Plant growth promotion rhizobacteria in onion production.
Colo, Josip; Hajnal-Jafari, Timea I; Durić, Simonida; Stamenov, Dragana; Hamidović, Saud
2014-01-01
The aim of the research was to examine the effect of rhizospheric bacteria Azotobacter chroococcum, Pseudomonas fluorescens (strains 1 and 2) and Bacillus subtilis on the growth and yield of onion and on the microorganisms in the rhizosphere of onion. The ability of microorganisms to produce indole-acetic acid (IAA), siderophores and to solubilize tricalcium phosphate (TCP) was also assessed. The experiment was conducted in field conditions, in chernozem type of soil. Bacillus subtilis was the best producer of IAA, whereas Pseudomonas fluorescens strains were better at producing siderophores and solubilizing phosphates. The longest seedling was observed with the application of Azotobacter chroococcum. The height of the plants sixty days after sowing was greater in all the inoculated variants than in the control. The highest onion yield was observed in Bacillus subtilis and Azotobacter chroococcum variants. The total number of bacteria and the number of Azotobacter chroococcum were larger in all the inoculated variants then in the control. The number of fungi decreased in most of the inoculated variants, whereas the number of actinomycetes decreased or remained the same.
NASA Astrophysics Data System (ADS)
Nasaruddin; Ridwan, I.
2018-05-01
This study aims to study the effectiveness of Azotobacter chroococcum bacteria and Arbuscula mycorrhiza on some physiological characteristics and growth of cocoa seedlings. The study was conducted from March to October 2015, designed in the form of a two factors experiment based on the Randomized Block Design in a screen house. Inoculation of A chroococcum as the first factor consisted of control, inoculation of 104 CFU ml-1 water and 106 CFU ml-1 water per tree given as much as 40 ml. Inoculation of arbuscula mycorrhiza as a second factor consisted of control, inoculation of 3.0 g, 6.0 g and 9.0 g per tree, respectively. The experimental results show that inoculation of Azotobacter chroococcum 106 CFU ml-1 water tree-1 and the arbuscular mycorrhizal fungi 6.0 g tree-1 resulted in higher chlorophyll a, b and total leaf chlorophyll content, increased light absorption rate, leaf stomatal conductance and better seedling growth.
Melanin from the Nitrogen-Fixing Bacterium Azotobacter chroococcum: A Spectroscopic Characterization
Banerjee, Raja
2014-01-01
Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state 13C NMR), we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation. PMID:24416247
Juarez, B; Martinez-Toledo, M V; Gonzalez-Lopez, J
2005-06-01
Growth and utilization of different phenolic acids present in olive mill wastewater (OMW) by Azotobacter chroococcum were studied in chemically defined media. Growth and utilization of phenolic acids were only detected when the microorganism was cultured on p-hydroxybenzoic acid at concentration from 0.01% to 0.5% (w/v) and protocatechuic acid at concentration from 0.01% to 0.3% (w/v) as sole carbon sources suggesting that only these phenolic compounds could be utilized as a carbon source by A. chroococcum. Moreover when culture media were added with a mixture of 0.3% of protocatechuic acid and 0.3% p-hydroxybenzoic acid, the microorganism degradated in first place protocatechuic acid and once the culture medium was depleted of this compound, the degradation of p-hydroxybenzoic acid commenced very fast.
Kelly, M.
1968-01-01
1. Nitrogen-fixing preparations from Azotobacter chroococcum reduced substrates with the following Km values: methyl isocyanide, 1·8×10−4m; ethyl isocyanide, 2·5×10−2m; cyanide ion, 1·4×10−3m; acetylene, 1·2×10−4m. 2. Nitrogen, carbon monoxide or hydrogen competitively inhibited isocyanide reduction with the following Ki values: hydrogen, 1·3×10−3m; carbon monoxide, 6·8×10−6m; nitrogen, 4·3×10−4m. 3. Living nitrogen-fixing bacteria, and isolated clover nodules, formed methane from methyl isocyanide. 4. These results are discussed in relation to other work and possible mechanisms of nitrogen fixation. PMID:5642620
Madkour, Magdy A.; Smith, Linda Tombras; Smith, Gary M.
1990-01-01
A common cellular mechanism of osmotic-stress adaptation is the intracellular accumulation of organic solutes (osmolytes). We investigated the mechanism of osmotic adaptation in the diazotrophic bacteria Azotobacter chroococcum, Azospirillum brasilense, and Klebsiella pneumoniae, which are adversely affected by high osmotic strength (i.e., soil salinity and/or drought). We used natural-abundance 13C nuclear magnetic resonance spectroscopy to identify all the osmolytes accumulating in these strains during osmotic stress generated by 0.5 M NaCl. Evidence is presented for the accumulation of trehalose and glutamate in Azotobacter chroococcum ZSM4, proline and glutamate in Azospirillum brasilense SHS6, and trehalose and proline in K. pneumoniae. Glycine betaine was accumulated in all strains grown in culture media containing yeast extract as the sole nitrogen source. Alternative nitrogen sources (e.g., NH4Cl or casamino acids) in the culture medium did not result in measurable glycine betaine accumulation. We suggest that the mechanism of osmotic adaptation in these organisms entails the accumulation of osmolytes in hyperosmotically stressed cells resulting from either enhanced uptake from the medium (of glycine betaine, proline, and glutamate) or increased net biosynthesis (of trehalose, proline, and glutamate) or both. The preferred osmolyte in Azotobacter chroococcum ZSM4 shifted from glutamate to trehalose as a consequence of a prolonged osmotic stress. Also, the dominant osmolyte in Azospirillum brasilense SHS6 shifted from glutamate to proline accumulation as the osmotic strength of the medium increased. PMID:16348295
Maheshwari, D K; Dubey, R C; Aeron, Abhinav; Kumar, Bhavesh; Kumar, Sandeep; Tewari, Sakshi; Arora, Naveen Kumar
2012-10-01
Azotobacter chroococcum TRA2, an isolate of wheat rhizosphere displayed plant growth promoting attributes including indole acetic acid, HCN, siderophore production, solubilization of inorganic phosphate and fixation of atmospheric nitrogen. In addition, it showed strong antagonistic effect against Macrophomina phaseolina and Fusarium oxysporum. It also caused degradation and digestion of cell wall components, resulting in hyphal perforations, empty cell (halo) formation, shrinking and lysis of fungal mycelia along with significant degeneration of conidia. Fertilizer adaptive variant strain of A. chroococcum TRA2 was studied with Tn5 induced streptomycin resistant transconjugants of wild type tetracycline-resistant TRA2 (designated TRA2(tetra+strep+)) after different durations. The strain was significantly competent in rhizosphere, as its population increased by 15.29 % in rhizosphere of Sesamum indicum. Seed bacterization with the strain TRA2 resulted in significant increase in vegetative growth parameters and yield of sesame over the non-bacterized seeds. However, application of TRA2 with half dose of fertilizers showed sesame yield almost similar to that obtained by full dose treatment. Moreover, the oil yield increased by 24.20 %, while protein yield increased by 35.92 % in treatment receiving half dose of fertilizer along with TRA2 bacterized seeds, as compared to untreated control.
Velmourougane, K; Prasanna, R
2017-10-01
The effects of l-amino acids on growth and biofilm formation in Azotobacter chroococcum (Az) and Trichoderma viride (Tv) as single (Az, Tv) and staggered inoculated cultures (Az-Tv, Tv-Az) were investigated. A preliminary study using a set of 20 l-amino acids, identified 6 amino acids (l-Glu, l-Gln, l-His, l-Ser, l-Thr and l-Trp) which significantly enhanced growth and biofilm formation. Supplementation of these amino acids at different concentrations revealed that 40 mmol l -1 was most effective. l-Glu and l-Gln favoured planktonic growth in both single and in staggered inoculated cultures, while l-Trp and l-Thr, enhanced aggregation and biofilm formation. Addition of l-Glu or l-Gln increased carbohydrate content and planktonic population. Principal component analysis revealed the significant role of proteins in growth and biofilm formation, particularly with supplementation of l-Trp, l-Thr and l-Ser. Azotobacter was found to function better as biofilm under staggered inoculated culture with Trichoderma. The results illustrate that amino acids play crucial roles in microbial biofilm formation, by influencing growth, aggregation and carbohydrates synthesized. The differential and specific roles of amino acids on biofilm formation are of significance for agriculturally important micro-organisms that grow as biofilms, colonize and benefit the plants more effectively. © 2017 The Society for Applied Microbiology.
Romero-Perdomo, Felipe; Abril, Jorge; Camelo, Mauricio; Moreno-Galván, Andrés; Pastrana, Iván; Rojas-Tapias, Daniel; Bonilla, Ruth
The aim of this research was to evaluate whether the application of two plant growth-promoting (rhizo)bacteria might reduce nitrogen fertilization doses in cotton. We used strains Azotobacter chroococcum AC1 and AC10 for their proven ability to promote seed germination and cotton growth. These microorganisms were characterized by their plant growth-promoting activities. Then, we conducted a glasshouse study to evaluate the plant growth promoting ability of these strains with reduced doses of urea fertilization in cotton. Results revealed that both strains are capable of fixing nitrogen, solubilizing phosphorus, synthesizing indole compounds and producing hydrolytic enzymes. After 12 weeks, the glasshouse experiment showed that cotton growth was positively influenced due to bacterial inoculation with respect to chemical fertilization. Notably, we observed that microbial inoculation further influenced plant biomass (p<0.05) than nitrogen content. Co-inoculation, interestingly, exhibited a greater beneficial effect on plant growth parameters compared to single inoculation. Moreover, similar results without significant statistical differences were observed among bacterial co-inoculation plus 50% urea and 100% fertilization. These findings suggest that co-inoculation of A. chroococcum strains allow to reduce nitrogen fertilization doses up to 50% on cotton growth. Our results showed that inoculation with AC1 and AC10 represents a viable alternative to improve cotton growth while decreasing the N fertilizer dose and allows to alleviate the environmental deterioration related to N pollution. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Mel'nikova, N N; Bulavenko, L V; Kurdish, I K; Titova, L V; Kots', S Ia
2002-01-01
The effects of bacteria belonging to the genera Azotobacter and Bacillus in a mixed culture with Bradyrhizobium japonicum strains on formation and function of the legume-rhizobium symbiosis of soybean plants were studied. The data showed that the bacterial compositions B. japonicum 634b + B. subtilis 5, B. japonicum 634b + A. chroococcum 20, and B. japonicum 10k + A. vinelandii 56 with a cell ratio of 1:0.1 increased the number and weight of root nodules as well as the height and weight of the aboveground plant parts in almost all the cases by 22-105% compared with the control variants. These binary microbial cultures may be used for development of combined bacterial preparations for soybean.
Bonartsev, A.P.; Bonartseva, G. A.; Myshkina, V. L.; Voinova, V. V.; Mahina, T. K.; Zharkova, I. I.; Yakovlev, S. G.; Zernov, A. L.; Ivanova, E. V.; Akoulina, E. A.; Kuznetsova, E. S.; Zhuikov, V. A.; Alekseeva, S. G.; Podgorskii, V. V.; Bessonov, I. V.; Kopitsyna, M. N.; Morozov, A. S.; Milanovskiy, E. Y.; Tyugay, Z. N.; Bykova, G. S.; Kirpichnikov, M. P.; Shaitan, K. V.
2016-01-01
Production of novel polyhydroxyalkanoates (PHAs), biodegradable polymers for biomedical applications, and biomaterials based on them is a promising trend in modern bioengineering. We studied the ability of an effective strain-producer Azotobacter chroococcum 7B to synthesize not only poly(3-hydroxybutyrate) homopolymer (PHB) and its main copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), but also a novel copolymer, poly(3-hydroxybutyrate-co-3-hydroxy-4-methylvalerate) (PHB4MV). For the biosynthesis of PHB copolymers, we used carboxylic acids as additional carbon sources and monomer precursors in the chain of synthesized copolymers. The main parameters of these polymers’ biosynthesis were determined: strain-producer biomass yield, polymer yield, molecular weight and monomer composition of the synthesized polymers, as well as the morphology of A. chroococcum 7B bacterial cells. The physico-chemical properties of the polymers were studied using nuclear magnetic resonance spectroscopy (NMR), differential scanning calorimetry (DSC), contact angle test, and other methods. In vitro biocompatibility of the obtained polymers was investigated using stromal cells isolated from the bone marrow of rats with the XTT cell viability test. The synthesis of the novel copolymer PHB4MV and its chemical composition were demonstrated by NMR spectroscopy: the addition of 4-methylvaleric acid to the culture medium resulted in incorporation of 3-hydroxy-4-methylvalerate (3H4MV) monomers into the PHB polymer chain (0.6 mol%). Despite the low molar content of 3H4MV in the obtained copolymer, its physico-chemical properties were significantly different from those of the PHB homopolymer: it has lower crystallinity and a higher contact angle, i.e. the physico-chemical properties of the PHB4MV copolymer containing only 0.6 mol% of 3H4MV corresponded to a PHBV copolymer with a molar content ranging from 2.5% to 7.8%. In vitro biocompatibility of the obtained PHB4MV copolymer, measured in the XTT test, was not statistically different from the cell growth of PHB and PHBV polymers, which make its use possible in biomedical research and development. PMID:27795846
Rubio, Esteban Julián; Montecchia, Marcela Susana; Tosi, Micaela; Cassán, Fabricio Darío; Perticari, Alejandro; Correa, Olga Susana
2013-01-01
The genetic diversity among 31 putative Azotobacter isolates obtained from agricultural and non-agricultural soils was assessed using rep-PCR genomic fingerprinting and identified to species level by ARDRA and partial 16S rRNA gene sequence analysis. High diversity was found among the isolates, identified as A. chroococcum, A. salinestris, and A. armeniacus. Selected isolates were characterized on the basis of phytohormone biosynthesis, nitrogenase activity, siderophore production, and phosphate solubilization. Indole-3 acetic-acid (IAA), gibberellin (GA3) and zeatin (Z) biosynthesis, nitrogenase activity, and siderophore production were found in all evaluated strains, with variation among them, but no phosphate solubilization was detected. Phytohormones excreted to the culture medium ranged in the following concentrations: 2.2-18.2 μ g IAA mL(-1), 0.3-0.7 μ g GA3 mL(-1), and 0.5-1.2 μ g Z mL(-1). Seed inoculations with further selected Azotobacter strains and treatments with their cell-free cultures increased the number of seminal roots and root hairs in wheat seedlings. This latter effect was mimicked by treatments with IAA-pure solutions, but it was not related to bacterial root colonization. Our survey constitutes a first approach to the knowledge of Azotobacter species inhabiting Argentinean soils in three contrasting geographical regions. Moreover, this phenotypic characterization constitutes an important contribution to the selection of Azotobacter strains for biofertilizer formulations.
Rubio, Esteban Julián; Cassán, Fabricio Darío
2013-01-01
The genetic diversity among 31 putative Azotobacter isolates obtained from agricultural and non-agricultural soils was assessed using rep-PCR genomic fingerprinting and identified to species level by ARDRA and partial 16S rRNA gene sequence analysis. High diversity was found among the isolates, identified as A. chroococcum, A. salinestris, and A. armeniacus. Selected isolates were characterized on the basis of phytohormone biosynthesis, nitrogenase activity, siderophore production, and phosphate solubilization. Indole-3 acetic-acid (IAA), gibberellin (GA3) and zeatin (Z) biosynthesis, nitrogenase activity, and siderophore production were found in all evaluated strains, with variation among them, but no phosphate solubilization was detected. Phytohormones excreted to the culture medium ranged in the following concentrations: 2.2–18.2 μg IAA mL−1, 0.3–0.7 μg GA3 mL−1, and 0.5–1.2 μg Z mL−1. Seed inoculations with further selected Azotobacter strains and treatments with their cell-free cultures increased the number of seminal roots and root hairs in wheat seedlings. This latter effect was mimicked by treatments with IAA-pure solutions, but it was not related to bacterial root colonization. Our survey constitutes a first approach to the knowledge of Azotobacter species inhabiting Argentinean soils in three contrasting geographical regions. Moreover, this phenotypic characterization constitutes an important contribution to the selection of Azotobacter strains for biofertilizer formulations. PMID:24302859
Survival of microorganisms in smectite clays - Implications for Martian exobiology
NASA Technical Reports Server (NTRS)
Moll, Deborah M.; Vestal, J. R.
1992-01-01
The survival of Baccillus subtilis, Azotobacter chroococcum, and the enteric bacteriophage MS2 has been examined in clays representing terrestrial (Wyoming type montmorillonite) and Martian (Fe3+ montmorillonite) soils exposed to terrestrial and Martian environmental conditions of temperature and atmospheric composition and pressure. An important finding is that MS2 survived simulated Mars conditions better than the terrestrial environment, probably owing to stabilization of the virus caused by the cold and dry conditions of the simulated Mars environment. This finding, the first published indication that viruses may be able to survive in Mars-type soils, may have important implications for future missions to Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, G.N.; Coyle, C.L.; Hales, B.J.
Evidence for the existence of a vanadium-containing nitrogenase has existed for more than half a century, but progress in understanding this enzyme has only come recently. In 1980, Bishop and co-workers proposed that an alternative nitrogen-fixing enzyme exists in Azotobacter vinelandii and subsequently proposed that vanadium was involved. In 1986, Robson et al. demonstrated clearly that the alternate nitrogenase from Azotobacter chroococcum, Acl*, contained vanadium instead of molybdenum. Hales et al. have shown the vanadium is also found in the Azotobacter vinelandii alternative component I, Avl'. The molybdenum and vanadium nitrogenase proteins are similar in many respects. Like the molybdenummore » enzyme, both Acl* and Avl' exhibit an EPR spectrum characteristic of a species with an S = 3/2 ground state; Avl' also contains the so-called P-clusters. Additionally Acl* has recently been shown to possess an N-methylformamide soluble cofactor, FeVco, analogous to the well-known iron-molybdenum cofactor FeMoco. Arber et al. have reported X-ray absorption spectra for the Acl* enzyme and interpreted the EXAFS as evidence for a V-Fe-S cluster. The local vanadium structure is proposed to resemble a recently synthesized cubane-like VFe/sub 3/S/sub 4/ cluster, and analogies are drawn with the EXAFS-derived structure reported for the molybdenum nitrogenases. The authors report herein an X-ray absorption spectroscopic study of A. vinelandii vanadium nitrogenase, Avl', which supports and extends the work of Arber et al.« less
Jiménez, Diego Javier; Montaña, José Salvador; Martínez, María Mercedes
2011-01-01
With the purpose of isolating and characterizing free nitrogen fixing bacteria (FNFB) of the genus Azotobacter, soil samples were collected randomly from different vegetable organic cultures with neutral pH in different zones of Boyacá-Colombia. Isolations were done in selective free nitrogen Ashby-Sucrose agar obtaining a recovery of 40%. Twenty four isolates were evaluated for colony and cellular morphology, pigment production and metabolic activities. Molecular characterization was carried out using amplified ribosomal DNA restriction analysis (ARDRA). After digestion of 16S rDNA Y1-Y3 PCR products (1487pb) with AluI, HpaII and RsaI endonucleases, a polymorphism of 16% was obtained. Cluster analysis showed three main groups based on DNA fingerprints. Comparison between ribotypes generated by isolates and in silico restriction of 16S rDNA partial sequences with same restriction enzymes was done with Gen Workbench v.2.2.4 software. Nevertheless, Y1-Y2 PCR products were analysed using BLASTn. Isolate C5T from tomato (Lycopersicon esculentum) grown soils presented the same in silico restriction patterns with A. chroococcum (AY353708) and 99% of similarity with the same sequence. Isolate C5CO from cauliflower (Brassica oleracea var. botrytis) grown soils showed black pigmentation in Ashby-Benzoate agar and high similarity (91%) with A. nigricans (AB175651) sequence. In this work we demonstrated the utility of molecular techniques and bioinformatics tools as a support to conventional techniques in characterization of the genus Azotobacter from vegetable-grown soils. PMID:24031700
Yadav, Santosh Kumar; Juwarkar, Asha A; Kumar, G Phani; Thawale, Prashant R; Singh, Sanjeev K; Chakrabarti, Tapan
2009-10-01
The present study was planned to remediate the metalloid and metal contaminated soil by using non-edible and economic plant species Jatropha curcas L. The experiment was conducted on pots to improve the survival rate, metal tolerance and growth response of the plant on soil; having different concentrations of arsenic, chromium and zinc. The soil was amended with dairy sludge and bacterial inoculum (Azotobacter chroococcum) as biofertilizer. The results of the study showed that the bioaccumulation potential was increased with increase in metalloid and metal concentration in soil system. Application of dairy sludge significantly reduces the DTPA-extractable As, Cr and Zn concentration in soil. The application of organic amendment stabilizes the As, Cr and Zn and reduced their uptake in plant tissues.
Peña, C; Castillo, T; García, A; Millán, M; Segura, D
2014-01-01
Poly-(3-hydroxybutyrate) [P(3HB)] is a polyester synthesized as a carbon and energy reserve material by a wide number of bacteria. This polymer is characterized by its thermo-plastic properties similar to plastics derived from petrochemical industry, such as polyethylene and polypropylene. Furthermore, P(3HB) is an inert, biocompatible and biodegradable material which has been proposed for several uses in medical and biomedical areas. Currently, only few bacterial species such as Cupriavidus necator, Azohydromonas lata and recombinant Escherichia coli have been successfully used for P(3HB) production at industrial level. Nevertheless, in recent years, several fermentation strategies using other microbial models such as Azotobacter vinelandii, A. chroococcum, as well as some methane-utilizing species, have been developed in order to improve the P(3HB) production and also its mean molecular weight. PMID:24898500
[Effect of soil microflora on 137Cs transition to plants].
Pareniuk, O Yu; Shavanova, K E; Ilienko, V V; Tytova, L V; Levchuk, S E; Gudkov, I N
2015-01-01
The impact of certain types of microorganisms on 137Cs transfer from the substrate into the plant was analyzed in the experiment on artificial mediums. It was found that certain types of microorganisms could either reduce or increase the ratio of 137Cs transfer from the substrate to the plant. It is shown that this property is independent of the localization of the microorganism on the surface of the root, for all the analyzed bacteria belonging to the rhizospheric group. Azotobacter chroococcum UKM B-6003 stimulated the radionuclide transfer to plants up to 1.5 times, while the best bacteria for reducing its accumulation is Burkholderia sp IMER-B1 -53 - 1.3 times in comparison with the control. It was shown that the strain Bacillus megaterium UKM B-5724 from the collection of the Institute of Microbiology and Virology of NASU has a high ability to accumulate radionuclides.
Gangeswaran, R; Eady, R R
1996-01-01
Flavodoxins synthesized by Azotobacter vinelandii strain UW 36 during growth on nitrate as nitrogen source were separated by FPLC on a Mono Q column into two species, flavodoxin 1 (AvFld 1) and flavodoxin 2 (AvFld 2). Both proteins migrated as single bands on SDS/PAGE. AvFld 1 was approx. 5-fold more abundant than AvFld 2 in the unresolved flavodoxin mixture. N-terminal amino acid analysis showed the sequence of AvFld 2 to correspond to the nif F gene product, an electron donor to nitrogenase. The sequences also show that these species corresponded to the flavodoxins Fld A and Fld B isolated from N2-grown cultures of the closely related organism Azotobacter throococcum [Bagby, Barker, Hill, Eady and Thorneley (1991) Biochem.J.277, 313-319]. Electrospray mass spectrometry gave M, values for the polypeptides of 19430 +/- 3 and 19533 +/- 5 respectively. 31P-NMR measurements showed that in addition to the phosphate associated with the FMN (delta = -136.3 p.p.m. and -135.48 p.p.m.), AvFld 1 had a signal at delta = -142.1 p.p.m. and AvFld 2 at delta = -138.59 p.p.m. present in substoichiometric amounts with FMN. These appeared to arise from unstable species since they were readily lost on further manipulation of the proteins. The mid-point potentials of the semiquinone hydroquinone redox couples were -330 mV and -493 mV for AvFld 1 and AvFld 2 respectively, but only AvFld 1 was competent in donating electrons to the purified assimilatory nitrate reductase of A. vinelandii to catalyse the reduction of nitrate to nitrite. Flavodoxin isolated from NH4(+)-grown cells (Fld 3) also functioned as electron donor at half the rate of AvFld 1, but ferredoxin 1 from A. chroococcum did not. PMID:8694750
Pagliano, Giorgia; Ventorino, Valeria; Panico, Antonio; Pepe, Olimpia
2017-01-01
Recently, issues concerning the sustainable and harmless disposal of organic solid waste have generated interest in microbial biotechnologies aimed at converting waste materials into bioenergy and biomaterials, thus contributing to a reduction in economic dependence on fossil fuels. To valorize biomass, waste materials derived from agriculture, food processing factories, and municipal organic waste can be used to produce biopolymers, such as biohydrogen and biogas, through different microbial processes. In fact, different bacterial strains can synthesize biopolymers to convert waste materials into valuable intracellular (e.g., polyhydroxyalkanoates) and extracellular (e.g., exopolysaccharides) bioproducts, which are useful for biochemical production. In particular, large numbers of bacteria, including Alcaligenes eutrophus , Alcaligenes latus , Azotobacter vinelandii , Azotobacter chroococcum , Azotobacter beijerincki , methylotrophs, Pseudomonas spp., Bacillus spp., Rhizobium spp., Nocardia spp., and recombinant Escherichia coli , have been successfully used to produce polyhydroxyalkanoates on an industrial scale from different types of organic by-products. Therefore, the development of high-performance microbial strains and the use of by-products and waste as substrates could reasonably make the production costs of biodegradable polymers comparable to those required by petrochemical-derived plastics and promote their use. Many studies have reported use of the same organic substrates as alternative energy sources to produce biogas and biohydrogen through anaerobic digestion as well as dark and photofermentation processes under anaerobic conditions. Therefore, concurrently obtaining bioenergy and biopolymers at a reasonable cost through an integrated system is becoming feasible using by-products and waste as organic carbon sources. An overview of the suitable substrates and microbial strains used in low-cost polyhydroxyalkanoates for biohydrogen and biogas production is given. The possibility of creating a unique integrated system is discussed because it represents a new approach for simultaneously producing energy and biopolymers for the plastic industry using by-products and waste as organic carbon sources.
Pareniuk, O; Shavanova, K; Laceby, J P; Illienko, V; Tytova, L; Levchuk, S; Gudkov, I; Nanba, K
2015-11-01
After nuclear accidents, such as those experienced in Chernobyl and Fukushima, microorganisms may help purify contaminated soils by changing the mobility of radionuclides and their availability for plants by altering the physical and chemical properties of the substrate. Here, using model experiments with quartz sand as a substrate we investigate the influence of microorganisms on (137)Cs transfer from substrate to plants. The highest transition of (137)Cs from substrate to plants (50% increase compared to the control) was observed after Brassica napus L. seeds were inoculated by Azotobacter chroococcum. The best results for reducing the accumulation of (137)Cs radionuclides (30% less) were noted after the inoculation by Burkholderia sp.. Furthermore, Bacillus megaterium demonstrated an increased ability to accumulate (137)Cs. This research improves our prediction of the behavior of radionuclides in soil and may contribute towards new, microbiological countermeasures for soil remediation following nuclear accidents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Peña, C; Castillo, T; García, A; Millán, M; Segura, D
2014-07-01
Poly-(3-hydroxybutyrate) [P(3HB)] is a polyester synthesized as a carbon and energy reserve material by a wide number of bacteria. This polymer is characterized by its thermo-plastic properties similar to plastics derived from petrochemical industry, such as polyethylene and polypropylene. Furthermore, P(3HB) is an inert, biocompatible and biodegradable material which has been proposed for several uses in medical and biomedical areas. Currently, only few bacterial species such as Cupriavidus necator, Azohydromonas lata and recombinant Escherichia coli have been successfully used for P(3HB) production at industrial level. Nevertheless, in recent years, several fermentation strategies using other microbial models such as Azotobacter vinelandii, A. chroococcum, as well as some methane-utilizing species, have been developed in order to improve the P(3HB) production and also its mean molecular weight. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
[Rice endogenous nitrogen fixing and growth promoting bacterium Herbaspirillum seropedicae DX35].
Wang, Xiucheng; Cao, Yanhua; Tang, Xue; Ma, Xiaotong; Gao, Jusheng; Zhang, Xiaoxia
2014-03-04
To screen efficient nitrogen fixation endophytes from rice and to analyze their growth-promoting properties. We isolated strains from the roots of rice in the field where it has a rice-rice-green manure rotation system for 30 years. Efficient strains were screened by acetylene reduction assay. Phylogenetic analysis is based on 16S rRNA gene, nifH gene and the composition of fatty acid. In addition, we also detected the ability of indole acetic acid secretion through the Salkowski colorimetric method, measured the production of siderophore through the blue plate assay and detected phosphate solubilization, to analyze the growth-promoting properties. A total of 48 strains were isolated, in which DX35 has the highest nitrogenase activity. It belongs to Herbaspirillum seropedicae after identification. Its nitrogenase activity (181.21 nmol C2H4/(mg protein x h)) was 10 times as much as the reference strain Azotobacter chroococcum ACCC10006. In addition, it also can secrete siderophore and solubilize phosphorus. Strain DX35, belonging to Herbaspirillum seropedicae, is an efficient nitrogen fixation endophytes.
The vanadium nitrogenase of Azotobacter chroococcum. Reduction of acetylene and ethylene to ethane.
Dilworth, M J; Eady, R R; Eldridge, M E
1988-01-01
1. The vanadium (V-) nitrogenase of Azobacter chroococcum transfers up to 7.4% of the electrons used in acetylene (C2H2) reduction for the formation of ethane (C2H6). The apparent Km for C2H2 (6 kPa) is the same for either ethylene (C2H4) or ethane (C2H6) formation and much higher than the reported Km values for C2H2 reduction to C2H4 by molybdenum (Mo-) nitrogenases. Reduction of C2H2 in 2H2O yields predominantly [cis-2H2]ethylene. 2. The ratio of electron flux yielding C2H6 to that yielding C2H4 (the C2H6/C2H4 ratio) is increased by raising the ratio of Fe protein to VFe protein and by increasing the assay temperature up to at least 40 degrees C. pH values above 7.5 decrease the C2H6/C2H4 ratio. 3. C2H4 and C2H6 formation from C2H2 by V-nitrogenase are not inhibited by H2. CO inhibits both processes much less strongly than it inhibits C2H4 formation from C2H2 with Mo-nitrogenase. 4. Although V-nitrogenase also catalyses the slow CO-sensitive reduction of C2H4 to C2H6, free C2H4 is not an intermediate in C2H6 formation from C2H2. 5. Propyne (CH3C identical to CH) is not reduced by the V-nitrogenase. 6. Some implications of these results for the mechanism of C2H6 formation by the V-nitrogenase are discussed. PMID:3162672
Gangoiti, Joana; Lamothe, Lisa; van Leeuwen, Sander Sebastiaan; Vafiadi, Christina; Dijkhuizen, Lubbert
2017-01-01
Previously we have reported that the Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 uses the 4,6-α-glucanotransferase GtfD to convert maltodextrins and starch into a reuteran-like polymer consisting of (α1→4) glucan chains connected by alternating (α1→4)/(α1→6) linkages and (α1→4,6) branching points. This enzyme constituted the single evidence for this reaction and product specificity in the GH70 family, mostly containing glucansucrases encoded by lactic acid bacteria (http://www.CAZy.org). In this work, 4 additional GtfD-like proteins were identified in taxonomically diverse plant-associated bacteria forming a new GH70 subfamily with intermediate characteristics between the evolutionary related GH13 and GH70 families. The GtfD enzyme encoded by Paenibacillus beijingensis DSM 24997 was characterized providing the first example of a reuteran-like polymer synthesizing 4,6-α-glucanotransferase in a Gram-positive bacterium. Whereas the A. chroococcum GtfD activity on amylose resulted in the synthesis of a high molecular polymer, in addition to maltose and other small oligosaccharides, two reuteran-like polymer distributions are produced by P. beijingensis GtfD: a high-molecular mass polymer and a low-molecular mass polymer with an average Mw of 27 MDa and 19 kDa, respectively. Compared to the A. chroooccum GtfD product, both P. beijingensis GtfD polymers contain longer linear (α1→4) sequences in their structure reflecting a preference for transfer of even longer glucan chains by this enzyme. Overall, this study provides new insights into the evolutionary history of GH70 enzymes, and enlarges the diversity of natural enzymes that can be applied for modification of the starch present in food into less and/or more slowly digestible carbohydrate structures.
Lamothe, Lisa; van Leeuwen, Sander Sebastiaan; Vafiadi, Christina; Dijkhuizen, Lubbert
2017-01-01
Previously we have reported that the Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 uses the 4,6-α-glucanotransferase GtfD to convert maltodextrins and starch into a reuteran-like polymer consisting of (α1→4) glucan chains connected by alternating (α1→4)/(α1→6) linkages and (α1→4,6) branching points. This enzyme constituted the single evidence for this reaction and product specificity in the GH70 family, mostly containing glucansucrases encoded by lactic acid bacteria (http://www.CAZy.org). In this work, 4 additional GtfD-like proteins were identified in taxonomically diverse plant-associated bacteria forming a new GH70 subfamily with intermediate characteristics between the evolutionary related GH13 and GH70 families. The GtfD enzyme encoded by Paenibacillus beijingensis DSM 24997 was characterized providing the first example of a reuteran-like polymer synthesizing 4,6-α-glucanotransferase in a Gram-positive bacterium. Whereas the A. chroococcum GtfD activity on amylose resulted in the synthesis of a high molecular polymer, in addition to maltose and other small oligosaccharides, two reuteran-like polymer distributions are produced by P. beijingensis GtfD: a high-molecular mass polymer and a low-molecular mass polymer with an average Mw of 27 MDa and 19 kDa, respectively. Compared to the A. chroooccum GtfD product, both P. beijingensis GtfD polymers contain longer linear (α1→4) sequences in their structure reflecting a preference for transfer of even longer glucan chains by this enzyme. Overall, this study provides new insights into the evolutionary history of GH70 enzymes, and enlarges the diversity of natural enzymes that can be applied for modification of the starch present in food into less and/or more slowly digestible carbohydrate structures. PMID:28399167
NASA Astrophysics Data System (ADS)
Istifadah, N.; Sapta, D.; Krestini, H.; Natalie, B.; Suryatmana, P.; Nurbaity, A.; Hidersah, R.
2018-03-01
Chili (Capsicum annuum, L) is one of important horticultural crop in Indonesia. Formulation of microbial consortia containing Bacillus subtilis, Pseudomonas sp., Azotobacter chroococcum and Trichoderma harzianum has been developed. This study evaluated the effects of dosage of the microbial formulation combined with NPK fertilizer on growth and yield of chili plants in the field experiment. The experiment was arranged in completely randomized design of factorial, in which the first factor was dosage of formulation (0, 2.5, 5.0, 7.5, 10 g per plant) and the second factor was NPK fertilizer dosage (0, 25, 50 and 75% of the standard dosage). The treatments were replicated three times. For application, the formulation was mixed with chicken manure 1:10 (w/v). The results showed that application of microbial formulation solely improved the chili growth. There was interaction between dosages of the microbial formulation and NPK fertilizer in improving plant height, nitrogen availability and the chili yield, while there was no interaction between those dosages in improving the root length. Combination between microbial formulation at the dosage of 5.0-7.5 g per plant combined with NPK fertilizer with the dosage 50 or 75% of the standard dosage support relatively better growth and the chili yield.
Al-Enazy, Abdul-Aziz R; Al-Oud, Saud S; Al-Barakah, Fahad N; Usman, Adel Ra
2017-08-01
Alkaline soils with high calcium carbonate and low organic matter are deficient in plant nutrient availability. Use of organic and bio-fertilizers has been suggested to improve their properties. Therefore, a greenhouse experiment was conducted to evaluate the integrative role of phosphogypsum (PG; added at 0.0, 10, 30, and 50 g PG kg -1 ), cow manure (CM; added at 50 g kg -1 ) and mixed microbial inoculation (Incl.; Azotobacter chroococcum, and phosphate-solubilizing bacteria Bacillus megaterium var. phosphaticum and Pseudomonas fluorescens) on growth and nutrients (N, P, K, Fe, Mn, Zn and Cu) uptake of maize (Zea mays L.) in calcareous soil. Treatment effects on soil chemical and biological properties and the Cd and Pb availability to maize plants were also investigated. Applying PG decreased soil pH. The soil available P increased when soil was inoculated and/or treated with CM, especially with PG. The total microbial count and dehydrogenase activity were enhanced with PG+CM+Incl. Inoculated soils treated with PG showed significant increases in NPK uptake and maize plant growth. However, the most investigated treatments showed significant decreases in shoot micronutrients. Cd and Pb were not detected in maize shoots. Applying PG with microbial inoculation improved macronutrient uptake and plant growth. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Guluronic acid content as a factor affecting turbidity removal potential of alginate.
Kıvılcımdan Moral, Çiğdem; Ertesvåg, Helga; Sanin, F Dilek
2016-11-01
Alginates are natural polymers composed of mannuronic and guluronic acid residues. They are currently extracted from brown algae; however, alginate can also be synthesized by some species of Azotobacter and Pseudomonas. Alginates with different proportion of mannuronic and guluronic acids are known to have different characteristics and form gels at different extents in the presence of calcium ions. The aim of this work was to investigate the usefulness of alginate as a non-toxic coagulant used in purification of drinking water. This study utilized alginates from Azotobacter vinelandii having different guluronic acid levels. These were obtained partly by changing the cultivation parameters, partly by epimerizing a purified alginate sample in vitro using the A. vinelandii mannuronan C-5 epimerase AlgE1. The different alginates were then used for coagulation together with calcium. The results showed that turbidity removal capability was dependent on the content of guluronic acid residues. For the best performing samples, the turbidity decreased from 10 NTU to 1 NTU by the use of only 2 mg/L of alginate and 1.5 mM of calcium chloride.
Viability of Azotobacter consortium in auxin production
NASA Astrophysics Data System (ADS)
Zulaika, Enny; Solikhah, Farihatus; Alami, Nur Hidayatul; Kuswytasari, Nengah Dwianita; Shovitri, Maya
2017-06-01
Azotobacter is a kind of rhizobacteria which is abundant in soil and having beneficial for plants due to its ability to produce auxin. Each isolated Azotobacter from Eco Urban Farming ITS were able to produce auxin individually. However, the isolated Azotobacter consortium was prefer to produce more auxin than the individual one. Synergism test were carried out in order to verify non-antagonism among Azotobacter isolates. Auxin production test was conducted by inoculating 100 ml of Azotobacter consortium starter in 400 ml nutrient broth by addition of 1.000 ppm of L-tryptophan while shaking 100 rpm in rotary shaker at room temperature for 8 weeks. Auxin concentration was measured spectrophotometrically according to the Salkowski method. The Azotobacter consortium showed living synergistically and able to produce 1,82 ppm auxin in 2 hours incubation time although the concentration was tend to decrease periodically.
Survival of microorganisms in smectite clays: Implications for Martian exobiology
NASA Astrophysics Data System (ADS)
Moll, Deborah M.; Vestal, J. Robie
1992-08-01
Manned exploration of Mars may result in the contamination of that planet with terrestrial microbes, a situation requiring assessment of the survival potential of possible contaminating organisms. In this study, the survival of Bacillus subtilis, Azotobacter chroococcum, and the enteric bacteriophage MS2 was examined in clays representing terrestrial (Wyoming type montmorillonite) or Martian (Fe 3+-montmorillonite) soils exposed to terrestrial and Martian environmental conditions of temperature and atmospheric pressure and composition, but not to UV flux or oxidizing conditions. Survival of bacteria was determined by standard plate counts and biochemical and physiological measurements over 112 days. Extractable lipid phosphate was used to measure microbial biomass, and the rate of 14C-acetate incorporation into microbial lipids was used to determine physiological activity. MS2 survival was assayed by plaque counts. Both bacterial types survived terrestrial or Martian conditions in Wyoming montmorillonite better than Martian conditions in Fe 3+-montmorillonite. Decreased survival may have been caused by the lower pH of the Fe 3+-montmorillonite compared to Wyoming montmorillonite. MS2 survived simulated Mars conditions better than the terrestrial environment, likely due to stabilization of the virus caused by the cold and dry conditions of the simulated Martian environment. The survival of MS2 in the simulated Martian environment is the first published indication that viruses may be able to survive in Martian type soils. This work may have implications for planetary protection for future Mars missions.
Shorter Life Span of Microorganisms and Plants as a Consequence of Shielded Magnetic Environment
NASA Astrophysics Data System (ADS)
Dobrota, C.; Piso, I. M.; Bathory, D.
The geomagnetic field is an essential environmental factor for life and health on this planet. In order to survey how magnetic fields affect the life span and the nitrogenase (an iron-sulphur enzyme) activity of Azotobacter chroococcum as well as the life span, the main organic synthesis and the water balance of plants (22 species), the biological tests were incubated under shielded magnetic field and also in normal geo-magnetic environment. The shielding level was about 10-6 of the terrestrial magnetic field.Life cycles of all organisms require the co-ordinated control of a complex set of interlocked physiological processes and metabolic pathways. Such processes are likely to be regulated by a large number of genes. Our researches suggest that the main point in biological structures, which seems to be affected by the low magnetic environment, is the water molecule. Magnetic field induces a molecular alignment. Under shielded conditions, unstructured water molecules with fewer hydrogen bonds, which are producing a more reactive environment, are occurring. As compared to control, the life span of both microorganisms and plants was shorter in shielded environment. A higher nitrogenase affinity for the substrate was recorded in normal geo-magnetic field compared to low magnetic field. The synthesis of carbohydrates, lipids, proteins and enzymes was modified under experimental conditions. The stomatal conductance was higher between 158 and 300% in shielded environment indicating an important water loss from the plant cells.Our results support the idea that the shielded magnetic environment induces different reactions depending on the time of exposure and on the main metabolic pathways of the cells.
Effect of malachite green toxicity on non target soil organisms.
Gopinathan, R; Kanhere, J; Banerjee, J
2015-02-01
Although malachite green (MG), is banned in Europe and US for its carcinogenic and teratogenic effect, the dye being cheap, is persistently used in various countries for fish farming, silk, dye, leather and textile industries. Current research, however, fails to elucidate adequate knowledge concerning the effects of MG in our ecosystem. In the present investigation, for the first time, an attempt has been made to study the effects of MG on soil biota by testing Bacillus subtilis, Azotobacter chroococcum, Saccharomyces cerevisiae, Penicillium roqueforti, Eisenia fetida and seeds of three crop plants of different families. Various tests were conducted for determining cytotoxicity, genotoxicity, acute toxicity, morphological and germination effect. Our data confirmed MG toxicity on fungi and bacteria (gram positive and gram negative organisms) showing elevated level of ROS. Genotoxicity caused in the microorganisms was detected by DNA polymorphism and fragmentation. Also, scanning electron microscopy data suggests that the inhibitory effect of MG to these beneficial microbes in the ecosystem might be due to pore formation in the cell and its eventual disruption. Filter paper and artificial soil test conducted on earthworms demonstrated a LC 50 of 2.6 mg cm(-2) and 1.45 mg kg(-1) respectively with severe morphological damage. However, seed germination of Mung bean, Wheat and Mustard was found to be unaffected in presence of MG up to 100 mL(-1) concentration. Thus, understanding MG toxicity in non target soil organisms and emphasis on its toxicological effects would potentially explicate its role as an environmental contaminant. Copyright © 2014 Elsevier Ltd. All rights reserved.
Boddupalli, Anuraag; Tiwari, Rameshwar; Sharma, Anamika; Singh, Surender; Prasanna, Radha; Nain, Lata
2017-05-01
There is a growing interest in the use of bioinoculants to assist mineral fertilizers in improving crop production and yield. Azotobacter and Pseudomonas are two agriculturally relevant strains of bacteria which have been established as efficient bioinoculants. An experiment involving addition of graded concentrations of zinc oxide (ZnO) nanoparticles was undertaken using log phase cultures of Azotobacter and Pseudomonas. Growth kinetics revealed a clear trend of gradual decrease with Pseudomonas; however, Azotobacter exhibited a twofold enhancement in growth with increase in the concentration of ZnO concentration. Scanning electron microscopy (SEM), supported by energy-dispersive X-ray (EDX) analyses, illustrated the significant effect of ZnO nanoparticles on Azotobacter by the enhancement in the abundance of globular biofilm-like structures and the intracellular presence of ZnO, with the increase in its concentration. It can be surmised that extracellular mucilage production in Azotobacter may be providing a barrier to the nanoparticles. Further experiments with Azotobacter by inoculation of wheat and tomato seeds with ZnO nanoparticles alone or bacteria grown on ZnO-infused growth medium revealed interesting results. Vigour index of wheat seeds reduced by 40-50% in the presence of different concentrations of ZnO nanoparticles alone, which was alleviated by 15-20%, when ZnO and Azotobacter were present together. However, a drastic 50-60% decrease in vigour indices of tomato seeds was recorded, irrespective of Azotobacter inoculation.
[4Fe-4S]-cluster-depleted Azotobacter vinelandii ferredoxin I: a new 3Fe iron-sulfur protein.
Stephens, P J; Morgan, T V; Devlin, F; Penner-Hahn, J E; Hodgson, K O; Scott, R A; Stout, C D; Burgess, B K
1985-01-01
Fe(CN)6(-3) oxidation of the aerobically isolated 7Fe Azotobacter vinelandii ferredoxin I, (7Fe)FdI, is a degradative reaction. Destruction of the [4Fe-4S] cluster occurs first, followed by destruction of the [3Fe-3S] cluster. At a Fe(CN)6(-3)/(7Fe)FdI concentration ratio of 20, the product is a mixture of apoprotein and protein containing only a [3Fe-3S] cluster, (3Fe)FdI. This protein mixture, after partial purification, has been characterized by absorption, CD, magnetic CD, and EPR and Fe x-ray absorption spectroscopies. EPR and magnetic CD spectra provide strong evidence that the [3Fe-3S] cluster in (3Fe)FdI is essentially identical in structure to that in (7Fe)FdI. Analysis of the extended x-ray absorption fine structure (EXAFS) of (3Fe)FdI finds Fe scattering at an average Fe...Fe distance of approximately equal to 2.7 A. The structure of the oxidized [3Fe-3S] cluster in solutions of oxidized (3Fe)FdI, and, by extension, of oxidized (7Fe)FdI, is thus different from that obtained by x-ray crystallography on oxidized (7Fe)FdI. Possible interpretations of this result are discussed. PMID:2994040
Camelo-Rusinque, Mauricio; Moreno-Galván, Andrés; Romero-Perdomo, Felipe; Bonilla-Buitrago, Ruth
The indiscriminate use of chemical fertilizers has contributed to the deterioration of the biological, physical and chemical properties of the soil, resulting in the loss of its productive capacity. For this reason, the use of biofertilizers has emerged as a technological alternative. The objective of this research was to develop a suitable liquid fermentation system and encystment for the multiplication of Azotobacter chroococcum AC1 strain, a bacterium employed in a biofertilizer formulation produced at present by CARPOICA, Colombia. Sequential statistical designs were used to determine the conditions in the fermentation system. The interaction between agitation, aeration and pH was evaluated on the viable biomass (CFU/ml) of AC1. In addition, the encystment ability of the strain was evaluated using two encystment agents and the potential plant growth-promoting rhizobacteria (PGPR) activity was assessed by different techniques, such as nitrogen fixation by ARA, phosphate solubilization by the phospho-molybdenum-blue reaction and indolic compound production by colorimetric reaction using the Salkowski reagent. Results showed significant effects (p<0.05) on the viable biomass in the three conditions (pH, aeration and agitation) tested individually, in one dual interaction and one tripartite interaction, were demonstrated to have a positive effect on the response variable aeration and agitation. The addition of the two encystment agents evaluated, AE01 and AE02, demonstrated the ability of AC1 to form cysts under stress conditions. Likewise, fermentation and encystment conditions did not affect the biological activities tested. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Khaitov, Botir; Patiño-Ruiz, José David; Pina, Tatiana; Schausberger, Peter
2015-09-01
Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen-fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co-occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant-associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free-living nitrogen-fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two-spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co-occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground-aboveground research by providing first insights into the fitness implications of plant-mediated interactions between interrelated belowground fungi-bacteria and aboveground herbivores.
Protons and pleomorphs: aerobic hydrogen production in Azotobacters.
Noar, Jesse D; Bruno-Bárcena, José M
2016-02-01
As obligate aerobic soil organisms, the ability of Azotobacter species to fix nitrogen is unusual given that the nitrogenase complex requires a reduced cellular environment. Molecular hydrogen is an unavoidable byproduct of the reduction of dinitrogen; at least one molecule of H2 is produced for each molecule of N2 fixed. This could be considered a fault in nitrogenase efficiency, essentially a waste of energy and reducing equivalents. Wild-type Azotobacter captures this hydrogen and oxidizes it with its membrane-bound uptake hydrogenase complex. Strains lacking an active hydrogenase complex have been investigated for their hydrogen production capacities. What is the role of H2 in the energy metabolism of nitrogen-fixing Azotobacter? Is hydrogen production involved in Azotobacter species' protection from or tolerance to oxygen, or vice versa? What yields of hydrogen can be expected from hydrogen-evolving strains? Can the yield of hydrogen be controlled or increased by changing genetic, environmental, or physiological conditions? We will address these questions in the following mini-review.
Nosheen, Asia; Bano, Asghari; Yasmin, Humaira; Keyani, Rumana; Habib, Rabia; Shah, Syed T. A.; Naz, Rabia
2016-01-01
HIGHLIGHTS Rhizobacteria (Azotobacter spp.) have improved the quality and quantity of safflower seed protein.Protein quality was confirmed by SDS-PAGE and new bands were found in response to different combinations of rhizobacteria and lower doses of fertilizers.The PGPR application has reduced the use of fertilizers upto 50%. Protein is an essential part of the human diet. The aim of this present study was to improve the protein quality of safflower seed by the application of plant growth promoting rhizobacteria (PGPR) in combination with conventional nitrogen and phosphate (NP) fertilizers. The seeds of two safflower cultivars Thori and Saif-32, were inoculated with Azospirillum and Azotobacter and grown under field conditions. Protein content and quality was assessed by crude protein, amino acid analysis, and SDS-PAGE. Seed crude protein and amino acids (methionine, phenylalanine, and glutamic acid) showed significant improvements (55–1250%) by Azotobacter supplemented with a quarter dose of fertilizers (BTQ) at P ≤ 0.05. Additional protein bands were induced in Thori and Saif-32 by BTQ and BTH (Azotobacter supplemented with a half dose of fertilizer) respectively. The Azospirillum in combination with half dose of fertilizer (SPH) and BTQ enhanced both indole acetic acid (IAA) (90%) and gibberellic acid (GA) (23–27%) content in safflower leaf. Taken together, these data suggest that Azospirillum and Azotobacter along with significantly reduced (up to 75%) use of NP fertilizers could improve the quality and quantity of safflower seed protein. PMID:26941744
Radiation Resistance of Soil Azotobacter
Vela, Gerard R.; Wyss, Orville
1965-01-01
Vela, Gerard R. (School of Aerospace Medicine, Brooks Air Force Base, Tex.), and Orville Wyss. Radiation resistance of soil Azotobacter. J. Bacteriol. 89:1280–1285. 1965.—Quantitative recovery of Azotobacter from soils subjected to γ-radiation from a cobalt-60 source showed the soil populations to be much more highly resistant than isolates from such cultures grown on laboratory media. Even in the encysted state, the laboratory populations were reduced 10,000-fold by exposure to 200 kr, whereas the soil populations were not measurably reduced by that dose. PMID:14292998
Purification and some properties of Fe protein of nitrogenase from. Anabaena cylindrica
NASA Astrophysics Data System (ADS)
Du, Daixian; Lin, Huimin; He, Zhenrong; Dai, Lingfen; Xin, Wusheng; Li, Shanghao
1990-12-01
The Fe protein of Anabaena cylindrica was first separated and purified by chromatography through DEAE-cellulose columns then by gel electrophoresis. The specific activity was up to 142.46 nmol C2H4/mg protein · min. It was homogeneous as shown by 1) a single band in the gel electrophorogram; 2) absence of Mo and tryptophan; 3) content of about 3.4 atoms of Fe per mole protein. The molecular weight of the Fe protein of A. cylindrica was about 61,000 daltons as estimated by SDS-gel electrophoresis and calculated from the amino acid composition. The residues of aspartate and glutamate were about 2.6 times that of arginine and lysine in the Fe protein. Crossing Fe protein of A. cylindrica with Mo-Fe protein of Azotobacter vinelandii gave positive result. The reciprocal crossing also showed activity.
Integrated bioethanol and biomanure production from potato waste.
Chintagunta, Anjani Devi; Jacob, Samuel; Banerjee, Rintu
2016-03-01
Disposal of potato processing waste and the problem of pollution associated with it is a vital issue that is being faced by the potato processing plants. The conventional peeling methods presently followed in the processing plants for removing the potato peel, also result in the loss of some portion of the mash which is rich in starch. Indiscriminate discharge of the waste causes detrimental effects in the environment, so this problem can be resolved by successful utilization of the waste for the generation of value added products. Hence, the present work focuses on integrated production of bioethanol and biomanure to utilize the waste completely leading to zero waste generation. The first part of the work describes a comparative study of ethanol production from potato peel and mash wastes by employing co-culture of Aspergillus niger and Saccharomyces cerevisiae at various incubation time (24-120 h) instead of application of enzymes. The solid state fermentation of potato peel and mash inoculated with co-culture, resulted in bioethanol production of 6.18% (v/v) and 9.30% (v/v) respectively. In the second part of the work, the residue obtained after ethanol production was inoculated with seven different microorganisms (Nostoc muscorum, Fischerella muscicola, Anabaena variabilis, Aulosira fertilissima, Cylindrospermum muscicola, Azospirillium lipoferum, Azotobacter chroococcum) and mixture of all the organisms in equal ratio for nitrogen (N), phosphorous (P) and potassium (K) enrichment. Among them, A. variabilis was found to enrich N, P and K content of the residue by nearly 7.66, 21.66 and 15 fold than that of the initial content, ultimately leading to improved N:P:K ratio of approximately 2:1:1. The application of simultaneous saccharification and fermentation (SSF) for the conversion of potato waste to ethanol and enrichment of residue obtained after ethanol production with microorganisms to be used as manure envisages environmental sustainability. Copyright © 2016. Published by Elsevier Ltd.
Encystment of Azotobacter nigricans grown diazotrophically on kerosene as sole carbon source.
García-Esquivel, Gabriela; Calva-Calva, Graciano; Ferrera-Cerrato, Ronald; Fernández-Linares, Luis Carlos; Vázquez, Refugio Rodríguez; Esparza-García, Fernando José
2009-03-01
Encystment of Azotobacter nigricans was induced by its diazotrophic cultivation on kerosene. Its growth and nitrogenase activity were affected by kerosene in comparison to cultures grown on sucrose. Electron microscopy of vegetative cells showed that when nitrogenase activity was higher and the poly-beta-hydroxybutyrate granules were not present to a significant extent, peripheral bodies were abundant. After 8 days of culture on kerosene, the presence of cysts with intracellular bunches of poly-beta-hydroxybutyrate granules was observed. Germination of cysts bears germinating multicelled yet unbroken capsule cysts with up to three cells inside. This is the first report of encystment induction of Azotobacter species grown on kerosene.
Differential accumulation of nif structural gene mRNA in Azotobacter vinelandii.
Hamilton, Trinity L; Jacobson, Marty; Ludwig, Marcus; Boyd, Eric S; Bryant, Donald A; Dean, Dennis R; Peters, John W
2011-09-01
Northern analysis was employed to investigate mRNA produced by mutant strains of Azotobacter vinelandii with defined deletions in the nif structural genes and in the intergenic noncoding regions. The results indicate that intergenic RNA secondary structures effect the differential accumulation of transcripts, supporting the high Fe protein-to-MoFe protein ratio required for optimal diazotrophic growth.
Turner, G. L.; Bergersen, F. J.
1969-01-01
1. Cell-free extracts prepared from soya-bean nodule bacteroids produced HD from D2 in the presence of dithionite, an ATP-generating system and nitrogen. 2. Crude extracts of bacteroids or of Azotobacter vinelandii showed some background D2 exchange when any one of these was omitted. 3. Partial purification of bacteroid extracts diminished this background activity and gave increased D2 exchange and nitrogen fixation. 4. Although increasing pN2 stimulated both reactions, the apparent Km (N2) for nitrogen fixation was much higher than the apparent Km (N2) for D2 exchange when partially purified bacteroid extracts were used. 5. Carbon monoxide was a competitive inhibitor of nitrogen fixation by partially purified bacteroid extracts, but D2 exchange was inhibited in a non-competitive fashion. 6. These results are discussed in relation to the possible existence of enzyme-bound intermediates of nitrogen fixation. PMID:5353527
Internal Membrane Control in Azotobacter vinelandii
Pate, Jack L.; Shah, Vinod K.; Brill, Winston J.
1973-01-01
Azotobacter vinelandii was grown on N2, NH4+, or NO3−, and an internal membrane network was observed by electron microscopy of thin sections of cells. Cells obtained in early exponential growth contained less internal membrane than did cells from cultures in late exponential growth. It seems likely that O2 has a role in regulating the amount of internal membrane structure. Images PMID:4123239
Manjunath, Mallappa; Kanchan, Amrita; Ranjan, Kunal; Venkatachalam, Siddarthan; Prasanna, Radha; Ramakrishnan, Balasubramanian; Hossain, Firoz; Nain, Lata; Shivay, Yashbir Singh; Rai, Awadhesh Bahadur; Singh, Bijendra
2016-02-01
Microorganisms in the rhizosphere mediate the cycling of nutrients, their enhanced mobilisation and facilitate their uptake, leading to increased root growth, biomass and yield of plants. We examined the promise of beneficial cyanobacteria and eubacteria as microbial inoculants, applied singly or in combination as consortia or biofilms, to improve growth and yields of okra. Interrelationships among the microbial activities and the micro/macro nutrient dynamics in soils and okra yield characteristics were assessed along with the changes in the soil microbiome. A significant effect of microbial inoculation on alkaline phosphatase activity was recorded both at the mid-crop and harvest stages. Microbial biomass carbon values were highest due to the Anabaena sp. - Providencia sp. (CR1 + PR3) application. The yield of okra ranged from 444.6-478.4 g(-1) plant and a positive correlation (0.69) recorded between yield and root weight. The application of Azotobacter led to the highest root weight and yield. The concentration of Zn at mid-crop stage was 60-70% higher in the Azotobacter sp. and Calothrix sp. inoculated soils, as compared to uninoculated control. Iron concentration in soil was more than 2-3 folds higher than control at the mid-crop stage, especially due to the application of Anabaena-Azotobacter biofilm and Azotobacter sp. Both at the mid-crop and harvest stages, the PCR-DGGE profiles of eubacterial communities were similar among the uninoculated control, the Anabaena sp. - Providencia sp. (CW1 + PW5) and the Anabaena-Azotobacter biofilm treatments. Although the profiles of the Azotobacter, Calothrix and CR1 + PR3 treatments were identical at these stages of growth, the profile of CR1 + PR3 was clearly distinguishable. The performance of the inoculants, particularly Calothrix (T6) and consortium of Anabaena and Providencia (CR1 + PR3; T5), in terms of microbiological and nutrient data, along with generation of distinct PCR-DGGE profiles suggested their superiority and emphasized the utility of combining microbiological and molecular tools in the selection of effective microbial inoculants.
Sahoo, Ranjan K; Ansari, Mohammad W; Dangar, Tushar K; Mohanty, Santanu; Tuteja, Narendra
2014-05-01
Biological nitrogen fixation (BNF) is highly effective in the field and potentially useful to reduce adverse effects chemical fertilisers. Here, Azotobacter species were selected via phenotypic, biochemical and molecular characterisations from different rice fields. Acetylene reduction assay of Azotobacter spp. showed that Azotobacter vinelandii (Az3) fixed higher amount of nitrogen (121.09 nmol C2H4 mg(-1) bacteria h(-1)). Likewise, its plant growth functions, viz. siderophore, hydrogen cyanide, salicylic acid, IAA, GA3, zeatin, NH3, phosphorus solubilisation, ACC deaminase and iron tolerance, were also higher. The profile of gDNA, plasmid DNA and cellular protein profile depicted inter-generic and inter-specific diversity among the isolates of A. vinelandii. The PCR-amplified genes nifH, nifD and nifK of 0.87, 1.4 and 1.5 kb , respectively, were ascertained by Southern blot hybridisation in isolates of A. vinelandii. The 16S rRNA sequence from A. vinelandii (Az3) was novel, and its accession number (JQ796077) was received from NCBI data base. Biofertiliser formulation of novel A. vinelandii isolates along with commercial one was evaluated in rice (Oriza sativa L. var. Khandagiri) fields. The present finding revealed that treatment T4 (Az3) (A. vinelandii) are highly efficient to improved growth and yield of rice crop.
Tóth, Brigitta; Lévai, L; Kovács, B; Varga, Mária Borbélyné; Veres, Szilvia
2013-03-01
Biofertilizers are used to improve soil fertility and plant production in sustainable agriculture. However, their applicability depends on several environmental parameters. The aim of our study was to evaluate the effect of free-living bacteria containing fertilizer on the growth of cucumber (Cucumis sativus L. cvs. Delicates) under aluminium (Al) stress. Different responses to Al stress of cucumber growth parameters were examined in terms of root elongation and physiological traits, such as Spad index (relative chlorophyll value), biomass accumulation of root and shoot, Al uptake and selected element contents (Fe, Mn, Zn, Mg) of leaves and root. The applied bacteria containing biofertilizer contains Azotobacter chroococcum and Bacillus megaterium. The dry weights of cucumber shoots and roots decreased in line with the increasing Al concentration. Due to different Al treatments (10-3 M, 10-4 M) higher Al concentration was observed in the leaves, while the amounts of other elements (Fe, Mn, Zn, Mg) decreased. This high Al content of the leaves decreased below the control value when biofertilizer was applied. In the case of the roots the additional biofertilizer treatments compensated the effect of Al. The relative chlorophyll content was reduced during Al-stress in older plants and the biofertilizer moderated this effect. The root/shoot ratio was decreased in all the Al-treatments in comparison to the control. The living bacteria containing fertilizer also had a modifying effect. The root/shoot ratio increased at the 10-4 M Al2(SO4)2 + biofertilizer and 10-4 M Al(NO3)3 + biofertilizer treatments compared to the control and Al-treatments. According to our results the biofertilizer is an alternative nutrient supply for replacing chemical fertilizers because it enhances dry matter production. Biofertilizer usage is also offered under Al polluted environmental conditions. Although, the nutrient solution is a clean system where we can examine the main processes without other effects of natural soils. The soil can modify the results, e.g. the soil-born microorganisms affect nutrient availability, and also can modify the harmful effects of different heavy metals. The understanding of basic processes will help us to know more about the soil behaviour.
Isolation of ntrA-like mutants of Azotobacter vinelandii.
Santero, E; Luque, F; Medina, J R; Tortolero, M
1986-01-01
A number of chlorate-resistant mutants of Azotobacter vinelandii affected in a general control of nitrogen metabolism were isolated. These mutants could not utilize dinitrogen, nitrate, or nitrite as a nitrogen source. The reason for this inability is that they were simultaneously deficient in nitrogenase and nitrate and nitrite reductase activities. They were complemented by a cosmid carrying a DNA fragment of A. vinelandii able to complement ntrA mutants of Escherichia coli, so they seemed to be ntrA-like mutants. PMID:3009406
Growth of Azotobacter vinelandii in a solid-state fermentation of technical lignin.
Zhang, Xiaoyong; Zhao, Hua; Zhang, Jianan; Li, Zuohu
2004-10-01
Azotobacter vinelandii was cultured on technical lignin, derived from Kraft pulping processes, for biofertilizer production in solid-state fermentation. The effects of the ratio of technical lignin to corn straw, initial water content, and material bed depth on the microorganisms were studied in detail. At 30 degrees C, technical lignin to corn straw at the ratio of 1:0.75, the bed depth of 5 cm, and 67% moisture content, A. vinelandii was grown and reached 4.2 x 10(10) cfu g(-1) dry rot after 36 h.
The Azotobacter vinelandii NifEN complex contains two identical [4Fe-4S] clusters.
Goodwin, P J; Agar, J N; Roll, J T; Roberts, G P; Johnson, M K; Dean, D R
1998-07-21
The nifE and nifN gene products from Azotobacter vinelandii form an alpha2beta2 tetramer (NifEN complex) that is required for the biosynthesis of the nitrogenase FeMo cofactor. In the current model for NifEN complex organization and function, the complex is structurally analogous to the nitrogenase MoFe protein and provides an assembly site for a portion of FeMo cofactor biosynthesis. In this work, gene fusion and immobilized metal-affinity chromatography strategies were used to elevate the in vivo production of the NifEN complex and to facilitate its rapid and efficient purification. The NifEN complex produced and purified in this way exhibits an FeMo cofactor biosynthetic activity similar to that previously described for the NifEN complex purified by traditional chromatography methods. UV-visible, EPR, variable-temperature magnetic circular dichroism, and resonance Raman spectroscopies were used to show that the NifEN complex contains two identical [4Fe-4S]2+ clusters. These clusters have a predominantly S = 1/2 ground state in the reduced form, exhibit a reduction potential of -350 mV, and are likely to be coordinated entirely by cysteinyl residues on the basis of spectroscopic properties and sequence comparisons. A model is proposed where each NifEN complex [4Fe-4S] cluster is bridged between a NifE-NifN subunit interface at a position analogous to that occupied by the P clusters in the nitrogenase MoFe protein. In contrast to the MoFe protein P clusters, the NifEN complex [4Fe-4S] clusters are proposed to be asymmetrically coordinated to the NifEN complex where NifE cysteines-37, -62, and -124 and NifN cysteine-44 are the coordinating ligands. On the basis of a homology model of the three-dimensional structure of the NifEN complex, the [4Fe-4S] cluster sites are likely to be remote from the proposed FeMo cofactor assembly site and are unlikely to become incorporated into the FeMo cofactor during its assembly.
Action of inhibitors on hydrogenase in Azotobacter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, J.B.; Wilson, P.W.
1943-01-01
The inhibitors usually associated with the activity of the cytochrome oxidase system - cyanide and carbon monoxide - are also effective in reducing the oxidation of H/sub 2/ by intact cells of Azotobacter vinclandii. The hydrogenase system is more sensitive to CO than is the respiratory system. Oxidation of a carbon source and of hydrogen by Azotobacter cells is inhibited in a quantitatively different manner by the following compounds: sodium azide, hydroxylamine, sodium iodoacetate, and sodium fluoride. In every case, a concentration range which is definitely inhibitory for respiration has little or no effect on the hydrogenase activity. The differentialmore » inhibition by hydroxylamine explains certain observations in the literature which have been erroneously interpreted as demonstrating a specific inhibition by NH/sub 2/OH of biological nitrogen fixation. This supposed demonstration has been offered as support for the hypothesis that NH/sub 2/OH is an intermediate in the fixation reaction. The differential inhibitors can be used for detection of hydrogenase in cultures possessing a high endogenous respiration. The method is illustrated by an experiment with root nodule bacteria from pea and cowpea nodules. No hydrogenase was found in either. 8 references, 4 figures, 4 tables.« less
The Siderophore Metabolome of Azotobacter vinelandii
Baars, Oliver; Zhang, Xinning
2015-01-01
In this study, we performed a detailed characterization of the siderophore metabolome, or “chelome,” of the agriculturally important and widely studied model organism Azotobacter vinelandii. Using a new high-resolution liquid chromatography-mass spectrometry (LC-MS) approach, we found over 35 metal-binding secondary metabolites, indicative of a vast chelome in A. vinelandii. These include vibrioferrin, a siderophore previously observed only in marine bacteria. Quantitative analyses of siderophore production during diazotrophic growth with different sources and availabilities of Fe showed that, under all tested conditions, vibrioferrin was present at the highest concentration of all siderophores and suggested new roles for vibrioferrin in the soil environment. Bioinformatic searches confirmed the capacity for vibrioferrin production in Azotobacter spp. and other bacteria spanning multiple phyla, habitats, and lifestyles. Moreover, our studies revealed a large number of previously unreported derivatives of all known A. vinelandii siderophores and rationalized their origins based on genomic analyses, with implications for siderophore diversity and evolution. Together, these insights provide clues as to why A. vinelandii harbors multiple siderophore biosynthesis gene clusters. Coupled with the growing evidence for alternative functions of siderophores, the vast chelome in A. vinelandii may be explained by multiple, disparate evolutionary pressures that act on siderophore production. PMID:26452553
Effect of rhizobacteria on arsenic uptake by macrophyte Eichhornia crassipes (Mart.) Solms.
Kaur, Parvinder; Singh, Simranjeet; Kumar, Vivek; Singh, Nasib; Singh, Joginder
2018-01-28
Wastewater flowing in streams and nallahs across India carries several trace metals, including metalloid arsenic (As), which are considered serious environmental contaminants due to their toxicity, and recalcitrant nature. In this study, we determined the phytoremediation of As by Eichhornia crassipes (Mart.) Solms either alone or in association with plant growth-promoting rhizobacteria. Pseudomonas and Azotobacter inoculation to E. crassipes resulted in enhanced As removal compared to uninoculated control. Co-inoculation with a consortium of Pseudomonas, Azotobacter, Azospirillum, Actinomyces, and Bacillus resulted in a higher As (p < 0.05) phytoaccumulation efficiency. P. aeruginosa strain jogii was found particularly effective in augmenting As removal by E. crassipes. Our findings indicate that the synergistic association of E. crassipes and various rhizobacteria is an effective strategy to enhance removal of As and thus may be utilized as an efficient biological alternative for the removal of this metalloid from wastewaters.
Martín, A E; Burgess, B K; Stout, C D; Cash, V L; Dean, D R; Jensen, G M; Stephens, P J
1990-01-01
Azotobacter vinelandii ferredoxin I is a small protein that contains one [4Fe-4S] cluster and one [3Fe-4S] cluster. Recently the x-ray crystal structure has been redetermined and the fdxA gene, which encodes the protein, has been cloned and sequenced. Here we report the site-directed mutation of Cys-20, which is a ligand of the [4Fe-4S] cluster in the native protein, to alanine and the characterization of the protein product by x-ray crystallographic and spectroscopic methods. The data show that the mutant protein again contains one [4Fe-4S] cluster and one [3Fe-4S] cluster. The new [4Fe-4S] cluster obtains its fourth ligand from Cys-24, a free cysteine in the native structure. The formation of this [4Fe-4S] cluster drives rearrangement of the protein structure. PMID:2153958
Gong, Xiaoqiang; Wei, Le; Yu, Xin; Li, Suyan; Sun, Xiangyang; Wang, Xinyu
2017-01-01
The effects of adding the biosurfactant rhamnolipid, the lignolytic and cellulolytic fungus Phanerochete chrysosporium, and the free-living nitrogen-fixing bacterium Azotobacter chrococcum on vermicomposting of green waste with Eisenia fetida was investigated. The addition of rhamnolipid and/or either microorganism alone or in all combinations significantly increased E. fetida growth rate, the number of E. fetida juveniles and cocoons, the population densities of cellulolytic fungi and Azotobacter bacteria, and cellulase and urease activities in the vermicomposts. The quality of the final vermicompost (in terms of electrical conductivity, nutrient content, C/N ratio, humic acid content, lignin and cellulose contents, and phytotoxicity to germinating seeds) was enhanced by addition of rhamnolipid and/or microorganisms. The physical characteristics of vermicomposts produced with rhamnolipid and/or microorganisms were acceptable for agricultural application. The best quality vermicompost was obtained with the combined addition of P. chrysosporium, A. chrococcum, and rhamnolipid.
Yu, Xin; Li, Suyan; Sun, Xiangyang; Wang, Xinyu
2017-01-01
The effects of adding the biosurfactant rhamnolipid, the lignolytic and cellulolytic fungus Phanerochete chrysosporium, and the free-living nitrogen-fixing bacterium Azotobacter chrococcum on vermicomposting of green waste with Eisenia fetida was investigated. The addition of rhamnolipid and/or either microorganism alone or in all combinations significantly increased E. fetida growth rate, the number of E. fetida juveniles and cocoons, the population densities of cellulolytic fungi and Azotobacter bacteria, and cellulase and urease activities in the vermicomposts. The quality of the final vermicompost (in terms of electrical conductivity, nutrient content, C/N ratio, humic acid content, lignin and cellulose contents, and phytotoxicity to germinating seeds) was enhanced by addition of rhamnolipid and/or microorganisms. The physical characteristics of vermicomposts produced with rhamnolipid and/or microorganisms were acceptable for agricultural application. The best quality vermicompost was obtained with the combined addition of P. chrysosporium, A. chrococcum, and rhamnolipid. PMID:28122059
USDA-ARS?s Scientific Manuscript database
Molybdenum-independent nitrogenases were first described in the nitrogen-fixing bacterium Azotobacter vinelandii and have since been described in other diazotrophic bacteria. Previously, we reported the isolation of seven diazotrophs with Molybdenum-independent nitrogenases from aquatic environments...
Nitrogen fixation system of tungsten-resistant mutants of Azotobacter vinelandii.
Riddle, G D; Simonson, J G; Hales, B J; Braymer, H D
1982-01-01
Mutants of Azotobacter vinelandii ATCC 12837 were isolated which could fix N2 in the presence of high tungsten concentrations. The most studied of these mutants (WD2) grew well in N-free modified Burk broth containing 10 mM W, whereas the wild type would not grow in this medium. WD2 would also grow in Burk N-free broth at about the same rate as the wild type. WD2 in broth containing W exhibited 22% of the whole cell acetylene reduction activity of the wild type in broth containing Mo and showed a lowered affinity for acetylene. Two-dimensional gel electrophoresis experiments showed that N2-fixing cells of WD2 from broth containing W or Mo did not produce significant amounts of component I of native nitrogenase protein. Electron spin resonance spectra of whole cells and cell-free extracts of WD2 from broth containing W lacked any trace of the g = 3.6 resonance associated with FeMoCo. Images PMID:6956567
Effect of Oxygen Tension and Medium Components on Monomer Distribution of Alginate.
Kıvılcımdan Moral, Çiğdem; Doğan, Özdemir; Sanin, Faika Dilek
2015-06-01
Alginate is a natural biopolymer composed of mannuronic and guluronic acid monomers. It is produced by algae and some species of Azotobacter and Pseudomonas. This study aims to investigate the effect of dissolved oxygen tension (DOT) and growth medium substrate and calcium concentrations on the monomeric composition of alginate produced by Azotobacter vinelandii ATCC® 9046 in a fermenter. Results showed that alginate production increased with increasing DOT from 1 to 5 %. The highest alginate production was obtained as 4.51 g/L under 20 g/L of sucrose and 50 mg/L of calcium at 5 % DOT. At these conditions, alginate was rich in mannuronic acid (up to 61 %) and it was particularly high at low calcium concentration. On the other hand, at extreme conditions such as high DOT level (10 % DOT) and low sucrose concentration (10 g/L), guluronic acid was dominant (ranging between 65 and 100 %).
Noumsi, Christelle Jouogo; Pourhassan, Nina; Darnajoux, Romain; Deicke, Michael; Wichard, Thomas; Burrus, Vincent; Bellenger, Jean-Philippe
2016-02-01
Biological nitrogen fixation can be catalysed by three isozymes of nitrogenase: molybdenum (Mo)-nitrogenase, vanadium (V)-nitrogenase and iron-only (Fe)-nitrogenase. The activity of these isozymes strongly depends on their metal cofactors, molybdenum, vanadium and iron, and their bioavailability in ecosystems. Here, we show how metal bioavailability can be affected by the presence of tannic acid (organic matter), and the subsequent consequences on diazotrophic growth of the soil bacterium Azotobacter vinelandii. In the presence of tannic acids, A. vinelandii produces a higher amount of metallophores, which coincides with an active, regulated and concomitant acquisition of molybdenum and vanadium under cellular conditions that are usually considered not molybdenum limiting. The associated nitrogenase genes exhibit decreased nifD expression and increased vnfD expression. Thus, in limiting bioavailable metal conditions, A. vinelandii takes advantage of its nitrogenase diversity to ensure optimal diazotrophic growth. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Aerobic Hydrogen Production via Nitrogenase in Azotobacter vinelandii CA6
Noar, Jesse; Loveless, Telisa; Navarro-Herrero, José Luis; Olson, Jonathan W.
2015-01-01
The diazotroph Azotobacter vinelandii possesses three distinct nitrogenase isoenzymes, all of which produce molecular hydrogen as a by-product. In batch cultures, A. vinelandii strain CA6, a mutant of strain CA, displays multiple phenotypes distinct from its parent: tolerance to tungstate, impaired growth and molybdate transport, and increased hydrogen evolution. Determining and comparing the genomic sequences of strains CA and CA6 revealed a large deletion in CA6's genome, encompassing genes related to molybdate and iron transport and hydrogen reoxidation. A series of iron uptake analyses and chemostat culture experiments confirmed iron transport impairment and showed that the addition of fixed nitrogen (ammonia) resulted in cessation of hydrogen production. Additional chemostat experiments compared the hydrogen-producing parameters of different strains: in iron-sufficient, tungstate-free conditions, strain CA6's yields were identical to those of a strain lacking only a single hydrogenase gene. However, in the presence of tungstate, CA6 produced several times more hydrogen. A. vinelandii may hold promise for developing a novel strategy for production of hydrogen as an energy compound. PMID:25911479
Page, W J; Huyer, M
1984-01-01
Azotobacter vinelandii solubilized iron from certain minerals using only dihydroxybenzoic acid, which appeared to be produced constitutively. Solubilization of iron from other minerals required dihydroxybenzoic acid and the siderophore N,N'-bis-(2,3- dihydroxybenzoyl )-L-lysine ( azotochelin ) or these chelators plus the yellow-green fluorescent siderophore azotobactin . In addition to this sequential production of siderophores, cells also demonstrated partial to hyperproduction relative to the iron-limited control. The iron sources which caused partial derepression of the siderophores caused derepression of all the high-molecular-weight iron-repressible outer membrane proteins except a 77,000-molecular-weight protein, which appeared to be coordinated with azotobactin production. Increased siderophore production correlated with increased production of outer membrane proteins with molecular weights of 93,000, 85,000, and 77,000, but an 81,000-molecular-weight iron-repressible protein appeared at a constant level despite the degree of derepression. When iron was readily available, it appeared to complex with a 60,000-molecular-weight protein believed to form a surface layer on the A. vinelandii cell. Images PMID:6233258
Gopal, Murali; Gupta, Alka; Arunachalam, V; Magu, S P
2007-11-01
The effect of 10% azadirachtin granules (alcoholic extract of neem seed kernel mixed with China clay) was studied on the population of bacteria, actinomycetes, fungi, Azotobacter and nitrifying bacteria; soil dehydrogenase, phosphatase and respiratory activities on 0, 15th, 30th, 60th and 90th days after application in sandy loam soil collected from the fields. It was observed that baring the Azotobacter sp., azadirachtin at all the doses exerted a suppressive effect on the rest of the microbial communities and enzyme activities in the initial 15 day period. The population of bacteria, actinomycetes besides phosphatase and respiratory activities recovered after 60th day and subsequently increased significantly. The fungi and nitrifiers were most sensitive groups as their numbers were reduced significantly throughout the studies. The two times and five times recommended dose of azadirachtin had very high biocidal effects on the soil microorganisms and its activities. However, analysis of the data by the Shannon Weaver index showed that azadirachtin reduces both the form and functional microbial diversity at all doses.
Vanadium Requirements and Uptake Kinetics in the Dinitrogen-Fixing Bacterium Azotobacter vinelandii▿
Bellenger, J. P.; Wichard, T.; Kraepiel, A. M. L.
2008-01-01
Vanadium is a cofactor in the alternative V-nitrogenase that is expressed by some N2-fixing bacteria when Mo is not available. We investigated the V requirements, the kinetics of V uptake, and the production of catechol compounds across a range of concentrations of vanadium in diazotrophic cultures of the soil bacterium Azotobacter vinelandii. In strain CA11.70, a mutant that expresses only the V-nitrogenase, V concentrations in the medium between 10−8 and 10−6 M sustain maximum growth rates; they are limiting below this range and toxic above. A. vinelandii excretes in its growth medium micromolar concentrations of the catechol siderophores azotochelin and protochelin, which bind the vanadate oxoanion. The production of catechols increases when V concentrations become toxic. Short-term uptake experiments with the radioactive isotope 49V show that bacteria take up the V-catechol complexes through a regulated transport system(s), which shuts down at high V concentrations. The modulation of the excretion of catechols and of the uptake of the V-catechol complexes allows A. vinelandii to precisely manage its V homeostasis over a range of V concentrations, from limiting to toxic. PMID:18192412
Money, Tracy; Barrett, Jason; Dixon, Ray; Austin, Sara
2001-01-01
The enhancer binding protein NIFA and the sensor protein NIFL from Azotobacter vinelandii comprise an atypical two-component regulatory system in which signal transduction occurs via complex formation between the two proteins rather than by the phosphotransfer mechanism, which is characteristic of orthodox systems. The inhibitory activity of NIFL towards NIFA is stimulated by ADP binding to the C-terminal domain of NIFL, which bears significant homology to the histidine protein kinase transmitter domains. Adenosine nucleotides, particularly MgADP, also stimulate complex formation between NIFL and NIFA in vitro, allowing isolation of the complex by cochromatography. Using limited proteolysis of the purified proteins, we show here that changes in protease sensitivity of the Q linker regions of both NIFA and NIFL occurred when the complex was formed in the presence of MgADP. The N-terminal domain of NIFA adjacent to the Q linker was also protected by NIFL. Experiments with truncated versions of NIFA demonstrate that the central domain of NIFA is sufficient to cause protection of the Q linker of NIFL, although in this case, stable protein complexes are not detectable by cochromatography. PMID:11157949
Survival of Microorganisms in Nature.
1982-04-07
number) Survival of bacteria; Death of bacteria; Cysts; Dormancy; Pseudomonas aeruginosa; Azotobacter; Chemotaxis; Micrococcus luteus; Predation...attracted to and rapidly destroys (lyses) added Micrococcus luteus cells. There is also attack of predator on predator in this system. DO 1 DIT1 473 Oor I OV...and on laboratory media. 4 1 SUMMARY OF IMPORTANT RESULTS Micrococcus luteus was shown to survive only poorly in soil (Casida, 1980a). This was
Yoch, Duane C.
1973-01-01
Evidence suggesting that Bacillus polymyxa has an active ferredoxin-NADP+ reductase (EC 1.6.99.4) was obtained when NADPH was found to provide reducing power for the nitrogenase of this organism; direct evidence was provided when it was shown that B. polymyxa extracts could substitute for the native ferredoxin-NADP+ reductase in the photochemical reduction of NADP+ by blue-green algal particles. The ferredoxin-NADP+ reductase was purified about 80-fold by a combination of high-speed centrifugation, ammonium sulfate fractionation, and chromatography on Sephadex G-100 and diethylaminoethyl-cellulose. The molecular weight was estimated by gel filtration to be 60,000. A small amount of the enzyme was further purified by polyacrylamide gel electrophoresis and shown to be a flavoprotein. The reductase was specific for NADPH in the ferredoxin-dependent reduction of cytochrome c and methyl viologen diaphorase reactions; furthermore, NADP+ was the acceptor of preference when the electron donor was photoreduced ferredoxin. The reductase also has an irreversible NADPH-NAD+ transhydrogenase (reduced-NADP:NAD oxidoreductase, EC 1.6.1.1) activity, the rate of which was proportional to the concentration of NAD (Km = 5.0 × 10−3M). The reductase catalyzed electron transfer from NADPH not only to B. polymyxa ferredoxin but also to the ferredoxins of Clostridium pasteurianum, Azotobacter vinelandii, and spinach chloroplasts, although less effectively. Rubredoxin from Clostridium acidi-urici and azotoflavin from A. vinelandii also accept electrons from the B. polymyxa reductase. The pH optima for the various reactions catalyzed by the B. polymyxa ferredoxin-NADP reductase are similar to those of the chloroplast reductase. NAD and acetyl-coenzyme A, which obligatorily activate NADPH- and NADH-ferredoxin reductases, respectively, in Clostridium kluyveri, have no effect on B. polymyxa reductase. PMID:4147648
1982-05-01
3,5-DiNA Biosorption studies were conducted with 3-day Standard Methods broth cultures of Azotobacter beijerinckii (ATCC19366), Bacillus cereus... Biosorption studies with heat killed cells were conducted in the same manner except that the original bacterial mixture was held at 1000 C for 15...minutes. In all cases, studies were conducted with triplicate sets of live or heat killed cells. The biosorption partition coefficient (Kp) was
Yoneyama, Fuminori; Yamamoto, Mayumi; Hashimoto, Wataru; Murata, Kousaku
2015-01-01
Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase, and its level drastically decreased in the cells grown to the stationary growth phase. A. vinelandii also overexpressed the glycerol-3-phosphate dehydrogenase gene when it was grown on glycerol. These results indicate that glycerol was first converted to glycerol-3-phosphate by glycerol kinase. Other molecules with industrial interests, such as lactic acid and amino acids including γ-aminobutyric acid, have also been accumulated in the bacterial cells grown on glycerol. Transmission electron microscopy revealed that glycerol-grown A. vinelandii stored PHB within the cells. The PHB production level reached 33% per dry cell weight in nitrogen-free glycerol medium. When grown on glycerol, alginate-overproducing mutants generated through chemical mutagenesis produced 2-fold the amount of alginate from glycerol than the parental wild-type strain. To the best of our knowledge, this is the first report on bacterial production of biopolymers from glycerol without addition of any nitrogen source.
Castañeda, Miguel; Sánchez, Judith; Moreno, Soledad; Núñez, Cinthia; Espín, Guadalupe
2001-01-01
Transcription of the Azotobacter vinelandii algD gene, which encodes GDP-mannose dehydrogenase (the rate-limiting enzyme of alginate synthesis), starts from three sites: p1, p2, and p3. The sensor kinase GacS, a member of the two-component regulatory system, is required for transcription of algD from its three sites during the stationary phase. Here we show that algD is expressed constitutively throughout the growth cycle from the p2 and p3 sites and that transcription from p1 started at the transition between the exponential growth phase and stationary phase. We constructed A. vinelandii strains that carried mutations in gacA encoding the cognate response regulator of GacS and in rpoS coding for the stationary-phase ςS factor. The gacA mutation impaired alginate production and transcription of algD from its three promoters. Transcription of rpoS was also abolished by the gacA mutation. The rpoS mutation impaired transcription of algD from the p1 promoter and increased it from the p2 ςE promoter. The results of this study provide evidence for the predominant role of GacA in a regulatory cascade controlling alginate production and gene expression during the stationary phase in A. vinelandii. PMID:11698366
Castillo, Tania; Galindo, Enrique; Peña, Carlos F
2013-07-01
Alginates are polysaccharides that may be used as viscosifiers and gel or film-forming agents with a great diversity of applications. The alginates produced by bacteria such as Azotobacter vinelandii are acetylated. The presence of acetyl groups in this type of alginate increases its solubility, viscosity, and swelling capability. The aim of this study was to evaluate, in glucose-limited chemostat cultivations of A. vinelandii ATCC9046, the influence of dissolved oxygen tension (DO) and specific growth rate (μ) on the degree of acetylation of alginates produced by this bacterium. In glucose-limited chemostat cultivations, the degree of alginate acetylation was evaluated under two conditions of DO (1 and 9 %) and for a range of specific growth rates (0.02-0.15 h⁻¹). In addition, the alginate yields and PHB production were evaluated. High DO in the culture resulted in a high degree of alginate acetylation, reaching a maximum acetylation degree of 6.88 % at 9 % DO. In contrast, the increment of μ had a negative effect on the production and acetylation of the polymer. It was found that at high DO (9 %) and low μ, there was a reduction of the respiration rate, and the PHB accumulation was negligible, suggesting that the flux of acetyl-CoA (the acetyl donor) was diverted to alginate acetylation.
Allard, Patrick; Darnajoux, Romain; Phalyvong, Karine; Bellenger, Jean-Philippe
2013-02-19
The acquisition of essential metals, such as the metal cofactors (molybdenum (Mo) and iron (Fe)) of the nitrogenase, the enzyme responsible for the reduction of dinitrogen (N(2)) to ammonium, is critical to N(2) fixing bacteria in soil. The release of metal nanoparticles (MNPs) to the environment could be detrimental to N(2) fixing bacteria by introducing a new source of toxic metals and by interfering with the acquisition of essential metals such as Mo. Since Mo has been reported to limit nonsymbiotic N(2) fixation in many ecosystems from tropical to cold temperate, this question is particularly acute in the context of Mo limitation. Using a combination of microbiology and analytical chemistry techniques, we have evaluated the effect of titanium (Ti) and tungsten (W) oxide nanoparticles on the diazotrophic growth and metals acquisition in pure culture of the ubiquitous N(2) fixing bacterium Azotobacter vinelandii under Mo replete and Mo limiting conditions. We report that under our conditions (≤10 mg·L(-1)) TiO(2) NPs have no effects on the diazotrophic growth of A. vinelandii while WO(3) NPs are highly detrimental to the growth especially under Mo limiting conditions. Our results show that the toxicity of WO(3) NPs to A. vinelandii is due to an interference with the catechol-metalophores assisted uptake of Mo.
Transcriptional Profiling of Nitrogen Fixation in Azotobacter vinelandii▿†
Hamilton, Trinity L.; Ludwig, Marcus; Dixon, Ray; Boyd, Eric S.; Dos Santos, Patricia C.; Setubal, João C.; Bryant, Donald A.; Dean, Dennis R.; Peters, John W.
2011-01-01
Most biological nitrogen (N2) fixation results from the activity of a molybdenum-dependent nitrogenase, a complex iron-sulfur enzyme found associated with a diversity of bacteria and some methanogenic archaea. Azotobacter vinelandii, an obligate aerobe, fixes nitrogen via the oxygen-sensitive Mo nitrogenase but is also able to fix nitrogen through the activities of genetically distinct alternative forms of nitrogenase designated the Vnf and Anf systems when Mo is limiting. The Vnf system appears to replace Mo with V, and the Anf system is thought to contain Fe as the only transition metal within the respective active site metallocofactors. Prior genetic analyses suggest that a number of nif-encoded components are involved in the Vnf and Anf systems. Genome-wide transcription profiling of A. vinelandiicultured under nitrogen-fixing conditions under various metal amendments (e.g., Mo or V) revealed the discrete complement of genes associated with each nitrogenase system and the extent of cross talk between the systems. In addition, changes in transcript levels of genes not directly involved in N2fixation provided insight into the integration of central metabolic processes and the oxygen-sensitive process of N2fixation in this obligate aerobe. The results underscored significant differences between Mo-dependent and Mo-independent diazotrophic growth that highlight the significant advantages of diazotrophic growth in the presence of Mo. PMID:21724999
Molybdenum Trafficking for Nitrogen Fixation†
Hernandez, Jose A.; George, Simon J.; Rubio, Luis M.
2009-01-01
The molybdenum nitrogenase is responsible for most biological nitrogen fixation, a prokaryotic metabolic process that determines the global biogeochemical cycles of nitrogen and carbon. Here we describe the trafficking of molybdenum for nitrogen fixation in the model diazotrophic bacterium Azotobacter vinelandii. The genes and proteins involved in molybdenum uptake, homeostasis, storage, regulation, and nitrogenase cofactor biosynthesis are reviewed. Molybdenum biochemistry in A. vinelandii reveals unexpected mechanisms and a new role for iron-sulfur clusters in the sequestration and delivery of molybdenum. PMID:19772354
Quiroz-Rocha, Elva; Moreno, Renata; Hernández-Ortíz, Armando; Fragoso-Jiménez, Juan Carlos; Muriel-Millán, Luis Felipe; Guzmán, Josefina; Espín, Guadalupe; Rojo, Fernando; Núñez, Cinthia
2017-04-12
Azotobacter vinelandii, a strict aerobic, nitrogen fixing bacterium in the Pseudomonadaceae family, exhibits a preferential use of acetate over glucose as a carbon source. In this study, we show that GluP (Avin04150), annotated as an H + -coupled glucose-galactose symporter, is the glucose transporter in A. vinelandii. This protein, which is widely distributed in bacteria and archaea, is uncommon in Pseudomonas species. We found that expression of gluP was under catabolite repression control thorugh the CbrA/CbrB and Crc/Hfq regulatory systems, which were functionally conserved between A. vinelandii and Pseudomonas species. While the histidine kinase CbrA was essential for glucose utilization, over-expression of the Crc protein arrested cell growth when glucose was the sole carbon source. Crc and Hfq proteins from either A. vinelandii or P. putida could form a stable complex with an RNA A-rich Hfq-binding motif present in the leader region of gluP mRNA. Moreover, in P. putida, the gluP A-rich Hfq-binding motif was functional and promoted translational inhibition of a lacZ reporter gene. The fact that gluP is not widely distributed in the Pseudomonas genus but is under control of the CbrA/CbrB and Crc/Hfq systems demonstrates the relevance of these systems in regulating metabolism in the Pseudomonadaceae family.
Castillo, T; López, I; Flores, C; Segura, D; García, A; Galindo, E; Peña, C
2018-07-01
The sigma E (AlgU) in Azotobacter vinelandii has been shown to control the expression of cydR gene, a repressor of genes of the alternative respiratory chain, and alginate has been considered a barrier for oxygen diffusion. Therefore, the aim of the present study was to compare the respiratory activity of an alginate nonproducing strain, lacking the sigma factor E (algU-), and polymer-producing strains (algU+) of A. vinelandii under diazotrophic conditions at different aeration conditions. Our results reveal that under diazotrophic and high aeration conditions, A. vinelandii strain OP (algU-) had a specific oxygen consumption rate higher (30 and 54%) than those observed in the OP algU+-complemented strain, named OPAlgU+, and the ATCC 9046 respectively. However, the specific growth rate and biomass yields (based on oxygen and sucrose) were lower for OP cultivations as compared to the algU+ strains. These differences were partially explained by an increase in 1·5-fold of cydA relative expression in the OP strain, as compared to that obtained in the isogenic OPAlgU+ strain. Overall, our results confirm the important role of algU gene on the regulation of respiratory metabolism under diazotrophic growth when A. vinelandii is exposed to high aeration. This study highlights the role of AlgU to control respiration of A. vinelandii when exposed to diazotrophy. © 2018 The Society for Applied Microbiology.
Changes of ploidy during the Azotobacter vinelandii growth cycle.
Maldonado, R; Jiménez, J; Casadesús, J
1994-01-01
The size of the Azotobacter vinelandii chromosome is approximately 4,700 kb, as calculated by pulsed-field electrophoretic separation of fragments digested with the rarely cutting endonucleases SpeI and SwaI. Surveys of DNA content per cell by flow cytometry indicated the existence of ploidy changes during the A. vinelandii growth cycle in rich medium. Early-exponential-phase cells have a ploidy level similar to that of Escherichia coli or Salmonella typhimurium (probably ca. four chromosomes per cell), but a continuous increase of DNA content per cell is observed during growth. Late-exponential-phase cells may contain > 40 chromosomes per cell, while cells in the early stationary stage may contain > 80 chromosomes per cell. In late-stationary-phase cultures, the DNA content per cell is even higher, probably over 100 chromosome equivalents per cell. A dramatic change is observed in old stationary-phase cultures, when the population of highly polyploid bacteria segregates cells with low ploidy. The DNA content of the latter cells resembles that of cysts, suggesting that the process may reflect the onset of cyst differentiation. Cells with low ploidy are also formed when old stationary-phase cultures are diluted into fresh medium. Addition of rifampin to exponential-phase cultures causes a rapid increase in DNA content, indicating that A. vinelandii initiates multiple rounds of chromosome replication per cell division. Growth in minimal medium does not result in the spectacular changes of ploidy observed during rapid growth; this observation suggests that the polyploidy of A. vinelandii may not exist outside the laboratory. Images PMID:8021173
Restoration of fly ash dump through biological interventions.
Juwarkar, Asha A; Jambhulkar, Hemlata P
2008-04-01
Field experiment on 10 ha area of fly ash dump was conducted to restore and revegetate it using biological interventions, which involves use of organic amendment, selection of suitable plant species along with specialized nitrogen fixing strains of biofertilizer. The results of the study indicated that amendment with farm yard manure at 50 t/ha improved the physical properties of fly ash such as maximum water holding capacity from 40.0 to 62.42% while porosity improved from 56.78 to 58.45%. The nitrogen content was increased by 4.5 times due to addition of nitrogen fixing strains of Bradyrhizobium and Azotobacter species, while phosphate content was increased by 10.0 times due to addition of VAM, which helps in phosphate immobilization. Due to biofertilizer inoculation different microbial groups such as Rhizobium, Azotobacter and VAM spores, which were practically absent in fly ash improved to 7.1 x 10(7), 9.2 x 10(7) CFU/g and 35 VAM spores/10 g of fly ash, respectively. Inoculation of biofertilizer and application of FYM helped in reducing the toxicity of heavy metals such as cadmium, copper, nickel and lead which were reduced by 25, 46, 48 and 47%, respectively, due to the increased organic matter content in the fly ash which complexes the heavy metals thereby decreasing the toxicity of metals. Amendment of fly ash with FYM and biofertilizer helped in profuse root development showing 15 times higher growth in Dendrocalamus strictus plant as compared to the control. Thus amendment and biofertilizer application provided better supportive material for anchorage and growth of the plant.
Leaungvutiviroj, Chaveevan; Ruangphisarn, Pimtida; Hansanimitkul, Pikul; Shinkawa, Hidenori; Sasaki, Ken
2010-01-01
Biofertilizers that possess a high capacity for N(2) fixation (Azotobacter tropicalis), and consist of phosphate solubilizing bacteria (Burkhoderia unamae), and potassium solubilizing bacteria (Bacillus subtilis) and produce auxin (KJB9/2 strain), have a high potential for growth and yield enhancement of corn and vegetables (Chinese kale). For vegetables, the addition of biofertilizer alone enhanced growth 4 times. Moreover, an enhancement of growth by 7 times was observed due to the addition of rock phosphate and K-feldspar, natural mineral fertilizers, in combination with the biofertilizer.
New perspectives on bacterial ferredoxin evolution
NASA Technical Reports Server (NTRS)
George, D. G.; Hunt, L. T.; Yeh, L.-S. L.; Barker, W. C.
1985-01-01
Ferredoxins are low-molecular-weight, nonheme, iron proteins which function as electron carriers in a wide variety of electron transport chains. Howard et al. (1983) have suggested that the amino end of Azotobacter vinelandii ferredoxin shows a greater similarity to the carboxyl end of ferredoxin from Chromatium vinosum and that their half-chain sequences are homologous when the half-chains of either species are considered in inverse order. Examination of this proposition has made it necessary to reevaluate previous conclusions concerning the evolution of bacterial ferredoxin. Attention is given to the properties of the bacterial ferredoxin sequences, and the evolution of the bacterial ferredoxins.
NASA Astrophysics Data System (ADS)
Karunakaran, Gopalu; Jagathambal, Matheswaran; Gusev, Alexander; Torres, Juan Antonio Lopez; Kolesnikov, Evgeny; Kuznetsov, Denis
2017-07-01
Silver nanoparticles (AgNPs) are applied in various fields from electronics to biomedical applications as a result of their high surface-to-volume ratio. Even though different approaches are available for synthesis of AgNPs, a nontoxic method for the synthesis has not yet been developed. Thus, this study focused on developing an easy and ecofriendly approach to synthesize AgNPs using Azotobacter vinelandii culture extracts. The biosynthesized nanoparticles were further characterized by ultraviolet-visible (UV-Vis) spectroscopy, x-ray diffraction (XRD), Fourier transform infrared (FTIR), energy-dispersive spectrum, particle size distribution (PSD), and transmission electron microscopy (TEM). UV absorption noticed at 435 nm showed formation of AgNPs. The XRD pattern showed a face-centered cubic structure with broad peaks of 28.2°, 32.6°, 46.6°, 55.2°, 57.9°, and 67.8°. The FTIR confirmed the involvement of various functional groups in the biosynthesis of AgNPs. The PSD and TEM analyses showed spherical, well-distributed nanoparticles with an average size of 20-70 nm. The elemental studies confirmed the existence of pure AgNPs. The bacterial extract containing extracellular enzyme nitrate reductase converted silver nitrate into AgNPs. AgNPs significantly inhibited the growth of pathogenic bacteria such as Streptomyces fradiae (National Collection of Industrial Microorganisms (NCIM) 2419), Staphylococcus aureus (NCIM 2127), Escherichia coli (NCIM 2065), and Serratia marcescens (NCIM 2919). In addition, biosynthesized AgNPs were found to possess strong antioxidant activity. Thus, the results of this study revealed that biosynthesized AgNPs could serve as a lead in the development of nanomedicine.
Satou, Ryutaro; Miyanaga, Akimasa; Ozawa, Hiroki; Funa, Nobutaka; Katsuyama, Yohei; Miyazono, Ken-ichi; Tanokura, Masaru; Ohnishi, Yasuo; Horinouchi, Sueharu
2013-11-22
Type III polyketide synthases (PKSs) show diverse cyclization specificity. We previously characterized two Azotobacter type III PKSs (ArsB and ArsC) with different cyclization specificity. ArsB and ArsC, which share a high sequence identity (71%), produce alkylresorcinols and alkylpyrones through aldol condensation and lactonization of the same polyketomethylene intermediate, respectively. Here we identified a key amino acid residue for the cyclization specificity of each enzyme by site-directed mutagenesis. Trp-281 of ArsB corresponded to Gly-284 of ArsC in the amino acid sequence alignment. The ArsB W281G mutant synthesized alkylpyrone but not alkylresorcinol. In contrast, the ArsC G284W mutant synthesized alkylresorcinol with a small amount of alkylpyrone. These results indicate that this amino acid residue (Trp-281 of ArsB or Gly-284 of ArsC) should occupy a critical position for the cyclization specificity of each enzyme. We then determined crystal structures of the wild-type and G284W ArsC proteins at resolutions of 1.76 and 1.99 Å, respectively. Comparison of these two ArsC structures indicates that the G284W substitution brings a steric wall to the active site cavity, resulting in a significant reduction of the cavity volume. We postulate that the polyketomethylene intermediate can be folded to a suitable form for aldol condensation only in such a relatively narrow cavity of ArsC G284W (and presumably ArsB). This is the first report on the alteration of cyclization specificity from lactonization to aldol condensation for a type III PKS. The ArsC G284W structure is significant as it is the first reported structure of a microbial resorcinol synthase.
Eberhart, Lauren J.; Ohlert, Janet M.; Knutson, Carolann M.; Plunkett, Mary H.
2015-01-01
Azotobacter vinelandii is a widely studied model diazotrophic (nitrogen-fixing) bacterium and also an obligate aerobe, differentiating it from many other diazotrophs that require environments low in oxygen for the function of the nitrogenase. As a free-living bacterium, A. vinelandii has evolved enzymes and transporters to minimize the loss of fixed nitrogen to the surrounding environment. In this study, we pursued efforts to target specific enzymes and further developed screens to identify individual colonies of A. vinelandii producing elevated levels of extracellular nitrogen. Targeted deletions were done to convert urea into a terminal product by disrupting the urease genes that influence the ability of A. vinelandii to recycle the urea nitrogen within the cell. Construction of a nitrogen biosensor strain was done to rapidly screen several thousand colonies disrupted by transposon insertional mutagenesis to identify strains with increased extracellular nitrogen production. Several disruptions were identified in the ammonium transporter gene amtB that resulted in the production of sufficient levels of extracellular nitrogen to support the growth of the biosensor strain. Further studies substituting the biosensor strain with the green alga Chlorella sorokiniana confirmed that levels of nitrogen produced were sufficient to support the growth of this organism when the medium was supplemented with sufficient sucrose to support the growth of the A. vinelandii in coculture. The nature and quantities of nitrogen released by urease and amtB disruptions were further compared to strains reported in previous efforts that altered the nifLA regulatory system to produce elevated levels of ammonium. These results reveal alternative approaches that can be used in various combinations to yield new strains that might have further application in biofertilizer schemes. PMID:25888177
NASA Astrophysics Data System (ADS)
Zhang, X.; Kopf, S.; Lee, A. C.
2016-12-01
The N stable isotope composition (δ15N) of biomass provides a powerful tool for reconstructing present and past N cycling, but its interpretation hinges on a complete understanding of the isotopic signature of biological nitrogen fixation, which sets the δ15N of newly fixed N. All biological nitrogen fixation is catalyzed by the metalloenzyme nitrogenase in a complex reaction that reduces inert atmospheric N2 gas into bioavailable ammonium. Recent investigations into the metal cofactor variants of nitrogenase revealed that the canonical Mo-, and alternative V-, and Fe-only isoforms of nitrogenase impart different isotope fractionations during N2 fixation in vivo, challenging the traditional view that N2 fixation only imparts small, invariable isotope effects of 0-2‰. However, the mechanistic basis for the fractionation of N2 fixation remains largely unknown. To better understand mechanisms underlying fractionation, we varied Fe availability and measured in vivo fractionations for the aerobic chemoheterotroph Azotobacter vinelandii utilizing Mo- or V-nitrogenase under batch culture conditions. Under all iron conditions, N2 fixation based on Mo-nitrogenase yielded lower fractionations (heavier biomasss δ15N) compared to V-nitrogenase. For fractionations associated with a single metalloenzyme, higher Fe concentrations, which correlated with faster growth rates, yielded small but systematically larger fractionations ( 1 ‰ increase for Mo- and V- nitrogenases). To directly determine the effect of growth rate on fractionation, we grew Mo-nitrogenase expressing A. vinelandii in Fe-replete medium at different growth rates using chemostats and found that growth rate alone does not alter fractionation. The results indicate that Fe availability, in addition to the type of nitrogenase metalloenzyme, controls 15N fractionation during N2 fixation by A. vinelandii.
Romo-Uribe, Angel; Meneses-Acosta, Angelica; Domínguez-Díaz, Maraolina
2017-12-01
Sterilization, cytotoxicity and cell viability are essential properties defining a material for medical applications and these characteristics were investigated for poly(β-hydroxybutyrate) (PHB) of 230kDa obtained by bacterial synthesis from a mutant strain of Azotobacter vinelandii. Cell viability was investigated for two types of PHB scaffolds, solution cast films and non-woven electrospun fibrous membranes, and the efficiency was compared against a culture dish. The biosynthesized PHB was sterilized by ultraviolet radiation and autoclave, it was found that the thermal properties and intrinsic viscosity remained unchanged indicating that the sterilization methods did not degrade the polymer. Sterilized scaffolds were then seeded with human embryonic kidney 293 (HEK 293) cells to evaluate the cytotoxic response. The cell viability of these cells was evaluated for up to six days, and the results showed that the cell morphology was normal, with no cytotoxic effects. The films and electrospun membranes exhibited over 95% cell viability whereas the viability in culture dishes reached only ca. 90%. The electrospun membrane, however, exhibited significantly higher cell density than the cast film suggesting that the fibrous morphology enables better nutrients transfer. The results indicate that the biosynthesized PHB stands UV and autoclave sterilization methods, it is biocompatible and non-toxic for cell growth of human cell lines. Furthermore, cell culture for up to 18 days showed that 62% and 90% of mass was lost for the film and fibrous electrospun scaffold, respectively. This is a favorable outcome for use in tissue engineering where material degradation, as tissue regenerates, is desirable. Copyright © 2017 Elsevier B.V. All rights reserved.
Ledbetter, Rhesa N; Garcia Costas, Amaya M; Lubner, Carolyn E; Mulder, David W; Tokmina-Lukaszewska, Monika; Artz, Jacob H; Patterson, Angela; Magnuson, Timothy S; Jay, Zackary J; Duan, H Diessel; Miller, Jacquelyn; Plunkett, Mary H; Hoben, John P; Barney, Brett M; Carlson, Ross P; Miller, Anne-Frances; Bothner, Brian; King, Paul W; Peters, John W; Seefeldt, Lance C
2017-08-15
The biological reduction of dinitrogen (N 2 ) to ammonia (NH 3 ) by nitrogenase is an energetically demanding reaction that requires low-potential electrons and ATP; however, pathways used to deliver the electrons from central metabolism to the reductants of nitrogenase, ferredoxin or flavodoxin, remain unknown for many diazotrophic microbes. The FixABCX protein complex has been proposed to reduce flavodoxin or ferredoxin using NADH as the electron donor in a process known as electron bifurcation. Herein, the FixABCX complex from Azotobacter vinelandii was purified and demonstrated to catalyze an electron bifurcation reaction: oxidation of NADH (E m = -320 mV) coupled to reduction of flavodoxin semiquinone (E m = -460 mV) and reduction of coenzyme Q (E m = 10 mV). Knocking out fix genes rendered Δrnf A. vinelandii cells unable to fix dinitrogen, confirming that the FixABCX system provides another route for delivery of electrons to nitrogenase. Characterization of the purified FixABCX complex revealed the presence of flavin and iron-sulfur cofactors confirmed by native mass spectrometry, electron paramagnetic resonance spectroscopy, and transient absorption spectroscopy. Transient absorption spectroscopy further established the presence of a short-lived flavin semiquinone radical, suggesting that a thermodynamically unstable flavin semiquinone may participate as an intermediate in the transfer of an electron to flavodoxin. A structural model of FixABCX, generated using chemical cross-linking in conjunction with homology modeling, revealed plausible electron transfer pathways to both high- and low-potential acceptors. Overall, this study informs a mechanism for electron bifurcation, offering insight into a unique method for delivery of low-potential electrons required for energy-intensive biochemical conversions.
Nosheen, Asia; Bano, Asghari; Ullah, Faizan
2016-02-01
This study aimed to find out the effect of plant growth-promoting rhizobacteria (PGPR; Azospirillum brasilense and Azotobacter vinelandii) either alone or in combination with different doses of nitrogen and phosphate fertilizers on growth, seed yield, and oil quality of Brassica carinata (L.) cv. Peela Raya. PGPR were applied as seed inoculation at 10(6) cells/mL(-1) so that the number of bacterial cells per seed was 2.6 × 10(5) cells/seed. The chemical fertilizers, namely, urea and diammonium phosphate (DAP) were applied in different doses (full dose (urea 160 kg ha(-1) + DAP 180 kg ha(-1)), half dose (urea 80 kg ha(-1) + DAP 90 kg ha(-1)), and quarter dose (urea 40 kg ha(-1) + DAP 45 kg ha(-1)). The chemical fertilizers at full and half dose significantly increased the chlorophyll, carotenoids, and protein content of leaves and the seed yield (in kilogram per hectare) but had no effect on the oil content of seed. The erucic acid (C22:1) content present in the seed was increased. Azospirillum performed better than Azotobacter and its effect was at par with full dose of chemical fertilizers (CFF) for pigments and protein content of leaves when inoculated in the presence of half dose of chemical fertilizers (SPH). The seed yield and seed size were greater. Supplementing Azospirillum with SPH assisted Azospirillum to augment the growth and yield, reduced the erucic acid (C22:1) and glucosinolates contents, and increased the unsaturation in seed oil. It is inferred that A. brasilense could be applied as an efficient bioinoculant for enhancing the growth, seed yield, and oil quality of Ethiopian mustard at low fertilizer costs and sustainable ways. © The Author(s) 2013.
Jang, Chul Ho; Piao, Yu Lan; Huang, Xiaoqin; Yoon, Eun Jeong; Park, So Hee; Lee, Kyoung; Zhan, Chang-Guo; Cho, Hoon
2016-01-01
Alginate is known to prevent elimination of Pseudomonas aeruginosa biofilms. Alginate lyase (AlgL) might therefore facilitate treatment of Pseudomonas aeruginosa-infected cystic fibrosis patients. However, the catalytic activity of wild-type AlgL is not sufficiently high. Therefore, molecular modeling and site-directed mutagenesis of AlgL might assist in enzyme engineering for therapeutic development. AlgL, isolated from Azotobacter vinelandii, catalyzes depolymerization of alginate via a β-elimination reaction. AlgL was modeled based on the crystal structure template of Sphingomonas AlgL species A1-III. Based on this computational analysis, AlgL was subjected to site-directed mutagenesis to improve its catalytic activity. The kcat/Km of the K194E mutant showed a nearly 5-fold increase against the acetylated alginate substrate, as compared to the wild-type. Double and triple mutants (K194E/K245D, K245D/K319A, K194E/K245D/E312D, and K194E/K245D/K319A) were also prepared. The most potent mutant was observed to be K194E/K245D/K319A, which has a 10-fold improved kcat value (against acetylated alginate) compared to the wild-type enzyme. The antibiofilm effect of both AlgL forms was identified in combination with piperacillin/tazobactam (PT) and the disruption effect was significantly higher in mutant AlgL combined with PT than wild-type AlgL. However, for both the wild-type and K194E/K245D/K319A mutant, the use of the AlgL enzyme alone did not show significant antibiofilm effect.
Ledbetter, Rhesa N.; Garcia Costas, Amaya M.; Lubner, Carolyn E.; ...
2017-07-13
The biological reduction of dinitrogen (N 2) to ammonia (NH 3) by nitrogenase is an energetically demanding reaction that requires low-potential electrons and ATP; however, pathways used to deliver the electrons from central metabolism to the reductants of nitrogenase, ferredoxin or flavodoxin, remain unknown for many diazotrophic microbes. The FixABCX protein complex has been proposed to reduce flavodoxin or ferredoxin using NADH as the electron donor in a process known as electron bifurcation. Herein, the FixABCX complex from Azotobacter vinelandii was purified and demonstrated to catalyze an electron bifurcation reaction: oxidation of NADH (E m = -320 mV) coupled tomore » reduction of flavodoxin semiquinone (E m = -460 mV) and reduction of coenzyme Q (E m = 10 mV). Knocking out fix genes rendered ..delta..rnf A. vinelandii cells unable to fix dinitrogen, confirming that the FixABCX system provides another route for delivery of electrons to nitrogenase. Characterization of the purified FixABCX complex revealed the presence of flavin and iron-sulfur cofactors confirmed by native mass spectrometry, electron paramagnetic resonance spectroscopy, and transient absorption spectroscopy. Transient absorption spectroscopy further established the presence of a short-lived flavin semiquinone radical, suggesting that a thermodynamically unstable flavin semiquinone may participate as an intermediate in the transfer of an electron to flavodoxin. A structural model of FixABCX, generated using chemical cross-linking in conjunction with homology modeling, revealed plausible electron transfer pathways to both high- and low-potential acceptors. Altogether, this study informs a mechanism for electron bifurcation, offering insight into a unique method for delivery of low-potential electrons required for energy-intensive biochemical conversions.« less
Silini, A; Silini-Chérif, H; Ghoul, M
2012-02-01
The effect of plant growth-promoting Rhizobacteria (PGPR) and exogenous application of compatible solutes on seed germination and root concentrations of sodium and potassium of two wheat varieties (Triticum durum L.) were evaluated under saline stress. In this experiment, Azotobacter vinelandii strain DSM85, glycine betaine and proline were used. Inoculated seeds for each variety were placed on Whatman paper in 9 cm Petri dishes containing 15 mL of distilled water or NaCl solutions at various concentrations (control, 100, 200, 300 mM) supplemented with or without glycine betaine (GB) or proline at 5 mM. The results indicated that addition of proline (5 mM) stimulated the production of indol acetic acid and the growth of A. vinelandii at 200 and 300 mM NaCl, respectively. The germination rate index and the germination final percentage decreased significantly (p < 0.05) with increasing salinity level. The germination was significantly diminished at 300 mM with significant variation among varieties and Waha variety had higher germination percentage than Bousselam variety. Inoculation of seeds by A. vinelandii and exogenous application of proline had significantly positive effect on the germination at this concentration of NaCl. The rate of accumulation of Na+ in roots was important at 100 mM and increased at 200 mM. The concentration of K+ decreased when salinity increased. The effect of inoculation or inoculation with proline decreased the accumulation of Na' and reduced the loss of K+ under salt stress. From the present study we can conclude that the use of A. vinelandii strain DSM85 and external application of low concentrations of proline on seeds might be considered as a strategy for the protection of plants under saline stress.
Yoshimitsu, Kyohei; Takatani, Nobuyuki; Miura, Yukio; Watanabe, Yoshihito; Nakajima, Hiroshi
2011-09-01
VnfA is a transcriptional activator that is required for the expression of the structural genes encoding nitrogenase-2 in Azotobacter vinelandii. VnfA consists of three domains: an N-terminal regulatory domain termed GAF, including a Cys-rich motif; a central domain from the AAA+ family; and a C-terminal domain for DNA binding. Previously, we reported that transcriptionally active VnfA harboring an Fe-S cluster (presumably of the 3Fe-4S type) as a prosthetic group and the Cys-rich motif were possibly associated with coordination of the Fe-S cluster. In the present study, we have investigated the roles of the GAF and central domains in the regulatory function of VnfA using truncated variants: ΔN15(VnfA) and ΔGAF(VnfA) that lack the N-terminal 15 residues and whole GAF domain, respectively, and GAF(VnfA) consisting of only the GAF domain. ΔN15(VnfA) and ΔGAF(VnfA) lost the ability to bind the Fe-S cluster, whereas GAF(VnfA) was still able to bind to the cluster, consistent with the hypothesis that the Cys-rich motif is essential for Fe-S cluster binding. The GAF domain showed an inhibitory effect on the transcriptional activity of VnfA, which was reversed in the presence of the Fe-S cluster, and reactivated upon disassembly of the cluster. The inhibitory activity of the GAF domain acts on the NTPase activity of the central domain, whereas the binding ability of VnfA to DNA was not significantly affected, when VnfA retains its tetrameric conformation. The results imply that a major pathway, by which VnfA function is regulated, operates via the control of NTPase activity by the GAF domain. © 2011 The Authors Journal compilation © 2011 FEBS.
Rodríguez-Quiñones, F; Bosch, R; Imperial, J
1993-01-01
The nifBQ transcriptional unit of Azotobacter vinelandii has been previously shown to be required for activity of the three nitrogenase systems, Mo nitrogenase, V nitrogenase, and Fe nitrogenase, present in this organism. We studied regulation of expression and the role of the nifBQ region by means of translational beta-galactosidase fusions to each of the five open reading frames: nifB, orf2 (fdxN), orf3 (nifO), nifQ, and orf5. Expression of the first three open reading frames was observed under all three diazotrophic conditions; expression of orf5 was never observed. Genes nifB and fdxN were expressed at similar levels. With Mo, expression of nifO and nifQ was approximately 20- and approximately 400-fold lower than that of fdxN, respectively. Without Mo, expression of nifB dropped three- to fourfold and that of nifQ dropped to the detection limit. However, expression of nifO increased threefold. The products of nifB, fdxN, nifO, and nifQ have been visualized in A. vinelandii as beta-galactosidase fusion proteins with the expected molecular masses. The NifB- fusion lacked activity for any of the three nitrogenase systems and showed an iron-molybdenum cofactor-deficient phenotype in the presence of Mo. The FdxN- mutation resulted in reduced nitrogenase activities, especially when V was present. Dinitrogenase activity in extracts was similarly affected, suggesting a role of FdxN in iron-molybdenum cofactor synthesis. The NifO(-)-producing mutation did not affect any of the nitrogenases under standard diazotrophic conditions. The NifQ(-)-producing mutation resulted in an increased (approximately 1,000-fold) Mo requirement for Mo nitrogenase activity, a phenotype already observed with Klebsiella pneumoniae. No effect of the NifQ(-)-producing mutation on V or Fe nitrogenase was found; this is consistent with its very low expression under those conditions. Mutations in orf5 had no effect on nitrogenase activity. Images PMID:8491713
Mapolelo, Daphne T; Zhang, Bo; Naik, Sunil G; Huynh, Boi Hanh; Johnson, Michael K
2012-10-16
The ability of Azotobacter vinelandii(Nif)IscA to bind Fe has been investigated to assess the role of Fe-bound forms in NIF-specific Fe-S cluster biogenesis. (Nif)IscA is shown to bind one Fe(III) or one Fe(II) per homodimer and the spectroscopic and redox properties of both the Fe(III)- and Fe(II)-bound forms have been characterized using the UV-visible absorption, circular dichroism, and variable-temperature magnetic circular dichroism, electron paramagnetic resonance, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic intermediate-spin (S = 3/2) Fe(III) center (E/D = 0.33, D = 3.5 ± 1.5 cm(-1)) that is most likely 5-coordinate with two or three cysteinate ligands and a rhombic high spin (S = 2) Fe(II) center (E/D = 0.28, D = 7.6 cm(-1)) with properties similar to reduced rubredoxins or rubredoxin variants with three cysteinate and one or two oxygenic ligands. Iron-bound (Nif)IscA undergoes reversible redox cycling between the Fe(III)/Fe(II) forms with a midpoint potential of +36 ± 15 mV at pH 7.8 (versus NHE). l-Cysteine is effective in mediating release of free Fe(II) from both the Fe(II)- and Fe(III)-bound forms of (Nif)IscA. Fe(III)-bound (Nif)IscA was also shown to be a competent iron source for in vitro NifS-mediated [2Fe-2S] cluster assembly on the N-terminal domain of NifU, but the reaction occurs via cysteine-mediated release of free Fe(II) rather than direct iron transfer. The proposed roles of A-type proteins in storing Fe under aerobic growth conditions and serving as iron donors for cluster assembly on U-type scaffold proteins or maturation of biological [4Fe-4S] centers are discussed in light of these results.
Mapolelo, Daphne T; Zhang, Bo; Naik, Sunil G; Huynh, Boi Hanh; Johnson, Michael K
2012-10-16
The mechanism of [4Fe-4S] cluster assembly on A-type Fe-S cluster assembly proteins, in general, and the specific role of (Nif)IscA in the maturation of nitrogen fixation proteins are currently unknown. To address these questions, in vitro spectroscopic studies (UV-visible absorption/CD, resonance Raman and Mössbauer) have been used to investigate the mechanism of [4Fe-4S] cluster assembly on Azotobacter vinelandii(Nif)IscA, and the ability of (Nif)IscA to accept clusters from NifU and to donate clusters to the apo form of the nitrogenase Fe-protein. The results show that (Nif)IscA can rapidly and reversibly cycle between forms containing one [2Fe-2S](2+) and one [4Fe-4S](2+) cluster per homodimer via DTT-induced two-electron reductive coupling of two [2Fe-2S](2+) clusters and O(2)-induced [4Fe-4S](2+) oxidative cleavage. This unique type of cluster interconversion in response to cellular redox status and oxygen levels is likely to be important for the specific role of A-type proteins in the maturation of [4Fe-4S] cluster-containing proteins under aerobic growth or oxidative stress conditions. Only the [4Fe-4S](2+)-(Nif)IscA was competent for rapid activation of apo-nitrogenase Fe protein under anaerobic conditions. Apo-(Nif)IscA was shown to accept clusters from [4Fe-4S] cluster-bound NifU via rapid intact cluster transfer, indicating a potential role as a cluster carrier for delivery of clusters assembled on NifU. Overall the results support the proposal that A-type proteins can function as carrier proteins for clusters assembled on U-type proteins and suggest that they are likely to supply [2Fe-2S] clusters rather than [4Fe-4S] for the maturation of [4Fe-4S] cluster-containing proteins under aerobic or oxidative stress growth conditions.
Mapolelo, Daphne T.; Zhang, Bo; Naik, Sunil G.; Huynh, Boi Hanh; Johnson, Michael K.
2012-01-01
The mechanism of [4Fe-4S] cluster assembly on A-type Fe-S cluster assembly proteins, in general, and the specific role of NifIscA in the maturation of nitrogen fixation proteins are currently unknown. To address these questions, in vitro spectroscopic studies (UV–visible absorption/CD, resonance Raman and Mössbauer) have been used to investigate the mechanism of [4Fe-4S] cluster assembly on Azotobacter vinelandii NifIscA, and the ability of NifIscA to accept clusters from NifU and to donate clusters to the apo form of the nitrogenase Fe-protein. The results show that NifIscA can rapidly and reversibly cycle between forms containing one [2Fe-2S]2+ and one [4Fe-4S]2+ cluster per homodimer via DTT-induced two-electron reductive coupling of two [2Fe-2S]2+ clusters and O2-induced [4Fe-4S]2+ oxidative cleavage. This unique type of cluster interconversion in response to cellular redox status and oxygen levels is likely to be important for the specific role of A-type proteins in the maturation of [4Fe-4S] cluster-containing proteins under aerobic growth or oxidative stress conditions. Only the [4Fe-4S]2+-NifIscA was competent for rapid activation of apo-nitrogenase Fe protein under anaerobic conditions. Apo-NifIscA was shown to accept clusters from [4Fe-4S] cluster-bound NifU via rapid intact cluster transfer, indicating a potential role as a cluster carrier for delivery of clusters assembled on NifU. Overall the results support the proposal that A-type proteins can function as carrier proteins for clusters assembled on U-type proteins and suggest that they are likely to supply [2Fe-2S] clusters rather than [4Fe-4S] for the maturation of [4Fe-4S] cluster-containing proteins under aerobic or oxidative stress growth conditions. PMID:23003323
Pau, R N; Eldridge, M E; Lowe, D J; Mitchenall, L A; Eady, R R
1993-01-01
Nitrogenase-3 of Azotobacter vinelandii is synthesized under conditions of molybdenum and vanadium deficiency. The minimal metal requirement for its synthesis, and its metal content, indicated that the only transition metal in nitrogenase-3 was iron [Chisnell, Premakumar and Bishop (1988) J. Bacteriol. 170, 27-33; Pau, Mitchenall and Robson (1989) J. Bacteriol. 171, 124-129]. A new species of nitrogenase-3 has been purified from a strain of A. vinelandii (RP306) lacking structural genes for the Mo- and V-nitrogenases and containing a mutation which enables nitrogenase-3 to be synthesized in the presence of molybdenum. SDS/PAGE showed that component 1 contained a 15 kDa polypeptide which N-terminal amino acid sequence determination showed to be encoded by anfG. This confirms that nitrogenase-3, like V-nitrogenase, comprises three subunits. Preparations of the nitrogenase-3 from strain RP306 contained 24 Fe atoms and 1 Mo atom per molecule. Characterization of the cofactor centre of the enzyme by e.p.r. spectroscopy and an enzymic cofactor assay, together with stimulation of the growth of strain RP306 by Mo, showed that nitrogenase-3 can incorporate the Mo-nitrogenase cofactor (FeMoco) to form a functional enzyme. The specific activities (nmol of product produced/min per mg of protein) determined from activity titration curves were: under N2, NH3 formation 110, with concomitant H2 evolution of 220; under argon, H2 evolution 350; under 10% acetylene (C2H2) in argon, ethylene (C2H4) 58, ethane (C2H6) 26, and concomitant H2 evolution 226. The rate of formation of C2H6 was non-linear, and the C2H6/C2H4 ratio strongly dependent on the ratio of nitrogenase components. PMID:8392330
Sobariu, Dana Luminița; Fertu, Daniela Ionela Tudorache; Diaconu, Mariana; Pavel, Lucian Vasile; Hlihor, Raluca-Maria; Drăgoi, Elena Niculina; Curteanu, Silvia; Lenz, Markus; Corvini, Philippe François-Xavier; Gavrilescu, Maria
2017-10-25
Certain species of plants can benefit from synergistic effects with plant growth-promoting rhizobacteria (PGPR) that improve plant growth and metal accumulation, mitigating toxic effects on plants and increasing their tolerance to heavy metals. The application of PGPR as biofertilizers and atmospheric nitrogen fixators contributes considerably to the intensification of the phytoremediation process. In this paper, we have built a system consisting of rhizospheric Azotobacter microbial populations and Lepidium sativum plants, growing in solutions containing heavy metals in various concentrations. We examined the ability of the organisms to grow in symbiosis so as to stimulate the plant growth and enhance its tolerance to Cr(VI) and Cd(II), to ultimately provide a reliable phytoremediation system. The study was developed at the laboratory level and, at this stage, does not assess the inherent interactions under real conditions occurring in contaminated fields with autochthonous microflora and under different pedoclimatic conditions and environmental stresses. Azotobacter sp. bacteria could indeed stimulate the average germination efficiency of Lepidium sativum by almost 7%, average root length by 22%, average stem length by 34% and dry biomass by 53%. The growth of L. sativum has been affected to a greater extent in Cd(II) solutions due its higher toxicity compared to that of Cr(VI). The reduced tolerance index (TI, %) indicated that plant growth in symbiosis with PGPR was however affected by heavy metal toxicity, while the tolerance of the plant to heavy metals was enhanced in the bacteria-plant system. A methodology based on artificial neural networks (ANNs) and differential evolution (DE), specifically a neuro-evolutionary approach, was applied to model germination rates, dry biomass and root/stem length and proving the robustness of the experimental data. The errors associated with all four variables are small and the correlation coefficients higher than 0.98, which indicate that the selected models can efficiently predict the experimental data. Copyright © 2016. Published by Elsevier B.V.
Nakajima, Hiroshi; Takatani, Nobuyuki; Yoshimitsu, Kyohei; Itoh, Mitsuko; Aono, Shigetoshi; Takahashi, Yasuhiro; Watanabe, Yoshihito
2010-02-01
Transcriptional activator VnfA is required for the expression of a second nitrogenase system encoded in the vnfH and vnfDGK operons in Azotobacter vinelandii. In the present study, we have purified full-length VnfA produced in E. coli as recombinant proteins (Strep-tag attached and tag-less proteins), enabling detailed characterization of VnfA for the first time. The EPR spectra of whole cells producing tag-less VnfA (VnfA) show distinctive signals assignable to a 3Fe-4S cluster in the oxidized form ([Fe(3)S(4)](+)). Although aerobically purified VnfA shows no vestiges of any Fe-S clusters, enzymatic reconstitution under anaerobic conditions reproduced [Fe(3)S(4)](+) dominantly in the protein. Additional spectroscopic evidence of [Fe(3)S(4)](+)in vitro is provided by anaerobically purified Strep-tag attached VnfA. Thus, spectroscopic studies both in vivo and in vitro indicate the involvement of [Fe(3)S(4)](+) as a prosthetic group in VnfA. Molecular mass analyses reveal that VnfA is a tetramer both in the presence and absence of the Fe-S cluster. Quantitative data of iron and acid-labile sulfur in reconstituted VnfA are fitted with four 3Fe-4S clusters per a tetramer, suggesting that one subunit bears one cluster. In vivobeta-gal assays reveal that the Fe-S cluster which is presumably anchored in the GAF domain by the N-terminal cysteine residues is essential for VnfA to exert its transcription activity on the target nitrogenase genes. Unlike the NifAL system of A. vinelandii, O(2) shows no effect on the transcriptional activity of VnfA but reactive oxygen species is reactive to cause disassembly of the Fe-S cluster and turns active VnfA inactive.
Abd-el-Malek, Y; Monib, M; Hosny, I; Girgis, S A
1979-01-01
The effect of supplementation with different organic materials on nitrogen transformations and on certain bacterial groups in soil was studied. Addition of wide C/N ratio organic matter, sawdust and maize stalks prevented NO3-N from being lost through leaching out or dentrification and favoured the development of Azotobacter and N2-fixing clostridia that in turn resulted in marked gains in nitrogen through N2-fixation. Nitrifying bacteria were adversely affected. Application of such materials together with high amounts of NH4NO3 lessened nitrogen losses in drainage water but increased losses through denitrification. Nitrogen-rich organic matter resulted in higher losses in nitrates from soils in comparison to those of wide C/N ratio organic materials.
Lenart, Anna; Wolny-Koładka, Katarzyna
2013-01-01
The present study aimed to identify the effect of heavy metal concentration and soil pH on the abundance of the selected soil microorganisms within ArcelorMittal Poland steelworks, Cracow. The analysis included 20 soil samples, where the concentration of Fe, Zn, Cd, Pb, Ni, Cu, Mn, Cr and soil pH were evaluated together with the number of mesophilic bacteria, fungi, Actinomycetes and Azotobacter spp. In the majority of samples soil pH was alkaline. The limits of heavy metals exceeded in eight samples and in one sample, the concentration of Zn exceeded 31-fold. Chromium was the element which most significantly limited the number of bacteria and Actinomycetes.
Chemical looping integration with a carbon dioxide gas purification unit
Andrus, Jr., Herbert E.; Jukkola, Glen D.; Thibeault, Paul R.; Liljedahl, Gregory N.
2017-01-24
A chemical looping system that contains an oxidizer and a reducer is in fluid communication with a gas purification unit. The gas purification unit has at least one compressor, at least one dryer; and at least one distillation purification system; where the gas purification unit is operative to separate carbon dioxide from other contaminants present in the flue gas stream; and where the gas purification unit is operative to recycle the contaminants to the chemical looping system in the form of a vent gas that provides lift for reactants in the reducer.
The bubble method of water purification
NASA Astrophysics Data System (ADS)
Smirnov, B. M.; Babaeva, N. Yu.; Naidis, G. V.; Panov, V. A.; Saveliev, A. S.; Son, E. E.; Tereshonok, D. V.
2018-02-01
The processes of water purification from admixture molecules are analyzed. The purification rate is limited due to a low diffusion coefficient of the admixture molecules in water. At non-small concentrations of the admixture molecules, the water purication can proceed through association of molecules in condensed nanoparticles which fall on the bottom of the water volume. The rate of association may be increased in an external electric field, but in reality this cannot change significantly the rate of the purification process. The bubble method of water purification is considered, where air bubbles formed at the bottom of the water volume, transfer admixture molecules to the interface. This method allows one to clean small water volumes fast. This mechanism of water purification is realized experimentally and exhibits the promises of the bubble purification method.
A new method of auxiliary purification for motor vehicle exhaust.
Li, Dingqi
2018-07-01
As a result of the limitations of current purification technologies, purification efficiency is relatively low, particularly during startup or in the case of other abnormal automobile exhaust. Therefore, a new method of auxiliary purification is proposed in this paper. The acidic solution of potassium permanganate can oxidize carbon monoxide, nitrogen oxides and sulfur dioxide at relatively high temperatures and the alkaline solution of potassium permanganate can selectively absorb nitrogen oxide and sulfur dioxide. Therefore, we carried out the experiment using a solution of potassium permanganate and sulfuric acid as well as a solution of sodium carbonate and potassium permanganate, which served as the reagents for the auxiliary purification. The results of the test showed that after auxiliary purification by the acidic solution of potassium permanganate and the alkaline solution of potassium permanganate, the concentrations of carbon monoxide, hydrocarbons, nitrogen oxides and solid particles in the emissions were considerably lower than the concentrations prior to purification. It is possible to reduce the motor vehicle exhaust by the auxiliary purification of the solutions.
Hofmeister series salts enhance purification of plasmid DNA by non-ionic detergents
Lezin, George; Kuehn, Michael R.; Brunelli, Luca
2011-01-01
Ion-exchange chromatography is the standard technique used for plasmid DNA purification, an essential molecular biology procedure. Non-ionic detergents (NIDs) have been used for plasmid DNA purification, but it is unclear whether Hofmeister series salts (HSS) change the solubility and phase separation properties of specific NIDs, enhancing plasmid DNA purification. After scaling-up NID-mediated plasmid DNA isolation, we established that NIDs in HSS solutions minimize plasmid DNA contamination with protein. In addition, large-scale NID/HSS solutions eliminated LPS contamination of plasmid DNA more effectively than Qiagen ion-exchange columns. Large-scale NID isolation/NID purification generated increased yields of high quality DNA compared to alkali isolation/column purification. This work characterizes how HSS enhance NID-mediated plasmid DNA purification, and demonstrates that NID phase transition is not necessary for LPS removal from plasmid DNA. Specific NIDs such as IGEPAL CA-520 can be utilized for rapid, inexpensive and efficient laboratory-based large-scale plasmid DNA purification, outperforming Qiagen-based column procedures. PMID:21351074
21 CFR 884.6170 - Assisted reproduction water and water purification systems.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...
21 CFR 884.6170 - Assisted reproduction water and water purification systems.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...
21 CFR 876.5665 - Water purification system for hemodialysis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is a...
21 CFR 876.5665 - Water purification system for hemodialysis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is a...
21 CFR 876.5665 - Water purification system for hemodialysis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is a...
21 CFR 876.5665 - Water purification system for hemodialysis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is a...
21 CFR 884.6170 - Assisted reproduction water and water purification systems.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...
21 CFR 884.6170 - Assisted reproduction water and water purification systems.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...
21 CFR 884.6170 - Assisted reproduction water and water purification systems.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...
Spooner, Jennifer; Keen, Jenny; Nayyar, Kalpana; Birkett, Neil; Bond, Nicholas; Bannister, David; Tigue, Natalie; Higazi, Daniel; Kemp, Benjamin; Vaughan, Tristan; Kippen, Alistair; Buchanan, Andrew
2015-07-01
Fabs are an important class of antibody fragment as both research reagents and therapeutic agents. There are a plethora of methods described for their recombinant expression and purification. However, these do not address the issue of excessive light chain production that forms light chain dimers nor do they describe a universal purification strategy. Light chain dimer impurities and the absence of a universal Fab purification strategy present persistent challenges for biotechnology applications using Fabs, particularly around the need for bespoke purification strategies. This study describes methods to address light chain dimer formation during Fab expression and identifies a novel CH 1 affinity resin as a simple and efficient one-step purification for correctly assembled Fab. © 2015 Wiley Periodicals, Inc.
24 CFR 203.52 - Acceptance of individual residential water purification equipment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water purification...
24 CFR 203.52 - Acceptance of individual residential water purification equipment.
Code of Federal Regulations, 2013 CFR
2013-04-01
... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water purification...
24 CFR 203.52 - Acceptance of individual residential water purification equipment.
Code of Federal Regulations, 2012 CFR
2012-04-01
... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water purification...
24 CFR 203.52 - Acceptance of individual residential water purification equipment.
Code of Federal Regulations, 2014 CFR
2014-04-01
... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water purification...
Entanglement of purification: from spin chains to holography
NASA Astrophysics Data System (ADS)
Nguyen, Phuc; Devakul, Trithep; Halbasch, Matthew G.; Zaletel, Michael P.; Swingle, Brian
2018-01-01
Purification is a powerful technique in quantum physics whereby a mixed quantum state is extended to a pure state on a larger system. This process is not unique, and in systems composed of many degrees of freedom, one natural purification is the one with minimal entanglement. Here we study the entropy of the minimally entangled purification, called the entanglement of purification, in three model systems: an Ising spin chain, conformal field theories holographically dual to Einstein gravity, and random stabilizer tensor networks. We conjecture values for the entanglement of purification in all these models, and we support our conjectures with a variety of numerical and analytical results. We find that such minimally entangled purifications have a number of applications, from enhancing entanglement-based tensor network methods for describing mixed states to elucidating novel aspects of the emergence of geometry from entanglement in the AdS/CFT correspondence.
Waste water biological purification plants of dairy products industry and energy management
NASA Astrophysics Data System (ADS)
Stepanov, Sergey; Solkina, Olga; Stepanov, Alexander; Zhukova, Maria
2017-10-01
The paper presents results of engineering and economical comparison of waste water biological purification plants of dairy products industry. Three methods of purification are compared: traditional biological purification with the use of secondary clarifiers and afterpurification through granular-bed filters, biomembrane technology and physical-and-chemical treatment together with biomembrane technology for new construction conditions. The improvement of the biological purification technology using nitro-denitrification and membrane un-mixing of sludge mixture is a promising trend in this area. In these calculations, an energy management which is widely applied abroad was used. The descriptions of the three methods are illustrated with structural schemes. Costs of equipment and production areas are taken from manufacturers’ data. The research is aimed at an engineering and economical comparison of new constructions of waste water purification of dairy products industry. The experiment demonstrates advantages of biomembrane technology in waste water purification. This technology offers prospects of 122 million rubles cost saving during 25 years of operation when compared with of the technology of preparatory reagent flotation and of 13.7 million rubles cost saving compared to the option of traditional biological purification.
An effective purification method using large bottles for human pancreatic islet isolation
Shimoda, Masayuki; Itoh, Takeshi; Iwahashi, Shuichi; Takita, Morihito; Sugimoto, Koji; Kanak, Mazhar A.; Chujo, Daisuke; Naziruddin, Bashoo; Levy, Marlon F.; Grayburn, Paul A.; Matsumoto, Shinichi
2012-01-01
The purification process is one of the most difficult procedures in pancreatic islet isolation. It was demonstrated that the standard purification method using a COBE 2991 cell processor with Ficoll density gradient solution harmed islets mechanically by high shear force. We reported that purification using large bottles with a lower viscosity gradient solution could improve the efficacy of porcine islet purification. In this study, we examined whether the new bottle purification method could improve the purification of human islets. Nine human pancreata from brain-dead donors were used. After pancreas digestion, the digested tissue was divided into three groups. Each group was purified by continuous density gradient using ET-Kyoto and iodixanol gradient solution with either the standard COBE method (COBE group) or the top loading (top group) or bottom loading (bottom group) bottle purification methods. Islet yield, purity, recovery rate after purification, and in vitro and in vivo viability were compared. Islet yield per pancreas weight (IE/g) and the recovery rate in the top group were significantly higher than in the COBE and bottom groups. Furthermore, the average size of purified islets in the top group was significantly larger than in the COBE group, which indicated that the bottle method could reduce the shear force to the islets. In vivo viability was also significantly higher in the top group compared with the COBE group. In conclusion, the top-loading bottle method could improve the quality and quantity of human islets after purification. PMID:23221740
Palanché, Tania; Blanc, Sylvie; Hennard, Christophe; Abdallah, Mohamed A; Albrecht-Gary, Anne-Marie
2004-02-09
Azotobacter vinelandii, a nitrogen-fixing soil bacterium, secretes in iron deficiency azotobactin delta, a highly fluorescent pyoverdin-like chromopeptidic hexadentate siderophore. The chromophore, derived from 2,3-diamino-6,7 dihydroxyquinoline, is bound to a peptide chain of 10 amino acids: (L)-Asp-(D)-Ser-(L)-Hse-Gly-(D)-beta-threo-HOAsp-(L)-Ser-(D)-Cit-(L)-Hse-(L)-Hse lactone-(D)-N(delta)-Acetyl, N(delta)-HOOrn. Azotobactin delta has three different iron(III) binding sites which are one hydroxamate group at the C-terminal end of the peptidic chain (N(delta)-Acetyl, N(delta)-HOOrn), one alpha-hydroxycarboxylic function in the middle of the chain (beta-threo-hydroxyaspartic acid), and one catechol group on the chromophore. The coordination properties of its iron(III) and iron(II) complexes were measured by spectrophotometry, potentiometry, and voltammetry after the determination of the acid-base functions of the uncomplexed free siderophore. Strongly negatively charged ferric species were observed at neutral p[H]'s corresponding to a predominant absolute configuration Lambda of the ferric complex in solution as deduced from CD measurements. The presence of an alpha-hydroxycarboxylic chelating group does not decrease the stability of the iron(III) complex when compared to the main trishydroxamate siderophores or to pyoverdins. The value of the redox potential of ferric azotobactin is highly consistent with a reductive step by physiological reductants for the iron release. Formation and dissociation kinetics of the azotobactin delta ferric complex point out that both ends of this long siderophore chain get coordinated to Fe(III) before the middle. The most striking result provided by fluorescence measurements is the lasting quenching of the fluorophore in the course of the protonation of the ferric azotobactin delta complex. Despite the release of the hydroxyacid and of the catechol, the fluorescence remains indeed quenched, when iron(III) is bound only to the hydroxamic acid, suggesting a folded conformation at this stage, around the metal ion, in contrast to the unfolded species observed for other siderophores such as ferrioxamine or pyoverdin PaA.
Necessity of purification during bacterial DNA extraction with environmental soils
Choi, Jung-Hyun
2017-01-01
Complexity and heterogeneity of soil samples have often implied the inclusion of purification steps in conventional DNA extraction for polymerase chain reaction (PCR) assays. Unfortunately the purification steps are also time and labor intensive. Therefore the necessity of DNA purification was re-visited and investigated for a variety of environmental soil samples that contained various amounts of PCR inhibitors. Bead beating and centrifugation was used as the baseline (without purification) method for DNA extraction. Its performance was compared with that of conventional DNA extraction kit (with purification). The necessity criteria for DNA purification were established with environmental soil samples. Using lysis conditions at 3000 rpm for 3 minutes with 0.1 mm glass beads, centrifugation time of 10 minutes and 1:10 dilution ratio, the baseline method outperformed conventional DNA extraction on cell seeded sand samples. Further investigation with PCR inhibitors (i.e., humic acids, clay, and magnesium [Mg]) showed that sand samples containing less than 10 μg/g humic acids and 70% clay may not require purifications. Interestingly, the inhibition pattern of Mg ion was different from other inhibitors due to the complexation interaction of Mg ion with DNA fragments. It was concluded that DNA extraction method without purification is suitable for soil samples that have less than 10 μg/g of humic acids, less than 70% clay content and less than 0.01% Mg ion content. PMID:28793754
Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon
Electron-beam-induced deposition patterns, with composition of PtC 5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H 2O molecules via a localized injection of inert Ar–H 2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification processmore » caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.« less
NASA Astrophysics Data System (ADS)
Nasir, N. F.; Mirus, M. F.; Ismail, M.
2017-09-01
Crude glycerol which produced from transesterification reaction has limited usage if it does not undergo purification process. It also contains excess methanol, catalyst and soap. Conventionally, purification method of the crude glycerol involves high cost and complex processes. This study aimed to determine the effects of using different purification methods which are direct method (comprises of ion exchange and methanol removal steps) and multistep method (comprises of neutralization, filtration, ion exchange and methanol removal steps). Two crude glycerol samples were investigated; the self-produced sample through the transesterification process of palm oil and the sample obtained from biodiesel plant. Samples were analysed using Fourier Transform Infrared Spectroscopy, Gas Chromatography and High Performance Liquid Chromatography. The results of this study for both samples after purification have showed that the pure glycerol was successfully produced and fatty acid salts were eliminated. Also, the results indicated the absence of methanol in both samples after purification process. In short, the combination of 4 purification steps has contributed to a higher quality of glycerol. Multistep purification method gave a better result compared to the direct method as neutralization and filtration steps helped in removing most excess salt, fatty acid and catalyst.
Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits
Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; ...
2015-06-30
Electron-beam-induced deposition patterns, with composition of PtC 5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H 2O molecules via a localized injection of inert Ar–H 2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification processmore » caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.« less
Affinity chromatography: A versatile technique for antibody purification.
Arora, Sushrut; Saxena, Vikas; Ayyar, B Vijayalakshmi
2017-03-01
Antibodies continue to be extremely utilized entities in myriad applications including basic research, imaging, targeted delivery, chromatography, diagnostics, and therapeutics. At production stage, antibodies are generally present in complex matrices and most of their intended applications necessitate purification. Antibody purification has always been a major bottleneck in downstream processing of antibodies, due to the need of high quality products and associated high costs. Over the years, extensive research has focused on finding better purification methodologies to overcome this holdup. Among a plethora of different techniques, affinity chromatography is one of the most selective, rapid and easy method for antibody purification. This review aims to provide a detailed overview on affinity chromatography and the components involved in purification. An array of support matrices along with various classes of affinity ligands detailing their underlying working principles, together with the advantages and limitations of each system in purifying different types of antibodies, accompanying recent developments and important practical methodological considerations to optimize purification procedure are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Yang, Chengli; Xing, Jianmin; Guan, Yueping; Liu, Huizhou
2006-09-01
An effective method for purification of nattokinase from fermentation broth using magnetic poly(methyl methacrylate) (PMMA) beads immobilized with p-aminobenzamidine was proposed in this study. Firstly, magnetic PMMA beads with a narrow size distribution were prepared by spraying suspension polymerization. Then, they were highly functionalized via transesterification reaction with polyethylene glycol. The surface hydroxyl-modified magnetic beads obtained were further modified with chloroethylamine to transfer the surface amino-modified magnetic functional beads. The morphology and surface functionality of the magnetic beads were examined by scanning electron microscopy and Fourier transform infrared. An affinity ligand, p-aminobenzamidine was covalently immobilized to the amino-modified magnetic beads by the glutaraldehyde method for nattokinase purification directly from the fermentation broth. The purification factor and the recovery of the enzyme activity were found to be 8.7 and 85%, respectively. The purification of nattokinase from fermentation broth by magnetic beads only took 40 min, which shows a very fast purification of nattokinase compared to traditional purification methods.
The Blood Compatibilities of Blood Purification Membranes and Other Materials Developed in Japan
Abe, Takaya; Kato, Karen; Fujioka, Tomoaki; Akizawa, Tadao
2011-01-01
The biocompatibilities in blood purification therapy are defined as “a concept to stipulate safety of blood purification therapy by an index based on interaction in the body arising from blood purification therapy itself.” The biocompatibilities are associated with not only materials to be used but also many factors such as sterilization method and eluted substance. It is often evaluated based on impacts on cellular pathways and on humoral pathways. Since the biocompatibilities of blood purification therapy in particular hemodialysis are not just a prognostic factor for dialysis patients but a contributory factor for long-term complications, it should be considered with adequate attention. It is important that blood purification therapy should be performed by consistently evaluating not only risks associated with these biocompatibilities but also the other advantages obtained from treatments. In this paper, the biocompatibilities of membrane and adsorption material based on Japanese original which are used for blood purification therapy are described. PMID:21969830
Mishra, Vartika; Gupta, Antriksh; Kaur, Parvinder; Singh, Simranjeet; Singh, Nasib; Gehlot, Praveen; Singh, Joginder
2016-01-01
Three Arbuscular mycorrhizal fungi (AMF) from Glomus, Acaulospora and Scutellospora, and four plant growth promoting rhizobacteria (PGPR) isolates related to genera Streptomyces, Azotobacter, Pseudomonas and Paenibacillus were found to be effective in phytoremediation of Fe(3+) contaminated soil where Pennisetum glaucum and Sorghum bicolor were growing as host plants. Co-inoculation of AMF and PGPR showed better results in comparison to either, AMF and PGPR under pot conditions. Both AMF and PGPR were able to produce siderophores. AMF and PGPR associated to P. glaucum and S. bicolor plants increased the extent of iron absorption. AMF and PGPR combination exhibited superior (p < 0.01) phytoremediation efficiency with P. glaucum compared to S. bicolor. These findings warrant further investigations of these synergistic interactions and large-scale in situ studies for bioremediation of iron-contaminated soils.
NASA Astrophysics Data System (ADS)
Denisova, T. V.; Kolesnikov, S. I.
2009-04-01
The effects of super-high-frequency radiation (SHF radiation) on the microflora and enzymatic activity of an ordinary chernozem, a chestnut soil, a brown forest soil, and gray sands were studied. The exposure time of the 800-W SHF radiation was 30 s, 1, 10, and 60 min. The activity of the soil enzymes (catalase and invertase) was found to be more resistant to the action of SHF radiation than the number of microorganisms (ammonifying bacteria (including sporogenous ones), bacteria of the genus Azotobacter, and micromycetes). According to the resistance of the enzymes, the soils studied form the following sequence: gray sands > ordinary chernozem ≥ chestnut soil > brown forest soil. Under the action of the SHF radiation, the number of microorganisms in the ordinary chernozem decreased to a lesser extent.
Sferlazzo, Giovanni; Meloni, Domenico; Lamon, Sonia; Marceddu, Marta; Mureddu, Anna; Consolati, Simonetta Gianna; Pisanu, Margherita; Virgilio, Sebastiano
2018-09-01
The aim of the present study was to investigate the effect of short purification cycles on the safety of naturally contaminated Mytilus galloprovincialis from harvesting areas of the Gulf of Olbia (Sardinia, Italy). Samples from ten batches of mussels were collected before, during and after purification treatment at two purification centres (A-B). All the samples were analysed for Escherichia coli and Salmonella spp according to Council Regulation (EC) 2285/2015. Detection and enumeration of Vibrio spp were performed according to previously published methods. Presumptive identification of Vibrio spp isolates were performed by means of conventional biochemical tests and polymerase chain reaction. The presence of Hepatitis A virus was detected by nested reverse transcriptase-polymerase chain reaction. Environmental parameters (water temperature and salinity) were also recorded. The results of Escherichia coli counts showed the overall efficacy of the short purification cycles; a purification cycle of 8 h led to a rapid decline in the concentration. The decrease in Escherichia coli counts does not correlate with the presence of naturally occurring vibrios, the decline of which occurs at an even slower rate. The average contamination levels for Vibrio spp before purification were 8.20 ± 0.47 and 7.99 ± 0.62 Log 10 CFU/g in samples collected at purification plants A and B, respectively. After purification, the average contamination levels were 8.10 ± 0.60 Log 10 CFU/g at purification plant A and 7.85 ± 0.57 Log 10 CFU/g at purification plant B. The contaminated samples revealed the presence of Vibrio alginolyticus (n=21), Vibrio fluvialis (n=12), Vibrio cholerae (n=4), Vibrio parahaemolyticus (n=2) and Vibrio vulnificus (n=1). The Vibrio parahaemolyticus isolates carried the tdh or the trh genes. None of the isolates was tdh+/trh+. Salmonella spp and Hepatitis A virus were not detected. The adoption of short purification cycles for Mytilus galloprovincialis in the presence of pathogenic vibrios might not be sufficient to guarantee the safety of consumers. Copyright © 2018 Elsevier Ltd. All rights reserved.
Purification and concentration of mycobacteriophage D29 using monolithic chromatographic columns.
Liu, Keyang; Wen, Zhanbo; Li, Na; Yang, Wenhui; Hu, Lingfei; Wang, Jie; Yin, Zhe; Dong, Xiaokai; Li, Jinsong
2012-12-01
Bacteriophages are used widely in many fields, and phages with high purity and infectivity are required. Convective interaction media (CIM) methacrylate monoliths were used for the purification of mycobacteriophage D29. The lytic phages D29 from bacterial lysate were purified primarily by polyethylene glycol 8000 or ammonium sulphate, and then the resulting phages were passed through the CIM monolithic columns for further purification. After the whole purification process, more than 99% of the total proteins were removed irrespective which primary purification method was used. The total recovery rates of viable phages were around 10-30%. Comparable results were obtained when the purification method was scaled-up from a 0.34 mL CIM DEAE (diethylamine) monolithic disk to an 8 mL CIM DEAE monolithic column. Copyright © 2012 Elsevier B.V. All rights reserved.
Mao, Shihong; Goodrich, Robert J; Hauser, Russ; Schrader, Steven M; Chen, Zhen; Krawetz, Stephen A
2013-10-01
Different semen storage and sperm purification methods may affect the integrity of isolated spermatozoal RNA. RNA-Seq was applied to determine whether semen storage methods (pelleted vs. liquefied) and somatic cell lysis buffer (SCLB) vs. PureSperm (PS) purification methods affect the quantity and quality of sperm RNA. The results indicate that the method of semen storage does not markedly impact RNA profiling whereas the choice of purification can yield significant differences. RNA-Seq showed that the majority of mitochondrial and mid-piece associated transcripts were lost after SCLB purification, which indicated that the mid-piece of spermatozoa may have been compromised. In addition, the number of stable transcript pairs from SCLB-samples was less than that from the PS samples. This study supports the view that PS purification better maintains the integrity of spermatozoal RNAs.
Intensification of oily waste waters purification by means of liquid atomization
NASA Astrophysics Data System (ADS)
Eskin, A. A.; Tkach, N. S.; Kim, M. I.; Zakharov, G. A.
2017-10-01
In this research, a possibility of using liquid atomization for improving the efficiency of purification of wastewater by different methods has been studied. By the introduced method and an experimental setup for wastewater purification, saturation rate increases with its purification by means of dissolved air flotation. Liquid atomization under excess pressure allows to gain a large interfacial area between the saturated liquid and air, which may increase the rate of purified liquid saturation almost twice, compared to the existing methods of saturation. Current disadvantages of liquid atomization used for intensification of wastewater purification include high energy cost and secondary emulsion of polluting agents. It is also known that by means of liquid atomization a process of ozonizing can be intensified. Large contact surface between the purified liquid and ozone-air mixture increases the oxidizing efficiency, which allows to diminish ozone discharge. Liquid atomization may be used for purification of wastewaters by ultraviolet radiation. Small drops of liquid will be proportionally treated by ultraviolet, which makes it possible to do purification even of turbid wastewaters. High-speed liquid motion will prevent the pollution of quartz tubes of ultraviolet lamps.
Golunski, Simone; Silva, Marceli F; Marques, Camila T; Rosseto, Vanusa; Kaizer, Rosilene R; Mossi, Altemir J; Rigo, Diane; Dallago, Rogério M; DI Luccio, Marco; Treichel, Helen
2017-01-01
The present study evaluated the purification of inulinase by changing the ionic strength of the medium by addition of NaCl and CaCl2 followed by precipitation with n-propyl alcohol or iso-propyl alcohol. The effects of the concentration of alcohols and the rate of addition of alcohols in the crude extract on the purification yield and purification factor were evaluated. Precipitation caused an activation of enzyme and allowed purification factors up to 2.4-fold for both alcohols. The purification factor was affected positively by the modification of the ionic strength of the medium to 0.5 mol.L-1 NaCl before precipitation with the alcohol (n-propyl or iso-propyl). A purification factor of 4.8-fold and an enzyme yield of 78.1 % could be achieved by the addition of 0.5 mol.L-1 of NaCl to the crude extract, followed by the precipitation with 50 % (v/v) of n-propyl alcohol, added at a flow rate of 19.9 mL/min.
Hu, Hong-Bo; Wang, Wei; Han, Ling; Zhou, Wen-Pu; Zhang, Xue-Hong
2007-03-01
Recombinant truncated human heme oxygenase-1 (hHO-1) expressed in Escherichia coli was efficiently separated and purified from feedstock by DEAE-ion exchange expanded bed adsorption. Protocol optimization of hHO-1 on DEAE adsorbent resulted in adsorption in 0 M NaCl and elution in 150 mM NaCl at a pH of 8.5. The active enzyme fractions separated from the expanded bed column were further purified by a Superdex 75 gel filtration step. The specific hHO-1 activity increased from 0.82 +/- 0.05 to 24.8 +/- 1.8 U/mg during the whole purification steps. The recovery and purification factor of truncated hHO-1 of the whole purification were 72.7 +/- 4.7 and 30.2 +/- 2.3%, respectively. This purification process can decrease the demand on the preparation of feedstock and simplify the purification process.
NASA Astrophysics Data System (ADS)
Filiouguine, Igor V.; Kostiouchenko, S. V.; Koudryavtsev, N. N.; Vasilyak, Leonid M.; Yakimenko, A. V.
1993-11-01
The bacteriological disinfective action of UV-radiation is well known. The pioneer work on UV-radiation used for bacteriological disinfection of waste water was made in 1910. Because of the high cost and low living time of the UV-radiation sources, the alternative technique for waste water purification by chlorine introducing was spread out. During the second stage of the UV purification development, beginning in approximately 1970, the interest for bacteriological cleaning of water, increased again. Two reasons were responsible for this event: first, the significant improvement of technology and design of UV-bacteriological purificators, and second, recognition of the serious danger of chlorine compounds introduced into water under purification because of the toxicity of these compounds. Further investigations gave excellent results in the creation and industrial applications of UV- bacteriological purificators. Now we can see a rapid development of industrial technology in UV-purification of drinking and waste waters.
Magnetic purification of curcumin from Curcuma longa rhizome by novel naked maghemite nanoparticles.
Magro, Massimiliano; Campos, Rene; Baratella, Davide; Ferreira, Maria Izabela; Bonaiuto, Emanuela; Corraducci, Vittorino; Uliana, Maíra Rodrigues; Lima, Giuseppina Pace Pereira; Santagata, Silvia; Sambo, Paolo; Vianello, Fabio
2015-01-28
Naked maghemite nanoparticles, namely, surface active maghemite nanoparticles (SAMNs), characterized by a diameter of about 10 nm, possessing peculiar colloidal stability, surface chemistry, and superparamagnetism, present fundamental requisites for the development of effective magnetic purification processes for biomolecules in complex matrices. Polyphenolic molecules presenting functionalities with different proclivities toward iron chelation were studied as probes for testing SAMN suitability for magnetic purification. Thus, the binding efficiency and reversibility on SAMNs of phenolic compounds of interest in the pharmaceutical and food industries, namely, catechin, tyrosine, hydroxytyrosine, ferulic acid, coumaric acid, rosmarinic acid, naringenin, curcumin, and cyanidin-3-glucoside, were evaluated. Curcumin emerged as an elective compound, suitable for magnetic purification by SAMNs from complex matrices. A combination of curcumin, demethoxycurcumin, and bis-demethoxycurcumin was recovered by a single magnetic purification step from extracts of Curcuma longa rhizomes, with a purity >98% and a purification yield of 45%, curcumin being >80% of the total purified curcuminoids.
A rapid Orthopoxvirus purification protocol suitable for high-containment laboratories.
Hughes, Laura; Wilkins, Kimberly; Goldsmith, Cynthia S; Smith, Scott; Hudson, Paul; Patel, Nishi; Karem, Kevin; Damon, Inger; Li, Yu; Olson, Victoria A; Satheshkumar, P S
2017-05-01
Virus purification in a high-containment setting provides unique challenges due to barrier precautions and operational safety approaches that are not necessary in lower biosafety level (BSL) 2 environments. The need for high risk group pathogen diagnostic assay development, anti-viral research, pathogenesis and vaccine efficacy research necessitates work in BSL-3 and BSL-4 labs with infectious agents. When this work is performed in accordance with BSL-4 practices, modifications are often required in standard protocols. Classical virus purification techniques are difficult to execute in a BSL-3 or BSL-4 laboratory because of the work practices used in these environments. Orthopoxviruses are a family of viruses that, in some cases, requires work in a high-containment laboratory and due to size do not lend themselves to simpler purification methods. Current CDC purification techniques of orthopoxviruses uses 1,1,2-trichlorotrifluoroethane, commonly known as Genetron ® . Genetron ® is a chlorofluorocarbon (CFC) that has been shown to be detrimental to the ozone and has been phased out and the limited amount of product makes it no longer a feasible option for poxvirus purification purposes. Here we demonstrate a new Orthopoxvirus purification method that is suitable for high-containment laboratories and produces virus that is not only comparable to previous purification methods, but improves on purity and yield. Published by Elsevier B.V.
Oxygen Sag and Stream Purification.
ERIC Educational Resources Information Center
Neal, Larry; Herwig, Roy
1978-01-01
Presents a literature review of water quality related to oxygen sag and stream purification, covering publications of 1976-77. This review includes: (1) self-purification models; (2) oxygen demand; and (3) reaeration and oxygen transfer. A list of 60 references is also presented. (HM)
Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.
Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh
2016-10-01
Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a cost-effective, rapid, and reliable avenue for the purification of recombinant proteins in heterologous hosts. Copyright © 2016 Elsevier Inc. All rights reserved.
Monogamy, polygamy, and other properties of entanglement of purification
NASA Astrophysics Data System (ADS)
Bagchi, Shrobona; Pati, Arun Kumar
2015-04-01
For bipartite pure and mixed quantum states, in addition to the quantum mutual information, there is another measure of total correlation, namely, the entanglement of purification. We study the monogamy, polygamy, and additivity properties of the entanglement of purification for pure and mixed states. In this paper, we show that, in contrast to the quantum mutual information which is strictly monogamous for any tripartite pure states, the entanglement of purification is polygamous for the same. This shows that there can be genuinely two types of total correlation across any bipartite cross in a pure tripartite state. Furthermore, we find the lower bound and actual values of the entanglement of purification for different classes of tripartite and higher-dimensional bipartite mixed states. Thereafter, we show that if entanglement of purification is not additive on tensor product states, it is actually subadditive. Using these results, we identify some states which are additive on tensor products for entanglement of purification. The implications of these findings on the quantum advantage of dense coding are briefly discussed, whereby we show that for tripartite pure states, it is strictly monogamous and if it is nonadditive, then it is superadditive on tensor product states.
Lim, Hosub; Woo, Ju Young; Lee, Doh C; Lee, Jinkee; Jeong, Sohee; Kim, Duckjong
2017-02-27
Colloidal quantum dots (QDs) afford huge potential in numerous applications owing to their excellent optical and electronic properties. After the synthesis of QDs, separating QDs from unreacted impurities in large scale is one of the biggest issues to achieve scalable and high performance optoelectronic applications. Thus far, however, continuous purification method, which is essential for mass production, has rarely been reported. In this study, we developed a new continuous purification process that is suitable to the mass production of high-quality QDs. As-synthesized QDs are driven by electrophoresis in a flow channel and captured by porous electrodes and finally separated from the unreacted impurities. Nuclear magnetic resonance and ultraviolet/visible/near-infrared absorption spectroscopic data clearly showed that the impurities were efficiently removed from QDs with the purification yield, defined as the ratio of the mass of purified QDs to that of QDs in the crude solution, up to 87%. Also, we could successfully predict the purification yield depending on purification conditions with a simple theoretical model. The proposed large-scale purification process could be an important cornerstone for the mass production and industrial use of high-quality QDs.
NASA Astrophysics Data System (ADS)
Lim, Hosub; Woo, Ju Young; Lee, Doh Chang; Lee, Jinkee; Jeong, Sohee; Kim, Duckjong
2017-11-01
Colloidal Quantum dots (QDs) afford huge potential in numerous applications owing to their excellent optical and electronic properties. After the synthesis of QDs, separating QDs from unreacted impurities in large scale is one of the biggest issues to achieve scalable and high performance optoelectronic applications. Thus far, however, continuous purification method, which is essential for mass production, has rarely been reported. In this study, we developed a new continuous purification process that is suitable to the mass production of high-quality QDs. As-synthesized QDs are driven by electrophoresis in a flow channel and captured by porous electrodes and finally separated from the unreacted impurities. Nuclear magnetic resonance and ultraviolet/visible/near-infrared absorption spectroscopic data clearly showed that the impurities were efficiently removed from QDs with the purification yield, defined as the ratio of the mass of purified QDs to that of QDs in the crude solution, up to 87%. Also, we could successfully predict the purification yield depending on purification conditions with a simple theoretical model. The proposed large-scale purification process could be an important cornerstone for the mass production and industrial use of high-quality QDs.
Effect of chlorine purification on oxidation resistance of some mechanical carbons
NASA Technical Reports Server (NTRS)
Wisander, D. W.; Allen, G. P.
1974-01-01
Oxidation experiments were conducted with some experimental and commercial mechanical carbons at 650 C in dry air flowing at 28 cc/sec (STP). In general, purification of these carbon-graphites with chlorine at 2800 C improved oxidation resistance. Additional improvements in oxidation resistance were obtained from purification followed by an antioxidant (zinc phosphate) treatment. For the commercial materials, purification alone gave greater oxidation resistance than the antioxidant treatment alone. The reverse, however, was the case for the experimental materials.
A Family of LIC Vectors for High-Throughput Cloning and Purification of Proteins1
Eschenfeldt, William H.; Stols, Lucy; Millard, Cynthia Sanville; Joachimiak, Andrzej; Donnelly, Mark I.
2009-01-01
Summary Fifteen related ligation-independent cloning vectors were constructed for high-throughput cloning and purification of proteins. The vectors encode a TEV protease site for removal of tags that facilitate protein purification (his-tag) or improve solubility (MBP, GST). Specialized vectors allow coexpression and copurification of interacting proteins, or in vivo removal of MBP by TVMV protease to improve screening and purification. All target genes and vectors are processed by the same protocols, which we describe here. PMID:18988021
Virus purification by CsCl density gradient using general centrifugation.
Nasukawa, Tadahiro; Uchiyama, Jumpei; Taharaguchi, Satoshi; Ota, Sumire; Ujihara, Takako; Matsuzaki, Shigenobu; Murakami, Hironobu; Mizukami, Keijirou; Sakaguchi, Masahiro
2017-11-01
Virus purification by cesium chloride (CsCl) density gradient, which generally requires an expensive ultracentrifuge, is an essential technique in virology. Here, we optimized virus purification by CsCl density gradient using general centrifugation (40,000 × g, 2 h, 4 °C), which showed almost the same purification ability as conventional CsCl density gradient ultracentrifugation (100,000 × g, 1 h, 4 °C) using phages S13' and φEF24C. Moreover, adenovirus strain JM1/1 was also successfully purified by this method. We suggest that general centrifugation can become a less costly alternative to ultracentrifugation for virus purification by CsCl densiy gradient and will thus encourage research in virology.
Dong, Dexian; Gui, Yanli; Chen, Dezhao; Li, Rongxiu
2008-01-01
Although the concept of affinity purification using synthetic ligands had been utilized for many years, there are few articles related to this research area, and they focus only on the affinity purification of specific protein by a defined library of synthetic ligands. This study presents the design and construction of a 700-member library of synthetic ligands in detail. We selected 297 ligand columns from a 700-member library of synthetic ligands to screen leech protein extract. Of the 297, 154 columns had an enrichment effect, 83 columns had a depletion effect, 36 columns had a one-step purification effect, and 58 columns had a one-step purification via flowthrough effect. The experimental results achieved by this large library of affinity ligands provide solid convincing data for the theory that affinity chromatography could be used for the enrichment of proteins that are present in low abundance, the depletion of high abundance proteins, and one-step purification of special proteins. 2008 John Wiley & Sons, Ltd
Purification of silicon for photovoltaic applications
NASA Astrophysics Data System (ADS)
Delannoy, Yves
2012-12-01
Solar grade silicon, as a starting material for crystallization to produce solar cells, is discussed here in terms of impurities whose maximum content is estimated from recent literature and conferences. A review of the production routes for each category of solar-grade silicon (undoped, compensated or heavily compensated) is proposed with emphasis on the metallurgical route. Some recent results are proposed concerning segregation, showing that directional solidification systems can be used for solidification even at high solidification rate (15 cm/h). Results on inductive plasma purification, where boron is evacuated as HBO in a gas phase blown from an inductive plasma torch, are shown to apply as well to arc plasmas and purification by moist gas. Special attention is paid to the history of impurities in the purification processes, showing that impure auxiliary phases (silicon tetrachloride, slag, aluminum, etc.) often need their own purification process to enable their recycling, which has to be considered to evaluate the cost (financial, energetic and environmental) of the purification route.
Photocatalytic materials and technologies for air purification.
Ren, Hangjuan; Koshy, Pramod; Chen, Wen-Fan; Qi, Shaohua; Sorrell, Charles Christopher
2017-03-05
Since there is increasing concern for the impact of air quality on human health, the present work surveys the materials and technologies for air purification using photocatalytic materials. The coverage includes (1) current photocatalytic materials for the decomposition of chemical contaminants and disinfection of pathogens present in air and (2) photocatalytic air purification systems that are used currently and under development. The present work focuses on five main themes. First, the mechanisms of photodegradation and photodisinfection are explained. Second, system designs for photocatalytic air purification are surveyed. Third, the photocatalytic materials used for air purification and their characteristics are considered, including both conventional and more recently developed photocatalysts. Fourth, the methods used to fabricate these materials are discussed. Fifth, the most significant coverage is devoted to materials design strategies aimed at improving the performance of photocatalysts for air purification. The review concludes with a brief consideration of promising future directions for materials research in photocatalysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Jeon, Won Bae
2015-01-01
Experimental bioinformatics data obtained from an E. coli cell-based eukaryotic protein purification experiment were analyzed in order to identify any bottleneck as well as the factors affecting the target purification. All targets were expressed as His-tagged maltose-binding protein (MBP) fusion constructs and were initially purified by immobilized metal affinity chromatography (IMAC). The targets were subsequently separated from the His-tagged MBP through TEV protease cleavage followed by a second IMAC isolation. Of the 743 total purification trials, 342 yielded more than 3 mg of target proteins for structural studies. The major reason for failure of target purification was poor TEV proteolysis. The overall success rate for target purification decreased linearly as cysteine content or isoelectric point (pI) of the target increased. This pattern of pI versus overall success rate strongly suggests that pI should be incorporated into target scoring criteria with a threshold value. PMID:20510014
Experimental Optimal Single Qubit Purification in an NMR Quantum Information Processor
Hou, Shi-Yao; Sheng, Yu-Bo; Feng, Guan-Ru; Long, Gui-Lu
2014-01-01
High quality single qubits are the building blocks in quantum information processing. But they are vulnerable to environmental noise. To overcome noise, purification techniques, which generate qubits with higher purities from qubits with lower purities, have been proposed. Purifications have attracted much interest and been widely studied. However, the full experimental demonstration of an optimal single qubit purification protocol proposed by Cirac, Ekert and Macchiavello [Phys. Rev. Lett. 82, 4344 (1999), the CEM protocol] more than one and half decades ago, still remains an experimental challenge, as it requires more complicated networks and a higher level of precision controls. In this work, we design an experiment scheme that realizes the CEM protocol with explicit symmetrization of the wave functions. The purification scheme was successfully implemented in a nuclear magnetic resonance quantum information processor. The experiment fully demonstrated the purification protocol, and showed that it is an effective way of protecting qubits against errors and decoherence. PMID:25358758
Evaluating the biological activity of oil-polluted soils using a complex index
NASA Astrophysics Data System (ADS)
Kabirov, R. R.; Kireeva, N. A.; Kabirov, T. R.; Dubovik, I. Ye.; Yakupova, A. B.; Safiullina, L. M.
2012-02-01
A complex index characterizing the biological activity of soils (BAS) is suggested. It is based on an estimate of the level of activity of catalase; the number of heterotrophic and hydrocarbon oxidizing microorganisms, microscopic fungi, algae, and cyanobacteria; and the degree of development of higher plants and insects in the studied soil. The data on using the BAS coefficient for evaluating the efficiency of rehabilitation measures for oil-polluted soils are given. Such measures included introducing the following biological preparations: Lenoil based on a natural consortium of microorganisms Bacillus brevis and Arthrobacter sp.; the Azolen biofertilizer with complex action based on Azotobacter vinelandii; the Belvitamil biopreparation, which is the active silt of pulp and paper production; and a ready-mixed industrial association of aerobic and anaerobic microorganisms that contains hydrocarbon oxidizing microorganisms of the Arthrobacter, Bacillus, Candida, Desulfovibrio, and Pseudomonas genera.
Biological nitrogen fixation under primordial Martian partial pressures of dinitrogen
NASA Technical Reports Server (NTRS)
Klingler, J. M.; Mancinelli, R. L.; White, M. R.
1989-01-01
One of the most striking differences between the conditions on early Mars and earth was a low (18 mb) partial pressure of N2 (pN2) on early Mars, as opposed to 780 mb N2 on earth. To investigate the possibility of biological nitrogen fixation under conditions of early Mars, experiments were carried out on the growth of Azotobacter vinelandii and Azomonas agilis in nitrogen-free synthetic medium under various partial pressures of N2 (ranging from 780 to 0 mb). It was found that, although the biomass, cell number, and growth rate of these bacteria decreased with decreasing pN2 values below pN2 of 400 mb, both microorganisms were capable of growing at pN2 as low as 5 mb (but not at of below 1 mb), indicating that biological fixation of nitrogen could have occurred on primordial Mars.
Bacterial alginate production: an overview of its biosynthesis and potential industrial production.
Urtuvia, Viviana; Maturana, Nataly; Acevedo, Fernando; Peña, Carlos; Díaz-Barrera, Alvaro
2017-10-07
Alginate is a linear polysaccharide that can be used for different applications in the food and pharmaceutical industries. These polysaccharides have a chemical structure composed of subunits of (1-4)-β-D-mannuronic acid (M) and its C-5 epimer α-L-guluronic acid (G). The monomer composition and molecular weight of alginates are known to have effects on their properties. Currently, these polysaccharides are commercially extracted from seaweed but can also be produced by Azotobacter vinelandii and Pseudomonas spp. as an extracellular polymer. One strategy to produce alginates with different molecular weights and with reproducible physicochemical characteristics is through the manipulation of the culture conditions during fermentation. This mini-review provides a comparative analysis of the metabolic pathways and molecular mechanisms involved in alginate polymerization from A. vinelandii and Pseudomonas spp. Different fermentation strategies used to produce alginates at a bioreactor laboratory scale are described.
Biological properties of the Chilean native moss Sphagnum magellanicum.
Montenegro, Gloria; Portaluppi, Mariana C; Salas, Francisco A; Díaz, María F
2009-01-01
An ethanol extract prepared from the gametophyte Chilean native moss Sphagnum magellanicum was dried out, weighed and dissolved in distilled water. This extract was then assayed for its antibacterial activity against the G(-) bacteria Azotobacter vinelandii, Erwinia carotovora subsp. carotovora, Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Vibrio cholerae, and the G(+) bacteria Staphylococcus aureus subsp. aureus, and Streptococcus type beta. The growth of the cultures of E. carotovora subsp. carotovora, and V. cholerae was inhibited at a concentration of 581 microg/ml of extract, while the cultures of E. coli, S. typhi and Streptococcus type beta were inhibited at a concentration of 1.16 microg/mL of extract. The concentration of phenolic compounds was 4.294 mg/mL; the presence of vanillic, chlorogenic, syringic, caffeic, gallic, 3-4 hydrozybenzoic, p-coumaric and salicylic acids was identified using RP- High Pressure Liquid Chromatography.
Tuning Electron Flux through Nitrogenase with Methanogen Iron Protein Homologues.
Hiller, Caleb J; Stiebritz, Martin T; Lee, Chi Chung; Liedtke, Jasper; Hu, Yilin
2017-11-16
Nitrogenase uses a reductase component called Fe protein to deliver electrons to its catalytic partner for substrate reduction. The essential role of Fe protein in catalysis makes it an ideal target for regulating the electron flux and enzymatic activity of nitrogenase without perturbing the cofactor site. This work reports that hybrids between the Fe protein homologs of Methanosarcina acetivorans and the catalytic components of Azotobacter vinelandii can trap substrate CO through reduced electron fluxes. In addition, homology modeling/in silico docking is used to define markers for binding energy and specificity between the component proteins that correlate with the experimentally determined activities. This homologue-based approach could be further developed to allow identification or design of hybrids between homologous nitrogenase components for mechanistic investigations of nitrogenase through capture of substrates/ intermediates or for transgenic expression of nitrogenase through synthetic biology. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Production and Characterization of the Slime Polysaccharide of Pseudomonas aeruginosa
Evans, Leigh R.; Linker, Alfred
1973-01-01
The slime polysaccharides produced by Pseudomonas aeruginosa isolated from a variety of human infections were investigated. Slime production in culture seemed optimal when adequate amounts of carbohydrate were present and under conditions of either high osmotic pressure or inadequate protein supply. The polysaccharides produced by the organisms were similar to each other, to the slime of Azotobacter vinelandii, and to seaweed alginic acids. They were composed of β-1,4-linked d-mannuronic acid residues and variable amounts of its 5-epimer l-guluronic acid. All bacterial polymers contained o-acetyl groups which are absent in the alginates. The polysaccharides differed considerably in the ratio of mannuronic to guluronic acid content and in the number of o-acetyl groups. The particular composition of the slime was not found to be characteristic for the disease process from which the mucoid variants of P. aeruginosa were obtained. PMID:4200860
The in vivo hydrocarbon formation by vanadium nitrogenase follows a secondary metabolic pathway
Rebelein, Johannes G.; Lee, Chi Chung; Hu, Yilin; ...
2016-12-15
The vanadium (V)-nitrogenase of Azotobacter vinelandii catalyses the in vitro conversion of carbon monoxide (CO) to hydrocarbons. Here we show that an A. vinelandii strain expressing the V-nitrogenase is capable of in vivo reduction of CO to ethylene (C 2H 4), ethane (C 2H 6) and propane (C 3H 8). Moreover, we demonstrate that CO is not used as a carbon source for cell growth, being instead reduced to hydrocarbons in a secondary metabolic pathway. These findings suggest a possible role of the ancient nitrogenase as an evolutionary link between the carbon and nitrogen cycles on Earth and establish amore » solid foundation for biotechnological adaptation of a whole-cell approach to recycling carbon wastes into hydrocarbon products. Furthermore, this study has several repercussions for evolution-, environment- and energy-related areas.« less
Li, Yifeng; Franklin, Sarah; Zhang, Michael J; Vondriska, Thomas M
2011-01-01
Tandem affinity purification (TAP) is a generic approach for the purification of protein complexes. The key advantage of TAP is the engineering of dual affinity tags that, when attached to the protein of interest, allow purification of the target protein along with its binding partners through two consecutive purification steps. The tandem tag used in the original method consists of two IgG-binding units of protein A from Staphylococcus aureus (ProtA) and the calmodulin-binding peptide (CBP), and it allows for recovery of 20–30% of the bait protein in yeast. When applied to higher eukaryotes, however, this classical TAP tag suffers from low yields. To improve protein recovery in systems other than yeast, we describe herein the development of a three-tag system comprised of CBP, streptavidin-binding peptide (SBP) and hexa-histidine. We illustrate the application of this approach for the purification of human Bruton's tyrosine kinase (Btk), which results in highly efficient binding and elution of bait protein in both purification steps (>50% recovery). Combined with mass spectrometry for protein identification, this TAP strategy facilitated the first nonbiased analysis of Btk interacting proteins. The high efficiency of the SBP-His6 purification allows for efficient recovery of protein complexes formed with a target protein of interest from a small amount of starting material, enhancing the ability to detect low abundance and transient interactions in eukaryotic cell systems. PMID:21080425
Alba, Annia; Marcet, Ricardo; Otero, Oscar; Hernández, Hilda M; Figueredo, Mabel; Sarracent, Jorge
2016-02-01
Purification of immunoglobulin M (IgM) antibodies could be challenging, and is often characterized by the optimization of the purification protocol to best suit the particular features of the molecule. Here, two different schemes were compared to purify, from ascites, the 1E4 IgM monoclonal antibody (mAb) previously raised against the stage of redia of the trematode Fasciola hepatica. This immunoglobulin is used as capture antibody in an immunoenzymatic assay to detect parasite ongoing infection in its intermediate hosts. The first purification protocol of the 1E4 mAb involved two chromatographic steps: an affinity chromatography on a Concanavalin A matrix followed by size exclusion chromatography. An immunoaffinity chromatography was selected as the second protocol for one-step purification of the antibody using the crude extract of adult parasites coupled to a commercial matrix. Immunoreactivity of the fractions during purification schemes was assessed by indirect immunoenzymatic assays against the crude extract of F. hepatica rediae, while purity was estimated by protein electrophoresis. Losses on the recovery of the antibody isolated by the first purification protocol occurred due to protein precipitation during the concentration of the sample and to low resolution of the size exclusion molecular chromatography step regarding this particular immunoglobulin. The immunoaffinity chromatography using F. hepatica antigens as ligands proved to be the most suitable protocol yielding a pure and immunoreactive antibody. The purification protocols used are discussed regarding efficiency and difficulties.
Single-step affinity purification for fungal proteomics.
Liu, Hui-Lin; Osmani, Aysha H; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B; De Souza, Colin P; Osmani, Stephen A
2010-05-01
A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.
Process for purification of silicon
NASA Technical Reports Server (NTRS)
Rath, H. J.; Sirtl, E.; Pfeiffer, W.
1981-01-01
The purification of metallurgically pure silicon having a silicon content of more than 95% by weight is accomplished by leaching with an acidic solution which substantially does not attack silicon. A mechanical treatment leading to continuous particle size reduction of the granulated silicon to be purified is combined with the chemical purification step.
Using an FPLC to Promote Active Learning of the Principles of Protein Structure and Purification
ERIC Educational Resources Information Center
Robinson, Rebekah L.; Neely, Amy E.; Mojadedi, Wais; Threatt, Katie N.; Davis, Nicole Y.; Weiland, Mitch H.
2017-01-01
The concepts of protein purification are often taught in undergraduate biology and biochemistry lectures and reinforced during laboratory exercises; however, very few reported activities allow students to directly gain experience using modern protein purification instruments, such as Fast Protein Liquid Chromatography (FPLC). This laboratory…
Item Purification in Differential Item Functioning Using Generalized Linear Mixed Models
ERIC Educational Resources Information Center
Liu, Qian
2011-01-01
For this dissertation, four item purification procedures were implemented onto the generalized linear mixed model for differential item functioning (DIF) analysis, and the performance of these item purification procedures was investigated through a series of simulations. Among the four procedures, forward and generalized linear mixed model (GLMM)…
An Adaptable Investigative Graduate Laboratory Course for Teaching Protein Purification
ERIC Educational Resources Information Center
Carroll, Christopher W.; Keller, Lani C.
2014-01-01
This adaptable graduate laboratory course on protein purification offers students the opportunity to explore a wide range of techniques while allowing the instructor the freedom to incorporate their own personal research interests. The course design involves two sequential purification schemes performed in a single semester. The first part…
[Progress in isolation and purification of porcine islets].
Zhu, Haitao; Yu, Liang; Wang, Bo
2012-08-01
To review the common methods of isolation and purification of porcine islets and research progress. Domestic and abroad literature concerning the isolation and purification of porcine islets was reviewed and analyzed thoroughly. The efficacy of the isolation and purification depends on the selection of donor, the procurement and cryopreservation of high-quality donor pancreas, and the selection and improvement of the operation. The shortage of transplanted islets could be resolved by the establishment of standardized and optimal process, which may also promote the development of porcine islet xenograft.
Method for the purification of noble gases, nitrogen and hydrogen
Baker, J.D.; Meikrantz, D.H.; Tuggle, D.G.
1997-09-23
A method and apparatus are disclosed for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes. 15 figs.
Method for the purification of noble gases, nitrogen and hydrogen
Baker, John D.; Meikrantz, David H.; Tuggle, Dale G.
1997-01-01
A method and apparatus for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes.
Renaissance of protein crystallization and precipitation in biopharmaceuticals purification.
Dos Santos, Raquel; Carvalho, Ana Luísa; Roque, A Cecília A
The current chromatographic approaches used in protein purification are not keeping pace with the increasing biopharmaceutical market demand. With the upstream improvements, the bottleneck shifted towards the downstream process. New approaches rely in Anything But Chromatography methodologies and revisiting former techniques with a bioprocess perspective. Protein crystallization and precipitation methods are already implemented in the downstream process of diverse therapeutic biological macromolecules, overcoming the current chromatographic bottlenecks. Promising work is being developed in order to implement crystallization and precipitation in the purification pipeline of high value therapeutic molecules. This review focuses in the role of these two methodologies in current industrial purification processes, and highlights their potential implementation in the purification pipeline of high value therapeutic molecules, overcoming chromatographic holdups. Copyright © 2016 Elsevier Inc. All rights reserved.
Purification of white spot syndrome virus by iodixanol density gradient centrifugation.
Dantas-Lima, J J; Corteel, M; Cornelissen, M; Bossier, P; Sorgeloos, P; Nauwynck, H J
2013-10-01
Up to now, only a few brief procedures for purifying white spot syndrome virus (WSSV) have been described. They were mainly based on sucrose, NaBr and CsCl density gradient centrifugation. This work describes for the first time the purification of WSSV through iodixanol density gradients, using virus isolated from infected tissues and haemolymph of Penaeus vannamei (Boone). The purification from tissues included a concentration step by centrifugation (2.5 h at 60,000 g) onto a 50% iodixanol cushion and a purification step by centrifugation (3 h at 80,000 g) through a discontinuous iodixanol gradient (phosphate-buffered saline, 5%, 10%, 15% and 20%). The purification from infected haemolymph enclosed a dialysis step with a membrane of 1,000 kDa (18 h) and a purification step through the earlier iodixanol gradient. The gradients were collected in fractions and analysed. The number of particles, infectivity titre (in vivo), total protein and viral protein content were evaluated. The purification from infected tissues gave WSSV suspensions with a very high infectivity and an acceptable purity, while virus purified from haemolymph had a high infectivity and a very high purity. Additionally, it was observed that WSSV has an unusually low buoyant density and that it is very sensitive to high external pressures. © 2013 John Wiley & Sons Ltd.
Performance of photocatalyst based carbon nanodots from waste frying oil in water purification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aji, Mahardika Prasetya, E-mail: mahardika190@gmail.com; Wiguna, Pradita Ajeng; Susanto,
Carbon Nanodots (C-Dots) from waste frying oil could be used as a photocatalyst in water purification with solar light irradiation. Performance of C-Dots as a photocatalyst was tested in the process of water purification with a given synthetic sewage methylene blue. The tested was also conducted by comparing the performance C-Dots made from frying oil, waste fryng oil as a photocatalyst and solution of methylene blue without photocatalyst C-Dots. Performance of C-Dots from waste frying oil were estimated by the results of absorbance spectrum. The results of measurement absorbance spectrum from the process of water purification with photocatalyst C-Dots showedmore » that the highest intensity at a wavelength 664 nm of methylene blue decreased. The test results showed that the performance of photocatalyst C-Dots from waste frying oil was better in water purification. This estimated that number of particles C-dots is more in waste frying oil because have experieced repeated the heating process so that the higher particles concentration make the photocatalyst process more effective. The observation of the performance C-Dots from waste frying oil as a photocatalyst in the water purification processes become important invention for solving the problems of waste and water purification.« less
Purification of nanogram-range immunoprecipitated DNA in ChIP-seq application.
Zhong, Jian; Ye, Zhenqing; Lenz, Samuel W; Clark, Chad R; Bharucha, Adil; Farrugia, Gianrico; Robertson, Keith D; Zhang, Zhiguo; Ordog, Tamas; Lee, Jeong-Heon
2017-12-21
Chromatin immunoprecipitation-sequencing (ChIP-seq) is a widely used epigenetic approach for investigating genome-wide protein-DNA interactions in cells and tissues. The approach has been relatively well established but several key steps still require further improvement. As a part of the procedure, immnoprecipitated DNA must undergo purification and library preparation for subsequent high-throughput sequencing. Current ChIP protocols typically yield nanogram quantities of immunoprecipitated DNA mainly depending on the target of interest and starting chromatin input amount. However, little information exists on the performance of reagents used for the purification of such minute amounts of immunoprecipitated DNA in ChIP elution buffer and their effects on ChIP-seq data. Here, we compared DNA recovery, library preparation efficiency, and ChIP-seq results obtained with several commercial DNA purification reagents applied to 1 ng ChIP DNA and also investigated the impact of conditions under which ChIP DNA is stored. We compared DNA recovery of ten commercial DNA purification reagents and phenol/chloroform extraction from 1 to 50 ng of immunopreciptated DNA in ChIP elution buffer. The recovery yield was significantly different with 1 ng of DNA while similar in higher DNA amounts. We also observed that the low nanogram range of purified DNA is prone to loss during storage depending on the type of polypropylene tube used. The immunoprecipitated DNA equivalent to 1 ng of purified DNA was subject to DNA purification and library preparation to evaluate the performance of four better performing purification reagents in ChIP-seq applications. Quantification of library DNAs indicated the selected purification kits have a negligible impact on the efficiency of library preparation. The resulting ChIP-seq data were comparable with the dataset generated by ENCODE consortium and were highly correlated between the data from different purification reagents. This study provides comparative data on commercial DNA purification reagents applied to nanogram-range immunopreciptated ChIP DNA and evidence for the importance of storage conditions of low nanogram-range purified DNA. We verified consistent high performance of a subset of the tested reagents. These results will facilitate the improvement of ChIP-seq methodology for low-input applications.
Stojićević, Ivana; Dimitrijević, Ljiljana; Dovezenski, Nebojša; Živković, Irena; Petrušić, Vladimir; Marinković, Emilija; Inić-Kanada, Aleksandra; Stojanović, Marijana
2011-08-01
Given an existing demand to establish a process of tetanus vaccine production in a way that allows its complete validation and standardization, this paper focuses on tetanus toxoid purification step. More precisely, we were looking at a possibility to replace the widely used ammonium-sulphate precipitation by a chromatographic method. Based on the tetanus toxin's biochemical characteristics, we have decided to examine the possibility of tetanus toxoid purification by hydrophobic chromatography, and by chromatographic techniques based on interaction with immobilized metal ions, i.e. chelating chromatography and immobilized metal affinity chromatography. We used samples obtained from differently fragmented crude tetanus toxins by formaldehyde treatment (assigned as TTd-A and TTd-B) as starting material for tetanus toxoid purification. Obtained results imply that purification of tetanus toxoid by hydrophobic chromatography represents a good alternative to ammonium-sulphate precipitation. Tetanus toxoid preparations obtained by hydrophobic chromatography were similar to those obtained by ammonium-sulphate precipitation in respect to yield, purity and immunogenicity. In addition, their immunogenicity was similar to standard tetanus toxoid preparation (NIBSC, Potters Bar, UK). Furthermore, the characteristics of crude tetanus toxin preparations had the lowest impact on the final purification product when hydrophobic chromatography was the applied method of tetanus toxoid purification. On the other hand, purifications of tetanus toxoid by chelating chromatography or immobilized metal affinity chromatography generally resulted in a very low yield due to not satisfactory tetanus toxoid binding to the column, and immunogenicity of the obtained tetanus toxoid-containing preparations was poor. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bunker, Jared; Lowry, Thomas; Davis, Garrett; Zhang, Bo; Brosnahan, David; Lindsay, Stuart; Costen, Robert; Choi, Sang; Arosio, Paolo; Watt, Gerald D.
2005-01-01
The discrepancy between predicted and measured H2O2 formation during iron deposition with recombinant heavy human liver ferritin (rHF) was attributed to reaction with the iron protein complex [Biochemistry 40 (2001) 10832-10838]. This proposal was examined by stopped-flow kinetic studies and analysis for H2O2 production using (1) rHF, and Azotobacter vinelandii bacterial ferritin (AvBF), each containing 24 identical subunits with ferroxidase centers; (2) site-altered rHF mutants with functional and dysfunctional ferroxidase centers; and (3) rccombinant human liver light ferritin (rLF), containing 110 ferroxidase center. For rHF, nearly identical pseudo-first-order rate constants of 0.18 per second at pH 7.5 were measured for Fe(2+) oxidation by both O2 and H2O2, but for rLF, the rate with O2 was 200-fold slower than that for H2O2 (k-0.22 per second). A Fe(2+)/O2 stoichiometry near 2.4 was measured for rHF and its site altered forms, suggesting formation of H2O2. Direct measurements revealed no H2O2 free in solution 0.5-10 min after all Fe(2+) was oxidized at pH 6.5 or 7.5. These results are consistent with initial H2O2 formation, which rapidly reacts in a secondary reaction with unidentified solution components. Using measured rate constants for rHF, simulations showed that steady-state H2O2 concentrations peaked at 14 pM at approx. 600 ms and decreased to zero at 10-30 s. rLF did not produce measurable H2O2 but apparently conducted the secondary reaction with H2O2. Fe(2+)/O2 values of 4.0 were measured for AvBF. Stopped-flow measurements with AvBF showed that both H2O2 and O2 react at the same rate (k=0.34 per second), that is faster than the reactions with rHF. Simulations suggest that AvBF reduces O2 directly to H2O without intermediate H2O2 formation.
Plunkett, Mary H.; Natarajan, Velmurugan; Mus, Florence; Knutson, Carolann M.; Peters, John W.
2017-01-01
ABSTRACT Biological nitrogen fixation is accomplished by a diverse group of organisms known as diazotrophs and requires the function of the complex metalloenzyme nitrogenase. Nitrogenase and many of the accessory proteins required for proper cofactor biosynthesis and incorporation into the enzyme have been characterized, but a complete picture of the reaction mechanism and key cellular changes that accompany biological nitrogen fixation remain to be fully elucidated. Studies have revealed that specific disruptions of the antiactivator-encoding gene nifL result in the deregulation of the nif transcriptional activator NifA in the nitrogen-fixing bacterium Azotobacter vinelandii, triggering the production of extracellular ammonium levels approaching 30 mM during the stationary phase of growth. In this work, we have characterized the global patterns of gene expression of this high-ammonium-releasing phenotype. The findings reported here indicated that cultures of this high-ammonium-accumulating strain may experience metal limitation when grown using standard Burk's medium, which could be amended by increasing the molybdenum levels to further increase the ammonium yield. In addition, elevated levels of nitrogenase gene transcription are not accompanied by a corresponding dramatic increase in hydrogenase gene transcription levels or hydrogen uptake rates. Of the three potential electron donor systems for nitrogenase, only the rnf1 gene cluster showed a transcriptional correlation to the increased yield of ammonium. Our results also highlight several additional genes that may play a role in supporting elevated ammonium production in this aerobic nitrogen-fixing model bacterium. IMPORTANCE The transcriptional differences found during stationary-phase ammonium accumulation show a strong contrast between the deregulated (nifL-disrupted) and wild-type strains and what was previously reported for the wild-type strain under exponential-phase growth conditions. These results demonstrate that further improvement of the ammonium yield in this nitrogenase-deregulated strain can be obtained by increasing the amount of available molybdenum in the medium. These results also indicate a potential preference for one of two ATP synthases present in A. vinelandii as well as a prominent role for the membrane-bound hydrogenase over the soluble hydrogenase in hydrogen gas recycling. These results should inform future studies aimed at elucidating the important features of this phenotype and at maximizing ammonium production by this strain. PMID:28802272
Soil microbiological composition and its evolution along with forest succession in West Siberia
NASA Astrophysics Data System (ADS)
Naplekova, Nadezhda N.; Malakhova, Nataliya A.; Maksyutov, Shamil
2015-04-01
Natural forest succession process in West Siberia is mostly initiated by fire disturbance and involves changing tree species composition from pioneer species to late succession trees. Along with forest aging, litter and forest biomass accumulate. Changes of the soil nitrogen cycle between succession stages, important for plant functioning, have been reported in a number of studies. To help understanding the mechanism of the changes in the soil nitrogen cycle we analyzed soil microbiological composition for soil profiles (0-160 cm) taken at sites corresponding to three forest succession stages: (1) young pine, age 18-20 years, (2) mid age, dark coniferous, age 50-70 years, (3) mature, fir-spruce, age 170-180 years. Soil samples were taken from each soil horizon and analyzed in the laboratory for quantity and species composition of algae and other microorganisms. Algae community at all stages of succession is dominated by species typical for forest (pp. Chlorhormidium, Chlamydomonas, Chloroccocum, Pleurochloris, Stichococcus). Algae species composition is summarized by formulas: young forest C14X10Ch9H2P4Cf1B2amph4, mid age X16C15Ch10H4P4Cf1B2amph4, mature X24C22Ch17H10P2amph5Cf1, with designations C -- Cyanophyta, X -- Xantophyta, Ch -- Chlorophyta, B -- Bacillariophyta. Diversity is highest in upper two horizons and declines with depth. Microorganism composition on upper 20 cm was analyzed in three types of forests separately for consumers of protein (ammonifiers) and mineral nitrogen, fungi, azotobacter, Clostridium pasteurianum, oligonitrophylic (eg diazotrophs), nitrifiers and denitrifiers. Nitrogen biologic fixation in the mature forest soils is done mostly by oligonitrophyls and microorganisms of the genus Clostridium as well as сyanobacteria of sp. Nostoc, but the production rate appears low. Concentrations (count in gram soil) of nitrogen consumers (eg ammonifiers), oligonitrophyls, Clostridium and denitrifiers increase several fold from young forest to mid age, and from mid age to mature forest. On the contrary, azotobacter disappears in mature forest while nitrifiers decline by several times from young to mid age forest. Large variation in microbiological activity was observed between sites reaching different succession stage, however further studies are needed to discriminate between effects of the site productivity and forest age.
Tubulinlike protein from Spirochaeta bajacaliforniensis
NASA Technical Reports Server (NTRS)
Bermudes, D.; Fracek, S. P. Jr; Laursen, R. A.; Margulis, L.; Obar, R.; Tzertzinis, G.
1987-01-01
Tubulin proteins are the fundamental subunits of all polymeric microtubule-based eukaryotic structures. Long, hollow structures each composed of 13 protofilaments as revealed by electron microscopy, microtubules (240 angstroms in diameter) are nearly ubiquitous in eukaryotes. These proteins have been the subject of intense biochemical and biophysical interest since the early 1970s and are of evolutionary interest as well. If tubulin-based structures (i.e., neurotubules, mitotic spindle tubules, centrioles, kinetosomes, axonemes, etc.) evolved from spirochetes by way of motility symbioses, tubulin homologies with spirochete proteins should be detectable. Tubulin proteins are widely thought to be limited to eukaryotes. Yet both azotobacters and spirochetes have shown immunological cross-reactivity with anitubulin antibodies. In neither of these studies was tubulin isolated nor any specific antigen identified as responsible for the immunoreactivity. Furthermore, although far less uniform in structure than eukaryotic microtubules, various cytoplasmic fibers and tubules (as seen by electron microscopy) have been reported in several types of prokaryotes (e.g., Spirochaeta; large termite spirochetes; treponemes; cyanobacteria; and Azotobacter. This work forms a part of our long-range study of the possible prokaryotic origin of tubulin and microtubules. Spirochetes are helically shaped gram-negative motile prokaryotes. They differ from all other bacteria in that the position of their flagella is periplasmic: their flagella lie between the inner and outer membranes of the gram-negative cell wall. Some of the largest spirochetes have longitudinally aligned 240 angstroms microtubules. Unfortunately, in spite of many attempts, all of the larger spirochetes (family Pillotaceae) with well-defined cytoplasmic tubules and antitubulin immunoreactivity are not cultivable. However, a newly described spirochete species (Spirochaeta bajacaliforniensis) possessing cytoplasmic fibers displays antitubulin immunoreactivity in whole-cell preparations. Since preliminary observations suggested that Spirochaeta bajacaliforniensis proteins may be related to eukaryotic tubulins, their characterization was undertaken. Brain tubulin can be purified by utilizing its ability to polymerize at warm temperatures and to depolymerize in the cold. After several cycles of sedimentation and redissolution the microtubule fraction is composed of 75% tubulin and 20% high molecular mass microtubule-associated proteins (MAPs). In this paper we report that components of cell lysates, prepared from a spirochete that contains cytoplasmic fibers (Spirochaeta bajacaliforniensis), also exhibit the property of temperature-dependent cyclical sedimentation. Additionally we report the identification and characterization of the polypeptide responsible for cross-reactivity with antitubulin antiserum.
Tubulinlike protein from Spirochaeta bajacaliforniensis
NASA Technical Reports Server (NTRS)
Bermudes, D.; Fracek, S. P. Jr; Laursen, R. A.; Margulis, L.; Obar, R.; Tzertzinis, G.
1987-01-01
Tubulin proteins are the fundamental subunits of all polymeric microtubule-based eukaryotic structures. Long, hollow structures each composed of 13 protofilaments as revealed by electron microscopy, microtubules (240 angstroms in diameter) are nearly ubiquitous in eukaryotes. These proteins have been the subject of intense biochemical and biophyiscal interest since the early 1970s and are of evolutionary interest as well. If tubulin-based structures (i.e., neurotubules, mitotic spindle tubules, centrioles, kinetosomes, axonemes, etc.) evolved from spirochetes by way of motility symbioses, tubulin homologies with spirochete proteins should be detectable. Tubulin proteins are widely thought to be limited to eukaryotes. Yet both azotobacters and spirochetes have shown immunological cross-reactivity with antitubulin antibodies. In neither of these studies was tubulin isolated nor any specific antigen identified as responsible for the immunoreactivity. Furthermore, although far less uniform in structure than eukaryotic microtubules, various cytoplasmic fibers and tubules (as seen by electron microscopy) have been reported in several types of prokaryotes (e.g., Spirochaeta; large termite spirochetes; treponemes; cyanobacteria; and Azotobacter. This work forms a part of our long-range study of the possible prokaryotic origin of tubulin and microtubules. Spirochetes are helically shaped gram-negative motile prokaryotes. They differ from all other bacterial in that the position of their flagella is periplasmic: their flagella lie between the inner and outer membranes of the gram-negative cell wall. Some of the largest spirochetes have longitudinally aligned 240 angstrom microtubules. Unfortunately, in spite of many attempts, all of the larger spirochetes (family Pillotaceae) with well-defined cytoplasmic tubules and antitubulin immunoreactivity are not cultivable. However, a newly described spirochete species (Spirochaeta bajacaliforniensis) possessing cytoplasmic fibers displays antitubulin immunoreactivity in whole-cell preparations. Since preliminary observations suggested that Spirochaeta bajacaliforniensis proteins may be related to eukaryotic tubulins, their characterization was undertaken. Brain tubulin can be purified by utilizing its ability to polymerize at warm temperatures and to depolymerize in the cold. After several cycles of sedimentation and redissolution the microtubule fraction is comprised of 75% tubulin and 20% high molecular mass microtubule-associated proteins (MAPs). In this paper we report that components of cell lysates, prepared from a spirochete that contains cytoplasmic fibers (Spirochaeta bajacaliforniensis), also exhibit the property of temperature-dependent cyclical sedimentation. Additionally we report the identification and characterization of the polypeptide responsible for cross-reactivity with antitubulin antiserum.
The crystal structure of NADPH:ferredoxin reductase from Azotobacter vinelandii.
Sridhar Prasad, G.; Kresge, N.; Muhlberg, A. B.; Shaw, A.; Jung, Y. S.; Burgess, B. K.; Stout, C. D.
1998-01-01
NADPH:ferredoxin reductase (AvFPR) is involved in the response to oxidative stress in Azotobacter vinelandii. The crystal structure of AvFPR has been determined at 2.0 A resolution. The polypeptide fold is homologous with six other oxidoreductases whose structures have been solved including Escherichia coli flavodoxin reductase (EcFldR) and spinach, and Anabaena ferredoxin:NADP+ reductases (FNR). AvFPR is overall most homologous to EcFldR. The structure is comprised of a N-terminal six-stranded antiparallel beta-barrel domain, which binds FAD, and a C-terminal five-stranded parallel beta-sheet domain, which binds NADPH/NADP+ and has a classical nucleotide binding fold. The two domains associate to form a deep cleft where the NADPH and FAD binding sites are juxtaposed. The structure displays sequence conserved motifs in the region surrounding the two dinucleotide binding sites, which are characteristic of the homologous enzymes. The folded over conformation of FAD in AvFPR is similar to that in EcFldR due to stacking of Phe255 on the adenine ring of FAD, but it differs from that in the FNR enzymes, which lack a homologous aromatic residue. The structure of AvFPR displays three unique features in the environment of the bound FAD. Two features may affect the rate of reduction of FAD: the absence of an aromatic residue stacked on the isoalloxazine ring in the NADPH binding site; and the interaction of a carbonyl group with N10 of the flavin. Both of these features are due to the substitution of a conserved C-terminal tyrosine residue with alanine (Ala254) in AvFPR. An additional unique feature may affect the interaction of AvFPR with its redox partner ferredoxin I (FdI). This is the extension of the C-terminus by three residues relative to EcFldR and by four residues relative to FNR. The C-terminal residue, Lys258, interacts with the AMP phosphate of FAD. Consequently, both phosphate groups are paired with a basic group due to the simultaneous interaction of the FMN phosphate with Arg51 in a conserved FAD binding motif. The fourth feature, common to homologous oxidoreductases, is a concentration of 10 basic residues on the face of the protein surrounding the active site, in addition to Arg51 and Lys258. PMID:9865948
Shibusawa, Yoichi; Ito, Yoichiro
2014-01-01
This review describes protein purifications from cell culture medium or cell-lysate by high speed counter-current chromatography using the cross-axis coil planet centrifuge. Purifications were performed using aqueous two phase systems composed of polyethylene glycols and dextrans. PMID:25360182
ERIC Educational Resources Information Center
French, Brian F.; Maller, Susan J.
2007-01-01
Two unresolved implementation issues with logistic regression (LR) for differential item functioning (DIF) detection include ability purification and effect size use. Purification is suggested to control inaccuracies in DIF detection as a result of DIF items in the ability estimate. Additionally, effect size use may be beneficial in controlling…
ERIC Educational Resources Information Center
Fleitas, Andrea L.; Randall, Lía M.; Möller, Matías N.; Denicola, Ana
2016-01-01
This practical class activity was designed to introduce students to recombinant protein expression and purification. The principal goal is to shed light on basic aspects concerning recombinant protein production, in particular protein expression, chromatography methods for protein purification, and enzyme activity as a tool to evaluate purity and…
The MIMIC Method with Scale Purification for Detecting Differential Item Functioning
ERIC Educational Resources Information Center
Wang, Wen-Chung; Shih, Ching-Lin; Yang, Chih-Chien
2009-01-01
This study implements a scale purification procedure onto the standard MIMIC method for differential item functioning (DIF) detection and assesses its performance through a series of simulations. It is found that the MIMIC method with scale purification (denoted as M-SP) outperforms the standard MIMIC method (denoted as M-ST) in controlling…
Effect of Purification Procedures on DIF Analysis in IRTPRO
ERIC Educational Resources Information Center
Fikis, David R. J.; Oshima, T. C.
2017-01-01
Purification of the test has been a well-accepted procedure in enhancing the performance of tests for differential item functioning (DIF). As defined by Lord, purification requires reestimation of ability parameters after removing DIF items before conducting the final DIF analysis. IRTPRO 3 is a recently updated program for analyses in item…
21 CFR 876.5665 - Water purification system for hemodialysis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Water purification system for hemodialysis. 876.5665 Section 876.5665 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a)...
A Versatile and Inexpensive Enzyme Purification Experiment for Undergraduate Biochemistry Labs.
ERIC Educational Resources Information Center
Farrell, Shawn O.; Choo, Darryl
1989-01-01
Develops an experiment that could be done in two- to three-hour blocks and does not rely on cold room procedures for most of the purification. Describes the materials, methods, and results of the purification of bovine heart lactate dehydrogenase using ammonium sulfate fractionation, dialysis, and separation using affinity chromatography and…
Serpa, Gisele; Augusto, Elisabeth Fátima Pires; Tamashiro, Wirla Maria Silva Cunha; Ribeiro, Mariana Borçoe; Miranda, Everson Alves; Bueno, Sônia Maria Alves
2005-02-25
The large scale production of monoclonal antibodies (McAbs) has gaining increased relevance with the development of the hybridoma cell culture in bioreactors creating a need for specific efficient bioseparation techniques. Conventional fixed bead affinity adsorption commonly applied for McAbs purification has the drawback of low flow rates and colmatage. We developed and evaluated a immobilized metal affinity chromatographies (IMAC) affinity membrane for the purification of anti-TNP IgG(1) mouse McAbs. We immobilized metal ions on a poly(ethylene vinyl alcohol) hollow fiber membrane (Me(2+)-IDA-PEVA) and applied it for the purification of this McAbs from cell culture supernatant after precipitation with 50% saturation of ammonium sulphate. The purity of IgG(1) in the eluate fractions was high when eluted from Zn(2+) complex. The anti-TNP antibody could be eluted under conditions causing no loss of antigen binding capacity. The purification procedure can be considered as an alternative to the biospecific adsorbent commonly applied for mouse IgG(1) purification, the protein G-Sepharose.
Piletska, Elena V; Karim, Kal; Cutler, Malcolm; Piletsky, Sergey A
2013-01-01
A polymeric adsorbent for extraction of the antimalarial drug artemisinin from Artemisia annua L. was computationally designed. This polymer demonstrated a high capacity for artemisinin (120 mg g(-1) ), quantitative recovery (87%) and was found to be an effective material for purification of artemisinin from complex plant matrix. The artemisinin quantification was conducted using an optimised HPLC-MS protocol, which was characterised by high precision and linearity in the concentration range between 0.05 and 2 μg mL(-1) . Optimisation of the purification protocol also involved screening of commercial adsorbents for the removal of waxes and other interfering natural compounds, which inhibit the crystallisation of artemisinin. As a result of a two step-purification protocol crystals of artemisinin were obtained, and artemisinin purity was evaluated as 75%. By performing the second stage of purification twice, the purity of artemisinin can be further improved to 99%. The developed protocol produced high-purity artemisinin using only a few purification steps that makes it suitable for large scale industrial manufacturing process. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Discussion on runoff purification technology of highway bridge deck based on water quality safety
NASA Astrophysics Data System (ADS)
Tan, Sheng-guang; Liu, Xue-xin; Zou, Guo-ping; Xiong, Xin-zhu; Tao, Shuang-cheng
2018-06-01
Aiming at the actual problems existing, including a poor purification effect of highway bridge runoff collection and treatment system across sensitive water and necessary manual emergency operation, three kinds of technology, three pools system of bridge runoff purification, the integral pool of bridge runoff purification and ecological planting tank, are put forward by optimizing the structure of purification unit and system setting. At the same time, we come up with an emergency strategy for hazardous material leakage basing on automatic identification and remote control of traffic accidents. On the basis of combining these with the optimized pool structure, sensitive water safety can be guaranteed and water pollution, from directly discharging of bridge runoff, can be decreased. For making up for the shortages of green highway construction technology, the technique has important reference value.
Improving the large scale purification of the HIV microbicide, griffithsin.
Fuqua, Joshua L; Wanga, Valentine; Palmer, Kenneth E
2015-02-22
Griffithsin is a broad spectrum antiviral lectin that inhibits viral entry and maturation processes through binding clusters of oligomannose glycans on viral envelope glycoproteins. An efficient, scaleable manufacturing process for griffithsin active pharmaceutical ingredient (API) is essential for particularly cost-sensitive products such as griffithsin -based topical microbicides for HIV-1 prevention in resource poor settings. Our previously published purification method used ceramic filtration followed by two chromatography steps, resulting in a protein recovery of 30%. Our objective was to develop a scalable purification method for griffithsin expressed in Nicotiana benthamiana plants that would increase yield, reduce production costs, and simplify manufacturing techniques. Considering the future need to transfer griffithsin manufacturing technology to resource poor areas, we chose to focus modifying the purification process, paying particular attention to introducing simple, low-cost, and scalable procedures such as use of temperature, pH, ion concentration, and filtration to enhance product recovery. We achieved >99% pure griffithsin API by generating the initial green juice extract in pH 4 buffer, heating the extract to 55°C, incubating overnight with a bentonite MgCl2 mixture, and final purification with Capto™ multimodal chromatography. Griffithsin extracted with this protocol maintains activity comparable to griffithsin purified by the previously published method and we are able to recover a substantially higher yield: 88 ± 5% of griffithsin from the initial extract. The method was scaled to produce gram quantities of griffithsin with high yields, low endotoxin levels, and low purification costs maintained. The methodology developed to purify griffithsin introduces and develops multiple tools for purification of recombinant proteins from plants at an industrial scale. These tools allow for robust cost-effective production and purification of griffithsin. The methodology can be readily scaled to the bench top or industry and process components can be used for purification of additional proteins based on biophysical characteristics.
Brion, F; Rogerieux, F; Noury, P; Migeon, B; Flammarion, P; Thybaud, E; Porcher, J M
2000-01-14
A two-step purification protocol was developed to purify rainbow trout (Oncorhynchus mykiss) vitellogenin (Vtg) and was successfully applied to Vtg of chub (Leuciscus cephalus) and gudgeon (Gobio gobio). Capture and intermediate purification were performed by anion-exchange chromatography on a Resource Q column and a polishing step was performed by gel permeation chromatography on Superdex 200 column. This method is a rapid two-step purification procedure that gave a pure solution of Vtg as assessed by silver staining electrophoresis and immunochemical characterisation.
Purification of Microbially Expressed Recombinant Proteins via a Dual ELP Split Intein System.
Shi, Changhua; Han, Tzu-Chiang; Wood, David W
2017-01-01
Fusions of elastin-like peptide (ELP) purification tags and self-cleaving inteins provide a powerful platform for purifying tagless recombinant proteins without the need for conventional packed-bed columns. A drawback to this method has been premature cleaving of the ELP tag during expression, before the purification procedure can take place. Here we demonstrate a split-intein method, where the self-cleaving intein is divided into two inactive segments during expression and purification. Spontaneous assembly of the purified intein segments then restores self-cleaving activity to deliver the tagless target protein.
Demeke, Tigst; Ratnayaka, Indira; Phan, Anh
2009-01-01
The quality of DNA affects the accuracy and repeatability of quantitative PCR results. Different DNA extraction and purification methods were compared for quantification of Roundup Ready (RR) soybean (event 40-3-2) by real-time PCR. DNA was extracted using cetylmethylammonium bromide (CTAB), DNeasy Plant Mini Kit, and Wizard Magnetic DNA purification system for food. CTAB-extracted DNA was also purified using the Zymo (DNA Clean & Concentrator 25 kit), Qtip 100 (Qiagen Genomic-Tip 100/G), and QIAEX II Gel Extraction Kit. The CTAB extraction method provided the largest amount of DNA, and the Zymo purification kit resulted in the highest percentage of DNA recovery. The Abs260/280 and Abs260/230 ratios were less than the expected values for some of the DNA extraction and purification methods used, indicating the presence of substances that could inhibit PCR reactions. Real-time quantitative PCR results were affected by the DNA extraction and purification methods used. Further purification or dilution of the CTAB DNA was required for successful quantification of RR soybean. Less variability of quantitative PCR results was observed among experiments and replications for DNA extracted and/or purified by CTAB, CTAB+Zymo, CTAB+Qtip 100, and DNeasy methods. Correct and repeatable results for real-time PCR quantification of RR soybean were achieved using CTAB DNA purified with Zymo and Qtip 100 methods.
Purification of liquid metal systems with sodium coolant from oxygen using getters
NASA Astrophysics Data System (ADS)
Kozlov, F. A.; Konovalov, M. A.; Sorokin, A. P.
2016-05-01
For increasing the safety and economic parameters of nuclear power stations (NPSs) with sodium coolant, it was decided to install all systems contacting radioactive sodium, including purification systems of circuit I, in the reactor vessel. The performance and capacity of cold traps (CTs) (conventional element of coolant purification systems) in these conditions are limited by their volume. It was proposed to use hot traps (HTs) in circuit I for coolant purification from oxygen. It was demonstrated that, at rated parameters of the installation when the temperature of the coolant streamlining the getter (gas absorber) is equal to 550°C, the hot trap can provide the required coolant purity. In shutdown modes at 250-300°C, the performance of the hot trap is reduced by four orders of magnitude. Possible HT operation regimes for shutdown modes and while reaching rated parameters were proposed and analyzed. Basic attention was paid to purification modes at power rise after commissioning and accidental contamination of the coolant when the initial oxygen concentration in it reached 25 mln-1. It was demonstrated that the efficiency of purification systems can be increased using HTs with the getter in the form of a foil or granules. The possibility of implementing the "fast purification" mode in which the coolant is purified simultaneously with passing over from the shutdown mode to the rated parameters was substantiated.
Method for Rapid Purification of Class IIa Bacteriocins and Comparison of Their Activities
Guyonnet, D.; Fremaux, C.; Cenatiempo, Y.; Berjeaud, J. M.
2000-01-01
A three-step method was developed for the purification of mesentericin Y105 (60% yield) from the culture supernatant of Leuconostoc mesenteroides Y105. The same procedure was successfully applied to the purification of five other anti-Listeria bacteriocins identified by mass spectrometry. Specific activities of the purified bacteriocins were compared. PMID:10742275
Item Purification Does Not Always Improve DIF Detection: A Counterexample with Angoff's Delta Plot
ERIC Educational Resources Information Center
Magis, David; Facon, Bruno
2013-01-01
Item purification is an iterative process that is often advocated as improving the identification of items affected by differential item functioning (DIF). With test-score-based DIF detection methods, item purification iteratively removes the items currently flagged as DIF from the test scores to get purified sets of items, unaffected by DIF. The…
A novel method for purification of the endogenously expressed fission yeast Set2 complex.
Suzuki, Shota; Nagao, Koji; Obuse, Chikashi; Murakami, Yota; Takahata, Shinya
2014-05-01
Chromatin-associated proteins are heterogeneously and dynamically composed. To gain a complete understanding of DNA packaging and basic nuclear functions, it is important to generate a comprehensive inventory of these proteins. However, biochemical purification of chromatin-associated proteins is difficult and is accompanied by concerns over complex stability, protein solubility and yield. Here, we describe a new method for optimized purification of the endogenously expressed fission yeast Set2 complex, histone H3K36 methyltransferase. Using the standard centrifugation procedure for purification, approximately half of the Set2 protein separated into the insoluble chromatin pellet fraction, making it impossible to recover the large amounts of soluble Set2. To overcome this poor recovery, we developed a novel protein purification technique termed the filtration/immunoaffinity purification/mass spectrometry (FIM) method, which eliminates the need for centrifugation. Using the FIM method, in which whole cell lysates were filtered consecutively through eight different pore sizes (53-0.8μm), a high yield of soluble FLAG-tagged Set2 was obtained from fission yeast. The technique was suitable for affinity purification and produced a low background. A mass spectrometry analysis of anti-FLAG immunoprecipitated proteins revealed that Rpb1, Rpb2 and Rpb3, which have all been reported previously as components of the budding yeast Set2 complex, were isolated from fission yeast using the FIM method. In addition, other subunits of RNA polymerase II and its phosphatase were also identified. In conclusion, the FIM method is valid for the efficient purification of protein complexes that separate into the insoluble chromatin pellet fraction during centrifugation. Copyright © 2014 Elsevier Inc. All rights reserved.
Liang, Zheng; Li, Yajiao; Li, Peng; Jiang, Chunbo
2018-01-01
Excessive phosphorus (P) contributes to eutrophication by degrading water quality and limiting human use of water resources. Identifying economic and convenient methods to control soluble reactive phosphorus (SRP) pollution in urban runoff is the key point of rainwater management strategies. Through three series of different tests involving influencing factors, continuous operation and intermittent operation, this study explored the purification effects of bioretention tanks under different experimental conditions, it included nine intermittent tests, single field continuous test with three groups of different fillers (Fly ash mixed with sand, Blast furnace slag, and Soil), and eight intermittent tests with single filler (Blast furnace slag mixed with sand). Among the three filler combinations studied, the filler with fly ash mixed with sand achieved the best pollution reduction efficiency. The setting of the submerged zone exerted minimal influence on the P removal of the three filler combinations. An extension of the dry period slightly promoted the P purification effect. The combination of fly ash mixed with sand demonstrated a positive purification effect on SRP during short- or long-term simulated rainfall duration. Blast furnace slag also presented a positive purification effect in the short term, although its continuous purification effect on SRP was poor in the long term. The purification abilities of soil in the short and long terms were weak. Under intermittent operations across different seasons, SRP removal was unstable, and effluent concentration processes were different. The purification effect of the bioretention system on SRP was predicted through partial least squares regression (PLS) modeling analysis. The event mean concentration removal of SRP was positively related to the adsorption capacity of filler and rainfall interval time and negatively related to submerged zones, influent concentration and volume. PMID:29742120
NASA Astrophysics Data System (ADS)
Cahyono, Bambang; Maduwu, Ratna Dewi; Widayat, Suzery, Meiny
2015-12-01
Commercial silica gel only used once by many researchers and affected high cost for purification process, also less support the green chemistry program. This research focused in regeneration silica gel that used purification of temulawak's extracts (Curcuma xanthorrhiza Roxb) by vacuum column chromatography. Sample extracts (contains 10.1195±0.5971% of curcuminoids) was purified by vacuum column chromatography (pressure: 45 kPa, column: 100mm on length and 16mm on diameter). Ethanol 96% and acetone were compared as eluent. The amount of solvent and yield of curcuminoids used as indicator purification. The silica gel was regenerated with heating in 600°C for 8 hours The silica gels were analyzed by IR spectroscopy and X-ray diffraction. Furthermore, regenerated silica gel was used as the stationary phase in vacuum column chromatography under the same conditions with the previous purification. All the purification experiments were performed in three repetitions. Based on regression equation, y=0.132x+0.0011 (r2=0.9997) the yield of curcuminoids on purified products using ethanol as the eluent was improved 4.26% (to 14.3724±0.5749%) and by acetone was improved 3,03% (to 13.1450 ±0.6318%). The IR spectrum of both silica gel showed the same vibration profile and also there were three crystallinity peaks missing on its X-ray diffraction. Regenerated silica gel has the same performance with new silica gel in purification of temulawak's extract: by ethanol has increased 4.08% (14.1947±0.7415%) and 2.93% (13.0447±0.4822) by acetone. In addition, all purification products showed similar TLC profiles. Purification using regenerated silica gel as the adsorbent on vacuum column chromatography has exactly same potential with the new silica gel.
Purification of boron nitride nanotubes via polymer wrapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jin-Hyuk; Kim, Jaewoo; WCI Quantum Beam based Radiation Research Center, Korea Atomic Energy Research Institute, 1045 Daedukdaero, Daejeon 305-353
2013-03-15
Highlights: ► Surface modification of boron nitride nanotubes using polymeric materials. ► Surface-modified BNNT was purified with a simple dilution-centrifugation step. ► Surface-modified BNNT can be directly used for polymer composite fabrication ► Degree of purification was analyzed by Raman spectroscopy. - Abstract: Boron nitride nanotubes (BNNT) synthesized by a ball milling-annealing were surface-modified using three different types of polymeric materials. Those materials were chosen depending on future applications especially in polymer nanocomposite fabrications. We found that the surface-modified BNNT can be purified with a simple dilution-centrifugation step, which would be suitable for large-scale purification. Degree of purification was monitoredmore » by means of the center peak position and FWHM of E{sub 2g} mode of BNNT in Raman spectra. As the purification of BNNT develops, the peak position was up-shifted while FWHM of the peak was narrowed.« less
Feasibility Study on Manufacturing Lightweight Aggregates from Water Purification Sludge
NASA Astrophysics Data System (ADS)
Peng, Ching-Fang; Chen, How-Ji
2018-02-01
This study mainly discussed the feasibility of manufacturing lightweight aggregates from water purification sludge in Taiwan. They were analysed for the physical and chemical composition before the sintering test for lightweight aggregates in a laboratory. Then the physical and mechanical properties of the synthesized aggregates were assessed. The result showed that the chemical composition of sludge in the water purification plants was within the appropriate range for manufacturing lightweight aggregate as proposed in the literature. The sintering test demonstrated that the particle density of aggregates from the ten types of water purification sludge were mostly less than 1.8 g/cm3. In addition, the dry unit weight, the organic impurity, the ignition loss, and other characteristics of synthesized aggregates met the requirement of CNS standards, while its water absorption and crushing strength also fulfilled the general commercial specifications. Therefore, reclamation of water purification sludge for production of lightweight aggregate is indeed feasible.
Ice-shell purification of ice-binding proteins.
Marshall, Craig J; Basu, Koli; Davies, Peter L
2016-06-01
Ice-affinity purification is a simple and efficient method of purifying to homogeneity both natural and recombinant ice-binding proteins. The purification involves the incorporation of ice-binding proteins into slowly-growing ice and the exclusion of other proteins and solutes. In previous approaches, the ice was grown around a hollow brass finger through which coolant was circulated. We describe here an easily-constructed apparatus that employs ice affinity purification that not only shortens the time for purification from 1-2 days to 1-2 h, but also enhances yield and purity. In this apparatus, the surface area for the separation was increased by extracting the ice-binding proteins into an ice-shell formed inside a rotating round-bottom flask partially submerged in a sub-zero bath. In principle, any ice-binding compound can be recovered from liquid solution, and the method is readily scalable. Copyright © 2016 Elsevier Inc. All rights reserved.
1990-05-01
Health Risks in Potential Theaters of Operation for U.S. Military Forces. The nine volumes of this study contain a comprehensive assessment of the chemical...module. The percentage of total free chlorine ( hypochlorous acid , HOCl) plus hypochlorlte ion (OClN), measured by the Model 453 membrane sensor, varies...between the performances of the 600-Sph Reverse Osmosis Water Purification Unit (ROWPU) operated in the bypass node and ’the Mobile Water Purification
Corletti, Michael M.; Lau, Louis K.; Schulz, Terry L.
1993-01-01
The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.
Polyether sulfone/hydroxyapatite mixed matrix membranes for protein purification
NASA Astrophysics Data System (ADS)
Sun, Junfen; Wu, Lishun
2014-07-01
This work proposes a novel approach for protein purification from solution using mixed matrix membranes (MMMs) comprising of hydroxyapatite (HAP) inside polyether sulfone (PES) matrix. The influence of HAP particle loading on membrane morphology is studied. The MMMs are further characterized concerning permeability and adsorption capacity. The MMMs show purification of protein via both diffusion as well as adsorption, and show the potential of using MMMs for improvements in protein purification techniques. The bovine serum albumin (BSA) was used as a model protein. The properties and structures of MMMs prepared by immersion phase separation process were characterized by pure water flux, BSA adsorption and scanning electron microscopy (SEM).
Semiconductor grade, solar silicon purification project
NASA Technical Reports Server (NTRS)
Ingle, W. M.; Rosler, R. R.; Thompson, S. W.; Chaney, R. E.
1979-01-01
Experimental apparatus and procedures used in the development of a 3-step SiF2(x) polymer transport purification process are described. Both S.S.M.S. and E.S. analysis demonstrated that major purification had occured and some samples were indistinguishable from semiconductor grade silicon (except possibly for phosphorus). Recent electrical analysis via crystal growth reveals that the product contains compensated phosphorus and boron. The low projected product cost and short energy payback time suggest that the economics of this process will result in a cost less than the goal of $10/Kg(1975 dollars). The process appears to be readily scalable to a major silicon purification facility.
New trends and affinity tag designs for recombinant protein purification.
Wood, David W
2014-06-01
Engineered purification tags can facilitate very efficient purification of recombinant proteins, resulting in high yields and purities in a few standard steps. Over the years, many different purification tags have been developed, including short peptides, epitopes, folded protein domains, non-chromatographic tags and more recently, compound multifunctional tags with optimized capabilities. Although classic proteases are still primarily used to remove the tags from target proteins, new self-cleaving methods are gaining traction as a highly convenient alternative. In this review, we discuss some of these emerging trends, and examine their potential impacts and remaining challenges in recombinant protein research. Copyright © 2014 Elsevier Ltd. All rights reserved.
Succinonitrile Purification Facility
NASA Technical Reports Server (NTRS)
2003-01-01
The Succinonitrile (SCN) Purification Facility provides succinonitrile and succinonitrile alloys to several NRA selected investigations for flight and ground research at various levels of purity. The purification process employed includes both distillation and zone refining. Once the appropriate purification process is completed, samples are characterized to determine the liquidus and/or solidus temperature, which is then related to sample purity. The lab has various methods for measuring these temperatures with accuracies in the milliKelvin to tenths of milliKelvin range. The ultra-pure SCN produced in our facility is indistinguishable from the standard material provided by NIST to well within the stated +/- 1.5mK of the NIST triple point cells. In addition to delivering material to various investigations, our current activities include process improvement, characterization of impurities and triple point cell design and development. The purification process is being evaluated for each of the four vendors to determine the efficacy of each purification step. We are also collecting samples of the remainder from distillation and zone refining for analysis of the constituent impurities. The large triple point cells developed will contain SCN with a melting point of 58.0642 C +/- 1.5mK for use as a calibration standard for Standard Platinum Resistance Thermometers (SPRTs).
Tandem Affinity Purification of Protein Complexes from Eukaryotic Cells.
Ma, Zheng; Fung, Victor; D'Orso, Iván
2017-01-26
The purification of active protein-protein and protein-nucleic acid complexes is crucial for the characterization of enzymatic activities and de novo identification of novel subunits and post-translational modifications. Bacterial systems allow for the expression and purification of a wide variety of single polypeptides and protein complexes. However, this system does not enable the purification of protein subunits that contain post-translational modifications (e.g., phosphorylation and acetylation), and the identification of novel regulatory subunits that are only present/expressed in the eukaryotic system. Here, we provide a detailed description of a novel, robust, and efficient tandem affinity purification (TAP) method using STREP- and FLAG-tagged proteins that facilitates the purification of protein complexes with transiently or stably expressed epitope-tagged proteins from eukaryotic cells. This protocol can be applied to characterize protein complex functionality, to discover post-translational modifications on complex subunits, and to identify novel regulatory complex components by mass spectrometry. Notably, this TAP method can be applied to study protein complexes formed by eukaryotic or pathogenic (viral and bacterial) components, thus yielding a wide array of downstream experimental opportunities. We propose that researchers working with protein complexes could utilize this approach in many different ways.
Luan, Peng; Lee, Sophia; Paluch, Maciej; Kansopon, Joe; Viajar, Sharon; Begum, Zahira; Chiang, Nancy; Nakamura, Gerald; Hass, Philip E.; Wong, Athena W.; Lazar, Greg A.
2018-01-01
ABSTRACT To rapidly find “best-in-class” antibody therapeutics, it has become essential to develop high throughput (HTP) processes that allow rapid assessment of antibodies for functional and molecular properties. Consequently, it is critical to have access to sufficient amounts of high quality antibody, to carry out accurate and quantitative characterization. We have developed automated workflows using liquid handling systems to conduct affinity-based purification either in batch or tip column mode. Here, we demonstrate the capability to purify >2000 antibodies per day from microscale (1 mL) cultures. Our optimized, automated process for human IgG1 purification using MabSelect SuRe resin achieves ∼70% recovery over a wide range of antibody loads, up to 500 µg. This HTP process works well for hybridoma-derived antibodies that can be purified by MabSelect SuRe resin. For rat IgG2a, which is often encountered in hybridoma cultures and is challenging to purify via an HTP process, we established automated purification with GammaBind Plus resin. Using these HTP purification processes, we can efficiently recover sufficient amounts of antibodies from mammalian transient or hybridoma cultures with quality comparable to conventional column purification. PMID:29494273
Automated Purification of Recombinant Proteins: Combining High-throughput with High Yield
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chiann Tso; Moore, Priscilla A.; Auberry, Deanna L.
2006-05-01
Protein crystallography, mapping protein interactions and other approaches of current functional genomics require not only purifying large numbers of proteins but also obtaining sufficient yield and homogeneity for downstream high-throughput applications. There is a need for the development of robust automated high-throughput protein expression and purification processes to meet these requirements. We developed and compared two alternative workflows for automated purification of recombinant proteins based on expression of bacterial genes in Escherichia coli: First - a filtration separation protocol based on expression of 800 ml E. coli cultures followed by filtration purification using Ni2+-NTATM Agarose (Qiagen). Second - a smallermore » scale magnetic separation method based on expression in 25 ml cultures of E.coli followed by 96-well purification on MagneHisTM Ni2+ Agarose (Promega). Both workflows provided comparable average yields of proteins about 8 ug of purified protein per unit of OD at 600 nm of bacterial culture. We discuss advantages and limitations of the automated workflows that can provide proteins more than 90 % pure in the range of 100 ug – 45 mg per purification run as well as strategies for optimization of these protocols.« less
Song, Dongmin; Gao, Zhendong; Zhao, Liqiang; Wang, Xiangxiang; Xu, Haijin; Bai, Yanling; Zhang, Xiuming; Linder, Markus B; Feng, Hui; Qiao, Mingqiang
2016-12-01
Hydrophobins are proteins produced by filamentous fungi with high natural-surfactant activities and that can self-assemble in interfaces of air-water or solid-water to form amphiphilic membranes. Here, we reported a high-yield fermentation method for hydrophobin HGFI from Grifola frondosa in Pichia pastoris, attaining production of 300 mg/L by keeping the dissolved oxygen level at 15%-25% by turning the methanol-feeding speed. We also developed a novel HGFI-purification method enabling large-scare purification of HGFI, with >90% recovery. Additionally, we observed that hydrophobin HGFI in fermentation broth precipitated at pH < 7.0 and temperatures >90 °C. We also identified the structure and properties of proteins purified by this method through atomic force microscopy, circular dichroism, X-ray photoelectron spectroscopy, and water-contact angle measurement, which is similar to protein purification by ultrafiltration without heating treatment that enables our method to maintain native HGFI structure and properties. Furthermore, the purification method presented here can be applied to large-scale purification of other type I hydrophobins. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Bitner, Rex M.; Koller, Susan C.
2002-06-01
The automated high throughput purification of genomic DNA form plant materials can be performed using MagneSil paramagnetic particles on the Beckman-Coulter FX, BioMek 2000, and the Tecan Genesis robot. Similar automated methods are available for DNA purifications from animal blood. These methods eliminate organic extractions, lengthy incubations and cumbersome filter plates. The DNA is suitable for applications such as PCR and RAPD analysis. Methods are described for processing traditionally difficult samples such as those containing large amounts of polyphenolics or oils, while still maintaining a high level of DNA purity. The robotic protocols have ben optimized for agricultural applications such as marker assisted breeding, seed-quality testing, and SNP discovery and scoring. In addition to high yield purification of DNA from plant samples or animal blood, the use of Promega's DNA-IQ purification system is also described. This method allows for the purification of a narrow range of DNA regardless of the amount of additional DNA that is present in the initial sample. This simultaneous Isolation and Quantification of DNA allows the DNA to be used directly in applications such as PCR, SNP analysis, and RAPD, without the need for separate quantitation of the DNA.
Isolation of viral ribonucleoprotein complexes from infected cells by tandem affinity purification.
Mayer, Daniel; Baginsky, Sacha; Schwemmle, Martin
2005-11-01
The biochemical purification and analysis of viral ribonucleoprotein complexes (RNPs) of negative-strand RNA viruses is hampered by the lack of suitable tags that facilitate specific enrichment of these complexes. We therefore tested whether fusion of the tandem-affinity-purification (TAP) tag to the main component of viral RNPs, the nucleoprotein, might allow the isolation of these RNPs from cells. We constitutively expressed TAP-tagged nucleoprotein of Borna disease virus (BDV) in cells persistently infected with this virus. The TAP-tagged bait was efficiently incorporated into viral RNPs, did not interfere with BDV replication and was also packaged into viral particles. Native purification of the tagged protein complexes from BDV-infected cells by two consecutive affinity columns resulted in the isolation of several viral proteins, which were identified by MS analysis as the matrix protein, the two forms of the nucleoprotein and the phosphoprotein. In addition to the viral proteins, RT-PCR analysis revealed the presence of viral genomic RNA. Introduction of further protease cleavage sites within the TAP-tag significantly increased the purification yield. These results demonstrate that purification of TAP-tagged viral RNPs is possible and efficient, and may therefore provide new avenues for biochemical and functional studies of these complexes.
Stadelmann, Britta; Birkestedt, Sandra; Hellman, Ulf; Svärd, Staffan G.
2012-01-01
In recent years, proteomics has come of age with the development of efficient tools for purification, identification, and characterization of gene products predicted by genome projects. The intestinal protozoan Giardia intestinalis can be transfected, but there is only a limited set of vectors available, and most of them are not user friendly. This work delineates the construction of a suite of cassette-based expression vectors for use in Giardia. Expression is provided by the strong constitutive ornithine carbamoyltransferase (OCT) promoter, and tagging is possible in both N- and C-terminal configurations. Taken together, the vectors are capable of providing protein localization and production of recombinant proteins, followed by efficient purification by a novel affinity tag combination, streptavidin binding peptide–glutathione S-transferase (SBP-GST). The option of removing the tags from purified proteins was provided by the inclusion of a PreScission protease site. The efficiency and feasibility of producing and purifying endogenous recombinant Giardia proteins with the developed vectors was demonstrated by the purification of active recombinant arginine deiminase (ADI) and OCT from stably transfected trophozoites. Moreover, we describe the tagging, purification by StrepTactin affinity chromatography, and compositional analysis by mass spectrometry of the G. intestinalis 26S proteasome by employing the Strep II-FLAG–tandem affinity purification (SF-TAP) tag. This is the first report of efficient production and purification of recombinant proteins in and from Giardia, which will allow the study of specific parasite proteins and protein complexes. PMID:22611020
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tykvart, J.; Sacha, P.; Barinka, C.
2012-02-07
Affinity purification is a useful approach for purification of recombinant proteins. Eukaryotic expression systems have become more frequently used at the expense of prokaryotic systems since they afford recombinant eukaryotic proteins with post-translational modifications similar or identical to the native ones. Here, we present a one-step affinity purification set-up suitable for the purification of secreted proteins. The set-up is based on the interaction between biotin and mutated streptavidin. Drosophila Schneider 2 cells are chosen as the expression host, and a biotin acceptor peptide is used as an affinity tag. This tag is biotinylated by Escherichia coli biotin-protein ligase in vivo.more » We determined that localization of the ligase within the ER led to the most effective in vivo biotinylation of the secreted proteins. We optimized a protocol for large-scale expression and purification of AviTEV-tagged recombinant human glutamate carboxypeptidase II (Avi-GCPII) with milligram yields per liter of culture. We also determined the 3D structure of Avi-GCPII by X-ray crystallography and compared the enzymatic characteristics of the protein to those of its non-tagged variant. These experiments confirmed that AviTEV tag does not affect the biophysical properties of its fused partner. Purification approach, developed here, provides not only a sufficient amount of highly homogenous protein but also specifically and effectively biotinylates a target protein and thus enables its subsequent visualization or immobilization.« less
New data on electron-beam purification of wastewater
NASA Astrophysics Data System (ADS)
Pikaev, A. K.
2002-11-01
Recent environmental applications of radiation technology, developed in the author's laboratory, are presented in this paper. They are electron-beam and coagulation purification of molasses distillery slops from distillery-produced ethyl alcohol by fermentation of plant materials, electron-beam purification of wastewater from carboxylic acids (for example, formic acid) and removal of petroleum products (diesel fuel, motor oil and residual fuel oil) from water by γ-irradiation.
2014 Salish Kootenai College Equipment Grant
2016-09-14
using an appropriate purification machine. With this appropriate equipment, protein has been purified from a yeast expression system to explore the...purification machine. With this appropriate equipment, protein has been purified from a yeast expression system to explore the effects of that protein on...Scientific Progress We have successfully purified human YKL39 chilectin protein from a yeast expression system. We are currently working on purification
Filtration in the Use of Individual Water Purification Devices
2006-03-01
natural water pH will increase virus retention (references 14-17). One study investigating coliphage reduction by a 0.2 µm microporous filter...Filtration in the Use of Individual Water Purification Devices Technical Information Paper #31-004-0306 PURPOSE This information paper...natural waters . This paper is intended to assist the reader in evaluating the capabilities of Individual Water Purification Devices (IWPDs) using
9. Water Purification System and Instrument Air Receiver Tank, view ...
9. Water Purification System and Instrument Air Receiver Tank, view to the south. The water purification system is visible in the right foreground of the photograph and the instrument air receiver tank is visible in the right background of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID
Label-Free Biomarker Detection from Whole Blood
2010-02-01
we overcome this limitation by using distinct components within the sensor to perform purification and detection. A microfluidic purification chip...nanosensors to purify biomarkers of interest. This microfluidic purification chip (MPC) captures cancer biomarkers from physiological solutions and, after...assay validation experiments (Fig. 2c). As shown in Fig. 1d, after a second valve switching step transfers MPC contents to the nanosen- sor chip, the
ERIC Educational Resources Information Center
Coleman, Aaron B.
2010-01-01
Enzyme purification projects are an excellent way to introduce many aspects of protein biochemistry, but can be difficult to carry out under the constraints of a typical undergraduate laboratory course. We have designed a short laboratory project for the purification and identification of an "unknown" lactate dehydrogenase (LDH) isozyme that can…
Carvalho, Rimenys J; Cruz, Thayana A
2018-01-01
High-throughput screening (HTS) systems have emerged as important tools to provide fast and low cost evaluation of several conditions at once since it requires small quantities of material and sample volumes. These characteristics are extremely valuable for experiments with large number of variables enabling the application of design of experiments (DoE) strategies or simple experimental planning approaches. Once, the capacity of HTS systems to mimic chromatographic purification steps was established, several studies were performed successfully including scale down purification. Here, we propose a method for studying different purification conditions that can be used for any recombinant protein, including complex and glycosylated proteins, using low binding filter microplates.
Khromenkova, E P; Dimidova, L L; Dumbadze, O S; Aidinov, G T; Shendo, G L; Agirov, A Kh; Batchaev, Kh Kh
2015-01-01
Sanitary and parasitological studies of the waste effluents and surface reservoir waters were conducted in the south of Russia. The efficiency of purification of waste effluents from the pathogens of parasitic diseases was investigated in the region's sewage-purification facilities. The water of the surface water reservoirs was found to contain helminthic eggs and larvae and intestinal protozoan cysts because of the poor purification and disinfection of service fecal sewage waters. The poor purification and disinvasion of waste effluents in the region determine the potential risk of contamination of the surface water reservoirs and infection of the population with the pathogens of human parasitic diseases.
Corletti, M.M.; Lau, L.K.; Schulz, T.L.
1993-12-14
The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.
NASA Astrophysics Data System (ADS)
Kosolapova, K.; Al-Alwani, A.; Gorbachev, I.; Glukhovskoy, E.
2015-11-01
Recently, a new simple method for the purification of CdSe-CdS-ZnS quantum dots by using membrane filtration, the filtration process, successfully separated the oleic acid from quantum dots through membranes purification after synthesis; purification of quantum dots is a very significant part of post synthetical treatment that determines the properties of the material. We explore the possibilities of the Langmuir-Blodgett technique to make such layers, using quantum dots as a model system. The Langmuir monolayer of quantum dots were then investigated the surface pressure-area isotherm. From isotherm, we found the surface pressure monolayer changed with time.
[Pilot-scale purification of lipopeptide from marine-derived Bacillus marinus].
Gu, Kangbo; Guan, Cheng; Xu, Jiahui; Li, Shulan; Luo, Yuanchan; Shen, Guomin; Zhang, Daojing; Li, Yuanguang
2016-11-25
This research was aimed at establishing the pilot-scale purification technology of lipopeptide from marine-derived Bacillus marinus. We studied lipopeptide surfactivity interferences on scale-up unit technologies including acid precipitation, methanol extraction, solvent precipitation, salting out, extraction, silica gel column chromatography and HZ806 macroporous absorption resin column chromatography. Then, the unit technologies were combined in a certain order, to remove the impurities gradually, and to gain purified lipopeptide finally, with high recovery rate throughout the whole process. The novel pilot-scale purification technology could effectively isolate and purify lipopeptide with 87.51% to 100% purity in hectograms from 1 ton of Bacillus marinus B-9987 fermentation broth with more than 81.73% recovery rate. The first practical hectogram production of highly purified lipopeptide derived from Bacillus marinus was achieved. With this new purification method, using complex media became possible in fermentation process to reduce the fermentation cost and scale-up the purification for lipopeptide production. For practicability and economy, foaming problem resulting from massive water evaporation was avoided in this technology.
Samson, L; Czegeny, I; Mezosi, E; Erdei, A; Bodor, M; Cseke, B; Burman, K D; Nagy, E V
2012-01-01
Drinking water is the major natural source of iodine in many European countries. In the present study, we examined possible sites of iodine loss during the usual water purification process.Water samples from 6 sites during the technological process were taken and analyzed for iodine content. Under laboratory circumstances, prepared iodine in water solution has been used as a model to test the effect of the presence of chlorine. Samples from the purification sites revealed that in the presence of chlorine there is a progressive loss of iodine from the water. In the chlorine concentrations employed in the purification process, 24-h chlorine exposure eliminated more than 50% of iodine when the initial iodine concentration was 250 μg/l or less. Iodine was completely eliminated if the starting concentration was 16 μg/l.We conclude that chlorine used during water purification may be a major contributor to iodine deficiency in European communities.
Zhao, Hui-ru; Ren, Zao; Liu, Chun-ye
2015-04-01
To compare the purification effect of saponins from Ziziphi Spinosae Semen with different types of macroporous adsorption resin, and to optimize its purification technology. The type of macroporous resins was optimized by static adsorption method. The optimum technological conditions of saponins from Ziziphi Spinosae Semen was screened by single factor test and Box-Behnken Design-Response Surface Methodology. AB-8 macroporous resin had better purification effect of total saponins than other resins, optimum technological parameters were as follows: column height-diameter ratio was 5: 1, the concentration of sample solution was 2. 52 mg/mL, resin adsorption quantity was 8. 915 mg/g, eluted by 3 BV water, flow rate of adsorption and elution was 2 BV/h, elution solvent was 75% ethanol, elution solvent volume was 5 BV. AB-8 macroporous resin has a good purification effect on jujuboside A. The optimized technology is stable and feasible.
Purification of functionalized DNA origami nanostructures.
Shaw, Alan; Benson, Erik; Högberg, Björn
2015-05-26
The high programmability of DNA origami has provided tools for precise manipulation of matter at the nanoscale. This manipulation of matter opens up the possibility to arrange functional elements for a diverse range of applications that utilize the nanometer precision provided by these structures. However, the realization of functionalized DNA origami still suffers from imperfect production methods, in particular in the purification step, where excess material is separated from the desired functionalized DNA origami. In this article we demonstrate and optimize two purification methods that have not previously been applied to DNA origami. In addition, we provide a systematic study comparing the purification efficacy of these and five other commonly used purification methods. Three types of functionalized DNA origami were used as model systems in this study. DNA origami was patterned with either small molecules, antibodies, or larger proteins. With the results of our work we aim to provide a guideline in quality fabrication of various types of functionalized DNA origami and to provide a route for scalable production of these promising tools.
NASA Astrophysics Data System (ADS)
Ruchkinova, O.; Shchuckin, I.
2017-06-01
Its proved, that phytofilters are environmental friendly solution of problem of purification of surface plate from urbanized territories. Phytofilters answer the nowadays purposes to systems of purification of land drainage. The main problem of it is restrictions, connecter with its use in the conditions of cold temperature. Manufactured a technology and mechanism, which provide a whole-year purification of surface plate and its storage. Experimentally stated optimal makeup of filtering load: peat, zeolite and sand in per cent of volume, which provides defined hydraulic characteristics. Stated sorbate and ion-selective volume of complex filtering load of ordered composition in dynamic conditions. Estimated dependences of exit concentrations of oil products and heavy metals on temperature by filtering through complex filtering load of ordered composition. Defined effectiveness of purification at phytofiltering installation. Fixed an influence of embryophytes on process of phytogeneration and capacity of filtering load. Recommended swamp iris, mace reed and reed grass. Manufactured phytofilter calculation methodology. Calculated economic effect from use of phytofiltration technology in comparison with traditional block-modular installations.
Strep-Tagged Protein Purification.
Maertens, Barbara; Spriestersbach, Anne; Kubicek, Jan; Schäfer, Frank
2015-01-01
The Strep-tag system can be used to purify recombinant proteins from any expression system. Here, protocols for lysis and affinity purification of Strep-tagged proteins from E. coli, baculovirus-infected insect cells, and transfected mammalian cells are given. Depending on the amount of Strep-tagged protein in the lysate, a protocol for batch binding and subsequent washing and eluting by gravity flow can be used. Agarose-based matrices with the coupled Strep-Tactin ligand are the resins of choice, with a binding capacity of up to 9 mg ml(-1). For purification of lower amounts of Strep-tagged proteins, the use of Strep-Tactin magnetic beads is suitable. In addition, Strep-tagged protein purification can also be automated using prepacked columns for FPLC or other liquid-handling chromatography instrumentation, but automated purification is not discussed in this protocol. The protocols described here can be regarded as an update of the Strep-Tag Protein Handbook (Qiagen, 2009). © 2015 Elsevier Inc. All rights reserved.
Challenges and opportunities in the purification of recombinant tagged proteins.
Pina, Ana Sofia; Lowe, Christopher R; Roque, Ana Cecília A
2014-01-01
The purification of recombinant proteins by affinity chromatography is one of the most efficient strategies due to the high recovery yields and purity achieved. However, this is dependent on the availability of specific affinity adsorbents for each particular target protein. The diversity of proteins to be purified augments the complexity and number of specific affinity adsorbents needed, and therefore generic platforms for the purification of recombinant proteins are appealing strategies. This justifies why genetically encoded affinity tags became so popular for recombinant protein purification, as these systems only require specific ligands for the capture of the fusion protein through a pre-defined affinity tag tail. There is a wide range of available affinity pairs "tag-ligand" combining biological or structural affinity ligands with the respective binding tags. This review gives a general overview of the well-established "tag-ligand" systems available for fusion protein purification and also explores current unconventional strategies under development. Copyright © 2013 Elsevier Inc. All rights reserved.
Methods in elastic tissue biology: elastin isolation and purification.
Mecham, Robert P
2008-05-01
Elastin provides recoil to tissues subjected to repeated stretch, such as blood vessels and the lung. It is encoded by a single gene in mammals and is secreted as a 60-70 kDa monomer called tropoelastin. The functional form of the protein is that of a large, highly crosslinked polymer that organizes as sheets or fibers in the extracellular matrix. Purification of mature, crosslinked elastin is problematic because its insolubility precludes its isolation using standard wet-chemistry techniques. Instead, relatively harsh experimental approaches designed to remove non-elastin 'contaminates' are employed to generate an insoluble product that has the amino acid composition expected of elastin. Although soluble, tropoelastin also presents problems for isolation and purification. The protein's extreme stickiness and susceptibility to proteolysis requires careful attention during purification and in tropoelastin-based assays. This article describes the most common approaches for purification of insoluble elastin and tropoelastin. It also addresses key aspects of studying tropoelastin production in cultured cells, where elastin expression is highly dependent upon cell type, culture conditions, and passage number.
2015-07-01
Coupled Plasma Mass Spectroscopy (ICP-MS) analysis If the nanoparticle of choice is a metal such as gold or silver , an aliquot can be measured using USEPA...ER D C/ EL S R- 15 -4 Environmental Consequences of Nanotechnologies Purification and Concentration of Nanoparticles Using...Environmental Consequences of Nanotechnologies ERDC/EL SR-15-4 July 2015 Purification and Concentration of Nanoparticles Using Diafiltration
Williams, Diana L; Adams, Linda B; Lahiri, Ramanuj
2014-10-01
Mycobacterium leprae, etiologic agent of leprosy, is propagated in athymic nude mouse footpads (FPs). The current purification protocol is tedious and physically demanding. A simpler, semi-automated protocol was developed using gentleMACS™ Octo Dissociator. The gentleMACS protocol provided a very effective means for purification of highly viable M. leprae from tissue. Copyright © 2014. Published by Elsevier B.V.
A simple chromatographic method for purification of egg lecithin.
Nielsen, J R
1980-06-01
Egg lecithin was purified from the CdCl2-lecithin complex by column chromatography on Alumina. The yield from 5 eggs was 2.8 g. The purified lecithin had correct chemical values for pure lecithin and a fatty acid composition similar to lecithin prepared by other methods. The method probably can be adapted for purification of other lipids containing the phosphocholine moiety and for purification of synthetic lecithin.
Purification of recombinant Aβ(1-42) and pGlu-Aβ(3-42) using preparative SDS-PAGE.
Spahn, Claudia; Wermann, Michael; Eichentopf, Rico; Hause, Gerd; Schlenzig, Dagmar; Schilling, Stephan
2017-08-01
Recombinant expression and purification of amyloid peptides represents a common basis for investigating the molecular mechanisms of amyloid formation and toxicity. However, the isolation of the recombinant peptides is hampered by inefficient separation from contaminants such as the fusion protein required for efficient expression in E. coli. Here, we present a new approach for the isolation of highly purified Aβ(1-42) and pGlu-Aβ(3-42), which is based on a separation using preparative SDS-PAGE. The method relies on the purification of the Aβ fusion protein by affinity chromatography followed by preparative SDS-PAGE under reducing conditions and subsequent removal of detergents by precipitation. The application of preparative SDS-PAGE represents the key step to isolate highly pure recombinant Aβ, which has been applied for characterization of aggregation and toxicity. Thereby, the yield of the purification strategy was >60%. To the best of our knowledge, this is the first description of an electrophoresis-based method for purification of a recombinant Aβ peptide. Therefore, the method might be of interest for isolation of other amyloid peptides, which are critical for conventional purification strategies due to their aggregation propensity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Handlogten, Michael W; Stefanick, Jared F; Deak, Peter E; Bilgicer, Basar
2014-09-07
In a previous study, we demonstrated a non-chromatographic affinity-based precipitation method, using trivalent haptens, for the purification of mAbs. In this study, we significantly improved this process by using a simplified bivalent peptidic hapten (BPH) design, which enables facile and rapid purification of mAbs while overcoming the limitations of the previous trivalent design. The improved affinity-based precipitation method (ABP(BPH)) combines the simplicity of salt-induced precipitation with the selectivity of affinity chromatography for the purification of mAbs. The ABP(BPH) method involves 3 steps: (i) precipitation and separation of protein contaminants larger than immunoglobulins with ammonium sulfate; (ii) selective precipitation of the target-antibody via BPH by inducing antibody-complex formation; (iii) solubilization of the antibody pellet and removal of BPH with membrane filtration resulting in the pure antibody. The ABP(BPH) method was evaluated by purifying the pharmaceutical antibody trastuzumab from common contaminants including CHO cell conditioned media, DNA, ascites fluid, other antibodies, and denatured antibody with >85% yield and >97% purity. Importantly, the purified antibody demonstrated native binding activity to cell lines expressing the target protein, HER2. Combined, the ABP(BPH) method is a rapid and scalable process for the purification of antibodies with the potential to improve product quality while decreasing purification costs.
Zhao, Yao; Kang, Lin; Gao, Shan; Gao, Xing; Xin, Wenwen; Wang, Jinglin
2012-01-01
Clostridium botulinum neurotoxins are used to treat a variety of neuro-muscular disorders, as well as in cosmetology. The increased demand requires efficient methods for the production and purification of these toxins. In this study, a new purification process was developed for purifying type B neurotoxin. The kinetics of C.botulinum strain growth and neurotoxin production were determined for maximum yield of toxin. The neurotoxin was purified by polyethylene glycol (PEG) precipitation and chromatography. Based on design of full factorial experiment, 20% (w/v) PEG-6000, 4°C, pH 5.0 and 0.3 M NaCl were optimal conditions to obtain a high recovery rate of 87% for the type B neurotoxin complex, as indicated by a purification factor of 61.5 fold. Furthermore, residual bacterial cells, impurity proteins and some nucleic acids were removed by PEG precipitation. The following purification of neurotoxin was accomplished by two chromatography techniques using Sephacryl™ S-100 and phenyl HP columns. The neurotoxin was recovered with an overall yield of 21.5% and the purification factor increased to 216.7 fold. In addition, a mouse bioassay determined the purified neurotoxin complex possessed a specific toxicity (LD50) of 4.095 ng/kg. PMID:22761863
Plasmid pVAX1-NH36 purification by membrane and bead perfusion chromatography.
Franco-Medrano, Diana Ivonne; Guerrero-Germán, Patricia; Montesinos-Cisneros, Rosa María; Ortega-López, Jaime; Tejeda-Mansir, Armando
2017-03-01
The demand for plasmid DNA (pDNA) has increased in response to the rapid advances in vaccines applications to prevent and treat infectious diseases caused by virus, bacteria or parasites, such as Leishmania species. The immunization protocols require large amounts of supercoiled plasmid DNA (sc-pDNA) challenging the development of efficient and profitable processes for capturing and purified pDNA molecules from large volumes of lysates. A typical bioprocess involves four steps: fermentation, primary recovery, intermediate recovery and final purification. Ion-exchange chromatography is one of the key operations in the purification schemes of pDNA owing the chemical structure of these macromolecules. The goal of this research was to compare the performance of the final purification step of pDNA using ion-exchange chromatography on columns packed with Mustang Q membranes or perfusive beads POROS 50 HQ. The experimental results showed that both matrixes could separate the plasmid pVAX1-NH36 (3936 bp) from impurities in clarified Escherichia coli lysates with an adequate resolution. In addition, a 24- and 21-fold global purification factor was obtained. An 88 and 63% plasmid recuperation was achieved with ion-exchange membranes and perfusion beads, respectively. A better understanding of perfusion-based matrices for the purification of pDNA was developed in this research.
Brower, Kevin P; Ryakala, Venkat K; Bird, Ryan; Godawat, Rahul; Riske, Frank J; Konstantinov, Konstantin; Warikoo, Veena; Gamble, Jean
2014-01-01
Downstream sample purification for quality attribute analysis is a significant bottleneck in process development for non-antibody biologics. Multi-step chromatography process train purifications are typically required prior to many critical analytical tests. This prerequisite leads to limited throughput, long lead times to obtain purified product, and significant resource requirements. In this work, immunoaffinity purification technology has been leveraged to achieve single-step affinity purification of two different enzyme biotherapeutics (Fabrazyme® [agalsidase beta] and Enzyme 2) with polyclonal and monoclonal antibodies, respectively, as ligands. Target molecules were rapidly isolated from cell culture harvest in sufficient purity to enable analysis of critical quality attributes (CQAs). Most importantly, this is the first study that demonstrates the application of predictive analytics techniques to predict critical quality attributes of a commercial biologic. The data obtained using the affinity columns were used to generate appropriate models to predict quality attributes that would be obtained after traditional multi-step purification trains. These models empower process development decision-making with drug substance-equivalent product quality information without generation of actual drug substance. Optimization was performed to ensure maximum target recovery and minimal target protein degradation. The methodologies developed for Fabrazyme were successfully reapplied for Enzyme 2, indicating platform opportunities. The impact of the technology is significant, including reductions in time and personnel requirements, rapid product purification, and substantially increased throughput. Applications are discussed, including upstream and downstream process development support to achieve the principles of Quality by Design (QbD) as well as integration with bioprocesses as a process analytical technology (PAT). © 2014 American Institute of Chemical Engineers.
Optimized Expression and Purification for High-Activity Preparations of Algal [FeFe]-Hydrogenase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yacoby, I.; Tegler, L. T.; Pochekailov, S.
2012-04-01
Recombinant expression and purification of metallo-enzymes, including hydrogenases, at high-yields is challenging due to complex, and enzyme specific, post-translational maturation processes. Low fidelities of maturation result in preparations containing a significant fraction of inactive, apo-protein that are not suitable for biophysical or crystallographic studies. We describe the construction, overexpression and high-yield purification of a fusion protein consisting of the algal [2Fe2S]-ferredoxin PetF (Fd) and [FeFe]-hydrogenase HydA1. The maturation of Fd-HydA1 was optimized through improvements in culture conditions and media components used for expression. We also demonstrated that fusion of Fd to the N-terminus of HydA1, in comparison to the C-terminus,more » led to increased expression levels that were 4-fold higher. Together, these improvements led to enhanced HydA1 activity and improved yield after purification. The strong binding-affinity of Fd for DEAE allowed for two-step purification by ion exchange and StrepTactin affinity chromatography. In addition, the incorporation of a TEV protease site in the Fd-HydA1 linker allowed for the proteolytic removal of Fd after DEAE step, and purification of HydA1 alone by StrepTactin. In combination, this process resulted in HydA1 purification yields of 5 mg L{sup -1} of culture from E. coli with specific activities of 1000 U (U = 1 {micro}mol hydrogen evolved mg{sup -1} min{sup -1}). The [FeFe]-hydrogenases are highly efficient enzymes and their catalytic sites provide model structures for synthetic efforts to develop robust hydrogen activation catalysts. In order to characterize their structure-function properties in greater detail, and to use hydrogenases for biotechnological applications, reliable methods for rapid, high-yield expression and purification are required.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahyono, Bambang; Maduwu, Ratna Dewi; Widayat,
Commercial silica gel only used once by many researchers and affected high cost for purification process, also less support the green chemistry program. This research focused in regeneration silica gel that used purification of temulawak’s extracts (Curcuma xanthorrhiza Roxb) by vacuum column chromatography. Sample extracts (contains 10.1195±0.5971% of curcuminoids) was purified by vacuum column chromatography (pressure: 45 kPa, column: 100mm on length and 16mm on diameter). Ethanol 96% and acetone were compared as eluent. The amount of solvent and yield of curcuminoids used as indicator purification. The silica gel was regenerated with heating in 600°C for 8 hours The silica gelsmore » were analyzed by IR spectroscopy and X-ray diffraction. Furthermore, regenerated silica gel was used as the stationary phase in vacuum column chromatography under the same conditions with the previous purification. All the purification experiments were performed in three repetitions. Based on regression equation, y=0.132x+0.0011 (r{sup 2}=0.9997) the yield of curcuminoids on purified products using ethanol as the eluent was improved 4.26% (to 14.3724±0.5749%) and by acetone was improved 3,03% (to 13.1450 ±0.6318%). The IR spectrum of both silica gel showed the same vibration profile and also there were three crystallinity peaks missing on its X-ray diffraction. Regenerated silica gel has the same performance with new silica gel in purification of temulawak’s extract: by ethanol has increased 4.08% (14.1947±0.7415%) and 2.93% (13.0447±0.4822) by acetone. In addition, all purification products showed similar TLC profiles. Purification using regenerated silica gel as the adsorbent on vacuum column chromatography has exactly same potential with the new silica gel.« less
Analysis And Design Of A Water Purification System For The West African Area Of Operation
2016-12-01
harmful metals and in disinfecting the water prior to human consumption . Research conducted proved that the BWS is more cost effective , efficient...and test a feasible and cost- effective prototype of a purification system to the BWS for improved capability. This study uses a design-based and...design. The prototype test results showed that the water purification system performed effectively and efficiently in accordance with the
Sutherland, J David; Tu, Noah P; Nemcek, Thomas A; Searle, Philip A; Hochlowski, Jill E; Djuric, Stevan W; Pan, Jeffrey Y
2014-04-01
A flexible and integrated flow-chemistry-synthesis-purification compound-generation and sample-management platform has been developed to accelerate the production of small-molecule organic-compound drug candidates in pharmaceutical research. Central to the integrated system is a Mitsubishi robot, which hands off samples throughout the process to the next station, including synthesis and purification, sample dispensing for purity and quantification analysis, dry-down, and aliquot generation.
Çetin, Kemal; Perçin, Işık; Denizli, Fatma; Denizli, Adil
2017-11-01
The aim of this study is to investigate the usability of cryogel columns for the purification of invertase from Saccharomyces cerevisiae. Poly(2-hydroxyethyl methacrylate) monolithic columns were produced via cryogelation. Ester groups of the poly(2-hydroxyethyl methacrylate) structure were then converted to imine groups by the reaction with poly(ethylene imine) in the presence of NaHCO 3 . Transition metal ions, Cu(II), Co(II), and Ni(II), were chelated on the PEI-modified cryogel columns. Purification of invertase from natural source namely S. cerevisiae was also studied, and the purification fold values were obtained as 41.350, 44.714, and 30.302 for Cu(II)-chelated, Co(II)-chelated, and Ni(II)-chelated PHEMA/PEI columns, respectively.
Recent Advances in Nanoporous Membranes for Water Purification
Wang, Zhuqing; Colombi Ciacchi, Lucio
2018-01-01
Nanoporous materials exhibit wide applications in the fields of electrocatalysis, nanodevice fabrication, energy, and environmental science, as well as analytical science. In this review, we present a summary of recent studies on nanoporous membranes for water purification application. The types and fabrication strategies of various nanoporous membranes are first introduced, and then the fabricated nanoporous membranes for removing various water pollutants, such as salt, metallic ions, anions, nanoparticles, organic chemicals, and biological substrates, are demonstrated and discussed. This work will be valuable for readers to understand the design and fabrication of various nanoporous membranes, and their potential purification mechanisms towards different water pollutants. In addition, it will be helpful for developing new nanoporous materials for quick, economic, and high-performance water purification. PMID:29370128
Gao, Min; Gu, Ming; Liu, Chun-Zhao
2006-07-11
Scutellarin, a flavone glycoside, popularly applied for the treatment of cardiopathy, has been purified in two-step purification by high-speed counter-current chromatography (HSCCC) from Erigeron breviscapus (vant.) Hand. Mazz. (Deng-zhan-hua in Chinese), a well-known traditional Chinese medicinal plant for heart disease. Two solvent systems, n-hexane-ethyl acetate-methanol-acetic acid-water (1:6:1.5:1:4, v/v/v/v/v) and ethyl acetate-n-butanol-acetonitrile-0.1% HCl (5:2:5:10, v/v/v/v) were used for the two-step purification. The purity of the collected fraction of scutellarin was 95.6%. This study supplies a new alternative method for purification of scutellarin.
Bromelain: an overview of industrial application and purification strategies.
Arshad, Zatul Iffah Mohd; Amid, Azura; Yusof, Faridah; Jaswir, Irwandi; Ahmad, Kausar; Loke, Show Pau
2014-09-01
This review highlights the use of bromelain in various applications with up-to-date literature on the purification of bromelain from pineapple fruit and waste such as peel, core, crown, and leaves. Bromelain, a cysteine protease, has been exploited commercially in many applications in the food, beverage, tenderization, cosmetic, pharmaceutical, and textile industries. Researchers worldwide have been directing their interest to purification strategies by applying conventional and modern approaches, such as manipulating the pH, affinity, hydrophobicity, and temperature conditions in accord with the unique properties of bromelain. The amount of downstream processing will depend on its intended application in industries. The breakthrough of recombinant DNA technology has facilitated the large-scale production and purification of recombinant bromelain for novel applications in the future.
Aptamer-based downstream processing of his-tagged proteins utilizing magnetic beads.
Kökpinar, Öznur; Walter, Johanna-Gabriela; Shoham, Yuval; Stahl, Frank; Scheper, Thomas
2011-10-01
Aptamers are synthetic nucleic acid-based high affinity ligands that are able to capture their corresponding target via molecular recognition. Here, aptamer-based affinity purification for His-tagged proteins was developed. Two different aptamers directed against the His-tag were immobilized on magnetic beads covalently. The resulting aptamer-modified magnetic beads were characterized and successfully applied for purification of different His-tagged proteins from complex E. coli cell lysates. Purification effects comparable to conventional immobilized metal affinity chromatography were achieved in one single purification step. Moreover, we have investigated the possibility to regenerate and reuse the aptamer-modified magnetic beads and have shown their long-term stability over a period of 6 months. Copyright © 2011 Wiley Periodicals, Inc.
Microbial Products and Biofertilizers in Improving Growth and Productivity of Apple - a Review.
Mosa, Walid F A E; Sas-Paszt, Lidia; Frąc, Mateusz; Trzciński, Paweł
2016-08-26
The excessive use of mineral fertilizers causes many negative consequences for the environment as well as potentially dangerous effects of chemical residues in plant tissues on the health of human and animal consumers. Bio-fertilizers are formulations of beneficial microorganisms, which upon application can increase the availability of nutrients by their biological activity and help to improve soil health. Microbes involved in the formulation of bio-fertilizers not only mobilize N and P but mediate the process of producing crops and foods naturally. This method avoids the use of synthetic chemical fertilizers and genetically modified organisms to influence the growth of crops. In addition to their role in enhancing the growth of the plants, biofertilizers can act as biocontrol agents in the rhizosphere at the same time. Biofertilizers are very safe for human, animal and environment. The use of Azotobacter, Azospirillum, Pseudomonas, Acetobacter, Burkholderia, Bacillus, Paenibacillus and some members of the Enterobacteriaceae is gaining worldwide importance and acceptance and appears to be the trend for the future.
VTVH-MCD study of the Delta nifB Delta nifZ MoFe protein from Azotobacter vinelandii.
Cotton, Marcia S; Rupnik, Kresimir; Broach, Robyn B; Hu, Yilin; Fay, Aaron W; Ribbe, Markus W; Hales, Brian J
2009-04-08
NifZ is a member of a series of proteins associated with the maturation of the nitrogenase MoFe protein. An MCD spectroscopic study was undertaken on the Delta nifB Delta nifZ MoFe protein generated in the absence of both NifZ and NifB (deletion of NifB generates an apo-MoFe protein lacking the FeMo cofactor). Results presented here show that, in the absence of NifZ, only one of the two P-clusters of the MoFe protein is matured to the ultimate [8Fe-7S] structure. The other P-cluster site in the protein contains a [4Fe-4S] cluster pair, representing a P-cluster precursor that is electronically identical to the analogous clusters observed in the Delta nifH MoFe protein. These results suggest that the MoFe protein is synthesized in a stepwise fashion where NifZ is specifically required for the formation of the second P-cluster.
NASA Astrophysics Data System (ADS)
Fitri, Inayah; Ni'matuzahroh, Surtiningsih, Tini
2017-06-01
The purpose of this research are to know the effect of addition of different nitrogen source, consortium of bacteria, incubation time and the interaction between those variables to the total number of bacteria (CFU/g-soil) and the percentage of degradation (%) in the bioremediation of oil sludge contaminated soil; as well as degraded hydrocarbon components at the best treatment on 6th week. The experiments carried out by mixing the materials and placed them in each bath with and without adding different nitrogen source and bacterial consortium. pH and moisture were measured for every week. An increase in total number of bacteria and percent of maximum degradation recorded at treatment with the addition of NPK+Azotobacter+bacteria consortium; with the TPC value was 14.24 log CFU/g, percent degradation was 77.8%, organic C content was 10.91%, total N was 0.12% and organic matter content was 18.87%, respectively.
The Fe-V Cofactor of Vanadium Nitrogenase Contains an Interstitial Carbon Atom.
Rees, Julian A; Bjornsson, Ragnar; Schlesier, Julia; Sippel, Daniel; Einsle, Oliver; DeBeer, Serena
2015-11-02
The first direct evidence is provided for the presence of an interstitial carbide in the Fe-V cofactor of Azotobacter vinelandii vanadium nitrogenase. As for our identification of the central carbide in the Fe-Mo cofactor, we employed Fe Kβ valence-to-core X-ray emission spectroscopy and density functional theory calculations, and herein report the highly similar spectra of both variants of the cofactor-containing protein. The identification of an analogous carbide, and thus an atomically homologous active site in vanadium nitrogenase, highlights the importance and influence of both the interstitial carbide and the identity of the heteroatom on the electronic structure and catalytic activity of the enzyme. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Biological remediation of oil contaminated soil with earthworms Eisenia andrei
NASA Astrophysics Data System (ADS)
Chachina, S. B.; Voronkova, N. A.; Baklanova, O. N.
2017-08-01
The study was performed on the bioremediation efficiency of the soil contaminated with oil (20 to 100 g/kg), petroleum (20 to 60 g/kg) and diesel fuel (20 to 40 g/kg) with the help of earthworms E. andrei in the presence of bacteria Pseudomonas, nitrogen fixing bacteria Azotobacter and Clostridium, yeasts Saccharomyces, fungi Aspergillus and Penicillium, as well as Actinomycetales, all being components of biopreparation Baykal-EM. It was demonstrated that in oil-contaminated soil, the content of hydrocarbons decreased by 95-97% after 22 weeks in the presence of worms and bacteria. In petroleum-contaminated soil the content of hydrocarbons decreased by 99% after 22 weeks. The presence of the diesel fuel in the amount of 40 g per 1 kg soil had an acute toxic effect and caused the death of 50 % earthworm species in 14 days. Bacteria introduction enhanced the toxic effect of the diesel fuel and resulted in the death of 60 % earthworms after 7 days.
Presence of a new cytochrome b - like pigment with a peak at 567 nm in various aerobic bacteria.
Jacobs, N J; O'Hara, J; Gray, C T
1983-09-01
Several physiological groups of bacteria were examined for the presence of a cytochrome b - like pigment which is demonstrable in dithionite-reduced minus substrate-reduced difference spectra. This pigment is characterized by an unusually high alpha band at 567 nm, a low concentration relative to conventional cytochromes, and an inability to be fully reduced by endogenous substrates or NADH. Previous studies with one denitrifying and nondenitrifying species of the genus Pseudomonas, in Paracoccus denitrificans, in Alcaligenes faecalis, in Azotobacter vinelandii, in Branhamella catarrhalis, and in Neisseria lactamicus. In all these organisms, the peak of the 567-nm pigment is accompanied by a peak of about equal height at approximately 559 nm, which exhibits similar properties to the 567-nm pigment. The 567-nm pigment was not demonstrable by this technique in Gluconobacter oxydans subspecies suboxydans, Bacillus subtilis, Bacillus licheniformis, Aeromonas hydrophilia, Escherichia coli, a Klebsiella species, Moraxella osloensis, Aquaspirillum itersonii, Micrococcus lysodeikticus, Micrococcus luteus, Agrobacterium tumefaciens, or Rhizobium meliloti.
Amareshwari, P; Bhatia, Mayuri; Venkatesh, K; Roja Rani, A; Ravi, G V; Bhakt, Priyanka; Bandaru, Srinivas; Yadav, Mukesh; Nayarisseri, Anuraj; Nair, Achuthsankar S
2015-03-01
Indiscriminate application of pesticides like chlorpyrifos, diazinon, or malathion contaminate the soil in addition has being unsafe often it has raised severe health concerns. Conversely, microorganisms like Trichoderma, Aspergillus and Bacteria like Rhizobium Bacillus, Azotobacter, Flavobacterium etc have evolved that are endowed with degradation of pesticides aforementioned to non-toxic products. The current study pitches into identification of a novel species of Flavobacterium bacteria capable to degrade the Organophosphorous pesticides. The bacterium was isolated from agricultural soil collected from Guntur District, Andhra Pradesh, India. The samples were serially diluted and the aliquots were incubated for a suitable time following which the suspected colony was subjected to 16S rDNA sequencing. The sequence thus obtained was aligned pairwise against Flavobacterium species, which resulted in identification of novel specie of Flavobacterium later named as EMBS0145, the sequence of which was deposited in in GenBank with accession number JN794045.
NASA Technical Reports Server (NTRS)
Stokes, B. O.; Wallace, C. J.
1978-01-01
Ammonia production by Klebsiella pneumoniae is not economical with present strains and improving nitrogen fixation to its theoretical limits in this organism is not sufficient to achieve economic viability. Because the value of both the hydrogen produced by this organism and the methane value of the carbon source required greatly exceed the value of the ammonia formed, ammonia (fixed nitrogen) should be considered the by-product. The production of hydrogen by KLEBSIELLA or other anaerobic nitrogen fixers should receive additional study, because the activity of nitrogenase offers a significant improvement in hydrogen production. The production of fixed nitrogen in the form of cell mass by Azotobacter is also uneconomical and the methane value of the carbon substrate exceeds the value of the nitrogen fixed. Parametric studies indicate that as efficiencies approach the theoretical limits the economics may become competitive. The use of nif-derepressed microorganisms, particularly blue-green algae, may have significant potential for in situ fertilization in the environment.
Zhao, Dan; Liu, Pengfei; Pan, Chao; Du, Renpeng; Ping, Wenxiang; Ge, Jingping
2016-09-02
High-throughput sequencing and GC-MS (gas chromatography-mass spectrometry) were jointly used to reveal the bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting. The inoculation of Bacillus cereus HDYM-02 decreased bacterial richness and diversity. This inoculum led to the replacement of Enterobacteriaceae by Bacillaceae. The level of aerobic Pseudomonadaceae (mainly Azotobacter) and anaerobic Clostridiaceae_1 gradually increased and decreased, respectively. Following the addition of B. cereus HDYM-02, the dominant groups were all degumming enzyme producers or have been proven to be involved in microbial retting throughout the entire retting period. These results could be verified by the metabolite changes, either degumming enzymes or their catalytic products galacturonic acid and reducing sugars. The GC-MS data showed a clear separation between flax retting with and without B. cereus HDYM-02, particularly within the first 72 h. These findings reveal the important bacterial groups that are involved in fiber retting and will facilitate improvements in the retting process.
Niphadkar, Sonali S; Rathod, Virendra K
2015-01-01
Conventional three phase partitioning (TPP) and ultrasound assisted three phase partitioning (UATPP) were optimized for achieving the maximum extraction and purification of polyphenol oxidase (PPO) from waste potato peels. Different process parameters such as ammonium sulfate (NH4)2SO4 concentration, crude extract to t-butanol ratio, time, temperature and pH were studied for conventional TPP. Except agitation speed, the similar parameters were also optimized for UATPP. Further additional parameters were also studied for UATPP viz. irradiation time at different frequencies, duty cycle and, rated power in order to obtain the maximum purification factor and recovery of PPO. The optimized conditions for conventional TPP were (NH4)2SO4 0-40% (w/v), extract to t-butanol ratio 1:1 (v/v), time 40 min and pH 7 at 30°C. These conditions provided 6.3 purification factor and 70% recovery of PPO from bottom phase. On the other hand, UATPP gives maximum purification fold of 19.7 with 98.3% recovery under optimized parameters which includes (NH4)2SO4 0-40% (w/v), crude extract to t-butanol ratio 1: 1 (v/v) pH 7, irradiation time 5 min with 25 kHz, duty cycle 40% and rated power 150W at 30°C. UATPP delivers higher purification factor and % recovery of PPO along with reduced operation time from 40 min to 5 min when compared with TPP. SDS PAGE showed partial purification of PPO enzyme with UATPP with molecular weight in the range of 26-36 kDa. Results reveal that UATPP would be an attractive option for the isolation and purification of PPO without need of multiple steps. © 2015 American Institute of Chemical Engineers.
Li, Junhua; Zhang, Yang; Yang, Yanjun
2013-03-01
The ribosomal protein L2, a constituent protein of the 50S large ribosomal subunit, can be used as Si-tag using silica particles for the immobilization and purification of recombinant proteins (Ikeda et al. (Protein Expr Purif 71:91-95, 2010); Taniguchi et al. (Biotechnol Bioeng 96:1023-1029, 2007)). We applied a diatomite powder, a sedimentary rock mainly composed with diatoms silica, as an affinity solid phase and small ubiquitin-like modifier (SUMO) technology to release a target protein from the solid phase. The L2 (203-273) was the sufficient region for the adsorption of ribosomal protein L2 on diatomite. We comparatively analyzed the different adsorption properties of the two deleted proteins of L2 (L2 (1-60, 203-273) and L2 (203-273)) on diatomite. The time required to reach adsorption equilibrium of L2 (203-273) fusion protein on diatomite was shorter than that of L2 (1-60, 203-273) fusion protein. The maximum adsorption capacity of L2 (203-273) fusion protein was larger than that of L2 (1-60, 203-273) fusion protein. In order to study whether the L2 (203-273) can function as an affinity purification tag, SUMO was introduced as one specific protease cleavage site between the target protein and the purification tags. The L2 (203-273) and SUMO fusion protein purification method was tested using enhanced green fluorescent protein as a model protein; the result shows that the purification performance of this affinity purification method was good. The strong adsorption characteristic of L2 (203-273) on diatomite also provides a potential protein fusion tag for the immobilization of enzyme.
Stone, Orrin J; Biette, Kelly M; Murphy, Patrick J M
2014-01-01
Hydrophobic interaction chromatography (HIC) most commonly requires experimental determination (i.e., scouting) in order to select an optimal chromatographic medium for purifying a given target protein. Neither a two-step purification of untagged green fluorescent protein (GFP) from crude bacterial lysate using sequential HIC and size exclusion chromatography (SEC), nor HIC column scouting elution profiles of GFP, have been previously reported. Bacterial lysate expressing recombinant GFP was sequentially adsorbed to commercially available HIC columns containing butyl, octyl, and phenyl-based HIC ligands coupled to matrices of varying bead size. The lysate was fractionated using a linear ammonium phosphate salt gradient at constant pH. Collected HIC eluate fractions containing retained GFP were then pooled and further purified using high-resolution preparative SEC. Significant differences in presumptive GFP elution profiles were observed using in-line absorption spectrophotometry (A395) and post-run fluorimetry. SDS-PAGE and western blot demonstrated that fluorometric detection was the more accurate indicator of GFP elution in both HIC and SEC purification steps. Comparison of composite HIC column scouting data indicated that a phenyl ligand coupled to a 34 µm matrix produced the highest degree of target protein capture and separation. Conducting two-step protein purification using the preferred HIC medium followed by SEC resulted in a final, concentrated product with >98% protein purity. In-line absorbance spectrophotometry was not as precise of an indicator of GFP elution as post-run fluorimetry. These findings demonstrate the importance of utilizing a combination of detection methods when evaluating purification strategies. GFP is a well-characterized model protein, used heavily in educational settings and by researchers with limited protein purification experience, and the data and strategies presented here may aid in development other of HIC-compatible protein purification schemes.
Conley, Andrew J; Joensuu, Jussi J; Richman, Alex; Menassa, Rima
2011-05-01
For the past two decades, therapeutic and industrially important proteins have been expressed in plants with varying levels of success. The two major challenges hindering the economical production of plant-made recombinant proteins include inadequate accumulation levels and the lack of efficient purification methods. To address these limitations, several fusion protein strategies have been recently developed to significantly enhance the production yield of plant-made recombinant proteins, while simultaneously assisting in their subsequent purification. Elastin-like polypeptides are thermally responsive biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the purification of recombinant proteins. Hydrophobins are small fungal proteins capable of altering the hydrophobicity of their respective fusion partner, thus enabling efficient purification by surfactant-based aqueous two-phase systems. Zera, a domain of the maize seed storage protein γ-zein, can induce the formation of protein storage bodies, thus facilitating the recovery of fused proteins using density-based separation methods. These three novel protein fusion systems have also been shown to enhance the accumulation of a range of different recombinant proteins, while concurrently inducing the formation of protein bodies. The packing of these fusion proteins into protein bodies may exclude the recombinant protein from normal physiological turnover. Furthermore, these systems allow for quick, simple and inexpensive nonchromatographic purification of the recombinant protein, which can be scaled up to industrial levels of protein production. This review will focus on the similarities and differences of these artificial storage organelles, their biogenesis and their implication for the production of recombinant proteins in plants and their subsequent purification. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Park, Se-Ra; Lim, Chae-Yeon; Kim, Deuk-Su; Ko, Kisung
2015-01-01
A protein purification procedure is required to obtain high-value recombinant injectable vaccine proteins produced in plants as a bioreactor. However, existing purification procedures for plant-derived recombinant proteins are often not optimized and are inefficient, with low recovery rates. In our previous study, we used 25-30% ammonium sulfate to precipitate total soluble proteins (TSPs) in purification process for recombinant proteins from plant leaf biomass which has not been optimized. Thus, the objective in this study is to optimize the conditions for plant-derived protein purification procedures. Various ammonium sulfate concentrations (15-80%) were compared to determine their effects on TSPs yield. With 50% ammonium sulfate, the yield of precipitated TSP was the highest, and that of the plant-derived colorectal cancer-specific surface glycoprotein GA733 fused to the Fc fragment of human IgG tagged with endoplasmic reticulum retention signal KDEL (GA733(P)-FcK) protein significantly increased 1.8-fold. SDS-PAGE analysis showed that the purity of GA733(P)-FcK protein band appeared to be similar to that of an equal dose of mammalian-derived GA733-Fc (GA733(M)-Fc). The binding activity of purified GA733(P)-FcK to anti-GA733 mAb was as efficient as the native GA733(M)-Fc. Thus, the purification process was effectively optimized for obtaining a high yield of plant-derived antigenic protein with good quality. In conclusion, the purification recovery rate of large quantities of recombinant protein from plant expression systems can be enhanced via optimization of ammonium sulfate concentration during downstream processes, thereby offering a promising solution for production of recombinant GA733-Fc protein in plants.
Preparation and Purification of Multigram Quantities of TAX and SEX.
1981-12-01
Synthesis Purification Nitrolysis 2L AS[TNIACT (Cletiloe -m powowe0m N noeaemy and Identify by block number) This final report describes the multigram... synthesis and purification of 3 kg of 1-acetylhexahydro-3,5-dinitro-1,3,5-triazine (TAX) and the feasibility of producing kilogram quantities of l...residual impurities; (3) demonstrate the feasibility of the synthesis approach on a one-pound batch reaction; and (4) provide a cost-plus-fixed-fee estimate
Methods for Isolation, Purification, and Propagation of Bacteriophages of Campylobacter jejuni.
Gencay, Yilmaz Emre; Birk, Tina; Sørensen, Martine Camilla Holst; Brøndsted, Lone
2017-01-01
Here, we describe the methods for isolation, purification, and propagation of Campylobacter jejuni bacteriophages from samples expected to contain high number of phages such as chicken feces. The overall steps are (1) liberation of phages from the sample material; (2) observation of plaque-forming units on C. jejuni lawns using a spot assay; (3) isolation of single plaques; (4) consecutive purification procedures; and (5) propagation of purified phages from a plate lysate to prepare master stocks.
Sensitivity of measurement-based purification processes to inner interactions
NASA Astrophysics Data System (ADS)
Militello, Benedetto; Napoli, Anna
2018-02-01
The sensitivity of a repeated measurement-based purification scheme to additional undesired couplings is analyzed, focusing on the very simple and archetypical system consisting of two two-level systems interacting with a repeatedly measured one. Several regimes are considered and in the strong coupling limit (i.e., when the coupling constant of the undesired interaction is very large) the occurrence of a quantum Zeno effect is proven to dramatically jeopardize the efficiency of the purification process.
Cloning, Expression, and Purification of Brucella suis Outer Membrane Proteins
2005-01-01
13-09-20061 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Cloning, expression and purification of Brucella suis outer membrane proteins 5b. GRANT NUMBER...attractive for this purpose. In this study, we cloned, expressed and purified seven predicted OMPs of Brucella suis . The recombinant proteins were...fused with 6-his and V5 epitope tags at their C termini to facilitate detection and purification. The B. suis surface genes were PCR synthesized based
The purification process on scintillator material (SrI{sub 2}: Eu) by zone-refinement technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arumugam, Raja; Daniel, D. Joseph; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in
The thermal properties of Europium doped strontium iodide was analyzed through Thermogravimetric (TG) and differential thermal analyses (DTA). The melting point of europium doped strontium iodide is around 531°C. The hydrated and oxyhalide impurities were found before melting temperature. In order to remove these impurities we have done purification process by Zone-refinement technique. The effective output of purification of zone refining was also observed through the segregation of impurities.
Purification of swine haptoglobin by affinity chromatography.
Eurell, T E; Hall, W F; Bane, D P
1990-01-01
A globin-agarose affinity chromatography technique was used to purify swine haptoglobin. This technique provides a highly specific, single-step purification method without the contamination of extraneous serum proteins reported by previous studies. Complex formation between the haptoglobin isolate and swine hemoglobin confirmed that biological activity was maintained during the purification process. Immunoelectrophoretic and Ouchterlony immunodiffusion methods revealed that the swine haptoglobin isolate cross-reacted with polyvalent antisera against human haptoglobin. Images Fig. 2. Fig. 3. PMID:2123414
Dündar, Halil; Atakay, Mehmet; Çelikbıçak, Ömür; Salih, Bekir; Bozoğlu, Faruk
2015-01-01
This study aimed to compare two different approaches for the purification of enterocin B from Enterococcus faecium strain W3 based on the observation that the bacteriocin was found both in cell associated form and in culture supernatant. The first approach employed ammonium sulfate precipitation, cation-exchange chromatography, and sequential reverse-phase high-performance liquid chromatography. The latter approach exploited a pH-mediated cell adsorption-desorption method to extract cell-bound bacteriocin, and one run of reverse-phase chromatography. The first method resulted in purification of enterocin B with a recovery of 4% of the initial bacteriocin activity found in culture supernatant. MALDI-TOF MS analysis and de novo peptide sequencing of the purified bacteriocin confirmed that the active peptide was enterocin B. The second method achieved the purification of enterocin B with a higher recovery (16%) and enabled us to achieve pure bacteriocin within a shorter period of time by avoiding time consuming purification protocols. The purity and identity of the active peptide were confirmed again by matrix-assisted laser desorption/ionization time-of flight (MALDI-TOF) mass spectrometry (MS) analysis. Although both approaches were satisfactory to obtain a sufficient amount of enterocin B for use in MS and amino acid sequence analysis, the latter was proved to be applicable in large-scale and rapid purification of enterocin B.
Advanced purification of petroleum refinery wastewater by catalytic vacuum distillation.
Yan, Long; Ma, Hongzhu; Wang, Bo; Mao, Wei; Chen, Yashao
2010-06-15
In our work, a new process, catalytic vacuum distillation (CVD) was utilized for purification of petroleum refinery wastewater that was characteristic of high chemical oxygen demand (COD) and salinity. Moreover, various common promoters, like FeCl(3), kaolin, H(2)SO(4) and NaOH were investigated to improve the purification efficiency of CVD. Here, the purification efficiency was estimated by COD testing, electrolytic conductivity, UV-vis spectrum, gas chromatography-mass spectrometry (GC-MS) and pH value. The results showed that NaOH promoted CVD displayed higher efficiency in purification of refinery wastewater than other systems, where the pellucid effluents with low salinity and high COD removal efficiency (99%) were obtained after treatment, and the corresponding pH values of effluents varied from 7 to 9. Furthermore, environment estimation was also tested and the results showed that the effluent had no influence on plant growth. Thus, based on satisfied removal efficiency of COD and salinity achieved simultaneously, NaOH promoted CVD process is an effective approach to purify petroleum refinery wastewater. Copyright 2010 Elsevier B.V. All rights reserved.
General method for rapid purification of native chromatin fragments.
Kuznetsov, Vyacheslav I; Haws, Spencer A; Fox, Catherine A; Denu, John M
2018-05-24
Biochemical, proteomic and epigenetic studies of chromatin rely on the efficient ability to isolate native nucleosomes in high yield and purity. However, isolation of native chromatin suitable for many downstream experiments remains a challenging task. This is especially true for the budding yeast Saccharomyces cerevisiae, which continues to serve as an important model organism for the study of chromatin structure and function. Here, we developed a time- and cost-efficient universal protocol for isolation of native chromatin fragments from yeast, insect, and mammalian cells. The resulting protocol preserves histone posttranslational modification in the native chromatin state, and is applicable for both parallel multi-sample spin-column purification and large scale isolation. This protocol is based on the efficient and stable purification of polynucleosomes, features a combination of optimized cell lysis and purification conditions, three options for chromatin fragmentation, and a novel ion-exchange chromatographic purification strategy. The procedure will aid chromatin researchers interested in isolating native chromatin material for biochemical studies, and as a mild, acid- and detergent-free sample preparation method for mass-spectrometry analysis. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Purification of plant plasma membranes by two-phase partitioning and measurement of H+ pumping.
Lund, Anette; Fuglsang, Anja Thoe
2012-01-01
Purification of plasma membranes by two-phase partitioning is based on the separation of microsomal membranes, dependent on their surface hydrophobicity. Here we explain the purification of plasma membranes from a relatively small amount of material (7-30 g). The fluorescent probe ACMA (9-amino-6-chloro-2-metoxyacridine) accumulates inside the vesicles upon protonation. Quenching of ACMA in the solution corresponds to the H(+) transport across the plasma membrane. Before running the assay, the plasma membranes are incubated with the detergent Brij-58 in order to create inside-out vesicles.Purification of plasma membranes by two-phase partitioning is based on the separation of microsomal membranes, dependent on their surface hydrophobicity. Here we explain the purification of plasma membranes from a relatively small amount of material (7-30 g). The fluorescent probe ACMA (9-amino-6-chloro-2-metoxyacridine) accumulates inside the vesicles upon protonation. Quenching of ACMA in the solution corresponds to the H(+) transport across the plasma membrane. Before running the assay, the plasma membranes are incubated with the detergent Brij-58 in order to create inside-out vesicles.
2D nanostructures for water purification: graphene and beyond.
Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C
2016-08-18
Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.
Methods in Elastic Tissue Biology: Elastin Isolation and Purification
Mecham, Robert P.
2008-01-01
Elastin provides recoil to tissues subjected to repeated stretch, such as blood vessels and the lung. It is encoded by a single gene in mammals and is secreted as a 60–70 kDa monomer call tropoelastin. The functional form of the protein is that of a large, highly crosslinked polymer that organizes as sheets or fibers in the extracellular matrix. Purification of mature, crosslinked elastin is problematic because its insolubility precludes its isolation using standard wet-chemistry techniques. Instead, relatively harsh experimental approaches designed to remove non-elastin ‘contaminates’ are employed to generate an insoluble product that has the amino acid composition expected of elastin. Although soluble, tropoelastin also presents problems for isolation and purification. The protein’s extreme stickiness and susceptibility to proteolysis requires careful attention during purification and in tropoelastin-based assays. This article describes the most common approaches for purification of insoluble elastin and tropoelastin. It also addresses key aspects of studying tropoelastin production in cultured cells, where elastin expression is highly dependent upon cell type, culture conditions, and passage number. PMID:18442703
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ugai, Hideyo; Yamasaki, Takahito; Hirose, Megumi
2005-06-17
Adenoviruses are excellent vectors for gene transfer and are used extensively for high-level expression of the products of transgenes in living cells. The development of simple and rapid methods for the purification of stable infectious recombinant adenoviruses (rAds) remains a challenge. We report here a method for the purification of infectious adenovirus type 5 (Ad5) that involves ultracentrifugation on a cesium chloride gradient at 604,000g for 15 min at 4 deg C and tangential flow filtration. The entire procedure requires less than two hours and infectious Ad5 can be recovered at levels higher than 64% of the number of plaque-formingmore » units (pfu) in the initial crude preparation of viruses. We have obtained titers of infectious purified Ad5 of 1.35 x 10{sup 10} pfu/ml and a ratio of particle titer to infectious titer of seven. The method described here allows the rapid purification of rAds for studies of gene function in vivo and in vitro, as well as the rapid purification of Ad5.« less
Mehrnoush, Amid; Sarker, Md Zaidul Islam; Mustafa, Shuhaimi; Yazid, Abdul Manap Mohd
2011-10-10
An Aqueous Two-Phase System (ATPS) was employed for the first time for the separation and purification of pectinase from mango (Mangifera Indica Cv. Chokanan) peel. The effects of different parameters such as molecular weight of the polymer (polyethylene glycol, 2,000-10,000), potassium phosphate composition (12-20%, w/w), system pH (6-9), and addition of different concentrations of neutral salts (0-8%, w/w) on partition behavior of pectinase were investigated. The partition coefficient of the enzyme was decreased by increasing the PEG molecular weight. Additionally, the phase composition showed a significant effect on purification factor and yield of the enzyme. Optimum conditions for purification of pectinase from mango peel were achieved in a 14% PEG 4000-14% potassium phosphate system using 3% (w/w) NaCl addition at pH 7.0. Based on this system, the purification factor of pectinase was increased to 13.2 with a high yield of (97.6%). Thus, this study proves that ATPS can be an inexpensive and effective method for partitioning of pectinase from mango peel.
Amid, Mehrnoush; Abdul Manap, Mohd Yazid; Mustafa, Shuhaimi
2013-07-15
As a novel method of purification, an aqueous organic phase system (AOPS) was employed to purify pectinase from mango waste. The effect of different parameters, such as the alcohol concentration (ethanol, 1-propanol, and 2-propanol), the salt type and concentration (ammonium sulfate, potassium phosphate and sodium citrate), the feed stock crude load, the aqueous phase pH and NaCl concentration, were investigated in the recovery of pectinase from mango peel. The partition coefficient (K), selectivity (S), purification factor (PF) and yield (Y, %) were investigated in this study as important parameters for the evaluation of enzyme recovery. The desirable partition efficiency for pectinase purification was achieved in an AOPS of 19% (w/w) ethanol and 22% (w/w) potassium phosphate in the presence of 5% (w/w) NaCl at pH 7.0. Based on the system, the purification factor of pectinase was enhanced 11.7, with a high yield of 97.1%. Copyright © 2013 Elsevier B.V. All rights reserved.
Crusius, Kerstin; Finster, Silke; McClary, John; Xia, Wei; Larsen, Brent; Schneider, Douglas; Lu, Hong-Tao; Biancalana, Sara; Xuan, Jian-Ai; Newton, Alicia; Allen, Debbie; Bringmann, Peter; Cobb, Ronald R
2006-10-01
The detection and purification of proteins are often time-consuming and frequently involve complicated protocols. The addition of a peptide tag to recombinant proteins can make this process more efficient. Many of the commonly used tags, such as Flagtrade mark, Myc, HA and V5 are recognized by specific monoclonal antibodies and therefore, allow immunoaffinity-based purification. Enhancing the current scope of flexibility in using diverse peptide tags, we report here the development of a novel, short polypeptide tag (Tab2) for detection and purification of recombinant proteins. The Tab2 epitope corresponds to the NH2-terminal seven amino acid residues of human TGFalpha. A monoclonal anti-Tab2 antibody was raised and characterized. To investigate the potential of this peptide sequence as a novel tag for recombinant proteins, we expressed several different recombinant proteins containing this tag in E. coli, baculovirus, and mammalian cells. The data presented demonstrates the Tab2 tag-anti-Tab2 antibody combination is a reliable tool enabling specific Western blot detection, FACS analysis, and immunoprecipitation as well as non-denaturing protein affinity purification.
Very large scale monoclonal antibody purification: the case for conventional unit operations.
Kelley, Brian
2007-01-01
Technology development initiatives targeted for monoclonal antibody purification may be motivated by manufacturing limitations and are often aimed at solving current and future process bottlenecks. A subject under debate in many biotechnology companies is whether conventional unit operations such as chromatography will eventually become limiting for the production of recombinant protein therapeutics. An evaluation of the potential limitations of process chromatography and filtration using today's commercially available resins and membranes was conducted for a conceptual process scaled to produce 10 tons of monoclonal antibody per year from a single manufacturing plant, a scale representing one of the world's largest single-plant capacities for cGMP protein production. The process employs a simple, efficient purification train using only two chromatographic and two ultrafiltration steps, modeled after a platform antibody purification train that has generated 10 kg batches in clinical production. Based on analyses of cost of goods and the production capacity of this very large scale purification process, it is unlikely that non-conventional downstream unit operations would be needed to replace conventional chromatographic and filtration separation steps, at least for recombinant antibodies.
Van Belleghem, Jonas D; Merabishvili, Maya; Vergauwen, Bjorn; Lavigne, Rob; Vaneechoutte, Mario
2017-01-01
Bacterial endotoxins have high immunogenicity. Phage biology studies as well as therapeutic phage applications necessitate highly purified phage particles. In this study, we compared combinations of seven different endotoxin removal strategies and validated their endotoxin removal efficacy for five different phages (i.e. four Pseudomonas aeruginosa phages and one Staphylococcus aureus phage). These purification strategies included Endotrap HD column purification and/or CsCl density centrifugation in combination with Endotrap purification, followed by organic solvent (1-octanol), detergent (Triton X-100), enzymatic inactivation of the endotoxin using alkaline phosphatase and CIM monolytic anion exchange chromatography. We show that CsCl density purification of the P. aeruginosa phages, at an initial concentration of 10 12 -10 13 pfu/ml, led to the strongest reduction of endotoxins, with an endotoxin removal efficacy of up to 99%, whereas additional purification methods did not result in a complete removal of endotoxins from the phage preparations and only yielded an additional endotoxin removal efficacy of 23 to 99%, sometimes accompanied with strong losses in phage titer. Copyright © 2016 Elsevier B.V. All rights reserved.
Marcos, J C; Fonseca, L P; Ramalho, M T; Cabral, J M
1999-10-29
Studies on the partition and purification of penicillin acylase from Escherichia coli osmotic shock extract were performed in poly(ethylene glycol)-sodium citrate systems. Partition coefficient behavior of the enzyme and total protein are similar to those described in other reports, increasing with pH and tie line length and decreasing with PEG molecular weight. However, some selectivity could be attained with PEG 1000 systems and long tie line at pH 6.9. Under these conditions 2.6-fold purification with 83% yield were achieved. Influence of pH on partition shows that is the composition of the system and not the net charge of the enzyme that determines the behaviour in these conditions. Addition of NaCl to PEG 3350 systems significantly increases the partition of the enzyme. Although protein partition also increased, purification conditions were possible with 1.5 M NaCl where 5.7-fold purification and 85% yield was obtained. This was possible due to the higher hydrophobicity of the enzyme compared to that of most contaminants proteins.
Automated multi-dimensional purification of tagged proteins.
Sigrell, Jill A; Eklund, Pär; Galin, Markus; Hedkvist, Lotta; Liljedahl, Pia; Johansson, Christine Markeland; Pless, Thomas; Torstenson, Karin
2003-01-01
The capacity for high throughput purification (HTP) is essential in fields such as structural genomics where large numbers of protein samples are routinely characterized in, for example, studies of structural determination, functionality and drug development. Proteins required for such analysis must be pure and homogenous and available in relatively large amounts. AKTA 3D system is a powerful automated protein purification system, which minimizes preparation, run-time and repetitive manual tasks. It has the capacity to purify up to 6 different His6- or GST-tagged proteins per day and can produce 1-50 mg protein per run at >90% purity. The success of automated protein purification increases with careful experimental planning. Protocol, columns and buffers need to be chosen with the final application area for the purified protein in mind.
Automated large-scale purification of a G protein-coupled receptor for neurotensin.
White, Jim F; Trinh, Loc B; Shiloach, Joseph; Grisshammer, Reinhard
2004-04-30
Structure determination of integral membrane proteins requires milligram amounts of purified, functional protein on a regular basis. Here, we describe a protocol for the purification of a G protein-coupled neurotensin receptor fusion protein at the 3-mg or 10-mg level using immobilized metal affinity chromatography and a neurotensin column in a fully automated mode. Fermentation at a 200-l scale of Escherichia coli expressing functional receptors provides the material needed to feed into the purification routine. Constructs with tobacco etch virus protease recognition sites at either end of the receptor allow the isolation of neurotensin receptor devoid of its fusion partners. The presented expression and purification procedures are simple and robust, and provide the basis for crystallization experiments of receptors on a routine basis.
Young, Carissa L; Britton, Zachary T; Robinson, Anne S
2012-05-01
Protein fusion tags are indispensible tools used to improve recombinant protein expression yields, enable protein purification, and accelerate the characterization of protein structure and function. Solubility-enhancing tags, genetically engineered epitopes, and recombinant endoproteases have resulted in a versatile array of combinatorial elements that facilitate protein detection and purification in microbial hosts. In this comprehensive review, we evaluate the most frequently used solubility-enhancing and affinity tags. Furthermore, we provide summaries of well-characterized purification strategies that have been used to increase product yields and have widespread application in many areas of biotechnology including drug discovery, therapeutics, and pharmacology. This review serves as an excellent literature reference for those working on protein fusion tags. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Purification of Tronoh Silica Sand via preliminary process of mechanical milling
NASA Astrophysics Data System (ADS)
H, Nazratulhuda; M, Othman
2016-02-01
The purification of Tronoh silica sand is an important step in expanding technical applications of this silica sand. However no research on purifying of Tronoh silica sand has been reported. This study is focused on ball milling technique as a preliminary technique for Tronoh silica sand purification. The objectives are to study the effect of ball milling to the purification of the silica sand and to analyze its characteristics after the ball milling process. The samples before and after milling process were analyzed by using XRF, XRD, SEM and TEM. Results showed that the purity of SiO2 was increased, the size of the particles has been reduced and the surface area has increased. The crystalline phases for the silica before and after 4 hour milling time were remained constant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, M.L.; Martorell, J.T.
1962-01-01
The purification of zirconium in a cyclical static process using ZrI/sub 4/ as the volatile compound and W filaments was studied after a review of previous works on the subject. The equations corresponding to the isothermal process are given, in some detail. The optimum conditions of temperature and velocity for the maximum purification of the metal were determined. (J.S.R.)
Water purification in Borexino
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giammarchi, M.; Balata, M.; Ioannucci, L.
Astroparticle Physics and Underground experiments searching for rare nuclear events, need high purity materials to act as detectors or detector shielding. Water has the advantage of being cheap, dense and easily available. Most of all, water can be purified to the goal of obatining a high level of radiopurity. Water Purification can be achieved by means of a combination of processes, including filtration, reverse osmosis, deionization and gas stripping. The Water Purification System for the Borexino experiment, will be described together with its main performances.
Economic Methods of Ginger Protease'sextraction and Purification
NASA Astrophysics Data System (ADS)
Qiao, Yuanyuan; Tong, Junfeng; Wei, Siqing; Du, Xinyong; Tang, Xiaozhen
This article reports the ginger protease extraction and purification methods from fresh ginger rhizome. As to ginger protease extraction, we adapt the steps of organic solvent dissolving, ammonium sulfate depositing and freeze-drying, and this method can attain crude enzyme powder 0.6% weight of fresh ginger rhizome. The purification part in this study includes two steps: cellulose ion exchange (DEAE-52) and SP-Sephadex 50 chromatography, which can purify crude ginger protease through ion and molecular weight differences respectively.
Experimental Study on Purification of Low Grade Diatomite
NASA Astrophysics Data System (ADS)
Xiao, Liguang; Pang, Bo
2017-04-01
This paper presented an innovation for purification of low grade diatomite(DE) by grinding, ultrasonic pretreatment, acid leaching of closed stirring and calcination. The optimum process parameters of DE purification were obtained, the characterizations of original and purified DE were determined by SEM and BET. The results showed that the specific surface area of DE increased from 12.65m2/g to 23.23m2/g, which increased by 45.54%. SEM analysis revealed that the pore structure of purified DE was dredged highly.
Comparative aspects of the purification and properties of cholinesterases
Augustinsson, Klas-Bertil
1971-01-01
Recent years have seen great progress in the purification and characterization of cholinesterases. Investigation has indicated the existence of two principal groups: a fairly homogeneous group of acetylcholinesterases and a group of enzymes that utilize butyrylcholine, propionycholine, or benzoylcholine as substrates and that differ widely in their properties. This paper reviews the different types of cholinesterase and their sources, the importance of a proper choice of substrate in cholinesterase studies, methods for the purification of cholinesterases, and some of the properties of these enzymes. PMID:4938026
Recovery and purification of ethylene
Reyneke, Rian [Katy, TX; Foral, Michael J [Aurora, IL; Lee, Guang-Chung [Houston, TX; Eng, Wayne W. Y. [League City, TX; Sinclair, Iain [Warrington, GB; Lodgson, Jeffery S [Naperville, IL
2008-10-21
A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.
Purification of polymorphic components of complex genomes
Stodolsky, Marvin
1991-01-01
A method is disclosed for processing related subject and reference macromolecule populations composed of complementary strands into their respective subject and reference populations of representative fragments and effectuating purification of unique polymorphic subject fragments.
Purification of polymorphic components of complex genomes
Stodolsky, M.
1988-01-21
A method for processing related subject and reference macromolecule composed of complementary strand into their respective subject and reference populations of representative fragments and effectuating purification of unique polymorphic subject fragments. 1 fig.
6. Vacuum purification room and upper level offices Bureau ...
6. Vacuum purification room and upper level offices - Bureau of Mines Boulder City Experimental Station, Titanium Research Building, Date Street north of U.S. Highway 93, Boulder City, Clark County, NV
Trace impurities analysis determined by neutron activation in the PbI 2 crystal semiconductor
NASA Astrophysics Data System (ADS)
Hamada, M. M.; Oliveira, I. B.; Armelin, M. J.; Mesquita, C. H.
2003-06-01
In this work, a methodology for impurity analysis of PbI 2 was studied to investigate the effectiveness of the purification. Commercial salts were purified by the multi passes zone refining and grown by the Bridgman method. To evaluate the purification efficiency, samples from the bottom, middle and upper sections of the ZR ingot were analyzed after 200, 300 and 500 purification passes, by measurements of the impurity concentrations, using the neutron activation analysis (NAA) technique. There was a significant reduction of the impurities according to the purification numbers. The reduction efficiency was different for each element, namely: Au>Mn>Co˜Ag>K˜Br. The impurity concentration of the crystals grown after 200, 300 and 500 passes and the PbI 2 starting material were analyzed by NAA and plasma optical emission spectroscopy.
Purification of Carbon Nanotubes: Alternative Methods
NASA Technical Reports Server (NTRS)
Files, Bradley; Scott, Carl; Gorelik, Olga; Nikolaev, Pasha; Hulse, Lou; Arepalli, Sivaram
2000-01-01
Traditional carbon nanotube purification process involves nitric acid refluxing and cross flow filtration using surfactant TritonX. This is believed to result in damage to nanotubes and surfactant residue on nanotube surface. Alternative purification procedures involving solvent extraction, thermal zone refining and nitric acid refiuxing are used in the current study. The effect of duration and type of solvent to dissolve impurities including fullerenes and P ACs (polyaromatic compounds) are monitored by nuclear magnetic reasonance, high performance liquid chromatography, and thermogravimetric analysis. Thermal zone refining yielded sample areas rich in nanotubes as seen by scanning electric microscopy. Refluxing in boiling nitric acid seem to improve the nanotube content. Different procedural steps are needed to purify samples produced by laser process compared to arc process. These alternative methods of nanotube purification will be presented along with results from supporting analytical techniques.
Rao, Ankita; Kumar Sharma, Abhishek; Kumar, Pradeep; Charyulu, M M; Tomar, B S; Ramakumar, K L
2014-07-01
A new method has been developed for separation and purification of fission (99)Mo from neutron activated uranium-aluminum alloy. Alkali dissolution of the irradiated target (100mg) results in aluminum along with (99)Mo and a few fission products passing into solution, while most of the fission products, activation products and uranium remain undissolved. Subsequent purification steps involve precipitation of aluminum as Al(OH)3, iodine as AgI/AgIO3 and molybdenum as Mo-α-benzoin oxime. Ruthenium is separated by volatilization as RuO4 and final purification of (99)Mo was carried out using anion exchange method. The radiochemical yield of fission (99)Mo was found to be >80% and the purity of the product was in conformity with the international pharmacopoeia standards. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hyperentanglement purification using imperfect spatial entanglement.
Wang, Tie-Jun; Mi, Si-Chen; Wang, Chuan
2017-02-06
As the interaction between the photons and the environment which will make the entangled photon pairs in less entangled states or even in mixed states, the security and the efficiency of quantum communication will decrease. We present an efficient hyperentanglement purification protocol that distills nonlocal high-fidelity hyper-entangled Bell states in both polarization and spatial-mode degrees of freedom from ensembles of two-photon system in mixed states using linear optics. Here, we consider the influence of the photon loss in the channel which generally is ignored in the conventional entanglement purification and hyperentanglement purification (HEP) schemes. Compared with previous HEP schemes, our HEP scheme decreases the requirement for nonlocal resources by employing high-dimensional mode-check measurement, and leads to a higher fidelity, especially in the range where the conventional HEP schemes become invalid but our scheme still can work.
Bromelain purification through unconventional aqueous two-phase system (PEG/ammonium sulphate).
Coelho, D F; Silveira, E; Pessoa Junior, A; Tambourgi, E B
2013-02-01
This paper focuses on the feasibility of unconventional aqueous two-phase systems for bromelain purification from pineapple processing waste. The main difference in comparison with conventional systems is the integration of the liquid-liquid extraction technique with fractional precipitation, which can decrease the protein content with no loss of biological activity by removing of unwanted molecules. The analysis of the results was based on the response surface methodology and revealed that the use of the desirability optimisation methodology (DOM) was necessary to achieve higher purification factor values and greater bromelain recovery. The use of DOM yielded an 11.80-fold purification factor and 66.38 % biological activity recovery using poly(ethylene glycol) (PEG) with a molar mass of 4,000, 10.86 % PEG concentration (m/m) and 36.21 % saturation of ammonium sulphate.
[Purification of arsenic-binding proteins in hamster plasma after oral administration of arsenite].
Wang, Wenwen; Zhang, Min; Li, Chunhui; Qin, Yingjie; Hua, Naranmandura
2013-01-01
To purify the arsenic-binding proteins (As-BP) in hamster plasma after a single oral administration of arsenite (iAs(III)). Arsenite was given to hamsters in a single dose. Three types of HPLC columns, size exclusion, gel filtration and anion exchange columns, combined with an inductively coupled argon plasma mass spectrometer (ICP MS) were used to purify the As-BP in hamster plasma. SDS-PAGE was used to confirm the arsenic-binding proteins at each purification step. The three-step purification process successfully separated As-BP from other proteins (ie, arsenic unbound proteins) in hamster plasma. The molecular mass of purified As-BP in plasma was approximately 40-50 kD on SDS-PAGE. The three-step purification method is a simple and fast approach to purify the As-BP in plasma samples.
Mlynek, Georg; Lehner, Anita; Neuhold, Jana; Leeb, Sarah; Kostan, Julius; Charnagalov, Alexej; Stolt-Bergner, Peggy; Djinović-Carugo, Kristina; Pinotsis, Nikos
2014-06-01
Expression in Escherichia coli represents the simplest and most cost effective means for the production of recombinant proteins. This is a routine task in structural biology and biochemistry where milligrams of the target protein are required in high purity and monodispersity. To achieve these criteria, the user often needs to screen several constructs in different expression and purification conditions in parallel. We describe a pipeline, implemented in the Center for Optimized Structural Studies, that enables the systematic screening of expression and purification conditions for recombinant proteins and relies on a series of logical decisions. We first use bioinformatics tools to design a series of protein fragments, which we clone in parallel, and subsequently screen in small scale for optimal expression and purification conditions. Based on a scoring system that assesses soluble expression, we then select the top ranking targets for large-scale purification. In the establishment of our pipeline, emphasis was put on streamlining the processes such that it can be easily but not necessarily automatized. In a typical run of about 2 weeks, we are able to prepare and perform small-scale expression screens for 20-100 different constructs followed by large-scale purification of at least 4-6 proteins. The major advantage of our approach is its flexibility, which allows for easy adoption, either partially or entirely, by any average hypothesis driven laboratory in a manual or robot-assisted manner.
Biancucci, Marco; Dolores, Jazel S; Wong, Jennifer; Grimshaw, Sarah; Anderson, Wayne F; Satchell, Karla J F; Kwon, Keehwan
2017-01-05
Recombinant protein purification is a crucial step for biochemistry and structural biology fields. Rapid robust purification methods utilize various peptide or protein tags fused to the target protein for affinity purification using corresponding matrices and to enhance solubility. However, affinity/solubility-tags often need to be removed in order to conduct functional and structural studies, adding complexities to purification protocols. In this work, the Vibrio cholerae MARTX toxin Cysteine Protease Domain (CPD) was inserted in a ligation-independent cloning (LIC) vector to create a C-terminal 6xHis-tagged inducible autoprocessing enzyme tag, called "the CPD-tag". The pCPD and alternative pCPD/ccdB cloning vectors allow for easy insertion of DNA and expression of the target protein fused to the CPD-tag, which is removed at the end of the purification step by addition of the inexpensive small molecule inositol hexakisphosphate to induce CPD autoprocessing. This process is demonstrated using a small bacterial membrane localization domain and for high yield purification of the eukaryotic small GTPase KRas. Subsequently, pCPD was tested with 40 proteins or sub-domains selected from a high throughput crystallization pipeline. pCPD vectors are easily used LIC compatible vectors for expression of recombinant proteins with a C-terminal CPD/6xHis-tag. Although intended only as a strategy for rapid tag removal, this pilot study revealed the CPD-tag may also increase expression and solubility of some recombinant proteins.
Winge, Stefan; Yderland, Louise; Kannicht, Christoph; Hermans, Pim; Adema, Simon; Schmidt, Torben; Gilljam, Gustav; Linhult, Martin; Tiemeyer, Maya; Belyanskaya, Larisa; Walter, Olaf
2015-11-01
Human-cl rhFVIII (Nuwiq®), a new generation recombinant factor VIII (rFVIII), is the first rFVIII produced in a human cell-line approved by the European Medicines Agency. To describe the development, upscaling and process validation for industrial-scale human-cl rhFVIII purification. The purification process involves one centrifugation, two filtration, five chromatography columns and two dedicated pathogen clearance steps (solvent/detergent treatment and 20 nm nanofiltration). The key purification step uses an affinity resin (VIIISelect) with high specificity for FVIII, removing essentially all host-cell proteins with >80% product recovery. The production-scale multi-step purification process efficiently removes process- and product-related impurities and results in a high-purity rhFVIII product, with an overall yield of ∼50%. Specific activity of the final product was >9000 IU/mg, and the ratio between active FVIII and total FVIII protein present was >0.9. The entire production process is free of animal-derived products. Leaching of potential harmful compounds from chromatography resins and all pathogens tested were below the limit of quantification in the final product. Human-cl rhFVIII can be produced at 500 L bioreactor scale, maintaining high purity and recoveries. The innovative purification process ensures a high-purity and high-quality human-cl rhFVIII product with a high pathogen safety margin. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Purification of lanthanides for double beta decay experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polischuk, O. G.; Barabash, A. S.; Belli, P.
2013-08-08
There are several potentially double beta active isotopes among the lanthanide elements. However, even high purity grade lanthanide compounds contain {sup 238}U, {sup 226}Ra and {sup 232,228}Th typically on the level of ∼ (0.1 - 1) Bq/kg. The liquid-liquid extraction technique was used to remove traces of U, Ra and Th from CeO{sub 2}, Nd{sub 2}O{sub 3} and Gd{sub 2}O{sub 3}. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe γ spectrometry at the underground Gran Sasso National Laboratories of the INFN (Italy). After the purification the radioactive contamination of gadolinium oxidemore » by Ra and Th was decreased at least one order of magnitude. The efficiency of the approach to purify cerium oxide from Ra was on same level, while the radioactive contamination of neodymium sample before and after the purification is below the sensitivity of analytical methods. The purification method is much less efficient for chemically very similar radioactive elements like lanthanum, lutetium and actinium. R and D of the methods to remove the pollutions with improved efficiency is in progress.« less
Park, Jaewoo; Bazylewski, Paul; Fanchini, Giovanni
2016-05-14
A new generation of membranes for water purification based on weakly oxidized and nanoporous few-layer graphene is here introduced. These membranes dramatically decrease the high energy requirements of water purification by reverse osmosis. They combine the advantages of porous and non-oxidized single-layer graphene, offering energy-efficient water filtration at relatively low differential pressures, and highly oxidized graphene oxide, exhibiting high performance in terms of impurity adsorption. In the reported fabrication process, leaks between juxtaposed few-layer graphene flakes are sealed by thermally annealed colloidal silica, in a treatment that precedes the opening of (sub)nanometre-size pores in graphene. This process, explored for the first time in this work, results in nanoporous graphene flakes that are water-tight at the edges without occluding the (sub)nanopores. With this method, removal of impurities from water occurs through a combination of size-based pore rejection and pore-edge adsorption. Thinness of graphene flakes allows these membranes to achieve water purification from metal ions in concentrations of few parts-per-million at differential pressures as low as 30 kPa, outperforming existing graphene or graphene oxide purification systems with comparable flow rates.
Porous graphene-based membranes for water purification from metal ions at low differential pressures
NASA Astrophysics Data System (ADS)
Park, Jaewoo; Bazylewski, Paul; Fanchini, Giovanni
2016-05-01
A new generation of membranes for water purification based on weakly oxidized and nanoporous few-layer graphene is here introduced. These membranes dramatically decrease the high energy requirements of water purification by reverse osmosis. They combine the advantages of porous and non-oxidized single-layer graphene, offering energy-efficient water filtration at relatively low differential pressures, and highly oxidized graphene oxide, exhibiting high performance in terms of impurity adsorption. In the reported fabrication process, leaks between juxtaposed few-layer graphene flakes are sealed by thermally annealed colloidal silica, in a treatment that precedes the opening of (sub)nanometre-size pores in graphene. This process, explored for the first time in this work, results in nanoporous graphene flakes that are water-tight at the edges without occluding the (sub)nanopores. With this method, removal of impurities from water occurs through a combination of size-based pore rejection and pore-edge adsorption. Thinness of graphene flakes allows these membranes to achieve water purification from metal ions in concentrations of few parts-per-million at differential pressures as low as 30 kPa, outperforming existing graphene or graphene oxide purification systems with comparable flow rates.
Purification effect of two typical water source vegetation buffer zones on land-sourced pollutants
NASA Astrophysics Data System (ADS)
Li, Gang
2017-03-01
Two vegetation buffer zones (tree-shrub-grass pattern and tree-grass pattern) were selected as test objects around Siming reservoir in Yuyao City of China. The effect of the storm runoff intensity (low and high intensity) and the buffer zone width (1 m, 3 m, 5 m, 7 m, 9 m, 12 m, 16 m) on pollutants (suspended solids, ammonium nitrogen and total phosphorus) was studied by the artificial simulation runoff. The results showed that with the increase of the width of buffer zone, the pollutant concentration was decreased. The purification effect of the two buffer zones on suspended solids and total phosphorus was basically stable at 52-55% and 34-37%, respectively. But the purification effect on ammonium nitrogen was the tree-shrub-grass pattern (69.7%) significantly better than that of tree-grass pattern (52.1%). The purification rate at the low runoff intensity was 1.8-2.0 times that at the high runoff intensity. The relationship between the purification rate and buffer zone width can be expressed by the natural logarithm equation, and the model adjustment coefficient was greater than 0.92.
de Araújo, Nathália Kelly; Pimentel, Vanessa Carvalho; da Silva, Nayane Macedo Portela; de Araújo Padilha, Carlos Eduardo; de Macedo, Gorete Ribeiro; Dos Santos, Everaldo Silvino
2016-02-01
This study presents a system for expanded bed adsorption for the purification of chitosanase from broth extract in a single step. A chitosanase-producing strain was isolated and identified as Bacillus cereus C-01 and used to produce chitosanases. The expanded bed adsorption conditions for chitosanase purification were optimized statistically using STREAMLINE(TM) DEAE and a homemade column (2.6 × 30.0 cm). Dependent variables were defined by the quality criteria purification factor (P) and enzyme yield to optimize the chromatographic process. Statistical analyses showed that the optimum conditions for the maximum P were 150 cm/h load flow velocity, 6.0 cm settled bed height, and 7.36 cm distributor height. Distributor height had a strong influence on the process, considerably affecting both the P and enzyme yield. Optimizing the purification variables resulted in an approximately 3.66-fold increase in the P compared with the value under nonoptimized conditions. This system is promising for the recovery of chitosanase from B. cereus C-01 and is economically viable because it promotes the reduction steps. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Yong-Hua; Wu, Xiao-Fu; Hao, Jun; Chen, Ming-Li; Zhu, Guang-Yu
2014-02-01
In order to solve the problem that wetland herbaceous plants tend to die during winter in subtropics areas, selection and purification potential evaluation experiments were carried out by introducing into the constructed wetlands 16 species of woody wetland plants. Cluster analysis was performed by including the morphological characteristics, physiological characteristics, as well as nitrogen and phosphorus accumulation of the woody wetland plants. The results indicated that there were significant differences among the tested woody plants in their survival rate, height increase, root length increase and vigor, Chlorophyll content, Superoxide dismutase, Malonaldehyde, Proline, Peroxidase, biomass, average concentration and accumulation of nitrogen and phosphorus. Based on the established evaluation system, the tested plants were clustered into 3 groups. The plants in the 1st group possessing high purification potentials are Nerium oleander and Hibiscus syriacus. Those in the 2nd group possessing moderate purification potentials are Trachycarpus fortune, Llex latifolia Thunb., Gardenia jasminoides, Serissa foetida and Ilex crenatacv Convexa. And those in the 3rd group with low purification potentials are Jasminum udiflorum, Hedera helix, Ligustrum vicaryi, Ligustrum lucidum, Buxus sempervives, Murraya paniculata, Osmanthus fragrans, Mahoniafortune and Photinia serrulata.
High Level Expression and Purification of Recombinant Proteins from Escherichia coli with AK-TAG
Luo, Dan; Wen, Caixia; Zhao, Rongchuan; Liu, Xinyu; Liu, Xinxin; Cui, Jingjing; Liang, Joshua G.; Liang, Peng
2016-01-01
Adenylate kinase (AK) from Escherichia coli was used as both solubility and affinity tag for recombinant protein production. When fused to the N-terminus of a target protein, an AK fusion protein could be expressed in soluble form and purified to near homogeneity in a single step from Blue-Sepherose via affinity elution with micromolar concentration of P1, P5- di (adenosine—5’) pentaphosphate (Ap5A), a transition-state substrate analog of AK. Unlike any other affinity tags, the level of a recombinant protein expression in soluble form and its yield of recovery during each purification step could be readily assessed by AK enzyme activity in near real time. Coupled to a His-Tag installed at the N-terminus and a thrombin cleavage site at the C terminus of AK, the streamlined method, here we dubbed AK-TAG, could also allow convenient expression and retrieval of a cleaved recombinant protein in high yield and purity via dual affinity purification steps. Thus AK-TAG is a new addition to the arsenal of existing affinity tags for recombinant protein expression and purification, and is particularly useful where soluble expression and high degree of purification are at stake. PMID:27214237
Guidelines to reach high-quality purified recombinant proteins.
Oliveira, Carla; Domingues, Lucília
2018-01-01
The final goal in recombinant protein production is to obtain high-quality pure protein samples. Indeed, the successful downstream application of a recombinant protein depends on its quality. Besides production, which is conditioned by the host, the quality of a recombinant protein product relies mainly on the purification procedure. Thus, the purification strategy must be carefully designed from the molecular level. On the other hand, the quality control of a protein sample must be performed to ensure its purity, homogeneity and structural conformity, in order to validate the recombinant production and purification process. Therefore, this review aims at providing succinct information on the rational purification design of recombinant proteins produced in Escherichia coli, specifically the tagging purification, as well as on accessible tools for evaluating and optimizing protein quality. The classical techniques for structural protein characterization-denaturing protein gel electrophoresis (SDS-PAGE), size exclusion chromatography (SEC), dynamic light scattering (DLS) and circular dichroism (CD)-are revisited with focus on the protein and their main advantages and disadvantages. Furthermore, methods for determining protein concentration and protein storage are also presented. The guidelines compiled herein will aid preparing pure, soluble and homogeneous functional recombinant proteins from the very beginning of the molecular cloning design.
Donnelly, Mark I.; Zhou, Min; Millard, Cynthia Sanville; Clancy, Shonda; Stols, Lucy; Eschenfeldt, William H.; Collart, Frank R.; Joachimiak, Andrzej
2009-01-01
Production of milligram quantities of numerous proteins for structural and functional studies requires an efficient purification pipeline. We found that the dual tag, his6-tag–maltose-binding protein (MBP), intended to facilitate purification and enhance proteins’ solubility, disrupted such a pipeline, requiring additional screening and purification steps. Not all proteins rendered soluble by fusion to MBP remained soluble after its proteolytic removal, and in those cases where the protein remained soluble, standard purification protocols failed to remove completely the stoichiometric amount of his6-tagged MBP generated by proteolysis. Both liabilities were alleviated by construction of a vector that produces fusion proteins in which MBP, the his6-tag and the target protein are separated by highly specific protease cleavage sites in the configuration MBP-site-his6-site-protein. In vivo cleavage at the first site by co-expressed protease generated untagged MBP and his6-tagged target protein. Proteins not truly rendered soluble by transient association with MBP precipitated, and untagged MBP was easily separated from the his-tagged target protein by conventional protocols. The second protease cleavage site allowed removal of the his6-tag. PMID:16497515
Purification of polymorphic components of complex genomes
Stodolsky, M.
1991-07-16
A method is disclosed for processing related subject and reference macromolecule populations composed of complementary strands into their respective subject and reference populations of representative fragments and effectuating purification of unique polymorphic subject fragments. 1 figure.
Development of RAP Tag, a Novel Tagging System for Protein Detection and Purification.
Fujii, Yuki; Kaneko, Mika K; Ogasawara, Satoshi; Yamada, Shinji; Yanaka, Miyuki; Nakamura, Takuro; Saidoh, Noriko; Yoshida, Kanae; Honma, Ryusuke; Kato, Yukinari
2017-04-01
Affinity tag systems, possessing high affinity and specificity, are useful for protein detection and purification. The most suitable tag for a particular purpose should be selected from many available affinity tag systems. In this study, we developed a novel affinity tag called the "RAP tag" system, which comprises a mouse antirat podoplanin monoclonal antibody (clone PMab-2) and the RAP tag (DMVNPGLEDRIE). This system is useful not only for protein detection in Western blotting, flow cytometry, and sandwich enzyme-linked immunosorbent assay, but also for protein purification.
Isolation and purification of antigenic components of Cryptococcus.
Wozniak, Karen L; Levitz, Stuart M
2009-01-01
The encapsulated fungal pathogens Cryptococcus neoformans and Cryptococcus gattii are significant agents of life-threatening infections, particularly in persons with suppressed cell-mediated immunity. This chapter provides detailed methodology for the purification of two of the major antigen fractions of C. neoformans: glucuronoxylomannan (GXM) and mannoprotein (MP). GXM is the primary component of the polysaccharide capsule, which is the major cryptococcal virulence factor. In contrast, MPs have been identified as key antigens that stimulate T-cell responses. Purification of GXM and MP should assist investigators studying the antigenic, biochemical, and virulence properties of Cryptococcus species.
[Development of new magnetic bead separation and purification instrument].
Xu, Yingyuan; Chen, Yi
2014-05-01
The article describes the development of new magnetic bead separation and purification instrument. The main application of the instrument is to capture tubercle bacillus from sputum. It is a pretreatment instrument and provides a new platform to help doctors to diagnose bacillary phthisis. Not only could it be used for tubercle bacillus capturing, but also for gene, protein and cell separating and purification. Because the controller of the instrument is 16-bit single chip microcomputer, the cost could be greatly reduced and it will be widely used in China.
Recovery and purification process development for monoclonal antibody production
Ma, Junfen; Winter, Charles; Bayer, Robert
2010-01-01
Hundreds of therapeutic monoclonal antibodies (mAbs) are currently in development, and many companies have multiple antibodies in their pipelines. Current methodology used in recovery processes for these molecules are reviewed here. Basic unit operations such as harvest, Protein A affinity chromatography and additional polishing steps are surveyed. Alternative processes such as flocculation, precipitation and membrane chromatography are discussed. We also cover platform approaches to purification methods development, use of high throughput screening methods, and offer a view on future developments in purification methodology as applied to mAbs. PMID:20647768
Studying breaking of inverted emulsions with thermolysis purification TD600
NASA Astrophysics Data System (ADS)
Tarasova, G. I.; Shevaga, O. N.; Grachyova, E. O.
2018-03-01
Currently, emulsions are used in many branches of industry and agriculture. It explains significant attention paid to issues in production, stabilization and breaking of emulsion. Besides, producing steady emulsions is of importance in many processes; the reverse problem, that of demulsification, is important as well in oil production and treatment of oil emulsion waste water. This paper studies the breaking (demulsification) of inverted emulsions with the help of thermolysis purification TD600, produced by thermal modification of purification, a large-scale waste of the sugar industry.
Expression and purification of recombinant nattokinase in Spodoptera frugiperda cells.
Li, Xiaoxiang; Wang, Xiaoli; Xiong, Shaoling; Zhang, Jing; Cai, Litao; Yang, Yanyan
2007-10-01
A recombinant baculovirus, rv-egfp-NK, containing a reporter gene encoding the enhanced green fluorescent protein (EGFP), was used to express nattokinase (NK), a fibrinolytic enzyme, in Spodoptera frugiperda (SF-9) cells. The recombinant protein also included a histidine tag for purification using Ni(2+) resins. The recombinant NK, approximately 30 kDa, retained fibrinolytic activity (60 U/ml). The integration of the EGFP expression cassette in the Bac-to-Bac system is thus an effective method for the expression and purification of recombinant NK protein in Spodoptera frugiperda insect cells.
Addressing the medicinal chemistry bottleneck: a lean approach to centralized purification.
Weller, Harold N; Nirschl, David S; Paulson, James L; Hoffman, Steven L; Bullock, William H
2012-09-10
The use of standardized lean manufacturing principles to improve drug discovery productivity is often thought to be at odds with fostering innovation. This manuscript describes how selective implementation of a lean optimized process, in this case centralized purification for medicinal chemistry, can improve operational productivity and increase scientist time available for innovation. A description of the centralized purification process is provided along with both operational and impact (productivity) metrics, which indicate lower cost, higher output, and presumably more free time for innovation as a result of the process changes described.
Synthesis of capped RNA using a DMT group as a purification handle.
Veliath, Elizabeth; Gaffney, Barbara L; Jones, Roger A
2014-01-01
We report a new method for synthesis of capped RNA or 2'-OMe RNA that uses a N(2-)4,4'-dimethoxytrityl (DMT) group as a lipophilic purification handle to allow convenient isolation and purification of the capped RNA. The DMT group is easily removed under mild conditions without degradation of the cap. We have used this approach to prepare capped 10- and 20-mers. This method is compatible with the many condensation reactions that have been reported for preparation of capped RNA or cap analogues.
Murphy, Patrick J. M.
2014-01-01
Background Hydrophobic interaction chromatography (HIC) most commonly requires experimental determination (i.e., scouting) in order to select an optimal chromatographic medium for purifying a given target protein. Neither a two-step purification of untagged green fluorescent protein (GFP) from crude bacterial lysate using sequential HIC and size exclusion chromatography (SEC), nor HIC column scouting elution profiles of GFP, have been previously reported. Methods and Results Bacterial lysate expressing recombinant GFP was sequentially adsorbed to commercially available HIC columns containing butyl, octyl, and phenyl-based HIC ligands coupled to matrices of varying bead size. The lysate was fractionated using a linear ammonium phosphate salt gradient at constant pH. Collected HIC eluate fractions containing retained GFP were then pooled and further purified using high-resolution preparative SEC. Significant differences in presumptive GFP elution profiles were observed using in-line absorption spectrophotometry (A395) and post-run fluorimetry. SDS-PAGE and western blot demonstrated that fluorometric detection was the more accurate indicator of GFP elution in both HIC and SEC purification steps. Comparison of composite HIC column scouting data indicated that a phenyl ligand coupled to a 34 µm matrix produced the highest degree of target protein capture and separation. Conclusions Conducting two-step protein purification using the preferred HIC medium followed by SEC resulted in a final, concentrated product with >98% protein purity. In-line absorbance spectrophotometry was not as precise of an indicator of GFP elution as post-run fluorimetry. These findings demonstrate the importance of utilizing a combination of detection methods when evaluating purification strategies. GFP is a well-characterized model protein, used heavily in educational settings and by researchers with limited protein purification experience, and the data and strategies presented here may aid in development other of HIC-compatible protein purification schemes. PMID:25254496
-dimensional carbon and includes the synthesis, purification, separation, and characterization of single-walled conversion Synthesis, purification, separation, and characterization of single-walled carbon nanotubes Synthesis, characterization, and device integration of graphen Hydrogen storage Photovoltaic materials and
Yang, Hui Ying; Han, Zhao Jun; Yu, Siu Fung; Pey, Kin Leong; Ostrikov, Kostya; Karnik, Rohit
2013-01-01
Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications. Conventional desalination methods are energy and operationally intensive, whereas adsorption-based techniques are simple and easy to use for point-of-use water purification, yet their capacity to remove salts is limited. Here we report that plasma-modified ultralong carbon nanotubes exhibit ultrahigh specific adsorption capacity for salt (exceeding 400% by weight) that is two orders of magnitude higher than that found in the current state-of-the-art activated carbon-based water treatment systems. We exploit this adsorption capacity in ultralong carbon nanotube-based membranes that can remove salt, as well as organic and metal contaminants. These ultralong carbon nanotube-based membranes may lead to next-generation rechargeable, point-of-use potable water purification appliances with superior desalination, disinfection and filtration properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng Xie; Hong Li; Jianzhu Cao
A reform will be implemented in the helium purification system of the 10 MW High Temperature Gas-cooled Test Reactor (HTR-10) in China. The measurement of the gamma dose rates of facilities, including valves, pipes, dust filter, etc., in the purification system of the HTR-10, has been performed. The results indicated that most radiation nuclides are concentrated in the dust filter and facilities at the entrance of the helium purification system upstream of the dust filter. Other facilities have the same gamma dose rate level as the background. Based on the previous study and experiences in AVR, the measurement results canmore » be understood that the radioactive dust carried by the helium gas was filtered by the dust filter. It provides important insights for the decontamination and decommissioning of facilities in the primary loop, especially in the helium purification system of the HTR-10 as well as the High Temperature Reactor-Pebble bed Modules (HTR-PM). (authors)« less
Xin, Huaxia; Dai, Zhuoshun; Cai, Jianfeng; Ke, Yanxiong; Shi, Hui; Fu, Qing; Jin, Yu; Liang, Xinmiao
2017-08-04
Supercritical fluid chromatography (SFC) with chiral stationary phases (CSPs) is an advanced solution for the separation of achiral compounds in Piper kadsura. Analogues and stereoisomers are abundant in natural products, but there are obstacles in separation using conventional method. In this paper, four lignan diastereoisomers, (-)-Galbelgin, (-)-Ganschisandrin, Galgravin and (-)-Veraguensin, from Piper kadsura were separated and purified by chiral SFC. Purification strategy was designed, considering of the compound enrichment, sample purity and purification throughput. Two-step achiral purification method on chiral preparative columns with stacked automated injections was developed. Unconventional mobile phase modifier dichloromethane (DCM) was applied to improve the sample solubility. Four diastereoisomers was prepared at the respective weight of 103.1mg, 10.0mg, 152.3mg and 178.6mg from 710mg extract with the purity of greater than 98%. Copyright © 2017 Elsevier B.V. All rights reserved.
Menzikov, Sergey A
2017-02-07
This study describes the isolation and purification of a protein complex with [Formula: see text]-ATPase activity and sensitivity to GABA A ergic ligands from rat brain plasma membranes. The ATPase complex was enriched using size-exclusion, affinity, and ion-exchange chromatography. The fractions obtained at each purification step were subjected to SDS-polyacrylamide gel electrophoresis (SDS-PAGE), which revealed four subunits with molecular mass ∼48, 52, 56, and 59 kDa; these were retained at all stages of the purification process. Autoradiography revealed that the ∼52 and 56 kDa subunits could bind [ 3 H]muscimol. The [Formula: see text]-ATPase activity of this enriched protein complex was regulated by GABA A ergic ligands but was not sensitive to blockers of the NKCC or KCC cotransporters.
Carbon-11 choline: synthesis, purification, and brain uptake inhibition by 2-dimethylaminoethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosen, M.A.; Jones, R.M.; Yano, Y.
We report an improved method for the synthesis and purification of (11C)methylcholine from the precursors (11C)methyliodide and 2-dimethylaminoethanol (deanol). Preparation time, including purification, is 35 min postbombardment. Forty millicuries of purified injectable (11C)choline were produced with a measured specific activity of greater than 300 Ci/mmol and a radiochemical purity greater than 98%. The decay corrected radiochemical yield for the synthesis and purification was approximately 50%. Residual precursor deanol, which inhibits brain uptake of choline, is removed by a rapid preparative high performance liquid chromatography (HPLC) method using a reverse phase cyano column with a biologically compatible 100% water eluent. Evaporationmore » alone did not completely remove the deanol precursor. Brain uptake of the (11C)choline product was six times greater after HPLC removal of deanol because doses of less than 1 microgram/kg significantly inhibit (14C)choline brain uptake.« less
Multi-copy entanglement purification with practical spontaneous parametric down conversion sources
NASA Astrophysics Data System (ADS)
Zhang, Shuai-Shuai; Shu, Qi; Zhou, Lan; Sheng, Yu-Bo
2017-06-01
Entanglement purification is to distill the high quality entanglement from the low quality entanglement with local operations and classical communications. It is one of the key technologies in long-distance quantum communication. We discuss an entanglement purification protocol (EPP) with spontaneous parametric down conversion (SPDC) sources, in contrast to previous EPP with multi-copy mixed states, which requires ideal entanglement sources. We show that the SPDC source is not an obstacle for purification, but can benefit the fidelity of the purified mixed state. This EPP works for linear optics and is feasible in current experiment technology. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 61401222), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151502), the Qing Lan Project in Jiangsu Province, China, and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
Effect of additives on the purification of urease
NASA Astrophysics Data System (ADS)
Yu, X.; Wang, J.; Ulrich, J.
2015-12-01
The effect of additives on the purification of proteins was investigated. The target protein studied here is the enzyme urease. Studies on the purification of urease from jack bean meal were carried out. 32% (v/v) acetone was utilized to extract urease from the jack bean meal. Further purification by crystallization with the addition of 2-mercaptoethanol and EDTA disodium salt dehydrate was carried out. It was found out that the presence of additives can affect the selectivity of the crystallization. Increases in both purity and yield of the urease after crystallization were observed in the presence of additives, which were proven using both SDS-PAGE and activity. Urease crystals with a yield of 69.9% and a purity of 85.1% were obtained in one crystallization step in the presence of additives. Furthermore, the effect of additives on the thermodynamics and kinetics of urease crystallization was studied.
Purification process for vertically aligned carbon nanofibers
NASA Technical Reports Server (NTRS)
Nguyen, Cattien V.; Delziet, Lance; Matthews, Kristopher; Chen, Bin; Meyyappan, M.
2003-01-01
Individual, free-standing, vertically aligned multiwall carbon nanotubes or nanofibers are ideal for sensor and electrode applications. Our plasma-enhanced chemical vapor deposition techniques for producing free-standing and vertically aligned carbon nanofibers use catalyst particles at the tip of the fiber. Here we present a simple purification process for the removal of iron catalyst particles at the tip of vertically aligned carbon nanofibers derived by plasma-enhanced chemical vapor deposition. The first step involves thermal oxidation in air, at temperatures of 200-400 degrees C, resulting in the physical swelling of the iron particles from the formation of iron oxide. Subsequently, the complete removal of the iron oxide particles is achieved with diluted acid (12% HCl). The purification process appears to be very efficient at removing all of the iron catalyst particles. Electron microscopy images and Raman spectroscopy data indicate that the purification process does not damage the graphitic structure of the nanotubes.
Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; ...
2014-11-05
Platinum–carbon deposits made via electron-beam-induced deposition were purified in this study via a pulsed laser-induced oxidation reaction and erosion of the amorphous carbon to form pure platinum. Purification proceeds from the top down and is likely catalytically facilitated via the evolving platinum layer. Thermal simulations suggest a temperature threshold of ~485 K, and the purification rate is a function of the PtC 5 thickness (80–360 nm) and laser pulse width (1–100 μs) in the ranges studied. The thickness dependence is attributed to the ~235 nm penetration depth of the PtC 5 composite at the laser wavelength, and the pulse-width dependencemore » is attributed to the increased temperatures achieved at longer pulse widths. Finally, remarkably fast purification is realized at cumulative laser exposure times of less than 1 s.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon
Platinum–carbon deposits made via electron-beam-induced deposition were purified in this study via a pulsed laser-induced oxidation reaction and erosion of the amorphous carbon to form pure platinum. Purification proceeds from the top down and is likely catalytically facilitated via the evolving platinum layer. Thermal simulations suggest a temperature threshold of ~485 K, and the purification rate is a function of the PtC 5 thickness (80–360 nm) and laser pulse width (1–100 μs) in the ranges studied. The thickness dependence is attributed to the ~235 nm penetration depth of the PtC 5 composite at the laser wavelength, and the pulse-width dependencemore » is attributed to the increased temperatures achieved at longer pulse widths. Finally, remarkably fast purification is realized at cumulative laser exposure times of less than 1 s.« less
Antimicrobial Peptide Production and Purification.
Suda, Srinivas; Field, Des; Barron, Niall
2017-01-01
Antimicrobial peptides (AMPs) are natural defense compounds which are synthesized as ribosomal gene-encoded pre-peptides and produced by all living organisms. AMPs are small peptides, usually cationic and typically have hydrophobic residues which interact with cell membranes and have either a narrow or broad spectrum of biological activity. AMPs are isolated from the natural host or heterologously expressed in other hosts such as Escherichia coli. The proto-typical lantibiotic Nisin is a widely used AMP that is produced by the food-grade organism Lactococcus lactis. Although AMP production and purification procedures require optimization for individual AMPs, the Nisin production and purification protocol outlined in this chapter can be easily applied with minor modifications for the production and purification of other lantibiotics or AMPs. While Nisin is produced and secreted into the supernatant, steps to recover Nisin from both cell-free supernatant and cell pellet are outlined in detail.
Shin, Min Jae; Tan, Lihan; Jeong, Min Ho; Kim, Ji-Heung; Choe, Woo-Seok
2011-08-05
Immobilized metal affinity monolith column as a new class of chromatographic support is shown to be superior to conventional particle-based column as plasmid DNA (pDNA) purification platform. By harnessing the affinity of endotoxin to copper ions in the solution, a majority of endotoxin (90%) was removed from the alkaline cell lysate using CuCl(2)-induced precipitation. RNA and remaining endotoxin were subsequently removed to below detection limit with minimal loss of pDNA using either monolith or particle-based column. Monolith column has the additional advantage of feed concentration and flowrate-independent dynamic binding capacity for RNA molecules, enabling purification process to be conducted at high feed RNA concentration and flowrate. The use of monolith column gives three fold increased productivity of pDNA as compared to particle-based column, providing a more rapid and economical platform for pDNA purification. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pershing, Teal; SNO+ Collaboration
2016-03-01
The SNO+ detector is a neutrino and neutrinoless double-beta decay experiment utilizing the renovated SNO detector. In the second phase of operation, the SNO+ detector will contain 780 tons of organic liquid scintillator composed of 2 g/L 2,5-diphenyloxazole (PPO) in linear alkylbenzene (LAB). In this phase, SNO+ will strive to detect solar neutrinos in the sub-MeV range, including CNO production neutrinos and pp production neutrinos. To achieve the necessary detector sensitivity, a four-part scintillator purification plant has been constructed in SNOLAB for the removal of ionic and radioactive impurities. We present an overview of the SNO+ scintillator purification plant stages, including distillation, water extraction, gas stripping, and metal scavenger columns. We also give the projected SNO+ sensitivities to various solar-produced neutrinos based on the scintillator plant's projected purification efficiency.
Tweeten, K A; Bulla, L A; Consigli, R A
1977-09-01
A procedure was developed for purification of a granulosis virus inclusion body produced in vivo in the Indian meal moth, Plodia interpunctella (Hübner). Purification was accomplished by differential centrifugation, treatment with sodium deoxycholate, and velocity sedimentation in sucrose gradients. The adequacy of the procedure was confirmed by mixing experiments in which uninfected, radioactively labeled larvae were mixed with infected, unlabeled larvae. After purification, the virus was shown to be free of host tissue, to retain its physical integrity, and to be highly infectious per os. Preparations of purified virus consisted of homogeneous populations of intact inclusion bodies (210 by 380 nm) whose buoyant density was 1.271 g/cm3 when centrifuged to equilibrium in sucrose gradients. Electron microscopy of thin-sectioned virus or of virus sequentially disrupted on electron microscope grids demonstrated three components: protein matrix, envelope, and nucleocapsid.
Tweeten, K A; Bulla, L A; Consigli, R A
1977-01-01
A procedure was developed for purification of a granulosis virus inclusion body produced in vivo in the Indian meal moth, Plodia interpunctella (Hübner). Purification was accomplished by differential centrifugation, treatment with sodium deoxycholate, and velocity sedimentation in sucrose gradients. The adequacy of the procedure was confirmed by mixing experiments in which uninfected, radioactively labeled larvae were mixed with infected, unlabeled larvae. After purification, the virus was shown to be free of host tissue, to retain its physical integrity, and to be highly infectious per os. Preparations of purified virus consisted of homogeneous populations of intact inclusion bodies (210 by 380 nm) whose buoyant density was 1.271 g/cm3 when centrifuged to equilibrium in sucrose gradients. Electron microscopy of thin-sectioned virus or of virus sequentially disrupted on electron microscope grids demonstrated three components: protein matrix, envelope, and nucleocapsid. Images PMID:334076
Wu, Ming-Chang; Lin, Guan-Hui; Wang, Yuh-Tai; Jiang, Chii-Ming; Chang, Hung-Min
2005-10-05
Alcohol-insoluble solids (AIS) from pea pod were cross-linked (CL-AIS) and used as an affinity gel matrix to isolate pectin esterases (PEs) from tendril shoots of chayote (TSC) and jelly fig achenes (JFA), and the results were compared with those isolated by ion-exchange chromatography with a commercial resin. CL-AIS gel matrix in a column displayed poor absorption and purification fold of PE; however, highly methoxylated CL-AIS (HM-CL-AIS), by exposing CL-AIS to methanolic sulfuric acid to increase the degree of esterification (DE) to 92%, facilitated the enzyme purification. The purified TSC PE and JFA PE by the HM-CL-AIS column were proofed as a single band on an SDS-PAGE gel, showing that the HM-CL-AIS column was a good matrix for purification of PE, either with alkaline isoelectric point (pI) (TSC PE) or with acidic pI (JFA PE).
Peter, Jochen F; Otto, Angela M
2010-02-01
The effective isolation and purification of proteins from biological fluids is the most crucial step for a successful protein analysis when only minute amounts are available. While conventional purification methods such as dialysis, ultrafiltration or protein precipitation often lead to a marked loss of protein, SPE with small-sized particles is a powerful alternative. The implementation of particles with superparamagnetic cores facilitates the handling of those particles and allows the application of particles in the nanometer to low micrometer range. Due to the small diameters, magnetic particles are advantageous for increasing sensitivity when using subsequent MS analysis or gel electrophoresis. In the last years, different types of magnetic particles were developed for specific protein purification purposes followed by analysis or screening procedures using MS or SDS gel electrophoresis. In this review, the use of magnetic particles for different applications, such as, the extraction and analysis of DNA/RNA, peptides and proteins, is described.
Preparative isolation and purification of seven isoflavones from Belamcanda chinensis.
Lee, Yeon Sil; Kim, Seon Ha; Kim, Jin Kyu; Lee, Sanghyun; Jung, Sang Hoon; Lim, Soon Sung
2011-01-01
Isoflavonoids from Belamcanda chinensis are known to have a number of physiological benefits including anti-inflammatory, anti-angiogenic and anti-mutagenic properties. However, there have been no reports on the effective isolation and purification of isoflavonoids from B. chinensis. To develop an efficient method for the preparative isolation and purification of isoflavones from B. chinensis by high-speed counter-current chromatography (HSCCC). A two-step HSCCC isolation method was developed using solvent system of n-hexane-ethyl acetate-2-propanol-methanol-water (5:6:2:3.5:6, v/v) and of ethyl acetate-methanol-water (10:2:9, v/v). FLASH purification system (45% methanol, isocratic) was also used for further purification. The purities and chemical structures of the isolated compounds were determined by high-performance liquid chromatography-photodiode array detection (HPLC-PDA), electrospray ionisation-mass spectrometry (ESI-MS), ¹H- and ¹³C-nuclear magnetic resonance spectrometry (NMR) and nuclear overhauser enhancement (NOE). HSCCC was successfully used for the preparative separation and purification of seven isoflavones, including tectoridin (145.4 mg, 97.5%), iridin (77.9 mg, 94.0%), irilin D (42.0 mg, 92.0%), tectorigenin (294.1 mg, 98.6%), iristectorigenin A (86.8 mg, 93.4%), irigenin (141.8 mg, 95.8%) and irisflorentin (73.4 mg, 94.7%) from the rhizomes of B. chinensis. Two isoflavone glycosides and five isoflavone derivatives were successfully isolated and purified from the crude methanol extract of dried rhizomes of the B. chinensis by HSCCC. Copyright © 2011 John Wiley & Sons, Ltd.
Liu, Xiaoqian; Tong, Yan; Wang, Jinyu; Wang, Ruizhen; Zhang, Yanxia; Wang, Zhimin
2011-11-01
Fufang Kushen injection was selected as the model drug, to optimize its alcohol-purification process and understand the characteristics of particle sedimentation process, and to investigate the feasibility of using process analytical technology (PAT) on traditional Chinese medicine (TCM) manufacturing. Total alkaloids (calculated by matrine, oxymatrine, sophoridine and oxysophoridine) and macrozamin were selected as quality evaluation markers to optimize the process of Fufang Kushen injection purification with alcohol. Process parameters of particulate formed in the alcohol-purification, such as the number, density and sedimentation velocity, were also determined to define the sedimentation time and well understand the process. The purification process was optimized as that alcohol is added to the concentrated extract solution (drug material) to certain concentration for 2 times and deposited the alcohol-solution containing drug-material to sediment for some time, i.e. 60% alcohol deposited for 36 hours, filter and then 80% -90% alcohol deposited for 6 hours in turn. The content of total alkaloids was decreased a little during the depositing process. The average settling time of particles with the diameters of 10, 25 microm were 157.7, 25.2 h in the first alcohol-purified process, and 84.2, 13.5 h in the second alcohol-purified process, respectively. The optimized alcohol-purification process remains the marker compositions better and compared with the initial process, it's time saving and much economy. The manufacturing quality of TCM-injection can be controlled by process. PAT pattern must be designed under the well understanding of process of TCM production.
Use of anionic denaturing detergents to purify insoluble proteins after overexpression
2012-01-01
Background Many proteins form insoluble protein aggregates, called “inclusion bodies”, when overexpressed in E. coli. This is the biggest obstacle in biotechnology. Ever since the reversible denaturation of proteins by chaotropic agents such as urea or guanidinium hydrochloride had been shown, these compounds were predominantly used to dissolve inclusion bodies. Other denaturants exist but have received much less attention in protein purification. While the anionic, denaturing detergent sodiumdodecylsulphate (SDS) is used extensively in analytical SDS-PAGE, it has rarely been used in preparative purification. Results Here we present a simple and versatile method to purify insoluble, hexahistidine-tagged proteins under denaturing conditions. It is based on dissolution of overexpressing bacterial cells in a buffer containing sodiumdodecylsulfate (SDS) and whole-lysate denaturation of proteins. The excess of detergent is removed by cooling and centrifugation prior to affinity purification. Host- and overexpressed proteins do not co-precipitate with SDS and the residual concentration of detergent is compatible with affinity purification on Ni/NTA resin. We show that SDS can be replaced with another ionic detergent, Sarkosyl, during purification. Key advantages over denaturing purification in urea or guanidinium are speed, ease of use, low cost of denaturant and the compatibility of buffers with automated FPLC. Conclusion Ionic, denaturing detergents are useful in breaking the solubility barrier, a major obstacle in biotechnology. The method we present yields detergent-denatured protein. Methods to refold proteins from a detergent denatured state are known and therefore we propose that the procedure presented herein will be of general application in biotechnology. PMID:23231964
The Partial Purification and Characterization of Lactate Dehydrogenase.
ERIC Educational Resources Information Center
Wolf, Edward C.
1988-01-01
Offers several advantages over other possibilities as the enzyme of choice for a student's first exposure to a purification scheme. Uses equipment and materials normally found in biochemistry laboratories. Incorporates several important biochemical techniques including spectrophotometry, chromatography, centrifugation, and electrophoresis. (MVL)
Isolation and Purification of Antigenic Components of Cryptococcus
Wozniak, Karen L.; Levitz, Stuart M.
2012-01-01
The encapsulated fungal pathogens Cryptococcus neoformans and Cryptococcus gattii are significant agents of life-threatening infections, particularly in persons with suppressed cell-mediated immunity. This chapter provides detailed methodology for the purification of two of the major antigen fractions of C. neoformans: glucuronoxylomannan (GXM) and mannoprotein (MP). GXM is the primary component of the polysaccharide capsule, which is the major cryptococcal virulence factor. In contrast, MPs have been identified as key antigens that stimulate T-cell responses. Purification of GXM and MP should assist investigators studying the antigenic, biochemical, and virulence properties of Cryptococcus species. PMID:19089377
Magnetic techniques for the isolation and purification of proteins and peptides
Safarik, Ivo; Safarikova, Mirka
2004-01-01
Isolation and separation of specific molecules is used in almost all areas of biosciences and biotechnology. Diverse procedures can be used to achieve this goal. Recently, increased attention has been paid to the development and application of magnetic separation techniques, which employ small magnetic particles. The purpose of this review paper is to summarize various methodologies, strategies and materials which can be used for the isolation and purification of target proteins and peptides with the help of magnetic field. An extensive list of realised purification procedures documents the efficiency of magnetic separation techniques. PMID:15566570
Genji, Takahisa; Nozawa, Akira; Tozawa, Yuzuru
2010-10-01
Cell-free translation is one potential approach to the production of functional transmembrane proteins. We have now examined various detergents as supplements to a wheat-germ cell-free system in order to optimize the production and subsequent purification of a functional model transmembrane protein, bacteriorhodopsin. We found that Fos-choline and CHAPS detergents counteracted each other's inhibitory effects on cell-free translation activity and thereby allowed the efficient production and subsequent purification of functional bacteriorhodopsin in high yield. Copyright © 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varlam, C.; Vagner, I.; Faurescu, I.
In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ({sup 14}C from organically compounds, {sup 36}Cl as chloride and free chlorine, {sup 40}K as potassium cations) and emulsion separation. So the purification of themore » combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}), lyophilization, chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization.« less
Efficient, ultra-high-affinity chromatography in a one-step purification of complex proteins
Vassylyeva, Marina N.; Klyuyev, Sergiy; Vassylyev, Alexey D.; Wesson, Hunter; Zhang, Zhuo; Renfrow, Matthew B.; Wang, Hengbin; Higgins, N. Patrick; Chow, Louise T.; Vassylyev, Dmitry G.
2017-01-01
Protein purification is an essential primary step in numerous biological studies. It is particularly significant for the rapidly emerging high-throughput fields, such as proteomics, interactomics, and drug discovery. Moreover, purifications for structural and industrial applications should meet the requirement of high yield, high purity, and high activity (HHH). It is, therefore, highly desirable to have an efficient purification system with a potential to meet the HHH benchmark in a single step. Here, we report a chromatographic technology based on the ultra-high-affinity (Kd ∼ 10−14–10−17 M) complex between the Colicin E7 DNase (CE7) and its inhibitor, Immunity protein 7 (Im7). For this application, we mutated CE7 to create a CL7 tag, which retained the full binding affinity to Im7 but was inactivated as a DNase. To achieve high capacity, we developed a protocol for a large-scale production and highly specific immobilization of Im7 to a solid support. We demonstrated its utility with one-step HHH purification of a wide range of traditionally challenging biological molecules, including eukaryotic, membrane, toxic, and multisubunit DNA/RNA-binding proteins. The system is simple, reusable, and also applicable to pulldown and kinetic activity/binding assays. PMID:28607052
Experimental studies on islets isolation, purification and function in rats
Pang, Xinlu; Xue, Wujun; Feng, Xinshun; Tian, Xiaohui; Teng, Yan; Ding, Xiaoming; Pan, Xiaoming; Guo, Qi; He, Xiaoli
2015-01-01
To develop a simple and effective method of islet isolation and purification in rats. Collagenase P was injected into pancreatic duct followed by incubation in water bath to digest the pancreas and isolate islet, then discontinuous gravity gradient purification was used to purify the islet. The purified islets were identified by dithizone staining. The viability of islets was assessed by fluorescence staining of acridine orange (AO) and propidium iodide (PI). The function of purified islets was determined by glucose-stimulated insulin release test and transplantation of rat with streptozocin-induced diabetes. 738±193 islets were recovered after purification. The average purity was 77±13%, the viability of islets was more than 95%. When inspected by glucose stimulation, the secreted insulin concentration was 24.31±5.47 mIU/L when stimulated by low concentration glucose and 37.62±4.29 mIU/L by high concentration glucose. There was significant difference between the two phases (P<0.05). The blood sugar concentration recovered to normal level after two days in the animals with islet transplantation. In conclusion, islets can be procured with good function and shape by using the method of injecting collagenase into pancreatic duct followed by incubation in water bath and purification using discontinuous gravity gradient. PMID:26885021
Effects of L-arginine on solubilization and purification of plant membrane proteins.
Arakawa, Junji; Uegaki, Masamichi; Ishimizu, Takeshi
2011-11-01
Biochemical analysis of membrane proteins is problematic at the level of solubilization and/or purification because of their hydrophobic nature. Here, we developed methods for efficient solubilization and purification of membrane proteins using L-arginine. The addition of 100 mM of basic amino acids (L-arginine, L-lysine, and L-ornithine) to a detergent-containing solubilization buffer enhanced solubilization (by 2.6-4.3 fold) of a model membrane protein-polygalacturonic acid synthase. Of all the amino acids, arginine was the most effective additive for solubilization of this membrane protein. Arginine addition also resulted in the best solubilization of other plant membrane proteins. Next, we examined the effects of arginine on purification of a model membrane protein. In anion-exchange chromatography, the addition of arginine to the loading and elution buffers resulted in a greater recovery of a membrane protein. In ultrafiltration, the addition of arginine to a protein solution significantly improved the recovery of a membrane protein. These results were thought to be due to the properties of arginine that prevent aggregation of hydrophobic proteins. Taken together, the results of our study showed that arginine is useful for solubilization and purification of aggregate-prone membrane proteins. Copyright © 2011 Elsevier Inc. All rights reserved.
Kim, Chang Kyu; Lee, Chi Ho; Lee, Seung-Bae; Oh, Jae-Wook
2013-01-01
Granulocyte-colony stimulating factor (G-CSF) is a pleiotropic cytokine that stimulates the development of committed hematopoietic progenitor cells and enhances the functional activity of mature cells. Here, we report a simplified method for fed-batch culture as well as the purification of recombinant human (rh) G-CSF. The new system for rhG-CSF purification was performed using not only temperature shift strategy without isopropyl-l-thio-β-d-galactoside (IPTG) induction but also the purification method by a single step of prep-HPLC after the pH precipitation of the refolded samples. Through these processes, the final cell density and overall yield of homogenous rhG-CSF were obtained 42.8 g as dry cell weights, 1.75 g as purified active proteins, from 1 L culture broth, respectively. The purity of rhG-CSF was finally 99% since the isoforms of rhG-CSF could be separated through the prep-HPLC step. The result of biological activity indicated that purified rhG-CSF has a similar profile to the World Health Organization (WHO) 2nd International Standard for G-CSF. Taken together, our results demonstrate that the simple purification through a single step of prep-HPLC may be valuable for the industrial-scale production of biologically active proteins. PMID:24224041
Wysoczynski, Christina L.; Roemer, Sarah C.; Dostal, Vishantie; Barkley, Robert M.; Churchill, Mair E. A.; Malarkey, Christopher S.
2013-01-01
Obtaining quantities of highly pure duplex DNA is a bottleneck in the biophysical analysis of protein–DNA complexes. In traditional DNA purification methods, the individual cognate DNA strands are purified separately before annealing to form DNA duplexes. This approach works well for palindromic sequences, in which top and bottom strands are identical and duplex formation is typically complete. However, in cases where the DNA is non-palindromic, excess of single-stranded DNA must be removed through additional purification steps to prevent it from interfering in further experiments. Here we describe and apply a novel reversed-phase ion-pair liquid chromatography purification method for double-stranded DNA ranging in lengths from 17 to 51 bp. Both palindromic and non-palindromic DNA can be readily purified. This method has the unique ability to separate blunt double-stranded DNA from pre-attenuated (n-1, n-2, etc) synthesis products, and from DNA duplexes with single base pair overhangs. Additionally, palindromic DNA sequences with only minor differences in the central spacer sequence of the DNA can be separated, and the purified DNA is suitable for co-crystallization of protein–DNA complexes. Thus, double-stranded ion-pair liquid chromatography is a useful approach for duplex DNA purification for many applications. PMID:24013567
Improved purification of immunoglobulin G from plasma by mixed-mode chromatography.
Chai, Dong-Sheng; Sun, Yan; Wang, Xiao-Ning; Shi, Qing-Hong
2014-12-01
Efficient loading of immunoglobulin G in mixed-mode chromatography is often a serious bottleneck in the chromatographic purification of immunoglobulin G. In this work, a mixed-mode ligand, 4-(1H-imidazol-1-yl) aniline, was coupled to Sepharose Fast Flow to fabricate AN SepFF adsorbents with ligand densities of 15-64 mmol/L, and the chromatographic performances of these adsorbents were thoroughly investigated to identify a feasible approach to improve immunoglobulin G purification. The results indicate that a critical ligand density exists for immunoglobulin G on the AN SepFF adsorbents. Above the critical ligand density, the adsorbents showed superior selectivity to immunoglobulin G at high salt concentrations, and also exhibited much higher dynamic binding capacities. For immunoglobulin G purification, both the yield and binding capacity increased with adsorbent ligand density along with a decrease in purity. It is difficult to improve the binding capacity, purity, and yield of immunoglobulin G simultaneously in AN SepFF chromatography. By using tandem AN SepFF chromatography, a threefold increase in binding capacity as well as high purity and yield of immunoglobulin G were achieved. Therefore, the tandem chromatography demonstrates that AN SepFF adsorbent is a practical and feasible alternative to MEP HyperCel adsorbents for immunoglobulin G purification. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lahiri, Sagar; Basu, Arghya; Sengupta, Shinjinee; Banerjee, Shakri; Dutta, Trina; Soren, Dhananjay; Chattopadhyay, Krishnananda; Ghosh, Anil K
2012-06-15
Trehalose and sucrose, two important anti-stress non-reducing natural disaccharides, are catabolized by two enzymes, namely trehalase and invertase respectively. In this study, a 175 kDa enzyme protein active against both substrates was purified from wild type Candida utilis and characterized in detail. Substrate specificity assay and activity staining revealed the enzyme to be specific for both sucrose and trehalose. The ratio between trehalase and invertase activity was found to be constant at 1:3.5 throughout the entire study. Almost 40-fold purification and 30% yield for both activities were achieved at the final step of purification. The presence of common enzyme inhibitors, thermal and pH stress had analogous effects on its trehalase and invertase activity. Km values for two activities were similar while Vmax and Kcat also differed by a factor of 3.5. Competition plot for both substrates revealed the two activities to be occurring at the single active site. N-terminal sequencing and MALDI-TOF data analysis revealed higher similarity of the purified protein to previously known neutral trehalases. While earlier workers mentioned independent purification of neutral trehalase or invertase from different sources, the present study reports the purification of a single protein showing dual activity. Copyright © 2012 Elsevier Inc. All rights reserved.
Ghimpusan, Marieta; Nechifor, Gheorghe; Nechifor, Aurelia-Cristina; Dima, Stefan-Ovidiu; Passeri, Piero
2017-12-01
The paper presents a set of three interconnected case studies on the depuration of food processing wastewaters by using aeration & ozonation and two types of hollow-fiber membrane bioreactor (MBR) approaches. A secondary and more extensive objective derived from the first one is to draw a clearer, broader frame on the variation of physical-chemical parameters during the purification of wastewaters from food industry through different operating modes with the aim of improving the management of water purification process. Chemical oxygen demand (COD), pH, mixed liquor suspended solids (MLSS), total nitrogen, specific nitrogen (NH 4 + , NO 2 - , NO 3 - ) total phosphorous, and total surfactants were the measured parameters, and their influence was discussed in order to establish the best operating mode to achieve the purification performances. The integrated air-ozone aeration process applied in the second operating mode lead to a COD decrease by up to 90%, compared to only 75% obtained in a conventional biological activated sludge process. The combined purification process of MBR and ozonation produced an additional COD decrease of 10-15%, and made the Total Surfactants values to comply to the specific legislation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oztürk, Lokman; Bülbül, Metin; Elmastas, Mahfuz; Ciftçi, Mehmet
2007-01-01
In this study, catalase (CAT: EC 1.11.1.6) was purified from parsley (Petroselinum hortense) leaves; analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps, including preparation of homogenate, ammonium sulfate fractionation, and fractionation by DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 9.5% and had a specific activity of 1126 U (mg proteins)(-1). The overall purification was about 5.83-fold. A temperature of 4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured at 240 nm. In order to control the purification of the enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acryl amide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for the enzyme. The molecular weight was found to be 183.29 kDa by Sephadex G-200 gel filtration chromatography. The stable pH, optimum pH, and ionic strength were determined for phosphate and Tris-HCl buffer systems. In addition, K(M) and V(max) values for H(2)O(2), at optimum pH and 25 degrees C, were determined by means of Lineweaver-Burk plots.
Eskelin, Katri; Lampi, Mirka; Meier, Florian; Moldenhauer, Evelin; Bamford, Dennis H; Oksanen, Hanna M
2017-11-01
Viruses come in various shapes and sizes, and a number of viruses originate from extremities, e.g. high salinity or elevated temperature. One challenge for studying extreme viruses is to find efficient purification conditions where viruses maintain their infectivity. Asymmetrical flow field-flow fractionation (AF4) is a gentle native chromatography-like technique for size-based separation. It does not have solid stationary phase and the mobile phase composition is readily adjustable according to the sample needs. Due to the high separation power of specimens up to 50 µm, AF4 is suitable for virus purification. Here, we applied AF4 for extremophilic viruses representing four morphotypes: lemon-shaped, tailed and tailless icosahedral, as well as pleomorphic enveloped. AF4 was applied to input samples of different purity: crude supernatants of infected cultures, polyethylene glycol-precipitated viruses and viruses purified by ultracentrifugation. All four virus morphotypes were successfully purified by AF4. AF4 purification of culture supernatants or polyethylene glycol-precipitated viruses yielded high recoveries, and the purities were comparable to those obtained by the multistep ultracentrifugation purification methods. In addition, we also demonstrate that AF4 is a rapid monitoring tool for virus production in slowly growing host cells living in extreme conditions.
Simultaneous purification of DNA and RNA from microbiota in a single colonic mucosal biopsy.
Moen, Aina E F; Tannæs, Tone M; Vatn, Simen; Ricanek, Petr; Vatn, Morten Harald; Jahnsen, Jørgen
2016-06-28
Nucleic acid purification methods are of importance when performing microbiota studies and especially when analysing the intestinal microbiota as we here find a wide range of different microbes. Various considerations must be taken to lyse the microbial cell wall of each microbe. In the present article, we compare several tissue lysis steps and commercial purification kits, to achieve a joint RNA and DNA purification protocol for the purpose of investigating the microbiota and the microbiota-host interactions in a single colonic mucosal tissue sample. A further optimised tissue homogenisation and lysis protocol comprising mechanical bead beating, lysis buffer replacement and enzymatic treatment, in combination with the AllPrep DNA/RNA Mini Kit (Qiagen, Hilden, Germany) resulted in efficient and simultaneous purification of microbial and human RNA and DNA from a single mucosal colonic tissue sample. The present work provides a unique possibility to study RNA and DNA from the same mucosal biopsy sample, making a direct comparison between metabolically active microbes and total microbial DNA. The protocol also offers an opportunity to investigate other members of a microbiota such as viruses, fungi and micro-eukaryotes, and moreover the possibility to extract data on microbiota and host interactions from one single mucosal biopsy.
NASA Astrophysics Data System (ADS)
Bitner, Rex M.; Koller, Susan C.
2004-06-01
Three different methods of automated high throughput purification of genomic DNA from plant materials processed in 96 well plates are described. One method uses MagneSil paramagnetic particles to purify DNA present in single leaf punch samples or small seed samples, using 320ul capacity 96 well plates which minimizes reagent and plate costs. A second method uses 2.2 ml and 1.2 ml capacity plates and allows the purification of larger amounts of DNA from 5-6 punches of materials or larger amounts of seeds. The third method uses the MagneSil ONE purification system to purify a fixed amount of DNA, thus simplifying the processing of downstream applications by normalizing the amounts of DNA so they do not require quantitation. Protocols for the purification of a fixed yield of DNA, e.g. 1 ug, from plant leaf or seed samples using MagneSil paramagnetic particles and a Beckman-Coulter BioMek FX robot are described. DNA from all three methods is suitable for applications such as PCR, RAPD, STR, READIT SNP analysis, and multiplexed PCR systems. The MagneSil ONE system is also suitable for use with SNP detection systems such as Third Wave Technology"s Invader methods.
Application of hydrometallurgy techniques in quartz processing and purification: a review
NASA Astrophysics Data System (ADS)
Lin, Min; Lei, Shaomin; Pei, Zhenyu; Liu, Yuanyuan; Xia, Zhangjie; Xie, Feixiang
2018-04-01
Although there have been numerous studies on separation and purification of metallic minerals by hydrometallurgy techniques, applications of the chemical techniques in separation and purification of non-metallic minerals are rarely reported. This paper reviews disparate areas of study into processing and purification of quartz (typical non-metallic ore) in an attempt to summarize current work, as well as to suggest potential for future consolidation in the field. The review encompasses chemical techniques of the quartz processing including situations, progresses, leaching mechanism, scopes of application, advantages and drawbacks of micro-bioleaching, high temperature leaching, high temperature pressure leaching and catalyzed high temperature pressure leaching. Traditional leaching techniques including micro-bioleaching and high temperature leaching are unequal to demand of modern glass industry for quality of quartz concentrate because the quartz products has to be further processed. High temperature pressure leaching and catalyzed high temperature pressure leaching provide new ways to produce high-grade quartz sand with only one process and lower acid consumption. Furthermore, the catalyzed high temperature pressure leaching realizes effective purification of quartz with extremely low acid consumption (no using HF or any fluoride). It is proposed that, by integrating the different chemical processes of quartz processing and expounding leaching mechanisms and scopes of application, the research field as a monopolized industry would benefit.
Arginine homopeptides for plasmid DNA purification using monolithic supports.
Cardoso, Sara; Sousa, Ângela; Queiroz, João A; Azzoni, Adriano R; Sousa, Fani
2018-06-15
Purification of plasmid DNA targeting therapeutic applications still presents many challenges, namely on supports and specific ligand development. Monolithic supports have emerged as interesting approaches for purifying pDNA due to its excellent mass transfer properties and higher binding capacity values. Moreover, arginine ligands were already described to establish specific and preferential interactions with pDNA. Additionally, some studies revealed the ability of arginine based cationic peptides to condense plasmid DNA, which increased lengthening can result in strongest interactions with higher binding capacities for chromatographic purposes of large molecules such as pDNA. In this work, arginine homopeptides were immobilized in monolithic supports and their performance was evaluated and compared with a single arginine monolithic column regarding supercoiled (sc) plasmid DNA purification. Specific interactions of arginine based peptides with several nucleic acids present in a clarified Escherichia coli lysate sample showed potential for the sc pDNA purification. Effectively, the immobilization of the arginine homopeptides became more functional compared with the single arginine amino acid, showing higher binding capacities, which was also reflected in the intensity of the interactions. The combination of structural versatilities of monoliths with the specificity of arginine peptides raised as a promising strategy for sc pDNA purification. Copyright © 2018 Elsevier B.V. All rights reserved.
The Monitoring and Affinity Purification of Proteins Using Dual Tags with Tetracysteine Motifs
NASA Astrophysics Data System (ADS)
Giannone, Richard J.; Liu, Yie; Wang, Yisong
Identification and characterization of protein-protein interaction networks is essential for the elucidation of biochemical mechanisms and cellular function. Affinity purification in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a very powerful tactic for the identification of specific protein-protein interactions. In this chapter, we describe a comprehensive methodology that uses our recently developed dual-tag affinity purification system for the enrichment and identification of mammalian protein complexes. The protocol covers a series of separate but sequentially related techniques focused on the facile monitoring and purification of a dual-tagged protein of interest and its interacting partners via a system built with tetracysteine motifs and various combinations of affinity tags. Using human telomeric repeat binding factor 2 (TRF2) as an example, we demonstrate the power of the system in terms of bait protein recovery after dual-tag affinity purification, detection of bait protein subcellular localization and expression, and successful identification of known and potentially novel TRF2 interacting proteins. Although the protocol described here has been optimized for the identification and characterization of TRF2-associated proteins, it is, in principle, applicable to the study of any other mammalian protein complexes that may be of interest to the research community.
Retrovirus purification: method that conserves envelope glycoprotein and maximizes infectivity.
McGrath, M; Witte, O; Pincus, T; Weissman, I L
1978-01-01
A Sepharose 4B chromatographic method for purification of retroviruses is described which was less time consuming, increased purified virus yields, conserved viral glycoprotein, and increased recovery of biological infectivity in comparison with conventional sucrose gradient ultracentrifugation techniques. Images PMID:205680
NASA Technical Reports Server (NTRS)
1998-01-01
Under a NASA-Johnson Space Center contract, Umpqua Research developed the MCV (Trademark) (Microbial Check Valve) which uses iodinated ion exchange resin used for water purification systems aboard space missions. Using this resin, MRLB International, Inc., developed and commercialized the Dentapure purification cartridge used by dentists nationwide.
Purification Efficacy of Synthetic Cannabinoid Conjugates Using High-Pressure Liquid Chromatography
In the current study, we successfully purified several synthetic cannabinoid (SC):dark quencher conjugates essential for the success of the synthetic... cannabinoid detection platform developed at the US Army Research Laboratorys Weapons and Materials Research Directorate. The purification was
Zein purification: the process, the product, market potential
USDA-ARS?s Scientific Manuscript database
The objectives of this article intend to give an overview of a zein purification, decolorization and deodorization process, methodologies to assess those properties and applications of the purified product. The process involves column filtration of commercial zein solutions through a combination of ...
Soft-Bake Purification of SWCNTs Produced by Pulsed Laser Vaporization
NASA Technical Reports Server (NTRS)
Yowell, Leonard; Nikolaev, Pavel; Gorelik, Olga; Allada, Rama Kumar; Sosa, Edward; Arepalli, Sivaram
2013-01-01
The "soft-bake" method is a simple and reliable initial purification step first proposed by researchers at Rice University for single-walled carbon nanotubes (SWCNT) produced by high-pressure carbon mon oxide disproportionation (HiPco). Soft-baking consists of annealing as-produced (raw) SWCNT, at low temperatures in humid air, in order to degrade the heavy graphitic shells that surround metal particle impurities. Once these shells are cracked open by the expansion and slow oxidation of the metal particles, the metal impurities can be digested through treatment with hydrochloric acid. The soft-baking of SWCNT produced by pulsed-laser vaporization (PLV) is not straightforward, because the larger average SWCNT diameters (.1.4 nm) and heavier graphitic shells surrounding metal particles call for increased temperatures during soft-bake. A part of the technology development focused on optimizing the temperature so that effective cracking of the graphitic shells is balanced with maintaining a reasonable yield, which was a critical aspect of this study. Once the ideal temperature was determined, a number of samples of raw SWCNT were purified using the soft-bake method. An important benefit to this process is the reduced time and effort required for soft-bake versus the standard purification route for SWCNT. The total time spent purifying samples by soft-bake is one week per batch, which equates to a factor of three reduction in the time required for purification as compared to the standard acid purification method. Reduction of the number of steps also appears to be an important factor in improving reproducibility of yield and purity of SWCNT, as small deviations are likely to get amplified over the course of a complicated multi-step purification process.
Phosphoric acid purification through different raw and activated clay materials (Southern Tunisia)
NASA Astrophysics Data System (ADS)
Trabelsi, Wafa; Tlili, Ali
2017-05-01
This study concerns the purification of Tunisian phosphoric acid produced by the Tunisian Chemical Group (TCG), using raw and activated clays materials from Southern Tunisia. The Gafsa basin clays samples (Jebel Hamadi (JHM); Jebel Stah (JS) and the El Hamma sample (Jebel Aïdoudi (JAD)) were activated with 3 M, HCl solution. Phosphoric acid purification was performed on raw and activated clays. Mineralogical characterisation was carried out using the X-ray powder diffraction method and infrared absorption spectroscopy. Textural changes between raw and activated clays were identified using SEM observations and specific surface analysis. Jebel Hamadi clays were almost dominated by smectite associated with kaolinite and illite traces, while Jebel Stah and Jebel Aïdoudi clays were composed of the association of smectite, illite and kaolinite. It is worth noting that the position of the smectite (001) reflection increased after the acidic activation in all studied samples, indicating the relaxation of the smectite structure along the c-axis. This was corroborated by the increasing specific surface area of the clay particles with the activation process. The specific surface area was close to 50 m2/g and 200 m2/g, for raw and activated materials, respectively. The maximum phosphoric acid purification was obtained by using activated clays with 3 N HCl for 4 h. This performance correlated with the maximum of the external specific surface area which generated strong acid sites. Furthermore, the best results of phosphoric acids purification from TCG were obtained at a specific consumption equivalent to 30 Kg of clay/ton of P2O5. These results showed that the best phosphoric acid purification was yielded by Jebel Aïdoudi clay. In all cases, the highest organic carbon reduction rates in the phosphoric acid after filtration were obtained at 90°C.
Suciu, Nicoleta A; Ferrari, Tommaso; Ferrari, Federico; Trevisan, Marco; Capri, Ettore
2012-05-01
Many reports on purification of water containing pesticides are based on studies using unformulated active ingredients. However, most commercial formulations contain additives/adjuvants or are manufactured using microencapsulation which may influence the purification process. Therefore, the main objective of this work was to develop and test a pilot scheme for decontaminating water containing pesticides formulated with antifoaming/defoaming agents. The Freundlich adsorption coefficients of formulation of cyprodinil, a new-generation fungicide, onto the organoclay Cloisite 20A have been determined in the laboratory in order to predict the efficiency of this organoclay in removing the fungicide from waste spray-tank water. Subsequently, the adsorption tests were repeated in the pilot system in order to test the practical operation of the purification scheme. The laboratory adsorption tests successfully predicted the efficiency of the pilot purification system, which removed more than 96% cyprodinil over a few hours. The passing of the organoclay-cyprodinil suspension through a layer of biomass gave 100% recovery of the organoclay at the surface of the biomass after 1 week. The organoclay was composted after the treatment to try to break down the fungicide so as to allow safe disposal of the waste, but cyprodinil was not significantly dissipated after 90 days. The purification scheme proved to be efficient for decontaminating water containing cyprodinil formulated with antifoaming/defoaming agents, but additional treatments for the adsorbed residues still appear to be necessary even for a moderately persistent pesticide such as cyprodinil. Furthermore, a significant conclusion of this study concerns the high influence of pesticide formulations on the process of purification of water containing these compounds, which should be taken into account when developing innovative decontamination schemes, especially for practical applications.
Kaur, Jasvir; Reinhardt, Dieter P.
2012-01-01
Extracellular recombinant proteins are commonly produced using HEK293 cells as histidine-tagged proteins facilitating purification by immobilized metal affinity chromatography (IMAC). Based on gel analyses, this one-step purification typically produces proteins of high purity. Here, we analyzed the presence of TGF-β1 in such IMAC purifications using recombinant extracellular fibrillin-1 fragments as examples. Analysis of various purified recombinant fibrillin-1 fragments by ELISA consistently revealed the presence of picomolar concentrations of active and latent TGF-β1, but not of BMP-2. These quantities of TGF-β1 were not detectable by Western blotting and mass spectrometry. However, the amounts of TGF-β1 were sufficient to consistently trigger Smad2 phosphorylation in fibroblasts. The purification mechanism was analyzed to determine whether the presence of TGF-β1 in these protein preparations represents a specific or non-specific co-purification of TGF-β1 with fibrillin-1 fragments. Control purifications using conditioned medium from non-transfected 293 cells yielded similar amounts of TGF-β1 after IMAC. IMAC of purified TGF-β1 and the latency associated peptide showed that these proteins bound to the immobilized nickel ions. These data clearly demonstrate that TGF-β1 was co-purified by specific interactions with nickel, and not by specific interactions with fibrillin-1 fragments. Among various chromatographic methods tested for their ability to eliminate TGF-β1 from fibrillin-1 preparations, gel filtration under high salt conditions was highly effective. As various recombinant extracellular proteins purified in this fashion are frequently used for experiments that can be influenced by the presence of TGF-β1, these findings have far-reaching implications for the required chromatographic schemes and quality controls. PMID:23119075
Spatzal, Thomas; Perez, Kathryn A; Howard, James B; Rees, Douglas C
2015-12-16
Dinitrogen reduction in the biological nitrogen cycle is catalyzed by nitrogenase, a two-component metalloenzyme. Understanding of the transformation of the inert resting state of the active site FeMo-cofactor into an activated state capable of reducing dinitrogen remains elusive. Here we report the catalysis dependent, site-selective incorporation of selenium into the FeMo-cofactor from selenocyanate as a newly identified substrate and inhibitor. The 1.60 Å resolution structure reveals selenium occupying the S2B site of FeMo-cofactor in the Azotobacter vinelandii MoFe-protein, a position that was recently identified as the CO-binding site. The Se2B-labeled enzyme retains substrate reduction activity and marks the starting point for a crystallographic pulse-chase experiment of the active site during turnover. Through a series of crystal structures obtained at resolutions of 1.32-1.66 Å, including the CO-inhibited form of Av1-Se2B, the exchangeability of all three belt-sulfur sites is demonstrated, providing direct insights into unforeseen rearrangements of the metal center during catalysis.
TlBr purification and single crystal growth for the detector applications
NASA Astrophysics Data System (ADS)
Kozlov, Vasilij; Heikkilä, Mikko; Kostamo, Pasi; Lipsanen, Harri; Leskelä, Markku
2011-05-01
The combination of distillation, Bridgman-Stockbarger, hydrothermal recrystallisation and travelling molten zone (TMZ) methods were used for TlBr purification. Grown crystals were characterised by XRD rocking curve and FTIR spectroscopy methods, and by electrical measurements made from 200 to 300 K.
A general method for the purification of restriction enzymes.
Greene, P J; Heyneker, H L; Bolivar, F; Rodriguez, R L; Betlach, M C; Covarrubias, A A; Backman, K; Russel, D J; Tait, R; Boyer, H W
1978-01-01
An abbreviated procedure has been developed for the purification of restriction endonucleases. This procedure uses chromatography on phosphocellulose and hydroxylapatite and results in enzymes of sufficient purity to permit their use in the sequencing, molecular cloning, and physical mapping of DNA. PMID:673857
Efficient stable isotope labeling and purification of vitamin D receptor from inclusion bodies
Zhu, Jinge; Rao, Hongyu; Tonelli, Marco; Westler, Milo; Singarapu, Kiran K.; Markley, John L.; DeLuca, Hector F.; Assadi-Porter, Fariba M.
2012-01-01
Vitamin D receptor (VDR) plays a crucial role in many cellular processes including calcium and phosphate homeostasis. Previous purification methods from prokaryotic and eukaryotic expression systems were challenged by low protein solubility accompanied by multi purification steps resulting in poor protein recovery. The full-length VDR and its ligand binding domain (LBD) were mostly (>90%) insoluble even when expressed at low temperatures in the bacterial system. We describe a one-step procedure that results in the purification of rat VDR and LBD proteins in high-yield from E. coli inclusion bodies. The heterologously expressed protein constructs retain full function as demonstrated by ligand binding and DNA binding assays. Furthermore, we describe an efficient strategy for labeling these proteins with, 13C, and 15N for structural and functional studies by nuclear magnetic resonance (NMR) spectroscopy. This efficient production system will facilitate future studies on the mechanism of vitamin D action including characterization of the large number of synthetic vitamin D analogs that have been developed. PMID:22750673
Elez, Loris; Orescanin, Visnja; Sofilic, Tahir; Mikulic, Nenad; Ruk, Damir
2008-10-01
The purpose of this work was development of an appropriate procedure for the neutralization/purification of electroplating wastewater (EWW) with alkaline solid residue (ASR) by-product of the alkaline extraction of zinc and lead from electric arc furnace dust (EAFD). Removal efficiency of ASR at optimum purification conditions (pH 8 and mixing time; 20 minutes) for the elements Pb, Cr (VI), Cr (III), Fe, Ni, Cu and Zn were 94.92%, 97.58%, 99.59%, 99.48%, 97.25% and 99.97%, respectively. The concentrations of all elements in the purified wastewater were significantly lower in relation to the upper permissible limit for wastewaters suitable for discharge into the environment. The remaining waste mud was regenerated in the strong alkaline medium and successfully applied once again for the neutralization/purification of EWW. Removal efficiencies of heavy metals accomplished with regenerated waste mud were comparable to these achieved by original ASR. Elemental concentrations in the leachates of the waste mud were in accordance with regulated values.
Arur, Swathi; Schedl, Tim
2014-01-01
Post-translational modifications alter protein structure, affecting activity, stability, localization and/or binding partners. Antibodies that specifically recognize post-translationally modified proteins have a number of uses including immuno-cytochemistry and immuno-precipitation of the modified protein to purify protein-protein and protein-nucleic acid complexes. However, antibodies directed at modified sites on individual proteins are often non-specific. Here we describe a protocol to purify polyclonal antibodies that specifically detect the modified protein of interest. The approach uses iterative rounds of subtraction and affinity purification, using stringent washes to remove antibodies that recognize the unmodified protein and low sequence complexity epitopes containing the modified amino acid. Dot and western blots assays are employed to assess antibody preparation specificity. The approach is designed to overcome the common occurrence that a single round of subtraction and affinity purification is not sufficient to obtain a modified protein specific antibody preparation. One full round of antibody purification and specificity testing takes 6 days of discontinuous time. PMID:24457330
Tandem SUMO fusion vectors for improving soluble protein expression and purification.
Guerrero, Fernando; Ciragan, Annika; Iwaï, Hideo
2015-12-01
Availability of highly purified proteins in quantity is crucial for detailed biochemical and structural investigations. Fusion tags are versatile tools to facilitate efficient protein purification and to improve soluble overexpression of proteins. Various purification and fusion tags have been widely used for overexpression in Escherichia coli. However, these tags might interfere with biological functions and/or structural investigations of the protein of interest. Therefore, an additional purification step to remove fusion tags by proteolytic digestion might be required. Here, we describe a set of new vectors in which yeast SUMO (SMT3) was used as the highly specific recognition sequence of ubiquitin-like protease 1, together with other commonly used solubility enhancing proteins, such as glutathione S-transferase, maltose binding protein, thioredoxin and trigger factor for optimizing soluble expression of protein of interest. This tandem SUMO (T-SUMO) fusion system was tested for soluble expression of the C-terminal domain of TonB from different organisms and for the antiviral protein scytovirin. Copyright © 2015 Elsevier Inc. All rights reserved.
Carnes, Aaron E; Hodgson, Clague P; Luke, Jeremy M; Vincent, Justin M; Williams, James A
2009-10-15
DNA vaccines and gene medicines, derived from bacterial plasmids, are emerging as an important new class of pharmaceuticals. However, the challenges of performing cell lysis processes for plasmid DNA purification at an industrial scale are well known. To address downstream purification challenges, we have developed autolytic Escherichia coli host strains that express endolysin (phage lambdaR) in the cytoplasm. Expression of the endolysin is induced during fermentation by a heat inducible promoter. The endolysin remains in the cytoplasm, where it is separated from its peptidoglycan substrate in the cell wall; hence the cells remain alive and intact and can be harvested by the usual methods. The plasmid DNA is then recovered by autolytic extraction under slightly acidic, low salt buffer conditions and treatment with a low concentration of non-ionic detergent. Under these conditions the E. coli genomic DNA remains associated with the insoluble cell debris and is removed by a solid-liquid separation. Here, we report fermentation, lysis methods, and plasmid purification using autolytic hosts.
Draveling, C; Ren, L; Haney, P; Zeisse, D; Qoronfleh, M W
2001-07-01
The revolution in genomics and proteomics is having a profound impact on drug discovery. Today's protein scientist demands a faster, easier, more reliable way to purify proteins. A high capacity, high-throughput new technology has been developed in Perbio Sciences for affinity protein purification. This technology utilizes selected chromatography media that are dehydrated to form uniform aggregates. The SwellGel aggregates will instantly rehydrate upon addition of the protein sample, allowing purification and direct performance of multiple assays in a variety of formats. SwellGel technology has greater stability and is easier to handle than standard wet chromatography resins. The microplate format of this technology provides high-capacity, high-throughput features, recovering milligram quantities of protein suitable for high-throughput screening or biophysical/structural studies. Data will be presented applying SwellGel technology to recombinant 6x His-tagged protein and glutathione-S-transferase (GST) fusion protein purification. Copyright 2001 Academic Press.
Bahniuk, Markian S; Alshememry, Abdullah K; Unsworth, Larry D
2016-12-01
The protocol described here is designed as an extension of existing techniques for creating elastin-like polypeptides. It allows for the expression and purification of elastin-like polypeptide (ELP) constructs that are poorly expressed or have very low transition temperatures. DNA concatemerization has been modified to reduce issues caused by methylation sensitivity and inefficient cloning. Linearization of the modified expression vector has been altered to greatly increase cleavage efficiency. The purification regimen is based upon using denaturing metal affinity chromatography to fully solubilize and, if necessary, pre-concentrate the target peptide before purification by inverse temperature cycling (ITC). This protocol has been used to express multiple leucine-containing elastin-like polypeptides, with final yields of 250-660 mg per liter of cells, depending on the specific construct. This was considerably greater than previously reported yields for similar ELPs. Due to the relative hydrophobicity of the tested constructs, even compared with commonly employed ELPs, conventional methods would not have been able to be purify these peptides.
Purification-Free, Target-Selective Immobilization of a Protein from Cell Lysates.
Cha, Jaehyun; Kwon, Inchan
2018-02-27
Protein immobilization has been widely used for laboratory experiments and industrial processes. Preparation of a recombinant protein for immobilization usually requires laborious and expensive purification steps. Here, a novel purification-free, target-selective immobilization technique of a protein from cell lysates is reported. Purification steps are skipped by immobilizing a target protein containing a clickable non-natural amino acid (p-azidophenylalanine) in cell lysates onto alkyne-functionalized solid supports via bioorthogonal azide-alkyne cycloaddition. In order to achieve a target protein-selective immobilization, p-azidophenylalanine was introduced into an exogenous target protein, but not into endogenous non-target proteins using host cells with amber codon-free genomic DNAs. Immobilization of superfolder fluorescent protein (sfGFP) from cell lysates is as efficient as that of the purified sfGFP. Using two fluorescent proteins (sfGFP and mCherry), the authors also demonstrated that the target proteins are immobilized with a minimal immobilization of non-target proteins (target-selective immobilization). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Application of QUAL2K Model to Assess Ecological Purification Technology for a Polluted River
Zhu, Wenting; Niu, Qian; Zhang, Ruibin; Ye, Rui; Qian, Xin; Qian, Yu
2015-01-01
Industrialization and urbanization have caused water pollution and ecosystem degradation, especially in urban canals and rivers in China; accordingly, effective water quality improvement programs are needed. In this study, the Tianlai River in Jiangsu, China was taken as a research site, and a combination of ecological purification technologies consisting of biological rope, phytoremediation, and activated carbon were applied in a laboratory-scale study to examine degradation coefficients under dynamic water conditions. Coefficients were then input into the QUAL2K model to simulate various hypothetical scenarios and determine the minimum density of ecological purification combination and hydraulic retention time (HRT) to meet Grade V or IV of the China standard for surface water. The minimum densities for Grade V and IV were 1.6 times and 2 times the experimental density, while the minimum HRTs for Grade V and IV were 2.4 day and 3 day. The results of this study should provide a practical and efficient design method for ecological purification programs. PMID:25689997
Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases
Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng
2013-01-01
The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay. PMID:23907148
NASA Astrophysics Data System (ADS)
Fajri Alif, Matlal; Aprillia, Wandha; Arief, Syukri
2018-01-01
Hydroxyapatite (HAP) were synthesized from Pensi (Corbicula moltkiana) sheels by hydrothermal method and used as adsorbent for peat water purification. Batch adsorption experiments were performed to investigate the effects of various factors such as contact time, adsorbent dosage, and pH. The obtained materials were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM). Results showed that HAP calcined at 900°C (HAP900) and 1000°C (HAP1000) have a poorly crystalline shape. HAP900 also contain Tetracalsium Phosphate (TTCP) with a Ca/P molar ratio 2.18, while HAP 1000 contain HAp with a Ca/P molar ratio 1.67. Optimum condition for peat water purification with HAP900 and HAP1000 were both achieved at 1 hours, 1 grams adsorben mass at pH 2. SEM micrographs show that after purification, the surface of HAP were covered by organic compounds from peat water.
Overview of the Purification of Recombinant Proteins
Wingfield, Paul T.
2015-01-01
When the first version of this unit was written in 1995 protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches many of which were described and mentioned in this unit and elsewhere in the book. In the interim there has been a shift towards an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein and whether to engineer a self cleavage system or simply leave them on. We will briefly address some of these issues. Also although this overview focuses on E.coli, protein expression and purification from the other commonly used expression systems are mentioned and apart from cell breakage methods, the protein purification methods and strategies are essentially the same. PMID:25829302
Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases.
Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng
2013-01-01
The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.
Heider, Susanne; Muzard, Julien; Zaruba, Marianne; Metzner, Christoph
2017-07-01
Elements derived from lentiviral particles such as viral vectors or virus-like particles are commonly used for biotechnological and biomedical applications, for example in mammalian protein expression, gene delivery or therapy, and vaccine development. Preparations of high purity are necessary in most cases, especially for clinical applications. For purification, a wide range of methods are available, from density gradient centrifugation to affinity chromatography. In this study we have employed size exclusion columns specifically designed for the easy purification of extracellular vesicles including exosomes. In addition to viral marker protein and total protein analysis, a well-established single-particle characterization technology, termed tunable resistive pulse sensing, was employed to analyze fractions of highest particle load and purity and characterize the preparations by size and surface charge/electrophoretic mobility. With this study, we propose an integrated platform combining size exclusion chromatography and tunable resistive pulse sensing for monitoring production and purification of viral particles.
Technological assumptions for biogas purification.
Makareviciene, Violeta; Sendzikiene, Egle
2015-01-01
Biogas can be used in the engines of transport vehicles and blended into natural gas networks, but it also requires the removal of carbon dioxide, hydrogen sulphide, and moisture. Biogas purification process flow diagrams have been developed for a process enabling the use of a dolomite suspension, as well as for solutions obtained by the filtration of the suspension, to obtain biogas free of hydrogen sulphide and with a carbon dioxide content that does not exceed 2%. The cost of biogas purification was evaluated on the basis of data on biogas production capacity and biogas production cost obtained from local water treatment facilities. It has been found that, with the use of dolomite suspension, the cost of biogas purification is approximately six times lower than that in the case of using a chemical sorbent such as monoethanolamine. The results showed travelling costs using biogas purified by dolomite suspension are nearly 1.5 time lower than travelling costs using gasoline and slightly lower than travelling costs using mineral diesel fuel.
Lage, Sandra; Gentili, Francesco G
2018-06-01
A systematic qualitative and quantitative analysis of fatty acid methyl esters (FAMEs) is crucial for microalgae species selection for biodiesel production. The aim of this study is to identify the best method to assess microalgae FAMEs composition and content. A single-step method, was tested with and without purification steps-that is, separation of lipid classes by thin-layer chromatography (TLC) or solid-phase extraction (SPE). The efficiency of a direct transesterification method was also evaluated. Additionally, the yield of the FAMEs and the profiles of the microalgae samples with different pretreatments (boiled in isopropanol, freezing, oven-dried and freeze-dried) were compared. The application of a purification step after lipid extraction proved to be essential for an accurate FAMEs characterisation. The purification methods, which included TLC and SPE, provided superior results compared to not purifying the samples. Freeze-dried microalgae produced the lowest FAMEs yield. However, FAMEs profiles were generally equivalent among the pretreatments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mahn, Andrea; Angulo, Alejandro; Cabañas, Fernanda
2014-12-03
Myrosinase (β-thioglucosidase glucohydrolase, EC 3.2.1.147) from broccoli (Brassica oleracea var. italica) was purified by ammonium sulfate precipitation followed by concanavalin A affinity chromatography, with an intermediate dialysis step, resulting in 88% recovery and 1318-fold purification. These are the highest values reported for the purification of any myrosinase. The subunits of broccoli myrosinase have a molecular mass of 50-55 kDa. The native molecular mass of myrosinase was 157 kDa, and accordingly, it is composed of three subunits. The maximum activity was observed at 40 °C and at pH below 5.0. Kinetic assays demonstrated that broccoli myrosinase is subjected to substrate (sinigrin) inhibition. The Michaelis-Menten model, considering substrate inhibition, gave Vmax equal to 0.246 μmol min(-1), Km equal to 0.086 mM, and K(I) equal to 0.368 mM. This is the first study about purification and characterization of broccoli myrosinase.
Meng, Yao; Jin, Jiagui; Liu, Shuangfeng; Yang, Min; Zhang, Qinglian; Wan, Li; Tang, Kun
2014-02-01
Alpha-glycerophosphate oxidase (alpha-GPO) from Enterococcus casseli flavus was successfully isolated and purified by using polyethylene glycol (PEG)/(NH4)2SO4 aqueous two-phase system (ATPS). The results showed that the chosen PEG/(NH4)2SO4 ATPS could be affected by PEG molecular weight, pH, concentration of PEG and (NH4)2SO4, and inorganic salt as well as additional amount of crude enzyme. After evaluating these influencing factors, the final optimum purification strategy was formed by 16.5% (m/m) PEG2000, 13.2% (m/m) (NH4)2SO4, pH 7.5 and 30% (m/m) additive crude enzyme, respectively. The NaCl was a negative influencing factor which would lead to lower purification fold and activity recovery. These conditions eventually resulted in the activity recovery of 89% (m/m), distribution coefficient of 1.2 and purification fold of 7.0.
Overview of the purification of recombinant proteins.
Wingfield, Paul T
2015-04-01
When the first version of this unit was written in 1995, protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches, many of which were described and mentioned throughout Current Protocols in Protein Science. In the interim, there has been a shift toward an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein, and whether to engineer a self-cleavage system or simply leave them on. We will briefly address some of these issues. Also, although this overview focuses on E.coli, protein expression and purification, other commonly used expression systems are mentioned and, apart from cell-breakage methods, protein purification methods and strategies are essentially the same. Copyright © 2015 John Wiley & Sons, Inc.
Separation and purification of enzymes by continuous pH-parametric pumping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, S.Y.; Lin, C.K.; Juang, L.Y.
1985-10-01
Trypsin and chymotrypsin were separated from porcine pancreas extract by continuous pH-parametric pumping. CHOM (chicken ovomucoid) was convalently bound to laboratory-prepared crab chitin with glutaraldehyde to form an affinity adsorbent of trypsin. The pH levels of top and bottom feeds were 8.0 and 2.5, respectively. Similar inhibitor, DKOM (duck ovomucoid), and pH levels 8.0 and 2.0 for top and bottom feeds, respectively, were used for separation and purification of chymotrypsin. e-Amino caproyl-D-tryptophan methyl ester was coupled to chitosan to form an affinity adsorbent for stem bromelain. The pH levels were 8.7 and 3.0. Separation continued fairly well with high yield,more » e.g., 95% recovery of trypsin after continuous pumping of 10 cycles. Optimum operational conditions for concentration and purification of these enzymes were investigated. The results showed that the continuous pH-parametric pumping coupled with affinity chromatography is effective for concentration and purification of enzymes. 19 references.« less
Evans, Steven T; Stewart, Kevin D; Afdahl, Chris; Patel, Rohan; Newell, Kelcy J
2017-07-14
In this paper, we discuss the optimization and implementation of a high throughput process development (HTPD) tool that utilizes commercially available micro-liter sized column technology for the purification of multiple clinically significant monoclonal antibodies. Chromatographic profiles generated using this optimized tool are shown to overlay with comparable profiles from the conventional bench-scale and clinical manufacturing scale. Further, all product quality attributes measured are comparable across scales for the mAb purifications. In addition to supporting chromatography process development efforts (e.g., optimization screening), comparable product quality results at all scales makes this tool is an appropriate scale model to enable purification and product quality comparisons of HTPD bioreactors conditions. The ability to perform up to 8 chromatography purifications in parallel with reduced material requirements per run creates opportunities for gathering more process knowledge in less time. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Topic model-based mass spectrometric data analysis in cancer biomarker discovery studies.
Wang, Minkun; Tsai, Tsung-Heng; Di Poto, Cristina; Ferrarini, Alessia; Yu, Guoqiang; Ressom, Habtom W
2016-08-18
A fundamental challenge in quantitation of biomolecules for cancer biomarker discovery is owing to the heterogeneous nature of human biospecimens. Although this issue has been a subject of discussion in cancer genomic studies, it has not yet been rigorously investigated in mass spectrometry based proteomic and metabolomic studies. Purification of mass spectometric data is highly desired prior to subsequent analysis, e.g., quantitative comparison of the abundance of biomolecules in biological samples. We investigated topic models to computationally analyze mass spectrometric data considering both integrated peak intensities and scan-level features, i.e., extracted ion chromatograms (EICs). Probabilistic generative models enable flexible representation in data structure and infer sample-specific pure resources. Scan-level modeling helps alleviate information loss during data preprocessing. We evaluated the capability of the proposed models in capturing mixture proportions of contaminants and cancer profiles on LC-MS based serum proteomic and GC-MS based tissue metabolomic datasets acquired from patients with hepatocellular carcinoma (HCC) and liver cirrhosis as well as synthetic data we generated based on the serum proteomic data. The results we obtained by analysis of the synthetic data demonstrated that both intensity-level and scan-level purification models can accurately infer the mixture proportions and the underlying true cancerous sources with small average error ratios (<7 %) between estimation and ground truth. By applying the topic model-based purification to mass spectrometric data, we found more proteins and metabolites with significant changes between HCC cases and cirrhotic controls. Candidate biomarkers selected after purification yielded biologically meaningful pathway analysis results and improved disease discrimination power in terms of the area under ROC curve compared to the results found prior to purification. We investigated topic model-based inference methods to computationally address the heterogeneity issue in samples analyzed by LC/GC-MS. We observed that incorporation of scan-level features have the potential to lead to more accurate purification results by alleviating the loss in information as a result of integrating peaks. We believe cancer biomarker discovery studies that use mass spectrometric analysis of human biospecimens can greatly benefit from topic model-based purification of the data prior to statistical and pathway analyses.
Purification of Plant Receptor Kinases from Plant Plasma Membranes.
Lee, Jin Suk
2017-01-01
Receptor kinases play a central role in various biological processes, but due to their low abundance and highly hydrophobic and dynamic nature, only a few of them have been functionally characterized, and their partners and ligands remain unidentified. Receptor protein extraction and purification from plant tissues is one of the most challenging steps for the success of various biochemical analyses to characterize their function. Immunoprecipitation is a widely used and selective method for enriching or purifying a specific protein. Here we describe two different optimized protein purification protocols, batch and on-chip immunoprecipitation, which efficiently isolate plant membrane receptor kinases for functional analysis.
Purification of oily wastewater by hybrid UF/MD.
Gryta, M; Karakulski, K; Morawski, A W
2001-10-01
Investigations on the treatment of oily wastewater by a combination of ultrafiltration (UF) and membrane distillation (MD) as a final purification method have been performed. A tubular UF module equipped with polyvinylidene fluoride (PVDF) membranes and a capillary MD module with polypropylene membranes were tested using a typical bilge water collected from a harbour without pretreatment. The permeate obtained from the UF process generally contains less than 5 ppm of oil. A further purification of the UF permeate by membrane distillation results in a complete removal of oil from wastewater and a very high reduction of the total organic carbon (99.5%) and total dissolved solids (99.9%).
He, Zhi-feng; Zeng, Sa; Hou, Juan-juan; Liu, De-yu
2006-07-01
To optimize the preparation of ampelopsin from Ampelopsis Cantoniensis Planch. The extraction and purification process was studied by the uniform design with the extract of ampelopsin content and purity as markers. The facters which influence the extraction and the purification of ampelopsin content were studied by uniform design. The optimum extraction and purification process: the concentration for alcohol was 90%, and refluxing quartic, 1.5 h each time; extraction by petroleum ether quintic, the mount of active carbon was 1 g/100 g of the medicine material, and recrystaling thrice. This extraction process has higher yield of ampelopsin and is available for production.
Jensen, Stephanie M; Nguyen, Celina T; Jewett, John C
2016-09-01
Dengue virus (DENV) is a mosquito-transmitted flavivirus that infects approximately 100 million people annually. Multi-day protocols for purification of DENV reduce the infective titer due to viral sensitivity to both temperature and pH. Herein we describe a 5-h protocol for the purification of all DENV serotypes, utilizing traditional gradient-free ultracentrifugation followed by selective virion precipitation. This protocol allows for the separation of DENV from contaminating proteins - including intact C6/36 densovirus, for the production of infective virus at high concentration for protein-level analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Chaoli; Hu, Xiaoling; Guan, Ping; Wu, Danfeng; Qian, Liwei; Li, Ji; Song, Renyuan
2015-01-01
The synthesis and performance of molecularly imprinted membranes (MIMs) as a solid phase extraction packing materials for the separation and purification of thymopentin from crude samples was described. In order to increase structural selectivity and imprinting efficiency, surface-initiated ATRP and ionic liquid (1-vinyl-3-ethyl acetate imidazolium chloride) were used to prepare molecularly imprinting membranes. The results demonstrated that solid phase extraction disks stuffed by MIMs with ionic liquids as functional monomer demonstrated high isolation and purification of performance to the thymopentin. The molecular recognition of thymopentin was analyzed by using molecular modeling software. Copyright © 2014 Elsevier B.V. All rights reserved.
Purification of Logic-Qubit Entanglement.
Zhou, Lan; Sheng, Yu-Bo
2016-07-05
Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network.
Electrophoretic cell separation using microspheres. [purification of lymphocytes
NASA Technical Reports Server (NTRS)
Smolka, A.; Sachs, G.
1980-01-01
Methods of cell separation based on the electrokinetic properties of the cell membrane offer a degree of discrimination among cell populations which is not available with methods based on cell size or density alone. Studies aimed at extending red cell separations using microspheres to purification of lymphocytes.
Purification and characterization of a hexanol-degrading enzyme extracted from apple
USDA-ARS?s Scientific Manuscript database
An enzyme having activity towards n-hexanol was purified from apple and its biochemical characteristics were analyzed. The purification steps consisted of sedimentation with ammonium sulfate, DEAE Sepharose Fast Flow ion exchange chromatography and Sephadex G-100 column. The obtained enzyme had a yi...
Purification of Rubisco Activase from Leaves or after Expression in Escherichia coli.
USDA-ARS?s Scientific Manuscript database
Rubisco activase is a molecular chaperone that modulates the activation state of Rubisco by catalyzing the ATP-dependent removal of tightly-bound inhibitory sugar-phosphates from Rubisco’s catalytic sites. This chapter reports methods developed for the purification of native and recombinant Rubisco...
Extraction, Purification, and Spectroscopic Characterization of a Mixture of Capsaicinoids
ERIC Educational Resources Information Center
Wagner, Carl E.; Cahill, Thomas M.; Marshall, Pamela A.
2011-01-01
This laboratory experiment provides a safe and effective way to instruct undergraduate organic chemistry students about natural-product extraction, purification, and NMR spectroscopic characterization. On the first day, students extract dried habanero peppers with toluene, perform a pipet silica gel column to separate carotenoids from…
The peer-reviewed article describes the development of a new sol-gel based immunoaffinity purification procedure and an immunoassay for the pyrethroid bioallethrin. The immunoaffinity chromatography procedure was applied to food samples providing an efficient cleanup prior to im...
40 CFR 61.62 - Emission standard for ethylene dichloride plants.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission... dichloride purification. The concentration of vinyl chloride in each exhaust gas stream from any equipment used in ethylene dichloride purification is not to exceed 10 ppm (average for 3-hour period), except as...
40 CFR 61.62 - Emission standard for ethylene dichloride plants.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission... dichloride purification. The concentration of vinyl chloride in each exhaust gas stream from any equipment used in ethylene dichloride purification is not to exceed 10 ppm (average for 3-hour period), except as...
40 CFR 61.62 - Emission standard for ethylene dichloride plants.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission... dichloride purification. The concentration of vinyl chloride in each exhaust gas stream from any equipment used in ethylene dichloride purification is not to exceed 10 ppm (average for 3-hour period), except as...
40 CFR 61.62 - Emission standard for ethylene dichloride plants.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission... dichloride purification. The concentration of vinyl chloride in each exhaust gas stream from any equipment used in ethylene dichloride purification is not to exceed 10 ppm (average for 3-hour period), except as...
Nanofluidic Lab-On-Chip Technology for DNA Identification
2013-09-30
samples Fluorescently labeled (FAM tag) DNA oligomers (10, 20, and 50 bases long) were purchased with standard desalting and additional HPLC purification...A.2 DNA samples: DNA oligomers (10, 20, 50 nt long) were purchased with standard desalting and additional HPLC purification for the 50 base
Purification of crime scene DNA extracts using centrifugal filter devices
2013-01-01
Background The success of forensic DNA analysis is limited by the size, quality and purity of biological evidence found at crime scenes. Sample impurities can inhibit PCR, resulting in partial or negative DNA profiles. Various DNA purification methods are applied to remove impurities, for example, employing centrifugal filter devices. However, irrespective of method, DNA purification leads to DNA loss. Here we evaluate the filter devices Amicon Ultra 30 K and Microsep 30 K with respect to recovery rate and general performance for various types of PCR-inhibitory crime scene samples. Methods Recovery rates for DNA purification using Amicon Ultra 30 K and Microsep 30 K were gathered using quantitative PCR. Mock crime scene DNA extracts were analyzed using quantitative PCR and short tandem repeat (STR) profiling to test the general performance and inhibitor-removal properties of the two filter devices. Additionally, the outcome of long-term routine casework DNA analysis applying each of the devices was evaluated. Results Applying Microsep 30 K, 14 to 32% of the input DNA was recovered, whereas Amicon Ultra 30 K retained 62 to 70% of the DNA. The improved purity following filter purification counteracted some of this DNA loss, leading to slightly increased electropherogram peak heights for blood on denim (Amicon Ultra 30 K and Microsep 30 K) and saliva on envelope (Amicon Ultra 30 K). Comparing Amicon Ultra 30 K and Microsep 30 K for purification of DNA extracts from mock crime scene samples, the former generated significantly higher peak heights for rape case samples (P-values <0.01) and for hairs (P-values <0.036). In long-term routine use of the two filter devices, DNA extracts purified with Amicon Ultra 30 K were considerably less PCR-inhibitory in Quantifiler Human qPCR analysis compared to Microsep 30 K. Conclusions Amicon Ultra 30 K performed better than Microsep 30 K due to higher DNA recovery and more efficient removal of PCR-inhibitory substances. The different performances of the filter devices are likely caused by the quality of the filters and plastic wares, for example, their DNA binding properties. DNA purification using centrifugal filter devices can be necessary for successful DNA profiling of impure crime scene samples and for consistency between different PCR-based analysis systems, such as quantification and STR analysis. In order to maximize the possibility to obtain complete STR DNA profiles and to create an efficient workflow, the level of DNA purification applied should be correlated to the inhibitor-tolerance of the STR analysis system used. PMID:23618387
High-throughput purification of recombinant proteins using self-cleaving intein tags.
Coolbaugh, M J; Shakalli Tang, M J; Wood, D W
2017-01-01
High throughput methods for recombinant protein production using E. coli typically involve the use of affinity tags for simple purification of the protein of interest. One drawback of these techniques is the occasional need for tag removal before study, which can be hard to predict. In this work, we demonstrate two high throughput purification methods for untagged protein targets based on simple and cost-effective self-cleaving intein tags. Two model proteins, E. coli beta-galactosidase (βGal) and superfolder green fluorescent protein (sfGFP), were purified using self-cleaving versions of the conventional chitin-binding domain (CBD) affinity tag and the nonchromatographic elastin-like-polypeptide (ELP) precipitation tag in a 96-well filter plate format. Initial tests with shake flask cultures confirmed that the intein purification scheme could be scaled down, with >90% pure product generated in a single step using both methods. The scheme was then validated in a high throughput expression platform using 24-well plate cultures followed by purification in 96-well plates. For both tags and with both target proteins, the purified product was consistently obtained in a single-step, with low well-to-well and plate-to-plate variability. This simple method thus allows the reproducible production of highly pure untagged recombinant proteins in a convenient microtiter plate format. Copyright © 2016 Elsevier Inc. All rights reserved.
Oki, Shogo; Nonaka, Takahiro; Shiraki, Kentaro
2018-06-01
Protein purification using non-chromatographic methods is a simple technique that avoids costly resin. Recently, a cell surface protein B (CspB) tag has been developed for a pH-responsive tag for protein purification by solid-liquid separation. Proteins fused with the CspB tag show reversible insolubilization at acidic pH that can be used in solid-liquid separation for protein purification. However, brown-color impurities from co-precipitation hamper further analysis of the target proteins. In this study, we investigated the effect of additives on the co-precipitation of CspB-tagged Teriparatide (CspB50TEV-Teriparatide) expressed in Corynebacterium glutamicum and associated impurities. Arginine (Arg) at 1.0 M was found to be the most effective additive for removing impurities, particularly carotenoids and nucleic acids. Furthermore, all impurities detected in the fluorescence and absorbance spectra were successfully removed by the repetition of precipitation-redissolution in the Arg solution. The precipitation yield of the CspB50TEV-Teriparatide did not change with the addition of Arg and the repetition of the precipitation-redissolution process. Collectively, our findings indicate that the specific desorption of π-electron rich compounds by Arg may be useful in conjunction with the pH-responsive CspB tag for solid-liquid protein purification. Copyright © 2018 Elsevier Inc. All rights reserved.
Evangelista; Kusnadi; Howard; Nikolov
1998-07-01
A process model for the recovery and purification of recombinant beta-glucuronidase (rGUS) from transgenic corn was developed, and the process economics were estimated. The base-case bioprocessing plant operates 7500 h/year processing 1.74 million (MM) kg of transgenic corn containing 0.015% (db) rGUS. The process consists of milling the corn into flour, extraction of protein by using 50 mM sodium phosphate buffer, and rGUS purification by ion exchange and hydrophobic interaction chromatography. About 137 kg of rGUS of 83% (db) purity can be produced annually. The production cost amounted to $43 000/kg of rGUS. The cost of milling, protein extraction, and rGUS purification accounted for 6, 40, and 48% of annual operating cost, respectively. The cost of transgenic corn was 31% of the raw material costs or 6% of the annual operating cost. About 78% of the cost of buffer and water were incurred in the protein extraction section, while 88% of other consumables were from the purification section. The sensitivity analysis indicated that rGUS can be produced profitably from corn even at the 0.015% (db) expression level, assuming a selling price of $100 000/kg GUS. An increase in rGUS expression levels up to 0.08% significantly improves the process economics.
Rehan, Shahid; Jaakola, Veli-Pekka
2015-10-01
Human equilibrative nucleoside transporter-1 (hENT1) is the major plasma membrane transporter involved in transportation of natural nucleosides as well as nucleoside analog drugs, used in anti-cancer and anti-viral therapies. Despite extensive biochemical and pharmacological studies, little is known about the structure-function relationship of this protein. The major obstacles to purification include a low endogenous expression level, the lack of an efficient expression and purification protocol, and the hydrophobic nature of the protein. Here, we report protein expression, purification and functional characterization of hENT1 from Sf9 insect cells. hENT1 expressed by Sf9 cells is functionally active as demonstrated by saturation binding with a Kd of 1.2±0.2nM and Bmax of 110±5pmol/mg for [(3)H]nitrobenzylmercaptopurine ribonucleoside ([(3)H]NBMPR). We also demonstrate purification of hENT1 using FLAG antibody affinity resin in lauryl maltose neopentyl glycol detergent with a Kd of 4.3±0.7nM. The yield of hENT1 from Sf9 cells was ∼0.5mg active transporter per liter of culture. The purified protein is functionally active, stable, homogenous and appropriate for further biophysical and structural studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Abdolalizadeh, Jalal; Majidi Zolbanin, Jafar; Nouri, Mohammad; Baradaran, Behzad; Movassaghpour, AliAkbar; Farajnia, Safar; Omidi, Yadollah
2013-01-01
Purpose: Recombinant tumor necrosis factor-alpha (TNF-α) has been utilized as an antineoplastic agent for the treatment of patients with melanoma and sarcoma. It targets tumor cell antigens by impressing tumor-associated vessels. Protein purification with affinity chromatography has been widely used in the downstream processing of pharmaceutical-grade proteins. Methods:In this study, we examined the potential of our produced anti-TNF-α scFv fragments for purification of TNF-α produced by Raji cells. The Raji cells were induced by lipopolysaccharides (LPS) to express TNF-α. Western blotting and Fluorescence-activated cell sorting (FACS) flow cytometry analyses were used to evaluate the TNF-α expression. The anti-TNF-α scFv selected from antibody phage display library was coupled to CNBr-activated sepharose 4B beads used for affinity purification of expressed TNF-α and the purity of the protein was assessed by SDS-PAGE. Results: Western blot and FACS flow cytometry analyses showed the successful expression of TNF-α with Raji cells. SDS-PAGE analysis showed the performance of scFv for purification of TNF-α protein with purity over 95%. Conclusion: These findings confirm not only the potential of the produced scFv antibody fragments but also this highly pure recombinant TNF-α protein can be applied for various in vitro and in vivo applications. PMID:24312807
Guo, Jiankang; Zhang, Yanting; Che, Shengquan
2018-02-01
Current research has validated the purification of rainwater by a substrate layer of green roofs to some extent, though the effects of the substrate layer on rainwater purification have not been adequately quantified. The present study set up nine extensive green roof experiment combinations based on the current conditions of precipitation characteristics observed in Shanghai, China. Different rain with pollutants were simulated, and the orthogonal design L9 (33) test was conducted to measure purification performance. The purification influences of the extensive green roof substrate layer were quantitatively analyzed in Shanghai to optimize the thickness, proportion of substrate, and sodium polyacrylate content. The experimental outcomes resulted in ammonium nitrogen (NH 4 + -N), lead (Pb), and zinc (Zn) removal of up to 93.87%, 98.81%, and 94.55% in the artificial rainfall, respectively, and NH 4 + -N, Pb, and Zn event mean concentration (EMC) was depressed to 0.263 mg/L, 0.002 mg/L and 0.018 mg/L, respectively, which were all well below the pollutant concentrations of artificial rainfall. With reference to the rainfall chemical characteristics of Shanghai, a combination of a 200 mm thickness, proportions of 1:1:2 of Loam: Perlite: Cocopeat and 2 g/L sodium polyacrylate content was suggested for the design of an extensive green roof substrate to purify NH 4 + -N, Pb and Zn.
Ren, Gang; Liu, Rong-hua; Shao, Feng; Huang, Hui-lian; Wen, Li-rong
2010-08-01
To study the technology optimization for extraction and purification of total flavones from root bark of Artocarpus styracifolius. The optimum extraction conditions were investigated by the contents of the total flavones, using orthogonal test; Static adsorption capacity and desorption rate were employed as examine items for the screening of optimum macroporous resin and optimum technology for the purification of total flavones with selected macroporous were also investigated. The optimum extraction conditions were as follows: using 60% alcohol of seven times than amounts of original material soaking 12 hours,extracting once with hot reflux method at 50 degrees C. HPD-500 type macroporous resin showed better adsorption and desorption property. The optimum purification conditions were as follows: the sample solution was prepared at the concentration of 50.0 mg/mL, subjected to HPD-500 type macroporous resin column chromatography with a load ratio of 22.0 mg total flavones per gram of resin. After standing for 1 hour, the column was eluted with 4 BV water before being eluted with 4 BV 80% alcohol. The purity of the product was 86.4%, which enhanced the content of total flavones by 533%. The optimum conditions for extraction and purification of total flavones from root bark of Artocarpus styractifolius are convenient and practical, and could be used as a reference for industrial production.
Chen, Huanhuan; Li, Ninghuan; Xie, Yueqing; Jiang, Hua; Yang, Xiaoyi; Cagliero, Cedric; Shi, Siwei; Zhu, Chencen; Luo, Han; Chen, Junsheng; Zhang, Lei; Zhao, Menglin; Feng, Lei; Lu, Huili; Zhu, Jianwei
2017-07-01
It has been documented that the purification of inclusion bodies from Escherichia coli by size exclusion chromatography (SEC) may benefit subsequent refolding and recovery of recombinant proteins. However, loading volume and the high cost of the column limits its application in large-scale manufacturing of biopharmaceutical proteins. We report a novel process using polyethylene glycol (PEG) precipitation under denaturing conditions to replace SEC for rapid purification of inclusion bodies containing recombinant therapeutic proteins. Using recombinant human interleukin 15 (rhIL-15) as an example, inclusion bodies of rhIL-15 were solubilized in 7 M guanidine hydrochloride, and rhIL-15 was precipitated by the addition of PEG 6000. A final concentration of 5% (w/v) PEG 6000 was found to be optimal to precipitate target proteins and enhance recovery and purity. Compared to the previously reported S-200 size exclusion purification method, PEG precipitation was easier to scale up and achieved the same protein yields and quality of the product. PEG precipitation also reduced manufacturing time by about 50 and 95% of material costs. After refolding and further purification, the rhIL-15 product was highly pure and demonstrated a comparable bioactivity with a rhIL-15 reference standard. Our studies demonstrated that PEG precipitation of inclusion bodies under denaturing conditions holds significant potential as a manufacturing process for biopharmaceuticals from E. coli protein expression systems.
Pang, Jianmei; Dong, Wujun; Li, Yuhuan; Xia, Xuejun; Liu, Zhihua; Hao, Huazhen; Jiang, Lingmin; Liu, Yuling
2017-02-15
Essential oil extracted from Houttuynia cordata Thunb. ( H. cordata ) is widely used in traditional Chinese medicine due to its excellent biological activities. However, impurities and deficient preparations of the essential oil limit its safety and effectiveness. Herein, we proposed a strategy to prepare H. cordata essential oil (HEO) safely and effectively by combining the solvent extraction and the macroporous resin purification flexibly, and then encapsulating it using microemulsion. The extraction and purification process were optimized by orthogonal experimental design and adsorption-desorption tests, respectively. The average houttuynin content in pure HEO was then validated at 44.3% ± 2.01%, which presented a great potential for industrial application. Subsequently, pure HEO-loaded microemulsion was prepared by high-pressure homogenization and was then fully characterized. Results showed that the pure HEO-loaded microemulsion was successfully prepared with an average particle size of 179.1 nm and a high encapsulation rate of 94.7%. Furthermore, safety evaluation tests and in vitro antiviral testing indicated that the safety and activity of HEO were significantly improved after purification using D101 resin and were further improved by microemulsion encapsulation. These results demonstrated that the purification of HEO by macroporous resin followed by microemulsion encapsulation would be a promising approach for industrial application of HEO for the antiviral therapies.
Pua, Teen-Lee; Chan, Xiao Ying; Loh, Hwei-San; Omar, Abdul Rahman; Yusibov, Vidadi; Musiychuk, Konstantin; Hall, Alexandra C.; Coffin, Megan V.; Shoji, Yoko; Chichester, Jessica A.; Bi, Hong; Streatfield, Stephen J.
2017-01-01
ABSTRACT Highly pathogenic avian influenza (HPAI) H5N1 is an ongoing global health concern due to its severe sporadic outbreaks in Asia, Africa and Europe, which poses a potential pandemic threat. The development of safe and cost-effective vaccine candidates for HPAI is considered the best strategy for managing the disease and addressing the pandemic preparedness. The most potential vaccine candidate is the antigenic determinant of influenza A virus, hemagglutinin (HA). The present research was aimed at developing optimized expression in Nicotiana benthamiana and protein purification process for HA from the Malaysian isolate of H5N1 as a vaccine antigen for HPAI H5N1. Expression of HA from the Malaysian isolate of HPAI in N. benthamiana was confirmed, and more soluble protein was expressed as truncated HA, the HA1 domain over the entire ectodomain of HA. Two different purification processes were evaluated for efficiency in terms of purity and yield. Due to the reduced yield, protein degradation and length of the 3-column purification process, the 2-column method was chosen for target purification. Purified HA1 was found immunogenic in mice inducing H5 HA-specific IgG and a hemagglutination inhibition antibody. This paper offers an alternative production system of a vaccine candidate against a locally circulating HPAI, which has a regional significance. PMID:27929750
USDA-ARS?s Scientific Manuscript database
Affinity purification of protein complexes from biological tissues, followed by liquid chromatography- tandem mass spectrometry (AP-MS/MS), has ballooned in recent years due to sizeable increases in nucleic acid sequence data essential for interpreting mass spectra, improvements in affinity purifica...
ERIC Educational Resources Information Center
Falconer, A. C.; Hayes, L. J.
1986-01-01
Describes a relatively simple method of extraction and purification of bacterial DNA. This technique permits advanced secondary-level science students to obtain adequate amounts of DNA from very small pellets of bacteria and to observe some of its polymer properties. (ML)
Synthesis and purification of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB)
Mitchell, Alexander R [Livermore, CA; Coburn, Michael D [Santa Fe, NM; Lee, Gregory S [San Ramon, CA; Schmidt, Robert D [Livermore, CA; Pagoria, Philip F [Livermore, CA; Hsu, Peter C [Pleasanton, CA
2006-06-06
A method to convert surplus nitroarene explosives (picric acid, ammonium picrate,) into TATB is described. The process comprises three major steps: conversion of picric acid/ammonium picrate into picramide; conversion of picramide to TATB through vicarious nucleophilic substitution (VNS) of hydrogen chemistry; and purification of TATB.
21 CFR 74.102 - FD&C Blue No. 2.
Code of Federal Regulations, 2010 CFR
2010-04-01
... subjected to purification procedures. The indigo (or indigo paste) used above is manufactured by the fusion... purification procedures prior to sulfonation. (2) Color additive mixtures for food use (including dietary... (calculated as sodium salts), not more than 15 percent. Water insoluble matter, not more than 0.4 percent...
21 CFR 74.102 - FD&C Blue No. 2.
Code of Federal Regulations, 2012 CFR
2012-04-01
... subjected to purification procedures. The indigo (or indigo paste) used above is manufactured by the fusion... purification procedures prior to sulfonation. (2) Color additive mixtures for food use (including dietary... (calculated as sodium salts), not more than 15 percent. Water insoluble matter, not more than 0.4 percent...
TiO2-Based Advanced Oxidation Nanotechnologies For Water Purification And Reuse
TiO2 photocatalysis, one of the UV-based advanced oxidation technologies (AOTs) and nanotechnologies (AONs), has attracted great attention for the development of efficient water treatment and purification systems due to the effectiveness of TiO2 to generate ...
21 CFR 74.102 - FD&C Blue No. 2.
Code of Federal Regulations, 2013 CFR
2013-04-01
... subjected to purification procedures. The indigo (or indigo paste) used above is manufactured by the fusion... purification procedures prior to sulfonation. (2) Color additive mixtures for food use (including dietary... (calculated as sodium salts), not more than 15 percent. Water insoluble matter, not more than 0.4 percent...
21 CFR 74.102 - FD&C Blue No. 2.
Code of Federal Regulations, 2014 CFR
2014-04-01
... subjected to purification procedures. The indigo (or indigo paste) used above is manufactured by the fusion... purification procedures prior to sulfonation. (2) Color additive mixtures for food use (including dietary... (calculated as sodium salts), not more than 15 percent. Water insoluble matter, not more than 0.4 percent...
NASA Technical Reports Server (NTRS)
1974-01-01
An attempt was made to construct an electrochemical system, using iodine, for water purification in Skylab. Data cover measurements of iodine production rates, effect of electrode size and geometry on iodine production rates, and feasibility of using stainless steels as reference electrodes.
21 CFR 74.102 - FD&C Blue No. 2.
Code of Federal Regulations, 2011 CFR
2011-04-01
... subjected to purification procedures. The indigo (or indigo paste) used above is manufactured by the fusion... purification procedures prior to sulfonation. (2) Color additive mixtures for food use (including dietary... (calculated as sodium salts), not more than 15 percent. Water insoluble matter, not more than 0.4 percent...
Purification and Characterization of Recombinant Vaccinia L1R Protein from Escherichia coli
2016-08-01
Solubilization .................................................2 2.4 Denaturing Chromatography (Purification Step 1...Concentration Determination ................................................................4 2.10 Enzyme -Linked Immunosorbent Assay (ELISA...the preparation of the recombinant VACV L1R protein fragment by denaturing , refolding, and purifying material expressed into inclusion bodies in
Expression and Purification of Sperm Whale Myoglobin
ERIC Educational Resources Information Center
Miller, Stephen; Indivero, Virginia; Burkhard, Caroline
2010-01-01
We present a multiweek laboratory exercise that exposes students to the fundamental techniques of bacterial expression and protein purification through the preparation of sperm whale myoglobin. Myoglobin, a robust oxygen-binding protein, contains a single heme that gives the protein a reddish color, making it an ideal subject for the teaching…
Protocol for Initial Purification of Bacteriocin
2015-10-01
lysate/extract preparation, column purification, and a desalting . The peptide was tracked throughout the process using a soft agar overlay activity...tris PAGE. It is necessary to desalt those samples for 150-mM and 1-M fractions, by using dialysis or G10 sephadex columns, in order to prevent
Extraction of neptunium by trilaurylamine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, S.K.; Swarup, R.; Ramaniah, M.V.
1972-07-01
Trilaurylamine (TLA) is considered as useful solvent for the final purification of plutonium and neptunium. As TLA is considered as an alternate possible extractant for the final purification of plutonium and neptunium at Tarapur Reprocessing Plant under construction, it was considered necessary to study the optimum conditions for the extraction of neptunium using TLA.
Field Testing of a Small Water Purification System for Non-PRASA Rural Communities
Small, rural communities typically do not have adequate water purification systems to sustain their life quality and residents are exposed to pathogens present in drinking water. In Puerto Rico (PR), approximately 4% of the population does not have access to drinking water provi...
Abstract
Procedures for purification of Leydig cells have facilitated studies of their regulatory biology. A multistep procedure, that includes a filtration with nylon mesh (100 micron pore size) to separate interstitial cells from the seminiferous tubules, combining centr...
ERIC Educational Resources Information Center
Leonard, Jack E.
1981-01-01
Describes a sequence of experiments developed at Texas A&M University for use in one-semester and two-semester (nonmajors) organic chemistry courses to teach a maximum number of separation and purification techniques such as distillations, recrystallization, liquid-liquid extraction, and chromatography. (SK)
NASA Astrophysics Data System (ADS)
Asakura, K.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, T.; Ishio, S.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obara, S.; Oki, Y.; Otani, M.; Oura, T.; Shimizu, I.; Shirahata, Y.; Shirai, J.; Suzuki, A.; Tachibana, H.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamauchi, Y.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Fushimi, K.; Banks, T. I.; Freedman, S. J.; Fujikawa, B. K.; O'Donnell, T.; Winslow, L. A.; Berger, B. E.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.
2015-07-01
KamLAND-Zen reports on a preliminary search for neutrinoless double-beta decay with 136Xe based on 114.8 live-days after the purification of the xenon loaded liquid scintillator. In this data, the problematic 110mAg background peak identified in previous searches is reduced by more than a factor of 10. By combining the KamLAND-Zen pre- and post-purification data, we obtain a preliminary lower limit on the 0νββ decay half-life of T1/2 0 ν>2.6 ×1025 yr at 90% C.L. The search sensitivity will be enhanced with additional low background data after the purification. Prospects for further improvements with future KamLAND-Zen upgrades are also presented.
Preparative Purification of Recombinant Proteins: Current Status and Future Trends
Saraswat, Mayank; Ravidá, Alessandra; Holthofer, Harry
2013-01-01
Advances in fermentation technologies have resulted in the production of increased yields of proteins of economic, biopharmaceutical, and medicinal importance. Consequently, there is an absolute requirement for the development of rapid, cost-effective methodologies which facilitate the purification of such products in the absence of contaminants, such as superfluous proteins and endotoxins. Here, we provide a comprehensive overview of a selection of key purification methodologies currently being applied in both academic and industrial settings and discuss how innovative and effective protocols such as aqueous two-phase partitioning, membrane chromatography, and high-performance tangential flow filtration may be applied independently of or in conjunction with more traditional protocols for downstream processing applications. PMID:24455685
Study on the treatment of acute thallium poisoning.
Zhang, Hong-Tao; Qiao, Bao-Ping; Liu, Bao-Ping; Zhao, Xian-Guo
2014-05-01
Acute thallium poisoning rarely occurs but is a serious and even fatal medical condition. Currently, patients with acute thallium poisoning are usually treated with Prussian blue and blood purification therapy. However, there are few studies about these treatments for acute thallium poisoning. Nine patients with acute thallium poisoning from 1 family were treated successfully with Prussian blue and different types of blood purification therapies and analyzed. Prussian blue combined with sequential hemodialysis, hemoperfusion and/or continuous veno-venous hemofiltration were effective for the treatment of patients with acute thallium poisoning, even after delayed diagnosis. Blood purification therapies help in the clearance of thallium in those with acute thallium poisoning. Prussian blue treatment may do the benefit during this process.
Expression and Purification of Rat Glucose Transporter 1 in Pichia pastoris.
Venskutonytė, Raminta; Elbing, Karin; Lindkvist-Petersson, Karin
2018-01-01
Large amounts of pure and homogenous protein are a prerequisite for several biochemical and biophysical analyses, and in particular if aiming at resolving the three-dimensional protein structure. Here we describe the production of the rat glucose transporter 1 (GLUT1), a membrane protein facilitating the transport of glucose in cells. The protein is recombinantly expressed in the yeast Pichia pastoris. It is easily maintained and large-scale protein production in shaker flasks, as commonly performed in academic research laboratories, results in relatively high yields of membrane protein. The purification protocol describes all steps needed to obtain a pure and homogenous GLUT1 protein solution, including cell growth, membrane isolation, and chromatographic purification methods.
Purification of Logic-Qubit Entanglement
Zhou, Lan; Sheng, Yu-Bo
2016-01-01
Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network. PMID:27377165
Extraction and purification methods in downstream processing of plant-based recombinant proteins.
Łojewska, Ewelina; Kowalczyk, Tomasz; Olejniczak, Szymon; Sakowicz, Tomasz
2016-04-01
During the last two decades, the production of recombinant proteins in plant systems has been receiving increased attention. Currently, proteins are considered as the most important biopharmaceuticals. However, high costs and problems with scaling up the purification and isolation processes make the production of plant-based recombinant proteins a challenging task. This paper presents a summary of the information regarding the downstream processing in plant systems and provides a comprehensible overview of its key steps, such as extraction and purification. To highlight the recent progress, mainly new developments in the downstream technology have been chosen. Furthermore, besides most popular techniques, alternative methods have been described. Copyright © 2015 Elsevier Inc. All rights reserved.
Expression and Purification of a Matrix Metalloprotease Transmembrane Domain in Escherichia coli.
Galea, Charles A
2017-01-01
Membrane tethered matrix metalloproteases are bound to the plasma membrane by a glycosylphosphatidylinositol-anchor or a transmembrane domain. To date, most studies of membrane-bound matrix metalloprotease have focused on the globular catalytic and protein-protein interaction domains of these enzymes. However, the transmembrane domains have been poorly studied even though they are known to mediate intracellular signaling via interaction with various cellular proteins. The expression and purification of the transmembrane domain of these proteins can be challenging due to their hydrophobic nature. In this chapter we describe the purification of a transmembrane domain for a membrane-bound matrix metalloprotease expressed in E. coli and its initial characterization by NMR spectroscopy.
Replacing "Them" with "Us": Language Ideologies and Practices of "Purification" on Facebook
ERIC Educational Resources Information Center
Karimzad, Farzad; Sibgatullina, Gulnaz
2018-01-01
Adopting an online ethnographic approach, we examine the linguistic/semiotic practices and ideologies of "purism" among Tatar and Iranian Azerbaijani Facebook users. We argue that purification practices can be understood as identity work, the outcome of which is often not an etymologically "purer" language but a (perceived)…
Experimental purification of single qubits.
Ricci, M; De Martini, F; Cerf, N J; Filip, R; Fiurásek, J; Macchiavello, C
2004-10-22
We report the experimental realization of the purification protocol for single qubits sent through a depolarizing channel. The qubits are associated with polarization states of single photons and the protocol is achieved by means of passive linear optical elements. The present approach may represent a convenient alternative to the distillation and error correction protocols of quantum information.
ERIC Educational Resources Information Center
Lee, HyeSun; Geisinger, Kurt F.
2016-01-01
The current study investigated the impact of matching criterion purification on the accuracy of differential item functioning (DIF) detection in large-scale assessments. The three matching approaches for DIF analyses (block-level matching, pooled booklet matching, and equated pooled booklet matching) were employed with the Mantel-Haenszel…
Synthesis, Purification, and Characterization of a [mu]-(1,3-Propanedithiolato)-Hexacarbonyldiiron
ERIC Educational Resources Information Center
Works, Carmen F.
2007-01-01
A project which exposes students to biologically important transition-metal chemistry is illustrated by taking an example of the iron-carbonyl compound, [mu]-(1,3-Propanedithiolaro)-hexa-carbonyldiiron as a structural model for an iron-only hydro-genase. The project provides the students with experience of Schlenk line techniques, purification,…
ERIC Educational Resources Information Center
Sommer, Cesar Adolfo; Silva, Flavio Henrique; Novo, Maria Teresa Marques
2004-01-01
Practical classes on protein expression and purification were given to undergraduate biology students enrolled in the elective course "Introduction to Genetic Engineering." The heterologous expression of the green fluorescent protein (GFP)* of "Aequorea victoria" is an interesting system for didactic purposes because it can be viewed easily during…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-25
... SFP Purification Loop and recirculation and purification of the RWST water using the BARS is not... revise the minimum volume and low level setpoint on the Refueling Water Storage Tank. Because the... proposed change would revise Technical Specification 3.5.4, ``Refueling Water Storage Tank (RWST)'' such...
ERIC Educational Resources Information Center
Brunauer, Linda S.
2016-01-01
A multiweek protein purification suite, suitable for upper-division biochemistry or biotechnology undergraduate students, is described. Students work in small teams to isolate the enzyme lactate dehydrogenase (LDH) from a nontraditional tissue source, mammalian blood, using a sequence of three column chromatographic procedures: ion-exchange, size…
ERIC Educational Resources Information Center
Olieric, Vincent; Schreiber, Angelique; Lorber, Bernard; Putz, Joern
2007-01-01
A practical hands-on course encompassing enzyme purification, biochemical characterization, and crystallization that completed the course work of 350 second-year bachelor students enrolled in molecular biology/biochemistry was given at the Universite Louis Pasteur of Strasbourg (France). The experimental part of the practical dealt entirely with…
Scheme for air treatment in welding workshop
NASA Astrophysics Data System (ADS)
Wang, Gang; Wu, Jin
2017-04-01
There are two major ways to control the pollution of welding fume which are respectively local purification and comprehensive purification. In this paper, the practical welding workshop at school is taken as an example to realize fume treatment in different training conditions by adopting the scheme in which two major ways are combined.
1991-08-01
sieve and hopcalite using Bauer cartridge No. 068416. The molecular sieve absorbs oil and water vapors. The hopcalite converts carbon monoxide (CO) to...Molecular Sieve (058825)/ Hopcalite (068416) Cartridge purification system Evaluation. 4. MIL-C-52973A(ME) Military Specification Compressor Unit, 20 CFM
One-step purification of nisin A by immunoaffinity chromatography.
Suárez, A M; Azcona, J I; Rodríguez, J M; Sanz, B; Hernández, P E
1997-12-01
The lantibiotic nisin A was purified to homogeneity by a single-step immunoaffinity chromatography method. An immunoadsorption matrix was developed by direct binding of anti-nisin A monoclonal antibodies to N-hydroxysuccinimide-activated Sepharose. The purification procedure was rapid and reproducible and rendered much higher final yields of nisin than any other described method.
Purification and characterization of xylooligosaccharides (XOS) from Miscanthus x giganteus
USDA-ARS?s Scientific Manuscript database
Our previous investigation showed that xylooligosaccharides (XOS) could be produced effectively from Miscanthus x giganteus (MxG). Using autohydrolysis, an XOS yield of to 13.5% (w/w) of initial biomass and xylan yield of 69.2% (w/w) was observed. In this study, we investigated the purification of X...
Rapid purification of fluorescent enzymes by ultrafiltration
NASA Technical Reports Server (NTRS)
Benjaminson, M. A.; Satyanarayana, T.
1983-01-01
In order to expedite the preparation of fluorescently tagged enzymes for histo-cyctochemistry, a previously developed method employing gel column purification was compared with a more rapid modern technique using the Millipore Immersible CX-ultrafilter. Microscopic evaluation of the resulting conjugates showed comparable products. Much time and effort is saved using the new technique.
Rapid purification of fluorescent enzymes by ultrafiltration
NASA Technical Reports Server (NTRS)
Benjaminson, M. A.; Satyanarayana, T.
1983-01-01
In order to expedite the preparation of fluorescently tagged enzymes for histo/cytochemistry, a previously developed method employing gel column purification was compared with a more rapid modern technique using the Millipore Immersible CX-ultrafilter. Microscopic evaluation of the resulting conjugates showed comparable products. Much time and effort is saved using the new technique.
24 CFR 203.52 - Acceptance of individual residential water purification equipment.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Acceptance of individual residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND...
Purification of cardiolipin for surface pressure studies.
Houle, A; Téchy, F; Aghion, J; Leblanc, R M
1982-03-01
Thin-layer chromatography and surface pressure-area isotherms of commercial bovine cardiolipins showed that the samples contained contaminants. They were purified by TLC and their purity was checked by chromatography and by their monolayer properties. The molecular area of cardiolipin and its purification yield depend upon the fatty acid composition, particularly the degree of unsaturation.
Matching relations for optimal entanglement concentration and purification
Kong, Fan-Zhen; Xia, Hui-Zhi; Yang, Ming; Yang, Qing; Cao, Zhuo-Liang
2016-01-01
The bilateral controlled NOT (CNOT) operation plays a key role in standard entanglement purification process, but the CNOT operation may not be the optimal joint operation in the sense that the output entanglement is maximized. In this paper, the CNOT operations in both the Schmidt-projection based entanglement concentration and the entanglement purification schemes are replaced with a general joint unitary operation, and the optimal matching relations between the entangling power of the joint unitary operation and the non-maximal entangled channel are found for optimizing the entanglement in- crement or the output entanglement. The result is somewhat counter-intuitive for entanglement concentration. The output entanglement is maximized when the entangling power of the joint unitary operation and the quantum channel satisfy certain relation. There exist a variety of joint operations with non-maximal entangling power that can induce a maximal output entanglement, which will greatly broaden the set of the potential joint operations in entanglement concentration. In addition, the entanglement increment in purification process is maximized only by the joint unitary operations (including CNOT) with maximal entangling power. PMID:27189800
Protein purification and crystallization artifacts: The tale usually not told.
Niedzialkowska, Ewa; Gasiorowska, Olga; Handing, Katarzyna B; Majorek, Karolina A; Porebski, Przemyslaw J; Shabalin, Ivan G; Zasadzinska, Ewelina; Cymborowski, Marcin; Minor, Wladek
2016-03-01
The misidentification of a protein sample, or contamination of a sample with the wrong protein, may be a potential reason for the non-reproducibility of experiments. This problem may occur in the process of heterologous overexpression and purification of recombinant proteins, as well as purification of proteins from natural sources. If the contaminated or misidentified sample is used for crystallization, in many cases the problem may not be detected until structures are determined. In the case of functional studies, the problem may not be detected for years. Here several procedures that can be successfully used for the identification of crystallized protein contaminants, including: (i) a lattice parameter search against known structures, (ii) sequence or fold identification from partially built models, and (iii) molecular replacement with common contaminants as search templates have been presented. A list of common contaminant structures to be used as alternative search models was provided. These methods were used to identify four cases of purification and crystallization artifacts. This report provides troubleshooting pointers for researchers facing difficulties in phasing or model building. © 2016 The Protein Society.
Morel, Sylvie; Landreau, Anne; Nguyen, Van Hung; Derbré, Séverine; Grellier, Philippe; Pape, Patrice Le; Pagniez, Fabrice; Litaudon, Marc; Richomme, Pascal
2012-01-01
The Derris genus is known to contain flavonoid derivatives, including prenylated flavanones and isoflavonoids such as rotenoids, which are generally associated with significant biological activity. To develop an efficient preparative isolation procedure for bioactive cajaflavanone. Fast centrifugal partition chromatography (FCPC) was optimised to purify cajaflavanone from Derris ferruginea stems in a single step as compared to fractionation from the cyclohexane extract by successive conventional solid-liquid chromatography procedures. The purification yield, purity, time and solvent consumption per procedure are described. The anti-fungal, anti-bacterial, anti-leishmanial, anti-plasmodial, anti-oxidant activities and the inhibition of advanced glycation end-products (AGEs) by cajaflavanone accumulation are described. FCPC enabled cajaflavanone purification in a single separation step, yielding sufficient quantities to perform in vitro biological screening. Interestingly, cajaflavanone had an inhibitory effect on the formation of AGEs, without displaying any in vitro anti-oxidant activity. A simple and efficient procedure, in comparison with other preparative methods, for bioactive cajaflavone purification has been developed using FCPC. Copyright © 2011 John Wiley & Sons, Ltd.
Wang, Feng; Guo, Chen; Liu, Chun-Zhao
2013-12-01
A magnetically stabilized fluidized bed (MSFB) with the Cu(2+)-chelated magnetic mesoporous silica nanoparticles (MMSNPs-Cu(2+)) was established to purify laccase directly from the fermentation broth of Trametes versicolor. The MMSNPs-Cu(2+) particles in the MSFB maintained a stable bed expansion of two to threefold at a flow rate of 120-180 cm/h. At the optimal magnetic field intensity of 120 Gs, both the maximal Bodenstein number and the smallest axial dispersion coefficient were achieved, which resulted in a stable fluidization stage. The dynamic binding capacity of laccase in the MSFB decreased from 192.5 to144.3 mg/g when the flow velocity through the bed increased from 44.2 to 69.8 cm/h. The MSFB with MMSNPs-Cu(2+) achieved efficient laccase purification from the fermentation broth with 62.4-fold purification of laccase and 108.9 % activity yield. These results provided an excellent platform for the application of these magnetic mesoporous nanoparticles integrated with the MSFB in developing novel protein purification process.
The Toxic Truth About Carbon Nanotubes in Water Purification: a Perspective View.
Das, Rasel; Leo, Bey Fen; Murphy, Finbarr
2018-06-18
Without nanosafety guidelines, the long-term sustainability of carbon nanotubes (CNTs) for water purifications is questionable. Current risk measurements of CNTs are overshadowed by uncertainties. New risks associated with CNTs are evolving through different waste water purification routes, and there are knowledge gaps in the risk assessment of CNTs based on their physical properties. Although scientific efforts to design risk estimates are evolving, there remains a paucity of knowledge on the unknown health risks of CNTs. The absence of universal CNT safety guidelines is a specific hindrance. In this paper, we close these gaps and suggested several new risk analysis roots and framework extrapolations from CNT-based water purification technologies. We propose a CNT safety clock that will help assess risk appraisal and management. We suggest that this could form the basis of an acceptable CNT safety guideline. We pay particular emphasis on measuring risks based on CNT physico-chemical properties such as diameter, length, aspect ratio, type, charge, hydrophobicity, functionalities and so on which determine CNT behaviour in waste water treatment plants and subsequent release into the environment.
NASA Astrophysics Data System (ADS)
Yang, Xueqin; Yang, Ming; Zhang, Huichao; Zhao, Jingna; Zhang, Xiaohua; Li, Qingwen
2018-06-01
Fe-containing nanoparticles are of a high mass fraction in the as-grown carbon nanotube (CNT) network. By controlling the S-to-Fe atom ratio in the growth feedstock and introducing water as a weak oxidant, highly crystalline few-walled CNT network can be obtained, with a mass fraction of over 20 wt% for the Fe-containing nanoparticles. We report here an electron-oxidation-based purification method to efficiently remove the Fe-containing nanoparticles without inducing clear damage to either the assembly structure or the tube crystallinity. The purification could increase the ratio between Raman D and G peak intensities slightly from 0.08 to 0.12, decrease the specific conductivity from 0.31 to 0.24 S m2/g and the Fe content from >20 wt% to ≈1 wt%, and modify the capacitance just by about 13 F/g. All these indicate that the CNT network was well maintained by such gentle electro-oxidation-based purification. In addition, the purified CNT network can exhibit advantages in mechanical and electrical applications.
Göktürk, Ilgım; Perçin, Işık; Denizli, Adil
2016-08-17
In this study, iron-chelated poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) (PHEMAGA/Fe(3+)) cryogel discs were prepared. The PHEMAGA/Fe(3+) cryogel discs were characterized by elemental analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, swelling tests, and surface area measurements. The PHEMAGA/Fe(3+) cryogel discs had large pores ranging from 10 to 100 µm with a swelling degree of 9.36 g H2O/g cryogel. Effects of pH, temperature, initial catalase concentration, and flow rate on adsorption capacity of the PHEMAGA/Fe(3+) cryogel discs were investigated. Maximum catalase adsorption capacity (62.6 mg/g) was obtained at pH 7.0, 25°C, and 3 mg/ml initial catalase concentration. The PHEMAGA/Fe(3+) cryogel discs were also tested for the purification of catalase from rat liver. After tissue homogenization, purification of catalase was performed using the PHEMAGA/Fe(3+) cryogel discs and catalase was obtained with a yield of 54.34 and 16.67 purification fold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, A.A.
1958-01-01
culation of Purification Systems of Hydrocarbonmoderated Reactors). Agustin Alonso Santos. 1958. 23p. As as introduction to the calculation of the purification systems of bydrocarbon-moderated reactors, the effects of heat and radiation on the polyphenols are considered. The chemical, physical, and nuclear properties are tabulated. The formation velocity of the polymers and gases, pyrolysis, effects of heat on the polymer, and the activity accumulated in the moderator ars discussed. The calculation is based on the hypetheses that the radiation catalyzes the formation of polymers, the velocity of the polymerization reaction is constant, the polymer concentration is maintained at a limit whichmore » does not adversely affect the heat transfer properties, the velocity of the separation of polymers in the distillation column is in proportion to their concentration in the hydrocarbon and the pyrolysis causes gaseous products. Formulas are derived expressing the purified flow and the activities accumulated in the distillation residues. The results are applied to the parification system of the Organic Moderated Reactor Experiment (J.S.R.)« less
Zhu, Xiaoyan; Luo, Fenglei; Zheng, Yixiong; Zhang, Jiukai; Huang, Jianzhen; Sun, Chongde; Li, Xian; Chen, Kunsong
2013-01-01
Poncirin is a bitter flavanone glycoside with various biological activities. Poncirin was isolated from four different tissues (flavedo, albedo, segment membrane, and juice sac) of Ougan fruit (Citrus reticulate cv. Suavissima). The highest content of poncirin was found in the albedo of Ougan fruit (1.37 mg/g DW). High speed counter-current chromatography (HSCCC) combined with D101 resin chromatography was utilized for the separation and purification of poncirin from the albedo of Ougan fruit. After this two-step purification, poncirin purity increased from 0.14% to 96.56%. The chemical structure of the purified poncirin was identified by both HPLC-PDA and LC-MS. Poncirin showed a significant in vitro inhibitory effect on the growth of the human gastric cancer cells, SGC-7901, in a dose-dependent manner. Thus, poncirin from Ougan fruit, may be beneficial for gastric cancer prevention. The purification method demonstrated here will be useful for further studies on the pharmacological mechanism of poncirin activity, as well as for guiding the consumption of Ougan fruit. PMID:23615464
Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian
2015-02-01
Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.
Gieseler, Gesa; Pepelanova, Iliyana; Stuckenberg, Lena; Villain, Louis; Nölle, Volker; Odenthal, Uwe; Beutel, Sascha; Rinas, Ursula; Scheper, Thomas
2017-01-01
In this study, we present the development of a process for the purification of recombinant human bone morphogenetic protein-2 (rhBMP-2) using mixed-mode membrane chromatography. RhBMP-2 was produced as inclusion bodies in Escherichia coli. In vitro refolding using rapid dilution was carried out according to a previously established protocol. Different membrane chromatography phases were analyzed for their ability to purify BMP-2. A membrane phase with salt-tolerant properties resulting from mixed-mode ligand chemistry was able to selectively purify BMP-2 dimer from refolding mixtures. No further purification or polishing steps were necessary and high product purity was obtained. The produced BMP-2 exhibited a biological activity of 7.4 × 10 5 U/mg, comparable to commercial preparations. Mixed-mode membrane chromatography can be a valuable tool for the direct purification of proteins from solutions with high-conductivity, for example refolding buffers. In addition, in this particular case, it allowed us to circumvent the use of heparin-affinity chromatography, thus allowing the design of an animal-component-free process.
Choices of capture chromatography technology in antibody manufacturing processes.
DiLeo, Michael; Ley, Arthur; Nixon, Andrew E; Chen, Jie
2017-11-15
The capture process employed in monoclonal antibody downstream purification is not only the most critically impacted process by increased antibody titer resulting from optimized mammalian cell culture expression systems, but also the most important purification step in determining overall process throughput, product quality, and economics. Advances in separation technology for capturing antibodies from complex feedstocks have been one focus of downstream purification process innovation for past 10 years. In this study, we evaluated new generation chromatography resins used in the antibody capture process including Protein A, cation exchange, and mixed mode chromatography to address the benefits and unique challenges posed by each chromatography approach. Our results demonstrate the benefit of improved binding capacity of new generation Protein A resins, address the concern of high concentration surge caused aggregation when using new generation cation exchange resins with over 100mg/mL binding capacity, and highlight the potential of multimodal cation exchange resins for capture process design. The new landscape of capture chromatography technologies provides options to achieve overall downstream purification outcome with high product quality and process efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.
Finzi, Andrés; Cloutier, Jonathan; Cohen, Eric A
2003-07-01
The Nef protein encoded by human immunodeficiency virus type 1 (HIV-1) has been shown to be an important factor of progression of viral growth and pathogenesis in both in vitro and in vivo. The lack of a simple procedure to purify Nef in its native conformation has limited molecular studies on Nef function. A two-step procedure that includes heparin and immobilized metal ion affinity chromatographies (IMACs) was developed to purify His-tagged Nef (His(6)-Nef) expressed in bacteria in native condition. During the elaboration of this purification procedure, we identified two closely SDS-PAGE-migrating contaminating bacterial proteins, SlyD and GCHI, that co-eluted with His(6)-Nef in IMAC in denaturing condition and developed purification steps to eliminate these contaminants in native condition. Overall, this study describes a protocol that allows rapid purification of His(6)-Nef protein expressed in bacteria in native condition and that removes metal affinity resin-binding bacterial proteins that can contaminate recombinant His-tagged protein preparation.
Gram-scale purification of aconitine and identification of lappaconitine in Aconitum karacolicum.
Tarbe, M; de Pomyers, H; Mugnier, L; Bertin, D; Ibragimov, T; Gigmes, D; Mabrouk, K
2017-07-01
Aconitum karacolicum from northern Kyrgyzstan (Alatau area) contains about 0.8-1% aconitine as well as other aconite derivatives that have already been identified. In this paper, we compare several methods for the further purification of an Aconitum karacolicum extract initially containing 80% of aconitine. Reverse-phase flash chromatography, reverse-phase semi-preparative HPLC, centrifugal partition chromatography (CPC) and recrystallization techniques were evaluated regarding first their efficiency to get the highest purity of aconitine (over 96%) and secondly their applicability in a semi-industrial scale purification process (in our case, 150g of plant extract). Even if the CPC technique shows the highest purification yield (63%), the recrystallization remains the method of choice to purify a large amount of aconitine as i) it can be easily carried out in safe conditions; ii) an aprotic solvent is used, avoiding aconitine degradation. Moreover, this study led us to the identification of lappaconitine in Aconitum karacolicum, a well-known alkaloid never found in this Aconitum species. Copyright © 2017 Elsevier B.V. All rights reserved.
Experimental purification of two-atom entanglement.
Reichle, R; Leibfried, D; Knill, E; Britton, J; Blakestad, R B; Jost, J D; Langer, C; Ozeri, R; Seidelin, S; Wineland, D J
2006-10-19
Entanglement is a necessary resource for quantum applications--entanglement established between quantum systems at different locations enables private communication and quantum teleportation, and facilitates quantum information processing. Distributed entanglement is established by preparing an entangled pair of quantum particles in one location, and transporting one member of the pair to another location. However, decoherence during transport reduces the quality (fidelity) of the entanglement. A protocol to achieve entanglement 'purification' has been proposed to improve the fidelity after transport. This protocol uses separate quantum operations at each location and classical communication to distil high-fidelity entangled pairs from lower-fidelity pairs. Proof-of-principle experiments distilling entangled photon pairs have been carried out. However, these experiments obtained distilled pairs with a low probability of success and required destruction of the entangled pairs, rendering them unavailable for further processing. Here we report efficient and non-destructive entanglement purification with atomic quantum bits. Two noisy entangled pairs were created and distilled into one higher-fidelity pair available for further use. Success probabilities were above 35 per cent. The many applications of entanglement purification make it one of the most important techniques in quantum information processing.
SNO+ Scintillator Purification and Assay
NASA Astrophysics Data System (ADS)
Ford, R.; Chen, M.; Chkvorets, O.; Hallman, D.; Vázquez-Jáuregui, E.
2011-04-01
We describe the R&D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O2, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed "natural" radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.
Ibe, Susan; Schirrmeister, Jana; Zehner, Susanne
2015-08-20
For fast and easy purification, proteins are typically fused with an affinity tag, which often needs to be removed after purification. Here, we present a method for the removal of the affinity tag from the target protein in a single step protocol. The protein VIC_001052 of the coral pathogen Vibrio coralliilyticus ATCC BAA-450 contains a metal ion-inducible autocatalytic cleavage (MIIA) domain. Its coding sequence was inserted into an expression vector for the production of recombinant fusion proteins. Following, the target proteins MalE and mCherry were produced as MIIA-Strep fusion proteins in Escherichia coli. The target proteins could be separated from the MIIA-Strep part simply by the addition of calcium or manganese(II) ions within minutes. The cleavage is not affected in the pH range from 5.0 to 9.0 or at low temperatures (6°C). Autocleavage was also observed with immobilized protein on an affinity column. The protein yield was similar to that achieved with a conventional purification protocol. Copyright © 2015 Elsevier B.V. All rights reserved.
Fluxing purification and its effect on magnetic properties of high-Bs FeBPSiC amorphous alloy
NASA Astrophysics Data System (ADS)
Pang, Jing; Wang, Anding; Yue, Shiqiang; Kong, Fengyu; Qiu, Keqiang; Chang, Chuntao; Wang, Xinmin; Liu, Chain-Tsuan
2017-07-01
A high-Bs amorphous alloy with the base composition Fe83B11P3Si2C1 was used to study the effects of fluxing purification on amorphous forming ability and magnetic properties of the alloy prepared with raw materials in industrialization. By using fluxing purification, the surface crystallization was suppressed and fully amorphous Fe83B11P3Si2C1 ribbons with a maximum thickness of 48 μm were successfully achieved by using an industrial process and materials. The amorphous ribbons made with industrial-purified alloys exhibit excellent magnetic properties, containing high-Bs of 1.65 T, low Hc of 2.0 A/m, and high μe of 9.7 × 103 at 1 kHz. Impurities in the melting alloys exist in three forms and have different effluences on magnetic properties. The surface crystallization was triggered by the impurities which exist as high melting point inclusions serving as nuclei. Thus, fluxing purification is a feasible way for industrialization of high-Bs FeBPSiC amorphous alloys.
Gupta, Sanjeev K.; Shukla, Pratyoosh
2017-01-01
The protein productions strategies are crucial towards the development of application based research and elucidating the novel purification strategies for industrial production. Currently, there are few innovative avenues are studies for cloning, upstream, and purification through efficient bioprocess development. Such strategies are beneficial for industries as well as proven to be vital for effectual therapeutic protein development. Though, these techniques are well documented, but, there is scope of addition to current knowledge with novel and new approaches and it will pave new avenues in production of recombinant microbial and non-microbial proteins including secondary metabolites. In this review, we have focussed on the recent development in clone selection, various modern fermentation and purification technologies and future directions in these emerging areas. Moreover, we have also highlighted notable perspectives and challenges involved in the bioengineering of such proteins, including quality by design, gene editing and pioneering ideas. The biopharmaceutical industries continue to shift towards more flexible, automated platforms and economical product development, which in turn can help in developing the cost effective processes and affordable drug development for a large community. PMID:28725194
Ethanol precipitation for purification of recombinant antibodies.
Tscheliessnig, Anne; Satzer, Peter; Hammerschmidt, Nikolaus; Schulz, Henk; Helk, Bernhard; Jungbauer, Alois
2014-10-20
Currently, the golden standard for the purification of recombinant humanized antibodies (rhAbs) from CHO cell culture is protein A chromatography. However, due to increasing rhAbs titers alternative methods have come into focus. A new strategy for purification of recombinant human antibodies from CHO cell culture supernatant based on cold ethanol precipitation (CEP) and CaCl2 precipitation has been developed. This method is based on the cold ethanol precipitation, the process used for purification of antibodies and other components from blood plasma. We proof the applicability of the developed process for four different antibodies resulting in similar yield and purity as a protein A chromatography based process. This process can be further improved using an anion-exchange chromatography in flowthrough mode e.g. a monolith as last step so that residual host cell protein is reduced to a minimum. Beside the ethanol based process, our data also suggest that ethanol could be replaced with methanol or isopropanol. The process is suited for continuous operation. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Experimental entanglement purification of arbitrary unknown states.
Pan, Jian-Wei; Gasparoni, Sara; Ursin, Rupert; Weihs, Gregor; Zeilinger, Anton
2003-05-22
Distribution of entangled states between distant locations is essential for quantum communication over large distances. But owing to unavoidable decoherence in the quantum communication channel, the quality of entangled states generally decreases exponentially with the channel length. Entanglement purification--a way to extract a subset of states of high entanglement and high purity from a large set of less entangled states--is thus needed to overcome decoherence. Besides its important application in quantum communication, entanglement purification also plays a crucial role in error correction for quantum computation, because it can significantly increase the quality of logic operations between different qubits. Here we demonstrate entanglement purification for general mixed states of polarization-entangled photons using only linear optics. Typically, one photon pair of fidelity 92% could be obtained from two pairs, each of fidelity 75%. In our experiments, decoherence is overcome to the extent that the technique would achieve tolerable error rates for quantum repeaters in long-distance quantum communication. Our results also imply that the requirement of high-accuracy logic operations in fault-tolerant quantum computation can be considerably relaxed.
Nie, Chuanxiong; Peng, Zihang; Yang, Ye; Cheng, Chong; Ma, Lang; Zhao, Changsheng
2016-11-15
Developing robust and recyclable absorbents for water purification is of great demand to control water pollution and to provide sustainable water resources. Herein, for the first time, we reported the fabrication of Kevlar nanofiber (KNF) based composite particles for water purification. Both the KNF and KNF-carbon nanotube composite particles can be produced in large-scale by automatic injection of casting solution into ethanol. The resulted nanofibrous particles showed high adsorption capacities towards various pollutants, including metal ions, phenylic compounds and various dyes. Meanwhile, the adsorption process towards dyes was found to fit well with the pseudo-second-order model, while the adsorption speed was controlled by intraparticle diffusion. Furthermore, the adsorption capacities of the nanofibrous particles could be easily recovered by washing with ethanol. In general, the KNF based particles integrate the advantages of easy production, robust and effective adsorption performances, as well as good recyclability, which can be used as robust absorbents to remove toxic molecules and forward the application of absorbents in water purification. Copyright © 2016 Elsevier B.V. All rights reserved.
Mehrnoush, Amid; Mustafa, Shuhaimi; Sarker, Md. Zaidul Islam; Yazid, Abdul Manap Mohd
2012-01-01
Mango peel is a good source of protease but remains an industrial waste. This study focuses on the optimization of polyethylene glycol (PEG)/dextran-based aqueous two-phase system (ATPS) to purify serine protease from mango peel. The activity of serine protease in different phase systems was studied and then the possible relationship between the purification variables, namely polyethylene glycol molecular weight (PEG, 4000–12,000 g·mol−1), tie line length (−3.42–35.27%), NaCl (−2.5–11.5%) and pH (4.5–10.5) on the enzymatic properties of purified enzyme was investigated. The most significant effect of PEG was on the efficiency of serine protease purification. Also, there was a significant increase in the partition coefficient with the addition of 4.5% of NaCl to the system. This could be due to the high hydrophobicity of serine protease compared to protein contaminates. The optimum conditions to achieve high partition coefficient (84.2) purification factor (14.37) and yield (97.3%) of serine protease were obtained in the presence of 8000 g·mol−1 of PEG, 17.2% of tie line length and 4.5% of NaCl at pH 7.5. The enzymatic properties of purified serine protease using PEG/dextran ATPS showed that the enzyme could be purified at a high purification factor and yield with easy scale-up and fast processing. PMID:22489172
Mehrnoush, Amid; Mustafa, Shuhaimi; Sarker, Md Zaidul Islam; Yazid, Abdul Manap Mohd
2012-01-01
Mango peel is a good source of protease but remains an industrial waste. This study focuses on the optimization of polyethylene glycol (PEG)/dextran-based aqueous two-phase system (ATPS) to purify serine protease from mango peel. The activity of serine protease in different phase systems was studied and then the possible relationship between the purification variables, namely polyethylene glycol molecular weight (PEG, 4000-12,000 g·mol(-1)), tie line length (-3.42-35.27%), NaCl (-2.5-11.5%) and pH (4.5-10.5) on the enzymatic properties of purified enzyme was investigated. The most significant effect of PEG was on the efficiency of serine protease purification. Also, there was a significant increase in the partition coefficient with the addition of 4.5% of NaCl to the system. This could be due to the high hydrophobicity of serine protease compared to protein contaminates. The optimum conditions to achieve high partition coefficient (84.2) purification factor (14.37) and yield (97.3%) of serine protease were obtained in the presence of 8000 g·mol(-1) of PEG, 17.2% of tie line length and 4.5% of NaCl at pH 7.5. The enzymatic properties of purified serine protease using PEG/dextran ATPS showed that the enzyme could be purified at a high purification factor and yield with easy scale-up and fast processing.
Aptamer facilitated purification of functional proteins.
Beloborodov, Stanislav S; Bao, Jiayin; Krylova, Svetlana M; Shala-Lawrence, Agnesa; Johnson, Philip E; Krylov, Sergey N
2018-01-15
DNA aptamers are attractive capture probes for affinity chromatography since, in contrast to antibodies, they can be chemically synthesized and, in contrast to tag-specific capture probes (such as Nickel-NTA or Glutathione), they can be used for purification of proteins free of genetic modifications (such as His or GST tags). Despite these attractive features of aptamers as capture probes, there are only a few reports on aptamer-based protein purification and none of them includes a test of the purified protein's activity, thus, leaving discouraging doubts about method's ability to purify proteins in their active state. The goal of this work was to prove that aptamers could facilitate isolation of active proteins. We refined a complete aptamer-based affinity purification procedure, which takes 4 h to complete. We further applied this procedure to purify two recombinant proteins, MutS and AlkB, from bacterial cell culture: 0.21 mg of 85%-pure AlkB from 4 mL of culture and 0.24 mg of 82%-pure MutS from 0.5 mL of culture. Finally, we proved protein activity by two capillary electrophoresis based assays: an enzymatic assay for AlkB and a DNA-binding assay for MutS. We suggest that in combination with aptamer selection for non-purified protein targets in crude cell lysate, aptamer-based purification provides a means of fast isolation of tag-free recombinant proteins in their native state without the use of antibodies. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Liang-Hua; Cai, Feng; Zhang, Dan-Ju; Zhang, Li; Zhu, Peng; Gao, Shun
2017-07-01
The pharmacological importance of recombinant human stem cell factor (rhSCF) has increased the demand to establish effective and large-scale production and purification processes. A good source of bioactive recombinant protein with capability of being scaled-up without losing activity has always been a challenge. The objectives of the study were the rapid and efficient pilot-scale expression and purification of rhSCF. The gene encoding stem cell factor (SCF) was cloned into pBV220 and transformed into Escherichia coli. The recombinant SCF was expressed and isolated using a procedure consisting of isolation of inclusion bodies (IBs), denaturation, and refolding followed by chromatographic steps toward purification. The yield of rhSCF reached 835.6 g/20 L, and the expression levels of rhSCF were about 33.9% of the total E. coli protein content. rhSCF was purified by isolation of IBs, denaturation, and refolding, followed by SP-Sepharose chromatography, Source 30 reversed-phase chromatography, and Q-Sepharose chromatography. This procedure was developed to isolate 5.5 g of rhSCF (99.5% purity) with specific activity at 0.96 × 10 6 IU/mg, endotoxin levels of pyrogen at 1.0 EU/mg, and bacterial DNA at 10 ng/mg. Pilot-scale fermentations and purifications were set up for the production of rhSCF that can be upscaled for industry. © 2016 International Union of Biochemistry and Molecular Biology, Inc.
Expression and purification of the non-tagged LipL32 of pathogenic Leptospira.
Hauk, P; Carvalho, E; Ho, P L
2011-04-01
Leptospirosis is a reemerging infectious disease and the most disseminated zoonosis worldwide. A leptospiral surface protein, LipL32, only occurs in pathogenic Leptospira, and is the most abundant protein on the bacterial surface, being described as an important factor in host immunogenic response and also in bacterial infection. We describe here an alternative and simple purification protocol for non-tagged recombinant LipL32. The recombinant LipL32(21-272) was expressed in Escherichia coli without His-tag or any other tag used to facilitate recombinant protein purification. The recombinant protein was expressed in the soluble form, and the purification was based on ion exchange (anionic and cationic) and hydrophobic interactions. The final purification yielded 3 mg soluble LipL32(21-272) per liter of the induced culture. Antiserum produced against the recombinant protein was effective to detect native LipL32 from cell extracts of several Leptospira serovars. The purified recombinant LipL32(21-272) produced by this protocol can be used for structural, biochemical and functional studies and avoids the risk of possible interactions and interferences of the tags commonly used as well as the time consuming and almost always inefficient methods to cleave these tags when a tag-free LipL32 is needed. Non-tagged LipL32 may represent an alternative antigen for biochemical studies, for serodiagnosis and for the development of a vaccine against leptospirosis.
Li, Chen; Zheng, Yuanyuan; Wang, Xiaofei; Feng, Shilan; Di, Duolong
2011-12-01
This study developed a feasible process to simultaneously separate and purify polyphenols, including flavonoids and oleuropein, from the leaves of Olea europaea L. Macroporous resins were used as the separation and purification materials. The performance and separation capabilities of eight resins (D101, DM130, HPD450, LSA-21, LSA-40, 07C, LSD001 and HPD600) were systematically evaluated. The contents of target polyphenols in different extracts were determined using ultraviolet (for flavonoids) and high-performance liquid chromatographic (for oleuropein) methods. The static adsorption and desorption results showed that resin LSA-21 had better adsorption properties among the eight resins. Influential factors such as extraction method, pH value of feeding solution, desorption solution, adsorption kinetics and adsorption isotherm, etc. to the extraction and purification of these polyphenols were successively investigated on resin LSA-21. The target flavonoids and oleuropein were selectively purified using resin LSA-21. Compared with the contents in raw leaves, the contents of total flavonoids and oleuropein in the final purified products were increased 13.2-fold (from 16 to 211 g kg(-1) ) and 7.5-fold (from 120 to 902 g kg(-1) ) with recovery yields of 87.9% and 85.6%, respectively. This extraction and purification method could be used in the large-scale enrichment or purification of flavonoids, oleuropein and other polyphenols from O. europaea L. leaves or other herbal materials in industrial, food processing and medical manufacture. Copyright © 2011 Society of Chemical Industry.
Use of naturally growing aquatic plants for wastewater purification.
Zimmels, Y; Kirzhner, F; Roitman, S
2004-01-01
This paper examines potential uses of naturally growing aquatic plants for wastewater purification. These plants enhance the removal of pollutants by consuming part of them in the form of plant nutrients. This applies to urban and agricultural wastewater, in particular, where treatment units of different sizes can be applied at the pollution source. The effectiveness of wastewater purification by different plants was tested on laboratory and pilot scales. The growth rate of the plants was related to the wastewater content in the water. Batch and semicontinuous experiments verified that the plants are capable of decreasing all tested indicators for water quality to levels that permit the use of the purified water for irrigation. This applies to biochemical oxygen demand (BOD), chemical oxygen demand, total suspended solids. pH, and turbidity. In specific cases, the turbidity reached the level of drinking water. Comparison of BOD concentrations with typical levels in water treatment facilities across the country indicates the effectiveness of water purification with plants. A major effect of treatment with plants was elimination of the disturbing smell from the wastewater. It is shown that mixtures of wastewater and polluted water from the Kishon River are amenable in varying degrees to treatment by the plants. The higher the wastewater content in the mixture, the more effective the treatment by the plants. In this context, a scheme for rehabilitation and restoration of the Kishon River is presented and technical and economical aspects of the purification technology are considered.