Sample records for azole antifungal agents

  1. Synergic effects of tactolimus and azole antifungal agents against azole-resistant Candida albican strains.

    PubMed

    Maesaki, S; Marichal, P; Hossain, M A; Sanglard, D; Vanden Bossche, H; Kohno, S

    1998-12-01

    We investigated the effects of combining tacrolimus and azole antifungal agents in azole-resistant strains of Candida albicans by comparing the accumulation of [3H]itraconazole. The CDR1-expressing resistant strain C26 accumulated less itraconazole than the CaMDR-expressing resistant strain C40 or the azole-sensitive strain B2630. A CDR1-expressing Saccharomyces cerevisiae mutant, DSY415, showed a marked reduction in the accumulation of both fluconazole and itraconazole. A CaMDR-expressing S. cerevisiae mutant, DSY416, also showed lower accumulation of fluconazole, but not of itraconazole. The addition of sodium azide, an electron-transport chain inhibitor, increased the intracellular accumulation of itraconazole only in the C26 strain, and not in the C40 or B2630 strains. Addition of tacrolimus, an inhibitor of multidrug resistance proteins, resulted in the highest increase in itraconazole accumulation in the C26 strain. The combination of itraconazole and tacrolimus was synergic in azole-resistant C. albicans strains. In the C26 strain, the MIC of itraconazole decreased from >8 to 0.5 mg/L when combined with tacrolimus. Our results showed that two multidrug resistance phenotypes (encoded by the CDR1 and CaMDR genes) in C. albicans have different substrate specificity for azole antifungal agents and that a combination of tacrolimus and azole antifungal agents is effective against azole-resistant strains of C. albicans.

  2. Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species

    PubMed Central

    Whaley, Sarah G.; Berkow, Elizabeth L.; Rybak, Jeffrey M.; Nishimoto, Andrew T.; Barker, Katherine S.; Rogers, P. David

    2017-01-01

    Within the limited antifungal armamentarium, the azole antifungals are the most frequent class used to treat Candida infections. Azole antifungals such as fluconazole are often preferred treatment for many Candida infections as they are inexpensive, exhibit limited toxicity, and are available for oral administration. There is, however, extensive documentation of intrinsic and developed resistance to azole antifungals among several Candida species. As the frequency of azole resistant Candida isolates in the clinical setting increases, it is essential to elucidate the mechanisms of such resistance in order to both preserve and improve upon the azole class of antifungals for the treatment of Candida infections. This review examines azole resistance in infections caused by C. albicans as well as the emerging non-albicans Candida species C. parapsilosis, C. tropicalis, C. krusei, and C. glabrata and in particular, describes the current understanding of molecular basis of azole resistance in these fungal species. PMID:28127295

  3. Repurposing antipsychotic drugs into antifungal agents: Synergistic combinations of azoles and bromperidol derivatives in the treatment of various fungal infections.

    PubMed

    Holbrook, Selina Y L; Garzan, Atefeh; Dennis, Emily K; Shrestha, Sanjib K; Garneau-Tsodikova, Sylvie

    2017-10-20

    As the number of hospitalized and immunocompromised patients continues to rise, invasive fungal infections, such as invasive candidiasis and aspergillosis, threaten the life of millions of patients every year. The azole antifungals are currently the most prescribed drugs clinically that display broad-spectrum antifungal activity and excellent oral bioavailability. Yet, the azole antifungals have their own limitations and are unable to meet the challenges associated with increasing fungal infections and the accompanied development of resistance against azoles. Exploring combination therapy that involves the current azoles and another drug has been shown to be a promising strategy. Haloperidol and its derivative, bromperidol, were originally discovered as antipsychotics. Herein, we synthesize and report a series of bromperidol derivatives and their synergistic antifungal interactions in combination with a variety of current azole antifungals against a wide panel of fungal pathogens. We further select two representative combinations and confirm the antifungal synergy by performing time-kill assays. Furthermore, we evaluate the ability of selected combinations to destroy fungal biofilm. Finally, we perform mammalian cytotoxicity assays with the representative combinations against three mammalian cell lines. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Relationships between Respiration and Susceptibility to Azole Antifungals in Candida glabrata

    PubMed Central

    Brun, Sophie; Aubry, Christophe; Lima, Osana; Filmon, Robert; Bergès, Thierry; Chabasse, Dominique; Bouchara, Jean-Philippe

    2003-01-01

    Over the past two decades, the incidence of infections due to Candida glabrata, a yeast with intrinsic low susceptibility to azole antifungals, has increased markedly. Respiratory deficiency due to mutations in mitochondrial DNA (mtDNA) associated with resistance to azoles frequently occurs in vitro in this species. In order to specify the relationships between respiration and azole susceptibility, the effects of respiratory chain inhibitors on a wild-type isolate of C. glabrata were evaluated. Respiration of blastoconidia was immediately blocked after extemporaneous addition of potassium cyanide, whereas a 4-h preincubation was required for sodium azide. Antifungal susceptibility determined by a disk diffusion method on Casitone agar containing sodium azide showed a significant decrease in the susceptibility to azoles. Biweekly subculturing on Casitone agar supplemented with sodium azide was therefore performed. This resulted after 40 passages in the isolation of a respiration-deficient mutant, as suggested by its lack of growth on glycerol-containing agar. This respiratory deficiency was confirmed by flow cytometric analysis of blastoconidia stained with rhodamine 123 and by oxygraphy. Moreover, transmission electron microscopy and restriction endonuclease analysis of the mtDNA of mutant cells demonstrated the mitochondrial origin of the respiratory deficiency. Finally, this mutant exhibited cross-resistance to all the azoles tested. In conclusion, blockage of respiration in C. glabrata induces decreased susceptibility to azoles, culminating in azole resistance due to the deletion of mtDNA. This mechanism could explain the induction of petite mutations by azole antifungals which have been demonstrated to act directly on the mitochondrial respiratory chain. PMID:12604511

  5. De-repression of CSP-1 activates adaptive responses to antifungal azoles

    PubMed Central

    Chen, Xi; Xue, Wei; Zhou, Jun; Zhang, Zhenying; Wei, Shiping; Liu, Xingyu; Sun, Xianyun; Wang, Wenzhao; Li, Shaojie

    2016-01-01

    Antifungal azoles are the major drugs that are used to treat fungal infections. This study found that in response to antifungal azole stress, Neurospora crassa could activate the transcriptional responses of many genes and increase azole resistance by reducing the level of conidial separation 1 (CSP-1), a global transcription repressor, at azole-responsive genes. The expression of csp-1 was directly activated by the transcription factors WC-1 and WC-2. Upon ketoconazole (KTC) stress, the transcript levels of wc-1 and wc-2 were not changed, but csp-1 transcription rapidly declined. A chromatin immunoprecipitation-quantitative polymerase chain reaction analysis revealed a rapid reduction in the WC-2 enrichment at the csp-1 promoter upon KTC treatment, which might be responsible for the KTC-induced csp-1 downregulation. Deletion of csp-1 increased resistance to KTC and voriconazole, while csp-1 overexpression increased KTC susceptibility. CSP-1 transcriptionally repressed a number of azole-responsive genes, including genes encoding the azole target ERG11, the azole efflux pump CDR4, and the sterol C-22 desaturase ERG5. Deletion of csp-1 also reduced the KTC-induced accumulation of ergosterol intermediates, eburicol, and 14α-methyl-3,6-diol. CSP-1 orthologs are widely present in filamentous fungi, and an Aspergillus fumigatus mutant in which the csp-1 was deleted was resistant to itraconazole. PMID:26781458

  6. Unexpected effects of azole transporter inhibitors on antifungal susceptibility in Candida glabrata and other pathogenic Candida species

    PubMed Central

    Nagayoshi, Yohsuke; Shimamura, Shintaro; Nakayama, Hironobu; Minematsu, Asuka; Yamauchi, Shunsuke; Takazono, Takahiro; Nakamura, Shigeki; Yanagihara, Katsunori; Kohno, Shigeru; Mukae, Hiroshi; Izumikawa, Koichi

    2017-01-01

    The pathogenic fungus Candida glabrata is often resistant to azole antifungal agents. Drug efflux through azole transporters, such as Cdr1 and Cdr2, is a key mechanism of azole resistance and these genes are under the control of the transcription factor Pdr1. Recently, the monoamine oxidase A (MAO-A) inhibitor clorgyline was shown to inhibit the azole efflux pumps, leading to increased azole susceptibility in C. glabrata. In the present study, we have evaluated the effects of clorgyline on susceptibility of C. glabrata to not only azoles, but also to micafungin and amphotericin B, using wild-type and several mutant strains. The addition of clorgyline to the culture media increased fluconazole susceptibility of a C. glabrata wild-type strain, whereas micafungin and amphotericin B susceptibilities were markedly decreased. These phenomena were also observed in other medically important Candida species, including Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida krusei. Expression levels of CDR1, CDR2 and PDR1 mRNAs and an amount of Cdr1 protein in the C. glabrata wild-type strain were highly increased in response to the treatment with clorgyline. However, loss of Cdr1, Cdr2, Pdr1, and a putative clorgyline target (Fms1), which is an ortholog of human MAO-A, or overexpression of CDR1 did not affect the decreased susceptibility to micafungin and amphotericin B in the presence of clorgyline. The presence of other azole efflux pump inhibitors including milbemycin A4 oxime and carbonyl cyanide 3-chlorophenylhydrazone also decreased micafungin susceptibility in C. glabrata wild-type, Δcdr1, Δcdr2, and Δpdr1 strains. These findings suggest that azole efflux pump inhibitors increase azole susceptibility but concurrently induce decreased susceptibility to other classes of antifungals independent of azole transporter functions. PMID:28700656

  7. Unexpected effects of azole transporter inhibitors on antifungal susceptibility in Candida glabrata and other pathogenic Candida species.

    PubMed

    Nagayoshi, Yohsuke; Miyazaki, Taiga; Shimamura, Shintaro; Nakayama, Hironobu; Minematsu, Asuka; Yamauchi, Shunsuke; Takazono, Takahiro; Nakamura, Shigeki; Yanagihara, Katsunori; Kohno, Shigeru; Mukae, Hiroshi; Izumikawa, Koichi

    2017-01-01

    The pathogenic fungus Candida glabrata is often resistant to azole antifungal agents. Drug efflux through azole transporters, such as Cdr1 and Cdr2, is a key mechanism of azole resistance and these genes are under the control of the transcription factor Pdr1. Recently, the monoamine oxidase A (MAO-A) inhibitor clorgyline was shown to inhibit the azole efflux pumps, leading to increased azole susceptibility in C. glabrata. In the present study, we have evaluated the effects of clorgyline on susceptibility of C. glabrata to not only azoles, but also to micafungin and amphotericin B, using wild-type and several mutant strains. The addition of clorgyline to the culture media increased fluconazole susceptibility of a C. glabrata wild-type strain, whereas micafungin and amphotericin B susceptibilities were markedly decreased. These phenomena were also observed in other medically important Candida species, including Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida krusei. Expression levels of CDR1, CDR2 and PDR1 mRNAs and an amount of Cdr1 protein in the C. glabrata wild-type strain were highly increased in response to the treatment with clorgyline. However, loss of Cdr1, Cdr2, Pdr1, and a putative clorgyline target (Fms1), which is an ortholog of human MAO-A, or overexpression of CDR1 did not affect the decreased susceptibility to micafungin and amphotericin B in the presence of clorgyline. The presence of other azole efflux pump inhibitors including milbemycin A4 oxime and carbonyl cyanide 3-chlorophenylhydrazone also decreased micafungin susceptibility in C. glabrata wild-type, Δcdr1, Δcdr2, and Δpdr1 strains. These findings suggest that azole efflux pump inhibitors increase azole susceptibility but concurrently induce decreased susceptibility to other classes of antifungals independent of azole transporter functions.

  8. Pharmacological considerations for azole antifungal drug management in cystic fibrosis lung transplant patients.

    PubMed

    Billaud, Eliane M; Guillemain, Romain; Berge, Maud; Amrein, Catherine; Lefeuvre, Sandrine; Louët, Agnès Lillo-Le; Boussaud, Véronique; Chevalier, Patrick

    2010-11-01

    This paper aims to present our experience in the pharmacological approach of the management of azole antifungal drugs in cystic fibrosis lung transplant patients. Cystic fibrosis (CF) lung transplantation is associated with multi-factorial care management, because of immunosuppressive requirements, risk of infections, frequency of gastro-oesophageal reflux disease, hepatic alterations and CF pharmacokinetics (PK) specificities that result in important PK variability. CF is associated with frequent colonization of the airways by filamentous fungi, especially by Aspergillus species. Today the antifungal therapeutic arsenal offers several possibilities for long-term oral therapy including azole drugs (itraconazole, voriconazole and posaconazole). Therefore, nephrotoxic amphotericin B should be avoided. The liver is important in the pharmacological profile of azole drugs, due to metabolic elimination, hepatotoxicity and PK drug-drug interaction (DDI) involving CYP3A4 metabolic inhibition. Targets for such DDI are numerous, but immunosuppressive drugs are of major concern, justifying combined therapeutic drug monitoring (TDM) of both azoles (inhibitors) and immunosuppressants (targets) on an individualized patient basis to adjust the coprescription quantitatively. The risk of long under-dosed periods, frequently addressed in this population, could justify, on a PK basis, the need for combination with an exclusive parenteral antifungal while waiting for azole relevant drug level. High PK variability, the risk of low exposure, therapeutic issues and DDI management in this complex underlying disease justify close monitoring with systematic combined TDM of azole and immunosuppressants, in case of coprescription.

  9. Synergistic antifungal activity of statin-azole associations as witnessed by Saccharomyces cerevisiae- and Candida utilis-bioassays and ergosterol quantification.

    PubMed

    Cabral, María Eugenia; Figueroa, Lucía I C; Fariña, Julia I

    2013-01-03

    Frequent opportunist fungal infections and the resistance to available antifungal drugs promoted the development of new alternatives for treatment, like antifungal drug combinations. This work aimed to detect the antifungal synergism between statins and azoles by means of an agar-well diffusion bioassay with Saccharomyces cerevisiae ATCC 32051 and Candida utilis Pr(1-2) as test strains. Synergistic antifungal effects were tested by simultaneously adding a sub inhibitory concentration (SIC) of statin (atorvastatin, lovastatin, pravastatin, rosuvastatin or simvastatin) plus a minimal inhibitory concentration (MIC) of azole (clotrimazole, fluconazole, itraconazole, ketoconazole or miconazole) to yeast-embedded YNB agar plates, and a positive result corresponded to a yeast growth inhibition halo higher than that produced by the MIC of the azole alone. Yeast cell ergosterol quantification by RP-HPLC was used to confirm statin-azole synergism, and ergosterol rescue bioassays were performed for evaluating statin-induced ergosterol synthesis blockage. Growth inhibition was significantly increased when clotrimazole, fluconazole, itraconazole, ketoconazole and miconazole were combined with atorvastatin, lovastatin, rosuvastatin and simvastatin. Highest growth inhibition increments were observed on S. cerevisiae (77.5%) and C. utilis (43.2%) with a SIC of simvastatin plus a MIC of miconazole, i.e. 4 + 2.4 μg/ml or 20 + 4.8 μg/ml, respectively. Pravastatin showed almost no significant effects (0-7.6% inhibition increase). Highest interaction ratios between antifungal agents corresponded to simvastatin-miconazole combinations and were indicative of synergism. Synergism was also confirmed by the increased reduction in cellular ergosterol levels (S. cerevisiae, 40% and C. utilis, 22%). Statin-induced ergosterol synthesis blockage was corroborated by means of ergosterol rescue bioassays, pravastatin being the most easily abolished inhibition whilst rosuvastatin being the most

  10. In Vitro Activities of 35 Double Combinations of Antifungal Agents against Scedosporium apiospermum and Scedosporium prolificans▿

    PubMed Central

    Cuenca-Estrella, Manuel; Alastruey-Izquierdo, Ana; Alcazar-Fuoli, Laura; Bernal-Martinez, Leticia; Gomez-Lopez, Alicia; Buitrago, Maria J.; Mellado, Emilia; Rodriguez-Tudela, Juan L.

    2008-01-01

    Activities of 35 combinations of antifungal agents against Scedosporium spp. were analyzed by a checkerboard microdilution design and the summation of fractional concentration index. An average indifferent effect was detected apart from combinations of azole agents and echinocandins against Scedosporium apiospermum. Antagonism was absent for all antifungal combinations against both species. PMID:18195067

  11. Development of cross-resistance by Aspergillus fumigatus to clinical azoles following exposure to prochloraz, an agricultural azole

    PubMed Central

    2014-01-01

    Background The purpose of this study was to unveil whether azole antifungals used in agriculture, similar to the clinical azoles used in humans, can evoke resistance among relevant human pathogens like Aspergillus fumigatus, an ubiquitous agent in nature. Additionally, cross-resistance with clinical azoles was investigated. Antifungal susceptibility testing of environmental and clinical isolates of A. fumigatus was performed according to the CLSI M38-A2 protocol. In vitro induction assays were conducted involving daily incubation of susceptible A. fumigatus isolates, at 35°C and 180 rpm, in fresh GYEP broth medium supplemented with Prochloraz (PCZ), a potent agricultural antifungal, for a period of 30 days. Minimal inhibitory concentrations (MIC) of PCZ and clinical azoles were monitored every ten days. In order to assess the stability of the developed MIC, the strains were afterwards sub-cultured for an additional 30 days in the absence of antifungal. Along the in vitro induction process, microscopic and macroscopic cultural observations were registered. Results MIC of PCZ increased 256 times after the initial exposure; cross-resistance to all tested clinical azoles was observed. The new MIC value of agricultural and of clinical azoles maintained stable in the absence of the selective PCZ pressure. PCZ exposure was also associated to morphological colony changes: macroscopically the colonies became mostly white, losing the typical pigmentation; microscopic examination revealed the absence of conidiation. Conclusions PCZ exposure induced Aspergillus fumigatus morphological changes and an evident increase of MIC value to PCZ as well as the development of cross-resistance with posaconazole, itraconazole and voriconazole. PMID:24920078

  12. Novel fluconazole derivatives with promising antifungal activity.

    PubMed

    Thamban Chandrika, Nishad; Shrestha, Sanjib K; Ngo, Huy X; Howard, Kaitlind C; Garneau-Tsodikova, Sylvie

    2018-02-01

    The fungistatic nature and toxicity concern associated with the azole drugs currently on the market have resulted in an increased demand for new azole antifungal agents for which these problematic characteristics do not exist. The extensive use of azoles has resulted in fungal strains capable of resisting the action of these drugs. Herein, we report the synthesis and antifungal activity of novel fluconazole (FLC) analogues with alkyl-, aryl-, cycloalkyl-, and dialkyl-amino substituents. We evaluated their antifungal activity by MIC determination and time-kill assay as well as their safety profile by hemolytic activity against murine erythrocytes as well as cytotoxicity against mammalian cells. The best compounds from our study exhibited broad-spectrum activity against most of the fungal strains tested, with excellent MIC values against a number of clinical isolates. The most promising compounds were found to be less hemolytic than the least hemolytic FDA-approved azole antifungal agent voriconazole (VOR). Finally, we demonstrated that the synthetic alkyl-amino FLC analogues displayed chain-dependent fungal membrane disruption as well as inhibition of ergosterol biosynthesis as possible mechanisms of action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Structural Basis of Human CYP51 Inhibition by Antifungal Azoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strushkevich, Natallia; Usanov, Sergey A.; Park, Hee-Won

    2010-09-22

    The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B{prime} helix andmore » F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51.« less

  14. In silico and in vitro screening to identify structurally diverse non-azole CYP51 inhibitors as potent antifungal agent.

    PubMed

    Singh, Aarti; Paliwal, Sarvesh Kumar; Sharma, Mukta; Mittal, Anupama; Sharma, Swapnil; Sharma, Jai Prakash

    2016-01-01

    The problem of resistance to azole class of antifungals is a serious cause of concern to the medical fraternity and thus there is an urgent need to identify non-azole scaffolds with high affinity for lanosterol 14α-demethylase (CYP51). In view of this we have attempted to identify novel non-azole CYP51 inhibitors through the application of pharmacophore based virtual screening and in vitro evaluation. A rigorously validated pharmacophore model comprising of 2 hydrogen bond acceptor and 2 hydrophobic features has been developed and used to mine NCI database. Out of 265 retrieved hits, NSC 1215 and 1520 have been chosen on the basis of Lipinski's rule of five, fit and estimated values. Both the hits were docked into the active site of CYP51. In view of high fit value and CDocker score, NSC 1215 and 1520 have been subjected to in vitro microbiological assay. The result reveals that NSC 1215 and 1520 are active against Candida albicans, Candida parapsilosis, Candida tropicalis, and Aspergillus niger. In addition to this the absorption characteristics of both the hits have also been determined using the rat sac technique and permeation in order of NSC 1520>NSC 1215 has been observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Consumption of systemic antifungal agents among acute care hospitals in Catalonia (Spain), 2008-2013.

    PubMed

    Fondevilla, Esther; Grau, Santiago; Mojal, Sergi; Palomar, Mercedes; Matas, Lurdes; Gudiol, Francesc

    2016-01-01

    Objective To know the patterns and consumption trends (2008-2013) of antifungal agents for systemic use in 52 acute care hospitals affiliated to VINCat Program in Catalonia (Spain). Methods Consumption was calculated in defined daily doses (DDD)/100 patient-days and analyzed according to hospital size and complexity and clinical departments. Results Antifungal consumption was higher in intensive care units (ICU) (14.79) than in medical (3.08) and surgical departments (1.19). Fluconazole was the most consumed agent in all type of hospitals and departments. Overall antifungal consumption increased by 20.5%during the study period (p = 0.066); a significant upward trend was observed in the consumption of both azoles and echinocandins. In ICUs, antifungal consumption increased by 12.4% (p = 0.019). Conclusions The study showed a sustained increase in the overall consumption of systemic antifungals in a large number of acute care hospitals of different characteristics in Catalonia. In ICUs there was a trend towards the substitution of older agents by the new ones.

  16. The yeast Saccharomyces cerevisiae Pdr16p restricts changes in ergosterol biosynthesis caused by the presence of azole antifungals.

    PubMed

    Šimová, Zuzana; Poloncová, Katarína; Tahotná, Dana; Holič, Roman; Hapala, Ivan; Smith, Adam R; White, Theodore C; Griač, Peter

    2013-06-01

    Pdr16p belongs to the family of phosphatidylinositol transfer proteins in yeast. The absence of Pdr16p results in enhanced susceptibility to azole antifungals in Saccharomyces cerevisiae. In the major fungal human pathogen Candida albicans, CaPDR16 is a contributing factor to clinical azole resistance. The current study was aimed at better understanding the function of Pdr16p, especially in relation to azole resistance in S. cerevisiae. We show that deletion of the PDR16 gene increased susceptibility of S. cerevisiae to azole antifungals that are used in clinical medicine and agriculture. Significant differences in the inhibition of the sterol biosynthetic pathway were observed between the pdr16Δ strain and its corresponding wild-type (wt) strain when yeast cells were challenged by sub-inhibitory concentrations of the azoles miconazole or fluconazole. The increased susceptibility to azoles, and enhanced changes in sterol biosynthesis upon exposure to azoles of the pdr16Δ strain compared to wt strain, are not the results of increased intracellular concentration of azoles in the pdr16Δ cells. We also show that overexpression of PDR17 complemented the azole susceptible phenotype of the pdr16Δ strain and corrected the enhanced sterol alterations in pdr16Δ cells in the presence of azoles. Pdr17p was found previously to be an essential part of a complex required for intermembrane transport of phosphatidylserine at regions of membrane apposition. Based on these observations, we propose a hypothesis that Pdr16p assists in shuttling sterols or their intermediates between membranes or, alternatively, between sterol biosynthetic enzymes or complexes. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Antifungal resistance: current trends and future strategies to combat

    PubMed Central

    Wiederhold, Nathan P

    2017-01-01

    Antifungal resistance represents a major clinical challenge to clinicians responsible for treating invasive fungal infections due to the limited arsenal of systemically available antifungal agents. In addition current drugs may be limited by drug–drug interactions and serious adverse effects/toxicities that prevent their prolonged use or dosage escalation. Fluconazole resistance is of particular concern in non-Candida albicans species due to the increased incidence of infections caused by these species in different geographic locations worldwide and the elevated prevalence of resistance to this commonly used azole in many institutions. C. glabrata resistance to the echinocandins has also been documented to be rising in several US institutions, and a higher percentage of these isolates may also be azole resistant. Azole resistance in Aspergillus fumigatus due to clinical and environmental exposure to this class of agents has also been found worldwide, and these isolates can cause invasive infections with high mortality rates. In addition, several species of Aspergillus, and other molds, including Scedosporium and Fusarium species, have reduced susceptibility or pan-resistance to clinically available antifungals. Various investigational antifungals are currently in preclinical or clinical development, including several of them that have the potential to overcome resistance observed against the azoles and the echinocandins. These include agents that also target ergosterol and b-glucan biosynthesis, as well as compounds with novel mechanisms of action that may also overcome the limitations of currently available antifungal classes, including both resistance and adverse effects/toxicity. PMID:28919789

  18. Molecular Tools for the Detection and Deduction of Azole Antifungal Drug Resistance Phenotypes in Aspergillus Species.

    PubMed

    Dudakova, Anna; Spiess, Birgit; Tangwattanachuleeporn, Marut; Sasse, Christoph; Buchheidt, Dieter; Weig, Michael; Groß, Uwe; Bader, Oliver

    2017-10-01

    The incidence of azole resistance in Aspergillus species has increased over the past years, most importantly for Aspergillus fumigatus . This is partially attributable to the global spread of only a few resistance alleles through the environment. Secondary resistance is a significant clinical concern, as invasive aspergillosis with drug-susceptible strains is already difficult to treat, and exclusion of azole-based antifungals from prophylaxis or first-line treatment of invasive aspergillosis in high-risk patients would dramatically limit drug choices, thus increasing mortality rates for immunocompromised patients. Management options for invasive aspergillosis caused by azole-resistant A. fumigatus strains were recently reevaluated by an international expert panel, which concluded that drug resistance testing of cultured isolates is highly indicated when antifungal therapy is intended. In geographical regions with a high environmental prevalence of azole-resistant strains, initial therapy should be guided by such analyses. More environmental and clinical screening studies are therefore needed to generate the local epidemiologic data if such measures are to be implemented on a sound basis. Here we propose a first workflow for evaluating isolates from screening studies, and we compile the MIC values correlating with individual amino acid substitutions in the products of cyp51 genes for interpretation of DNA sequencing data, especially in the absence of cultured isolates. Copyright © 2017 American Society for Microbiology.

  19. [Prevalence of vaginal candidiasis in pregnant women. Identification of yeasts and susceptibility to antifungal agents].

    PubMed

    García Heredia, M; García, S D; Copolillo, E F; Cora Eliseth, M; Barata, A D; Vay, C A; de Torres, R A; Tiraboschi, N; Famiglietti, A M R

    2006-01-01

    Pregnant women are more susceptible to both vaginal colonization and infection by yeast. Our objectives were to determine the prevalence in pregnant women of yeasts isolated from vaginal exudates and their susceptibility to current antifungal drugs. A total of 493 patients was studied between December 1998 and February 2000. The prevalence of Candida spp. was 28% (Candida albicans 90.4%; Candida glabrata 6.3%; Candida parapsilosis 1.1%, Candida kefyr 1.1 %; unidentified species 1.1 %). The diffusion test in Shadomy agar was employed to determine the susceptibility to fluconazole, ketoconazole, itraconazole and nistatine. All C. albicans, C. kefyr and C. parapsilosis isolates were susceptible in vitro to the antifungal agents tested, while 1 in 6 C. glabrata isolates showed resistance to azole drugs; all strains were susceptible to nistatine. In pregnant women, C. albicans was the yeast most frequently isolated from vaginal exudates; it continues to be highly susceptible to antifungal drugs. Azole resistance was detected only among C. glabrata isolates. Identification to the species level is recommended, specially in cases of treatment failure and recurrent or chronic infection.

  20. In vitro investigation of antifungal activity of allicin alone and in combination with azoles against Candida species.

    PubMed

    Khodavandi, Alireza; Alizadeh, Fahimeh; Aala, Farzad; Sekawi, Zamberi; Chong, Pei Pei

    2010-04-01

    Candidiasis is a term describing infections by yeasts from the genus Candida, and the type of infection encompassed by candidiasis ranges from superficial to systemic. Treatment of such infections often requires antifungals such as the azoles, but increased use of these drugs has led to selection of yeasts with increased resistance to these drugs. In this study, we used allicin, an allyl sulfur derivative of garlic, to demonstrate both its intrinsic antifungal activity and its synergy with the azoles, in the treatment of these yeasts in vitro. In this study, the MIC(50) and MIC(90) of allicin alone against six Candida spp. ranged from 0.05 to 25 microg/ml. However, when allicin was used in combination with fluconazole or ketoconazole, the MICs were decreased in some isolates. Our results demonstrated the existing synergistic effect between allicin and azoles in some of the Candida spp. such as C. albicans, C. glabrata and C. tropicalis, but synergy was not demonstrated in the majority of Candida spp. tested. Nonetheless, In vivo testing needs to be performed to support these findings.

  1. Effective concentration-based serum pharmacodynamics for antifungal azoles in a murine model of disseminated Candida albicans infection.

    PubMed

    Maki, Katsuyuki; Kaneko, Shuji

    2013-12-01

    An assessment of the effective in vivo concentrations of antifungal drugs is important in determining their pharmacodynamics, and therefore, their optimal dosage regimen. Here we establish the effective in vivo concentration-based pharmacodynamics of three azole antifungal drugs (fluconazole, itraconazole, and ketoconazole) in a murine model of disseminated Candida albicans infection. A key feature of this study was the use of a measure of mycelial (m) growth rather than of yeast growth, and pooled mouse sera rather than synthetic media as a growth medium, for determining the minimum inhibitory concentrations (MICs) of azoles for C. albicans (denoted serum mMICs). The serum mMIC assay was then used to measure antifungal concentrations and effects as serum antifungal titers in the serum of treated mice. Both serum mMIC and sub-mMIC values reflected the effective in vivo serum concentrations. Supra-mMIC and mMIC effects exhibited equivalent efficacies and were concentration-independent, while the sub-mMIC effect was concentration-dependent. Following administration of the minimum drug dosage that inhibited an increase in mouse kidney fungal burden, the duration periods of these effects were similar for all drugs tested. The average duration of either the mMIC effect including the supra-mMIC effect, the sub-mMIC effect, or the post-antifungal effect (PAFE) were 6.9, 6.5 and 10.6 h, respectively. Our study suggests that the area under the curve for serum drug concentration versus time, between the serum mMIC and the sub-mMIC, and exposure time above the serum sub-mMIC after the mMIC effect, are major pharmacodynamic parameters. These findings have important implications for effective concentration-based pharmacodynamics of fungal infections treated with azoles.

  2. Molecular design of two sterol 14α-demethylase homology models and their interactions with the azole antifungals ketoconazole and bifonazole

    NASA Astrophysics Data System (ADS)

    Rupp, Bernd; Raub, Stephan; Marian, Christel; Höltje, Hans-Dieter

    2005-03-01

    Sterol 14α-demethylase (CYP51) is one of the known major targets for azole antifungals. Therapeutic side effects of these antifungals are based on interactions of the azoles with the human analogue enzyme. This study describes for the first time a comparison of a human CYP51 (HU-CYP51) homology model with a homology model of the fungal CYP51 of Candida albicans (CA-CYP51). Both models are constructed by using the crystal structure of Mycobacterium tuberculosis MT-CYP51 (PDB code: 1EA1). The binding mode of the azole ketoconazole is investigated in molecular dynamics simulations with the GROMACS force field. The usage of special parameters for the iron azole complex binding is necessary to obtain the correct complex geometry in the active site of the enzyme models. Based on the dynamics simulations it is possible to explain the enantioselectivity of the human enzyme and also to predict the binding mode of the isomers of ketoconazole in the active site of the fungal model.

  3. In vitro antifungal susceptibility to six antifungal agents of 229 Candida isolates from patients with diabetes mellitus.

    PubMed

    Manfredi, M; McCullough, M J; Polonelli, L; Conti, S; Al-Karaawi, Z M; Vescovi, P; Porter, S R

    2006-06-01

    The most common antifungal drugs in current clinical use for the treatment of oral candidosis are polyenes and azoles, mainly used topically. Poor glycaemic control in association with other local factors, such as the presence of oral dental prostheses, salivary pH, salivary flow rate and tobacco habits, may lead to the development of oral candidosis. Topical antifungal agents are frequently used to prevent the development of candidal infections in patients with poor metabolic control, particularly in the elderly wearing dentures. The aim of this study was to assess the antifungal susceptibility of Candida isolates to six antifungal agents using a commercially available kit, Fungitest. The isolated were collected from patients affected by diabetes mellitus from two different geographic localities (London, UK, and Parma, Italy) and from a group of healthy non-diabetic subjects. No differences in antifungal susceptibility to the six agents tested were observed between Candida isolates from diabetic and non-diabetic subjects. However, differences were observed between the two geographically different diabetes mellitus populations. Oral yeast isolates from diabetes mellitus patients in the UK more often displayed resistance or intermediate resistance to fluconazole (P=0.02), miconazole (P<0.0001), and ketoconazole (P=0.01) than did isolates from diabetes mellitus patients in Italy. In addition, more C. albicans isolates were found in diabetic and non-diabetic subjects that were susceptible to fluconazole (P=0.0008 and P=0.01, respectively) than non-albicans isolates. The difference in the antifungal resistance of isolates from the two populations of diabetes mellitus patients may be related to differences in the therapeutic management of candidal infections between the two centres.

  4. Susceptibility Testing of Common and Uncommon Aspergillus Species against Posaconazole and Other Mold-Active Antifungal Azoles Using the Sensititre Method

    PubMed Central

    Mello, Enrica; Posteraro, Brunella; Vella, Antonietta; De Carolis, Elena; Torelli, Riccardo; D'Inzeo, Tiziana; Verweij, Paul E.

    2017-01-01

    ABSTRACT We tested 59 common and 27 uncommon Aspergillus species isolates for susceptibility to the mold-active azole antifungal agents itraconazole, voriconazole, and posaconazole using the Sensititre method. The overall essential agreement with the CLSI reference method was 96.5% for itraconazole and posaconazole and was 100% for voriconazole. By the Sensititre method as well as the CLSI reference method, all of 10 A. fumigatus isolates with a cyp51 mutant genotype were classified as being non-wild-type isolates (MIC > epidemiological cutoff value [ECV]) with respect to triazole susceptibility. PMID:28416538

  5. Synergistic activity of magnolol with azoles and its possible antifungal mechanism against Candida albicans.

    PubMed

    Sun, L-M; Liao, K; Liang, S; Yu, P-H; Wang, D-Y

    2015-04-01

    The goal of this study was to investigate the synergic effects between magnolol and azoles, and the potential antifungal mechanisms. Microdilution checkerboard, time-kill and agar diffusion assay were employed to evaluate the synergic effects between magnolol and fluconazole (FLC). Magnolol significantly decreased the efflux of rhodamine 123 (Rh123), leading to greater intracellular accumulation of Rh123 in Candida albicans cells. Compared to the Candida drug resistance (cdr) 2 or multidrug resistance (mdr) 1 deletion mutant, the growth of cdr1 strain was most sensitive to magnolol exposure. In the presence of magnolol, MDR1 overexpressing cells were sensitive to FLC, whereas CDR1 and CDR2 overexpressing cells displayed tolerance to FLC. Magnolol treatment correlated with up-regulation of transporter and ergosterol biosynthesis pathway genes, analyzed by real-time reverse transcription-polymerase chain reaction. The ergosterol content of C. albicansSC5314 was significantly decreased after magnolol exposure. Magnolol synergizes with azoles for targeting of C. albicans by inducing a higher intracellular content of antifungals, by tapping into the competitive effect of ABC transporter Cdr1p substrates, and enhancing the effect by targeting of the ergosterol biosynthesis pathway. Our results provide the first evidence that magnolol may function as a Cdr1p substrate and as an inhibitor of ergosterol biosynthesis. This function can thus be exploited in combination with azoles to reverse multidrug resistance of C. albicans strains. © 2014 The Society for Applied Microbiology.

  6. Clinical implications of globally emerging azole resistance in Aspergillus fumigatus

    PubMed Central

    Verweij, Paul E.

    2016-01-01

    Aspergillus fungi are the cause of an array of diseases affecting humans, animals and plants. The triazole antifungal agents itraconazole, voriconazole, isavuconazole and posaconazole are treatment options against diseases caused by Aspergillus. However, resistance to azoles has recently emerged as a new therapeutic challenge in six continents. Although de novo azole resistance occurs occasionally in patients during azole therapy, the main burden is the aquisition of resistance through the environment. In this setting, the evolution of resistance is attributed to the widespread use of azole-based fungicides. Although ubiquitously distributed, A. fumigatus is not a phytopathogen. However, agricultural fungicides deployed against plant pathogenic moulds such as Fusarium, Mycospaerella and A. flavus also show activity against A. fumigatus in the environment and exposure of non-target fungi is inevitable. Further, similarity in molecule structure between azole fungicides and antifungal drugs results in cross-resistance of A. fumigatus to medical azoles. Clinical studies have shown that two-thirds of patients with azole-resistant infections had no previous history of azole therapy and high mortality rates between 50% and 100% are reported in azole-resistant invasive aspergillosis. The resistance phenotype is associated with key mutations in the cyp51A gene, including TR34/L98H, TR53 and TR46/Y121F/T289A resistance mechanisms. Early detection of resistance is of paramount importance and if demonstrated, either with susceptibility testing or through molecular analysis, azole monotherapy should be avoided. Liposomal amphotericin B or a combination of voriconazole and an echinocandin are recomended for azole-resistant aspergillosis. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’. PMID:28080986

  7. Susceptibility Testing of Common and Uncommon Aspergillus Species against Posaconazole and Other Mold-Active Antifungal Azoles Using the Sensititre Method.

    PubMed

    Mello, Enrica; Posteraro, Brunella; Vella, Antonietta; De Carolis, Elena; Torelli, Riccardo; D'Inzeo, Tiziana; Verweij, Paul E; Sanguinetti, Maurizio

    2017-06-01

    We tested 59 common and 27 uncommon Aspergillus species isolates for susceptibility to the mold-active azole antifungal agents itraconazole, voriconazole, and posaconazole using the Sensititre method. The overall essential agreement with the CLSI reference method was 96.5% for itraconazole and posaconazole and was 100% for voriconazole. By the Sensititre method as well as the CLSI reference method, all of 10 A. fumigatus isolates with a cyp51 mutant genotype were classified as being non-wild-type isolates (MIC > epidemiological cutoff value [ECV]) with respect to triazole susceptibility. Copyright © 2017 American Society for Microbiology.

  8. Synergistic effects of tacrolimus and azole antifungal compounds in fluconazole-susceptible and fluconazole-resistant Candida glabrata isolates.

    PubMed

    Denardi, Laura Bedin; Mario, Débora Alves Nunes; Loreto, Érico Silva; Santurio, Janio Morais; Alves, Sydney Hartz

    2015-03-01

    In vitro interaction between tacrolimus (FK506) and four azoles (fluconazole, ketoconazole, itraconazole and voriconazole) against thirty clinical isolates of both fluconazole susceptible and -resistant Candida glabrata were evaluated by the checkerboard microdilution method. Synergistic, indifferent or antagonism interactions were found for combinations of the antifungal agents and FK506. A larger synergistic effect was observed for the combinations of FK506 with itraconazole and voriconazole (43%), followed by that of the combination with ketoconazole (37%), against fluconazole-susceptible isolates. For fluconazole-resistant C. glabrata , a higher synergistic effect was obtained from FK506 combined with ketoconazole (77%), itraconazole (73%), voriconazole (63%) and fluconazole (60%). The synergisms that we observed in vitro , notably against fluconazole-resistant C. glabrata isolates, are promising and warrant further analysis of their applications in experimental in vivo studies.

  9. Screening of antifungal azole drugs and agrochemicals with an adapted alamarBlue-based assay demonstrates antibacterial activity of croconazole against Mycobacterium ulcerans.

    PubMed

    Scherr, Nicole; Röltgen, Katharina; Witschel, Matthias; Pluschke, Gerd

    2012-12-01

    An alamarBlue-based growth inhibition assay has been adapted for the thermosensitive and slow-growing pathogen Mycobacterium ulcerans. The standardized test procedure enables medium-throughput screening of preselected compound libraries. Testing of a set of 48 azoles with known antifungal activity led to the identification of an imidazole antifungal displaying an inhibitory dose (ID) of 9 μM for M. ulcerans.

  10. Screening of Antifungal Azole Drugs and Agrochemicals with an Adapted alamarBlue-Based Assay Demonstrates Antibacterial Activity of Croconazole against Mycobacterium ulcerans

    PubMed Central

    Röltgen, Katharina; Witschel, Matthias; Pluschke, Gerd

    2012-01-01

    An alamarBlue-based growth inhibition assay has been adapted for the thermosensitive and slow-growing pathogen Mycobacterium ulcerans. The standardized test procedure enables medium-throughput screening of preselected compound libraries. Testing of a set of 48 azoles with known antifungal activity led to the identification of an imidazole antifungal displaying an inhibitory dose (ID) of 9 μM for M. ulcerans. PMID:23006761

  11. [Susceptibility to antifungal agents of Candida sp. and biofilm formation].

    PubMed

    Ciok-Pater, Emilia; Białucha, Agata; Gospodarek, Eugenia; Ostafin, Agnieszka

    2011-01-01

    In recent years the increase in frequency of fungal infections with Candida sp. was noticed. These infections are connected with ability of Candida sp. to form biofilm on surfaces of biomaterials used in medicine. Furthermore fungal infections make serious therapeutic problems because ofbiofilm resistance to antifungal agents actually. The aim of the study was to evaluate the susceptibility to antifungal agents of Candida sp. and their ability to form biofilm on different biomaterials. 50 strains of Candida sp. isolated from patients of University Hospital No. 1 of dr A. Jurasz in Bydgoszcz were examined. API Candida (bioMérieux) tests were used to identify Candida sp. strains. The susceptibility of the yeast strains to antifungal agents was evaluated by ATB FUNGUS 2 INT (bioMérieux) tests. The susceptibility of examined strains to voriconazole, posaconazole, caspofungin and anidulafungin was assessed by means ofEtests (AB BIODISK) method employing drug concentrations from 0,002 to 32 microg/ml. All analysed strains were susceptible to amphotericin B and caspofungin. Biofilm formation on different biomaterials (silicon, latex, polychloride vinyl, polypropylene, nylon) was measured after 72 hour incubation at 37 degrees C. All examined yeasts formed biofilm on all analysed biomaterials. The highest number of strains formed biofilm on surface of polychloride vinyl: 23 (92,0%) by C. albicans strains and 24 (96,0%) Candida non-albicans strains. The lowest number of the strains formed biofilm on the surface of nylon: 12 (48,0%) of C. albicans strains and 9 (36,0%) of Candida non-albicans strains. The studied strains resistant to azoles and anidulafungin display stronger ability to form biofilm on surfaces of all analysed biomaterials.

  12. Determining Antifungal Target Sites in the Sterol Pathway of the Yeast Candida and Saccharomyces

    DTIC Science & Technology

    1997-10-01

    interaction of the azole antifungal agent SCH39304 with the cytochrome P-450 monooxygenase system isolated from Cryptococcus neoformans. Antimicrob. Agents...isolates of Cryptococcus neoformans. Antimicrob. Agents Chemother. 41: 748-751. 16. Wheat, J., Marichal, P., Vanden Bossche, H., Le Monte, A., and

  13. Topical antifungal agents: an update.

    PubMed

    Diehl, K B

    1996-10-01

    So many topical antifungal agents have been introduced that it has become very difficult to select the proper agent for a given infection. Nonspecific agents have been available for many years, and they are still effective in many situations. These agents include Whitfield's ointment, Castellani paint, gentian violet, potassium permanganate, undecylenic acid and selenium sulfide. Specific antifungal agents include, among others, the polyenes (nystatin, amphotericin B), the imidazoles (metronidazole, clotrimazole) and the allylamines (terbinafine, naftifine). Although the choice of an antifungal agent should be based on an accurate diagnosis, many clinicians believe that topical miconazole is a relatively effective agent for the treatment of most mycotic infections. Terbinafine and other newer drugs have primary fungicidal effects. Compared with older antifungal agents, these newer drugs can be used in lower concentrations and shorter therapeutic courses. Studies are needed to evaluate the clinical efficacies and cost advantages of both newer and traditional agents.

  14. A Cationic Polymer That Shows High Antifungal Activity against Diverse Human Pathogens.

    PubMed

    Rank, Leslie A; Walsh, Naomi M; Liu, Runhui; Lim, Fang Yun; Bok, Jin Woo; Huang, Mingwei; Keller, Nancy P; Gellman, Samuel H; Hull, Christina M

    2017-10-01

    Invasive fungal diseases are generally difficult to treat and often fatal. The therapeutic agents available to treat fungi are limited, and there is a critical need for new agents to combat these deadly infections. Antifungal compound development has been hindered by the challenge of creating agents that are highly active against fungal pathogens but not toxic to the host. Host defense peptides (HDPs) are produced by eukaryotes as a component of the innate immune response to pathogens and have served as inspiration for the development of many new antibacterial compounds. HDP mimics, however, have largely failed to exhibit potent and selective antifungal activity. Here, we present an HDP-like nylon-3 copolymer that is effective against diverse fungi while displaying only mild to moderate toxicity toward mammalian cells. This polymer is active on its own and in synergy with existing antifungal drugs against multiple species of Candida and Cryptococcus , reaching levels of efficacy comparable to those of the clinical agents amphotericin B and fluconazole in some cases. In addition, the polymer acts synergistically with azoles against different species of Aspergillus , including some azole-resistant strains. These findings indicate that nylon-3 polymers are a promising lead for development of new antifungal therapeutic strategies. Copyright © 2017 American Society for Microbiology.

  15. [In vitro antifungal activity of azoles and amphotericin B against Malassezia furfur by the CLSI M27-A3 microdilution and Etest® methods].

    PubMed

    Galvis-Marín, Juan Camilo; Rodríguez-Bocanegra, María Ximena; Pulido-Villamarín, Adriana Del Pilar; Castañeda-Salazar, Rubiela; Celis-Ramírez, Adriana Marcela; Linares-Linares, Melva Yomary

    Malassezia furfur is a human skin commensal yeast that can cause skin and opportunistic systemic infections. Given its lipid dependant status, the reference methods established by the Clinical and Laboratory Standards Institute (CLSI) to evaluate antifungal susceptibility in yeasts are not applicable. To evaluate the in vitro susceptibility of M. furfur isolates from infections in humans to antifungals of clinical use. The susceptibility profile to amphotericin B, itraconazole, ketoconazole and voriconazole of 20 isolates of M. furfur, using the broth microdilution method (CLSI M27-A3) and Etest ® , was evaluated. Itraconazole and voriconazole had the highest antifungal activity against the isolates tested. The essential agreement between the two methods for azoles antifungal activity was in the region of 60-85% and the categorical agreement was around 70-80%, while the essential and categorical agreement for amphotericin B was 10%. The azoles were the compounds that showed the highest antifungal activity against M. furfur, as determined by the two techniques used; however more studies need to be performed to support that Etest ® is a reliable method before its implementation as a routine clinical laboratory test. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Tissue Penetration of Antifungal Agents

    PubMed Central

    Felton, Timothy; Troke, Peter F.

    2014-01-01

    SUMMARY Understanding the tissue penetration of systemically administered antifungal agents is critical for a proper appreciation of their antifungal efficacy in animals and humans. Both the time course of an antifungal drug and its absolute concentrations within tissues may differ significantly from those observed in the bloodstream. In addition, tissue concentrations must also be interpreted within the context of the pathogenesis of the various invasive fungal infections, which differ significantly. There are major technical obstacles to the estimation of concentrations of antifungal agents in various tissue subcompartments, yet these agents, even those within the same class, may exhibit markedly different tissue distributions. This review explores these issues and provides a summary of tissue concentrations of 11 currently licensed systemic antifungal agents. It also explores the therapeutic implications of their distribution at various sites of infection. PMID:24396137

  17. Antifungal susceptibilities of Candida, Cryptococcus neoformans and Aspergillus fumigatus from the Asia and Western Pacific region: data from the SENTRY antifungal surveillance program (2010-2012).

    PubMed

    Pfaller, Michael A; Messer, Shawn A; Jones, Ronald N; Castanheira, Mariana

    2015-09-01

    The SENTRY Antifungal Surveillance Program monitors global susceptibility rates of newer and established antifungal agents. We report the in vitro activity of seven antifungal agents against 496 contemporary clinical isolates of yeasts and molds. The isolates were obtained from 20 laboratories in the Asia-Western Pacific (APAC) region during 2010 through 2012. Anidulafungin, caspofungin, micafungin, fluconazole, itraconazole, posaconazole and voriconazole were susceptibility tested using CLSI methods and species-specific interpretive criteria. Sequencing of fks hot spots was performed for echinocandin-resistant strains. Isolates included 13 species of Candida (n=460), 5 species of non-Candida yeasts (21), 5 species of Aspergillus (11) and 4 other molds. Echinocandin resistance was uncommon among eight species of Candida and was only detected in three isolates of Candida glabrata, two from Australia harboring mutations in fks1 (F625S) and fks2 (S663P). Resistance to the azoles was much more common and was observed among all species with the exception of Candida dubliniensis. Fluconazole resistance rates observed with C. glabrata (6.8%) was comparable to that seen with Candida parapsilosis (5.7%) and Candida tropicalis (3.6%). Cross resistance among the triazoles was seen with each of these three species. The mold-active azoles and the echinocandins were all active against isolates of Aspergillus fumigatus. Azole resistance was not detected among the isolates of Cryptococcus neoformans. Antifungal resistance is uncommon among isolates of fungi causing invasive fungal infections in the APAC region. As in other regions of the world, emerging resistance to the echinocandins among invasive isolates of C. glabrata bears close monitoring.

  18. An Azole-Tolerant Endosomal Trafficking Mutant of Candida albicans Is Susceptible to Azole Treatment in a Mouse Model of Vaginal Candidiasis

    PubMed Central

    Peters, Brian M.; Luna-Tapia, Arturo; Tournu, Hélène; Rybak, Jeffrey M.; Rogers, P. David

    2017-01-01

    ABSTRACT We recently reported that a Candida albicans endosomal trafficking mutant continues to grow after treatment with the azole antifungals. Herein, we report that the vps21Δ/Δ mutant does not have a survival advantage over wild-type isolates after fluconazole treatment in a mouse model of vaginal candidiasis. Furthermore, loss of VPS21 does not synergize with established mechanisms of azole resistance, such as overexpression of efflux pumps or of Erg11p, the target enzyme of the azoles. In summary, although loss of VPS21 function enhances C. albicans survival after azole treatment in vitro, it does not seem to affect azole susceptibility in vivo. PMID:28348159

  19. An Azole-Tolerant Endosomal Trafficking Mutant of Candida albicans Is Susceptible to Azole Treatment in a Mouse Model of Vaginal Candidiasis.

    PubMed

    Peters, Brian M; Luna-Tapia, Arturo; Tournu, Hélène; Rybak, Jeffrey M; Rogers, P David; Palmer, Glen E

    2017-06-01

    We recently reported that a Candida albicans endosomal trafficking mutant continues to grow after treatment with the azole antifungals. Herein, we report that the vps21 Δ/Δ mutant does not have a survival advantage over wild-type isolates after fluconazole treatment in a mouse model of vaginal candidiasis. Furthermore, loss of VPS21 does not synergize with established mechanisms of azole resistance, such as overexpression of efflux pumps or of Erg11p, the target enzyme of the azoles. In summary, although loss of VPS21 function enhances C. albicans survival after azole treatment in vitro , it does not seem to affect azole susceptibility in vivo . Copyright © 2017 American Society for Microbiology.

  20. New azole antifungals. 2. Synthesis and antifungal activity of heterocyclecarboxamide derivatives of 3-amino-2-aryl-1-azolyl-2-butanol.

    PubMed

    Bartroli, J; Turmo, E; Algueró, M; Boncompte, E; Vericat, M L; Conte, L; Ramis, J; Merlos, M; García-Rafanell, J; Forn, J

    1998-05-21

    A series of 92 azole antifungals containing an amido alcohol unit was synthesized. The nature and substitution of the amide portion was systematically modified in search of improved antifungal activity, especially against filamentous fungi. The compounds were tested in vitro against a variety of clinically important pathogens and in vivo (po) in a murine candidosis model. Thiazole and thiophene carboxamides carrying both a substituted phenyl ring and a small alkyl group were best suited for activity against filamentous fungi. In a subset of these compounds, the amide portion was conformationally locked by means of a pyrimidone ring and it was proven that only an orthogonal orientation of the phenyl ring yields bioactive products. A tendency to display long plasma elimination half-lives was observed in both series. Two compounds, 74 and 107, representative of the open and cyclic amides, respectively, were chosen for further studies, based on their excellent activity in in vivo murine models of candidosis and aspergillosis. This work describes the SARs found within this series. The next paper displays the results obtained in a related series of compounds, the quinazolinones.

  1. The epidemiology of mycotic vulvovaginitis and the use of antifungal agents in suspected mycotic vulvovaginitis and its implications for clinical practice.

    PubMed

    Jackson, S T; Mullings, A M; Rainford, L; Miller, A

    2005-06-01

    Data in the Caribbean documenting the speciation of yeast associated with vulvovaginitis are lacking. The widespread use of antibiotics and increased availability of antimycotic agents, both prescribed and over-the-counter, predisposes both to a change in the epidemiologic patterns and the possible development of secondary resistance among previously susceptible yeast. This study was conducted to evaluate the aetiologic agents associated with mycotic vulvovaginitis and to review the appropriateness of prescribed antifungal therapy. Of 134 positive isolates, the most frequent yeast isolate was C. albicans accounting for 78%, C. tropicalis 10%, Prototheca wickerhamii (P. wickerhamii) 5%, C. glabrata 4%, Cryptococcus albidus (C. albidus) 2% and C. lusitaniae (1%) were also isolated. Of the positive cases, 75% were treated with antifungals, 17% with antibiotics and 8% were not treated. The azole group was the most frequently prescribed antifungal (71%). Of cases with negative yeast cultures, 83% were treated with antifungals. The presence of non-albicans Candida species and other opportunistic fungi is an important finding and combined with the pattern of therapy, represents a major challenge for future empirical therapeutic and prophylactic strategies in the treatment of mycotic vulvovaginitis.

  2. Antifungal Susceptibility and Phylogeny of Opportunistic Members of the Order Mucorales

    PubMed Central

    Vitale, Roxana G.; de Hoog, G. Sybren; Schwarz, Patrick; Dannaoui, Eric; Deng, Shuwen; Machouart, Marie; Voigt, Kerstin; van de Sande, Wendy W. J.; Dolatabadi, Somayeh; Meis, Jacques F.

    2012-01-01

    The in vitro susceptibilities of 66 molecularly identified strains of the Mucorales to eight antifungals (amphotericin B, terbinafine, itraconazole, posaconazole, voriconazole, caspofungin, micafungin, and 5-fluorocytosine) were tested. Molecular phylogeny was reconstructed based on the nuclear ribosomal large subunit to reveal taxon-specific susceptibility profiles. The impressive phylogenetic diversity of the Mucorales was reflected in susceptibilities differing at family, genus, and species levels. Amphotericin B was the most active drug, though somewhat less against Rhizopus and Cunninghamella species. Posaconazole was the second most effective antifungal agent but showed reduced activity in Mucor and Cunninghamella strains, while voriconazole lacked in vitro activity for most strains. Genera attributed to the Mucoraceae exhibited a wide range of MICs for posaconazole, itraconazole, and terbinafine and included resistant strains. Cunninghamella also comprised strains resistant to all azoles tested but was fully susceptible to terbinafine. In contrast, the Lichtheimiaceae completely lacked strains with reduced susceptibility for these antifungals. Syncephalastrum species exhibited susceptibility profiles similar to those of the Lichtheimiaceae. Mucor species were more resistant to azoles than Rhizopus species. Species-specific responses were obtained for terbinafine where only Rhizopus arrhizus and Mucor circinelloides were resistant. Complete or vast resistance was observed for 5-fluorocytosine, caspofungin, and micafungin. Intraspecific variability of in vitro susceptibility was found in all genera tested but was especially high in Mucor and Rhizopus for azoles and terbinafine. Accurate molecular identification of etiologic agents is compulsory to predict therapy outcome. For species of critical genera such as Mucor and Rhizopus, exhibiting high intraspecific variation, susceptibility testing before the onset of therapy is recommended. PMID:22075600

  3. Antifungal susceptibility and phylogeny of opportunistic members of the order mucorales.

    PubMed

    Vitale, Roxana G; de Hoog, G Sybren; Schwarz, Patrick; Dannaoui, Eric; Deng, Shuwen; Machouart, Marie; Voigt, Kerstin; van de Sande, Wendy W J; Dolatabadi, Somayeh; Meis, Jacques F; Walther, Grit

    2012-01-01

    The in vitro susceptibilities of 66 molecularly identified strains of the Mucorales to eight antifungals (amphotericin B, terbinafine, itraconazole, posaconazole, voriconazole, caspofungin, micafungin, and 5-fluorocytosine) were tested. Molecular phylogeny was reconstructed based on the nuclear ribosomal large subunit to reveal taxon-specific susceptibility profiles. The impressive phylogenetic diversity of the Mucorales was reflected in susceptibilities differing at family, genus, and species levels. Amphotericin B was the most active drug, though somewhat less against Rhizopus and Cunninghamella species. Posaconazole was the second most effective antifungal agent but showed reduced activity in Mucor and Cunninghamella strains, while voriconazole lacked in vitro activity for most strains. Genera attributed to the Mucoraceae exhibited a wide range of MICs for posaconazole, itraconazole, and terbinafine and included resistant strains. Cunninghamella also comprised strains resistant to all azoles tested but was fully susceptible to terbinafine. In contrast, the Lichtheimiaceae completely lacked strains with reduced susceptibility for these antifungals. Syncephalastrum species exhibited susceptibility profiles similar to those of the Lichtheimiaceae. Mucor species were more resistant to azoles than Rhizopus species. Species-specific responses were obtained for terbinafine where only Rhizopus arrhizus and Mucor circinelloides were resistant. Complete or vast resistance was observed for 5-fluorocytosine, caspofungin, and micafungin. Intraspecific variability of in vitro susceptibility was found in all genera tested but was especially high in Mucor and Rhizopus for azoles and terbinafine. Accurate molecular identification of etiologic agents is compulsory to predict therapy outcome. For species of critical genera such as Mucor and Rhizopus, exhibiting high intraspecific variation, susceptibility testing before the onset of therapy is recommended.

  4. Roles of Calcineurin and Crz1 in Antifungal Susceptibility and Virulence of Candida glabrata▿

    PubMed Central

    Miyazaki, Taiga; Yamauchi, Shunsuke; Inamine, Tatsuo; Nagayoshi, Yosuke; Saijo, Tomomi; Izumikawa, Koichi; Seki, Masafumi; Kakeya, Hiroshi; Yamamoto, Yoshihiro; Yanagihara, Katsunori; Miyazaki, Yoshitsugu; Kohno, Shigeru

    2010-01-01

    A Candida glabrata calcineurin mutant exhibited increased susceptibility to both azole antifungal and cell wall-damaging agents and was also attenuated in virulence. Although a mutant lacking the downstream transcription factor Crz1 displayed a cell wall-associated phenotype intermediate to that of the calcineurin mutant and was modestly attenuated in virulence, it did not show increased azole susceptibility. These results suggest that calcineurin regulates both Crz1-dependent and -independent pathways depending on the type of stress. PMID:20100876

  5. Inhibition of Hyphal Growth of Azole-Resistant Strains of Candida albicans by Triazole Antifungal Agents in the Presence of Lactoferrin-Related Compounds

    PubMed Central

    Wakabayashi, Hiroyuki; Abe, Shigeru; Teraguchi, Susumu; Hayasawa, Hirotoshi; Yamaguchi, Hideyo

    1998-01-01

    The effects of bovine lactoferrin (LF) or the LF-derived antimicrobial peptide lactoferricin B (LFcin B) on the growth of Candida albicans hyphae, including those of three azole-resistant strains, were investigated by a crystal violet staining method. The hyphae of two highly azole-resistant strains were more susceptible to inhibition by LF or LFcin B than the azole-susceptible strains tested. One moderately azole-resistant strain was defective in the formation of hyphae and showed a susceptibility to LF greater than that of the susceptible strains but a susceptibility to LFcin B similar to that of the susceptible strains. The highly azole-resistant strain TIMM3317 showed trailing growth in the presence of fluconazole or itraconazole, while the extent of growth was reduced by the addition of LF or LFcin B at a sub-MIC. Thus, the addition of LF or LFcin B at a sub-MIC resulted in a substantial decrease in the MICs of fluconazole and itraconazole for two highly azole-resistant strains; e.g., the MIC of fluconazole for TIMM3317 was shifted from >256 to 0.25 μg/ml by LF, but the MICs were not decreased for the susceptible strains. The combination effects observed with triazoles and LF-related compounds in the case of the two highly azole-resistant strains were confirmed to be synergistic by the fractional inhibitory concentration index. These results demonstrate that for some azole-resistant C. albicans strains, LF-related compounds combined with triazoles can inhibit the growth of hyphae, an important form of this organism in pathogenesis. PMID:9660988

  6. In vitro susceptibility of Candida albicans clinical isolates to eight antifungal agents in Ouagadougou (Burkina Faso).

    PubMed

    Zida, A; Yacouba, A; Bamba, S; Sangare, I; Sawadogo, M; Guiguemde, T; Kone, S; Traore, L K; Ouedraogo-Traore, R; Guiguemde, R T

    2017-12-01

    In recent years, the infection Candida albicans infection worldwide has risen, and the incidence of resistance to traditional antifungal therapies is also increasing. The aim of this study was to evaluate in vitro susceptibility of C. albicans clinical isolates to eight antifungal agents in Ouagadougou. A cross-sectional study was conducted from January 2013 to December 2015 at Yalgado Ouédraogo University Teaching Hospital. Two hundred seven strains have been isolated from 347 symptomatic patients received in different clinical services. Samples were cultured on Sabouraud Dextrose Agar supplemented with Cloramphenicol. Isolates were diagnosed as C. albicans using germ tube test, chlamydospore formation on Corn Meal Agar, and Api-Candida test (Biomérieux). Antifungal susceptibility testing was performed by disk diffusion method and isolates classified as susceptible, susceptible dose-dependent and resistant. Three hundred forty-seven (347) patients are included in this study. Two hundred and six (206) out of 347 collected samples (59.36%) were found positive for C. albicans. The strains were mostly isolated from vulvovaginal (49%) and oral infections (40.3%). The highest resistance rates of azoles were obtained with fluconazole (66.5%), itraconazole (52.3%) and ketoconazole (22.9%) when all clinical isolates were included. The resistance rates of fluconazole, itraconazole and ketoconazole remain highest for vulvovaginal and oral isolates. The rate of resistance to the polyene amphotericin B was 32.0% for all clinical isolates and was 56.4% for vulvovaginal strains. Resistance rate to nystatin was 6.3% for all clinical isolates. Cross-resistance analysis with data of all clinical strains revealed that the incidence of resistance to ketoconazole and itraconazole in fluconazole-resistant isolates was significantly higher than recorded for fluconazole-susceptible isolates. In vitro C. albicans antifungal susceptibility test in this study showed relatively high

  7. Targeting efflux pumps to overcome antifungal drug resistance

    PubMed Central

    Holmes, Ann R; Cardno, Tony S; Strouse, J Jacob; Ivnitski-Steele, Irena; Keniya, Mikhail V; Lackovic, Kurt; Monk, Brian C; Sklar, Larry A; Cannon, Richard D

    2016-01-01

    Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps. PMID:27463566

  8. Azole-based antimycotic agents inhibit mold on unseasoned pine

    Treesearch

    Carol. A. Clausen; Vina W. Yang

    2005-01-01

    Inhibiting the growth of mold fungi on cellulose-based building materials may be achievable through the use of azole-based antimycotics. Azoles were variably effective against mold fungi that are frequently found on wood and wood products. Unseasoned southern yellow pine specimens that were dip-treated with varying concentrations of eight azoles were evaluated for...

  9. Synergistic activity of phenazines isolated from Pseudomonas aeruginosa in combination with azoles against Candida species.

    PubMed

    Nishanth Kumar, S; Nisha, G V; Sudaresan, A; Venugopal, V V; Sree Kumar, M M; Lankalapalli, Ravi S; Dileep Kumar, B S

    2014-07-01

    Candidiasis infections are caused by yeasts from the genus Candida. The types of infection range from superficial to systemic. Treatment often requires antifungals such as the azoles; however, increased use of these drugs has led to the generation of yeasts with increased resistance to these drugs. Here, we describe the synergistic anticandidal activity of three phenazines-phenazine-1-ol, phenazine-1-carboxylic acid, and phenazine-1-carboxamide. These phenazines were purified from Pseudomonas aeruginosa in combination with three clinically used azoles-fluconazole, itraconazole, and clotrimazole. The synergistic anticandidal activities of phenazines and azoles were assessed using the checkerboard microdilution and time-kill methods. Study results show that the combined effects of phenazines and azoles were predominantly synergistic activity (fractional inhibitory concentration index <0.5). The time-kill study, which included a combination of the minimum inhibitory concentration of phenazines and azoles, showed growth of Candida species that was completely attenuated after 0-6 h of treatment. These results, which suggest that the activity of phenazines and azoles may be beneficial, have potential implications in delaying the development of resistance, as the anticandidal effect is achieved with lower concentrations of both agents (phenazines and azoles). The cytotoxicity of phenazines was also tested against a normal human cell line (foreskin normal fibroblast). No cytotoxicity was recorded at concentrations up to 200 μg/ml. The in vitro synergistic activity of phenazines and azoles against Candida species is reported here for the first time. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Chemosensitization as a Means to Augment Commercial Antifungal Agents

    PubMed Central

    Campbell, Bruce C.; Chan, Kathleen L.; Kim, Jong H.

    2012-01-01

    Antimycotic chemosensitization and its mode of action are of growing interest. Currently, use of antifungal agents in agriculture and medicine has a number of obstacles. Foremost of these is development of resistance or cross-resistance to one or more antifungal agents. The generally high expense and negative impact, or side effects, associated with antifungal agents are two further issues of concern. Collectively, these problems are exacerbated by efforts to control resistant strains, which can evolve into a treadmill of higher dosages for longer periods. This cycle in turn, inflates cost of treatment, dramatically. A further problem is stagnation in development of new and effective antifungal agents, especially for treatment of human mycoses. Efforts to overcome some of these issues have involved using combinations of available antimycotics (e.g., combination therapy for invasive mycoses). However, this approach has had inconsistent success and is often associated with a marked increase in negative side effects. Chemosensitization by natural compounds to increase effectiveness of commercial antimycotics is a somewhat new approach to dealing with the aforementioned problems. The potential for safe natural products to improve antifungal activity has been observed for over three decades. Chemosensitizing agents possess antifungal activity, but at insufficient levels to serve as antimycotics, alone. Their main function is to disrupt fungal stress response, destabilize the structural integrity of cellular and vacuolar membranes or stimulate production of reactive oxygen species, augmenting oxidative stress and apoptosis. Use of safe chemosensitizing agents has potential benefit to both agriculture and medicine. When co-applied with a commercial antifungal agent, an additive or synergistic interaction may occur, augmenting antifungal efficacy. This augmentation, in turn, lowers effective dosages, costs, negative side effects and, in some cases, countermands resistance

  11. Current treatment options for vulvovaginal candidiasis caused by azole-resistant Candida species.

    PubMed

    Sobel, J D; Sobel, R

    2018-06-22

    Clinicians are increasingly challenged by patients with refractory vulvovaginal candidiasis (VVC) caused by azole-resistant Candida species. Fluconazole resistant C.albicans is a growing and perplexing problem following years of indiscriminate drug prescription and unnecessary drug exposure and for which there are few therapeutic alternatives. Regrettably, although the azole class of drugs has expanded, new classes of antifungal drugs have not been forthcoming, limiting effective treatment options in patients with azole resistant Candida vaginitis. Areas covered: This review covers published data on epidemiology, pathophysiology and treatment options for women with azole-resistant refractory VVC. Expert opinion: Fluconazole resistant C.albicans adds to the challenge of azole resistant non-albicans Candida spp. Both issues follow years of indiscriminate drug prescription and unnecessary fluconazole exposure. Although an understanding of azole resistance in yeast has been established, this knowledge has not translated into useful therapeutic advantage. Treatment options for such women with refractory symptoms are extremely limited. New therapeutic options and strategies are urgently needed to meet this challenge of azole drug resistance.

  12. In vitro antifungal susceptibility of Malassezia pachydermatis from dogs with and without skin lesions.

    PubMed

    Cafarchia, Claudia; Figueredo, Luciana A; Iatta, Roberta; Montagna, Maria Teresa; Otranto, Domenico

    2012-03-23

    Canine Malassezia dermatitis is frequently treated with systemic ketoconazole (KTZ) and itraconazole (ITZ). However, no information is available on the antifungal susceptibility to azoles and allilamine of Malassezia pachydermatis isolates from dogs with or without skin lesions. The present study was designed to evaluate the in vitro antifungal susceptibility of M. pachydermatis strains from dogs with or without skin lesions to KTZ, ITZ, miconazole (MICO), fluconazole (FLZ), posaconazole (POS), voriconazole (VOR) and terbinafine (TER) using the Clinical and Laboratory Standards Institute reference Broth Microdilution Method (CLSI M27-A2). The association between the susceptibility to antifungal compounds and the origin of M. pachydermatis, from skin with or without lesions has been also assessed. A total of 62 M. pachydermatis strains from healthy dogs (i.e., Group A=30) or with skin lesions (i.e., Group B=32) were tested. ITZ, KTZ and POS showed the highest activity against M. pachydermatis strains, whereas MICO TER and FLZ the lowest. A higher number of Malassezia resistant strains were registered among isolates from Group B than those from Group A. This study indicates that M. pachydermatis strains were susceptible to ITZ, KTZ, and POS. However, dogs with lesions may harbour strains with low susceptibility to antifungal agents and displaying cross-resistance phenomena to azole. The antifungal therapy in Malassezia infections requires careful appraisal of choice of drugs especially in cases of unresponsiveness to antifungal treatment or recurrent infections. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Breakpoints for antifungal agents: an update from EUCAST focussing on echinocandins against Candida spp. and triazoles against Aspergillus spp.

    PubMed

    Arendrup, Maiken C; Cuenca-Estrella, Manuel; Lass-Flörl, Cornelia; Hope, William W

    2013-12-01

    Candida and Aspergillus infections have emerged as significant pathogens in recent decades. During this same time, broad spectrum triazole and echinocandin antifungal agents have been developed and increasingly used. One consequence of widespread use is leading to the emergence of mutants with acquired resistance mutations. Therefore, accurate susceptibility testing and appropriate clinical breakpoints for the interpretation of susceptibility results have become increasingly important. Here we review the underlying methodology by which breakpoints have been selected by EUCAST (European Committee on Antimicrobial Susceptibility Testing). Five parameters are evaluated: dosing regimens used; EUCAST MIC distributions from multiple laboratories, species and compound specific epidemiological cut off values (upper MIC limits of wild type isolates or ECOFFs), pharmacokinetic/pharmacodynamic relationships and targets associated with outcome and finally clinical data by species and MIC when available. The general principles are reviewed followed by a detailed review of the individual aspects for Candida species and the three echinocandins and for Aspergillus and the three mould-active azoles. This review provides an update of the subcommittee on antifungal susceptibility testing (AFST) of the EUCAST methodology and summarises the current EUCAST breakpoints for Candida and Aspergillus. Recommendations about applicability of antifungal susceptibility testing in the routine setting are also included. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Epidemiology and molecular mechanisms of antifungal resistance in Candida and Aspergillus.

    PubMed

    Gonçalves, Sarah Santos; Souza, Ana Carolina Remondi; Chowdhary, Anuradha; Meis, Jacques F; Colombo, Arnaldo Lopes

    2016-04-01

    The significant increase in the use of antifungal agents, both for the treatment of candidiasis and invasive aspergillosis and as azole fungicides in agricultural crop protection has resulted in the emergence of resistant clinical isolates, particularly to triazoles and echinocandins. Notably, among isolates that were primarily sensitive to fluconazole such as Candida parapsilosis and Candida tropicalis have witnessed an emerging resistance development. Also for echinocandins, the occurrence of Candida isolates with lower susceptibility to these drugs has been reported, which is possibly due to its broad clinical use. Triazole resistance among Aspergillus fumigatus and other Aspergillus species is commonly found in European and Asian countries. Specific mutations are associated with azole resistance in A. fumigatus and these mutations are now reported globally from six continents. Therefore, we highlight the need to conduct antifungal resistance surveillance studies using clinical isolates of Candida and Aspergillus in different geographical regions and monitoring of the infection rates in distinct population groups for early detection of resistance to these drugs and implementation of efficient policies for infection control and treatment. © 2016 Blackwell Verlag GmbH.

  15. Commonly used oncology drugs decrease antifungal effectiveness against Candida and Aspergillus species.

    PubMed

    Butts, Arielle; Reitler, Parker; Ge, Wenbo; Fortwendel, Jarrod R; Palmer, Glen E

    2018-04-30

    The incidence of invasive fungal infections has risen significantly in recent decades as medical interventions have become increasingly aggressive. These infections are extremely difficult to treat due to the extremely limited repertoire of systemic antifungals, the development of drug resistance, and the extent of to which the patient's immune function is compromised. Even when the appropriate antifungal therapies are administered in a timely fashion, treatment failure is common, frequently even in the absence of in vitro microbial resistance. In this study, we screened a small collection of FDA approved oncolytic agents for compounds that impact the efficacy of the two most widely used classes of system antifungals against Candida albicans, Candida glabrata , and Aspergillus fumigatus We have identified several drugs that enhance fungal growth in the presence of the azole antifungals and examine the potential that these drugs directly affect fungal fitness, specifically antifungal susceptibility, and may be contributing to clinical treatment failure. Copyright © 2018 American Society for Microbiology.

  16. Isolation of azole-resistant Aspergillus fumigatus from the environment in the south-eastern USA.

    PubMed

    Hurst, Steven F; Berkow, Elizabeth L; Stevenson, Katherine L; Litvintseva, Anastasia P; Lockhart, Shawn R

    2017-09-01

    Azole resistance in isolates of the fungus Aspergillus fumigatus has been associated with agricultural use of azole fungicides. Environmental isolation of resistant isolates has been reported in Asia, Africa, Europe and South America. To determine whether A. fumigatus isolates containing TR34/L98H or TR46/Y121F/T289A can be found in fields in the USA treated with agricultural azoles. Crop debris was collected and screened for A. fumigatus. All A. fumigatus isolates were screened for azole resistance. The CYP51A gene of azole-resistant isolates was sequenced. The population structure of a subset of isolates was determined using microsatellite typing. This article identifies azole-resistant A. fumigatus isolates containing the TR34/L98H mutation in an experimental peanut field that had been treated with azole fungicides. These findings suggest the development of resistance to azole antifungals in A. fumigatus may be present where agricultural azoles are used in the USA. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy 2017. This work is written by US Government employees and is in the public domain in the US.

  17. Vincristine-associated Neuropathy With Antifungal Usage: A Kaiser Northern California Experience.

    PubMed

    Nikanjam, Mina; Sun, Aida; Albers, Mark; Mangalindin, Kristine; Song, Eyun; Vempaty, Hyma; Sam, Danny; Capparelli, Edmund V

    2018-05-16

    The dose-limiting toxicity for vincristine is peripheral neuropathy which can be potentiated with concurrent usage of azole antifungals. The current retrospective study assessed the incidence of concurrent vincristine and azole antifungal usage to determine if it led to increased neurotoxicity for the Kaiser Northern California pediatric acute lymphoblastic leukemia (ALL) and Hodgkin lymphoma patient population. Data were obtained from the electronic medical record (2007 to 2014). In total, 130 subjects received at least one dose of vincristine for ALL or Hodgkin lymphoma (median age 9, 88% ALL, 58% male, 47% Caucasian). Thirty one percent of patients received concurrent antifungal usage (fluconazole, 78%; voriconazole, 10%; fluconazole/voriconazole, 12%); however, concurrent antifungal usage accounted for <15% of vincristine doses. Grade 2 or greater neuropathy occurred in 51% of patients; grade 3 neuropathy was present in 8% of patients. No difference in the incidence of grade 2 or greater neuropathy was observed with the concurrent use of antifungal therapy (P=0.35), sex (P=0.59), type of cancer (P=0.41), ethnicity (P=0.29), or age (P=0.39), but was higher with increasing amount of vincristine doses (P=0.004). These results suggest that concurrent azole antifungal usage with vincristine for patients with ALL and Hodgkin lymphoma was low in the Kaiser Northern California population and limited usage as needed may be reasonable and safe.

  18. Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis.

    PubMed

    Sharma, Monika; Manoharlal, Raman; Negi, Arvind Singh; Prasad, Rajendra

    2010-08-01

    We have shown previously that pure polyphenol curcumin I (CUR-I) shows antifungal activity against Candida species. By employing the chequerboard method, filter disc and time-kill assays, in the present study we demonstrate that CUR-I at non-antifungal concentration interacts synergistically with azoles and polyenes. For this, pure polyphenol CUR-I was tested for synergy with five azole and two polyene drugs - fluconazole (FLC), miconazole, ketoconazole (KTC), itraconazole (ITR), voriconazole (VRC), nystatin (NYS) and amphotericin B (AMB) - against 21 clinical isolates of Candida albicans with reduced antifungal sensitivity, as well as a drug-sensitive laboratory strain. Notably, there was a 10-35-fold drop in the MIC(80) values of the drugs when CUR-I was used in combination with azoles and polyenes, with fractional inhibitory concentration index (FICI) values ranging between 0.09 and 0.5. Interestingly, the synergistic effect of CUR-I with FLC and AMB was associated with the accumulation of reactive oxygen species, which could be reversed by the addition of an antioxidant such as ascorbic acid. Furthermore, the combination of CUR-I and FLC/AMB triggered apoptosis that could also be reversed by ascorbic acid. We provide the first evidence that pure CUR-I in combination with azoles and polyenes represents a novel therapeutic strategy to improve the activity of common antifungals.

  19. In vitro antifungal susceptibility of clinical species belonging to Aspergillus genus and Rhizopus oryzae.

    PubMed

    Kachuei, R; Khodavaisy, S; Rezaie, S; Sharifynia, S

    2016-03-01

    Among filamentous fungal pathogens, Aspergillus spp. and zygomycetes account for highest rates of morbidity and mortality among immunocompromised patients. Recently developed antifungal drugs offer the potential to improve management and therapeutic outcomes of fungal infections. The aim of this study was to analyse the in vitro activities of voriconazole, itraconazole, amphotericin B and caspofungin against clinical isolates of Aspergillus spp. and Rhizopus oryzae. The in vitro antifungal susceptibility of 54 isolates belonging to different clinical isolates of Aspergillus spp. and R. oryzae was tested for four antifungal agents using a microdilution reference method (CLSI, M38-A2). All isolates were identified by typical colony and microscopic characteristics, and also characterized by molecular methods. Caspofungin (MEC range: 0.008-0.25 and MEC50: 0.0023μg/mL) was the most active drug in vitro against Aspergillus spp., followed by voriconazole (MIC range: 0.031-8 and MIC50: 0.5μg/mL), itraconazole (MIC range: 0.031-16 and MIC50: 0.25μg/mL), and amphotericin B (MIC range: 0.125-4 and MIC50: 0.5μg/mL), in order of decreasing activity. The caspofungin, voriconazole, and itraconazole demonstrated poor in vitro activity against R. oryzae isolates evaluated, followed by amphotericin B. This study demonstrates that caspofungin had good antifungal activity and azole agents had better activity than amphotericin B against Aspergillus species. Although, azole drugs are considered ineffective against R. oryzae. This result is just from a small scale in vitro susceptibility study and we did not take other factors into consideration. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Synergy and antagonism between iron chelators and antifungal drugs in Cryptococcus.

    PubMed

    Lai, Yu-Wen; Campbell, Leona T; Wilkins, Marc R; Pang, Chi Nam Ignatius; Chen, Sharon; Carter, Dee A

    2016-10-01

    Fungal infections remain very difficult to treat, and developing new antifungal drugs is difficult and expensive. Recent approaches therefore seek to augment existing antifungals with synergistic agents that can lower the therapeutic dose, increase efficacy and prevent resistance from developing. Iron limitation can inhibit microbial growth, and iron chelators have been employed to treat fungal infections. In this study, chequerboard testing was used to explore combinations of iron chelators with antifungal agents against pathogenic Cryptococcus spp. with the aim of determining how disruption to iron homeostasis affects antifungal susceptibility. The iron chelators ethylenediaminetetraacetic acid (EDTA), deferoxamine (DFO), deferiprone (DFP), deferasirox (DSX), ciclopirox olamine and lactoferrin (LF) were paired with the antifungal agents amphotericin B (AmB), fluconazole, itraconazole, voriconazole and caspofungin. All chelators except for DFO increased the efficacy of AmB, and significant synergy was seen between AmB and LF for all Cryptococcus strains. Addition of exogenous iron rescued cells from the antifungal effect of LF alone but could not prevent inhibition by AmB + LF, indicating that synergy was not due primarily to iron chelation but to other properties of LF that were potentiated in the presence of AmB. Significant synergy was not seen consistently for other antifungal-chelator combinations, and EDTA, DSX and DFP antagonised the activity of azole drugs in strains of Cryptococcus neoformans var. grubii. This study highlights the range of interactions that can be induced by chelators and indicates that most antifungal drugs are not enhanced by iron limitation in Cryptococcus. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  1. Multicentre Etest evaluation of in vitro activity of conventional antifungal drugs against European bovine mastitis Prototheca spp. isolates.

    PubMed

    Jagielski, Tomasz; Buzzini, Pietro; Lassa, Henryka; Malinowski, Edward; Branda, Eva; Turchetti, Benedetta; Polleichtner, Angela; Roesler, Uwe; Lagneau, Paul-Emile; Marques, Sara; Silva, Eliane; Thompson, Gertrude; Stachowiak, Radosław; Bielecki, Jacek

    2012-08-01

    Bovine mammary protothecosis is a serious pathology that entails high economic losses in the dairy industry. The disease, the frequency of which has recently been increasing worldwide, is caused by unicellular, achlorophyllous, yeast-like algae of two species: Prototheca zopfii and Prototheca blaschkeae. The objective of this study was to investigate the in vitro activity of a panel of conventional antifungal drugs against Prototheca spp. isolates. A total of 144 P. zopfii genotype 2 and P. blaschkeae strains isolated from milk of mastitic cows were subjected to drug susceptibility testing by Etest methodology. Five out of ten antifungal drugs tested exhibited no activity against Prototheca spp. isolates. The best activity against Prototheca spp. was demonstrated by amphotericin B (MIC₉₀ of 1.5 mg/L). The MICs differed significantly (P < 0.01) between P. zopfii genotype 2 and P. blaschkeae, with the latter species being more susceptible to amphotericin B and azoles. Marked differences (P < 0.05) in azole and amphotericin B activities were noted among Prototheca spp. isolates originating from different European countries. Based on the correlation coefficients, a considerable cross-interaction was found among MICs of azoles and between MICs of azoles and amphotericin B for Prototheca spp. (P < 0.03). This study represents the largest, cross-European evaluation of antifungal activity against Prototheca spp. to date. The activity of amphotericin B against Prototheca spp. validates its potential use as a therapeutic agent against bovine protothecosis. For laboratory testing of drug activity against Prototheca spp., the Etest method is encouraged, due to its technical simplicity, rapidity and high intra- and inter-laboratory reproducibility.

  2. A CTG Clade Candida Yeast Genetically Engineered for the Genotype-Phenotype Characterization of Azole Antifungal Resistance in Human-Pathogenic Yeasts.

    PubMed

    Accoceberry, Isabelle; Rougeron, Amandine; Biteau, Nicolas; Chevrel, Pauline; Fitton-Ouhabi, Valérie; Noël, Thierry

    2018-01-01

    A strain of the opportunistic pathogenic yeast Candida lusitaniae was genetically modified for use as a cellular model for assessing by allele replacement the impact of lanosterol C14α-demethylase ERG11 mutations on azole resistance. Candida lusitaniae was chosen because it is susceptible to azole antifungals, it belongs to the CTG clade of yeast, which includes most of the Candida species pathogenic for humans, and it is haploid and easily amenable to genetic transformation and molecular modeling. In this work, allelic replacement is targeted at the ERG11 locus by the reconstitution of a functional auxotrophic marker in the 3' intergenic region of ERG11 Homologous and heterologous ERG11 alleles are expressed from the resident ERG11 promoter of C. lusitaniae , allowing accurate comparison of the phenotypic change in azole susceptibility. As a proof of concept, we successfully expressed in C. lusitaniae different ERG11 alleles, either bearing or not bearing mutations retrieved from a clinical context, from two phylogenetically distant yeasts, C. albicans and Kluyveromyces marxianus Candida lusitaniae constitutes a high-fidelity expression system, giving specific Erg11p-dependent fluconazole MICs very close to those observed with the ERG11 donor strain. This work led us to characterize the phenotypic effect of two kinds of mutation: mutation conferring decreased fluconazole susceptibility in a species-specific manner and mutation conferring fluconazole resistance in several yeast species. In particular, a missense mutation affecting amino acid K143 of Erg11p in Candida species, and the equivalent position K151 in K. marxianus , plays a critical role in fluconazole resistance. Copyright © 2017 American Society for Microbiology.

  3. Aspergillus fumigatus in the cystic fibrosis lung: pros and cons of azole therapy

    PubMed Central

    Burgel, Pierre-Régis; Paugam, André; Hubert, Dominique; Martin, Clémence

    2016-01-01

    Aspergillus fumigatus is the main fungus cultured in the airways of patients with cystic fibrosis (CF). Allergic bronchopulmonary aspergillosis occurs in ~10% of CF patients and is clearly associated with airway damage and lung function decline. The effects of A. fumigatus colonization in the absence of allergic bronchopulmonary aspergillosis are less well established. Retrospective clinical studies found associations of A. fumigatus-positive cultures with computed tomography scan abnormalities, greater risk of CF exacerbations and hospitalizations, and/or lung function decline. These findings were somewhat variable among studies and provided only circumstantial evidence for a role of A. fumigatus colonization in CF lung disease progression. The availability of a growing number of oral antifungal triazole drugs, together with the results of nonrandomized case series suggesting positive effects of azole therapies, makes it tempting to treat CF patients with these antifungal drugs. However, the only randomized controlled trial that has used itraconazole in CF patients showed no significant benefit. Because triazoles may have significant adverse effects and drug interactions, and because their prolonged use has been associated with the emergence of azole-resistant A. fumigatus isolates, it remains unclear whether or not CF patients benefit from azole therapy. PMID:27703383

  4. Aspergillus fumigatus in the cystic fibrosis lung: pros and cons of azole therapy.

    PubMed

    Burgel, Pierre-Régis; Paugam, André; Hubert, Dominique; Martin, Clémence

    2016-01-01

    Aspergillus fumigatus is the main fungus cultured in the airways of patients with cystic fibrosis (CF). Allergic bronchopulmonary aspergillosis occurs in ~10% of CF patients and is clearly associated with airway damage and lung function decline. The effects of A. fumigatus colonization in the absence of allergic bronchopulmonary aspergillosis are less well established. Retrospective clinical studies found associations of A. fumigatus -positive cultures with computed tomography scan abnormalities, greater risk of CF exacerbations and hospitalizations, and/or lung function decline. These findings were somewhat variable among studies and provided only circumstantial evidence for a role of A. fumigatus colonization in CF lung disease progression. The availability of a growing number of oral antifungal triazole drugs, together with the results of nonrandomized case series suggesting positive effects of azole therapies, makes it tempting to treat CF patients with these antifungal drugs. However, the only randomized controlled trial that has used itraconazole in CF patients showed no significant benefit. Because triazoles may have significant adverse effects and drug interactions, and because their prolonged use has been associated with the emergence of azole-resistant A. fumigatus isolates, it remains unclear whether or not CF patients benefit from azole therapy.

  5. [Fungi isolated from the vagina and their susceptibility to antifungals].

    PubMed

    Macura, Anna B; Skóra, Magdalena

    2012-06-01

    Because of the presence of various fungi and changes in their spectrum in the mycosis of vagina it is necessary to perform periodic overviews including testing their susceptibility to antifungal agents. The objective of the study was to evaluate susceptibility of the fungi isolated from vaginas to antifungal drugs and to analyse the fungi responsible for vaginal mycosis in patients referred during a 7-year study The study was carried out in a group of patients suspected of vaginal mycosis between January 1, 2005 and December 31, 2011. An analysis of the fungi isolated from their vaginas was performed. The susceptibility of the fungi to six antifungals (5-fluorocytosine, amphotericin B, miconazole, ketoconazole, itraconazole and fluconazole) was evaluated using a semiquantitative Fungitest. A total of 4775 mycological test results were evaluated. Fungi were present in 30.6% of the material. C. albicans was the most frequently isolated fungal species (80.2%), followed by C. glabrata (5.8%), and S. cerevisiae (5.5%). Itraconazole turned out to be the least effective drug. C. krusei. was the species most resistant to antifungals, including fluconazole. 1. C. albicans is the species most frequently isolated from a vagina. It is highly susceptible to azoles, the antimycotics generally used in the treatment of vaginal mycosis. 2. Out of the azoles under study ketoconazole was the most active against fungi in vitro while itraconazole was the least active. 3. The Candida non-albicans species, and particularly C. krusei, are less susceptible to antimycotics. 4. Amphotericin B and 5-fluorocytosine are most effective against Candida strains and S. cerevisiae, however they are not used in the treatment of vaginal mycosis because of their high toxicity

  6. Species spectrum and antifungal susceptibility profile of vaginal isolates of Candida in Kuwait.

    PubMed

    Alfouzan, W; Dhar, R; Ashkanani, H; Gupta, M; Rachel, C; Khan, Z U

    2015-03-01

    The study was undertaken to determine the prevalence of vulvovaginal candidiasis (VVC) among patients with vaginitis, frequency of different Candida species, and their susceptibility profile. Over six months period, high vaginal swabs were cultured on Sabouraud's dextrose agar and isolates were identified by culture on CHROMagar Candida and Vitek2 yeast identification system or/and API 20C (BioMerieux, France). Antifungal susceptibility of the Candida isolates was determined by E-test against amphotericin B, flucytosine, fluconazole, voriconazole, posaconazole and caspofungin. One thousand seven hundred and fifty-two women with vaginitis were screened for the prevalence of Candida spp. Vaginal swab cultures of 231 (13.2%) women yielded Candida spp. The isolation rates of different species were as follows: Candida albicans (73.9%), Candida glabrata (19.8%), Candida kefir (1.94%), Candida tropicalis (0.96%), Candida parapsilosis (0.96%), Candida krusei (0.96%), Candida guilliermondii (0.96%), and Saccharomyces cerevisiae (0.52%). All strains of C. albicans and non-C. albicans were susceptible to most of the antifungal agents tested. The high frequency with which C. albicans was recovered and its azole susceptibility support the continued use of azole agents for empirical therapy of uncomplicated VVC. However, a larger controlled study is required to determine the role of non-C. albicans in recurrent VVC. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. [The in vitro antifungal activities of fluconazole against pathogenic yeasts recently isolated from clinical specimens].

    PubMed

    Yamaguchi, H; Igari, J; Kume, H; Abe, M; Oguri, T; Kanno, H; Kawakami, S; Okuzumi, K; Fukayama, M; Ito, A; Kawata, K; Uchida, K

    1997-09-01

    The emergence of Candida albicans resistance to azole antifungal agents have been reported in the U. S. and Europe. We examined the in vitro antifungal activities of fluconazole against clinical isolates collected by seven investigators in three years to examine if a tendency existed toward the development of azole-resistance among fungal isolates in Japan. The following results were obtained: 1. Sensitivities to fluconazole (FLCZ) were determined for yeast-like fungi, including 113 strains isolated in 1993, 149 strains isolated in 1994 and 205 strains isolated in 1995. No significant differences in sensitivities in the three years were detected. 2. Minimum inhibitory concentrations of FLCZ were 0.1-0.78 microgram/ml for C. albicans and 3.13-25 micrograms/ml for C. glabrata. Strains with 25 micrograms/ml of FLCZ's MIC were detected; two strains of C. krusei and one strain each of C. krusei, Trichospron beigelii and Hansenula anomala. No strains with higher than 50 micrograms/ml MIC of FLCZ were detected. 3. In vitro activities of FLCZ were compared between clinical strains isolated between 1993 and 1995 and clinical strains isolated before the marketing of FLCZ (up to December 1987) or clinical yeasts isolated between 1991 and 1992. No significant differences were observed, suggesting that no tendency existed toward azole resistance among fungal strains examined.

  8. An azole-resistant isolate of Malassezia pachydermatis.

    PubMed

    Nijima, Misako; Kano, Rui; Nagata, Masahiko; Hasegawa, Atsuhiko; Kamata, Hiroshi

    2011-04-21

    Canine Malassezia dermatitis (MD) is frequently treated with systemic ketoconazole (KTZ) and itaconazole (ITZ). However, the antifungal susceptibility of clinical isolates of M. pachydermatis from dogs and cats to the azoles has not been well investigated. In the present study, the in vitro susceptibility of the standard strain (CBS1879: the neotype strain of M. pachydermatis) and 29 clinical isolates of M. pachydermatis to the azoles was measured by a modified CLSI M27-A2 test using modified Dixon medium as well as by the E-test. The minimum inhibitory concentrations (MICs) of the 30 isolates of M. pachydermatis (including the neotype strain) against KTZ and ITZ were <0.03 μg/ml by the two methods. The MICs of 1 clinical isolate (ASC-11) were 1 and 2 μg/ml against KTZ, and 2 and 8 μg/ml against ITZ, by the modified CLSI M27-A2 test and the E-test, respectively. Thus, isolate ASC-11 may be resistant to these azoles, making this the first report of a resistant isolate of M. pachydermatis to KTZ and ITZ. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Combination of fluconazole with non-antifungal agents: a promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery.

    PubMed

    Liu, Shuyuan; Hou, Yinglong; Chen, Xu; Gao, Yuan; Li, Hui; Sun, Shujuan

    2014-05-01

    The past decades have witnessed a dramatic increase in invasive fungal infections, especially candidiasis. Despite the development of more effective new antifungal agents, fluconazole (FLC) is still widely used in the clinic because of its efficacy and low toxicity. However, as the number of patients treated with FLC has increased, FLC-resistant Candida albicans isolates emerge more frequently. In addition, biofilm-associated infections are commonly encountered and their resistance poses a great challenge to antifungal treatment. Various approaches have been proposed to increase the susceptibility of C. albicans to FLC in order to cope with treatment failures, among which is the combination of FLC with different classes of non-antifungal agents such as antibacterials, calcineurin inhibitors, heat shock protein 90 inhibitors, calcium homeostasis regulators and traditional Chinese medicine drugs. Interestingly, many of these combinations showed synergistic effects against C. albicans, especially resistant strains. The main mechanisms of these synergistic effects appear to be increasing the permeability of the membrane, reducing the efflux of antifungal drugs, interfering with intracellular ion homeostasis, inhibiting the activity of proteins and enzymes required for fungal survival, and inhibiting biofilm formation. These modes of action and the antifungal mechanisms of various compounds referenced in this paper highlight the idea that the reversal of fungal resistance can be achieved through various mechanisms. Studies examining drug interactions will hopefully provide new approaches against antifungal drug resistance as well as insight into antifungal agent discovery. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  10. Determination of antifungal susceptibility patterns among the environmental isolates of Aspergillus fumigatus in Iran

    PubMed Central

    Mohammadi, Faezeh; Dehghan, Parvin; Nekoeian, Shahram; Hashemi, Seyed Jamal

    2016-01-01

    Background: In recent years, triazole-resistant environmental isolates of Aspergillus fumigatus have emerged in Europe and Asia. Azole resistance has been reported in patients who are treated with long-term azole therapy or exposure of the fungus spores to the azole fungicides used in agriculture. To date, a wide range of mutations in A. fumigatus have been described conferring azole-resistance, which commonly involves modifications in the cyp51A gene. We investigated antifungal susceptibility pattern of environmental isolates of A. fumigatus. Materials and Methods: In this study, 170 environmental samples collected from indoors surfaces of three hospitals in Iran. It was used β-tubulin gene to confirm the all of A. fumigatus isolates, which was identified by conventional methods. Furthermore, the antifungal susceptibility of itraconazole, voriconazole, and posaconazole was investigated using broth microdilution test, according to European Committee on Antimicrobial Susceptibility testing reference method. Results: From a total of 158 environmental molds fungi obtained from the hospitals, 58 isolates were identified as A. fumigatus by amplification of expected size of β-tubulin gene (~500 bp). In this study, in vitro antifungal susceptibility testing has shown that there were not high minimum inhibitory concentration values of triazole antifungals in all of the 58 environmental isolates of A. fumigatus. Conclusion: Our findings demonstrated that there was not azole-resistant among environmental isolates of A. fumigatus. Medical triazoles compounds have structural similarity with triazole fungicide compounds in agriculture, therefore, resistance development through exposure to triazole fungicide compounds in the environment is important but it sounds there is not a serious health problem in drug resistance in environmental isolates in Iran. PMID:27656605

  11. Antifungal agents. 10. New derivatives of 1-[(aryl)[4-aryl-1H-pyrrol-3-yl]methyl]-1H-imidazole, synthesis, anti-candida activity, and quantitative structure-analysis relationship studies.

    PubMed

    Tafi, Andrea; Costi, Roberta; Botta, Maurizio; Di Santo, Roberto; Corelli, Federico; Massa, Silvio; Ciacci, Andrea; Manetti, Fabrizio; Artico, Marino

    2002-06-20

    The synthesis, anti-Candida activity, and quantitative structure-activity relationship (QSAR) studies of a series of 2,4-dichlorobenzylimidazole derivatives having a phenylpyrrole moiety (related to the antibiotic pyrrolnitrin) in the alpha-position are reported. A number of substituents on the phenyl ring, ranging from hydrophobic (tert-butyl, phenyl, or 1-pyrrolyl moiety) to basic (NH(2)), polar (CF(3), CN, SCH(3), NO(2)), or hydrogen bond donors and acceptor (OH) groups, were chosen to better understand the interaction of these compounds with cytochrome P450 14-alpha-lanosterol demethylase (P450(14DM)). Finally, the triazole counterpart of one of the imidazole compounds was synthesized and tested to investigate influence of the heterocyclic ring on biological activity. The in vitro antifungal activities of the newly synthesized azoles 10p-v,x-c' were tested against Candida albicans and Candida spp. at pH 7.2 and pH 5.6. A CoMFA model, previously derived for a series of antifungal agents belonging to chemically diverse families related to bifonazole, was applied to the new products. Because the results produced by this approach were not encouraging, Catalyst software was chosen to perform a new 3D-QSAR study. Catalyst was preferred this time because of the possibility of considering each compound as a collection of energetically reasonable conformations and of considering alternative stereoisomers. The pharmacophore model developed by Catalyst, named HYPO1, showed good performances in predicting the biological activity data, although it did not exhibit an unequivocal preference for one enantiomeric series of inhibitors relative to the other. One aromatic nitrogen with a lone pair in the ring plane (mapped by all of the considered compounds) and three aromatic ring features were recognized to have pharmacophoric relevance, whereas neither hydrogen bond acceptor nor hydrophobic features were found. These findings confirmed that the key interaction of azole

  12. Spectrophotometric reading of EUCAST antifungal susceptibility testing of Aspergillus fumigatus.

    PubMed

    Meletiadis, J; Leth Mortensen, K; Verweij, P E; Mouton, J W; Arendrup, M C

    2017-02-01

    Given the increasing number of antifungal drugs and the emergence of resistant Aspergillus isolates, objective, automated and high-throughput antifungal susceptibility testing is important. The EUCAST E.Def 9.3 reference method for MIC determination of Aspergillus species relies on visual reading. Spectrophotometric reading was not adopted because of concern that non-uniform filamentous growth might lead to unreliable and non-reproducible results. We therefore evaluated spectrophotometric reading for the determination of MICs of antifungal azoles against Aspergillus fumigatus. Eighty-eight clinical isolates of A. fumigatus were tested against four medical azoles (posaconazole, voriconazole, itraconazole, isavuconazole) and one agricultural azole (tebuconazole) with EUCAST E.Def 9.3. The visually determined MICs (complete inhibition of growth) were compared with spectrophotometrically determined MICs and essential (±1 twofold dilution) and categorical (susceptible/intermediate/resistant or wild-type/non-wild-type) agreement was calculated. Spectrophotometric data were analysed with regression analysis using the E max model, and the effective concentration corresponding to 5% (EC 5 ) was estimated. Using the 5% cut-off, high essential (92%-97%) and categorical (93%-99%) agreement (<6% errors) was found between spectrophotometric and visual MICs. The EC 5 also correlated with the visually determined MICs with an essential agreement of 83%-96% and a categorical agreement of 90%-100% (<5% errors). Spectrophotometric determination of MICs of antifungal drugs may increase objectivity, and allow automation and high-throughput of EUCAST E.Def 9.3 antifungal susceptibility testing of Aspergillus species. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  13. Isobolographic Analysis of Pharmacodynamic Interactions between Antifungal Agents and Ciprofloxacin against Candida albicans and Aspergillus fumigatus▿

    PubMed Central

    Stergiopoulou, Theodouli; Meletiadis, Joseph; Sein, Tin; Papaioannidou, Paraskevi; Tsiouris, Ioannis; Roilides, Emmanuel; Walsh, Thomas J.

    2008-01-01

    Patients suffering from invasive mycoses often receive concomitant antifungal therapy and antibacterial agents. Assessment of pharmacodynamic interactions between antifungal and antibacterial agents is complicated by the absence of a common antifungal end point for both agents. Ciprofloxacin has no intrinsic antifungal activity but may interact with antifungal agents, since it inhibits DNA gyrase (topoisomerase II), which is abundant in fungi. We therefore employed isobolographic analysis adapted to incorporate a nonactive agent in order to analyze the potential in vitro interaction between the fluoroquinolone ciprofloxacin and several representative antifungal agents against Candida albicans and Aspergillus fumigatus strains by using a microdilution checkerboard technique. In agreement with earlier in vitro studies, conventional fractional inhibitory concentration index analysis was unable to detect interactions between ciprofloxacin and antifungal agents. However, isobolographic analysis revealed significant pharmacodynamic interactions between antifungal agents and ciprofloxacin against C. albicans and A. fumigatus strains. Amphotericin B demonstrated concentration-dependent interactions for both species, with synergy (interaction indices, 0.14 to 0.81) observed at ciprofloxacin concentrations of <10.64 μg/ml. Synergy (interaction indices, 0.10 to 0.86) was also found for voriconazole and caspofungin against A. fumigatus. Isobolographic analysis may help to elucidate the pharmacodynamic interactions between antifungal and non-antifungal agents and to develop better management strategies against invasive candidiasis and aspergillosis. PMID:18299413

  14. Pyrazolo[3,4-c]isothiazole and isothiazolo[4,3-d]isoxazole derivatives as antifungal agents.

    PubMed

    Vicentini, Chiara Beatrice; Romagnoli, Carlo; Manfredini, Stefano; Rossi, Damiano; Mares, Donatella

    2011-05-01

    The diseases of plants and humans due to pathogenic fungi are increasing. Among the substances used to combat fungi, the azoles are of primary interest, both in agricultural field both in health. To avoid fungal resistance phenomena, the synthesis and tests of new derivatives are necessary. This article discusses the synthesis and the antifungal activity of pyrazolo[3,4-c]isothiazole and isothiazolo[4,3-d]isoxazole derivatives against three fungi that are pathogenic only for plants and two fungi that are opportunistic in humans and plants. The compounds were prepared starting from 2-cyano-3-ethoxy-2-butenethioamide. The antifungal activity of the compounds was determined by measuring the inhibition of growth of the fungi tested at 20, 50, and 100 µg/mL in comparison with the controls. Results demonstrated that several compounds were able to control the mycelial growth of the tested fungi, even if they showed different sensitivity to the different azole-derivatives. In general Magnaporthe grisea (T.T. Hebert) Yaegashi & Udagawa was the most sensitive fungus, being blocked almost entirely by 4-chloro derivative even at 20 µg/mL, a concentration at which the reference commercial compound tricyclazole was nearly ineffective. These findings demonstrate that the pyrazolo[3,4-c]isothiazole derivatives have a wide spectrum of activity on phytopathogenic and opportunistic fungi. In particular the 4-chloro derivative seems to have a great potential as new product to combat M. grisea in the agricultural field.

  15. Anticandidal synergistic activity of Ocimum sanctum and fluconazole of azole resistance strains of clinical isolates.

    PubMed

    Zaidi, K U; Shah, F; Parmar, R; Thawani, V

    2018-06-01

    Candida albicans is the most prevalent fungal pathogen in humans. It is the causative agent and most associated with serious fungal infection, accounting for more than 90% of cases. It is a most common cause of deep mycoses and vulvovaginal candidiasis. In the present study we found that methanolic extract of O. sanctum in combination of fluconazole shows higher zone of inhibition and lesser MIC values as compared to methanolic extract of leaves of O. sanctum or fluconazole when used alone. Synergistic antimicrobial activity was found when methanolic extract of leaves of O. sanctum was used in combination with fluconazole against C. albicans azole resistance strains isolated from catheter tip (CT) and high vaginal swab (HVS) (FIC≤0.5). Partial synergistic activity was observed against urine (U). Methanolic extract of stem of O. sanctum in combination with fluconazole gave indifferent antifungal results (FIC=1.0-4.0). Benzene extract of the leaf and stem of O. sanctum in combination with fluconazole showed indifferent antifungal results (FIC=1.0-4.0). Aqueous extract of leaves of O. sanctum in combination with fluconazole showed partial synergistic antimicrobial activity against catheter tip (CT) and high vaginal swab (HVS) and urine (U) (FIC=0.5-1.0). In the present study we evaluate the synergism of C. albicans against azole resistant clinical isolates. This study indicates clear evidence supporting the traditional use of O. sanctum in treating Candida infectious diseases. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. [In vitro activity of voriconazole and three other antifungal agents against dermatophytes].

    PubMed

    Serrano-Martino, María del Carmen; Chávez-Caballero, Mónica; Valverde-Conde, Anastasio; Claro, Rosa María; Pemán, Javier; Martín-Mazuelos, Estrella

    2003-11-01

    The increase in infections due to dermatophytes in recent years led us to study the effectiveness of new antifungal formulations against these microorganisms. The in vitro activity of a new antifungal agent, voriconazole, was compared with three other antifungal agents, itraconazole, fluconazole and terbinafine, against 120 dermatophytes belonging to four species (61 Trichophyton mentagrophytes, 34 Microsporum canis, 13 M. gypseum and 12 T. rubrum). A broth microdilution method was used following the recommendations of the NCCLS document M38-P with some modifications. Terbinafine was the most active agent against the dermatophytes studied (MIC90 < or = 0.03 mg/ml), followed by voriconazole (MIC90, 0.25 micro g/ml) and itraconazole (MIC90, 0.5 micro g/ml). Fluconazole was the least active antifungal agent. The most susceptible species was M. canis. Voriconazole was found to have effective activity against dermatophytes.

  17. Genetic and Genomic Architecture of the Evolution of Resistance to Antifungal Drug Combinations

    PubMed Central

    Hill, Jessica A.; Ammar, Ron; Torti, Dax; Nislow, Corey; Cowen, Leah E.

    2013-01-01

    The evolution of drug resistance in fungal pathogens compromises the efficacy of the limited number of antifungal drugs. Drug combinations have emerged as a powerful strategy to enhance antifungal efficacy and abrogate drug resistance, but the impact on the evolution of drug resistance remains largely unexplored. Targeting the molecular chaperone Hsp90 or its downstream effector, the protein phosphatase calcineurin, abrogates resistance to the most widely deployed antifungals, the azoles, which inhibit ergosterol biosynthesis. Here, we evolved experimental populations of the model yeast Saccharomyces cerevisiae and the leading human fungal pathogen Candida albicans with azole and an inhibitor of Hsp90, geldanamycin, or calcineurin, FK506. To recapitulate a clinical context where Hsp90 or calcineurin inhibitors could be utilized in combination with azoles to render resistant pathogens responsive to treatment, the evolution experiment was initiated with strains that are resistant to azoles in a manner that depends on Hsp90 and calcineurin. Of the 290 lineages initiated, most went extinct, yet 14 evolved resistance to the drug combination. Drug target mutations that conferred resistance to geldanamycin or FK506 were identified and validated in five evolved lineages. Whole-genome sequencing identified mutations in a gene encoding a transcriptional activator of drug efflux pumps, PDR1, and a gene encoding a transcriptional repressor of ergosterol biosynthesis genes, MOT3, that transformed azole resistance of two lineages from dependent on calcineurin to independent of this regulator. Resistance also arose by mutation that truncated the catalytic subunit of calcineurin, and by mutation in LCB1, encoding a sphingolipid biosynthetic enzyme. Genome analysis revealed extensive aneuploidy in four of the C. albicans lineages. Thus, we identify molecular determinants of the transition of azole resistance from calcineurin dependence to independence and establish multiple

  18. Antifungal Activity of Propolis Against Yeasts Isolated From Blood Culture: In Vitro Evaluation.

    PubMed

    Mutlu Sariguzel, Fatma; Berk, Elife; Koc, Ayes Nedret; Sav, Hafize; Demir, Gonca

    2016-09-01

    Due to the failure of available antifungal agents in the treatment of candidemia and the toxic activities of these drugs, a lot of researches are being conducted to develop new nontoxic and effective antifungal agents for optimal control of fungal pathogens. The aim of this study is to evaluate the in vitro antifungal activity of propolis against yeasts isolated from the blood cultures of intensive care unit patients. Seventy-six strains were included in this study. The in vitro antifungal activity of propolis, fluconazole (FLU), and itraconazole (ITR) was investigated by the microdilution broth methods (CLSI guidelines M27-A3 for yeast). The propolis sample was collected from Kayseri, Turkey. Of the 76 isolates, 33 were identified as Candida albicans while 37 were C. parapsilosis, three were C. tropicalis, and three were identified as C. glabrata. The geometric mean range for MIC (μg/ml) with regard to all isolates was 0.077 to 3 μg/ml for FLU and ITR, and 0.375 to 0.70 μg/ml for propolis. It was shown that propolis had significant antifungal activity against all Candida strains and the MIC range of propolis was determined as 0185 to 3 μg/ml. This study demonstrated that propolis had significant antifungal activity against yeasts isolated from blood culture compared with FLU and ITR. The propolis MIC in azole-resistant strains such as C. glabrata was found lower than the FLU MIC. © 2015 Wiley Periodicals, Inc.

  19. Antifungal activity of Zuccagnia punctata Cav.: evidence for the mechanism of action.

    PubMed

    Svetaz, Laura; Agüero, María Belén; Alvarez, Sandra; Luna, Lorena; Feresin, Gabriela; Derita, Marcos; Tapia, Alejandro; Zacchino, Susana

    2007-08-01

    Petroleum ether and dichloromethane extracts of fruits, aerial parts and exudate of Zuccagnia punctata Cav. (Fabaceae) showed moderate antifungal activities against the yeasts C. albicans, S. cerevisiae and C. neoformans (MICs: 62.5 - 250 microg/mL) and very strong antifungal activities against the dermatophytes M. gypseum, T. rubrum and T. mentagrophytes (MICs: 8 - 16 microg/mL) thus supporting the ethnopharmacological use of this plant. Antifungal activity-directed fractionation of active extracts by using bioautography led to the isolation of 2',4'-dihydroxy-3'-methoxychalcone (1) and 2',4'-dihydroxychalcone (2) as the compounds responsible for the antifungal activity. Second-order studies included MIC (80), MIC (50) and MFC of both chalcones in an extended panel of clinical isolates of the most sensitive fungi, and also comprised a series of targeted assays. They showed that the most active chalcone 2 is fungicidal rather than fungistatic, does not disrupt the fungal membranes up to 4 x MFC and does not act by inhibiting the fungal cell wall. So, 2',4'-dihydroxychalcone would act by a different mechanism of action than the antifungal drugs in current clinical use, such as amphotericin B, azoles or echinocandins, and thus appears to be very promising as a novel antifungal agent.

  20. Mechanisms of azole resistance in a clinical isolate of Candida tropicalis.

    PubMed

    Vandeputte, Patrick; Larcher, Gérald; Bergès, Thierry; Renier, Gilles; Chabasse, Dominique; Bouchara, Jean-Philippe

    2005-11-01

    Azole resistance has been insufficiently investigated in the yeast Candida tropicalis. Here we determined the molecular mechanisms responsible for azole resistance in a clinical isolate of this pathogenic yeast. Antifungal susceptibility testing performed by a disk diffusion method showed resistance or markedly decreased susceptibility to azoles, which was confirmed by determination of MICs. Considering the relationship between azole susceptibility and the respiration reported for other yeast species, the respiratory activity of this isolate was investigated. Flow cytometry using rhodamine 123 and oxygraphy demonstrated an increased respiratory activity, which was not linked to an overexpression or increased number of copies of the mitochondrial genome. Among previously described resistance mechanisms, an increased activity of efflux pumps was investigated by flow cytometry using rhodamine 6G. However, the efflux of rhodamine 6G was lower in the resistant isolate than in susceptible ones. Likewise, real-time reverse transcription-PCR quantification of the expression of C. tropicalis MDR1 (CtMDR1), which encodes an efflux protein belonging to the major facilitator superfamily, did not show overexpression of this gene. In contrast, the resistant isolate overexpressed the CtERG11 gene coding for lanosterol 14alpha-demethylase. This was in agreement with the larger amount of ergosterol found in this isolate. Moreover, sequencing of CtERG11 showed a point mutation leading to a tyrosine substitution in the protein sequence, which might lead to decreased binding affinity for azoles. In conclusion, overexpression of CtERG11 associated with a missense mutation in this gene seemed to be responsible for the acquired azole resistance of this clinical isolate.

  1. Next-generation sequencing offers new insights into the resistance of Candida spp. to echinocandins and azoles.

    PubMed

    Garnaud, Cécile; Botterel, Françoise; Sertour, Natacha; Bougnoux, Marie-Elisabeth; Dannaoui, Eric; Larrat, Sylvie; Hennequin, Christophe; Guinea, Jesus; Cornet, Muriel; Maubon, Danièle

    2015-09-01

    MDR Candida strains are emerging. Next-generation sequencing (NGS), which enables extensive and deep genome analysis, was used to investigate echinocandin and azole resistance in clinical Candida isolates. Six genes commonly involved in antifungal resistance (ERG11, ERG3, TAC1, CgPDR1, FKS1 and FKS2) were analysed using NGS in 40 Candida isolates (18 Candida albicans, 15 Candida glabrata and 7 Candida parapsilosis). The strategy was validated using strains with known sequences. Then, 8 clinical strains displaying antifungal resistance and 23 sequential isolates collected from 10 patients receiving antifungal therapy were analysed. A total of 391 SNPs were detected, among which 6 coding SNPs were reported for the first time. Novel genetic alterations were detected in both azole and echinocandin resistance genes. A C. glabrata strain, which was resistant to echinocandins but highly susceptible to azoles, harboured an FKS2 S663P mutation plus a novel presumed loss-of-function CgPDR1 mutation. This isolate was from a patient with deep-seated and urinary candidiasis. Another C. glabrata isolate, with an MDR phenotype, carried a new FKS2 S663A mutation and a new putative gain-of-function CgPDR1 mutation (T370I); this isolate showed mutated (80%) and WT (20%) populations and was collected after 75 days of exposure to caspofungin from a patient who underwent complicated abdominal surgery. This study shows that NGS can be used for extensive assessment of genetic mutations involved in antifungal resistance. This type of wide genome approach will become very valuable for detecting mechanisms of resistance in clinical strains subjected to multidrug pressure. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Azole-based chemoprophylaxis of invasive fungal infections in paediatric patients with acute leukaemia: an internal audit.

    PubMed

    Yunus, Sara; Pieper, Stephanie; Kolve, Hedwig; Goletz, Grazyna; Jürgens, Heribert; Groll, Andreas H

    2014-03-01

    Children and adolescents with acute myeloid leukaemia (AML) and recurrent acute leukaemias (RALs) are at high risk of life-threatening invasive fungal infections (IFIs). We analysed implementation, safety and efficacy of a standard operating procedure for oral, azole-based, mould-active antifungal prophylaxis. Patients with AML and RALs aged ≥13 years received 200 mg of posaconazole three times daily and patients aged 2-12 years received 200 mg of voriconazole two times daily from the completion of chemotherapy until haematopoietic recovery. Algorithms for fever or focal findings in all patients with haematological malignancies included blood cultures, high-resolution CT and other appropriate imaging, serial serum galactomannan, invasive diagnostics and pre-emptive therapy with change in class if on antifungal medication. From 2006 to 2010, 40 patients (0.8-17 years; 21 males) with newly diagnosed AML (n = 31) or RAL (n = 9) were admitted, of whom 36 received a total of 149 courses of chemotherapy (reasons for exclusion: contraindications and early death ≤3 days). Azole prophylaxis was given in 87.2% (n = 130/149) of episodes. Pre-emptive antifungal therapy for pulmonary infiltrates was initiated in 5/36 (13.9%) patients or 6/130 (4.6%) episodes for a duration of 3-22 days. No proven or probable IFIs occurred. Adverse events (AEs) were common but mostly low grade and reversible. Three courses (2.3%) were discontinued due to AEs. In simultaneously admitted new patients with acute lymphatic leukaemia (ALL; n = 101) and paediatric lymphomas (n = 29) not receiving standard antifungal prophylaxis, proven/probable IFIs occurred in 4 patients with ALL (4.0%) and 7/130 patients (5.4%) received pre-emptive therapy. Azole-based, mould-active antifungal prophylaxis in high-risk paediatric patients with AML and RALs was satisfactorily implemented, well tolerated and effective. The low rate of IFIs in patients with ALL/lymphoma supports the lack of a general indication for

  3. Azole drugs are imported by facilitated diffusion in Candida albicans and other pathogenic fungi.

    PubMed

    Mansfield, Bryce E; Oltean, Hanna N; Oliver, Brian G; Hoot, Samantha J; Leyde, Sarah E; Hedstrom, Lizbeth; White, Theodore C

    2010-09-30

    Despite the wealth of knowledge regarding the mechanisms of action and the mechanisms of resistance to azole antifungals, very little is known about how the azoles are imported into pathogenic fungal cells. Here the in-vitro accumulation and import of Fluconazole (FLC) was examined in the pathogenic fungus, Candida albicans. In energized cells, FLC accumulation correlates inversely with expression of ATP-dependent efflux pumps. In de-energized cells, all strains accumulate FLC, suggesting that FLC import is not ATP-dependent. The kinetics of import in de-energized cells displays saturation kinetics with a K(m) of 0.64 μM and V(max) of 0.0056 pmol/min/10⁸ cells, demonstrating that FLC import proceeds via facilitated diffusion through a transporter rather than passive diffusion. Other azoles inhibit FLC import on a mole/mole basis, suggesting that all azoles utilize the same facilitated diffusion mechanism. An analysis of related compounds indicates that competition for azole import depends on an aromatic ring and an imidazole or triazole ring together in one molecule. Import of FLC by facilitated diffusion is observed in other fungi, including Cryptococcus neoformans, Saccharomyces cerevisiae, and Candida krusei, indicating that the mechanism of transport is conserved among fungal species. FLC import was shown to vary among Candida albicans resistant clinical isolates, suggesting that altered facilitated diffusion may be a previously uncharacterized mechanism of resistance to azole drugs.

  4. In Vitro Interactions between Tacrolimus and Azoles against Candida albicans Determined by Different Methods▿

    PubMed Central

    Sun, Shujuan; Li, Yan; Guo, Qiongjie; Shi, Changwen; Yu, Jinlong; Ma, Lin

    2008-01-01

    Combination therapy could be of use for the treatment of fungal infections, especially those caused by drug-resistant fungi. However, the methods and approaches used for data generation and result interpretation need further optimizing. The fractional inhibitory concentration index (FICI) is the most commonly used method, but it has several drawbacks in characterizing antifungal drug interaction. Alternatively, some new methods can be used such as the ΔE model (difference between the predicted and measured fungal growth percentages) and the response surface approach, which uses the concentration-effect relationship over the whole concentration range instead of just the MIC. In the present study, in vitro interactions between tacrolimus (FK506) and three azoles—fluconazole (FLC), itraconazole (ITR), and voriconazole (VRC)-against Candida albicans were evaluated by the checkerboard microdilution method and time-killing test. The intensity of the interactions was determined by visual reading and the spectrophotometric method in a checkerboard assay, and the nature of the interactions was assessed by nonparametric models of FICI and ΔE. Colony counting and colorimetric viable detection methods (2,3-bis {2-methoxy-4-nitro-5-[(sulfenylamino) carbonyl]-2H-tetrazolium hydroxide} [XTT] reduction test) were used for evaluating the combination antifungal effects over time. Synergistic and indifferent effects were found for the combination of FK506 and azoles against azole-sensitive strains, while strong synergy was found against azole-resistant strains analyzed by FICI. The ΔE model gave more consistent results with FICI. The positive interactions were also confirmed by the time-killing test. Our findings suggest a potential role for combination therapy with calcineurin pathway inhibitors and azoles to augment activity against resistant C. albicans. PMID:18056277

  5. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    USDA-ARS?s Scientific Manuscript database

    Several benzoic acid analogs showed antifungal activity against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids increased by addition of a methyl, methoxyl...

  6. Synergistic antifungal effect of lactoferrin with azole antifungals against Candida albicans and a proposal for a new treatment method for invasive candidiasis.

    PubMed

    Kobayashi, Tsutomu; Kakeya, Hiroshi; Miyazaki, Taiga; Izumikawa, Koichi; Yanagihara, Katsunori; Ohno, Hideaki; Yamamoto, Yoshihiro; Tashiro, Takayoshi; Kohno, Shigeru

    2011-01-01

    The combination of lactoferrin with fluconazole has been reported to synergistically enhance the antifungal activity of fluconazole against Candida spp. and inhibit the hyphal formation in fluconazole-resistant strains of Candida albicans. In this study, we investigated the association between the therapeutic effects of this combination and the pharmacological characteristics of fluconazole and itraconazole and the variation in these effects with differences among the strains in terms of the susceptibility and resistance mechanisms. Lactoferrin enhanced the growth-inhibitory activity of fluconazole against two different ergosterol mutants but not againt pump mutants or an azole-susceptible strain; but increased the activity of itraconazole against all the strains tested in this study. Exogenous iron cancelled the synergistic effect, which suggests that the iron-chelating function of lactoferrin may contribute to the synergism. Besides, radiolabeled fluconazole assays revealed that lactoferrin did not affect the intracellular concentrations of fluconazole, thereby indicating that these synergistic effects were not due to the alteration of the intracellular uptake of the drug. The development of new clinical treatments and therapeutic method against resistant Candida will depend on our understanding of the resistance mechanisms and methods to overcome them by the application of suitable drug combinations with synergistic effects. The results of this study might contribute to the improvement of our understand of the mechanisms underlying the resistance of Candida strains.

  7. Effect of Addition of Antifungal Agents on Physical and Biological Properties of a Tissue Conditioner: An In-Vitro Study.

    PubMed

    Rawat, Pragati; Agarwal, Swatantra; Tripathi, Siddhi

    2017-09-01

    Purpose: Tissue conditioners are used for healing of abused oral tissues. They may harbour microorganisms causing oral diseases such as candidiasis compromising the health of the patient. Also, addition of antifungal agents into tissue conditioner may alter its properties. This study compares the anti-fungal property and mechanical properties of tissue conditioner containing different antifungal agents. Methods: Three antifungal agents, one synthetic - fluconazole, and two natural - oregano oil and virgin coconut oil were added into the tissue conditioner (Viscogel) in different concentrations. The antifungal property, tensile bond strength and viscoelasticity of Viscogel containing these antifungal agents were assessed after 24 hours, three days and seven days. Results: While, the highest antifungal activity was shown by Viscogel containing fluconazole, the maximum tensile bond strength was found to be of Viscogel alone (control). Although Viscogel alone and in combination of fluconazole showed deterioration in viscoelasticity, Viscogel in combination of natural agents showed no significant changes over the period of seven days. Conclusion: Incorporation of the natural agents in the tissue conditioner can be used as an effective alternative to systemic or topical synthetic antifungal agents.

  8. Pharmacokinetics and Tolerability of Letermovir Coadministered With Azole Antifungals (Posaconazole or Voriconazole) in Healthy Subjects.

    PubMed

    Marshall, William L; McCrea, Jacqueline B; Macha, Sreeraj; Menzel, Karsten; Liu, Fang; van Schanke, Arne; de Haes, Joanna I Udo; Hussaini, Azra; Jordan, Heather R; Drexel, Melissa; Kantesaria, Bhavna S; Tsai, Christine; Cho, Carolyn R; Hulskotte, Ellen G J; Butterton, Joan R; Iwamoto, Marian

    2018-03-26

    Letermovir is a human cytomegalovirus terminase inhibitor for cytomegalovirus infection prophylaxis in hematopoietic stem cell transplant recipients. Posaconazole (POS), a substrate of glucuronosyltransferase and P-glycoprotein, and voriconazole (VRC), a substrate of CYP2C9/19, are commonly administered to transplant recipients. Because coadministration of these azoles with letermovir is expected, the effect of letermovir on exposure to these antifungals was investigated. Two trials were conducted in healthy female subjects 18 to 55 years of age. In trial 1, single-dose POS 300 mg was administered alone, followed by a 7-day washout; then letermovir 480 mg once daily was given for 14 days with POS 300 mg coadministered on day 14. In trial 2, on day 1 VRC 400 mg was given every 12 hours; on days 2 and 3, VRC 200 mg was given every 12 hours, and on day 4 VRC 200 mg. On days 5 to 8, letermovir 480 mg was given once daily. Days 9 to 12 repeated days 1 to 4 coadministered with letermovir 480 mg once daily. In both trials, blood samples were collected for the assessment of the pharmacokinetic profiles of the antifungals, and safety was assessed. The geometric mean ratios (90%CIs) for POS+letermovir/POS area under the curve and peak concentration were 0.98 (0.83, 1.17) and 1.11 (0.95, 1.29), respectively. Voriconazole+letermovir/VRC area under the curve and peak concentration geometric mean ratios were 0.56 (0.51, 0.62) and 0.61 (0.53, 0.71), respectively. All treatments were generally well tolerated. Letermovir did not affect POS pharmacokinetics to a clinically meaningful extent but decreased VRC exposure. These results suggest that letermovir may be a perpetrator of CYP2C9/19-mediated drug-drug interactions. © 2018, The American College of Clinical Pharmacology.

  9. Functionalised isocoumarins as antifungal compounds: Synthesis and biological studies.

    PubMed

    Simic, Milena; Paunovic, Nikola; Boric, Ivan; Randjelovic, Jelena; Vojnovic, Sandra; Nikodinovic-Runic, Jasmina; Pekmezovic, Marina; Savic, Vladimir

    2016-01-01

    A series of novel 3-substituted isocoumarins was prepared via Pd-catalysed coupling processes and screened in vitro for antifungal activity against Candida species. The study revealed antifungal potential of isocoumarins possessing the azole substituents, which, in some cases, showed biological properties equal to those of clinically used voriconazole. Selected compounds were also screened against voriconazole resistant Candida krusei 6258 and a clinical isolate Candida parapsilosis CA-27. Although the activity against these targets needs to be improved further, the results emphasise additional potential of this new class of antifungal compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Water quality and antifungal susceptibility of opportunistic yeast pathogens from rivers.

    PubMed

    Monapathi, M E; Bezuidenhout, C C; Rhode, O H J

    2017-03-01

    Yeasts from water sources have been associated with diseases ranging from superficial mucosal infections to life threatening diseases. The aim of this study was to determine the water quality as well as diversity and antifungal susceptibility of yeasts from two rivers. Yeast levels and physico-chemical parameter data were analyzed by principal component analysis to determine correlations between physico-chemical data and yeast levels. Yeast morphotypes were identified by biochemical tests and 26S rRNA gene sequencing. Disk diffusion antifungal susceptibility tests were conducted. Physico-chemical parameters of the water were within target water quality range (TWQR) for livestock farming. For irrigational use, total dissolved solids and nitrates were not within the TWQR. Yeast levels ranged between 27 ± 10 and 2,573 ± 306 cfu/L. Only non-pigmented, ascomycetous yeasts were isolated. Saccharomyces cerevisiae and Candida glabrata were most frequently isolated. Several other opportunistic pathogens were also isolated. A large number of isolates were resistant to azoles, especially fluconazole, but also to other antifungal classes. Candida species were resistant to almost all the antifungal classes. These water sources are used for recreation and religious as well as for watering livestock and irrigation. Of particular concern is the direct contact of individuals with opportunistic yeast, especially the immune-compromised. Resistance of these yeast species to antifungal agents is a further health concern.

  11. Species Distribution and Susceptibility to Azoles of Vaginal Yeasts Isolated Prostitutes

    PubMed Central

    Gross, Norma T.; Arias, M. L.; Moraga, M.; Baddasarow, Y.; Jarstrand, C.

    2007-01-01

    Objective. We investigated the use of miconazole among female prostitutes in Costa Rica as well as the distribution of vaginal yeasts and the susceptibility pattern to azoles of strains obtained from this population. Our intention was to relate a frequent use of miconazole to occurrence of vaginal yeasts resistant to azoles. Methods. Vaginal samples were taken from 277 patients that have previously used azoles. Vaginal swabs were obtained for direct microscopy and culture. Yeast isolates were identified by germ tube test and assimilation pattern. Susceptibility testing was determined using a tablet diffusion method. Results. The number of clinical Candida isolates (one from each patient) was 57 (20.6%). C. albicans was the predominant species (70%), followed by C. parapsilosis (12%), C. tropicalis (5.3%), C. glabrata and C. famata (3.5% each), C. krusei, C. inconspicua and C. guilliermondii (1.7% each). The majority of vaginal Candida isolates were susceptible to ketoconazole (91%), fluconazole (96.5%), and itraconazole (98%). A lower susceptibility of some isolates to miconazole (63%) was observed as compared to the other azoles tested. Moreover, the strains, nonsusceptible to miconazole, were more often obtained from patients that have used this antifungal at least four times within the last year before taking the samples as compared to those with three or less treatments (P<.01). Conclusion. An indiscriminate use of miconazole, such as that observed among female prostitutes in Costa Rica, results in a reduced susceptibility of vaginal yeasts to miconazole but not to other azoles. PMID:18273407

  12. Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole.

    PubMed

    Ahmad, Aijaz; Khan, Amber; Manzoor, Nikhat

    2013-01-23

    Thymol (THY) and carvacrol (CARV), the principal chemical components of thyme oil have long been known for their wide use in medicine due to antimicrobial and disinfectant properties. This study, however, draws attention to a possible synergistic antifungal effect of these monoterpenes with azole antimycotic-fluconazole. Resistance to azoles in Candida albicans involves over-expression of efflux-pump genes MDR1, CDR1, CDR2 or mutations and over-expression of target gene ERG11. The inhibition of drug efflux pumps is considered a feasible strategy to overcome clinical antifungal resistance. To put forward this approach, we investigated the combination effects of these monoterpenes and FLC against 38 clinically obtained FLC-sensitive, and eleven FLC-resistant Candida isolates. Synergism was observed with combinations of THY-FLC and CARV-FLC evaluated by checkerboard microdilution method and nature of the interactions was calculated by FICI. In addition, antifungal activity was assessed using agar-diffusion and time-kill curves. The drug efflux activity was determined using two dyes, Rhodamine6G (R6G) and fluorescent Hoechst 33342. No significant differences were observed in dye uptakes between FLC-susceptible and resistant isolates, incubated in glucose free buffer. However, a significantly higher efflux was recorded in FLC-resistant isolates when glucose was added. Both monoterpenes inhibited efflux by 70-90%, showing their high potency to block drug transporter pumps. Significant differences, in the expression levels of CDR1 and MDR1, induced by monoterpenes revealed reversal of FLC-resistance. The selectively fungicidal characteristics and ability to restore FLC susceptibility in resistant isolates signify a promising candidature of THY and CARV as antifungal agents in combinational treatments for candidiasis. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Antifungal Resistance, Metabolic Routes as Drug Targets, and New Antifungal Agents: An Overview about Endemic Dimorphic Fungi

    PubMed Central

    Parente-Rocha, Juliana Alves; Bailão, Alexandre Melo; Amaral, André Correa; Paccez, Juliano Domiraci; Borges, Clayton Luiz

    2017-01-01

    Diseases caused by fungi can occur in healthy people, but immunocompromised patients are the major risk group for invasive fungal infections. Cases of fungal resistance and the difficulty of treatment make fungal infections a public health problem. This review explores mechanisms used by fungi to promote fungal resistance, such as the mutation or overexpression of drug targets, efflux and degradation systems, and pleiotropic drug responses. Alternative novel drug targets have been investigated; these include metabolic routes used by fungi during infection, such as trehalose and amino acid metabolism and mitochondrial proteins. An overview of new antifungal agents, including nanostructured antifungals, as well as of repositioning approaches is discussed. Studies focusing on the development of vaccines against antifungal diseases have increased in recent years, as these strategies can be applied in combination with antifungal therapy to prevent posttreatment sequelae. Studies focused on the development of a pan-fungal vaccine and antifungal drugs can improve the treatment of immunocompromised patients and reduce treatment costs. PMID:28694566

  14. Enhancement of commercial antifungal agents by kojic acid

    USDA-ARS?s Scientific Manuscript database

    Kojic acid (KA), a natural by-product of fungal fermentation, is a commonly used food and cosmetic additive. We show that KA increases activity of amphotericin B and strobilurin, medical and agricultural antifungal agents, respectively, possibly targeting the fungal antioxidative system. KA shows pr...

  15. The synergy of honokiol and fluconazole against clinical isolates of azole-resistant Candida albicans.

    PubMed

    Jin, J; Guo, N; Zhang, J; Ding, Y; Tang, X; Liang, J; Li, L; Deng, X; Yu, L

    2010-09-01

    To evaluate the interaction of fluconazole (FLC) and honokiol (HNK) in vitro and vivo against azole-resistant (azole-R) clinical isolates of Candida albicans. A checkerboard microdilution method was used to study the in vitro interaction of FLC and HNK in 24 azole-R clinical isolates of C. albicans. In vivo antifungal activity was performed to further analyse the interaction between FLC and HNK. In the in vitro study, synergism was observed in all 24 FLC-resistant strains tested as determined by fractional inhibitory concentration index (FICI), and in 22 strains by Delta E models. No antagonistic activity was observed in any of the strains tested. These positive interactions were also confirmed by using the time-killing test for the selected strain C. albicans YL371, which shows strong susceptible to the combination of HNK and FLC. In the in vivo study, the mice with candidiasis were treated successfully by a combination therapy of HNK with FLC, the results showed a decrease of the colony forming unit in infected and treated animals compared to the controls, at the conditions of the treatment used in this study. Synergistic activity of HNK and FLC against clinical isolates of FLC-resistant C. albicans was observed in vitro and in vivo. This report might provide a potential therapeutic method to overcome the problem of drug-resistance in C. albicans.

  16. Characterization of Antifungal Activity and Nail Penetration of ME1111, a New Antifungal Agent for Topical Treatment of Onychomycosis

    PubMed Central

    Takei-Masuda, Naomi; Kubota, Natsuki; Takahata, Sho; Ohyama, Makoto; Kaneda, Kaori; Iida, Maiko; Maebashi, Kazunori

    2015-01-01

    Fungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate the in vitro antifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 showed potent antifungal activity against Trichophyton rubrum and Trichophyton mentagrophytes (the major etiologic agents of onychomycosis) strains isolated in Japan and reference fungal strains with an MIC range of 0.12 to 0.5 mg/liter and an MIC50 and MIC90 of 0.5 mg/liter for both. Importantly, none of the tested isolates showed an elevated ME1111 MIC. Moreover, the antifungal activity of ME1111 was minimally affected by 5% wool keratin powder in comparison to the other antifungals tested. The ME1111 solution was able to penetrate human nails and inhibit fungal growth in a dose-dependent manner according to the TurChub assay. In contrast, 8% ciclopirox and 5% amorolfine nail lacquers showed no activity under the same conditions. ME1111 demonstrated approximately 60-fold-greater selectivity in inhibition of Trichophyton spp. than of human cell lines. Our findings demonstrate that ME1111 possesses potent antidermatophyte activity, maintains this activity in the presence of keratin, and possesses excellent human nail permeability. These results suggest that ME1111 is a promising topical medication for the treatment of onychomycosis and therefore warrants further clinical evaluation. PMID:26643333

  17. [Antifungals cellular targets and mechanisms of resistance].

    PubMed

    Accoceberry, Isabelle; Noël, Thierry

    2006-01-01

    Antifungals of systemic use for the treatment of invasive fungal infections belong to four main chemical families which have globally three cellular targets in fungal cells: fluorinated pyrimidines act on deoxyribonucleic acid (DNA) replication and protein synthesis; polyenes and azoles are toxic for ergosterol and its biosynthetic pathway; lipopeptides inhibit the synthesis of cell wall beta glucans. The resistance mechanisms that are developed by some fungi begin to be well understood particularly in Candida yeasts. The underlying bases of these mechanisms are either mutations that modify the antifungal target, or that block access to the target, and, on the other hand, the overexpression of genes encoding the target, or some membrane proteins involved in the active efflux of antifungal drugs.

  18. Antifungal Microbial Agents for Food Biopreservation-A Review.

    PubMed

    Leyva Salas, Marcia; Mounier, Jérôme; Valence, Florence; Coton, Monika; Thierry, Anne; Coton, Emmanuel

    2017-07-08

    Food spoilage is a major issue for the food industry, leading to food waste, substantial economic losses for manufacturers and consumers, and a negative impact on brand names. Among causes, fungal contamination can be encountered at various stages of the food chain (e.g., post-harvest, during processing or storage). Fungal development leads to food sensory defects varying from visual deterioration to noticeable odor, flavor, or texture changes but can also have negative health impacts via mycotoxin production by some molds. In order to avoid microbial spoilage and thus extend product shelf life, different treatments-including fungicides and chemical preservatives-are used. In parallel, public authorities encourage the food industry to limit the use of these chemical compounds and develop natural methods for food preservation. This is accompanied by a strong societal demand for 'clean label' food products, as consumers are looking for more natural, less severely processed and safer products. In this context, microbial agents corresponding to bioprotective cultures, fermentates, culture-free supernatant or purified molecules, exhibiting antifungal activities represent a growing interest as an alternative to chemical preservation. This review presents the main fungal spoilers encountered in food products, the antifungal microorganisms tested for food bioprotection, and their mechanisms of action. A focus is made in particular on the recent in situ studies and the constraints associated with the use of antifungal microbial agents for food biopreservation.

  19. Epidemiology and antifungal susceptibilities of yeasts causing vulvovaginitis in a teaching hospital.

    PubMed

    Gamarra, Soledad; Morano, Susana; Dudiuk, Catiana; Mancilla, Estefanía; Nardin, María Elena; de Los Angeles Méndez, Emilce; Garcia-Effron, Guillermo

    2014-10-01

    Vulvovaginal candidiasis is one of the most common mycosis. However, the information about antifungal susceptibilities of the yeasts causing this infection is scant. We studied 121 yeasts isolated from 118 patients with vulvovaginal candidiasis. The isolates were identified by phenotypic and molecular methods, including four phenotypic methods described to differentiate Candida albicans from C. dubliniensis. Antifungal susceptibility testing was performed according to CLSI documents M27A3 and M27S4 using the drugs available as treatment option in the hospital. Diabetes, any antibacterial and amoxicillin treatment were statistically linked with vulvovaginal candidiasis, while oral contraceptives were not considered a risk factor. Previous azole-based over-the-counter antifungal treatment was statistically associated with non-C.albicans yeasts infections. The most common isolated yeast species was C. albicans (85.2 %) followed by C. glabrata (5 %), Saccharomyces cerevisiae (3.3 %), and C. dubliniensis (2.5 %). Fluconazole- and itraconazole-reduced susceptibility was observed in ten and in only one C. albicans strains, respectively. All the C. glabrata isolates showed low fluconazole MICs. Clotrimazole showed excellent potency against all but seven isolates (three C. glabrata, two S. cerevisiae, one C. albicans and one Picchia anomala). Any of the strains showed nystatin reduced susceptibility. On the other hand, terbinafine was the less potent drug. Antifungal resistance is still a rare phenomenon supporting the use of azole antifungals as empirical treatment of vulvovaginal candidiasis.

  20. Luliconazole, an alternative antifungal agent against Aspergillus terreus.

    PubMed

    Zargaran, M; Taghipour, S; Kiasat, N; Aboualigalehdari, E; Rezaei-Matehkolaei, A; Zarei Mahmoudabadi, A; Shamsizadeh, F

    2017-09-01

    Aspergillus terreus is the fourth leading cause of invasive and non-invasive aspergillosis and one of the causative agents of morbidity and mortality among immunocompromised and high-risk patients. A. terreus appears to have increased as a cause of opportunistic fungal infections from superficial to serious invasive infections. Although, invasive aspergillosis is often treated empirically with amphotericin B, most A. terreus isolates are resistant both in vivo and in vitro to some antifungal drugs. In this study, we aimed to evaluate antifungals susceptibility profiles of the different strains of A. terreus against amphotericin B, caspofungin, fluconazole, voriconazole, posaconazole and luliconazole. Forty A. terreus strains originating from environmental sources (air and soil) were identified using by macroscopic and microscopic features. Six antifungals including, amphotericin B, caspofungin, fluconazole, voriconazole, posaconazole and luliconazole were applied for susceptibility tests. Our results show that tested isolates had different susceptibility to antifungals. The lowest MIC GM related to luliconazole (0.00236μg/ml), followed by posaconazole (0.18621μg/ml), voriconazole (0.22925μg/ml), caspofungin (0.86μg/ml), fluconazole (8μg/ml) and amphotericin B (11.12μg/ml). This study demonstrated that luliconazole had an excellent in vitro activity against all tested isolates of A. terreus, with MIC GM 0.00236μg/mL than other tested antifungals. As a result, luliconazole could be a possible alternative antifungal for the treatment of aspergillosis due to A. terreus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Efficacy of azole therapy for tegumentary leishmaniasis: A systematic review and meta-analysis.

    PubMed

    Galvão, Endi Lanza; Rabello, Ana; Cota, Gláucia Fernandes

    2017-01-01

    Several controlled and uncontrolled studies addressing azole antifungal drugs for cutaneous and mucosal leishmaniasis have been published with inconclusive results. We conducted a systematic literature review of studies evaluating the efficacy and toxicity associated with azole therapy for tegumentary leishmaniasis. PRISMA guidelines for systematic reviews and the Cochrane manual were followed, and the review methodology was registered (PROSPERO; CRD42016048668). Sources included the EMBASE, Web of Science, MEDLINE, LILACS, and IBECS databases along with a manual search of references from evaluated studies. Additional resources such as Google Scholar and clinicaltrials.gov were also searched. We included all studies reporting cure rate after cutaneous or mucosal leishmaniasis treatment with systemic azole drugs, regardless of their design. R software was used to estimate global rates of success and adverse events with each drug. The main outcome of interest was clinical cure, defined as complete re-epithelialization of all lesions. A total of 37 studies involving 1259 patients that reported outcomes after fluconazole (9), ketoconazole (14) and itraconazole (15) treatments were included. Only 14 (38%) were randomized controlled trials (RCT). The pooled azole final efficacy rate was 64% (CI95%: 57-70%) for all studies and 60% (CI95%: 50-70%) (p = 0.41) if only RCTs studies were considered. Twenty-four studies were conducted in the Old World and 13 studies in the Americas. The final efficacy rate according to New and Old World were 62% (CI95%: 43-77%) and 66% (CI95%: 58-73%), respectively. The final efficacy rate of azoles according to species were 89% (CI95%: 50-98%) for L. mexicana; 88% for L. infantum (CI95%: 27-99%); 80% for L. donovani; 53% (CI95%: 29-76%) for L. major; 49% for L. braziliensis (CI95%: 21-78%); and 15% (CI95%: 1-84%) for L. tropica. The cure rates were similar among the fluconazole, ketoconazole and itraconazole group arms (p = 0.89), specifically

  2. The widely used ATB FUNGUS 3 automated readings in China and its misleading high MICs of Candida spp. to azoles: challenges for developing countries' clinical microbiology labs.

    PubMed

    Zhang, Li; Wang, He; Xiao, Meng; Kudinha, Timothy; Mao, Lei-Li; Zhao, Hao-Ran; Kong, Fanrong; Xu, Ying-Chun

    2014-01-01

    The rapid development in the clinical microbiology diagnostic assays presents more challenges for developing countries than for the developed world, especially in the area of test validation before the introduction of new tests. Here we report on the misleading high MICs of Candida spp. to azoles using the ATB FUNGUS 3 (bioMérieux, La Balme-les Grottes, France) with automated readings in China to highlight the dangers of introducing a diagnostic assay without validation. ATB FUNGUS 3 is the most commonly used commercial antifungal susceptibility testing method in China. An in-depth analysis of data showed higher levels of resistance to azoles when ATB FUNGUS 3 strips were read automatically than when read visually. Based on this finding, the performance of ATB FUNGUS 3, read both visually and automatically, was evaluated by testing 218 isolates of five clinically important Candida species, using broth microdilution (BMD) following CLSI M27-A3 as the gold-standard. The overall essential agreement (EA) between ATB visual readings and BMD was 99.1%. In contrast, the ATB automated readings showed higher discrepancies with BMD, with overall EA of 86.2%, and specifically lower EA was observed for fluconazole (80.7%), voriconazole (77.5%), and itraconazole (73.4%), which was most likely due to the trailing effect of azoles. The major errors in azole drug susceptibilities by ATB automated readings is a concern in China that can result in misleading clinical antifungal drug selection and pseudo high rates of antifungal resistance. Therefore, the ATB visual reading is generally recommended. In the meantime, we propose a practical algorithm to be followed for ATB FUNGUS 3 antifungal susceptibility for Candida spp. before the improvement in the automated reading system.

  3. Granulocyte Colony-Stimulating Factor and Azole Antifungal Therapy in Murine Aspergillosis: Role of Immune Suppression

    PubMed Central

    Graybill, John R.; Bocanegra, Rosie; Najvar, Laura K.; Loebenberg, David; Luther, Mike F.

    1998-01-01

    Outbred ICR mice were immune suppressed either with hydrocortisone or with 5-fluorouracil and were infected intranasally with Aspergillus fumigatus. Beginning 3 days before infection some groups of mice were given recombinant human granulocyte colony-stimulating factor (G-CSF), SCH56592 (an antifungal triazole), or both. Corticosteroid-pretreated mice responded to SCH56592 and had reduced counts in lung tissue and prolonged survival. In these mice, G-CSF strongly antagonized the antifungal activity of SCH56592. Animals treated with both agents developed large lung abscesses with polymorphonuclear leukocytes and large amounts of Aspergillus. In contrast, mice made neutropenic with 5-fluorouracil and then infected with A. fumigatus conidia benefited from either G-CSF or triazoles, and the effect of the combination was additive rather than antagonistic. Host predisposing factors contribute in different ways to the outcome of growth factor therapy in aspergillosis. PMID:9756743

  4. Ibuprofen Potentiates the In Vivo Antifungal Activity of Fluconazole against Candida albicans Murine Infection

    PubMed Central

    Miranda, Isabel M.; Silva-Dias, Ana; Silva, Ana P.; Rodrigues, Acácio G.; Pina-Vaz, Cidália

    2015-01-01

    Candida albicans is the most prevalent cause of fungemia worldwide. Its ability to develop resistance in patients receiving azole antifungal therapy is well documented. In a murine model of systemic infection, we show that ibuprofen potentiates fluconazole antifungal activity against a fluconazole-resistant strain, drastically reducing the fungal burden and morbidity. The therapeutic combination of fluconazole with ibuprofen may constitute a new approach for the management of antifungal therapeutics to reverse the resistance conferred by efflux pump overexpression. PMID:25845879

  5. Candidal colonization, strain diversity, and antifungal susceptibility among adult diabetic patients.

    PubMed

    Al-Attas, Safia A; Amro, Soliman O

    2010-01-01

    Candidal colonization in diabetics is a matter of debate. The aim of this study is to investigate oral candidal colonization, strain diversity, antifungal susceptibility, and the influence of local and systemic host factors on candidal colonization in adult diabetics. We conducted a case-control study that compared 150 diabetics (49 type 1, 101 type 2) with 50 healthy controls. Two salivary samples were collected, using the oral rinse sampling method: one for salivary flow rate and pH determination, and the other for candidal colonization assessment. The candidal isolates were identified and tested in vitro for antifungal susceptibility using the commercial kit, Candifast. The relationship between specific host factors and candidal colonization was also investigated. Diabetics had a higher candidal carriage rate compared to controls, but not density. Candida albicans was the most frequently isolated species, but diabetics had a variety of other candidal species present. None of the control samples were resistant to any tested antifungal, while the diabetic samples had differing resistances to azole antifungals. Although there was a significant positive correlation between glycemic control and candidal colonization in type 2 diabetics, there was a negative correlation between salivary pH and candidal carriage in the controls versus density in type 2 diabetics. Diabetic patients not only had a higher candidal carriage rate, but also a variety of candidal species that were resistant to azole antifungals. Oral candidal colonization was significantly associated with glycemic control, type of diabetes, and salivary pH.

  6. A D-octapeptide drug efflux pump inhibitor acts synergistically with azoles in a murine oral candidiasis infection model.

    PubMed

    Hayama, Kazumi; Ishibashi, Hiroko; Ishijima, Sanae A; Niimi, Kyoko; Tansho, Shigeru; Ono, Yasuo; Monk, Brian C; Holmes, Ann R; Harding, David R K; Cannon, Richard D; Abe, Shigeru

    2012-03-01

    Clinical management of patients undergoing treatment of oropharyngeal candidiasis with azole antifungals can be impaired by azole resistance. High-level azole resistance is often caused by the overexpression of Candida albicans efflux pump Cdr1p. Inhibition of this pump therefore represents a target for combination therapies that reverse azole resistance. We assessed the therapeutic potential of the D-octapeptide derivative RC21v3, a Cdr1p inhibitor, in the treatment of murine oral candidiasis caused by either the azole-resistant C. albicans clinical isolate MML611 or its azole-susceptible parental strain MML610. RC21v3, fluconazole (FLC), or a combination of both drugs were administered orally to immunosuppressed ICR mice at 3, 24, and 27 h after oral inoculation with C. albicans. FLC protected the mice inoculated with MML610 from oral candidiasis, but was only partially effective in MML611-infected mice. The co-application of RC21v3 (0.02 μmol per dose) potentiated the therapeutic performance of FLC for mice infected with either strain. It caused a statistically significant decrease in C. albicans cfu isolated from the oral cavity of the infected mice and reduced oral lesions. RC21v3 also enhanced the therapeutic activity of itraconazole against MML611 infection. These results indicate that RC21v3 in combination with azoles has potential as a therapy against azole-resistant oral candidiasis. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Variability in the clinical distributions of Candida species and the emergence of azole-resistant non-Candida albicans species in public hospitals in the Midwest region of Brazil.

    PubMed

    Mattos, Karine; Rodrigues, Luana Carbonera; Oliveira, Kelly Mari Pires de; Diniz, Pedro Fernando; Marques, Luiza Inahê; Araujo, Adriana Almeida; Chang, Marilene Rodrigues

    2017-01-01

    Incidence and antifungal susceptibility of Candida spp. from two teaching public hospitals are described. The minimum inhibitory concentrations of fluconazole, voriconazole, itraconazole, and amphotericin B were determined using Clinical Laboratory Standard Institute broth microdilution and genomic differentiation using PCR. Of 221 Candida isolates, 50.2% were obtained from intensive care unit patients; 71.5% were recovered from urine and 9.1% from bloodstream samples. Candida parapsilosis sensu stricto was the most common candidemia agent. We observed variations in Candida species distribution in hospitals in the same geographic region and documented the emergence of non-C. albicans species resistant to azoles.

  8. In Vitro Drug Interaction Modeling of Combinations of Azoles with Terbinafine against Clinical Scedosporium prolificans Isolates

    PubMed Central

    Meletiadis, Joseph; Mouton, Johan W.; Meis, Jacques F. G. M.; Verweij, Paul E.

    2003-01-01

    The in vitro interaction between terbinafine and the azoles voriconazole, miconazole, and itraconazole against five clinical Scedosporium prolificans isolates after 48 and 72 h of incubation was tested by a microdilution checkerboard (eight-by-twelve) technique. The antifungal effects of the drugs alone and in combination on the fungal biomass as well as on the metabolic activity of fungi were measured using a spectrophotometric method and two colorimetric methods, based on the lowest drug concentrations showed 75 and 50% growth inhibition (MIC-1 and MIC-2, respectively). The nature and the intensity of the interactions were assessed using a nonparametric approach (fractional inhibitory concentration [FIC] index model) and a fully parametric response surface approach (Greco model) of the Loewe additivity (LA) no-interaction theory as well as a nonparametric (Prichard model) and a semiparametric response surface approaches of the Bliss independence (BI) no-interaction theory. Statistically significant synergy was found between each of the three azoles and terbinafine in all cases, although with different intensities. A 27- to 64-fold and 16- to 90-fold reduction of the geometric mean of the azole and terbinafine MICs, respectively, was observed when they were combined, resulting in FIC indices of <1 to 0.02. Using the MIC-1 higher levels of synergy were obtained, , which were more consistent between the two incubation periods than using the MIC-2. The strongest synergy among the azoles was found with miconazole using the BI-based models and with voriconazole using the LA-based models. The synergistic effects both on fungal growth and metabolic activity were more potent after 72 h of incubation. Fully parametric approaches in combination with the modified colorimetric method might prove useful for testing the in vitro interaction of antifungal drugs against filamentous fungi. PMID:12499177

  9. The antifungal pipeline: a reality check

    PubMed Central

    Perfect, John R.

    2017-01-01

    Invasive fungal infections continue to appear in record numbers as the immunocompromised population of the world increases, owing partially to the increased number of individuals who are infected with HIV and partially to the successful treatment of serious underlying diseases. The effectiveness of current antifungal therapies — polyenes, flucytosine, azoles and echinocandins (as monotherapies or in combinations for prophylaxis, or as empiric, pre-emptive or specific therapies) — in the management of these infections has plateaued. Although these drugs are clinically useful, they have several limitations, such as off-target toxicity, and drug-resistant fungi are now emerging. New antifungals are therefore needed. In this Review, I discuss the robust and dynamic antifungal pipeline, including results from preclinical academic efforts through to pharmaceutical industry products, and describe the targets, strategies, compounds and potential outcomes. PMID:28496146

  10. Epidemiology and antifungal susceptibilities of yeast isolates causing invasive infections across urban Beijing, China.

    PubMed

    Guo, Li-Na; Xiao, Meng; Cao, Bin; Qu, Fen; Zhan, Yu-Liang; Hu, Yun-Jian; Wang, Xin-Ru; Liang, Guo-Wei; Gu, Hai-Tong; Qi, Jun; Yuan, Hui; Min, Rong; Wang, Fei-Yan; Liu, Lin-Juan; Wang, Hai-Bin; Jiang, Wei; Duan, Xue-Guang; Xu, Wen-Jian; Yu, Yan-Hua; Su, Jian-Rong; Zhang, Jian-Zhong; Nong, Jin-Qing; Liu, Shu-Mei; Li, Jun; Liu, Jun-Ting; Yue, Zhi-Gang; Yang, Duo; Guo, Jie; Zhao, Rui; Zhang, Ya-Nan; Yang, Xi-Ming; Liu, Xiao-Qing; Hsueh, Po-Ren; Xu, Ying-Chun

    2017-09-01

    To investigate the species distribution and antifungal susceptibility profiles of yeast isolates causing invasive infections across Beijing. A total of 1201 yeast isolates recovered from blood and other sterile body fluids were correctly identified by matrix-assisted laser desorption/ionization TOF MS supplemented by DNA sequencing. Antifungal susceptibility testing was performed according to the Clinical and Laboratory Standards Institute broth microdilution method. Candida (95.5%) remained the most common yeast species isolated; Candida albicans (38.8%) and Candida parapsilosis (22.6%) were the leading species of candidemia. Azole resistances were mainly observed in Candida glabrata and Candida tropicalis isolates. This study outlined the epidemiologic data of invasive yeast infections and highlighted the need for continuous monitoring of azole resistances among C. glabrata and C. tropicalis isolates in Beijing.

  11. Sedaxicenes: potential new antifungal ferrocene-based agents?

    PubMed

    Rubbiani, R; Blacque, O; Gasser, G

    2016-04-21

    Fungal infections are a group of diseases spread all over the world with an extremely high morbidity. Worryingly, although several pathogenic fungi were found to develop resistance towards traditional therapy, research towards the discovery of novel antimycotic agents is very limited. Considering the promising results obtained with the ferrocene-based drug candidates Ferroquine and Ferrocifen as antimalarial and anticancer drug candidates, respectively, we envisaged derivatizing the organic scaffold of a new broad-spectrum fungicide, namely sedaxane, with a ferrocenyl moiety in order to obtain new metal-based antifungal agents. The new ferrocenyl sedaxane derivatives called herein Sedaxicenes (, and ) were characterized using different analytical techniques and the structures were confirmed by X-ray crystallography. As expected for antimycotic agents, , and were found to have a low or even no toxicity towards human cells (IC50 > 100 μM). Interestingly, while the parent drug did not display any mycotoxicity (EC50 > 100 μM), complex was found to have some antifungal activity with an IC50 value of 43 μM under the same experimental conditions. In order to investigate the possible redox-mediated mode of action of , we synthesized the ruthenocene analogue of , namely . Ruthenocene is known to have a completely different electrochemical behaviour from ferrocene although both the compounds are isostructural. As anticipated, complex was found to induce an increase of the reactive oxygen species level in S. cerevisiae, contrary to its analogue and to the parent compound sedaxane.

  12. Antifungal Microbial Agents for Food Biopreservation—A Review

    PubMed Central

    Leyva Salas, Marcia; Mounier, Jérôme; Coton, Monika; Thierry, Anne; Coton, Emmanuel

    2017-01-01

    Food spoilage is a major issue for the food industry, leading to food waste, substantial economic losses for manufacturers and consumers, and a negative impact on brand names. Among causes, fungal contamination can be encountered at various stages of the food chain (e.g., post-harvest, during processing or storage). Fungal development leads to food sensory defects varying from visual deterioration to noticeable odor, flavor, or texture changes but can also have negative health impacts via mycotoxin production by some molds. In order to avoid microbial spoilage and thus extend product shelf life, different treatments—including fungicides and chemical preservatives—are used. In parallel, public authorities encourage the food industry to limit the use of these chemical compounds and develop natural methods for food preservation. This is accompanied by a strong societal demand for ‘clean label’ food products, as consumers are looking for more natural, less severely processed and safer products. In this context, microbial agents corresponding to bioprotective cultures, fermentates, culture-free supernatant or purified molecules, exhibiting antifungal activities represent a growing interest as an alternative to chemical preservation. This review presents the main fungal spoilers encountered in food products, the antifungal microorganisms tested for food bioprotection, and their mechanisms of action. A focus is made in particular on the recent in situ studies and the constraints associated with the use of antifungal microbial agents for food biopreservation. PMID:28698479

  13. D-Cateslytin: a new antifungal agent for the treatment of oral Candida albicans associated infections.

    PubMed

    Dartevelle, Pauline; Ehlinger, Claire; Zaet, Abdurraouf; Boehler, Christian; Rabineau, Morgane; Westermann, Benoit; Strub, Jean-Marc; Cianferani, Sarah; Haïkel, Youssef; Metz-Boutigue, Marie-Hélène; Marban, Céline

    2018-06-18

    The excessive use of antifungal agents, compounded by the shortage of new drugs being introduced into the market, is causing the accumulation of multi-resistance phenotypes in many fungal strains. Consequently, new alternative molecules to conventional antifungal agents are urgently needed to prevent the emergence of fungal resistance. In this context, Cateslytin (Ctl), a natural peptide derived from the processing of Chromogranin A, has already been described as an effective antimicrobial agent against several pathogens including Candida albicans. In the present study, we compared the antimicrobial activity of two conformations of Ctl, L-Ctl and D-Ctl against Candida albicans. Our results show that both D-Ctl and L-Ctl were potent and safe antifungal agents. However, in contrast to L-Ctl, D-Ctl was not degraded by proteases secreted by Candida albicans and was also stable in saliva. Using video microscopy, we also demonstrated that D-Ctl can rapidly enter C. albicans, but is unable to spread within a yeast colony unless from a mother cell to a daughter cell during cellular division. Besides, we revealed that the antifungal activity of D-Ctl could be synergized by voriconazole, an antifungal of reference in the treatment of Candida albicans related infections. In conclusion, D-Ctl can be considered as an effective, safe and stable antifungal and could be used alone or in a combination therapy with voriconazole to treat Candida albicans related diseases including oral candidosis.

  14. Posaconazole: an extended-spectrum triazole antifungal agent.

    PubMed

    Schiller, Daryl S; Fung, Horatio B

    2007-09-01

    The incidence of invasive fungal infections (IFIs) caused by opportunistic filamentous molds is increasing, along with emerging fungal resistance. Posaconazole, a structural analogue of itraconazole that was approved for marketing in the United States in 2006, appears to be a promising antifungal agent. This article provides an overview of the pharmacology, efficacy, and tolerability of posaconazole when used for the prophylaxis and treatment of various common and rare fungal infections. Relevant information was identified through a search of MEDLINE (1966-April 2007), International Pharmaceutical Abstracts (1970-April 2007), and abstracts of the Interscience Conference on Antimicrobial Agents and Chemotherapy using the terms posaconazole and SCH 56592. Additional resources were found by searching the reference lists of the identified articles and the US Food and Drug Administration Web site. Posaconazole is available as an oral suspension. It is highly distributed to various sites, including bone, the central nervous system, and eye tissue. Its Vd is 2447 L when administered in multiple daily doses (up to 800 mg/d) in the presence of a high-fat meal. Because it is excreted mostly as unchanged drug in the feces (77%), posaconazole can be administered to patients with poor renal function without any dose adjustment. Posaconazole has shown in vitro and in vivo activity against a wide variety of fungi, including those that are rare and relatively resistant. Two clinical trials have compared posaconazole with fluconazole or itraconazole for the prophylaxis of IFIs in immunocompromised patients. The first, a randomized, double-blind trial in 600 recipients of hematopoietic stem cell transplants, found that overall rates of IFI did not differ significantly between posaconazole and fluconazole (5% vs 9%, respectively). The other, a randomized, open-label trial in 602 neutropenic patients, reported significantly fewer IFIs in patients receiving posaconazole compared with

  15. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans

    PubMed Central

    Cui, Jinhui; Ren, Biao; Tong, Yaojun; Dai, Huanqin; Zhang, Lixin

    2015-01-01

    Candida albicans, one of the pathogenic Candida species, causes high mortality rate in immunocompromised and high-risk surgical patients. In the last decade, only one new class of antifungal drug echinocandin was applied. The increased therapy failures, such as the one caused by multi-drug resistance, demand innovative strategies for new effective antifungal drugs. Synergistic combinations of antifungals and anti-virulence agents highlight the pragmatic strategy to reduce the development of drug resistant and potentially repurpose known antifungals, which bypass the costly and time-consuming pipeline of new drug development. Anti-virulence and synergistic combination provide new options for antifungal drug discovery by counteracting the difficulty or failure of traditional therapy for fungal infections. PMID:26048362

  16. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans.

    PubMed

    Cui, Jinhui; Ren, Biao; Tong, Yaojun; Dai, Huanqin; Zhang, Lixin

    2015-01-01

    Candida albicans, one of the pathogenic Candida species, causes high mortality rate in immunocompromised and high-risk surgical patients. In the last decade, only one new class of antifungal drug echinocandin was applied. The increased therapy failures, such as the one caused by multi-drug resistance, demand innovative strategies for new effective antifungal drugs. Synergistic combinations of antifungals and anti-virulence agents highlight the pragmatic strategy to reduce the development of drug resistant and potentially repurpose known antifungals, which bypass the costly and time-consuming pipeline of new drug development. Anti-virulence and synergistic combination provide new options for antifungal drug discovery by counteracting the difficulty or failure of traditional therapy for fungal infections.

  17. Prevalence and characterization of azole-resistant Aspergillus fumigatus in patients with cystic fibrosis: a prospective multicentre study in Germany.

    PubMed

    Seufert, R; Sedlacek, L; Kahl, B; Hogardt, M; Hamprecht, A; Haase, G; Gunzer, F; Haas, A; Grauling-Halama, S; MacKenzie, C R; Essig, A; Stehling, F; Sutharsan, S; Dittmer, S; Killengray, D; Schmidt, D; Eskandarian, N; Steinmann, E; Buer, J; Hagen, F; Meis, J F; Rath, P-M; Steinmann, J

    2018-04-19

    Aspergillus fumigatus is the most prevalent filamentous fungus in the respiratory tract of patients with cystic fibrosis (CF). The aim of this prospective multicentre study was to investigate the prevalence of azole-resistant A. fumigatus (ARAF) in respiratory secretions from CF patients across Germany and to characterize ARAF isolates by phenotypic and molecular methods. Twelve tertiary care centres from Germany participated in the study. In total, 2888 A. fumigatus isolates from 961 CF patients were screened for ARAF by using azole-containing agar plates. Antifungal susceptibility testing of isolates was performed by broth microdilution according to EUCAST guidelines. Analysis of mutations mediating resistance was performed using PCR and sequencing of the cyp51A gene. Furthermore, genotyping by microsatellite PCR was performed. Of a total of 2888 A. fumigatus isolates, 101 isolates from 51 CF patients were found to be azole resistant (prevalence per patient 5.3%). The Essen centre had the highest prevalence (9.1%) followed by Munich (7.8%), Münster (6.0%) and Hannover (5.2%). Most ARAF isolates (n = 89) carried the TR34/L98H mutation followed by eight G54E/R, one TR46/Y121F/T289A and one F219S mutation. In two isolates no mutation was found. Genotyping results showed no major clustering. Forty-five percent of CF patients with ARAF had previously received azole therapy. This is the first multicentre study analysing the prevalence of ARAF isolates in German CF patients. Because of a resistance rate of up to 9%, susceptibility testing of A. fumigatus isolates from CF patients receiving antifungal treatment should be part of standard diagnostic work-up.

  18. In vitro activity of the novel antifungal compound F901318 against difficult-to-treat Aspergillus isolates.

    PubMed

    Buil, J B; Rijs, A J M M; Meis, J F; Birch, M; Law, D; Melchers, W J G; Verweij, P E

    2017-09-01

    F901318 is a new antifungal agent with a novel mechanism of action with activity against Aspergillus species. We investigated the in vitro activity of F901318 against a collection of Aspergillus isolates. A total of 213 Aspergillus isolates were used in this study. A total of 143 Aspergillus fumigatus sensu stricto isolates were used, of which 133 were azole resistant [25 TR34/L98H; 25 TR46/Y121F/T289A; 33 A. fumigatus with cyp51A-associated point mutations (25 G54, 1 G432 and 7 M220); and 50 azole-resistant A. fumigatus without known resistance mechanisms]. Ten azole-susceptible A. fumigatus isolates were used as WT controls. The in vitro activity was also determined against Aspergillus calidoustus (25 isolates), Aspergillus flavus (10), Aspergillus nidulans (10) and Aspergillus tubingensis (25). F901318 activity was compared with that of itraconazole, voriconazole, posaconazole, isavuconazole, amphotericin B and anidulafungin. Minimum effective concentrations and MICs were determined using the EUCAST broth microdilution method. F901318 was active against all tested isolates: A. fumigatus WT, MIC90 0.125 mg/L (range 0.031-0.125); TR34/L98H,TR46/Y121F/T289A and azole resistant without known resistance mechanisms, MIC90 0.125 mg/L (range 0.031-0.25); A. fumigatus with cyp51A-associated point mutations, MIC90 0.062 mg/L (range 0.015-0.125); and other species, A. calidoustus MIC90 0.5 mg/L (range 0.125-0.5), A. flavus MIC90 0.062 mg/L (range 0.015-0.62), A. nidulans MIC90 0.125 mg/L (range 0.062-0.25) and A. tubingensis MIC90 0.062 mg/L (range 0.015-0.25). F901318 showed potent and consistent in vitro activity against difficult-to-treat Aspergillus spp. with intrinsic and acquired antifungal resistance due to known and unknown resistance mechanisms, suggesting no significant implications of azole resistance mechanisms for the mode of action of F901318. © The Author 2017. Published by Oxford University Press on behalf of the British Society for

  19. Imaging microscopic distribution of antifungal agents in dandruff treatments with stimulated Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Garrett, Natalie L.; Singh, Bhumika; Jones, Andrew; Moger, Julian

    2017-06-01

    Treatment of dandruff condition usually involves use of antidandruff shampoos containing antifungal agents. Different antifungal agents show variable clinical efficacy based on their cutaneous distribution and bioavailability. Using stimulated Raman scattering (SRS), we mapped the distribution of unlabeled low-molecular weight antifungal compounds zinc pyrithione (ZnPT) and climbazole (CBZ) on the surface of intact porcine skin with cellular precision. SRS has sufficient chemical selectivity and sensitivity to detect the agents on the skin surface based on their unique chemical motifs that do not occur naturally in biological tissues. Moreover, SRS is able to correlate the distribution of the agents with the morphological features of the skin using the CH2 stretch mode, which is abundant in skin lipids. This is a significant strength of the technique since it allows the microscopic accumulation of the agents to be correlated with physiological features and their chemical environment without the use of counter stains. Our findings show that due to its lower solubility, ZnPT coats the surface of the skin with a sparse layer of crystals in the size range of 1 to 4 μm. This is consistent with the current understanding of the mode of action of ZnPT. In contrast, CBZ being more soluble and hydrophobic resulted in diffuse homogeneous distribution. It predominantly resided in microscopic lipid-rich crevasses and penetrated up to 60 μm into the infundibular spaces surrounding the hair shaft. The ability of the SRS to selectively map the distribution of agents on the skin's surface has the potential to provide insight into the mechanisms underpinning the topical application of antifungal or skin-active agents that could lead to the rational engineering of enhanced formulations.

  20. Synergistic antimicrobial activity of Boswellia serrata Roxb. ex Colebr. (Burseraceae) essential oil with various azoles against pathogens associated with skin, scalp and nail infections.

    PubMed

    Sadhasivam, S; Palanivel, S; Ghosh, S

    2016-12-01

    Antimicrobials from natural sources have gained immense importance in recent times to combat the global challenge of antibiotic resistance. Essential oils are implicated in antimicrobial action against several species. Here, we have screened nine commercially available essential oils for their antimicrobial activity against organisms associated with skin, scalp and nail infections mainly Propionibacterium acnes, Malassezia spp., Candida albicans and Trichophyton spp. Among nine essential oils, Boswellia serrata essential oil demonstrated superior antimicrobial activity against all the micro-organisms and surprisingly it showed maximum activity against Trichophyton spp. The gas chromatography-mass spectrometry analysis of B. serrata oil indicates a major composition of α thujene, ρ cymene and sabinene. Additionally, B. serrata oil was found to inhibit Staphylococcus epidermidis biofilm, and its combination with azoles has shown synergistic activity against azole-resistant strain of C. albicans. These broad-spectrum antimicrobial activities of B. serrata oil will make it an ideal candidate for topical use. Eradication of skin and nail infections still remain a challenge and there are serious concerns regarding the recurrence of the diseases associated with these infections. Antimicrobials from plant sources are gaining importance in therapeutics because they encounter minimal challenges of emergence of resistance. We have demonstrated the antimicrobial activity of Boswellia serrata essential oil against micro-organisms involved in skin, scalp and nail infections, especially if it has shown favourable synergistic antifungal activity in combination with azoles against the azole-resistant Candida albicans strain. Thus, B. serrata oil can be one of the plausible therapeutic agents for management of skin, scalp and nail infections. © 2016 The Society for Applied Microbiology.

  1. Analysis Of Volatile Fingerprints: A Rapid Screening Method For Antifungal Agents For Efficacy Against Dermatophytes

    NASA Astrophysics Data System (ADS)

    Naraghi, Kamran; Sahgal, Natasha; Adriaans, Beverley; Barr, Hugh; Magan, Naresh

    2009-05-01

    The potential of using an electronic nose (E. nose) for rapid screening dermatophytes to antifungal agents was studied. In vitro, the 50 and 90% effective concentration (EC) values of five antifungal agents for T. rubrum and T. mentagrophytes were obtained by mycelial growth assays. Then, the qualitative volatile production patterns of the growth responses of these fungi to these values were incorporated into solid medium were analysed after 96-120 hrs incubation at 25° C using headspace analyses. Overall, results, using PCA and CA demonstrated that it is possible to differentiate between various treatments within 96-120 hrs. This study showed that potential exists for using qualitative volatile patterns as a rapid screening method for antifungal agents for microorganism. This approach could also facilitate the monitoring of antimicrobial drug activities and infection control programmes and perhaps drug resistance build up in microbial species.

  2. Invasive aspergillosis caused by Aspergillus terreus: an emerging opportunistic infection with poor outcome independent of azole therapy.

    PubMed

    Hachem, Ray; Gomes, Marisa Zenaide Ribeiro; El Helou, Gilbert; El Zakhem, Aline; Kassis, Christelle; Ramos, Elizabeth; Jiang, Ying; Chaftari, Anne-Marie; Raad, Issam I

    2014-11-01

    Invasive aspergillosis (IA) caused by Aspergillus terreus is a significant cause of morbidity and mortality in patients with haematological malignancy (HM). Very few data are available in this patient population to differentiate IA patients with A. terreus from those with non-terreus species of Aspergillus to compare outcomes. We retrospectively investigated 513 HM patients who were treated for either definite or probable IA between June 1993 and August 2012 in a cancer centre. We compared baseline characteristics, antifungal therapies and outcomes between patients infected with A. terreus (n = 96, 18.7%) and those infected with non-terreus Aspergillus species (n = 335, 65.3%). Eighty-one patients with mixed or unspecified Aspergillus infections were excluded. Breakthrough infections occurred more frequently in the A. terreus group (91% versus 77%, P = 0.009). A. terreus infection was associated with a lower rate of final response to antifungal therapy (21% versus 38%, P = 0.0015) and a higher rate of IA-associated mortality (51% versus 30%, P < 0.001). Multivariate analyses showed that these associations were independent of patients' clinical characteristics and the antifungal regimens they received. Factors independently associated with final response included treatment with azoles (OR 3.1, 95% CI 1.9-5.0, P < 0.0001) and Aspergillus species (A. terreus versus non-terreus Aspergillus species) (OR 0.5, 95% CI 0.3-0.98, P = 0.043). Additionally, Aspergillus species and treatment with azoles were independently associated with IA-associated mortality. A. terreus IA in HM patients was associated with worse outcome than IA caused by non-terreus Aspergillus species. Poor prognosis in patients with invasive A. terreus infections is independent of anti-Aspergillus azole-based treatment. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy 2014. This work is written by US Government employees and

  3. Rational Discovery of (+) (S) Abscisic Acid as a Potential Antifungal Agent: a Repurposing Approach.

    PubMed

    Khedr, Mohammed A; Massarotti, Alberto; Mohamed, Maged E

    2018-06-04

    Fungal infections are spreading widely worldwide, and the types of treatment are limited due to the lack of diverse therapeutic agents and their associated side effects and toxicity. The discovery of new antifungal classes is vital and critical. We discovered the antifungal activity of abscisic acid through a rational drug design methodology that included the building of homology models for fungal chorismate mutases and a pharmacophore model derived from a transition state inhibitor. Ligand-based virtual screening resulted in some hits that were filtered using molecular docking and molecular dynamic simulations studies. Both in silico methods and in vitro antifungal assays were used as tools to select and validate the abscisic acid repurposing. Abscisic acid inhibition assays confirmed the inhibitory effect of abscisic acid on chorismate mutase through the inhibition of phenylpyruvate production. The repositioning of abscisic acid, the well-known and naturally occurring plant growth regulator, as a potential antifungal agent because of its suggested action as an inhibitor to several fungal chorismate mutases was the main result of this work.

  4. Dysregulation of Ion Homeostasis by Antifungal Agents

    PubMed Central

    Zhang, Yongqiang; Muend, Sabina; Rao, Rajini

    2012-01-01

    Ion-signaling and transduction networks are central to fungal development and virulence because they regulate gene expression, filamentation, host association, and invasion, pathogen stress response and survival. Dysregulation of ion homeostasis rapidly mediates cell death, forming the mechanistic basis by which a growing number of amphipathic but structurally unrelated compounds elicit antifungal activity. Included in this group is carvacrol, a terpenoid phenol that is a prominent component of oregano and other plant essential oils. Carvacrol triggers an early dose-dependent Ca2+ burst and long lasting pH changes in the model yeast Saccharomyces cerevisiae. The distinct phases of ionic transients and a robust transcriptional response that overlaps with Ca2+ stress and nutrient starvation point to specific signaling events elicited by plant terpenoid phenols, rather than a non-specific lesion of the membrane, as was previously considered. We discuss the potential use of plant essential oils and other agents that disrupt ion-signaling pathways as chemosensitizers to augment conventional antifungal therapy, and to convert fungistatic drugs with strong safety profiles into fungicides. PMID:22493595

  5. Dysregulation of ion homeostasis by antifungal agents.

    PubMed

    Zhang, Yongqiang; Muend, Sabina; Rao, Rajini

    2012-01-01

    Ion-signaling and transduction networks are central to fungal development and virulence because they regulate gene expression, filamentation, host association, and invasion, pathogen stress response and survival. Dysregulation of ion homeostasis rapidly mediates cell death, forming the mechanistic basis by which a growing number of amphipathic but structurally unrelated compounds elicit antifungal activity. Included in this group is carvacrol, a terpenoid phenol that is a prominent component of oregano and other plant essential oils. Carvacrol triggers an early dose-dependent Ca(2+) burst and long lasting pH changes in the model yeast Saccharomyces cerevisiae. The distinct phases of ionic transients and a robust transcriptional response that overlaps with Ca(2+) stress and nutrient starvation point to specific signaling events elicited by plant terpenoid phenols, rather than a non-specific lesion of the membrane, as was previously considered. We discuss the potential use of plant essential oils and other agents that disrupt ion-signaling pathways as chemosensitizers to augment conventional antifungal therapy, and to convert fungistatic drugs with strong safety profiles into fungicides.

  6. Combination of different antifungal agents in oil-in-water emulsions to control strawberry jam spoilage.

    PubMed

    Ribes, Susana; Fuentes, Ana; Talens, Pau; Barat, Jose Manuel

    2018-01-15

    The combination of antifungal agents (cinnamon bark oil, zinc gluconate and trans-ferulic acid) in oil-in-water emulsions to control the fungal spoilage of strawberry jams, minimising essential oil's sensory impact, was evaluated in this work. The in vitro assays of free antifungal agents were performed against five fungal strains; meanwhile, the emulsions assays were conducted against Aspergillus niger given its strong resistance and its relevance in strawberry products. The emulsion formulated with 0.08mg/g of essential oil was able to inhibit mould growth after the incubation period. The incorporation of zinc gluconate or trans-ferulic acid, independently of the concentration used, allowed to reduce a 25% the amount of essential oil needed to inhibit the microbial growth. The combination of antifungal agents in the emulsions has demonstrated to be an effective alternative to reduce the amount of essential oil employed, maintaining the hygienic quality and sensory profile of the strawberry jam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Systematic Phenotyping of a Large-Scale Candida glabrata Deletion Collection Reveals Novel Antifungal Tolerance Genes

    PubMed Central

    Hiller, Ekkehard; Istel, Fabian; Tscherner, Michael; Brunke, Sascha; Ames, Lauren; Firon, Arnaud; Green, Brian; Cabral, Vitor; Marcet-Houben, Marina; Jacobsen, Ilse D.; Quintin, Jessica; Seider, Katja; Frohner, Ingrid; Glaser, Walter; Jungwirth, Helmut; Bachellier-Bassi, Sophie; Chauvel, Murielle; Zeidler, Ute; Ferrandon, Dominique; Gabaldón, Toni; Hube, Bernhard; d'Enfert, Christophe; Rupp, Steffen; Cormack, Brendan; Haynes, Ken; Kuchler, Karl

    2014-01-01

    The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes. PMID:24945925

  8. [A study for testing the antifungal susceptibility of yeast by the Japanese Society for Medical Mycology (JSMM) method. The proposal of the modified JSMM method 2009].

    PubMed

    Nishiyama, Yayoi; Abe, Michiko; Ikeda, Reiko; Uno, Jun; Oguri, Toyoko; Shibuya, Kazutoshi; Maesaki, Shigefumi; Mohri, Shinobu; Yamada, Tsuyoshi; Ishibashi, Hiroko; Hasumi, Yayoi; Abe, Shigeru

    2010-01-01

    The Japanese Society for Medical Mycology (JSMM) method used for testing the antifungal susceptibility of yeast, the MIC end point for azole antifungal agents, is currently set at IC(80). It was recently shown, however that there is an inconsistency in the MIC value between the JSMM method and the CLSI M27-A2 (CLSI) method, in which the end- point was to read as IC(50). To resolve this discrepancy and reassess the JSMM method, the MIC for three azoles, fluconazole, itraconazole and voriconazole were compared to 5 strains of each of the following Candida species: C. albicans, C. glabrata, C. tropicalis, C. parapsilosis and C. krusei, for a total of 25 comparisons, using the JSMM method, a modified JSMM method, and the CLSI method. The results showed that when the MIC end- point criterion of the JSMM method was changed from IC(80) to IC(50) (the modified JSMM method) , the MIC value was consistent and compatible with the CLSI method. Finally, it should be emphasized that the JSMM method, using a spectrophotometer for MIC measurement, was superior in both stability and reproducibility, as compared to the CLSI method in which growth was assessed by visual observation.

  9. Invasive Fungal Infections in Patients with Hematological Malignancies: Emergence of Resistant Pathogens and New Antifungal Therapies

    PubMed Central

    Gamaletsou, Maria N.; Walsh, Thomas J.; Sipsas, Nikolaos V.

    2018-01-01

    Invasive fungal infections caused by drug-resistant organisms are an emerging threat to heavily immunosuppressed patients with hematological malignancies. Modern early antifungal treatment strategies, such as prophylaxis and empirical and preemptive therapy, result in long-term exposure to antifungal agents, which is a major driving force for the development of resistance. The extended use of central venous catheters, the nonlinear pharmacokinetics of certain antifungal agents, neutropenia, other forms of intense immunosuppression, and drug toxicities are other contributing factors. The widespread use of agricultural and industrial fungicides with similar chemical structures and mechanisms of action has resulted in the development of environmental reservoirs for some drug-resistant fungi, especially azole-resistant Aspergillus species, which have been reported from four continents. The majority of resistant strains have the mutation TR34/L98H, a finding suggesting that the source of resistance is the environment. The global emergence of new fungal pathogens with inherent resistance, such as Candida auris, is a new public health threat. The most common mechanism of antifungal drug resistance is the induction of efflux pumps, which decrease intracellular drug concentrations. Overexpression, depletion, and alteration of the drug target are other mechanisms of resistance. Mutations in the ERG11 gene alter the protein structure of C-demethylase, reducing the efficacy of antifungal triazoles. Candida species become echinocandin-resistant by mutations in FKS genes. A shift in the epidemiology of Candida towards resistant non-albicans Candida spp. has emerged among patients with hematological malignancies. There is no definite association between antifungal resistance, as defined by elevated minimum inhibitory concentrations, and clinical outcomes in this population. Detection of genes or mutations conferring resistance with the use of molecular methods may offer better

  10. Species Identification and In Vitro Antifungal Susceptibility of Aspergillus terreus Species Complex Clinical Isolates from a French Multicenter Study.

    PubMed

    Imbert, S; Normand, A C; Ranque, S; Costa, J M; Guitard, J; Accoceberry, I; Bonnal, C; Fekkar, A; Bourgeois, N; Houzé, S; Hennequin, C; Piarroux, R; Dannaoui, E; Botterel, F

    2018-05-01

    Aspergillus section Terrei is a species complex currently comprised of 14 cryptic species whose prevalence in clinical samples as well as antifungal susceptibility are poorly known. The aims of this study were to investigate A. Terrei clinical isolates at the species level and to perform antifungal susceptibility analyses by reference and commercial methods. Eighty-two clinical A. Terrei isolates were collected from 8 French university hospitals. Molecular identification was performed by sequencing parts of beta-tubulin and calmodulin genes. MICs or minimum effective concentrations (MECs) were determined for 8 antifungal drugs using both EUCAST broth microdilution (BMD) methods and concentration gradient strips (CGS). Among the 79 A. Terrei isolates, A. terreus stricto sensu ( n = 61), A. citrinoterreus ( n = 13), A. hortai ( n = 3), and A. alabamensis ( n = 2) were identified. All strains had MICs of ≥1 mg/liter for amphotericin B, except for two isolates (both A. hortai ) that had MICs of 0.25 mg/liter. Four A. terreus isolates were resistant to at least one azole drug, including one with pan-azole resistance, yet no mutation in the CYP51A gene was found. All strains had low MECs for the three echinocandins. The essential agreements (EAs) between BMD and CGS were >90%, except for those of amphotericin B (79.7%) and itraconazole (73.4%). Isolates belonging to the A section Terrei identified in clinical samples show wider species diversity beyond the known A. terreus sensu stricto Azole resistance inside the section Terrei is uncommon and is not related to CYP51A mutations here. Finally, CGS is an interesting alternative for routine antifungal susceptibility testing. Copyright © 2018 American Society for Microbiology.

  11. Flucytosine analogues obtained through Biginelli reaction as efficient combinative antifungal agents.

    PubMed

    Wani, Mohmmad Younus; Ahmad, Aijaz; Kumar, Santosh; Sobral, Abilio J F N

    2017-04-01

    Invasive fungal infection is a problem that continues to challenge the healthcare sector. New antifungals and new therapeutic strategies are needed to address this challenge. We previously reported that the combination of a synthetic compound with a drug with known mechanism of action is a good strategy to treat aggressive and resistant fungi. Here we revisited our approach and synthesized structural analogues of flucytosine, which is a synthetic antifungal and is being studied for its use in combination therapy with other antifungal drugs. Pyrimidin-one and -thione (often known as DHPM's) as flucytosine analogues were obtained through a Biginelli reaction of corresponding aldehydes, ethylacetoacetate and urea/thiourea. Structure was confirmed by FTIR, 1 HNMR, 13 CNMR, COSY and MS (ESI + ) analysis. All the newly synthesized derivatives were evaluated for the antifungal activity alone and in combination of two most commonly used antifungal drugs, amphotericin B and fluconazole against different clinically isolated Candida albicans strains. Minimum inhibitory concentration results confirmed that BG4 possess high antifungal activity against all the tested strains (MIC = 1-32 μg/ml). For all the combinations with amphotericin B and fluconazole, 37% were synergistic followed by 30% additive and 24% indifferent interactions. Interestingly, 9% antagonistic interaction was observed when BG1 and BG3 were combined with fluconazole, however, no antagonistic interaction was observed with amphotericin B. In-depth studies of all the synergies were done by constructing isobolograms with nine different ratio combinations. These results warrant the use of DHPM derivatives as chemosensitising agents which could lower down the dosages of the antifungal drugs to treat invasive fungal diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Anti-Candida albicans natural products, sources of new antifungal drugs: A review.

    PubMed

    Zida, A; Bamba, S; Yacouba, A; Ouedraogo-Traore, R; Guiguemdé, R T

    2017-03-01

    Candida albicans is the most prevalent fungal pathogen in humans. Due to the development of drug resistance, there is today a need for new antifungal agents for the efficient management of C. albicans infections. Therefore, we reviewed antifungal activity, mechanisms of action, possible synergism with antifungal drugs of all natural substances experimented to be efficient against C. albicans for future. An extensive and systematic review of the literature was undertaken and all relevant abstracts and full-text articles analyzed and included in the review. A total of 111 documents were published and highlighted 142 anti-C. albicans natural products. These products are mostly are reported in Asia (44.37%) and America (28.17%). According to in vitro model criteria, from the 142 natural substances, antifungal activity can be considered as important for 40 (28.20%) and moderate for 24 (16.90%). Sixteen products have their antifungal activity confirmed by in vivo gold standard experimentation. Microbial natural products, source of antifungals, have their antifungal mechanism well described in the literature: interaction with ergosterol (polyenes), inhibition 1,3-β-d-glucan synthase (Echinocandins), inhibition of the synthesis of cell wall components (chitin and mannoproteins), inhibition of sphingolipid synthesis (serine palmitoyltransferase, ceramide synthase, inositol phosphoceramide synthase) and inhibition of protein synthesis (sordarins). Natural products from plants mostly exert their antifungal effects by membrane-active mechanism. Some substances from arthropods are also explored to act on the fungal membrane. Interestingly, synergistic effects were found between different classes of natural products as well as between natural products and azoles. Search for anti-C. albicans new drugs is promising since the list of natural substances, which disclose activity against this yeast is today long. Investigations must be pursued not only to found more new anti

  13. Single-Center Evaluation of an Agar-Based Screening for Azole Resistance in Aspergillus fumigatus by Using VIPcheck

    PubMed Central

    van der Lee, H. A. L.; Rijs, A. J. M. M.; Zoll, J.; Hovestadt, J. A. M. F.; Melchers, W. J. G.; Verweij, P. E.

    2017-01-01

    ABSTRACT Antifungal susceptibility testing is an essential tool for guiding therapy, although EUCAST and CLSI reference methods are often available only in specialized centers. We studied the performance of an agar-based screening method for the detection of azole resistance in Aspergillus fumigatus cultures. The VIPcheck consists of four wells containing voriconazole, itraconazole, posaconazole, or a growth control. Ninety-six A. fumigatus isolates were used. Thirty-three isolates harbored a known resistance mechanism: TR34/L98H (11 isolates), TR46/Y121F/T289A (6 isolates), TR53 (2 isolates), and 14 isolates with other cyp51A gene point mutations. Eighteen resistant isolates had no cyp51A-mediated azole resistance. Forty-five isolates had a wild-type (WT) azole phenotype. Four technicians and two inexperienced interns, blinded to the genotype/phenotype, read the plates visually after 24 h and 48 h and documented minimal growth, uninhibited growth, and no growth. The performance was compared to the EUCAST method. After 24 h of incubation, the mean sensitivity and specificity were 0.54 and 1.00, respectively, with uninhibited growth as the threshold. After 48 h of incubation, the performance mean sensitivity and specificity were 0.98 and 0.93, respectively, with minimal growth. The performance was not affected by observer experience in mycology. The interclass correlation coefficient was 0.87 after 24 h and 0.85 after 48 h. VIPcheck enabled the selection of azole-resistant A. fumigatus colonies, with a mean sensitivity and specificity of 0.98 and 0.93, respectively. Uninhibited growth on any azole-containing well after 24 h and minimal growth after 48 h were indicative of resistance. These results indicate that the VIPcheck is an easy-to-use tool for azole resistance screening and the selection of colonies that require MIC testing. PMID:28923874

  14. Asexual sporulation facilitates adaptation: The emergence of azole resistance in Aspergillus fumigatus.

    PubMed

    Zhang, Jianhua; Debets, Alfons J M; Verweij, Paul E; Melchers, Willem J G; Zwaan, Bas J; Schoustra, Sijmen E

    2015-10-01

    Understanding the occurrence and spread of azole resistance in Aspergillus fumigatus is crucial for public health. It has been hypothesized that asexual sporulation, which is abundant in nature, is essential for phenotypic expression of azole resistance mutations in A. fumigatus facilitating subsequent spread through natural selection. Furthermore, the disease aspergilloma is associated with asexual sporulation within the lungs of patients and the emergence of azole resistance. This study assessed the evolutionary advantage of asexual sporulation by growing the fungus under pressure of one of five different azole fungicides over seven weeks and by comparing the rate of adaptation between scenarios of culturing with and without asexual sporulation. Results unequivocally show that asexual sporulation facilitates adaptation. This can be explained by the combination of more effective selection because of the transition from a multicellular to a unicellular stage, and by increased mutation supply due to the production of spores, which involves numerous mitotic divisions. Insights from this study are essential to unravel the resistance mechanisms of sporulating pathogens to chemical compounds and disease agents in general, and for designing strategies that prevent or overcome the emerging threat of azole resistance in particular. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  15. [Antifungal therapy for infants, children and adolescents with suspected or documented invasive fungal infection].

    PubMed

    Odio, C M

    2010-04-01

    Fungal nosocomial infections have gradually and consistently increased since the 90s.This increasing threat is closely related with the growing number of people with immune system disorders and their survival. It is also related with the destruction of their physical barriers against infection due to the use of cytotoxic drugs or invasive procedures, such is the case of cancer patients and bone marrow and solid organ transplant patients. Increased survival of patients with congenital or acquired immunodeficiency, premature babies and patients with complex congenital malformations, especially in the gastrointestinal tract, also add up to this scenario. The occurrence of yeast and filamentous fungi infections, especially of the Candida species, has been on the rise. Azole agents overuse, especially fluconazole, for the treatment and prophylaxis of fungal infections has put selective pressure on Candida spp. which resulted in an increase of non-albican species such as C. krusei, C. glabrata and C. famata, among others, as well as their growing resistance to these antifungal agents.

  16. Quercetin and rutin as potential agents antifungal against Cryptococcus spp.

    PubMed

    Oliveira, V M; Carraro, E; Auler, M E; Khalil, N M

    2016-01-01

    Amphotericin B is a fungicidal substance that is treatment of choice for most systemic fungal infections affecting as cryptococcosis the immunocompromised patients. However, severe side effects have limited the utility of this drug. The aim of this study was to evaluate the antifungal effect of the combination of amphotericin B with quercetin or rutin and as a protective of citotoxic effect. The antifungal activity to amphotericin B, quercetin and rutin alone and in combination was determined in Candida sp and Cryptococcus neoformans strains. Cytotoxicity test on erythrocytes was performed by spectrophotometric absorbance of hemoglobin. The amphotericin B MIC was reduced when used in combination with quercetin or rutin to C. neoformans ATCC strain and reduced when combined with rutin to a clinical isolate of C. neoformans. In addition, the combination of quercetin with amphotericin B may reduce the toxicity of amphotericin B to red blood cells. Our results suggest that quercetin and rutin are potential agents to combine with amphotericin B in order to reduce the amphotericin dose to lessen side effects and improve antifungal efficacy.

  17. [Opportunistic pathogen Candida glabrata and the mechanisms of its resistance to antifungal drugs].

    PubMed

    Berila, N; Subík, J

    2010-04-01

    Treatment of not only bacterial but also fungal infections is currently a growing concern. A major reason is the acquisition of multidrug resistance in both prokaryotic and human cells. The multidrug resistance phenotype is a cellular response to the presence of cytotoxic substances in the environment. The basic mechanism of multidrug resistance is overexpression of the membrane proteins involved in the extrusion of toxic substances outside the cell. The resistance mechanism based on the efflux of inhibitors as a result of the overproduction of transport proteins was also observed in some plant and animal pathogens and human tumour cells. The phenomenon of multidrug resistance associated with an excessive and long-term use of antifungals, in particular of azole derivatives, was also confirmed in the yeast Candida glabrata which is becoming a growing concern for health care professionals. Reduced susceptibility to azole derivatives in particular, a high potential for adapting to stressors, and multiple mechanisms of resistance to structurally and functionally unrelated antifungal drugs make the species C. glabrata a potential threat to hospital patients.

  18. Epidemiology of invasive aspergillosis and azole resistance in patients with acute leukaemia: the SEPIA Study.

    PubMed

    Koehler, Philipp; Hamprecht, Axel; Bader, Oliver; Bekeredjian-Ding, Isabelle; Buchheidt, Dieter; Doelken, Gottfried; Elias, Johannes; Haase, Gerhard; Hahn-Ast, Corinna; Karthaus, Meinolf; Kekulé, Alexander; Keller, Peter; Kiehl, Michael; Krause, Stefan W; Krämer, Carolin; Neumann, Silke; Rohde, Holger; La Rosée, Paul; Ruhnke, Markus; Schafhausen, Philippe; Schalk, Enrico; Schulz, Katrin; Schwartz, Stefan; Silling, Gerda; Staib, Peter; Ullmann, Andrew; Vergoulidou, Maria; Weber, Thomas; Cornely, Oliver A; Vehreschild, Maria J G T

    2017-02-01

    Invasive aspergillosis (IA) is a serious hazard to high-risk haematological patients. There are increasing reports of azole-resistant Aspergillus spp. This study assessed the epidemiology of IA and azole-resistant Aspergillus spp. in patients with acute leukaemia in Germany. A prospective multicentre cohort study was performed in German haematology/oncology centres. The incidence of probable and proven aspergillosis according to the revised EORTC/MSG criteria was assessed for all patients with acute leukaemia [acute myeloid leukaemia (AML) and acute lymphoblastic leukaemia (ALL)]. Cases were documented into a web-based case report form, and centres provided data on standards regarding prophylactic and diagnostic measures. Clinical isolates were screened centrally for azole resistance and, if applicable, underlying resistance mechanisms were analysed. Between September 2011 and December 2013, 179 cases of IA [6 proven (3.4%) and 173 probable (96.6%)] were diagnosed in 3067 patients with acute leukaemia. The incidence of IA was 6.4% among 2440 AML patients and 3.8% among 627 ALL patients. Mortality at Day 84 was 33.8% (49/145) and attributable mortality was 26.9% (39/145). At Day 84, 53 patients (29.6%) showed a complete response, 25 (14.0%) a partial response and 17 (9.5%) a deterioration or failure. A total of 77 clinical Aspergillus fumigatus isolates were collected during the study period. Two episodes of azole-resistant IA (1.1%) were caused by a TR/L98H mutation in the cyp51A gene. With only two cases of IA due to azole-resistant A. fumigatus, a change of antifungal treatment practices in Germany does not appear warranted currently. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  19. Retigeric acid B enhances the efficacy of azoles combating the virulence and biofilm formation of Candida albicans.

    PubMed

    Chang, Wenqiang; Li, Ying; Zhang, Li; Cheng, Aixia; Liu, Yongqing; Lou, Hongxiang

    2012-01-01

    Candida albicans is one of the most prevalent human opportunistic pathogens. C. albicans undergoes a yeast-to-hyphal transition that has been identified as a virulence factor as well as a critical element for mature biofilm formation. A previous study in our lab showed retigeric acid B (RAB), a lichen derived pentacyclic triterpenoid, displayed synergistic antifungal activity with azoles. We now showed that this combination also proved to be adequate in combating the formation of hyphae in vitro. In vivo tests with mice demonstrated RAB could markedly enhance the efficacy of fluconazole to promote the host's longevity through inhibiting hyphae formation and adherence to host cells. It was also observed that RAB and azoles interacted synergistically to block the formation of biofilm. Our data suggested the attenuated yeast-to-hyphal switch contributed to the defect of mature biofilm formation. Moreover, quantitative real-time polymerase chain reaction (qPCR) analysis showed RAB could reduce the transcript level of MDR1, a multidrug efflux pump, and caused a slight transcriptional reduction for another drug pump related gene CDR1. Taken together, our work provides a potential application to combat candidiasis using the combination of RAB and azoles.

  20. Biofilm-forming capacity of blood-borne Candida albicans strains and effects of antifungal agents.

    PubMed

    Turan, Hanni; Demirbilek, Müge

    Infections related to Candida albicans biofilms and subsequent antifungal resistance have become more common with the increased use of indwelling medical devices. Regimens for preventing fungal biofilm formation are needed, particularly in high-risk patients. In this study, we investigated the biofilm formation rate of multiple strains of Candida albicans (n=162 clinical isolates), their antifungal susceptibility patterns, and the efficacy of certain antifungals for preventing biofilm formation. Biofilm formation was graded using a modified Christensen's 96-well plate method. We further analyzed 30 randomly chosen intense biofilm-forming isolates using the XTT method. Minimum biofilm inhibition concentrations (MBIC) of caspofungin, micafungin, anidulafungin, fluconazole, voriconazole, posaconazole, itraconazole, and amphotericin B were determined using the modified Calgary biofilm method. In addition, the inhibitory effects of antifungal agents on biofilm formation were investigated. Our study showed weak, moderate, and extensive biofilm formation in 29% (n=47), 38% (n=61), and 23% (n=37) of the isolates, respectively. We found that echinocandins had the lowest MBIC values and that itraconazole inhibited biofilm formation in more isolates (26/32; 81.3%) than other tested agents. In conclusion, echinocandins were most effective against formed biofilms, while itraconazole was most effective for preventing biofilm formation. Standardized methods are needed for biofilm antifungal sensitivity tests when determining the treatment and prophylaxis of C. albicans infections. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    USDA-ARS?s Scientific Manuscript database

    Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids were increased against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis, by addition of a methyl, methoxyl or a chloro group at position 4 of the aromatic ri...

  2. Trehalose pathway as an antifungal target.

    PubMed

    Perfect, John R; Tenor, Jennifer L; Miao, Yi; Brennan, Richard G

    2017-02-17

    With an increasing immunocompromised population which is linked to invasive fungal infections, it is clear that our present 3 classes of antifungal agents may not be sufficient to provide optimal management to these fragile patients. Furthermore, with widespread use of antifungal agents, drug-resistant fungal infections are on the rise. Therefore, there is some urgency to develop the antifungal pipeline with the goal of new antifungal agent discovery. In this review, a simple metabolic pathway, which forms the disaccharide, trehalose, will be characterized and its potential as a focus for antifungal target(s) explained. It possesses several important features for development of antifungal agents. First, it appears to have fungicidal characteristics and second, it is broad spectrum with importance across both ascomycete and basidiomycete species. Finally, this pathway is not found in mammals so theoretically specific inhibitors of the trehalose pathway and its enzymes in fungi should be relatively non-toxic for mammals. The trehalose pathway and its critical enzymes are now in a position to have directed antifungal discovery initiated in order to find a new class of antifungal drugs.

  3. Benefits of antifungal therapy in asthma patients with airway mycosis: A retrospective cohort analysis.

    PubMed

    Li, Evan; Tsai, Chu-Lin; Maskatia, Zahida K; Kakkar, Ekta; Porter, Paul; Rossen, Roger D; Perusich, Sarah; Knight, John M; Kheradmand, Farrah; Corry, David B

    2018-06-01

    Fungal airway infection (airway mycosis) is increasingly recognized as a cause of asthma and related disorders. However, prior controlled studies of patients treated with antifungal antibiotics have produced conflicting results. Our objective is to measure the effect of antifungal therapy in moderate to severe adult asthmatics with positive fungal sputum cultures in a single center referral-based academic practice. We retrospectively evaluated 41 patients with asthma and culture-proven airway mycosis treated with either terbinafine, fluconazole, itraconazole, voriconazole, or posaconazole for 4 to >12 weeks together with standard bronchodilator and anti-inflammatory agents. Asthma control (1 = very poorly controlled; 2 = not well controlled; and 3 = well controlled), peak expiratory flow rates (PEFR), serum total IgE, and absolute blood eosinophil counts before and after antifungal therapy were assessed. In comparison, we also studied nine patients with airway mycosis and moderate to severe asthma who received standard therapy but no antifungals. Treatment with azole-based and allylamine antifungals was associated with improved asthma control (mean change in asthma control 1.72-2.25; p = 0.004), increased PEFR (69.4% predicted to 79.3% predicted, p = 0.0011) and markedly reduced serum IgE levels (1,075 kU/L to 463 kU/L, p = 0.0005) and blood eosinophil counts (Mean absolute count 530-275, p = 0.0095). Reduction in symptoms, medication use, and relapse rates decreased as duration of therapy increased. Asthmatics on standard therapy who did not receive antifungals showed no improvement in asthma symptoms or PEFR. Antifungals were usually well tolerated, but discontinuation (12.2%) and relapse (50%) rates were relatively high. Antifungals help control symptoms in a subset of asthmatics with culture-proven airway mycosis. Additional randomized clinical trials are warranted to extend and validate these findings. © 2018 The Authors

  4. An Evaluation of Antifungal Agents for the Treatment of Fungal Contamination in Indoor Air Environments

    PubMed Central

    Rogawansamy, Senthaamarai; Gaskin, Sharyn; Taylor, Michael; Pisaniello, Dino

    2015-01-01

    Fungal contamination in indoor environments has been associated with adverse health effects for the inhabitants. Remediation of fungal contamination requires removal of the fungi present and modifying the indoor environment to become less favourable to growth.  This may include treatment of indoor environments with an antifungal agent to prevent future growth. However there are limited published data or advice on chemical agents suitable for indoor fungal remediation. The aim of this study was to assess the relative efficacies of five commercially available cleaning agents with published or anecdotal use for indoor fungal remediation. The five agents included two common multi-purpose industrial disinfectants (Cavicide® and Virkon®), 70% ethanol, vinegar (4.0%−4.2% acetic acid), and a plant-derived compound (tea tree (Melaleuca alternifolia) oil) tested in both a liquid and vapour form. Tea tree oil has recently generated interest for its antimicrobial efficacy in clinical settings, but has not been widely employed for fungal remediation. Each antifungal agent was assessed for fungal growth inhibition using a disc diffusion method against a representative species from two common fungal genera, (Aspergillus fumigatus and Penicillium chrysogenum), which were isolated from air samples and are commonly found in indoor air. Tea tree oil demonstrated the greatest inhibitory effect on the growth of both fungi, applied in either a liquid or vapour form. Cavicide® and Virkon® demonstrated similar, although less, growth inhibition of both genera. Vinegar (4.0%–4.2% acetic acid) was found to only inhibit the growth of P. chrysogenum, while 70% ethanol was found to have no inhibitory effect on the growth of either fungi. There was a notable inhibition in sporulation, distinct from growth inhibition after exposure to tea tree oil, Virkon®, Cavicide® and vinegar. Results demonstrate that common cleaning and antifungal agents differ in their capacity to inhibit the

  5. An evaluation of antifungal agents for the treatment of fungal contamination in indoor air environments.

    PubMed

    Rogawansamy, Senthaamarai; Gaskin, Sharyn; Taylor, Michael; Pisaniello, Dino

    2015-06-02

    Fungal contamination in indoor environments has been associated with adverse health effects for the inhabitants. Remediation of fungal contamination requires removal of the fungi present and modifying the indoor environment to become less favourable to growth.  This may include treatment of indoor environments with an antifungal agent to prevent future growth. However there are limited published data or advice on chemical agents suitable for indoor fungal remediation. The aim of this study was to assess the relative efficacies of five commercially available cleaning agents with published or anecdotal use for indoor fungal remediation. The five agents included two common multi-purpose industrial disinfectants (Cavicide® and Virkon®), 70% ethanol, vinegar (4.0%-4.2% acetic acid), and a plant-derived compound (tea tree (Melaleuca alternifolia) oil) tested in both a liquid and vapour form. Tea tree oil has recently generated interest for its antimicrobial efficacy in clinical settings, but has not been widely employed for fungal remediation. Each antifungal agent was assessed for fungal growth inhibition using a disc diffusion method against a representative species from two common fungal genera, (Aspergillus fumigatus and Penicillium chrysogenum), which were isolated from air samples and are commonly found in indoor air. Tea tree oil demonstrated the greatest inhibitory effect on the growth of both fungi, applied in either a liquid or vapour form. Cavicide® and Virkon® demonstrated similar, although less, growth inhibition of both genera. Vinegar (4.0%-4.2% acetic acid) was found to only inhibit the growth of P. chrysogenum, while 70% ethanol was found to have no inhibitory effect on the growth of either fungi. There was a notable inhibition in sporulation, distinct from growth inhibition after exposure to tea tree oil, Virkon®, Cavicide® and vinegar. Results demonstrate that common cleaning and antifungal agents differ in their capacity to inhibit the growth

  6. Two missense mutations, E123Q and K151E, identified in the ERG11 allele of an azole-resistant isolate of Candida kefyr recovered from a stem cell transplant patient for acute myeloid leukemia.

    PubMed

    Couzigou, Célia; Gabriel, Frédéric; Biteau, Nicolas; Fitton-Ouhabi, Valérie; Noël, Thierry; Accoceberry, Isabelle

    2014-07-01

    We report on the first cloning and nucleotide sequencing of an ERG11 allele from a clinical isolate of Candida kefyr cross-resistant to azole antifungals. It was recovered from a stem cell transplant patient, in an oncohematology unit exhibiting unexpected high prevalence of C. kefyr. Two amino acid substitutions were identified: K151E, whose role in fluconazole resistance was already demonstrated in Candida albicans, and E123Q, a new substitution never described so far in azole-resistant Candida yeast.

  7. Species Distribution and In Vitro Antifungal Susceptibility of Vulvovaginal Candida Isolates in China

    PubMed Central

    Wang, Feng-Juan; Zhang, Dai; Liu, Zhao-Hui; Wu, Wen-Xiang; Bai, Hui-Hui; Dong, Han-Yu

    2016-01-01

    Background: Vulvovaginal candidiasis (VVC) was a common infection associated with lifelong harassment of woman's social and sexual life. The purpose of this study was to describe the species distribution and in vitro antifungal susceptibility of Candida species (Candida spp.) isolated from patients with VVC over 8 years. Methods: Species which isolated from patients with VVC in Peking University First Hospital were identified using chromogenic culture media. Susceptibility to common antifungal agents was determined using agar diffusion method based on CLSI M44-A2 document. SPSS software (version 14.0, Inc., Chicago, IL, USA) was used for statistical analysis, involving statistical description and Chi-square test. Results: The most common strains were Candida (C.) albicans, 80.5% (n = 1775) followed by C. glabrata, 18.1% (n = 400). Nystatin exhibited excellent activity against all species (<4% resistant [R]). Resistance to azole drugs varied among different species. C. albicans: clotrimazole (3.1% R) < fluconazole (16.6% R) < itraconazole (51.5% R) < miconazole (54.0% R); C. glabrata: miconazole (25.6% R) < clotrimazole (50.5% R) < itraconazole (61.9% R) < fluconazole (73.3% R); Candida krusei: clotrimazole (0 R) < fluconazole (57.7% R) < miconazole (73.1% R) < itraconazole (83.3% R). The susceptibility of fluconazole was noticeably decreasing among all species in the study period. Conclusions: Nystatin was the optimal choice for the treatment of VVC at present. The species distribution and in vitro antifungal susceptibility of Candida spp. isolated from patients with VVC had changed over time. PMID:27174323

  8. Two missense mutations, E123Q and K151E, identified in the ERG11 allele of an azole-resistant isolate of Candida kefyr recovered from a stem cell transplant patient for acute myeloid leukemia

    PubMed Central

    Couzigou, Célia; Gabriel, Frédéric; Biteau, Nicolas; Fitton-Ouhabi, Valérie; Noël, Thierry; Accoceberry, Isabelle

    2014-01-01

    We report on the first cloning and nucleotide sequencing of an ERG11 allele from a clinical isolate of Candida kefyr cross-resistant to azole antifungals. It was recovered from a stem cell transplant patient, in an oncohematology unit exhibiting unexpected high prevalence of C. kefyr. Two amino acid substitutions were identified: K151E, whose role in fluconazole resistance was already demonstrated in Candida albicans, and E123Q, a new substitution never described so far in azole-resistant Candida yeast. PMID:24936404

  9. In vitro susceptibility of filamentous fungi from mycotic keratitis to azole drugs.

    PubMed

    Shobana, C S; Mythili, A; Homa, M; Galgóczy, L; Priya, R; Babu Singh, Y R; Panneerselvam, K; Vágvölgyi, C; Kredics, L; Narendran, V; Manikandan, P

    2015-03-01

    The in vitro antifungal activities of azole drugs viz., itraconazole, voriconazole, ketoconazole, econazole and clotrimazole were investigated in order to evaluate their efficacy against filamentous fungi isolated from mycotic keratitis. The specimen collection was carried out from fungal keratitis patients attending Aravind eye hospital and Post-graduate institute of ophthalmology, Coimbatore, India and was subsequently processed for the isolation of fungi. The dilutions of antifungal drugs were prepared in RPMI 1640 medium. Minimum inhibitory concentrations (MICs) were determined and MIC50 and MIC90 were calculated for each drug tested. A total of 60 fungal isolates were identified as Fusarium spp. (n=30), non-sporulating moulds (n=9), Aspergillus flavus (n=6), Bipolaris spp. (n=6), Exserohilum spp. (n=4), Curvularia spp. (n=3), Alternaria spp. (n=1) and Exophiala spp. (n=1). The MICs of ketoconazole, clotrimazole, voriconazole, econazole and itraconazole for all the fungal isolates ranged between 16 μg/mL and 0.03 μg/mL, 4 μg/mL and 0.015 μg/mL, 8 μg/mL and 0.015 μg/mL, 8 μg/mL and 0.015 μg/mL and 32 μg/mL and 0.06 μg/mL respectively. From the MIC50 and MIC90 values, it could be deciphered that in the present study, clotrimazole was more active against the test isolates at lower concentrations (0.12-5 μg/mL) when compared to other drugs tested. The results suggest that amongst the tested azole drugs, clotrimazole followed by voriconazole and econazole had lower MICs against moulds isolated from mycotic keratitis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Evaluation of antifungal activity of standardized extract of Salvia rhytidea Benth. (Lamiaceae) against various Candida isolates.

    PubMed

    Salari, S; Bakhshi, T; Sharififar, F; Naseri, A; Ghasemi Nejad Almani, P

    2016-12-01

    Salvia species have long been described in traditional medicine for various indications. Owing to the widespread use of this genus by ethnic populations, especially for various infections ranging from skin disease to gastrointestinal disorders, we were encouraged to determine whether Salvia rhytidea could be effective against fungal infections. Given the increased incidence of candidiasis in the past decade, limits on the use of antifungal drugs, emergence of azole-resistant Candida species and increased incidence of treatment failures, it is necessary to identify a novel agent with antifungal properties. Aim of the study was to evaluate the antifungal properties of S. rhytidea against various Candida isolates. In this study, at first rosmarinic acid content of plant extract was determined. A total of 96 Candida isolates were tested, including the following species: Candida albicans (n=42), Candida glabrata (n=16), Candida tropicalis (n=11), Candida krusei (n=9), Candida parapsilosis (n=9), Candida lusitaniae (n=7) and Candida guilliermondii (n=2). The in vitro antifungal activity of methanolic extracts of S. rhytidea Benth. was evaluated against Candida isolates and compared with that of the standard antifungal drug nystatin by using a broth microdilution method, according to CLSI. Phytochemical screening results showed that the methanolic extract of S. rhytidea Benth. was rich in flavonoids and tannins. The minimal inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values of S. rhytidea Benth. ranged from 3.125 to>100μg/ml and 6.25 to>100μg/ml respectively. The growth inhibition value displayed that C. tropicalis, C. krusei and C. albicans isolates were most susceptible to S. rhytidea. Findings show that S. rhytidea possesses an antifungal effect against Candida isolates. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Antifungal prophylaxis during neutropenia and immunodeficiency.

    PubMed Central

    Lortholary, O; Dupont, B

    1997-01-01

    Fungal infections represent a major source of morbidity and mortality in patients with almost all types of immunodeficiencies. These infections may be nosocomial (aspergillosis) or community acquired (cryptococcosis), or both (candidiasis). Endemic mycoses such as histoplasmosis, coccidioidomycosis, and penicilliosis may infect many immunocompromised hosts in some geographic areas and thereby create major public health problems. With the wide availability of oral azoles, antifungal prophylactic strategies have been extensively developed. However, only a few well-designed studies involving strict criteria have been performed, mostly in patients with hematological malignancies or AIDS. In these situations, the best dose and duration of administration of the antifungal drug often remain to be determined. In high-risk neutropenic or bone marrow transplant patients, fluconazole is effective for the prevention of superficial and/or systemic candidal infections but is not always able to prolong overall survival and potentially selects less susceptible or resistant Candida spp. Primary prophylaxis against aspergillosis remains investigative. At present, no standard general recommendation for primary antifungal prophylaxis can be proposed for AIDS patients or transplant recipients. However, for persistently immunocompromised patients who previously experienced a noncandidal systemic fungal infection, prolonged suppressive antifungal therapy is often indicated to prevent a relapse. Better strategies for controlling immune deficiencies should also help to avoid some potentially life-threatening deep mycoses. When prescribing antifungal prophylaxis, physicians should be aware of the potential emergence of resistant strains, drug-drug interactions, and the cost. Well-designed, randomized, multicenter clinical trials in high-risk immunocompromised hosts are urgently needed to better define how to prevent severe invasive mycoses. PMID:9227863

  12. Synergistic and antagonistic effects of immunomodulatory drugs on the action of antifungals against Candida glabrata and Saccharomyces cerevisiae.

    PubMed

    Tome, Miha; Zupan, Jure; Tomičić, Zorica; Matos, Tadeja; Raspor, Peter

    2018-01-01

    Candidemia and other forms of invasive fungal infections caused by Candida glabrata and to a lesser extent Saccharomyces cerevisiae are a serious health problem, especially if their steadily rising resistance to the limited range of antifungal drugs is taken into consideration. Various drug combinations are an attractive solution to the resistance problem, and some drug combinations are already common in the clinical environment due to the nature of diseases or therapies. We tested a few of the common antifungal-immunomodulatory drug combinations and evaluated their effect on selected strains of C. glabrata and S. cerevisiae . The combinations were performed using the checkerboard microdilution assay and interpreted using the Loewe additivity model and a model based on the Bliss independence criterion. A synergistic interaction was confirmed between calcineurin inhibitors (Fk506 and cyclosporine A) and antifungals (fluconazole, itraconazole, and amphotericin B). A new antagonistic interaction between mycophenolic acid (MPA) and azole antifungals was discovered in non-resistant strains. A possible mechanism that explains this is induction of the Cdr1 efflux pump by MPA in C. glabrata ATCC 2001. The Pdr1 regulatory cascade plays a role in overall resistance to fluconazole, but it is not essential for the antagonistic interaction. This was confirmed by the Cg pdr1 Δ mutant still displaying the antagonistic interaction between the drugs, although at lower concentrations of fluconazole. This antagonism calls into question the use of simultaneous therapy with MPA and azoles in the clinical environment.

  13. In Vitro Antifungal Activity of Hexahydropyrimidine Derivatives against the Causative Agents of Dermatomycosis

    PubMed Central

    Caneschi, César A.; Senra, Mônica P.; Carvalho, Gustavo S. G.; da Silva, Adilson D.

    2017-01-01

    Nitrogenated heterocyclic compounds are present in both natural and synthetic drugs, and hexahydropyrimidine derivatives may prove to be efficient in treating dermatomycosis causing fungi. This study evaluated the antifungal activity of four hexahydropyrimidine derivatives against the dermatomycosis causing fungi. These derivatives were synthesized, characterized, and assessed in terms of their activity against Trichophyton mentagrophytes, Microsporum canis, Microsporum gypseum, Trichophyton rubrum, Fusarium oxysporum, and Epidermophyton floccosum between concentrations 7.8 and 1,000 μg mL−1. Scanning electron micrographs were assessed for the active derivatives and reference drugs, and these micrographs revealed that new agents cause morphological changes in fungi. The derivatives HHP1, HHP3, and HHP4 revealed poor activity against the four fungal strains (MICs range 500–1000 μg mL−1). Compound HHP3 was found to be the best potential antifungal agent among those tested and was the most effective among all the active derivatives that caused morphological changes in the susceptible strains. PMID:29226215

  14. An in vitro study of antifungal drug susceptibility of Candida species isolated from human immunodeficiency virus seropositive and human immunodeficiency virus seronegative individuals in Lucknow population Uttar Pradesh.

    PubMed

    Dar, Mohammad Shafi; Sreedar, Gadiputi; Shukla, Abhilasha; Gupta, Prashant; Rehan, Ahmad Danish; George, Jiji

    2015-01-01

    Candidiasis is the most common opportunistic infection in human immunodeficiency virus (HIV) seropositive patients, starting from asymptomatic colonization to pathogenic forms and gradual colonization of non-albicans in patients with advanced immunosuppression leads to resistance for azole group of antifungal drugs with high rate of morbidity and mortality. To isolate the Candida species and determine of antifungal drug susceptibility against fluconazole, itraconazole, nystatin, amphotericin B, and clotrimazolein HIV seropositive and control individuals, with or without clinical oropharyngeal candidiasis (OPC). Includes samples from faucial region of 70 subjects with and without clinical candidiasis in HIV seropositive and controls were aseptically inoculated onto Sabaraud's Dextrose Agar media and yeasts were identified for the specific species by Corn Meal Agar, sugar fermentation and heat tolerance tests. Antifungal drug susceptibility of the isolated species was done against above-mentioned drugs by E-test and disc diffusion method. The commonly isolated species in HIV seropositive and controls were Candida albicans, Candida glabrata and Candida tropicalis Candida guilliermondii and Candida dubliniensis isolated only in HIV seropositive patients. Susceptibility against selected antifungal drugs was observed more in HIV-negative individuals whereas susceptible dose-dependent and resistance were predominant in HIV-positive patients. Resistance is the major problem in the therapy of OPC, especially in HIV seropositive patients due to aggressive and prolonged use of antifungal agents, therefore, our study emphasizes the need for antifungal drug susceptibility testing whenever antifungal treatment is desired, especially in HIV-infected subjects.

  15. Surveillance for azole resistance in clinical and environmental isolates of Aspergillus fumigatus in Australia and cyp51A homology modelling of azole-resistant isolates.

    PubMed

    Talbot, Jessica J; Subedi, Shradha; Halliday, Catriona L; Hibbs, David E; Lai, Felcia; Lopez-Ruiz, Francisco J; Harper, Lincoln; Park, Robert F; Cuddy, William S; Biswas, Chayanika; Cooley, Louise; Carter, Dee; Sorrell, Tania C; Barrs, Vanessa R; Chen, Sharon C-A

    2018-05-29

    The prevalence of azole resistance in Aspergillus fumigatus is uncertain in Australia. Azole exposure may select for resistance. We investigated the frequency of azole resistance in a large number of clinical and environmental isolates. A. fumigatus isolates [148 human, 21 animal and 185 environmental strains from air (n = 6) and azole-exposed (n = 64) or azole-naive (n = 115) environments] were screened for azole resistance using the VIPcheck™ system. MICs were determined using the Sensititre™ YeastOne YO10 assay. Sequencing of the Aspergillus cyp51A gene and promoter region was performed for azole-resistant isolates, and cyp51A homology protein modelling undertaken. Non-WT MICs/MICs at the epidemiological cut-off value of one or more azoles were observed for 3/148 (2%) human isolates but not amongst animal, or environmental, isolates. All three isolates grew on at least one azole-supplemented well based on VIPcheck™ screening. For isolates 9 and 32, the itraconazole and posaconazole MICs were 1 mg/L (voriconazole MICs 0.12 mg/L); isolate 129 had itraconazole, posaconazole and voriconazole MICs of >16, 1 and 8 mg/L, respectively. Soil isolates from azole-exposed and azole-naive environments had similar geometric mean MICs of itraconazole, posaconazole and voriconazole (P > 0.05). A G54R mutation was identified in the isolates exhibiting itraconazole and posaconazole resistance, and the TR34/L98H mutation in the pan-azole-resistant isolate. cyp51A modelling predicted that the G54R mutation would prevent binding of itraconazole and posaconazole to the haem complex. Azole resistance is uncommon in Australian clinical and environmental A. fumigatus isolates; further surveillance is indicated.

  16. Neosordarin and hydroxysordarin, two new antifungal agents from Sordaria araneosa.

    PubMed

    Davoli, Paolo; Engel, Günther; Werle, Andreas; Sterner, Olov; Anke, Timm

    2002-04-01

    Two novel antifungal agents belonging to the sordarin family have been isolated from fermentations of Sordaria araneosa by bioassay-guided purification and their structures elucidated by NMR techniques. Neosordarin (1) is closely related to the recently discovered hypoxysordarin (2), with only small differences on the aliphatic side chain acylating the hydroxyl in the 3'-position of the sordarose moiety. Hydroxysordarin (3) closely resembles sordarin (4), the only slight difference being the replacement of sordarose with altrose as the sugar unit.

  17. [Pharmacology of the antifungals used in the treatment of aspergillosis].

    PubMed

    Azanza, José Ramón; Sádaba, Belén; Gómez-Guíu, Almudena

    2014-01-01

    The treatment of invasive aspergillosis requires the use of drugs that characteristically have complex pharmacokinetic properties, the knowledge of which is essential to achieve maximum efficacy with minimal risk to the patient. The lipid-based amphotericin B formulations vary significantly in their pharmacokinetic behaviour, with very high plasma concentrations of the liposomal form, probably related to the presence of cholesterol in their structure. Azoles have a variable absorption profile, particularly in the case of itraconazole and posaconazole, with the latter very dependent on multiple factors. This may also lead to variations in voriconazole, which requires considering the possibility of monitoring plasma concentrations. The aim of this article is to review some of the most relevant aspects of the pharmacology of the antifungals used in the prophylaxis and treatment of the Aspergillus infection. For this reason, it includes the most relevant features of some of the azoles normally prescribed in this infection (itraconazole, posaconazole and voriconazole) and the amphotericin B formulations. Copyright © 2014. Published by Elsevier Espana.

  18. [In vitro antifungal resistance in Candida albicans from HIV-infected patients with and without oral candidosis.].

    PubMed

    Ceballos Salobreña, A; Gaitán Cepeda, L A; Orihuela Cañada, F; Olea Barrionuevo, D; Ceballos García, L; Quindós, G

    1999-12-01

    The main purpose of this study has been to determine the in vitro antifungal susceptibility of clinical isolates from HIV-infected or AIDS patients, depending on the presence of oral candidosis. The oral cavity of 307 HIV-infected or AIDS patients was examined and an oral swab was cultured on Sabouraud glucose agar and studied by conventional mycological methods. In vitro antifungal susceptibility to amphotericin B, nystatin, fluconazole, itraconazole and ketoconazole was tested by disk diffusion with Neo-Sensitabs tablets (Rosco Diagnostica, Dinamarca). One hundred and thirty five Candida albicans isolates (91 serotype A, 38 serotype B, three C. albicans variety stellatoidea and three untyped isolates), three Candida krusei and two Candida glabrata were obtained. All the isolates were susceptible to nystatin and amphotericin B. However, 7.9% isolates were resistant to fluconazole and 2.9% isolates were resistant to ketoconazole or itraconazole. Nearly all C. krusei and C. glabrata isolates, 31% patients with candidosis and 20% Candida-colonized patients showed decreased susceptibility to azoles. This study shows that polyenes had a great in vitro efficacy against clinical isolates from HIV-infected patients and that in vitro resistance to azoles is not as high as observed in other countries.

  19. Time-Kill Kinetics and In Vitro Antifungal Susceptibility of Non-fumigatus Aspergillus Species Isolated from Patients with Ocular Mycoses.

    PubMed

    Öz, Yasemin; Özdemir, Havva Gül; Gökbolat, Egemen; Kiraz, Nuri; Ilkit, Macit; Seyedmousavi, Seyedmojtaba

    2016-04-01

    Aspergillus species can cause ocular morbidity and blindness, and thus, appropriate antifungal therapy is needed. We investigated the in vitro activity of itraconazole, voriconazole, posaconazole, caspofungin, anidulafungin, and amphotericin B against 14 Aspergillus isolates obtained from patients with ocular mycoses, using the CLSI reference broth microdilution methodology. In addition, time-kill assays were performed, exposing each isolate separately to 1-, 4-, and 16-fold concentrations above the minimum inhibitory concentration (MIC) of each antifungal agent. A sigmoid maximum-effect (E max) model was used to fit the time-kill curve data. The drug effect was further evaluated by measuring an increase/decrease in the killing rate of the tested isolates. The MICs of amphotericin B, itraconazole, voriconazole, and posaconazole were 0.5-1.0, 1.0, 0.5-1.0, and 0.25 µg/ml for A. brasiliensis, A. niger, and A. tubingensis isolates, respectively, and 2.0-4.0, 0.5, 1.0 for A. flavus, and 0.12-0.25 µg/ml for A. nomius isolates, respectively. A. calidoustus had the highest MIC range for the azoles (4.0-16.0 µg/ml) among all isolates tested. The minimum effective concentrations of caspofungin and anidulafungin were ≤0.03-0.5 µg/ml and ≤0.03 µg/ml for all isolates, respectively. Posaconazole demonstrated maximal killing rates (E(max) = 0.63 h(-1), r(2) = 0.71) against 14 ocular Aspergillus isolates, followed by amphotericin B (E(max) = 0.39 h(-1), r(2) = 0.87), voriconazole (E(max) = 0.35 h(-1), r(2) = 0.098), and itraconazole (E(max) = 0.01 h(-1), r(2) = 0.98). Overall, the antifungal susceptibility of the non-fumigatus Aspergillus isolates tested was species and antifungal agent dependent. Analysis of the kinetic growth assays, along with consideration of the killing rates, revealed that posaconazole was the most effective antifungal against all of the isolates.

  20. [INVESTIGATION ON ANTIFUNGAL SUSCEPTIBILITY OF CANDIDA YEASTS IN PREGNANT PATIENTS WITH CONFIRMED VULVOVAGINAL CANDIDIASIS AND THEIR NEWBORNS.

    PubMed

    Chokoeva, A; Kouzmanov, A; Ivanova, Z; Zisova, L; Amalie, G; Petleshkova, P; Miteva-Katrandzhieva, Ts; Krasteva, M; Uchikova, E

    Background Vulvovaginal candidiasis (VVU) is considered as a special risk factor during pregnancy, with important influence on the reproductive function of the patients and on the morbidity in the newborns from mothers with VVC. Maternal VVC is a major risk factor for the development of candida-colonization of the infant, which in turn is the first step towards the development of mucocutaneous or systemic candidiasis and Candida-septicemia in the newborn. In pregnant patients, the possible applicable local and systemic medications are limited, while the therapeutic resistance in chronic recurrent forms of VVC increases, facts that require precision of the diagnosic approach to optimize the therapeutic recommendations in pregnant patients, considered as a high risk group. The aim of this study was to investigate in vitro antifungal susceptibility of Candida yeasts to current antifungal agents in pregnant patients with confirmed VVC before the act of birth. Material and Methods Vaginal secretions of 23 healthy pregnant women with proven Candida vaginitis were taken within 48 hours before birth and the presence of yeasls of Candida was confirmed by culture examination. Between 47-72 hours after birth, samples were taken for Candida colonization of the oralmucosa and feces of their newborns. Samples were plated on Sabouraud agar and cultured in an incubator for 2 to 3 days at a temperature of 25° C. Species identification of the isolated yeasts were performed by commercial API Candida test - API 20C AUX (BioMerieux, Marcy-l'Etoile, France). Part of the isolates was identified by commercial whale AUXACOLOR (BioRad, Mames la Coquette, France). Antifungal sensitivity of isolated strains was examined by applying commercial solicitation ready kit and methods of disc diffusion and E-test, as the aim of the authors was to assess their potential for use in the diagnosis, and the correlation between them. Results Candida albicans was the prevalent etiological agent in pregnant

  1. Common drug-drug interactions in antifungal treatments for superficial fungal infections.

    PubMed

    Gupta, Aditya K; Versteeg, Sarah G; Shear, Neil H

    2018-04-01

    Antifungal agents can be co-administered alongside several other medications for a variety of reasons such as the presence of comorbidities. Pharmacodynamic interactions such as synergistic and antagonistic interactions could be the result of co-administered medications. Pharmacokinetic interactions could also transpire through the inhibition of metabolizing enzymes and drug transport systems, altering the absorption, metabolism and excretion of co-administered medications. Both pharmacodynamic and pharmacokinetic interactions can result in hospitalization due to serious adverse effects associated with antifungal agents, lower therapeutic doses required to achieve desired antifungal activity, and prevent antifungal resistance. Areas covered: The objective of this review is to summarize pharmacodynamic and pharmacokinetic interactions associated with common antifungal agents used to treat superficial fungal infections. Pharmacodynamic and pharmacokinetic interactions that impact the therapeutic effects of antifungal agents and drugs that are influenced by the presence of antifungal agents was the context to which these antifungal agents were addressed. Expert opinion: The potential for drug-drug interactions is minimal for topical antifungals as opposed to oral antifungals as they have minimal exposure to other co-administered medications. Developing non-lipophilic antifungals that have unique metabolizing pathways and are topical applied are suggested properties that could help limit drug-drug interactions associated with future treatments.

  2. In vitro susceptibility of Scedosporium isolates to N-acetyl-L-cysteine alone and in combination with conventional antifungal agents.

    PubMed

    Homa, Mónika; Galgóczy, László; Tóth, Eszter; Virágh, Máté; Chandrasekaran, Muthusamy; Vágvölgyi, Csaba; Papp, Tamás

    2016-10-01

    In recent years, Scedosporium species have been more commonly recognized from severe, difficult-to-treat human infections, such as upper respiratory tract and pulmonary infections. To select an appropriate therapeutic approach for these infections is challenging, because of the commonly observed resistance of the causative agents to several antifungal drugs. Therefore, to find a novel strategy for the treatment of pulmonary Scedosporium infections the in vitro antifungal effect of a mucolytic agent, N-acetyl-L-cysteine and its in vitro combinations with conventional antifungals were investigated. Synergistic and indifferent interactions were registered in 23 and 13 cases, respectively. Antagonism was not revealed between the compounds. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Current status of antifungal susceptibility testing methods.

    PubMed

    Arikan, Sevtap

    2007-11-01

    Antifungal susceptibility testing is a very dynamic field of medical mycology. Standardization of in vitro susceptibility tests by the Clinical and Laboratory Standards Institute (CLSI) and the European Committee for Antimicrobial Susceptibility Testing (EUCAST), and current availability of reference methods constituted the major remarkable steps in the field. Based on the established minimum inhibitory concentration (MIC) breakpoints, it is now possible to determine the susceptibilities of Candida strains to fluconazole, itraconazole, voriconazole, and flucytosine. Moreover, utility of fluconazole antifungal susceptibility tests as an adjunct in optimizing treatment of candidiasis has now been validated. While the MIC breakpoints and clinical significance of susceptibility testing for the remaining fungi and antifungal drugs remain yet unclear, modifications of the available methods as well as other methodologies are being intensively studied to overcome the present drawbacks and limitations. Among the other methods under investigation are Etest, colorimetric microdilution, agar dilution, determination of fungicidal activity, flow cytometry, and ergosterol quantitation. Etest offers the advantage of practical application and favorable agreement rates with the reference methods that are frequently above acceptable limits. However, MIC breakpoints for Etest remain to be evaluated and established. Development of commercially available, standardized colorimetric panels that are based on CLSI method parameters has added more to the antifungal susceptibility testing armamentarium. Flow cytometry, on the other hand, appears to offer rapid susceptibility testing but requires specified equipment and further evaluation for reproducibility and standardization. Ergosterol quantitation is another novel approach, which appears potentially beneficial particularly in discrimination of azole-resistant isolates from heavy trailers. The method is yet investigational and requires to

  4. Direct comparison of the pharmacodynamics of four antifungal drugs in a mouse model of disseminated candidiasis using microbiological assays of serum drug concentrations.

    PubMed

    Maki, Katsuyuki; Holmes, Ann R; Watabe, Etsuko; Iguchi, Yumi; Matsumoto, Satoru; Ikeda, Fumiaki; Tawara, Shuichi; Mutoh, Seitaro

    2007-01-01

    The aim of this study was to compare the pharmacodynamics of the azole antifungal drugs fluconazole, itraconazole and ketoconazole, and the polyene antifungal amphotericin B, in a mouse model of disseminated Candida albicans infection. In order to directly compare effective serum concentrations of these antifungals, drug concentrations were assayed microbiologically by measuring inhibition of C. albicans mycelial growth (mMIC) in a mouse serum-based assay (serum antifungal titer). Efficacy in the mouse infection model was determined using an organ-based (kidney burden) endpoint. For all four drugs, the serum antifungal titers, 8 hr after administration of single doses of drugs at a range of drug concentrations, correlated closely with C. albicans kidney fungal burden in the mouse model. The results showed that determining serum antifungal titer may be used to accurately represent kidney fungal burden in a mouse model of disseminated candidiasis and allowed direct comparison of the pharmacodynamics of differing classes of antifungal drugs.

  5. Possible mechanisms of the antifungal activity of fluconazole in combination with terbinafine against Candida albicans.

    PubMed

    Khodavandi, Alireza; Alizadeh, Fahimeh; Vanda, Nasim Aghai; Karimi, Golgis; Chong, Pei Pei

    2014-12-01

    Candidiasis is a term describing infections by yeasts from the genus Candida, the majority Candida albicans. Treatment of such infections often requires antifungals such as the azoles, but increased use of these drugs has led to selection of yeasts with increased resistance to these drugs. Combination therapy would be one of the best strategies for the treatment of candidiasis due to increased resistance to azoles. The antifungal activities of fluconazole and terbinafine were evaluated in vitro alone and in combination using broth microdilution test and time kill study. Eventually the expression level of selected genes involved in ergosterol biosynthesis of Candida was evaluated using semi-quantitative RT-PCR. The obtained results showed the significant MICs ranging from 0.25 to 8 µg/mL followed by FICs ranged from 0.37 to 1 in combination with fluconazole/terbinafine. Our findings have demonstrated that the combination of fluconazole and terbinafine could also significantly reduce the expression of ERG1, 3, and 11 in the cell membrane of Candida in all concentrations tested ranging from 1.73- to 6.99-fold. This study was undertaken with the ultimate goal of finding the probable targets of fluconazole/terbinafine in C. albicans by looking at its effects on cell membrane synthesis.

  6. Azole-Resistance in Aspergillus terreus and Related Species: An Emerging Problem or a Rare Phenomenon?

    PubMed

    Zoran, Tamara; Sartori, Bettina; Sappl, Laura; Aigner, Maria; Sánchez-Reus, Ferran; Rezusta, Antonio; Chowdhary, Anuradha; Taj-Aldeen, Saad J; Arendrup, Maiken C; Oliveri, Salvatore; Kontoyiannis, Dimitrios P; Alastruey-Izquierdo, Ana; Lagrou, Katrien; Cascio, Giuliana Lo; Meis, Jacques F; Buzina, Walter; Farina, Claudio; Drogari-Apiranthitou, Miranda; Grancini, Anna; Tortorano, Anna M; Willinger, Birgit; Hamprecht, Axel; Johnson, Elizabeth; Klingspor, Lena; Arsic-Arsenijevic, Valentina; Cornely, Oliver A; Meletiadis, Joseph; Prammer, Wolfgang; Tullio, Vivian; Vehreschild, Jörg-Janne; Trovato, Laura; Lewis, Russell E; Segal, Esther; Rath, Peter-Michael; Hamal, Petr; Rodriguez-Iglesias, Manuel; Roilides, Emmanuel; Arikan-Akdagli, Sevtap; Chakrabarti, Arunaloke; Colombo, Arnaldo L; Fernández, Mariana S; Martin-Gomez, M Teresa; Badali, Hamid; Petrikkos, Georgios; Klimko, Nikolai; Heimann, Sebastian M; Uzun, Omrum; Roudbary, Maryam; de la Fuente, Sonia; Houbraken, Jos; Risslegger, Brigitte; Lass-Flörl, Cornelia; Lackner, Michaela

    2018-01-01

    Objectives: Invasive mold infections associated with Aspergillus species are a significant cause of mortality in immunocompromised patients. The most frequently occurring aetiological pathogens are members of the Aspergillus section Fumigati followed by members of the section Terrei . The frequency of Aspergillus terreus and related (cryptic) species in clinical specimens, as well as the percentage of azole-resistant strains remains to be studied. Methods: A global set ( n = 498) of A. terreus and phenotypically related isolates was molecularly identified (beta-tubulin), tested for antifungal susceptibility against posaconazole, voriconazole, and itraconazole, and resistant phenotypes were correlated with point mutations in the cyp51A gene. Results: The majority of isolates was identified as A. terreus (86.8%), followed by A. citrinoterreus (8.4%), A. hortai (2.6%), A. alabamensis (1.6%), A. neoafricanus (0.2%), and A. floccosus (0.2%). One isolate failed to match a known Aspergillus sp., but was found most closely related to A. alabamensis . According to EUCAST clinical breakpoints azole resistance was detected in 5.4% of all tested isolates, 6.2% of A. terreus sensu stricto (s.s.) were posaconazole-resistant. Posaconazole resistance differed geographically and ranged from 0% in the Czech Republic, Greece, and Turkey to 13.7% in Germany. In contrast, azole resistance among cryptic species was rare 2 out of 66 isolates and was observed only in one A. citrinoterreus and one A. alabamensis isolate. The most affected amino acid position of the Cyp51A gene correlating with the posaconazole resistant phenotype was M217, which was found in the variation M217T and M217V. Conclusions: Aspergillus terreus was most prevalent, followed by A. citrinoterreus . Posaconazole was the most potent drug against A. terreus , but 5.4% of A. terreus sensu stricto showed resistance against this azole. In Austria, Germany, and the United Kingdom posaconazole-resistance in all A. terreus

  7. Azole-Resistance in Aspergillus terreus and Related Species: An Emerging Problem or a Rare Phenomenon?

    PubMed Central

    Zoran, Tamara; Sartori, Bettina; Sappl, Laura; Aigner, Maria; Sánchez-Reus, Ferran; Rezusta, Antonio; Chowdhary, Anuradha; Taj-Aldeen, Saad J.; Arendrup, Maiken C.; Oliveri, Salvatore; Kontoyiannis, Dimitrios P.; Alastruey-Izquierdo, Ana; Lagrou, Katrien; Cascio, Giuliana Lo; Meis, Jacques F.; Buzina, Walter; Farina, Claudio; Drogari-Apiranthitou, Miranda; Grancini, Anna; Tortorano, Anna M.; Willinger, Birgit; Hamprecht, Axel; Johnson, Elizabeth; Klingspor, Lena; Arsic-Arsenijevic, Valentina; Cornely, Oliver A.; Meletiadis, Joseph; Prammer, Wolfgang; Tullio, Vivian; Vehreschild, Jörg-Janne; Trovato, Laura; Lewis, Russell E.; Segal, Esther; Rath, Peter-Michael; Hamal, Petr; Rodriguez-Iglesias, Manuel; Roilides, Emmanuel; Arikan-Akdagli, Sevtap; Chakrabarti, Arunaloke; Colombo, Arnaldo L.; Fernández, Mariana S.; Martin-Gomez, M. Teresa; Badali, Hamid; Petrikkos, Georgios; Klimko, Nikolai; Heimann, Sebastian M.; Uzun, Omrum; Roudbary, Maryam; de la Fuente, Sonia; Houbraken, Jos; Risslegger, Brigitte; Lass-Flörl, Cornelia; Lackner, Michaela

    2018-01-01

    Objectives: Invasive mold infections associated with Aspergillus species are a significant cause of mortality in immunocompromised patients. The most frequently occurring aetiological pathogens are members of the Aspergillus section Fumigati followed by members of the section Terrei. The frequency of Aspergillus terreus and related (cryptic) species in clinical specimens, as well as the percentage of azole-resistant strains remains to be studied. Methods: A global set (n = 498) of A. terreus and phenotypically related isolates was molecularly identified (beta-tubulin), tested for antifungal susceptibility against posaconazole, voriconazole, and itraconazole, and resistant phenotypes were correlated with point mutations in the cyp51A gene. Results: The majority of isolates was identified as A. terreus (86.8%), followed by A. citrinoterreus (8.4%), A. hortai (2.6%), A. alabamensis (1.6%), A. neoafricanus (0.2%), and A. floccosus (0.2%). One isolate failed to match a known Aspergillus sp., but was found most closely related to A. alabamensis. According to EUCAST clinical breakpoints azole resistance was detected in 5.4% of all tested isolates, 6.2% of A. terreus sensu stricto (s.s.) were posaconazole-resistant. Posaconazole resistance differed geographically and ranged from 0% in the Czech Republic, Greece, and Turkey to 13.7% in Germany. In contrast, azole resistance among cryptic species was rare 2 out of 66 isolates and was observed only in one A. citrinoterreus and one A. alabamensis isolate. The most affected amino acid position of the Cyp51A gene correlating with the posaconazole resistant phenotype was M217, which was found in the variation M217T and M217V. Conclusions: Aspergillus terreus was most prevalent, followed by A. citrinoterreus. Posaconazole was the most potent drug against A. terreus, but 5.4% of A. terreus sensu stricto showed resistance against this azole. In Austria, Germany, and the United Kingdom posaconazole-resistance in all A. terreus

  8. The antifungal action of dandruff shampoos.

    PubMed

    Bulmer, A C; Bulmer, G S

    1999-01-01

    The disease commonly known as "dandruff" is caused by numerous host factors in conjunction with the normal flora yeast Malassezia furfur (Pityrosporum ovale). Indeed, clinical studies have shown that administration of antifungal agents correlates with an improved clinical condition. Almost all commercially available hair shampoos publicize that they contain some form of antifungal agent(s). However, few studies have been published in which antifungal activity of commercially available hair shampoos have been contrasted experimentally. In this study six commercially available shampoos (in the Philippines) were assessed for antifungal activity against a human (dandruff) isolate of M. furfur: (a) Head & Shoulders (Proctor & Gamble); (b) Gard Violet (Colgate-Palmolive); (c) Nizoral 1% (Janssen); (d) Nizoral 2% (Janssen); (e) Pantene Blue (Proctor & Gamble); and (f) Selsun Blue (Abbott). The results demonstrated that all six of the assayed hair shampoos have some antifungal effect on the test yeast. However, there was consider variation in potency of antifungal activity. Nizoral 1% and Nizoral 2% shampoo preparations were the most effective. The 1% Nizoral shampoo was consistently 10X better at killing yeast cells than the next closest rival shampoo. The 2% Nizoral shampoo was 10X better than the Nizoral 1% product and 100 times better than any of the other products assayed. The study demonstrated that shampoos containing a proven antifungal compound were the most effective in controlling the causative yeast.

  9. Determination of antifungal activities in serum samples from mice treated with different antifungal drugs allows detection of an active metabolite of itraconazole.

    PubMed

    Maki, Katsuyuki; Watabe, Etsuko; Iguchi, Yumi; Nakamura, Hideko; Tomishima, Masaki; Ohki, Hidenori; Yamada, Akira; Matsumoto, Satoru; Ikeda, Fumiaki; Tawara, Shuichi; Mutoh, Seitaro

    2006-01-01

    To establish an in vitro method of predicting in vivo efficacy of antifungal drugs against Candida albicans and Aspergillus fumigatus, the antifungal activities of fluconazole, itraconazole, and amphotericin B were determined in mouse serum. The minimum inhibitory concentration (MIC) of each drug was measured using mouse serum as a diluent. For C. albicans, the assay endpoint of azoles was defined as inhibition of mycelial extension (mMIC) and for A. fumigatus, as no growth (MIC). The MICs of amphotericin B for both pathogens were defined as the MIC at which no mycelial growth occurred. Serum MIC or mMIC determinations were then used to estimate the concentration of the drugs in serum of mice treated with antifungal drugs by multiplying the antifungal titer of the serum samples by the serum (m)MIC. The serum drug concentrations were also determined by HPLC. The serum concentrations estimated microbiologically showed good agreement with those determined by HPLC, except for itraconazole. Analysis of the serum samples from itraconazole-treated mice by a sensitive bioautography revealed the presence of additional spots, not seen in control samples of itraconazole. The bioautography assay demonstrated that the additional material detected in serum from mice treated with itraconazole was an active metabolite of itraconazole. The data showed that the apparent reduction in the itraconazole serum concentration as determined by HPLC was the result of the formation of an active metabolite, and that the use of a microbiological method to measure serum concentrations of drugs can provide a method for prediction of in vivo efficacy of antifungal drugs.

  10. Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility.

    PubMed Central

    Geber, A; Hitchcock, C A; Swartz, J E; Pullen, F S; Marsden, K E; Kwon-Chung, K J; Bennett, J E

    1995-01-01

    We have cloned and sequenced the structural genes encoding the delta 5,6 sterol desaturase (ERG3 gene) and the 14 alpha-methyl sterol demethylase (ERG11 gene) from Candida glabrata L5 (leu2). Single and double mutants of these genes were created by gene deletion. The phenotypes of these mutants, including sterol profiles, aerobic viabilities, antifungal susceptibilities, and generation times, were studied. Strain L5D (erg3 delta::LEU2) accumulated mainly ergosta-7,22-dien-3 beta-ol, was aerobically viable, and remained susceptible to antifungal agents but had a slower generation time than its parent strain. L5LUD (LEU2 erg11 delta::URA3) strains required medium supplemented with ergosterol and an anaerobic environment for growth. A spontaneous aerobically viable mutant, L5LUD40R (LEU erg11 delta::URA3), obtained from L5LUD (LEU2 erg11 delta::URA3), was found to accumulate lanosterol and obtusifoliol, was resistant to azole antifungal agents, demonstrated some increase in resistance to amphotericin B, and exhibited a 1.86-fold increase in generation time in comparison with L5 (leu2). The double-deletion mutant L5DUD61 (erg3 delta::LEU2 erg11 delta::URA3) was aerobically viable, produced mainly 14 alpha-methyl fecosterol, and had the same antifungal susceptibility pattern as L5LUD40R (LEU2 erg11 delta::URA3), and its generation time was threefold greater than that of L5 (leu2). Northern (RNA) analysis revealed that the single-deletion mutants had a marked increase in message for the undeleted ERG3 and ERG11 genes. These results indicate that differences in antifungal susceptibilities and the restoration of aerobic viability exist between the C. glabrata ergosterol mutants created in this study and those sterol mutants with similar genetic lesions previously reported for Saccharomyces cerevisiae. PMID:8593007

  11. Defining the frontiers between antifungal resistance, tolerance and the concept of persistence.

    PubMed

    Delarze, Eric; Sanglard, Dominique

    2015-11-01

    A restricted number of antifungal agents are available for the therapy of fungal diseases. With the introduction of epidemiological cut-off values for each agent in important fungal pathogens based on the distribution of minimal inhibitory concentration (MIC), the distinction between wild type and drug-resistant populations has been facilitated. Antifungal resistance has been described for all currently available antifungal agents in several pathogens and most of the associated resistance mechanisms have been deciphered at the molecular level. Clinical breakpoints for some agents have been proposed and can have predictive value for the success or failure of therapy. Tolerance to antifungals has been a much more ignored area. By definition, tolerance operates at antifungal concentrations above individual intrinsic inhibitory values. Important is that tolerance to antifungal agents favours the emergence of persister cells, which are able to survive antifungal therapy and can cause relapses. Here we will review the current knowledge on antifungal tolerance, its potential mechanisms and also evaluate the role of antifungal tolerance in the efficacy of drug treatments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. New record of Scedosporium dehoogii from Chile: Phylogeny and susceptibility profiles to classic and novel putative antifungal agents.

    PubMed

    Alvarez, Eduardo; Sanhueza, Camila

    Scedosporium species are considered emerging agents causing illness in immunocompromised patients. In Chile, only Scedosporium apiospermum, Scedosporium boydii and Lomentospora prolificans haven been reported previously. The study aimed to characterize genetically Scedosporium dehoogii strains from Chilean soil samples, and assessed the antifungal susceptibility profile to classic and novel putative antifungal molecules. In 2014, several samples were obtained during a survey of soil fungi in urban areas from Chile. Morphological and phylogenetic analyses of the internal transcribed spacer region (ITS), tubulin (TUB), and calmodulin (CAL) sequences were performed. In addition, the susceptibility profiles to classic antifungal and new putative antifungal molecules were determined. Four strains of Scedosporium dehoogii were isolated from soil samples. The methodology confirmed the species (reported here as a new record for Chile). Antifungal susceptibility testing demonstrates the low activity of terpenes (α-pinene and geraniol) against this species. Voriconazole (VRC), posaconazole (PSC), and the hydroxyquinolines (clioquinol, and 5,7-dibromo-8-hydroxyquinoline) showed the best antifungal activity. Our results demonstrate that Scedosporium dehoogii is present in soil samples from Chile. This study shows also that hydroxyquinolines have potential as putative antifungal molecules. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Candida tropicalis from veterinary and human sources shows similar in vitro hemolytic activity, antifungal biofilm susceptibility and pathogenesis against Caenorhabditis elegans.

    PubMed

    Brilhante, Raimunda Sâmia Nogueira; Oliveira, Jonathas Sales de; Evangelista, Antônio José de Jesus; Serpa, Rosana; Silva, Aline Lobão da; Aguiar, Felipe Rodrigues Magalhães de; Pereira, Vandbergue Santos; Castelo-Branco, Débora de Souza Collares Maia; Pereira-Neto, Waldemiro Aquino; Cordeiro, Rossana de Aguiar; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha

    2016-08-30

    The aim of this study was to evaluate the in vitro hemolytic activity and biofilm antifungal susceptibility of veterinary and human Candida tropicalis strains, as well as their pathogenesis against Caenorhabditis elegans. Twenty veterinary isolates and 20 human clinical isolates of C. tropicalis were used. The strains were evaluated for their hemolytic activity and biofilm production. Biofilm susceptibility to itraconazole, fluconazole, voriconazole, amphotericin B and caspofungin was assessed using broth microdilution assay. The in vivo evaluation of strain pathogenicity was investigated using the nematode C. elegans. Hemolytic factor was observed in 95% of the strains and 97.5% of the isolates showed ability to form biofilm. Caspofungin and amphotericin B showed better results than azole antifungals against mature biofilms. Paradoxical effect on mature biofilm metabolic activity was observed at elevated concentrations of caspofungin (8-64μg/mL). Azole antifungals were not able to inhibit mature C. tropicalis biofilms, even at the higher tested concentrations. High mortality rates of C. elegans were observed when the worms were exposed to with C. tropicalis strains, reaching up to 96%, 96h after exposure of the worms to C. tropicalis strains. These results reinforce the high pathogenicity of C. tropicalis from veterinary and human sources and show the effectiveness of caspofungin and amphotericin B against mature biofilms of this species. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Plant-derived antifungal agent poacic acid targets β-1,3-glucan

    DOE PAGES

    Piotrowski, Jeff S.; Okada, Hiroki; Lu, Fachuang; ...

    2015-03-09

    A rise in resistance to current antifungals necessitates strategies to identify alternative sources of effective fungicides. We report the discovery of poacic acid, a potent antifungal compound found in lignocellulosic hydrolysates of grasses. Chemical genomics using Saccharomyces cerevisiae showed that loss of cell wall synthesis and maintenance genes conferred increased sensitivity to poacic acid. Morphological analysis revealed that cells treated with poacic acid behaved similarly to cells treated with other cell wall-targeting drugs and mutants with deletions in genes involved in processes related to cell wall biogenesis. Poacic acid causes rapid cell lysis and is synergistic with caspofungin and fluconazole.more » The cellular target was identified; poacic acid localized to the cell wall and inhibited β-1,3-glucan synthesis in vivo and in vitro, apparently by directly binding β-1,3-glucan. Through its activity on the glucan layer, poacic acid inhibits growth of the fungi Sclerotinia sclerotiorum and Alternaria solani as well as the oomycete Phytophthora sojae. A single application of poacic acid to leaves infected with the broad-range fungal pathogen S. sclerotiorum substantially reduced lesion development. In conclusion, the discovery of poacic acid as a natural antifungal agent targeting β-1,3-glucan highlights the potential side use of products generated in the processing of renewable biomass toward biofuels as a source of valuable bioactive compounds and further clarifies the nature and mechanism of fermentation inhibitors found in lignocellulosic hydrolysates.« less

  15. Plant-derived antifungal agent poacic acid targets β-1,3-glucan

    PubMed Central

    Piotrowski, Jeff S.; Okada, Hiroki; Lu, Fachuang; Li, Sheena C.; Hinchman, Li; Ranjan, Ashish; Smith, Damon L.; Higbee, Alan J.; Ulbrich, Arne; Coon, Joshua J.; Deshpande, Raamesh; Bukhman, Yury V.; McIlwain, Sean; Ong, Irene M.; Myers, Chad L.; Boone, Charles; Landick, Robert; Ralph, John; Kabbage, Mehdi; Ohya, Yoshikazu

    2015-01-01

    A rise in resistance to current antifungals necessitates strategies to identify alternative sources of effective fungicides. We report the discovery of poacic acid, a potent antifungal compound found in lignocellulosic hydrolysates of grasses. Chemical genomics using Saccharomyces cerevisiae showed that loss of cell wall synthesis and maintenance genes conferred increased sensitivity to poacic acid. Morphological analysis revealed that cells treated with poacic acid behaved similarly to cells treated with other cell wall-targeting drugs and mutants with deletions in genes involved in processes related to cell wall biogenesis. Poacic acid causes rapid cell lysis and is synergistic with caspofungin and fluconazole. The cellular target was identified; poacic acid localized to the cell wall and inhibited β-1,3-glucan synthesis in vivo and in vitro, apparently by directly binding β-1,3-glucan. Through its activity on the glucan layer, poacic acid inhibits growth of the fungi Sclerotinia sclerotiorum and Alternaria solani as well as the oomycete Phytophthora sojae. A single application of poacic acid to leaves infected with the broad-range fungal pathogen S. sclerotiorum substantially reduced lesion development. The discovery of poacic acid as a natural antifungal agent targeting β-1,3-glucan highlights the potential side use of products generated in the processing of renewable biomass toward biofuels as a source of valuable bioactive compounds and further clarifies the nature and mechanism of fermentation inhibitors found in lignocellulosic hydrolysates. PMID:25775513

  16. Antifungal resistance in mucorales.

    PubMed

    Dannaoui, E

    2017-11-01

    The order Mucorales, which includes the agents of mucormycosis, comprises a large number of species. These fungi are characterised by high-level resistance to most currently available antifungal drugs. Standardised antifungal susceptibility testing methods are now available, allowing a better understanding of the in vitro activity of antifungal drugs against members of Mucorales. Such tests have made apparent that antifungal susceptibility within this group may be species-specific. Experimental animal models of mucormycosis have also been developed and are of great importance in bridging the gap between in vitro results and clinical trials. Amphotericin B, posaconazole and isavuconazole are currently the most active agents against Mucorales; however, their activity remains suboptimal and new therapeutic strategies are needed. Combination therapy could be a promising approach to overcome resistance, but further studies are required to confirm its benefits and safety for patients. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  17. Biodirected synthesis of Miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles.

    PubMed

    Kumar, C Ganesh; Poornachandra, Y

    2015-01-01

    The recent strategy to improve the efficacy of drugs is to combine them with metal nanoparticles for the control of microbial infections. Considering this fact, we developed a low cost and eco-friendly method for silver nanoparticles synthesis using the cell free supernatant of Delftia sp. strain KCM-006 and their application as antifungal agents and as a drug carrier. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical and monodispersed silver nanoparticles with an average size of 9.8 nm. The synthesized nanoparticles were found to be photoluminescent, highly stable and crystalline in nature having a zeta potential of -31 mV. The silver nanoparticles exhibited very good antifungal activity against various pathogenic Candida strains. Furthermore, the efficacy of nanoparticles was increased by conjugating the antifungal drug Miconazole to silver nanoparticles which exhibited significant fungicidal activity, inhibition of ergosterol biosynthesis and biofilm inhibition by increasing ROS levels. In addition, the cell viability and immunocytochemistry analysis against different normal cell lines including Chinese hamster ovary cells (CHO), human lung cell line (MRC5) and human vascular endothelial cells (HUVEC) demonstrated that these nanoparticles were non-toxic up to a concentration of 20 μM. In conclusion, these results suggest that the synthesized nanoparticles find application as both antifungal agents and drug delivery vehicles. This is a first report on the preparation of silver nanoparticles using culture supernatant from Delftia sp. and also on the conjugation of Miconazole, an antifungal drug, to the bacterial silver nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Antifungal stewardship considerations for adults and pediatrics.

    PubMed

    Hamdy, Rana F; Zaoutis, Theoklis E; Seo, Susan K

    2017-08-18

    Antifungal stewardship refers to coordinated interventions to monitor and direct the appropriate use of antifungal agents in order to achieve the best clinical outcomes and minimize selective pressure and adverse events. Antifungal utilization has steadily risen over time in concert with the increase in number of immunocompromised adults and children at risk for invasive fungal infections (IFI). Challenges in diagnosing IFI often lead to delays in treatment and poorer outcomes. There are also emerging data linking prior antifungal exposure and suboptimal dosing to the emergence of antifungal resistance, particularly for Candida. Antimicrobial stewardship programs can take a multi-pronged bundle approach to ensure suitable prescribing of antifungals via post-prescription review and feedback and/or prior authorization. Institutional guidelines can also be developed to guide diagnostic testing in at-risk populations; appropriate choice, dose, and duration of antifungal agent; therapeutic drug monitoring; and opportunities for de-escalation and intravenous-to-oral conversion.

  19. Comparison of two in vitro antifungal sensitivity tests and monitoring during therapy of Sporothrix schenckii sensu stricto in Malaysian cats.

    PubMed

    Han, Hock Siew; Kano, Rui; Chen, Charles; Noli, Chiara

    2017-02-01

    Feline sporotrichosis is common in Malaysia. Thermosensitivity and effects of azole treatment on fungal susceptibility are unknown. To evaluate thermotolerance and antifungal susceptibility of feline Malaysian Sporothrix isolates, compare microdilution (MD) and E-test results, and investigate changes in susceptibility during azole therapy. Sporothrix schenckii sensu stricto was isolated from 44 cats. Thermotolerance was determined via culture at 37°C for 7 days. Susceptibility to itraconazole (ITZ), ketoconazole (KTZ) and terbinafine (TRB) was assessed in 40 isolates by MD; to amphotericin B (AMB), KTZ, ITZ, fluconazole (FLC) and posaconazole (POS) by E-test. Results were statistically compared by Pearson's Product Moment. In eight ketoconazole treated cats, susceptibility testing to itraconazole and ketoconazole was repeated every two months for six months. Thermotolerance was observed in 36 of 44 (82%) isolates. Assuming that isolates growing at antifungal concentrations ≥4 mg/mL were resistant, all were resistant on E-test to FLC and AMB, 11 (28%) to POS, 6 (15%) to ITZ and 1 (3%) to KTZ. On MD, 27 of 40 (68%) were resistant to TRB, 2 (5%) to ITZ and 3 (8%) to KTZ. There was no correlation between E-test and MD results (KTZ r = 0.10, P = 0.54, and ITZ r = 0.11, P = 0.48). MD values for ITZ and KTZ did not exceed 4 mg/L during KTZ therapy. The majority of feline isolates in Malaysia are thermosensitive. Lack of correlation between E-test and MD suggests that the E-test is unreliable to test antifungal susceptibility for Sporothrix spp. compared to MD. KTZ was the antifungal drug with the lowest MIC. Prolonged KTZ administration may not induce changes in antifungal susceptibility. © 2017 ESVD and ACVD.

  20. A Novel Zn2-Cys6 Transcription Factor AtrR Plays a Key Role in an Azole Resistance Mechanism of Aspergillus fumigatus by Co-regulating cyp51A and cdr1B Expressions

    PubMed Central

    Shimizu, Kiminori; Paul, Sanjoy; Ohba, Ayumi; Gonoi, Tohru; Watanabe, Akira; Gomi, Katsuya

    2017-01-01

    Successful treatment of aspergillosis caused by Aspergillus fumigatus is threatened by an increasing incidence of drug resistance. This situation is further complicated by the finding that strains resistant to azoles, the major antifungal drugs for aspergillosis, have been widely disseminated across the globe. To elucidate mechanisms underlying azole resistance, we identified a novel transcription factor that is required for normal azole resistance in Aspergillus fungi including A. fumigatus, Aspergillus oryzae, and Aspergillus nidulans. This fungal-specific Zn2-Cys6 type transcription factor AtrR was found to regulate expression of the genes related to ergosterol biosynthesis, including cyp51A that encodes a target protein of azoles. The atrR deletion mutant showed impaired growth under hypoxic conditions and attenuation of virulence in murine infection model for aspergillosis. These results were similar to the phenotypes for a mutant strain lacking SrbA that is also a direct regulator for the cyp51A gene. Notably, AtrR was responsible for the expression of cdr1B that encodes an ABC transporter related to azole resistance, whereas SrbA was not involved in the regulation. Chromatin immunoprecipitation assays indicated that AtrR directly bound both the cyp51A and cdr1B promoters. In the clinically isolated itraconazole resistant strain that harbors a mutant Cyp51A (G54E), deletion of the atrR gene resulted in a hypersensitivity to the azole drugs. Together, our results revealed that AtrR plays a pivotal role in a novel azole resistance mechanism by co-regulating the drug target (Cyp51A) and putative drug efflux pump (Cdr1B). PMID:28052140

  1. Interaction of gelatin with polyenes modulates antifungal activity and biocompatibility of electrospun fiber mats

    PubMed Central

    Lakshminarayanan, Rajamani; Sridhar, Radhakrishnan; Loh, Xian Jun; Nandhakumar, Muruganantham; Barathi, Veluchamy Amutha; Kalaipriya, Madhaiyan; Kwan, Jia Lin; Liu, Shou Ping; Beuerman, Roger Wilmer; Ramakrishna, Seeram

    2014-01-01

    Topical application of antifungals does not have predictable or well-controlled release characteristics and requires reapplication to achieve therapeutic local concentration in a reasonable time period. In this article, the efficacy of five different US Food and Drug Administration-approved antifungal-loaded (amphotericin B, natamycin, terbinafine, fluconazole, and itraconazole) electrospun gelatin fiber mats were compared. Morphological studies show that incorporation of polyenes resulted in a two-fold increase in fiber diameter and the mats inhibit the growth of yeasts and filamentous fungal pathogens. Terbinafine-loaded mats were effective against three filamentous fungal species. Among the two azole antifungals compared, the itraconazole-loaded mat was potent against Aspergillus strains. However, activity loss was observed for fluconazole-loaded mats against all of the test organisms. The polyene-loaded mats displayed rapid candidacidal activities as well. Biophysical and rheological measurements indicate strong interactions between polyene antifungals and gelatin matrix. As a result, the polyenes stabilized the triple helical conformation of gelatin and the presence of gelatin decreased the hemolytic activity of polyenes. The polyene-loaded fiber mats were noncytotoxic to primary human corneal and sclera fibroblasts. The reduction of toxicity with complete retention of activity of the polyene antifungal-loaded gelatin fiber mats can provide new opportunities in the management of superficial skin infections. PMID:24920895

  2. Breakthrough candidemia after the introduction of broad spectrum antifungal agents: A 5-year retrospective study.

    PubMed

    Breda, Giovanni L; Tuon, Felipe F; Meis, Jacques F; Herkert, Patricia F; Hagen, Ferry; de Oliveira, Letícia Z; Dias, Viviane de Carvalho; da Cunha, Clóvis Arns; Queiroz-Telles, Flávio

    2018-06-01

    Candidemia is the main invasive fungal disease among hospitalized patients. Several breakthrough candidemia (BrC) cases have been reported, but few studies evaluate the epidemiology, risk factors, molecular characterization, antifungal susceptibility profile and outcome of those patients, especially in developing countries and including patients using broad spectrum antifungals. We conducted a retrospective study from 2011 to 2016, including patients aged 12 years or older with candidemia. Epidemiological characteristics and risk factors for candidemia were evaluated and compared with patients with BrC using univariate and multivariate analysis. Sequential Candida isolates from BrC were identified by internal transcribed spacer sequencing, genotyped with amplified fragment length polymorphism fingerprinting (AFLP), and tested for antifungal susceptibility. From 148 candidemia episodes, 27 breakthrough episodes (18%) were identified, with neutropenia and mucositis being independent risk factors for BrC. Candida non-albicans was more frequent in the BrC group (P < .001). AFLP showed high correlation with conventional methods of identification among breakthrough isolates and a high genetic similarity among isolates from the same patient was observed. C. albicans was the most susceptible species with low MIC values for all antifungal agents tested. In contrast, we found isolates of C. glabrata, C. parapsilosis and C. tropicalis resistant to triazoles and echinocandins. In conclusion, BrC occurred mainly in severely immunosuppressed patients, with neutropenia and mucositis. Mortality did not differ between the groups. Candida non-albicans species were more recovered from BrC, with C. albicans being the most susceptible to antifungals.

  3. Evaluation of the antifungal effect of EDTA, a metal chelator agent, on Candida albicans biofilm.

    PubMed

    Casalinuovo, I A; Sorge, R; Bonelli, G; Di Francesco, P

    2017-03-01

    Candida albicans biofilm is frequently found on artificial surfaces and the infections related to biofilm are difficult to eliminate, as they require the removal of artificial devices and treatment with antifungal drugs. Nowadays, fungal growth in biofilms is difficult to eradicate with conventional antifungal drugs such as fluconazole. Among chelating agents, disodium salt-Ethylene Diamine Tetraacetic Acid (EDTA) is known to have antifungal activity. In this study, we examined the in vitro activity of the EDTA and the antifungal drug fluconazole against C. albicans mature biofilm. C. albicans ATCC 20191, fluconazole-susceptible strain, was grown at an inoculum starter of 1 x 106 cells/ml for 72 h in 24-well microtiter plates and was further treated for 24 h with EDTA and/or fluconazole. Antifungal activities in biofilms were expressed as reduction in optical density (OD) determined by a 2,3-bis (2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide (XTT) colorimetric assay and compared to untreated biofilms. Colorimetric readings revealed that EDTA alone (at 25 and 2.5 mM) significantly reduced fungal metabolic activity in preformed biofilms. Also, EDTA combined with fluconazole significantly reduced the growth of biofilm when compared to biofilm treated with fluconazole alone (at 25 and 2.5 µg/ml). Our data suggest that the employment of EDTA or other chemicals destabilizers of the biofilm matrix, in combination with antifungal drugs, could lead to the development of new strategies for the management of infections associated to Candida biofilm. Another relevant result of our study suggests that the initial cell concentration, probably through mechanisms of quorum sensing, affects the cellular viability during the process of biofilm formation.

  4. Topical antifungal treatments for tinea cruris and tinea corporis.

    PubMed

    El-Gohary, Magdy; van Zuuren, Esther J; Fedorowicz, Zbys; Burgess, Hana; Doney, Liz; Stuart, Beth; Moore, Michael; Little, Paul

    2014-08-04

    .53 to 0.84, NNT 6, 95% CI 5 to 13), but there was no difference in mycological cure rate (RR 0.99, 95% CI 0.93 to 1.05). The quality of evidence for these two outcomes was rated as low for mycological cure and very low for clinical cure.All of the treatments that were examined appeared to be effective, but most comparisons were evaluated in single studies. There was no evidence for a difference in cure rates between tinea cruris and tinea corporis. Adverse effects were minimal - mainly irritation and burning; results were generally imprecise between active interventions and placebo, and between different classes of treatment. The pooled data suggest that the individual treatments terbinafine and naftifine are effective. Adverse effects were generally mild and reported infrequently. A substantial number of the studies were more than 20 years old and of unclear or high risk of bias; there is however, some evidence that other topical antifungal treatments also provide similar clinical and mycological cure rates, particularly azoles although most were evaluated in single studies.There is insufficient evidence to determine if Whitfield's ointment, a widely used agent is effective.Although combinations of topical steroids and antifungals are not currently recommended in any clinical guidelines, relevant studies included in this review reported higher clinical cure rates with similar mycological cure rates at the end of treatment, but the quality of evidence for these outcomes was rated very low due to imprecision, indirectness and risk of bias. There was insufficient evidence to confidently assess relapse rates in the individual or combination treatments.Although there was little difference between different classes of treatment in achieving cure, some interventions may be more appealing as they require fewer applications and a shorter duration of treatment. Further, high quality, adequately powered trials focusing on patient-centred outcomes, such as patient satisfaction

  5. Candida Species Biofilms’ Antifungal Resistance

    PubMed Central

    Silva, Sónia; Rodrigues, Célia F.; Araújo, Daniela; Rodrigues, Maria Elisa; Henriques, Mariana

    2017-01-01

    Candida infections (candidiasis) are the most prevalent opportunistic fungal infection on humans and, as such, a major public health problem. In recent decades, candidiasis has been associated to Candida species other than Candida albicans. Moreover, biofilms have been considered the most prevalent growth form of Candida cells and a strong causative agent of the intensification of antifungal resistance. As yet, no specific resistance factor has been identified as the sole responsible for the increased recalcitrance to antifungal agents exhibited by biofilms. Instead, biofilm antifungal resistance is a complex multifactorial phenomenon, which still remains to be fully elucidated and understood. The different mechanisms, which may be responsible for the intrinsic resistance of Candida species biofilms, include the high density of cells within the biofilm, the growth and nutrient limitation, the effects of the biofilm matrix, the presence of persister cells, the antifungal resistance gene expression and the increase of sterols on the membrane of biofilm cells. Thus, this review intends to provide information on the recent advances about Candida species biofilm antifungal resistance and its implication on intensification of the candidiasis. PMID:29371527

  6. Synergistic activity between Echinophora platyloba DC ethanolic extract and azole drugs against clinical isolates of Candida albicans from women suffering chronic recurrent vaginitis.

    PubMed

    Avijgan, M; Mahboubi, M; Moheb Nasab, M; Ahmadi Nia, E; Yousefi, H

    2014-06-01

    Candida albicans is one of the main causes of vaginitis, especially in women with recurrent episodes. The appearance of drug resistant C. albicans and adverse effects of chemical agents have raised interest in Echinophora platyloba as one of four native species in Traditional Persian-Iranian medicine. This study evaluates the antifungal activity of ethanolic extract from dried aerial parts of E. platyloba against 27 clinical isolates of C. albicans from women suffering chronic recurrent vaginitis by micro-broth dilution assay. The synergistic effect of azole drugs and E. platyloba ethanolic extract were also determined by disc diffusion method after determining the MIC90. The results of this study showed a potent synergistic effect of E. platyloba ethanolic extract and itraconazole (P<0.01) and fluconazole (P<0.001) but an antagonistic effect between E. platyloba ethanolic extract and clotrimazole and miconazole against clinical isolates of C. albicans. These results must be confirmed by clinical application and by further clinical studies. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Porosity of temporary denture soft liners containing antifungal agents

    PubMed Central

    Lima, Jozely Francisca Mello; Maciel, Janaína Gomes; Hotta, Juliana; Vizoto, Ana Carolina Pero; Honório, Heitor Marques; Urban, Vanessa Migliorini; Neppelenbroek, Karin Hermana

    2016-01-01

    ABSTRACT Incorporation of antifungals in temporary denture soft liners has been recommended for denture stomatitis treatment; however, it may affect their properties. Objective: To evaluate the porosity of a tissue conditioner (Softone) and a temporary resilient liner (Trusoft) modified by minimum inhibitory concentrations (MICs) of antifungal agents for Candida albicans biofilm. Material and Methods: The porosity was measured by water absorption, based on exclusion of the plasticizer effect. Initially, it was determined by sorption isotherms that the adequate storage solution for specimens (65×10×3.3 mm) of both materials was 50% anhydrous calcium chloride (S50). Then, the porosity factor (PF) was calculated for the study groups (n=10) formed by specimens without (control) or with drug incorporation at MICs (nystatin: Ny-0.032 g, chlorhexidine diacetate: Chx-0.064 g, or ketoconazole: Ke-0.128 g each per gram of soft liner powder) after storage in distilled water or S50 for 24 h, seven and 14 d. Data were statistically analyzed by 4-way repeated measures ANOVA and Tukey's test (α=.05). Results: Ke resulted in no significant changes in PF for both liners in water over 14 days (p>0.05). Compared with the controls, Softone and Trusoft PFs were increased at 14-day water immersion only after addition of Ny and Chx, and Chx, respectively (p<0.05). Both materials showed no significant changes in PF in up to 14 days of S50 immersion, compared with the controls (p>0.05). In all experimental conditions, Softone and Trusoft PFs were significantly lower when immersed in S50 compared with distilled water (p<0.05). Conclusions: The addition of antifungals at MICs resulted in no harmful effects for the porosity of both temporary soft liners in different periods of water immersion, except for Chx and Ny in Softone and Chx in Trusoft at 14 days. No deleterious effect was observed for the porosity of both soft liners modified by the drugs at MICs over 14 days of S50 immersion

  8. Epidemiological and Genomic Landscape of Azole Resistance Mechanisms in Aspergillus Fungi

    PubMed Central

    Hagiwara, Daisuke; Watanabe, Akira; Kamei, Katsuhiko; Goldman, Gustavo H.

    2016-01-01

    Invasive aspergillosis is a life-threatening mycosis caused by the pathogenic fungus Aspergillus. The predominant causal species is Aspergillus fumigatus, and azole drugs are the treatment of choice. Azole drugs approved for clinical use include itraconazole, voriconazole, posaconazole, and the recently added isavuconazole. However, epidemiological research has indicated that the prevalence of azole-resistant A. fumigatus isolates has increased significantly over the last decade. What is worse is that azole-resistant strains are likely to have emerged not only in response to long-term drug treatment but also because of exposure to azole fungicides in the environment. Resistance mechanisms include amino acid substitutions in the target Cyp51A protein, tandem repeat sequence insertions at the cyp51A promoter, and overexpression of the ABC transporter Cdr1B. Environmental azole-resistant strains harboring the association of a tandem repeat sequence and punctual mutation of the Cyp51A gene (TR34/L98H and TR46/Y121F/T289A) have become widely disseminated across the world within a short time period. The epidemiological data also suggests that the number of Aspergillus spp. other than A. fumigatus isolated has risen. Some non-fumigatus species intrinsically show low susceptibility to azole drugs, imposing the need for accurate identification, and drug susceptibility testing in most clinical cases. Currently, our knowledge of azole resistance mechanisms in non-fumigatus Aspergillus species such as A. flavus, A. niger, A. tubingensis, A. terreus, A. fischeri, A. lentulus, A. udagawae, and A. calidoustus is limited. In this review, we present recent advances in our understanding of azole resistance mechanisms particularly in A. fumigatus. We then provide an overview of the genome sequences of non-fumigatus species, focusing on the proteins related to azole resistance mechanisms. PMID:27708619

  9. Molecular identification and antifungal susceptibility profile of Candida species isolated from patients with vulvovaginitis in Tehran, Iran.

    PubMed

    Sharifynia, Somayeh; Falahati, Mehraban; Akhlaghi, Lame; Foroumadi, Alireza; Fateh, Roohollah

    2017-01-01

    Rapid and accurate identification and evaluation of antifungal susceptibility pattern of Candida isolates are crucial to determine suitable antifungal drugs for the treatment of patients with vulvovaginitis candidiasis. Vaginal samples were collected from 150 women with suspicious vaginal candidiasis, and then cultured on Sabouraoud's Dextrose Agar with chloramphenicol to isolate Candida species. After identification of Candida isolates using polymerase chain reaction-restriction fragment length polymorphism technique, antifungal susceptibility testing of four azolic antifungal drugs was carried out using broth microdilution method according to the CLSI M27-A3. Candida species were isolated from eighty suspected patients (61.79%). The most common pathogen was Candida albicans (63.75%). Resistance to fluconazole and ketoconazole was observed in 27.5% and 23.75% of Candida isolates, respectively, and only 2% of Candida isolates were resistant to miconazole. Interestingly, resistance to fluconazole in C. albicans was more than other Candida species. The results indicated that therapy should be selected according to the antifungal susceptibility tests for the prevention of treatment failure and miconazole therapy can be considered as the best therapeutic choice in the management of vulvovaginitis.

  10. Molecular identification and antifungal susceptibility profile of Candida species isolated from patients with vulvovaginitis in Tehran, Iran

    PubMed Central

    Sharifynia, Somayeh; Falahati, Mehraban; Akhlaghi, Lame; Foroumadi, Alireza; Fateh, Roohollah

    2017-01-01

    Background: Rapid and accurate identification and evaluation of antifungal susceptibility pattern of Candida isolates are crucial to determine suitable antifungal drugs for the treatment of patients with vulvovaginitis candidiasis. Materials and Methods: Vaginal samples were collected from 150 women with suspicious vaginal candidiasis, and then cultured on Sabouraoud's Dextrose Agar with chloramphenicol to isolate Candida species. After identification of Candida isolates using polymerase chain reaction-restriction fragment length polymorphism technique, antifungal susceptibility testing of four azolic antifungal drugs was carried out using broth microdilution method according to the CLSI M27-A3. Results: Candida species were isolated from eighty suspected patients (61.79%). The most common pathogen was Candida albicans (63.75%). Resistance to fluconazole and ketoconazole was observed in 27.5% and 23.75% of Candida isolates, respectively, and only 2% of Candida isolates were resistant to miconazole. Interestingly, resistance to fluconazole in C. albicans was more than other Candida species. Conclusion: The results indicated that therapy should be selected according to the antifungal susceptibility tests for the prevention of treatment failure and miconazole therapy can be considered as the best therapeutic choice in the management of vulvovaginitis. PMID:29387119

  11. PROPICONAZOLE-INDUCED CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RAT AND MOUSE LIVER

    EPA Science Inventory

    Conazoles are N-substituted azole antifungal agents used as both pesticides and drugs. Some of these compounds are hepatocarcinogenic in mice and some can induce thyroid tumors in rats. Many of these compounds are able to induce and/or inhibit mammalian hepatic cytochrome P450s t...

  12. Functional expression and characterization of CYP51 from dandruff-causing Malassezia globosa.

    PubMed

    Kim, Donghak; Lim, Young-Ran; Ohk, Seul Ong; Kim, Beom Joon; Chun, Young-Jin

    2011-02-01

    Malassezia globosa is one of the most common yeasts to cause various human skin diseases including dandruff and seborrheic dermatitis. Genomic analysis of M. globosa revealed four putative cytochrome P450 (CYP) enzymes. Here, we report the purification and characterization of recombinant CYP51, a putative lanosterol 14α-demethylase, from M. globosa. The M. globosa CYP51 was expressed heterologously in Escherichia coli, followed by purification. Purified CYP51 showed a typical reduced CO-difference spectrum of P450, with a maximum absorption at 447 nm. Purified CYP51 exhibited tight binding to azole antifungal agents such as ketoconazole, econazole, fluconazole, or itraconazole, with K(d) values around 0.26-0.84 μM, which suggests that CYP51 is an orthologous target for antifungal agents in the M. globosa. In addition, three mutations (Y127F, A169S, and K176N) in the amino acid sequence of M. globosa CYP51 were identified in one of the azole-resistant strains. Homology modeling of M. globosa CYP51 suggested that the Y127F mutation may influence the resistance to azoles by blocking substrate access channels. Taken together, functional expression and characterization of the CYP51 enzyme can provide a fundamental basis for a specific antifungal drug design for dandruff caused by M. globosa. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. High prevalence of clinical and environmental triazole-resistant Aspergillus fumigatus in Iran: is it a challenging issue?

    PubMed

    Nabili, Mojtaba; Shokohi, Tahereh; Moazeni, Maryam; Khodavaisy, Sadegh; Aliyali, Masoud; Badiee, Parisa; Zarrinfar, Hossein; Hagen, Ferry; Badali, Hamid

    2016-06-01

    Triazole antifungal agents are the mainstay of aspergillosis treatment. As highlighted in numerous studies, the global increase in the prevalence of triazole resistance could hamper the management of aspergillosis. In the present three-year study, 513 samples (213 clinical and 300 environmental samples) from 10 provinces of Iran were processed and screened in terms of azole resistance (4 and 1 mg l-1 of itraconazole and voriconazole, respectively), using selective plates. Overall, 150 A. fumigatus isolates (71 clinical and 79 environmental isolates) were detected. The isolates were confirmed by partial sequencing of the β-tubulin gene. Afterwards, in vitro antifungal susceptibility tests against triazole agents were performed, based on the Clinical and Laboratory Standards Institute (CLSI) M38-A2 document. The CYP51A gene was sequenced in order to detect mutations. The MIC of itraconazole against 10 (6.6 %) strains, including clinical (n=3, 4.2 %) and environmental (n=7, 8.8 %) strains, was higher than the breakpoint and epidemiological cut-off value. Based on the findings, the prevalence of azole-resistant A. fumigatus in Iran has increased remarkablyfrom 3.3 % to 6.6 % in comparison with earlier epidemiological research. Among resistant isolates, TR34/L98H mutations in the CYP51A gene were the most prevalent (n=8, 80 %), whereas other point mutations (F46Y, G54W, Y121F, G138C, M172V, F219C, M220I, D255E, T289F, G432C and G448S mutations) were not detected. Although the number of patients affected by azole-resistant A. fumigatus isolates was limited, strict supervision of clinical azole-resistant A. fumigatus isolates and persistent environmental screening of azole resistance are vital to the development of approaches for the management of azole resistance in human pathogenic fungi.

  14. A Screening Assay Based on Host-Pathogen Interaction Models Identifies a Set of Novel Antifungal Benzimidazole Derivatives▿

    PubMed Central

    Burger-Kentischer, Anke; Finkelmeier, Doris; Keller, Petra; Bauer, Jörg; Eickhoff, Holger; Kleymann, Gerald; Abu Rayyan, Walid; Singh, Anurag; Schröppel, Klaus; Lemuth, Karin; Wiesmüller, Karl-Heinz; Rupp, Steffen

    2011-01-01

    Fungal infections are a serious health problem in clinics, especially in the immune-compromised patient. Disease ranges from widespread superficial infections like vulvovaginal infections to life-threatening systemic candidiasis. Especially for systemic mycoses, only a limited arsenal of antifungals is available. The most commonly used classes of antifungal compounds used include azoles, polyenes, and echinocandins. Due to emerging resistance to standard therapy, significant side effects, and high costs for several antifungals, there is a medical need for new antifungals in the clinic and general practice. In order to expand the arsenal of compounds with antifungal activities, we screened a compound library including more than 35,000 individual compounds derived from organic synthesis as well as combinatorial compound collections representing mixtures of compounds for antimycotic activity. In total, more than 100,000 compounds were screened using a new type of activity-selectivity assay, analyzing both the antifungal activity and the compatibility with human cells at the same time. One promising hit, an (S)-2-aminoalkyl benzimidazole derivative, was developed among a series of lead compounds showing potent antifungal activity. (S)-2-(1-Aminoisobutyl)-1-(3-chlorobenzyl) benzimidazole showed the highest antifungal activity and the best compatibility with human cells in several cell culture models and against a number of clinical isolates of several species of pathogenic Candida yeasts. Transcriptional profiling indicates that the newly discovered compound is a potential inhibitor of the ergosterol pathway, in contrast to other benzimidazole derivatives, which target microtubules. PMID:21746957

  15. Potato Dextrose Agar Antifungal Susceptibility Testing for Yeasts and Molds: Evaluation of Phosphate Effect on Antifungal Activity of CMT-3

    PubMed Central

    Liu, Yu; Tortora, George; Ryan, Maria E.; Lee, Hsi-Ming; Golub, Lorne M.

    2002-01-01

    The broth macrodilution method (BMM) for antifungal susceptibility testing, approved by the National Committee for Clinical Laboratory Standards (NCCLS), was found to have deficiencies in testing of the antifungal activity of a new type of antifungal agent, a nonantibacterial chemically modified tetracycline (CMT-3). The high content of phosphate in the medium was found to greatly increase the MICs of CMT-3. To avoid the interference of phosphate in the test, a new method using potato dextrose agar (PDA) as a culture medium was developed. Eight strains of fungi, including five American Type Culture Collection strains and three clinical isolates, were used to determine the MICs of amphotericin B and itraconazole with both the BMM and the PDA methods. The MICs of the two antifungal agents determined with the PDA method showed 99% agreement with those determined with the BMM method within 1 log2 dilution. Similarly, the overall reproducibility of the MICs with the PDA method was above 97%. Three other antifungal agents, fluconazole, ketoconazole, and CMT-3, were also tested in parallel against yeasts and molds with both the BMM and the PDA methods. The MICs of fluconazole and ketoconazole determined with the PDA method showed 100% agreement within 1 log2 dilution of those obtained with the BMM method. However, the MICs of CMT-3 determined with the BMM method were as high as 128 times those determined with the PDA method. The effect of phosphate on the antifungal activity of CMT-3 was evaluated by adding Na2HPO4 to PDA in the new method. It was found that the MIC of CMT-3 against a Penicillium sp. increased from 0.5 μg/ml (control) to 2.0 μg/ml when the added phosphate was used at a concentration of 0.8 mg/ml, indicating a strong interference of Na2HPO4 with the antifungal activity of CMT-3. Except for fluconazole, all the other antifungal agents demonstrated clear end points among the yeasts and molds tested. Nevertheless, with its high reproducibility, good

  16. Ibuprofen reverts antifungal resistance on Candida albicans showing overexpression of CDR genes.

    PubMed

    Ricardo, Elisabete; Costa-de-Oliveira, Sofia; Dias, Ana Silva; Guerra, José; Rodrigues, Acácio Gonçalves; Pina-Vaz, Cidália

    2009-06-01

    Several mechanisms may be associated with Candida albicans resistance to azoles. Ibuprofen was described as being able to revert resistance related to efflux activity in Candida. The aim of this study was to uncover the molecular base of antifungal resistance in C. albicans clinical strains that could be reverted by ibuprofen. Sixty-two clinical isolates and five control strains of C. albicans were studied: the azole susceptibility phenotype was determined according to the Clinical Laboratory for Standards Institute, M27-A2 protocol and minimal inhibitory concentration values were recalculated with ibuprofen (100 microg mL(-1)); synergistic studies between fluconazole and FK506, a Cdr1p inhibitor, were performed using an agar disk diffusion assay and were compared with ibuprofen results. Gene expression was quantified by real-time PCR, with and without ibuprofen, regarding CDR1, CDR2, MDR1, encoding for efflux pumps, and ERG11, encoding for azole target protein. A correlation between susceptibility phenotype and resistance gene expression profiles was determined. Ibuprofen and FK506 showed a clear synergistic effect when combined with fluconazole. Resistant isolates reverting to susceptible after incubation with ibuprofen showed CDR1 and CDR2 overexpression especially of the latter. Conversely, strains that did not revert displayed a remarkable increase in ERG11 expression along with CDR genes. Ibuprofen did not alter resistance gene expression significantly (P>0.05), probably acting as a Cdrp blocker.

  17. Antifungal susceptibilities of Candida species isolated from the patients with vaginal candidiasis.

    PubMed

    Nagashima, Masahito; Yamagishi, Yuka; Mikamo, Hiroshige

    2016-02-01

    There have been the current Japanese data on susceptibility testing for Candida isolates from vaginal candidiasis. The in vitro activities of therapeutic antifungal drugs for vulvovaginal candidiasis (VVC); miconazole (MCZ), itraconazole (ITCZ), fluconazole (FLCZ), clotrimazole (CTZ), oxiconazole (OCZ), isoconazole (ICZ) and bifonazole (BFZ) against vaginal isolates. Fifty-four strains Candida albicans and 19 strains of Candida glabrata were evaluated using a broth microdilution method specified by Clinical Laboratories Standard Institute (CLSI) document M27-A3. The MIC90 of each drug, MCZ, ITCZ, FLCZ, CTZ, OCZ, ICZ and BFZ, against C. albicans and C. glabrata isolates were 0.25, 0.12, 1, 0.06, 0.12, 0.12 and 1 μg/ml and 1, 1, 8, 0.5, 0.25, 0.5 and 1 μg/ml respectively. The activities of these drugs, except for BFZ, against C. glabrata were lower than that of C. albicans. There was one azole-resistant isolate in C. glabrata of which MIC of FLCZ is > 64 μg/ml and this isolate had cross resistance to other antifungal drugs tested. These results suggest that antifungal drugs for treatment of VVC continues to have potent antifungal activities against C. albicans and C. glabrata isolates from vaginitis. CTZ, OCZ and ICZ susceptibility of FLCZ low susceptibility C. glabrata are relatively higher than MCZ, ITCZ and FLCZ. Copyright © 2015. Published by Elsevier Ltd.

  18. Antifungal Susceptibilities of Candida Species Causing Vulvovaginitis and Epidemiology of Recurrent Cases

    PubMed Central

    Richter, Sandra S.; Galask, Rudolph P.; Messer, Shawn A.; Hollis, Richard J.; Diekema, Daniel J.; Pfaller, Michael A.

    2005-01-01

    There are limited data regarding the antifungal susceptibility of yeast causing vulvovaginal candidiasis, since cultures are rarely performed. Susceptibility testing was performed on vaginal yeast isolates collected from January 1998 to March 2001 from 429 patients with suspected vulvovaginal candidiasis. The charts of 84 patients with multiple positive cultures were reviewed. The 593 yeast isolates were Candida albicans (n = 420), Candida glabrata (n = 112), Candida parapsilosis (n = 30), Candida krusei (n = 12), Saccharomyces cerevisiae ( n = 9), Candida tropicalis (n = 8), Candida lusitaniae (n = 1), and Trichosporon sp. (n = 1). Multiple species suggesting mixed infection were isolated from 27 cultures. Resistance to fluconazole and flucytosine was observed infrequently (3.7% and 3.0%); 16.2% of isolates were resistant to itraconazole (MIC ≥ 1 μg/ml). The four imidazoles (econazole, clotrimazole, miconazole, and ketoconazole) were active: 94.3 to 98.5% were susceptible at ≤1 μg/ml. Among different species, elevated fluconazole MICs (≥16 μg/ml) were only observed in C. glabrata (15.2% resistant [R], 51.8% susceptible-dose dependent [S-DD]), C. parapsilosis (3.3% S-DD), S. cerevisiae (11.1% S-DD), and C. krusei (50% S-DD, 41.7% R, considered intrinsically fluconazole resistant). Resistance to itraconazole was observed among C. glabrata (74.1%), C. krusei (58.3%), S. cerevisiae (55.6%), and C. parapsilosis (3.4%). Among 84 patients with recurrent episodes, non-albicans species were more common (42% versus 20%). A ≥4-fold rise in fluconazole MIC was observed in only one patient with C. parapsilosis. These results support the use of azoles for empirical therapy of uncomplicated candidal vulvovaginitis. Recurrent episodes are more often caused by non-albicans species, for which azole agents are less likely to be effective. PMID:15872235

  19. Deletion of the uracil permease gene confers cross-resistance to 5-fluorouracil and azoles in Candida lusitaniae and highlights antagonistic interaction between fluorinated nucleotides and fluconazole.

    PubMed

    Gabriel, Frédéric; Sabra, Ayman; El-Kirat-Chatel, Sofiane; Pujol, Sophie; Fitton-Ouhabi, Valérie; Brèthes, Daniel; Dementhon, Karine; Accoceberry, Isabelle; Noël, Thierry

    2014-08-01

    We characterized two additional membrane transporters (Fur4p and Dal4p) of the nucleobase cation symporter 1 (NCS1) family involved in the uptake transport of pyrimidines and related molecules in the opportunistic pathogenic yeast Candida lusitaniae. Simple and multiple null mutants were constructed by gene deletion and genetic crosses. The function of each transporter was characterized by supplementation experiments, and the kinetic parameters of the uptake transport of uracil were measured using radiolabeled substrate. Fur4p specifically transports uracil and 5-fluorouracil. Dal4p is very close to Fur4p and transports allantoin (glyoxyldiureide). Deletion of the FUR4 gene confers resistance to 5-fluorouracil as well as cross-resistance to triazoles and imidazole antifungals when they are used simultaneously with 5-fluorouracil. However, the nucleobase transporters are not involved in azole uptake. Only fluorinated pyrimidines, not pyrimidines themselves, are able to promote cross-resistance to azoles by both the salvage and the de novo pathway of pyrimidine synthesis. A reinterpretation of the data previously obtained led us to show that subinhibitory doses of 5-fluorocytosine, 5-fluorouracil, and 5-fluorouridine also were able to trigger resistance to fluconazole in susceptible wild-type strains of C. lusitaniae and of different Candida species. Our results suggest that intracellular fluorinated nucleotides play a key role in azole resistance, either by preventing azoles from targeting the lanosterol 14-alpha-demethylase or its catalytic site or by acting as a molecular switch for the triggering of efflux transport. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Deletion of the Uracil Permease Gene Confers Cross-Resistance to 5-Fluorouracil and Azoles in Candida lusitaniae and Highlights Antagonistic Interaction between Fluorinated Nucleotides and Fluconazole

    PubMed Central

    Gabriel, Frédéric; Sabra, Ayman; El-Kirat-Chatel, Sofiane; Pujol, Sophie; Fitton-Ouhabi, Valérie; Brèthes, Daniel; Dementhon, Karine; Accoceberry, Isabelle

    2014-01-01

    We characterized two additional membrane transporters (Fur4p and Dal4p) of the nucleobase cation symporter 1 (NCS1) family involved in the uptake transport of pyrimidines and related molecules in the opportunistic pathogenic yeast Candida lusitaniae. Simple and multiple null mutants were constructed by gene deletion and genetic crosses. The function of each transporter was characterized by supplementation experiments, and the kinetic parameters of the uptake transport of uracil were measured using radiolabeled substrate. Fur4p specifically transports uracil and 5-fluorouracil. Dal4p is very close to Fur4p and transports allantoin (glyoxyldiureide). Deletion of the FUR4 gene confers resistance to 5-fluorouracil as well as cross-resistance to triazoles and imidazole antifungals when they are used simultaneously with 5-fluorouracil. However, the nucleobase transporters are not involved in azole uptake. Only fluorinated pyrimidines, not pyrimidines themselves, are able to promote cross-resistance to azoles by both the salvage and the de novo pathway of pyrimidine synthesis. A reinterpretation of the data previously obtained led us to show that subinhibitory doses of 5-fluorocytosine, 5-fluorouracil, and 5-fluorouridine also were able to trigger resistance to fluconazole in susceptible wild-type strains of C. lusitaniae and of different Candida species. Our results suggest that intracellular fluorinated nucleotides play a key role in azole resistance, either by preventing azoles from targeting the lanosterol 14-alpha-demethylase or its catalytic site or by acting as a molecular switch for the triggering of efflux transport. PMID:24867971

  1. Genetic diversity and antifungal susceptibility profiles in causative agents of sporotrichosis

    PubMed Central

    2014-01-01

    Background Sporotrichosis is a chronic subcutaneous mycosis of humans and animals, which is typically acquired by traumatic inoculation of plant material contaminated with Sporothrix propagules, or via animals, mainly felines. Sporothrix infections notably occur in outbreaks, with large epidemics currently taking place in southeastern Brazil and northeastern China. Pathogenic species include Sporothrix brasiliensis, Sporothrix schenckii s. str., Sporothrix globosa, and Sporothrix luriei, which exhibit differing geographical distribution, virulence, and resistance to antifungals. The phylogenetically remote species Sporothrix mexicana also shows a mild pathogenic potential. Methods We assessed a genetically diverse panel of 68 strains. Susceptibility profiles of medically important Sporothrix species were evaluated by measuring the MICs and MFCs for amphotericin B (AMB), fluconazole (FLC), itraconazole (ITC), voriconazole (VRC), posaconazole (PCZ), flucytosine (5FC), and caspofungin (CAS). Haplotype networks were constructed to reveal interspecific divergences within clinical Sporothrix species to evaluate genetically deviant isolates. Results ITC and PCZ were moderately effective against S. brasiliensis (MIC90 = 2 and 2 μg/mL, respectively) and S. schenckii (MIC90 = 4 and 2 μg/mL, respectively). PCZ also showed low MICs against the rare species S. mexicana. 5FC, CAS, and FLC showed no antifungal activity against any Sporothrix species. The minimum fungicidal concentration ranged from 2 to >16 μg/mL for AMB against S. brasiliensis and S. schenckii, while the MFC90 was >16 μg/mL for ITC, VRC, and PCZ. Conclusion Sporothrix species in general showed high degrees of resistance against antifungals. Evaluating a genetically diverse panel of strains revealed evidence of multidrug resistant phenotypes, underlining the need for molecular identification of etiologic agents to predict therapeutic outcome. PMID:24755107

  2. Effects of antifungal agents alone and in combination against Candida glabrata strains susceptible or resistant to fluconazole.

    PubMed

    Alves, Izabel Almeida; Bandeira, Laíssa Arévalo; Mario, Débora Alves Nunes; Denardi, Laura Bedin; Neves, Louise Vignoles; Santurio, Janio Morais; Alves, Sydney Hartz

    2012-09-01

    The rise of Candida spp. resistant to classic triazole antifungal agents has led to a search for new therapeutic options. Here, we evaluated combinations of antifungals in a checkerboard assay against two groups of Candida glabrata strains: one containing fluconazole-susceptible clinical isolates (FS) and another containing fluconazole-resistant laboratory derivative (FR). The most synergistic combination observed was amphotericin B + flucytosine (synergistic for 61.77 % of FS strains and 76.47 % of FR strains). The most antagonistic combination observed was ketoconazole + flucytosine (FS 61.77 % and FR 55.88 %). Surprisingly, most combinations evidenced indifferent interactions, and the best synergism appeared when amphotericin B and flucytosine were combined against both groups of isolates.

  3. Effect of 2-Phenylethanol as Antifungal Agent and Common Antifungals (Amphotericin B, Fluconazole, and Itraconazole) on Candida Species Isolated from Chronic and Recurrent Cases of Candidal Vulvovaginitis.

    PubMed

    Majdabadi, Niloufar; Falahati, Mehraban; Heidarie-Kohan, Fariba; Farahyar, Shirin; Rahimi-Moghaddam, Parvaneh; Ashrafi-Khozani, Mahtab; Razavi, Tandis; Mohammadnejad, Sina

    2018-04-01

    The antifungal effects of 2-phenylethanol are clearly visible through its intervention in Candida morphogenesis. Chronic and recurrent vulvovaginitis, however, does not respond to this standard experimental therapy; therefore, the study presented in this article investigated the effect of common antifungal drugs (amphotericin B [AMB], fluconazole [FLU], and itraconazole [ITC]), in combination with 2-phenylethanol, on the Candida species isolated from cases of chronic and recurrent vulvovaginitis, thereby allowing the recommendation of a more appropriate treatment option. Forty isolates from patients with chronic and recurrent vaginal candidiasis were investigated in this experimental study. The specimens were examined by direct microscopy, culturing, and PCR to identify the species. The antifungal effects of 2-phenylethanol and conventional drugs, both alone and in combination, were determined in duplicate. Finally, the findings were analyzed. In this study, 40 strains of Candida species were identified, whose agents were Candida albicans (95%) and Candida africana (5%). After 48 h, the minimum inhibitory concentration (MIC) range of the 2-phenylethanol was 800-3,200 μg/mL. Also, in the final study on the MIC levels of common antifungal drugs, AMB (0.42 μg/mL) had the lowest MIC, FLU (40.51 μg/mL) had the highest MIC, and the combination of ITC and 2-phenylethanol had the lowest fractional inhibitory concentration index (FICI) of any of the combinations (FICI range, 0.26-1.03). Combining FLU and ITC with 2-phenylethanol can effectively increase their antifungal effect.

  4. Mixtures of Quaternary Ammonium Compounds and Long-chain Fatty Acids as Antifungal Agents

    PubMed Central

    Kull, F. C.; Eisman, P. C.; Sylwestrowicz, H. D.; Mayer, R. L.

    1961-01-01

    The influence of undecylenic acid on the fungistatic effect of phenoxyethyldimethyldodecylammonium bromide (Domiphen bromide) against Trichophyton mentagrophytes was investigated. The unsaturated fatty acid was found to enhance the fungistatic activity of Domiphen bromide against this organism. The ratio of concentrations of these agents has a marked influence on the results of in vitro tests for antifungal action resulting in a completely different effect than heretofore noted in combination experiments against bacteria. The enhancing phenomenon is not particular to T. mentagrophytes, it was observed also with Candida albicans. PMID:14460466

  5. Species Distribution and In Vitro Azole Susceptibility of Aspergillus Section Nigri Isolates from Clinical and Environmental Settings.

    PubMed

    Iatta, Roberta; Nuccio, Federica; Immediato, Davide; Mosca, Adriana; De Carlo, Carmela; Miragliotta, Giuseppe; Parisi, Antonio; Crescenzo, Giuseppe; Otranto, Domenico; Cafarchia, Claudia

    2016-09-01

    Aspergillus section Nigri includes species of interest for animal and human health, although studies on species distribution are limited to human cases. Data on the antifungal susceptibilities and the molecular mechanism of triazole resistance in strains belonging to this section are scant. Forty-two black Aspergillus strains from human patients (16 isolates), animals (14 isolates), and the environment (12 isolates) were molecularly characterized and their in vitro triazole susceptibilities investigated. Aspergillus tubingensis was isolated from humans, animals, and environmental settings, whereas Aspergillus awamori and Aspergillus niger were isolated exclusively from humans. Phylogenetic analyses of β-tubulin and calmodulin gene sequences were concordant in differentiating A. tubingensis from A. awamori and A. niger Voriconazole and posaconazole (PSZ) were the most active triazoles. One A. tubingensis strain was resistant to itraconazole and PSZ and one A. niger strain to PSZ. Sequence analysis of the cyp51A gene revealed different sequence types within a species, and A. tubingensis strains were also phylogenetically distinct from A. awamori/A. niger strains according to the strain origin and susceptibility profile. Genetic analysis of the cyp51A sequences suggests that two nonsynonymous mutations resulting in amino acid substitutions in the CYP51A protein (changes of L to R at position 21 [L21R] and of Q to R at position 228 [Q228R]) might be involved in azole resistance. Though azole resistance in black Aspergillus isolates from animals and rural environments does not represent a threat to public health in Southern Italy, the use of triazoles in the clinical setting needs to better monitored. The cyp51A sequence is useful for the molecular identification of black Aspergillus, and point mutations in protein sequences could be responsible for azole resistance phenomena. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Species Distribution and In Vitro Azole Susceptibility of Aspergillus Section Nigri Isolates from Clinical and Environmental Settings

    PubMed Central

    Iatta, Roberta; Nuccio, Federica; Immediato, Davide; Mosca, Adriana; De Carlo, Carmela; Miragliotta, Giuseppe; Parisi, Antonio; Crescenzo, Giuseppe; Otranto, Domenico

    2016-01-01

    Aspergillus section Nigri includes species of interest for animal and human health, although studies on species distribution are limited to human cases. Data on the antifungal susceptibilities and the molecular mechanism of triazole resistance in strains belonging to this section are scant. Forty-two black Aspergillus strains from human patients (16 isolates), animals (14 isolates), and the environment (12 isolates) were molecularly characterized and their in vitro triazole susceptibilities investigated. Aspergillus tubingensis was isolated from humans, animals, and environmental settings, whereas Aspergillus awamori and Aspergillus niger were isolated exclusively from humans. Phylogenetic analyses of β-tubulin and calmodulin gene sequences were concordant in differentiating A. tubingensis from A. awamori and A. niger. Voriconazole and posaconazole (PSZ) were the most active triazoles. One A. tubingensis strain was resistant to itraconazole and PSZ and one A. niger strain to PSZ. Sequence analysis of the cyp51A gene revealed different sequence types within a species, and A. tubingensis strains were also phylogenetically distinct from A. awamori/A. niger strains according to the strain origin and susceptibility profile. Genetic analysis of the cyp51A sequences suggests that two nonsynonymous mutations resulting in amino acid substitutions in the CYP51A protein (changes of L to R at position 21 [L21R] and of Q to R at position 228 [Q228R]) might be involved in azole resistance. Though azole resistance in black Aspergillus isolates from animals and rural environments does not represent a threat to public health in Southern Italy, the use of triazoles in the clinical setting needs to better monitored. The cyp51A sequence is useful for the molecular identification of black Aspergillus, and point mutations in protein sequences could be responsible for azole resistance phenomena. PMID:27413191

  7. Synthesis and Antifungal in Vitro Evaluation of Pyrazolo[3,4-b]pyridines Derivatives Obtained by Aza-Diels-Alder Reaction and Microwave Irradiation.

    PubMed

    Quiroga, Jairo; Villarreal, Yazmín; Gálvez, Jaime; Ortíz, Alejandro; Insuasty, Braulio; Abonia, Rodrigo; Raimondi, Marcela; Zacchino, Susana

    2017-02-01

    A series of pyrazolo[3,4-b]pyridines were prepared by a microwave-assisted aza-Diels-Alder reaction between pyrazolylformimidamides 1 and β-nitrostyrenes 2 in toluene as the solvent. This procedure provides a simple one-step and environmentally friendly methodology with good yields for the synthesis of these compounds. All compounds were tested for antifungal activity against two clinically important fungi Candida albicans and Cryptococcus neoformans. Within the compounds of the series bearing a -CH 3 group on the carbon C-3 of the azole ring (3a-e), the compound without a substituent on the p'-phenyl ring (3a), showed the best activity against both fungi, followed by the p'-Br-phenyl (3c). Within the compounds of the series bearing a tert-butyl group in the carbon C-3 of the azole ring (3f-j), the non-substituted p'-compound (3f) was the most active one, followed by (3h) (p'-Br substituted) that showed the best activity against both fungi. The remaining compounds of this sub-series (3g, i, j) showed similar moderate activities. The antifungal activity of the compounds of the series was found to be correlated with a higher log P and a lower dipole moment in the more active compounds.

  8. Antifungal effect and action mechanism of antimicrobial peptide polybia-CP.

    PubMed

    Wang, Kairong; Jia, Fengjing; Dang, Wen; Zhao, Yanyan; Zhu, Ranran; Sun, Mengyang; Qiu, Shuai; An, Xiaoping; Ma, Zelin; Zhu, Yuanyuan; Yan, Jiexi; Kong, Ziqing; Yan, Wenjin; Wang, Rui

    2016-01-01

    The incidence of life-threatening invasive fungal infections increased significantly in recent years. However, the antifungal therapeutic options are very limited. Antimicrobial peptides are a class of potential lead chemical for the development of novel antifungal agents. Antimicrobial peptide polybia-CP was purified from the venom of the social wasp Polybia paulista. In this study, we synthesized polybia-CP and determined its antifungal effects against a series of Candidian species. Our results showed that polybia-CP has potent antifungal activity and fungicidal activity against the tested fungal cells with a proposed membrane-active action mode. In addition, polybia-CP could induce the increase of cellular reactive oxygen species production, which would attribute to its antifungal activity. In conclusion, the present study suggests that polybia-CP has potential as an antifungal agent or may offer a new strategy for antifungal therapeutic option. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  9. The Celecoxib Derivative AR-12 Has Broad-Spectrum Antifungal Activity In Vitro and Improves the Activity of Fluconazole in a Murine Model of Cryptococcosis

    PubMed Central

    Koselny, Kristy; Green, Julianne; DiDone, Louis; Halterman, Justin P.; Fothergill, Annette W.; Wiederhold, Nathan P.; Patterson, Thomas F.; Cushion, Melanie T.; Rappelye, Chad; Wellington, Melanie

    2016-01-01

    Only one new class of antifungal drugs has been introduced into clinical practice in the last 30 years, and thus the identification of small molecules with novel mechanisms of action is an important goal of current anti-infective research. Here, we describe the characterization of the spectrum of in vitro activity and in vivo activity of AR-12, a celecoxib derivative which has been tested in a phase I clinical trial as an anticancer agent. AR-12 inhibits fungal acetyl coenzyme A (acetyl-CoA) synthetase in vitro and is fungicidal at concentrations similar to those achieved in human plasma. AR-12 has a broad spectrum of activity, including activity against yeasts (e.g., Candida albicans, non-albicans Candida spp., Cryptococcus neoformans), molds (e.g., Fusarium, Mucor), and dimorphic fungi (Blastomyces, Histoplasma, and Coccidioides) with MICs of 2 to 4 μg/ml. AR-12 is also active against azole- and echinocandin-resistant Candida isolates, and subinhibitory AR-12 concentrations increase the susceptibility of fluconazole- and echinocandin-resistant Candida isolates. Finally, AR-12 also increases the activity of fluconazole in a murine model of cryptococcosis. Taken together, these data indicate that AR-12 represents a promising class of small molecules with broad-spectrum antifungal activity. PMID:27645246

  10. Additive and synergistic antiandrogenic activities of mixtures of azol fungicides and vinclozolin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christen, Verena; Crettaz, Pierre; Fent, Karl, E-mail: karl.fent@fhnw.ch

    Objective: Many pesticides including pyrethroids and azole fungicides are suspected to have an endocrine disrupting property. At present, the joint activity of compound mixtures is only marginally known. Here we tested the hypothesis that the antiandrogenic activity of mixtures of azole fungicides can be predicted by the concentration addition (CA) model. Methods: The antiandrogenic activity was assessed in MDA-kb2 cells. Following assessing single compounds activities mixtures of azole fungicides and vinclozolin were investigated. Interactions were analyzed by direct comparison between experimental and estimated dose–response curves assuming CA, followed by an analysis by the isobole method and the toxic unit approach.more » Results: The antiandrogenic activity of pyrethroids deltamethrin, cypermethrin, fenvalerate and permethrin was weak, while the azole fungicides tebuconazole, propiconazole, epoxiconazole, econazole and vinclozolin exhibited strong antiandrogenic activity. Ten binary and one ternary mixture combinations of five antiandrogenic fungicides were assessed at equi-effective concentrations of EC{sub 25} and EC{sub 50}. Isoboles indicated that about 50% of the binary mixtures were additive and 50% synergistic. Synergism was even more frequently indicated by the toxic unit approach. Conclusion: Our data lead to the conclusion that interactions in mixtures follow the CA model. However, a surprisingly high percentage of synergistic interactions occurred. Therefore, the mixture activity of antiandrogenic azole fungicides is at least additive. Practice: Mixtures should also be considered for additive antiandrogenic activity in hazard and risk assessment. Implications: Our evaluation provides an appropriate “proof of concept”, but whether it equally translates to in vivo effects should further be investigated. - Highlights: • Humans are exposed to pesticide mixtures such as pyrethroids and azole fungicides. • We assessed the antiandrogenicity of

  11. Use of Pinus sylvestris L. (Pinaceae), Origanum vulgare L. (Lamiaceae), and Thymus vulgaris L. (Lamiaceae) essential oils and their main components to enhance itraconazole activity against azole susceptible/not-susceptible Cryptococcus neoformans strains.

    PubMed

    Scalas, Daniela; Mandras, Narcisa; Roana, Janira; Tardugno, Roberta; Cuffini, Anna Maria; Ghisetti, Valeria; Benvenuti, Stefania; Tullio, Vivian

    2018-05-03

    Cryptococcal infections, besides being a problem for immunocompromised patients, are occasionally being a problem for immunocompetent patients. In addition, the lower susceptibility of this yeast to azoles is a growing problem in health care. To date, there are very few molecules with any activity towards Cryptococcus neoformans, leading to heightened interest in finding new alternatives or adjuvants to conventional drugs for the treatment of mycosis caused by this yeast. Since the essential oils (EOs) are considered as a potential rich source of bioactive antimicrobial compounds, we evaluated the antifungal activity of Origanum vulgare (oregano), Pinus sylvestris (pine), and Thymus vulgaris (thyme red) EOs, and their components (α-pinene, carvacrol, thymol) compared with fluconazole, itraconazole, and voriconazole, against C.neoformans clinical strains. Then, we investigated the effect of EOs and components in combination with itraconazole. EO composition was analysed by Gas chromatography-mass spectrometry (GC-MS). A broth microdilution method was used to evaluate the susceptibility of C.neoformans to azoles, EOs and components. Checkerboard tests, isobolograms and time-kill assays were carried out for combination studies. Six C.neoformans isolates were susceptible to azoles, while one C.neoformans exhibited a reduced susceptibility to all tested azole drugs. All EOs exerted a good inhibitory activity against all C.neoformans strains. Pine EO was the most effective. Among components, thymol exerted the most remarkable activity. By checkerboard testing and isobolographic analysis, combinations of itraconazole with oregano, pine, or thyme EOs, and carvacrol were found to be synergistic (FICI≤0.5) against azole susceptible C.neoformans. Regarding the azole not susceptible C.neoformans strain, the synergistic effect with itraconazole was observed with thyme EO (chemotype: thymol 26.52%; carvacrol 7.85%), and carvacrol. Time-kill assays confirmed the synergistic

  12. Candidiasis and the impact of flow cytometry on antifungal drug discovery.

    PubMed

    Ku, Tsun Sheng N; Bernardo, Stella; Walraven, Carla J; Lee, Samuel A

    2017-11-01

    Invasive candidiasis continues to be associated with significant morbidity and mortality as well as substantial health care costs nationally and globally. One of the contributing factors is the development of resistance to antifungal agents that are already in clinical use. Moreover, there are known treatment limitations with all of the available antifungal agents. Since traditional techniques in novel drug discovery are time consuming, high-throughput screening using flow cytometry presents as a potential tool to identify new antifungal agents that would be useful in the management of these patients. Areas covered: In this review, the authors discuss the use of automated high-throughput screening assays based upon flow cytometry to identify potential antifungals from a library comprised of a large number of bioactive compounds. They also review studies that employed the use of this research methodology that has identified compounds with antifungal activity. Expert opinion: High-throughput screening using flow cytometry has substantially decreased the processing time necessary for screening thousands of compounds, and has helped enhance our understanding of fungal pathogenesis. Indeed, the authors see this technology as a powerful tool to help scientists identify new antifungal agents that can be added to the clinician's arsenal in their fight against invasive candidiasis.

  13. Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products.

    PubMed

    Ryan, Liam A M; Zannini, Emanuele; Dal Bello, Fabio; Pawlowska, Agata; Koehler, Peter; Arendt, Elke K

    2011-04-29

    Mould spoilage is the main cause of substantial economic loss in bakery industry and might also cause public health problems due to the production of mycotoxins. The reduction of mould growth in bakery products is thus of crucial importance and there is great interest to develop safe and efficient strategies for this purpose. In this study Lactobacillus amylovorus DSM19280 has been shown to produce a wide spectrum of antifungal compounds active against common bread spoilage fungi. Among the indicator moulds, Aspergillus fumigatus and Fusarium culmorum were the most sensitive organisms. Several antifungal compounds were found to be present in synthetic medium inoculated with L. amylovorus DSM19280 strain, some of them being reported here for the first time. Wheat doughs fermented with L. amylovorus DSM19280 had good rheological properties and the breads thereof were of high quality as shown by rheofermentometer and texture analyser measurements. The results were compared with those obtained with a control non-antifungal L. amylovorus DSM20531(T) strain, a non-acidified and a chemically acidified dough. The quality of sourdough and bread fermented with L. amylovorus DSM 19280 was comparable to that obtained by using L. amylovorus DSM20531 (T). Additionally, breads were evaluated for the ability to retard the growth of Fusarium culmorum FST 4.05, Aspergillus niger FST4.21, Penicillium expansum FST 4.22, Penicillium roqueforti FST 4.11 and fungal flora from the bakery environment. The biological preservation of bread with L. amylovorus DSM 19280 was also compared to the most commonly used antifungal agent Calcium propionate. Breads containing sourdough fermented with L. amylovorus DSM 19280 were more effective in extending the shelf life of bread than the calcium propionate. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Porosity of temporary denture soft liners containing antifungal agents.

    PubMed

    Lima, Jozely Francisca Mello; Maciel, Janaína Gomes; Hotta, Juliana; Vizoto, Ana Carolina Pero; Honório, Heitor Marques; Urban, Vanessa Migliorini; Neppelenbroek, Karin Hermana

    2016-01-01

    To evaluate the porosity of a tissue conditioner (Softone) and a temporary resilient liner (Trusoft) modified by minimum inhibitory concentrations (MICs) of antifungal agents for Candida albicans biofilm. The porosity was measured by water absorption, based on exclusion of the plasticizer effect. Initially, it was determined by sorption isotherms that the adequate storage solution for specimens (65×10×3.3 mm) of both materials was 50% anhydrous calcium chloride (S50). Then, the porosity factor (PF) was calculated for the study groups (n=10) formed by specimens without (control) or with drug incorporation at MICs (nystatin: Ny-0.032 g, chlorhexidine diacetate: Chx-0.064 g, or ketoconazole: Ke-0.128 g each per gram of soft liner powder) after storage in distilled water or S50 for 24 h, seven and 14 d. Data were statistically analyzed by 4-way repeated measures ANOVA and Tukey's test (α=.05). Ke resulted in no significant changes in PF for both liners in water over 14 days (p>0.05). Compared with the controls, Softone and Trusoft PFs were increased at 14-day water immersion only after addition of Ny and Chx, and Chx, respectively (p<0.05). Both materials showed no significant changes in PF in up to 14 days of S50 immersion, compared with the controls (p>0.05). In all experimental conditions, Softone and Trusoft PFs were significantly lower when immersed in S50 compared with distilled water (p<0.05). The addition of antifungals at MICs resulted in no harmful effects for the porosity of both temporary soft liners in different periods of water immersion, except for Chx and Ny in Softone and Chx in Trusoft at 14 days. No deleterious effect was observed for the porosity of both soft liners modified by the drugs at MICs over 14 days of S50 immersion.

  15. Lipopeptides as the Antifungal and Antibacterial Agents: Applications in Food Safety and Therapeutics

    PubMed Central

    Meena, Khem Raj; Kanwar, Shamsher S.

    2015-01-01

    A lot of crops are destroyed by the phytopathogens such as fungi, bacteria, and yeast leading to economic losses to the farmers. Members of the Bacillus genus are considered as the factories for the production of biologically active molecules that are potential inhibitors of growth of phytopathogens. Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and thus cause extended environmental pollution. Moreover, an increasing number of phytopathogens have developed resistance to antimicrobial agents. The lipopeptides have been tried as potent versatile weapons to deal with a variety of phytopathogens. All the three families of Bacillus lipopeptides, namely, Surfactins, Iturins and Fengycins, have been explored for their antagonistic activities towards a wide range of phytopathogens including bacteria, fungi, and oomycetes. Iturin and Fengycin have antifungal activities, while Surfactin has broad range of potent antibacterial activities and this has also been used as larvicidal agent. Interestingly, lipopeptides being the molecules of biological origin are environmentally acceptable. PMID:25632392

  16. Keratitis-associated fungi form biofilms with reduced antifungal drug susceptibility.

    PubMed

    Zhang, Xiaoyan; Sun, Xuguang; Wang, Zhiqun; Zhang, Yang; Hou, Wenbo

    2012-11-21

    To investigate the biofilm-forming capacity of Fusarium solani, Cladosporium sphaerospermum, and Acremonium implicatum, and the activities of antifungal agents against the three keratitis-associated fungi. The architecture of biofilms was analyzed using scanning electron microscopy and confocal scanning laser microscopy (CSLM). Susceptibility against six antifungal drugs was measured using the CLSI M38-A method and XTT reduction assay. Time course analyses of CSLM revealed that biofilm formation occurred in an organized fashion through four distinct developmental phases: adhesion, germling formation, microcolony formation, and biofilm maturation. Scanning electron microscopy revealed that mature biofilms displayed a complex three-dimensional structure, consisting of coordinated network of hyphal structures glued by the extracellular matrix (ECM). The antifungal susceptibility testing demonstrated a time-dependent decrease in efficacy for all six antifungal agents as the complexity of fungal hyphal structures developed. Natamycin (NAT), amphotericin B (AMB), and NAT were the most effective against F. solani, C. sphaerospermum, and A. implicatum biofilm, respectively. Corneal isolates of F. solani, C. sphaerospermum, and A. implicatum could produce biofilms that were resistant to antifungal agents in vitro.

  17. Modelling inhibition of avian aromatase by azole pesticides.

    PubMed

    Saxena, A K; Devillers, J; Bhunia, S S; Bro, E

    2015-01-01

    The potential effects of pesticides and their metabolites on the endocrine system are of major concern to wildlife and human health. In this context, the azole pesticides have earned special attention due to their cytochrome P450 aromatase inhibition potential. Cytochrome P450 aromatase (CYP19) catalyses the conversion of androstenedione and testosterone into oestrone and oestradiol, respectively. Thus, aromatase modulates the oestrogenic balance essential not only for females, but also for male physiology, including gonadal function. Its inhibition affects reproductive organs, fertility and sexual behaviour in humans and wildlife species. Several studies have shown that azole pesticides are able to inhibit human and fish aromatases but the information on birds is lacking. Consequently, it appeared to be of interest to estimate the aromatase inhibition of azoles in three different avian species, namely Gallus gallus, Coturnix coturnix japonica and Taeniopygia guttata. In the absence of the crystal structure of the aromatase enzyme in these bird species, homology models for the individual avian species were constructed using the crystal structure of human aromatase (hAr) (pdb: 3EQM) that showed high sequence similarity for G. gallus (82.0%), T. guttata (81.9%) and C. japonica (81.2%). A homology model with Oncorhynchus mykiss (81.9%) was also designed for comparison purpose. The homology-modelled aromatase for each avian and fish species and crystal structure of human aromatase were selected for docking 46 structurally diverse azoles and related compounds. We showed that the docking behaviour of the chemicals on the different aromatases was broadly the same. We also demonstrated that there was an acceptable level of correlation between the binding score values and the available aromatase inhibition data. This means that the homology models derived on bird and fish species can be used to approximate the potential inhibitory effects of azoles on their aromatase.

  18. Sensitivity of Candida albicans to essential oils: are they an alternative to antifungal agents?

    PubMed

    Bona, E; Cantamessa, S; Pavan, M; Novello, G; Massa, N; Rocchetti, A; Berta, G; Gamalero, E

    2016-12-01

    Candida albicans is an important opportunistic pathogen, responsible for the majority of yeast infections in humans. Essential oils, extracted from aromatic plants, are well-known antimicrobial agents, characterized by a broad spectrum of activities, including antifungal properties. The aim of this work was to assess the sensitivity of 30 different vaginal isolated strains of C. albicans to 12 essential oils, compared to the three main used drugs (clotrimazole, fluconazole and itraconazole). Thirty strains of C. albicans were isolated from vaginal swab on CHROMagar ™ Candida. The agar disc diffusion method was employed to determine the sensitivity to the essential oils. The antifungal activity of the essential oils and antifungal drugs (clotrimazole, itraconazole and fluconazole) were investigated using a microdilution method. Transmission and scanning electron microscopy analyses were performed to get a deep inside on cellular damages. Mint, basil, lavender, tea tree oil, winter savory and oregano essential oils inhibited both the growth and the activity of C. albicans more efficiently than clotrimazole. Damages induced by essential oils at the cellular level were stronger than those caused by clotrimazole. Candida albicans is more sensitive to different essential oils compared to the main used drugs. Moreover, the essential oil affected mainly the cell wall and the membranes of the yeast. The results of this work support the research for new alternatives or complementary therapies against vaginal candidiasis. © 2016 The Society for Applied Microbiology.

  19. The antifungal properties of chlorhexidine digluconate and cetylpyrinidinium chloride on oral Candida.

    PubMed

    Fathilah, A R; Himratul-Aznita, W H; Fatheen, A R N; Suriani, K R

    2012-07-01

    C. tropicalis and C. krusei have emerged as virulent species causing oral infections. Both have developed resistance to commonly prescribed azole antifungal agents. The study aimed to determine the effect of mouth rinses containing chlorhexidine digluconate (CHX), cetylpyridinium chloride (CPC) and their combination (CHX-CPC) on the growth of these strains. The minimal inhibition concentrations (MIC) of the mouth rinses were determined. The growth curves of the strains produced under the mouth rinse-treated and untreated conditions, as well as alterations to the morphology of the growth colonies and cells following the treatments were compared and analysed. The MICs of CPC compared to CHX mouth rinses were found to be lower for both Candida sp. In the mixed formulation, CPC doubled the inhibitory effect of CHX towards both Candida sp., while CHX quadrupled the activity of CPC towards C. tropicalis. The growth colonies also appeared coarse, wrinkled and dried. The profound effects shown may suggest the fungicidal activities of the mouth rinses incorporated with CHX, CPC or their combination on both C. tropicalis and C. krusei. Gargling using mouth rinses with such fungicidal activity would enhance a rapid reduction in the candidal population of patients with fungal infection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Antifungal potential of marine natural products.

    PubMed

    El-Hossary, Ebaa M; Cheng, Cheng; Hamed, Mostafa M; El-Sayed Hamed, Ashraf Nageeb; Ohlsen, Knut; Hentschel, Ute; Abdelmohsen, Usama Ramadan

    2017-01-27

    Fungal diseases represent an increasing threat to human health worldwide which in some cases might be associated with substantial morbidity and mortality. However, only few antifungal drugs are currently available for the treatment of life-threatening fungal infections. Furthermore, plant diseases caused by fungal pathogens represent a worldwide economic problem for the agriculture industry. The marine environment continues to provide structurally diverse and biologically active secondary metabolites, several of which have inspired the development of new classes of therapeutic agents. Among these secondary metabolites, several compounds with noteworthy antifungal activities have been isolated from marine microorganisms, invertebrates, and algae. During the last fifteen years, around 65% of marine natural products possessing antifungal activities have been isolated from sponges and bacteria. This review gives an overview of natural products from diverse marine organisms that have shown in vitro and/or in vivo potential as antifungal agents, with their mechanism of action whenever applicable. The natural products literature is covered from January 2000 until June 2015, and we are reporting the chemical structures together with their biological activities, as well as the isolation source. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Synthesis and antimicrobial properties of 3-aryl-1-(1,1'-biphenyl-4-yl)-2-(1H-imidazol-1-yl)propanes as 'carba-analogues' of the N-arylmethyl-N-[(1,1'-biphenyl)-4-ylmethyl])-1H-imidazol-1-amines, a new class of antifungal agents.

    PubMed

    Castellano, Sabrina; Stefancich, Giorgio; Chillotti, Annalisa; Poni, Graziella

    2003-08-01

    A new series of 3-phenyl-1-(1,1'-biphenyl-4-yl)-2-(1H-imidazol-1-yl)propane derivatives 2a-l (related to the antifungal bifonazole) was synthesized and tested for antimicrobial activity. A number of substituents on the phenyl ring were chosen to compare the relative biological properties with those of corresponding aza-analogues, previously described by us. The in vitro antifungal activities of the newly synthesized azoles were tested against several pathogenic fungi responsible for human disease. Test pathogens included representatives of yeasts (Candida albicans, Candida parapsilosis, Criptococcus neoformans), dermathophytes (Tricophyton verrucosum, Tricophyton rubrum, Microsporum gypseum) and moulds (Aspergillus fumigatus). Bifonazole and miconazole were used as reference drugs. Title compounds were prepared by alkylation of 1-biphenyl-4-yl-2-imidazol-1-yl-ethanone with the proper arylmethyl halide and subsequent reduction of corresponding ketones applying the Huang-Minlon modification of the Wolff-Kishner reaction.

  2. Antifungal therapies for allergic bronchopulmonary aspergillosis in people with cystic fibrosis.

    PubMed

    Elphick, Heather E; Southern, Kevin W

    2012-06-13

    Allergic bronchopulmonary aspergillosis (ABPA) is an allergic reaction to colonisation of the lungs with the fungus Aspergillus fumigatus and affects around 10% of people with cystic fibrosis. ABPA is associated with an accelerated decline in lung function. High doses of corticosteroids are the main treatment for ABPA; although the long-term benefits are not clear, their many side effects are well-documented. A group of compounds, the azoles, have activity against Aspergillus fumigatus and have been proposed as an alternative treatment for ABPA. Of this group, itraconazole is the most active. A separate antifungal compound, amphotericin B, has been employed in aerosolised form to treat invasive infection with Aspergillus fumigatus, and may have potential for the treatment of ABPA. Antifungal therapy for ABPA in cystic fibrosis needs to be evaluated. The review aimed to test the hypotheses that antifungal interventions for the treatment of ABPA in cystic fibrosis: 1. improve clinical status compared to placebo or standard therapy (no placebo); 2. do not have unacceptable adverse effects.If benefit was demonstrated, we aimed to assess the optimal type, duration and dose of antifungal therapy. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register which comprises references identified from comprehensive electronic database searches, handsearches of relevant journals and abstract books of conference proceedings.In addition, pharmaceutical companies were approached.Date of the most recent search of the Group's Trials Register: 09 February 2012. Published or unpublished randomised controlled trials, where antifungal treatments have been compared to either placebo or no treatment, or where different doses of the same treatment have been used in the treatment of ABPA in people with cystic fibrosis. Two trials were identified by the searches; neither was judged eligible for inclusion in the review. No completed randomised controlled trials were

  3. Potential Use of Alginate-Based Carriers As Antifungal Delivery System

    PubMed Central

    Spadari, Cristina de Castro; Lopes, Luciana B.; Ishida, Kelly

    2017-01-01

    Fungal infections have become a major public health problem, growing in number and severity in recent decades due to an increase of immunocompromised patients. The use of therapeutic agents available to treat these fungal infections is limited by their toxicity, low bioavailability, antifungal resistance, and high cost of treatment. Thus, it becomes extremely important to search for new therapeutic options. The use of polymeric systems as drug carriers has emerged as a promising alternative to conventional formulations for antifungals. Alginate is a natural polymer that has been explored in the last decade for development of drug delivery systems due to its non-toxicity, biodegradability, biocompatibility, low cost, mucoadhesive, and non-immunogenic properties. Several antifungal agents have been incorporated in alginate-based delivery systems, including micro and nanoparticles, with great success, displaying promising in vitro and in vivo results for antifungal activities, reduction in the toxicity and the total drug dose used in the treatment, and improved bioavailability. This review aims at discussing the potential use and benefits of alginate-based nanocarriers and other delivery systems containing antifungal agents in the therapy of fungal infections. PMID:28194145

  4. Ketoconazole, an antifungal agent, protects against adiposity induced by a cafeteria diet.

    PubMed

    Campión, J; Martínez, J A

    2004-07-01

    Ketoconazole, an anti-glucocorticoid agent, is widely used in humans as an antifungal agent. It inhibits ergosterol synthesis and reduces cortisol levels in the treatment of Cushing's Syndrome. The aim of this work was to study the drug's preventive potential against adiposity induced by a high-fat cafeteria diet in rats. Female Wistar rats were fed on standard pelleted diet or cafeteria diet during 42 days in the presence or absence of an oral treatment with ketoconazole (24 mg/kg of body weight). The cafeteria diet increased energy intake and body weight. In addition, this high-fat diet increased body-fat weight and adipose tissue depots analyzed. Interestingly, ketoconazole was able to protect against increased total body fat and adipose depot enlargement induced after cafeteria-diet feeding. Moreover, ex vivo isoproterenol-induced lipolysis was reduced in adipocytes from cafeteria-fed animals; this decrease was reverted by treatment with ketoconazole. Thus, ketoconazole was able to protect against adiposity induced by a cafeteria diet, revealing an interaction between fat intake and glucocorticoids on adipose deposition.

  5. Nosocomial Candidiasis: Antifungal Stewardship and the Importance of Rapid Diagnosis.

    PubMed

    Pfaller, Michael A; Castanheira, Mariana

    2016-01-01

    Candidemia and other forms of candidiasis are associated with considerable excess mortality and costs. Despite the addition of several new antifungal agents with improved spectrum and potency, the frequency of Candida infection and associated mortality have not decreased in the past two decades. The lack of rapid and sensitive diagnostic tests has led to considerable overuse of antifungal agents resulting in increased costs, selection pressure for resistance, unnecessary drug toxicity, and adverse drug interactions. Both the lack of timely diagnostic tests and emergence of antifungal resistance pose considerable problems for antifungal stewardship. Whereas antifungal stewardship with a focus on nosocomial candidiasis should be able to improve the administration of antifungal therapy in terms of drug selection, proper dose and duration, source control and de-escalation therapy, an important parameter, timeliness of antifungal therapy, remains a victim of slow and insensitive diagnostic tests. Fortunately, new proteomic and molecular diagnostic tools are improving the time to species identification and detection. In this review we will describe the potential impact that rapid diagnostic testing and antifungal stewardship can have on the management of nosocomial candidiasis. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Quinoline derivatives bearing pyrazole moiety: Synthesis and biological evaluation as possible antibacterial and antifungal agents.

    PubMed

    El Shehry, Mohamed F; Ghorab, Mostafa M; Abbas, Samir Y; Fayed, Eman A; Shedid, Said A; Ammar, Yousry A

    2018-01-01

    In an attempt for development of new antimicrobial agents, three series of quinoline derivatives bearing pyrazole moiety have been synthesized. The first series was synthesized through the synthesis of 4-(quinolin-2-yloxy)benzaldehyde and 4-(quinolin-2-yloxy)acetophenone and then treatment with ketone or aldehyde derivatives to afford the corresponding chalcones. Cyclization of the latter chalcones with hydrazine derivatives led to the formation of new pyrazoline derivatives. The second series was synthesized via the synthesis of 2-hydrazinylquinoline and then treatment with formylpyrazoles to afford the corresponding hydrazonyl pyrazole derivatives. The third series was synthesized through the treatment of 2-hydrazinylquinoline with ethoxyethylidene, dithioacetal and arylidene derivatives to afford the corresponding pyrazole derivatives. The synthesized compounds were evaluated for their expected antibacterial and antifungal activities; where, the majority of these compounds showed potent antibacterial and antifungal activities against the tested strains of bacteria and fungi. Pyrazole derivative 13b showed better results when compared with the reference drugs as revealed from their MIC values (0.12-0.98 μg/mL). The pyrazole derivative 13b showed fourfold potency of gentamycin in inhibiting the growth of S. flexneri (MIC 0.12 μg/mL). Also, compound 13b showed fourfold potency of amphotericin B in inhibiting the growth of A. clavatus (MIC 0.49 μg/mL) and C. albicans (MIC 0.12 μg/mL), respectively. The same compound showed twofold potency of gentamycin in inhibiting the growth of P. vulgaris (MIC 0.98 μg/mL), equipotent to the ampicillin and amphotericin B in inhibiting the growth of S. epidermidis (MIC 0.49 μg/mL), A. fumigatus (MIC 0.98 μg/mL), respectively. Thus, these studies suggest that quinoline derivatives bearing pyrazole moiety are interesting scaffolds for the development of novel antibacterial and antifungal agents. Copyright © 2017

  7. Repurposing the Clinically Efficacious Antifungal Agent Itraconazole as an Anticancer Chemotherapeutic.

    PubMed

    Pace, Jennifer R; DeBerardinis, Albert M; Sail, Vibhavari; Tacheva-Grigorova, Silvia K; Chan, Kelly A; Tran, Raymond; Raccuia, Daniel S; Wechsler-Reya, Robert J; Hadden, M Kyle

    2016-04-28

    Itraconazole (ITZ) is an FDA-approved member of the triazole class of antifungal agents. Two recent drug repurposing screens identified ITZ as a promising anticancer chemotherapeutic that inhibits both the angiogenesis and hedgehog (Hh) signaling pathways. We have synthesized and evaluated first- and second-generation ITZ analogues for their anti-Hh and antiangiogenic activities to probe more fully the structural requirements for these anticancer properties. Our overall results suggest that the triazole functionality is required for ITZ-mediated inhibition of angiogenesis but that it is not essential for inhibition of Hh signaling. The synthesis and evaluation of stereochemically defined des-triazole ITZ analogues also provides key information as to the optimal configuration around the dioxolane ring of the ITZ scaffold. Finally, the results from our studies suggest that two distinct cellular mechanisms of action govern the anticancer properties of the ITZ scaffold.

  8. In vitro inhibitory activities of magnolol against Candida spp.

    PubMed

    Zhou, Peiru; Fu, Jingya; Hua, Hong; Liu, Xiaosong

    2017-01-01

    Candida spp. cause various infections involving the skin, mucosa, deep tissues, and even life-threatening candidemia. They are regarded as an important pathogen of nosocomial bloodstream infection, with a high mortality rate. As a result of prolonged exposure to azoles, the therapeutic failure associated with azoles resistance has become a serious challenge in clinical situations. Therefore, novel, alternative antifungals are required urgently. In the present study, the CLSI M-27A broth microdilution method and the 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay were used to evaluate the antifungal effects of magnolol against various standard Candida strains in planktonic mode and biofilm formation, respectively. The antifungal activity of magnolol was demonstrated in planktonic C. albicans and non-albicans Candida species, especially fluconazole-resistant Candida krusei , with the minimum inhibitory concentrations ranging from 10 to 40 μg/mL. The BMIC 90 (minimum concentration with 90% Candida biofilm inhibited) values of magnolol ranged from 20 to 160 μg/mL, whereas the BMIC 90 values of fluconazole were more than 128 μg/mL. As an alternative and broad-spectrum antifungal agent, magnolol might be of benefit to the treatment of refractory Candida infection.

  9. Treatment of severe Candida infections in high-risk patients in Germany: consensus formed by a panel of interdisciplinary investigators.

    PubMed

    Büchner, T; Fegeler, W; Bernhardt, H; Brockmeyer, N; Duswald, K-H; Herrmann, M; Heuser, D; Jehn, U; Just-Nübling, G; Karthaus, M; Maschmeyer, G; Müller, F-M; Müller, J; Ritter, J; Roos, N; Ruhnke, M; Schmalreck, A; Schwarze, R; Schwesinger, G; Silling, G

    2002-05-01

    Now that modern medicine can provide increasing chances of cure to patients with formerly incurable disorders, therapy-related complications play the key role in outcome. Thus, among opportunistic infections, severe candidiasis remains a challenge. A multidisciplinary panel of 20 investigators was formed to find a consensus on antifungal strategies for various underlying conditions in neutropenic and non-neutropenic patients. To record their preferences, the investigators used an anonymous voting system. Among antifungal agents, fluconazole emerged as the major alternative to the classic amphotericin B, being therapeutically at least equivalent but clearly less toxic. Factors that restrict the use of fluconazole include pretreatment with azoles, involvement of resistant species like Candida krusei, and an inability to exclude aspergillosis. Flucytosine can be reasonably combined with both amphotericin B and fluconazole. Within the limited antifungal armamentarium, amphotericin B lipid formulations and itraconazole also appear useful and require further investigation. The general consensus of the group is that antifungal agents should be administered at sufficient dosages, rather early, and often empirically.

  10. Antifungal therapy for keratomycoses.

    PubMed

    Ganegoda, Nihal; Rao, Srinivas K

    2004-04-01

    Keratomycoses have recently emerged as an important cause of ocular morbidity, especially in third-world countries. Available antifungal agents are limited in their efficacy, due to limited penetration into the cornea, the fungistatic nature and the development of drug resistance. Effective usage of the available drugs is hampered by the inefficiency of currently available antibiotic sensitivity tests for fungal organisms. There is also limited knowledge regarding the ideal combination(s) of antifungal agents, including issues of synergism and antagonism. Despite these problems, recent publications indicate encouraging outcomes in the treatment of a large series of fungal keratitis. Advances include better drug formulations, new agents and novel methods of drug delivery into the eye. As our ability to deal with advanced fungal keratitis remains limited, the importance of early diagnosis has been stressed and molecular biological techniques may play an important role in the future. This article summarises the important new advances in these areas in the past 2 years and provides guidelines for the management of these serious corneal infections.

  11. Effects of alcohols and ciclopirox alamine, an anti-fungal agent, on the peripheral blood lymphocyte functions in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhala, R.H.; Maxey, V.; Hicks, M.J.

    1986-03-01

    Effects of ethanol (1%), propanol (1%) and ciclopirox alamine, an anti-fungal agent, (4 ..mu..g/well), on the peripheral blood lymphocyte functions, including response to T- (Concanavalin A, ConA) and B-cell (Lipopolysaccharide, LPS) mitogens, and presence of functional T-lymphocyte subsets were determined in vitro. Purified human lymphocytes were incubated at 37/sup 0/C for 48 hours with or without test compounds in presence or absence of ConA and LPS. All three compounds suppress the response to T- or B-cell mitogens. The percentage of T-lymphocytes with T-helper characteristics in the presence of ethanol and ciclopirox alamine was increased. All three compounds suppressed the percentagemore » of T-lymphocytes with E-resetting characteristics. Alcohols enhanced the number of natural killer cells, whereas, ciclopirox alamine exhibited the reverse action. Although the alcohols and the anti-fungal agent enhanced the T-helper subpopulation, their response to mitogens was suppressed. This may be due to the suppression of T-cell activating lymphokines. Alcohol metabolite such as acetaldehyde also suppress the number of T-cells and their functions at 0.01% so may also be part of the explanation for immunoalteration.« less

  12. Genomic identification of potential targets unique to Candida albicans for the discovery of antifungal agents.

    PubMed

    Tripathi, Himanshu; Luqman, Suaib; Meena, Abha; Khan, Feroz

    2014-01-01

    Despite of modern antifungal therapy, the mortality rates of invasive infection with human fungal pathogen Candida albicans are up to 40%. Studies suggest that drug resistance in the three most common species of human fungal pathogens viz., C. albicans, Aspergillus fumigatus (causing mortality rate up to 90%) and Cryptococcus neoformans (causing mortality rate up to 70%) is due to mutations in the target enzymes or high expression of drug transporter genes. Drug resistance in human fungal pathogens has led to an imperative need for the identification of new targets unique to fungal pathogens. In the present study, we have used a comparative genomics approach to find out potential target proteins unique to C. albicans, an opportunistic fungus responsible for severe infection in immune-compromised human. Interestingly, many target proteins of existing antifungal agents showed orthologs in human cells. To identify unique proteins, we have compared proteome of C. albicans [SC5314] i.e., 14,633 total proteins retrieved from the RefSeq database of NCBI, USA with proteome of human and non-pathogenic yeast Saccharomyces cerevisiae. Results showed that 4,568 proteins were identified unique to C. albicans as compared to those of human and later when these unique proteins were compared with S. cerevisiae proteome, finally 2,161 proteins were identified as unique proteins and after removing repeats total 1,618 unique proteins (42 functionally known, 1,566 hypothetical and 10 unknown) were selected as potential antifungal drug targets unique to C. albicans.

  13. In vitro antifungal activity of antipsychotic drugs and their combinations with conventional antifungals against Scedosporium and Pseudallescheria isolates.

    PubMed

    Homa, Mónika; Galgóczy, László; Tóth, Eszter; Tóth, Liliána; Papp, Tamás; Chandrasekaran, Muthusamy; Kadaikunnan, Shine; Alharbi, Naiyf S; Vágvölgyi, Csaba

    2015-11-01

    In the present study, in vitro antifungal activities of five antipsychotic drugs (i.e., chlorpromazine hydrochloride, CPZ; trifluoperazine hydrochloride, TPZ; amantadine hydrochloride; R-(-)-deprenyl hydrochloride, and valproic acid sodium salt) and five conventional antifungal drugs (i.e., amphotericin B, AMB; caspofungin, CSP; itraconazole; terbinafine, TRB and voriconazole, VRC) were investigated in broth microdilution tests against four clinical and five environmental Scedosporium and Pseudallescheria isolates. When used alone, phenothiazines CPZ and TPZ exerted remarkable antifungal effects. Thus, their in vitro combinations with AMB, CSP, VRC, and TRB were also examined against the clinical isolates. In combination with antifungal agents, CPZ was able to act synergistically with AMB and TRB in cases of one and two isolates, respectively. In all other cases, indifferent interactions were revealed. Antagonism was not observed between the tested agents. These combinations may establish a more effective and less toxic therapy after further in vitro and in vivo studies for Scedosporium and Pseudallescheria infections. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Liquid and vapour-phase antifungal activities of essential oils against Candida albicans and non-albicans Candida.

    PubMed

    Mandras, Narcisa; Nostro, Antonia; Roana, Janira; Scalas, Daniela; Banche, Giuliana; Ghisetti, Valeria; Del Re, Simonetta; Fucale, Giacomo; Cuffini, Anna Maria; Tullio, Vivian

    2016-08-30

    The management of Candida infections faces many problems, such as a limited number of antifungal drugs, toxicity, resistance of Candida to commonly antifungal drugs, relapse of Candida infections, and the high cost of antifungal drugs. Though azole antifungal agents and derivatives continue to dominate as drugs of choice against Candida infections, there are many available data referring to the anticandidal activity of essential oils. Since we have previous observed a good antimicrobial activity of some essential oils against filamentous fungi, the aim of this study was to extend the research to evaluate the activity of the same oils on Candida albicans, C.glabrata and C.tropicalis clinical strains, as well as the effects of related components. Essential oils selection was based both on ethnomedicinal use and on proved antibacterial and/or antifungal activity of some of these oils. Fluconazole and voriconazole were used as reference drugs. The minimum inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) of essential oils (thyme red, fennel, clove, pine, sage, lemon balm, and lavender) and their major components were investigated by the broth microdilution method (BM) and the vapour contact assay (VC). Using BM, pine oil showed the best activity against all strains tested, though C.albicans was more susceptible than C.glabrata and C.tropicalis (MIC50-MIC90 = 0.06 %, v/v). On the contrary, sage oil displayed a weak activity (MIC50-MIC90 = 1 %, v/v). Thyme red oil (MIC50-MIC90 ≤ 0.0038 %, v/v for C.albicans and C.tropicalis, and 0.0078- < 0.015 %, v/v for C.glabrata), followed by lemon balm, lavender and sage were the most effective by VC. Carvacrol and thymol showed the highest activity, whereas linalyl acetate showed the lowest activity both by two methods. α-pinene displayed a better activity by BM than VC. Results show a good activity of essential oils, mainly thymus red and pine oils, and their components carvacrol

  15. Antifungal Susceptibility Testing of Malassezia spp. with an Optimized Colorimetric Broth Microdilution Method.

    PubMed

    Leong, Cheryl; Buttafuoco, Antonino; Glatz, Martin; Bosshard, Philipp P

    2017-06-01

    Malassezia is a genus of lipid-dependent yeasts. It is associated with common skin diseases such as pityriasis versicolor and atopic dermatitis and can cause systemic infections in immunocompromised individuals. Owing to the slow growth and lipid requirements of these fastidious yeasts, convenient and reliable antifungal drug susceptibility testing assays for Malassezia spp. are not widely available. Therefore, we optimized a broth microdilution assay for the testing of Malassezia that is based on the CLSI and EUCAST assays for Candida and other yeasts. The addition of ingredients such as lipids and esculin provided a broth medium formulation that enabled the growth of all Malassezia spp. and could be read, with the colorimetric indicator resazurin, by visual and fluorescence readings. We tested the susceptibility of 52 strains of 13 Malassezia species to 11 commonly used antifungals. MIC values determined by visual readings were in good agreement with MIC values determined by fluorescence readings. The lowest MICs were found for the azoles itraconazole, posaconazole, and voriconazole, with MIC 90 values of 0.03 to 1.0 μg/ml, 0.06 to 0.5 μg/ml, and 0.03 to 2.0 μg/ml, respectively. All Malassezia spp. were resistant to echinocandins and griseofulvin. Some Malassezia spp. also showed high MIC values for ketoconazole, which is the most widely recommended topical antifungal to treat Malassezia skin infections. In summary, our assay enables the fast and reliable susceptibility testing of Malassezia spp. with a large panel of different antifungals. Copyright © 2017 American Society for Microbiology.

  16. Antifungal Susceptibility Testing of Malassezia spp. with an Optimized Colorimetric Broth Microdilution Method

    PubMed Central

    Leong, Cheryl; Buttafuoco, Antonino

    2017-01-01

    ABSTRACT Malassezia is a genus of lipid-dependent yeasts. It is associated with common skin diseases such as pityriasis versicolor and atopic dermatitis and can cause systemic infections in immunocompromised individuals. Owing to the slow growth and lipid requirements of these fastidious yeasts, convenient and reliable antifungal drug susceptibility testing assays for Malassezia spp. are not widely available. Therefore, we optimized a broth microdilution assay for the testing of Malassezia that is based on the CLSI and EUCAST assays for Candida and other yeasts. The addition of ingredients such as lipids and esculin provided a broth medium formulation that enabled the growth of all Malassezia spp. and could be read, with the colorimetric indicator resazurin, by visual and fluorescence readings. We tested the susceptibility of 52 strains of 13 Malassezia species to 11 commonly used antifungals. MIC values determined by visual readings were in good agreement with MIC values determined by fluorescence readings. The lowest MICs were found for the azoles itraconazole, posaconazole, and voriconazole, with MIC90 values of 0.03 to 1.0 μg/ml, 0.06 to 0.5 μg/ml, and 0.03 to 2.0 μg/ml, respectively. All Malassezia spp. were resistant to echinocandins and griseofulvin. Some Malassezia spp. also showed high MIC values for ketoconazole, which is the most widely recommended topical antifungal to treat Malassezia skin infections. In summary, our assay enables the fast and reliable susceptibility testing of Malassezia spp. with a large panel of different antifungals. PMID:28381607

  17. Inhibitors of amino acids biosynthesis as antifungal agents.

    PubMed

    Jastrzębowska, Kamila; Gabriel, Iwona

    2015-02-01

    Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.

  18. Evaluation of an early step-down strategy from intravenous anidulafungin to oral azole therapy for the treatment of candidemia and other forms of invasive candidiasis: results from an open-label trial.

    PubMed

    Vazquez, Jose; Reboli, Annette C; Pappas, Peter G; Patterson, Thomas F; Reinhardt, John; Chin-Hong, Peter; Tobin, Ellis; Kett, Daniel H; Biswas, Pinaki; Swanson, Robert

    2014-02-21

    Hospitalized patients are at increased risk for candidemia and invasive candidiasis (C/IC). Improved therapeutic regimens with enhanced clinical and pharmacoeconomic outcomes utilizing existing antifungal agents are still needed. An open-label, non-comparative study evaluated an intravenous (i.v.) to oral step-down strategy. Patients with C/IC were treated with i.v. anidulafungin and after 5 days of i.v. therapy had the option to step-down to oral azole therapy (fluconazole or voriconazole) if they met prespecified criteria. The primary endpoint was the global response rate (clinical + microbiological) at end of treatment (EOT) in the modified intent-to-treat (MITT) population (at least one dose of anidulafungin plus positive Candida within 96 hours of study entry). Secondary endpoints included efficacy at other time points and in predefined patient subpopulations. Patients who stepped down early (≤ 7 days' anidulafungin) were identified as the "early switch" subpopulation. In total, 282 patients were enrolled, of whom 250 were included in the MITT population. The MITT global response rate at EOT was 83.7% (95% confidence interval, 78.7-88.8). Global response rates at all time points were generally similar in the early switch subpopulation compared with the MITT population. Global response rates were also similar across multiple Candida species, including C. albicans, C. glabrata, and C. parapsilosis. The most common treatment-related adverse events were nausea and vomiting (four patients each). A short course of i.v. anidulafungin, followed by early step-down to oral azole therapy, is an effective and well-tolerated approach for the treatment of C/IC. ClinicalTrials.gov: NCT00496197.

  19. Evaluation of an early step-down strategy from intravenous anidulafungin to oral azole therapy for the treatment of candidemia and other forms of invasive candidiasis: results from an open-label trial

    PubMed Central

    2014-01-01

    Background Hospitalized patients are at increased risk for candidemia and invasive candidiasis (C/IC). Improved therapeutic regimens with enhanced clinical and pharmacoeconomic outcomes utilizing existing antifungal agents are still needed. Methods An open-label, non-comparative study evaluated an intravenous (IV) to oral step-down strategy. Patients with C/IC were treated with IV anidulafungin and after 5 days of IV therapy had the option to step-down to oral azole therapy (fluconazole or voriconazole) if they met prespecified criteria. The primary endpoint was the global response rate (clinical + microbiological) at end of treatment (EOT) in the modified intent-to-treat (MITT) population (at least one dose of anidulafungin plus positive Candida within 96 hours of study entry). Secondary endpoints included efficacy at other time points and in predefined patient subpopulations. Patients who stepped down early (≤ 7 days’ anidulafungin) were identified as the "early switch" subpopulation. Results In total, 282 patients were enrolled, of whom 250 were included in the MITT population. The MITT global response rate at EOT was 83.7% (95% confidence interval, 78.7–88.8). Global response rates at all time points were generally similar in the early switch subpopulation compared with the MITT population. Global response rates were also similar across multiple Candida species, including C. albicans, C. glabrata, and C. parapsilosis. The most common treatment-related adverse events were nausea and vomiting (four patients each). Conclusions A short course of IV anidulafungin, followed by early step-down to oral azole therapy, is an effective and well-tolerated approach for the treatment of C/IC. Trial registration ClinicalTrials.gov: NCT00496197 PMID:24559321

  20. Microbiological screening of Irish patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy reveals persistence of Candida albicans strains, gradual reduction in susceptibility to azoles, and incidences of clinical signs of oral candidiasis without culture evidence.

    PubMed

    McManus, Brenda A; McGovern, Eleanor; Moran, Gary P; Healy, Claire M; Nunn, June; Fleming, Pádraig; Costigan, Colm; Sullivan, Derek J; Coleman, David C

    2011-05-01

    Patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) are prone to chronic mucocutaneous candidiasis, which is often treated with azoles. The purpose of this study was to characterize the oral Candida populations from 16 Irish APECED patients, who comprise approximately half the total number identified in Ireland, and to examine the effect of intermittent antifungal therapy on the azole susceptibility patterns of Candida isolates. Patients attended between one and four clinical evaluations over a 5-year period, providing oral rinses and/or oral swab samples each time. Candida was recovered from 14/16 patients, and Candida albicans was the only Candida species identified. Interestingly, clinical diagnosis of candidiasis did not correlate with microbiological evidence of Candida infection at 7/22 (32%) clinical assessments. Multilocus sequence typing analysis of C. albicans isolates recovered from the same patients on separate occasions identified the same sequence type each time. Fluconazole resistance was detected in isolates from one patient, and isolates exhibiting a progressive reduction in itraconazole and/or fluconazole susceptibility were identified in a further 3/16 patients, in each case correlating with the upregulation of CDR- and MDR-encoded efflux pumps. Mutations were also identified in the ERG11 and the TAC1 genes of isolates from these four patients; some of these mutations have previously been associated with azole resistance. The findings suggest that alternative Candida treatment options, other than azoles such as chlorhexidine, should be considered in APECED patients and that clinical diagnosis of oral candidiasis should be confirmed by culture prior to the commencement of anti-Candida therapy.

  1. Activity of posaconazole and other antifungal agents against Mucorales strains identified by sequencing of internal transcribed spacers.

    PubMed

    Alastruey-Izquierdo, Ana; Castelli, Maria Victoria; Cuesta, Isabel; Monzon, Araceli; Cuenca-Estrella, Manuel; Rodriguez-Tudela, Juan Luis

    2009-04-01

    The antifungal susceptibility profiles of 77 clinical strains of Mucorales species, identified by internal transcribed spacer sequencing, were analyzed. MICs obtained at 24 and 48 h were compared. Amphotericin B was the most active agent against all isolates, except for Cunninghamella and Apophysomyces isolates. Posaconazole also showed good activity for all species but Cunninghamella bertholletiae. Voriconazole had no activity against any of the fungi tested. Terbinafine showed good activity, except for Rhizopus oryzae, Mucor circinelloides, and Rhizomucor variabilis isolates.

  2. Antibacterial and Antifungal Activities of Spices.

    PubMed

    Liu, Qing; Meng, Xiao; Li, Ya; Zhao, Cai-Ning; Tang, Guo-Yi; Li, Hua-Bin

    2017-06-16

    Infectious diseases caused by pathogens and food poisoning caused by spoilage microorganisms are threatening human health all over the world. The efficacies of some antimicrobial agents, which are currently used to extend shelf-life and increase the safety of food products in food industry and to inhibit disease-causing microorganisms in medicine, have been weakened by microbial resistance. Therefore, new antimicrobial agents that could overcome this resistance need to be discovered. Many spices-such as clove, oregano, thyme, cinnamon, and cumin-possessed significant antibacterial and antifungal activities against food spoilage bacteria like Bacillus subtilis and Pseudomonas fluorescens , pathogens like Staphylococcus aureus and Vibrio parahaemolyticus, harmful fungi like Aspergillus flavus, even antibiotic resistant microorganisms such as methicillin resistant Staphylococcus aureus. Therefore, spices have a great potential to be developed as new and safe antimicrobial agents. This review summarizes scientific studies on the antibacterial and antifungal activities of several spices and their derivatives.

  3. The potential of compounds isolated from Xylaria spp. as antifungal agents against anthracnose.

    PubMed

    Elias, Luciana M; Fortkamp, Diana; Sartori, Sérgio B; Ferreira, Marília C; Gomes, Luiz H; Azevedo, João L; Montoya, Quimi V; Rodrigues, André; Ferreira, Antonio G; Lira, Simone P

    2018-03-31

    Anthracnose is a crop disease usually caused by fungi in the genus Colletotrichum or Gloeosporium. These are considered one of the main pathogens, causing significant economic losses, such as in peppers and guarana. The current forms of control include the use of resistant cultivars, sanitary pruning and fungicides. However, even with the use of some methods of controlling these cultures, the crops are not free of anthracnose. Additionally, excessive application of fungicides increases the resistance of pathogens to agrochemicals and cause harm to human health and the environment. In order to find natural antifungal agents against guarana anthracnose, endophytic fungi were isolated from Amazon guarana. The compounds piliformic acid and cytochalasin D were isolated by chromatographic techniques from two Xylaria spp., guided by assays with Colletotrichum gloeosporioides. The isolated compounds were identified by spectrometric techniques, as NMR and mass spectrometry. This is the first report that piliformic acid and cytochalasin D have antifungal activity against C. gloeosporioides with MIC 2.92 and 2.46μmolmL -1 respectively. Captan and difenoconazole were included as positive controls (MIC 16.63 and 0.02μmolmL -1 , respectively). Thus, Xylaria species presented a biotechnological potential and production of different active compounds which might be promising against anthracnose disease. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. Microbiological Screening of Irish Patients with Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy Reveals Persistence of Candida albicans Strains, Gradual Reduction in Susceptibility to Azoles, and Incidences of Clinical Signs of Oral Candidiasis without Culture Evidence▿†

    PubMed Central

    McManus, Brenda A.; McGovern, Eleanor; Moran, Gary P.; Healy, Claire M.; Nunn, June; Fleming, Pádraig; Costigan, Colm; Sullivan, Derek J.; Coleman, David C.

    2011-01-01

    Patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) are prone to chronic mucocutaneous candidiasis, which is often treated with azoles. The purpose of this study was to characterize the oral Candida populations from 16 Irish APECED patients, who comprise approximately half the total number identified in Ireland, and to examine the effect of intermittent antifungal therapy on the azole susceptibility patterns of Candida isolates. Patients attended between one and four clinical evaluations over a 5-year period, providing oral rinses and/or oral swab samples each time. Candida was recovered from 14/16 patients, and Candida albicans was the only Candida species identified. Interestingly, clinical diagnosis of candidiasis did not correlate with microbiological evidence of Candida infection at 7/22 (32%) clinical assessments. Multilocus sequence typing analysis of C. albicans isolates recovered from the same patients on separate occasions identified the same sequence type each time. Fluconazole resistance was detected in isolates from one patient, and isolates exhibiting a progressive reduction in itraconazole and/or fluconazole susceptibility were identified in a further 3/16 patients, in each case correlating with the upregulation of CDR- and MDR-encoded efflux pumps. Mutations were also identified in the ERG11 and the TAC1 genes of isolates from these four patients; some of these mutations have previously been associated with azole resistance. The findings suggest that alternative Candida treatment options, other than azoles such as chlorhexidine, should be considered in APECED patients and that clinical diagnosis of oral candidiasis should be confirmed by culture prior to the commencement of anti-Candida therapy. PMID:21367996

  5. Plant latex: a promising antifungal agent for post harvest disease control.

    PubMed

    Sibi, G; Wadhavan, Rashmi; Singh, Sneha; Shukla, Abhilasha; Dhananjaya, K; Ravikumar, K R; Mallesha, H

    2013-12-01

    Bioactive compounds from plant latex are potential source of antifungic against post harvest pathogens. Latex from a total of seven plant species was investigated for its phytochemical and antifungal properties. Six fungi namely Aspergillus fumigatus, A. niger, A. terreus, F. solani, P. digitatum and R. arrhizus were isolated from infected fruits and vegetables and tested against various solvent extracts of latex. Analysis of latex extracts with phytochemical tests showed the presence of alkaloids, flavonoids, glycosides, phenols, saponins, steroids, tannins and terpenoids. Antifungal assay revealed the potential inhibitory activity of petroleum ether extracts against the postharvest fungal isolates. Various degree of sensitivity was observed irrespective of plant species studied with A. terreus and P. digitatum as the most susceptible ones. F. solani and A. fumigatus were moderately sensitive to the latex extracts tested. Among the plants, latex of Thevetia peruviana (75.2%) and Artocarpus heterophyllus (64.8%) were having potential antifungal activity against the isolates followed by Manilkara zapota (51.1%). In conclusion, use of plant latex makes interest to control postharvest fungal diseases and is fitting well with the concept of safety for human health and environment.

  6. Structural and Functional Elucidation of Yeast Lanosterol 14α-Demethylase in Complex with Agrochemical Antifungals

    PubMed Central

    Sagatova, Alia A.; Keniya, Mikhail V.; Negroni, Jacopo; Wilson, Rajni K.; Woods, Matthew A.; Monk, Brian C.

    2016-01-01

    Azole antifungals, known as demethylase inhibitors (DMIs), target sterol 14α-demethylase (CYP51) in the ergosterol biosynthetic pathway of fungal pathogens of both plants and humans. DMIs remain the treatment of choice in crop protection against a wide range of fungal phytopathogens that have the potential to reduce crop yields and threaten food security. We used a yeast membrane protein expression system to overexpress recombinant hexahistidine-tagged S. cerevisiae lanosterol 14α-demethylase and the Y140F or Y140H mutants of this enzyme as surrogates in order characterize interactions with DMIs. The whole-cell antifungal activity (MIC50 values) of both the R- and S-enantiomers of tebuconazole, prothioconazole (PTZ), prothioconazole-desthio, and oxo-prothioconazole (oxo-PTZ) as well as for fluquinconazole, prochloraz and a racemic mixture of difenoconazole were determined. In vitro binding studies with the affinity purified enzyme were used to show tight type II binding to the yeast enzyme for all compounds tested except PTZ and oxo-PTZ. High resolution X-ray crystal structures of ScErg11p6×His in complex with seven DMIs, including four enantiomers, reveal triazole-mediated coordination of all compounds and the specific orientation of compounds within the relatively hydrophobic binding site. Comparison with CYP51 structures from fungal pathogens including Candida albicans, Candida glabrata and Aspergillus fumigatus provides strong evidence for a highly conserved CYP51 structure including the drug binding site. The structures obtained using S. cerevisiae lanosterol 14α-demethylase in complex with these agrochemicals provide the basis for understanding the impact of mutations on azole susceptibility and a platform for the structure-directed design of the next-generation of DMIs. PMID:27907120

  7. [Invasive mould disease in haematological patients].

    PubMed

    Ruiz-Camps, Isabel; Jarque, Isidro

    2014-01-01

    Invasive mould infections (IMI) are a persistent problem with high morbidity and mortality rates among patients receiving chemotherapy for hematological malignancies and hematopoietic stem cell transplant recipients. Management of IMI in this setting has become increasingly complex with the advent of new antifungal agents and diagnostic tests, which have resulted in different therapeutic strategies (prophylactic, empirical, pre-emptive, and directed). A proper assessment of the individual risk for IMI appears to be critical in order to use the best prophylactic and therapeutic approach and increase the survival rates. Among the available antifungal drugs, the most frequently used in the hematologic patient are fluconazole, mould-active azoles (itraconazole, posaconazole and voriconazole), candins (anidulafungin, caspofungin and micafungin), and lipid formulations of amphotericin B. Specific recommendations for their use, and criteria for selecting the antifungal agents are discussed in this paper. Copyright © 2014. Published by Elsevier Espana.

  8. Kaempferol loaded lecithin/chitosan nanoparticles: preparation, characterization, and their potential applications as a sustainable antifungal agent.

    PubMed

    Ilk, Sedef; Saglam, Necdet; Özgen, Mustafa

    2017-08-01

    Flavonoid compounds are strong antioxidant and antifungal agents but their applications are limited due to their poor dissolution and bioavailability. The use of nanotechnology in agriculture has received increasing attention, with the development of new formulations containing active compounds. In this study, kaempferol (KAE) was loaded into lecithin/chitosan nanoparticles (LC NPs) to determine antifungal activity compared to pure KAE against the phytopathogenic fungus Fusarium oxysporium to resolve the bioavailability problem. The influence of formulation parameters on the physicochemical properties of KAE loaded lecithin chitosan nanoparticles (KAE-LC NPs) were studied by using the electrostatic self-assembly technique. KAE-LC NPs were characterized in terms of physicochemical properties. KAE has been successfully encapsulated in LC NPs with an efficiency of 93.8 ± 4.28% and KAE-LC NPs showed good physicochemical stability. Moreover, in vitro evaluation of the KAE-LC NP system was made by the release kinetics, antioxidant and antifungal activity in a time-dependent manner against free KAE. Encapsulated KAE exhibited a significantly inhibition efficacy (67%) against Fusarium oxysporium at the end of the 60 day storage period. The results indicated that KAE-LC NP formulation could solve the problems related to the solubility and loss of KAE during use and storage. The new nanoparticle system enables the use of smaller quantities of fungicide and therefore, offers a more environmentally friendly method of controlling fungal pathogens in agriculture.

  9. Recognition of Azole-Resistant Aspergillosis by Physicians Specializing in Infectious Diseases, United States.

    PubMed

    Walker, Tiffany A; Lockhart, Shawn R; Beekmann, Susan E; Polgreen, Philip M; Santibanez, Scott; Mody, Rajal K; Beer, Karlyn D; Chiller, Tom M; Jackson, Brendan R

    2018-01-01

    Infections caused by pan-azole-resistant Aspergillus fumigatus strains have emerged in Europe and recently in the United States. Physicians specializing in infectious diseases reported observing pan-azole-resistant infections and low rates of susceptibility testing, suggesting the need for wider-scale testing.

  10. Activity of Posaconazole and Other Antifungal Agents against Mucorales Strains Identified by Sequencing of Internal Transcribed Spacers▿

    PubMed Central

    Alastruey-Izquierdo, Ana; Castelli, Maria Victoria; Cuesta, Isabel; Monzon, Araceli; Cuenca-Estrella, Manuel; Rodriguez-Tudela, Juan Luis

    2009-01-01

    The antifungal susceptibility profiles of 77 clinical strains of Mucorales species, identified by internal transcribed spacer sequencing, were analyzed. MICs obtained at 24 and 48 h were compared. Amphotericin B was the most active agent against all isolates, except for Cunninghamella and Apophysomyces isolates. Posaconazole also showed good activity for all species but Cunninghamella bertholletiae. Voriconazole had no activity against any of the fungi tested. Terbinafine showed good activity, except for Rhizopus oryzae, Mucor circinelloides, and Rhizomucor variabilis isolates. PMID:19171801

  11. Antifungal therapies for allergic bronchopulmonary aspergillosis in people with cystic fibrosis.

    PubMed

    Elphick, Heather E; Southern, Kevin W

    2014-11-28

    Allergic bronchopulmonary aspergillosis (ABPA) is an allergic reaction to colonisation of the lungs with the fungus Aspergillus fumigatus and affects around 10% of people with cystic fibrosis. ABPA is associated with an accelerated decline in lung function. High doses of corticosteroids are the main treatment for ABPA; although the long-term benefits are not clear, their many side effects are well-documented. A group of compounds, the azoles, have activity against Aspergillus fumigatus and have been proposed as an alternative treatment for ABPA. Of this group, itraconazole is the most active. A separate antifungal compound, amphotericin B, has been employed in aerosolised form to treat invasive infection with Aspergillus fumigatus, and may have potential for the treatment of ABPA. Antifungal therapy for ABPA in cystic fibrosis needs to be evaluated. The review aimed to test the hypotheses that antifungal interventions for the treatment of ABPA in cystic fibrosis:1. improve clinical status compared to placebo or standard therapy (no placebo);2. do not have unacceptable adverse effects.If benefit was demonstrated, we aimed to assess the optimal type, duration and dose of antifungal therapy. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register which comprises references identified from comprehensive electronic database searches, handsearches of relevant journals and abstract books of conference proceedings.In addition, pharmaceutical companies were approached.Date of the most recent search of the Group's Trials Register: 17 March 2014. Published or unpublished randomised controlled trials, where antifungal treatments have been compared to either placebo or no treatment, or where different doses of the same treatment have been used in the treatment of ABPA in people with cystic fibrosis. Four trials were identified by the searches; none of which was judged eligible for inclusion in the review. No completed randomised controlled trials

  12. In vitro antifungal activity of topical and systemic antifungal drugs against Malassezia species.

    PubMed

    Carrillo-Muñoz, Alfonso Javier; Rojas, Florencia; Tur-Tur, Cristina; de Los Ángeles Sosa, María; Diez, Gustavo Ortiz; Espada, Carmen Martín; Payá, María Jesús; Giusiano, Gustavo

    2013-09-01

    The strict nutritional requirements of Malassezia species make it difficult to test the antifungal susceptibility. Treatments of the chronic and recurrent infections associated with Malassezia spp. are usually ineffective. The objective of this study was to obtain in vitro susceptibility profile of 76 clinical isolates of Malassezia species against 16 antifungal drugs used for topical or systemic treatment. Isolates were identified by restriction fragment length polymorphism. Minimal inhibitory concentrations (MIC) were obtained by a modified microdilution method based on the Clinical Laboratory Standards Institute reference document M27-A3. The modifications allowed a good growth of all tested species. High in vitro antifungal activity of most tested drugs was observed, especially triazole derivatives, except for fluconazole which presented the highest MICs and widest range of concentrations. Ketoconazole and itraconazole demonstrated a great activity. Higher MICs values were obtained with Malassezia furfur indicating a low susceptibility to most of the antifungal agents tested. Malassezia sympodialis and Malassezia pachydermatis were found to be more-susceptible species than M. furfur, Malassezia globosa, Malassezia slooffiae and Malassezia restricta. Topical substances were also active but provide higher MICs than the compounds for systemic use. The differences observed in the antifungals activity and interspecies variability demonstrated the importance to studying the susceptibility profile of each species to obtain reliable information for defining an effective treatment regimen. © 2013 Blackwell Verlag GmbH.

  13. Antibacterial and Antifungal Activities of Spices

    PubMed Central

    Liu, Qing; Meng, Xiao; Li, Ya; Zhao, Cai-Ning; Tang, Guo-Yi; Li, Hua-Bin

    2017-01-01

    Infectious diseases caused by pathogens and food poisoning caused by spoilage microorganisms are threatening human health all over the world. The efficacies of some antimicrobial agents, which are currently used to extend shelf-life and increase the safety of food products in food industry and to inhibit disease-causing microorganisms in medicine, have been weakened by microbial resistance. Therefore, new antimicrobial agents that could overcome this resistance need to be discovered. Many spices—such as clove, oregano, thyme, cinnamon, and cumin—possessed significant antibacterial and antifungal activities against food spoilage bacteria like Bacillus subtilis and Pseudomonas fluorescens, pathogens like Staphylococcus aureus and Vibrio parahaemolyticus, harmful fungi like Aspergillus flavus, even antibiotic resistant microorganisms such as methicillin resistant Staphylococcus aureus. Therefore, spices have a great potential to be developed as new and safe antimicrobial agents. This review summarizes scientific studies on the antibacterial and antifungal activities of several spices and their derivatives. PMID:28621716

  14. Recognition of Azole-Resistant Aspergillosis by Physicians Specializing in Infectious Diseases, United States

    PubMed Central

    Lockhart, Shawn R.; Beekmann, Susan E.; Polgreen, Philip M.; Santibanez, Scott; Mody, Rajal K.; Beer, Karlyn D.; Chiller, Tom M.; Jackson, Brendan R.

    2018-01-01

    Infections caused by pan–azole-resistant Aspergillus fumigatus strains have emerged in Europe and recently in the United States. Physicians specializing in infectious diseases reported observing pan–azole-resistant infections and low rates of susceptibility testing, suggesting the need for wider-scale testing. PMID:29261092

  15. Population-Based Survey of Filamentous Fungi and Antifungal Resistance in Spain (FILPOP Study)

    PubMed Central

    Mellado, E.; Peláez, T.; Pemán, J.; Zapico, S.; Alvarez, M.; Rodríguez-Tudela, J. L.; Cuenca-Estrella, M.

    2013-01-01

    A population-based survey was conducted to investigate the epidemiology of and antifungal resistance in Spanish clinical strains of filamentous fungi isolated from deep tissue samples, blood cultures, and respiratory samples. The study was conducted in two different periods (October 2010 and May 2011) to analyze seasonal variations. A total of 325 strains were isolated in 29 different hospitals. The average prevalence was 0.0016/1,000 inhabitants. Strains were identified by sequencing of DNA targets and susceptibility testing by the European Committee for Antimicrobial Susceptibility Testing reference procedure. The most frequently isolated genus was Aspergillus, accounting for 86.3% of the isolates, followed by Scedosporium at 4.7%; the order Mucorales at 2.5%; Penicillium at 2.2%, and Fusarium at 1.2%. The most frequent species was Aspergillus fumigatus (48.5%), followed by A. flavus (8.4%), A. terreus (8.1%), A. tubingensis (6.8%), and A. niger (6.5%). Cryptic/sibling Aspergillus species accounted for 12% of the cases. Resistance to amphotericin B was found in 10.8% of the isolates tested, while extended-spectrum triazole resistance ranged from 10 to 12.7%, depending on the azole tested. Antifungal resistance was more common among emerging species such as those of Scedosporium and Mucorales and also among cryptic species of Aspergillus, with 40% of these isolates showing resistance to all of the antifungal compounds tested. Cryptic Aspergillus species seem to be underestimated, and their correct classification could be clinically relevant. The performance of antifungal susceptibility testing of the strains implicated in deep infections and multicentric studies is recommended to evaluate the incidence of these cryptic species in other geographic areas. PMID:23669377

  16. Catalyst- and Reagent-free Electrochemical Azole C-H Amination.

    PubMed

    Qiu, Youai; Struwe, Julia; Meyer, Tjark H; Oliveira, Joao Carlos Agostinho Carlos Agostinho; Ackermann, Lutz

    2018-06-14

    Catalyst-, and chemical oxidant-free electrochemical azole C-H aminations were accomplished via cross-dehydrogenative C-H/N-H functionalization. The catalyst-free electrochemical C-H amination proved feasible on azoles with high levels of efficacy and selectivity, avoiding the use of stoichiometric oxidants under ambient conditions. Likewise, the C(sp3)-H nitrogenation proved viable under otherwise identical conditions. The dehydrogenative C-H amination featured ample scope, including cyclic and acyclic aliphatic amines as well as anilines, and employed sustainable electricity as the sole oxidant. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Exploring the molecular basis of antifungal synergies using genome-wide approaches

    USDA-ARS?s Scientific Manuscript database

    This is a review article summarizing genomic profiling strategies for determining the mechanism of action of antifungal synergies, and highlighting the potential applications of these technologies. Given the limitations of currently available antifungal agents and the development of drug resistance...

  18. Synergistic activity of lysozyme and antifungal agents against Candida albicans biofilms on denture acrylic surfaces.

    PubMed

    Samaranayake, Y H; Cheung, B P K; Parahitiyawa, N; Seneviratne, C J; Yau, J Y Y; Yeung, K W S; Samaranayake, L P

    2009-02-01

    Denture related oral candidiasis is a recalcitrant fungal infection not easily resolved by topical antifungals. The antimycotic protein lysozyme, in saliva is an important host defense mechanism although its activity against Candida biofilms on denture acrylic has not been evaluated. (i) To establish a clinically relevant denture acrylic assay model to develop standardized Candida albicans biofilms, and (ii) assess the inhibitory effects of lysozyme alone and, the latter combined with antifungals (nystatin, amphotericin B, ketoconazole and 5-fluorocytosine) on sessile Candida cells and, finally (iii) to visualize the accompanying ultrastructural changes. The rotating-disc biofilm reactor was used to develop standardized 48 h Candida biofilms on acrylic discs in YNB/100 mM glucose medium and the biofilm metabolic activity was monitored using a tetrazolium reduction assay. The biofilm metabolic activity was similar in 18 identical denture acrylic discs (p<0.05) thus validating the rotating-disc biofilm model. Very low concentrations of lysozyme (6.25 microg/ml) significantly (p<0.01) inhibited Candida biofilm formation indicating that lysozyme may likely regulate intra-oral Candida biofilm development. Although 100 microg/ml lysozyme killed 45% of sessile Candida cells, further increasing its concentration (up to 240 microg/ml) had no such effect. Nystatin, amphotericin B, and ketoconazole in association with 100 microg/ml lysozyme exhibited effective synergistic killing of biofilm Candida in comparison to drug-free controls. Scanning electron and confocal scanning laser microscopy analysis confirmed the latter trends. Our results indicate that agents found in biological fluids such as lysozyme could be a safe adjunct to antifungals in future treatment strategies for recalcitrant candidal infections.

  19. In vitro antifungal activity and mechanism of essential oil from fennel (Foeniculum vulgare L.) on dermatophyte species.

    PubMed

    Zeng, Hong; Chen, Xinping; Liang, Jingnan

    2015-01-01

    Fennel seed essential oil (FSEO) is a plant-derived natural therapeutic against dermatophytes. In this study, the antifungal effects of FSEO were investigated from varied aspects, such as MIC and minimum fungicidal concentration, mycelia growth, spore germination and biomass. The results indicated that FSEO had potent antifungal activities on Trichophyton rubrum ATCC 40051, Trichophyton tonsurans 10-0400, Microsporum gypseum 44693-1 and Trichophyton mentagrophytes 10-0060, which is better than the commonly used antifungal agents fluconazole and amphotericin B. Flow cytometry and transmission electron microscopy experiments suggested that the antifungal mechanism of FSEO was to damage the plasma membrane and intracellular organelles. Further study revealed that it could also inhibit the mitochondrial enzyme activities, such as succinate dehydrogenase, malate dehydrogenase and ATPase. With better antifungal activity than the commonly used antifungal agents and less possibility of inducing drug resistance, FSEO could be used as a potential antidermatophytic agent. © 2015 The Authors.

  20. Simulations of CYP51A from Aspergillus fumigatus in a model bilayer provide insights into triazole drug resistance.

    PubMed

    Nash, Anthony; Rhodes, Johanna

    2018-04-01

    Azole antifungal drugs target CYP51A in Aspergillus fumigatus by binding with the active site of the protein, blocking ergosterol biosynthesis. Resistance to azole antifungal drugs is now common, with a leucine to histidine amino acid substitution at position 98 the most frequent, predominantly conferring resistance to itraconazole, although cross-resistance has been reported in conjunction with other mutations. In this study, we create a homology model of CYP51A using a recently published crystal structure of the paralog protein CYP51B. The derived structures, wild type, and L98H mutant are positioned within a lipid membrane bilayer and subjected to molecular dynamics simulations in order improve the accuracy of both models. The structural analysis from our simulations suggests a decrease in active site surface from the formation of hydrogen bonds between the histidine substitution and neighboring polar side chains, potentially preventing the binding of azole drugs. This study yields a biologically relevant structure and set of dynamics of the A. fumigatus Lanosterol 14 alpha-demethylase enzyme and provides further insight into azole antifungal drug resistance.

  1. Simulations of CYP51A from Aspergillus fumigatus in a model bilayer provide insights into triazole drug resistance

    PubMed Central

    Nash, Anthony; Rhodes, Johanna

    2018-01-01

    Abstract Azole antifungal drugs target CYP51A in Aspergillus fumigatus by binding with the active site of the protein, blocking ergosterol biosynthesis. Resistance to azole antifungal drugs is now common, with a leucine to histidine amino acid substitution at position 98 the most frequent, predominantly conferring resistance to itraconazole, although cross-resistance has been reported in conjunction with other mutations. In this study, we create a homology model of CYP51A using a recently published crystal structure of the paralog protein CYP51B. The derived structures, wild type, and L98H mutant are positioned within a lipid membrane bilayer and subjected to molecular dynamics simulations in order improve the accuracy of both models. The structural analysis from our simulations suggests a decrease in active site surface from the formation of hydrogen bonds between the histidine substitution and neighboring polar side chains, potentially preventing the binding of azole drugs. This study yields a biologically relevant structure and set of dynamics of the A. fumigatus Lanosterol 14 alpha-demethylase enzyme and provides further insight into azole antifungal drug resistance. PMID:28992260

  2. A Novel Environmental Azole Resistance Mutation in Aspergillus fumigatus and a Possible Role of Sexual Reproduction in Its Emergence

    PubMed Central

    Snelders, Eveline; Zwaan, Bas J.; Schoustra, Sijmen E.; van Dijk, Karin; Hagen, Ferry; van der Beek, Martha T.; Kampinga, Greetje A.; Zoll, Jan; Melchers, Willem J. G.; Verweij, Paul E.; Debets, Alfons J. M.

    2017-01-01

    ABSTRACT This study investigated the dynamics of Aspergillus fumigatus azole-resistant phenotypes in two compost heaps with contrasting azole exposures: azole free and azole exposed. After heat shock, to which sexual but not asexual spores are highly resistant, the azole-free compost yielded 98% (49/50) wild-type and 2% (1/50) azole-resistant isolates, whereas the azole-containing compost yielded 9% (4/45) wild-type and 91% (41/45) resistant isolates. From the latter compost, 80% (36/45) of the isolates contained the TR46/Y121F/T289A genotype, 2% (1/45) harbored the TR46/Y121F/M172I/T289A/G448S genotype, and 9% (4/45) had a novel pan-triazole-resistant mutation (TR463/Y121F/M172I/T289A/G448S) with a triple 46-bp promoter repeat. Subsequent screening of a representative set of clinical A. fumigatus isolates showed that the novel TR463 mutant was already present in samples from three Dutch medical centers collected since 2012. Furthermore, a second new resistance mutation was found in this set that harbored four TR46 repeats. Importantly, in the laboratory, we recovered the TR463 mutation from a sexual cross between two TR46 isolates from the same azole-containing compost, possibly through unequal crossing over between the double tandem repeats (TRs) during meiosis. This possible role of sexual reproduction in the emergence of the mutation was further implicated by the high level of genetic diversity of STR genotypes in the azole-containing compost. Our study confirms that azole resistance mutations continue to emerge in the environment and indicates compost containing azole residues as a possible hot spot. Better insight into the biology of environmental resistance selection is needed to retain the azole class for use in food production and treatment of Aspergillus diseases. PMID:28655821

  3. Effects of the azole fungicide imazalil on the fathead minnow (Pimephales promelas) steroidogenesis pathway

    EPA Science Inventory

    Azole fungicides, used for both agriculture and human therapeutic applications may disrupt endocrine function of aquatic life. Azole fungicides are designed to inhibit the fungal enzyme lanosterol 14 á-demethylase (cytochrome P450 [CYP] 51). However, they can also interact...

  4. Azole-resistant and -susceptible Aspergillus fumigatus isolates show comparable fitness and azole treatment outcome in immunocompetent mice.

    PubMed

    Lackner, Michaela; Rambach, Günter; Jukic, Emina; Sartori, Bettina; Fritz, Josef; Seger, Christoph; Hagleitner, Magdalena; Speth, Cornelia; Lass-Flörl, Cornelia

    2017-12-08

    No data are available on the in vivo impact of infections with in vitro azole-resistant Aspergillus fumigatus in immunocompetent hosts. Here, the aim was to investigate fungal fitness and treatment response in immunocompetent mice infected with A. fumigatus (parental strain [ps]) and isogenic mutants carrying either the mutation M220K or G54W (cyp51A). The efficacy of itraconazole (ITC) and posaconazole (PSC) was investigated in mice, intravenously challenged either with a single or a combination of ps and mutants (6 × 105 conidia/mouse). Organ fungal burden and clinical parameters were measured. In coinfection models, no fitness advantage was observed for the ps strain when compared to the mutants (M220K and G54W) independent of the presence or absence of azole-treatment. For G54W, M220K, and the ps, no statistically significant difference in ITC and PSC treatment was observed in respect to fungal kidney burden. However, clinical parameters suggest that in particular the azole-resistant strain carrying the mutation G54W caused a more severe disease than the ps strain. Mice infected with G54W showed a significant decline in body weight and lymphocyte counts, while spleen/body weight ratio and granulocyte counts were increased. In immunocompetent mice, in vitroazole-resistance did not translate into therapeutic failure by either ITC or PSC; the immune system appears to play the key role in clearing the infection. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Structure-Guided Development of Efficacious Antifungal Agents Targeting Candida Glabrata Dihydrofolate Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.; Bolstad, D; Smith, A

    2008-01-01

    Candida glabrata is a lethal fungal pathogen resistant to many antifungal agents and has emerged as a critical target for drug discovery. Over the past several years, we have been developing a class of propargyl-linked antifolates as antimicrobials and hypothesized that these compounds could be effective inhibitors of dihydrofolate reductase (DHFR) from C. glabrata. We initially screened a small collection of these inhibitors and found modest levels of potency. Subsequently, we determined the crystal structure of C. glabrata DHFR bound to a representative inhibitor with data to 1.6 A resolution. Using this structure, we designed and synthesized second-generation inhibitors. Thesemore » inhibitors bind the C. glabrata DHFR enzyme with subnanomolar potency, display greater than 2000-fold levels of selectivity over the human enzyme, and inhibit the growth of C. glabrata at levels observed with clinically employed therapeutics.« less

  6. Design, Synthesis, and Structure--Activity Relationship of New 2-Aryl-3,4-dihydro-β-carbolin-2-ium Salts as Antifungal Agents.

    PubMed

    Hou, Zhe; Zhu, Li-Fei; Yu, Xin-chi; Sun, Ma-Qiang; Miao, Fang; Zhou, Le

    2016-04-13

    Twenty-two 2-aryl-9-methyl-3,4-dihydro-β-carbolin-2-ium bromides along with four 9-demethylated derivatives were synthesized and characterized by spectroscopic analysis. By using the mycelium growth rate method, the compounds were evaluated for antifungal activities in vitro against six plant pathogenic fungi, and structure-activity relationships (SAR) were derived. Almost all of the compounds showed obvious inhibition activity on each of the fungi at 150 μM. For all of the fungi, 10 of the compounds showed average inhibition rates of >80% at 150 μM, and most of their EC50 values were in the range of 2.0-30.0 μM. SAR analysis showed that the substitution pattern of the N-aryl ring significantly influences the activity; N9-alkylation improves the activity, whereas aromatization of ring-C reduces the activity. It was concluded that the present research provided a series of new 2-aryl-9-alkyl-3,4-dihydro-β-carbolin-2-iums with excellent antifungal potency and structure optimization design for the development of new carboline antifungal agents.

  7. A Novel Environmental Azole Resistance Mutation in Aspergillus fumigatus and a Possible Role of Sexual Reproduction in Its Emergence.

    PubMed

    Zhang, Jianhua; Snelders, Eveline; Zwaan, Bas J; Schoustra, Sijmen E; Meis, Jacques F; van Dijk, Karin; Hagen, Ferry; van der Beek, Martha T; Kampinga, Greetje A; Zoll, Jan; Melchers, Willem J G; Verweij, Paul E; Debets, Alfons J M

    2017-06-27

    This study investigated the dynamics of Aspergillus fumigatus azole-resistant phenotypes in two compost heaps with contrasting azole exposures: azole free and azole exposed. After heat shock, to which sexual but not asexual spores are highly resistant, the azole-free compost yielded 98% (49/50) wild-type and 2% (1/50) azole-resistant isolates, whereas the azole-containing compost yielded 9% (4/45) wild-type and 91% (41/45) resistant isolates. From the latter compost, 80% (36/45) of the isolates contained the TR 46 /Y121F/T289A genotype, 2% (1/45) harbored the TR 46 /Y121F/M172I/T289A/G448S genotype, and 9% (4/45) had a novel pan-triazole-resistant mutation (TR 46 3 /Y121F/M172I/T289A/G448S) with a triple 46-bp promoter repeat. Subsequent screening of a representative set of clinical A. fumigatus isolates showed that the novel TR 46 3 mutant was already present in samples from three Dutch medical centers collected since 2012. Furthermore, a second new resistance mutation was found in this set that harbored four TR 46 repeats. Importantly, in the laboratory, we recovered the TR 46 3 mutation from a sexual cross between two TR 46 isolates from the same azole-containing compost, possibly through unequal crossing over between the double tandem repeats (TRs) during meiosis. This possible role of sexual reproduction in the emergence of the mutation was further implicated by the high level of genetic diversity of STR genotypes in the azole-containing compost. Our study confirms that azole resistance mutations continue to emerge in the environment and indicates compost containing azole residues as a possible hot spot. Better insight into the biology of environmental resistance selection is needed to retain the azole class for use in food production and treatment of Aspergillus diseases. IMPORTANCE Composting of organic matter containing azole residues might be important for resistance development and subsequent spread of resistance mutations in Aspergillus fumigatus In

  8. Discovery of benzotriazole-azo-phenol/aniline derivatives as antifungal agents.

    PubMed

    Lv, Min; Ma, Jingchun; Li, Qin; Xu, Hui

    2018-01-15

    A series of benzotriazole-azo-phenol/aniline derivatives were prepared and evaluated for their antifungal activities against six phytopathogenic fungi such as Fusarium graminearum, Fusarium solani, Alternaria alternate, Valsa mali, Botrytis cinerea, and Curvularia lunata. Among them, compounds IIf, IIn, and IIr showed a broad-spectrum of potent antifungal activities. Especially some compounds displayed 3.5-10.8 folds more potent activities than carbendazim against A. alternata and C. lunata. Notably, compounds IIc, IIm, and IIr exhibited good protective and therapeutic effects against B. cinerea at 200 μg/mL. Their structure-activity relationships were also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. [Fungal infectivities of implanted catheters due to Candida sp. Biofilms formation and resistance].

    PubMed

    Seddiki, S M L; Boucherit-Otmani, Z; Boucherit, K; Kunkel, D

    2015-06-01

    Candidemia are the most common fungal infections in hospitals. However, the catheters are subject to be altered by Candida biofilms which increase the risk of invasive nosocomial infections due to the high resistance to antifungal agents. Therefore, the minimum inhibitory concentrations of planktonic (MIC) and sessile cells (CIMS) were evaluated. To review the in vivo biofilms structures of Candida sp. formed on the inner and/or external surfaces of collected catheters, we used scanning electron microscopy (SEM). The level of biofilm resistance was assessed against two conventional antifungal agents: amphotericin B (AmB), which belongs to the class of polyenes, and fluconazole (FLZ) which is an azole. The SEM observation of biofilms of Candida sp. reveals complex structures. Compared to MICs, the calculation of CIMS showed an increase of 32 times with AmB and of 128 times with FLZ. Catheters offer an ideal surface to Candida sp. to form biofilms. This complex structure induces the increase of the resistance of sessile cells against two antifungal agents, AmB and FLZ. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Additive and synergistic antiandrogenic activities of mixtures of azol fungicides and vinclozolin.

    PubMed

    Christen, Verena; Crettaz, Pierre; Fent, Karl

    2014-09-15

    Many pesticides including pyrethroids and azole fungicides are suspected to have an endocrine disrupting property. At present, the joint activity of compound mixtures is only marginally known. Here we tested the hypothesis that the antiandrogenic activity of mixtures of azole fungicides can be predicted by the concentration addition (CA) model. The antiandrogenic activity was assessed in MDA-kb2 cells. Following assessing single compounds activities mixtures of azole fungicides and vinclozolin were investigated. Interactions were analyzed by direct comparison between experimental and estimated dose-response curves assuming CA, followed by an analysis by the isobole method and the toxic unit approach. The antiandrogenic activity of pyrethroids deltamethrin, cypermethrin, fenvalerate and permethrin was weak, while the azole fungicides tebuconazole, propiconazole, epoxiconazole, econazole and vinclozolin exhibited strong antiandrogenic activity. Ten binary and one ternary mixture combinations of five antiandrogenic fungicides were assessed at equi-effective concentrations of EC25 and EC50. Isoboles indicated that about 50% of the binary mixtures were additive and 50% synergistic. Synergism was even more frequently indicated by the toxic unit approach. Our data lead to the conclusion that interactions in mixtures follow the CA model. However, a surprisingly high percentage of synergistic interactions occurred. Therefore, the mixture activity of antiandrogenic azole fungicides is at least additive. Mixtures should also be considered for additive antiandrogenic activity in hazard and risk assessment. Our evaluation provides an appropriate "proof of concept", but whether it equally translates to in vivo effects should further be investigated. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose-lipid composite edible coatings for plums.

    PubMed

    Karaca, Hakan; Pérez-Gago, María B; Taberner, Verònica; Palou, Lluís

    2014-06-02

    Common food preservative agents were evaluated in in vitro tests for their antifungal activity against Monilinia fructicola, the most economically important pathogen causing postharvest disease of stone fruits. Radial mycelial growth was measured in Petri dishes of PDA amended with three different concentrations of the agents (0.01-0.2%, v/v) after 7 days of incubation at 25 °C. Thirteen out of fifteen agents tested completely inhibited the radial growth of the fungus at various concentrations. Among them, ammonium carbonate, ammonium bicarbonate and sodium bicarbonate were the most effective while sodium acetate and sodium formate were the least effective. The effective agents and concentrations were tested as ingredients of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings against brown rot disease on plums previously inoculated with M. fructicola (curative activity). 'Friar' and 'Larry Ann' plums were inoculated with the pathogen, coated with stable edible coatings about 24h later, and incubated at 20 °C and 90% RH. Disease incidence (%) and severity (lesion diameter) were determined after 4, 6, and 8 days of incubation and the 'area under the disease progress stairs' (AUDPS) was calculated. Coatings containing bicarbonates and parabens significantly reduced brown rot incidence in plums, but potassium sorbate, used at 1.0% in the coating formulation, was the most effective agent with a reduction rate of 28.6%. All the tested coatings reduced disease severity to some extent, but coatings containing 0.1% sodium methylparaben or sodium ethylparaben or 0.2% ammonium carbonate or ammonium bicarbonate were superior to the rest, with reduction rates of 45-50%. Overall, the results showed that most of the agents tested in this study had significant antimicrobial activity against M. fructicola and the application of selected antifungal edible coatings is a promising alternative for the control of postharvest brown rot in plums. Copyright © 2014 Elsevier B

  12. Species distribution and antifungal susceptibility patterns of Candida isolates from a public tertiary teaching hospital in the Eastern Cape Province, South Africa.

    PubMed

    Mnge, P; Okeleye, B I; Vasaikar, S D; Apalata, T

    2017-05-15

    Candida species are the leading cause of invasive fungal infections, and over the past decade there has been an increased isolation of drug resistant Candida species. This study aimed to identify the species distribution of Candida isolates and to determine their unique antifungal susceptibility and resistance patterns. During a cross-sectional study, 209 Candida isolates (recovered from 206 clinical samples) were collected and their species distribution was determined using ChromAgar Candida. The Vitek-2 system (Biomerieux, South Africa) was used to determine minimum inhibitory concentrations (MICs) to azoles (fluconazole, voriconazole), echinocandins (caspofungin, micafungin), polyenes (amphotericin B) and flucytosine. Four species of Candida were isolated, of which C. albicans was the most frequent, isolated in 45.4% (95/209) of the isolates, followed by C. glabrata: 31.1% (65/209). The MICs of the different antifungal drugs varied amongst the species of Candida. From the 130 isolates tested for MICs, 90.77% (112/130) were susceptible to all antifungal drugs and 6.9% (9/130) of the isolates were multi-drug resistant. C. dubliniensis (n=2) isolates were susceptible to all the above mentioned antifungal drugs. There was no significant difference in species distribution amongst clinical specimens and between patients' genders (P>0.05). An increase in MIC values for fluconazole and flucytosine towards the resistance range was observed. To our knowledge, this is the first report on surveillance of Candida species distribution and antifungal susceptibility at a public tertiary teaching hospital in Eastern Cape, South Africa.

  13. In vitro resistance of Aspergillus fumigatus to azole farm fungicide.

    PubMed

    Kano, Rui; Sobukawa, Hideto; Murayama, Somay Yamagata; Hirose, Dai; Tanaka, Yoko; Kosuge, Yasuhiro; Hasegawa, Atsuhiko; Kamata, Hiroshi

    2016-03-01

    Azole resistance in Aspergillus fumigatus is mainly due to a point mutation in the 14α-sterol demethylase (CYP51A) gene, which encodes the target of azole fungicides. Moreover, overexpression of CYP51B or multidrug resistance (MDR) gene is supposedly related to the mechanism of azole resistance in A. fumigatus. In this study, we tried to induce resistance to tetraconazole, an azole fungicide, in strains of A. fumigatus from a farm and then investigated mutation and expression of their CYP51A, CYP51B, and multidrug resistance (MDR) genes. Three tetraconazole resistant strains were induced and their minimum inhibitory concentration (MIC) for tetraconazole was 145 mg/L. However, the MICs of itraconazole (ITZ), posaconazole (POS), and voriconazole (VRZ) obtained by an E-test of the three tetraconazole resistant strains were 0.064-0.19 mg/L for ITZ, 0.023-0.32 mg/L for POS, and 0.047-0.064 mg/L for VRZ. No gene mutations were detected in the CYP 51A sequence amplified in these strains. RT-PCR of cyp51A and cyp51B indicated that the tetraconazole resistant strains more highly expressed these genes than the susceptible strain in tetraconazole containing medium. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. Epidemiology and treatment approaches in management of invasive fungal infections

    PubMed Central

    Kriengkauykiat, Jane; Ito, James I; Dadwal, Sanjeet S

    2011-01-01

    Over the past 20 years, the number of invasive fungal infections has continued to persist, due primarily to the increased numbers of patients subjected to severe immunosuppression. Despite the development of more active, less toxic antifungal agents and the standard use of antifungal prophylaxis, invasive fungal infections (especially invasive mold infections) continue to be a significant factor in hematopoietic cell and solid organ transplantation outcomes, resulting in high mortality rates. Since the use of fluconazole as standard prophylaxis in the hematopoietic cell transplantation setting, invasive candidiasis has come under control, but no mold-active antifungal agent (except for posaconazole in the setting of acute myelogenous leukemia and myelodysplastic syndrome) has been shown to improve the survival rate over fluconazole. With the advent of new azole and echinocandin agents, we have seen the emergence of more azole-resistant and echinocandin-resistant fungi. The recent increase in zygomycosis seen in the hematopoietic cell transplantation setting may be due to the increased use of voriconazole. This has implications for the empiric approach to pulmonary invasive mold infections when zygomycosis cannot be ruled out. It is imperative that an amphotericin B product, an antifungal that has never developed resistance in over 50 years, be initiated. The clinical presentations of invasive mold infections and invasive candidiasis can be nonspecific and the diagnostic tests insensitive, so a high index of suspicion and immediate initiation of empiric therapy is required. Unfortunately, our currently available serologic tests do not predict infection ahead of disease, and, therefore cannot be used to initiate “preemptive” therapy. Also, the Aspergillus galactomannan test gives a false negative result in patients receiving antimold prophylaxis, ie, virtually all of our patients with hematologic malignancy and hematopoietic cell transplant recipients. We may

  15. Structural Insights into Inhibition of Sterol 14[alpha]-Demethylase in the Human Pathogen Trypanosoma cruzi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepesheva, Galina I.; Hargrove, Tatiana Y.; Anderson, Spencer

    2010-09-02

    Trypanosoma cruzi causes Chagas disease (American trypanosomiasis), which threatens the lives of millions of people and remains incurable in its chronic stage. The antifungal drug posaconazole that blocks sterol biosynthesis in the parasite is the only compound entering clinical trials for the chronic form of this infection. Crystal structures of the drug target enzyme, Trypanosoma cruzi sterol 14{alpha}-demethylase (CYP51), complexed with posaconazole, another antifungal agent fluconazole and an experimental inhibitor, (R)-4{prime}-chloro-N-(1-(2,4-dichlorophenyl)-2-(1H-imid-azol-1-yl)ethyl)biphenyl-4-carboxamide (VNF), allow prediction of important chemical features that enhance the drug potencies. Combined with comparative analysis of inhibitor binding parameters, influence on the catalytic activity of the trypanosomal enzymemore » and its human counterpart, and their cellular effects at different stages of the Trypanosoma cruzi life cycle, the structural data provide a molecular background to CYP51 inhibition and azole resistance and enlighten the path for directed design of new, more potent and selective drugs to develop an efficient treatment for Chagas disease.« less

  16. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis

    PubMed Central

    Scorzoni, Liliana; de Paula e Silva, Ana C. A.; Marcos, Caroline M.; Assato, Patrícia A.; de Melo, Wanessa C. M. A.; de Oliveira, Haroldo C.; Costa-Orlandi, Caroline B.; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2017-01-01

    The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the

  17. Antifungal susceptibilities of Candida glabrata species complex, Candida krusei, Candida parapsilosis species complex and Candida tropicalis causing invasive candidiasis in China: 3 year national surveillance.

    PubMed

    Xiao, Meng; Fan, Xin; Chen, Sharon C-A; Wang, He; Sun, Zi-Yong; Liao, Kang; Chen, Shu-Lan; Yan, Yan; Kang, Mei; Hu, Zhi-Dong; Chu, Yun-Zhuo; Hu, Tie-Shi; Ni, Yu-Xing; Zou, Gui-Ling; Kong, Fanrong; Xu, Ying-Chun

    2015-03-01

    To define the antifungal susceptibility patterns of the most common non-albicans Candida spp. in China. We evaluated the susceptibilities to nine antifungal drugs of Candida parapsilosis species complex, Candida tropicalis, Candida glabrata species complex and Candida krusei isolates from patients with invasive candidiasis at 11 hospitals over 3 years. Isolates were identified by MALDI-TOF MS supplemented by DNA sequencing. MICs were determined by Sensititre YeastOne(TM) using current clinical breakpoints/epidemiological cut-off values to assign susceptibility (or WT), and by CLSI M44-A2 disc diffusion for fluconazole and voriconazole. Of 1072 isolates, 392 (36.6%) were C. parapsilosis species complex. C. tropicalis, C. glabrata species complex and C. krusei comprised 35.4%, 24.3% and 3.7% of the isolates, respectively. Over 99.3% of the isolates were of WT phenotype to amphotericin B and 5-flucytosine. Susceptibility/WT rates to azoles among C. parapsilosis species complex were ≥97.5%. However, 11.6% and 9.5% of C. tropicalis isolates were non-susceptible to fluconazole and voriconazole, respectively (7.1% were resistant to both). Approximately 14.3% of C. glabrata sensu stricto isolates (n = 258) were fluconazole resistant, and 11.6% of C. glabrata sensu stricto isolates were cross-resistant to fluconazole and voriconazole. All C. krusei isolates were susceptible/WT to voriconazole, posaconazole and itraconazole. Overall, 97.7%-100% of isolates were susceptible to caspofungin, micafungin and anidulafungin, but 2.3% of C. glabrata were non-susceptible to anidulafungin. There was no azole/echinocandin co-resistance. Disc diffusion and Sensititre YeastOne(TM) methods showed >95% categorical agreement for fluconazole and voriconazole. In summary, reduced azole susceptibility was seen among C. tropicalis. Resistance to echinocandins was uncommon. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial

  18. Antifungal Indole and Pyrrolidine-2,4-Dione Derivative Peptidomimetic Lead Design Based on In Silico Study of Bioactive Peptide Families

    PubMed Central

    Moradi, Shoeib; Azerang, Parisa; Khalaj, Vahid; Sardari, Soroush

    2013-01-01

    Background The rise of opportunistic fungal infections highlights the need for development of new antimicrobial agents. Antimicrobial Peptides (AMPs) and Antifungal Peptides (AFPs) are among the agents with minimal resistance being developed against them, therefore they can be used as structural templates for design of new antimicrobial agents. Methods In the present study four antifungal peptidomimetic structures named C1 to C4 were designed based on plant defensin of Pisum sativum. Minimum inhibitory concentrations (MICs) for these structures were determined against Aspergillus niger N402, Candida albicans ATCC 10231, and Saccharomyces cerevisiae PTCC 5052. Results C1 and C2 showed more potent antifungal activity against these fungal strains compared to C3 and C4. The structure C2 demonstrated a potent antifungal activity among them and could be used as a template for future study on antifungal peptidomemetics design. Sequences alignments led to identifying antifungal decapeptide (KTCENLADTY) named KTC-Y, which its MIC was determined on fungal protoplast showing 25 (µg/ml) against Aspergillus fumigatus Af293. Conclusion The present approach to reach the antifungal molecules seems to be a powerful approach in design of bioactive agents based on AMP mimetic identification. PMID:23626876

  19. The rationale of combination antifungal therapy in severely immunocompromised patients: empiricism versus evidence-based medicine.

    PubMed

    Chamilos, Georgios; Kontoyiannis, Dimitrios P

    2006-08-01

    Despite expansion of the antifungal armamentarium over the past decade, the mortality rate for invasive fungal infections remains high in severely immunocompromised patients. Furthermore, in recent years, difficult-to-treat invasive infections caused by rare molds and yeasts have emerged in high-risk patients receiving antifungal prophylaxis or empirical treatment. Antifungal combinations are increasingly used in clinical practice to improve outcomes for refractory mycoses because of the suboptimal efficacy of current antifungal agents. Herein we review recent advances in the area of antifungal combinations in high-risk patients to separate empiricism from evidence-based medicine. Thus far, the benefits of combination antifungal therapy have been difficult to prove for invasive fungal infections other than cryptococcal meningitis. The recent introduction of a new class of antifungal agents (the echinocandins) and extended-spectrum triazoles has rejuvenated interest in studying those combinations for difficult-to-treat aspergillosis, as recent observational studies show promise. In view of the evolving epidemiology of invasive fungal infections, combination antifungal therapy could be most valuable in preemptive management of carefully selected high-risk patients; however, this should be studied in appropriate trials.

  20. Effect of Incorporation of Antifungal Agents on the Ultimate Tensile Strength of Temporary Soft Denture Liners.

    PubMed

    Neppelenbroek, Karin Hermana; Lima, Jozely Francisca Mello; Hotta, Juliana; Galitesi, Lucas Lulo; Almeida, Ana Lucia Pompéia Fraga; Urban, Vanessa Migliorini

    2018-02-01

    To investigate the ultimate tensile strength of temporary soft denture liners modified by minimum inhibitory concentrations (MICs) of antifungal agents for Candida albicans biofilm (SC5314) determined in previous microbiological research. Dumbbell-shaped specimens (n = 7) with a central cross-sectional area of 6 × 3 × 33 mm were produced by Softone and Trusoft, without (control) or with incorporation of drugs in powder form at MICs for C. albicans biofilm (per g of material powder): nystatin (0.032 g), chlorhexidine diacetate (0.064 g), ketoconazole (0.128 g), miconazole (0.256 g), and itraconazole (0.256 g). After plasticization, specimens were immersed in distilled water at 37°C for 24 hours, 7 or 14 days, and then tested in tension in a universal testing machine at 40 mm/min. Data of tensile strength (MPa) and elongation percentage (%) were submitted to 3-way ANOVA and Tukey's test (α = 0.05). At the end of 14 days, the tensile strength for both materials was significantly lower in the groups modified by miconazole and itraconazole compared to the other groups (p < 0.0001), which showed no significant difference between them (p > 0.05). After 7 and 14 days in water, miconazole and itraconazole added into both materials resulted in significantly lower elongation percentages compared to the other antifungal agents and control (p < 0.0001), which were similar to each other (p > 0.05). The addition of the nystatin, chlorhexidine, and ketoconazole at MICs for C. albicans biofilm resulted in no harmful effects on the tensile strength and elongation percentage of the temporary soft denture liner materials up to 14 days. © 2017 by the American College of Prosthodontists.

  1. Antifungal Activity of Maytenin and Pristimerin

    PubMed Central

    Gullo, Fernanda P.; Sardi, Janaina C. O.; Santos, Vânia A. F. F. M.; Sangalli-Leite, Fernanda; Pitangui, Nayla S.; Rossi, Suélen A.; de Paula e Silva, Ana C. A.; Soares, Luciana A.; Silva, Julhiany F.; Oliveira, Haroldo C.; Furlan, Maysa; Silva, Dulce H. S.; Bolzani, Vanderlan S.; Mendes-Giannini, Maria José S.; Fusco-Almeida, Ana Marisa

    2012-01-01

    Fungal infections in humans have increased alarmingly in recent years, particularly in immunocompromised individuals. Among the infections systemic candidiasis, aspergillosis, cryptococcosis, paracoccidioidomycosis, and histoplasmosis mortality are more prevalent and more severe in humans. The current high incidence of dermatophytosis is in humans, especially as the main etiologic agents Trichophyton rubrum and Trichophyton mentagrophytes. Molecules pristimerin and maytenin obtained from the plant Maytenus ilicifolia (Celastraceae) are known to show various pharmacological activities. This study aimed to evaluate the spectrum of antifungal activity of maytenin and pristimerin and their cytotoxicity in human keratinocytes (NOK cells of the oral mucosa). It was concluded that the best spectrum of antifungal activity has been shown to maytenin with MIC varying from 0.12 to 125 mg/L, although it is also active with pristimerin MIC ranging between 0.12 and 250 mg/L. Regarding the toxicity, both showed to have high IC50. The SI showed high pristimerin against some species of fungi, but SI maytenin was above 1.0 for all fungi tested, showing a selective action of fungi. However, when comparing the two substances, maytenin also showed better results. The two molecules can be a possible prototype with a broad spectrum of action for the development of new antifungal agents. PMID:22675379

  2. Antifungal therapies for allergic bronchopulmonary aspergillosis in people with cystic fibrosis.

    PubMed

    Elphick, Heather E; Southern, Kevin W

    2016-11-08

    Allergic bronchopulmonary aspergillosis (ABPA) is an allergic reaction to colonisation of the lungs with the fungus Aspergillus fumigatus and affects around 10% of people with cystic fibrosis. ABPA is associated with an accelerated decline in lung function. High doses of corticosteroids are the main treatment for ABPA; although the long-term benefits are not clear, their many side effects are well-documented. A group of compounds, the azoles, have activity against Aspergillus fumigatus and have been proposed as an alternative treatment for ABPA. Of this group, itraconazole is the most active. A separate antifungal compound, amphotericin B, has been employed in aerosolised form to treat invasive infection with Aspergillus fumigatus, and may have potential for the treatment of ABPA. Antifungal therapy for ABPA in cystic fibrosis needs to be evaluated. This is an update of a previously published review. The review aimed to test the hypotheses that antifungal interventions for the treatment of ABPA in cystic fibrosis:1. improve clinical status compared to placebo or standard therapy (no placebo);2. do not have unacceptable adverse effects.If benefit was demonstrated, we aimed to assess the optimal type, duration and dose of antifungal therapy. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register which comprises references identified from comprehensive electronic database searches, handsearches of relevant journals and abstract books of conference proceedings.In addition, pharmaceutical companies were approached.Date of the most recent search of the Group's Trials Register: 29 September 2016. Published or unpublished randomised controlled trials, where antifungal treatments have been compared to either placebo or no treatment, or where different doses of the same treatment have been used in the treatment of ABPA in people with cystic fibrosis. Four trials were identified by the searches; none of which was judged eligible for inclusion in

  3. Arylimidamide-Azole Combinations Against Leishmaniasis

    DTIC Science & Technology

    2015-09-01

    potency of posaconazole in an amastigote macrophage assay2, the only azole to demonstrate activity in vitro against CL species, showed variable activity ...ranging from no activity observed against L. panamensis and L. guyanensis to modest activity against L. tropica to potent activity against L. major...species, and the potency is variable; while posaconazole is active against Old World CL species such as L. major and L. tropica it is not active

  4. In Vitro and In Vivo Activity of a Novel Antifungal Small Molecule against Candida Infections

    PubMed Central

    Yuen, Kwok Yong; Wang, Yu; Yang, Dan; Samaranayake, Lakshman Perera

    2014-01-01

    Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC) 0.2 – 1.6 µg/ml). In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use. PMID:24465737

  5. Azole susceptibility of Malassezia pachydermatis and Malassezia furfur and tentative epidemiological cut-off values.

    PubMed

    Cafarchia, Claudia; Iatta, Roberta; Immediato, Davide; Puttilli, Maria Rita; Otranto, Domenico

    2015-09-01

    This study aims to determine the minimal inhibitory concentration (MIC) distribution and the epidemiological cut-off values (ECVs) of Malassezia pachydermatis and Malassezia furfur isolates for fluconazole (FLZ), itraconazole (ITZ), posaconazole (POS), and voriconazole (VOR). A total of 62 M. pachydermatis strains from dogs with dermatitis and 78 M. furfur strains from humans with bloodstream infections (BSI) were tested by a modified broth microdilution Clinical and Laboratory Standards Institute (CLSI) method. ITZ and POS displayed lower MICs than VOR and FLZ, regardless of the Malassezia species. The MIC data for azoles of M. pachydermatis were four two-fold dilutions lower than those of M. furfur. Based on the ECVs, about 94% of Malassezia strains might be categorized within susceptible population for all azoles, except for FLZ, and azole cross-resistance was detected in association with FLZ in M. pachydermatis but not in M. furfur.The study proposes, for the first time, tentative azole ECVs for M. pachydermatis and M. furfur for monitoring the emergence of isolates with decreased susceptibilities and shows that the azole MIC distribution varied according to the Malassezia species tested, thus suggesting the usefulness of determining the susceptibility profile for effective treatment of each species. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Comparison of antifungal activities of various essential oils on the Phytophthora drechsleri, the causal agent of fruit decay

    PubMed Central

    Mohammadi, Ali; Hashemi, Maryam; Hosseini, Seyed Masoud

    2015-01-01

    Background and Objectives: The efficacy of Mentha piperita L, Zataria multiflora Boiss and Thymus vulgaris L essential oils (EOs) was evaluated for controlling the growth of Phytophthora drechsleri, the causative agent of damage to many crops that is consumed directly by humans. Materials and Methods: The EOs used in this study was purchased from Magnolia Co, Iran. The pour plate method in petri dishes containing Potato Dextrose Agar (PDA) was used to evaluate the antifungal properties of EOs. The minimal inhibitory concentrations (MIC), minimum fungicidal concentration (MFC) as well as mycelial growth inhibition (MGI) were measured. The IC50 value (the concentration inhibited 50% of the mycelium growth) was calculated by probit analysis. Results and Conclusion: The fungal growth was significantly reduced by increasing concentrations of tested EOs. The complete reduction was obtained with Shirazi thyme at all concentrations, whereas the complete reduction for peppermint and thyme was observed at 0.4% and 0.8% (v/v) concentrations, respectively. Meanwhile, the minimum inhibition was observed when 0.1% peppermint (MGI values of 9.37%) was used. The IC50, MIC and MFC values of Shirazi thyme was 0.053, 0.1% and 0.2%, respectively. Similarly, MIC and MFC values of peppermint and thyme were recorded 0.4% and 0.8%, respectively. The results obtained from this study may contribute to the development of new antifungal agents to protect the crops from this pathogenic fungus and many agricultural plant pathogens causing drastic crop losses. PMID:26644871

  7. The In Vitro Efficacy of Essential Oils and Antifungal Drugs Against Prototheca zopfii.

    PubMed

    Grzesiak, Barbara; Głowacka, Anna; Krukowski, Henryk; Lisowski, Andrzej; Lassa, Henryka; Sienkiewicz, Monika

    2016-08-01

    The algae of the genus Prototheca are environmental pathogens whose main reservoir is the habitat of cows. They can cause protothecosis in domestic and wild animals, as well as human beings, with the main etiological agents being Prototheca zopfii in animals and Prototheca wickerhamii in humans. The aim of the study was to evaluate the in vitro activity of selected essential oils and antifungal antibiotics against P. zopfii isolates. The material consisted of nine P. zopfii strains isolated from the milk of cows suffering from mastitis. Eight essential oils produced by POLLENA-AROMA, Poland, and nine antifungal agents were tested. The effects of essential oils on P. zopfii were evaluated by microdilution with liquid Sabouraud dextrose broth, and susceptibility to antifungal agents was tested using the disk-diffusion method. All used essential oils inhibited the activity of P. zopfii isolates, with MIC values ranging from 0.2 to 10.5 μl/ml. Cinnamon, clove, and thyme demonstrated the highest activity against the tested P. zopfii strains at concentrations ranging from 0.6 to 1.0 μl/ml. Of the antifungal agents, the tested strains were the most sensitive to nystatin (100 %). The tested essential oils can be used to complement protothecosis therapy in animals and human beings.

  8. In Vitro Activities of Five Antifungal Drugs Against Opportunistic Agents of Aspergillus Nigri Complex.

    PubMed

    Badali, Hamid; Fakhim, Hamed; Zarei, Fereshteh; Nabili, Mojtaba; Vaezi, Afsane; Poorzad, Nafiseh; Dolatabadi, Somayeh; Mirhendi, Hossein

    2016-04-01

    Black aspergilli, particularly Aspergillus niger and A. tubingensis, are the most common etiological agents of otomycosis followed by onychomycosis, pulmonary aspergillosis and aspergilloma. However, so far there is no systematic study on their antifungal susceptibility profiles. A collection of 124 clinical and environmental species of black aspergilli consisted of A. niger, A. tubingensis, A. uvarum. A. acidus and A. sydowii were verified by DNA sequencing of the partial β-tubulin gene. MICs of amphotericin B, itraconazole, voriconazole, posaconazole, and MECs of caspofungin were performed based on CLSI M38-A2. Posaconazole and caspofungin had the lowest MIC range (0.016-0.125 µg/ml and 0.008-0.031 µg/ml, respectively), followed by amphotericin B (0.25-4 µg/ml), voriconazole (0.125-16 µg/ml) and itraconazole (0.25 to >16) in an increasing order. Some strains of A. niger showed high MIC value for itraconazole and voriconazole (>16 µg/ml), in contrast only environmental isolates of A. tubingensis had high itraconazole MICs (>16 µg/ml). These results confirm that posaconazole and caspofungin are potential drugs for treatment of aspergillosis due to opportunistic agents of Aspergillus Nigri complex. However, in vivo efficacy remains to be determined.

  9. Augmenting the efficacy of antifungal intervention via chemo-biological approaches

    USDA-ARS?s Scientific Manuscript database

    Mycotic infection is becoming a serious health problem since effective antifungal agents for control of pathogenic fungi, especially drug-resistant pathogens, is often very limited. Fungal resistance to antimycotic agents frequently involves mutations caused by environmental stressors. In fungal pat...

  10. Azole fungicides: occurrence and fate in wastewater and surface waters.

    PubMed

    Kahle, Maren; Buerge, Ignaz J; Hauser, Andrea; Müller, Markus D; Poiger, Thomas

    2008-10-01

    The mode of action of azole compounds implies a potential to affect endocrine systems of different organisms and is reason for environmental concern. The occurrence and fate of nine agricultural azole fungicides, some of them also used as biocides, and four azole pharmaceuticals were studied in wastewater treatment plants (WWTPs) and lakes in Switzerland. Two pharmaceuticals (fluconazole, clotrimazole, 10-110 ng L(-1)) and two biocides (propiconazole, tebuconazole, 1-30 ng L(-1)) were consistently observed in WWTP influents. Loads determined in untreated and treated wastewater indicated thatfluconazole, propiconazole, and tebuconazole were largely unaffected by wastewater treatment, but clotrimazole was effectively eliminated (> 80%). Incubation studies with activated sludge showed no degradation for fluconazole and clotrimazole within 24 h, but strong sorption of clotrimazole to activated sludge. Slow degradation and some sorption were observed for tebuconazole and propiconazole (degradation half-lives, 2-3 d). In lakes, fluconazole, propiconazole, and tebuconazole were detected at low nanogram-per-liter levels. Concentrations of the pharmaceutical fluconazole correlated with the expected contamination by domestic wastewater, but not those of the biocides. Per capita loads of propiconazole and tebuconazole in lakes suggested additional inputs; for example, from agricultural use or urban runoff rainwater.

  11. Calcium dependence of eugenol tolerance and toxicity in Saccharomyces cerevisiae.

    PubMed

    Roberts, Stephen K; McAinsh, Martin; Cantopher, Hanna; Sandison, Sean

    2014-01-01

    Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA) revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections.

  12. Evaluation of 1,3-benzoxathiol-2-one Derivatives as Potential Antifungal Agents.

    PubMed

    Terra, Luciana; de L Chazin, Eliza; de S Sanches, Paola; Saito, Max; de Souza, Marcus V N; Gomes, Claudia R B; Wardell, James L; Wardell, Solange M S V; Sathler, Plinio C; Silva, Gabriela C C; Lione, Viviane O; Kalil, Marcos; Joffily, Ana; Castro, Helena C; Vasconcelos, Thatyana R A

    2018-01-01

    Over the last few years, fungal infections have emerged as a worrisome global public health problem. Candidiasis is a disease caused by Candida species and has been a problem worldwide mainly for immunosuppressed patients. Lately, the resistant strains and side effects have been reported as important issues for treating Candidiasis, which have to be solved by identifying new drugs. The goal of this work was to synthesize a series of 1,3-benzoxathiol-2-one derivatives, XYbenzo[ d][1,3]oxathiol-2-ones, and evaluate their antifungal activity against five Candida species. In vitro antifungal screening test and minimum inhibitory concentration determination were performed according to CLSI protocols using ketoconazole as the reference drug. The cytotoxicity of the most active compounds was evaluated by hemolysis and MTT (Vero cells) assays. Compounds 2 (XY = 6-hydroxy-5-nitro, MIC = 4-32 µg/mL) and 7 (XY = 6-acetoxy-5-nitro, MIC =16-64 µg/mL) showed good results when compared with current antifungals in CLSI values (MIC = 0.04-250 µg/mL). These compounds exhibited a safer cytotoxicity as well as a lower hemolytic profile than ketoconazole. Overall, the in vitro results pointed to the potential of compounds 2 and 7 as new antifungal prototypes to be further explored. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. In vitro susceptibility of 137 Candida sp. isolates from HIV positive patients to several antifungal drugs.

    PubMed

    Magaldi, S; Mata, S; Hartung, C; Verde, G; Deibis, L; Roldán, Y; Marcano, C

    2001-01-01

    Oropharyngeal candidiasis caused by various species of Candida is one of the most common infections in HIV seropositive or AIDS patients. Drug resistance among these yeasts is an increasing problem. We studied the frequency of resistance profile to fluconazole, itraconazole, ketoconazole, amphotericin B and terbinafine of 137 isolates of Candida sp. From HIV positive or AIDS patients with oropharyngeal candidiasis at Instituto de Inmunología, U.C.V. and the Hospital "Jose Ignacio Baldó", Caracas Venezuela, using the well diffusion susceptibility test (Magaldi et al.). We found that nearly 10% of C. albicans isolates were primarily fluconazole resistant, 45% of C. albicans isolates from patients with previous treatment were resistant to fluconazole, of which 93% showed cross-resistance to itraconazole, and even about 30% of C. tropicalis (n = 13) were resistant to fluconazole and/or itraconazole. To this respect, several recent reports have been described antifungal cross-resistance among azoles. Therefore, we consider that C. tropicalis should be added to the growing list of yeast in which antifungal drug resistance is common. This report could be useful for therapeutic aspect in AIDS patients with oral candidiasis.

  14. [Adequacy of new systemic antifungal agents prescriptions in a teaching hospital].

    PubMed

    Pavese, P; Ouachi, Z; Vittoz, J-P; Lebeau, B; Foroni, L; Allenet, B; Stahl, J-P; François, P

    2007-12-01

    The aim of this study was to evaluate the adequacy and the conformity of prescriptions of new systemic antifungal drugs to guidelines and scientific data. Each prescription of liposomal amphotericin B (lip Amb), voriconazole, and caspofungin made between May 2003 and May 2004 in a teaching hospital were reviewed by an infectious diseases specialist. He used criteria based on marketing authorization, national recommendations, and scientific data. One hundred and fifteen files were studied during the 12-month period and 203 prescriptions analyzed. Most patients were immunodepressed. The indication of the treatment was appropriate for 127 prescriptions (62.6%). Dose and drug interactions were compliant with prescription rules for 158 prescriptions (77.8%). Among the causes of misuse, 16.3% concerned combinations of antifungals. Prescriptions of liposomal amphotericin B, voriconazole and caspofungin complied with guidelines respectively in 69.7, 60.6 and 36.8% of the cases. Among the 127 appropriate prescriptions, the use of cheaper molecules with an equivalent clinical effectiveness would have allowed saving 13.6% of the total cost of these prescriptions. This study will lead us to implement policies for new antifungal prescription.

  15. [Topical terbinafine. Reduction of duration of therapy for tinea pedis].

    PubMed

    Schmid-Wendtner, M-H; Korting, H

    2008-12-01

    Superficial fungal infections are common and worldwide in distribution. Latest estimates suggest one- third of the population in Europe has a fungal infection of their feet, with dermatophyte infections of the skin of the feet (tinea pedis) most common. Tinea pedis interdigitalis is by far most common and can be effectively treated topically. Common agents include azoles, hydroxypyridones and allylamines, with morpholines used less frequently. While most antifungals have mainly fungistatic effects on dermatophytes, the causative agents of tinea pedis, terbinafine--an allylamine--is fungicidal. Due to this feature shorter treatment periods are possible using topical terbinafine. For effective treatment of uncomplicated tinea pedis interdigitalis, azole cream preparations are often used twice daily for four weeks whereas 1% terbinafine cream can be applied once a day for one week. Since 2006, 1% terbinafine is also available as a film-forming solution (FFS), which makes single-dose treatment possible. FFS may prove superior in daily practice with increased compliance and thus reduced recurrences.

  16. Activity of voriconazole (UK-109,496) against clinical isolates of Aspergillus species and its effectiveness in an experimental model of invasive pulmonary aspergillosis.

    PubMed Central

    Murphy, M; Bernard, E M; Ishimaru, T; Armstrong, D

    1997-01-01

    Voriconazole, a new azole antifungal agent, showed potent activity against clinical isolates of Aspergillus spp. in vitro. For A. fumigatus, the MIC range was < 0.03 to 0.5 microgram/ml and the MIC at which 90% of isolates are inhibited was 0.25 microgram/ml. In an experimental model of invasive pulmonary aspergillosis which mimics infection in humans, oral voriconazole at dosages of 30 mg/kg of body weight per day significantly delayed or prevented mortality. PMID:9056016

  17. Screening of antifungal agents using ethanol precipitation and bioautography of medicinal and food plants.

    PubMed

    Schmourlo, Gracilene; Mendonça-Filho, Ricardo R; Alviano, Celuta Sales; Costa, Sônia S

    2005-01-15

    In the search for bioactive compounds, bioautography and ethanol precipitation of macromolecules (proteins, polysaccharides, etc.) of plant aqueous extracts were associated in an antifungal screening. Thus, the supernatants, precipitates (obtained by ethanol precipitation) and aqueous extracts were investigated of medicinal and fruit bearing plants used against skin diseases by the Brazilian population. The agar diffusion and broth dilution methods were used to assess the activity against three fungi: Candida albicans, Trichophyton rubrum and Cryptococcus neoformans. The results, evaluated by the diameter of the inhibition zone of fungal growth, indicate that six plant species, among the 16 investigated, showed significant antifungal activity. The minimal inhibitory concentration (MIC) was determined on plant extracts that showed high efficacy against the tested microorganisms. The most susceptible yeast was Trichophyton rubrum and the best antifungal activity was shown by Xanthosoma sagittifolium supernatant. The bioautography was performed only for the aqueous extracts and supernatants of those plants that showed antifungal activity against Candida albicans and Cryptococcus neoformans, using n-butanol/acetic acid/water (BAW) 8:1:1 to develop silica gel TLC plates. Clear inhibition zones were observed for aqueous extracts of Schinus molle (R(f) 0.89) and Schinus terebinthifolius (R(f) 0.80) against Candida albicans, as for supernatant of Anacardium occidentale (R(f) 0.31) against Cryptococcus neoformans. The separation of macromolecules from metabolites, as in the case of Anacardium occidentale, Solanum sp. and Xanthosoma sagittifolium, enhances antifungal activity. In other cases, the antifungal activity is destroyed, as observed for Momordica charantia, Schinus molle and Schinus terebinthifolius.

  18. Scaled-up production of poacic acid, a plant-derived antifungal agent

    DOE PAGES

    Yue, Fengxia; Gao, Ruili; Piotrowski, Jeff S.; ...

    2017-09-01

    Poacic acid, a decarboxylated product from 8–5-diferulic acid that is commonly found in monocot lignocellulosic hydrolysates, has been identified as a natural antifungal agent against economically significant fungi and oomycete plant pathogens. Starting from commercially available or monocot-derivable ferulic acid, a three-step synthetic procedure has been developed for the production of poacic acid needed for field testing in a controlled agricultural setting. First, ferulic acid was esterified to produce ethyl ferulate in 92% yield. Second, peroxidase-catalyzed free radical dehydrodimerization of ethyl ferulate produced crude diferulates, mainly 8–5-diferulate, in 91% yield. Finally, crystalline poacic acid was obtained in 25% yield viamore » alkaline hydrolysis of the crude diferulates after purification by flash-column chromatography. Thus, this new procedure offers two key improvements relevant to large-scale production: 1) bubbling air through the reaction mixture in the second step to remove acetone greatly improves the recovery efficiency of the crude diferulates; and 2) telescoping minor impurities directly into the alkaline hydrolysis step eliminates the need for additional column purifications, thus reducing the overall cost of production and removing a major impediment to process scale-up.« less

  19. Scaled-up production of poacic acid, a plant-derived antifungal agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Fengxia; Gao, Ruili; Piotrowski, Jeff S.

    Poacic acid, a decarboxylated product from 8–5-diferulic acid that is commonly found in monocot lignocellulosic hydrolysates, has been identified as a natural antifungal agent against economically significant fungi and oomycete plant pathogens. Starting from commercially available or monocot-derivable ferulic acid, a three-step synthetic procedure has been developed for the production of poacic acid needed for field testing in a controlled agricultural setting. First, ferulic acid was esterified to produce ethyl ferulate in 92% yield. Second, peroxidase-catalyzed free radical dehydrodimerization of ethyl ferulate produced crude diferulates, mainly 8–5-diferulate, in 91% yield. Finally, crystalline poacic acid was obtained in 25% yield viamore » alkaline hydrolysis of the crude diferulates after purification by flash-column chromatography. Thus, this new procedure offers two key improvements relevant to large-scale production: 1) bubbling air through the reaction mixture in the second step to remove acetone greatly improves the recovery efficiency of the crude diferulates; and 2) telescoping minor impurities directly into the alkaline hydrolysis step eliminates the need for additional column purifications, thus reducing the overall cost of production and removing a major impediment to process scale-up.« less

  20. Antifungal Activity of Commercial Essential Oils and Biocides against Candida Albicans.

    PubMed

    Serra, Elisa; Hidalgo-Bastida, Lilia Araida; Verran, Joanna; Williams, David; Malic, Sladjana

    2018-01-25

    Management of oral candidosis, most frequently caused by Candida albicans , is limited due to the relatively low number of antifungal drugs and the emergence of antifungal tolerance. In this study, the antifungal activity of a range of commercial essential oils, two terpenes, chlorhexidine and triclosan was evaluated against C. albicans in planktonic and biofilm form. In addition, cytotoxicity of the most promising compounds was assessed using murine fibroblasts and expressed as half maximal inhibitory concentrations (IC50). Antifungal activity was determined using a broth microdilution assay. The minimum inhibitory concentration (MIC) was established against planktonic cells cultured in a range of concentrations of the test agents. The minimal biofilm eradication concentration (MBEC) was determined by measuring re-growth of cells after pre-formed biofilm was treated for 24 h with the test agents. All tested commercial essential oils demonstrated anticandidal activity (MICs from 0.06% ( v / v ) to 0.4% ( v / v )) against planktonic cultures, with a noticeable increase in resistance exhibited by biofilms (MBECs > 1.5% ( v / v )). The IC50s of the commercial essential oils were lower than the MICs, while a one hour application of chlorhexidine was not cytotoxic at concentrations lower than the MIC. In conclusion, the tested commercial essential oils exhibit potential as therapeutic agents against C. albicans , although host cell cytotoxicity is a consideration when developing these new treatments.

  1. Pharmacodynamics of the Novel Antifungal Agent F901318 for Acute Sinopulmonary Aspergillosis Caused by Aspergillus flavus

    PubMed Central

    Negri, Clara E; Johnson, Adam; McEntee, Laura; Box, Helen; Whalley, Sarah; Schwartz, Julie A; Ramos-Martín, V; Livermore, Joanne; Kolamunnage-Dona, Ruwanthi; Colombo, Arnaldo L; Hope, William W

    2018-01-01

    Abstract Background Aspergillus flavus is one of the most common agents of invasive aspergillosis and is associated with high mortality. The orotomides are a new class of antifungal agents with a novel mechanism of action. An understanding of the pharmacodynamics (PD) of the lead compound F901318 is required to plan safe and effective regimens for clinical use. Methods The pharmacokinetics (PK) and PD of F901318 were evaluated by developing new in vitro and in vivo models of invasive fungal sinusitis. Galactomannan was used as a pharmacodynamic endpoint in all models. Mathematical PK-PD models were used to describe dose-exposure-response relationships. Results F901318 minimum inhibitory concentrations (MICs) ranged from 0.015 to 0.06 mg/L. F901318 induced a concentration-dependent decline in galactomannan. In the in vitro model, a minimum concentration:MIC of 10 resulted in suppression of galactomannan; however, values of approximately 10 and 9–19 when assessed by survival of mice or the decline in galactomannan, respectively, were equivalent or exceeded the effect induced by posaconazole. There was histological clearance of lung tissue that was consistent with the effects of F901318 on galactomannan. Conclusions F901318 is a potential new agent for the treatment of invasive infections caused by A flavus with PDs that are comparable with other first-line triazole agents. PMID:28968675

  2. Synthesis and evaluation of α-Ag2WO4 as novel antifungal agent

    NASA Astrophysics Data System (ADS)

    Foggi, Camila C.; Fabbro, Maria T.; Santos, Luís P. S.; de Santana, Yuri V. B.; Vergani, Carlos E.; Machado, Ana L.; Cordoncillo, Eloisa; Andrés, Juan; Longo, Elson

    2017-04-01

    Because of the need for new antifungal materials with greater potency, microcrystals of α-Ag2WO4, a complex metal oxide, have been synthetized by a simple co-precipitation method, and their antifungal activity against Candida albicans has been investigated. A theoretical model based on clusters that are building blocks of α-Ag2WO4 has been proposed to explain the experimental results.

  3. Susceptibility testing of terbinafine alone and in combination with amphotericin B, itraconazole, or voriconazole against conidia and hyphae of dematiaceous molds.

    PubMed

    Biancalana, Fernanda Simas Corrêa; Lyra, Luzia; Moretti, Maria Luiza; Schreiber, Angélica Zaninelli

    2011-12-01

    Studies have demonstrated excellent in vivo efficacy of terbinafine combined with other antifungal agents against dematiaceous molds; however, there is a lack of in vitro studies. Most studies evaluated conidia inocula, but susceptibility testing of hyphae could mimic the fungal status in infected tissues and might reflect the therapeutic potential of the agent. We investigated the in vitro susceptibility of terbinafine alone and in combination with amphotericin B, itraconazole, or voriconazole against conidia by microdilution and dynamic measurement of hyphae growth of dematiaceous molds. The MIC values for hyphae were, until 3 dilutions, below the MIC obtained for conidia. The results indicated 100% synergistic interactions between terbinafine and azoles or amphotericin B in all tests, but lower MICs for hyphae. In conclusion, our findings allow us to say that the hyphal form of tested dematiaceous molds showed high susceptibility to all antifungal agents evaluated, alone and in combination with terbinafine. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. High-performance liquid chromatographic assay for the determination of novel triazole antifungal agents in tissue. Application to tissue distribution studies.

    PubMed

    Khan, J K; Montaseri, H; Poglod, M; Bu, H Z; Daneshtalab, M; Micetich, R G

    2000-08-01

    A simple and rugged reversed-phase high-performance liquid chromatographic method with ultraviolet absorbance detection at 263 nm was developed and validated for the analysis of novel triazole antifungal agents SYN-2869 and its derivatives in tissues. The method involved homogenization with 0.01 M phosphate buffer (pH 7.8) for lung, brain and spleen tissues. The liver and kidneys were homogenized with acetonitrile:acetone (1:1). The plasma proteins were precipitated with ice-cold acetonitrile and supernatent was evaporated to dryness. The reconstituted samples were injected onto an HPLC system. SYN-2869 was separated from the matrix components on a symmetry C(18) column using a aqueous mobile phase of acetonitrile and water with a flow rate of 1 mL/min. A step gradient of 40-80% acetonitrile eluted SYN-2869 and the internal standard (SYN-2506). The linear range was 0.5-10 microgram/g (r(2) > 0.99). The limit of quantitation was 0.5 microgram/g. The inter-day precision and accuracy for SYN 2869 standard concentration were from 2.6 to 7.4% and from -1.56 to +3.29%, respectively. The method was applied to tissue samples collected from single intravenous administration to mice to evaluate the distribution of these novel antifungal agents to different tissues. Copyright 2000 John Wiley & Sons, Ltd.

  5. Past, Recent Progresses and Future Perspectives of Nanotechnology Applied to Antifungal Agents.

    PubMed

    Roque, Luis; Molpeceres, Jesus; Reis, Claudia; Rijo, Patrícia; Reis, Catarina Pinto

    2017-01-01

    Candida species remain a significant cause of nosocomial bloodstream infections, associated with prolonged hospital stay in the ICU and high healthcare cost. The incidence of Candida is very high in certain risk groups of patients (AIDS, diabetes, cancer, etc.). Recent developments of nanotechnology have strongly contributed to the design of new multifunctional drug carriers that improve drug bioavailability through a controlled and prolonged release profile or even through a more specific targeted delivery of the antifungal agent. Those types of systems have strongly increased with a progressive generation of new structures, permitting the conjunction of new materials, biomolecules, physical and chemical techniques, for better outcomes. Nanotechnology shows expanded possibilities within the medical field and in the case of the yeast infections it may overcome several issues related with the fungal proliferation or higher inhibition of the pathogen causing the infection. This review covers a period of the most representative research of Candidiasis since 1993 to the present. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Activities of E1210 and comparator agents tested by CLSI and EUCAST broth microdilution methods against Fusarium and Scedosporium species identified using molecular methods.

    PubMed

    Castanheira, Mariana; Duncanson, Frederick P; Diekema, Daniel J; Guarro, Josep; Jones, Ronald N; Pfaller, Michael A

    2012-01-01

    Fusarium (n = 67) and Scedosporium (n = 63) clinical isolates were tested by two reference broth microdilution (BMD) methods against a novel broad-spectrum (active against both yeasts and molds) antifungal, E1210, and comparator agents. E1210 inhibits the inositol acylation step in glycophosphatidylinositol (GPI) biosynthesis, resulting in defects in fungal cell wall biosynthesis. Five species complex organisms/species of Fusarium (4 isolates unspeciated) and 28 Scedosporium apiospermum, 7 Scedosporium aurantiacum, and 28 Scedosporium prolificans species were identified by molecular techniques. Comparator antifungal agents included anidulafungin, caspofungin, itraconazole, posaconazole, voriconazole, and amphotericin B. E1210 was highly active against all of the tested isolates, with minimum effective concentration (MEC)/MIC(90) values (μg/ml) for E1210, anidulafungin, caspofungin, itraconazole, posaconazole, voriconazole, and amphotericin B, respectively, for Fusarium of 0.12, >16, >16, >8, >8, 8, and 4 μg/ml. E1210 was very potent against the Scedosporium spp. tested. The E1210 MEC(90) was 0.12 μg/ml for S. apiospermum, but 1 to >8 μg/ml for other tested agents. Against S. aurantiacum, the MEC(50) for E1210 was 0.06 μg/ml versus 0.5 to >8 μg/ml for the comparators. Against S. prolificans, the MEC(90) for E1210 was only 0.12 μg/ml, compared to >4 μg/ml for amphotericin B and >8 μg/ml for itraconazole, posaconazole, and voriconazole. Both CLSI and EUCAST methods were highly concordant for E1210 and all comparator agents. The essential agreement (EA; ±2 doubling dilutions) was >93% for all comparisons, with the exception of posaconazole and F. oxysporum species complex (SC) (60%), posaconazole and S. aurantiacum (85.7%), and voriconazole and S. aurantiacum (85.7%). In conclusion, E1210 exhibited very potent and broad-spectrum antifungal activity against azole- and amphotericin B-resistant strains of Fusarium spp. and Scedosporium spp. Furthermore, in vitro

  7. Activities of E1210 and Comparator Agents Tested by CLSI and EUCAST Broth Microdilution Methods against Fusarium and Scedosporium Species Identified Using Molecular Methods

    PubMed Central

    Duncanson, Frederick P.; Diekema, Daniel J.; Guarro, Josep; Jones, Ronald N.; Pfaller, Michael A.

    2012-01-01

    Fusarium (n = 67) and Scedosporium (n = 63) clinical isolates were tested by two reference broth microdilution (BMD) methods against a novel broad-spectrum (active against both yeasts and molds) antifungal, E1210, and comparator agents. E1210 inhibits the inositol acylation step in glycophosphatidylinositol (GPI) biosynthesis, resulting in defects in fungal cell wall biosynthesis. Five species complex organisms/species of Fusarium (4 isolates unspeciated) and 28 Scedosporium apiospermum, 7 Scedosporium aurantiacum, and 28 Scedosporium prolificans species were identified by molecular techniques. Comparator antifungal agents included anidulafungin, caspofungin, itraconazole, posaconazole, voriconazole, and amphotericin B. E1210 was highly active against all of the tested isolates, with minimum effective concentration (MEC)/MIC90 values (μg/ml) for E1210, anidulafungin, caspofungin, itraconazole, posaconazole, voriconazole, and amphotericin B, respectively, for Fusarium of 0.12, >16, >16, >8, >8, 8, and 4 μg/ml. E1210 was very potent against the Scedosporium spp. tested. The E1210 MEC90 was 0.12 μg/ml for S. apiospermum, but 1 to >8 μg/ml for other tested agents. Against S. aurantiacum, the MEC50 for E1210 was 0.06 μg/ml versus 0.5 to >8 μg/ml for the comparators. Against S. prolificans, the MEC90 for E1210 was only 0.12 μg/ml, compared to >4 μg/ml for amphotericin B and >8 μg/ml for itraconazole, posaconazole, and voriconazole. Both CLSI and EUCAST methods were highly concordant for E1210 and all comparator agents. The essential agreement (EA; ±2 doubling dilutions) was >93% for all comparisons, with the exception of posaconazole and F. oxysporum species complex (SC) (60%), posaconazole and S. aurantiacum (85.7%), and voriconazole and S. aurantiacum (85.7%). In conclusion, E1210 exhibited very potent and broad-spectrum antifungal activity against azole- and amphotericin B-resistant strains of Fusarium spp. and Scedosporium spp. Furthermore, in vitro

  8. Topical antifungals for seborrhoeic dermatitis

    PubMed Central

    Okokon, Enembe O; Verbeek, Jos H; Ruotsalainen, Jani H; Ojo, Olumuyiwa A; Bakhoya, Victor Nyange

    2015-01-01

    Background Seborrhoeic dermatitis is a chronic inflammatory skin condition that is distributed worldwide. It commonly affects the scalp, face and flexures of the body. Treatment options include antifungal drugs, steroids, calcineurin inhibitors, keratolytic agents and phototherapy. Objectives To assess the effects of antifungal agents for seborrhoeic dermatitis of the face and scalp in adolescents and adults. A secondary objective is to assess whether the same interventions are effective in the management of seborrhoeic dermatitis in patients with HIV/AIDS. Search methods We searched the following databases up to December 2014: the Cochrane Skin Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (2014, Issue 11), MEDLINE (from 1946), EMBASE (from 1974) and Latin American Caribbean Health Sciences Literature (LILACS) (from 1982). We also searched trials registries and checked the bibliographies of published studies for further trials. Selection criteria Randomised controlled trials of topical antifungals used for treatment of seborrhoeic dermatitis in adolescents and adults, with primary outcome measures of complete clearance of symptoms and improved quality of life. Data collection and analysis Review author pairs independently assessed eligibility for inclusion, extracted study data and assessed risk of bias of included studies. We performed fixed-effect meta-analysis for studies with low statistical heterogeneity and used a random-effects model when heterogeneity was high. Main results We included 51 studies with 9052 participants. Of these, 45 trials assessed treatment outcomes at five weeks or less after commencement of treatment, and six trials assessed outcomes over a longer time frame. We believe that 24 trials had some form of conflict of interest, such as funding by pharmaceutical companies. Among the included studies were 12 ketoconazole trials (N = 3253), 11 ciclopirox trials (N = 3029), two lithium trials (N = 141

  9. Pickering emulsions based on cyclodextrins: A smart solution for antifungal azole derivatives topical delivery.

    PubMed

    Leclercq, Loïc; Nardello-Rataj, Véronique

    2016-01-20

    Surfactants are usually used for the preparation of emulsions. Potential drawbacks on the human body or on the environment can be observed for some of them(e.g. skin irritation, hemolysis, protein denaturation, etc.). However, it is possible to use biocompatible emulsifiers such as native cyclodextrins (CDs). The mixture of oil (paraffin oil or isopropyl myristate), water and native CDs results in the formation of Pickering emulsions. The emulsion properties were investigated by ternary phase diagrams elaboration, multiple light scattering, optical and transmission microscopies. The results prove that these Pickering emulsions were very stable against coalescence due to the dense film format the oil/water interface. The rheological behavior has shown that these emulsions remain compatible for topical applications. This kind of emulsions (biocompatibility, stability and surfactant free) has been used to obtain sustainable formulations for antifungal econazole derivatives delivery. Our results prove that these new formulations are at least as active as commercially available formulations.

  10. Selected Essential Oils as Antifungal Agents Against Antibiotic-Resistant Candida spp.: In Vitro Study on Clinical and Food-Borne Isolates.

    PubMed

    Rajkowska, Katarzyna; Kunicka-Styczyńska, Alina; Maroszyńska, Marta

    2017-01-01

    Candida spp. cause significant health problems, inducing various types of superficial and deep-seated mycoses in humans. As a result of the increasing antibiotic resistance among pathogenic yeasts, the interest in alternative agents of antifungal activity is growing. This study evaluated the antimicrobial activity of selected essential oils (EOs) against Candida clinical and food-borne strains, including antibiotic-resistant isolates, in relation to yeast cell surface hydrophobicity (CSH). Candida strains showed different range of susceptibility to tea tree, thyme, peppermint, and clove oils, and peppermint oil demonstrated the lowest anticandidal activity with minimal inhibitory concentrations (MICs) of 0.03-8.0% v/v. MIC values for thyme and clove oils ranged from 0.03% to 0.25% v/v, and for tea tree oil-from 0.12% to 2.0% v/v. The exception was Candida tropicalis food-borne strain, the growth of which was inhibited after application of EOs at concentration of 8% v/v. Due to diverse yeast susceptibility to EOs, isolates were divided into five clusters in a principal component analysis model, each containing both clinical and food-borne strains. Hydrophobic properties of yeast were also diversified, and 37% of clinical and 50% of food-borne strains exhibited high hydrophobicity. The study indicates high homology of clinical and food-borne Candida isolates in relation to their susceptibility to anticandidal agents and hydrophobic properties. The susceptibility of yeasts to EOs could be partially related to their CSH. High antifungal activity of examined EOs, also against antibiotic-resistant isolates, indicates their usefulness as agents preventing the development of Candida strains of different origin.

  11. Tacrolimus Increases the Effectiveness of Itraconazole and Fluconazole against Sporothrix spp.

    PubMed

    Borba-Santos, Luana P; Reis de Sá, Leandro F; Ramos, Juliene A; Rodrigues, Anderson M; de Camargo, Zoilo P; Rozental, Sonia; Ferreira-Pereira, Antonio

    2017-01-01

    Calcineurin inhibitors - such as the clinically used drug tacrolimus - are active against important fungal pathogens, particularly when combined with azoles. However, tacrolimus has not been tested against sporotrichosis, an endemic subcutaneous mycosis with worldwide distribution. Here, we evaluated the activity of tacrolimus and cyclosporine A in vitro - as monotherapy and in combination with itraconazole or fluconazole - against yeasts of Sporothrix brasiliensis and S. schenckii , the main sporotrichosis agents in Brazil. We also analyzed the effect of tacrolimus treatment on intracellular neutral lipid levels, which typically increase after azole treatment. Tacrolimus inhibited the growth of yeasts from S. brasiliensis and S. schenckii reference isolates, with minimum inhibitory concentration (MIC) values (required for ≥50% growth inhibition) of 1 and 2 mg/L, respectively. Importantly, the combination of tacrolimus and azoles exhibited high synergy toward reference Sporothrix isolates. Tacrolimus combined with itraconazole significantly increased neutral lipid accumulation in S. brasiliensis , but not in S. schenckii . Clinical isolates of S. brasiliensis and S. schenckii were more sensitive to tacrolimus as monotherapy than feline-borne isolates, however, synergy between tacrolimus and azoles was only observed for feline-borne isolates. Cyclosporine A was effective against S. brasiliensis and S. schenckii as monotherapy (MIC = 1 mg/L), but exhibited no synergy with itraconazole and fluconazole. We conclude that tacrolimus has promising antifungal activity against sporotrichosis agents, and also increases the activity of the current anti-sporotrichosis therapy (itraconazole and fluconazole) in combination assays against S. brasiliensis feline-borne isolates.

  12. Amphotericin B-silver hybrid nanoparticles: synthesis, properties and antifungal activity.

    PubMed

    Tutaj, Krzysztof; Szlazak, Radoslaw; Szalapata, Katarzyna; Starzyk, Joanna; Luchowski, Rafal; Grudzinski, Wojciech; Osinska-Jaroszuk, Monika; Jarosz-Wilkolazka, Anna; Szuster-Ciesielska, Agnieszka; Gruszecki, Wieslaw I

    2016-05-01

    High antifungal activity is reported, in comparison with commercially available products, of a novel hybrid system based on silver nanoparticles synthesized using a popular antifungal macrocyclic polyene amphotericin B (AmB) acting both as a reducing and stabilizing/capping agent. The synthesis reaction proceeds in an alkaline environment which prevents aggregation of AmB itself and promotes nanoparticle formation. The innovative approach produces monodisperse (PDI=0.05), AmB-coated silver nanoparticles (AmB-AgNPs) with the diameter ~7nm. The products were characterized using imaging (electron microscopy) and spectroscopic (UV-vis and infrared absorption, dynamic light scattering and Raman scattering) methods. The nanoparticles were tested against Candida albicans, Aspergillus niger and Fusarium culmorum species. For cytotoxicity studies CCD-841CoTr and THP-1 cell lines were used. Particularly high antifungal activity of AmB-AgNPs is interpreted as the result of synergy between the antifungal activity of amphotericin B and silver antimicrobial properties (Ag(+) ions release). Amphotericin B (AmB) is a common agent used for the treatment against severe fungal infections. In this article, the authors described a new approach in using a combination of AmB and silver nanoparticles, in which the silver nanoparticles were synthesized and stabilized by AmB. Experimental data confirmed synergistic antifungal effects between amphotericin B and silver. This novel synthesis process could potentially be important in future drug development and fabrication. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Gas-phase acidities of nitrated azoles as determined by the extended kinetic method and computations.

    PubMed

    Nichols, Charles M; Old, William M; Lineberger, W Carl; Bierbaum, Veronica M

    2015-01-15

    Making use of the extended kinetic method and the alternative method for data analysis, we have experimentally determined ΔH°acid (kcal/mol) for six mononitrated azole species (2-nitropyrrole = 337.0, 3-nitropyrrole = 335.8, 3-nitropyrazole = 330.5, 4-nitropyrazole = 329.5, 2-nitroimidazole = 327.4, and 4-nitroimidazole = 325.0). We report an absolute uncertainty of ±2.2 kcal/mol that arises from the uncertainties of the reference acids; the relative values are known within 0.4 kcal/mol. Combining these experimental ΔH°acid values with ΔS°acid values calculated at the B3LYP/aug-cc-pVTZ level of theory, we report ΔG°acid (kcal/mol) for the nitroazoles (2-nitropyrrole = 329.4, 3-nitropyrrole = 328.4, 3-nitropyrazole = 323.1, 4-nitropyrazole = 322.0, 2-nitroimidazole = 319.7, and 4-nitroimidazole = 317.6); the absolute uncertainties are ±2.4 kcal/mol. In addition to the experimental studies, we have computationally investigated the gas-phase acidities and electron affinities of the azoles in this work, as well as higher-order aza- and dinitro-substituted azoles. We discuss trends in the stabilities of the deprotonated azoles based on aza substitution and nitro group placement. 4-Nitroimidazole has already found use as the anionic component in ionic liquids, and we propose that the additional nitrated azolate ions are potential candidates for the anionic component of ionic liquids.

  14. Antifungal activities of ethanolic extract from Jatropha curcas seed cake.

    PubMed

    Saetae, Dolaporn; Suntornsuk, Worapot

    2010-02-01

    Phorbol ester extraction was carried out from Jatropha curcas seed cake, a by-product from the bio-diesel fuel industry. Four repeated extractions from 5 g J. curcas seed cake using 15 ml of 90% (v/v) ethanol and a shaking speed of 150 rev/min gave the highest yield of phosbol esters. The ethanolic extract of J. curcas seed cake showed antifungal activities against important phytofungal pathogens: Fusarium oxysporum, Pythium aphanidermatum, Lasiodiplodia theobromae, Curvularia lunata, Fusarium semitectum, Colletotrichum capsici and Colletotrichum gloeosporiodes. The extract contained phorbol esters mainly responsible for antifungal activities. The extract could therefore be used as an antifungal agent for agricultural applications.

  15. The Yeast Anaerobic Response Element AR1b Regulates Aerobic Antifungal Drug-dependent Sterol Gene Expression*

    PubMed Central

    Gallo-Ebert, Christina; Donigan, Melissa; Liu, Hsing-Yin; Pascual, Florencia; Manners, Melissa; Pandya, Devanshi; Swanson, Robert; Gallagher, Denise; Chen, WeiWei; Carman, George M.; Nickels, Joseph T.

    2013-01-01

    Saccharomyces cerevisiae ergosterol biosynthesis, like cholesterol biosynthesis in mammals, is regulated at the transcriptional level by a sterol feedback mechanism. Yeast studies defined a 7-bp consensus sterol-response element (SRE) common to genes involved in sterol biosynthesis and two transcription factors, Upc2 and Ecm22, which direct transcription of sterol biosynthetic genes. The 7-bp consensus SRE is identical to the anaerobic response element, AR1c. Data indicate that Upc2 and Ecm22 function through binding to this SRE site. We now show that it is two novel anaerobic AR1b elements in the UPC2 promoter that direct global ERG gene expression in response to a block in de novo ergosterol biosynthesis, brought about by antifungal drug treatment. The AR1b elements are absolutely required for auto-induction of UPC2 gene expression and protein and require Upc2 and Ecm22 for function. We further demonstrate the direct binding of recombinant expressed S. cerevisiae ScUpc2 and pathogenic Candida albicans CaUpc2 and Candida glabrata CgUpc2 to AR1b and SRE/AR1c elements. Recombinant endogenous promoter studies show that the UPC2 anaerobic AR1b elements act in trans to regulate ergosterol gene expression. Our results indicate that Upc2 must occupy UPC2 AR1b elements in order for ERG gene expression induction to take place. Thus, the two UPC2-AR1b elements drive expression of all ERG genes necessary for maintaining normal antifungal susceptibility, as wild type cells lacking these elements have increased susceptibility to azole antifungal drugs. Therefore, targeting these specific sites for antifungal therapy represents a novel approach to treat systemic fungal infections. PMID:24163365

  16. 8-Amido-Bearing pseudomycin B (PSB) analogue: novel antifungal agents.

    PubMed

    Zhang, Y Z; Sun, X; Zeckner, D J; Sachs, R K; Current, W L; Chen, S H

    2001-01-22

    During the course of a structure-activity relationship (SAR) study on novel depsinonapeptide pseudomycin B, we synthesized a total of 12 8-amidopseudomycin analogues via standard two-step sequence from either ZPSB 2 or AllocPSB 3. A number of these amides exhibited good in vitro antifungal activities.

  17. Burkholderia terrae BS001 migrates proficiently with diverse fungal hosts through soil and provides protection from antifungal agents

    PubMed Central

    Nazir, Rashid; Tazetdinova, Diana I.; van Elsas, Jan Dirk

    2014-01-01

    Soil bacteria can benefit from co-occurring soil fungi in respect of the acquisition of carbonaceous nutrients released by fungal hyphae and the access to novel territories in soil. Here, we investigated the capacity of the mycosphere-isolated bacterium Burkholderia terrae BS001 to comigrate through soil along with hyphae of the soil fungi Trichoderma asperellum, Rhizoctonia solani, Fusarium oxysporum, F. oxysporum pv lini, Coniochaeta ligniaria, Phanerochaete velutina, and Phallus impudicus. We used Lyophyllum sp. strain Karsten as the reference migration-inciting fungus. Bacterial migration through presterilized soil on the extending fungal hyphae was detected with six of the seven test fungi, with only Phallus impudicus not showing any bacterial transport. Much like with Lyophyllum sp. strain Karsten, intermediate (106–108 CFU g-1 dry soil) to high (>108 CFU g-1 dry soil) strain BS001 cell population sizes were found at the hyphal migration fronts of four fungi, i.e., T. asperellum, Rhizoctonia solani, F. oxysporum and F. oxysporum pv lini, whereas for two fungi, Coniochaeta ligniaria and Phanerochaete velutina, the migration responses were retarded and population sizes were lower (103–106 CFU g-1 dry soil). Consistent with previous data obtained with the reference fungus, migration with the migration-inciting fungi occurred only in the direction of the hyphal growth front. Remarkably, Burkholderia terrae BS001 provided protection from several antifungal agents to the canonical host Lyophyllum sp. strain Karsten. Specifically, this host was protected from Pseudomonas fluorescens strain CHA0 metabolites, as well as from the anti-fungal agent cycloheximide. Similar protection by strain BS001was observed for T. asperellum, and, to a lower extent, F. oxysporum and Rhizoctonia solani. The protective effect may be related to the consistent occurrence of biofilm-like cell layers or agglomerates at the surfaces of the protected fungi. The current study represents

  18. Augmenting antifungal activity of oxidizing agent with kojic acid: Control of Penicillium strains infecting crops

    USDA-ARS?s Scientific Manuscript database

    Oxidative treatment is a strategy for preventing Penicillium contamination in foods or crops. Antifungal efficacy of oxidant [hydrogen peroxide (H2O2)], biotic effector [kojic acid (KA)] and abiotic stress (heat), alone or in combination, was investigated in Penicillium. The levels of antifungal int...

  19. VT-1161 protects mice against oropharyngeal candidiasis caused by fluconazole-susceptible and -resistant Candida albicans

    PubMed Central

    Break, Timothy J; Desai, Jigar V; Ferre, Elise M N; Henderson, Christina; Zelazny, Adrian M; Siebenlist, Ulrich; Hoekstra, William J; Schotzinger, Robert J; Garvey, Edward P; Lionakis, Michail S

    2018-01-01

    Abstract Background Candida albicans, the most common human fungal pathogen, causes chronic mucosal infections in patients with inborn errors of IL-17 immunity that rely heavily on chronic, often lifelong, azole antifungal agents for treatment. However, a rise in azole resistance has predicated a need for developing new antifungal drugs. Objectives To test the in vitro and in vivo efficacy of VT-1161 and VT-1129 in the treatment of oropharyngeal candidiasis with azole-susceptible or -resistant C. albicans strains. Methods MICs of VT-1161, VT-1129 and nine licensed antifungal drugs were determined for 31 Candida clinical isolates. The drug concentrations in mouse serum and tongues were measured following oral administration. IL-17-signalling-deficient Act1−/− mice were infected with fluconazole-susceptible or fluconazole-resistant C. albicans strains, and the amount of mucosal fungal burden was determined after fluconazole or VT-1161 treatment. Results Fourteen isolates (45%) were not fluconazole susceptible (MIC ≥4 mg/L). VT-1161 and VT-1129 showed significant in vitro activity against the majority of the 31 mucosal clinical isolates (MIC50 0.03 and 0.06 mg/L, respectively), including Candida glabrata (MIC50, 0.125 and 0.25 mg/L, respectively). After oral doses, VT-1161 and VT-1129 concentrations in mouse serum and tongues were well above their MIC50 values. VT-1161 was highly effective as treatment of both fluconazole-susceptible and -resistant oropharyngeal candidiasis in Act1−/− mice. Conclusions VT-1129 and VT-1161 exhibit significant in vitro activity against Candida strains, including fluconazole-resistant C. albicans and C. glabrata. VT-1161 administration in mice results in significant mucosal drug accumulation and eradicates infection caused by fluconazole-susceptible and -resistant Candida strains. PMID:29040636

  20. Local, systemic, demographic, and health-related factors influencing pathogenic yeast spectrum and antifungal drug administration frequency in oral candidiasis: a retrospective study.

    PubMed

    Hertel, Moritz; Schmidt-Westhausen, Andrea Maria; Strietzel, Frank-Peter

    2016-09-01

    In order to identify oral candidiasis patients being at risk of carrying potentially drug-resistant Candida, the aim of the study was to detect local, systemic, demographic, and health-related factors influencing (I) yeast spectrum composition and (II) antifungal administration frequency. Additionally, the aim was to investigate (III) species shift occurrence. Data from 798 patients (496 females, 302 males; mean age 59.7) with oral candidiasis diagnosed based on positive clinical and microbial findings (species identification and CFU count) between 2006 and 2011 were retrospectively analyzed using Pearson's chi(2) test and regression analysis. Among 958 isolates, Candida albicans was the most frequently detected (76.8 %). Also, species intrinsically resistant to azoles were frequently isolated (15.8 and 17.7 % of isolates and patients). (I) Infections only caused by C. albicans were significantly associated with the use of inhalation steroids (p = 0.001) and antibiotics (p = 0.04), super-infection of lichen planus (p = 0.002), and the absence of removable dentures (p < 0.001). (II) Anti-mycotics were significantly more frequently administered in patients using inhalation steroids (p = 0.001), suffering from asthma/COPD, or smoking heavily (p = 0.003) and if C. albicans and non-albicans species were detected together (p = 0.001). (III) Pathogen composition did not change over time within the examined period (p = 0.239). Different variables enhance the presence of certain Candida and the antifungal prescription frequency. No species shift was evident. The major pathogen in oral candidiasis remains C. albicans. Nevertheless, therapeutic problems may be caused by the frequent presence of species intrinsically resistant to azoles, especially in patients wearing dentures.

  1. In Vitro Antifungal Susceptibility Profiles of 12 Antifungal Drugs against 55 Trichophyton schoenleinii Isolates from Tinea Capitis Favosa Patients in Iran, Turkey, and China

    PubMed Central

    Deng, Shuwen; Ansari, Saham; Rafati, Haleh; Taghizadeh-Armaki, Mojtaba; Nasrollahi-Omran, Ayatollah; Tolooe, Ali; Zhan, Ping; Liao, Wanqing; van der Lee, Henrich A.; Verweij, Paul E.

    2016-01-01

    ABSTRACT Trichophyton schoenleinii is an anthropophilic dermatophyte mainly causing tinea favosa of the scalp in certain regions of the world, especially Africa and Asia. We investigated the in vitro susceptibilities of 55 T. schoenleinii isolates collected over the last 30 years from Iran, Turkey, and China to 12 antifungals using the CLSI broth microdilution method. Our results revealed that terbinafine and ketoconazole were the most potent antifungal agents among those tested, independently of the geographic regions where strains were isolated. PMID:27956429

  2. Antifungal-protein production in maize (Zea mays) suspension cultures.

    PubMed

    Perri, Fabio; Della Penna, Serena; Rufini, Francesca; Patamia, Maria; Bonito, Mariantonietta; Angiolella, Letizia; Vitali, Alberto

    2009-04-01

    The growing emergency due to the phenomenon of drug resistance to micro-organisms has pushed forward the search for new potential drug alternatives to those already in use. Plants represent a suitable source of new antifungal molecules, as they produce a series of defensive proteins. Among them are the PRPs (pathogenesis-related proteins), shown to be effective in vitro against human pathogens. An optimized and established cell-suspension culture of maize (Zea mays) was shown to constitutively secrete in the medium a series of PRPs comprising the antifungal protein zeamatin (P33679) with a final yield of approx. 3 mg/litre. The in-vitro-produced zeamatin possessed antifungal activity towards a clinical strain of the human pathogenic yeast Candida albicans, an activity comparable with the one reported for the same protein extracted from maize seeds. Along with zeamatin, other PRPs were expressed: a 9 kDa lipid-transfer protein, a 26 kDa xylanase inhibitor and a new antifungal protein, PR-5. A fast, two-step chromatographic procedure was set up allowing the complete purification of the proteins considered, making this cell line a valuable system for the production of potential antifungal agents in a reliable and easy way.

  3. Antifungal activity of multifunctional Fe 3O 4-Ag nanocolloids

    NASA Astrophysics Data System (ADS)

    Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Upadhyay, R. V.; Mehta, R. V.

    2011-05-01

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe 3O 4-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe 3O 4) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 μg/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients.

  4. Antifungal adjuvants: Preserving and extending the antifungal arsenal

    PubMed Central

    Butts, Arielle; Palmer, Glen E.; Rogers, P. David

    2017-01-01

    ABSTRACT As the rates of systemic fungal infections continue to rise and antifungal drug resistance becomes more prevalent, there is an urgent need for new therapeutic options. This issue is exacerbated by the limited number of systemic antifungal drug classes. However, the discovery, development, and approval of novel antifungals is an extensive process that often takes decades. For this reason, there is growing interest and research into the possibility of combining existing therapies with various adjuvants that either enhance activity or overcome existing mechanisms of resistance. Reports of antifungal adjuvants range from plant extracts to repurposed compounds, to synthetic peptides. This approach would potentially prolong the utility of currently approved antifungals and mitigate the ongoing development of resistance. PMID:27459018

  5. Enhancement of the antifungal activity of antimicrobial drugs by Eugenia uniflora L.

    PubMed

    Santos, Karla K A; Matias, Edinardo F F; Tintino, Saulo R; Souza, Celestina E S; Braga, Maria F B M; Guedes, Gláucia M M; Costa, José G M; Menezes, Irwin R A; Coutinho, Henrique Douglas Melo

    2013-07-01

    Candidiasis is the most frequent infection by opportunistic fungi such as Candida albicans, Candida tropicalis, and Candida krusei. Ethanol extract from Eugenia uniflora was assayed, for its antifungal activity, either alone or combined with four selected chemotherapeutic antimicrobial agents, including anphotericin B, mebendazole, nistatin, and metronidazole against these strains. The obtained results indicated that the association of the extract of E. uniflora to metronidazole showed a potential antifungal activity against C. tropicalis. However, no synergistic activity against the other strains was observed, as observed when the extract was associated with the other, not enhancing their antifungal activity.

  6. Enhancement of the Antifungal Activity of Antimicrobial Drugs by Eugenia uniflora L.

    PubMed Central

    Santos, Karla K.A.; Matias, Edinardo F.F.; Tintino, Saulo R.; Souza, Celestina E.S.; Braga, Maria F.B.M.; Guedes, Gláucia M.M.; Costa, José G.M.; Menezes, Irwin R.A.

    2013-01-01

    Abstract Candidiasis is the most frequent infection by opportunistic fungi such as Candida albicans, Candida tropicalis, and Candida krusei. Ethanol extract from Eugenia uniflora was assayed, for its antifungal activity, either alone or combined with four selected chemotherapeutic antimicrobial agents, including anphotericin B, mebendazole, nistatin, and metronidazole against these strains. The obtained results indicated that the association of the extract of E. uniflora to metronidazole showed a potential antifungal activity against C. tropicalis. However, no synergistic activity against the other strains was observed, as observed when the extract was associated with the other, not enhancing their antifungal activity. PMID:23819641

  7. In Vitro Antifungal Susceptibility Testing of Candida Isolates with the EUCAST Methodology, a New Method for ECOFF Determination.

    PubMed

    Meletiadis, J; Curfs-Breuker, I; Meis, J F; Mouton, J W

    2017-04-01

    The in vitro susceptibilities of 1,099 molecularly identified clinical Candida isolates against 8 antifungal drugs were determined using the EUCAST microdilution method. A new simple, objective, and mathematically solid method for determining epidemiological cutoff values (ECOFFs) was developed by derivatizing the MIC distribution and determining the derivatized ECOFF (dECOFF) as the highest MIC with the maximum second derivative. The dECOFFs were similar (95% agreement within 1 dilution) to the EUCAST ECOFFs. Overall, low non-wild-type/resistance rates were found. The highest rates were found for azoles with C. parapsilosis (2.7 to 9.8%), C. albicans (7%), and C. glabrata (1.7 to 2.3%) and for echinocandins with C. krusei (3.3%), C. albicans (1%), and C. tropicalis (1.7%). Copyright © 2017 American Society for Microbiology.

  8. Susceptibility to antifungal agents and enzymatic activity of Candida haemulonii and Cutaneotrichosporon dermatis isolated from soft corals on the Brazilian reefs.

    PubMed

    Pagani, Danielle M; Heidrich, Daiane; Paulino, Gustavo V B; de Oliveira Alves, Karine; Dalbem, Paula T; de Oliveira, Caroline F; Andrade, Zélia M M; Silva, Carolini; Correia, Monica D; Scroferneker, Maria Lúcia; Valente, Patricia; Landell, Melissa Fontes

    2016-12-01

    Candida is a common fungus with the capacity to cause infections in humans. However, most studies have concentrated on clinical isolates and little is known about the identity, ecology and drug resistance of free living species/strains. Here, we isolate eight strains of Candida haemulonii and four strains of Cutaneotrichosporon dermatis from three marine cnidarian zoanthids species (Palythoa caribaeorum, Palythoa variabilis and Zoanthus sociatus) collected from Brazilian coral reefs. Strains were identified by sequencing of the D1/D2 domain LSU rDNA and ITS region. We tested these environmental isolates for their capacity to grow in media with increasing concentration of NaCl, capacity to grow in different temperatures, enzymatic activity and antifungal susceptibility. For C. haemulonii, all strains strongly produced gelatinase, esterase and albuminase and were either able to express lipase, phospholipase and keratinase, but not express urease and DNase. The strains were able to grow at 37 °C, but not at 39 °C, and except for LMS 40, all of them could grow in a 10 % NaCl medium. All isolates were resistant to all antifungals tested, with exception for ketoconazole and tioconazole (MIC = 2 µg/mL). For C. dermatis, all strains could grow at 39 °C and could not express phospholipase, keratinase or gelatinase. However, all were capable of expressing urease, lipase and esterase. Three out of four strains could grow in a 10 % NaCl medium, but none grew in a 30 % NaCl medium. The strains showed high values of minimal inhibitory concentration. LMPV 90 was resistant to tioconazole, terbinafine, fluconazole and posaconazole, and LMS 38 was resistant to all antifungal agents tested. We discuss the characterization of C. haemulonii and C. dermatis as a possible emerging pathogen due to its animal-related enzymatic arsenal and antifungal resistance.

  9. In Vitro Antifungal Susceptibility Profiles of 12 Antifungal Drugs against 55 Trichophyton schoenleinii Isolates from Tinea Capitis Favosa Patients in Iran, Turkey, and China.

    PubMed

    Deng, Shuwen; Ansari, Saham; Ilkit, Macit; Rafati, Haleh; Hedayati, Mohammad T; Taghizadeh-Armaki, Mojtaba; Nasrollahi-Omran, Ayatollah; Tolooe, Ali; Zhan, Ping; Liao, Wanqing; van der Lee, Henrich A; Verweij, Paul E; Seyedmousavi, Seyedmojtaba

    2017-02-01

    Trichophyton schoenleinii is an anthropophilic dermatophyte mainly causing tinea favosa of the scalp in certain regions of the world, especially Africa and Asia. We investigated the in vitro susceptibilities of 55 T. schoenleinii isolates collected over the last 30 years from Iran, Turkey, and China to 12 antifungals using the CLSI broth microdilution method. Our results revealed that terbinafine and ketoconazole were the most potent antifungal agents among those tested, independently of the geographic regions where strains were isolated. Copyright © 2017 American Society for Microbiology.

  10. Antifungal mechanism of a novel antifungal protein from pumpkin rinds against various fungal pathogens.

    PubMed

    Park, Seong-Cheol; Kim, Jin-Young; Lee, Jong-Kook; Hwang, Indeok; Cheong, Hyeonsook; Nah, Jae-Woon; Hahm, Kyung-Soo; Park, Yoonkyung

    2009-10-14

    A novel antifungal protein (Pr-2) was identified from pumpkin rinds using water-soluble extraction, ultrafiltration, cation exchange chromatography, and reverse-phase high-performance liquid chromatography. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry indicated that the protein had a molecular mass of 14865.57 Da. Automated Edman degradation showed that the N-terminal sequence of Pr-2 was QGIGVGDNDGKRGKR-. The Pr-2 protein strongly inhibited in vitro growth of Botrytis cinerea, Colletotrichum coccodes, Fusarium solani, Fusarium oxysporum, and Trichoderma harzianum at 10-20 microM. The results of confocal laser scanning microscopy and SYTOX Green uptake demonstrated that its effective region was the membrane of the fungal cell surface. In addition, this protein was found to be noncytotoxic and heat-stable. Taken together, the results of this study indicate that Pr-2 is a good candidate for use as a natural antifungal agent.

  11. MODULATION OF CYTOCHROME P-450S AND OTHER XENOBIOTIC METABOLIZING ENZYMES (XME) LEADING TO COMMON MODE OF ACTION FOR MULTIPLE TOXICITIES: CONAZOLE RESEARCH

    EPA Science Inventory

    Conazoles are triazole containing azole fungicides used to protect fruits, grains, and grasses. They have broad antifungal activity and can prevent as well as treat fungal infections. Their antifungal characteristic is due to their ability to block the synthesis of ergosterol w...

  12. Antifungal treatment in haematological and oncological patients: Need for quality assessment in routine care.

    PubMed

    Lachenmayr, Sarah J; Berking, Sophie; Horns, Heidi; Strobach, Dorothea; Ostermann, Helmut; Berger, Karin

    2018-03-25

    Invasive fungal infections in haematological and oncological patients have a major impact on morbidity, mortality and treatment costs. Therefore, rational use of antifungal agents is important for optimal patient care and resource use. The study's objective was to analyse antifungal usage in a German tertiary teaching hospital, department of haematology and oncology, to evaluate quality of antifungal treatment and to assess the need for an antifungal stewardship programme. This retrospective observational study included patients ≥18 years receiving systemic antifungals for prophylaxis or therapy of invasive fungal infection between January and June 2016. Appropriateness of antifungal prescriptions was evaluated in accordance with guidelines of the German Society of Haematology and Oncology (DGHO) and drug labelling. In total, 104/1278 (8.1%) patients received antifungals. One hundred seventy-one antifungals were prescribed: 48 for prophylaxis, 104 for empirical and 19 for targeted therapy. In 127 (74.3%) prescriptions, indication was appropriate, and in 132 (77.2%), choice of drug. Antifungals were correctly dosed in 131 prescriptions (76.6%). Thirty-four antifungals (20.0%) were co-administrated with interacting drugs (5 mild to moderate, 29 severe interactions). Results of this analysis demonstrate that use of systemic antifungals in routine care differs in a substantial number of patients from guideline and labelling recommendations. To optimise antifungal use, the implementation of antifungal stewardship programmes seems to be justified. © 2018 Blackwell Verlag GmbH.

  13. A case of Candida albicans fungus balls in the urinary tract appeared during the course of antifungal treatment for Candida endophthalmitis.

    PubMed

    Onozawa, Kyoko; Miyake, Noriko; Iwasaki, Noriko; Nishida, Ruriko; Chong, Yong; Shimoda, Shinji; Shimono, Nobuyuki; Akashi, Koichi

    2015-09-01

    Fungus balls have been rarely implicated as a cause of urinary tract obstruction. Here, we report a case of Candida albicans fungus balls in the urinary tract after the treatment of Candida endophthalmitis that has enough periods and adequate amount of antifungal agents. The patient completely recovered from this rare complication by irrigating through single-J stent and changing antifungal agents. Here we emphasize that we should take into account not only the susceptibility test results but also the difference in excretion route and tissue distribution of antifungal agents. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. [Determination of phenazine-1-carboxylic acid in anti-fungal agent M18 by high performance liquid chromatography].

    PubMed

    Zhu, D H; Zhu, X D; Xu, Y Q

    2001-11-01

    A reversed-phase HPLC method for the determination of phenazine-1-carboxylic acid (PCA) in antifungal agent M18 is established. The mobile phase was a mixture of MeOH-5 mmol/L phosphate buffer (pH 5.0) (60:40, volume ratio). The flow rate was 1.0 mL/min, and the detection wavelength was 248 nm. The linear range and detectable limit were 50 mg/L-500 mg/L and 30 mg/L respectively. The recovery was 97.53% and RSD was 1.5%. The method of PCA extraction and detection has proven to be much faster, simpler, more sensitive, accurate and reproducible than those reported already. The assay results can be used as a very important criterion for large-scale production.

  15. In vitro antifungal susceptibility testing of Scopulariopsis brevicaulis strains using agar diffusion method.

    PubMed

    Skóra, Magdalena; Macura, Anna B

    2011-01-01

    The genus Scopulariopsis is a common soil saprotroph and has been isolated from air, organic waste and also from plant, animal and human tissues. Scopulariopsis has mainly been associated in humans with superficial mycoses, but it has also been described as the cause of subcutaneous and invasive infections. The most common aetiological agent of infections in humans is Scopulariopsis brevicaulis. This species has been reported to be resistant in vitro to broad-spectrum antifungal agents available today. The aim of the study was to establish in vitro antifungal susceptibility of 35 S. brevicaulis strains against amphotericin B (AMB), flucytosine (FC), caspofungin (CAS), terbinafine (TER), ciclopirox (CIC), voriconazole (VOR), clotrimazole (CTR), miconazole (MCZ), econazole (ECO), ketoconazole (KET), itraconazole (ITR), and fluconazole (FLU). Antifungal susceptibility tests were evaluated by an agar diffusion method (Neo-Sensitabs, Rosco, Denmark). AMB, FC, CAS, ITR and FLU showed no antifungal activity against S. brevicaulis. TER, CIC, CTR, KET, VOR, ECO, and MCZ revealed inhibitory activity for S. brevicaulis, but it varied for each of the drugs. The best antifungal effect was observed for TER and CIC. All isolates had large inhibition zones for TER and CIC. CTR was also inhibitory for all tested S. brevicaulis isolates, but the diameters of inhibition zones were smaller than for TER and CIC. Nearly 89% isolates showed inhibition zones for KET and the mean diameter of the inhibition zone was comparable to CTR. The least antifungal activity exhibited VQR, ECO and MCZ. Because of the multiresistance of S. brevicaulis, infections due to this species may not respond to particular antifungal treatment and other therapeutic approaches should be considered, e.g., combined therapy and/or surgery.

  16. Antifungal susceptibility patterns of colonized Candida species isolates from immunocompromised pediatric patients in five university hospitals.

    PubMed

    Badiee, Parisa; Choopanizadeh, Maral; Moghadam, Abdolkarim Ghadimi; Nasab, Ali Hossaini; Jafarian, Hadis; Shamsizadeh, Ahmad; Soltani, Jafar

    2017-12-01

    Colonization of Candida species is common in pediatric patients admitted to hematology-oncology wards. The aim of this study was to identify colonized Candida species and their susceptibility patterns in hematologic pediatric patients. Samples were collected from mouth, nose, urine and stool of the patients admitted to five university hospitals and cultured on sabouraud dextrose agar. The isolates were identified by API 20 C AUX system and their susceptibility patterns were evaluated by CLSI M27-A3 and S4. From 650 patients, 320 (49.2%) were colonized with 387 Candida species. Candida albicans was the most prevalent isolated species, followed by Candida glabrata, Candida tropicalis, Candida famata, Candida kefyr and Candida kuresi . The epidemiological cut off value (ECV) for all Candida species to amphotericin B was ≤0.25 μg except C. krusei (4 μg). The resistance rate to fluconazole in this study in C. albicans was 4.9% with ECV 8 μg/ml, followed by C. tropicalis 8.8% with ECV 0.5 μg/ml. Voriconazole and posaconazole were effective antifungal agents for all Candida isolates. The ECV of C. albicans, Candida parapsilosis, C. tropicalis, C. glabrata and C. krusei for itraconazole were 0.5, 0.25, 0.5, 1 and 2 μg, respectively. The resistant and intermediate rates of Candida species to caspofungin in this study were 2.9%, 5.9%, 18.8%, 47.9%, 0.0% and 16.7% in C. tropicalis, C. glabrata and C. parapsilosis respectively. C. albicans was the most prevalent species in pediatric colonized patients. New azole agents like voriconazole and posaconazole are effective against non-albicans Candida species. Increase in intermediate species is alarming to future emerging resistant species.

  17. Evaluation of Virulence Factors In vitro, Resistance to Osmotic Stress and Antifungal Susceptibility of Candida tropicalis Isolated from the Coastal Environment of Northeast Brazil

    PubMed Central

    Zuza-Alves, Diana L.; de Medeiros, Sayama S. T. Q.; de Souza, Luanda B. F. C.; Silva-Rocha, Walicyranison P.; Francisco, Elaine C.; de Araújo, Maria C. B.; Lima-Neto, Reginaldo G.; Neves, Rejane P.; Melo, Analy S. de Azevedo; Chaves, Guilherme M.

    2016-01-01

    Several studies have been developed regarding human health risks associated with the recreational use of beaches contaminated with domestic sewage. These wastes contain various micro-organisms, including Candida tropicalis. In this context, the objective of this study was to characterize C. tropicalis isolates from the sandy beach of Ponta Negra, Natal, Rio Grande do Norte, Brazil, regarding the expression of in vitro virulence factors, adaptation to osmotic stress and susceptibility to antifungal drugs. We analyzed 62 environmental isolates and observed a great variation among them for the various virulence factors evaluated. In general, environmental isolates were more adherent to human buccal epithelial cells (HBEC) than C. tropicalis ATCC13803 reference strain, and they also showed increased biofilm production. Most of the isolates presented wrinkled phenotypes on Spider medium (34 isolates, 54.8%). The majority of the isolates also showed higher proteinase production than control strains, but low phospholipase activity. In addition, 35 isolates (56.4%) had high hemolytic activity (hemolysis index > 0.55). With regard to C. tropicalis resistance to osmotic stress, 85.4% of the isolates were able to grow in a liquid medium containing 15% sodium chloride. The strains were highly resistant to the azoles tested (fluconazole, voriconazole and itraconazole). Fifteen strains were resistant to the three azoles tested (24.2%). Some strains were also resistant to amphotericin B (14 isolates; 22.6%), while all of them were susceptible for the echinocandins tested, except for a single strain of intermediate susceptibility to micafungin. Our results demonstrate that C. tropicalis isolated from the sand can fully express virulence attributes and showed a high persistence capacity on the coastal environment; in addition of showing high minimal inhibitory concentrations to several antifungal drugs used in current clinical practice, demonstrating that environmental isolates may

  18. Evaluation of Virulence Factors In vitro, Resistance to Osmotic Stress and Antifungal Susceptibility of Candida tropicalis Isolated from the Coastal Environment of Northeast Brazil.

    PubMed

    Zuza-Alves, Diana L; de Medeiros, Sayama S T Q; de Souza, Luanda B F C; Silva-Rocha, Walicyranison P; Francisco, Elaine C; de Araújo, Maria C B; Lima-Neto, Reginaldo G; Neves, Rejane P; Melo, Analy S de Azevedo; Chaves, Guilherme M

    2016-01-01

    Several studies have been developed regarding human health risks associated with the recreational use of beaches contaminated with domestic sewage. These wastes contain various micro-organisms, including Candida tropicalis . In this context, the objective of this study was to characterize C. tropicalis isolates from the sandy beach of Ponta Negra, Natal, Rio Grande do Norte, Brazil, regarding the expression of in vitro virulence factors, adaptation to osmotic stress and susceptibility to antifungal drugs. We analyzed 62 environmental isolates and observed a great variation among them for the various virulence factors evaluated. In general, environmental isolates were more adherent to human buccal epithelial cells (HBEC) than C. tropicalis ATCC13803 reference strain, and they also showed increased biofilm production. Most of the isolates presented wrinkled phenotypes on Spider medium (34 isolates, 54.8%). The majority of the isolates also showed higher proteinase production than control strains, but low phospholipase activity. In addition, 35 isolates (56.4%) had high hemolytic activity (hemolysis index > 0.55). With regard to C. tropicalis resistance to osmotic stress, 85.4% of the isolates were able to grow in a liquid medium containing 15% sodium chloride. The strains were highly resistant to the azoles tested (fluconazole, voriconazole and itraconazole). Fifteen strains were resistant to the three azoles tested (24.2%). Some strains were also resistant to amphotericin B (14 isolates; 22.6%), while all of them were susceptible for the echinocandins tested, except for a single strain of intermediate susceptibility to micafungin. Our results demonstrate that C. tropicalis isolated from the sand can fully express virulence attributes and showed a high persistence capacity on the coastal environment; in addition of showing high minimal inhibitory concentrations to several antifungal drugs used in current clinical practice, demonstrating that environmental isolates

  19. The influence of temperature and humidity on printed wiring board surface finishes: Immersion tin vs organic azoles

    NASA Astrophysics Data System (ADS)

    Ray, U.; Artaki, I.; Gordon, H. M.; Vianco, P. T.

    1994-08-01

    Substitution of lead-free solders in electronic assemblies requires changes in the conventional Sn:Pb finishes on substrates and component leads to prevent contamination of the candidate lead-free solder. Options for solderability preservative coatings on the printed wiring board include organic (azole or rosin/resin based) films and tin-based plated metallic coatings. This paper compares the solderability performance and corrosion protection effectiveness of electroless tin coatings vs organic azole films after exposure to a series of humidity and thermal cycling conditions. The solderability of immersion tin is directly related to the tin oxide growth on the surface and is not affected by the formation of SnCu intermetallic phases as long as the intermetallic phase is underneath a protective Sn layer. Thin azole films decompose upon heating in the presence of oxygen and lead to solderability degradation. Evaluations of lead-free solder pastes for surface mount assembly applications indicate that immersion tin significantly improves the spreading of Sn:Ag and Sn:Bi alloys as compared to azole surface finishes.

  20. Milbemycins: More than Efflux Inhibitors for Fungal Pathogens

    PubMed Central

    Silva, Luis Vale; Sanguinetti, Maurizio; Vandeputte, Patrick; Torelli, Riccardo; Rochat, Bertrand

    2013-01-01

    Existing antifungal agents are still confronted to activities limited to specific fungal species and to the development of resistance. Several improvements are possible either by tackling and overcoming resistance or exacerbating the activity of existing antifungal agents. In Candida glabrata, azole resistance is almost exclusively mediated by ABC transporters (including C. glabrata CDR1 [CgCDR1] and CgCDR2) via gain-of-function mutations in the transcriptional activator CgPDR1 or by mitochondrial dysfunctions. We also observed that azole resistance was correlating with increasing virulence and fitness of C. glabrata in animal models of infection. This observation motivated the re-exploitation of ABC transporter inhibitors as a possible therapeutic intervention to decrease not only the development of azole resistance but also to interfere with the virulence of C. glabrata. Milbemycins are known ABC transporter inhibitors, and here we used commercially available milbemycin A3/A4 oxim derivatives to verify this effect. As expected, the derivatives were inhibiting C. glabrata efflux with the highest activity for A3 oxim below 1 μg/ml. More surprising was that oxim derivatives had intrinsic fungicidal activity above 3.2 μg/ml, thus highlighting effects additional to the efflux inhibition. Similar values were obtained with C. albicans. Our data show that the fungicidal activity could be related to reactive oxygen species formation in these species. Transcriptional analysis performed both in C. glabrata and C. albicans exposed to A3 oxim highlighted a core of commonly regulated genes involved in stress responses, including genes involved in oxidoreductive processes, protein ubiquitination, and vesicle trafficking, as well as mitogen-activated protein kinases. However, the transcript profiles contained also species-specific signatures. Following these observations, experimental treatments of invasive infections were performed in mice treated with the commercial A3/A4

  1. Tacrolimus Increases the Effectiveness of Itraconazole and Fluconazole against Sporothrix spp.

    PubMed Central

    Borba-Santos, Luana P.; Reis de Sá, Leandro F.; Ramos, Juliene A.; Rodrigues, Anderson M.; de Camargo, Zoilo P.; Rozental, Sonia; Ferreira-Pereira, Antonio

    2017-01-01

    Calcineurin inhibitors – such as the clinically used drug tacrolimus – are active against important fungal pathogens, particularly when combined with azoles. However, tacrolimus has not been tested against sporotrichosis, an endemic subcutaneous mycosis with worldwide distribution. Here, we evaluated the activity of tacrolimus and cyclosporine A in vitro – as monotherapy and in combination with itraconazole or fluconazole – against yeasts of Sporothrix brasiliensis and S. schenckii, the main sporotrichosis agents in Brazil. We also analyzed the effect of tacrolimus treatment on intracellular neutral lipid levels, which typically increase after azole treatment. Tacrolimus inhibited the growth of yeasts from S. brasiliensis and S. schenckii reference isolates, with minimum inhibitory concentration (MIC) values (required for ≥50% growth inhibition) of 1 and 2 mg/L, respectively. Importantly, the combination of tacrolimus and azoles exhibited high synergy toward reference Sporothrix isolates. Tacrolimus combined with itraconazole significantly increased neutral lipid accumulation in S. brasiliensis, but not in S. schenckii. Clinical isolates of S. brasiliensis and S. schenckii were more sensitive to tacrolimus as monotherapy than feline-borne isolates, however, synergy between tacrolimus and azoles was only observed for feline-borne isolates. Cyclosporine A was effective against S. brasiliensis and S. schenckii as monotherapy (MIC = 1 mg/L), but exhibited no synergy with itraconazole and fluconazole. We conclude that tacrolimus has promising antifungal activity against sporotrichosis agents, and also increases the activity of the current anti-sporotrichosis therapy (itraconazole and fluconazole) in combination assays against S. brasiliensis feline-borne isolates. PMID:28966608

  2. Management of symptomatic erosive-ulcerative lesions of oral lichen planus in an adult Egyptian population using Selenium-ACE combined with topical corticosteroids plus antifungal agent

    PubMed Central

    Belal, Mahmoud Helmy

    2015-01-01

    Aim: Oral lichen planus (OLP) is a chronic mucocutaneous disease with an immunological etiology. This study was conducted to evaluate the effect of selenium combined with Vitamins A, C & E (Selenium-ACE) in the treatment of erosive-ulcerative OLP as an adjunctive to topical corticosteroids plus antifungal agent. Subjects and Methods: Thirty patients with a confirmed clinical and histopathologic diagnosis of OLP participated in this clinical trial. Patients were randomly allocated into one of three groups and treated as follows: (I) Topical corticosteroids, (II) topical corticosteroids plus antifungal, and (III) SE-ACE combined with topical corticosteroids plus antifungal. The patients were followed for 6 weeks. The pain and severity of the lesions were recorded at the initial and follow-up visits. All recorded data were analyzed using paired t-test and ANOVA test. A P ≤ 0.05 was considered significant. Results: The experimental groups showed a marked reduction in pain sensation and size of lesions, particularly in the final follow-up period, but there was no significant difference between the first two Groups I and II. However, healing of lesions and improvement of pain sensation was effective in Group III since a significant difference was found favoring Group III over both Groups I and II. Conclusion: No significant difference was found in treating erosive-ulcerative lesions of OLP by topical corticosteroids alone or combined with antifungal. However, when using SE-ACE in combination with topical corticosteroids plus antifungal, this approach may be effective in managing ulcerative lesions of OLP; but more research with a larger sample size and a longer evaluation period may be recommended. PMID:26681847

  3. Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives.

    PubMed

    Lino, Cleudiomar Inácio; Gonçalves de Souza, Igor; Borelli, Beatriz Martins; Silvério Matos, Thelma Tirone; Santos Teixeira, Iasmin Natália; Ramos, Jonas Pereira; Maria de Souza Fagundes, Elaine; de Oliveira Fernandes, Philipe; Maltarollo, Vinícius Gonçalves; Johann, Susana; de Oliveira, Renata Barbosa

    2018-05-10

    In the search for new antifungal agents, a novel series of fifteen hydrazine-thiazole derivatives was synthesized and assayed in vitro against six clinically important Candida and Cryptococcus species and Paracoccidioides brasiliensis. Eight compounds showed promising antifungal activity with minimum inhibitory concentration (MIC) values ranging from 0.45 to 31.2 μM, some of them being equally or more active than the drug fluconazole and amphotericin B. Active compounds were additionally tested for toxicity against human embryonic kidney (HEK-293) cells and none of them exhibited significant cytotoxicity, indicating high selectivity. Molecular modeling studies results corroborated experimental SAR results, suggesting their use in the design of new antifungal agents. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Risk of Fungemia Due to Rhodotorula and Antifungal Susceptibility Testing of Rhodotorula Isolates

    PubMed Central

    Zaas, Aimee K.; Boyce, Molly; Schell, Wiley; Lodge, Barbara Alexander; Miller, Jackie L.; Perfect, John R.

    2003-01-01

    Rhodotorula infections occur among patients with immunosuppression and/or central venous catheters. Using standardized methods (NCCLS M27-A), we determined the antifungal susceptibilities of 10 Rhodotorula bloodstream infection isolates. Patient information was collected for clinical correlation. The MICs of amphotericin B and posaconazole were the lowest, and the MICs of triazoles and echinocandins were higher than those of other antifungal agents. PMID:14605170

  5. Chemical composition and antifungal activity of Carica papaya Linn. seed essential oil against Candida spp.

    PubMed

    He, X; Ma, Y; Yi, G; Wu, J; Zhou, L; Guo, H

    2017-05-01

    In recent years, the incidence of clinical yeast infections has increased dramatically. Due to the extensive use of broad-spectrum antifungal agents, there has been a notable increase in drug resistance among infections yeast species. As one of the most popular natural antimicrobial agents, essential oils (EOs) have attracted a lot of attention from the scientific community. The aim of this study was to analyse the chemical composition and examine the antifungal activity of the EO extracted from the seeds of Carica papaya Linn. The papaya seed EO was analysed by gas chromatography-mass spectrometry. The major constituent is benzyl isothiocyanate (99·36%). The filter paper disc diffusion method and broth dilution method were employed. The EO showed inhibitory effect against all the tested Candida strains including C. albicans, C. glabrata, C. krusei, C. parapsilosis and C. tropical with inhibition zone diameters in the range of 14·2-33·2 mm, the minimal inhibitory concentrations (MICs) in the range of 4·0-16·0 μg ml -1 and the minimum fungicidal concentrations (MFCs) in the range of 16·0-64·0 μg ml -1 . Here, we found that the papaya seed EO has promising anticandida activity and identify C. papaya L. as a potential natural source of antifungal agents. The chemical composition and antifungal activity of essential oil of Carica papaya seeds were studied. The oil of papaya seeds could inhibit the growth of Candida spp. for the first report. Carica Papaya may be recognized as a possible new source of natural antifungal agents. © 2017 The Society for Applied Microbiology.

  6. Prevalence and epidemiology of tinea pedis and toenail onychomycosis and antifungal susceptibility of the causative agents in patients with type 2 diabetes in Turkey.

    PubMed

    Oz, Yasemin; Qoraan, Iman; Oz, Ali; Balta, Ilknur

    2017-01-01

    Diabetes patients are particularly susceptible to fungal infections because their vascular and immunological systems are compromised. The present study aimed to determine prevalences of tinea pedis and onychomycosis, factors predisposing to their development, and antifungal susceptibilities of causative fungal species against fluconazole, itraconazole, and terbinafine in patients with type 2 diabetes mellitus (DM). Study groups were defined according to hemoglobin A1C rates of ≥6.5% for the diabetes group and ≤5.7% for control subjects. A total of 600 diabetes subjects and 152 control subjects were evaluated. Rates of onychomycosis and tinea pedis in diabetes patients, and associations with age, gender, blood glucose level, duration of diabetes and serum lipid profile were investigated, as were the distribution and antifungal susceptibility of agents isolated. Patients with onychomycosis and/or tinea pedis numbered 85 in the diabetes group and nine in the control group (P = 0.006). The development of onychomycosis or tinea pedis was significantly related to increasing age and male gender. Although the most common agents were dermatophytes, non-dermatophyte fungal isolates were not uncommon. Terbinafine was the most effective drug against dermatophytes but was invalid for non-dermatophyte isolates by in vitro antifungal susceptibility testing. The development of onychomycosis or tinea pedis was significantly related to type 2 DM, increasing age, and male gender. The most common isolate was Trichophyton rubrum. The isolation and identification of the fungus is important to the effective management of tinea pedis and onychomycosis in diabetes patients because non-dermatophyte fungi can cause these infections. © 2016 The International Society of Dermatology.

  7. Morphological Effect of the New Antifungal Agent ME1111 on Hyphal Growth of Trichophyton mentagrophytes, Determined by Scanning and Transmission Electron Microscopy.

    PubMed

    Nishiyama, Yayoi; Takahata, Sho; Abe, Shigeru

    2017-01-01

    The effects of ME1111, a novel antifungal agent, on the hyphal morphology and ultrastructure of Trichophyton mentagrophytes were investigated by using scanning and transmission electron microscopy. Structural changes, such as pit formation and/or depression of the cell surface, and degeneration of intracellular organelles and plasmolysis were observed after treatment with ME1111. Our results suggest that the inhibition of energy production by ME1111 affects the integrity and function of cellular membranes, leading to fungal cell death. Copyright © 2016 American Society for Microbiology.

  8. [Cutaneous Malassezia infections and Malassezia associated dermatoses: An update].

    PubMed

    Nenoff, P; Krüger, C; Mayser, P

    2015-06-01

    The lipophilic yeast fungus Malassezia (M.) spp. is the only fungal genus or species which is part of the physiological human microbiome. Today, at least 14 different Malassezia species are known; most of them can only be identified using molecular biological techniques. As a facultative pathogenic microorganism, Malassezia represents the causative agent both of superficial cutaneous infections and of blood stream infections. Pityriasis versicolor is the probably most frequent infection caused by Malassezia. Less common, Malassezia folliculitis occurs. There is only an episodic report on Malassezia-induced onychomycosis. Seborrhoeic dermatitis represents a Malassezia-associated inflammatory dermatosis. In addition, Malassezia allergenes should be considered as the trigger of "Head-Neck"-type atopic dermatitis. Ketoconazole possesses the strongest in vitro activity against Malassezia, and represents the treatment of choice for topical therapy of pityriasis versicolor. Alternatives include other azole antifungals but also the allylamine terbinafine and the hydroxypyridone antifungal agent ciclopirox olamine. "Antiseborrhoeic" agents, e.g. zinc pyrithione, selenium disulfide, and salicylic acid, are also effective in pityriasis versicolor. The drug of choice for oral treatment of pityriasis versicolor is itraconazole; an effective alternative represents fluconazole. Seborrhoeic dermatitis is best treated with topical medication, including topical corticosteroids and antifungal agents like ketoconazole or sertaconazole. Calcineurin inhibitors, e.g. pimecrolimus and tacrolimus, are reliable in seborrhoeic dermatitis, however are used off-label.

  9. 2016 guideline strategies for the use of antifungal agents in patients with hematological malignancies or hematopoietic stem cell transplantation recipients in Taiwan.

    PubMed

    Ko, Bor-Sheng; Chen, Wei-Ting; Kung, Hsiang-Chi; Wu, Un-In; Tang, Jih-Luh; Yao, Ming; Chen, Yee-Chun; Tien, Hwei-Fang; Chang, Shan-Chwen; Chuang, Yin-Ching; Lin, Dong-Tsamn

    2017-07-25

    The Infectious Diseases Society of Taiwan (IDST), the Hematology Society of Taiwan, the Taiwan Society of Blood and Marrow Transplantation, Medical Foundation in Memory of Dr. Deh-Lin Cheng, Foundation of Professor Wei-Chuan Hsieh for Infectious Diseases Research and Education, and CY Lee's Research Foundation for Pediatric Infectious Diseases and Vaccines cooperatively published this guideline for the use of antifungal agents in hematological patients with invasive fungal diseases (IFDs) in Taiwan. The guideline is the first one endorsed by IDST focusing on selection of antifungal strategies, including prophylaxis, empirical (or symptom-driven) and pre-emptive (or diagnostic-driven) strategy. We suggest a risk-adapted dynamic strategy and provide an algorithm to facilitate decision making in population level as well as for individual patient. Risk assessment and management accordingly is explicitly emphasized. In addition, we highlight the importance of diagnosis in each antifungal strategy among five elements of the antimicrobial stewardship (diagnosis, drug, dose, de-escalation and duration). The rationale, purpose, and key recommendations for the choice of antifungal strategy are summarized, with concise review of international guidelines or recommendation, key original articles and local epidemiology reports. We point out the interaction and influence between elements of recommendations and limitation of and gap between evidences and daily practice. The guideline balances the quality of evidence and feasibility of recommendation in clinical practice. Finally, this version introduces the concept of health economics and provides data translated from local disease burdens. All these contents hopefully facilitate transparency and accountability in medical decision-making, improvements in clinical care and health outcomes, and appropriateness of medical resource allocation. Copyright © 2017. Published by Elsevier B.V.

  10. Enzymatic Activity and Susceptibility to Antifungal Agents of Brazilian Environmental Isolates of Hortaea werneckii.

    PubMed

    Formoso, Andrea; Heidrich, Daiane; Felix, Ciro Ramón; Tenório, Anne Carolyne; Leite, Belize R; Pagani, Danielle M; Ortiz-Monsalve, Santiago; Ramírez-Castrillón, Mauricio; Landell, Melissa Fontes; Scroferneker, Maria L; Valente, Patricia

    2015-12-01

    Four strains of Hortaea werneckii were isolated from different substrates in Brazil (a salt marsh macrophyte, a bromeliad and a marine zoanthid) and had their identification confirmed by sequencing of the 26S rDNA D1/D2 domain or ITS region. Most of the strains were able to express amylase, lipase, esterase, pectinase and/or cellulase, enzymes that recognize components of plant cells as substrates, but did not express albuminase, keratinase, phospholipase and DNAse, whose substrates are animal-related. Urease production was positive for all isolates, while caseinase, gelatinase and laccase production were variable among the strains. All the strains grew in media containing up to 30% NaCl. We propose that the primary substrate associated with H. werneckii is plant-related, in special in saline environments, where the fungus may live as a saprophyte and decomposer. Infection of animal-associated substrates would be secondary, with the fungus acting as an opportunistic animal pathogen. All strains were resistant to fluconazole and presented high MIC for amphotericin B, while they were susceptible to all the other antifungal agents tested.

  11. Analysis, fate studies and monitoring of the antifungal agent clotrimazole in the aquatic environment.

    PubMed

    Peschka, Manuela; Roberts, Paul H; Knepper, Thomas P

    2007-10-01

    The analysis and presence of clotrimazole, an antifungal agent with logK(OW) > 4, was thoroughly studied in the aquatic environment. For that reason analytical methods based on gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry were developed and validated to quantify clotrimazole with limits of quantification down to 5 and 1 ng/L, respectively. Both methods were compared in an intercalibration exercise. The complete mass-spectrometric fragmentation pattern could be elucidated with the aid of quadrupole time of flight mass spectrometry. Since clotrimazole tends to adsorb to laboratory glassware, studies on its adsorption behaviour were made to ensure the appropriate handling of water samples, e.g. pH, storage time, pretreatment of sampling vessels or material of the vials used for final extracts. The phenomena of adsorption to suspended matter were investigated while analysing different waste-water samples. Application of the methods in various investigated wastewater and surface water samples demonstrated that clotrimazole could only be detected in the low nanogram per litre range of anthropogenic influenced unfiltered water samples after acidification to pH 2.

  12. White piedra in children.

    PubMed

    Kiken, David A; Sekaran, Anand; Antaya, Richard J; Davis, Amy; Imaeda, Suguru; Silverberg, Nanette B

    2006-12-01

    White piedra is a fungal infection of the hair shaft caused by species of Trichosporon. Rarely has this infection been reported in the United States. Historically, infected individuals required shaving of their hair to achieve clearance of the infection. We sought to describe 8 cases of Trichosporon scalp infections seen in the northeastern United States. We conducted chart review and prospective evaluation of 7 girls and 1 boy seen in two dermatology practices in New Haven, Conn, and New York, NY. Seven girls, ages 4 to 16 years old, and one 4-year-old boy were determined to have Trichosporon scalp infection, all through culture. Of the 8 children who were available for follow-up, 7 had clearance of their infection with a combination of oral azole antifungal medication and azole antifungal shampoo, without shaving the scalp hair. This was a sample of patients from a localized region of the United States. White piedra is emerging as a commonly seen hair and scalp infection in the northeastern United States. Contrary to prior publications, scalp and hair infection may be successfully treated with a combination of oral azole antifungals and shampoos without shaving the scalp.

  13. Biogenic Silver Nanoparticles by Gelidiella acerosa Extract and their Antifungal Effects

    PubMed Central

    Vivek, Marimuthu; Kumar, Palanisamy Senthil; Steffi, Sesurajan; Sudha, Sellappa

    2011-01-01

    The synthesis, characterization and application of biologically synthesized nanomaterials are an important aspect in nanotechnology. The present study deals with the synthesis of silver nanoparticles (Ag-NPs) using the aqueous extract of red seaweed Gelidiella acerosa as the reducing agent to study the antifungal activity. The formation of Ag-NPs was confirmed by UV-Visible Spectroscopy, X-Ray Diffraction (XRD) pattern, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The synthesized Ag-NPs was predominately spherical in shape and polydispersed. Fourier Transform Infra-Red (FT-IR) spectroscopy analysis showed that the synthesized nano-Ag was capped with bimolecular compounds which are responsible for reduction of silver ions. The antifungal effects of these nanoparticles were studied against Humicola insolens (MTCC 4520), Fusarium dimerum (MTCC 6583), Mucor indicus (MTCC 3318) and Trichoderma reesei (MTCC 3929). The present study indicates that Ag-NPs have considerable antifungal activity in comparison with standard antifungal drug, and hence further investigation for clinical applications is necessary. PMID:23408653

  14. Yeasts from Scarlet ibises (Eudocimus ruber): A focus on monitoring the antifungal susceptibility of Candida famata and closely related species.

    PubMed

    Brilhante, Raimunda Sâmia Nogueira; Silva, Aline Lobão da; Monteiro, Frederico Ozanan Barros; Guedes, Glaucia Morgana de Melo; Sales, Jamille Alencar; Oliveira, Jonathas Sales de; Maia Junior, José Erisvaldo; Miranda, Stefânia Araújo; Sidrim, José Júlio Costa; Alencar, Lucas Pereira de; Castelo-Branco, Débora Souza Collares Maia; Cordeiro, Rossana de Aguiar; Pereira Neto, Waldemiro de Aquino; Rocha, Marcos Fábio Gadelha

    2017-10-01

    This study aimed to identify yeasts from the gastrointestinal tract of scarlet ibises (Eudocimus ruber) and from plant material collected from the environment where they live. Then, the isolates phenotypically identified as Candida famata were submitted to molecular identification of their closely related species and evaluated for their antifungal susceptibility and possible resistance mechanisms to antifungal drugs. Cloacal swabs from 20 scarlet ibises kept in captivity at Mangal das Garças Park (Brazil), pooled stool samples (n = 20) and samples of trunks and hollow of trees (n = 20) obtained from their enclosures were collected. The samples were seeded on Sabouraud agar supplemented with chloramphenicol. The 48 recovered isolates were phenotypically identified as 15 Candida famata, 13 Candida catenulata, 2 Candida intermedia, 1 Candida lusitaniae, 2 Candida guilliermondii, 1 Candida kefyr, 1 Candida amapae, 1 Candida krusei, 8 Trichosporon spp., and 4 Rhodotorula spp. The C. famata isolates were further identified as 3 C. famata, 8 Debaryomyces nepalensis, and 4 C. palmioleophila. All C. famata and C. palmioleophila were susceptible to caspofungin and itraconazole, while one D. nepalensis was resistant to fluconazole and voriconazole. This same isolate and another D. nepalensis had lower amphotericin B susceptibility. The azole resistant strain had an increased efflux of rhodamine 6G and an alteration in the membrane sterol content, demonstrating multifactorial resistance mechanism. Finally, this research shows that scarlet ibises and their environment harbor C. famata and closely related species, including antifungal resistant isolates, emphasizing the need of monitoring the antifungal susceptibility of these yeast species. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. In vitro antifungal susceptibility profiles of Cryptococcus species isolated from HIV-associated cryptococcal meningitis patients in Zimbabwe.

    PubMed

    Nyazika, Tinashe K; Herkert, Patricia F; Hagen, Ferry; Mateveke, Kudzanai; Robertson, Valerie J; Meis, Jacques F

    2016-11-01

    Cryptococcus neoformans is the leading cause of cryptococcosis in HIV-infected subjects worldwide. Treatment of cryptococcosis is based on amphotericin B, flucytosine, and fluconazole. In Zimbabwe, little is known about antifungal susceptibility of Cryptococcus. Sixty-eight genotyped Cryptococcus isolates were tested for antifungal profiles. Amphotericin B, isavuconazole, and voriconazole showed higher activity than other triazoles. Fluconazole and flucytosine were less effective, with geometric mean MICs of 2.24 and 2.67mg/L for C. neoformans AFLP1/VNI, 1.38 and 1.53mg/L for C. neoformans AFLP1A/VNB/VNII and AFLP1B/VNII, and 1.85 and 0.68mg/L for Cryptococcus tetragattii, respectively. A significant difference between flucytosine geometric mean MICs of C. neoformans and C. tetragattii was observed (P=0.0002). The majority of isolates (n=66/68; 97.1%) had a wild-type MIC phenotype of all antifungal agents. This study demonstrates a favorable situation with respect to the tested antifungals agents. Continued surveillance of antifungal susceptibility profiles is important due to the high burden of cryptococcosis in Africa. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Antifungal effects of phytocompounds on Candida species alone and in combination with fluconazole.

    PubMed

    Lu, Mengjiao; Li, Tao; Wan, Jianjian; Li, Xiuyun; Yuan, Lei; Sun, Shujuan

    2017-02-01

    Invasive fungal infections caused by Candida spp. remain the most predominant nosocomial fungal infections. Owing to the increased use of antifungal agents, resistance of Candida spp. to antimycotics has emerged frequently, especially to fluconazole (FLC). To cope with this issue, new efforts have been dedicated to discovering novel antimycotics or new agents that can enhance the susceptibility of Candida spp. to existing antimycotics. The secondary metabolites of plants represent a large library of compounds that are important sources for new drugs or compounds suitable for further modification. Research on the anti-Candida activities of phytocompounds has been carried out in recent years and the results showed that a series of phytocompounds have anti-Candida properties, such as phenylpropanoids, flavonoids, terpenoids and alkaloids. Among these phytocompounds, some displayed potent antifungal activity, with minimum inhibitory concentrations (MICs) of ≤8 µg/mL, and several compounds were even more effective against drug-resistant Candida spp. than FLC or itraconazole (e.g. honokiol, magnolol and shikonin). Interestingly, quite a few phytocompounds not only displayed anti-Candida activity alone but also synergised with FLC against Candida spp., even leading to a reversal of FLC resistance. This review focuses on summarising the anti-Candida activities of phytocompounds as well as the interactions of phytocompounds with FLC. In addition, we briefly overview the synergistic mechanisms and present the structure of the antimycotic phytocompounds. Hopefully, this analysis will provide insight into antifungal agent discovery and new approaches against antifungal drug resistance. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  17. Antifungal agents commonly used in the superficial and mucosal candidiasis treatment: mode of action and resistance development

    PubMed Central

    Bondaryk, Małgorzata; Kurzątkowski, Wiesław

    2013-01-01

    Recent progress in medical sciences and therapy resulted in an increased number of immunocompromised individuals. Candida albicans is the leading opportunistic fungal pathogen causing infections in humans, ranging from superficial mucosal lesions to disseminated or bloodstream candidiasis. Superficial candidiasis not always presents a risk to the life of the infected host, however it significantly lowers the quality of life. Superficial Candida infections are difficult to treat and their frequency of occurrence is currently rising. To implement successful treatment doctors should be up to date with better understanding of C. albicans resistance mechanisms. Despite high frequency of Candida infections there is a limited number of antimycotics available for therapy. This review focuses on current understanding of the mode of action and resistance mechanisms to conventional and emerging antifungal agents for treatment of superficial and mucosal candidiasis. PMID:24353489

  18. Relationship between intracranial pressure and antifungal agents levels in the CSF of patients with cryptococcal meningitis.

    PubMed

    Wirth, Fernanda; de Azevedo, Maria Isabel; Pilla, Carmen; Aquino, Valério Rodrigues; Neto, Gustavo Wissmann; Goldani, Luciano Zubaran

    2018-04-01

    The purpose of this study was to evaluate the influence of intracranial hypertension in the cerebrospinal fluid (CSF) levels of amphotericin B and fluconazole levels of patients with cryptococcal meningitis. CSF samples and intracranial pressure were obtained by means of routine punctures performed at days 1, 7, and 14 of therapy, respectively. Amphotericin B and fluconazole CSF levels were measured by HPLC method as previously described. The minimum inhibitory concentration for amphotericin B, fluconazole, 5΄flucytosine, and voriconazole of each Cryptococcus isolate was performed according to CLSI. The predominant Cryptococcus species found was C. neoformans, and the major underlying condition was AIDS. Only one CSF sample had a detectable level for amphotericin B during the 14 days of therapy. Fluconazole CSF levels progressively increased from day 1 to day 14 of therapy for most cases. Fluconazole levels in the CSF were above the minimum inhibitory concentrations (MICs) for Cryptococcus during the initial 14 days of antifungal therapy. Variations of intracranial pressure did not affect amphotericin B and fluconazole levels in the CSF. The generalized estimating correlation (GEE) and Spearman correlation test (SCT) showed no significant correlation between the amphotericin B or fluconazole concentrations in the CSF and intracranial pressure (P = .953 and P = .093, respectively for GEE test and P = .477 and P = .847, respectively, for SCT). Combination therapy of amphotericin B with fluconazole was effective in 60% of the patients considering CSF cultures were negative in 9 of 15 patients after 14 days of therapy. Further studies are necessary to evaluate the role of intracranial hypertension on the therapeutic efficacy of different antifungal agents in patients with cryptococcal meningitis.

  19. Antifungal polypeptides

    DOEpatents

    Altier, Daniel J [Waukee, IA; Ellanskaya, Irina [Kyiv, UA; Ellanskaya, legal representative, Natalia; Gilliam, Jacob T [Norwalk, IA; Hunter-Cevera, Jennie [Elliott City, MD; Presnail, James K [Avondale, PA; Schepers, Eric [Port Deposit, MD; Simmons, Carl R [Des Moines, IA; Torok, Tamas [Richmond, CA; Yalpani, Nasser [Johnston, IA

    2009-09-15

    The invention relates to antifungal compositions and methods for protecting a plant from a fungal pathogen. Compositions including antifungal polypeptides isolated from a fungal fermentation broth are provided.

  20. In Vitro Interactions between Non-Steroidal Anti-Inflammatory Drugs and Antifungal Agents against Planktonic and Biofilm Forms of Trichosporon asahii

    PubMed Central

    Cong, Lin; Lu, Xuelian

    2016-01-01

    Increasing drug resistance has brought enormous challenges to the management of Trichosporon spp. infections. The in vitro antifungal activities of non-steroidal anti-inflammatory drugs (NSAIDs) against Candida spp. and Cryptococcus spp. were recently discovered. In the present study, the in vitro interactions between three NSAIDs (aspirin, ibuprofen and diclofenac sodium) and commonly used antifungal agents (fluconazole, itraconazole, voriconazole, caspofungin and amphotericin B) against planktonic and biofilm cells of T. asahii were evaluated using the checkerboard microdilution method. The spectrophotometric method and the XTT reduction assay were used to generate data on biofilm cells. The fractional inhibitory concentration index (FICI) and the ΔE model were compared to interpret drug interactions. Using the FICI, the highest percentages of synergistic effects against planktonic cells (86.67%) and biofilm cells (73.33%) were found for amphotericin B/ibuprofen, and caspofungin/ibuprofen showed appreciable percentages (73.33% for planktonic form and 60.00% for biofilm) as well. We did not observe antagonism. The ΔE model gave consistent results with FICI (86.67%). Our findings suggest that amphotericin B/ibuprofen and caspofungin/ibuprofen combinations have potential effects against T. asahii. Further in vivo and animal studies to investigate associated mechanisms need to be conducted. PMID:27275608

  1. Vibrational spectra of water solutions of azoles from QM/MM calculations: effects of solvation.

    PubMed

    Tanzi, Luana; Ramondo, Fabio; Guidoni, Leonardo

    2012-10-18

    Using microsolvation models and mixed quantum/classical ab initio molecular dynamics simulations, we investigate the vibrational properties of two azoles in water solution: pyrazole and oxazole. The effects of the water-azole hydrogen bonding are rationalized by an extensive comparison between structural parameters and harmonic frequencies obtained by microsolvation models. Following the effective normal-mode analysis introduced by Martinez et al. [Martinez et al., J. Chem. Phys. 2006, 125, 144106], we identify the vibrational frequencies of the solutes using the decomposition of the vibrational density of states of the gas phase and solution dynamics. The calculated shifts from gas phase to solution are fairly in agreement with the available experimental data.

  2. Evaluation of antifungal combination against Cryptococcus spp.

    PubMed

    Reichert-Lima, Franqueline; Busso-Lopes, Ariane F; Lyra, Luzia; Peron, Isabela Haddad; Taguchi, Hideaki; Mikami, Yuzuru; Kamei, Katsuiko; Moretti, Maria Luiza; Schreiber, Angelica Z

    2016-09-01

    The second cause of death among systemic mycoses, cryptococcosis treatment represents a challenge since that 5-flucytosine is not currently available in Brazil. Looking for alternatives, this study evaluated antifungal agents, alone and combined, correlating susceptibility to genotypes. Eighty Cryptococcus clinical isolates were genotyped by URA5 gene restriction fragment length polymorphism. Antifungal susceptibility was assessed following CLSI-M27A3 for amphotericin (AMB), 5-flucytosine (5FC), fluconazole (FCZ), voriconazole (VRZ), itraconazole (ITZ) and terbinafine (TRB). Drug interaction chequerboard assay evaluated: AMB + 5FC, AMB + FCZ, AMB + TRB and FCZ + TRB. Molecular typing divided isolates into 14 C. deuterogattii (VGII) and C. neoformans isolates were found to belong to genotype VNI (n = 62) and VNII (n = 4). C. neoformans VNII was significantly less susceptible than VNI (P = 0.0407) to AMB; C. deuterogattii was significantly less susceptible than VNI and VNII to VRZ (P < 0.0001). C. deuterogattii was less susceptible than C. neoformans VNI for FCZ (P = 0.0170), ITZ (P < 0.0001) and TRB (P = 0.0090). The combination FCZ + TRB showed 95.16% of synergistic effect against C. neoformans genotype VNI isolates and all combinations showed 100% of synergism against genotype VNII isolates, suggesting the relevance of cryptococcal genotyping as it is widely known that the various genotypes (now species) have significant impact in antifungal susceptibilities and clinical outcome. In difficult-to-treat cryptococcosis, terbinafine and different antifungal combinations might be alternatives to 5FC. © 2016 Blackwell Verlag GmbH.

  3. Antifungal metabolites from Schinopsis balansae Engl (Anacardiaceae): isolation, identification and evidences of their mode of action on Fusarium graminearum Schwabe.

    PubMed

    Aristimuño Ficoseco, María Eugenia; Sequin, Christian Javier; Aceñolaza, Pablo Gilberto; Vattuone, Marta Amelia; Catalán, Cesar Atilio N; Sampietro, Diego Alejandro

    2017-06-01

    An antifungal activity-directed fractionation of leaf constituents from Schinopsis balansae on Fusarium graminearum yielded a fraction mainly made of a mixture of four 3-n-heptadec(en)ylcatechols (PALK). The PALK fraction showed on macroconidia germination a MIC 100 value of 500 μg/mL which was twofold higher than that required for prothioconazole (MIC 100  = 250 μg/mL). Sublethal concentrations of PALK modify the morphogenesis in germinating macroconidia, and decreased fungal production of H 2 O 2 and deoxynivalenol biosynthesis at early fungal growth. Mixes of PALK and prothioconazole showed a synergic interaction. Our findings suggest that PALK constituents might restrict the adherence of F. graminearum to the surface of its hosts and its virulence on susceptible cereals. They deserve further research as additives of azole fungicides against F. graminearum.

  4. Cinnamic acid analogs as intervention catalysts for overcoming antifungal tolerance

    USDA-ARS?s Scientific Manuscript database

    Antifungal potency of thirty-three cinnamic acid derivatives was investigated. The efficacy of caspofungin (CAS) or octyl gallate (OG), the cell wall disrupting agents, was augmented by 4-chloro-a-methyl- or 4-methylcinnamic acid screened. Synergistic chemosensitization by 4-chloro-a-methyl- or 4-me...

  5. [Management of vaginal infection following failure of a probabilistic treatment: is the vaginal swab really useful?].

    PubMed

    Bretelle, F; Chiarelli, P; Palmer, I; Glatt, N

    2015-02-01

    The aim of this observational national multi-centre study was to describe medical care of vaginal infections resisting a primary probabilistic treatment. Two hundred and seventy female patients were included during a 9-month period (from 2013, March 20th to 2013, December 7th) by 155 gynaecologists located throughout France. All patients were presenting a vulvo-vaginitis episode which started about three weeks ago and which was characterized by leucorrhea (93 % cases), itching (88 % cases) and/or vulvar and/or vaginal irritation (88 % cases). In most cases, this episode was previously treated by a short course of an azole antifungal medication. This treatment was initiated by the patient herself without any doctor's prescription in six out of 10 cases and had no influence on the evolution of the original clinical symptoms. Second line treatments included azole antifungal medications (56 % cases), local fixed combinations (antifungal agent and bactericidal antibiotic) (29 %), metronidazole (9 %), oral antibiotics (7.4 %). At the end of the treatment, 85 % patients recovered from vaginitis symptoms. The recovery rate was 82.6 % for patients who got a bacteriological examination and 87.6 % for patients who were treated without any bacteriological examination. The difference is not statistically significant. These results seem to show that a probabilistic medical care is as effective as (but probably more economical than) a therapeutic strategy guided by the results of further examinations in case of failure of a primary treatment. This conclusion should be confirmed by a medico-economic comparison after randomization. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. In vivo efficacy of SM-8668 (Sch 39304), a new oral triazole antifungal agent.

    PubMed

    Tanio, T; Ichise, K; Nakajima, T; Okuda, T

    1990-06-01

    SM-8668 (Sch 39304) is a new oral antifungal agent which we evaluated in comparison with fluconazole in various fungal infection models. The prophylactic effect of SM-8668 was excellent against systemic candidiasis, aspergillosis, and cryptococcosis in mice. The 50% effective dose for SM-8668 was assessed at 10 days after infection and was 0.18, 3.7, and 5.9 mg/kg (body weight), respectively, for the above-mentioned fungal diseases. Fluconazole was about four times less effective than SM-8668 against systemic candidiasis and was only slightly effective at doses of 80 and 25 mg/kg against systemic aspergilosis and cryptococcosis, respectively. SM-8668 was also about four to eight times more active than fluconazole against vaginal candidiasis in rats and against dermatophytic infection in guinea pigs. In addition, topical SM-8668 was as effective as topical miconazole or tioconazole against skin mycosis in guinea pigs. After oral administration, SM-8668 showed a maximum concentration in serum similar to that of fluconazole in both mice and rats, but the elimination half-life and area under the serum concentration-time curve for SM-8668 were twice those for fluconazole.

  7. In vivo efficacy of SM-8668 (Sch 39304), a new oral triazole antifungal agent.

    PubMed Central

    Tanio, T; Ichise, K; Nakajima, T; Okuda, T

    1990-01-01

    SM-8668 (Sch 39304) is a new oral antifungal agent which we evaluated in comparison with fluconazole in various fungal infection models. The prophylactic effect of SM-8668 was excellent against systemic candidiasis, aspergillosis, and cryptococcosis in mice. The 50% effective dose for SM-8668 was assessed at 10 days after infection and was 0.18, 3.7, and 5.9 mg/kg (body weight), respectively, for the above-mentioned fungal diseases. Fluconazole was about four times less effective than SM-8668 against systemic candidiasis and was only slightly effective at doses of 80 and 25 mg/kg against systemic aspergilosis and cryptococcosis, respectively. SM-8668 was also about four to eight times more active than fluconazole against vaginal candidiasis in rats and against dermatophytic infection in guinea pigs. In addition, topical SM-8668 was as effective as topical miconazole or tioconazole against skin mycosis in guinea pigs. After oral administration, SM-8668 showed a maximum concentration in serum similar to that of fluconazole in both mice and rats, but the elimination half-life and area under the serum concentration-time curve for SM-8668 were twice those for fluconazole. PMID:2203310

  8. Overcoming antifungal resistance

    PubMed Central

    Srinivasan, Anand; Lopez-Ribot, Jose L.; Ramasubramanian, Anand K.

    2014-01-01

    Fungal infections have become one of the major causes of morbidity and mortality in immunocompromised patients. Despite increased awareness and improved treatment strategies, the frequent development of resistance to the antifungal drugs used in clinical settings contributes to the increasing toll of mycoses. Although a natural phenomenon, antifungal drug resistance can compromise advances in the development of effective diagnostic techniques and novel antifungals. In this review, we will discuss the advent of cellular-microarrays, microfluidics, genomics, proteomics and other state-of-the art technologies in conquering antifungal drug resistance. PMID:24847655

  9. Antifungal Effects of Bee Venom Components on Trichophyton rubrum: A Novel Approach of Bee Venom Study for Possible Emerging Antifungal Agent.

    PubMed

    Park, Joonsoo; Kwon, Osung; An, Hyun-Jin; Park, Kwan Kyu

    2018-04-01

    Bee venom (BV) has been widely investigated for potential medical uses. Recent inadvertent uses of BV based products have shown to mitigate signs of fungal infections. However, the component mediating the antifungal effect has not been identified. This investigation compares bee venom in its whole and partial forms to evaluate the possible component responsible for the antifungal effect. Forty-eight plates inoculated with Trichophyton rubrum were allocated into four groups. The groups were treated with raw BV (RBV), melittin, apamin and BV based mist (BBM) respectively and each group was further allocated accordingly to three different concentrations. The areas were measured every other day for 14 days to evaluate the kinetic changes of the colonies. The interactions of ratio differences over interval were confirmed in groups treated with RBV and BBM. In RBV, the level of differences were achieved in groups treated with 10 mg/100 µl ( p =0.026) and 40 mg/100 µl ( p =0.000). The mean difference of ratio in groups treated with RBV was evident in day 3 and day 5. The groups that were treated with melittin or apamin did not show any significant interaction. In BBM groups, the significant levels of ratio differences over time intervals were achieved in groups treated with 200 µl/100 µl ( p =0.000) and 300 µl/100 µl ( p =0.030). The the bee venom in its whole form delivered a significant level of inhibition and we concluded that the venom in separated forms are not effective. Moreover, BV based products may exert as potential antifungal therapeutics.

  10. Slime production and proteinase activity of Candida species isolated from blood samples and the comparison of these activities with minimum inhibitory concentration values of antifungal agents.

    PubMed

    Ozkan, Semiha; Kaynak, Fatma; Kalkanci, Ayse; Abbasoglu, Ufuk; Kustimur, Semra

    2005-05-01

    Slime and proteinase activity of 54 strains consisting of 19 Candida parapsilosis and 35 C. albicans strains isolated from blood samples were investigated in this study. Ketoconazole, amphothericin B, and fluconazole susceptibility of Candida species were compared with slime production and proteinase activity of these species. For both Candida species, no correlation was detected between the slime activity and minimum inhibitory concentration (MIC) values of the three antifungal agents. For both Candida species no correlation was detected between the proteinase activity and the MIC values of amphothericin B, and fluconazole however, statistically significant difference, was determined between the proteinase activity and MIC values of ketoconazole (p = 0.007). Slime production was determined by using modified Christensen macrotube method and proteinase activity was measured by the method of Staib. Antifungal susceptibility was determined through the guidelines of National Committee for Laboratory Standards (NCCLS M27-A).

  11. Clinical Appearance of Oral Candida Infection and Therapeutic Strategies

    PubMed Central

    Patil, Shankargouda; Rao, Roopa S.; Majumdar, Barnali; Anil, Sukumaran

    2015-01-01

    Candida species present both as commensals and opportunistic pathogens of the oral cavity. For decades, it has enthralled the clinicians to investigate its pathogenicity and to improvise newer therapeutic regimens based on the updated molecular research. Candida is readily isolated from the oral cavity, but simple carriage does not predictably result in development of an infection. Whether it remains as a commensal, or transmutes into a pathogen, is usually determined by pre-existing or associated variations in the host immune system. The candida infections may range from non-life threatening superficial mucocutaneous disorders to invasive disseminated disease involving multiple organs. In fact, with the increase in number of AIDS cases, there is a resurgence of less common forms of oral candida infections. The treatment after confirmation of the diagnosis should include recognizing and eliminating the underlying causes such as ill-fitting oral appliances, history of medications (antibiotics, corticosteroids, etc.), immunological and endocrine disorders, nutritional deficiency states and prolonged hospitalization. Treatment with appropriate topical antifungal agents such as amphotericin, nystatin, or miconazole usually resolves the symptoms of superficial infection. Occasionally, administration of systemic antifungal agents may be necessary in immunocompromised patients, the selection of which should be based upon history of recent azole exposure, a history of intolerance to an antifungal agent, the dominant Candida species and current susceptibility data. PMID:26733948

  12. Searching new antifungals: The use of in vitro and in vivo methods for evaluation of natural compounds.

    PubMed

    Scorzoni, Liliana; Sangalli-Leite, Fernanda; de Lacorte Singulani, Junya; de Paula E Silva, Ana Carolina Alves; Costa-Orlandi, Caroline Barcelos; Fusco-Almeida, Ana Marisa; Mendes-Giannini, Maria José Soares

    2016-04-01

    In the last decades, the increased number of immunocompromised patients has led to the emergence of many forms of fungal infections. Furthermore, there are a restricted arsenal of antifungals available and an increase in the development of resistance to antifungal drugs. Because of these disadvantages, the search for new antifungal agents in natural sources has increased. The development of these new antifungal drugs involves various steps and methodologies. The evaluation of the in vitro antifungal activity and cytotoxicity are the first steps in the screening. There is also the possibility of antifungal combinations to improve the therapy and reduce toxicity. Despite that, the application of the new antifungal candidate could be used in association with photodynamic therapy or using nanotechnology as an ally. In vivo tests can be performed to evaluate the efficacy and toxicity using conventional and alternative animal models. In this work, we review the methods available for the evaluation of the antifungal activity and safety of natural products, as well as the recent advances of new technology in the application of natural products for antifungal therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Invasive pulmonary Aspergillosis in organ transplants--Focus on lung transplants.

    PubMed

    Geltner, Christian; Lass-Flörl, Cornelia

    2016-03-01

    Infections with filamentous fungi are common in transplant recipients. The risk for aspergillosis and other invasive pulmonary mycosis (IPM) is high in patients undergoing stem cell and lung transplantations. The mortality rates range from 20% to 60% and depend on a number of risk factors. The typical manifestations of IPM are lung infiltrates, consolidations, and fungal tracheobronchitis. The most common infectious agent is Aspergillus fumigatus. Infections caused by non-Aspergillus molds are more frequent for various reasons. The species distribution of non-Aspergillus molds varies in different locations. Furthermore, infections caused by Mucor and Penicillium are increasing, as are infections caused by species resistant to azoles and amphotericin B. Most centers use antifungal prophylaxis with inhaled amphotericin B or oral azoles. Early diagnosis and therapy is crucial. Reliable information on the local microbiological spectrum is a prerequisite for the effective treatment of molds with primary or secondary resistance to antimycotic drugs. Copyright © 2015 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  14. Defensins: antifungal lessons from eukaryotes

    PubMed Central

    Silva, Patrícia M.; Gonçalves, Sónia; Santos, Nuno C.

    2014-01-01

    Over the last years, antimicrobial peptides (AMPs) have been the focus of intense research toward the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantae, and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components) are presented. Additionally, recent works on antifungal defensins structure, activity, and cytotoxicity are also reviewed. PMID:24688483

  15. Pd-Catalyzed regioselective intramolecular dehydrogenative C-5 cross coupling in an N-substituted pyrrole-azole system.

    PubMed

    Tripathi, Krishna N; Ray, Devalina; Singh, Ravi P

    2017-12-06

    Functionalized polycyclic pyrrole-azole structures possessing fused six membered and seven membered rings were directly synthesized via ligand-enabled, Pd-catalyzed, site selective, intramolecular cross couplings of N-substituted pyrrole-azoles. C5-H activation in the presence of a reactive C2-H remains a challenge that needs to be addressed and this was targeted to be resolved through the present approach by specifically generating the cyclized products with 83-100% selectivity. The featured methodology provides a novel disconnection for the synthesis of pyrrole containing alkaloids and medicinal compounds.

  16. Antifungal activity of gold nanoparticles prepared by solvothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in; Wani, Irshad A.; Lone, Irfan H.

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract:more » Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.« less

  17. P&T Committee review of fluconazole: an effective alternative to antifungal therapy.

    PubMed

    Neu, H C; Bennett, J E; Bodey, G P; Rubin, R H; Schentag, J J; Sugar, A M

    1990-03-01

    Fluconazole is a new antifungal agent available in both oral and parenteral formulations. According to the experts in this roundtable discussion, fluconazole represents a major clinical advance in the treatment of candidiasis and cryptococcosis in cancer patients, patients with AIDS, organ transplant recipients, and other patients at risk for opportunistic mycoses. The pharmacokinetic profile for fluconazole permits infrequent dosing and also makes it ideal for tissue site infections. Fluconazole's low toxicity gives it an advantage over currently available antifungal therapy and will permit prompt presumptive treatment of selected infections.

  18. In vitro antifungal activity of isavuconazole against 345 mucorales isolates collected at study centers in eight countries.

    PubMed

    Verweij, P E; González, G M; Wiedrhold, N P; Lass-Flörl, C; Warn, P; Heep, M; Ghannoum, M A; Guinea, J

    2009-06-01

    Although mucormycoses (formerly zygomycoses) are relatively uncommon, they are associated with high mortality and treatment options are limited. Isavuconazole is a novel, water soluble, broad-spectrum azole in clinical development for the treatment of invasive aspergillosis and candidiasis. The objective of this report was to collate data on the in vitro activity of isavuconazole against a collection of 345 diverse mucorales isolates, collected and tested at eight study centers in europe, mexico and North America. Each study center undertook minimum inhibitory concentration (MIC) susceptibility testing of their isolates, according to EUCAST or CLSI guidelines. Across all study centers, isavuconazole exhibited MIC(50 )values of 1-4 mg/l and MIC(90 )values of 4-16 mg/l against the five genera. There were also marked differences in MIC distributions, which could be ascribed to differences in inoculum and/or endpoint. EUCAST guidelines appeared to generate modal MICs 2-fold higher than CLSI. These results confirm that isavuconazole possesses at least partial antifungal activity against mucorales.

  19. Antifungal and Ichthyotoxic Sesquiterpenoids from Santalum album Heartwood.

    PubMed

    Kim, Tae Hoon; Hatano, Tsutomu; Okamoto, Keinosuke; Yoshida, Takashi; Kanzaki, Hiroshi; Arita, Michiko; Ito, Hideyuki

    2017-07-08

    In our continuing study on a survey of biologically active natural products from heartwood of Santalum album (Southwest Indian origin), we newly found potent fish toxic activity of an n -hexane soluble extract upon primary screening using killifish (medaka) and characterized α-santalol and β-santalol as the active components. The toxicity (median tolerance limit (TLm) after 24 h at 1.9 ppm) of α-santalol was comparable with that of a positive control, inulavosin (TLm after 24 h at 1.3 ppm). These fish toxic compounds including inulavosin were also found to show a significant antifungal effect against a dermatophytic fungus, Trichophyton rubrum . Based on a similarity of the morphological change of the immobilized Trichophyton hyphae in scanning electron micrographs between treatments with α-santalol and griseofulvin (used as the positive control), inhibitory effect of α-santalol on mitosis (the antifungal mechanism proposed for griseofulvin) was assessed using sea urchin embryos. As a result, α-santalol was revealed to be a potent antimitotic agent induced by interference with microtubule assembly. These data suggested that α-santalol or sandalwood oil would be promising to further practically investigate as therapeutic agent for cancers as well as fungal skin infections.

  20. Correlation between In Vitro and In Vivo Antifungal Activities in Experimental Fluconazole-Resistant Oropharyngeal and Esophageal Candidiasis

    PubMed Central

    Walsh, Thomas J.; Gonzalez, Corina E.; Piscitelli, Steven; Bacher, John D.; Peter, Joanne; Torres, Richard; Shetti, Daiva; Katsov, Victoria; Kligys, Kristina; Lyman, Caron A.

    2000-01-01

    Oropharyngeal and esophageal candidiasis (OPEC) is a frequent opportunistic mycosis in immunocompromised patients. Azole-resistant OPEC is a refractory form of this infection occurring particularly in human immunodeficiency virus (HIV)-infected patients. The procedures developed by the Antifungal Subcommittee of the National Committee for Clinical Laboratory Standards (NCCLS) are an important advance in standardization of in vitro antifungal susceptibility methodology. In order to further understand the relationship between NCCLS methodology and antifungal therapeutic response, we studied the potential correlation between in vitro susceptibility to fluconazole and in vivo response in a rabbit model of fluconazole-resistant OPEC. MICs of fluconazole were determined by NCCLS methods. Three fluconazole-susceptible (FS) (MIC, ≤0.125 μg/ml) and three fluconazole-resistant (FR) (MIC, ≥64 μg/ml) isolates of Candida albicans from prospectively monitored HIV-infected children with OPEC were studied. FR isolates were recovered from children with severe OPEC refractory to fluconazole, and FS isolates were recovered from those with mucosal candidiasis responsive to fluconazole. Fluconazole at 2 mg/kg of body weight/day was administered to infected animals for 7 days. The concentrations of fluconazole in plasma were maintained above the MICs for FS isolates throughout the dosing interval. Fluconazole concentrations in the esophagus were greater than or equal to those in plasma. Rabbits infected with FS isolates and treated with fluconazole had significant reductions in oral mucosal quantitative cultures (P < 0.001) and tissue burden of C. albicans in tongue, soft palate, and esophagus (P < 0.001). In comparison, rabbits infected with FR isolates were unresponsive to fluconazole and had no reduction in oral mucosal quantitative cultures or tissue burden of C. albicans versus untreated controls. We conclude that there is a strong correlation between in vitro fluconazole

  1. Correlation between in vitro and in vivo antifungal activities in experimental fluconazole-resistant oropharyngeal and esophageal candidiasis.

    PubMed

    Walsh, T J; Gonzalez, C E; Piscitelli, S; Bacher, J D; Peter, J; Torres, R; Shetti, D; Katsov, V; Kligys, K; Lyman, C A

    2000-06-01

    Oropharyngeal and esophageal candidiasis (OPEC) is a frequent opportunistic mycosis in immunocompromised patients. Azole-resistant OPEC is a refractory form of this infection occurring particularly in human immunodeficiency virus (HIV)-infected patients. The procedures developed by the Antifungal Subcommittee of the National Committee for Clinical Laboratory Standards (NCCLS) are an important advance in standardization of in vitro antifungal susceptibility methodology. In order to further understand the relationship between NCCLS methodology and antifungal therapeutic response, we studied the potential correlation between in vitro susceptibility to fluconazole and in vivo response in a rabbit model of fluconazole-resistant OPEC. MICs of fluconazole were determined by NCCLS methods. Three fluconazole-susceptible (FS) (MIC, /=64 microgram/ml) isolates of Candida albicans from prospectively monitored HIV-infected children with OPEC were studied. FR isolates were recovered from children with severe OPEC refractory to fluconazole, and FS isolates were recovered from those with mucosal candidiasis responsive to fluconazole. Fluconazole at 2 mg/kg of body weight/day was administered to infected animals for 7 days. The concentrations of fluconazole in plasma were maintained above the MICs for FS isolates throughout the dosing interval. Fluconazole concentrations in the esophagus were greater than or equal to those in plasma. Rabbits infected with FS isolates and treated with fluconazole had significant reductions in oral mucosal quantitative cultures (P < 0.001) and tissue burden of C. albicans in tongue, soft palate, and esophagus (P < 0.001). In comparison, rabbits infected with FR isolates were unresponsive to fluconazole and had no reduction in oral mucosal quantitative cultures or tissue burden of C. albicans versus untreated controls. We conclude that there is a strong correlation between in vitro

  2. Evaluation of Candida species and antifungal susceptibilities among children with invasive candidiasis

    PubMed Central

    Sütçü, Murat; Acar, Manolya; Genç, Gonca Erköse; Kökçü, İlknur; Aktürk, Hacer; Atay, Gürkan; Törun, Selda Hançerli; Salman, Nuran; Erturan, Zayre; Somer, Ayper

    2017-01-01

    Aim Non-albicans Candida species and resistant microorganisms have been more commonly isolated in invasive candidiasis in recent years. The aim of this study was to evaluate the distrubution of Candida spp and antifungal resistance in our clinic. Material and Methods Fifty-four Candida isolates and antifungal susceptibility results obtained from patients diagnosed as having invasive candidiasis between December 2012 and June 2016 were included. Clinical and laboratory data were retrospectively analyzed. E-test method was used in order to determine antifungal susceptibilities of Candida spp for amphotericin B, fluconazole, voriconazole, ketoconazole, itraconazole, anidulafungin, caspofungin, and flucytosine. Results The clinical diagnoses of the patients were candidemia (n=27, 50%), catheter-related blood stream infection (n=1, 1.8%), urinary tract infection (n=13, 24%), surgical site infection (n=4, 7.4%), intraabdominal infection (n=3, 5.5%), empyema (n=2, 3.7%), and pneumonia (n=4, 7.4%). The most common isolated agent was C. albicans (n=27, 50%) and the others were C. parapsilosis (n=13, 24%), C. tropicalis (n=6, 11.1%), C. glabrata (n=3, 5.6%), C. lusitaniae (n=2, 3.7%), and unspecified Candida spp. (n=3, 5.6%). Fluconazole resistance was 7.4% among all isolates. Resistance against itraconazole, ketoconazole, anidulafungin, voriconazole and caspofungin were 33.3%, 12.5%, 11.1%, 5%, and 2.5%, respectively. Isolates presented intermediate resistance against itraconazole (41.7%), voriconazole (5.6%), and amphotericin B (3.7%) to varying extents. All of the isolates were susceptible to flucytosine. Conclusions In our clinic, C. albicans and non-albicans Candida species were equally distributed and antifungal susceptibilities against major antifungal agents such as fluconazole, amphotericin B, and caspofungin were found considerably high. PMID:29062248

  3. Synergistic Fungistatic Effects of Lactoferrin in Combination with Antifungal Drugs against Clinical Candida Isolates

    PubMed Central

    Kuipers, M. E.; de Vries, H. G.; Eikelboom, M. C.; Meijer, D. K. F.; Swart, P. J.

    1999-01-01

    Because of the rising incidence of failures in the treatment of oropharyngeal candidosis in the case of severely immunosuppressed patients (mostly human immunodeficiency virus [HIV]-infected patients), there is need for the development of new, more effective agents and/or compounds that support the activity of the common antifungal agents. Since lactoferrin is one of the nonspecific host defense factors present in saliva that exhibit antifungal activity, we studied the antifungal effects of human, bovine, and iron-depleted lactoferrin in combination with fluconazole, amphotericin B, and 5-fluorocytosine in vitro against clinical isolates of Candida species. Distinct antifungal activities of lactoferrin were observed against clinical isolates of Candida. The MICs generally were determined to be in the range of 0.5 to 100 mg · ml−1. Interestingly, in the combination experiments we observed pronounced cooperative activity against the growth of Candida by using lactoferrin and the three antifungals tested. Only in a limited concentration range was minor antagonism detected. The use of lactoferrin and fluconazole appeared to be the most successful combination. Significant reductions in the minimal effective concentrations of fluconazole were found when it was combined with a relatively low lactoferrin concentration (1 mg/ml). Such combinations still resulted in complete growth inhibition, while synergy of up to 50% against several Candida species was observed. It is concluded that the combined use of lactoferrin and antifungals against severe infections with Candida is an attractive therapeutic option. Since fluconazole-resistant Candida species have frequently been reported, especially in HIV-infected patients, the addition of lactoferrin to the existing fluconazole therapy could postpone the occurrence of species resistance against fluconazole. Clinical studies to further elucidate the potential utility of this combination therapy have been initiated. PMID:10543740

  4. Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates.

    PubMed

    Kuipers, M E; de Vries, H G; Eikelboom, M C; Meijer, D K; Swart, P J

    1999-11-01

    Because of the rising incidence of failures in the treatment of oropharyngeal candidosis in the case of severely immunosuppressed patients (mostly human immunodeficiency virus [HIV]-infected patients), there is need for the development of new, more effective agents and/or compounds that support the activity of the common antifungal agents. Since lactoferrin is one of the nonspecific host defense factors present in saliva that exhibit antifungal activity, we studied the antifungal effects of human, bovine, and iron-depleted lactoferrin in combination with fluconazole, amphotericin B, and 5-fluorocytosine in vitro against clinical isolates of Candida species. Distinct antifungal activities of lactoferrin were observed against clinical isolates of Candida. The MICs generally were determined to be in the range of 0.5 to 100 mg. ml(-1). Interestingly, in the combination experiments we observed pronounced cooperative activity against the growth of Candida by using lactoferrin and the three antifungals tested. Only in a limited concentration range was minor antagonism detected. The use of lactoferrin and fluconazole appeared to be the most successful combination. Significant reductions in the minimal effective concentrations of fluconazole were found when it was combined with a relatively low lactoferrin concentration (1 mg/ml). Such combinations still resulted in complete growth inhibition, while synergy of up to 50% against several Candida species was observed. It is concluded that the combined use of lactoferrin and antifungals against severe infections with Candida is an attractive therapeutic option. Since fluconazole-resistant Candida species have frequently been reported, especially in HIV-infected patients, the addition of lactoferrin to the existing fluconazole therapy could postpone the occurrence of species resistance against fluconazole. Clinical studies to further elucidate the potential utility of this combination therapy have been initiated.

  5. Ebselen exerts antifungal activity by regulating glutathione (GSH) and reactive oxygen species (ROS) production in fungal cells.

    PubMed

    Thangamani, Shankar; Eldesouky, Hassan E; Mohammad, Haroon; Pascuzzi, Pete E; Avramova, Larisa; Hazbun, Tony R; Seleem, Mohamed N

    2017-01-01

    Ebselen, an organoselenium compound and a clinically safe molecule has been reported to possess potent antifungal activity, but its antifungal mechanism of action and in vivo antifungal activity remain unclear. The antifungal effect of ebselen was tested against Candida albicans, C. glabrata, C. tropicalis, C. parapsilosis, Cryptococcus neoformans, and C. gattii clinical isolates. Chemogenomic profiling and biochemical assays were employed to identify the antifungal target of ebselen. Ebselen's antifungal activity in vivo was investigated in a Caenorhabditis elegans animal model. Ebselen exhibits potent antifungal activity against both Candida spp. and Cryptococcus spp., at concentrations ranging from 0.5 to 2μg/ml. Ebselen rapidly eradicates a high fungal inoculum within 2h of treatment. Investigation of the drug's antifungal mechanism of action indicates that ebselen depletes intracellular glutathione (GSH) levels, leading to increased production of reactive oxygen species (ROS), and thereby disturbs the redox homeostasis in fungal cells. Examination of ebselen's in vivo antifungal activity in two Caenorhabditis elegans models of infection demonstrate that ebselen is superior to conventional antifungal drugs (fluconazole, flucytosine and amphotericin) in reducing Candida and Cryptococcus fungal load. Ebselen possesses potent antifungal activity against clinically relevant isolates of both Candida and Cryptococcus by regulating GSH and ROS production. The potent in vivo antifungal activity of ebselen supports further investigation for repurposing it for use as an antifungal agent. The present study shows that ebselen targets glutathione and also support that glutathione as a potential target for antifungal drug development. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Antifungal activity of essential oils of Croton species from the Brazilian Caatinga biome.

    PubMed

    Fontenelle, R O S; Morais, S M; Brito, E H S; Brilhante, R S N; Cordeiro, R A; Nascimento, N R F; Kerntopf, M R; Sidrim, J J C; Rocha, M F G

    2008-05-01

    To find new antifungal agents among essential oils from Brazilian Croton species. Plant leaves were steam distilled and the obtained essential oils were analyzed by gas chromatography/mass spectroscopy. The main constituents were estragole and anethole for Croton zehntneri, methyl-eugenol and bicyclogermacrene for Croton nepetaefolius and spathulenol and bicyclogermacrene for Croton argyrophylloides. The antifungal activity of essential oils was evaluated against Candida albicans, Candida tropicalis and Microsporum canis by the agar-well diffusion method and the minimum inhibitory concentration (MIC) by the broth microdilution method. Essential oils of Croton species demonstrated better activity against M. canis. Among the three plants C. argyrophylloides showed the best results, with MIC ranging from 9 to 19 microg ml(-1). The acute administration of the essential oil up to 3 g kg(-1) by the oral route to mice was devoid of overt toxicity. The studied essential oils are active in vitro against the dermatophyte M. canis and present relative lack of acute toxicity in vivo. Because of its antifungal activity and low toxicity, the essential oils of studied Croton species are promising sources for new phytotherapeutic agents to treat dermatophytosis.

  7. Antifungal and antioxidant activities of mature leaves of Myrcia splendens (Sw.) DC.

    PubMed

    Pontes, F C; Abdalla, V C P; Imatomi, M; Fuentes, L F G; Gualtieri, S C J

    2018-05-07

    In recent years, natural products with antifungal and antioxidant activities are being increasingly researched for a more sustainable alternative to the chemicals currently used for the same purpose. The plant pathogenic fungus Alternaria alternata is a causative agent of diseases in citrus, leading to huge economic losses. Antioxidants are important for the production of medicines for various diseases that may be related to the presence of free radicals, such as cancer, and in the cosmetic industry as an anti-aging agent and the food industry as preservatives. This study evaluated the antifungal and antioxidant potential of extracts of mature leaves of Myrcia splendens, a tree species that occurs in the Brazilian Cerrado. The antioxidant potential was analyzed by an assay of 1,1-diphenyl-2-picrylhydrazyl radical-scavenging method, and the antifungal activity was assessed through the evaluation of mycelial growth. Majority of the extracts exhibited a strong antioxidant activity, especially the acetonic extract (4A). The antioxidant activity may be related to the presence of phenolic compounds. However, the extracts showed no inhibitory activity of mycelial growth of the fungus tested, with the exception of dichloromethanic extract (2B), which had an inhibitory effect (10.2%) at the end of testing.

  8. Antifungal susceptibility testing of Malassezia yeast: comparison of two different methodologies.

    PubMed

    Rojas, Florencia D; Córdoba, Susana B; de Los Ángeles Sosa, María; Zalazar, Laura C; Fernández, Mariana S; Cattana, María E; Alegre, Liliana R; Carrillo-Muñoz, Alfonso J; Giusiano, Gustavo E

    2017-02-01

    All Malassezia species are lipophilic; thus, modifications are required in susceptibility testing methods to ensure their growth. Antifungal susceptibility of Malassezia species using agar and broth dilution methods has been studied. Currently, few tests using disc diffusion methods are being performed. The aim was to evaluate the in vitro susceptibility of Malassezia yeast against antifungal agents using broth microdilution and disc diffusion methods, then to compare both methodologies. Fifty Malassezia isolates were studied. Microdilution method was performed as described in reference document and agar diffusion test was performed using antifungal tablets and discs. To support growth, culture media were supplemented. To correlate methods, linear regression analysis and categorical agreement was determined. The strongest linear association was observed for fluconazole and miconazole. The highest agreement between both methods was observed for itraconazole and voriconazole and the lowest for amphotericin B and fluconazole. Although modifications made to disc diffusion method allowed to obtain susceptibility data for Malassezia yeast, variables cannot be associated through a linear correlation model, indicating that inhibition zone values cannot predict MIC value. According to the results, disc diffusion assay may not represent an alternative to determine antifungal susceptibility of Malassezia yeast. © 2016 Blackwell Verlag GmbH.

  9. Microscopic Evaluation, Molecular Identification, Antifungal Susceptibility, and Clinical Outcomes in Fusarium, Aspergillus and, Dematiaceous Keratitis

    PubMed Central

    Gajjar, Devarshi U.; Pal, Anuradha K.; Ghodadra, Bharat K.; Vasavada, Abhay R.

    2013-01-01

    Purpose. Fusarium, Aspergillus, and Dematiaceous are the most common fungal species causing keratitis in tropical countries. Herein we report a prospective study on fungal keratitis caused by these three fungal species. Methodology. A prospective investigation was undertaken to evaluate eyes with presumed fungal keratitis. All the fungal isolates (n = 73) obtained from keratitis infections were identified using morphological and microscopic characters. Molecular identification using sequencing of the ITS region and antifungal susceptibility tests using microdilution method were done. The final clinical outcome was evaluated in terms of the time taken for resolution of keratitis and the final visual outcome. The results were analyzed after segregating the cases into three groups, namely, Fusarium, Aspergillus, and Dematiaceous keratitis. Results. Diagnosis of fungal keratitis was established in 73 (35.9%) cases out of 208 cases. The spectra of fungi isolated were Fusarium spp. (26.6%), Aspergillus spp. (21.6%), and Dematiaceous fungi (11.6%). The sequence of the ITS region could identify the Fusarium and Aspergillus species at the species complex level, and the Dematiaceous isolates were accurately identified. Using antifungal agents such as fluconazole, natamycin, amphotericin B, and itraconazole, the minimum inhibitory concentrations (MICs) for Fusarium spp. were >32 μg/mL, 4–8 μg/mL, 0.5–1 μg/mL, and >32 μg/mL, respectively. Antifungal susceptibility data showed that Curvularia spp. was highly resistant to all the antifungal agents. Overall, natamycin and amphotericin B were found to be the most effective antifungal agents. The comparative clinical outcomes in all cases showed that the healing response in terms of visual acuity of the Dematiaceous group was significantly good when compared with the Fusarium and Aspergillus groups (P < 0.05). The time required for healing in the Fusarium group was statistically significantly less when compared with

  10. Azole-resistant Aspergillus fumigatus harboring TR34/L98H, TR46/Y121F/T289A and TR53 mutations related to flower fields in Colombia

    NASA Astrophysics Data System (ADS)

    Alvarez-Moreno, Carlos; Lavergne, Rose-Anne; Hagen, Ferry; Morio, Florent; Meis, Jacques F.; Le Pape, Patrice

    2017-03-01

    Resistance to triazoles in Aspergillus fumigatus has been reported in azole-naive patients in Europe, Asia, Australia and North America. This resistance has been linked to fungicide-driven mutations in the cyp51A gene and its promoter region. We investigated the presence of environmental azole-resistant A. fumigatus strains related to the use of azole fungicides in Colombia. Soil samples were collected from flower beds, flower fields and public gardens from the outskirts, suburbs and city centre of Bogotá. Out of the 86 soil samples taken, 17 (19.8%) grew A. fumigatus of whom eight (9.3%) contained 40 strains able to grow on azole-containing itraconazole and/or voriconazole supplemented media. All but one triazole-resistant strains were isolated from soil samples collected from flower fields and flower beds (39/40). Importantly, the majority had the TR46/Y121F/T289A, TR34/L98H, and TR53 molecular resistance mechanisms and one azole resistant strain had a wild-type cyp51A gene. Soil samples from flower fields and beds contained 4 azole fungicides (penconazole, difenoconazole, tetraconazole and tebuconazole) above the limit of detection. Our findings underline the need for extensive investigations to determine azole-resistant A. fumigatus prevalence in both clinical and environmental samples in other regions of Latin America.

  11. Azole-resistant Aspergillus fumigatus harboring TR34/L98H, TR46/Y121F/T289A and TR53 mutations related to flower fields in Colombia.

    PubMed

    Alvarez-Moreno, Carlos; Lavergne, Rose-Anne; Hagen, Ferry; Morio, Florent; Meis, Jacques F; Le Pape, Patrice

    2017-03-30

    Resistance to triazoles in Aspergillus fumigatus has been reported in azole-naive patients in Europe, Asia, Australia and North America. This resistance has been linked to fungicide-driven mutations in the cyp51A gene and its promoter region. We investigated the presence of environmental azole-resistant A. fumigatus strains related to the use of azole fungicides in Colombia. Soil samples were collected from flower beds, flower fields and public gardens from the outskirts, suburbs and city centre of Bogotá. Out of the 86 soil samples taken, 17 (19.8%) grew A. fumigatus of whom eight (9.3%) contained 40 strains able to grow on azole-containing itraconazole and/or voriconazole supplemented media. All but one triazole-resistant strains were isolated from soil samples collected from flower fields and flower beds (39/40). Importantly, the majority had the TR 46 /Y121F/T289A, TR 34 /L98H, and TR 53 molecular resistance mechanisms and one azole resistant strain had a wild-type cyp51A gene. Soil samples from flower fields and beds contained 4 azole fungicides (penconazole, difenoconazole, tetraconazole and tebuconazole) above the limit of detection. Our findings underline the need for extensive investigations to determine azole-resistant A. fumigatus prevalence in both clinical and environmental samples in other regions of Latin America.

  12. Biofilms and Antifungal Susceptibility Testing.

    PubMed

    Simitsopoulou, Maria; Chatzimoschou, Athanasios; Roilides, Emmanuel

    2016-01-01

    Yeasts and filamentous fungi both exist as single cells and hyphal forms, two morphologies used by most fungal organisms to create a complex multilayered biofilm structure. In this chapter we describe the most widely used assays for the determination of biofilm production and assessment of susceptibility of biofilms to antifungal agents or host phagocytes as various methods, the most frequent of which are staining, confocal laser scanning microscopy, quantification of extracellular DNA and protein associated with extracellular matrix and XTT metabolic reduction assay. Pathway-focused biofilm gene expression profiling is assessed by real-time reverse transcriptase polymerase chain reaction.

  13. Genetic diversity and antifungal susceptibility of Fusarium isolates in onychomycosis.

    PubMed

    Rosa, Priscila D; Heidrich, Daiane; Corrêa, Carolina; Scroferneker, Maria Lúcia; Vettorato, Gerson; Fuentefria, Alexandre M; Goldani, Luciano Z

    2017-09-01

    Fusarium species have emerged as an important human pathogen in skin disease, onychomycosis, keratitis and invasive disease. Onychomycosis caused by Fusarium spp. The infection has been increasingly described in the immunocompetent and immunosuppressed hosts. Considering onychomycosis is a difficult to treat infection, and little is known about the genetic variability and susceptibility pattern of Fusarium spp., further studies are necessary to understand the pathogenesis and better to define the appropriate antifungal treatment for this infection. Accordingly, the objective of this study was to describe the in vitro susceptibility to different antifungal agents and the genetic diversity of 35 Fusarium isolated from patients with onychomycosis. Fusarium spp. were isolated predominantly from female Caucasians, and the most frequent anatomical location was the nail of the hallux. Results revealed that 25 (71.4%) of isolates belonged to the Fusarium solani species complex, followed by 10 (28.5%) isolates from the Fusarium oxysporum species complex. Noteworthy, the authors report the first case of Neocosmospora rubicola isolated from a patient with onychomycosis. Amphotericin B was the most effective antifungal agent against the majority of isolates (60%, MIC ≤4 μg/mL), followed by voriconazole (34.2%, MIC ≤4 μg/mL). In general, Fusarium species presented MIC values >64 μg/mL for fluconazole, itraconazole and terbinafine. Accurate pathogen identification, characterisation and susceptibility testing provide a better understanding of pathogenesis of Fusarium in onychomycosis. © 2017 Blackwell Verlag GmbH.

  14. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment.

    PubMed

    Arendrup, Maiken Cavling; Patterson, Thomas F

    2017-08-15

    Invasive Candida infections remain an important cause of morbidity and mortality, especially in hospitalized and immunocompromised or critically ill patients. A limited number of antifungal agents from only a few drug classes are available to treat patients with these serious infections. Resistance can be either intrinsic or acquired. Resistance mechanisms are not exchanged between Candida; thus, acquired resistance either emerges in response to an antifungal selection pressure in the individual patient or, more rarely, occur due to horizontal transmission of resistant strains between patients. Although multidrug resistance is uncommon, increasing reports of multidrug resistance to the azoles, echinocandins, and polyenes have occurred in several Candida species, most notably Candida glabrata and more recently Candida auris. Drivers are overall antifungal use, subtherapeutic drug levels at sites of infection/colonization, drug sequestration in the biofilm matrix, and, in the setting of outbreaks, suboptimal infection control. Moreover, recent research suggests that DNA mismatch repair gene mutations may facilitate acquisition of resistance mutations in C. glabrata specifically. Diagnosis of antifungal-resistant Candida infections is critical to the successful management of patients with these infections. Reduction of unnecessary use of antifungals via antifungal stewardship is critical to limit multidrug resistance emergence. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  15. Sphingolipids as targets for treatment of fungal infections

    PubMed Central

    Rollin-Pinheiro, Rodrigo; Singh, Ashutosh; Barreto-Bergter, Eliana; Del Poeta, Maurizio

    2016-01-01

    Invasive fungal infections have significantly increased in the last few decades. Three classes of drugs are commonly used to treat these infections: polyenes, azoles and echinocandins. Unfortunately each of these drugs has drawbacks; polyenes are toxic, resistance against azoles is emerging and echinocandins have narrow spectrum of activity. Thus, the development of new antifungals is urgently needed. In this context, fungal sphingolipids have emerged as a potential target for new antifungals, because their biosynthesis in fungi is structurally different than in mammals. Besides, some fungal sphingolipids play an important role in the regulation of virulence in a variety of fungi. This review aims to highlight the diverse strategies that could be used to block the synthesis or/and function of fungal sphingolipids. PMID:27502288

  16. Antifungal prescribing pattern and attitude towards the treatment of oral candidiasis among dentists in Jordan.

    PubMed

    Al-Shayyab, Mohammad H; Abu-Hammad, Osama A; Al-Omiri, Mahmoud K; Dar-Odeh, Najla S

    2015-08-01

    The aim of this study was to evaluate the attitude of Jordanian dentists towards the treatment of oral candidiasis and their current antifungal prescribing habits, shedding more light on the possible influence of their socio-professional factors on the pattern of prescribing and practice. A structured validated questionnaire was developed and tested; it was then emailed to a random sample of 600 Jordanian dental practitioners during the period of this cross-sectional survey. The questionnaire recorded practitioners' personal details and their attitude and prescribing of antifungal therapy for oral candidiasis. Statistical significance was based on probability values of <0.05 and was measured using the chi-square and Fisher's exact tests. Multiple logistic regression analysis was used to analyse the influence of respondents' socio-professional factors on their attitude towards oral candidiasis. Of the 423 questionnaires returned, only 330 were included. The attitude of respondents was significantly influenced by their experience [odds ratio (OR) = 0.14; P < 0.001] and workplace (OR = 4.70; P < 0.001). Nystatin was the most commonly prescribed antifungal agent (78.2%), followed by miconazole (62.4%), which was prescribed for topical use. Systemic antifungals were prescribed by 21.2% of respondents, with a significant (P < 0.05) association with the country in which their qualification was obtained. The attitude towards the treatment of oral candidiasis is much better among the least-experienced dentists working in private practice. Nystatin and miconazole are the most popular choices of antifungal agents among Jordanian dentists. © 2015 FDI World Dental Federation.

  17. Five-year National Surveillance of Invasive Candidiasis: Species Distribution and Azole Susceptibility from the China Hospital Invasive Fungal Surveillance Net (CHIF-NET) Study.

    PubMed

    Xiao, Meng; Sun, Zi-Yong; Kang, Mei; Guo, Da-Wen; Liao, Kang; Chen, Sharon C-A; Kong, Fanrong; Fan, Xin; Cheng, Jing-Wei; Hou, Xin; Zhou, Meng-Lan; Li, Ying; Yu, Shu-Ying; Huang, Jing-Jing; Wang, He; Xu, Ying-Chun

    2018-05-09

    Data on the epidemiology of invasive candidiasis (IC) and antifungal susceptibility of Candida isolates in China are still limited. Here we report surveillance for IC from the China Hospital Invasive Fungal Surveillance Net (CHIF-NET) Study. Sixty-five tertiary hospitals collected 8,829 Candida isolates from August 1, 2009 to July 31, 2014. Matrix-assisted laser desorption/ionization -time of flight mass spectrometry supplemented by rDNA sequencing was used to define species, and fluconazole and voriconazole susceptibilities determined by the Clinical and Laboratory Standards Institute disk diffusion method. A total of 32 Candida species were identified. C. albicans was the most common species (44.9%) followed by C. parapsilosis complex (20.0%), C. tropicalis (17.2%) and C. glabrata complex (10.8%), with other species comprising <3%. However, in candidemia, the proportion of cases caused by C. albicans was only 32.3%. C. albicans and C. parapsilosis complex isolates were susceptible to fluconazole and voriconazole (<6% resistance), while fluconazole- and azole cross-resistant rates were high in C. tropicalis (13.3% and 12.9%), C. glabrata complex (18.7% and 14%) and uncommon Candida species (44.1% and 10.3%) isolates. Moreover, from year 1 to 5 of the study, there was a significant increase in resistant rates amongst C. glabrata complex isolates to fluconazole (12.2% to 24.0%), and amongst C. tropicalis isolates to both fluconazole (5.7% to 21.0%) and voriconazole (5.7% to 21.4%) (all P<0.01). Geographic variations in causative species and susceptibilities were noted. Our findings indicated that antifungal resistance have become noteworthy in China, and enhanced surveillance is warranted. Copyright © 2018 American Society for Microbiology.

  18. Isolation, characterization and antifungal docking studies of wortmannin isolated from Penicillium radicum

    PubMed Central

    Singh, Vineeta; Praveen, Vandana; Tripathi, Divya; Haque, Shafiul; Somvanshi, Pallavi; Katti, S. B.; Tripathi, C. K. M.

    2015-01-01

    During the search for a potent antifungal drug, a cell-permeable metabolite was isolated from a soil isolate taxonomically identified as Penicillium radicum. The strain was found to be a potent antifungal agent. Production conditions of the active compound were optimized and the active compound was isolated, purified, characterized and identified as a phosphoinositide 3-kinase (PI3K) inhibitor, commonly known as wortmannin (Wtmn). This is very first time we are reporting the production of Wtmn from P. radicum. In addition to its previously discovered anticancer properties, the broad spectrum antifungal property of Wtmn was re-confirmed using various fungal strains. Virtual screening was performed through molecular docking studies against potential antifungal targets, and it was found that Wtmn was predicted to impede the actions of these targets more efficiently than known antifungal compounds such as voriconazole and nikkomycin i.e. 1) mevalonate-5-diphosphate decarboxylase (1FI4), responsible for sterol/isoprenoid biosynthesis; 2) exocyst complex component SEC3 (3A58) where Rho- and phosphoinositide-dependent localization is present and 3) Kre2p/Mnt1p a Golgi alpha1,2-mannosyltransferase (1S4N) involved in the biosynthesis of yeast cell wall glycoproteins). We conclude that Wtmn produced from P. radicum is a promising lead compound which could be potentially used as an efficient antifungal drug in the near future after appropriate structural modifications to reduce toxicity and improve stability. PMID:26159770

  19. Synthesis and antifungal evaluation of (1,2,3-triazol-4-yl)methyl nicotinate chitosan.

    PubMed

    Qin, Yukun; Liu, Song; Xing, Ronge; Li, Kecheng; Yu, Huahua; Li, Pengcheng

    2013-10-01

    With an aim to discover novel chitosan derivatives with significant activities against crop-threatening fungi, (1,2,3-triazol-4-yl)methyl nicotinate chitosan (TAMNCS) was prepared via azide-alkyne click reaction. Its structure was characterized by FT-IR, (1)H NMR, elemental analysis, DSC, and SEM. In vitro antifungal properties of TAMNCS against Rhizoctonia solani Kühn (R. solani), Stemphylium solani weber (S. solani), and Alternaria porri (A. porri) were studied at the concentrations ranged from 0.25 mg/mL to 1.0 mg/mL. Experiments conducted displayed the derivative had obviously enhanced antifungal activity after chemical modification compared with original chitosan. Moreover, it was shown that TAMNCS can 94.2% inhibit growth of A. porri at 1.0 mg/mL, while dose at which the fungicide triadimefon had lower inhibitory index (62.2%). The primary antifungal results described here indicate this derivative may be a promising candidate as an antifungal agent. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Training should be the first step toward an antifungal stewardship program.

    PubMed

    Valerio, Maricela; Muñoz, Patricia; Rodríguez-González, Carmen; Sanjurjo, María; Guinea, Jesús; Bouza, Emilio

    2015-04-01

    The frequency of use of systemic antifungal agents has increased significantly in most tertiary centers. However, antifungal stewardship has received very little attention. The objective of this article was to assess the knowledge of prescribing physicians in our institution as a first step in the development of an antifungal stewardship program. Attending physicians from the departments that prescribe most antifungals were invited to complete a questionnaire based on current guidelines on diagnosis and therapy of invasive candidiasis and invasive aspergillosis (IA). The survey was completed by 60.8% (200/329) of the physicians who were invited to participate. The physicians belonged to the following departments: medical (60%), pediatric (19%), intensive care (15.5%), and surgical (5.5%). The mean (±SD) score of correct responses was 5.16±1.73. In the case of candidiasis, only 55% of the physicians clearly distinguished between colonization and infection, and 17.5% knew the local rate of fluconazole resistance. Thirty-three percent knew the accepted indications for antifungal prophylaxis, and 23% the indications for empirical therapy. However, most physicians knew which antifungals to choose when starting empirical therapy (73.5%). As for aspergillosis, most physicians (67%) could differentiate between colonization and infection, and 34.5% knew the diagnostic value of galactomannan. The radiological features of IA were well recognized by 64%, but only 31.5% were aware of the first line of treatment for IA, and 36% of the recommended duration of therapy. The usefulness of antifungal levels was known by 67%. This simple, easily completed questionnaire enabled us to identify which areas of our training strategy could be improved. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  1. Species diversity of Aspergillus section Versicolores in clinical samples and antifungal susceptibility.

    PubMed

    Siqueira, João Paulo Zen; Sutton, Deanna A; García, Dania; Gené, Josepa; Thomson, Pamela; Wiederhold, Nathan; Guarro, Josep

    2016-11-01

    Aspergillus section Versicolores includes species of clinical relevance and many others that have been poorly studied but are occasionally found in clinical samples. The aim of this study was to investigate, using a multilocus phylogenetic approach, the spectrum of species of the section Versicolores and to determine their in vitro antifungal susceptibility. The study was based on a set of 77 clinical isolates from different USA medical centres, which had been previously identified as belonging to this section. The genetic markers used were internal transcribed spacer (ITS), β-tubulin (BenA), calmodulin (CaM), and RNA polymerase II second largest subunit (RPB2), and the drugs tested, following the CLSI guidelines, were amphotericin B (AMB), itraconazole, posaconazole, voriconazole, anidulafungin, caspofungin, micafungin, terbinafine (TBF), and flucytosine (5FC). The most frequent species were Aspergillus sydowii (26 %), Aspergillus creber (22 %), and Aspergillus amoenus (18.2 %), followed by Aspergillus protuberus (13 %), Aspergillus jensenii (10.4 %), and Aspergillus tabacinus (5.2 %); while Aspergillus cvjetkovicii, Aspergillus fructus, Aspergillus puulaauensis, and Aspergillus versicolor were represented by only one isolate each (1.3 %). This is the first time that A. jensenii and A. puulaauensis have been reported from clinical samples. Considering the high number of isolates identified as belonging to this fungal group in this study, its clinical relevance should not be overlooked. Aspergillus versicolor, traditionally considered one of the most common species in this section in a clinical setting, was only rarely recovered in our study. The in vitro antifungal results showed that echinocandins and TBF were the most potent drugs, the azoles showed variable results, AMB was poorly active, and 5FC was the less active. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  2. Proteomic profiling of the antifungal drug response of Aspergillus fumigatus to voriconazole.

    PubMed

    Amarsaikhan, Nansalmaa; Albrecht-Eckardt, Daniela; Sasse, Christoph; Braus, Gerhard H; Ogel, Zumrut B; Kniemeyer, Olaf

    2017-10-01

    Antifungal resistance is an emerging problem and one of the reasons for treatment failure of invasive aspergillosis (IA). Voriconazole has become a standard therapeutic for the treatment of this often fatal infection. We studied the differentially expressed proteins as a response of Aspergillus fumigatus to voriconazole by employing the two-dimensional difference gel electrophoresis (DIGE) technique. Due to addition of drug, a total of 135 differentially synthesized proteins were identified by MALDI-TOF/TOF-mass spectrometry. In particular, the level of proteins involved in the general stress response and cell detoxification increased prominently. In contrast, cell metabolism and energy proteins were down-regulated, which suggests the cellular effort to maintain balance in energy utilization while trying to combat the cellular stress exerted by the drug. We detected several so-far uncharacterized proteins which may play a role in stress response and drug metabolism and which could be future targets for antifungal treatment. A mutant strain, which is deleted in the cross-pathway control gene cpcA, was treated with voriconazole to investigate the contribution of the general control of amino acid biosynthesis to drug resistance. We compared the mutant strain's protein expression profile with the wild-type strain. The absence of CpcA led to an increased resistance to voriconazole and a reduced activation of some general stress response proteins, while the transcript level of the triazole target gene erg11A (cyp51A) remained unchanged. In contrast, the sensitivity of strain ΔcpcA to terbinafine and amphotericin B was slightly increased. These findings imply a role of CpcA in the cellular stress response to azole drugs at the post transcriptional level. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Dimeric fluorescent energy transfer dyes comprising asymmetric cyanine azole-indolenine chromophores

    DOEpatents

    Glazer, Alexander N.; Benson, Scott C.

    1996-01-01

    Novel fluorescent DNA-staining dyes are provided combining asymmetric cyanine azole-indolenine dyes, which provide for strong DNA affinity, large Stokes shifts and emission in the red region of the spectrum. The dyes find particular application in gel electrophoresis and for labels which may be bound to a variety of compositions in a variety of contexts.

  4. Adhesive bonding of wood treated with ACQ and copper azole preservatives

    Treesearch

    Linda F. Lorenz; Charles Frihart

    2006-01-01

    Treated wood has generally been more difficult to bond than untreated wood for a variety of reasons. Alkaline copper quat (ACQ) and copper azole (CA-B), the most prominent substitutes for chromated copper arsenate (CCA), are difficult to bond consistently. Using a phenol-resorcinol- formaldehyde (PRF) adhesive formulated for bonding to CCA-treated wood, we examined the...

  5. Addition of DNase Improves the In Vitro Activity of Antifungal Drugs against Candida albicans Biofilms

    PubMed Central

    Martins, Margarida; Henriques, Mariana; Lopez-Ribot, José L.; Oliveira, Rosário

    2011-01-01

    SUMMARY Background Cells within Candida albicans biofilms display decreased susceptibility to most clinically used antifungal agents. We recently demonstrated that extracellular DNA (eDNA) plays an important role in biofilm integrity, as a component of the biofilm matrix. Objective To gain insight into the contributions of eDNA to C. albicans biofilms antifungal susceptibility by the investigation of the impact of the combined use of deoxyribonuclease I (DNase) and antifungals to treat biofilms. Methods C. albicans biofilms were formed using a simple and reproducible 96-well plate-based method. The activity of the combined use of 0.13 mg l−1 DNase and antifungals was estimated by the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) reduction assay, and total viable counts. Results and Conclusions Here we report the improved efficacy of amphotericin B when in combination with DNase against C. albicans biofilms, as assessed by XTT readings and viable counts. Furthermore, although DNase increased the efficacy of caspofungin in the reduction of mitochondrial activity, no changes were observed in terms of culturable cells. DNase did not affect biofilm cells susceptibility to fluconazole. This work suggests that agents that target processes affecting the biofilm structural integrity may have potential use as adjuvants of a catheter–lock therapy. PMID:21668524

  6. Prevalence of bacteria and fungi in athlete's foot of varying severity and response to topical antibacterial and antifungal therapies.

    PubMed

    Talwar, P; Kumar, B; Ayyagiri, A; Kaur, S

    1985-08-01

    Ninety-six patients with clinical evidence of interdigital lesions classified as mild, moderate and severe athlete's foot were investigated for bacterial and fungal populations in the interspaces. Gram-negative bacteria, which were not found in the toe spaces of 50 normal controls, were grown in increasing numbers and with increasing frequency as the symptoms progressed from mild to severe. Gram-positive bacteria were also isolated regularly and in increasing numbers commensurate with the severity of the disease. Similarly the isolation rates of dermatophytes and Candida species were higher in patients with moderate and severe disease compared to those with mild disease. Clinical and culture responses to topical applications with framycetin, tolnaftate, miconazole and clotrimazole were also studied. In some patients the prevalence of pathogenic fungi increased as bacterial numbers decreased. The pure antibacterial framycetin brought symptomatic relief, as did the purely anti-dermatophyte substance tolnaftate, but best results were seen with two azole compounds having mixed antibacterial and antifungal properties.

  7. Candida glabrata olecranon bursitis treated with bursectomy and intravenous caspofungin.

    PubMed

    Skedros, John G; Keenan, Kendra E; Trachtenberg, Joel D

    2013-01-01

    Orthopedic surgeons are becoming more involved in the care of patients with septic arthritis and bursitis caused by yeast species. This case report involves a middle-aged immunocompromised female who developed a Candida glabrata septic olecranon bursitis that developed after she received a corticosteroid injection in the olecranon bursa for presumed aseptic bursitis. Candida (Torulopsis) glabrata is the second most frequently isolated Candida species from the bloodstream in the United States. Increased use of fluconazole and other azole antifungal agents as a prophylactic treatment for recurrent Candida albicans infections in immunocompromised individuals is one reason why there appears to be increased resistance of C. glabrata and other nonalbicans Candida (NAC) species to fluconazole. In this patient, this infection was treated with surgery (bursectomy) and intravenous caspofungin, an echinocandin. This rare infectious etiology coupled with this intravenous antifungal treatment makes this case novel among cases of olecranon bursitis caused by yeasts.

  8. A Case Report of Penile Infection Caused by Fluconazole- and Terbinafine-Resistant Candida albicans.

    PubMed

    Hu, Yongxuan; Hu, Yanqing; Lu, Yan; Huang, Shiyun; Liu, Kangxing; Han, Xue; Mao, Zuhao; Wu, Zhong; Zhou, Xianyi

    2017-04-01

    Candida albicans is the most common pathogen that causes balanoposthitis. It often causes recurrence of symptoms probably due to its antifungal resistance. A significant number of balanitis Candida albicans isolates are resistant to azole and terbinafine antifungal agents in vitro. However, balanoposthitis caused by fluconazole- and terbinafine-resistant Candida albicans has rarely been reported. Here, we describe a case of a recurrent penile infection caused by fluconazole- and terbinafine-resistant Candida albicans, as well as the treatments administered to this patient. The isolate from the patient was tested for drug susceptibility in vitro. It was sensitive to itraconazole, voriconazole, clotrimazole and amphotericin B, but not to terbinafine and fluconazole. Thus, oral itraconazole was administrated to this patient with resistant Candida albicans penile infection. The symptoms were improved, and mycological examination result was negative. Follow-up treatment of this patient for 3 months showed no recurrence.

  9. Inhibitors of the Glyoxylate Cycle Enzyme ICL1 in Candida albicans for Potential Use as Antifungal Agents

    PubMed Central

    Cheah, Hong-Leong; Lim, Vuanghao; Sandai, Doblin

    2014-01-01

    Candida albicans is an opportunistic pathogen that causes candidiasis in humans. In recent years, metabolic pathways in C. albicans have been explored as potential antifungal targets to treat candidiasis. The glyoxylate cycle, which enables C. albicans to survive in nutrient-limited host niches and its. Key enzymes (e.g., isocitrate lyase (ICL1), are particularly attractive antifungal targets for C. albicans. In this study, we used a new screening approach that better reflects the physiological environment that C. albicans cells experience during infection to identify potential inhibitors of ICL. Three compounds (caffeic acid (CAFF), rosmarinic acid (ROS), and apigenin (API)) were found to have antifungal activity against C. albicans when tested under glucose-depleted conditions. We further confirmed the inhibitory potential of these compounds against ICL using the ICL enzyme assay. Lastly, we assessed the bioavailability and toxicity of these compounds using Lipinski's rule-of-five and ADMET analysis. PMID:24781056

  10. Efficacy of Oral E1210, a New Broad-Spectrum Antifungal with a Novel Mechanism of Action, in Murine Models of Candidiasis, Aspergillosis, and Fusariosis▿

    PubMed Central

    Hata, Katsura; Horii, Takaaki; Miyazaki, Mamiko; Watanabe, Nao-aki; Okubo, Miyuki; Sonoda, Jiro; Nakamoto, Kazutaka; Tanaka, Keigo; Shirotori, Syuji; Murai, Norio; Inoue, Satoshi; Matsukura, Masayuki; Abe, Shinya; Yoshimatsu, Kentaro; Asada, Makoto

    2011-01-01

    E1210 is a first-in-class, broad-spectrum antifungal with a novel mechanism of action—inhibition of fungal glycosylphosphatidylinositol biosynthesis. In this study, the efficacies of E1210 and reference antifungals were evaluated in murine models of oropharyngeal and disseminated candidiasis, pulmonary aspergillosis, and disseminated fusariosis. Oral E1210 demonstrated dose-dependent efficacy in infections caused by Candida species, Aspergillus spp., and Fusarium solani. In the treatment of oropharyngeal candidiasis, E1210 and fluconazole each caused a significantly greater reduction in the number of oral CFU than the control treatment (P < 0.05). In the disseminated candidiasis model, mice treated with E1210, fluconazole, caspofungin, or liposomal amphotericin B showed significantly higher survival rates than the control mice (P < 0.05). E1210 was also highly effective in treating disseminated candidiasis caused by azole-resistant Candida albicans or Candida tropicalis. A 24-h delay in treatment onset minimally affected the efficacy outcome of E1210 in the treatment of disseminated candidiasis. In the Aspergillus flavus pulmonary aspergillosis model, mice treated with E1210, voriconazole, or caspofungin showed significantly higher survival rates than the control mice (P < 0.05). E1210 was also effective in the treatment of Aspergillus fumigatus pulmonary aspergillosis. In contrast to many antifungals, E1210 was also effective against disseminated fusariosis caused by F. solani. In conclusion, E1210 demonstrated consistent efficacy in murine models of oropharyngeal and disseminated candidiasis, pulmonary aspergillosis, and disseminated fusariosis. These data suggest that further studies to determine E1210's potential for the treatment of disseminated fungal infections are indicated. PMID:21788462

  11. Efficacy of oral E1210, a new broad-spectrum antifungal with a novel mechanism of action, in murine models of candidiasis, aspergillosis, and fusariosis.

    PubMed

    Hata, Katsura; Horii, Takaaki; Miyazaki, Mamiko; Watanabe, Nao-Aki; Okubo, Miyuki; Sonoda, Jiro; Nakamoto, Kazutaka; Tanaka, Keigo; Shirotori, Syuji; Murai, Norio; Inoue, Satoshi; Matsukura, Masayuki; Abe, Shinya; Yoshimatsu, Kentaro; Asada, Makoto

    2011-10-01

    E1210 is a first-in-class, broad-spectrum antifungal with a novel mechanism of action-inhibition of fungal glycosylphosphatidylinositol biosynthesis. In this study, the efficacies of E1210 and reference antifungals were evaluated in murine models of oropharyngeal and disseminated candidiasis, pulmonary aspergillosis, and disseminated fusariosis. Oral E1210 demonstrated dose-dependent efficacy in infections caused by Candida species, Aspergillus spp., and Fusarium solani. In the treatment of oropharyngeal candidiasis, E1210 and fluconazole each caused a significantly greater reduction in the number of oral CFU than the control treatment (P < 0.05). In the disseminated candidiasis model, mice treated with E1210, fluconazole, caspofungin, or liposomal amphotericin B showed significantly higher survival rates than the control mice (P < 0.05). E1210 was also highly effective in treating disseminated candidiasis caused by azole-resistant Candida albicans or Candida tropicalis. A 24-h delay in treatment onset minimally affected the efficacy outcome of E1210 in the treatment of disseminated candidiasis. In the Aspergillus flavus pulmonary aspergillosis model, mice treated with E1210, voriconazole, or caspofungin showed significantly higher survival rates than the control mice (P < 0.05). E1210 was also effective in the treatment of Aspergillus fumigatus pulmonary aspergillosis. In contrast to many antifungals, E1210 was also effective against disseminated fusariosis caused by F. solani. In conclusion, E1210 demonstrated consistent efficacy in murine models of oropharyngeal and disseminated candidiasis, pulmonary aspergillosis, and disseminated fusariosis. These data suggest that further studies to determine E1210's potential for the treatment of disseminated fungal infections are indicated.

  12. Activities of Available and Investigational Antifungal Agents against Rhodotorula Species

    PubMed Central

    Diekema, D. J.; Petroelje, B.; Messer, S. A.; Hollis, R. J.; Pfaller, M. A

    2005-01-01

    Rhodotorula species are emerging pathogens in immunocompromised patients. We report the in vitro activities of eight antifungals against 64 Rhodotorula isolates collected in surveillance programs between 1987 and 2003. Rhodotorula strains are resistant in vitro to fluconazole (MIC at which 50% of the isolates tested are inhibited [MIC50], >128 μg/ml) and caspofungin (MIC50, >8 μg/ml). Amphotericin B (MIC50,1 μg/ml) and flucytosine (MIC50, 0.12 μg/ml) are both active in vitro, and the new and investigational triazoles all have some in vitro activity, with ravuconazole being the most active (MIC50, 0.25 μg/ml). PMID:15635020

  13. Successful management of chronic disseminated candidiasis in hematologic patients treated with high-dose liposomal amphotericin B: a retrospective study of the SEIFEM registry.

    PubMed

    Della Pepa, Roberta; Picardi, M; Sorà, F; Stamouli, M; Busca, A; Candoni, A; Delia, M; Fanci, R; Perriello, V; Zancanella, M; Nosari, A; Salutari, P; Marchesi, F; Pane, F; Pagano, L

    2016-09-01

    Chronic disseminated candidiasis (CDC) is a complication of Candida infection in immunocompromised patients, involving the liver and spleen, and rarely other organs. The aim of the study is to identify the best antifungal drug for hematologic immunocompromised patients with CDC. In this multicentric retrospective study, the charts of 20 patients with CDC following cytotoxic agent protocols for hematological malignancies, diagnosed from 2003 to 2013, were analyzed. The response to systemic antifungal therapy within 90 days from CDC diagnosis and the possible delay in chemotherapy plan, due to the infection, were evaluated. Six patients were treated with high-dose (HD; 5 mg/kg/daily) liposomal amphotericin B (L-AmB), whereas three received standard-dose (SD) L-AmB (3 mg/kg/daily). Azoles were given to six patients; the remaining five were treated with echinocandins. All patients treated with HD L-AmB (6/6-100 %) achieved complete resolution of CDC; one of them had to interrupt the chemotherapy program for the infection. In the SD L-AmB group, treatment failed in the 100 % of cases and one patient had to delay chemotherapy for the infection. Of the six patients who received azoles, two achieved complete resolution of the infection, four experienced treatment failure, and only three performed chemotherapy as planned. Echinocandins treatment resulted in complete resolution of the infection in 2/5 cases, partial response in 2/5 cases, and failure in one case. In this group, 3/5 patients completed chemotherapy as planned. This study shows that HD L-AmB was particularly effective against CDC in hematologic patients, allowing most patients to continue cytotoxic agent program.

  14. ERG2 and ERG24 Are Required for Normal Vacuolar Physiology as Well as Candida albicans Pathogenicity in a Murine Model of Disseminated but Not Vaginal Candidiasis

    PubMed Central

    Luna-Tapia, Arturo; Peters, Brian M.; Eberle, Karen E.; Kerns, Morgan E.; Foster, Timothy P.; Marrero, Luis; Noverr, Mairi C.; Fidel, Paul L.

    2015-01-01

    Several important classes of antifungal agents, including the azoles, act by blocking ergosterol biosynthesis. It was recently reported that the azoles cause massive disruption of the fungal vacuole in the prevalent human pathogen Candida albicans. This is significant because normal vacuolar function is required to support C. albicans pathogenicity. This study examined the impact of the morpholine antifungals, which inhibit later steps of ergosterol biosynthesis, on C. albicans vacuolar integrity. It was found that overexpression of either the ERG2 or ERG24 gene, encoding C-8 sterol isomerase or C-14 sterol reductase, respectively, suppressed C. albicans sensitivity to the morpholines. In addition, both erg2Δ/Δ and erg24Δ/Δ mutants were hypersensitive to the morpholines. These data are consistent with the antifungal activity of the morpholines depending upon the simultaneous inhibition of both Erg2p and Erg24p. The vacuoles within both erg2Δ/Δ and erg24Δ/Δ C. albicans strains exhibited an aberrant morphology and accumulated large quantities of the weak base quinacrine, indicating enhanced vacuolar acidification compared with that of control strains. Both erg mutants exhibited significant defects in polarized hyphal growth and were avirulent in a mouse model of disseminated candidiasis. Surprisingly, in a mouse model of vaginal candidiasis, both mutants colonized mice at high levels and induced a pathogenic response similar to that with the controls. Thus, while targeting Erg2p or Erg24p alone could provide a potentially efficacious therapy for disseminated candidiasis, it may not be an effective strategy to treat vaginal infections. The potential value of drugs targeting these enzymes as adjunctive therapies is discussed. PMID:26231054

  15. Inhibition of Propionibacterium acnes lipase activity by the antifungal agent ketoconazole.

    PubMed

    Unno, Mizuki; Cho, Otomi; Sugita, Takashi

    2017-01-01

    The common skin disease acne vulgaris is caused by Propionibacterium acnes. A lipase secreted by this microorganism metabolizes sebum and the resulting metabolites evoke inflammation in human skin. The antifungal drug ketoconazole inhibits P. acnes lipase activity. We previously showed that the drug also inhibits the growth of P. acnes. Thus, ketoconazole may serve as an alternative treatment for acne vulgaris, which is important because the number of antibiotic-resistant P. acnes strains has been increasing. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  16. Fungal infections of the eye--laboratory diagnosis and treatment.

    PubMed

    Nayak, N

    2008-03-01

    Infections of the eye give rise to severe ocular morbidity and blindness include keratitis, orbital cellulites, endophthalmitis and dacryocystitis. Corneal blindness, in developing countries is predominantly associated with infections. In India, nearly 30-35% of all culture positive infectious keratitis are caused fungi. Laboratory diagnosis mainly depends upon proper collection and transport of clinical specimens. In fungal keratitis, corneal scraping is the ideal sample, but occasionally corneal biopsy or anterior chamber aspirate may also be needed. Corneal scraping is usually by Kimura spatula, under a slit lamp examination, after anaesthetizing the cornea with topical anaesthetic like 0.4% proparcaine. Corneal biopsy is done by a minor trephining and AC aspirate using a sterile tuberculin syringe. In case of endophthalmitis, 150-200 ìl of aqueous humour is collected. Vitreous fluid (500-1000 ìl), however, is collected by pars plana vitrectomy onto sterile tuberculin syringe, the needle is then fixed to a sterile rubber bung after expelling air from the syringe. The collected sample is immediately transported to the laboratory. Swabs from the regurgitating lacrimnal sacs and wound aspirate/swabs are the ideal specimens for dacryocystitis and orbital cellulites, respectively. These samples are cultured onto SDA slants following standard procedures. The main draw back of culture is its long incubation time (5 to 14 days), though it is indispensable from the view point of the specificity. Direct examination (KOH wet mount, Gram's, Giemsa or calcofluor fluorescent staining methods) of the specimen, however, is quick and immensely helpful for ophthalmologist. The newer rapid methods, such as molecular techniques are also available and the management of patients can be according to the results obtained. With the advent of novel antifungal agents such as newer azoles and cell wall acting antifungals like echinocandins, the clinician has the wider option of selecting

  17. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi.

    PubMed

    Kim, Sang Woo; Jung, Jin Hee; Lamsal, Kabir; Kim, Yun Seok; Min, Ji Seon; Lee, Youn Su

    2012-03-01

    This research is concerned with the fungicidal properties of nano-size silver colloidal solution used as an agent for antifungal treatment of various plant pathogens. We used WA-CV-WA13B, WA-AT-WB13R, and WA-PR-WB13R silver nanoparticles (AgNPs) at concentrations of 10, 25, 50, and 100 ppm. Eighteen different plant pathogenic fungi were treated with these AgNPs on potato dextrose agar (PDA), malt extract agar, and corn meal agar plates. We calculated fungal inhibition in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. The results indicated that AgNPs possess antifungal properties against these plant pathogens at various levels. Treatment with WA-CV-WB13R AgNPs resulted in maximum inhibition of most fungi. Results also showed that the most significant inhibition of plant pathogenic fungi was observed on PDA and 100 ppm of AgNPs.

  18. Causative Agents of Aspergillosis Including Cryptic Aspergillus Species and A. fumigatus.

    PubMed

    Toyotome, Takahito

    2016-01-01

    Aspergillosis is an important deep mycosis. The causative agents are Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, and Aspergillus terreus, of which A. fumigatus is the most prevalent. Cryptic Aspergillus spp., which morphologically resemble representative species of each Aspergillus section, also cause aspergillosis. Most of the cryptic species reveal different susceptibility patterns and/or different secondary metabolite profiles, also called exometabolome in this manuscript, from those representative species. On the other hand, azole-resistant A. fumigatus strains in clinical specimens and in the environment have been reported. Therefore, it is imperative to precisely identify the species, including cryptic Aspergillus spp., and evaluate the susceptibility of isolates.In this manuscript, some of the causative cryptic Aspergillus spp. are briefly reviewed. In addition, the exometabolome of Aspergillus section Fumigati is described. Finally, azole resistance of A. fumigatus is also discussed, in reference to several studies from Japan.

  19. In Vitro Activity of Miltefosine against Candida albicans under Planktonic and Biofilm Growth Conditions and In Vivo Efficacy in a Murine Model of Oral Candidiasis

    PubMed Central

    Chaturvedi, Ashok K.; Rozental, Sonia

    2015-01-01

    The generation of a new antifungal against Candida albicans biofilms has become a major priority, since biofilm formation by this opportunistic pathogenic fungus is usually associated with an increased resistance to azole antifungal drugs and treatment failures. Miltefosine is an alkyl phospholipid with promising antifungal activity. Here, we report that, when tested under planktonic conditions, miltefosine displays potent in vitro activity against multiple fluconazole-susceptible and -resistant C. albicans clinical isolates, including isolates overexpressing efflux pumps and/or with well-characterized Erg11 mutations. Moreover, miltefosine inhibits C. albicans biofilm formation and displays activity against preformed biofilms. Serial passage experiments confirmed that miltefosine has a reduced potential to elicit resistance, and screening of a library of C. albicans transcription factor mutants provided additional insight into the activity of miltefosine against C. albicans growing under planktonic and biofilm conditions. Finally, we demonstrate the in vivo efficacy of topical treatment with miltefosine in the murine model of oropharyngeal candidiasis. Overall, our results confirm the potential of miltefosine as a promising antifungal drug candidate, in particular for the treatment of azole-resistant and biofilm-associated superficial candidiasis. PMID:26416861

  20. Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains.

    PubMed

    Cavaleiro, C; Pinto, E; Gonçalves, M J; Salgueiro, L

    2006-06-01

    The increasing resistance to antifungal compounds and the reduced number of available drugs led us to search therapeutic alternatives among aromatic plants and their essential oils, empirically used by antifungal proprieties. In this work the authors report on the antifungal activity of Juniperus essential oils (Juniperus communis ssp. alpina, J. oxycedrus ssp. oxycedrus and J. turbinata). Antifungal activity was evaluated by determination of MIC and MLC values, using a macrodilution method (NCCLS protocols), on clinical and type strains of Candida, Aspergillus and dermatophytes. The composition of the oils was ascertained by GC and GC/MS analysis. All essential oils inhibited test dermatophyte strains. The oil from leaves of J. oxycedrus ssp. oxycedrus is the most active, with MIC and MLC values ranging from 0.08-0.16 microl ml(-1) to 0.08-0.32 microl ml(-1), respectively. This oil is mainly composed of alpha-pinene (65.5%) and delta-3-carene (5.7%). J. oxycedrus ssp. oxycedrus leaf oil proved to be an emergent alternative as antifungal agent against dermatophyte strains. delta-3-Carene, was shown to be a fundamental compound for this activity. Results support that essential oils or some of their constituents may be useful in the clinical management of fungal infections, justifying future clinical trials to validate their use as therapeutic alternatives for dermatophytosis.

  1. The anti-Malassezia furfur activity in vitro and in experimental dermatitis of six imidazole antifungal agents: bifonazole, clotrimazole, flutrimazole, ketoconazole, miconazole and sertaconazole.

    PubMed

    Van Gerven, F; Odds, F C

    1995-01-01

    Bifonazole, clotrimazole, flutrimazole, ketoconazole, miconazole and sertaconazole were tested for their activity against 23 isolates of Malassezia furfur by agar dilution in vitro. Topical formulations of the same agents were evaluated for efficacy against M. furfur skin infections in guinea pigs in vivo. The most potent inhibitor in vitro was ketoconazole (geometric mean minimum inhibitory concentration 0.51 microgram ml-1), followed by bifonazole (8.1 micrograms ml-1), then miconazole (14 micrograms ml-1), clotrimazole (15 micrograms ml-1) and flutrimazole (16 micrograms ml-1), with sertaconazole the least active (52 micrograms ml-1). In animal experiments involving three consecutive days of topical treatments, bifonazole 1% cream, clotrimazole 1% cream, flutrimazole 1% and 2% creams, ketoconazole 2% cream and shampoo and miconazole 2% cream all reduced M. furfur dermatitis lesion severity below that of untreated control animals; however, sertaconazole 2% gel and cream showed no reduction in lesion severity below control. The results confirm that ketoconazole is a more potent inhibitor of M. furfur in vitro than other topical antifungal agents of its class and suggest that sertaconazole is the least effective of such agents among those tested.

  2. Essential oil of Algerian Eucalyptus citriodora: Chemical composition, antifungal activity.

    PubMed

    Tolba, H; Moghrani, H; Benelmouffok, A; Kellou, D; Maachi, R

    2015-12-01

    Essential oil of Eucalyptus citriodora is a natural product which has been attributed for various medicinal uses. In the present investigation, E. citriodora essential oil was used to evaluate its antifungal effect against medically important dermatophytes. Essential oil from the Algerian E. citriodora leaves was analyzed by GC and GC/MS. The antifungal effect of E. citriodora essential oil was evaluated against four dermatophytes: Microsporum canis, Microsporum gypseum, Trichophyton mentagrophytes, Trichophyton rubrum using disc diffusion method, disc volatilization method, and agar dilution method. The chemical composition of the oil revealed the presence of 22 compounds accounting for 95.27% of the oil. The dominant compounds were citronellal (69.77%), citronellol (10.63%) and isopulegol (4.66%). The disc diffusion method, MIC and MFC determination, indicated that E. citriodora essential oil had a higher antifungal potential against the tested strains with inhibition zone diameter which varied from (12 to 90mm) and MIC and MFC values ranged from (0.6 to 5μL/mL and 1.25 to 5μL/mL) respectively. The M. gypseum was the most resistant to the oil. The results of the present study indicated that E. citriodora essential oil may be used as a new antifungal agent recommended by the pharmaceutical industries. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Activation of Melanin Synthesis in Alternaria infectoria by Antifungal Drugs.

    PubMed

    Fernandes, Chantal; Prados-Rosales, Rafael; Silva, Branca M A; Nakouzi-Naranjo, Antonio; Zuzarte, Mónica; Chatterjee, Subhasish; Stark, Ruth E; Casadevall, Arturo; Gonçalves, Teresa

    2015-12-28

    The importance of Alternaria species fungi to human health ranges from their role as etiological agents of serious infections with poor prognoses in immunosuppressed individuals to their association with respiratory allergic diseases. The present work focuses on Alternaria infectoria, which was used as a model organism of the genus, and was designed to unravel melanin production in response to antifungals. After we characterized the pigment produced by A. infectoria, we studied the dynamics of 1,8-dihydroxynaphthalene (DHN)-melanin production during growth, the degree of melanization in response to antifungals, and how melanization affected susceptibility to several classes of therapeutic drugs. We demonstrate that A. infectoria increased melanin deposition in cell walls in response to nikkomycin Z, caspofungin, and itraconazole but not in response to fluconazole or amphotericin B. These results indicate that A. infectoria activates DHN-melanin synthesis in response to certain antifungal drugs, possibly as a protective mechanism against these drugs. Inhibition of DHN-melanin synthesis by pyroquilon resulted in a lower minimum effective concentration (MEC) of caspofungin and enhanced morphological changes (increased hyphal balloon size), characterized by thinner and less organized A. infectoria cell walls. In summary, A. infectoria synthesizes melanin in response to certain antifungal drugs, and its susceptibility is influenced by melanization, suggesting the therapeutic potential of drug combinations that affect melanin synthesis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Activation of Melanin Synthesis in Alternaria infectoria by Antifungal Drugs

    PubMed Central

    Fernandes, Chantal; Prados-Rosales, Rafael; Silva, Branca M. A.; Nakouzi-Naranjo, Antonio; Zuzarte, Mónica; Chatterjee, Subhasish; Stark, Ruth E.; Casadevall, Arturo

    2015-01-01

    The importance of Alternaria species fungi to human health ranges from their role as etiological agents of serious infections with poor prognoses in immunosuppressed individuals to their association with respiratory allergic diseases. The present work focuses on Alternaria infectoria, which was used as a model organism of the genus, and was designed to unravel melanin production in response to antifungals. After we characterized the pigment produced by A. infectoria, we studied the dynamics of 1,8-dihydroxynaphthalene (DHN)-melanin production during growth, the degree of melanization in response to antifungals, and how melanization affected susceptibility to several classes of therapeutic drugs. We demonstrate that A. infectoria increased melanin deposition in cell walls in response to nikkomycin Z, caspofungin, and itraconazole but not in response to fluconazole or amphotericin B. These results indicate that A. infectoria activates DHN-melanin synthesis in response to certain antifungal drugs, possibly as a protective mechanism against these drugs. Inhibition of DHN-melanin synthesis by pyroquilon resulted in a lower minimum effective concentration (MEC) of caspofungin and enhanced morphological changes (increased hyphal balloon size), characterized by thinner and less organized A. infectoria cell walls. In summary, A. infectoria synthesizes melanin in response to certain antifungal drugs, and its susceptibility is influenced by melanization, suggesting the therapeutic potential of drug combinations that affect melanin synthesis. PMID:26711773

  5. Essential Oils and Antifungal Activity

    PubMed Central

    Coppola, Raffaele; De Feo, Vincenzo

    2017-01-01

    Since ancient times, folk medicine and agro-food science have benefitted from the use of plant derivatives, such as essential oils, to combat different diseases, as well as to preserve food. In Nature, essential oils play a fundamental role in protecting the plant from biotic and abiotic attacks to which it may be subjected. Many researchers have analyzed in detail the modes of action of essential oils and most of their components. The purpose of this brief review is to describe the properties of essential oils, principally as antifungal agents, and their role in blocking cell communication mechanisms, fungal biofilm formation, and mycotoxin production. PMID:29099084

  6. Antifungal activity of low molecular weight chitosan against clinical isolates of Candida spp.

    PubMed

    Alburquenque, Claudio; Bucarey, Sergio A; Neira-Carrillo, Andrónico; Urzúa, Blanca; Hermosilla, Germán; Tapia, Cecilia V

    2010-12-01

    Chitosan is a natural polymer derived from chitin, a structural component of fungi, insects and shrimp, which exerts antimicrobial effects against bacteria and fungi. The aim of this study was to investigate the in vitro antifungal activity of low molecular weight chitosan (LMWC), and the potential synergy between chitosan and a currently used antifungal drug, fluconazole. The in vitro minimal inhibitory concentrations (MICs) of chitosan and fluconazole against 105 clinical Candida isolates were measured by the broth microdilution method. LMWC exhibited a significant antifungal activity, inhibiting over 89.9% of the clinical isolates examined (68.6% of which was completely inhibited). The species included several fluconazole-resistant strains and less susceptible species such as C. glabrata, which was inhibited at a concentration of 4.8 mg/l LMWC. Although some strains were susceptible at pH 7.0, a greater antifungal activity of LMWC was observed at pH 4.0. There was no evidence of a synergistic effect of the combination of LMWC and fluconazole at pH 7.0. This is the first report in which the antifungal activity of LMWC was investigated with clinical Candida strains. The use of LMWC as an antifungal compound opens new therapeutic perspectives, as the low toxicity of LMWC in humans supports its use in new applications in an environment of pH 4.0-4.5, such as a topical agent for vulvovaginal candidiasis.

  7. The role of drug efflux pumps in Malassezia pachydermatis and Malassezia furfur defence against azoles.

    PubMed

    Iatta, Roberta; Puttilli, Maria Rita; Immediato, Davide; Otranto, Domenico; Cafarchia, Claudia

    2017-03-01

    This study aims to evaluate the effect of efflux pump modulators (EPMs) on the minimal inhibitory concentration (MIC) of fluconazole (FLZ) and voriconazole (VOR) in Malassezia furfur and Malassezia pachydermatis. The in vitro efficacy of azoles, in combination with EPMs (ie haloperidol-HAL, promethazine-PTZ and cyclosporine A-CYS), against 21 M. furfur from bloodstream infection patients and 14 M. pachydermatis from the skin of dogs with dermatitis, was assessed using a broth microdilution chequerboard analysis. Data were analysed using the model-fractional inhibitory concentration index (FICI) method. The MIC of FLZ and VOR of Malassezia spp. decreased in the presence of sub-inhibitory concentrations of HAL and/or PTZ. The synergic effect was observed only in strains with FLZ MIC≥128 μg/mL for M. furfur, FLZ MIC≥64 μg/mL for M. pachydermatis and VOR MIC≥4 μg/mL in both Malassezia spp. These results suggest that the drug efflux pumps are involved as defence mechanisms to azole drugs in Malassezia yeast. The synergism might be related to an increased expression of efflux pump genes, eventually resulting in azole resistance phenomena. Finally, the above FLZ and VOR MIC values might be considered the cut-off to discriminate susceptible and resistant strains. © 2016 Blackwell Verlag GmbH.

  8. Cyclization Reaction of Acyl Thiourea Chitosan: Enhanced Antifungal Properties via Structural Optimization.

    PubMed

    Qin, Yukun; Liu, Weixiang; Xing, Ronge; Liu, Song; Li, Kecheng; Li, Pengcheng

    2018-03-06

    In this study, 3-methyl-1,2,4-triazolyl chitosan (MTACS) and 3-chloromethyl-1,2,4-triazolyl chitosan (CMTACS) were prepared via cyclization of acyl thiourea chitosan (TUCS). Their structures were confirmed by FT-IR, ¹H-NMR, elemental analysis, DSC, XRD, and SEM. The conformations were predicted using the Gaussian 09 program. Additionally, the antifungal properties of MTACS and CMTACS against Stemphylium solani weber ( S. solani ), Alternaria porri ( A. porri ), and Gloeosporium theae-sinensis ( G. theae-sinensis ) were assayed in vitro and ranged from 250 μg/mL to 1000 μg/mL. The results showed that MTACS and CMTACS exhibited enhanced inhibitory effect on the selected fungi compared to the original chitosan and TUCS. In particular, they displayed better antifungal activities against A. porri and G. theae-sinensis than that of the positive control, Triadimefon. The findings described here may lead to them being used as antifungal agents for crop protection.

  9. Exopolysaccharide matrix of developed Candida albicans biofilms after exposure to antifungal agents.

    PubMed

    da Silva, Wander José; Gonçalves, Letícia Machado; Seneviratne, Jayampath; Parahitiyawa, Nipuna; Samaranayake, Lakshman Perera; Del Bel Cury, Altair Antoninha

    2012-01-01

    This study aimed to evaluate the effects of fluconazole or nystatin exposure on developed Candida albicans biofilms regarding their exopolysaccharide matrix. The minimal inhibitory concentration (MIC) against fluconazole or nystatin was determined for C. albicans reference strain (ATCC 90028). Poly(methlymethacrylate) resin (PMMA) specimens were fabricated according to the manufacturer's instructions and had their surface roughness measured. Biofilms were developed on specimens surfaces for 48 h and after that were exposed during 24 h to fluconazole or nystatin prepared in a medium at MIC, 10 x MIC or 100 x MIC. Metabolic activity was evaluated using an XTT assay. Production of soluble and insoluble exopolysaccharide and intracellular polysaccharides was evaluated by the phenol-sulfuric method. Confocal laser scanning microscope was used to evaluate biofilm architecture and percentage of dead/live cells. Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. The presence of fluconazole or nystatin at concentrations higher than MIC results in a great reduction of metabolic activity (p<0.001). At MIC or 10 x MIC, fluconazole showed high amounts of intracellular polysaccharides (p<0.05), but did not affect the exopolysaccharide matrix (p>0.05). The exposure to nystatin also did not alter the exopolysaccharide matrix at all the tested concentrations (p>0.05). Biofilm architecture was not affected by either of the antifungal agents (p>0.05). Nystatin promoted higher proportion of dead cells (p<0.05). It may be concluded that fluconazole and nystatin above the MIC concentration reduced the metabolic activity of C. albicans biofilms; however, they were not able to alter the exopolysaccharide matrix and biofilm architecture.

  10. Multicenter surveillance of species distribution and antifungal susceptibilities of Candida bloodstream isolates in South Korea.

    PubMed

    Jung, Sook-In; Shin, Jong Hee; Song, Jae-Hoon; Peck, Kyong Ran; Lee, Kyungwon; Kim, Mi-Na; Chang, Hyun Ha; Moon, Chi Sook

    2010-06-01

    Multicenter data on in vitro susceptibility of Candida bloodstream isolates to echinocandin antifungal agents is still lacking in South Korea. We performed a prospective multicenter study to determine the species distribution of Candida bloodstream isolates and their susceptibility to five antifungal agents, including caspofungin and micafungin. A total of 639 isolates were collected from 20 tertiary hospitals between September 2006 and August 2007. Antifungal susceptibilities were determined through the use of the CLSI broth microdilution method M27-A3. The overall species distribution was as follows; Candida albicans (38%), Candida parapsilosis (26%), Candia tropicalis (20%), Candida glabrata (11%), and miscellaneous Candida species (5%). Although C. parapsilosis and miscellaneous Candida species were less susceptible to both echinocandins, all 639 isolates were susceptible to both caspofungin and micafungin (MIC, antifungals, including two echinocandins, are still low among bloodstream isolates in South Korea.

  11. In vitro bioaccessibility of copper azole following simulated dermal transfer from pressure-treated wood

    EPA Science Inventory

    Micronized copper azole (MCA) and micronized copper quaternary are the latest wood preservatives to replace the liquid lkaline copper and chromated copper arsenate preservatives due to concerns over the toxicity or lack of effectiveness of the earlier formulations. Today, the use...

  12. Polymer Multilayers Loaded with Antifungal β-Peptides Kill Planktonic Candida albicans and Reduce Formation of Fungal Biofilms on the Surfaces of Flexible Catheter Tubes

    PubMed Central

    Raman, Namrata; Lee, Myung-Ryul

    2014-01-01

    Candida albicans is the most common fungal pathogen responsible for hospital-acquired infections. Most C albicans infections are associated with the implantation of medical devices that act as points of entry for the pathogen and as substrates for the growth of fungal biofilms that are notoriously difficult to eliminate by systemic administration of conventional antifungal agents. In this study, we report a fill-and-purge approach to the layer-by-layer fabrication of biocompatible, nanoscale ‘polyelectrolyte multilayers’ (PEMs) on the luminal surfaces of flexible catheters, and an investigation of this platform for the localized, intraluminal release of a cationic β-peptide-based antifungal agent. We demonstrate that polyethylene catheter tubes with luminal surfaces coated with multilayers ~700 nm thick fabricated from poly-L-glutamic acid (PGA) and poly-L-lysine (PLL) can be loaded, post-fabrication, by infusion with β-peptide, and that this approach promotes extended intraluminal release of this agent (over ~4 months) when incubated in physiological media. The β-peptide remained potent against intraluminal inoculation of the catheters with C albicans and substantially reduced the formation of C albicans biofilms on the inner surfaces of film-coated catheters. Finally, we report that these β-peptide-loaded coatings exhibit antifungal activity under conditions that simulate intermittent catheter use and microbial challenge for at least three weeks. We conclude that β-peptide-loaded PEMs offer a novel and promising approach to kill C albicans and prevent fungal biofilm formation on surfaces, with the potential to substantially reduce the incidence of device-associated infections in indwelling catheters. β-Peptides comprise a promising new class of antifungal agents that could help address problems associated with the use of conventional antifungal agents. The versatility of the layer-by-layer approach used here thus suggests additional opportunities to

  13. Polymer multilayers loaded with antifungal β-peptides kill planktonic Candida albicans and reduce formation of fungal biofilms on the surfaces of flexible catheter tubes.

    PubMed

    Raman, Namrata; Lee, Myung-Ryul; Palecek, Sean P; Lynn, David M

    2014-10-10

    Candida albicans is the most common fungal pathogen responsible for hospital-acquired infections. Most C. albicans infections are associated with the implantation of medical devices that act as points of entry for the pathogen and as substrates for the growth of fungal biofilms that are notoriously difficult to eliminate by systemic administration of conventional antifungal agents. In this study, we report a fill-and-purge approach to the layer-by-layer fabrication of biocompatible, nanoscale 'polyelectrolyte multilayers' (PEMs) on the luminal surfaces of flexible catheters, and an investigation of this platform for the localized, intraluminal release of a cationic β-peptide-based antifungal agent. We demonstrate that polyethylene catheter tubes with luminal surfaces coated with multilayers ~700nm thick fabricated from poly-l-glutamic acid (PGA) and poly-l-lysine (PLL) can be loaded, post-fabrication, by infusion with β-peptide, and that this approach promotes extended intraluminal release of this agent (over ~4months) when incubated in physiological media. The β-peptide remained potent against intraluminal inoculation of the catheters with C. albicans and substantially reduced the formation of C. albicans biofilms on the inner surfaces of film-coated catheters. Finally, we report that these β-peptide-loaded coatings exhibit antifungal activity under conditions that simulate intermittent catheter use and microbial challenge for at least three weeks. We conclude that β-peptide-loaded PEMs offer a novel and promising approach to kill C. albicans and prevent fungal biofilm formation on surfaces, with the potential to substantially reduce the incidence of device-associated infections in indwelling catheters. β-Peptides comprise a promising new class of antifungal agents that could help address problems associated with the use of conventional antifungal agents. The versatility of the layer-by-layer approach used here thus suggests additional opportunities to

  14. In Vitro Antifungal Susceptibility of Neoscytalidium dimidiatum Clinical Isolates from Malaysia.

    PubMed

    James, Jasper Elvin; Santhanam, Jacinta; Lee, Mei Chen; Wong, Choon Xian; Sabaratnam, Parameswari; Yusoff, Hamidah; Tzar, Mohd Nizam; Razak, Mohd Fuat Abdul

    2017-04-01

    Neoscytalidium dimidiatum is an opportunistic fungus causing cutaneous infections mostly, which are difficult to treat due to antifungal resistance. In Malaysia, N. dimidiatum is associated with skin and nail infections, especially in the elderly. These infections may be mistaken for dermatophyte infections due to similar clinical appearance. In this study, Neoscytalidium isolates from cutaneous specimens, identified using morphological and molecular methods (28 Neoscytalidium dimidiatum and 1 Neoscytalidium sp.), were evaluated for susceptibility towards antifungal agents using the CLSI broth microdilution (M38-A2) and Etest methods. Amphotericin B, voriconazole, miconazole and clotrimazole showed high in vitro activity against all isolates with MIC ranging from 0.0313 to 1 µg/mL. Susceptibility towards fluconazole and itraconazole was noted in up to 10% of isolates, while ketoconazole was inactive against all isolates. Clinical breakpoints for antifungal drugs are not yet available for most filamentous fungi, including Neoscytalidium species. However, the results indicate that clinical isolates of N. dimidiatum in Malaysia were sensitive towards miconazole, clotrimazole, voriconazole and amphotericin B, in vitro.

  15. PgTeL, the lectin found in Punica granatum juice, is an antifungal agent against Candida albicans and Candida krusei.

    PubMed

    da Silva, Pollyanna Michelle; de Moura, Maiara Celine; Gomes, Francis Soares; da Silva Trentin, Danielle; Silva de Oliveira, Ana Patrícia; de Mello, Gabriela Souto Vieira; da Rocha Pitta, Maira Galdino; de Melo Rego, Moacyr Jesus Barreto; Coelho, Luana Cassandra Breitenbach Barroso; Macedo, Alexandre José; de Figueiredo, Regina Celia Bressan Queiroz; Paiva, Patrícia Maria Guedes; Napoleão, Thiago Henrique

    2018-03-01

    The pomegranate (Punica granatum) sarcotesta contains a chitin-binding lectin (PgTeL) with antibacterial activity against human pathogenic species. In this work, the structural stability of PgTeL was evaluated by fluorimetric analysis and the lectin was evaluated for cytotoxicity to human peripheral blood mononuclear cells (PBMCs) and antifungal activity against Candida albicans and Candida krusei. PgTeL folding was impaired when lectin was incubated at pH≥6.0. On the other hand, the lectin did not undergo unfolding even when heated at 100°C. PgTeL (1, 10, and 100μg/mL) was not cytotoxic to PBMCs. Antifungal activity was detected for C. albicans (MIC: 25μg/mL; MFC: 50μg/mL) and C. krusei (MIC and MFC of 12.5μg/mL). Treatment of yeast cells with PgTeL resulted in decrease of intracellular ATP content even at sub-inhibitory concentrations (½MIC and ¼MIC) and induced lipid peroxidation. In addition, PgTeL damaged the integrity of fungal cell wall of both species, with more pronounced effects in C. krusei. The lectin showed significant antibiofilm activity on C. albicans at sub-inhibitory concentrations (0.195 and 0.39μg/mL). In conclusion, PgTeL is an anti-Candida agent whose action mechanism involves oxidative stress, energetic collapse, damage to the cell wall and rupture of yeast cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Aspergillus species and other molds in respiratory samples from patients with cystic fibrosis: a laboratory-based study with focus on Aspergillus fumigatus azole resistance.

    PubMed

    Mortensen, Klaus Leth; Jensen, Rasmus Hare; Johansen, Helle Krogh; Skov, Marianne; Pressler, Tacjana; Howard, Susan Julie; Leatherbarrow, Howard; Mellado, Emilia; Arendrup, Maiken Cavling

    2011-06-01

    Respiratory tract colonization by molds in patients with cystic fibrosis (CF) were analyzed, with particular focus on the frequency, genotype, and underlying mechanism of azole resistance among Aspergillus fumigatus isolates. Clinical and demographic data were also analyzed. A total of 3,336 respiratory samples from 287 CF patients were collected during two 6-month periods in 2007 and 2009. Azole resistance was detected using an itraconazole screening agar (4 mg/liter) and the EUCAST method. cyp51A gene sequencing and microsatellite genotyping were performed for isolates from patients harboring azole-resistant A. fumigatus. Aspergillus spp. were present in 145 patients (51%), of whom 63 (22%) were persistently colonized. Twelve patients (4%) harbored other molds. Persistently colonized patients were older, provided more samples, and more often had a chronic bacterial infection. Six of 133 patients (4.5%) harbored azole-nonsusceptible or -resistant A. fumigatus isolates, and five of those six patients had isolates with Cyp51A alterations (M220K, tandem repeat [TR]/L98H, TR/L98H-S297T-F495I, M220I-V101F, and Y431C). All six patients were previously exposed to azoles. Genotyping revealed (i) microevolution for A. fumigatus isolates received consecutively over the 2-year period, (ii) susceptible and resistant isolates (not involving TR/L98H isolates) with identical or very closely related genotypes (two patients), and (iii) two related susceptible isolates and a third unrelated resistant isolate with a unique genotype and the TR/L98H resistance combination (one patient). Aspergilli were frequently found in Danish CF patients, with 4.5% of the A. fumigatus isolates being azole nonsusceptible or resistant. Genotyping suggested selection of resistance in the patient as well as resistance being achieved in the environment.

  17. Identification of Candida parapsilosis Sensu Lato in Pediatric Patients and Antifungal Susceptibility Testing

    PubMed Central

    Dudiuk, Catiana; Fernández, Mariana; Rojas, Florencia; Alegre, Liliana; Córdoba, Susana; Garcia-Effron, Guillermo; Giusiano, Gustavo

    2017-01-01

    ABSTRACT A total of 59 Candida parapsilosis sensu stricto and 1 Candida orthopsilosis recovered from catheters and blood cultures of pediatric patients from the northeastern region of Argentina were studied. Susceptibility to azoles, amphotericin B, and echinocandins was tested by the broth microdilution method. According to CLSI clinical breakpoints, >91% of the strains were azole susceptible, whereas 15% showed high amphotericin B MICs. PMID:28483957

  18. Activity of a Long-Acting Echinocandin (CD101) and Seven Comparator Antifungal Agents Tested against a Global Collection of Contemporary Invasive Fungal Isolates in the SENTRY 2014 Antifungal Surveillance Program.

    PubMed

    Pfaller, Michael A; Messer, Shawn A; Rhomberg, Paul R; Castanheira, Mariana

    2017-03-01

    The activity of CD101 and comparator antifungal agents against 606 invasive fungal isolates collected worldwide during 2014 was evaluated using the Clinical and Laboratory Standards Institute (CLSI) method. All Candida albicans ( n = 251), Candida tropicalis ( n = 51), Candida krusei ( n = 16), and Candida dubliniensis ( n = 11) isolates were inhibited by ≤0.12 μg/ml of CD101 and were susceptible or showed wild-type susceptibility to the other echinocandins tested. Five C. glabrata isolates ( n = 100) displayed CD101 MIC values of 1 to 4 μg/ml, had elevated MICs of caspofungin (2 to >8 μg/ml), anidulafungin (2 to 4 μg/ml), and micafungin (2 to 4 μg/ml), and carried mutations on fks1 and fks2 Candida parapsilosis ( n = 92) and Candida orthopsilosis ( n = 10) displayed higher CD101 MIC values (ranges, 0.5 to 4 μg/ml and 0.12 to 2 μg/ml, respectively), and similar results were observed for the other echinocandins tested. Fluconazole resistance was noted among 11.0% of Candida glabrata isolates, 4.3% of C. parapsilosis isolates, and 2.0% of C. albicans and C. tropicalis isolates. The activity of CD101 against Aspergillus fumigatus ( n = 56) was similar to that of micafungin and 2-fold greater than that of caspofungin but less than that of anidulafungin. These isolates had wild-type susceptibility to itraconazole, voriconazole, and posaconazole. The echinocandins had limited activity against Cryptococcus neoformans ( n = 19). CD101 was as active as the other echinocandins against common fungal organisms recovered from patients with invasive fungal infections. The long half-life profile is very desirable for the prevention and treatment of serious fungal infections, especially in patients who can then be discharged from the hospital to complete antifungal therapy on an outpatient basis. Copyright © 2017 Pfaller et al.

  19. Genotyping and antifungal susceptibility testing of multiple Malassezia pachydermatis isolates from otitis and dermatitis cases in pets: is it really worth the effort?

    PubMed

    Álvarez-Pérez, Sergio; García, Marta E; Peláez, Teresa; Blanco, José L

    2016-01-01

    A total of 216 colonies of Malassezia pachydermatis from 28 cases of fungal otitis or dermatitis in pets were genotyped by M13 fingerprinting and tested for antifungal susceptibility. A huge genetic diversity was found (157 M13 types in total), with all animals having a polyclonal pattern of infection (5.4 ± 1.5 genotypes/sample). Furthermore, analysis of molecular variance (AMOVA) revealed that most genetic diversity (44%) was found at the within sample level. In contrast, variability in antifungal susceptibility among isolates from the same sample was less important, with different M13 types displaying in most cases identical or very similar MIC results. Most isolates displayed high in vitro susceptibility to amphotericin B, terbinafine and all azoles tested except fluconazole, for which MIC values were always ≥4 μg/ml and a 26.9% of isolates displayed values ≥32 μg/ml. We conclude that although characterization of multiple yeast isolates results in a considerable increase in laboratory workload and expenses, it may help to get a better understanding of the epidemiology of M. pachydermatis in a given patient population. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Antifungal susceptibility of Malassezia furfur, Malassezia sympodialis, and Malassezia globosa to azole drugs and amphotericin B evaluated using a broth microdilution method.

    PubMed

    Rojas, Florencia D; Sosa, María de los A; Fernández, Mariana S; Cattana, María E; Córdoba, Susana B; Giusiano, Gustavo E

    2014-08-01

    We studied the in vitro activity of fluconazole (FCZ), ketoconazole (KTZ), miconazole (MCZ), voriconazole (VCZ), itraconazole (ITZ) and amphotericin B (AMB) against the three major pathogenic Malassezia species, M. globosa, M. sympodialis, and M. furfur. Antifungal susceptibilities were determined using the broth microdilution method in accordance with Clinical and Laboratory Standards Institute reference document M27-A3. To support lipid-dependent yeast development, glucose, peptone, ox bile, malt extract, glycerol, and Tween supplements were added to Roswell Park Memorial Institute RPMI 1640 medium. The supplemented medium allowed good growth of all three species studied. The minimal inhibitory concentrations (MICs) were recorded after 72 h of incubation at 32ºC. The three species showed different susceptibility profiles for the drugs tested. Malassezia sympodialis was the most susceptible and M. furfur the least susceptible species. KTZ, ITZ, and VCZ were the most active drugs, showing low variability among isolates of the same species. FCZ, MCZ, and AMB showed high MICs and wide MIC ranges. Differences observed emphasize the need to accurately identify and evaluate antifungal susceptibility of Malassezia species. Further investigations and collaborative studies are essential for correlating in vitro results with clinical outcomes since the existing limited data do not allow definitive conclusions. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Multidrug resistance in fungi: regulation of transporter-encoding gene expression

    PubMed Central

    Paul, Sanjoy; Moye-Rowley, W. Scott

    2014-01-01

    A critical risk to the continued success of antifungal chemotherapy is the acquisition of resistance; a risk exacerbated by the few classes of effective antifungal drugs. Predictably, as the use of these drugs increases in the clinic, more resistant organisms can be isolated from patients. A particularly problematic form of drug resistance that routinely emerges in the major fungal pathogens is known as multidrug resistance. Multidrug resistance refers to the simultaneous acquisition of tolerance to a range of drugs via a limited or even single genetic change. This review will focus on recent progress in understanding pathways of multidrug resistance in fungi including those of most medical relevance. Analyses of multidrug resistance in Saccharomyces cerevisiae have provided the most detailed outline of multidrug resistance in a eukaryotic microorganism. Multidrug resistant isolates of S. cerevisiae typically result from changes in the activity of a pair of related transcription factors that in turn elicit overproduction of several target genes. Chief among these is the ATP-binding cassette (ABC)-encoding gene PDR5. Interestingly, in the medically important Candida species, very similar pathways are involved in acquisition of multidrug resistance. In both C. albicans and C. glabrata, changes in the activity of transcriptional activator proteins elicits overproduction of a protein closely related to S. cerevisiae Pdr5 called Cdr1. The major filamentous fungal pathogen, Aspergillus fumigatus, was previously thought to acquire resistance to azole compounds (the principal antifungal drug class) via alterations in the azole drug target-encoding gene cyp51A. More recent data indicate that pathways in addition to changes in the cyp51A gene are important determinants in A. fumigatus azole resistance. We will discuss findings that suggest azole resistance in A. fumigatus and Candida species may share more mechanistic similarities than previously thought. PMID:24795641

  2. Azole-synergistic anti-candidal activity of altenusin, a biphenyl metabolite of the endophytic fungus Alternaria alternata isolated from Terminalia chebula Retz.

    PubMed

    Phaopongthai, Jatuporn; Wiyakrutta, Suthep; Meksuriyen, Duangdeun; Sriubolmas, Nongluksna; Suwanborirux, Khanit

    2013-12-01

    In this study, a tropical endophytic fungus, Alternaria alternata Tche-153 was isolated from a Thai medicinal plant Terminalia chebula Rezt. The ethyl acetate extract prepared from the fermentation broth exhibited significant ketoconazole-synergistic activity against Candida albicans. Bioassay-directed fractionation of the ethyl acetate extract led to the isolation of altenusin (1), isoochracinic acid (2), and altenuic acid (3) together with 2,5-dimethyl-7-hydroxychromone (4). Using the disc diffusion method and the microdilution chequerboard technique, only altenusin (1) in combination with each of three azole drugs, ketoconazole, fluconazole or itraconazole at their low sub-inhibitory concentrations exhibited potent synergistic activity against C. albicans with the fractional inhibitory concentration index range of 0.078 to 0.188. This first discovery of altenusin (1) as a new azole-synergistic prototype possessing a biphenyl structure is of significance for further development of new azole-synergists to treat invasive candidiasis.

  3. Stability of Two Antifungal Agents, Fluconazole and Miconazole, Compounded in HUMCO RECURA Topical Cream to Determine Beyond-Use Date.

    PubMed

    Gautam, Pradeep; Light, Bob; Purvis, Troy

    2017-01-01

    A novel compounding vehicle (RECURA) has previously been proven to penetrate the nail bed when compounded with the antifungal agent miconazole or fluconazole, providing for an effective treatment for onychomycosis. In this study, miconazole and fluconazole were compounded separately in RECURA compounding cream, and they were tested at different time points (0, 7, 14, 28, 45, 60, 90, and 180 days) to determine the beyond-use date of those formulations. The beyond-use date testing of both formulations (10% miconazole in RECURA and 10% fluconazole in RECURA) proved them to be physically, chemically, and microbiologically stable under International Conference of Harmonisation controlled room temperature (25°C ± 2°C/60% RH ±5%) for at least 180 days from the date of compounding. Stability-indicating analytical method validation was completed for the simultaneous determination of miconazole and fluconazole in RECURA base using high-performance liquid chromatography coupled with photodiode array detector prior to the study. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  4. Microemulsion and Microemulsion-Based Gels for Topical Antifungal Therapy with Phytochemicals.

    PubMed

    Boonme, Prapaporn; Kaewbanjong, Jarika; Amnuaikit, Thanaporn; Andreani, Tatiana; Silva, Amélia M; Souto, Eliana B

    2016-01-01

    Skin fungal infections are regular injuries suffered by people living in tropical areas. Most common pathogens are Trichophyton, Microsporum and Epidermophyton which can cause skin lesions in many parts of body. Topical antifungal phytochemicals are commonly used to avoid systemic adverse events and are more convenient for patient application than those administered by other routes. However, the effectiveness of topical treatments in eradicating fungal infection is more limited since the stratum corneum acts as the skin barrier, resulting in long treatment duration and low patient's compliance. The goal of this work is to identify optimized drug delivery systems to improve topic clinical efficacy. Microemulsions i.e. liquid dispersions of oil and water stabilized with an interfacial film of surfactant are well known drug delivery systems. A thickening agent may be included to form microemulsion-based gels to increase skin adhesion. Microemulsions and microemulsion-based gels can be loaded with several hydrophilic and lipophilic drugs because they are composed of both water and oil phases. Microemulsions and microemulsion-based gels can also be used for the delivery of many drugs including antifungal drugs through stratum corneum due to their capacity to act as skin penetration enhancement. In addition to a comprehensive review of microemulsion and microemulsion-based gels as suitable carriers for skin delivery of various antifungal drugs, this review also aims to discuss the delivery of antifungal phytochemicals.

  5. Cyclic azole-homologated peptides from Marine sponges.

    PubMed

    Molinski, Tadeusz F

    2017-12-19

    This review discusses the chemistry of cyclic azole-homologated peptides (AHPs) from the marine sponges, Theonella swinhoei, other Theonella species, Calyx spp. and Plakina jamaicensis. The origin, distribution of AHPs and molecular structure elucidations of AHPs are described followed by their biosynthesis, bioactivity, and synthetic efforts towards their total synthesis. Reports of partial and total synthesis of AHPs extend beyond peptide coupling reactions and include creative construction of the non-proteinogenic amino acid components, mainly the homologated heteroaromatic and α-keto-β-amino acids. A useful conclusion is drawn regarding AHPs: despite their rarity, exotic structures and the potent protease inhibitory properties of some members, their synthesis is under-developed and beckons solutions for outstanding problems towards their efficient assembly.

  6. Identification of Candida parapsilosis Sensu Lato in Pediatric Patients and Antifungal Susceptibility Testing.

    PubMed

    Cattana, Maria Emilia; Dudiuk, Catiana; Fernández, Mariana; Rojas, Florencia; Alegre, Liliana; Córdoba, Susana; Garcia-Effron, Guillermo; Giusiano, Gustavo

    2017-07-01

    A total of 59 Candida parapsilosis sensu stricto and 1 Candida orthopsilosis recovered from catheters and blood cultures of pediatric patients from the northeastern region of Argentina were studied. Susceptibility to azoles, amphotericin B, and echinocandins was tested by the broth microdilution method. According to CLSI clinical breakpoints, >91% of the strains were azole susceptible, whereas 15% showed high amphotericin B MICs. Copyright © 2017 American Society for Microbiology.

  7. Antimicrobial and antifungal activities of the extracts and essential oils of Bidens tripartita.

    PubMed

    Tomczykowa, Monika; Tomczyk, Michał; Jakoniuk, Piotr; Tryniszewska, Elzbieta

    2008-01-01

    The aim of this study was to determine the antibacterial and antifungal properties of the extracts, subextracts and essential oils of Bidens tripartita flowers and herbs. In the study, twelve extracts and two essential oils were investigated for activity against different Gram-positive Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Gram-negative bacteria Escherichia coli, E. coli (beta-laktamase+), Klebsiella pneumoniae (ESBL+), Pseudomonas aeruginosa and some fungal organisms Candida albicans, C. parapsilosis, Aspergillus fumigatus, A. terreus using a broth microdilution and disc diffusion methods. The results obtained indicate antimicrobial activity of the tested extracts (except butanolic extracts), which however did not inhibit the growth of fungi used in this study. Bacteriostatic effect of both essential oils is insignificant, but they have strong antifungal activity. These results support the use of B. tripartita to treat a microbial infections and it is indicated as an antimicrobial and antifungal agent, which may act as pharmaceuticals and preservatives.

  8. A theoretical investigation on the neutral Cu(I) phosphorescent complexes with azole-based and phosphine mixed ligand

    NASA Astrophysics Data System (ADS)

    Ding, Xiao-Li; Shen, Lu; Zou, Lu-Yi; Ma, Ming-Shuo; Ren, Ai-Min

    2018-04-01

    A theoretical study on a series of neutral heteroleptic Cu(I) complexes with different azole-pyridine-based N^N ligands has been presented to get insight into the effect of various nitrogen atoms in the azole ring on photophysical properties. The results reveal that the highest occupied molecular orbital (HOMO) levels and the emission wavelengths of these complexes are mainly governed by the nitrogen atom number in azole ring. With the increasing number of nitrogen atom , the electron density distribution of HOMO gradually extend from the N^N ligand to the whole molecule, meanwhile, the improved contribution from Cu(d) orbits in HOMO results in an effective mixing of various charge transfermodes, and hence, the fast radiative decay(kr) and the slow non-radiative decay rate(knr) are achieved. The photoluminescence quantum yield (PLQY) show an apparent dependence on the nitrogen atom number in the five-membered nitrogen heterocycles. However, the increasing number of nitrogen atoms is not necessary for increasing PLQY. The complex 3 with 1,2,4-triazole-pyridine-based N^N ligands is considered to be a potential emitter with high phosphorescence efficiency. Finally, we hope that our investigations will contribute to systematical understanding and guiding for material molecular engineering.

  9. CROSS-SPECIES COMPARISON OF CONAZOLE FUNGICIDE METABOLITES USING RAT AND RAINBOW TROUT (ONCHORHYNCHUS MYKISS) HEPATIC MICROSOMES AND PURIFIED HUMAN CYTOCHROME P450 3A4

    EPA Science Inventory

    Conazoles represent a unique class of azole-containing fungicides that are widely used in both pharmaceutical and agriculture applications. The antifungal property of conazoles occurs via complexation with cytochrome P450 monooxygenases (CYP) responsible for mediating fungal cell...

  10. ERG2 and ERG24 Are Required for Normal Vacuolar Physiology as Well as Candida albicans Pathogenicity in a Murine Model of Disseminated but Not Vaginal Candidiasis.

    PubMed

    Luna-Tapia, Arturo; Peters, Brian M; Eberle, Karen E; Kerns, Morgan E; Foster, Timothy P; Marrero, Luis; Noverr, Mairi C; Fidel, Paul L; Palmer, Glen E

    2015-10-01

    Several important classes of antifungal agents, including the azoles, act by blocking ergosterol biosynthesis. It was recently reported that the azoles cause massive disruption of the fungal vacuole in the prevalent human pathogen Candida albicans. This is significant because normal vacuolar function is required to support C. albicans pathogenicity. This study examined the impact of the morpholine antifungals, which inhibit later steps of ergosterol biosynthesis, on C. albicans vacuolar integrity. It was found that overexpression of either the ERG2 or ERG24 gene, encoding C-8 sterol isomerase or C-14 sterol reductase, respectively, suppressed C. albicans sensitivity to the morpholines. In addition, both erg2Δ/Δ and erg24Δ/Δ mutants were hypersensitive to the morpholines. These data are consistent with the antifungal activity of the morpholines depending upon the simultaneous inhibition of both Erg2p and Erg24p. The vacuoles within both erg2Δ/Δ and erg24Δ/Δ C. albicans strains exhibited an aberrant morphology and accumulated large quantities of the weak base quinacrine, indicating enhanced vacuolar acidification compared with that of control strains. Both erg mutants exhibited significant defects in polarized hyphal growth and were avirulent in a mouse model of disseminated candidiasis. Surprisingly, in a mouse model of vaginal candidiasis, both mutants colonized mice at high levels and induced a pathogenic response similar to that with the controls. Thus, while targeting Erg2p or Erg24p alone could provide a potentially efficacious therapy for disseminated candidiasis, it may not be an effective strategy to treat vaginal infections. The potential value of drugs targeting these enzymes as adjunctive therapies is discussed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Cost-effectiveness of micafungin as an alternative to fluconazole empiric treatment of suspected ICU-acquired candidemia among patients with sepsis: a model simulation

    PubMed Central

    Zilberberg, Marya D; Kothari, Smita; Shorr, Andrew F

    2009-01-01

    Introduction Recent epidemiologic literature indicates that candidal species resistant to azoles are becoming more prevalent in the face of increasing incidence of hospitalizations with candidemia. Echinocandins, a new class of antifungal agents, are effective against resistant candidal species. As delaying appropriate antifungal coverage leads to increased mortality, we evaluated the cost-effectiveness of 100 mg daily empiric micafungin (MIC) vs. 400 mg daily fluconazole (FLU) for suspected intensive care unit-acquired candidemia (ICU-AC) among septic patients. Methods We designed a decision model with inputs from the literature in a hypothetical 1000-patient cohort with suspected ICU-AC treated empirically with either MIC or FLU or no treatment accompanied by a watchful waiting strategy. We examined the differences in the number of survivors, acquisition costs of antifungals, and lifetime costs among survivors in the cohort under each scenario, and calculated cost per quality adjusted life year (QALY). We conducted Monte Carlo simulations and sensitivity analyses to determine the stability of our estimates. Results In the base case analysis, assuming ICU-AC attributable mortality of 0.40 and a 52% relative risk reduction in mortality with appropriate timely therapy, compared with FLU (total deaths 31), treatment with MIC (total deaths 27) would result in four fewer deaths at an incremental cost/death averted of $61,446. Similarly, in reference case, incremental cost-effectiveness of MIC over FLU was $34,734 (95% confidence interval $26,312 to $49,209) per QALY. The estimates were most sensitive to the QALY adjustment factor and the risk of candidemia among septic patients. Conclusions Given the increasing likelihood of azole resistance among candidal isolates, empiric treatment of ICU-AC with 100 mg daily MIC is a cost-effective alternative to FLU. PMID:19545361

  12. Synthesis, SAR and molecular docking studies of benzo[d]thiazole-hydrazones as potential antibacterial and antifungal agents.

    PubMed

    Zha, Gao-Feng; Leng, Jing; Darshini, N; Shubhavathi, T; Vivek, H K; Asiri, Abdullah M; Marwani, Hadi M; Rakesh, K P; Mallesha, N; Qin, Hua-Li

    2017-07-15

    A series of new benzo[d]thiazole-hydrazones analogues were synthesized and screened for their in vitro antibacterial and antifungal activities. The results revealed that compounds 13, 14, 15, 19, 20, 28 and 30 exhibited superior antibacterial potency compared to the reference drug chloramphenicol and rifampicin. Compounds 5, 9, 10, 11, 12, 28 and 30 were found to be good antifungal activity compared to the standard drug ketoconazole. A preliminary study of the structure-activity relationship (SAR) revealed that the antimicrobial activity depended on the effect of different substituents on the phenyl ring. The electron donating (OH and OCH 3 ) groups presented in the analogues, increase the antibacterial activity (except compound 12), interestingly, while the electron withdrawing (Cl, NO 2 , F and Br) groups increase the antifungal activity (except compound 19 and 20). In addition, analogues containing thiophene (28) and indole (30) showed good antimicrobial activities. Whereas, aliphatic analogues (24-26) shown no activities in both bacterial and fungal stains even in high concentrations (100µg/mL). Molecular docking studies were performed for all the synthesized compounds of which compounds 11, 19 and 20 showed the highest glide G-score. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Phenotypic Characterization and Antifungal Susceptibility Pattern to Fluconazole in Candida species Isolated from Vulvovaginal Candidiasis in a Tertiary Care Hospital

    PubMed Central

    Poongothai, G.K; Sinazer, Annie Rofeena; Kannaiyan, Kavitha; Gurumurthy, Hemalatha; Jaget, Nirmala; Kuthalaramalingam, Sethumadhavan

    2014-01-01

    Background: Vaginal candidiasis is a common gynecological finding among women worldwide. This study was carried out to determine the prevalence of vulvovaginal candidiasis (VVC) along with speciation of Candida with special reference to its antifungal susceptibility pattern to fluconazole and also to evaluate the risk factors responsible for VVC in patients attending our tertiary care hospital in Puducherry, India. Materials and Methods: This study was carried out in the tertiary care hospital in Puducherry during the period of August 2010 to September 2012.The study group consisted of 180 women between the age group of 15 to 56 years with the complaints of excessive vaginal discharge, pruritis and pain. Materials used for this study consisted of high vaginal swabs from patients with relevant history, attending Obstetrics & Gynecology department. High vaginal swabs were subjected to direct 10% KOH wet mount microscopy, Gram stain, culture onto Sabouraud’s dextrose agar (SDA) & 5% sheep blood agar and susceptibility testing to fluconazole was performed using E-test. Results: Candida was isolated in 40 (22.2 %) women & these consisted of C. albicans 26 (65%), C. glabrata 9 (22.5%), C.tropicalis 3 (7.5%) & C. parapsilosis 2 (5%). Susceptibility test carried out on the 40 isolates revealed that 35 (87.5%) Candida isolates were sensitive to fluconazole, 3 (7.5%) were moderately sensitive and 2 (2.5%) were resistant. Thirty one percent patients had itching as the presenting complaints followed by vaginal discharge (29.4%). Conclusion: The high frequency with which C. albicans was recovered in our study and its susceptibility to fluconazole supports the continued use of azole agents for empirical therapy of uncomplicated candidal vulvovaginitis in the community. PMID:24995172

  14. Chemical characterization and antifungal activity of Origanum vulgare, Thymus vulgaris essential oils and carvacrol against Malassezia furfur.

    PubMed

    Vinciguerra, Vittorio; Rojas, Florencia; Tedesco, Viviana; Giusiano, Gustavo; Angiolella, Letizia

    2018-05-04

    The composition of the essential oils (EOs) of O. vulgare L. EO and T. vulgaris EO, were analyzed by GC and GC-MS. Antifungal activities of the EOs and its main component, carvacrol, were evaluated against 27 clinical isolates of Malassezia furfur. Minimum inhibitory concentrations (MICs) were measured according to the broth microdilution protocols by Clinical and Laboratory Standards Institute (CLSI) modified for Malassezia spp. EOs and carvacrol showed low MIC values ranged 450-900 μg/ml against M. furfur. No differences in EOs antifungal activity were observed in sensitive to resistant fluconazole isolates. The antifungal activity obtained showed O. vulgare EO, T. vulgaris EO and carvacrol, their compound, as potential antimicrobial agents against M. furfur, yeast associated with human mycoses.

  15. Continuous infusion of amphotericin B deoxycholate: an innovative, low-cost strategy in antifungal treatment.

    PubMed

    Falci, Diego R; dos Santos, Rodrigo P; Wirth, Fernanda; Goldani, Luciano Z

    2011-03-01

    The combination of amphotericin B and sodium deoxycholate is the formulation most used in clinical practice. The development of new agents such as amphotericin with lipid formulations, caspofungin, voriconazole and other azolic derivatives, promoted alternatives to amphotericin B deoxycholate. However, because of the high cost of these new drugs, their use is difficult in a scenario of limited resources. A few strategies have been devised to make the use of amphotericin B deoxycholate less toxic. In this review, we seek to describe the accumulated knowledge about this molecule, with focus on its use in continuous infusion, which appears to be an alternative to reduce toxicity, while maintaining its clinical efficacy. © 2009 Blackwell Verlag GmbH.

  16. Mild copper-catalyzed vinylation reactions of azoles and phenols with vinyl bromides.

    PubMed

    Taillefer, Marc; Ouali, Armelle; Renard, Brice; Spindler, Jean-Francis

    2006-07-05

    An efficient and straightforward copper-catalyzed method allowing vinylation of N- or O-nucleophiles with di- or trisubstituted vinyl bromides is reported. The procedure is applicable to a broad range of substrates since N-vinylation of mono-, di-, and triazoles as well as O-vinylation of phenol derivatives can be performed with catalytic amounts of copper iodide and inexpensive nitrogen ligands 3 or 8. In the case of more hindered vinyl bromides, the use of the original bidentate chelator 8 was shown to be more efficient to promote the coupling reactions than our key tetradentate ligand 3. The corresponding N-(1-alkenyl)azoles and alkenyl aryl ethers are obtained in high yields and selectivities under very mild temperature conditions (35-110 degrees C for N-vinylation reactions and 50-80 degrees C for O-vinylation reactions). Moreover, to our knowledge, this method is the first example of a copper-catalyzed vinylation of various azoles. Finally, this protocol, practical on a laboratory scale and easily adaptable to an industrial scale, is very competitive compared to the existing methods that allow the synthesis of such compounds.

  17. A Novel Isoquinoline Derivative Anticancer Agent and Its Targeted Delivery to Tumor Cells Using Transferrin-Conjugated Liposomes

    PubMed Central

    Yang, Xuewei; Yang, Shuang; Chai, Hongyu; Yang, Zhaogang; Lee, Robert J.; Liao, Weiwei; Teng, Lesheng

    2015-01-01

    We have screened 11 isoquinoline derivatives and α-methylene-γ-butyrolactones using the 3-(4,5-dimethylthi-azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay in HeLa and HEK-293T cells. Compound 2 was identified as potential anticancer agent. To further improve its therapeutic potential, this agent was incorporated into transferrin (Tf)-conjugated liposomes (LPs) for targeted delivery to tumor cells. We have demonstrated Tf-LP-Compound 2 have superior antitumor activity compared to non-targeted controls and the free drug. These data show Tf-LP-Compound 2 to be a promising agent that warrants further evaluation. PMID:26309138

  18. Viridepyronone, a new antifungal 6-substituted 2H-pyran-2-one produced by Trichoderma viride.

    PubMed

    Evidente, Antonio; Cabras, Annalisa; Maddau, Lucia; Serra, Salvatorica; Andolfi, Anna; Motta, Andrea

    2003-11-19

    A new antifungal 6-substituted 2H-pyran-2-one, named viridepyronone, has been isolated from a cultural filtrate of a strain of Trichoderma viride showing antagonistic activity in vitro toward Sclerotium rolfsii, which is the causal agent of crown and stem rot of artichoke. Viridepyronone was characterized as 6-(4-oxopentyl)-2H-pyran-2-one 2 with spectroscopic methods. Bioassays showed that viridepyronone had a good antifungal activity against S. rolfsii, and its minimum inhibitory concentration (over 90% inhibition) was found to be 196 microg/mL. This is the first report of viridepyronone produced by any species of fungi.

  19. Posaconazole (Noxafil, SCH 56592), a new azole antifungal drug, was a discovery based on the isolation and mass spectral characterization of a circulating metabolite of an earlier lead (SCH 51048).

    PubMed

    Nomeir, Amin A; Pramanik, Birendra N; Heimark, Larry; Bennett, Frank; Veals, John; Bartner, Peter; Hilbert, Maryjane; Saksena, Anil; McNamara, Paul; Girijavallabhan, Viyyoor; Ganguly, Ashit K; Lovey, Raymond; Pike, Russell; Wang, Haiyan; Liu, Yi-Tsung; Kumari, Pramila; Korfmacher, Walter; Lin, Chin-Chung; Cacciapuoti, Anthony; Loebenberg, David; Hare, Roberta; Miller, George; Pickett, Cecil

    2008-04-01

    Posaconazole (SCH 56592) is a novel triazole antifungal drug that is marketed in Europe and the United States under the trade name 'Noxafil' for prophylaxis against invasive fungal infections. SCH 56592 was discovered as a possible active metabolite of SCH 51048, an earlier lead. Initial studies have shown that serum concentrations determined by a microbiological assay were higher than those determined by HPLC from animals dosed with SCH 51048. Subsequently, several animals species were dosed with (3)H-SCH 51048 and the serum was analyzed for total radioactivity, SCH 51048 concentration and antifungal activity. The antifungal activity was higher than that expected based on SCH 51048 serum concentrations, confirming the presence of active metabolite(s). Metabolite profiling of serum samples at selected time intervals pinpointed the peak that was suspected to be the active metabolite. Consequently, (3)H-SCH 51048 was administered to a large group of mice, the serum was harvested and the metabolite was isolated by extraction and semipreparative HPLC. LC-MS/MS analysis suggested that the active metabolite is a secondary alcohol with the hydroxyl group in the aliphatic side chain of SCH 51048. All corresponding monohydroxylated diastereomeric mixtures were synthesized and characterized. The HPLC retention time and LC-MS/MS spectra of the diastereomeric secondary alcohols of SCH 51048 were similar to those of the isolated active metabolite. Finally, all corresponding individual monohydroxylated diasteriomers were synthesized and evaluated for in vitro and in vivo antifungal potencies, as well as pharmacokinetics. SCH 56592 emerged as the candidate with the best overall profile.

  20. A study of the suppression of body odour in elderly subjects by anti-fungal agents.

    PubMed

    Ozeki, C; Moro, O

    2016-06-01

    The suppression of body odour following the use of shampoos or soaps containing the anti-fungal agent miconazole nitrate (MCZ) has been recognized anecdotally. To determine whether MCZ could play a role in the suppression of body odour through inhibiting squalene oxidation. A prospective study recruited 54 elderly subjects residing in a nursing facility who needed bathing assistance. Subjects bathed with three types of body soap over a 6-week study period (regular soap, sample soap (soap containing MCZ), control soap; 2 weeks per type of soap). Body odour was evaluated based on olfactory assessment of the subjects and their clothing. The subjects and the examiners were blinded to the type of soap (sample or control) being used during the study. An analysis using GC/MS was also carried out to identify the volatile compounds associated with body odour. Suppression of unpleasant body odour of the neck and axilla was reported in subjects who used the sample soap. Three common volatile compounds were detected from the T-shirts worn by the subjects: 2-ethylbutanal, 6-methyl-5-hepten-2-one, and geranylacetone. The occurrence of these compounds was reduced using the sample soap. Our findings suggest that MCZ could play a role in the suppression of body odour. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  1. Evolutionarily Repurposed Networks Reveal the Well-Known Antifungal Drug Thiabendazole to Be a Novel Vascular Disrupting Agent

    PubMed Central

    Cha, Hye Ji; Byrom, Michelle; Mead, Paul E.; Ellington, Andrew D.; Wallingford, John B.; Marcotte, Edward M.

    2012-01-01

    Studies in diverse organisms have revealed a surprising depth to the evolutionary conservation of genetic modules. For example, a systematic analysis of such conserved modules has recently shown that genes in yeast that maintain cell walls have been repurposed in vertebrates to regulate vein and artery growth. We reasoned that by analyzing this particular module, we might identify small molecules targeting the yeast pathway that also act as angiogenesis inhibitors suitable for chemotherapy. This insight led to the finding that thiabendazole, an orally available antifungal drug in clinical use for 40 years, also potently inhibits angiogenesis in animal models and in human cells. Moreover, in vivo time-lapse imaging revealed that thiabendazole reversibly disassembles newly established blood vessels, marking it as vascular disrupting agent (VDA) and thus as a potential complementary therapeutic for use in combination with current anti-angiogenic therapies. Importantly, we also show that thiabendazole slows tumor growth and decreases vascular density in preclinical fibrosarcoma xenografts. Thus, an exploration of the evolutionary repurposing of gene networks has led directly to the identification of a potential new therapeutic application for an inexpensive drug that is already approved for clinical use in humans. PMID:22927795

  2. Comparison of the Vitek 2 Antifungal Susceptibility System with the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) Broth Microdilution Reference Methods and with the Sensititre YeastOne and Etest Techniques for In Vitro Detection of Antifungal Resistance in Yeast Isolates ▿ ‖

    PubMed Central

    Cuenca-Estrella, Manuel; Gomez-Lopez, Alicia; Alastruey-Izquierdo, Ana; Bernal-Martinez, Leticia; Cuesta, Isabel; Buitrago, Maria J.; Rodriguez-Tudela, Juan L.

    2010-01-01

    The commercial technique Vitek 2 system for antifungal susceptibility testing of yeast species was evaluated. A collection of 154 clinical yeast isolates, including amphotericin B- and azole-resistant organisms, was tested. Results were compared with those obtained by the reference procedures of both the CLSI and the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Two other commercial techniques approved for clinical use, the Etest and the Sensititre YeastOne, were included in the comparative exercise as well. The average essential agreement (EA) between the Vitek 2 system and the reference procedures was >95%, comparable with the average EAs observed between the reference procedures and the Sensititre YeastOne and Etest. The EA values were >97% for Candida spp. and stood at 92% for Cryptococcus neoformans. Intraclass correlation coefficients (ICC) between the commercial techniques and the reference procedures were statistically significant (P < 0.01). Percentages of very major errors were 2.6% between Vitek 2 and the EUCAST technique and 1.6% between Vitek 2 and the CLSI technique. The Vitek 2 MIC results were available after 14 to 18 h of incubation for all Candida spp. (average time to reading, 15.5 h). The Vitek 2 system was shown to be a reliable technique to determine antifungal susceptibility testing of yeast species and a more rapid and easier alternative for clinical laboratories than the procedures developed by either the CLSI or EUCAST. PMID:20220169

  3. In vitro antifungal susceptibility of Trichophyton violaceum isolated from tinea capitis patients.

    PubMed

    Deng, S; de Hoog, G S; Verweij, P E; Zoll, J; Ilkit, M; Morsali, F; Abliz, P; Wang, X; Zhan, P; Yang, L; Hasimu, H; Liao, W; Pan, W; Seyedmousavi, S

    2015-04-01

    Trichophyton violaceum is an anthropophilic dermatophyte that is endemic to parts of Africa and Asia and is sporadic in Europe. T. violaceum mainly causes tinea capitis in both children and adolescents. Although the infections caused by T. violaceum are of considerable medical importance, its antifungal susceptibility profile remains poorly examined. In this study, we tested the in vitro antifungal susceptibility of a set of clinical T. violaceum isolates obtained from tinea capitis patients, using the CLSI broth microdilution method. We tested eight antifungals and used isolates collected from Western China (21), Eastern China (12), the Middle East (1), Europe (20), South Africa (7) and Canada (1). The geometric means of the MICs of the antifungals for all isolates were as follows (in increasing order): posaconazole, 0.021 mg/L; terbinafine, 0.023 mg/L; voriconazole, 0.062 mg/L; amphotericin B, 0.20 mg/L; itraconazole, 0.34 mg/L; caspofungin, 0.56 mg/L; fluconazole, 4.23 mg/L; and flucytosine, 8.46 mg/L. No statistically significant differences in the susceptibility profiles of T. violaceum were detected within the geographical regions tested. Posaconazole, terbinafine and voriconazole were shown to be the most potent antifungal agents against T. violaceum isolates obtained from tinea capitis patients worldwide. These results might help clinicians in developing appropriate therapies that have a high probability of successfully treating tinea capitis due to T. violaceum. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Lysosome and HER3 (ErbB3) selective anticancer agent kahalalide F: semisynthetic modifications and antifungal lead-exploration studies.

    PubMed

    Shilabin, Abbas Gholipour; Kasanah, Noer; Wedge, David E; Hamann, Mark T

    2007-09-06

    Kahalalide F (1) shows remarkable antitumor activity against different carcinomas and has recently completed phase I clinical trials and is being evaluated in phase II clinical studies. The antifungal activity of this molecule has not been thoroughly investigated. In this report, we focused on acetylation and oxidation of the secondary alcohol of threonine, as well as reductive alkylation of the primary amine of ornithine, and each product was evaluated for improvements in antifungal activity. 1 and analogues do not exhibit antimalarial, antileishmania, or antibacterial activity; however, the antifungal activity against different strains of fungi was particularly significant. This series of compounds was highly active against Fusarium spp., which represents an opportunistic infection in humans and plants. The in vitro cytotoxicity for the new analogues of 1 was evaluated in the NCI 60 cell panel. Analogue 5 exhibited enhanced potency in several human cancer cell lines relative to 1.

  5. METABOLISM OF MYCLOBUTANIL AND TRIADIMEFON BY HUMAN AND RAT CYTOCHROME P450 ENZYMES AND LIVER MICROSOMES.

    EPA Science Inventory

    Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil wa...

  6. Antifungal activity of Cymbopogon winterianus jowitt ex bor against Candida albicans

    PubMed Central

    de Oliveira, Wylly Araújo; de Oliveira Pereira, Fillipe; de Luna, Giliara Carol Diniz Gomes; Lima, Igara Oliveira; Wanderley, Paulo Alves; de Lima, Rita Baltazar; de Oliveira Lima, Edeltrudes

    2011-01-01

    Candida albicans is an opportunistic yeast and a member of the normal human flora that commonly causes infections in patients with any type of deficiency of the immune system. The essential oils have been tested for antimycotic activity and pose much potential as antifungal agents. This work investigated the activity of the essential oil of Cymbopogon winterianus against C. albicans by MIC, MFC and time-kill methods. The essential oil (EO) was obtained by hydrodistillation using a Clevenger-type apparatus. It was tested fifteen strains of C. albicans. The MIC was determined by the microdilution method and the MFC was determined when an aliquot of the broth microdilution was cultivated in SDA medium. The phytochemical analysis of EO showed presence of citronellal (23,59%), geraniol (18,81%) and citronellol (11,74%). The EO showed antifungal activity, and the concentrations 625 µg/mL and 1250 µg/mL inhibited the growth of all strains tested and it was fungicidal, respectively. The antimicrobial activity of various concentrations of EO was analyzed over time, it was found concentration-dependent antifungal activity, whose behavior was similar to amphotericin B and nystatin. PMID:24031651

  7. Antifungal activity of geldanamycin alone or in combination with fluconazole against Candida species.

    PubMed

    Zhang, Jinqing; Liu, Wei; Tan, Jingwen; Sun, Yi; Wan, Zhe; Li, Ruoyu

    2013-04-01

    A standardized broth microdilution method was used to test the antifungal activity of geldanamycin (GA), an inhibitor of heat shock protein 90 (Hsp90), alone or in combination with the antifungal agent fluconazole (FLC) against 32 clinical isolates of Candida spp. In addition, a disk diffusion test was also used to evaluate the antifungal effect of these two drugs against Candida spp. by measuring the inhibition zone diameters. We found that the range of minimal inhibitory concentrations (MICs) for GA alone against Candida spp. was 3.2-12.8 mg/L and the geometric mean of MICs was 6.54 mg/L. In addition, the combination of GA with FLC showed synergistic effects in vitro against 2 FLC-susceptible and 6 FLC-resistant isolates of C. albicans. As for the other isolates, indifference but no antagonism was observed. In the disk diffusion assay, the diameter of inhibition zones for FLC combined with GA against FLC-resistant C. albicans isolates was 30 mm, while no inhibition was observed with FLC alone. These results demonstrate that GA possesses antifungal activity against Candida spp., and the combination of GA with FLC shows in vitro synergistic activity against some C. albicans isolates, especially those resistant to FLC.

  8. Endophytic fungus strain 28 isolated from Houttuynia cordata possesses wide-spectrum antifungal activity.

    PubMed

    Pan, Feng; Liu, Zheng-Qiong; Chen, Que; Xu, Ying-Wen; Hou, Kai; Wu, Wei

    2016-01-01

    The aim of this paper is to identify and investigate an endophytic fungus (strain 28) that was isolated from Houttuynia cordata Thunb, a famous and widely-used Traditional Chinese Medicine. Based on morphological methods and a phylogenetic analysis of ITS sequences, this strain was identified as Chaetomium globosum. An antifungal activity bioassay demonstrated that the crude ethyl acetate (EtOAc) extracts of strain 28 had a wide antifungal spectrum and strong antimicrobial activity, particularly against Exserohilum turcicum (Pass.) Leonard et Suggs, Botrytis cinerea persoon and Botrytis cinerea Pers. ex Fr. Furthermore, the fermentation conditions, extraction method and the heat stability of antifungal substances from strain 28 were also studied. The results showed that optimal antifungal activity can be obtained with the following parameters: using potato dextrose broth (PDB) as the base culture medium, fermentation for 4-8d (initial pH: 7.5), followed by extraction with EtOAc. The extract was stable at temperatures up to 80°C. This is the first report on the isolation of endophytic C. globosum from H. cordata to identify potential alternative biocontrol agents that could provide new opportunities for practical applications involving H. cordata. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. Antifungal activity of extracts from Atacama Desert fungi against Paracoccidioides brasiliensis and identification of Aspergillus felis as a promising source of natural bioactive compounds

    PubMed Central

    Mendes, Graziele; Gonçalves, Vívian N; Souza-Fagundes, Elaine M; Kohlhoff, Markus; Rosa, Carlos A; Zani, Carlos L; Cota, Betania B; Rosa, Luiz H; Johann, Susana

    2016-01-01

    Fungi of the genus Paracoccidioides are responsible for paracoccidioidomycosis. The occurrence of drug toxicity and relapse in this disease justify the development of new antifungal agents. Compounds extracted from fungal extract have showing antifungal activity. Extracts of 78 fungi isolated from rocks of the Atacama Desert were tested in a microdilution assay against Paracoccidioides brasiliensis Pb18. Approximately 18% (5) of the extracts showed minimum inhibitory concentration (MIC) values≤ 125.0 µg/mL. Among these, extract from the fungus UFMGCB 8030 demonstrated the best results, with an MIC of 15.6 µg/mL. This isolate was identified as Aspergillus felis (by macro and micromorphologies, and internal transcribed spacer, β-tubulin, and ribosomal polymerase II gene analyses) and was grown in five different culture media and extracted with various solvents to optimise its antifungal activity. Potato dextrose agar culture and dichloromethane extraction resulted in an MIC of 1.9 µg/mL against P. brasiliensis and did not show cytotoxicity at the concentrations tested in normal mammalian cell (Vero). This extract was subjected to bioassay-guided fractionation using analytical C18RP-high-performance liquid chromatography (HPLC) and an antifungal assay using P. brasiliensis. Analysis of the active fractions by HPLC-high resolution mass spectrometry allowed us to identify the antifungal agents present in the A. felis extracts cytochalasins. These results reveal the potential of A. felis as a producer of bioactive compounds with antifungal activity. PMID:27008375

  10. Characterization of three antifungal calcite-forming bacteria, Arthrobacter nicotianae KNUC2100, Bacillus thuringiensis KNUC2103, and Stenotrophomonas maltophilia KNUC2106, derived from the Korean islands, Dokdo and their application on mortar.

    PubMed

    Park, Jong-Myong; Park, Sung-Jin; Ghim, Sa-Youl

    2013-09-28

    Crack remediation on the surface of cement mortar using microbiological calcium carbonate (CaCO3) precipitation (MICP) has been investigated as a microbial sealing agent on construction materials. However, MICP research has never acknowledged the antifungal properties of calcite-forming bacteria (CFB). Since fungal colonization on concrete surfaces can trigger biodeterioration processes, fungi on concrete buildings have to be prevented. Therefore, to develop a microbial sealing agent that has antifungal properties to remediate cement cracks without deteriorative fungal colonization, we introduced an antifungal CFB isolated from oceanic islands (Dokdo islands, territory of South Korea, located at the edge of the East Sea in Korea.). The isolation of CFB was done using B4 or urea-CaCl2 media. Furthermore, antifungal assays were done using the pairing culture and disk diffusion methods. Five isolated CFB showed CaCO3 precipitation and antifungal activities against deteriorative fungal strains. Subsequently, five candidate bacteria were identified using 16S rDNA sequence analysis. Crack remediation, fungi growth inhibition, and water permeability reduction of antifungal CFB-treated cement surfaces were tested. All antifungal CFB showed crack remediation abilities, but only three strains (KNUC2100, 2103, and 2106) reduced the water permeability. Furthermore, these three strains showed fungi growth inhibition. This paper is the first application research of CFB that have antifungal activity, for an eco-friendly improvement of construction materials.

  11. Cinnamic Acid Analogs as Intervention Catalysts for Overcoming Antifungal Tolerance.

    PubMed

    Kim, Jong H; Chan, Kathleen L; Cheng, Luisa W

    2017-10-21

    Disruption of fungal cell wall should be an effective intervention strategy. However, the cell wall-disrupting echinocandin drugs, such as caspofungin (CAS), cannot exterminate filamentous fungal pathogens during treatment. For potency improvement of cell wall-disrupting agents (CAS, octyl gallate (OG)), antifungal efficacy of thirty-three cinnamic acid derivatives was investigated against Saccharomyces cerevisiae slt2 Δ, bck1 Δ, mutants of the mitogen-activated protein kinase (MAPK), and MAPK kinase kinase, respectively, in cell wall integrity system, and glr1 Δ, mutant of CAS-responsive glutathione reductase. Cell wall mutants were highly susceptible to four cinnamic acids (4-chloro-α-methyl-, 4-methoxy-, 4-methyl-, 3-methylcinnamic acids), where 4-chloro-α-methyl- and 4-methylcinnamic acids possessed the highest activity. Structure-activity relationship revealed that 4-methylcinnamic acid, the deoxygenated structure of 4-methoxycinnamic acid, overcame tolerance of glr1 Δ to 4-methoxycinnamic acid, indicating the significance of para substitution of methyl moiety for effective fungal control. The potential of compounds as chemosensitizers (intervention catalysts) to cell wall disruptants (viz., 4-chloro-α-methyl- or 4-methylcinnamic acids + CAS or OG) was assessed according to Clinical Laboratory Standards Institute M38-A. Synergistic chemosensitization greatly lowers minimum inhibitory concentrations of the co-administered drug/agents. 4-Chloro-α-methylcinnamic acid further overcame fludioxonil tolerance of Aspergillus fumigatus antioxidant MAPK mutants ( sakA Δ, mpkC Δ). Collectively, 4-chloro-α-methyl- and 4-methylcinnamic acids possess chemosensitizing capability to augment antifungal efficacy of conventional drug/agents, thus could be developed as target-based (i.e., cell wall disruption) intervention catalysts.

  12. Synthetic arylquinuclidine derivatives exhibit antifungal activity against Candida albicans, Candida tropicalis and Candida parapsilopsis.

    PubMed

    Ishida, Kelly; Fernandes Rodrigues, Juliany Cola; Cammerer, Simon; Urbina, Julio A; Gilbert, Ian; de Souza, Wanderley; Rozental, Sonia

    2011-01-21

    Sterol biosynthesis is an essential pathway for fungal survival, and is the biochemical target of many antifungal agents. The antifungal drugs most widely used to treated fungal infections are compounds that inhibit cytochrome P450-dependent C14α-demethylase (CYP51), but other enzymes of this pathway, such as squalene synthase (SQS) which catalyses the first committed step in sterol biosynthesis, could be viable targets. The aim of this study was to evaluate the antifungal activity of SQS inhibitors on Candida albicans, Candida tropicalis and Candida parapsilopsis strains. Ten arylquinuclidines that act as SQS inhibitors were tested as antiproliferative agents against three ATCC strains and 54 clinical isolates of Candida albicans, Candida tropicalis and Candida parapsilopsis. Also, the morphological alterations induced in the yeasts by the experimental compounds were evaluated by fluorescence and transmission electron microscopy. The most potent arylquinuclidine derivative (3-[1'-{4'-(benzyloxy)-phenyl}]-quinuclidine-2-ene) (WSP1267) had a MIC50 of 2 μg/ml for all species tested and MIC90 varying from 4 μg/ml to 8 μg/ml. Ultrathin sections of C. albicans treated with 1 μg/ml of WSP1267 showed several ultrastructural alterations, including (a) loss of cell wall integrity, (b) detachment of the plasma membrane from the fungal cell wall, (c) accumulation of small vesicles in the periplasmic region, (d) presence of large electron-dense vacuoles and (e) significantly increased cell size and cell wall thickness. In addition, fluorescence microscopy of cells labelled with Nile Red showed an accumulation of lipid droplets in the cytoplasm of treated yeasts. Nuclear staining with DAPI revealed the appearance of uncommon yeast buds without a nucleus or with two nuclei. Taken together, our data demonstrate that arylquinuclidine derivatives could be useful as lead compounds for the rational synthesis of new antifungal drugs.

  13. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L.

    PubMed

    Ali, Intzar; Khan, Farrah G; Suri, Krishan A; Gupta, Bishan D; Satti, Naresh K; Dutt, Prabhu; Afrin, Farhat; Qazi, Ghulam N; Khan, Inshad A

    2010-02-03

    Hydroxychavicol, isolated from the chloroform extraction of the aqueous leaf extract of Piper betle L., (Piperaceae) was investigated for its antifungal activity against 124 strains of selected fungi. The leaves of this plant have been long in use tropical countries for the preparation of traditional herbal remedies. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of hydroxychavicol were determined by using broth microdilution method following CLSI guidelines. Time kill curve studies, post-antifungal effects and mutation prevention concentrations were determined against Candida species and Aspergillus species "respectively". Hydroxychavicol was also tested for its potential to inhibit and reduce the formation of Candida albicans biofilms. The membrane permeability was measured by the uptake of propidium iodide. Hydroxychavicol exhibited inhibitory effect on fungal species of clinical significance, with the MICs ranging from 15.62 to 500 microg/ml for yeasts, 125 to 500 microg/ml for Aspergillus species, and 7.81 to 62.5 microg/ml for dermatophytes where as the MFCs were found to be similar or two fold greater than the MICs. There was concentration-dependent killing of Candida albicans and Candida glabrata up to 8 x MIC. Hydroxychavicol also exhibited an extended post antifungal effect of 6.25 to 8.70 h at 4 x MIC for Candida species and suppressed the emergence of mutants of the fungal species tested at 2 x to 8 x MIC concentration. Furthermore, it also inhibited the growth of biofilm generated by C. albicans and reduced the preformed biofilms. There was increased uptake of propidium iodide by C. albicans cells when exposed to hydroxychavicol thus indicating that the membrane disruption could be the probable mode of action of hydroxychavicol. The antifungal activity exhibited by this compound warrants its use as an antifungal agent particularly for treating topical infections, as well as gargle mouthwash against oral Candida

  14. Antifungal activity of Brazilian medicinal plants involved in popular treatment of mycoses.

    PubMed

    Cruz, M C S; Santos, P O; Barbosa, A M; de Mélo, D L F M; Alviano, C S; Antoniolli, A R; Alviano, D S; Trindade, R C

    2007-05-04

    A survey of medicinal plants used to treat common mycoses was done in the Curituba district, Sergipe State, Brazil. One hundred inhabitants were interviewed by health agents and traditional healers. Four different plants were the most cited (more than 50% of the citations): Ziziphus joazeiro, Caesalpinia pyramidalis, Bumelia sartorum and Hymenea courbaril. The aqueous extracts obtained following traditional methods and using different parts of these plants, were submitted to drop agar diffusion tests for primary antimicrobial screening. Only the water infusion extract of Ziziphus joazeiro and Caesalpinea pyramidalis presented a significant antifungal activity against Trichophyton rubrum, Candida guilliermondii, Candida albicans, Cryptococcus neoformans and Fonsecaea pedrosoi, when compared to the antifungal agent amphotericin B. The minimal inhibitory concentration (MIC) of the bioactive extracts was evaluated by the microdilution method. Best activity with a MIC of 6.5 microg/ml for both extracts was observed against Trichophyton rubrum and Candida guilliermondii. Ziziphus joazeiro and Caesalpinea pyramidalis extracts presented also low acute toxicity in murine models. The present study validates the folk use of these plant extracts and indicates that they can be effective potential candidates for the development of new strategies to treat fungal infections.

  15. Essential Oils of Myrtaceae Species Growing Wild in Tunisia: Chemical Variability and Antifungal Activity Against Biscogniauxia mediterranea, the Causative Agent of Charcoal Canker.

    PubMed

    Yangui, Islem; Zouaoui Boutiti, Meriem; Boussaid, Mohamed; Messaoud, Chokri

    2017-07-01

    The chemical composition of five Eucalyptus species and five Myrtus communis L. populations was investigated using GC/MS and GC-FID. For Eucalyptus essential oils, 32 compounds, representing 88.56 - 96.83% of the total oil according to species, were identified. The main compounds were 1,8-cineole, α-pinene, p-cymene, γ-gurjunene, α-aromadendrene, and β-phellandrene. For Myrtle essential oils, 26 compounds, representing 93.13 - 98.91% of the total oil were identified. α-Pinene, 1,8-cineole, linalool, and myrtenyl acetate were found to be the major compounds. Principal component analysis (PCA) showed chemical differentiation between Eucalyptus species and between Myrtle populations. Biscogniauxia mediterranea, the causative agent of charcoal canker, was identified according to its morphological and molecular characteristics. Essential oils of the investigated Eucalyptus species and Myrtle populations were tested for their antifungal capacity against this fungus. The antifungal activity varied according to the essential oil composition. Biscogniauxia mediterranea exhibited powerful resistance to some essential oils including them of Eucalyptus lehmannii and Eucalyptus sideroxylon but it was very sensitive to Eucalyptus camaldulensis oil (IC 50  = 3.83 mg/ml) and M. communis oil from Zaghouan (IC 50  = 1 mg/ml). This sensitivity was found to be correlated to some essential oil compounds such as p-cymene, carvacrol, cuminaldehyde, and linalool. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  16. Pathogenesis and host defence against Mucorales: the role of cytokines and interaction with antifungal drugs.

    PubMed

    Roilides, Emmanuel; Antachopoulos, Charalampos; Simitsopoulou, Maria

    2014-12-01

    Innate immune response, including macrophages, neutrophils and dendritic cells and their respective receptors, plays an important role in host defences against Mucorales with differential activity against specific fungal species, while adaptive immunity is not the first line of defence. A number of endogenous and exogenous factors, such as cytokines and growth factors as well as certain antifungal agents have been found that they influence innate immune response to these organisms. Used alone or especially in combination have been shown to exert antifungal effects against Mucorales species. These findings suggest novel ways of adjunctive therapy for patients with invasive mucormycosis. © 2014 Blackwell Verlag GmbH.

  17. In vitro susceptibility of Sporothrix schenckii to six antifungal agents determined using three different methods.

    PubMed

    Alvarado-Ramírez, Eidi; Torres-Rodríguez, Josep M

    2007-07-01

    The in vitro susceptibility of Sporothrix schenckii to antifungal drugs has been determined with three different methods. Nineteen Peruvian clinical isolates of S. schenckii were tested against amphotericin B (AB), flucytosine (FC), fluconazole (FZ), itraconazole (IZ), voriconazole (VZ), and ketoconazole (KZ). Modified NCCLS M38-A, Sensititre YeastOne (SYO), and ATB Fungus 2 (ATBF2) methods were used to determine the MICs. ATCC isolates of Candida parapsilosis, Candida krusei, and Aspergillus flavus were used for quality control. Sporothrix inocula were prepared with the mycelial form growing on potato dextrose agar at 28 +/- 2 degrees C. MICs of AB, FC, FZ, and IZ were determined with all three methods, VZ with M38-A and SYO, and KZ with only SYO. The three methods showed high MICs of FZ and FC (MIC(90) of 0.5 microg/ml), being homogeneously lower than those of IZ and KZ. The M38-A method showed a variable MIC range of VZ (4.0 to 16 microg/ml); the geometric mean (GM) was 9.3 mug/ml. The MIC range of AB was wide (0.06 to 16 microg/ml), but the GM was 1.2 microg/ml, suggesting that the MIC is strain dependent. Agreement (two log(2) dilutions) between commercial techniques and the modified M38-A method was very high with FZ, IZ, and FC. In AB and VZ, the agreement was lower, being related to the antifungal concentrations of each method. The highest activity against S. schenckii was found with IZ and KZ. Lack of activity was observed with FZ, VZ, and FC. When AB is indicated for sporotrichosis, the susceptibility of the strain must be analyzed. Commercial quantitative antifungal methods have a limited usefulness in S. schenckii.

  18. Synthesis and characterization of anti-bacterial and anti-fungal citrate-based mussel-inspired bioadhesives

    PubMed Central

    Guo, Jinshan; Wang, Wei; Hu, Jianqing; Xie, Denghui; Gerhard, Ethan; Nisic, Merisa; Shan, Dingying; Qian, Guoying; Zheng, Siyang; Yang, Jian

    2016-01-01

    Bacterial and fungal infections in the use of surgical devices and medical implants remain a major concern. Traditional bioadhesives fail to incorporate anti-microbial properties, necessitating additional anti-microbial drug injection. Herein, by the introduction of the clinically used and inexpensive anti-fungal agent, 10-undecylenic acid (UA), into our recently developed injectable citrate-based mussel-inspired bioadhesives (iCMBAs), a new family of anti-bacterial and anti-fungal iCMBAs (AbAf iCs) was developed. AbAf iCs not only showed strong wet tissue adhesion strength, but also exhibited excellent in vitro cyto-compatibility, fast degradation, and strong initial and considerable long-term anti-bacterial and anti-fungal ability. For the first time, the biocompatibility and anti-microbial ability of sodium metaperiodate (PI), an oxidant used as a cross-linking initiator in the AbAf iCs system, was also thoroughly investigated. Our results suggest that the PI-based bioadhesives showed better anti-microbial properties compared to the unstable silver-based bioadhesive materials. In conclusion, AbAf iCs family can serve as excellent anti-bacterial and anti-fungal bioadhesive candidates for tissue/wound closure, wound dressing, and bone regeneration, especially when bacterial or fungal infections are a major concern. PMID:26874283

  19. New Polyurethane Nail Lacquers for the Delivery of Terbinafine: Formulation and Antifungal Activity Evaluation.

    PubMed

    Gregorí Valdes, Barbara S; Serro, Ana Paula; Gordo, Paulo M; Silva, Alexandra; Gonçalves, Lídia; Salgado, Ana; Marto, Joana; Baltazar, Diogo; Dos Santos, Rui Galhano; Bordado, João Moura; Ribeiro, Helena Margarida

    2017-06-01

    Onychomycosis is a fungal nail infection. The development of new topical antifungal agents for the treatment of onychomycosis has focused on formulation enhancements that optimize the pharmacological characteristics required for its effective treatment. Polyurethanes (PUs) have never been used in therapeutic nail lacquers. The aim of this work has been the development of new PU-based nail lacquers with antifungal activity containing 1.0% (wt/wt) of terbinafine hydrochloride. The biocompatibility, wettability, and the prediction of the free volume in the polymeric matrix were assessed using a human keratinocytes cell line, contact angle, and Positron Annihilation Lifetime Spectroscopy determinations, respectively. The morphology of the films obtained was confirmed by scanning electron microscopy, while the nail lacquers' bioadhesion to nails was determined by mechanical tests. Viscosity, in vitro release profiles, and antifungal activity were also assessed. This study demonstrated that PU-terbinafine-based nail lacquers have good keratinocyte compatibility, good wettability properties, and adequate free volume. They formed a homogenous film after application, with suitable adhesion to the nail plate. Furthermore, the antifungal test results demonstrated that the terbinafine released from the nail lacquer Formulation A PU 19 showed activity against dermatophytes, namely Trichophyton rubrum. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Synthesis and characterization of anti-bacterial and anti-fungal citrate-based mussel-inspired bioadhesives.

    PubMed

    Guo, Jinshan; Wang, Wei; Hu, Jianqing; Xie, Denghui; Gerhard, Ethan; Nisic, Merisa; Shan, Dingying; Qian, Guoying; Zheng, Siyang; Yang, Jian

    2016-04-01

    Bacterial and fungal infections in the use of surgical devices and medical implants remain a major concern. Traditional bioadhesives fail to incorporate anti-microbial properties, necessitating additional anti-microbial drug injection. Herein, by the introduction of the clinically used and inexpensive anti-fungal agent, 10-undecylenic acid (UA), into our recently developed injectable citrate-based mussel-inspired bioadhesives (iCMBAs), a new family of anti-bacterial and anti-fungal iCMBAs (AbAf iCs) was developed. AbAf iCs not only showed strong wet tissue adhesion strength, but also exhibited excellent in vitro cyto-compatibility, fast degradation, and strong initial and considerable long-term anti-bacterial and anti-fungal ability. For the first time, the biocompatibility and anti-microbial ability of sodium metaperiodate (PI), an oxidant used as a cross-linking initiator in the AbAf iCs system, was also thoroughly investigated. Our results suggest that the PI-based bioadhesives showed better anti-microbial properties compared to the unstable silver-based bioadhesive materials. In conclusion, AbAf iCs family can serve as excellent anti-bacterial and anti-fungal bioadhesive candidates for tissue/wound closure, wound dressing, and bone regeneration, especially when bacterial or fungal infections are a major concern. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Diversities in Virulence, Antifungal Activity, Pigmentation and DNA Fingerprint among Strains of Burkholderia glumae

    PubMed Central

    Karki, Hari S.; Shrestha, Bishnu K.; Han, Jae Woo; Groth, Donald E.; Barphagha, Inderjit K.; Rush, Milton C.; Melanson, Rebecca A.; Kim, Beom Seok; Ham, Jong Hyun

    2012-01-01

    Burkholderia glumae is the primary causal agent of bacterial panicle blight of rice. In this study, 11 naturally avirulent and nine virulent strains of B. glumae native to the southern United States were characterized in terms of virulence in rice and onion, toxofalvin production, antifungal activity, pigmentation and genomic structure. Virulence of B. glumae strains on rice panicles was highly correlated to virulence on onion bulb scales, suggesting that onion bulb can be a convenient alternative host system to efficiently determine the virulence of B. glumae strains. Production of toxoflavin, the phytotoxin that functions as a major virulence factor, was closely associated with the virulence phenotypes of B. glumae strains in rice. Some strains of B. glumae showed various levels of antifungal activity against Rhizoctonia solani, the causal agent of sheath blight, and pigmentation phenotypes on casamino acid-peptone-glucose (CPG) agar plates regardless of their virulence traits. Purple and yellow-green pigments were partially purified from a pigmenting strain of B. glumae, 411gr-6, and the purple pigment fraction showed a strong antifungal activity against Collectotrichum orbiculare. Genetic variations were detected among the B. glumae strains from DNA fingerprinting analyses by repetitive element sequence-based PCR (rep-PCR) for BOX-A1R-based repetitive extragenic palindromic (BOX) or enterobacterial repetitive intergenic consensus (ERIC) sequences of bacteria; and close genetic relatedness among virulent but pigment-deficient strains were revealed by clustering analyses of DNA fingerprints from BOX-and ERIC-PCR. PMID:23028972

  2. o-Iodoxybenzoic acid mediated oxidative desulfurization initiated domino reactions for synthesis of azoles.

    PubMed

    Chaudhari, Pramod S; Pathare, Sagar P; Akamanchi, Krishnacharaya G

    2012-04-20

    A systematic exploration of thiophilic ability of o-iodoxybenzoic acid (IBX) for oxidative desulfurization to trigger domino reactions leading to new methodologies for synthesis of different azoles is described. A variety of highly substituted oxadiazoles, thiadiazoles, triazoles, and tetrazoles have been successfully synthesized in good to excellent yields, starting from readily accessible thiosemicarbazides, bis-diarylthiourea, 1,3-disubtituted thiourea, and thioamides. © 2012 American Chemical Society

  3. TOXICITY PROFILES IN RATS TREATED WITH TUMORIGENIC AND NONTUMORIGENIC TRIAZOLE CONAZOLE FUNGICIDES: PROPICONAZOLE, TRIADIMEFON, AND MYCLOBUTANIL

    EPA Science Inventory

    Conazoles are a class of azole based fungicides used in agriculture and as pharmaceutical products. They have a common mode of antifungal action through inhibition of ergosterol biosynthesis. Some members of this class have been shown to be hepatotoxic and will induce mouse hepa...

  4. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus.

    PubMed

    Hu, Yichen; Zhang, Jinming; Kong, Weijun; Zhao, Gang; Yang, Meihua

    2017-04-01

    The antifungal activity and potential mechanisms in vitro as well as anti-aflatoxigenic efficiency in vivo of natural essential oil (EO) derived from turmeric (Curcuma longa L.) against Aspergillus flavus was intensively investigated. Based on the previous chemical characterization of turmeric EO by gas chromatography-mass spectrometry, the substantially antifungal activities of turmeric EO on the mycelial growth, spore germination and aflatoxin production were observed in a dose-dependent manner. Furthermore, these antifungal effects were related to the disruption of fungal cell endomembrane system including the plasma membrane and mitochondria, specifically i.e. the inhibition of ergosterol synthesis, mitochondrial ATPase, malate dehydrogenase, and succinate dehydrogenase activities. Moreover, the down-regulation profiles of turmeric EO on the relative expression of mycotoxin genes in aflatoxin biosynthetic pathway revealed its anti-aflatoxigenic mechanism. Finally, the suppression effect of fungal contamination in maize indicated that turmeric EO has potential as an eco-friendly antifungal agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. CYP51 as drug targets for fungi and protozoan parasites: past, present and future.

    PubMed

    Lepesheva, Galina I; Friggeri, Laura; Waterman, Michael R

    2018-04-12

    The efficiency of treatment of human infections with the unicellular eukaryotic pathogens such as fungi and protozoa remains deeply unsatisfactory. For example, the mortality rates from nosocomial fungemia in critically ill, immunosuppressed or post-cancer patients often exceed 50%. A set of six systemic clinical azoles [sterol 14α-demethylase (CYP51) inhibitors] represents the first-line antifungal treatment. All these drugs were discovered empirically, by monitoring their effects on fungal cell growth, though it had been proven that they kill fungal cells by blocking the biosynthesis of ergosterol in fungi at the stage of 14α-demethylation of the sterol nucleus. This review briefs the history of antifungal azoles, outlines the situation with the current clinical azole-based drugs, describes the attempts of their repurposing for treatment of human infections with the protozoan parasites that, similar to fungi, also produce endogenous sterols, and discusses the most recently acquired knowledge on the CYP51 structure/function and inhibition. It is our belief that this information should be helpful in shifting from the traditional phenotypic screening to the actual target-driven drug discovery paradigm, which will rationalize and substantially accelerate the development of new, more efficient and pathogen-oriented CYP51 inhibitors.

  6. Purification, Reconstitution, and Inhibition of Cytochrome P-450 Sterol Δ22-Desaturase from the Pathogenic Fungus Candida glabrata

    PubMed Central

    Lamb, David C.; Maspahy, Segula; Kelly, Diane E.; Manning, Nigel J.; Geber, Antonia; Bennett, John E.; Kelly, Steven L.

    1999-01-01

    Sterol Δ22-desaturase has been purified from a strain of Candida glabrata with a disruption in the gene encoding sterol 14α-demethylase (cytochrome P-45051; CYP51). The purified cytochrome P-450 exhibited sterol Δ22-desaturase activity in a reconstituted system with NADPH–cytochrome P-450 reductase in dilaurylphosphatidylcholine, with the enzyme kinetic studies revealing a Km for ergosta-5,7-dienol of 12.5 μM and a Vmax of 0.59 nmol of this substrate metabolized/min/nmol of P-450. This enzyme is encoded by CYP61 (ERG5) in Saccharomyces cerevisiae, and homologues have been shown in the Candida albicans and Schizosaccharomyces pombe genome projects. Ketoconazole, itraconazole, and fluconazole formed low-spin complexes with the ferric cytochrome and exhibited type II spectra, which are indicative of an interaction between the azole moiety and the cytochrome heme. The azole antifungal compounds inhibited reconstituted sterol Δ22-desaturase activity by binding to the cytochrome with a one-to-one stoichiometry, with total inhibition of enzyme activity occurring when equimolar amounts of azole and cytochrome P-450 were added. These results reveal the potential for sterol Δ22-desaturase to be an antifungal target and to contribute to the binding of drugs within the fungal cell. PMID:10390230

  7. Mechanisms of resistance to an azole fungicide in the grapevine powdery mildew fungus, Erysiphe necator

    USDA-ARS?s Scientific Manuscript database

    We studied the mechanisms of azole resistance in the grapevine powdery mildew fungus, Erysiphe necator, by quantifying the sensitivity to myclobutanil (EC50) in 65 isolates from the eastern U.S. and 12 from Chile. From each isolate, we sequenced the gene for sterol 14a-demethylase (CYP51), and measu...

  8. Candida profiles and antifungal resistance evolution over a decade in Lebanon.

    PubMed

    Araj, George Farah; Asmar, Rima George; Avedissian, Aline Zakaria

    2015-09-27

    Infection with and antifungal resistance of Candida species have been on the rise globally. Relevant data on these pathogens are relatively few in our region, including Lebanon, thus warranting this study. This retrospective study of Candida spp. profiles and their in vitro antifungal susceptibility was based on analysis requests for 186 Candida non-albicans and 61 C. albicans during three periods (2005-2007, 2009-2011, and 2012-2014) over the span of the last 10 years at the American University of Beirut Medical Center (AUBMC), a major tertiary care center in Lebanon. Identification of Candida was done using the API 20C AUX system, and the E-test was used to determine the minimum inhibitory concentrations (MICs) of antifungal agents. Among the 1,300-1,500 Candida isolates recovered yearly, C. albicans rates decreased from 86% in 2005 to around 60% in 2014. Simultaneously, the non-albicans rates increased from 14% in 2005 to around 40% in 2014, revealing 11 species, the most frequent of which were C. tropicalis, C. glabrata, and C. parapsilosis. All these demonstrated high resistance (35%-79%) against itraconazole, but remained uniformly susceptible (100%) to amphotericin B. Though C. albicans and the other species maintained high susceptibility against fluconazole and voriconazole, their MIC90 showed an elevated trend over time, and C. glabrata had the highest resistance rates. The observed rise in resistance among Candida spp. in Lebanon mandates the need for close surveillance and monitoring of antifungal drug resistance for both epidemiologic and treatment purposes.

  9. Chemical Composition and Antifungal Activity of Ocimum basilicum L. Essential Oil

    PubMed Central

    El-Soud, Neveen Helmy Abou; Deabes, Mohamed; El-Kassem, Lamia Abou; Khalil, Mona

    2015-01-01

    BACKGROUND: The leaves of Ocimum basilicum L. (basil) are used in traditional cuisine as spices; its essential oil has found a wide application in perfumery, dental products as well as antifungal agents. AIM: To assess the chemical composition as well as the in vitro antifungal activity of O. basilicum L. essential oil against Aspergillus flavus fungal growth and aflatoxin B1 production. MATERIAL AND METHODS: The essential oil of O. basilicum was obtained by hydrodistillation and analysed using gas chromatography (GC) and GC coupled with mass spectrometry (GC/MS). The essential oil was tested for its effects on Aspergillus flavus (A. flavus) mycelial growth and aflatoxin B1 production in Yeast Extract Sucrose (YES) growth media. Aflatoxin B1 production was determined by high performance liquid chromatography (HPLC). RESULTS: Nineteen compounds, representing 96.7% of the total oil were identified. The main components were as follows: linalool (48.4%), 1,8-cineol (12.2%), eugenol (6.6%), methyl cinnamate (6.2%), α-cubebene (5.7%), caryophyllene (2.5%), β-ocimene (2.1%) and α-farnesene (2.0%). The tested oil showed significant antifungal activity that was dependent on the used oil concentration. The complete inhibition of A. flavus growth was observed at 1000 ppm oil concentration, while marked inhibition of aflatoxin B1 production was observed at all oil concentrations tested (500, 750 and 1000 ppm). CONCLUSION: These results confirm the antifungal activities of O. basilicum L. oil and its potential use to cure mycotic infections and act as pharmaceutical preservative against A. flavus growth and aflatoxin B1 production. PMID:27275253

  10. In vitro susceptibility of Trichomonas vaginalis to 50 antimicrobial agents.

    PubMed Central

    Sears, S D; O'Hare, J

    1988-01-01

    We determined the susceptibilities of five strains of Trichomonas vaginalis, one of which was metronidazole resistant, to 50 antimicrobial agents. For the metronidazole-susceptible strains, the most active agents were metronidazole, tinidazole, mebendazole, furazolidone, and anisomycin. Against the resistant strain mebendazole, furazolidone, and anisomycin were the most active. Antifungal agents, beta-lactams, macrolides, aminoglycosides, and folic acid antagonists were ineffective against all strains. PMID:3258142

  11. In Vitro Antifungal Susceptibility of Oral Candida Isolates from Patients Suffering from Caries and Chronic Periodontitis.

    PubMed

    De-la-Torre, Janire; Ortiz-Samperio, María Esther; Marcos-Arias, Cristina; Marichalar-Mendia, Xabier; Eraso, Elena; Echebarria-Goicouria, María Ángeles; Aguirre-Urizar, José Manuel; Quindós, Guillermo

    2017-06-01

    Caries and chronic periodontitis are common oral diseases where a higher Candida colonization is reported. Antifungal agents could be adjuvant drugs for the therapy of both clinical conditions. The aim of the current study has been to evaluate the in vitro activities of conventional and new antifungal drugs against oral Candida isolates from patients suffering from caries and/or chronic periodontitis. In vitro activities of amphotericin B, fluconazole, itraconazole, miconazole, nystatin, posaconazole and voriconazole against 126 oral Candida isolates (75 Candida albicans, 18 Candida parapsilosis, 11 Candida dubliniensis, six Candida guilliermondii, five Candida lipolytica, five Candida glabrata, four Candida tropicalis and two Candida krusei) from 61 patients were tested by the CLSI M27-A3 method. Most antifungal drugs were highly active, and resistance was observed in less than 5% of tested isolates. Miconazole was the most active antifungal drug, being more than 98% of isolates susceptible. Fluconazole, itraconazole, and the new triazoles, posaconazole and voriconazole, were also very active. Miconazole, fluconazole and voriconazole have excellent in vitro activities against all Candida isolates and could represent suitable treatment for a hypothetically adjunctive therapy of caries and chronic periodontitis.

  12. Evaluation of antifungal volatile compounds on the basis of the elongation rate of a single hypha.

    PubMed Central

    Matsuoka, H; Ii, Y; Takekawa, Y; Teraoka, T

    1990-01-01

    A novel method is proposed for the evaluation of the activity of an antifungal agent administered as a gas. This system is composed of a batch-flow type reaction vessel, a gas flow system, and a microscopic observation system. The agar plate was prepared on the ceiling of the reaction vessel, and the mycelium of a fungus (Aspergillus niger or Rhizoctonia solani) was inoculated onto it. After preincubation at 25 degrees C for 24 h, the reaction vessel was connected to the gas flow system. An appropriate hypha was selected, and its elongation rate was measured. Then a sample holder containing an antifungal compound was inserted into the reaction vessel from the side hole to saturate the atmosphere inside with its vapor. The retardation or inhibition of the hypha elongation was observed on a television monitor and recorded on a video tape recorder. The antifungal compound was then removed, and the reaction vessel was flushed with air. If the hypha lived, it began to elongate again. By this method, antifungal activity of seven odor compounds could be evaluated quantitatively within several hours. Images PMID:2082824

  13. Antibacterial, antifungal, and antiviral activities of the lipophylic extracts of Pistacia vera.

    PubMed

    Ozçelik, Berrin; Aslan, Mustafa; Orhan, Ilkay; Karaoglu, Taner

    2005-01-01

    In the present study, antibacterial, antifungal, and antiviral properties of 15 lipohylic extracts obtained from different parts (leaf, branch, stem, kernel, shell skins, seeds) of Pistacia vera were screened against both standard and the isolated strains of Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, Candida albicans and C. parapsilosis by microdilution method. Both Herpes simplex (DNA) and Parainfluenza viruses (RNA) were used for the determination of antiviral activity of the P. vera extracts by using Vero cell line. Ampicilline, ofloxocine, ketoconazole, fluconazole, acyclovir and oseltamivir were used as the control agents. The extracts showed little antibacterial activity between the range of 128-256 microg/ml concentrations whereas they had noticeable antifungal activity at the same concentrations. Kernel and seed extracts showed significant antiviral activity compared to the rest of the extracts as well as the controls.

  14. Terbinafine in Combination with Other Antifungal Agents for Treatment of Resistant or Refractory Mycoses: Investigating Optimal Dosing Regimens Using a Physiologically Based Pharmacokinetic Model

    PubMed Central

    Dolton, Michael J.; Perera, Vidya; Pont, Lisa G.

    2014-01-01

    Terbinafine is increasingly used in combination with other antifungal agents to treat resistant or refractory mycoses due to synergistic in vitro antifungal activity; high doses are commonly used, but limited data are available on systemic exposure, and no assessment of pharmacodynamic target attainment has been made. Using a physiologically based pharmacokinetic (PBPK) model for terbinafine, this study aimed to predict total and unbound terbinafine concentrations in plasma with a range of high-dose regimens and also calculate predicted pharmacodynamic parameters for terbinafine. Predicted terbinafine concentrations accumulated significantly during the first 28 days of treatment; the area under the concentration-time curve (AUC)/MIC ratios and AUC for the free, unbound fraction (fAUC)/MIC ratios increased by 54 to 62% on day 7 of treatment and by 80 to 92% on day 28 compared to day 1, depending on the dose regimen. Of the high-dose regimens investigated, 500 mg of terbinafine taken every 12 h provided the highest systemic exposure; on day 7 of treatment, the predicted AUC, maximum concentration (Cmax), and minimum concentration (Cmin) were approximately 4-fold, 1.9-fold, and 4.4-fold higher than with a standard-dose regimen of 250 mg once daily. Close agreement was seen between the concentrations predicted by the PBPK model and the observed concentrations, indicating good predictive performance. This study provides the first report of predicted terbinafine exposure in plasma with a range of high-dose regimens. PMID:24126579

  15. Terbinafine in combination with other antifungal agents for treatment of resistant or refractory mycoses: investigating optimal dosing regimens using a physiologically based pharmacokinetic model.

    PubMed

    Dolton, Michael J; Perera, Vidya; Pont, Lisa G; McLachlan, Andrew J

    2014-01-01

    Terbinafine is increasingly used in combination with other antifungal agents to treat resistant or refractory mycoses due to synergistic in vitro antifungal activity; high doses are commonly used, but limited data are available on systemic exposure, and no assessment of pharmacodynamic target attainment has been made. Using a physiologically based pharmacokinetic (PBPK) model for terbinafine, this study aimed to predict total and unbound terbinafine concentrations in plasma with a range of high-dose regimens and also calculate predicted pharmacodynamic parameters for terbinafine. Predicted terbinafine concentrations accumulated significantly during the first 28 days of treatment; the area under the concentration-time curve (AUC)/MIC ratios and AUC for the free, unbound fraction (fAUC)/MIC ratios increased by 54 to 62% on day 7 of treatment and by 80 to 92% on day 28 compared to day 1, depending on the dose regimen. Of the high-dose regimens investigated, 500 mg of terbinafine taken every 12 h provided the highest systemic exposure; on day 7 of treatment, the predicted AUC, maximum concentration (Cmax), and minimum concentration (Cmin) were approximately 4-fold, 1.9-fold, and 4.4-fold higher than with a standard-dose regimen of 250 mg once daily. Close agreement was seen between the concentrations predicted by the PBPK model and the observed concentrations, indicating good predictive performance. This study provides the first report of predicted terbinafine exposure in plasma with a range of high-dose regimens.

  16. Isothermal microcalorimetry for antifungal susceptibility testing of Mucorales, Fusarium spp., and Scedosporium spp.

    PubMed

    Furustrand Tafin, Ulrika; Meis, Jacques F; Trampuz, Andrej

    2012-08-01

    We evaluated isothermal microcalorimetry for real-time susceptibility testing of non-Aspergillus molds. MIC and minimal effective concentration (MEC) values of Mucorales (n = 4), Fusarium spp. (n = 4), and Scedosporium spp. (n = 4) were determined by microbroth dilution according to the Clinical Laboratory Standard Institute M38-A2 guidelines. Heat production of molds was measured at 37 °C in Sabouraud dextrose broth inoculated with 2.5 × 10(4) spores/mL in the presence of amphotericin B, voriconazole, posaconazole, caspofungin, and anidulafungin. As determined by microcalorimetry, amphotericin B was the most active agent against Mucorales (MHIC 0.06-0.125 μg/mL) and Fusarium spp. (MHIC 1-4 μg/mL), whereas voriconazole was the most active agent against Scedosporium spp. (MHIC 0.25 to 8 μg/mL). The percentage of agreement (within one 2-fold dilution) between the MHIC and MIC (or MEC) was 67%, 92%, 75%, and 83% for amphotericin B, voriconazole, posaconazole, and caspofungin, respectively. Microcalorimetry provides additional information on timing of antifungal activity, enabling further investigation of drug-mold and drug-drug interaction, and optimization of antifungal treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. From phaeohyphomycosis to disseminated chromoblastomycosis: A retrospective study of infections caused by dematiaceous fungi.

    PubMed

    Thomas, E; Bertolotti, A; Barreau, A; Klisnick, J; Tournebize, P; Borgherini, G; Zemali, N; Jaubert, J; Jouvion, G; Bretagne, S; Picot, S

    2018-06-01

    Infections caused by dematiaceous fungi are more common in tropical and subtropical areas. We aimed to describe the clinical, microbiological and therapeutic aspects of case patients diagnosed at a University Hospital located on an Indian Ocean island. We performed an observational retrospective study of infections caused by dematiaceous fungi diagnosed at the University Hospital of Saint-Pierre, Reunion, from 2000 to 2015. Mycological identifications were performed at the National Reference Center for Invasive Mycosis and Antifungal Agents (Paris). The review of clinical and microbiological data of 11 patients identified revealed that five were infected by dematiaceous fungi. Two had cutaneous phaeohyphomycosis, two had cerebral phaeohyphomycosis and one had cutaneous chromoblastomycosis with brain and potentially medullary dissemination. Skin lesions and cerebral abscesses were quite varied. Infections caused by dematiaceous fungi are rare. Medullary and brain localizations are extremely rare, especially for chromoblastomycosis. Cutaneous manifestations of phaeohyphomycosis are varied; diagnosis is thus more difficult. It is therefore important, when confronted with a chronic tumor-like lesion in endemic areas, to perform a biopsy for pathology and fungal culture. While surgical excision is not always sufficient, medical treatment of these infections is not standardized, but relies on an azole, which can be associated with another antifungal agent. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. In Vitro Activity of E1210, a Novel Antifungal, against Clinically Important Yeasts and Molds▿

    PubMed Central

    Miyazaki, Mamiko; Horii, Takaaki; Hata, Katsura; Watanabe, Nao-aki; Nakamoto, Kazutaka; Tanaka, Keigo; Shirotori, Syuji; Murai, Norio; Inoue, Satoshi; Matsukura, Masayuki; Abe, Shinya; Yoshimatsu, Kentaro; Asada, Makoto

    2011-01-01

    E1210 is a new antifungal compound with a novel mechanism of action and broad spectrum of antifungal activity. We investigated the in vitro antifungal activities of E1210 compared to those of fluconazole, itraconazole, voriconazole, amphotericin B, and micafungin against clinical fungal isolates. E1210 showed potent activities against most Candida spp. (MIC90 of ≤0.008 to 0.06 μg/ml), except for Candida krusei (MICs of 2 to >32 μg/ml). E1210 showed equally potent activities against fluconazole-resistant and fluconazole-susceptible Candida strains. E1210 also had potent activities against various filamentous fungi, including Aspergillus fumigatus (MIC90 of 0.13 μg/ml). E1210 was also active against Fusarium solani and some black molds. Of note, E1210 showed the greatest activities against Pseudallescheria boydii (MICs of 0.03 to 0.13 μg/ml), Scedosporium prolificans (MIC of 0.03 μg/ml), and Paecilomyces lilacinus (MICs of 0.06 μg/ml) among the compounds tested. The antifungal action of E1210 was fungistatic, but E1210 showed no trailing growth of Candida albicans, which has often been observed with fluconazole. In a cytotoxicity assay using human HK-2 cells, E1210 showed toxicity as low as that of fluconazole. Based on these results, E1210 is likely to be a promising antifungal agent for the treatment of invasive fungal infections. PMID:21825291

  19. Inhibitory effects of azole-type fungicides on interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, Hiroyuki, E-mail: kojima@iph.pref.hokkaido.jp; Muromoto, Ryuta; Takahashi, Miki

    2012-03-15

    The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. However, it remains unclear whether environmental chemicals, including pesticides, have agonistic and/or antagonistic activity against RORα/γ. In this study, we investigated the RORα/γ activity of several azole-type fungicides, and the effects of these fungicides on the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In the ROR-reporter gene assays, five azole-type fungicides (imibenconazole, triflumizole, hexaconazole, tetraconazole and imazalil) suppressed RORα- and/or RORγ-mediated transcriptional activitymore » as did benzenesulphonamide T0901317, a ROR inverse agonist and a liver X receptor (LXR) agonist. In particular, imibenconazole, triflumizole and hexaconazole showed RORγ inverse agonistic activity at concentrations of 10{sup −6} M. However, unlike T0901317, these fungicides failed to show any LXRα/β agonistic activity. Next, five azole-type fungicides, showing ROR inverse agonist activity, were tested on IL-17 mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin. The quantitative RT-PCR analysis revealed that these fungicides suppressed the expression of IL-17 mRNA without effecting RORα and RORγ mRNA levels. In addition, the inhibitory effect of imibenconazole as well as that of T0901317 was absorbed in RORα/γ-knocked down EL4 cells. Taken together, these results suggest that some azole-type fungicides inhibit IL-17 production via RORα/γ. This also provides the first evidence that environmental chemicals can act as modulators of IL-17 expression in immune cells. -- Highlights: ► Nuclear receptors, RORα and RORγ, are key regulators of Th17 cell differentiation. ► Five azole-type fungicides act as RORα/γ inverse agonists. ► These

  20. In vitro and in vivo antifungal efficacy of plant based lawsone against Fusarium oxysporum species complex.

    PubMed

    Dananjaya, S H S; Udayangani, R M C; Shin, Sang Yeop; Edussuriya, M; Nikapitiya, Chamilani; Lee, Jehee; De Zoysa, Mahanama

    2017-08-01

    Fusarium oxysporum is an ascomycete facultative fungus which generally affects to plants. However, it is recently known as a serious emerging opportunistic pathogen of human and other animals. F. oxysporum shows broad resistance to commonly used antifungal agents and therefore development of alternative therapeutic agents is required. In this study, we investigated the antifungal efficacy of plant based natural lawsone against pathogenic F. oxysporum. Antifungal susceptibility test determined the concentration dependent growth inhibition of lawsone against F. oxysporum with minimum inhibitory concentration (MIC) at 100μg/mL. Ultra-structural analysis indicates the prominent damage on cell wall of the mycelium after lawsone treatment, and suggests that it could increase the membrane permeability and disintegration of cells leading to cellular death. Propidium iodide (PI) uptake assay results showed the higher level of cell death in lawsone treated F. oxysporum which further confirms the loss of plasma membrane integrity. Also, detection of reactive oxygen species (ROS) using DCFH-DA has clearly indicated that lawsone (100μg/mL) can induce the ROS level in the filaments of F. oxysporum. MTT assay results showed the loss of viability and germination capacity of F. oxysporum spores by lawsone in concentration dependent manner. Moreover, lawsone treatment induced the mRNA expression of two autophagy related genes (ATG1 and ATG8) indicating that lawsone may activate the autophagy related pathways in F. oxysporum due to the oxidative stress generated by ROS. F. oxysporum infected zebrafish has recovered after lawsone therapy as a topical treatment suggesting that lawsone is a potential natural antifusariosis agent. Copyright © 2017 Elsevier GmbH. All rights reserved.