation and antifungal susceptibility on biofilm-growing cells were evaluated by crystal violet staining and a XTT reduction assay. All fungal strains were able to bind both tested surfaces and form biofilm, with a binding preference to polystyrene (p < 0.001). AMB promoted significant reductions (≈50%) in biofilm production by our C. nivariensis strain using both methodologies. This reduction was also observed for CAS and POS, but only in the XTT assay. All strains were excellent protease producers and moderate phytase producers, but lipases were not detected. This study reinforces the pathogenic potential of C. nivariensis and its possible resistance profile to the azolic drugs generally used for candidiasis management. PMID:26814644

  2. Trends in antifungal susceptibility and virulence of Candida spp. from the nasolacrimal duct of horses.

    PubMed

    Brilhante, Raimunda Sâmia Nogueira; Bittencourt, Paula Vago; Castelo-Branco, Débora de Souza Collares Maia; de Oliveira, Jonathas Sales; Alencar, Lucas Pereira de; Cordeiro, Rossana de Aguiar; Pinheiro, Mariana; Nogueira-Filho, Evilázio Fernandes; Pereira-Neto, Waldemiro de Aquino; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha

    2016-02-01

    This was a cross-sectional study to investigate the antifungal susceptibility and production of virulence factors in strains of Candida isolated from the outlet and the lumen of the nasolacrimal duct of horses in the state of Ceará, Brazil. The samples were obtained from 103 horses. Sterile cotton swabs were used to collect the material from the outlet of the nasolacrimal duct and urethral probes, for the instillation of 2 ml of saline solution, were used to collect samples from the lumen of the nasolacrimal duct. A total of 77 Candida isolates were obtained, with C. famata, C. tropicalis, C. guilliermondii, and C. parapsilosis sensu lato as the most prevalent species. One isolate (C. glabrata) was resistant to caspofungin. One isolate was resistant only to fluconazole (C. parapsilosis sensu lato), 11 were resistant only to itraconazole (7 C. tropicalis, 2 C. guilliermondii, 1 C. famata, 1 C. parapsilosis sensu lato), while eight C. tropicalis showed resistance to both azoles. Overall, 28 isolates produced phospholipases and 12 produced proteases. These results highlight the importance of investigating the antifungal susceptibility and virulence trends of Candida spp. from the microbiota of the nasolacrimal duct of horses.

  3. In vitro susceptibility of 137 Candida sp. isolates from HIV positive patients to several antifungal drugs.

    PubMed

    Magaldi, S; Mata, S; Hartung, C; Verde, G; Deibis, L; Roldán, Y; Marcano, C

    2001-01-01

    Oropharyngeal candidiasis caused by various species of Candida is one of the most common infections in HIV seropositive or AIDS patients. Drug resistance among these yeasts is an increasing problem. We studied the frequency of resistance profile to fluconazole, itraconazole, ketoconazole, amphotericin B and terbinafine of 137 isolates of Candida sp. From HIV positive or AIDS patients with oropharyngeal candidiasis at Instituto de Inmunología, U.C.V. and the Hospital "Jose Ignacio Baldó", Caracas Venezuela, using the well diffusion susceptibility test (Magaldi et al.). We found that nearly 10% of C. albicans isolates were primarily fluconazole resistant, 45% of C. albicans isolates from patients with previous treatment were resistant to fluconazole, of which 93% showed cross-resistance to itraconazole, and even about 30% of C. tropicalis (n = 13) were resistant to fluconazole and/or itraconazole. To this respect, several recent reports have been described antifungal cross-resistance among azoles. Therefore, we consider that C. tropicalis should be added to the growing list of yeast in which antifungal drug resistance is common. This report could be useful for therapeutic aspect in AIDS patients with oral candidiasis.

  4. Human Pharmacogenomic Variations and Their Implications for Antifungal Efficacy

    PubMed Central

    Meletiadis, Joseph; Chanock, Stephen; Walsh, Thomas J.

    2006-01-01

    Pharmacogenomics is defined as the study of the impacts of heritable traits on pharmacology and toxicology. Candidate genes with potential pharmacogenomic importance include drug transporters involved in absorption and excretion, phase I enzymes (e.g., cytochrome P450-dependent mixed-function oxidases) and phase II enzymes (e.g., glucuronosyltransferases) contributing to metabolism, and those molecules (e.g., albumin, A1-acid glycoprotein, and lipoproteins) involved in the distribution of antifungal compounds. By using the tools of population genetics to define interindividual differences in drug absorption, distribution, metabolism, and excretion, pharmacogenomic models for genetic variations in antifungal pharmacokinetics can be derived. Pharmacogenomic factors may become especially important in the treatment of immunocompromised patients or those with persistent or refractory mycoses that cannot be explained by elevated MICs and where rational dosage optimization of the antifungal agent may be particularly critical. Pharmacogenomics has the potential to shift the paradigm of therapy and to improve the selection of antifungal compounds and adjustment of dosage based upon individual variations in drug absorption, metabolism, and excretion. PMID:17041143

  5. Activation of Melanin Synthesis in Alternaria infectoria by Antifungal Drugs

    PubMed Central

    Fernandes, Chantal; Prados-Rosales, Rafael; Silva, Branca M. A.; Nakouzi-Naranjo, Antonio; Zuzarte, Mónica; Chatterjee, Subhasish; Stark, Ruth E.; Casadevall, Arturo

    2015-01-01

    The importance of Alternaria species fungi to human health ranges from their role as etiological agents of serious infections with poor prognoses in immunosuppressed individuals to their association with respiratory allergic diseases. The present work focuses on Alternaria infectoria, which was used as a model organism of the genus, and was designed to unravel melanin production in response to antifungals. After we characterized the pigment produced by A. infectoria, we studied the dynamics of 1,8-dihydroxynaphthalene (DHN)-melanin production during growth, the degree of melanization in response to antifungals, and how melanization affected susceptibility to several classes of therapeutic drugs. We demonstrate that A. infectoria increased melanin deposition in cell walls in response to nikkomycin Z, caspofungin, and itraconazole but not in response to fluconazole or amphotericin B. These results indicate that A. infectoria activates DHN-melanin synthesis in response to certain antifungal drugs, possibly as a protective mechanism against these drugs. Inhibition of DHN-melanin synthesis by pyroquilon resulted in a lower minimum effective concentration (MEC) of caspofungin and enhanced morphological changes (increased hyphal balloon size), characterized by thinner and less organized A. infectoria cell walls. In summary, A. infectoria synthesizes melanin in response to certain antifungal drugs, and its susceptibility is influenced by melanization, suggesting the therapeutic potential of drug combinations that affect melanin synthesis. PMID:26711773

  6. Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans

    PubMed Central

    Lee, Seung-Bae

    2016-01-01

    Objectives: The purpose of this study was to investigate the antifungal effect of bee venom (BV) and sweet bee venom (SBV) against Candida albicans (C. albicans) clinical isolates. Methods: In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC) strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC) assays were performed by using a broth microdilution method. Also, a killing curve assay was conducted to investigate the kinetics of the anti- fungal action. Results: BV and SBV showed antifungal activity against 10 clinical isolates of C. albicans that were cultured from blood and the vagina by using disk diffusion method. The MIC values obtained for clinical isolates by using the broth microdilution method varied from 62.5 μg/ mL to 125 μg/mL for BV and from 15.63 μg/mL to 62.5 μg/mL for SBV. In the killing-curve assay, SBV behaved as amphotericin B, which was used as positive control, did. The antifungal efficacy of SBV was much higher than that of BV. Conclusion: BV and SBV showed antifungal activity against C. albicans clinical strains that were isolated from blood and the vagina. Especially, SBV might be a candidate for a new antifungal agent against C. albicans clinical isolates. PMID:27280049

  7. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

    PubMed Central

    2011-01-01

    Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI). Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ) and two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus (sakAΔ, mpkCΔ), indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations. Effective

  8. Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses

    PubMed Central

    2011-01-01

    Background The toxigenic fungal plant pathogen Fusarium graminearum compromises wheat production worldwide. Azole fungicides play a prominent role in controlling this pathogen. Sequencing of its genome stimulated the development of high-throughput technologies to study mechanisms of coping with fungicide stress and adaptation to fungicides at a previously unprecedented precision. DNA-microarrays have been used to analyze genome-wide gene expression patterns and uncovered complex transcriptional responses. A recently developed one-color multiplex array format allowed flexible, effective, and parallel examinations of eight RNA samples. Results We took advantage of the 8 × 15 k Agilent format to design, evaluate, and apply a novel microarray covering the whole F. graminearum genome to analyze transcriptional responses to azole fungicide treatment. Comparative statistical analysis of expression profiles uncovered 1058 genes that were significantly differentially expressed after azole-treatment. Quantitative RT-PCR analysis for 31 selected genes indicated high conformity to results from the microarray hybridization. Among the 596 genes with significantly increased transcript levels, analyses using GeneOntology and FunCat annotations detected the ergosterol-biosynthesis pathway genes as the category most significantly responding, confirming the mode-of-action of azole fungicides. Cyp51A, which is one of the three F. graminearum paralogs of Cyp51 encoding the target of azoles, was the most consistently differentially expressed gene of the entire study. A molecular phylogeny analyzing the relationships of the three CYP51 proteins in the context of 38 fungal genomes belonging to the Pezizomycotina indicated that CYP51C (FGSG_11024) groups with a new clade of CYP51 proteins. The transcriptional profiles for genes encoding ABC transporters and transcription factors suggested several involved in mechanisms alleviating the impact of the fungicide. Comparative analyses with

  9. Current recommendations and importance of antifungal stewardship for the management of invasive candidiasis.

    PubMed

    Miyazaki, Taiga; Kohno, Shigeru

    2015-01-01

    Invasive candidiasis can have a major effect on patient prognosis and medical economics. Quickly eliminating the focus of the infection and administering appropriate antifungal therapy are important. Clinical guidelines for invasive candidiasis have been issued in the USA, Europe and recently in Japan. The purpose of this review is to summarize the current recommendations on how to diagnose and treat invasive candidiasis based on the evidence gathered to date and by referencing guidelines from various countries. Echinocandin antifungals play a central role in the prevention and treatment of invasive candidiasis although a recent increase in echinocandin-resistant Candida glabrata is seen as problematic. In the future, promoting the appropriate use of antifungal agents by antifungal stewardship teams will be necessary to suppress adverse effects, appearance of resistant strains and unnecessary medical expenses, as well as improve positive clinical outcomes and prognoses.

  10. Antifungal activity of juniper extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sawdust from three species of Juniperus (i.e., J. virginianna, J. occidentalis, and J. ashei) were extracted with hexane or ethanol and the extracts tested for antifungal activity against four species of wood-rot fungi. These species studied represent the junipers with the greatest potential for co...

  11. Sporothrix schenckii complex in Iran: Molecular identification and antifungal susceptibility.

    PubMed

    Mahmoudi, Shahram; Zaini, Farideh; Kordbacheh, Parivash; Safara, Mahin; Heidari, Mansour

    2016-08-01

    Sporotrichosis is a global subcutaneous fungal infection caused by the Sporothrix schenckii complex. Sporotrichosis is an uncommon infection in Iran, and there have been no phenotypic, molecular typing or antifungal susceptibility studies of Sporothrix species. This study aimed to identify nine Iranian isolates of the S. schenckii complex to the species level using colony morphology, carbohydrate assimilation tests, and PCR-sequencing of the calmodulin gene. The antifungal susceptibilities of these Sporothrix isolates to five antifungal agents (amphotericin B (AMB), voriconazole (VRC), itraconazole (ITC), fluconazole (FLC), and terbinafine (TRB)) were also evaluated according to the M27-A3 and M38-A2 protocols of the Clinical and Laboratory Standards Institute for yeast and mycelial phases, respectively. Five of seven clinical isolates were identified as S. schenckii, and two clinical and two environmental isolates were identified as S. globosa. This is the first report of S. globosa in Iran. There was significant agreement (73%) between the results of the phenotypic and genotypic identification methods. TRB and ITC were the most effective antifungals against the Sporothrix isolates. The minimum inhibitory concentration (MIC) values of TRB for the yeast and mycelial phases of S. schenckii differed significantly. There was also a significant difference in the minimum fungicidal concentration (MFC) values of AMB and TRB for the two phases. Considering the low efficacy of VRC and FLC and the wide MIC ranges of AMB (1-16 μg/ml and 1-8 μg/ml for yeast and mycelial forms, respectively) observed in the present study, in vitro antifungal susceptibility testing should be performed to determine appropriate therapeutic regimens.

  12. One-step synthesis of azole- and benzazole-based sulfonamides in aqueous media.

    PubMed

    Zali-Boeini, Hassan; Najafi, Zhaleh; Abtahi, Bahareh; Ghaleshahi, Hajar Golshadi

    2015-05-01

    Several benzazoles (benzoxazoles, benzothiazoles, and benzimidazoles) and azoles (1H-1,2,4-triazole-5(4H)-thiones and 1,2,4-oxadiazoles) bearing a sulfonamide moiety were efficiently prepared via the reactions of dimethyl (arylsulfonyl) dithioimidocarbonate derivatives and their 2-aminobenzene precursors, thiosemicarbazides, and amidoximes, respectively, in the presence of K(2)CO(3) as a base in aqueous ethanol (25%) as a green media in moderate to excellent yields. PMID:25613859

  13. Photodynamic fungicidal efficacy of hypericin and dimethyl methylene blue against azole-resistant Candida albicans strains.

    PubMed

    Paz-Cristobal, M P; Royo, D; Rezusta, A; Andrés-Ciriano, E; Alejandre, M C; Meis, J F; Revillo, M J; Aspiroz, C; Nonell, S; Gilaberte, Y

    2014-01-01

    Antimicrobial photodynamic therapy (aPDT) is an emerging alternative to treat infections based on the use of photosensitisers (PSs) and visible light. To investigate the fungicidal effect of PDT against azole-resistant Candida albicans strains using two PSs with a different mechanism of action, hypericin (HYP) and 1,9-dimethyl methylene blue (DMMB), comparing their efficacy and the reactive oxygen species (ROS) species involved in their cytotoxicity. Azole-resistant and the azole-susceptible C. albicans strains were used. Solutions of 0.5 and 4 McFarland inoculum of each Candida strain were treated with different concentrations of each PS, and exposed to two light-emitting diode light fluences (18 and 37 J cm⁻²). Mechanistic insight was gained using several ROS quenchers. The minimal fungicidal concentration of HYP for ≥3 log₁₀ CFU reduction (0.5 McFarland) was 0.62 μmol l⁻¹ for most strains, whereas for DMMB it ranged between 1.25 and 2.5 μmol l⁻¹. Increasing the fluence to 37 J cm⁻² allowed to reduce the DMMB concentration. Higher concentrations of both PSs were required to reach a 6 log₁₀ reduction (4 McFarland). H₂O₂ was the main phototoxic species involved in the fungicidal effect of HYP-aPDT whereas ¹O₂ was more important for DMMB-based treatments. aPDT with either HYP or DMMB is effective in killing of C. albicans strains independent of their azole resistance pattern. HYP was more efficient at low fungal concentration and DMMB at higher concentrations. PMID:23905682

  14. Copper-catalyzed sequential N-arylation of C-amino-NH-azoles.

    PubMed

    Rao, D Nageswar; Rasheed, Sk; Vishwakarma, Ram A; Das, Parthasarathi

    2014-11-01

    Copper(II)-catalyzed boronic acid promoted C-N bond cross-coupling reactions have been successfully developed for sequential N-arylation of C-amino-NH-azoles. These general protocols are compatible with a variety of aryl/hetero-aryl boronic acids and provided rapid access to a diverse array of diarylaminoazole derivatives in a two-step sequence or in one-pot. PMID:25212901

  15. o-Iodoxybenzoic acid mediated oxidative desulfurization initiated domino reactions for synthesis of azoles.

    PubMed

    Chaudhari, Pramod S; Pathare, Sagar P; Akamanchi, Krishnacharaya G

    2012-04-20

    A systematic exploration of thiophilic ability of o-iodoxybenzoic acid (IBX) for oxidative desulfurization to trigger domino reactions leading to new methodologies for synthesis of different azoles is described. A variety of highly substituted oxadiazoles, thiadiazoles, triazoles, and tetrazoles have been successfully synthesized in good to excellent yields, starting from readily accessible thiosemicarbazides, bis-diarylthiourea, 1,3-disubtituted thiourea, and thioamides. PMID:22423599

  16. Structure and Dynamics of Proton-Conducting Azoles Confined within Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Ford, Jamie; Simmons, Jason; Yildirim, Taner

    2011-03-01

    Efficient polymer electrolyte membrane (PEM) fuel cells are one of the most promising candidates to power our vehicles of the future. Hydrated sulfonated polymers are currently the preferred membrane material because of their excellent conductivity and gas diffusion characteristics. The intrinsic water dependence in these systems limits the operating temperature to 100 C, leading to reduced electrode kinetics and increased CO poisoning. If water can be replaced by a small molecule with a higher boiling point, the overall efficiency of the system can be improved. To this end, we have investigated a set of new host/guest materials based on metal-organic frameworks (MOFs) loaded with a variety of azoles. The thermally and chemically stable frameworks provide a well-defined porous structure that accommodates the proton conduction pathways formed by the azole networks. We will present the structure of the azole networks as well as insight into the proton motion dynamics as a result of a variety of neutron scattering experiments.

  17. Mechanisms of Resistance to an Azole Fungicide in the Grapevine Powdery Mildew Fungus, Erysiphe necator.

    PubMed

    Frenkel, Omer; Cadle-Davidson, Lance; Wilcox, Wayne F; Milgroom, Michael G

    2015-03-01

    We studied the mechanisms of azole resistance in Erysiphe necator by quantifying the sensitivity to myclobutanil (EC50) in 65 isolates from the eastern United States and 12 from Chile. From each isolate, we sequenced the gene for sterol 14α-demethylase (CYP51), and measured the expression of CYP51 and homologs of four putative efflux transporter genes, which we identified in the E. necator transcriptome. Sequence variation in CYP51 was relatively low, with sequences of 40 U.S. isolates identical to the reference sequence. Nine U.S. isolates and five from Chile carried a previously identified A to T nucleotide substitution in position 495 (A495T), which results in an amino acid substitution in codon 136 (Y136F) and correlates with high levels of azole resistance. We also found a nucleotide substitution in position 1119 (A1119C) in 15 U.S. isolates, whose mean EC50 value was equivalent to that for the Y136F isolates. Isolates carrying mutation A1119C had significantly greater CYP51 expression, even though A1119C does not affect the CYP51 amino acid sequence. Regression analysis showed no significant effects of the expression of efflux transporter genes on EC50. Both the Y136F mutation in CYP51 and increased CYP51 expression appear responsible for azole resistance in eastern U.S. populations of E. necator.

  18. Conventional and alternative antifungal therapies to oral candidiasis.

    PubMed

    Anibal, Paula Cristina; de Cássia Orlandi Sardi, Janaina; Peixoto, Iza Teixeira Alves; de Carvalho Moraes, Julianna Joanna; Höfling, José Francisco

    2010-10-01

    Candida-associated denture stomatitis is the most common form of oral candidal infection, with Candida albicans being the principal etiological agent. Candida adheres directly or via an intermediary layer of plaque-forming bacteria to denture acrylic. Despite antifungal therapy to treat denture stomatitis, infection is reestablished soon after the treatment ceases. In addition, many predisposing factors have been identified as important in the development of oral candidiasis, including malnourishment, common endocrine disorders, such as diabetis mellitus, antibacterial drug therapy, corticosteroids, radiotherapy and other immunocompromised conditions, such as acquired immunodeficiency syndrome (AIDS). These often results in increased tolerance to the most commonly used antifungals. So this review suggests new therapies to oral candidiasis.

  19. Conventional and alternative antifungal therapies to oral candidiasis

    PubMed Central

    Anibal, Paula Cristina; de Cássia Orlandi Sardi, Janaina; Peixoto, Iza Teixeira Alves; de Carvalho Moraes, Julianna Joanna; Höfling, José Francisco

    2010-01-01

    Candida-associated denture stomatitis is the most common form of oral candidal infection, with Candida albicans being the principal etiological agent. Candida adheres directly or via an intermediary layer of plaque-forming bacteria to denture acrylic. Despite antifungal therapy to treat denture stomatitis, infection is reestablished soon after the treatment ceases. In addition, many predisposing factors have been identified as important in the development of oral candidiasis, including malnourishment, common endocrine disorders, such as diabetis mellitus, antibacterial drug therapy, corticosteroids, radiotherapy and other immunocompromised conditions, such as acquired immunodeficiency syndrome (AIDS). These often results in increased tolerance to the most commonly used antifungals. So this review suggests new therapies to oral candidiasis. PMID:24031562

  20. Synthesis, antifungal activity, and QSAR study of novel trichodermin derivatives.

    PubMed

    Cheng, Jing-Li; Zheng, Min; Yao, Ting-Ting; Li, Xiao-Liang; Zhao, Jin-Hao; Xia, Min; Zhu, Guo-Nian

    2015-01-01

    In an attempt to discover more potential antifungal agents, in this study, 21 novel trichodermin derivatives containing conjugated oxime ester (5a-5u) were designed and synthesized and were screened for in vitro antifungal activity. The bioassay tests showed that some of them exhibited good inhibitory activity against the tested pathogenic fungi. Compound 5a exhibited better activity against Pyricularia oryzae and Sclerotonia sclerotiorum than trichodermin, and compound 5j showed particular activity against P.oryzae and Botrytis cinerea. The quantitative structure-activity relationship (QSAR) indicated that log P and hardness were two critical parameters for the biological activities. The result suggested that these would be potential lead compounds for the development of fungicides with further structure modification. PMID:25290081

  1. Structural Basis for Cooperative Binding of Azoles to CYP2E1 as Interpreted through Guided Molecular Dynamics Simulations

    PubMed Central

    Levy, Joseph W.; Hartman, Jessica H.; Perry, Martin D.; Miller, Grover P.

    2015-01-01

    CYP2E1 metabolizes a wide array of small, hydrophobic molecules, resulting in their detoxification or activation into carcinogens through Michaelis-Menten as well as cooperative mechanisms. Nevertheless, the molecular determinants for CYP2E1 specificity and metabolic efficiency toward these compounds are still unknown. Herein, we employed computational docking studies coupled to Molecular Dynamics simulations to provide a critical perspective for understanding a structural basis for cooperativity observed for an array of azoles from our previous binding and catalytic studies (Hartman, JH et al (2014) Biochem Pharmacol 87, 523-33). The resulting 28 CYP2E1 complexes in this study revealed a common passageway for azoles that included a hydrophobic steric barrier causing a pause in movement toward the active site. The entrance to the active site acted like a second sieve to restrict access to the inner chamber. Collectively, these interactions impacted the final orientation of azoles reaching the active site and hence could explain differences in their biochemical properties observed in our previous studies, such as the consequences of methylation at position 5 of the azole ring. The association of a second azole demonstrated significant differences in interactions stabilizing the bound complex than observed for the first binding event. Intermolecular interactions occurred between the two azoles as well as CYP2E1 residue side chains and backbone and involved both hydrophobic contacts and hydrogen bonds. The relative importance of these interactions depended on the structure of the respective azoles indicating the absence of specific defining criteria for binding unlike the well-characterized dominant role of hydrophobicity in active site binding. Consequently, the structure activity relationships described here and elsewhere are necessary to more accurately identify factors impacting the observation and significance of cooperativity in CYP2E1 binding and catalysis

  2. Azole-resistant Aspergillus fumigatus in Denmark: a laboratory-based study on resistance mechanisms and genotypes.

    PubMed

    Jensen, R H; Hagen, F; Astvad, K M T; Tyron, A; Meis, J F; Arendrup, M C

    2016-06-01

    Azole-resistant Aspergillus fumigatus originating from the environment as well as induced during therapy are continuously emerging in Danish clinical settings. We performed a laboratory-based retrospective study (2010-2014) of azole resistance and genetic relationship of A. fumigatus at the national mycology reference laboratory of Denmark. A total of 1162 clinical and 133 environmental A. fumigatus isolates were identified by morphology, thermotolerance and/or β-tubulin sequencing. Screening for azole resistance was carried out using azole agar, and resistant isolates were susceptibility tested by the EUCAST (European Committee on Antimicrobial Susceptibility Testing) E.Def 9.2 reference method and CYP51A sequenced. Genotyping was performed for outbreak investigation and, when appropriate, short tandem repeat Aspergillus fumigatus microsatellite assay. All 133 environmental A. fumigatus isolates were azole susceptible. However, from 2010 to 2014, there was an increasing prevalence of azole resistance (from 1.4 to 6% isolates (p <0.001) and 1.8 to 4% patients (p <0.05)) among the clinical isolates, with the well-known environmental CYP51A variant TR34/L98H responsible for >50% of the azole resistance mechanisms. Among 184 Danish A. fumigatus isolates, 120 unique genotypes were identified and compared to a collection of 1822 international genotypes. Seven (5.8%) Danish genotypes were shared between isolates within Denmark but with different origin, 19 (15.8%) were shared with foreign genotypes, and two (11.8%) of 17 genotypes of isolates carrying the TR34/L98H resistance mechanisms were identical to two Dutch TR34/L98H isolates. Our findings underlines the demand for correct identification and susceptibility testing of clinical mould isolates. Furthermore, although complex, genotyping supported the hypotheses regarding clonal expansion and the potential of a single origin for the TR34/L98H clone. PMID:27091095

  3. Synthesis, antifungal and antibacterial activity of novel 1,2,4-triazole derivatives

    PubMed Central

    Gupta, Deepa; Jain, D. K.

    2015-01-01

    A large number of 1,2,4-triazole-containing ring system have been incorporated into a wide variety of therapeutically interesting drug candidates including anti-inflammatory, central nervous system stimulants, antianxiety, and antimicrobial agents. To overcome the rapid development of drug resistance, new agents should preferably have chemical characteristics that clearly differ from those of existing agents. Thus led to the design and synthesize the new antimicrobial agents. A novel series of Schiff bases based on of 4-(benzylideneamino)-5-phenyl-4H-1,2,4-triazole-3-thiol scaffold was prepared by heating thiocarbohydrazide and substituted benzoic acid and subsequently, treating with substituted benzaldehydes. Seventeen derivatives were synthesized and were biologically screened for antifungal and antibacterial activity. The newly synthesized derivatives of triazole showed antifungal activity against fungal species, Microsporum gypseum; and antibacterial activity against bacterial species, Staphylococcus aureus. It was observed that none of the compounds tested showed positive results for fungi Candida albicans fungi Aspergillus niger, nor against bacterial strain Escherichia coli. Strong antifungal effects were obtained for the synthesized compounds against M. gypseum and were superior or comparable to standard drug ketoconazole. Similarly, all of the synthesized compounds exhibit strong antibacterial activity against S. aureus and were superior or comparable to standard drug streptomycin. It was found that among the triazole derivatives so synthesized, six of them, showed antifungal activity superior to ketoconazole while one of them, showed antibacterial activity superior to streptomycin. Thus, these can be the potential new molecule as an antimicrobial agent. PMID:26317080

  4. A Prototype Antifungal Contact Lens

    PubMed Central

    Ciolino, Joseph B.; Hudson, Sarah P.; Mobbs, Ashley N.; Hoare, Todd R.; Iwata, Naomi G.; Fink, Gerald R.

    2011-01-01

    Purpose. To design a contact lens to treat and prevent fungal ocular infections. Methods. Curved contact lenses were created by encapsulating econazole-impregnated poly(lactic-co-glycolic) acid (PLGA) films in poly(hydroxyethyl methacrylate) (pHEMA) by ultraviolet photopolymerization. Release studies were conducted in phosphate-buffered saline at 37°C with continuous shaking. The contact lenses and their release media were tested in an antifungal assay against Candida albicans. Cross sections of the pre- and postrelease contact lenses were characterized by scanning electron microscopy and by Raman spectroscopy. Results. Econazole-eluting contact lenses provided extended antifungal activity against Candida albicans fungi. Fungicidal activity varied in duration and effectiveness depending on the mass of the econazole-PLGA film encapsulated in the contact lens. Conclusions. An econazole-eluting contact lens could be used as a treatment for fungal ocular infections. PMID:21527380

  5. Isolation, characterization and antifungal docking studies of wortmannin isolated from Penicillium radicum

    PubMed Central

    Singh, Vineeta; Praveen, Vandana; Tripathi, Divya; Haque, Shafiul; Somvanshi, Pallavi; Katti, S. B.; Tripathi, C. K. M.

    2015-01-01

    During the search for a potent antifungal drug, a cell-permeable metabolite was isolated from a soil isolate taxonomically identified as Penicillium radicum. The strain was found to be a potent antifungal agent. Production conditions of the active compound were optimized and the active compound was isolated, purified, characterized and identified as a phosphoinositide 3-kinase (PI3K) inhibitor, commonly known as wortmannin (Wtmn). This is very first time we are reporting the production of Wtmn from P. radicum. In addition to its previously discovered anticancer properties, the broad spectrum antifungal property of Wtmn was re-confirmed using various fungal strains. Virtual screening was performed through molecular docking studies against potential antifungal targets, and it was found that Wtmn was predicted to impede the actions of these targets more efficiently than known antifungal compounds such as voriconazole and nikkomycin i.e. 1) mevalonate-5-diphosphate decarboxylase (1FI4), responsible for sterol/isoprenoid biosynthesis; 2) exocyst complex component SEC3 (3A58) where Rho- and phosphoinositide-dependent localization is present and 3) Kre2p/Mnt1p a Golgi alpha1,2-mannosyltransferase (1S4N) involved in the biosynthesis of yeast cell wall glycoproteins). We conclude that Wtmn produced from P. radicum is a promising lead compound which could be potentially used as an efficient antifungal drug in the near future after appropriate structural modifications to reduce toxicity and improve stability. PMID:26159770

  6. Antibacterial and Antifungal Compounds from Marine Fungi

    PubMed Central

    Xu, Lijian; Meng, Wei; Cao, Cong; Wang, Jian; Shan, Wenjun; Wang, Qinggui

    2015-01-01

    This paper reviews 116 new compounds with antifungal or antibacterial activities as well as 169 other known antimicrobial compounds, with a specific focus on January 2010 through March 2015. Furthermore, the phylogeny of the fungi producing these antibacterial or antifungal compounds was analyzed. The new methods used to isolate marine fungi that possess antibacterial or antifungal activities as well as the relationship between structure and activity are shown in this review. PMID:26042616

  7. In vitro antifungal susceptibility testing of Scopulariopsis brevicaulis strains using agar diffusion method.

    PubMed

    Skóra, Magdalena; Macura, Anna B

    2011-01-01

    The genus Scopulariopsis is a common soil saprotroph and has been isolated from air, organic waste and also from plant, animal and human tissues. Scopulariopsis has mainly been associated in humans with superficial mycoses, but it has also been described as the cause of subcutaneous and invasive infections. The most common aetiological agent of infections in humans is Scopulariopsis brevicaulis. This species has been reported to be resistant in vitro to broad-spectrum antifungal agents available today. The aim of the study was to establish in vitro antifungal susceptibility of 35 S. brevicaulis strains against amphotericin B (AMB), flucytosine (FC), caspofungin (CAS), terbinafine (TER), ciclopirox (CIC), voriconazole (VOR), clotrimazole (CTR), miconazole (MCZ), econazole (ECO), ketoconazole (KET), itraconazole (ITR), and fluconazole (FLU). Antifungal susceptibility tests were evaluated by an agar diffusion method (Neo-Sensitabs, Rosco, Denmark). AMB, FC, CAS, ITR and FLU showed no antifungal activity against S. brevicaulis. TER, CIC, CTR, KET, VOR, ECO, and MCZ revealed inhibitory activity for S. brevicaulis, but it varied for each of the drugs. The best antifungal effect was observed for TER and CIC. All isolates had large inhibition zones for TER and CIC. CTR was also inhibitory for all tested S. brevicaulis isolates, but the diameters of inhibition zones were smaller than for TER and CIC. Nearly 89% isolates showed inhibition zones for KET and the mean diameter of the inhibition zone was comparable to CTR. The least antifungal activity exhibited VQR, ECO and MCZ. Because of the multiresistance of S. brevicaulis, infections due to this species may not respond to particular antifungal treatment and other therapeutic approaches should be considered, e.g., combined therapy and/or surgery. PMID:21682097

  8. In vitro antifungal susceptibility testing of Scopulariopsis brevicaulis strains using agar diffusion method.

    PubMed

    Skóra, Magdalena; Macura, Anna B

    2011-01-01

    The genus Scopulariopsis is a common soil saprotroph and has been isolated from air, organic waste and also from plant, animal and human tissues. Scopulariopsis has mainly been associated in humans with superficial mycoses, but it has also been described as the cause of subcutaneous and invasive infections. The most common aetiological agent of infections in humans is Scopulariopsis brevicaulis. This species has been reported to be resistant in vitro to broad-spectrum antifungal agents available today. The aim of the study was to establish in vitro antifungal susceptibility of 35 S. brevicaulis strains against amphotericin B (AMB), flucytosine (FC), caspofungin (CAS), terbinafine (TER), ciclopirox (CIC), voriconazole (VOR), clotrimazole (CTR), miconazole (MCZ), econazole (ECO), ketoconazole (KET), itraconazole (ITR), and fluconazole (FLU). Antifungal susceptibility tests were evaluated by an agar diffusion method (Neo-Sensitabs, Rosco, Denmark). AMB, FC, CAS, ITR and FLU showed no antifungal activity against S. brevicaulis. TER, CIC, CTR, KET, VOR, ECO, and MCZ revealed inhibitory activity for S. brevicaulis, but it varied for each of the drugs. The best antifungal effect was observed for TER and CIC. All isolates had large inhibition zones for TER and CIC. CTR was also inhibitory for all tested S. brevicaulis isolates, but the diameters of inhibition zones were smaller than for TER and CIC. Nearly 89% isolates showed inhibition zones for KET and the mean diameter of the inhibition zone was comparable to CTR. The least antifungal activity exhibited VQR, ECO and MCZ. Because of the multiresistance of S. brevicaulis, infections due to this species may not respond to particular antifungal treatment and other therapeutic approaches should be considered, e.g., combined therapy and/or surgery.

  9. In vitro evaluation of Malassezia pachydermatis susceptibility to azole compounds using E-test and CLSI microdilution methods.

    PubMed

    Cafarchia, Claudia; Figueredo, Luciana A; Iatta, Roberta; Colao, Valeriana; Montagna, Maria T; Otranto, Domenico

    2012-11-01

    Dermatitis caused by Malassezia spp., one of most common skin disease in dogs, requires prolonged therapy and/or high doses of antifungal agents. In the present study, the antifungal susceptibility of M. pachydermatis to ketoconazole (KTZ), fluconazole (FLZ), itraconazole (ITZ), posaconazole (POS) and voriconazole (VOR) was evaluated in vitro using both CLSI reference broth microdilution (CLSI BMD) and E-test. A total of 62 M. pachydermatis strains from dogs with and without skin lesions were tested. M. pachydermatis strains were susceptible to ITZ, KTZ and POS using both test methods, with the highest MIC found in tests of FLZ. Essential agreement between the two methods ranged from 87.1% (VOR) to 91.9% (ITZ), and categorical agreement from 74.2% (FLZ) to 96.8% (ITZ). Minor error discrepancies were observed between the two methods, with major discrepancies observed for KTZ. A higher MIC(50) value for FLZ was noted with M. pachydermatis genotype B. The MICs(50) of M. pachydermatis genotype B for KTZ, VOR and POS were higher in isolates from dogs with skin lesions than those in isolates from animals without skin lesions. The results suggest a link between genotypes of M. pachydermatis and in vitro drug susceptibility. The categorical agreement for both E-test and CLSI BMD methods found in this investigation confirms the E-test as a reliable diagnostic method for routine use in clinical mycology laboratories. PMID:22471886

  10. Antifungal Indole and Pyrrolidine-2,4-Dione Derivative Peptidomimetic Lead Design Based on In Silico Study of Bioactive Peptide Families

    PubMed Central

    Moradi, Shoeib; Azerang, Parisa; Khalaj, Vahid; Sardari, Soroush

    2013-01-01

    Background The rise of opportunistic fungal infections highlights the need for development of new antimicrobial agents. Antimicrobial Peptides (AMPs) and Antifungal Peptides (AFPs) are among the agents with minimal resistance being developed against them, therefore they can be used as structural templates for design of new antimicrobial agents. Methods In the present study four antifungal peptidomimetic structures named C1 to C4 were designed based on plant defensin of Pisum sativum. Minimum inhibitory concentrations (MICs) for these structures were determined against Aspergillus niger N402, Candida albicans ATCC 10231, and Saccharomyces cerevisiae PTCC 5052. Results C1 and C2 showed more potent antifungal activity against these fungal strains compared to C3 and C4. The structure C2 demonstrated a potent antifungal activity among them and could be used as a template for future study on antifungal peptidomemetics design. Sequences alignments led to identifying antifungal decapeptide (KTCENLADTY) named KTC-Y, which its MIC was determined on fungal protoplast showing 25 (µg/ml) against Aspergillus fumigatus Af293. Conclusion The present approach to reach the antifungal molecules seems to be a powerful approach in design of bioactive agents based on AMP mimetic identification. PMID:23626876

  11. Antifungal activity of topical microemulsion containing a thiophene derivative

    PubMed Central

    Guimarães, Geovani Pereira; de Freitas Araújo Reis, Mysrayn Yargo; da Silva, Dayanne Tomaz Casimiro; Junior, Francisco Jaime Bezerra Mendonça; Converti, Attílio; Pessoa, Adalberto; de Lima Damasceno, Bolívar Ponciano Goulart; da Silva, José Alexsandro

    2014-01-01

    Fungal infections have become a major problem of worldwide concern. Yeasts belonging to the Candida genus and the pathogenic fungus Cryptococcus neoformans are responsible for different clinical manifestations, especially in immunocompromised patients. Antifungal therapies are currently based on a few chemotherapeutic agents that have problems related to effectiveness and resistance profiles. Microemulsions are isotropic, thermodynamically stable transparent systems of oil, water and surfactant that can improve the solubilization of lipophilic drugs. Taking into account the need for more effective and less toxic drugs along with the potential of thiophene derivatives as inhibitors of pathogenic fungi growth, this study aimed to evaluate the antifungal activity of a thiophene derivative (5CN05) embedded in a microemulsion (ME). The minimum inhibitory concentration (MIC) was determined using the microdilution method using amphotericin B as a control. The formulations tested (ME- blank and ME-5CN05) showed physico-chemical properties that would allow their use by the topical route. 5CN05 as such exhibited moderate or weak antifungal activity against Candida species (MIC = 270–540 μg.mL−1) and good activity against C. neoformans (MIC = 17 μg.mL−1). Candida species were susceptible to ME-5CN05 (70–140 μg.mL−1), but C. neoformans was much more, presenting a MIC value of 2.2 μg.mL−1. The results of this work proved promising for the pharmaceutical industry, because they suggest an alternative therapy against C. neoformans. PMID:25242940

  12. Clinically relevant drug-drug interactions between antiretrovirals and antifungals

    PubMed Central

    Vadlapatla, Ramya Krishna; Patel, Mitesh; Paturi, Durga K; Pal, Dhananjay; Mitra, Ashim K

    2015-01-01

    Introduction Complete delineation of the HIV-1 life cycle has resulted in the development of several antiretroviral drugs. Twenty-five therapeutic agents belonging to five different classes are currently available for the treatment of HIV-1 infections. Advent of triple combination antiretroviral therapy has significantly lowered the mortality rate in HIV patients. However, fungal infections still represent major opportunistic diseases in immunocompromised patients worldwide. Areas covered Antiretroviral drugs that target enzymes and/or proteins indispensable for viral replication are discussed in this article. Fungal infections, causative organisms, epidemiology and preferred treatment modalities are also outlined. Finally, observed/predicted drug-drug interactions between antiretrovirals and antifungals are summarized along with clinical recommendations. Expert opinion Concomitant use of amphotericin B and tenofovir must be closely monitored for renal functioning. Due to relatively weak interactive potential with the CYP450 system, fluconazole is the preferred antifungal drug. High itraconazole doses (> 200 mg/day) are not advised in patients receiving booster protease inhibitor (PI) regimen. Posaconazole is contraindicated in combination with either efavirenz or fosamprenavir. Moreover, voriconazole is contraindicated with high-dose ritonavir-boosted PI. Echino-candins may aid in overcoming the limitations of existing antifungal therapy. An increasing number of documented or predicted drug-drug interactions and therapeutic drug monitoring may aid in the management of HIV-associated opportunistic fungal infections. PMID:24521092

  13. Polyglycolic acid microneedles modified with inkjet-deposited antifungal coatings.

    PubMed

    Boehm, Ryan D; Daniels, Justin; Stafslien, Shane; Nasir, Adnan; Lefebvre, Joe; Narayan, Roger J

    2015-01-01

    In this study, the authors examined use of piezoelectric inkjet printing to apply an antifungal agent, voriconazole, to the surfaces of biodegradable polyglycolic acid microneedles. Polyglycolic acid microneedles with sharp tips (average tip radius = 25 ± 3 μm) were prepared using a combination of injection molding and drawing lithography. The elastic modulus (9.9 ± 0.3 GPa) and hardness (588.2 ± 33.8 MPa) values of the polyglycolic acid material were determined using nanoindentation and were found to be suitable for use in transdermal drug delivery devices. Voriconazole was deposited onto the polyglycolic acid microneedles by means of piezoelectric inkjet printing. It should be noted that voriconazole has poor solubility in water; however, it is readily soluble in many organic solvents. Optical imaging, scanning electron microscopy, energy dispersive x-ray spectrometry, and Fourier transform infrared spectroscopy were utilized to examine the microneedle geometries and inkjet-deposited surface coatings. Furthermore, an in vitro agar plating study was performed on the unmodified, vehicle-modified, and voriconazole-modified microneedles. Unlike the unmodified and vehicle-modified microneedles, the voriconazole-modified microneedles showed antifungal activity against Candida albicans. The unmodified, vehicle-modified, and voriconazole-modified microneedles did not show activity against Escherichia coli, Pseudomonas aeruginosa, or Staphylococcus aureus. The results indicate that piezoelectric inkjet printing may be useful for loading transdermal drug delivery devices such as polyglycolic acid microneedles with antifungal pharmacologic agents and other pharmacologic agents with poor solubility in aqueous solutions.

  14. Polyglycolic acid microneedles modified with inkjet-deposited antifungal coatings.

    PubMed

    Boehm, Ryan D; Daniels, Justin; Stafslien, Shane; Nasir, Adnan; Lefebvre, Joe; Narayan, Roger J

    2015-01-01

    In this study, the authors examined use of piezoelectric inkjet printing to apply an antifungal agent, voriconazole, to the surfaces of biodegradable polyglycolic acid microneedles. Polyglycolic acid microneedles with sharp tips (average tip radius = 25 ± 3 μm) were prepared using a combination of injection molding and drawing lithography. The elastic modulus (9.9 ± 0.3 GPa) and hardness (588.2 ± 33.8 MPa) values of the polyglycolic acid material were determined using nanoindentation and were found to be suitable for use in transdermal drug delivery devices. Voriconazole was deposited onto the polyglycolic acid microneedles by means of piezoelectric inkjet printing. It should be noted that voriconazole has poor solubility in water; however, it is readily soluble in many organic solvents. Optical imaging, scanning electron microscopy, energy dispersive x-ray spectrometry, and Fourier transform infrared spectroscopy were utilized to examine the microneedle geometries and inkjet-deposited surface coatings. Furthermore, an in vitro agar plating study was performed on the unmodified, vehicle-modified, and voriconazole-modified microneedles. Unlike the unmodified and vehicle-modified microneedles, the voriconazole-modified microneedles showed antifungal activity against Candida albicans. The unmodified, vehicle-modified, and voriconazole-modified microneedles did not show activity against Escherichia coli, Pseudomonas aeruginosa, or Staphylococcus aureus. The results indicate that piezoelectric inkjet printing may be useful for loading transdermal drug delivery devices such as polyglycolic acid microneedles with antifungal pharmacologic agents and other pharmacologic agents with poor solubility in aqueous solutions. PMID:25732934

  15. Antifungal activity of gold nanoparticles prepared by solvothermal method

    SciTech Connect

    Ahmad, Tokeer; Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna; Manzoor, Nikhat; Ahmad, Aijaz; Ahmed, Jahangeer; Al-Shihri, Ayed S.

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.

  16. A review of the effects of azole compounds in fish and their possible involvement in masculinization of wild fish populations.

    PubMed

    Matthiessen, Peter; Weltje, Lennart

    2015-05-01

    Endocrine-mediated effects in fish populations have been widely documented. Most attention has been focused on feminization caused by estrogenic substances, but this paper reviews evidence for the effects of a group of fungicides and pharmaceuticals, the azoles, which have been reported to cause masculinization in fish. The paper considers information from laboratory studies on the effects of azole compounds on fish endocrinology, and on the potential existence of such effects in wild fish. The occurrence of some azoles in effluents and surface waters has also been briefly reviewed. Under laboratory conditions, many azoles are able to cause masculinization or defeminization in fish by inhibition of the P450 enzyme aromatase (CYP19). However, in no case where such effects have been observed in the field has a link been established with this group of substances. In most instances, other more convincing explanations have been proposed. Peak concentrations of some azoles in surface waters can approach those which, under continuous long-term exposure in the laboratory, might lead to some aromatase inhibition. However, available data on exposure and effects provide reassurance that the concentrations of azoles found in surface waters are too low to cause adverse effects in fish by interference with their endocrine system. Compared to the widespread observations of feminization and estrogenic effects in (male) fish, there are relatively few papers describing masculinization or defeminization in (female) wild fish populations, suggesting that this is quite a rare phenomenon. The significance of this result is emphasized by the fact that fish are among the best studied organisms in the environment. PMID:25899164

  17. A review of the effects of azole compounds in fish and their possible involvement in masculinization of wild fish populations.

    PubMed

    Matthiessen, Peter; Weltje, Lennart

    2015-05-01

    Endocrine-mediated effects in fish populations have been widely documented. Most attention has been focused on feminization caused by estrogenic substances, but this paper reviews evidence for the effects of a group of fungicides and pharmaceuticals, the azoles, which have been reported to cause masculinization in fish. The paper considers information from laboratory studies on the effects of azole compounds on fish endocrinology, and on the potential existence of such effects in wild fish. The occurrence of some azoles in effluents and surface waters has also been briefly reviewed. Under laboratory conditions, many azoles are able to cause masculinization or defeminization in fish by inhibition of the P450 enzyme aromatase (CYP19). However, in no case where such effects have been observed in the field has a link been established with this group of substances. In most instances, other more convincing explanations have been proposed. Peak concentrations of some azoles in surface waters can approach those which, under continuous long-term exposure in the laboratory, might lead to some aromatase inhibition. However, available data on exposure and effects provide reassurance that the concentrations of azoles found in surface waters are too low to cause adverse effects in fish by interference with their endocrine system. Compared to the widespread observations of feminization and estrogenic effects in (male) fish, there are relatively few papers describing masculinization or defeminization in (female) wild fish populations, suggesting that this is quite a rare phenomenon. The significance of this result is emphasized by the fact that fish are among the best studied organisms in the environment.

  18. [Recommendations of antifungal treatment in patients with low grade immunosuppression].

    PubMed

    Barberán, J; Mensa, J; Fariñas, C; Llinares, P; Serrano, R; Menéndez, R; Agustí, C; Gobernado, M; Azanza, J R; García Rodríguez, J A

    2008-06-01

    Because of the relevance that the systemic mycoses has acquired in non-highly immunocompromised patients, the treatment difficulties they have due to the increase of the non-albicans Candida species and the need to have a better and more rational use of the new antifungal agents (voriconazole, posaconazole, caspofungin, anidulafungin and micafungin), an experts' panel on infectious diseases in representation of the Spanish Society of Chemotherapy, Spanish Society of Internal Medicine, and Spanish Society of Pneumology and Thoracic Surgery has met in order to make a few recommendations based on the scientific evidence in an effort to improve their efficiency.

  19. Prevalence and antifungal susceptibility of Candida albicans and its related species Candida dubliniensis and Candida africana isolated from vulvovaginal samples in a hospital of Argentina.

    PubMed

    Theill, Laura; Dudiuk, Catiana; Morano, Susana; Gamarra, Soledad; Nardin, María Elena; Méndez, Emilce; Garcia-Effron, Guillermo

    2016-01-01

    Candida africana taxonomical status is controversial. It was proposed as a separate species within the Candida albicans species complex; however, phylogenetic analyses suggested that it is an unusual variety of C. albicans. The prevalence of C. albicans-related species (Candida dubliniensis and C. africana) as vulvovaginal pathogens is not known in Argentina. Moreover, data on antifungal susceptibility of isolates causing vulvovaginal candidiasis is scarce. The aims of this study were to establish the prevalence of C. dubliniensis and C. africana in vaginal samples and to evaluate the antifungal susceptibilities of vaginal C. albicans species complex strains. We used a molecular-based method coupled with a new pooled DNA extraction methodology to differentiate C. dubliniensis and C. africana in a collection of 287 strains originally identified as C. albicans isolated from an Argentinian hospital during 2013. Antifungal susceptibilities to fluconazole, clotrimazole, itraconazole, voriconazole, nystatin, amphotericin B and terbinafine were evaluated by using the CLSI M27-A3 and M27-S4 documents. Of the 287 isolates, 4 C. dubliniensis and one C. africana strains (1.39% and 0.35% prevalence, respectively) were identified. This is the first description of C. africana in Argentina and its identification was confirmed by sequencing the ITS2 region and the hwp1 gene. C. dubliniensis and C. africana strains showed very low MIC values for all the tested antifungals. Fluconazole-reduced-susceptibility and azole cross-resistance were observed in 3.55% and 1.41% of the C. albicans isolates, respectively. These results demonstrate that antifungal resistance is still a rare phenomenon in this kind of isolates.

  20. Prevalence and antifungal susceptibility of Candida albicans and its related species Candida dubliniensis and Candida africana isolated from vulvovaginal samples in a hospital of Argentina.

    PubMed

    Theill, Laura; Dudiuk, Catiana; Morano, Susana; Gamarra, Soledad; Nardin, María Elena; Méndez, Emilce; Garcia-Effron, Guillermo

    2016-01-01

    Candida africana taxonomical status is controversial. It was proposed as a separate species within the Candida albicans species complex; however, phylogenetic analyses suggested that it is an unusual variety of C. albicans. The prevalence of C. albicans-related species (Candida dubliniensis and C. africana) as vulvovaginal pathogens is not known in Argentina. Moreover, data on antifungal susceptibility of isolates causing vulvovaginal candidiasis is scarce. The aims of this study were to establish the prevalence of C. dubliniensis and C. africana in vaginal samples and to evaluate the antifungal susceptibilities of vaginal C. albicans species complex strains. We used a molecular-based method coupled with a new pooled DNA extraction methodology to differentiate C. dubliniensis and C. africana in a collection of 287 strains originally identified as C. albicans isolated from an Argentinian hospital during 2013. Antifungal susceptibilities to fluconazole, clotrimazole, itraconazole, voriconazole, nystatin, amphotericin B and terbinafine were evaluated by using the CLSI M27-A3 and M27-S4 documents. Of the 287 isolates, 4 C. dubliniensis and one C. africana strains (1.39% and 0.35% prevalence, respectively) were identified. This is the first description of C. africana in Argentina and its identification was confirmed by sequencing the ITS2 region and the hwp1 gene. C. dubliniensis and C. africana strains showed very low MIC values for all the tested antifungals. Fluconazole-reduced-susceptibility and azole cross-resistance were observed in 3.55% and 1.41% of the C. albicans isolates, respectively. These results demonstrate that antifungal resistance is still a rare phenomenon in this kind of isolates. PMID:26922471

  1. Evaluation of the efficacy of antifungal drugs against Paracoccidioides brasiliensis and Paracoccidioides lutzii in a Galleria mellonella model.

    PubMed

    de Lacorte Singulani, Junya; Scorzoni, Liliana; de Paula E Silva, Ana Carolina Alves; Fusco-Almeida, Ana Marisa; Mendes-Giannini, Maria José Soares

    2016-09-01

    Paracoccidioides brasiliensis and P. lutzii belong to a group of thermodimorphic fungi and cause paracoccidioidomycosis (PCM), which is a human systemic mycosis endemic in South and Central America. Patients with this mycosis are commonly treated with amphotericin B (AmB) and azoles. The study of fungal virulence and the efficacy and toxicity of antifungal drugs has been successfully performed in a Galleria mellonella infection model. In this work, G. mellonella larvae were infected with two Paracoccidioides spp. and the efficacy and toxicity of AmB and itraconazole were evaluated in this model for the first time. AmB and itraconazole treatments were effective in increasing larval survival and reducing the fungal burden. The fungicidal and fungistatic effects of AmB and itraconazole, respectively, were observed in the model. Furthermore, these effects were independent of changes in haemocyte number. G. mellonella can serve as a rapid model for the screening of new antifungal compounds against Paracoccidioides and can contribute to a reduction in experimental animal numbers in the study of PCM. PMID:27444116

  2. Antifungal drug itraconazole targets VDAC1 to modulate the AMPK/mTOR signaling axis in endothelial cells

    PubMed Central

    Head, Sarah A.; Shi, Wei; Zhao, Liang; Gorshkov, Kirill; Pasunooti, Kalyan; Chen, Yue; Deng, Zhiyou; Li, Ruo-jing; Shim, Joong Sup; Tan, Wenzhi; Hartung, Thomas; Zhang, Jin; Zhao, Yingming; Colombini, Marco; Liu, Jun O.

    2015-01-01

    Itraconazole, a clinically used antifungal drug, was found to possess potent antiangiogenic and anticancer activity that is unique among the azole antifungals. Previous mechanistic studies have shown that itraconazole inhibits the mechanistic target of rapamycin (mTOR) signaling pathway, which is known to be a critical regulator of endothelial cell function and angiogenesis. However, the molecular target of itraconazole that mediates this activity has remained unknown. Here we identify the major target of itraconazole in endothelial cells as the mitochondrial protein voltage-dependent anion channel 1 (VDAC1), which regulates mitochondrial metabolism by controlling the passage of ions and small metabolites through the outer mitochondrial membrane. VDAC1 knockdown profoundly inhibits mTOR activity and cell proliferation in human umbilical vein cells (HUVEC), uncovering a previously unknown connection between VDAC1 and mTOR. Inhibition of VDAC1 by itraconazole disrupts mitochondrial metabolism, leading to an increase in the cellular AMP:ATP ratio and activation of the AMP-activated protein kinase (AMPK), an upstream regulator of mTOR. VDAC1-knockout cells are resistant to AMPK activation and mTOR inhibition by itraconazole, demonstrating that VDAC1 is the mediator of this activity. In addition, another known VDAC-targeting compound, erastin, also activates AMPK and inhibits mTOR and proliferation in HUVEC. VDAC1 thus represents a novel upstream regulator of mTOR signaling in endothelial cells and a promising target for the development of angiogenesis inhibitors. PMID:26655341

  3. The development of animal infection models and antifungal efficacy assays against clinical isolates of Trichosporon asahii, T. asteroides and T. inkin.

    PubMed

    Mariné, Marçal; Bom, Vinicius Leite Pedro; de Castro, Patricia Alves; Winkelstroter, Lizziane Kretli; Ramalho, Leandra Naira; Brown, Neil Andrew; Goldman, Gustavo Henrique

    2015-01-01

    The present study developed Galleria mellonella and murine infection models for the study of Trichosporon infections. The utility of the developed animal models was demonstrated through the assessment of virulence and antifungal efficacy for 7 clinical isolates of Trichosporon asahii, T. asteroides and T. inkin. The susceptibility of the Trichosporon isolates to several common antifungal drugs was tested in vitro using the broth microdilution and the E-test methods. The E-test method depicted a lower minimal inhibitory concentration (MIC) for amphotericin and a slightly higher MIC for caspofungin, while MICs observed for the azoles were different but comparable between both methods. All three Trichosporon species established infection in both the G. mellonella and immunosuppressed murine models. Species and strain dependent differences were observed in both the G. mellonella and murine models. T. asahii was demonstrated to be more virulent than the other 2 species in both animal hosts. Significant differences in virulence were observed between strains for T. asteroides in the murine model. In both animal models, fluconazole and voriconazole were able to improve the survival of the animals compared to the untreated control groups infected with any of the 3 Trichosporon species. In G. mellonella, amphotericin was not able to reduce mortality in any of the 3 species. In contrast, amphotericin was able to reduce murine mortality in the T. asahii or T. inkin models, respectively. Hence, the developed animal infection models can be directly applicable to the future deeper investigation of the molecular determinants of Trichosporon virulence and antifungal resistance.

  4. The putative transcription factor CaRtg3 is involved in tolerance to cations and antifungal drugs as well as serum-induced filamentation in Candida albicans.

    PubMed

    Yan, Hongbo; Zhao, Yunying; Jiang, Linghuo

    2014-06-01

    The activated retrograde (RTG) pathway controls transcription of target genes through a heterodimer of transcription factors, Rtg1 and Rtg3, in Saccharomyces cerevisiae. Here, we have identified the sole homologous gene CaRTG3 that encodes a protein of 520 amino acids with characteristics of the basic helix-loop-helix/leucine zipper (bHLH/Zip) family in Candida albicans. Deletion of CaRTG3 results in C. albicans cells being sensitive to high concentrations of calcium and lithium cations as well as sodium dodecyl sulfate and activates the calcium/calcineurin signaling pathway in C. albicans cells. CaRTG3 is also involved in the tolerance of C. albicans cells to the antifungal drugs azoles and terbinafine, but not to the antifungal drugs casponfungin and amphotericin B as well as the cell-wall-damaging reagents Calcoflour White and Congo red. In contrast to ScRtg3, CaRtg3 is not involved in the osmolar response and is constitutively localized in the nucleus. However, deletion of CaRTG3 results in a delay in serum-induced filamentation of C. albicans cells. Therefore, CaRtg3 plays a role in tolerance to cations and antifungal drugs as well as serum-induced filamentation in C. albicans.

  5. P&T Committee review of fluconazole: an effective alternative to antifungal therapy.

    PubMed

    Neu, H C; Bennett, J E; Bodey, G P; Rubin, R H; Schentag, J J; Sugar, A M

    1990-03-01

    Fluconazole is a new antifungal agent available in both oral and parenteral formulations. According to the experts in this roundtable discussion, fluconazole represents a major clinical advance in the treatment of candidiasis and cryptococcosis in cancer patients, patients with AIDS, organ transplant recipients, and other patients at risk for opportunistic mycoses. The pharmacokinetic profile for fluconazole permits infrequent dosing and also makes it ideal for tissue site infections. Fluconazole's low toxicity gives it an advantage over currently available antifungal therapy and will permit prompt presumptive treatment of selected infections. PMID:10103976

  6. Antifungal suscepitibility profile of candida spp. oral isolates obtained from denture wearers

    PubMed Central

    Lyon, J.P.; Moreira, L.M.; Cardoso, M.A.G.; Saade, J.; Resende, M.A.

    2008-01-01

    Denture stomatitis is an inflammatory condition that occurs in denture wearers and is frequently associated with Candida yeasts. Antifungal susceptibility profiles have been extensively evaluated for candidiasis patients or immunosupressed individuals, but not for healthy Candida carriers. In the present study, fluconazole, itraconazole, voriconazole, terbinafine and 5-flucytosin were tested against 109 oral Candida spp. isolates. All antifungal agents were effective against the samples tested except for terbinafine. This work might provide epidemiological information about Candida spp. drug susceptibility in oral healthy individuals. PMID:24031286

  7. Synthesis, crystal structure and antifungal activity of a divalent cobalt(II) complex with uniconazole.

    PubMed

    Zhang, Yao; Li, Jie; Ren, Guoyu; Qin, Baofu; Ma, Haixia

    2016-06-01

    Azole compounds have attracted commercial interest due to their high bactericidal and plant-growth-regulating activities. Uniconazole [or 1-(4-chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pent-1-en-3-ol] is a highly active 1,2,4-triazole fungicide and plant-growth regulator with low toxicity. The pharmacological and toxicological properties of many drugs are modified by the formation of their metal complexes. Therefore, there is much interest in exploiting the coordination chemistry of triazole pesticides and their potential application in agriculture. However, reports of complexes of uniconazole are rare. A new cobalt(II) complex of uniconazole, namely dichloridotetrakis[1-(4-chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl-κN(4))pent-1-en-3-ol]cobalt(II), [CoCl2(C15H18ClN3O)4], was synthesized and structurally characterized by element analysis, IR spectrometry and X-ray single-crystal diffraction. The crystal structural analysis shows that the Co(II) atom is located on the inversion centre and is coordinated by four uniconazole and two chloride ligands, forming a distorted octahedral geometry. The hydroxy groups of an uniconazole ligands of adjacent molecules form hydrogen bonds with the axial chloride ligands, resulting in one-dimensional chains parallel to the a axis. The complex was analysed for its antifungal activity by the mycelial growth rate method. It was revealed that the antifungal effect of the title complex is more pronounced than the effect of fungicide uniconazole for Botryosphaeria ribis, Wheat gibberellic and Grape anthracnose. PMID:27256696

  8. Active packaging with antifungal activities.

    PubMed

    Nguyen Van Long, N; Joly, Catherine; Dantigny, Philippe

    2016-03-01

    There have been many reviews concerned with antimicrobial food packaging, and with the use of antifungal compounds, but none provided an exhaustive picture of the applications of active packaging to control fungal spoilage. Very recently, many studies have been done in these fields, therefore it is timely to review this topic. This article examines the effects of essential oils, preservatives, natural products, chemical fungicides, nanoparticles coated to different films, and chitosan in vitro on the growth of moulds, but also in vivo on the mould free shelf-life of bread, cheese, and fresh fruits and vegetables. A short section is also dedicated to yeasts. All the applications are described from a microbiological point of view, and these were sorted depending on the name of the species. Methods and results obtained are discussed. Essential oils and preservatives were ranked by increased efficacy on mould growth. For all the tested molecules, Penicillium species were shown more sensitive than Aspergillus species. However, comparison between the results was difficult because it appeared that the efficiency of active packaging depended greatly on the environmental factors of food such as water activity, pH, temperature, NaCl concentration, the nature, the size, and the mode of application of the films, in addition to the fact that the amount of released antifungal compounds was not constant with time.

  9. Active packaging with antifungal activities.

    PubMed

    Nguyen Van Long, N; Joly, Catherine; Dantigny, Philippe

    2016-03-01

    There have been many reviews concerned with antimicrobial food packaging, and with the use of antifungal compounds, but none provided an exhaustive picture of the applications of active packaging to control fungal spoilage. Very recently, many studies have been done in these fields, therefore it is timely to review this topic. This article examines the effects of essential oils, preservatives, natural products, chemical fungicides, nanoparticles coated to different films, and chitosan in vitro on the growth of moulds, but also in vivo on the mould free shelf-life of bread, cheese, and fresh fruits and vegetables. A short section is also dedicated to yeasts. All the applications are described from a microbiological point of view, and these were sorted depending on the name of the species. Methods and results obtained are discussed. Essential oils and preservatives were ranked by increased efficacy on mould growth. For all the tested molecules, Penicillium species were shown more sensitive than Aspergillus species. However, comparison between the results was difficult because it appeared that the efficiency of active packaging depended greatly on the environmental factors of food such as water activity, pH, temperature, NaCl concentration, the nature, the size, and the mode of application of the films, in addition to the fact that the amount of released antifungal compounds was not constant with time. PMID:26803804

  10. Is preemptive antifungal therapy a good alternative to empirical treatment in prolonged febrile neutropenia?

    PubMed

    Koch, Erica; Rada, Gabriel

    2016-06-09

    Patients with prolonged febrile neutropenia are at high risk of invasive fungal infection, so it has been standard practice to initiate empirical antifungal therapy in these cases. However, this strategy is associated with important toxicity, so diagnostic test-guided preemptive antifungal therapy has been proposed as an alternative. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified three systematic reviews including twelve studies overall. Four randomized controlled trials addressed the question of this article. We combined the evidence using meta-analysis and generated a summary of findings following the GRADE approach. We concluded it is not clear whether preemptive strategy affects mortality because the certainty of the evidence is very low, but it might slightly decrease the use of antifungal agents in patients with prolonged febrile neutropenia.

  11. Is preemptive antifungal therapy a good alternative to empirical treatment in prolonged febrile neutropenia?

    PubMed

    Koch, Erica; Rada, Gabriel

    2016-01-01

    Patients with prolonged febrile neutropenia are at high risk of invasive fungal infection, so it has been standard practice to initiate empirical antifungal therapy in these cases. However, this strategy is associated with important toxicity, so diagnostic test-guided preemptive antifungal therapy has been proposed as an alternative. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified three systematic reviews including twelve studies overall. Four randomized controlled trials addressed the question of this article. We combined the evidence using meta-analysis and generated a summary of findings following the GRADE approach. We concluded it is not clear whether preemptive strategy affects mortality because the certainty of the evidence is very low, but it might slightly decrease the use of antifungal agents in patients with prolonged febrile neutropenia. PMID:27280389

  12. Silver and gold nanostructures: antifungal property of different shapes of these nanostructures on Candida species.

    PubMed

    Jebali, Ali; Hajjar, Farzaneh Haji Esmaeil; Pourdanesh, Fereydoun; Hekmatimoghaddam, Seyedhossein; Kazemi, Bahram; Masoudi, Alireza; Daliri, Karim; Sedighi, Najme

    2014-01-01

    The shape of nanoparticles is an important determinant of their physical and chemical properties, possibly including the little-explored area of their use as antifungal agents. Therefore, we evaluated the in vitro antifungal activities of three different shapes of silver and gold nanostructures, including nanocubes, nanospheres, and nanowires, on Candida albicans, C. glabrata and C. tropicalis, using the microdilution and disk diffusion methods as per the guidelines of the Clinical and Laboratory Standards Institute. We found that silver and gold nanocubes had higher antifungal properties against the test species than nanospheres and nanowires. While some isolates were resistant to silver and gold nanospheres and nanowires, none of the isolates were resistant to silver and gold nanocubes. The occurrence of resistance is a new finding which should be further explored.

  13. The nitration pattern of energetic 3,6-diamino-1,2,4,5-tetrazine derivatives containing azole functional groups.

    PubMed

    Aizikovich, A; Shlomovich, A; Cohen, A; Gozin, M

    2015-08-21

    One of the successful strategies for the design of promising new energetic materials is the incorporation of both fuel and oxidizer moieties into the same molecule. Therefore, during recent years, synthesis of various nitro-azole derivatives, as compounds with a more balanced oxygen content, has become very popular. In the framework of this effort, we studied nitration of N(3),N(6)-bis(1H-tetrazol-5-yl)-1,2,4,5-tetrazine-3,6-diamine (BTATz; ) and its alkylated derivative N(3),N(6)-bis(2-methyl-2H-tetrazol-5-yl)-1,2,4,5-tetrazine-3,6-diamine , using a (15)N-labeled nitration agent and monitoring and analyzing products of these reactions by (15)N NMR. It was seen that the nitration of both compounds takes place only on the exocyclic ("bridging") secondary amine groups. Possible tetranitro derivative isomers N,N'-(1,2,4,5-tetrazine-3,6-diyl)bis(N-(1-nitro-1H-tetrazol-5-yl)-nitramide) and N,N'-(1,2,4,5-tetrazine-3,6-diyl)bis(N-(2-nitro-2H-tetrazol-5-yl)nitramide) , both of which have OB = 0% and calculated VODs of 9790 and 9903 m s(-1), respectively, could not be observed in the reaction mixtures, during the in situ(15)N NMR monitoring of nitration of , using (15)N-labeled nitrating agents. Following a similar strategy, a new analog of BTATz - N(3),N(6)-Bis(1H-1,2,4-triazol-5-yl)-1,2,4,5-tetrazine-3,6-diamine was obtained and its nitration was studied. The reaction of with a HNO3-Ac2O nitration mixture resulted in the formation of a new N(3),N(6)-bis(3-nitro-1H-1,2,4-triazol-5-yl)-1,2,4,5-tetrazine-3,6-diamine derivative in a moderate yield. Structures and properties of (in the form of its perchlorate salt, ) and were measured by FTIR, multinuclear NMR, MS, DSC and X-ray crystallography. It is important to note that compound exhibits exothermic decomposition at 302 °C (DSC) and >353 N (sensitivity to friction), making it a highly-promising thermally-insensitive energetic material for further development.

  14. Antifungal activity from Ocimum gratissimum L. towards Cryptococcus neoformans.

    PubMed

    Lemos, Janine de Aquino; Passos, Xisto Sena; Fernandes, Orionalda de Fátima Lisboa; Paula, José Realino de; Ferri, Pedro Henrique; Souza, Lúcia Kioko Hasimoto E; Lemos, Aline de Aquino; Silva, Maria do Rosário Rodrigues

    2005-02-01

    Cryptococcal infection had an increased incidence in last years due to the explosion of acquired immune deficiency syndrome epidemic and by using new and effective immunosuppressive agents. The currently antifungal therapies used such as amphotericin B, fluconazole, and itraconazole have certain limitations due to side effects and emergence of resistant strains. So, a permanent search to find new drugs for cryptococcosis treatment is essential. Ocimum gratissimum, plant known as alfavaca (Labiatae family), has been reported earlier with in vitro activity against some bacteria and dermatophytes. In our work, we study the in vitro activity of the ethanolic crude extract, ethyl acetate, hexane, and chloroformic fractions, essential oil, and eugenol of O. gratissimum using an agar dilution susceptibility method towards 25 isolates of Cryptococcus neoformans. All the extracts of O. gratissimum studied showed activity in vitro towards C. neoformans. Based on the minimal inhibitory concentration values the most significant results were obtained with chloroformic fraction and eugenol. It was observed that chloroformic fraction inhibited 23 isolates (92%) of C. neoformans at a concentration of 62.5 microg/ml and eugenol inhibited 4 isolates (16%) at a concentration of 0.9 microg/ml. This screening may be the basis for the study of O. gratissimum as a possible antifungal agent. PMID:15867965

  15. Novel, Synergistic Antifungal Combinations that Target Translation Fidelity.

    PubMed

    Moreno-Martinez, Elena; Vallieres, Cindy; Holland, Sara L; Avery, Simon V

    2015-11-17

    There is an unmet need for new antifungal or fungicide treatments, as resistance to existing treatments grows. Combination treatments help to combat resistance. Here we develop a novel, effective target for combination antifungal therapy. Different aminoglycoside antibiotics combined with different sulphate-transport inhibitors produced strong, synergistic growth-inhibition of several fungi. Combinations decreased the respective MICs by ≥8-fold. Synergy was suppressed in yeast mutants resistant to effects of sulphate-mimetics (like chromate or molybdate) on sulphate transport. By different mechanisms, aminoglycosides and inhibition of sulphate transport cause errors in mRNA translation. The mistranslation rate was stimulated up to 10-fold when the agents were used in combination, consistent with this being the mode of synergistic action. A range of undesirable fungi were susceptible to synergistic inhibition by the combinations, including the human pathogens Candida albicans, C. glabrata and Cryptococcus neoformans, the food spoilage organism Zygosaccharomyces bailii and the phytopathogens Rhizoctonia solani and Zymoseptoria tritici. There was some specificity as certain fungi were unaffected. There was no synergy against bacterial or mammalian cells. The results indicate that translation fidelity is a promising new target for combinatorial treatment of undesirable fungi, the combinations requiring substantially decreased doses of active components compared to each agent alone.

  16. INJECTABLE IN SITU CROSS-LINKING HYDROGELS FOR LOCAL ANTIFUNGAL THERAPY

    PubMed Central

    Hudson, Sarah; Langer, Robert; Fink, Gerald R.; Kohane, Daniel S.

    2009-01-01

    Invasive fungal infections can be devastating, particularly in immunocompromised patients, and difficult to treat with systemic drugs. Furthermore, systemic administration of those medications can have severe side effects. We have developed an injectable local antifungal treatment for direct administration into existing or potential sites of fungal infection. Amphotericin B (AmB), a hydrophobic, potent, and broad-spectrum antifungal agent, was rendered water-soluble by conjugation to a dextran-aldehyde polymer. The dextran-aldehyde-AmB conjugate retained antifungal efficacy against C. albicans. Mixing carboxymethylcellulose-hydrazide with dextran-aldehyde formed a gel that cross-linked in situ by formation of hydrazone bonds. The gel provided in vitro release of antifungal activity for 11 days, and contact with the gel killed Candida for three weeks. There was no apparent tissue toxicity in the murine peritoneum and the gel caused no adhesions. Gels produced by entrapment of a suspension of AmB in CMC-dextran without conjugation of drug to polymers did not release fungicidal activity, but did kill on contact. Injectable systems of these types, containing soluble or insoluble drug formulations, could be useful for treatment of local antifungal infections, with or without concurrent systemic therapy. PMID:19942285

  17. Antifungal Susceptibility Testing with Etest for Candida Species Isolated from Patients with Oral Candidiasis

    PubMed Central

    Song, You Bum; Ha, Gyoung Yim; Kim, Heesoo

    2015-01-01

    Background The necessity of performing antifungal susceptibility tests is recently increasing because of frequent cases of oral candidiasis caused by antifungal-resistant Candida species. The Etest (BioMerieux, Marcy l'Etoile, France) is a rapid and easy-to-perform in vitro antifungal susceptibility test. Objective The purpose of this study was to determine the minimal inhibitory concentrations (MICs) of antifungal agents by using the Etest for Candida species isolated from patients with oral candidiasis. Methods Forty-seven clinical isolates of Candida species (39 isolates of Candida albicans, 5 isolates of C. glabrata, and 3 isolates of C. tropicalis) were tested along with a reference strain (C. albicans ATCC 90028). The MIC end points of the Etest for fluconazole, itraconazole, voriconazole, and amphotericin B susceptibility were read after the 24-hour incubation of each isolate on RPMI 1640 agar. Results All Candida isolates were found susceptible to voriconazole and amphotericin B. However, all five isolates of C. glabrata were resistant to itraconazole, among which two isolates were also resistant to fluconazole. Conclusion This study revealed that the Etest represented a simple and efficacious method for antifungal susceptibility testing of Candida species isolated from oral candidiasis patients. Therefore, voriconazole and amphotericin B should be recommended as effective alternatives for the treatment of oral candidiasis. PMID:26719641

  18. Antifungal characteristics of a fluorescent Pseudomonas strain involved in the biological control of Rhizoctonia solani.

    PubMed

    Pal, K K; Tilak, K V; Saxena, A K; Dey, R; Singh, C S

    2000-09-01

    A plant growth-promoting isolate of a fluorescent Pseudomonas spp. EM85 was found strongly antagonistic to Rhizoctonia solani, a causal agent of damping-off of cotton. The isolate produced HCN (HCN+), siderophore (Sid+), fluorescent pigments (Flu+) and antifungal antibiotics (Afa+). Tn5::lacZ mutagenesis of isolate EM85 resulted in the production of a series of mutants with altered production of HCN, siderophore, fluorescent pigments and antifungal antibiotics. Characterisation of these mutants revealed that the fluorescent pigment produced in PDA and the siderophore produced in CAS agar were not the same. Afa- and Flu- mutants had a smaller inhibition zone when grown with Rhizoctonia solani than the EM85 wild type. Sid- and HCN mutants failed to inhibit the pathogen in vitro. In a pot experiment, mutants deficient in HCN and siderophore production could suppress the damping-off disease by 52%. However, mutants deficient in fluorescent pigments and antifungal antibiotics failed to reduce the disease severity. Treatments with mutants that produced enhanced amounts of fluorescent pigments and antibiotics compared with EM85 wild type, exhibited an increase in biocontrol efficiency. Monitoring of the mutants in the rhizosphere using the lacZ marker showed identical proliferation of mutants and wild type. Purified antifungal compounds (fluorescent pigment and antibiotic) also inhibited the fungus appreciably in a TLC bioassay. Thus, the results indicate that fluorescent pigment and antifungal antibiotic of the fluorescent Pseudomonas spp. EM85 might be involved in the biological suppression of Rhizoctonia-induced damping-off of cotton.

  19. Correlation between in vitro and in vivo antifungal activities in experimental fluconazole-resistant oropharyngeal and esophageal candidiasis.

    PubMed

    Walsh, T J; Gonzalez, C E; Piscitelli, S; Bacher, J D; Peter, J; Torres, R; Shetti, D; Katsov, V; Kligys, K; Lyman, C A

    2000-06-01

    Oropharyngeal and esophageal candidiasis (OPEC) is a frequent opportunistic mycosis in immunocompromised patients. Azole-resistant OPEC is a refractory form of this infection occurring particularly in human immunodeficiency virus (HIV)-infected patients. The procedures developed by the Antifungal Subcommittee of the National Committee for Clinical Laboratory Standards (NCCLS) are an important advance in standardization of in vitro antifungal susceptibility methodology. In order to further understand the relationship between NCCLS methodology and antifungal therapeutic response, we studied the potential correlation between in vitro susceptibility to fluconazole and in vivo response in a rabbit model of fluconazole-resistant OPEC. MICs of fluconazole were determined by NCCLS methods. Three fluconazole-susceptible (FS) (MIC, /=64 microgram/ml) isolates of Candida albicans from prospectively monitored HIV-infected children with OPEC were studied. FR isolates were recovered from children with severe OPEC refractory to fluconazole, and FS isolates were recovered from those with mucosal candidiasis responsive to fluconazole. Fluconazole at 2 mg/kg of body weight/day was administered to infected animals for 7 days. The concentrations of fluconazole in plasma were maintained above the MICs for FS isolates throughout the dosing interval. Fluconazole concentrations in the esophagus were greater than or equal to those in plasma. Rabbits infected with FS isolates and treated with fluconazole had significant reductions in oral mucosal quantitative cultures (P < 0.001) and tissue burden of C. albicans in tongue, soft palate, and esophagus (P < 0.001). In comparison, rabbits infected with FR isolates were unresponsive to fluconazole and had no reduction in oral mucosal quantitative cultures or tissue burden of C. albicans versus untreated controls. We conclude that there is a strong correlation between in vitro

  20. Molecular Identification and Antifungal Susceptibility of Yeast Isolates Causing Fungemia Collected in a Population-Based Study in Spain in 2010 and 2011

    PubMed Central

    Guinea, Jesús; Zaragoza, Óscar; Escribano, Pilar; Martín-Mazuelos, Estrella; Pemán, Javier; Sánchez-Reus, Ferrán

    2014-01-01

    We report the molecular identifications and antifungal susceptibilities of the isolates causing fungemia collected in the CANDIPOP population-based study conducted in 29 Spanish hospitals. A total of 781 isolates (from 767 patients, 14 of them having mixed fungemia) were collected. The species found most frequently were Candida albicans (44.6%), Candida parapsilosis (24.5%), Candida glabrata (13.2%), Candida tropicalis (7.6%), Candida krusei (1.9%), Candida guilliermondii (1.7%), and Candida lusitaniae (1.3%). Other Candida and non-Candida species accounted for approximately 5% of the isolates. The presence of cryptic species was low. Compared to findings of previous studies conducted in Spain, the frequency of C. glabrata has increased. Antifungal susceptibility testing was performed by using EUCAST and CLSI M27-A3 reference procedures; the two methods were comparable. The rate of fluconazole-susceptible isolates was 80%, which appears to be a decrease compared to findings of previous studies, explained mainly by the higher frequency of C. glabrata. Using the species-specific breakpoints and epidemiological cutoff values, the rate of voriconazole and posaconazole in vitro resistance was low (<2%). In the case of C. tropicalis, using the EUCAST procedure, the rate of azole resistance was around 20%. There was a correlation between the previous use of azoles and the presence of fluconazole-resistant isolates. Resistance to echinocandins was very rare (2%), and resistance to amphotericin B also was very uncommon. The sequencing of the hot spot (HS) regions from FKS1 or FKS2 genes in echinocandin-resistant isolates revealed previously described point mutations. The decrease in the susceptibility to fluconazole in Spanish isolates should be closely monitored in future studies. PMID:24366741

  1. Research to Identify Effective Antifungal Agents, 1990 Annual Report.

    SciTech Connect

    Schreck, Carl

    1990-07-01

    The objectives of the present contract study were to select and evaluate up to 10 candidate fungicides. Evaluations of Goal 1 involve laboratory studies on efficacy of candidate compounds on cultured Saprolegniales, and on eggs of rainbow trout and chinook salmon that were previously infected with the fungus. The main objective this year of Goal 2 was to determine the degree of fungal infection in untreated, control fish to establish the extent of the problem.

  2. Antifungal properties of halofumarate esters.

    PubMed

    Gershon, H; Shanks, L

    1978-04-01

    Alkyl esters (C1--C4) of the four halofumaric acids were tested for antifungal activity against Candida albicans, Aspergillus niger, Mucor mucedo, and Trichophyton mentagrophytes at pH 5.6 and 7.0 in the absence and presence of 10% beef serum in Sabouraud dextrose agar. The most toxic compound to each organism was: C. albicans, ethyl iodofumarate (0.054 mmole/liter); A. niger, methyl bromofumarate (0.090 mmole/liter); M. mucedo, methyl fluorofumarate (0.037 mmole/liter); and T. mentagrophytes, ethyl iodofumarate (0.020 mmole/liter). The order of overall activity of the six most toxic compounds was: ethyl iodofumarate greater than ethyl chlorofumarate greater than methyl iodofumarate = methyl bromofumarate greater than methyl chlorofumarate greater than bromofumarate.

  3. Antifungal proteins: More than antimicrobials?

    PubMed Central

    Hegedüs, Nikoletta; Marx, Florentine

    2013-01-01

    Antimicrobial proteins (AMPs) are widely distributed in nature. In higher eukaryotes, AMPs provide the host with an important defence mechanism against invading pathogens. AMPs of lower eukaryotes and prokaryotes may support successful competition for nutrients with other microorganisms of the same ecological niche. AMPs show a vast variety in structure, function, antimicrobial spectrum and mechanism of action. Most interestingly, there is growing evidence that AMPs also fulfil important biological functions other than antimicrobial activity. The present review focuses on the mechanistic function of small, cationic, cysteine-rich AMPs of mammals, insects, plants and fungi with antifungal activity and specifically aims at summarizing current knowledge concerning additional biological properties which opens novel aspects for their future use in medicine, agriculture and biotechnology. PMID:23412850

  4. Multicenter surveillance of species distribution and antifungal susceptibilities of Candida bloodstream isolates in South Korea.

    PubMed

    Jung, Sook-In; Shin, Jong Hee; Song, Jae-Hoon; Peck, Kyong Ran; Lee, Kyungwon; Kim, Mi-Na; Chang, Hyun Ha; Moon, Chi Sook

    2010-06-01

    Multicenter data on in vitro susceptibility of Candida bloodstream isolates to echinocandin antifungal agents is still lacking in South Korea. We performed a prospective multicenter study to determine the species distribution of Candida bloodstream isolates and their susceptibility to five antifungal agents, including caspofungin and micafungin. A total of 639 isolates were collected from 20 tertiary hospitals between September 2006 and August 2007. Antifungal susceptibilities were determined through the use of the CLSI broth microdilution method M27-A3. The overall species distribution was as follows; Candida albicans (38%), Candida parapsilosis (26%), Candia tropicalis (20%), Candida glabrata (11%), and miscellaneous Candida species (5%). Although C. parapsilosis and miscellaneous Candida species were less susceptible to both echinocandins, all 639 isolates were susceptible to both caspofungin and micafungin (MIC, antifungals, including two echinocandins, are still low among bloodstream isolates in South Korea.

  5. Antifungal effect of some spice hydrosols.

    PubMed

    Boyraz, Nuh; Ozcan, Musa

    2005-12-01

    The antifungal effects of rosemary, cumin, sater (savory), basil and pickling herb hydrosols were investigated against Rhizoctonia solani, Fusarium oxysporum f. sp tulipae, Botrytis cinerea and Alternaria citri. Hydrosols of sater and pickling herb showed the most relevant fungicidal activity.

  6. Infected nail plate model made of human hair keratin for evaluating the efficacy of different topical antifungal formulations against Trichophyton rubrum in vitro.

    PubMed

    Lusiana; Reichl, Stephan; Müller-Goymann, Christel C

    2013-08-01

    A novel model of infected nail plate for testing the efficacy of topical antifungal formulations has been developed. This model utilized keratin film made of human hair keratin as a nail plate model. Subsequent to infection by Trichophyton rubrum, the common causative agent of onychomycosis, keratin films as infected nail plate models were treated with selected topical formulations, that is cream, gel, and nail lacquer. Bovine hoof was compared to keratin film. In contrast to the common antifungal susceptibility test, the antifungal drugs tested were applied as ready-to-use formulations because the vehicle may modify and control the drug action both in vitro and in vivo. Extrapolating the potency of an antifungal drug from an in vitro susceptibility test only would not be representative of the in vivo situation since these drugs are applied as ready-to-use formulations, for example as a nail lacquer. Although terbinafine has been acknowledged to be the most effective antifungal agent against T. rubrum, its antifungal efficacy was improved by its incorporation into an optimal formulation. Different gels proved superior to cream. Therefore, this study is able to discriminate between efficacies of different topical antifungal formulations based on their activities against T. rubrum. PMID:23419812

  7. Infected nail plate model made of human hair keratin for evaluating the efficacy of different topical antifungal formulations against Trichophyton rubrum in vitro.

    PubMed

    Lusiana; Reichl, Stephan; Müller-Goymann, Christel C

    2013-08-01

    A novel model of infected nail plate for testing the efficacy of topical antifungal formulations has been developed. This model utilized keratin film made of human hair keratin as a nail plate model. Subsequent to infection by Trichophyton rubrum, the common causative agent of onychomycosis, keratin films as infected nail plate models were treated with selected topical formulations, that is cream, gel, and nail lacquer. Bovine hoof was compared to keratin film. In contrast to the common antifungal susceptibility test, the antifungal drugs tested were applied as ready-to-use formulations because the vehicle may modify and control the drug action both in vitro and in vivo. Extrapolating the potency of an antifungal drug from an in vitro susceptibility test only would not be representative of the in vivo situation since these drugs are applied as ready-to-use formulations, for example as a nail lacquer. Although terbinafine has been acknowledged to be the most effective antifungal agent against T. rubrum, its antifungal efficacy was improved by its incorporation into an optimal formulation. Different gels proved superior to cream. Therefore, this study is able to discriminate between efficacies of different topical antifungal formulations based on their activities against T. rubrum.

  8. Antifungal activities of some indole derivatives.

    PubMed

    Xu, Hui; Wang, Qin; Yang, Wen-Bin

    2010-01-01

    Nine indole derivatives were evaluated in vitro against Fusarium graminearum, Alternaria alternata, Helminthosporium sorokinianum, Pyricularia oryzae, Fusarium oxysporum f. sp. vasinfectum, Fusarium oxysporum f. sp. cucumarinum, and Alternaria brassicae. Most of the compounds were found to possess antifungal activities. Especially compounds 2, 5, 8, and 9 exhibited broad-spectrum antifungal activities against the above-mentioned seven phytopathogenic fungi, and showed more potent activities than hymexazole, a commercial agricultural fungicide. PMID:20737910

  9. Antifungal susceptibilities of non-Aspergillus filamentous fungi causing invasive infection in Australia: support for current antifungal guideline recommendations.

    PubMed

    Halliday, Catriona L; Chen, Sharon C-A; Kidd, Sarah E; van Hal, Sebastian; Chapman, Belinda; Heath, Christopher H; Lee, Andie; Kennedy, Karina J; Daveson, Kathryn; Sorrell, Tania C; Morrissey, C Orla; Marriott, Deborah J; Slavin, Monica A

    2016-10-01

    Antifungal susceptibilities of non-Aspergillus filamentous fungal pathogens cannot always be inferred from their identification. Here we determined, using the Sensititre(®) YeastOne(®) YO10 panel, the in vitro activities of nine antifungal agents against 52 clinical isolates of emergent non-Aspergillus moulds representing 17 fungal groups in Australia. Isolates comprised Mucorales (n = 14), Scedosporium/Lomentospora spp. (n = 18) and a range of hyaline hyphomycetes (n = 9) and other dematiaceous fungi (n = 11). Excluding Verruconis gallopava, echinocandins demonstrated poor activity (MICs generally >8 mg/L) against these moulds. Lomentospora prolificans (n = 4) and Fusarium spp. (n = 6) demonstrated raised MICs to all antifungal drugs tested, with the lowest being to voriconazole and amphotericin B (AmB), respectively (geometric mean MICs of 3.4 mg/L and 2.2 mg/L, respectively). All Scedosporium apiospermum complex isolates (n = 14) were inhibited by voriconazole concentrations of ≤0.25 mg/L, followed by posaconazole and itraconazole at ≤1 mg/L. Posaconazole and AmB were the most active agents against the Mucorales, with MIC90 values of 1 mg/L and 2 mg/L, respectively, for Rhizopus spp. For dematiaceous fungi, all isolates were inhibited by itraconazole and posaconazole concentrations of ≤0.5 mg/L (MIC90, 0.12 mg/L and 0.25 mg/L, respectively), but voriconazole and AmB also had in vitro activity (MIC90, 0.5 mg/L and 1 mg/L, respectively). Differences in antifungal susceptibility within species and between species within genera support the need for testing individual patient isolates to guide therapy. The Sensititre(®) YeastOne(®) offers a practical alternative to the reference methodology for susceptibility testing of moulds.

  10. An Efficient Method for the In Vitro Production of Azol(in)e-Based Cyclic Peptides**

    PubMed Central

    Houssen, Wael E; Bent, Andrew F; McEwan, Andrew R; Pieiller, Nathalie; Tabudravu, Jioji; Koehnke, Jesko; Mann, Greg; Adaba, Rosemary I; Thomas, Louise; Hawas, Usama W; Liu, Huanting; Schwarz-Linek, Ulrich; Smith, Margaret C M; Naismith, James H; Jaspars, Marcel

    2014-01-01

    Heterocycle-containing cyclic peptides are promising scaffolds for the pharmaceutical industry but their chemical synthesis is very challenging. A new universal method has been devised to prepare these compounds by using a set of engineered marine-derived enzymes and substrates obtained from a family of ribosomally produced and post-translationally modified peptides called the cyanobactins. The substrate precursor peptide is engineered to have a non-native protease cleavage site that can be rapidly cleaved. The other enzymes used are heterocyclases that convert Cys or Cys/Ser/Thr into their corresponding azolines. A macrocycle is formed using a macrocyclase enzyme, followed by oxidation of the azolines to azoles with a specific oxidase. The work is exemplified by the production of 17 macrocycles containing 6–9 residues representing 11 out of the 20 canonical amino acids. PMID:25331823

  11. [Photochemical reaction types of the azole fungicide fluconazole under UV-vis irradiation].

    PubMed

    Ge, Lin-Ke; Li, Kai; Yang, Kai; Na, Guang-Shui; Yu, Chun-Yan; Zhang, Peng; Yao, Zi-Wei

    2013-08-01

    This study selected the azole fungicide fluconazole as a model compound, and investigated its photodegradation kinetics and photoreaction types in pure water. It was found that under UV-vis irradiation (lambda > 200 nm), the fluconazole photodegraded fast and followed the pseudo-first-order kinetics, whereas under simulated sunlight (lambda > 290 nm), photodegradation did not occur. The ROS scavenging experiments and competition kinetic examination indicated that the compound underwent both direct photolysis and self-sensitized photooxidation via *OH other than 1O2. The bimolecular rate constant for the reaction between fluconazole and *OH was (5.95 +/- 0.58) x 10(9) L x (mol x s)(-1), and the corresponding environmental half-life was calculated to be (32.41 +/- 3.16) h in surface waters. Furthermore, it was deduced from the photodegradation product identification that the UV-vis degradation pathways involved photoinduced defluorination, hydrolysis and photooxidation.

  12. Aryl azoles with neuroprotective activity--parallel synthesis and attempts at target identification.

    PubMed

    Cocconcelli, Giuseppe; Diodato, Enrica; Caricasole, Andrea; Gaviraghi, Giovanni; Genesio, Eva; Ghiron, Chiara; Magnoni, Letizia; Pecchioli, Elena; Plazzi, Pier Vincenzo; Terstappen, Georg C

    2008-02-15

    A parallel synthesis of aryl azoles with neuroprotective activity is described. All compounds obtained were evaluated in an in vitro assay using a NMDA toxicity paradigm showing a neuroprotective activity between 15% and 40%. The potential biological target of the active compounds was investigated by extensive literature searches based around similar scaffolds with reported neuroprotective activity. The most interesting molecules active in the NMDA toxicity assay (3a and 2g) showed moderate but significant activity in the inhibition of the Site 2 Sodium Channel binding assay at 10 microM. To confirm our hypothesis compounds 3a, c, f and 2g were tested in the Veratridine assay which is one of the excitotoxicity assays of relevance to NaV channels. The compounds tested showed an activity between 40% and 70%. The identification of neuroprotective small molecules and the identification of NaV channels as the potential site of action were the most important goals of this work.

  13. Dimeric fluorescent energy transfer dyes comprising asymmetric cyanine azole-indolenine chromophores

    DOEpatents

    Glazer, Alexander N.; Benson, Scott C.

    1998-01-01

    Novel fluorescent heterodimeric DNA-staining energy transfer dyes are provided combining asymmetric cyanine azole-indolenine dyes, which provide for strong DNA affinity, large Stokes shifts and emission in the red region of the spectrum. The dyes find particular application in gel electrophoresis and for labels which may be bound to a variety of compositions in a variety of contexts. Kits and individual compounds are provided, where the kits find use for simultaneous detection of a variety of moieties, particularly using a single narrow wavelength irradiation source. The individual compounds are characterized by high donor quenching and high affinity to dsDNA as a result of optimizing the length of the linking group separating the two chromophores.

  14. Antifungal Clinical Trials and Guidelines: What We Know and Do Not Know

    PubMed Central

    Pappas, Peter G.

    2014-01-01

    For over the last three decades, extensive testing of antifungal compounds in clinical trials has been essential to the development of treatment guidelines for the most common invasive fungal infections, including cryptococcosis, candidiasis, aspergillosis, and the endemic fungi. These guidelines have greatly helped guide clinicians in the management of these complicated diseases. The data on which most of these guidelines are based are among the most widely recognized and cited clinical trials comparing antimicrobial agents. Unfortunately, there are many unanswered questions with respect to the diagnosis and treatment of these emerging disorders. Regarding treatment, there is a need for more clinically effective and less toxic agents. The current armamentarium of antifungal agents represents important progress over gold standard agents such as amphotericin B, but there is much progress to be made. With respect to diagnostics, mycology has generally lagged behind other disciplines in microbiology, as there are very few rapid, sensitive, specific, and point-of-care diagnostics. The ability to implement therapies for at-risk patients based on positive early diagnostic signals would greatly enhance the ability to intervene with appropriate antifungal therapy in a more targeted and specific manner. This article will review some of the major advances, as well as significant challenges that remain in the management of invasive mycoses. PMID:25368017

  15. Mechanistic study of chemoselectivity in Ni-catalyzed coupling reactions between azoles and aryl carboxylates.

    PubMed

    Lu, Qianqian; Yu, Haizhu; Fu, Yao

    2014-06-11

    Itami et al. recently reported the C-O electrophile-controlled chemoselectivity of Ni-catalyzed coupling reactions between azoles and esters: the decarbonylative C-H coupling product was generated with the aryl ester substrates, while C-H/C-O coupling product was generated with the phenol derivative substrates (such as phenyl pivalate). With the aid of DFT calculations (M06L/6-311+G(2d,p)-SDD//B3LYP/6-31G(d)-LANL2DZ), the present study systematically investigated the mechanism of the aforementioned chemoselective reactions. The decarbonylative C-H coupling mechanism involves oxidative addition of C(acyl)-O bond, base-promoted C-H activation of azole, CO migration, and reductive elimination steps (C-H/Decar mechanism). This mechanism is partially different from Itami's previous proposal (Decar/C-H mechanism) because the C-H activation step is unlikely to occur after the CO migration step. Meanwhile, C-H/C-O coupling reaction proceeds through oxidative addition of C(phenyl)-O bond, base-promoted C-H activation, and reductive elimination steps. It was found that the C-O electrophile significantly influences the overall energy demand of the decarbonylative C-H coupling mechanism, because the rate-determining step (i.e., CO migration) is sensitive to the steric effect of the acyl substituent. In contrast, in the C-H/C-O coupling mechanism, the release of the carboxylates occurs before the rate-determining step (i.e., base-promoted C-H activation), and thus the overall energy demand is almost independent of the acyl substituent. Accordingly, the decarbonylative C-H coupling product is favored for less-bulky group substituted C-O electrophiles (such as aryl ester), while C-H/C-O coupling product is predominant for bulky group substituted C-O electrophiles (such as phenyl pivalate). PMID:24823646

  16. Antifungal activity of topical microemulsion containing a thiophene derivative.

    PubMed

    Guimarães, Geovani Pereira; de Freitas Araújo Reis, Mysrayn Yargo; da Silva, Dayanne Tomaz Casimiro; Junior, Francisco Jaime Bezerra Mendonça; Converti, Attílio; Pessoa, Adalberto; de Lima Damasceno, Bolívar Ponciano Goulart; da Silva, José Alexsandro

    2014-01-01

    Fungal infections have become a major problem of worldwide concern. Yeasts belonging to the Candida genus and the pathogenic fungus Cryptococcus neoformans are responsible for different clinical manifestations, especially in immunocompromised patients. Antifungal therapies are currently based on a few chemotherapeutic agents that have problems related to effectiveness and resistance profiles. Microemulsions are isotropic, thermodynamically stable transparent systems of oil, water and surfactant that can improve the solubilization of lipophilic drugs. Taking into account the need for more effective and less toxic drugs along with the potential of thiophene derivatives as inhibitors of pathogenic fungi growth, this study aimed to evaluate the antifungal activity of a thiophene derivative (5CN05) embedded in a microemulsion (ME). The minimum inhibitory concentration (MIC) was determined using the microdilution method using amphotericin B as a control. The formulations tested (ME- blank and ME-5CN05) showed physico-chemical properties that would allow their use by the topical route. 5CN05 as such exhibited moderate or weak antifungal activity against Candida species (MIC = 270-540 μg . mL(-1)) and good activity against C. neoformans (MIC = 17 μg . mL(-1)). Candida species were susceptible to ME-5CN05 (70-140 μg . mL(-1)), but C. neoformans was much more, presenting a MIC value of 2.2 μg . mL(-1). The results of this work proved promising for the pharmaceutical industry, because they suggest an alternative therapy against C. neoformans. PMID:25242940

  17. Synthesis of some new flurbiprofen analogues as anti-inflammatory agents.

    PubMed

    Nitlikar, Laxmikant H; Sangshetti, Jaiprakash N; Shinde, Devanand B

    2014-01-01

    A series of new α-aryl propionic acid derivatives had been synthesized through different synthetic routes from the readily available 2-fluoronitrobenzene as key starter. The synthesized compounds were screened for their antiinflammatory activity using rat paw edema method. Azoles (6c, 6h and 6i) have showed considerable good antiinflammatory activity. The present series with some modification may serve as important core for the development of new anti-inflammatory agents.

  18. Controlling the conductivity and stability of azoles: Proton and hydroxide exchange functionalities

    NASA Astrophysics Data System (ADS)

    Chaloux, Brian Leonard

    For low temperature hydrogen fuel cells to achieve widespread adoption in transport applications, it is necessary to both decrease their cost and improve the range of environmental conditions under which they effectively operate. These problems can be addressed, respectively, by either switching the catalyst from platinum to a less expensive metal, or by reducing the polymer exchange membrane's reliance upon water for proton conduction. This work focuses on understanding the chemistry and physics that limit cation stability in alkaline environments and that enable high proton conductivity in anhydrous polymer exchange membranes. Polystyrenic 1H-azoles (including 1H-tetrazole, 1H-1,2,3-triazole, and 1H-imidazoline) were synthesized to investigate whether pKa and pKb of an amophoteric, proton-conductive group have a systematic effect on anhydrous proton conductivity. It was discovered that the 1H-tetrazole (PS-Tet) exhibited distinct phase separation not seen in its carboxylic acid analog (PSHA) or reported for other 1 H-azole--containing homopolymers in literature. The resulting microstructured polymer, hypothesized to be the result of regions of high and low clustering of azoles, analogous to the multiplet-cluster model of ionomer microstructure, resulted in proton conductivity coupled with simultaneous rubbery behavior of the polymer well above its glass transition (Tg). Phase separation was similarly observed in PS-Tri and PS-ImH2 (the triazole- and imidazoline-containing polymers); soft phases with similar Tgs and hard phases with varying Tgs lend support to this hypothesis of aggregation-driven phase separation. Electrode polarization exhibited in the impedance spectra of PS-Tet and PS-HA was modeled to determine the extent of proton dissociation in undoped 1H-tetrazoles and carboxylic acids. Dry polymers (0% relative humidity) retained ~1% by weight residual water, which was observed to act as the proton acceptor in both cases. Despite doping by residual water

  19. Microwave assisted regioselective synthesis and 2D-NMR studies of novel azoles and azoloazines utilizing fluorine-containing building blocks

    NASA Astrophysics Data System (ADS)

    Al-Bogami, Abdullah S.; Saleh, Tamer S.; Mekky, Ahmed E. M.; Shaaban, Mohamed R.

    2016-10-01

    An efficient regioselective synthesis of novel azoles containing a trifluoromethyl moiety via the 1,3-dipolar cycloaddition reaction under microwave irradiation, using fluorine-containing building blocks methodology was achieved. Furthermore, these novel azoles scaffolds have been employed as the starting material in the synthesis of new azoloazines containing a trifluoromethyl group. An unambiguous structural assignment of the obtained regioisomers was determined using the 2D HMBC NMR techniques as a valuable tool.

  20. Occurrence, fate and ecological risk of five typical azole fungicides as therapeutic and personal care products in the environment: A review.

    PubMed

    Chen, Zhi-Feng; Ying, Guang-Guo

    2015-11-01

    Azole fungicides are widely used to treat fungal infection in human. After application, these chemicals may reach to the receiving environment via direct or indirect discharge of wastewaters, thus posing potential risks to non-target organisms. We aimed to review the occurrence, fate and toxicological effects of some representative household azole fungicides in the environment. Azole fungicides were widely detected in surface water and sediment of the aquatic environment due to their incomplete removal in wastewater treatment plants. These chemicals are found resistant to microbial degradation, but can undergo photolysis under UV irradiation. Due to different physiochemical properties, azole fungicides showed different environmental behaviors. The residues of azole fungicides could cause toxic effects on aquatic organisms such as algae and fish. The reported effects include regulation changes in expression of cytochrome P450-related genes and alteration in CYP450-regulated steroidogenesis causing endocrine disruption in fish. Further studies are essential to investigate the removal of azole fungicides by advanced treatment technologies, environmental fate such as natural photolysis, and toxic pathways in aquatic organisms. PMID:26277639

  1. Spectrum and the In Vitro Antifungal Susceptibility Pattern of Yeast Isolates in Ethiopian HIV Patients with Oropharyngeal Candidiasis

    PubMed Central

    Moges, Birhan; Bitew, Adane; Shewaamare, Aster

    2016-01-01

    Background. In Ethiopia, little is known regarding the distribution and the in vitro antifungal susceptibility profile of yeasts. Objective. This study was undertaken to determine the spectrum and the in vitro antifungal susceptibility pattern of yeasts isolated from HIV infected patients with OPC. Method. Oral pharyngeal swabs taken from oral lesions of study subjects were inoculated onto Sabouraud Dextrose Agar. Yeasts were identified by employing conventional test procedures and the susceptibility of yeasts to antifungal agents was evaluated by disk diffusion assay method. Result. One hundred and fifty-five yeast isolates were recovered of which 91 isolates were from patients that were not under HAART and 64 were from patients that were under HAART. C. albicans was the most frequently isolated species followed by C. glabrata, C. tropicalis, C. krusei, C. kefyr, Cryptococcus laurentii, and Rhodotorula species. Irrespective of yeasts isolated and identified, 5.8%, 5.8%, 12.3%, 8.4%, 0.6%, and 1.3% of the isolates were resistant to amphotericin B, clotrimazole, fluconazole, ketoconazole, miconazole, and nystatin, respectively. Conclusion. Yeast colonization rate of 69.2% and 31% resistance to six antifungal agents was documented. These highlight the need for nationwide study on the epidemiology of OPC and resistance to antifungal drugs. PMID:26880925

  2. Topical antifungal-corticosteroid combination therapy for the treatment of superficial mycoses: conclusions of an expert panel meeting.

    PubMed

    Schaller, Martin; Friedrich, Markus; Papini, Manuela; Pujol, Ramon M; Veraldi, Stefano

    2016-06-01

    Superficial fungal infections affect 20-25% of people worldwide and can cause considerable morbidity, particularly if an inflammatory component is present. As superficial fungal infections can be diverse, the treatment should be tailored to the individual needs of the patient and several factors should be taken into account when deciding on the most appropriate treatment option. These include the type, location and surface area of the infection, patient age, degree of inflammation and underlying comorbidities. Although several meta-analyses have shown that there are no significant differences between the numerous available topical antifungal agents with regard to mycological cure, agents differ in their specific intrinsic properties, which can affect their clinical use. The addition of a corticosteroid to an antifungal agent at the initiation of treatment can attenuate the inflammatory symptoms of the infection and is thought to increase patient compliance, reduce the risk of bacterial superinfection and enhance the efficacy of the antifungal agent. However, incorrect use of antifungal-corticosteroid therapy may be associated with treatment failure and adverse effects. This review summarises available treatment options for superficial fungal infections and provides general treatment recommendations based on the consensus outcomes of an Expert Panel meeting on the topical treatment of superficial mycoses. PMID:26916648

  3. Topical antifungal-corticosteroid combination therapy for the treatment of superficial mycoses: conclusions of an expert panel meeting.

    PubMed

    Schaller, Martin; Friedrich, Markus; Papini, Manuela; Pujol, Ramon M; Veraldi, Stefano

    2016-06-01

    Superficial fungal infections affect 20-25% of people worldwide and can cause considerable morbidity, particularly if an inflammatory component is present. As superficial fungal infections can be diverse, the treatment should be tailored to the individual needs of the patient and several factors should be taken into account when deciding on the most appropriate treatment option. These include the type, location and surface area of the infection, patient age, degree of inflammation and underlying comorbidities. Although several meta-analyses have shown that there are no significant differences between the numerous available topical antifungal agents with regard to mycological cure, agents differ in their specific intrinsic properties, which can affect their clinical use. The addition of a corticosteroid to an antifungal agent at the initiation of treatment can attenuate the inflammatory symptoms of the infection and is thought to increase patient compliance, reduce the risk of bacterial superinfection and enhance the efficacy of the antifungal agent. However, incorrect use of antifungal-corticosteroid therapy may be associated with treatment failure and adverse effects. This review summarises available treatment options for superficial fungal infections and provides general treatment recommendations based on the consensus outcomes of an Expert Panel meeting on the topical treatment of superficial mycoses.

  4. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    PubMed Central

    BIASI-GARBIN, Renata Perugini; DEMITTO, Fernanda de Oliveira; do AMARAL, Renata Claro Ribeiro; FERREIRA, Magda Rhayanny Assunção; SOARES, Luiz Alberto Lira; SVIDZINSKI, Terezinha Inez Estivalet; BAEZA, Lilian Cristiane; YAMADA-OGATTA, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species. PMID:27007561

  5. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES.

    PubMed

    Biasi-Garbin, Renata Perugini; Demitto, Fernanda de Oliveira; Amaral, Renata Claro Ribeiro do; Ferreira, Magda Rhayanny Assunção; Soares, Luiz Alberto Lira; Svidzinski, Terezinha Inez Estivalet; Baeza, Lilian Cristiane; Yamada-Ogatta, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytes ATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species. PMID:27007561

  6. Onychomycosis: Potential of Nail Lacquers in Transungual Delivery of Antifungals

    PubMed Central

    Sharma, Hemlata; Pathak, Kamla

    2016-01-01

    Onychomycosis constitutes the most common fungal infection of the nail (skin beneath the nail bed) that affects the finger as well as toe nails. It is an infection that is initiated by yeasts, dermatophytes, and nondermatophyte molds. Nail lacquers are topical solutions intended only for use on fingernails as well as toenails and have been found to be useful in the treatment of onychomycosis. Thus, in the present review an attempt has been made to focus on the treatment aspects of onychomycosis and the ungual delivery of antifungals via nail lacquer. Several patents issued on nail lacquer till date have also been discussed. Penetration efficiency was assessed by several researchers across the human nail plate to investigate the potentiality of nail lacquer based formulations. Various clinical trials have also been conducted in order to evaluate the safety and efficacy of nail lacquers in delivering antifungal agents. Thus, it can be concluded that nail lacquer based preparations are efficacious and stable formulations. These possess tremendous potential for clinical topical application to the nail bed in the treatment of onychomycosis. PMID:27123362

  7. In Vitro and In Vivo Antifungal Activity of Lichochalcone-A against Candida albicans Biofilms

    PubMed Central

    Seleem, Dalia; Benso, Bruna; Noguti, Juliana; Pardi, Vanessa; Murata, Ramiro Mendonça

    2016-01-01

    Oral candidiasis (OC) is an opportunistic fungal infection with high prevalence among immunocompromised patients. Candida albicans is the most common fungal pathogen responsible for OC, often manifested in denture stomatitis and oral thrush. Virulence factors, such as biofilms formation and secretion of proteolytic enzymes, are key components in the pathogenicity of C. albicans. Given the limited number of available antifungal therapies and the increase in antifungal resistance, demand the search for new safe and effective antifungal treatments. Lichochalcone-A is a polyphenol natural compound, known for its broad protective activities, as an antimicrobial agent. In this study, we investigated the antifungal activity of lichochalcone-A against C. albicans biofilms both in vitro and in vivo. Lichochalcone-A (625 μM; equivalent to 10x MIC) significantly reduced C. albicans (MYA 2876) biofilm growth compared to the vehicle control group (1% ethanol), as indicated by the reduction in the colony formation unit (CFU)/ml/g of biofilm dry weight. Furthermore, proteolytic enzymatic activities of proteinases and phospholipases, secreted by C. albicans were significantly decreased in the lichochalcone-A treated biofilms. In vivo model utilized longitudinal imaging of OC fungal load using a bioluminescent-engineered C. albicans (SKCa23-ActgLUC) and coelenterazine substrate. Mice treated with lichochalcone-A topical treatments exhibited a significant reduction in total photon flux over 4 and 5 days post-infection. Similarly, ex vivo analysis of tongue samples, showed a significant decrease in CFU/ml/mg in tongue tissue sample of lichochalcone-A treated group, which suggest the potential of lichochalcone-A as a novel antifungal agent for future clinical use. PMID:27284694

  8. In vitro evaluation of antifungal activity of monolaurin against Candida albicans biofilms.

    PubMed

    Seleem, Dalia; Chen, Emily; Benso, Bruna; Pardi, Vanessa; Murata, Ramiro M

    2016-01-01

    Monolaurin (also known as glycerol monolaurate) is a natural compound found in coconut oil and is known for its protective biological activities as an antimicrobial agent. The nature of oral candidiasis and the increased antifungal resistance demand the search for novel antifungal therapeutic agents. In this study, we examine the antifungal activity of monolaurin against Candida albicans biofilms (strain ATCC:SC5314/MYA2876) in vitro and investigate whether monolaurin can alter gene expression of host inflammatory cytokines, IL-1α and IL-1β. In a co-culture model, oral fibroblast cells were cultured simultaneously with C. albicans for 24 hrs followed by the exposure to treatments of monolaurin (3.9-2,500 µM), positive control fluconazole (32.2 µM), and vehicle control group (1% ethanol), which was a model used to evaluate the cytotoxicity of monolaurin on fibroblasts as well as to analyze morphological characteristics of biofilms through fluorescence microscopy. In addition, the co-culture model was used for RNA extraction of oral fibroblasts to assess gene expression of host inflammatory cytokines, using quantitative real-time PCR. Our results showed the MIC and MFC of monolaurin were in the range 62.5-125 µM and 125-250 µM, respectively. Biofilm antifungal assay showed significant reduction in Log (CFU/ml) of biofilms treated with 1,250 and 2,500 µM of 1-monolaurin when compared to the control groups . There was also a significant down-regulation of IL-1α and IL-1β in the co-culture treated with monolaurin. It can be concluded that monolaurin has a potential antifungal activity against C. albicans and can modulate the pro-inflammatory response of the host. PMID:27366648

  9. In Vitro and In Vivo Antifungal Activity of Lichochalcone-A against Candida albicans Biofilms.

    PubMed

    Seleem, Dalia; Benso, Bruna; Noguti, Juliana; Pardi, Vanessa; Murata, Ramiro Mendonça

    2016-01-01

    Oral candidiasis (OC) is an opportunistic fungal infection with high prevalence among immunocompromised patients. Candida albicans is the most common fungal pathogen responsible for OC, often manifested in denture stomatitis and oral thrush. Virulence factors, such as biofilms formation and secretion of proteolytic enzymes, are key components in the pathogenicity of C. albicans. Given the limited number of available antifungal therapies and the increase in antifungal resistance, demand the search for new safe and effective antifungal treatments. Lichochalcone-A is a polyphenol natural compound, known for its broad protective activities, as an antimicrobial agent. In this study, we investigated the antifungal activity of lichochalcone-A against C. albicans biofilms both in vitro and in vivo. Lichochalcone-A (625 μM; equivalent to 10x MIC) significantly reduced C. albicans (MYA 2876) biofilm growth compared to the vehicle control group (1% ethanol), as indicated by the reduction in the colony formation unit (CFU)/ml/g of biofilm dry weight. Furthermore, proteolytic enzymatic activities of proteinases and phospholipases, secreted by C. albicans were significantly decreased in the lichochalcone-A treated biofilms. In vivo model utilized longitudinal imaging of OC fungal load using a bioluminescent-engineered C. albicans (SKCa23-ActgLUC) and coelenterazine substrate. Mice treated with lichochalcone-A topical treatments exhibited a significant reduction in total photon flux over 4 and 5 days post-infection. Similarly, ex vivo analysis of tongue samples, showed a significant decrease in CFU/ml/mg in tongue tissue sample of lichochalcone-A treated group, which suggest the potential of lichochalcone-A as a novel antifungal agent for future clinical use. PMID:27284694

  10. In vitro evaluation of antifungal activity of monolaurin against Candida albicans biofilms

    PubMed Central

    Benso, Bruna; Pardi, Vanessa

    2016-01-01

    Monolaurin (also known as glycerol monolaurate) is a natural compound found in coconut oil and is known for its protective biological activities as an antimicrobial agent. The nature of oral candidiasis and the increased antifungal resistance demand the search for novel antifungal therapeutic agents. In this study, we examine the antifungal activity of monolaurin against Candida albicans biofilms (strain ATCC:SC5314/MYA2876) in vitro and investigate whether monolaurin can alter gene expression of host inflammatory cytokines, IL-1α and IL-1β. In a co-culture model, oral fibroblast cells were cultured simultaneously with C. albicans for 24 hrs followed by the exposure to treatments of monolaurin (3.9–2,500 µM), positive control fluconazole (32.2 µM), and vehicle control group (1% ethanol), which was a model used to evaluate the cytotoxicity of monolaurin on fibroblasts as well as to analyze morphological characteristics of biofilms through fluorescence microscopy. In addition, the co-culture model was used for RNA extraction of oral fibroblasts to assess gene expression of host inflammatory cytokines, using quantitative real-time PCR. Our results showed the MIC and MFC of monolaurin were in the range 62.5–125 µM and 125–250 µM, respectively. Biofilm antifungal assay showed significant reduction in Log (CFU/ml) of biofilms treated with 1,250 and 2,500 µM of 1-monolaurin when compared to the control groups . There was also a significant down-regulation of IL-1α and IL-1β in the co-culture treated with monolaurin. It can be concluded that monolaurin has a potential antifungal activity against C. albicans and can modulate the pro-inflammatory response of the host. PMID:27366648

  11. Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam.

    PubMed

    Chuang, Ping-Hsien; Lee, Chi-Wei; Chou, Jia-Ying; Murugan, M; Shieh, Bor-Jinn; Chen, Hueih-Min

    2007-01-01

    Investigations were carried out to evaluate the therapeutic properties of the seeds and leaves of Moringa oleifera Lam as herbal medicines. Ethanol extracts showed anti-fungal activities in vitro against dermatophytes such as Trichophyton rubrum, Trichophyton mentagrophytes, Epidermophyton floccosum, and Microsporum canis. GC-MS analysis of the chemical composition of the essential oil from leaves showed a total of 44 compounds. Isolated extracts could be of use for the future development of anti-skin disease agents. PMID:16406607

  12. Efficient synthesis of biazoles by aerobic oxidative homocoupling of azoles catalyzed by a copper(I)/2-pyridonate catalytic system.

    PubMed

    Zhu, Mingwen; Fujita, Ken-ichi; Yamaguchi, Ryohei

    2011-12-28

    A highly efficient and convenient CuCl/2-pyridonate catalytic system for oxidative homocoupling of azoles affording a biazole product has been developed. With this system, a variety of biazoles have been effectively synthesized in good to excellent yields in the presence of a very small amount of copper catalyst (1.0 mol%). It was feasible to employ air as a green oxidant. PMID:22076830

  13. ASDCD: antifungal synergistic drug combination database.

    PubMed

    Chen, Xing; Ren, Biao; Chen, Ming; Liu, Ming-Xi; Ren, Wei; Wang, Quan-Xin; Zhang, Li-Xin; Yan, Gui-Ying

    2014-01-01

    Finding effective drugs to treat fungal infections has important clinical significance based on high mortality rates, especially in an immunodeficient population. Traditional antifungal drugs with single targets have been reported to cause serious side effects and drug resistance. Nowadays, however, drug combinations, particularly with respect to synergistic interaction, have attracted the attention of researchers. In fact, synergistic drug combinations could simultaneously affect multiple subpopulations, targets, and diseases. Therefore, a strategy that employs synergistic antifungal drug combinations could eliminate the limitations noted above and offer the opportunity to explore this emerging bioactive chemical space. However, it is first necessary to build a powerful database in order to facilitate the analysis of drug combinations. To address this gap in our knowledge, we have built the first Antifungal