Science.gov

Sample records for azov coastal ecosystem

  1. Louisiana coastal ecosystem

    USGS Publications Warehouse

    ,

    2000-01-01

    Louisiana's coast and its degradation and restoration are major environmental issues being studied at the National Wetlands Research Center. Coastal ecosystems are vulnerable because of the tremendous amount of human activity that takes place along the coast. Information on ecological processes is essential to guide the development along the coast as well as to protect and restore wildlife habitat.Louisiana has about 40% of coastal wetlands in the lower 48 states; they support fish, waterfowl, and fur-bearing animals as well as unique cultures like that of the Acadians. The fish and wildlife resources of Louisiana's coast produce over $1 billion each year in revenues.But Louisiana has the highest coastal loss rate because of natural and human causes. Over the past three decades, Louisiana has lost as much as 35-40 mi2 (90-104 km2) of coastal wetlands a year.The National Wetlands Research Center is qualified to assess and monitor this ecosystem because of its proximity to the study area, a staff chosen for their expertise in the system, and a number of established partnerships with others who study the areas. The Center is often the lead group in partnerships with universities, other federal agencies, and private entities who study this ecosystem.Most of the Center's research and technology development performed for coastal wetlands are done at the Lafayette headquarters; some work is performed at the National Wetlands Research Center's project office in Baton Rouge, LA.

  2. Acid-labile sulfides in shallow marine bottom sediments: A review of the impact on ecosystems in the Azov Sea, the NE Black Sea shelf and NW Adriatic lagoons

    NASA Astrophysics Data System (ADS)

    Sorokin, Yu. I.; Zakuskina, O. Yu

    2012-02-01

    Acid-labile sulfides (LS) increase in bottom sediments at sites in the Azov Sea, at the NE Black Sea shelf and in the coastal lagoons of NW Adriatic Sea experiencing direct impacts of anthropogenic pollution. Fresh anthropogenic organic matter stimulates the bacterial sulfate reduction and here the rate of the LS production overcomes their loss during the oxidation and pyritization. This results in the expansion of reduced sediment layer up to the bottom surface. The LS concentration in the reduced sediments varies between 300 and 2000 mg S l -1 of wet silt depending on the size of pollution loading and on the rate of sedimentation. In the oxidized sediments away from the direct pollution impact, the LS concentration did not exceed 100-150 mg S l -1. Being a strong cytochrome toxin, the LS adversely affect the coastal ecosystems. The concentrations over 600 mg S l -1 result in quasi total benthic mortality whereas >300-400 mg S l -1 depletes the benthic faunal abundance and taxonomic diversity. Accumulation of the LS in sediments also induces nocturnal hypoxia and stimulates domination of toxic cyanobacteria in the pelagic phytocenoses.

  3. POLLUTION AND ECOSYSTEM HEALTH - ASSESSING ECOLOGICAL CONDITION OF COASTAL ECOSYSTEMS

    EPA Science Inventory

    Summers, Kevin. 2004. Pollution and Ecosystem Health - Assessing Ecological Condition of Coastal Ecosystems. Presented at the White Water to Blue Water (WW2BW) Miami Conference, 21-26 March 2004, Miami, FL. 1 p. (ERL,GB R973).

    Throughout the coastal regions and Large Mari...

  4. DIAGNOSING CAUSES OF IMPAIRMENT IN COASTAL ECOSYSTEMS

    EPA Science Inventory

    Engle, Virginia D. and Stephen J. Jordan. In press. Diagnosing Causes of Impairment in Coastal Ecosystems (Abstract). To be presented at the SETAC Fourth World Congress, 14-18 November 2004, Portland, OR. 1 p. (ERL,GB R1008).

    Estuarine and coastal ecosystems are challenge...

  5. Integrated assessment of socio-economic risks of dangerous hydrological phenomena in Russian coastal zones of the Baltic, the Azov and the Black Seas

    NASA Astrophysics Data System (ADS)

    Zemtsov, Stepan; Baburin, Vyacheslav; Goryachko, Mariya; Krylenko, Inna; Yumina, Natalya

    2013-04-01

    according to UNU-EHS methodology: 'exposure' and 'vulnerability', consisting of 'susceptibility', 'coping capacity' and 'adaptive capacity'. Relevant indicators for each block were selected and verified by statistical methods. The authors estimated the share of people potentially exposed to flooding with the help of geographic information system. The authors, using the technique of World Risk Index (2011), calculated sub-indices for each block, and made the maps. Areas with the highest socio-economic risks were identified on the Azov and the Black sea coast: Slavyansky, Krymsky, Krasnoarmeysky, Temryuksky and Primorsko-Akhtarsky municipal districts. On the third stage, the main purpose was to integrate and use both approaches in evaluation of socio-economic risks on micro-geographical level for different categories of the population and different industries (agriculture, utilities, etc.), using 'field' data. Field study was conducted in Slavyansky municipal district of Krasnodar region and included opinion polls, special interviews with businessmen and authorities, collection of municipal statistics and data from companies, etc. Vulnerability maps, speed evacuation maps, maps of possible locations of warning systems and maps of high insurance risks were developed. Proposals for improvement of legislation for coastal zones were prepared. The conducted research has shown the importance of both social ('vulnerability'), and economic ('damage') components of risk assessment. Using the previously discussed methods individually does not bring desired results because of deficiencies of Russian statistics. It is essential for accurate risk assessment to use an 'ensemble' of methods (statistical, field observations, etc.) on micro geographic level. The work has a practical importance for improving safety of local communities.

  6. RESTORING COASTAL ECOSYSTEMS: ABRUPT CLIMATE CHANGE

    EPA Science Inventory

    Consensus exists that U.S. coastal ecosystems are severely degraded due to a variety of human-factors requiring large financial expenditures to restore and manage. Yet, even as controversy surrounds human factors in ecosystem degradation in the Gulf of Mexico, Chesapeake Bay, an...

  7. Are aliens threatening European aquatic coastal ecosystems?

    NASA Astrophysics Data System (ADS)

    Reise, Karsten; Olenin, Sergej; Thieltges, David W.

    2006-05-01

    Inshore waters of European coasts have accumulated a high share of non-indigenous species, where a changeable palaeoenvironment has caused low diversity in indigenous biota. Also strongly transformed modern coastal ecosystems seem to assimilate whatever species have been introduced and tolerate the physical regime. Adding non-native species does not have any directional predetermined effects on recipient coastal ecosystems. The status of being a non-native rather refers to a position in evolutionary history than qualify as an ecological category with distinct and consistent properties. Effects of invaders vary between habitats and with the phase of invasion and also with shifting ambient conditions. Although aliens accelerate change in European coastal biota, we found no evidence that they generally impair biodiversity and ecosystem functioning. More often, invaders expand ecosystem functioning by adding new ecological traits, intensifying existing ones and increasing functional redundancy.

  8. Coastal wetlands: an integrated ecosystem approach

    USGS Publications Warehouse

    Perillo, G. M. E.; Wolanski, E.; Cahoon, D.R.; Brinson, M.M.

    2009-01-01

    Coastal wetlands are under a great deal of pressure from the dual forces of rising sea level and the intervention of human populations both along the estuary and in the river catchment. Direct impacts include the destruction or degradation of wetlands from land reclamation and infrastructures. Indirect impacts derive from the discharge of pollutants, changes in river flows and sediment supplies, land clearing, and dam operations. As sea level rises, coastal wetlands in most areas of the world migrate landward to occupy former uplands. The competition of these lands from human development is intensifying, making the landward migration impossible in many cases. This book provides an understanding of the functioning of coastal ecosystems and the ecological services that they provide, and suggestions for their management. In this book a CD is included containing color figures of wetlands and estuaries in different parts of the world.

  9. Regime shifts and resilience in China's coastal ecosystems.

    PubMed

    Zhang, Ke

    2016-02-01

    Regime shift often results in large, abrupt, and persistent changes in the provision of ecosystem services and can therefore have significant impacts on human wellbeing. Understanding regime shifts has profound implications for ecosystem recovery and management. China's coastal ecosystems have experienced substantial deterioration within the past decades, at a scale and speed the world has never seen before. Yet, information about this coastal ecosystem change from a dynamics perspective is quite limited. In this review, I synthesize existing information on coastal ecosystem regime shifts in China and discuss their interactions and cascading effects. The accumulation of regime shifts in China's coastal ecosystems suggests that the desired system resilience has been profoundly eroded, increasing the potential of abrupt shifts to undesirable states at a larger scale, especially given multiple escalating pressures. Policy and management strategies need to incorporate resilience approaches in order to cope with future challenges and avoid major losses in China's coastal ecosystem services.

  10. Regime shifts and resilience in China's coastal ecosystems.

    PubMed

    Zhang, Ke

    2016-02-01

    Regime shift often results in large, abrupt, and persistent changes in the provision of ecosystem services and can therefore have significant impacts on human wellbeing. Understanding regime shifts has profound implications for ecosystem recovery and management. China's coastal ecosystems have experienced substantial deterioration within the past decades, at a scale and speed the world has never seen before. Yet, information about this coastal ecosystem change from a dynamics perspective is quite limited. In this review, I synthesize existing information on coastal ecosystem regime shifts in China and discuss their interactions and cascading effects. The accumulation of regime shifts in China's coastal ecosystems suggests that the desired system resilience has been profoundly eroded, increasing the potential of abrupt shifts to undesirable states at a larger scale, especially given multiple escalating pressures. Policy and management strategies need to incorporate resilience approaches in order to cope with future challenges and avoid major losses in China's coastal ecosystem services. PMID:26286204

  11. Coastal ecosystems of the southeastern United States

    SciTech Connect

    Carey, R.C.; Markovits, P.S.; Kirkwood, J.B.

    1981-02-01

    The purpose of the workshop was to provide training on recent developments in understanding coastal ecosystems in the southeastern United States for Fish and Wildlife Service (FWS) field personnel and other natural resource managers in the region. Major emphasis was given to three types of systems: marshes, mangroves, and sea grasses. Other systems such as coral reefs, mud flats, bottomland hardwoods, and estuaries were discussed in less detail. Twenty-three papers were presented during the workshop. One of these was abstracted and indexed individually for EDB/ERA.

  12. Sustainability Of Coastal Fringe Ecosystems Against Anthropogenic Chemical Stressors

    EPA Science Inventory

    Plant-dominated coastal ecosystems provide least 21 ecological services including shoreline protection, contaminant removal and nursery and breeding habitat for biota. The value of these ecological services is as great as $28000/h. These ecosystems which include intertidal wetl...

  13. Global patterns of phytoplankton dynamics in coastal ecosystems

    USGS Publications Warehouse

    Paerl, H.; Yin, Kedong; Cloern, J.

    2011-01-01

    Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations" (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled "Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.".

  14. Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Paerl, Hans; Yin, Kedong; Cloern, James

    2011-03-01

    Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), “Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations” (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled “Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.”

  15. The Economic Value of Coastal Ecosystems in California

    EPA Science Inventory

    The status of marine ecosystems affects the well being of human societies. These ecosystems include but are not limited to estuaries, lagoons, reefs, and systems further offshore such as deep ocean vents. The coastal regions that connect terrestrial and marine ecosystems are of p...

  16. Economic development and coastal ecosystem change in China

    PubMed Central

    He, Qiang; Bertness, Mark D.; Bruno, John F.; Li, Bo; Chen, Guoqian; Coverdale, Tyler C.; Altieri, Andrew H.; Bai, Junhong; Sun, Tao; Pennings, Steven C.; Liu, Jianguo; Ehrlich, Paul R.; Cui, Baoshan

    2014-01-01

    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems. PMID:25104138

  17. Economic development and coastal ecosystem change in China.

    PubMed

    He, Qiang; Bertness, Mark D; Bruno, John F; Li, Bo; Chen, Guoqian; Coverdale, Tyler C; Altieri, Andrew H; Bai, Junhong; Sun, Tao; Pennings, Steven C; Liu, Jianguo; Ehrlich, Paul R; Cui, Baoshan

    2014-01-01

    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems. PMID:25104138

  18. Economic development and coastal ecosystem change in China.

    PubMed

    He, Qiang; Bertness, Mark D; Bruno, John F; Li, Bo; Chen, Guoqian; Coverdale, Tyler C; Altieri, Andrew H; Bai, Junhong; Sun, Tao; Pennings, Steven C; Liu, Jianguo; Ehrlich, Paul R; Cui, Baoshan

    2014-08-08

    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems.

  19. Economic development and coastal ecosystem change in China

    NASA Astrophysics Data System (ADS)

    He, Qiang; Bertness, Mark D.; Bruno, John F.; Li, Bo; Chen, Guoqian; Coverdale, Tyler C.; Altieri, Andrew H.; Bai, Junhong; Sun, Tao; Pennings, Steven C.; Liu, Jianguo; Ehrlich, Paul R.; Cui, Baoshan

    2014-08-01

    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems.

  20. DEVELOPING SCIENCE-BASED INFORMATION FOR COASTAL ECOSYSTEMS

    EPA Science Inventory

    Summers, J. Kevin. In press. Developing Science-Based Information for Coastal Ecosystems (Abstract). To be presented at the EPA Science Forum: Healthy Communities and Ecosystems, 1-3 June 2004, Washington, DC. 1 p. (ERL,GB R989).

    The purpose of the session will be the dem...

  1. Coastal Intelligence - A national infrastructure to support decision-making for coastal communities, economies and ecosystems

    NASA Astrophysics Data System (ADS)

    Weston, Neil D.

    2015-04-01

    The National Ocean Service (NOS), a Line Office within NOAA, is primarily responsible for fostering healthy and sustainable marine resources, habitats and ecosystems, strengthening the resiliency of communities, as well as being the nation's leader in observing, modeling and managing coastal, ocean and Great Lakes areas. NOS and numerous partners also play a critical role along the coasts and in marine ecosystems by providing science-based products and services to support a wide variety of applications. Coastal Intelligence however, goes one step further to support ecosystems, economies and communities by providing the infrastructure to integrate numerous observing systems and interpreting the scientific data into information that people can use. This poster will focus primarily on the science, observing systems and data modeling that support Coastal Intelligence and how accurate information can ensure timely and actionable decision-making for coastal communities and ecosystems.

  2. Top 10 principles for designing healthy coastal ecosystems

    USGS Publications Warehouse

    Gaydos, Joseph K.; Dierauf, Leslie; Kirby, Grant; Brosnan, Deborah; Gilardi, Kirsten; Davis, Gary E.

    2008-01-01

    Like other coastal zones around the world, the inland sea ecosystem of Washington (USA) and British Columbia (Canada), an area known as the Salish Sea, is changing under pressure from a growing human population, conversion of native forest and shoreline habitat to urban development, toxic contamination of sediments and species, and overharvest of resources. While billions of dollars have been spent trying to restore other coastal ecosystems around the world, there still is no successful model for restoring estuarine or marine ecosystems like the Salish Sea. Despite the lack of a guiding model, major ecological principles do exist that should be applied as people work to design the Salish Sea and other large marine ecosystems for the future. We suggest that the following 10 ecological principles serve as a foundation for educating the public and for designing a healthy Salish Sea and other coastal ecosystems for future generations: (1) Think ecosystem: political boundaries are arbitrary; (2) Account for ecosystem connectivity; (3) Understand the food web; (4) Avoid fragmentation; (5) Respect ecosystem integrity; (6) Support nature's resilience; (7) Value nature: it's money in your pocket; (8) Watch wildlife health; (9) Plan for extremes; and (10) Share the knowledge.

  3. Ecosystem engineering and biodiversity in coastal sediments: posing hypotheses

    NASA Astrophysics Data System (ADS)

    Bouma, Tjeerd J.; Olenin, Sergej; Reise, Karsten; Ysebaert, Tom

    2009-03-01

    Coastal sediments in sheltered temperate locations are strongly modified by ecosystem engineering species such as marsh plants, seagrass, and algae as well as by epibenthic and endobenthic invertebrates. These ecosystem engineers are shaping the coastal sea and landscape, control particulate and dissolved material fluxes between the land and sea, and between the benthos and the passing water or air. Above all, habitat engineering exerts facilitating and inhibiting effects on biodiversity. Despite a strongly growing interest in the functional role of ecosystem engineering over the recent years, compared to food web analyses, the conceptual understanding of engineering-mediated species interactions is still in its infancy. In the present paper, we provide a concise overview on current insights and propose two hypotheses on the general mechanisms by which ecosystem engineering may affect biodiversity in coastal sediments. We hypothesise that autogenic and allogenic ecosystem engineers have inverse effects on epibenthic and endobenthic biodiversity in coastal sediments. The primarily autogenic structures of the epibenthos achieve high diversity at the expense of endobenthos, whilst allogenic sediment reworking by infauna may facilitate other infauna and inhibits epibenthos. On a larger scale, these antagonistic processes generate patchiness and habitat diversity. Due to such interaction, anthropogenic influences can strongly modify the engineering community by removing autogenic ecosystem engineers through coastal engineering or bottom trawling. Another source of anthropogenic influences comes from introducing invasive engineers, from which the impact is often hard to predict. We hypothesise that the local biodiversity effects of invasive ecosystem engineers will depend on the engineering strength of the invasive species, with engineering strength defined as the number of habitats it can invade and the extent of modification. At a larger scale of an entire shore

  4. Geoscience research databases for coastal Alabama ecosystem management

    USGS Publications Warehouse

    Hummell, Richard L.

    1995-01-01

    Effective management of complex coastal ecosystems necessitates access to scientific knowledge that can be acquired through a multidisciplinary approach involving Federal and State scientists that take advantage of agency expertise and resources for the benefit of all participants working toward a set of common research and management goals. Cooperative geostatic investigations have led toward building databases of fundamental scientific knowledge that can be utilized to manage coastal Alabama's natural and future development. These databases have been used to assess the occurrence and economic potential of hard mineral resources in the Alabama EFZ, and to support oil spill contingency planning and environmental analysis for coastal Alabama.

  5. Coastal Ecosystems. Project CAPE Teaching Module [with Student Materials].

    ERIC Educational Resources Information Center

    Cowal, Michael; And Others

    Intended for grades K-2, this science unit on coastal ecosystems aids teachers in helping students to: (1) identify marine organisms; (2) learn their basic characteristics; and (3) understand the web of interdependence among organisms of the same habitat. The teacher's guide is divided into four sections. The first section gives background…

  6. DEVELOPING INDICATORS OF NITROGEN SOURCE IN COASTAL ECOSYSTEMS

    EPA Science Inventory

    Several studies have linked stable isotope ratios of biota to nitrogen source. In particular, ribbed mussels show promise as sensitive indicators of the origins of nitrogen inputs to coastal ecosystems. Here we expand on previous work which demonstrated that mussel isotope ratios...

  7. Climatic Impacts and resilience of coastal ecosystems and fisheries

    NASA Astrophysics Data System (ADS)

    Micheli, F.

    2012-12-01

    Marine and coastal ecosystems and human communities around the world are impacted by local anthropogenic pressures and by climate change, resulting in decreased ocean productivity, altered food web dynamics, habitat degradation, economic losses, and health and safety risks as a consequence of the changing and more variable climate. Climatic impacts occur both through altered physical conditions and variability, e.g., seawater temperature and sea level, and through a suite of chemical changes, including ocean acidification and hypoxia. In particular, time series analyses have highlighted declines in dissolved oxygen (DO) concentration in the ocean over the last several decades. In addition to these global trends of decreasing DO, hypoxic conditions have been documented at several coastal locations within productive upwelling-driven ecosystems, including the California Current region, resulting in high mortality of ecologically and commercially important nearshore marine species and significant economic losses. The capacity of local ecosystems and associated human communities to adapt to these pressures depends on their resilience, that is the ability of ecosystems to absorb disturbance while retaining function and continuing to provide ecosystem services, and the ability of people to adapt to change in their environment by altering their behaviors and interactions. I will present global assessments of the cumulative impacts of climatic and local anthropogenic pressures on marine ecosystems, and results of interdisciplinary research investigating the current impacts of climate change on coastal marine ecosystems and human communities of the Pacific coast of Baja California, Mexico, and the influences of local and global feedbacks on the resilience and adaptive capacity of these systems.

  8. Historical overfishing and the recent collapse of coastal ecosystems.

    PubMed

    Jackson, J B; Kirby, M X; Berger, W H; Bjorndal, K A; Botsford, L W; Bourque, B J; Bradbury, R H; Cooke, R; Erlandson, J; Estes, J A; Hughes, T P; Kidwell, S; Lange, C B; Lenihan, H S; Pandolfi, J M; Peterson, C H; Steneck, R S; Tegner, M J; Warner, R R

    2001-07-27

    Ecological extinction caused by overfishing precedes all other pervasive human disturbance to coastal ecosystems, including pollution, degradation of water quality, and anthropogenic climate change. Historical abundances of large consumer species were fantastically large in comparison with recent observations. Paleoecological, archaeological, and historical data show that time lags of decades to centuries occurred between the onset of overfishing and consequent changes in ecological communities, because unfished species of similar trophic level assumed the ecological roles of overfished species until they too were overfished or died of epidemic diseases related to overcrowding. Retrospective data not only help to clarify underlying causes and rates of ecological change, but they also demonstrate achievable goals for restoration and management of coastal ecosystems that could not even be contemplated based on the limited perspective of recent observations alone.

  9. USGS: Science to understand and forecast change in coastal ecosystems

    USGS Publications Warehouse

    Myers, M.

    2007-01-01

    The multidisciplinary approach of the US Geological Survey (USGS), a principal science agency of the US Department of the Interior (DOI), to address the complex and cumulative impacts of human activities and natural events on the US coastal ecosystems has been considered remarkable for understanding and forecasting the changes. The USGS helps explain geologic, hydrologic, and biologic systems and their connectivity across landscapes and seascapes along the coastline. The USGS coastal science programs effectively address science and information to other scientists, managers, policy makers, and the public. The USGS provides scientific expertise, capabilities, and services to collaborative federal, regional, and state-led efforts, which are in line with the goals of Ocean Action Plan (OAP) and Ocean Research Priorities Plan (ORPP). The organization is a leader in understanding terrestrial and marine environmental hazards such as earthquakes, tsunamis, floods, and landslides and assessing and forecasting coastal impacts using various specialized visualization techniques.

  10. New data on sedimentation and biostratigraphy of ancient and New Azov Deposits (Sea of Azov)

    NASA Astrophysics Data System (ADS)

    Matishov, G. G.; Dyuzhova, K. V.; Kovaleva, G. V.; Pol'shin, V. V.

    2016-04-01

    Applying the methods of absolute geochronology and lithology, it has been established that the average sedimentation rate in the Sea of Azov over the last 6000 years (Ancient and New Azov times) varied from 0.2 to 2.0 mm/year. Its minimum values are confined to transit and sediment-starved zones coinciding with the directions of the main marine currents. It has been indicated that changes in the water level of the Sea of Azov occur with lag relative to landscape-climate phases. The obtained data confirm the relation between marine and terrestrial processes occurring in the Sea of Azov region: transgressive phases are preceded by general humidification in adjacent regions, while regressive phases correlate with climate aridization. The biostratigraphic analysis of the Holocene sections examined reveals the unstable behavior of the sea level during their formation. The results of diatom analysis confirm development of the Phanagoria and Korsun Regressions and Nymphea Transgression. Frequent fluctuations of the Sea of Azov the level determined the rhythmical structure of the sedimentary sequence saturated with autochthonous and allochthonous organic matter.

  11. Resilience to climate change in coastal marine ecosystems.

    PubMed

    Bernhardt, Joanna R; Leslie, Heather M

    2013-01-01

    Ecological resilience to climate change is a combination of resistance to increasingly frequent and severe disturbances, capacity for recovery and self-organization, and ability to adapt to new conditions. Here, we focus on three broad categories of ecological properties that underlie resilience: diversity, connectivity, and adaptive capacity. Diversity increases the variety of responses to disturbance and the likelihood that species can compensate for one another. Connectivity among species, populations, and ecosystems enhances capacity for recovery by providing sources of propagules, nutrients, and biological legacies. Adaptive capacity includes a combination of phenotypic plasticity, species range shifts, and microevolution. We discuss empirical evidence for how these ecological and evolutionary mechanisms contribute to the resilience of coastal marine ecosystems following climate change-related disturbances, and how resource managers can apply this information to sustain these systems and the ecosystem services they provide.

  12. Soil respiration flux in northern coastal temperate rainforest ecosystems

    NASA Astrophysics Data System (ADS)

    D'Amore, D. V.; Nay, S. M.; Edwards, R.; Valentine, D. W.; Hood, E. W.

    2009-12-01

    Forest carbon budgets are of increasing concern because of their linkages with changing climate. The potential source strength of northern forested ecosystems is of great interest due to the large carbon stock of these systems, especially the extensive peatlands. Where very few long-term measurements of soil carbon cycles have been made, such as the North Pacific coastal temperate margin, peatlands have potentially large but largely unknown source strengths, particularly through soil respiration. The easily and widely measured factors that influence the metabolism of plants and microorganisms in soils, such as temperature, moisture and substrate quality, must be coupled with a network of plot-scale measurements of soil respiration fluxes in this region in order to produce reasonable models of soil respiration flux across gradients of climate, vegetation and soil types. We designed a study to address this issue and measured soil respiration across a hydrologic gradient to quantify the influence of soil temperature and moisture on the magnitude and seasonality of carbon fluxes in the coastal temperate rainforest biome. Replicated study sites were established in three common ecosystem types (peatlands, forested wetlands, and upland forest) within three coastal watersheds. In total, nine sites of the three ecosystem types were measured at monthly intervals during the snow-free period between May and November for two years. Soil respiration fluxes during the six-month measurement period were used to construct a respiration flux model for each landscape type. Soil respiration fluxes followed the seasonal temperature pattern in all ecosystem types and also varied with soil saturation as well in uplands. Temperature dependent models of soil respiration flux were best fit to intermediate drainage conditions in forested wetlands and explained up to 85% of the variation in this ecosystem type. Modeled soil respiration estimates were better at low temperatures with high water

  13. Soil respiration flux in northern coastal temperate rainforest ecosystems

    NASA Astrophysics Data System (ADS)

    D'Amore, David; Nay, S. Mark; Edwards, Richard; Valentine, David; Hood, Eran

    2010-05-01

    Forest carbon budgets are of increasing concern because of their linkages with changing climate. The potential source strength of northern forested ecosystems is of great interest due to the large carbon stock of these systems, especially the extensive peatlands. Where very few long-term measurements of soil carbon cycles have been made, such as the North Pacific coastal temperate margin, peatlands have potentially large but largely unknown source strengths, particularly through soil respiration. The easily and widely measured factors that influence the metabolism of plants and microorganisms in soils, such as temperature, moisture and substrate quality, must be coupled with a network of plot-scale measurements of soil respiration fluxes in this region in order to produce reasonable models of soil respiration flux across gradients of climate, vegetation and soil types. We designed a study to address this issue and measured soil respiration across a hydrologic gradient to quantify the influence of soil temperature and moisture on the magnitude and seasonality of carbon fluxes in the coastal temperate rainforest biome. Replicated study sites were established in three common ecosystem types (peatlands, forested wetlands, and upland forest) within three coastal watersheds. In total, nine sites of the three ecosystem types were measured at monthly intervals during the snow-free period between May and November for two years. Soil respiration fluxes during the six-month measurement period were used to construct a respiration flux model for each landscape type. Soil respiration fluxes followed the seasonal temperature pattern in all ecosystem types and also varied with soil saturation as well in uplands. Temperature dependent models of soil respiration flux were best fit to intermediate drainage conditions in forested wetlands and explained up to 85% of the variation in this ecosystem type. Modeled soil respiration estimates were better at low temperatures with high water

  14. Lignin methoxyl hydrogen isotope ratios in a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Feakins, Sarah J.; Ellsworth, Patricia V.; Sternberg, Leonel da Silveira Lobo

    2013-11-01

    Stable hydrogen isotope ratios of plant lignin methoxyl groups have recently been shown to record the hydrogen isotopic composition of meteoric water. Here we extend this technique towards tracing water source variations across a saltwater to freshwater gradient in a coastal, subtropical forest ecosystem. We measure the hydrogen isotopic composition of xylem water (δDxw) and methoxyl hydrogen (δDmethoxyl) to calculate fractionations for coastal mangrove, buttonwood and hammock tree species in Sugarloaf Key, as well as buttonwoods from Miami, both in Florida, USA. Prior studies of the isotopic composition of cellulose and plant leaf waxes in coastal ecosystems have yielded only a weak correlation to source waters, attributed to leaf water effects. Here we find δDmethoxyl values range from -230‰ to -130‰, across a 40‰ range in δDxw with a regression equation of δDmethoxyl ‰ = 1.8 * δDxw - 178‰ (R2 = 0.48, p < 0.0001, n = 74). This is comparable within error to the earlier published relationship for terrestrial trees which was defined across a much larger 125‰ isotopic range in precipitation. Analytical precision for measurements of δD values of pure CH3I by gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-P-IRMS) is σ = 6‰ (n = 31), which is considerably better than for CH3I liberated through cleavage with HI from lignin with σ = 18‰ (n = 26). Our results establish that δDmethoxyl can record water sources and salinity incursion in coastal ecosystems, where variations sufficiently exceed method uncertainties (i.e., applications with δD excursions >50‰). For the first time, we also report yields of propyl iodide, which may indicate lignin synthesis of propoxyl groups under salt-stress.

  15. The impact of climate change on coastal ecosystems: chapter 6

    USGS Publications Warehouse

    Burkett, Virginia; Woodroffe, Colin D.; Nicholls, Robert J.; Forbes, Donald L.

    2014-01-01

    In this chapter we stress two important features of coasts and coastal ecosystems. First, these are dynamic systems which continually undergo adjustments, especially through erosion and re-deposition, in response to a range of processes. Many coastal ecosystems adjust naturally at a range of time scales and their potential for response is examined partly by reconstructing how such systems have coped with natural changes of climate and sea level in the geological past. Second, coasts have changed profoundly through the 20th Century due to the impacts of human development (such as urbanisation, port and industrial expansion, shore protection, and the draining and conversion of coastal wetlands), with these development-related drivers closely linked to a growing global population and economy. It remains a challenge to isolate the impacts of climate change and sea-level rise from either the natural trajectory of shoreline change, or the accelerated pathway resulting from other human-related stressors. There exists a danger of overstating the importance of climate change, or overlooking significant interactions of climate change with other drivers.

  16. Accelerating loss of seagrasses across the globe threatens coastal ecosystems

    PubMed Central

    Waycott, Michelle; Duarte, Carlos M.; Carruthers, Tim J. B.; Orth, Robert J.; Dennison, William C.; Olyarnik, Suzanne; Calladine, Ainsley; Fourqurean, James W.; Heck, Kenneth L.; Hughes, A. Randall; Kendrick, Gary A.; Kenworthy, W. Judson; Short, Frederick T.; Williams, Susan L.

    2009-01-01

    Coastal ecosystems and the services they provide are adversely affected by a wide variety of human activities. In particular, seagrass meadows are negatively affected by impacts accruing from the billion or more people who live within 50 km of them. Seagrass meadows provide important ecosystem services, including an estimated $1.9 trillion per year in the form of nutrient cycling; an order of magnitude enhancement of coral reef fish productivity; a habitat for thousands of fish, bird, and invertebrate species; and a major food source for endangered dugong, manatee, and green turtle. Although individual impacts from coastal development, degraded water quality, and climate change have been documented, there has been no quantitative global assessment of seagrass loss until now. Our comprehensive global assessment of 215 studies found that seagrasses have been disappearing at a rate of 110 km2 yr−1 since 1980 and that 29% of the known areal extent has disappeared since seagrass areas were initially recorded in 1879. Furthermore, rates of decline have accelerated from a median of 0.9% yr−1 before 1940 to 7% yr−1 since 1990. Seagrass loss rates are comparable to those reported for mangroves, coral reefs, and tropical rainforests and place seagrass meadows among the most threatened ecosystems on earth. PMID:19587236

  17. Monitoring Ground-Water Quality in Coastal Ecosystems

    USGS Publications Warehouse

    Colman, John A.; Masterson, John P.

    2007-01-01

    INTRODUCTION The Cape Cod National Seashore (CACO) extends along more than 70 km of Atlantic Ocean open-beach coastline and includes three large saltwater bays - Wellfleet Harbor, Nauset Marsh, and Pleasant Bay (fig. 1). CACO encompasses about 18,000 ha of uplands, lakes, wetlands, and tidal lands (Godfrey and others, 1999) including most habitats typical of the sandy coast in National seashores and parks extending southward from Massachusetts to Florida. In 1995, CACO was selected by the National Park Service (NPS) as a prototype park typifying the Atlantic and Gulf Coast biogeographic region for long-term coastal ecosystem monitoring. The U.S. Geological Survey (USGS) is currently (2007) assisting the NPS in the development of protocols for a Long-Term Coastal Ecosystem Monitoring Program at the CACO in Massachusetts. The overall purpose of the monitoring program is to characterize both natural and human-induced change in the biological resources of the CACO, over a time scale of decades, in the context of a changing global ecosystem.

  18. An Ecological and Economic Assessment Methodology for Coastal Ecosystem Management

    NASA Astrophysics Data System (ADS)

    Nobre, Ana M.

    2009-07-01

    An adaptation of the Drivers-Pressure-State-Impact-Response methodology is presented in this work. The differential DPSIR (ΔDPSIR) was developed to evaluate impacts on the coastal environment and as a tool for integrated ecosystem management. The aim of the ΔDPSIR is to provide scientifically-based information required by managers and decision-makers to evaluate previously adopted policies, as well as future response scenarios. The innovation of the present approach is to provide an explicit link between ecological and economic information related to the use and management of a coastal ecosystem within a specific timeframe. The application of ΔDPSIR is illustrated through an analysis of developments in a Southwest European coastal lagoon between 1985 and 1995. The value of economic activities dependent on the lagoon suffered a significant reduction (ca. -60%) over that period, mainly due to a decrease in bivalve production. During that decade the pressures from the catchment area were managed (ca. 176 million Euros), mainly through the building of waste water treatment plants. Notwithstanding this, the ecosystem state worsened with respect to abnormal clam mortalities due to a parasite infection and to benthic eutrophication symptoms in specific problematic areas. The negative economic impacts during the decade were estimated between -565 and -315 million Euros, of which 9-49% represent the cost of environmental externalities. Evaluation of these past events indicates that future management actions should focus on reducing the limitation on local clam seeds, which should result in positive impacts to both the local socio-economy and biodiversity.

  19. Marine reserves help coastal ecosystems cope with extreme weather.

    PubMed

    Olds, Andrew D; Pitt, Kylie A; Maxwell, Paul S; Babcock, Russell C; Rissik, David; Connolly, Rod M

    2014-10-01

    Natural ecosystems have experienced widespread degradation due to human activities. Consequently, enhancing resilience has become a primary objective for conservation. Nature reserves are a favored management tool, but we need clearer empirical tests of whether they can impart resilience. Catastrophic flooding in early 2011 impacted coastal ecosystems across eastern Australia. We demonstrate that marine reserves enhanced the capacity of coral reefs to withstand flood impacts. Reserve reefs resisted the impact of perturbation, whilst fished reefs did not. Changes on fished reefs were correlated with the magnitude of flood impact, whereas variation on reserve reefs was related to ecological variables. Herbivory and coral recruitment are critical ecological processes that underpin reef resilience, and were greater in reserves and further enhanced on reserve reefs near mangroves. The capacity of reserves to mitigate external disturbances and promote ecological resilience will be critical to resisting an increased frequency of climate-related disturbance. PMID:24849111

  20. Study on the cumulative impact of reclamation activities on ecosystem health in coastal waters.

    PubMed

    Shen, Chengcheng; Shi, Honghua; Zheng, Wei; Li, Fen; Peng, Shitao; Ding, Dewen

    2016-02-15

    The purpose of this study is to develop feasible tools to investigate the cumulative impact of reclamations on coastal ecosystem health, so that the strategies of ecosystem-based management can be applied in the coastal zone. An indicator system and model were proposed to assess the cumulative impact synthetically. Two coastal water bodies, namely Laizhou Bay (LZB) and Tianjin coastal waters (TCW), in the Bohai Sea of China were studied and compared, each in a different phase of reclamations. Case studies showed that the indicator scores of coastal ecosystem health in LZB and TCW were 0.75 and 0.68 out of 1.0, respectively. It can be concluded that coastal reclamations have a historically cumulative effect on benthic environment, whose degree is larger than that on aquatic environment. The ecosystem-based management of coastal reclamations should emphasize the spatially and industrially intensive layout.

  1. Impact of petroleum pollution on aquatic coastal ecosystems in Brazil

    SciTech Connect

    Silva, E.M. da; Peso-Aguiar, M.C.; Navarro, M.F.T.; Chastinet, C.B.A.

    1997-01-01

    Although oil activities generate numerous forms of environmental impact on biological communities, studies of these impacts on Brazilian coastal ecosystems are rate. Results of tests for the content of oil in sediments and organisms indicate a substantially high rate of degradation. Results for uptake of polycyclic aromatic hydrocarbons in bivalves suggested the recent occurrence of oil spills and that these organisms differed in their capabilities to bioconcentrate oil. The mangrove community has suffered constant inputs of oil and has responded with increased numbers of aerial roots, generation of malformed leaves and fruits by plants, and a decrease in litter production. Studies of the impact of oil on rocky shore communities and the toxicity of oil and its by-products to marine organisms have confirmed the results reported in the literature. Presently most of the available studies deal with the macroscopic effects of oil on organisms and have indicated that the nature of oil, climate characteristics, the physical environment, and the structure of the community influence the symptoms of oil contamination in organisms of coastal waters. Long-term studies should be carried out to assess changes in community structure, sublethal effects in populations, and the resilience of contaminated ecosystems.

  2. Using models in Integrated Ecosystem Assessment of coastal areas

    NASA Astrophysics Data System (ADS)

    Solidoro, Cosimo; Bandelj, Vinko; Cossarini, Gianpiero; Melaku Canu, Donata; Libralato, Simone

    2014-05-01

    Numerical Models can greatly contribute to integrated ecological assessment of coastal and marine systems. Indeed, models can: i) assist in the identification of efficient sampling strategy; ii) provide space interpolation and time extrapolation of experiemtanl data which are based on the knowedge on processes dynamics and causal realtionships which is coded within the model, iii) provide estimates of hardly measurable indicators. Furthermore model can provide indication on potential effects of implementation of alternative management policies. Finally, by providing a synthetic representation of an ideal system, based on its essential dynamic, model return a picture of ideal behaviour of a system in the absence of external perturbation, alteration, noise, which might help in the identification of reference behaivuor. As an important example, model based reanalyses of biogeochemical and ecological properties are an urgent need for the estimate of the environmental status and the assessment of efficacy of conservation and environmental policies, also with reference to the enforcement of the European MSFD. However, the use of numerical models, and particularly of ecological models, in modeling and in environmental management still is far from be the rule, possibly because of a lack in realizing the benefits which a full integration of modeling and montoring systems might provide, possibly because of a lack of trust in modeling results, or because many problems still exists in the development, validation and implementation of models. For istance, assessing the validity of model results is a complex process that requires the definition of appropriate indicators, metrics, methodologies and faces with the scarcity of real-time in-situ biogeochemical data. Furthermore, biogeochemical models typically consider dozens of variables which are heavily undersampled. Here we show how the integration of mathematical model and monitoring data can support integrated ecosystem

  3. Coastal Ecosystem Integrated Compartment Model (ICM): Modeling Framework

    NASA Astrophysics Data System (ADS)

    Meselhe, E. A.; White, E. D.; Reed, D.

    2015-12-01

    The Integrated Compartment Model (ICM) was developed as part of the 2017 Coastal Master Plan modeling effort. It is a comprehensive and numerical hydrodynamic model coupled to various geophysical process models. Simplifying assumptions related to some of the flow dynamics are applied to increase the computational efficiency of the model. The model can be used to provide insights about coastal ecosystems and evaluate restoration strategies. It builds on existing tools where possible and incorporates newly developed tools where necessary. It can perform decadal simulations (~ 50 years) across the entire Louisiana coast. It includes several improvements over the approach used to support the 2012 Master Plan, such as: additional processes in the hydrology, vegetation, wetland and barrier island morphology subroutines, increased spatial resolution, and integration of previously disparate models into a single modeling framework. The ICM includes habitat suitability indices (HSIs) to predict broad spatial patterns of habitat change, and it provides an additional integration to a dynamic fish and shellfish community model which quantitatively predicts potential changes in important fishery resources. It can be used to estimate the individual and cumulative effects of restoration and protection projects on the landscape, including a general estimate of water levels associated with flooding. The ICM is also used to examine possible impacts of climate change and future environmental scenarios (e.g. precipitation, Eustatic sea level rise, subsidence, tropical storms, etc.) on the landscape and on the effectiveness of restoration projects. The ICM code is publically accessible, and coastal restoration and protection groups interested in planning-level modeling are encouraged to explore its utility as a computationally efficient tool to examine ecosystem response to future physical or ecological changes, including the implementation of restoration and protection strategies.

  4. Assessment of Coastal Ecosystem Services for Conservation Strategies in South Korea.

    PubMed

    Chung, Min Gon; Kang, Hojeong; Choi, Sung-Uk

    2015-01-01

    Despite the fact that scientific and political consideration for ecosystem services has dramatically increased over the past decade, few studies have focused on marine and coastal ecosystem services for conservation strategies. We used an ecosystem services approach to assess spatial distributions of habitat risks and four ecosystem services (coastal protection, carbon storage, recreation, and aesthetic quality), and explored the tradeoffs among them in coastal areas of South Korea. Additionally, we analyzed how the social and ecological characteristics in coastal areas interact with conservation and development policies by using this approach. We found strong negative associations between the habitat risks and ecosystem services (aquaculture, carbon storage, recreation, and aesthetic quality) across the coastal counties. Our results showed that the intensity of the habitat risks and the provision of ecosystem services were significantly different between reclamation-dominated and conservation-dominated counties, except for coastal vulnerability. A generalized linear model suggested that reclamation projects were dependent on economic efficiency, whereas demographic pressures and habitat conditions influenced the designation of protected areas at a county level. The ecosystem services approach provided guidelines to achieve both sustainable development and environment conservation. By using the approach, we can select the priority areas for developments while we can minimize the degradation of biodiversity and ecosystem services. As cultural ecosystem services are evenly distributed throughout coastal areas of South Korea, decision makers may employ them to improve the conditions of coastal wetlands outside of protected areas.

  5. Assessment of Coastal Ecosystem Services for Conservation Strategies in South Korea

    PubMed Central

    Chung, Min Gon; Kang, Hojeong; Choi, Sung-Uk

    2015-01-01

    Despite the fact that scientific and political consideration for ecosystem services has dramatically increased over the past decade, few studies have focused on marine and coastal ecosystem services for conservation strategies. We used an ecosystem services approach to assess spatial distributions of habitat risks and four ecosystem services (coastal protection, carbon storage, recreation, and aesthetic quality), and explored the tradeoffs among them in coastal areas of South Korea. Additionally, we analyzed how the social and ecological characteristics in coastal areas interact with conservation and development policies by using this approach. We found strong negative associations between the habitat risks and ecosystem services (aquaculture, carbon storage, recreation, and aesthetic quality) across the coastal counties. Our results showed that the intensity of the habitat risks and the provision of ecosystem services were significantly different between reclamation-dominated and conservation-dominated counties, except for coastal vulnerability. A generalized linear model suggested that reclamation projects were dependent on economic efficiency, whereas demographic pressures and habitat conditions influenced the designation of protected areas at a county level. The ecosystem services approach provided guidelines to achieve both sustainable development and environment conservation. By using the approach, we can select the priority areas for developments while we can minimize the degradation of biodiversity and ecosystem services. As cultural ecosystem services are evenly distributed throughout coastal areas of South Korea, decision makers may employ them to improve the conditions of coastal wetlands outside of protected areas. PMID:26221950

  6. Seasonal sea surface temperature anomaly prediction for coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Stock, Charles A.; Pegion, Kathy; Vecchi, Gabriel A.; Alexander, Michael A.; Tommasi, Desiree; Bond, Nicholas A.; Fratantoni, Paula S.; Gudgel, Richard G.; Kristiansen, Trond; O'Brien, Todd D.; Xue, Yan; Yang, Xiasong

    2015-09-01

    Sea surface temperature (SST) anomalies are often both leading indicators and important drivers of marine resource fluctuations. Assessment of the skill of SST anomaly forecasts within coastal ecosystems accounting for the majority of global fish yields, however, has been minimal. This reflects coarse global forecast system resolution and past emphasis on the predictability of ocean basin-scale SST variations. This paper assesses monthly to inter-annual SST anomaly predictions in coastal "Large Marine Ecosystems" (LMEs). We begin with an analysis of 7 well-observed LMEs adjacent to the United States and then examine how mechanisms responsible for prediction skill in these systems are reflected in predictions for LMEs globally. Historical SST anomaly estimates from the 1/4° daily Optimal Interpolation Sea Surface Temperature reanalysis (OISST.v2) were first found to be highly consistent with in-situ measurements for 6 of the 7 U.S. LMEs. Thirty years of retrospective forecasts from climate forecast systems developed at NOAA's Geophysical Fluid Dynamics Laboratory (CM2.5-FLOR) and the National Center for Environmental Prediction (CFSv2) were then assessed against OISST.v2. Forecast skill varied widely by LME, initialization month, and lead but there were many cases of high skill that also exceeded that of a persistence forecast, some at leads greater than 6 months. Mechanisms underlying skill above persistence included accurate simulation of (a) seasonal transitions between less predictable locally generated and more predictable basin-scale SST variability; (b) seasonal transitions between different basin-scale influences; (c) propagation of SST anomalies across seasons through sea ice; and (d) re-emergence of previous anomalies upon the breakdown of summer stratification. Globally, significant skill above persistence across many tropical systems arises via mechanisms (a) and (b). Combinations of all four mechanisms contribute to less prevalent but nonetheless

  7. Climate warming and estuarine and marine coastal ecosystems

    SciTech Connect

    Kennedy, V.S.

    1994-12-31

    Estuaries are physically controlled, resilient coastal ecosystems harboring environmentally tolerant species in diluted seawater. Marine coastal systems are less stressed physically and contain some environmentally less tolerant species. Both systems are biologically productive and economically significant. Because of their complex structure and function, it is difficult to predict accurately the effects of climate change, but some broad generalizations can be made. If climate warming occurs, it will raise sea-level, heat shallow waters, and modify precipitation, wind, and water circulation patterns. Rapid sea-level rise could cause the loss of salt marshes, mangrove swamps, and coral reefs, thus diminishing the ecological roles of these highly productive systems. Warmer waters could eliminate heat-sensitive species from part of their geographical range while allowing heat-tolerant species to expand their range, depending on their ability to disperse. Most thermally influenced losses of species will probably only be local, but changed distributions may lead to changed community function. It is more difficult to predict the effects of modified precipitation, wind, and water circulation patterns, but changes could affect organisms dependent on such patterns for food production (e.g., in upwelling regions) or for retention in estuaries. Aquacultural and fishery-related enterprises would be affected negatively in some regions and positively in others. 73 refs.

  8. Phytoplankton primary production in the world's estuarine-coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Cloern, J. E.; Foster, S. Q.; Kleckner, A. E.

    2014-05-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land - estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m-2 yr-1, but the range is large: from -105 (net pelagic production in the Scheldt Estuary) to 1890 g C m-2 yr-1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year to year (but we only found eight APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods reported in the literature can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148 reported values of

  9. Phytoplankton primary production in the world's estuarine-coastal ecosystems

    USGS Publications Warehouse

    Cloern, James E.; Foster, S.Q.; Kleckner, A.E.

    2014-01-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land – estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m−2 yr−1, but the range is large: from −105 (net pelagic production in the Scheldt Estuary) to 1890 g C m−2 yr−1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year to year (but we only found eight APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods reported in the literature can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148

  10. Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Hendriks, Iris E.; Duarte, Carlos M.; Olsen, Ylva S.; Steckbauer, Alexandra; Ramajo, Laura; Moore, Tommy S.; Trotter, Julie A.; McCulloch, Malcolm

    2015-01-01

    The direct influence of anthropogenic CO2 might play a limited role in pH regulation in coastal ecosystems as pH regulation in these areas can be complex. They experience large variability across a broad range of spatial and temporal scales, with complex external and internal drivers. Organisms influence pH at a patch scale, where community metabolic effects and hydrodynamic processes interact to produce broad ranges in pH, (∼0.3-0.5 pH units) over daily cycles and spatial scales (mm to m) particularly in shallow vegetated habitats and coral reefs where both respiration and photosynthetic activity are intense. Biological interactions at the ecosystem scale, linked to patchiness in habitat landscapes and seasonal changes in metabolic processes and temperature lead to changes of about 0.3-0.5 pH units throughout a year. Furthermore, on the scale of individual organisms, small-scale processes including changes at the Diffusive Boundary Layer (DBL), interactions with symbionts, and changes to the specific calcification environment, induce additional changes in excess of 0.5 pH units. In these highly variable pH environments calcifying organisms have developed the capacity to alter the pH of their calcifying environment, or specifically within critical tissues where calcification occurs, thus achieving a homeostasis. This capacity to control the conditions for calcification at the organism scale may therefore buffer the full impacts of ocean acidification on an organism scale, although this might be at a cost to the individual. Furthermore, in some areas, calcifiers may potentially benefit from changes to ambient seawater pH, where photosynthetic organisms drawdown CO2.

  11. The roles of large top predators in coastal ecosystems: new insights from long term ecological research

    USGS Publications Warehouse

    Rosenblatt, Adam E.; Heithaus, Michael R.; Mather, Martha E.; Matich, Philip; Nifong, James C.; Ripple, William J.; Silliman, Brian R.

    2013-01-01

    During recent human history, human activities such as overhunting and habitat destruction have severely impacted many large top predator populations around the world. Studies from a variety of ecosystems show that loss or diminishment of top predator populations can have serious consequences for population and community dynamics and ecosystem stability. However, there are relatively few studies of the roles of large top predators in coastal ecosystems, so that we do not yet completely understand what could happen to coastal areas if large top predators are extirpated or significantly reduced in number. This lack of knowledge is surprising given that coastal areas around the globe are highly valued and densely populated by humans, and thus coastal large top predator populations frequently come into conflict with coastal human populations. This paper reviews what is known about the ecological roles of large top predators in coastal systems and presents a synthesis of recent work from three coastal eastern US Long Term Ecological Research (LTER) sites where long-term studies reveal what appear to be common themes relating to the roles of large top predators in coastal systems. We discuss three specific themes: (1) large top predators acting as mobile links between disparate habitats, (2) large top predators potentially affecting nutrient and biogeochemical dynamics through localized behaviors, and (3) individual specialization of large top predator behaviors. We also discuss how research within the LTER network has led to enhanced understanding of the ecological roles of coastal large top predators. Highlighting this work is intended to encourage further investigation of the roles of large top predators across diverse coastal aquatic habitats and to better inform researchers and ecosystem managers about the importance of large top predators for coastal ecosystem health and stability.

  12. Global climate change impacts on coastal ecosystems in the Gulf of Mexico: considerations for integrated coastal management

    USGS Publications Warehouse

    Day, John W.; Yáñez-Arancibia, Alejandro; Cowan, James H.; Day, Richard H.; Twilley, Robert R.; Rybczyk, John R.

    2013-01-01

    Global climate change is important in considerations of integrated coastal management in the Gulf of Mexico. This is true for a number of reasons. Climate in the Gulf spans the range from tropical to the lower part of the temperate zone. Thus, as climate warms, the tropical temperate interface, which is currently mostly offshore in the Gulf of Mexico, will increasingly move over the coastal zone of the northern and eastern parts of the Gulf. Currently, this interface is located in South Florida and around the US-Mexico border in the Texas-Tamaulipas region. Maintaining healthy coastal ecosystems is important because they will be more resistant to climate change.

  13. Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. Concept Presentation

    NASA Technical Reports Server (NTRS)

    Janz, Scott; Smith, James C.; Mannino, Antonio

    2010-01-01

    This slide presentation reviews the concepts of the Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) which will be used on the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. The primary science requirements require scans of the U.S. Coastal waters 3 times per day during the daylight hours. Included in the overview are presentations about the systems, the optics, the detectors, the mechanical systems, the electromechanical systems, the electrical design, the flight software, the thermal systems, and the contamination prevention requirements.

  14. Informing policy to protect coastal coral reefs: insight from a global review of reducing agricultural pollution to coastal ecosystems.

    PubMed

    Kroon, Frederieke J; Schaffelke, Britta; Bartley, Rebecca

    2014-08-15

    The continuing degradation of coral reefs has serious consequences for the provision of ecosystem goods and services to local and regional communities. While climate change is considered the most serious risk to coral reefs, agricultural pollution threatens approximately 25% of the total global reef area with further increases in sediment and nutrient fluxes projected over the next 50 years. Here, we aim to inform coral reef management using insights learned from management examples that were successful in reducing agricultural pollution to coastal ecosystems. We identify multiple examples reporting reduced fluxes of sediment and nutrients at end-of-river, and associated declines in nutrient concentrations and algal biomass in receiving coastal waters. Based on the insights obtained, we recommend that future protection of coral reef ecosystems demands policy focused on desired ecosystem outcomes, targeted regulatory approaches, up-scaling of watershed management, and long-term maintenance of scientifically robust monitoring programs linked with adaptive management. PMID:24975091

  15. Informing policy to protect coastal coral reefs: insight from a global review of reducing agricultural pollution to coastal ecosystems.

    PubMed

    Kroon, Frederieke J; Schaffelke, Britta; Bartley, Rebecca

    2014-08-15

    The continuing degradation of coral reefs has serious consequences for the provision of ecosystem goods and services to local and regional communities. While climate change is considered the most serious risk to coral reefs, agricultural pollution threatens approximately 25% of the total global reef area with further increases in sediment and nutrient fluxes projected over the next 50 years. Here, we aim to inform coral reef management using insights learned from management examples that were successful in reducing agricultural pollution to coastal ecosystems. We identify multiple examples reporting reduced fluxes of sediment and nutrients at end-of-river, and associated declines in nutrient concentrations and algal biomass in receiving coastal waters. Based on the insights obtained, we recommend that future protection of coral reef ecosystems demands policy focused on desired ecosystem outcomes, targeted regulatory approaches, up-scaling of watershed management, and long-term maintenance of scientifically robust monitoring programs linked with adaptive management.

  16. A Review of Selected Ecosystem Services Supplied by Coastal Wetlands of the Laurentian Great Lakes

    EPA Science Inventory

    Significant ecosystem services derive from the coastal wetlands of the Laurentian Great Lakes even though they have undergone substantial declines since European settlement. Basin-wide, two-thirds of the original coastal wetlands have been lost, and the remaining 126,000 ha of US...

  17. Estimating the Provision of Ecosystem Services by Gulf of Mexico Coastal Wetlands.

    EPA Science Inventory

    Gulf of Mexico (GOM) coastal wetlands contribute to human well-being by providing many ecosystem services (e.g., commercial and recreational fishery support, protection of coastal communities from storm surge, water quality improvement, and carbon sequestration). The GOM region c...

  18. Coastal High-resolution Observations and Remote Sensing of Ecosystems (C-HORSE)

    NASA Technical Reports Server (NTRS)

    Guild, Liane

    2016-01-01

    Coastal benthic marine ecosystems, such as coral reefs, seagrass beds, and kelp forests are highly productive as well as ecologically and commercially important resources. These systems are vulnerable to degraded water quality due to coastal development, terrestrial run-off, and harmful algal blooms. Measurements of these features are important for understanding linkages with land-based sources of pollution and impacts to coastal ecosystems. Challenges for accurate remote sensing of coastal benthic (shallow water) ecosystems and water quality are complicated by atmospheric scattering/absorption (approximately 80+% of the signal), sun glint from the sea surface, and water column scattering (e.g., turbidity). Further, sensor challenges related to signal to noise (SNR) over optically dark targets as well as insufficient radiometric calibration thwart the value of coastal remotely-sensed data. Atmospheric correction of satellite and airborne remotely-sensed radiance data is crucial for deriving accurate water-leaving radiance in coastal waters. C-HORSE seeks to optimize coastal remote sensing measurements by using a novel airborne instrument suite that will bridge calibration, validation, and research capabilities of bio-optical measurements from the sea to the high altitude remote sensing platform. The primary goal of C-HORSE is to facilitate enhanced optical observations of coastal ecosystems using state of the art portable microradiometers with 19 targeted spectral channels and flight planning to optimize measurements further supporting current and future remote sensing missions.

  19. Panel Discussion: U.S. EPA Using Modeling and Ecosystem Services to Enhance Coastal Decision Making

    EPA Science Inventory

    This panel will discuss the research being conducted, and the models being used in three current coastal EPA studies being conducted on ecosystem services in Tampa Bay, the Chesapeake Bay and the Coastal Carolinas. These studies are intended to provide a broader and more compreh...

  20. Variation in freshwater input to the Eastern US coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Feng, D.; Yoon, Y.; Beighley, E., II; Hughes, R.; Kimbro, D.

    2014-12-01

    Phragmites is one of the most invasive plants in North American wetlands. Although its spread in coastal marshes has been linked by independent studies to urbanization, eutrophication, and salinity change, there is good evidence that these factors may interactively determine invasion success and in turn, the ecosystem services provided by marshes. We hypothesize that the invasion of Phragmites is linked to changes in freshwater inputs due to climate and/or land use change. El Nino/Southern Oscillation (ENSO), originating in the sea surface temperature anomalies (warm or cold) in the eastern tropical Pacific Ocean, is a notable and prominent signal in inter-annual climatic variation. Recent studies shows that the probability of strong El Nino events may increase in the future. In this study, we will investigate the teleconnections between freshwater inputs to the coastal zone along the eastern U.S. and ENSO indices, and attempt to explore the predictability of temporal and spatial variation of freshwater inputs based on ENSO conditions. To quantify changes in freshwater input in this region, hydrologic modeling, remote sensing and field measurements are combined. The Hillslope River Routing (HRR) model is used to simulate hourly streamflow from all watersheds from southern Florida to northern Maine draining into the Atlantic Ocean. The modeling effort utilizes satellite precipitation (Tropical Rainfall Measuring Mission Product 3B42v7: 2001-current with a 3-hr temporal resolution and 0.25 degree spatial resolution), land surface temperature and vegetation measures (Moderate Resolution Imaging Spectroradiometer, MODIS, products: 2001-current with a monthly temporal resolution and 0.05 degree spatial resolution). To account for land cover change, annual MODIS land cover data and time varying population statics are merged to estimate annual land cover characteristics for each sub-catchment within the study region. Static datasets for soils and ground elevations are

  1. An integrated approach to manage coastal ecosystems and prevent marine pollution effects

    NASA Astrophysics Data System (ADS)

    Marcelli, Marco; Bonamano, Simone; Carli, Filippo Maria; Giovacchini, Monica; Madonia, Alice; Mancini, Emanuele; Molino, Chiara; Piermattei, Viviana; Manfredi Frattarelli, Francesco

    2016-04-01

    This work focuses an integrated approach based on Sea-Use-Map (SUM), backed by a permanent monitoring system (C-CEMS-Civitavecchia Coastal Environmental Monitoring System). This tool supports the management of the marine coastal area, contributing substantially to ecosystem benefits evaluation and to minimize pollution impacts. Within the Blue Growth strategy, the protection of marine ecosystems is considered a priority for the sustainable growth of marine and maritime sectors. To face this issue, the European MSP and MSFD directives (2014/89/EU; 2008/56/EC) strongly promote the adoption of an ecosystem-based approach, paying particular attention to the support of monitoring networks that use L-TER (long-term ecological research) observations and integrate multi-disciplinary data sets. Although not largely used in Europe yet, the Environmental Sensitivity Index (ESI), developed in 1979 by NOAA (and promoted by IMO in 2010), can be considered an excellent example of ecosystem-based approach to reduce the environmental consequences of an oil spill event in a coastal area. SUM is an ecosystem oriented cartographic tool specifically designed to support the sustainable management of the coastal areas, such as the selection of the best sites for the introduction of new uses or the identification of the coastal areas subjected to potential impacts. It also enables a rapid evaluation of the benefits produced by marine areas as well as of their anthropogenic disturbance. SUM integrates C-CEMS dataset, geomorphological and ecological features and knowledge on the coastal and maritime space uses. The SUM appliance allowed to obtain relevant operational results in the Civitavecchia coastal area (Latium, Italy), characterized by high variability of marine and coastal environments, historical heritage and affected by the presence of a big harbour, relevant industrial infrastructures, and touristic features. In particular, the valuation of marine ecosystem services based on

  2. Will Global Change Effect Primary Productivity in Coastal Ecosystems?

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Algae are the base of coastal food webs because they provide the source of organic carbon for the remaining members of the community. Thus, the rate that they produce organic carbon to a large extent controls the productivity of the entire ecosystem. Factors that control algal productivity range from the physical (e.g., temperature, light), chemical (e.g., nutrient levels) to the biological (e.g., grazing). Currently, levels of atmospheric carbon dioxide surficial fluxes of ultraviolet radiation are rising. Both of these environmental variables can have a profound effect on algal productivity. Atmospheric carbon dioxide may increase surficial levels of dissolved inorganic carbon. Our laboratory and field studies of algal mats and phytoplankton cultures under ambient and elevated levels of pCO2 show that elevated levels of inorganic carbon can cause an increase in photosynthetic rates. In some cases, this increase will cause an increase in phytoplankton numbers. There may be an increase in the excretion of fixed carbon, which in turn may enhance bacterial productivity. Alternatively, in analogy with studies on the effect of elevated pCO2 on plants, the phytoplankton could change their carbon to nitrogen ratios, which will effect the feeding of the planktonic grazers. The seasonal depletion of stratospheric ozone has resulted in elevated fluxes of UVB radiation superimposed on the normal seasonal variation. Present surface UV fluxes have a significant impact on phytoplankton physiology, including the inhibition of the light and dark reactions of photosynthesis, inhibition of nitrogenase activity, inhibition of heterocyst formation, reduction in motility, increased synthesis of the UV-screening pigment scytonemin, and mutation. After reviewing these issues, recent work in our lab on measuring the effect of UV radiation on phytoplankton in the San Francisco Bay Estuary will be presented.

  3. Icefield-to-ocean linkages across the northern Pacific coastal temperate rainforest ecosystem

    USGS Publications Warehouse

    O'Neel, Shad; Hood, Eran; Bidlack, Allison L.; Fleming, Sean W.; Arimitsu, Mayumi L.; Arendt, Anthony; Burgess, Evan W.; Sergeant, Christopher J.; Beaudreau, Anne E.; Timm, Kristin; Hayward, Gregory D.; Reynolds, Joel H.; Pyare, Sanjay

    2015-01-01

    Rates of glacier mass loss in the northern Pacific coastal temperate rainforest (PCTR) are among the highest on Earth, and changes in glacier volume and extent will affect the flow regime and chemistry of coastal rivers, as well as the nearshore marine ecosystem of the Gulf of Alaska. Here we synthesize physical, chemical and biological linkages that characterize the northern PCTR ecosystem, with particular emphasis on the potential impacts of glacier change in the coastal mountain ranges on the surface–water hydrology, biogeochemistry, coastal oceanography and aquatic ecology. We also evaluate the relative importance and interplay between interannual variability and long-term trends in key physical drivers and ecological responses. To advance our knowledge of the northern PCTR, we advocate for cross-disciplinary research bridging the icefield-to-ocean ecosystem that can be paired with long-term scientific records and designed to inform decisionmakers.

  4. Bubble Stripping as a Tool To Reduce High Dissolved CO2 in Coastal Marine Ecosystems.

    PubMed

    Koweek, David A; Mucciarone, David A; Dunbar, Robert B

    2016-04-01

    High dissolved CO2 concentrations in coastal ecosystems are a common occurrence due to a combination of large ecosystem metabolism, shallow water, and long residence times. Many important coastal species may have adapted to this natural variability over time, but eutrophication and ocean acidification may be perturbing the water chemistry beyond the bounds of tolerance for these organisms. We are currently limited in our ability to deal with the geochemical changes unfolding in our coastal ocean. This study helps to address this deficit of solutions by introducing bubble stripping as a novel geochemical engineering approach to reducing high CO2 in coastal marine ecosystems. We use a process-based model to find that air/sea gas exchange rates within a bubbled system are 1-2 orders of magnitude higher than within a nonbubbled system. By coupling bubbling-enhanced ventilation to a coastal ecosystem metabolism model, we demonstrate that strategically timed bubble plumes can mitigate exposure to high CO2 under present-day conditions and that exposure mitigation is enhanced in the more acidic conditions predicted by the end of the century. We argue that shallow water CO2 bubble stripping should be considered among the growing list of engineering approaches intended to increase coastal resilience in a changing ocean.

  5. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature.

    PubMed

    Arkema, Katie K; Verutes, Gregory M; Wood, Spencer A; Clarke-Samuels, Chantalle; Rosado, Samir; Canto, Maritza; Rosenthal, Amy; Ruckelshaus, Mary; Guannel, Gregory; Toft, Jodie; Faries, Joe; Silver, Jessica M; Griffin, Robert; Guerry, Anne D

    2015-06-16

    Recent calls for ocean planning envision informed management of social and ecological systems to sustain delivery of ecosystem services to people. However, until now, no coastal and marine planning process has applied an ecosystem-services framework to understand how human activities affect the flow of benefits, to create scenarios, and to design a management plan. We developed models that quantify services provided by corals, mangroves, and seagrasses. We used these models within an extensive engagement process to design a national spatial plan for Belize's coastal zone. Through iteration of modeling and stakeholder engagement, we developed a preferred plan, currently under formal consideration by the Belizean government. Our results suggest that the preferred plan will lead to greater returns from coastal protection and tourism than outcomes from scenarios oriented toward achieving either conservation or development goals. The plan will also reduce impacts to coastal habitat and increase revenues from lobster fishing relative to current management. By accounting for spatial variation in the impacts of coastal and ocean activities on benefits that ecosystems provide to people, our models allowed stakeholders and policymakers to refine zones of human use. The final version of the preferred plan improved expected coastal protection by >25% and more than doubled the revenue from fishing, compared with earlier versions based on stakeholder preferences alone. Including outcomes in terms of ecosystem-service supply and value allowed for explicit consideration of multiple benefits from oceans and coasts that typically are evaluated separately in management decisions.

  6. Bubble Stripping as a Tool To Reduce High Dissolved CO2 in Coastal Marine Ecosystems.

    PubMed

    Koweek, David A; Mucciarone, David A; Dunbar, Robert B

    2016-04-01

    High dissolved CO2 concentrations in coastal ecosystems are a common occurrence due to a combination of large ecosystem metabolism, shallow water, and long residence times. Many important coastal species may have adapted to this natural variability over time, but eutrophication and ocean acidification may be perturbing the water chemistry beyond the bounds of tolerance for these organisms. We are currently limited in our ability to deal with the geochemical changes unfolding in our coastal ocean. This study helps to address this deficit of solutions by introducing bubble stripping as a novel geochemical engineering approach to reducing high CO2 in coastal marine ecosystems. We use a process-based model to find that air/sea gas exchange rates within a bubbled system are 1-2 orders of magnitude higher than within a nonbubbled system. By coupling bubbling-enhanced ventilation to a coastal ecosystem metabolism model, we demonstrate that strategically timed bubble plumes can mitigate exposure to high CO2 under present-day conditions and that exposure mitigation is enhanced in the more acidic conditions predicted by the end of the century. We argue that shallow water CO2 bubble stripping should be considered among the growing list of engineering approaches intended to increase coastal resilience in a changing ocean. PMID:26988138

  7. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature

    PubMed Central

    Arkema, Katie K.; Verutes, Gregory M.; Wood, Spencer A.; Clarke-Samuels, Chantalle; Rosado, Samir; Canto, Maritza; Rosenthal, Amy; Ruckelshaus, Mary; Guannel, Gregory; Toft, Jodie; Faries, Joe; Silver, Jessica M.; Griffin, Robert; Guerry, Anne D.

    2015-01-01

    Recent calls for ocean planning envision informed management of social and ecological systems to sustain delivery of ecosystem services to people. However, until now, no coastal and marine planning process has applied an ecosystem-services framework to understand how human activities affect the flow of benefits, to create scenarios, and to design a management plan. We developed models that quantify services provided by corals, mangroves, and seagrasses. We used these models within an extensive engagement process to design a national spatial plan for Belize’s coastal zone. Through iteration of modeling and stakeholder engagement, we developed a preferred plan, currently under formal consideration by the Belizean government. Our results suggest that the preferred plan will lead to greater returns from coastal protection and tourism than outcomes from scenarios oriented toward achieving either conservation or development goals. The plan will also reduce impacts to coastal habitat and increase revenues from lobster fishing relative to current management. By accounting for spatial variation in the impacts of coastal and ocean activities on benefits that ecosystems provide to people, our models allowed stakeholders and policymakers to refine zones of human use. The final version of the preferred plan improved expected coastal protection by >25% and more than doubled the revenue from fishing, compared with earlier versions based on stakeholder preferences alone. Including outcomes in terms of ecosystem-service supply and value allowed for explicit consideration of multiple benefits from oceans and coasts that typically are evaluated separately in management decisions. PMID:26082545

  8. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature.

    PubMed

    Arkema, Katie K; Verutes, Gregory M; Wood, Spencer A; Clarke-Samuels, Chantalle; Rosado, Samir; Canto, Maritza; Rosenthal, Amy; Ruckelshaus, Mary; Guannel, Gregory; Toft, Jodie; Faries, Joe; Silver, Jessica M; Griffin, Robert; Guerry, Anne D

    2015-06-16

    Recent calls for ocean planning envision informed management of social and ecological systems to sustain delivery of ecosystem services to people. However, until now, no coastal and marine planning process has applied an ecosystem-services framework to understand how human activities affect the flow of benefits, to create scenarios, and to design a management plan. We developed models that quantify services provided by corals, mangroves, and seagrasses. We used these models within an extensive engagement process to design a national spatial plan for Belize's coastal zone. Through iteration of modeling and stakeholder engagement, we developed a preferred plan, currently under formal consideration by the Belizean government. Our results suggest that the preferred plan will lead to greater returns from coastal protection and tourism than outcomes from scenarios oriented toward achieving either conservation or development goals. The plan will also reduce impacts to coastal habitat and increase revenues from lobster fishing relative to current management. By accounting for spatial variation in the impacts of coastal and ocean activities on benefits that ecosystems provide to people, our models allowed stakeholders and policymakers to refine zones of human use. The final version of the preferred plan improved expected coastal protection by >25% and more than doubled the revenue from fishing, compared with earlier versions based on stakeholder preferences alone. Including outcomes in terms of ecosystem-service supply and value allowed for explicit consideration of multiple benefits from oceans and coasts that typically are evaluated separately in management decisions. PMID:26082545

  9. Ecosystem classification for EU habitat distribution assessment in sandy coastal environments: an application in central Italy.

    PubMed

    Carranza, Maria Laura; Acosta, Alicia T R; Stanisci, Angela; Pirone, Gianfranco; Ciaschetti, Giampiero

    2008-05-01

    Many recent developments in coastal science have gone against the demands of European Union legislation. Coastal dune systems which cover small areas of the earth can host a high level of biodiversity. However, human pressure on coastal zones around the world has increased dramatically in the last 50 years. In addition to direct habitat loss, the rapid extinction of many species that are unique to these systems can be attributed to landscape deterioration through the lack of appropriate management. In this paper, we propose to use of an ecosystem classification technique that integrates potential natural vegetation distribution as a reference framework for coastal dune EU Habitats (92/43) distribution analysis and assessment. As an example, the present study analyses the EU Habitats distribution within a hierarchical ecosystem classification of the coastal dune systems of central Italy. In total, 24 land elements belonging to 8 land units, 5 land facets, 2 land systems and 2 land regions were identified for the coastal dunes of central Italy, based on diagnostic land attributes. In central Italy, coastal dune environments including all the beach area, mobile dunes and all the fixed-dune land elements contain or could potentially hold at least one EU habitat of interest. Almost all dune slack transitions present the potentiality for the spontaneous development of EU woodlands of interest. The precise information concerning these ecosystems distribution and ecological relationships that this method produces, makes it very effective in Natura 2000 European network assessment. This hierarchical ecosystem classification method facilitates the identification of areas to be surveyed and eventually bound, under the implementation of EU Habitat directive (92/43) including areas with highly disturbed coastal dune ecosystems.

  10. Top 10 principles for designing healthy coastal ecosystems like the Salish Sea.

    PubMed

    Gaydos, Joseph K; Dierauf, Leslie; Kirby, Grant; Brosnan, Deborah; Gilardi, Kirsten; Davis, Gary E

    2008-12-01

    Like other coastal zones around the world, the inland sea ecosystem of Washington (USA) and British Columbia (Canada), an area known as the Salish Sea, is changing under pressure from a growing human population, conversion of native forest and shoreline habitat to urban development, toxic contamination of sediments and species, and overharvest of resources. While billions of dollars have been spent trying to restore other coastal ecosystems around the world, there still is no successful model for restoring estuarine or marine ecosystems like the Salish Sea. Despite the lack of a guiding model, major ecological principles do exist that should be applied as people work to design the Salish Sea and other large marine ecosystems for the future. We suggest that the following 10 ecological principles serve as a foundation for educating the public and for designing a healthy Salish Sea and other coastal ecosystems for future generations: (1) Think ecosystem: political boundaries are arbitrary; (2) Account for ecosystem connectivity; (3) Understand the food web; (4) Avoid fragmentation; (5) Respect ecosystem integrity; (6) Support nature's resilience; (7) Value nature: it's money in your pocket; (8) Watch wildlife health; (9) Plan for extremes; and (10) Share the knowledge.

  11. Estimating global "blue carbon" emissions from conversion and degradation of vegetated coastal ecosystems.

    PubMed

    Pendleton, Linwood; Donato, Daniel C; Murray, Brian C; Crooks, Stephen; Jenkins, W Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W; Kauffman, J Boone; Marbà, Núria; Megonigal, Patrick; Pidgeon, Emily; Herr, Dorothee; Gordon, David; Baldera, Alexis

    2012-01-01

    Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems--marshes, mangroves, and seagrasses--that may be lost with habitat destruction ('conversion'). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this 'blue carbon' can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15-1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3-19% of those from deforestation globally, and result in economic damages of $US 6-42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats.

  12. Causes and consequences of ecosystem service regionalization in a coastal suburban watershed

    USGS Publications Warehouse

    Wollheim, Wilfred M.; Mark B. Green,; Pellerin, Brian A.; Morse, Nathaniel B.; Hopkinson, Charles S.

    2015-01-01

    The demand for ecosystem services and the ability of natural ecosystems to provide those services evolve over time as population, land use, and management practices change. Regionalization of ecosystem service activity, or the expansion of the area providing ecosystem services to a population, is a common response in densely populated coastal regions, with important consequences for watershed water and nitrogen (N) fluxes to the coastal zone. We link biophysical and historical information to explore the causes and consequences of change in ecosystem service activity—focusing on water provisioning and N regulation—from 1850 to 2010 in a coastal suburban watershed, the Ipswich River watershed in northeastern Massachusetts, USA. Net interbasin water transfers started in the late 1800s due to regionalization of water supply for use by larger populations living outside the Ipswich watershed boundaries, reaching a peak in the mid-1980s. Over much of the twentieth century, about 20 % of river runoff was diverted from reaching the estuary, with greater proportions during drought years. Ongoing regionalization of water supply has contributed to recent declines in diversions, influenced by socioecological feedbacks resulting from the river drying and fish kills. Similarly, the N budget has been greatly perturbed since the suburban era began in the 1950s due to food and lawn fertilizer imports and human waste release. However, natural ecosystems are able to remove most of this anthropogenic N, mitigating impacts on the coastal zone. We propose a conceptual model whereby the amount and type of ecosystem services provided by coastal watersheds in urban regions expand and contract over time as regional population expands and ecosystem services are regionalized. We hypothesize that suburban watersheds can be hotspots of ecosystem service sources because they retain sufficient ecosystem function to still produce services that meet increasing demand from the local population

  13. Responses of coastal ecosystems to environmental variability in emerging countries from the Americas

    NASA Astrophysics Data System (ADS)

    Muniz, Pablo; Calliari, Danilo; Giménez, Luis; Defeo, Omar

    2015-12-01

    Coastal ecosystems supply critical ecological services and benefits to human society (Barbier et al., 2011). Nearly 38% of the global monetary value of annual ecosystem services arises from estuaries, seagrass and algal beds, coral reefs and shelf ecosystems (Costanza et al., 1997). However, these ecosystems are being increasingly affected by multiple drivers acting simultaneously at several spatial and temporal scales (Lotze et al., 2006; Hoegh-Guldberg and Bruno, 2010). Climate change (temperature increase, sea level rise, ocean acidification), human activities (e.g. land use/cover change, pollution, overexploitation, translocation of species), and extreme natural events (storms, floods, droughts) are the most important drivers degrading the resilience of coastal systems. Such factors operate on individual level processes, leading organisms away from their niches (Steinberg, 2013) or modifying rates and phenology (Giménez, 2011; Mackas et al., 2012, Deutsch et al., 2015). All of these influence ecosystem level processes, causing changes in species composition, diversity losses and deterioration of ecosystem functions (Worm et al., 2006; Defeo et al., 2009; Doney et al., 2011; Dornelas et al., 2014). The rate of change in habitats, species distributions and whole ecosystems has accelerated over the past decades as shown, for example, in the increase in the frequency of events of coastal hypoxia (Diaz and Rosenberg, 2008,Vaquer-Sunyer and Duarte, 2008), extensive translocation of species by global shipping (Seebens et al., 2013), and in ecosystem regime shifts (Möllmann et al., 2015 and references therein). Some coastal areas have been transformed into novel ecosystems with physical and biological characteristics outside their natural range of variability (Cloern et al., 2015) while others are likely to become sink areas, limiting the migration of marine species away from warming habitats (Burrows et al., 2014).

  14. Concepts and theoretical specifications of a Coastal Vulnerability Dynamic Simulator (COVUDS): A multi-agent system for simulating coastal vulnerability towards management of coastal ecosystem services

    NASA Astrophysics Data System (ADS)

    Orencio, P. M.; Endo, A.; Taniguchi, M.

    2014-12-01

    Disaster-causing natural hazards such as floods, erosions, earthquakes or slope failures were particularly observed to be concentrated in certain geographical regions. In the Asia-pacific region, coastal ecosystems were suffering because of perennial threats driven by chronic fluctuations in climate variability (e.g., typhoons, ENSO), or by dynamically occurring events (e.g., earthquakes, tsunamis). Among the many people that were found prone to such a risky condition were the ones inhabiting near the coastal areas. Characteristically, aside from being located at the forefront of these events, the coastal communities have impacted the resource by the kind of behavioral patterns they exhibited, such as overdependence and overexploitation to achieve their wellbeing. In this paper, we introduce the development of an approach to an assessment of the coupled human- environment using a multi- agent simulation (MAS) model known as Coastal Vulnerability Dynamic Simulator (COVUDS). The COVUDS comprised a human- environmental platform consisting multi- agents with corresponding spatial- based dynamic and static variables. These variables were used to present multiple hypothetical future situations that contribute to the purpose of supporting a more rational management of the coastal ecosystem and their environmental equities. Initially, we present the theoretical and conceptual components that would lead to the development of the COVUDS. These consisted of the human population engaged in behavioral patterns affecting the conditions of coastal ecosystem services; the system of the biophysical environment and changes in patches brought by global environment and local behavioral variations; the policy factors that were important for choosing area- specific interventions; and the decision- making mechanism that integrates the first three components. To guide a future scenario-based application that will be undertaken in a coastal area in the Philippines, the components of the

  15. Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems

    PubMed Central

    Murray, Brian C.; Crooks, Stephen; Jenkins, W. Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W.; Kauffman, J. Boone; Marbà, Núria; Megonigal, Patrick; Pidgeon, Emily; Herr, Dorothee; Gordon, David; Baldera, Alexis

    2012-01-01

    Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems—marshes, mangroves, and seagrasses—that may be lost with habitat destruction (‘conversion’). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this ‘blue carbon’ can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15–1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3–19% of those from deforestation globally, and result in economic damages of $US 6–42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats. PMID:22962585

  16. Ecosystem-based coastal defence in the face of global change.

    PubMed

    Temmerman, Stijn; Meire, Patrick; Bouma, Tjeerd J; Herman, Peter M J; Ysebaert, Tom; De Vriend, Huib J

    2013-12-01

    The risk of flood disasters is increasing for many coastal societies owing to global and regional changes in climate conditions, sea-level rise, land subsidence and sediment supply. At the same time, in many locations, conventional coastal engineering solutions such as sea walls are increasingly challenged by these changes and their maintenance may become unsustainable. We argue that flood protection by ecosystem creation and restoration can provide a more sustainable, cost-effective and ecologically sound alternative to conventional coastal engineering and that, in suitable locations, it should be implemented globally and on a large scale.

  17. Water quality assessment in the Mexican Caribbean: Impacts on the coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Hernández-Terrones, Laura M.; Null, Kimberly A.; Ortega-Camacho, Daniela; Paytan, Adina

    2015-07-01

    Coastal zones are dominated by economically important ecosystems, and excessive urban, industrial, agricultural, and tourism activities can lead to rapid degradation of those habitats and resources. Groundwater in the Eastern Yucatan Peninsula coastal aquifer discharges directly into the coastal ocean affecting the coral reefs, which are part of the Mesoamerican Coral Reef System. The composition and impacts of groundwater were studied at different coastal environments around Akumal (SE Yucatan Peninsula). Radium isotopes and salinity were used to quantify fresh groundwater and recirculated seawater contributions to the coastal zone. Excess Ra distribution suggests spatially variable discharge rates of submarine groundwater. High NO3- levels and high coliform bacteria densities indicate that groundwater is polluted at some sites. Dissolved phosphorous content is elevated in the winter and during the high tourism season, likely released from untreated sewage discharge and from aquifer sediments under reducing conditions.

  18. Groundwater-ocean interaction and its effects on coastal ecological processes - are there groundwater-dependant ecosystems in the coastal zone?

    NASA Astrophysics Data System (ADS)

    Stieglitz, T. C.

    2013-05-01

    Hydrological land-ocean connectivity is an important driver of coastal ecosystems. Rivers are obvious and visible pathways for terrestrial runoff. The critical role of surface water discharge from rivers to coastal ecosystems has been well documented. Hidden from view, 'downstream' effects of coastal (supra-tidal, intertidal and submarine) groundwater discharge are far less well understood. Whilst hydrological and geochemical processes associated with coastal groundwater discharge have received an increasing amount of scientific attention over the past decade or so, the effects of groundwater flow on productivity, composition, diversity and functioning of coastal ecosystems along the world's shorelines have received little attention to date. Coastal groundwater discharge includes both terrestrial (fresh) groundwater fluxes and the recirculation of seawater through sediments, analogous to hyporheic flow in rivers. I will present an overview over relevant coastal hydrological processes, and will illustrate their ecological effects on examples from diverse tropical coastal ecosystems, e.g. (1) perennial fresh groundwater discharge from coastal sand dune systems permitting growth of freshwater-dependent vegetation in the intertidal zone of the Great Barrier Reef (Australia), (2) recirculation of seawater through mangrove forest floors directly affecting tree health and providing a pathway for carbon export from these ecosystems, (3) the local hydrology of groundwater-fed coastal inlets on Mexico's Yucatan peninsula affecting the movement behaviour of and habitat use by the queen conch Strombus gigas, an economically important species in the Caribbean region. These examples for hydrological-ecological coupling in the coastal zone invite the question if we should not consider these coastal ecosystems to be groundwater-dependent, in analogy to groundwater-dependency in freshwater aquatic systems.

  19. Coastal biodiversity and ecosystem services flows at the landscape scale: The CBESS progamme.

    NASA Astrophysics Data System (ADS)

    Paterson, David; Bothwell, John; Bradbury, Richard; Burrows, Michael; Burton, Niall; Emmerson, Mark; Garbutt, Angus; Skov, Martin; Solan, Martin; Spencer, Tom; Underwood, Graham

    2015-04-01

    The health of the European coastline is inextricably linked to the economy and culture of coastal nations but they are sensitive to climate change. As global temperatures increase, sea levels will rise and the forces experienced where land meets sea will become more destructive. Salt marshes, mudflats, beaches will be affected. These landscapes support a wide range of economically valuable animal and plant species, but also act as sites of carbon storage, nutrient recycling, and pollutant capture and amelioration. Their preservation is of utmost importance. Our programme: "A hierarchical approach to the examination of the relationship between biodiversity and ecosystem service flows across coastal margins" (CBESS) is designed to understand the landscape-scale links between the functions that these systems provide (ecosystem service flows) and the organisms that provide these services (biodiversity stocks) and moves beyond most previous studies, conducted at smaller scales. Our consortium of experts ranges from microbial ecologists, through environmental economists, to mathematical modellers, and organisations (RSPB, BTO, CEFAS, EA) with vested interest in the sustainable use of coastal wetlands. CBESS spans the landscape scale, investigating how biodiversity stocks provide ecosystem services (cf. National Ecosystem Assessment: Supporting services; Provisioning services; Regulating services; and Cultural services). CBESS combined a detailed study of two regional landscapes with a broad-scale UK-wide study to allow both specific and general conclusions to be drawn. The regional study compares two areas of great UK national importance: Morecambe Bay on the west coast and the Essex coastline on the east. We carried out biological and physical surveys at more than 600 stations combined with in situ measures of ecosystem funtction to clarify how biodiversity can provide these important ecosystem functions across scales. This information will be shared with those

  20. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    NASA Astrophysics Data System (ADS)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased

  1. Interactions of aquaculture, marine coastal ecosystems, and near-shore waters: A bibliography. Bibliographies and literature of agriculture (Final)

    SciTech Connect

    Hanfman, D.T.; Coleman, D.E.; Tibbitt, S.J.

    1991-01-01

    The bibliography contains selected literature citations on the interactions of aquaculture and marine coastal ecosystems. The focus is on aquaculture effluents and their impact on marine coastal ecosystems and waterways as well as the impact of pollutants on aquaculture development. Factors affecting these issues include domestic and industrial wastes, thermal discharges, acid rain, heavy metals, oil spills, and microbial contamination of marine waters and aquatic species. Coastal zone management, environmenal impact of aquaculture, and water quality issues are also included in the bibliography.

  2. ECOLOGICAL RESPONSES TO POLLUTION ABATEMENT: A FRAMEWORK FOR MEASUREMENT AND ASSESSMENT FOR COASTAL ECOSYSTEMS

    EPA Science Inventory

    Ecological Responses to Pollution Abatement: A Framework for Measurement and Assessment for Coastal Ecosystems (Abstract). To be presented at the 16th Biennial Conference of the Estuarine Research Foundation, ERF 2001: An Estuarine Odyssey, 4-8 November 2001, St. Pete Beach, FL. ...

  3. Coastal Zone Ecosystem Services: from science to values and decision making; a case study.

    PubMed

    Luisetti, T; Turner, R K; Jickells, T; Andrews, J; Elliott, M; Schaafsma, M; Beaumont, N; Malcolm, S; Burdon, D; Adams, C; Watts, W

    2014-09-15

    This research is concerned with the following environmental research questions: socio-ecological system complexity, especially when valuing ecosystem services; ecosystems stock and services flow sustainability and valuation; the incorporation of scale issues when valuing ecosystem services; and the integration of knowledge from diverse disciplines for governance and decision making. In this case study, we focused on ecosystem services that can be jointly supplied but independently valued in economic terms: healthy climate (via carbon sequestration and storage), food (via fisheries production in nursery grounds), and nature recreation (nature watching and enjoyment). We also explored the issue of ecosystem stock and services flow, and we provide recommendations on how to value stock and flows of ecosystem services via accounting and economic values respectively. We considered broadly comparable estuarine systems located on the English North Sea coast: the Blackwater estuary and the Humber estuary. In the past, these two estuaries have undergone major land-claim. Managed realignment is a policy through which previously claimed intertidal habitats are recreated allowing the enhancement of the ecosystem services provided by saltmarshes. In this context, we investigated ecosystem service values, through biophysical estimates and welfare value estimates. Using an optimistic (extended conservation of coastal ecosystems) and a pessimistic (loss of coastal ecosystems because of, for example, European policy reversal) scenario, we find that context dependency, and hence value transfer possibilities, vary among ecosystem services and benefits. As a result, careful consideration in the use and application of value transfer, both in biophysical estimates and welfare value estimates, is advocated to supply reliable information for policy making.

  4. Coastal Zone Ecosystem Services: from science to values and decision making; a case study.

    PubMed

    Luisetti, T; Turner, R K; Jickells, T; Andrews, J; Elliott, M; Schaafsma, M; Beaumont, N; Malcolm, S; Burdon, D; Adams, C; Watts, W

    2014-09-15

    This research is concerned with the following environmental research questions: socio-ecological system complexity, especially when valuing ecosystem services; ecosystems stock and services flow sustainability and valuation; the incorporation of scale issues when valuing ecosystem services; and the integration of knowledge from diverse disciplines for governance and decision making. In this case study, we focused on ecosystem services that can be jointly supplied but independently valued in economic terms: healthy climate (via carbon sequestration and storage), food (via fisheries production in nursery grounds), and nature recreation (nature watching and enjoyment). We also explored the issue of ecosystem stock and services flow, and we provide recommendations on how to value stock and flows of ecosystem services via accounting and economic values respectively. We considered broadly comparable estuarine systems located on the English North Sea coast: the Blackwater estuary and the Humber estuary. In the past, these two estuaries have undergone major land-claim. Managed realignment is a policy through which previously claimed intertidal habitats are recreated allowing the enhancement of the ecosystem services provided by saltmarshes. In this context, we investigated ecosystem service values, through biophysical estimates and welfare value estimates. Using an optimistic (extended conservation of coastal ecosystems) and a pessimistic (loss of coastal ecosystems because of, for example, European policy reversal) scenario, we find that context dependency, and hence value transfer possibilities, vary among ecosystem services and benefits. As a result, careful consideration in the use and application of value transfer, both in biophysical estimates and welfare value estimates, is advocated to supply reliable information for policy making. PMID:24992461

  5. Megacities and large urban agglomerations in the coastal zone: interactions between atmosphere, land, and marine ecosystems.

    PubMed

    von Glasow, Roland; Jickells, Tim D; Baklanov, Alexander; Carmichael, Gregory R; Church, Tom M; Gallardo, Laura; Hughes, Claire; Kanakidou, Maria; Liss, Peter S; Mee, Laurence; Raine, Robin; Ramachandran, Purvaja; Ramesh, R; Sundseth, Kyrre; Tsunogai, Urumu; Uematsu, Mitsuo; Zhu, Tong

    2013-02-01

    Megacities are not only important drivers for socio-economic development but also sources of environmental challenges. Many megacities and large urban agglomerations are located in the coastal zone where land, atmosphere, and ocean meet, posing multiple environmental challenges which we consider here. The atmospheric flow around megacities is complicated by urban heat island effects and topographic flows and sea breezes and influences air pollution and human health. The outflow of polluted air over the ocean perturbs biogeochemical processes. Contaminant inputs can damage downstream coastal zone ecosystem function and resources including fisheries, induce harmful algal blooms and feedback to the atmosphere via marine emissions. The scale of influence of megacities in the coastal zone is hundreds to thousands of kilometers in the atmosphere and tens to hundreds of kilometers in the ocean. We list research needs to further our understanding of coastal megacities with the ultimate aim to improve their environmental management.

  6. U.S. Geological Survey (USGS), Western Region: Coastal ecosystem responses to influences from land and sea, Coastal and Ocean Science

    USGS Publications Warehouse

    Bodkin, James L.

    2010-01-01

    Sea otters and the nearshore ecosystems they inhabit-from highly urbanized California to relatively pristine Alaska-are the focus of a new multidisciplinary study by scientists with the U.S. Geological Survey (USGS) and a suite of international, academic and government collaborators. The Coastal Ecosystem Responses to Influences from Land and Sea project will investigate the many interacting variables that influence the health of coastal ecosystems along the Northeast Pacific shore. These ecosystems face unprecedented challenges, with threats arising from the adjacent oceans and lands. From the ocean, challenges include acidification, sea level rise, and warming. From the land, challenges include elevated biological, geological and chemical pollutants associated with burgeoning human populations along coastlines. The implications of these challenges for biological systems are only beginning to be explored. Comparing sea otter population status indicators from around the northeastern Pacific Rim, will begin the process of defining factors of coastal ecosystem health in this broad region.

  7. Ecosystem services provided by a complex coastal region: challenges of classification and mapping

    NASA Astrophysics Data System (ADS)

    Sousa, Lisa P.; Sousa, Ana I.; Alves, Fátima L.; Lillebø, Ana I.

    2016-03-01

    A variety of ecosystem services classification systems and mapping approaches are available in the scientific and technical literature, which needs to be selected and adapted when applied to complex territories (e.g. in the interface between water and land, estuary and sea). This paper provides a framework for addressing ecosystem services in complex coastal regions. The roadmap comprises the definition of the exact geographic boundaries of the study area; the use of CICES (Common International Classification of Ecosystem Services) for ecosystem services identification and classification; and the definition of qualitative indicators that will serve as basis to map the ecosystem services. Due to its complexity, the Ria de Aveiro coastal region was selected as case study, presenting an opportunity to explore the application of such approaches at a regional scale. The main challenges of implementing the proposed roadmap, together with its advantages are discussed in this research. The results highlight the importance of considering both the connectivity of natural systems and the complexity of the governance framework; the flexibility and robustness, but also the challenges when applying CICES at regional scale; and the challenges regarding ecosystem services mapping.

  8. Ecosystem services provided by a complex coastal region: challenges of classification and mapping.

    PubMed

    Sousa, Lisa P; Sousa, Ana I; Alves, Fátima L; Lillebø, Ana I

    2016-03-11

    A variety of ecosystem services classification systems and mapping approaches are available in the scientific and technical literature, which needs to be selected and adapted when applied to complex territories (e.g. in the interface between water and land, estuary and sea). This paper provides a framework for addressing ecosystem services in complex coastal regions. The roadmap comprises the definition of the exact geographic boundaries of the study area; the use of CICES (Common International Classification of Ecosystem Services) for ecosystem services identification and classification; and the definition of qualitative indicators that will serve as basis to map the ecosystem services. Due to its complexity, the Ria de Aveiro coastal region was selected as case study, presenting an opportunity to explore the application of such approaches at a regional scale. The main challenges of implementing the proposed roadmap, together with its advantages are discussed in this research. The results highlight the importance of considering both the connectivity of natural systems and the complexity of the governance framework; the flexibility and robustness, but also the challenges when applying CICES at regional scale; and the challenges regarding ecosystem services mapping.

  9. Ecosystem services provided by a complex coastal region: challenges of classification and mapping

    PubMed Central

    Sousa, Lisa P.; Sousa, Ana I.; Alves, Fátima L.; Lillebø, Ana I.

    2016-01-01

    A variety of ecosystem services classification systems and mapping approaches are available in the scientific and technical literature, which needs to be selected and adapted when applied to complex territories (e.g. in the interface between water and land, estuary and sea). This paper provides a framework for addressing ecosystem services in complex coastal regions. The roadmap comprises the definition of the exact geographic boundaries of the study area; the use of CICES (Common International Classification of Ecosystem Services) for ecosystem services identification and classification; and the definition of qualitative indicators that will serve as basis to map the ecosystem services. Due to its complexity, the Ria de Aveiro coastal region was selected as case study, presenting an opportunity to explore the application of such approaches at a regional scale. The main challenges of implementing the proposed roadmap, together with its advantages are discussed in this research. The results highlight the importance of considering both the connectivity of natural systems and the complexity of the governance framework; the flexibility and robustness, but also the challenges when applying CICES at regional scale; and the challenges regarding ecosystem services mapping. PMID:26964892

  10. Ecosystem services provided by a complex coastal region: challenges of classification and mapping.

    PubMed

    Sousa, Lisa P; Sousa, Ana I; Alves, Fátima L; Lillebø, Ana I

    2016-01-01

    A variety of ecosystem services classification systems and mapping approaches are available in the scientific and technical literature, which needs to be selected and adapted when applied to complex territories (e.g. in the interface between water and land, estuary and sea). This paper provides a framework for addressing ecosystem services in complex coastal regions. The roadmap comprises the definition of the exact geographic boundaries of the study area; the use of CICES (Common International Classification of Ecosystem Services) for ecosystem services identification and classification; and the definition of qualitative indicators that will serve as basis to map the ecosystem services. Due to its complexity, the Ria de Aveiro coastal region was selected as case study, presenting an opportunity to explore the application of such approaches at a regional scale. The main challenges of implementing the proposed roadmap, together with its advantages are discussed in this research. The results highlight the importance of considering both the connectivity of natural systems and the complexity of the governance framework; the flexibility and robustness, but also the challenges when applying CICES at regional scale; and the challenges regarding ecosystem services mapping. PMID:26964892

  11. Impacts on the Deep-Sea Ecosystem by a Severe Coastal Storm

    PubMed Central

    Sanchez-Vidal, Anna; Canals, Miquel; Calafat, Antoni M.; Lastras, Galderic; Pedrosa-Pàmies, Rut; Menéndez, Melisa; Medina, Raúl; Company, Joan B.; Hereu, Bernat; Romero, Javier; Alcoverro, Teresa

    2012-01-01

    Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26th of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem. PMID:22295084

  12. Impacts on the deep-sea ecosystem by a severe coastal storm.

    PubMed

    Sanchez-Vidal, Anna; Canals, Miquel; Calafat, Antoni M; Lastras, Galderic; Pedrosa-Pàmies, Rut; Menéndez, Melisa; Medina, Raúl; Company, Joan B; Hereu, Bernat; Romero, Javier; Alcoverro, Teresa

    2012-01-01

    Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26(th) of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem.

  13. Land use transformation and ecosystem health assessment from 1986 to 2005 in Zhejiang coastal zone

    NASA Astrophysics Data System (ADS)

    Chen, Zhenghua; Mao, Zhihua; Chen, Jianyu; Zhu, Qiankun; Zou, Juhong; Ma, Qingyuan; Deng, Xueliang

    2007-10-01

    Because of global climatic variations and anthropogenic influence on local environment, as the active interaction belt between ocean and land, the coastal ecosystems are sensitive even part of them are under pressure. It is of very necessary to diagnose whether they are in healthy stage. The Zhejiang coastal zone situated at about 120°E-123°E and 27°N-31°N, the landuse have changed largely during the past 20 years as long as the rapid economic development. In this paper the largest island-Zhoushan island- in the Zhejiang coastal line is selected as the study site. The objective is to establish a way to assess coastal ecosystem health stage. Indicators include the landuse transformation, water quality, ecosystem services during 1986 to 2005. The results indicate that the human pressure become more and more large. The scene generally is the outcome of economic pursuing activity. In the discussion we also provide some strategy to keep the human and nature harmonious.

  14. Emerging methods for the study of coastal ecosystem landscape structure and change

    USGS Publications Warehouse

    Brock, John C.; Danielson, Jeffrey J.; Purkis, Sam

    2013-01-01

    Coastal landscapes are heterogeneous, dynamic, and evolve over a range of time scales due to intertwined climatic, geologic, hydrologic, biologic, and meteorological processes, and are also heavily impacted by human development, commercial activities, and resource extraction. A diversity of complex coastal systems around the globe, spanning glaciated shorelines to tropical atolls, wetlands, and barrier islands are responding to multiple human and natural drivers. Interdisciplinary research based on remote-sensing observations linked to process studies and models is required to understand coastal ecosystem landscape structure and change. Moreover, new techniques for coastal mapping and monitoring are increasingly serving the needs of policy-makers and resource managers across local, regional, and national scales. Emerging remote-sensing methods associated with a diversity of instruments and platforms are a key enabling element of integrated coastal ecosystem studies. These investigations require both targeted and synoptic mapping, and involve the monitoring of formative processes such as hydrodynamics, sediment transport, erosion, accretion, flooding, habitat modification, land-cover change, and biogeochemical fluxes.

  15. Characterizing man-made and natural modifications of microbial diversity and activity in coastal ecosystems.

    PubMed

    Paerl, Hans W; Dyble, Julianne; Twomey, Luke; Pinckney, James L; Nelson, Joshua; Kerkhof, Lee

    2002-08-01

    The impacts of growing coastal pollution and habitat alteration accompanying human encroachment are of great concern at the microbial level, where much of the ocean's primary production and biogeochemical cycling takes place. Coastal ecosystems are also under the influence of natural perturbations such as major storwns and flooding. Distinguishing the impacts of natural and human stressors is essential for understanding environmentally-induced change in microbial diversity and function. The objective of this paper is to discuss the applications and merits of recently developed molecular, ecophysiological and analytical indicators and their utility in examining anthropogenic and climatic impacts on the structure and function of coastal microbial communities. The nitrogen-limited Neuse River Estuary and Pamlico Sound, North Carolina are used as examples of ecosystems experiencing both anthropogenic (i.e., accelerating eutrophication) and climatic stress (increasing frequencies of tropical storms and hurricanes). Additional examples are derived from a coastal monitoring site (LEO) on the Atlantic coast of New Jersey and Galveston Bay, on the Gulf of Mexico. In order to assess structure, function, and trophic state of these and other coastal ecosystems, molecular (DNA and RNA-based) characterizations of the microbial taxa involved in carbon, nitrogen and other nutrient transformations can be combined with diagnostic pigment-based indicators of primary producer groups. Application of these methods can reveal process-level microbial community responses to environmental variability over a range of scales. Experimental approaches combined with strategic monitoring utilizing these methods will facilitate: (a) understanding organismal and community responses to environmental change, and (b) synthesizing these responses in the context of ecosystem models that integrate physical, chemical and biotic variability with environmental controls.

  16. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems.

    PubMed

    Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F

    2016-08-01

    Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems.

  17. Developing a NIDIS Drought Early Warning Information System for Coastal Ecosystems in the Carolinas

    NASA Astrophysics Data System (ADS)

    Darby, L. S.; Dow, K.; Lackstrom, K.; Brennan, A.; Tufford, D. L.; Conrads, P.; Pulwarty, R. S.; Webb, R. S.; Verdin, J. P.; Mcnutt, C. A.; Deheza, V.

    2013-12-01

    The National Integrated Drought Information System (NIDIS) is in the process of developing drought early warning systems in areas of the U.S. where the coordination of drought information is critically needed. These regional drought early warning systems will become the backbone of a national drought early warning information system. Plans for the first drought early warning system started in the fall of 2008 in the Upper Colorado River Basin (UCRB), with an initial focus on the water supply in the head waters region of the Colorado River and the impacts of changes in the water supply on the UCRB. Since the establishment of the UCRB drought early warning system, other regional programs have begun in the Apalachicola-Chattahoochee-Flint River Basin, four regions in the state of California, the Southern Plains, and the Four Corners region. (At this time these are considered pilot drought early warning programs, not full-fledged drought early warning systems such as the UCRB.) Activities in each of these regions are tailored to the needs of stakeholders, and all incorporate hydrometeorological predictions. However, in all of these areas NIDIS has not focused on the specific needs of coastal ecosystems during times of drought. Over the past year, NIDIS has started a pilot drought early warning system that addresses drought in the coastal ecosystems of North and South Carolina. This pilot is being developed in partnership with the Carolinas Integrated Sciences and Assessments (CISA), a NOAA Regional Sciences and Assessments program housed at the University of South Carolina. Currently the focus of the Carolinas pilot includes the promotion of enhanced drought impact reporting to better understand the impacts of low flows on coastal ecosystems and the development of a USGS real-time salinity network for a few coastal gage stations in the Carolinas. The roles of the enhanced drought impact assessments in coastal ecosystems and the knowledge gained from a real

  18. Risk assessment of nitrate and oxytetracycline addition on coastal ecosystem functions.

    PubMed

    Feng-Jiao, Liu; Shun-Xing, Li; Feng-Ying, Zheng; Xu-Guang, Huang; Yue-Gang, Zuo; Teng-Xiu, Tu; Xue-Qing, Wu

    2014-01-01

    Diatoms dominate phytoplankton communities in the well-mixed coastal and upwelling regions. Coastal diatoms are often exposed to both aquaculture pollution and eutrophication. But how these exposures influence on coastal ecosystem functions are unknown. To examine these influences, a coastal centric diatom, Conticribra weissflogii was maintained at different concentrations of nitrate (N) and/or oxytetracycline (OTC). Algal density, cell growth cycle, protein, chlorophyll a, superoxide dismutase (SOD) activity, and malonaldehyde (MDA) were determined for the assessment of algal biomass, lifetime, nutritional value, photosynthesis and respiration, antioxidant capacity, and lipid peroxidation, respectively. When N addition was combined with OTC pollution, the cell growth cycles were shortened by 56-73%; algal density, SOD activities, the concentrations of chlorophyll a, protein, and MDA varied between 73 and 121%, 19 and 397%, 52 and 693%, 19 and 875%, and 66 and 2733% of the values observed in N addition experiments, respectively. According to P-value analysis, the influence of OTC on algal density and SOD activity was not significant, but the effect on cell growth cycle, protein, chlorophyll a, and MDA were significant (P<0.05). The influence of N addition with simultaneous OTC pollution on the above six end points was significant. Algal biomass, lifetime, nutrition, antioxidant capacity, lipid peroxidation, photosynthesis, and respiration were all affected by the addition of OTC and N. Coastal ecosystem functions were severely affected by N and OTC additions, and the influence was increased in the order: Ncoastal ecosystem functions.

  19. Assessment on the Vulnerability of Mangrove Ecosystems in the Guangxi Coastal Zone under Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Li, S.; Ge, Z.; Zhang, L.

    2013-12-01

    Sea level rise caused by global climate change will have significant impacts on coastal zone. The mangrove ecosystems occur at the intertidal zone in tropical and subtropical coasts and are particularly sensitive to sea level rise. To study the responses of mangrove ecosystems to sea level rise, assess the impacts of sea level rise on mangrove ecosystem and formulate the feasible and practical mitigation strategies are the important prerequisites for securing the coastal ecosystems. In this research, taking the mangrove ecosystems in the coastal zone of Guangxi province, China as a case study, the potential impacts of sea level rise on the mangrove ecosystems were analyzed by adopting the SPRC (Source-Pathway- Receptor- Consequence) model. An index system for vulnerability assessment on coastal mangrove ecosystems under sea level rise was worked out, in which rate of sea level rise, subsidence/uplift rate, habitat elevation, daily inundation duration, intertidal slope and sedimentation rate were selected as the key indicators according to the IPCC definition of vulnerability, i.e. the aspects of exposure, sensitivity and adaptation. A quantitatively spatial assessment method based on the GIS platform was established by quantifying each indicator, calculating the vulnerability index and grading the vulnerability. The vulnerability assessment based on the sea-level rise rates of the present trend and IPCC A1F1 scenario were performed for three sets of projections of short-term (2030s), mid-term (2050s) and long-term (2100s). The results showed at the present trend of sea level rise rate of 0.27 cm/a, the mangrove ecosystems in the coastal zone of Guangxi was within the EVI score of 0 in the projections of 2030s, 2050s and 2100s, respectively. As the sedimentation and land uplift could offset the rate of sea level rise and the impact of sea level rise on habitats/species of mangrove ecosystems was negligible. While at the A1F1 scenario with a sea level rise rate of 0

  20. Long-distance interactions regulate the structure and resilience of coastal ecosystems.

    PubMed

    van de Koppel, Johan; van der Heide, Tjisse; Altieri, Andrew H; Eriksson, Britas Klemens; Bouma, Tjeerd J; Olff, Han; Silliman, Brian R

    2015-01-01

    Mounting evidence indicates that spatial interactions are important in structuring coastal ecosystems. Until recently, however, most of this work has been focused on seemingly exceptional systems that are characterized by regular, self-organized patterns. In this review, we document that interactions that operate at long distances, beyond the direct neighborhood of individual organisms, are more common and have much more far-reaching implications for coastal ecosystems than was previously realized. We review studies from a variety of ecosystem types-including cobble beaches, mussel beds, coral reefs, seagrass meadows, and mangrove forests-that reveal a startling interplay of positive and negative interactions between habitats across distances of up to a kilometer. In addition to classical feeding relations, alterations of physical conditions constitute an important part of these long-distance interactions. This entanglement of habitats has crucial implications for how humans manage coastal ecosystems, and evaluations of anthropogenic impact should explicitly address long-distance and system-wide effects before we deem these human activities to be causing little harm.

  1. The numerical simulation features of the extreme surge occurred in the Sea of Azov on 2013/03/24

    NASA Astrophysics Data System (ADS)

    Fomin, Vladimir; Diansky, Nikolay; Gusev, Anatoly

    2016-04-01

    As a result of the strong cyclone passed on 2013/03/24 over the southern part of European Russia and contributed to the formation of the strong southwest wind with speeds up to 22 m/s, the east-directed surge wave appeared in the Sea of Azov. The wind surge caused the sea surface height (SSH) rise in the eastern part of the Taganrog Bay. In the observation series for 1881-2013, due to the 3-meter difference between maximum and minimum SSH near Taganrog, the surge happened on 2013/03/24 takes the second position. With using numerical simulation, its reproduction was carried out to study the formation features and find out the requirements for the precision of simulating atmospheric and marine circulation in the Sea of Azov. For this purpose, the three versions of Azov Sea circulation model were implemented on the basis of the ocean circulation model INMOM (Institute of Numerical Mathematics Ocean Model), their spatial resolutions are 4 km, 1 km and 250 m. For setting realistic atmospheric forcing over the Sea of Azov, three data types were used: ERA-Interim reanalysis (spatial resolution is 0.75°) and the simulation results of the two regional atmospheric circulation models: RegCM (Regional Climate Model, spatial resolution is 20 km) and WRF (Weather Research Forecast, spatial resolution is 10 km). The main factors of atmospheric forcing forming the extreme sea surges are wind and sea level pressure (SLP). It was shown that only the simulation of the atmospheric forcing with high spatial resolution using the non-hydrostatic WRF model allows one to reproduce the extreme surge with an acceptable accuracy. At the same time, the quality of simulating non-extreme SSH oscillations does not depend on the type of used atmospheric forcing so much, as for extreme ones. It was also shown that increasing the spatial resolution of the INMOM improves the simulation of extreme surge temporal evolution, especially in coastal areas. However, its magnitude is affected by the INMOM

  2. Aquatic polymers can drive pathogen transmission in coastal ecosystems

    PubMed Central

    Shapiro, Karen; Krusor, Colin; Mazzillo, Fernanda F. M.; Conrad, Patricia A.; Largier, John L.; Mazet, Jonna A. K.; Silver, Mary W.

    2014-01-01

    Gelatinous polymers including extracellular polymeric substances (EPSs) are fundamental to biophysical processes in aquatic habitats, including mediating aggregation processes and functioning as the matrix of biofilms. Yet insight into the impact of these sticky molecules on the environmental transmission of pathogens in the ocean is limited. We used the zoonotic parasite Toxoplasma gondii as a model to evaluate polymer-mediated mechanisms that promote transmission of terrestrially derived pathogens to marine fauna and humans. We show that transparent exopolymer particles, a particulate form of EPS, enhance T. gondii association with marine aggregates, material consumed by organisms otherwise unable to access micrometre-sized particles. Adhesion to EPS biofilms on macroalgae also captures T. gondii from the water, enabling uptake of pathogens by invertebrates that feed on kelp surfaces. We demonstrate the acquisition, concentration and retention of T. gondii by kelp-grazing snails, which can transmit T. gondii to threatened California sea otters. Results highlight novel mechanisms whereby aquatic polymers facilitate incorporation of pathogens into food webs via association with particle aggregates and biofilms. Identifying the critical role of invisible polymers in transmission of pathogens in the ocean represents a fundamental advance in understanding and mitigating the health impacts of coastal habitat pollution with contaminated runoff. PMID:25297861

  3. Aquatic polymers can drive pathogen transmission in coastal ecosystems.

    PubMed

    Shapiro, Karen; Krusor, Colin; Mazzillo, Fernanda F M; Conrad, Patricia A; Largier, John L; Mazet, Jonna A K; Silver, Mary W

    2014-11-22

    Gelatinous polymers including extracellular polymeric substances (EPSs) are fundamental to biophysical processes in aquatic habitats, including mediating aggregation processes and functioning as the matrix of biofilms. Yet insight into the impact of these sticky molecules on the environmental transmission of pathogens in the ocean is limited. We used the zoonotic parasite Toxoplasma gondii as a model to evaluate polymer-mediated mechanisms that promote transmission of terrestrially derived pathogens to marine fauna and humans. We show that transparent exopolymer particles, a particulate form of EPS, enhance T. gondii association with marine aggregates, material consumed by organisms otherwise unable to access micrometre-sized particles. Adhesion to EPS biofilms on macroalgae also captures T. gondii from the water, enabling uptake of pathogens by invertebrates that feed on kelp surfaces. We demonstrate the acquisition, concentration and retention of T. gondii by kelp-grazing snails, which can transmit T. gondii to threatened California sea otters. Results highlight novel mechanisms whereby aquatic polymers facilitate incorporation of pathogens into food webs via association with particle aggregates and biofilms. Identifying the critical role of invisible polymers in transmission of pathogens in the ocean represents a fundamental advance in understanding and mitigating the health impacts of coastal habitat pollution with contaminated runoff.

  4. Aquatic polymers can drive pathogen transmission in coastal ecosystems.

    PubMed

    Shapiro, Karen; Krusor, Colin; Mazzillo, Fernanda F M; Conrad, Patricia A; Largier, John L; Mazet, Jonna A K; Silver, Mary W

    2014-11-22

    Gelatinous polymers including extracellular polymeric substances (EPSs) are fundamental to biophysical processes in aquatic habitats, including mediating aggregation processes and functioning as the matrix of biofilms. Yet insight into the impact of these sticky molecules on the environmental transmission of pathogens in the ocean is limited. We used the zoonotic parasite Toxoplasma gondii as a model to evaluate polymer-mediated mechanisms that promote transmission of terrestrially derived pathogens to marine fauna and humans. We show that transparent exopolymer particles, a particulate form of EPS, enhance T. gondii association with marine aggregates, material consumed by organisms otherwise unable to access micrometre-sized particles. Adhesion to EPS biofilms on macroalgae also captures T. gondii from the water, enabling uptake of pathogens by invertebrates that feed on kelp surfaces. We demonstrate the acquisition, concentration and retention of T. gondii by kelp-grazing snails, which can transmit T. gondii to threatened California sea otters. Results highlight novel mechanisms whereby aquatic polymers facilitate incorporation of pathogens into food webs via association with particle aggregates and biofilms. Identifying the critical role of invisible polymers in transmission of pathogens in the ocean represents a fundamental advance in understanding and mitigating the health impacts of coastal habitat pollution with contaminated runoff. PMID:25297861

  5. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves

    USGS Publications Warehouse

    Carr, M.H.; Neigel, J.E.; Estes, J.A.; Andelman, S.; Warner, R.R.; Largier, J. L.

    2003-01-01

    Concepts and theory for the design and application of terrestrial reserves is based on our understanding of environmental, ecological, and evolutionary processes responsible for biological diversity and sustainability of terrestrial ecosystems and how humans have influenced these processes. How well this terrestrial-based theory can be applied toward the design and application of reserves in the coastal marine environment depends, in part, on the degree of similarity between these systems. Several marked differences in ecological and evolutionary processes exist between marine and terrestrial ecosystems as ramifications of fundamental differences in their physical environments (i.e., the relative prevalence of air and water) and contemporary patterns of human impacts. Most notably, the great extent and rate of dispersal of nutrients, materials, holoplanktonic organisms, and reproductive propagules of benthic organisms expand scales of connectivity among near-shore communities and ecosystems. Consequently, the "openness" of marine populations, communities, and ecosystems probably has marked influences on their spatial, genetic, and trophic structures and dynamics in ways experienced by only some terrestrial species. Such differences appear to be particularly significant for the kinds of organisms most exploited and targeted for protection in coastal marine ecosystems (fishes and macroinvertebrates). These and other differences imply some unique design criteria and application of reserves in the marine environment. In explaining the implications of these differences for marine reserve design and application, we identify many of the environmental and ecological processes and design criteria necessary for consideration in the development of the analytical approaches developed elsewhere in this Special Issue.

  6. [Construction of degradation diagnosis system for the ecosystems in Dongtan coastal zone of Chongming, Shanghai].

    PubMed

    Zhu, Yan-Ling; Guo, Zhong-Yang; Ye, Shu-Feng; Li, Xiao-Dong; Wang, Dan

    2011-02-01

    Based on the "pressure-state-response (PSR)" concept model, a degradation evaluation index system was constructed for the cropland, wetland, and inshore ecosystems in Dongtan coastal zone of Chongming. By using multiplication synthesis, a combination of analytic hierarchy process and entropy weight method, the weights of each evaluation index were obtained, and, through geographical space index quantification and spatial clustering, the degradation degree of each ecological system was analyzed. The results showed that the degradation degree of Dongtan coastal ecosystems in 2005 could be spatially classified into four classes, i.e., class I, class II, class III and class IV, with the degradation degree aggravated increasingly. For the cropland, wetland, and inshore ecosystems, the weight of heavy metals was the largest, being 0.65, 0.20, and 0.26, respectively. Bird diversity index, land use degree, and Spartina alterniflora coverage also had greater effects on wetland ecosystem, and their weights were 0.26, 0.16, and 0.10, respectively. For cropland ecosystem, land use degree was also an important affecting factor, with the weight of 0.22. PMID:21608269

  7. [Construction of degradation diagnosis system for the ecosystems in Dongtan coastal zone of Chongming, Shanghai].

    PubMed

    Zhu, Yan-Ling; Guo, Zhong-Yang; Ye, Shu-Feng; Li, Xiao-Dong; Wang, Dan

    2011-02-01

    Based on the "pressure-state-response (PSR)" concept model, a degradation evaluation index system was constructed for the cropland, wetland, and inshore ecosystems in Dongtan coastal zone of Chongming. By using multiplication synthesis, a combination of analytic hierarchy process and entropy weight method, the weights of each evaluation index were obtained, and, through geographical space index quantification and spatial clustering, the degradation degree of each ecological system was analyzed. The results showed that the degradation degree of Dongtan coastal ecosystems in 2005 could be spatially classified into four classes, i.e., class I, class II, class III and class IV, with the degradation degree aggravated increasingly. For the cropland, wetland, and inshore ecosystems, the weight of heavy metals was the largest, being 0.65, 0.20, and 0.26, respectively. Bird diversity index, land use degree, and Spartina alterniflora coverage also had greater effects on wetland ecosystem, and their weights were 0.26, 0.16, and 0.10, respectively. For cropland ecosystem, land use degree was also an important affecting factor, with the weight of 0.22.

  8. Oceans and Human Health: Linking Ocean, Organism, and Human Health for Sustainable Management of Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Sandifer, P. A.; Trtanj, J.; Collier, T. K.

    2012-12-01

    Scientists and policy-makers are increasingly recognizing that sustainable coastal communities depend on healthy and resilient economies, ecosystems, and people, and that the condition or "health" of the coastal ocean and humans are intimately and inextricably connected. A wealth of ecosystem services provided by ocean and coastal environments are crucial for human survival and well being. Nonetheless, the health of coastal communities, their economies, connected ecosystems and ecosystem services, and people are under increasing threats from health risks associated with environmental degradation, climate change, and unwise land use practices, all of which contribute to growing burdens of naturally-occurring and introduced pathogens, noxious algae, and chemical contaminants. The occurrence, frequency, intensity, geographic range, and number and kinds of ocean health threats are increasing, with concomitant health and economic effects and eroding public confidence in the safety and wholesomeness of coastal environments and resources. Concerns in the research and public health communities, many summarized in the seminal 1999 NRC Report, From Monsoons to Microbes and the 2004 final report of the US Commission on Ocean Policy, resulted in establishment of a new "meta-discipline" known as Oceans and Human Health (OHH). OHH brings together practitioners in oceanography, marine biology, ecology, biomedical science, medicine, economics and other social sciences, epidemiology, environmental management, and public health to focus on water- and food-borne causes of human and animal illnesses associated with ocean and coastal systems and on health benefits of seafood and other marine products. It integrates information across multiple disciplines to increase knowledge of ocean health risks and benefits and communicate such information to enhance public safety. Recognizing the need for a comprehensive approach to ocean health threats and benefits, Congress passed the Oceans and

  9. Seasonal Trends in Airborne Fungal Spores in Coastal California Ecosystems

    NASA Astrophysics Data System (ADS)

    Morfin, J.; Crandall, S. G.; Gilbert, G. S.

    2014-12-01

    Airborne fungal spores cause disease in plants and animals and may trigger respiratory illnesses in humans. In terrestrial systems, fungal sporulation, germination, and persistence are strongly regulated by local meteorological conditions. However, few studies investigate how microclimate affects the spatio-temporal dynamics of airborne spores. We measured fungal aerospora abundance and microclimate at varying spatial and time scales in coastal California in three habitat-types: coast redwood forest, mixed-evergreen forest, and maritime chaparral. We asked: 1) is there a difference in total airborne spore concentration between habitats, 2) when do we see peak spore counts, and 3) do spore densities correlate with microclimate conditions? Fungal spores were caught from the air with a volumetric vacuum air spore trap during the wet season (January - March) in 2013 and 2014, as well as monthly in 2014. Initial results suggest that mixed-evergreen forests exhibit the highest amounts of spore abundance in both years compared to the other habitats. This may be due to either a higher diversity of host plants in mixed-evergreen forests or a rich leaf litter layer that may harbor a greater abundance of saprotrophic fungi. Based on pilot data, we predict that temperature and to a lesser degree, relative humidity, will be important microclimate predictors for high spore densities. These data are important for understanding when and under what weather conditions we can expect to see high levels of fungal spores in the air; this can be useful information for managers who are interested in treating diseased plants with fungicides.

  10. Ecosystem modeling of coastal acidification and hypoxia and structural uncertainties in the representation of sediment-water exchanges

    EPA Science Inventory

    Numerical ecosystem models of coastal acidification (CA) and hypoxia have been developed to synthesize current scientific understanding and provide predictions for nutrient management and policy. However, there is not a scientific consensus about the structure of these models an...

  11. NASA COAST and OCEANIA Airborne Missions Support Ecosystem and Water Quality Research in the Coastal Zone

    NASA Astrophysics Data System (ADS)

    Guild, L. S.; Kudela, R. M.; Hooker, S. B.; Morrow, J. H.; Russell, P. B.; Palacios, S. L.; Livingston, J. M.; Negrey, K.; Torres-Perez, J. L.; Broughton, J.

    2014-12-01

    NASA has a continuing requirement to collect high-quality in situ data for the vicarious calibration of current and next generation ocean color satellite sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal is to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. The imaging spectrometer (Headwall) is optimized in the blue spectral domain to emphasize remote sensing of marine and freshwater ecosystems. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data are accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the CIRPAS Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of phytoplankton for coastal zone research.

  12. Mediterranean coastal lagoons in an ecosystem and aquatic resources management context

    NASA Astrophysics Data System (ADS)

    Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I. M.

    Aquatic ecosystems, water resources and their management are some of the main problems facing humanity. These problems vary from water scarcity and deteriorating quality for human consumption and use, to floods in areas with torrential rainfall, rising sea levels in coastal zones, the overexploitation of living resources and the loss of ecological quality and biodiversity. Proper water management needs to follow a hierarchical perspective, ranging from the whole planet to individual water bodies. Spatio-temporal scales change at each level, as do driving forces, impacts, and the processes and responses involved. Recently, the European Union adopted the Water Framework Directive (WFD) to establish the basic principles of sustainable water policy in member states, one of the main concerns being the need to consider the vulnerability of coastal aquatic ecosystems and to establish their ecological status. However, from a Mediterranean point of view, the actions of European countries (under the WFD regulations) and non-EU countries need to be coordinated. There are more than 100 coastal lagoons in the Mediterranean. They are habitats with an important ecological role, but also provide essentials goods and services for humans. In the present work, we look at the problems involved in understanding their definition and management. At water body management level, we emphasise that scientific cooperation is necessary to deal with the conceptual and ecological difficulties derived from inter and intra-lagoon variability in hydrology and biological assemblages, inherent factors in the functioning of these complex ecosystems.

  13. Microtopographic controls on ecosystem functioning in the Arctic Coastal Plain

    NASA Astrophysics Data System (ADS)

    Zona, D.; Lipson, D. A.; Zulueta, R. C.; Oberbauer, S. F.; Oechel, W. C.

    2011-12-01

    The investigation of the microtopographic controls on thermal and hydrologic conditions of the soil and consequently the carbon dynamics from Arctic regions is of major importance. Ecosystem respiration (ER) between microsites of the same tundra type could differ more than ER in different tundra types even at different latitudes. In this study we investigated the microtopographic effect on soil temperature, thaw depth, pH, oxidation reduction potential (ORP), electrical conductivity (EC), dissolved CO2, vegetation types, and ER rates from different features forming the low-center polygon structure. Most of these environmental variables significantly differ particularly between areas with higher elevation (polygon rims) and with lower elevation (low-center polygons). Polygon rims presented the lowest water table and showed the lowest thaw depth and the highest ER (a seasonal average of 1 μmol CO2 m-2 s-1), almost double than the ER in the low-center polygons (a seasonal average of 0.6 μmol CO2 m-2 s-1). The microtopographic gradient from polygon rims to low-centers led to a very consistent pattern in pH, EC, ORP and dissolved CO2, with low-centers presenting the highest pH, the highest EC, the highest dissolved CO2, and the lowest ORP. Based on vegetation measurements, we also showed that microtopography controls the lateral flow of organic matter, and that vascular plant material accumulates as litter in the lower elevation areas, possibly contributing to the higher dissolved CO2 in the low-center polygons. Microtopography, and the ramifications discussed here, should be considered when evaluating landscape scale environmental controls on carbon dynamics in the Arctic.

  14. Ecosystem carbon balance and vulnerability of soil carbon in a drained lower coastal plain loblolly pine plantation

    NASA Astrophysics Data System (ADS)

    Noormets, A.; McNulty, S. G.; Gavazzi, M.; Domec, J.; Sun, G.; King, J. S.; Chen, J.

    2008-12-01

    Coastal plain ecosystems comprise only about 5% of total U.S. land area, but the soil carbon density in these ecosystems is about 10-fold higher than in upland ecosystems and they may therefore play a disproportionately large role in ecosystem-climate feedbacks. The role of these ecosystems in continental carbon exchange is largely unclear because they have been underrepresented in flux monitoring networks. We monitored ecosystem carbon fluxes and pools for three years in two lower coastal plain loblolly pine plantations (3 and 17 years of age). The contribution of soil to ecosystem respiration decreased from over 90% immediately following a harvest to about 50% by age 17. The replenishment of soil C through litterfall exceeded heterotrophic respiration (Rh) by 2-9% in two years, but was 30% lower than Rh in the third year, highlighting the vulnerability of soil carbon stocks to interannual climate variability.

  15. Underwater Optics in Sub-Antarctic and Antarctic Coastal Ecosystems.

    PubMed

    Huovinen, Pirjo; Ramírez, Jaime; Gómez, Iván

    2016-01-01

    Understanding underwater optics in natural waters is essential in evaluating aquatic primary production and risk of UV exposure in aquatic habitats. Changing environmental conditions related with global climate change, which imply potential contrasting changes in underwater light climate further emphasize the need to gain insights into patterns related with underwater optics for more accurate future predictions. The present study evaluated penetration of solar radiation in six sub-Antarctic estuaries and fjords in Chilean North Patagonian region (39-44°S) and in an Antarctic bay (62°S). Based on vertical diffuse attenuation coefficients (Kd), derived from measurements with a submersible multichannel radiometer, average summer UV penetration depth (z1%) in these water bodies ranged 2-11 m for UV-B (313 nm), 4-27 m for UV-A (395 nm), and 7-30 m for PAR (euphotic zone). UV attenuation was strongest in the shallow Quempillén estuary, while Fildes Bay (Antarctica) exhibited the highest transparency. Optically non-homogeneous water layers and seasonal variation in transparency (lower in winter) characterized Comau Fjord and Puyuhuapi Channel. In general, multivariate analysis based on Kd values of UV and PAR wavelengths discriminated strongly Quempillén estuary and Puyuhuapi Channel from other study sites. Spatial (horizontal) variation within the estuary of Valdivia river reflected stronger attenuation in zones receiving river impact, while within Fildes Bay a lower spatial variation in water transparency could in general be related to closeness of glaciers, likely due to increased turbidity through ice-driven processes. Higher transparency and deeper UV-B penetration in proportion to UV-A/visible wavelengths observed in Fildes Bay suggests a higher risk for Antarctic ecosystems reflected by e.g. altered UV-B damage vs. photorepair under UV-A/PAR. Considering that damage repair processes often slow down under cool temperatures, adverse UV impact could be further

  16. Underwater Optics in Sub-Antarctic and Antarctic Coastal Ecosystems

    PubMed Central

    Huovinen, Pirjo; Ramírez, Jaime; Gómez, Iván

    2016-01-01

    Understanding underwater optics in natural waters is essential in evaluating aquatic primary production and risk of UV exposure in aquatic habitats. Changing environmental conditions related with global climate change, which imply potential contrasting changes in underwater light climate further emphasize the need to gain insights into patterns related with underwater optics for more accurate future predictions. The present study evaluated penetration of solar radiation in six sub-Antarctic estuaries and fjords in Chilean North Patagonian region (39–44°S) and in an Antarctic bay (62°S). Based on vertical diffuse attenuation coefficients (Kd), derived from measurements with a submersible multichannel radiometer, average summer UV penetration depth (z1%) in these water bodies ranged 2–11 m for UV-B (313 nm), 4–27 m for UV-A (395 nm), and 7–30 m for PAR (euphotic zone). UV attenuation was strongest in the shallow Quempillén estuary, while Fildes Bay (Antarctica) exhibited the highest transparency. Optically non-homogeneous water layers and seasonal variation in transparency (lower in winter) characterized Comau Fjord and Puyuhuapi Channel. In general, multivariate analysis based on Kd values of UV and PAR wavelengths discriminated strongly Quempillén estuary and Puyuhuapi Channel from other study sites. Spatial (horizontal) variation within the estuary of Valdivia river reflected stronger attenuation in zones receiving river impact, while within Fildes Bay a lower spatial variation in water transparency could in general be related to closeness of glaciers, likely due to increased turbidity through ice-driven processes. Higher transparency and deeper UV-B penetration in proportion to UV-A/visible wavelengths observed in Fildes Bay suggests a higher risk for Antarctic ecosystems reflected by e.g. altered UV-B damage vs. photorepair under UV-A/PAR. Considering that damage repair processes often slow down under cool temperatures, adverse UV impact could be

  17. Underwater Optics in Sub-Antarctic and Antarctic Coastal Ecosystems.

    PubMed

    Huovinen, Pirjo; Ramírez, Jaime; Gómez, Iván

    2016-01-01

    Understanding underwater optics in natural waters is essential in evaluating aquatic primary production and risk of UV exposure in aquatic habitats. Changing environmental conditions related with global climate change, which imply potential contrasting changes in underwater light climate further emphasize the need to gain insights into patterns related with underwater optics for more accurate future predictions. The present study evaluated penetration of solar radiation in six sub-Antarctic estuaries and fjords in Chilean North Patagonian region (39-44°S) and in an Antarctic bay (62°S). Based on vertical diffuse attenuation coefficients (Kd), derived from measurements with a submersible multichannel radiometer, average summer UV penetration depth (z1%) in these water bodies ranged 2-11 m for UV-B (313 nm), 4-27 m for UV-A (395 nm), and 7-30 m for PAR (euphotic zone). UV attenuation was strongest in the shallow Quempillén estuary, while Fildes Bay (Antarctica) exhibited the highest transparency. Optically non-homogeneous water layers and seasonal variation in transparency (lower in winter) characterized Comau Fjord and Puyuhuapi Channel. In general, multivariate analysis based on Kd values of UV and PAR wavelengths discriminated strongly Quempillén estuary and Puyuhuapi Channel from other study sites. Spatial (horizontal) variation within the estuary of Valdivia river reflected stronger attenuation in zones receiving river impact, while within Fildes Bay a lower spatial variation in water transparency could in general be related to closeness of glaciers, likely due to increased turbidity through ice-driven processes. Higher transparency and deeper UV-B penetration in proportion to UV-A/visible wavelengths observed in Fildes Bay suggests a higher risk for Antarctic ecosystems reflected by e.g. altered UV-B damage vs. photorepair under UV-A/PAR. Considering that damage repair processes often slow down under cool temperatures, adverse UV impact could be further

  18. A spatial analysis of cultural ecosystem service valuation by regional stakeholders in Florida: a coastal application of the social values for ecosystem services (SolVES) tool

    USGS Publications Warehouse

    Coffin, Alisa W.; Swett, Robert A.; Cole, Zachary D.

    2012-01-01

    Livelihoods and lifestyles of people throughout the world depend on essential goods and services provided by marine and coastal ecosystems. However, as societal demand increases and available ocean and coastal space diminish, better methods are needed to spatially and temporally allocate ocean and coastal activities such as shipping, energy production, tourism, and fishing. While economic valuation is an important mechanism for doing so, cultural ecosystem services often do not lend themselves to this method. Researchers from the U.S. Geological Survey are working collaboratively with the Florida Sea Grant College Program to map nonmonetary values of cultural ecosystem services for a pilot area (Sarasota Bay) in the Gulf of Mexico. The research seeks to close knowledge gaps about the attitudes and perceptions, or nonmonetary values, held by coastal residents toward cultural ecosystem services, and to adapt related, terrestrial-based research methods to a coastal setting. A critical goal is to integrate research results with coastal and marine spatial planning applications, thus making them relevant to coastal planners and managers in their daily efforts to sustainably manage coastal resources. Using information about the attitudes and preferences of people toward places and uses in the landscape, collected from value and preference surveys, the USGS SolVES 2.0 tool will provide quantitative models to relate social values, or perceived nonmonetary values, assigned to locations by survey respondents with the underlying environmental characteristics of those same locations. Project results will increase scientific and geographic knowledge of how Sarasota Bay residents value their area’s cultural ecosystem services.

  19. Climate change impacts on U.S. coastal and marine ecosystems

    USGS Publications Warehouse

    Scavia, Donald; Field, John C.; Boesch, Donald F.; Buddemeier, Robert W.; Burkett, Virginia; Cayan, Daniel R.; Fogarty, Michael; Harwell, Mark A.; Howarth, Robert W.; Mason, Curt; Reed, Denise J.; Royer, Thomas C.; Sallenger, Asbury H.; Titus, James G.

    2002-01-01

    Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction

  20. Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem.

    PubMed

    Carbone, Mariah S; Park Williams, A; Ambrose, Anthony R; Boot, Claudia M; Bradley, Eliza S; Dawson, Todd E; Schaeffer, Sean M; Schimel, Joshua P; Still, Christopher J

    2013-02-01

    Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover ~15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud-driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed ~3-fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature. PMID:23504786

  1. Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem.

    PubMed

    Carbone, Mariah S; Park Williams, A; Ambrose, Anthony R; Boot, Claudia M; Bradley, Eliza S; Dawson, Todd E; Schaeffer, Sean M; Schimel, Joshua P; Still, Christopher J

    2013-02-01

    Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover ~15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud-driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed ~3-fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature.

  2. Balancing the Need to Develop Coastal Areas with the Desire for an Ecologically Functioning Coastal Environment: Is Net Ecosystem Improvement Possible?

    SciTech Connect

    Thom, Ronald M.; Williams, Greg D.; Diefenderfer, Heida L.

    2005-03-01

    The global human population is growing exponentially, a majority lives and works near the coast, and coastal commerce and development are critical to the economies of many nations. Hence, coastal areas will continue to be a major focus of development and economic activity. People want and need the economics provided by coastal development but they also want and need the fisheries and social commodities supported by estuarine and coastal ecosystems. Because of these facts, we view the challenge of balancing coastal development with enhancing nearshore marine and estuarine ecosystems (i.e., net ecosystem improvement) as the top priority for coastal researchers in this century. Our restoration research in Pacific Northwest estuaries and participation in the design and mitigation of nearshore structures has largely dealt with these competing goals. To this end, we have applied conceptual models, comprehensive assessment methods, and principles of restoration ecology, conservation biology and adaptive management to incorporate science into decisions about use of estuarine systems. Case studies of Bainbridge Island and the Columbia River demonstrate the use of objective, defensible methods to prioritize estuarine areas for preservation, conservation and restoration. Case studies of Clinton, WA and Port Townsend, WA demonstrate the incorporation of an ecological perspective and technological solutions into design projects that affect the nearshore. Adaptive management has allowed coastal development and restoration uncertainties to be better evaluated, with the information used to improve management decisions. Although unproven on a large scale, we think that these kinds of methods can contribute to the net improvement of already degraded ecosystems. The challenges include applied science to understand the issues, education, incentives, empirical data (not rehashing of reviews), cumulative impact analysis, and an effective adaptive management program. Because the option

  3. Petroleum geology of Azov-Black Sea region

    SciTech Connect

    Lukin, A.; Trofimenko, G.

    1995-08-01

    The main features of tectonics, stratigraphy, paleogeography, lithology, hydrogeology, geothermics and hydrocarbon-bearingness of Azov-Black Sea Region are characterized on the basis of present-day data. Among the most prospective petroliferous complexes one ought to mention: Paleozoic (S - D - C{sub 1}) of Near-Dobrudga foredeep, Triassic - Jurassic of the Black Sea (shelf and continental slope); Lower Cretaceous of the various parts of the Region; Upper Cretaceous of the Black Sea shelf; Paleocene-Eocene of Azov Sea. In addition certain prospects are connected with Precambrian and Paleozoic basements within conjunction zone between Eastern-Europe platform and Scythian plate. Geodynamic evolution of the Region is considered with determination of tension and compression stages and characteristic of the main regularities of diapirs, mud volcanos, swells, horsts and grabens distribution. There determined the most interesting types of hydrocarbon traps connected with various tectonic forms, river and deltaic channels, bars, conturites, carbonate reefs, etc. Paleogeothermic and paleogeodynamic reconstructions allow to determine the main phases of oil and gas accumulation. The most prospective oil-gas-bearing zones and areas are mapped.

  4. Coastal Wetland Ecosystem Responses to Climate Change: the Role of Macroclimatic Drivers along the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Osland, M. J.; Enwright, N.; Day, R. H.; Gabler, C. A.; Stagg, C. L.; From, A. S.

    2014-12-01

    Across the globe, macroclimatic drivers greatly influence coastal wetland ecosystem structure and function. However, changing macroclimatic conditions are rarely incorporated into coastal wetland vulnerability assessments. Here, we quantify the influence of macroclimatic drivers upon coastal wetland ecosystems along the Northern Gulf of Mexico (NGOM) coast. From a global perspective, the NGOM coast provides several excellent opportunities to examine the effects of climate change upon coastal wetlands. The abundant coastal wetland ecosystems in the region span two major climatic gradients: (1) a winter temperature gradient that crosses temperate to tropical climatic zones; and (2) a precipitation gradient that crosses humid to semi-arid zones. We present analyses where we used geospatial data (historical climate, hydrology, and coastal wetland coverage) and field data (soil, elevation, and plant community composition and structure) to quantify climate-mediated ecological transitions. We identified winter climate and precipitation-based thresholds that separate mangrove forests from salt marshes and vegetated wetlands from unvegetated wetlands, respectively. We used simple distribution and abundance models to evaluate the potential ecological effects of alternative future climate change scenarios. Our results illustrate and quantify the importance of macroclimatic drivers and indicate that climate change could result in landscape-scale changes in coastal wetland ecosystem structure and function. These macroclimate-mediated ecological changes could affect the supply of some ecosystem goods and services as well as the resilience of these ecosystems to stressors, including accelerated sea level rise. Collectively, our findings highlight the importance of incorporating macroclimatic drivers within future-focused coastal wetland vulnerability assessments.

  5. Interactive effects of global and regional change on a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Reise, Karsten; van Beusekom, Justus E. E.

    2008-03-01

    Shallow waters and lowland meet at the same level in the Wadden Sea, but are separated by walls of coastal defense. What are the prospects of this coastal ecosystem in a warmer world? We focus on tidal waters and inshore sedimentary bottoms, expect nutrient supply from land to decline and species introductions, temperature and sea level to rise. The effects are interrelated and will have an increasing likelihood of abrupt and irreversible developments. The biotic interactions are hardly predictable but we anticipate the following changes to be more likely than others: blooms of phytoplankton will be weak mainly because of increasing pelagic and benthic grazing pressure, both facilitated by warming. Possibly birds feeding on mollusks will encounter decreasing resource availability while fish-eaters benefit. Extensive reefs of Pacific oysters could facilitate aquatic macrophytes. Sea level rise and concomitant hydrodynamics above tidal flats favor well-anchored suspension feeders as well as burrowing fauna adapted to dynamic permeable sand. With high shares of immigrants from overseas and the south, species richness will increase; yet the ecosystem stability may become lower. We suggest that for the next decades invasions of introduced species followed by warming and declining nutrient supply will be the most pressing factor on the changes in the Wadden Sea ecosystem, and the effects of sea level rise to be the key issue on the scale of the whole century and beyond.

  6. Invasiveness of Galenia pubescens (Aizoaceae): A new threat to Mediterranean-climate coastal ecosystems

    NASA Astrophysics Data System (ADS)

    García-de-Lomas, Juan; Cózar, Andrés; Dana, Elías D.; Hernández, Ignacio; Sánchez-García, Íñigo; García, Carlos M.

    2010-01-01

    Blanket weed Galenia pubescens (Aizoaceae) is a prostrate perennial species native to South Africa. The naturalization in other Mediterranean-climate ecosystems has recently been noted in South-western Australia, California, and Southern Spain. In this paper, the invasiveness of G. pubescens was evaluated by testing a variety of stochastic and biological features and by studying the incipient impacts in two well-differentiated coastal ecosystems of Southern Spain- dunes and salty wetlands. Several features of G. pubescens were found as indicators of invasiveness: (i) the genus Galenia was not represented in native flora, and the majority of the species of the family (Aizoaceae) were alien or invasive; (ii) the growth type of G. pubescens (dense prostrate mats) was not found among the native species; (iii) resprouting ability, growth rates and seed production were within the range of well-known invaders such as Carpobrotus spp and Mesembryanthemum crystallinum L.; (iv) the overlapping in flowering periods (73-94%) with those of native flora and the effective shading (99%) of the G. pubescens mats were considerably high. A significant lower native richness and Shannon's diversity index was found in the invaded plant communities. These results demand the consideration of G. pubescens into the management plans of the Mediterranean-climate coastal ecosystems in order to prevent further dispersal and impacts.

  7. Effect of rising sea level on runoff and groundwater discharge to coastal ecosystems

    USGS Publications Warehouse

    Nuttle, W.K.; Portnoy, J.W.

    1992-01-01

    Rising sea level can cause an increase in surface runoff from coastal areas by raising the watertable and thus increasing the incidence of saturated soil conditions in low-lying areas. As surface runoff increases, less rainfall will infiltrate into the ground and groundwater discharge to the coast will decrease. The link between sea level rise and runoff is critically dependent on the sensitivity of surface runoff to changes in the elevation of the watertable. A significant relation between the two is demonstrated for a coastal watershed on Cape Cod, where it is estimated that a 10 cm rise in the watertable will increase surface runoff by 70% and decrease groundwater discharge by 20%. Effects on near-shore ecosystems include changes in nutrient fluxes and in the salinity of the sediments.

  8. Integrating Climate Science, Ecosystem Modeling, and Resource Management to Develop a Coastal Master Plan for Louisiana

    NASA Astrophysics Data System (ADS)

    Groves, D.; Sharon, C.; Knopman, D.

    2012-12-01

    The Coastal Protection and Restoration Authority of Louisiana (CPRA) asked the RAND Corporation to develop a new Planning Tool to support Louisiana's 2012 Coastal Master Plan. The Planning Tool integrates climate science, ecosystem modeling, and resource management planning to comparing different risk reduction and coastal restoration projects and for developing groups of projects, or alternatives, for consideration for the Master Plan. The Planning Tool presents its results in an interactive visualization environment to support deliberation by CPRA decisionmakers and stakeholders. The Planning Tool uses new standardized estimates of project costs, planning and construction duration, and other project attributes along with science-based model estimates of project effects on risk reduction, land building, and ecosystem services. The Planning Tool considers how outcomes would differ under different future scenarios reflecting climate change, demographics, and other uncertainties. The Planning Tool uses a constrained optimization algorithm to develop a range of alternatives that meet CPRA's desired outcomes with respect to future flood risk reduction, coast-wide land area, and other decision criteria. Beginning in 2011, CPRA used the Planning Tool to compare hundreds of possible hurricane flood risk reduction and coastal restoration projects under several scenarios of long-term future conditions. CPRA next used the Planning Tool to develop and analyze hundreds of different alternatives that together would best meet Louisiana's goals of reducing hurricane flood risk and achieving a sustainable landscape. The Planning Tool then enabled CPRA to specify planning parameters such as total available funding, funding splits between risk reduction and restoration projects, and minimum levels of projected achievement of goals for ecosystem service and risk reduction decision criteria. Using this information, the Planning Tool then identified how those alternatives could be

  9. [Risk assessment of coastal ecosystem in Beibu Gulf, Guangxi of South China].

    PubMed

    Chen, Zuo-Zhi; Cai, Wen-Gui; Xu, Shan-Nan; Huang, Zi-Rong; Qiu, Yong-Song

    2011-11-01

    Based on the marine ecological investigation in the coastal area of Beibu Gulf, Guangxi in September 2009, a GIS-based evaluation was conducted on the present status of ecological environment quality, including seawater quality, nutrient level, biomass, primary productivity, biodiversity, and ecological buffer capacity, in the area in autumn, and the integrated ecological risk index (ERI) was adopted to assess the risk of the coastal ecosystem in the Gulf. In September 2009, the study area had a better ecological environment quality. Most of the risk indicators were at medium or lower level, and the total area was overall at low ecological risk level. The ERI showed that there was an obvious spatial heterogeneity in the distribution of the ecological risk. The nearer to the harbors, the higher the risk was.

  10. Current Status and Future Prospects for the Assessment of Marine and Coastal Ecosystem Services: A Systematic Review

    PubMed Central

    Liquete, Camino; Piroddi, Chiara; Drakou, Evangelia G.; Gurney, Leigh; Katsanevakis, Stelios; Charef, Aymen; Egoh, Benis

    2013-01-01

    Background Research on ecosystem services has grown exponentially during the last decade. Most of the studies have focused on assessing and mapping terrestrial ecosystem services highlighting a knowledge gap on marine and coastal ecosystem services (MCES) and an urgent need to assess them. Methodology/Principal Findings We reviewed and summarized existing scientific literature related to MCES with the aim of extracting and classifying indicators used to assess and map them. We found 145 papers that specifically assessed marine and coastal ecosystem services from which we extracted 476 indicators. Food provision, in particular fisheries, was the most extensively analyzed MCES while water purification and coastal protection were the most frequently studied regulating and maintenance services. Also recreation and tourism under the cultural services was relatively well assessed. We highlight knowledge gaps regarding the availability of indicators that measure the capacity, flow or benefit derived from each ecosystem service. The majority of the case studies was found in mangroves and coastal wetlands and was mainly concentrated in Europe and North America. Our systematic review highlighted the need of an improved ecosystem service classification for marine and coastal systems, which is herein proposed with definitions and links to previous classifications. Conclusions/Significance This review summarizes the state of available information related to ecosystem services associated with marine and coastal ecosystems. The cataloging of MCES indicators and the integrated classification of MCES provided in this paper establish a background that can facilitate the planning and integration of future assessments. The final goal is to establish a consistent structure and populate it with information able to support the implementation of biodiversity conservation policies. PMID:23844080

  11. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem.

    PubMed

    Cornwall, Christopher E; Eddy, Tyler D

    2015-02-01

    Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer-reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators.

  12. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem.

    PubMed

    Cornwall, Christopher E; Eddy, Tyler D

    2015-02-01

    Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer-reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators. PMID:25354555

  13. Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea

    NASA Astrophysics Data System (ADS)

    Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.

    2014-01-01

    Nutrient dynamics based on field observations made along the eastern Hainan Island during the period 2006-2009 were investigated to understand nutrient biogeochemical processes, and to provide an overview of human perturbations of coastal ecosystems in this tropical region. The rivers showed seasonal variations in nutrient concentrations, with enrichment of dissolved inorganic nitrogen and dissolved silicate, and depletion of PO43-. High riverine concentrations of nitrate mainly originated from agricultural fertilizer inputs. The DIN : PO43- ratios ranged from 37 to 1063, suggesting preferential depletion of PO43- relative to nitrogen in rivers. Chemical weathering in the drainage area might explain the high levels of dissolved silicate. Aquaculture ponds contained high concentrations of NH4+ and dissolved organic nitrogen. The particulate phosphorus concentrations in the study area were lower than those reported for estuaries worldwide. The particulate silicate levels in rivers and lagoons were lower than the global average level. Nutrient biogeochemistry in coastal areas was affected by human activities (e.g., aquaculture, agriculture), and by natural phenomena including typhoons. The nutrient concentrations in coastal waters were low because of dispersion of land-derived nutrients in the sea. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes are magnified by estuarine processes (e.g., regeneration, desorption) in estuaries and Laoyehai Lagoon, but not in Xiaohai Lagoon. Riverine and groundwater inputs were the major sources of nutrients to Xiaohai and Laoyehai lagoons, respectively, and riverine inputs and aquaculture effluents were the major sources for the eastern coast of Hainan Island. Nutrient inputs to the coastal ecosystem increased with typhoon-induced runoff of rainwater, elucidating the important influence of typhoons on small tropical rivers.

  14. Nutrient dynamics in tropical rivers, estuarine-lagoons, and coastal ecosystems along the eastern Hainan Island

    NASA Astrophysics Data System (ADS)

    Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.

    2013-06-01

    Nutrient dynamics were studied along the eastern Hainan Island based on field observations during 2006-2009, to understand nutrient biogeochemical processes and to have an overview of human perturbations on coastal ecosystems in this tropical region. The concentrations of nutrients in the rivers had seasonal variations enriched with dissolved inorganic nitrogen (DIN). High riverine concentrations of nitrate were mainly originated from agricultural fertilizer input. The ratios of DIN : PO43- ranged from 37 to 1063, suggesting preferential PO43- relative to nitrogen in the rivers. The areal yields of dissolved silicate (DSi) varied from 76 to 448 × 103 mol km-2 yr-1 due to erosion over the drainage area, inducing high levels of DSi among worldwide tropical systems. Aquaculture ponds contained high concentrations of NH4+ (up to 157 μM) and DON (up to 130 μM). Particulate phosphorus concentrations (0.5 ∼1.4 μM) were in lower level comparied with estuaries around the world. Particulate silicate levels in rivers and lagoons were lower than global average level. Nutrient biogeochemistry in coastal areas were affected by human activities (e.g. aquaculture, agriculture), as well as natural events such as typhoon. Nutrient concentrations were low because open sea water dispersed land-derived nutrients. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes would be magnified by estuarine processes (e.g. regeneration, desorption) in the Wenchanghe/Wenjiaohe Estuary, Wanquan River estuary, and the Laoyehai Lagoon except in the Xiaohai Lagoon. Riverine and groundwater input were the major sources of nutrients to the Xiaohai Lagoon and the Laiyehai Lagoon, respectively. Riverine input and aquaculture effluent were the major sources of nutrients to the eastern coastal of Hainan Island. Nutrient inputs to the coastal ecosystem can be increased by typhoon-induced runoff of rainwater, and phytoplankton bloom in the sea would be

  15. Interacting coastal based ecosystem services: recreation and water quality in Puget Sound, WA.

    PubMed

    Kreitler, Jason; Papenfus, Michael; Byrd, Kristin; Labiosa, William

    2013-01-01

    Coastal recreation and water quality are major contributors to human well-being in coastal regions. They can also interact, creating opportunities for ecosystem based management, ecological restoration, and water quality improvement that can positively affect people and the environment. Yet the effect of environmental quality on human behavior is often poorly quantified, but commonly assumed in coastal ecosystem service studies. To clarify this effect we investigate a water quality dataset for evidence that environmental condition partially explains variation in recreational visitation, our indicator of human behavior. In Puget Sound, WA, we investigate variation in visitation in both visitation rate and fixed effects (FE) models. The visitation rate model relates the differences in annual recreational visitation among parks to environmental conditions, park characteristics, travel cost, and recreational demand. In our FE model we control for all time-invariant unobserved variables and compare monthly variation at the park level to determine how water quality affects visitation during the summer season. The results of our first model illustrate how visitation relates to various amenities and costs. In the FE analysis, monthly visitation was negatively related to water quality while controlling for monthly visitation trends. This indicates people are responding to changes in water quality, and an improvement would yield an increase in the value of recreation. Together, these results could help in prioritizing water quality improvements, could assist the creation of new parks or the modification of existing recreational infrastructure, and provide quantitative estimates for the expected benefits from potential changes in recreational visitation and water quality improvements. Our results also provide an example of how recreational visitation can be quantified and used in ecosystem service assessments.

  16. Interacting coastal based ecosystem services: recreation and water quality in Puget Sound, WA

    USGS Publications Warehouse

    Kreitler, Jason; Papenfus, Michael; Byrd, Kristin; Labiosa, William

    2013-01-01

    Coastal recreation and water quality are major contributors to human well-being in coastal regions. They can also interact, creating opportunities for ecosystem based management, ecological restoration, and water quality improvement that can positively affect people and the environment. Yet the effect of environmental quality on human behavior is often poorly quantified, but commonly assumed in coastal ecosystem service studies. To clarify this effect we investigate a water quality dataset for evidence that environmental condition partially explains variation in recreational visitation, our indicator of human behavior. In Puget Sound, WA, we investigate variation in visitation in both visitation rate and fixed effects (FE) models. The visitation rate model relates the differences in annual recreational visitation among parks to environmental conditions, park characteristics, travel cost, and recreational demand. In our FE model we control for all time-invariant unobserved variables and compare monthly variation at the park level to determine how water quality affects visitation during the summer season. The results of our first model illustrate how visitation relates to various amenities and costs. In the FE analysis, monthly visitation was negatively related to water quality while controlling for monthly visitation trends. This indicates people are responding to changes in water quality, and an improvement would yield an increase in the value of recreation. Together, these results could help in prioritizing water quality improvements, could assist the creation of new parks or the modification of existing recreational infrastructure, and provide quantitative estimates for the expected benefits from potential changes in recreational visitation and water quality improvements. Our results also provide an example of how recreational visitation can be quantified and used in ecosystem service assessments.

  17. Managing wastewater effluent to enhance aquatic receiving ecosystem productivity: a coastal lagoon in Western Australia.

    PubMed

    Machado, Daniel A; Imberger, Jörg

    2012-05-30

    Large amounts of waste are generated in urban centers that if properly managed could promote ecological services. In order to promote nutrient cycling and productivity without endangering aquatic ecosystems, management of wastewater treatment and effluent discharges to receiving waters must be assessed on a case-by-case basis. We applied this premise to examine a municipal wastewater treated effluent discharge in a shallow oligotrophic coastal lagoon in Western Australia. Three-dimensional hydrodynamic-ecological modeling (ELCOM-CAEDYM) was used to assess the reaction of ecosystem for effluent quality. Two scenarios were evaluated for the summer 2000-2001 period, the actual or "current" (conventional secondary treatment) and an "alternative" (involving substitution of biological nutrient removal by advanced treatment). The residence time of the simulated numerical domain averaged 8.4 ± 1.3 days. For the current scenario the model successfully estimated phytoplankton biomass, as chlorophyll-a concentration (Chl-a), that is within field-measured ranges and previously recorded levels. The model was able to reproduce nitrogen as the main limiting nutrient for primary production in the coastal ecosystem. Simulated surface Chl-a means were 0.26 (range 0.19-0.38) μg Chl-a/L for the current scenario and 0.37 (range 0.19-0.67) μg Chl-a/L for the alternative one. Comparison of the alternative scenario with field-measured Chl-a levels suggests moderate primary production increase (16-42%), within local historical variability. These results, suggest that such a scenario could be used, as part of a comprehensive wastewater management optimization strategy, to foster receiving ecosystem's productivity and related ecological services maintaining its oligotrophic state. PMID:22322127

  18. Land-margin ecosystem hydrologic data for the coastal Everglades, Florida, water years 1996-2012

    USGS Publications Warehouse

    Anderson, Gordon H.; Smith, Thomas J.; Balentine, Karen M.

    2014-01-01

    Mangrove forests and salt marshes dominate the landscape of the coastal Everglades (Odum and McIvor, 1990). However, the ecological effects from potential sea-level rise and increased water flows from planned freshwater Everglades restoration on these coastal systems are poorly understood. The National Park Service (NPS) proposed the South Florida Global Climate Change Project (SOFL-GCC) in 1990 to evaluate climate change and the effect from rising sea levels on the coastal Everglades, particularly at the marsh/mangrove interface or ecotone (Soukup and others, 1990). A primary objective of SOFL-GCC project was to monitor and synthesize the hydrodynamics of the coastal Everglades from the upstream freshwater marsh to the downstream estuary mangrove. Two related hypotheses were set forward (Nuttle and Cosby, 1993): 1. There exists hydrologic conditions (tide, local rainfall, and upstream water deliveries), which characterize the location of the marsh/mangrove ecotone along the marine and terrestrial hydrologic gradient; and 2. The marsh/mangrove ecotone is sensitive to fluctuations in sea level and freshwater inflow from inland areas. Hydrologic monitoring of the SOFL-GCC network began in 1995 after startup delays from Hurricane Andrew (August 1992) and organizational transfers from the NPS to the National Biological Survey (October 1993) and the merger with the U.S. Geological Survey (USGS) Biological Research Division in 1996 (Smith, 2004). As the SOFL-GCC project progressed, concern by environmental scientists and land managers over how the diversion of water from Everglades National Park would affect the restoration of the greater Everglades ecosystem. Everglades restoration scenarios were based on hydrodynamic models, none of which included the coastal zone (Fennema and others, 1994). Modeling efforts were expanded to include the Everglades coastal zone (Schaffranek and others, 2001) with SOFL-GCC hydrologic data assisting the ecological modeling needs. In 2002

  19. Analysis of trophic networks and carbon flows in south-eastern Baltic coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Tomczak, Maciej T.; Müller-Karulis, Bärbel; Järv, Leili; Kotta, Jonne; Martin, Georg; Minde, Atis; Põllumäe, Arno; Razinkovas, Arturas; Strake, Solvita; Bucas, Martynas; Blenckner, Thorsten

    2009-04-01

    Carbon flows in five south-eastern Baltic coastal ecosystems (Puck Bay, Curonian Lagoon, Lithuanian coast, Gulf of Riga coast and Pärnu Bay) were compared on the basis of ECOPATH models using 12 common functional groups. The studied systems ranged from the hypertrophic Curonian Lagoon to the mesotrophic Gulf of Riga coast. Interestingly, we found that macrophytes were not consumed by grazers, but rather channelled into the detritus food chain. In all ecosystems fisheries had far reaching impacts on their target species and on the food-web in general. In particular, benthic food-webs were partly affected by indirect fisheries effects. For example, fisheries tend to change the biomass of piscivorous fish, causing a cascading effect on benthivorous fish and macrozoobenthos. These cascades are ecosystem specific and need to be considered when using benthic invertebrates as productivity and eutrophication indicators. Odum’s maturity attributes allowed a ranking of costal ecosystems according to their maturity. Namely, the community development decreased in the following order: Pärnu Bay > Gulf of Riga coast > Lithuanian coast > Puck Bay > Curonian Lagoon.

  20. Environmental conditions and pesticide pollution of two coastal ecosystems in the Gulf of California, Mexico.

    PubMed

    Reyes, G G; Villagrana L, C; Alvarez, G L

    1999-11-01

    In December 1997 and April and September 1998, water temperature, salinity, dissolved oxygen, nutrients, chlorophyll, and pesticide residues were determined in two coastal ecosystems of Sinaloa, NW Mexico: Ensenada del Pabellón and Bahía de Santa María. These two are considered to be among the greatest shrimp producers in the region. Temperature, salinity, and dissolved oxygen were similar to those of other ecosystems of this region: high temperatures and salinity in spring and summer (dry season) and lower in winter and the rainy season. Levels of nitrites and phosphates and chlorophyll concentration were relatively higher than those of other ecosystems nearby, probably due to fertilizers used in the agricultural lands surrounding the water bodies studied. The pesticides more frequently detected were BHCalpha, aldrin, endosulfan and parathion. In some cases, pesticides forbidden by Mexican regulations were detected. These results indicate that the ecosystems studied are in a warning condition, because severe biochemical and physiological alterations have been reported in crustaceans exposed to pesticides. Therefore these pesticides could be one cause of the slow growth, diverse pathologies, and mortality in shrimp that have been reported in recent years.

  1. NABS Plenary: Shifts in River Dynamics Translate to Shifts in Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Rabalais, N. N.

    2005-05-01

    Certainly the Mississippi River is not what it was in the early 1800s when settlers crossed the expanse of the continent. The locks, dams and reservoirs along its tributaries have changed the quantity and quality of flow and its constituents. Humans have altered the landscape, river channel and flood plain. Pollutants and contaminants are added along the way. The recipient of the changed effluent is the northern Gulf of Mexico. As the river and the processing of materials along the transit have changed, so has the adjacent continental shelf ecosystem. There the long-evolved ecosystem is subject to different hydrology, somewhat in amount and certainly in frequency, altered nutrient loads, and altered sediment loads. The gradual changes over the last century and a half and acceleration of change in the watershed in the last half of the 20th century are paralleled by similar changes in the coastal ecosystem adjacent to the river effluents. Basic shifts have occurred in the ecosystem from the primary production base and its composition and subsequently through the trophic structure to the fisheries. Eutrophication has resulted, and widespread, severe seasonal hypoxia is now present on the continental shelf where all indicators point to its absence historically.

  2. Assessing the impact of edaphic factors on coastal ecosystem functions in a tropical island using electromagnetic-induction

    NASA Astrophysics Data System (ADS)

    Lynch, N. E.; Wuddivira, M.; Oatham, M.

    2013-12-01

    The small islands in the low-lying states of the Caribbean Basin are among the most vulnerable to sea level rise caused by climate change. Bequia, a tropical Grenadine island, is particularly susceptible due to its small land mass, limited natural resources and an economy that is touristic and marine based. Consultation with stakeholders on sustainable livelihoods revealed that degradation of the coastal ecosystem is occurring with progressing time. Consequently, the island is losing its beneficial ecosystem services and its natural attractiveness leading to declining revenue base, increasing food security risk and job losses. We propose that with sea level rise, soil salinity increases further inland leading to degradation of coastal zones and ecosystem functions. Using geophysical techniques and standard sampling procedures we observationally investigated the spatial and temporal impacts of soil salinization due to sea level changes on the ecosystem functions of five coastal areas in the seven square mile island of Bequia. We analyzed soil, tidal, rainfall data and historical aerial imagery to assess the impact of soil salinity on the ecosystem of Bequia. Our results show extreme seasonal salinity variability with increased salinity inland during the dry season months of January to May. This was significantly influenced by the fluctuation of seasonal water content and temperature. A complete time-based analysis ensures the development of adaptation strategies to coastal change for sustainable provisioning of ecosystem services for Bequia and other Caribbean Islands with minimum ecological and economic losses.

  3. A Model for Experiential Learning: Coastal Ecosystems of Micronesia in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Maloney, A. E.; Ladd, N.; Sachs, J. P.

    2013-12-01

    An intensive undergraduate course taught in Pohnpei (Federated States of Micronesia) June 22nd - July 19, 2013 through the University of Washington Study Abroad Program allowed students to intimately explore estuary, mangrove, seagrass, and coral habitat from a systems perspective. The curriculum was developed in 2010 and 2011 during a similar course taught in nearby Kosrae (Federated States of Micronesia). The course was based on field surveys of several sites from each habitat with assistance from local non-profit groups and Pohnpei government partners. Field surveys were supplemented by lectures from these local agencies or the course instructors. Classroom activities explored the connectivity of coastal ecosystems and how each habitat may be impacted by climate change. The instructors' tropical paleoclimate research objectives further supplemented the curriculum. Additionally, cultural activities facilitated an understanding of social interactions with coastal ecosystems. Students wrote field reports for each habitat and communicated the data to local agencies in an oral presentation. The class activities allowed students to engage in data analysis, interpretation, and communication while being immersed in the unique culture and environment of Micronesia.

  4. Integrating multiple spatial scales in the carrying capacity assessment of a coastal ecosystem for bivalve aquaculture

    NASA Astrophysics Data System (ADS)

    Guyondet, Thomas; Roy, Suzanne; Koutitonsky, Vladimir G.; Grant, Jon; Tita, Guglielmo

    2010-10-01

    A calibrated fine resolution physical-biogeochemical model coupled with a dynamic energy budget (DEB) is used to investigate the local and system scale interactions between a mussel farm and the receiving coastal ecosystem. Using a set of published parameters for the DEB, the coupled model reproduces quite accurately both the local mussel growth and its spatial distribution over the farm area. Mussel related process rates are also well reproduced, allowing the study of mussel/environment interactions. Results show the local importance of cultured mussels in the cycling of nitrogen within the cultivation area. Despite the strongly reduced influence exerted by the mussel farm at the scale of the entire system, the culture activity still has the ability to alter the structure of Grande-Entrée lagoon's ecosystem. The coupled model results show that the mussel stock could be greatly increased before reaching the maximum production capacity of Grande-Entrée lagoon. However, when the ecological aspect is accounted for, using model results along with objective criteria such as the depletion footprint curve, the overall carrying capacity of Grande-Entrée lagoon must be significantly reduced. The coupled fine scale numerical model developed for this study gives the opportunity to assess the ecological carrying capacity of a coastal region for shellfish culture accounting for both local and system scale processes.

  5. The impact of fisheries on the dynamics of commercial fish species in Barents Sea and the Sea of Azov, Russia: a historical perspective.

    PubMed

    Matishov, Gennady G; Denisov, Vladimir V; Dzhenyuk, Sergey L; Karamushko, Oleg V; Daler, Dag

    2004-02-01

    This article presents a description of the background material, and analyses used by UNEP-GIWA for the assessment of the Russian seas. It gives an overview of the development of fisheries over the last 100 years in the 2 Russian seas, the Barents and the Azov Sea. The major stages of fisheries development in the Barents and in the Azov Seas and the main reasons for their decreasing productivity are discussed. These 2 seas, with very different physical and geographical characteristics, both show similar trends in fish-catch dynamics. The natural fluctuations of marine ecosystems and anthropogenic interference with natural ecosystems functions have led to significant negative impact on ecosystem health and have resulted in a negative change in both the structure and the amounts of catches. The decreasing fish catch in the Russian seas has become a concern for the Russian Federation, and revised policies for the management of the Russian fisheries have been introduced. This policy document Concept of the Fishery Development in the Russian Federation for the Period up to the Year 2020 is presented and discussed.

  6. Invasive grasses, climate change, and exposure to storm-wave overtopping in coastal dune ecosystems.

    PubMed

    Seabloom, Eric W; Ruggiero, Peter; Hacker, Sally D; Mull, Jeremy; Zarnetske, Phoebe

    2013-03-01

    The world's coastal habitats are critical to human well-being, but are also highly sensitive to human habitat alterations and climate change. In particular, global climate is increasing sea levels and potentially altering storm intensities, which may result in increased risk of flooding in coastal areas. In the Pacific Northwest (USA), coastal dunes that protect the coast from flooding are largely the product of a grass introduced from Europe over a century ago (Ammophila arenaria). An introduced congener (A. breviligulata) is displacing A. arenaria and reducing dune height. Here we quantify the relative exposure to storm-wave induced dune overtopping posed by the A. breviligulata invasion in the face of projected multi-decadal changes in sea level and storm intensity. In our models, altered storm intensity was the largest driver of overtopping extent, however the invasion by A. breviligulata tripled the number of areas vulnerable to overtopping and posed a fourfold larger exposure than sea-level rise over multi-decadal time scales. Our work demonstrates the importance of a transdisciplinary approach that draws on insights from ecology, geomorphology, and civil engineering to assess the vulnerability of ecosystem services in light of global change. PMID:23504839

  7. Invasive grasses, climate change, and exposure to storm-wave overtopping in coastal dune ecosystems.

    PubMed

    Seabloom, Eric W; Ruggiero, Peter; Hacker, Sally D; Mull, Jeremy; Zarnetske, Phoebe

    2013-03-01

    The world's coastal habitats are critical to human well-being, but are also highly sensitive to human habitat alterations and climate change. In particular, global climate is increasing sea levels and potentially altering storm intensities, which may result in increased risk of flooding in coastal areas. In the Pacific Northwest (USA), coastal dunes that protect the coast from flooding are largely the product of a grass introduced from Europe over a century ago (Ammophila arenaria). An introduced congener (A. breviligulata) is displacing A. arenaria and reducing dune height. Here we quantify the relative exposure to storm-wave induced dune overtopping posed by the A. breviligulata invasion in the face of projected multi-decadal changes in sea level and storm intensity. In our models, altered storm intensity was the largest driver of overtopping extent, however the invasion by A. breviligulata tripled the number of areas vulnerable to overtopping and posed a fourfold larger exposure than sea-level rise over multi-decadal time scales. Our work demonstrates the importance of a transdisciplinary approach that draws on insights from ecology, geomorphology, and civil engineering to assess the vulnerability of ecosystem services in light of global change.

  8. Uncovering the volatile nature of tropical coastal marine ecosystems in a changing world.

    PubMed

    Exton, Dan A; McGenity, Terry J; Steinke, Michael; Smith, David J; Suggett, David J

    2015-04-01

    Biogenic volatile organic compounds (BVOCs), in particular dimethyl sulphide (DMS) and isoprene, have fundamental ecological, physiological and climatic roles. Our current understanding of these roles is almost exclusively established from terrestrial or oceanic environments but signifies a potentially major, but largely unknown, role for BVOCs in tropical coastal marine ecosystems. The tropical coast is a transition zone between the land and ocean, characterized by highly productive and biodiverse coral reefs, seagrass beds and mangroves, which house primary producers that are amongst the greatest emitters of BVOCs on the planet. Here, we synthesize our existing understanding of BVOC emissions to produce a novel conceptual framework of the tropical marine coast as a continuum from DMS-dominated reef producers to isoprene-dominated mangroves. We use existing and previously unpublished data to consider how current environmental conditions shape BVOC production across the tropical coastal continuum, and in turn how BVOCs can regulate environmental stress tolerance or species interactions via infochemical networks. We use this as a framework to discuss how existing predictions of future tropical coastal BVOC emissions, and the roles they play, are effectively restricted to present day 'baseline' trends of BVOC production across species and environmental conditions; as such, there remains a critical need to focus research efforts on BVOC responses to rapidly accelerating anthropogenic impacts at local and regional scales. We highlight the complete lack of current knowledge required to understand the future ecological functioning of these important systems, and to predict whether feedback mechanisms are likely to regulate or exacerbate current climate change scenarios through environmentally and ecologically mediated changes to BVOC budgets at the ecosystem level.

  9. Uncovering the volatile nature of tropical coastal marine ecosystems in a changing world.

    PubMed

    Exton, Dan A; McGenity, Terry J; Steinke, Michael; Smith, David J; Suggett, David J

    2015-04-01

    Biogenic volatile organic compounds (BVOCs), in particular dimethyl sulphide (DMS) and isoprene, have fundamental ecological, physiological and climatic roles. Our current understanding of these roles is almost exclusively established from terrestrial or oceanic environments but signifies a potentially major, but largely unknown, role for BVOCs in tropical coastal marine ecosystems. The tropical coast is a transition zone between the land and ocean, characterized by highly productive and biodiverse coral reefs, seagrass beds and mangroves, which house primary producers that are amongst the greatest emitters of BVOCs on the planet. Here, we synthesize our existing understanding of BVOC emissions to produce a novel conceptual framework of the tropical marine coast as a continuum from DMS-dominated reef producers to isoprene-dominated mangroves. We use existing and previously unpublished data to consider how current environmental conditions shape BVOC production across the tropical coastal continuum, and in turn how BVOCs can regulate environmental stress tolerance or species interactions via infochemical networks. We use this as a framework to discuss how existing predictions of future tropical coastal BVOC emissions, and the roles they play, are effectively restricted to present day 'baseline' trends of BVOC production across species and environmental conditions; as such, there remains a critical need to focus research efforts on BVOC responses to rapidly accelerating anthropogenic impacts at local and regional scales. We highlight the complete lack of current knowledge required to understand the future ecological functioning of these important systems, and to predict whether feedback mechanisms are likely to regulate or exacerbate current climate change scenarios through environmentally and ecologically mediated changes to BVOC budgets at the ecosystem level. PMID:25311223

  10. Impact of groundwater use as heat energy on coastal ecosystem and fisheries

    NASA Astrophysics Data System (ADS)

    Taniguchi, Makoto

    2016-04-01

    Demands for groundwater as a heat energy source to melt snow is increasing in many coastal snowy areas in Japan because of the lack of laborers for snow removal and the abundance of groundwater resources. The temperature of groundwater is relatively higher in winter than that of the air and river water, therefore it is a useful heat source to melt snow. However, groundwater is also beneficial for the coastal ecosystem and fishery production because of the nutrient discharge by submarine groundwater discharge (SGD), which is one of the water and dissolved material pathways from land to the ocean. Therefore, groundwater is involved in the tradeoff and management conflict existing between energy and food (fisheries). In this study, the impact of groundwater, used as a heat energy source for the melting of snow accumulated on roads, on the coastal ecosystem and fisheries has been analyzed in the snowy areas of Obama City, Fukui Prefecture, Japan. Positive correlation has been found between primary production rates in Obama Bay and radon concentrations which show the magnitude of the submarine groundwater discharge. Therefore, the increase in groundwater pumping on land reduces fishery production in the ocean. Results of 3D numerical simulations of the basin scale groundwater model show a reduction of SGD by 5 percent due to an increase in groundwater pumping by 1.5 times. This reduction of SGD caused a 3.7 ton decrease in fishery production under the aforementioned assumptions. The groundwater-energy-fishery nexus was found in Obama Bay, Japan and the tradeoff between water and food was evaluated.

  11. Oxygen: A Fundamental Property Regulating Pelagic Ecosystem Structure in the Coastal Southeastern Tropical Pacific

    PubMed Central

    Bertrand, Arnaud; Chaigneau, Alexis; Peraltilla, Salvador; Ledesma, Jesus; Graco, Michelle; Monetti, Florian; Chavez, Francisco P.

    2011-01-01

    Background In the southeastern tropical Pacific anchovy (Engraulis ringens) and sardine (Sardinops sagax) abundance have recently fluctuated on multidecadal scales and food and temperature have been proposed as the key parameters explaining these changes. However, ecological and paleoecological studies, and the fact that anchovies and sardines are favored differently in other regions, raise questions about the role of temperature. Here we investigate the role of oxygen in structuring fish populations in the Peruvian upwelling ecosystem that has evolved over anoxic conditions and is one of the world's most productive ecosystems in terms of forage fish. This study is particularly relevant given that the distribution of oxygen in the ocean is changing with uncertain consequences. Methodology/Principal Findings A comprehensive data set is used to show how oxygen concentration and oxycline depth affect the abundance and distribution of pelagic fish. We show that the effects of oxygen on anchovy and sardine are opposite. Anchovy flourishes under relatively low oxygen conditions while sardine avoid periods/areas with low oxygen concentration and restricted habitat. Oxygen consumption, trophic structure and habitat compression play a fundamental role in fish dynamics in this important ecosystem. Conclusions/Significance For the ocean off Peru we suggest that a key process, the need to breathe, has been neglected previously. Inclusion of this missing piece allows the development of a comprehensive conceptual model of pelagic fish populations and change in an ocean ecosystem impacted by low oxygen. Should current trends in oxygen in the ocean continue similar effects may be evident in other coastal upwelling ecosystems. PMID:22216315

  12. Carbon Cycling Studies in Forest and Rangeland Ecosystems of Northern and Central Coastal California

    NASA Astrophysics Data System (ADS)

    Potter, C.; Klooster, S.; Gross, P.; Hiatt, S.; Genovese, V.

    2008-12-01

    The varied topography and micro-climates of northern and central coastal California result in high biodiversity and many different levels of primary production driving regional carbon cycles. Coastal mountains trap moisture from low clouds and fog in summer to supplement rainfall in winter. This creates a favorable micro-environment for coniferous forests, including the southernmost habitat of the coast redwood (Sequoia sempervirens), which grows mainly on lower north-facing slopes in Big Sur. In rain shadows, forests transition to open oak woodland, and then into the more fire-tolerant chaparral and coast scrub. Field sites for our on-going climate change studies on the California northern and central coasts currently include the University of California Santa Cruz Campus Natural Reserve, the US Forest Service Brazil Ranch, and the University of California Big Creek Reserve. We are conducting research at each of these sites to better understand possible impacts of climate change, including: (1) biological and physical capacity of soils to capture carbon and retain plant-essential nutrients; (2) rates of plant-soil water and carbon cycling and energy flow; and (3) recovery mechanisms for disturbances such as invasive weed species, grazing, and wildfire. The NASA-CASA simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate carbon cycling for much of the central coast as far north as Mendocino County. Net primary production (NPP) of all vegetation cover was mapped at 30-meter resolution for selected years by combining MODIS and Landsat images across the region. Results show annual NPP predictions of between 200-400 grams C per square meter for coastal scrub and 800-1200 grams C per square meter for coastal evergreen forests, Net ecosystem fluxes of carbon will be presented for the region based on NASA-CASA modeling and field measurements of soil respiration fluxes.

  13. Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems.

    PubMed

    Govers, Laura L; Man In 't Veld, Willem A; Meffert, Johan P; Bouma, Tjeerd J; van Rijswick, Patricia C J; Heusinkveld, Jannes H T; Orth, Robert J; van Katwijk, Marieke M; van der Heide, Tjisse

    2016-08-31

    Phytophthora species are potent pathogens that can devastate terrestrial plants, causing billions of dollars of damage yearly to agricultural crops and harming fragile ecosystems worldwide. Yet, virtually nothing is known about the distribution and pathogenicity of their marine relatives. This is surprising, as marine plants form vital habitats in coastal zones worldwide (i.e. mangrove forests, salt marshes, seagrass beds), and disease may be an important bottleneck for the conservation and restoration of these rapidly declining ecosystems. We are the first to report on widespread infection of Phytophthora and Halophytophthora species on a common seagrass species, Zostera marina (eelgrass), across the northern Atlantic and Mediterranean. In addition, we tested the effects of Halophytophthora sp. Zostera and Phytophthora gemini on Z. marina seed germination in a full-factorial laboratory experiment under various environmental conditions. Results suggest that Phytophthora species are widespread as we found these oomycetes in eelgrass beds in six countries across the North Atlantic and Mediterranean. Infection by Halophytophthora sp. Zostera, P. gemini, or both, strongly affected sexual reproduction by reducing seed germination sixfold. Our findings have important implications for seagrass ecology, because these putative pathogens probably negatively affect ecosystem functioning, as well as current restoration and conservation efforts. PMID:27559058

  14. Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems.

    PubMed

    Govers, Laura L; Man In 't Veld, Willem A; Meffert, Johan P; Bouma, Tjeerd J; van Rijswick, Patricia C J; Heusinkveld, Jannes H T; Orth, Robert J; van Katwijk, Marieke M; van der Heide, Tjisse

    2016-08-31

    Phytophthora species are potent pathogens that can devastate terrestrial plants, causing billions of dollars of damage yearly to agricultural crops and harming fragile ecosystems worldwide. Yet, virtually nothing is known about the distribution and pathogenicity of their marine relatives. This is surprising, as marine plants form vital habitats in coastal zones worldwide (i.e. mangrove forests, salt marshes, seagrass beds), and disease may be an important bottleneck for the conservation and restoration of these rapidly declining ecosystems. We are the first to report on widespread infection of Phytophthora and Halophytophthora species on a common seagrass species, Zostera marina (eelgrass), across the northern Atlantic and Mediterranean. In addition, we tested the effects of Halophytophthora sp. Zostera and Phytophthora gemini on Z. marina seed germination in a full-factorial laboratory experiment under various environmental conditions. Results suggest that Phytophthora species are widespread as we found these oomycetes in eelgrass beds in six countries across the North Atlantic and Mediterranean. Infection by Halophytophthora sp. Zostera, P. gemini, or both, strongly affected sexual reproduction by reducing seed germination sixfold. Our findings have important implications for seagrass ecology, because these putative pathogens probably negatively affect ecosystem functioning, as well as current restoration and conservation efforts.

  15. Stable Isotope Evidence of Variation in Nitrogen Fixation by Cyanobacteria in Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Paul, V.; Clementz, M.

    2006-12-01

    Increased nutrient loading via both natural and anthropogenic factors has been reported as one possible mechanism for the recent increase in the occurrence and intensity of harmful algal blooms (HAB) in coastal ecosystems. Influx of iron, phosphorous, and organic carbon have proven to be significant stimulating factors for HAB, since the benthic cyanobacteria that often make up these blooms are capable of nitrogen-fixation and require these nutrients for this process as well as photosynthesis. These cyanobacteria can switch to direct uptake of dissolved inorganic nitrogen (DIN), however, when concentrations are high enough to energetically favor this source, suggesting that high nitrogen input may also stimulate HAB. Given the distinct isotope differences between atmospheric N2 (0‰) and anthropogenic sources of DIN (>6‰), measurement of the δ15N composition of cyanobacteria can provide a means of gauging the relative significance of anthropogenic versus atmospheric nitrogen to the growth of these blooms. Likewise, the δ13C composition of these primary producers is controlled by the δ13C composition of the DIC, and can be a second tracer of anthropogenic influx into marine ecosystems. A combined approach using both isotope tracers was employed to determine the significance of anthropogenic nitrogen on HAB in subtropical/tropical coastal marine ecosystems. Samples of cyanobacteria and associated macroalgae were collected from three coastal sites in Guam (Facpi Point, Tanguisson, and Ypao Beach), one locality in Hawaii, and three sites in southern Florida (Pepper Park, Fort Lauderdale, Florida Keys). Following removal of marine carbonates via an acid rinse, the δ13C and δ15N values were determined for each species. Cyanobacterial δ15N values ranged from -2.3‰ to 7.7‰ with the highest values reported from sites in Guam. Only cyanobacteria sampled from Hawaii showed no isotope evidence of an anthropogenic source for nitrogen. A strong negative correlation

  16. Assessing significant geomorphic changes and effectiveness of dynamic restoration in a coastal dune ecosystem

    NASA Astrophysics Data System (ADS)

    Walker, Ian J.; Eamer, Jordan B. R.; Darke, Ian B.

    2013-10-01

    A shift from restoring coastal dunes as stabilized landscapes toward more morphodynamic ecosystems is underway. This paper uses results from a recent case study where invasive vegetation was removed from a coastal dune complex in western Canada as a first step in a dynamic ecosystem restoration project. Spatial statistical methods, used in the natural sciences to quantify patterns of significant spatial-temporal changes, are reviewed and the local Moran's Ii spatial autocorrelation statistic is explored for detecting and assessing significant changes. Cluster maps of positive (depositional) and negative (erosional) changes were used to derive statistically significant volumetric changes within discrete geomorphic units (beach, foredune, transgressive dune) over one year following vegetation removal. All units experienced net increases in sediment budgets compared to a pre-restoration surface. The beach experienced the highest episodic erosion and volumetric change and greatest net annual sediment budget. Compared to the beach, the annual sediment budget of the foredune was 19% whereas the transgressive dune was 33%. The foredune recovered rapidly to initial erosion during restoration and subsequent natural events with consistently positive sediment volumes and attained a form similar to that pre-restoration. Aeolian deflation and sand bypassing through the foredune was greatest in the two months following vegetation removal and peak accretion in the transgressive dune resulted from depositional lobes extending from the foredune, smaller dunes migrating within the complex, and growth of a precipitation ridge along the eastern margin. Several methodological and logistical considerations for detecting significant change in dynamic dune landscapes are discussed including sampling strategy design, data normalization and control measures, and incorporating uncertainty and inherent spatial relations within acquired datasets to ensure accuracy and comparability of results

  17. Comparative dynamics of pelagic and benthic micro-algae in a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arnab; Klein, Cécile; Naegelen, Aurore; Claquin, Pascal; Masson, Annick; Legoff, Manon; Amice, Erwan; L'Helguen, Stéphane; Chauvaud, Laurent; Leynaert, Aude

    2013-11-01

    Together with phytoplankton, microphytobenthos (MPB) play an important role in the overall food web structure of coastal ecosystems by regulating nutrient fluxes, oxygen concentration and sediment stability in the ecosystem. Although there are many studies on phytoplankton, MPB dynamics in the subtidal zone are largely unknown. In this study, we carried out a whole-year survey to investigate the seasonal dynamics of phytoplankton and MPB biomass simultaneously in relation to the environmental physico-chemical parameters. We show that phytoplankton and MPB do not follow the same dynamics with MPB being the first to increase in the season. It constitutes a large energy input to the ecosystem from the beginning of spring (with 60% of the total biomass until April). The system then moves from a system dominated by benthic biomass in early spring to a system where the pelagic biomass dominates. Among resources that MPB and phytoplankton have to share, light seems to trigger the MPB bloom as soon as maximum bottom PAR is reached, i.e. one month earlier than the phytoplankton bloom in the water column. With regard to nutrients, the lack of phosphorus can be put forward to explain the decline of MPB biomass at the beginning of April, whereas the phytoplankton decline in the first week of May coincides to silicic acid deficiency. Dissolved inorganic nitrogen then becomes potentially limiting in the water column until the end of October. Competition with macroalgae at the bottom and grazing were also considered as being possible factors for the disparate course of phytoplankton and MPB dynamics. Further investigations are needed to give a more detailed picture on the interactions and feedback loops between MPB and phytoplankton. However, although benthic-pelagic relationships are complex, this study indicates the need to integrate such fundamental coupling to a thorough understanding of ecosystem dynamics and functions.

  18. ROBUST: The ROle of BUffering capacities in STabilising coastal lagoon ecosystems

    NASA Astrophysics Data System (ADS)

    de Wit, Rutger; Stal, Lucas J.; Lomstein, Bente Aa.; Herbert, Rodney A.; van Gemerden, Hans; Viaroli, Pierluigi; Cecherelli, Victor-Ugo; Rodríguez-Valera, Francisco; Bartoli, Marco; Giordani, Gianmarco; Azzoni, Roberta; Schaub, Bart; Welsh, David T.; Donnelly, Andrew; Cifuentes, Ana; Antón, Josefa; Finster, Kai; Nielsen, Lise B.; Pedersen, Anne-Grethe Underlien; Neubauer, Anne Turi; Colangelo, Marina A.; Heijs, Sander K.

    2001-12-01

    "Buffer capacities" has been defined in ecology as a holistic concept (e.g., Integration of Ecosystem Theories: A Pattern, second ed. Kluwer, Dordrecht, 1997, 388pp), but we show that it can also be worked out in mechanistic studies. Our mechanistic approach highlights that "buffering capacities" can be depleted progressively, and, therefore, we make a distinction between current and potential "buffering capacities". We have applied this concept to understand the limited "local stability" in seagrass ecosystems and their vulnerability towards structural changes into macro-algal dominated communities. We explored the following processes and studied how they confer buffering capacities to the seagrass ecosystem: (i) net autotrophy is persistent in Zostera noltii meadows where plant assimilation acts as a sink for nutrients, this contrasted with the Ulva system that shifted back and forth between net autotrophy and net heterotrophy; (ii) the Z. noltii ecosystem possesses a certain albeit rather limited capacity to modify the balance between nitrogen fixation and denitrification, i.e., it was found that in situ nitrogen fixation always exceeded denitrification; (iii) the nitrogen demand of organoheterotrophic bacteria in the sediment results in nitrogen retention of N in the sediment and hence a buffer against release of nitrogen compounds from sediments, (iv) habitat diversification in seagrass meadows provides shelter for meiofauna and hence buffering against adverse conditions, (v) sedimentary iron provides a buffer against noxious sulfide (note: bacterial sulfide production is enhanced in anoxic sediment niches by increased organic matter loading). On the other hand, in the coastal system we studied, sedimentary iron appears less important as a redox-coupled buffer system against phosphate loading. This is because most inorganic phosphate is bound to calcium rather than to iron. In addition, our studies have highlighted the importance of plant-microbe interactions

  19. Impacts of climate-driven changes on coastal lagoon ecosystem and related good and services

    NASA Astrophysics Data System (ADS)

    Solidoro, Cosimo; Libralato, Simone; Melaku Canu, Donata; Cossarini, Gianpiero; Giorgi, FIlippo

    2014-05-01

    Effects of IPCC climate change scenarios on a temperate coastal lagoon ecosystem, the lagoon of Venice (Italy), along with goods and services provided by this ecosystem are assessed though a downscaling experiment linking regional atmospheric model to local hydrodynamical, biogeochemical, ecosystem and target species population dynamic models. Simulations of spatio-temporal dynamics of biogeochemical properties provide evidence of significant impacts of climate change. Under both the A2 and B2 scenarios we observe a modification of the seasonal precipitation pattern which affects the timing of nutrient inputs to the lagoon and causes a reduction in plankton productivity. Simulations indicate that this changes propagate -along the food web through a multi-path cascade and that overall ecosystem good and services resulting from climatic scenarios significantly differ depending on the dynamics of the extremes (yearly maximum) values. Changes in the nutrient load maximum discharge (scenario A2) favors primary producers that have higher maximum values (peaks) that propagate up in the food web to groups directly related to the grazing food chain. Conversely, small modifications of the timing of the nutrient peaks (as in B2 scenario) implies less exploitation of nutrients by primary producers due to temperature limitations and the enhancement of the groups in the food web that are more related to detritus-based food chain. This implies significant differences on on fisheries landings in future scenarios, even assuming same fishing effort.. Ecological indicators highlighted also divergent changes in food web biodiversity and complexity in the two future scenarios. Simulations also shows that economic activity directly related to target species, such as clam aquaculture activity will suffer , and point to the need for management policies to mitigate the adverse effects of climate change.

  20. Guidelines, processes and tools for coastal ecosystem restoration, with examples from the United States

    SciTech Connect

    Thom, Ronald M.; Diefenderfer, Heida L.; Adkins, Jeffery E.; Judd, Chaeli; Anderson, Michael G.; Buenau, Kate E.; Borde, Amy B.; Johnson, Gary E.

    2011-02-01

    This paper presents a systematic approach to coastal restoration projects in five phases: planning, implementation, performance assessment, adaptive management, and dissemination of results. Twenty features of the iterative planning process are synthesized. The planning process starts with a vision, a description of the ecosystem and landscape, and goals. A conceptual model and planning objectives are developed, a site is selected using prioritization techniques, and numerical models contribute to preliminary designs as needed. Performance criteria and reference sites are selected and the monitoring program is designed. The monitoring program is emphasized as a tool to assess project performance and identify problems affecting progression toward project goals, in an adaptive management framework. Key approaches to aspects of the monitoring program are reviewed and detailed with project examples. Within the planning process, cost analysis involves budgeting, scheduling, and financing. Finally, documentation is peer reviewed prior to making construction plans and final costing.

  1. *d13C composition of primary producers and role of detritus in a freshwater coastal ecosystem

    USGS Publications Warehouse

    Keough, J.R.; Hagley, C.A.; Sierszen, M.

    1998-01-01

    Stable-isotope ratio signatures of primary producers in a coastal wetland and in adjacent offshore waters of western Lake Superior indicated that phytoplankton are the primary source of carbon for the grazing food web of this ecosystem. This study outlines the possible roles of other autotrophs in this regard. Isotopic signatures of macrophytes reflected their life-form-associated constraints on diffusion of inorganic carbon. Data indicated that differences between wetland and lake phytoplankton may be explained by the isotopic signatures of their dissolved inorganic carbon (DIC) sources. Results of an in situ experiment showed that respiration associated with macrophyte decomposition is capable of enriching surrounding water with significant amounts of *d13C-depleted DIC and lowering the net *d13C ratio of DIC in water in low-turbulence situations. The *d13C ratio for wetland phytoplankton may be depleted relative to pelagic algae because the fixed carbon is derived from decomposing detritus.

  2. Feeding ecology and trophic comparisons of six shark species in a coastal ecosystem off southern Brazil.

    PubMed

    Bornatowski, H; Braga, R R; Abilhoa, V; Corrêa, M F M

    2014-08-01

    The diets of six shark species, Sphyrna lewini, Sphyrna zygaena, Carcharhinus obscurus, Carcharhinus limbatus, Rhizoprionodon lalandii and Galeocerdo cuvier, were investigated in a subtropical coastal ecosystem of southern Brazil. Stomach content data were obtained to assess foraging niche segregation and ontogenetic shifts in the diets of these sharks. Five of the shark species off the Paraná coast were ichthyophagous, with the exception of S. zygaena, which was teutophagous. With the exception of G. cuvier, which had a generalist diet, the other five species displayed specialization in their feeding. Ontogenetic shifts were observed in C. obscurus and S. lewini with large individuals consuming elasmobranchs. Owing to the diet overlap between C. obscurus and S. lewini, C. obscurus and C. limbatus and R. lalandii and C. limbatus, future studies on the spatial and temporal distributions of these species are needed to understand the extent of competitive interactions.

  3. Feeding ecology and trophic comparisons of six shark species in a coastal ecosystem off southern Brazil.

    PubMed

    Bornatowski, H; Braga, R R; Abilhoa, V; Corrêa, M F M

    2014-08-01

    The diets of six shark species, Sphyrna lewini, Sphyrna zygaena, Carcharhinus obscurus, Carcharhinus limbatus, Rhizoprionodon lalandii and Galeocerdo cuvier, were investigated in a subtropical coastal ecosystem of southern Brazil. Stomach content data were obtained to assess foraging niche segregation and ontogenetic shifts in the diets of these sharks. Five of the shark species off the Paraná coast were ichthyophagous, with the exception of S. zygaena, which was teutophagous. With the exception of G. cuvier, which had a generalist diet, the other five species displayed specialization in their feeding. Ontogenetic shifts were observed in C. obscurus and S. lewini with large individuals consuming elasmobranchs. Owing to the diet overlap between C. obscurus and S. lewini, C. obscurus and C. limbatus and R. lalandii and C. limbatus, future studies on the spatial and temporal distributions of these species are needed to understand the extent of competitive interactions. PMID:24919949

  4. Evolving demand for ecosystem services and their impact in a coastal New England watershed

    NASA Astrophysics Data System (ADS)

    Wollheim, W. M.; Green, M. B.; Pellerin, B. A.; Duncan, J. M.; Gettel, G. M.; Hopkinson, C.; Polsky, C.; Pontius, R.

    2009-12-01

    Human demands for ecosystem services (e.g. provision of food and water; regulation of waste) change over space and time as society, economy, and environment evolve. The distribution of population relative to watershed boundaries determines supply and demand of ecosystem services, which in turn affects watershed water and nutrient budgets. A watershed perspective is helpful to assess whether such services are sustainable with respect to freshwater and coastal ecosystems. We determined how demand for three ecosystem services (ES): food production, clean water supply, and removal of excess nutrients has changed over the last two hundred years (1800-present) in the watersheds draining to Plum Island Sound (drainage area = ~600 km2), located in Essex County MA., part of the Boston Metropolitan Area. The watersheds have gone through three distinct phases of ES demand over this period: 1) provision of food and fiber during the agricultural period (1600-1800’s), 2) increasing provision of water during the period of forest regrowth and agricultural abandonment (1880 - 1950), and 3) regulation of nitrogen pollution and provision of water during the suburban period (1950-present). As a result of changing ES, net interbasin nitrogen transfers out of the basin peaked in the mid 1800’s, water exports peaked 1960-1980 (averaging 27% of annual runoff), and net nitrogen transfers into the basin peaked in the 1960’s and stabilized thereafter (averaging 2.5x atmospheric deposition rates). ES provided by the Plum Island basins disproportionately benefited people living outside the basin prior to 1950 (e.g. internal water use was < 10% of total water extracted for domestic consumption), but were increasingly used by people living within the basin in the late 20th century (e.g. internal water use about 25-30% of total withdrawal). However, demands for ES from the Plum Island watersheds have not been accelerating in the recent suburban period despite continued population growth

  5. Temporal distribution of genetically homogenous ‘free-living’ Hematodinium sp. in a Delmarva coastal ecosystem

    PubMed Central

    2012-01-01

    Background Significant damage to crustacean fisheries worldwide has been associated with Hematodinium sp. It has been postulated that Hematodinium sp. requires passage through the water column and/or intermediate hosts to complete its life cycle. Thus, an understanding of the prevalence and seasonality of Hematodinium sp. within environmentally-derived samples should yield insight into potential modes of disease transmission, and how these relate to infection cycles in hosts. Results We conducted a two year survey, from 2010–2011, in which 48 of 546 (8.8%) of environmental samples from the Maryland and Virginia coastal bays were positive for Hematodinium sp. between April and November, as based upon endpoint PCR analysis specific to blue crab isolates. Detection in both water and sediment was roughly equivalent, and there were no obvious seasonal patterns. However, there was a high detection in April water samples, which was unanticipated owing to the fact that crabs infected with Hematodinium sp. have not been observed in this early month of the seasonal disease cycle. Focusing on three sites of high prevalence (Sinnickson, VA; Tom’s Cove, VA; and Newport Bay, MD) Hematodinium sp. population diversity was analyzed using standard cloning methods. Of 131 clones, 109 (83.2%) were identical, 19 displayed a single nucleotide substitution, and 4 contain two nucleotide substitutions. Conclusions Our data suggests a continuous presence of Hematodinium sp. in both water and sediment of a combined Maryland and Virginia coastal bay ecosystem. The detection of Hematodinium sp. in the water column in April is an earlier manifestation of the parasite than predicted, pointing to an as yet unknown stage in its development prior to infection. That the population is relatively homogenous ranging from April to November, at three distinct sites, supports a hypothesis that one species of Hematodinium is responsible for infections within the ecosystem. PMID:22828185

  6. The European coastal zone: characterization and first assessment of ecosystem metabolism

    NASA Astrophysics Data System (ADS)

    Gazeau, Frédéric; Smith, Stephen V.; Gentili, Bernard; Frankignoulle, Michel; Gattuso, Jean-Pierre

    2004-08-01

    The geomorphic, oceanographic, terrestrial and anthropogenic attributes of the European coastal zone are described and published data on ecosystem function (primary production and respiration) are reviewed. Four regions are considered: the Baltic Sea, Mediterranean Sea, Black Sea and the European Atlantic coast including the North Sea. The metabolic database (194 papers) suffers from a non-homogeneous geographical coverage with no usable data for the Black Sea which was therefore excluded from this part of our study. Pelagic gross primary production in European open shelves is, by far, the most documented parameter with an estimated mean of 41 mmol C m -2 d -1, the lowest value is reported in the Mediterranean Sea (21 mmol C m -2 d -1) and the highest one in the Atlantic/North Sea area (51 mmol C m -2 d -1). Microphytobenthic primary production, mostly measured in shallow areas, is extrapolated to the entire 0-200 m depth range. Its contribution to total primary production is low in all regions (mean: 1.5 mmol C m -2 d -1). Although macrophyte beds are very productive, a regional production estimate is not provided in this study because their geographical distribution along the European coastline remains unknown. Measurements of pelagic community respiration are clearly too sparse, especially below the euphotic zone, to yield an accurate picture of the fate of organic matter produced in the water column. With a mean value of 17 mmol C m -2 d -1, benthic community respiration consumes approximately 40% of the pelagic organic matter production. Estuaries generally exhibit high metabolic rates and a large range of variation in all parameters, except microphytobenthic primary production. Finally, the problem of eutrophication in Europe is discussed and the metabolic data obtained in the framework of the Land-Ocean Interactions in the Coastal Zone (LOICZ) project are compared with available direct measurements of net ecosystem production.

  7. Degradation State and Sequestration Potential of Carbon in Coastal Wetlands of Texas: Mangrove Vs. Saltmarsh Ecosystems

    NASA Astrophysics Data System (ADS)

    Sterne, A. M. E.; Kaiser, K.; Louchouarn, P.; Norwood, M. J.

    2015-12-01

    The estimated magnitude of the organic carbon (OC) stocks contained in the first meter of US coastal wetland soils represents ~10% of the entire OC stock in US soils (4 vs. 52 Pg, respectively). Because this stock extends to several meters below the surface for many coastal wetlands, it becomes paramount to understand the fate of OC under ecosystem shifts, varying natural environmental constraints, and changing land use. In this project we analyze the major classes of biochemicals including total hydrolysable neutral carbohydrates, enantiomeric amino acids, phenols, and cutins/suberins at two study sites located on the Texas coastline to investigate chemical composition and its controls on organic carbon preservation in mangrove (Avicennia germinans) and saltmarsh grass (Spartina alterniflora) dominated wetlands. Results show neutral carbohydrates and lignin contribute 30-70% and 10-40% of total OC, respectively, in plant litter and surface sediments at both sites. Sharp declines of carbohydrate yields with depth occur parallel to increasing Ac/AlS,V ratios indicating substantial decomposition of both the polysaccharide and lignin components of litter detritus. Contrasts in the compositions and relative abundances of all previously mentioned compound classes are further discussed to examine the role of litter biochemistry in OC preservation. For example, the selective preservation of cellulose over hemicellulose in sediments indicates macromolecular structure plays a key role in preservation between plant types. It is concluded that the chemical composition of litter material controls the composition and magnitude of OC stored in sediments. Ultimately, as these ecosystems transition from one dominant plant type to another, as is currently observed along the Texas coastline, there is the potential for OC sequestration efficiency to shift due to the changing composition of OC input to sediments.

  8. Net ecosystem exchange related to different rewetting intensities of a drained coastal fen

    NASA Astrophysics Data System (ADS)

    Koebsch, F.; Jurasinski, G.; Glatzel, S.

    2012-04-01

    Peatlands are important carbon (C) reservoirs. Although they account for only 3% of total global area they store 550 Gt C. This corresponds to 75% of atmospheric C. Drainage and agricultural use of peatlands cause considerable release of climate relevant carbon dioxide (CO2). Thus, rewetting measures attempt to re-activate C storage potentials of peatlands. Yet, further research is needed about the biogeochemical processes related to rewetting. We present results of net ecosystem exchange (NEE) measurements of a rewetted coastal fen from two vegetation periods with different rewetting intensities. In 2009 mean water level was short below ground surface whilst 2010 implicated a year-round flooding. Measurements were conducted with the Eddy-Covariance method which provides quasi-continuous flux measurements on ecosystem scale. Vegetation period 2009 exhibited a high negative NEE indicating considerable CO2 storage of the coastal fen. Flooding decreased the amount of stored CO2 for approximately 50% during the vegetation period 2010. Since a significant part of local vegetation (above all Carex acutiformis stands) was killed by the increased water level, we assume NEE to be dampened by a lower gross primary production. Additionally, the plant residuals may provide a labile C source for microbial respiration. Flooding affects the element budget of peatlands dramatically and causes a considerable element outflow, detectable e. g. as CO2 emission. Our results display only the initial phase of flooding. Long time studies are necessary to investigate whether CO2 will be stored after a certain period of time. Nevertheless, the climate effects of flooding should be considered when rewetting measures are assessed

  9. Effects of land use changes on the ecosystem service values of coastal wetlands.

    PubMed

    Camacho-Valdez, Vera; Ruiz-Luna, Arturo; Ghermandi, Andrea; Berlanga-Robles, César A; Nunes, Paulo A L D

    2014-10-01

    Changes in the coastal landscape of Southern Sinaloa (Mexico), between 2000 and 2010, were analyzed to relate spatial variations in wetlands extent with the provision and economic value of the ecosystem services (ES). Remote sensing techniques applied to Landsat TM imagery were used to evaluate land use/land cover changes while the value transfer method was used to assess the value of ES by land cover category. Five wetland types and other four land covers were found as representative of the coastal landscape. Findings reveal a 14 % decrease in the saltmarsh/forested mangrove area and a 12 % increase in the area of shrimp pond aquaculture (artificial wetland) during the study period. ES valuation shows that the total value flow increased by 9 % from $215 to $233 million (2007 USD) during the 10-year period. This increase is explained as result of the high value worldwide assigned to saltmarsh. We recognize limitations in the transfer-based approach in quantifying and mapping ES values in the region, but this method provides with value estimates spatially defined, and also provides some guidance in the preliminary screening of policies and projected development in the context of data-scarce regions.

  10. Effects of Land Use Changes on the Ecosystem Service Values of Coastal Wetlands

    NASA Astrophysics Data System (ADS)

    Camacho-Valdez, Vera; Ruiz-Luna, Arturo; Ghermandi, Andrea; Berlanga-Robles, César A.; Nunes, Paulo A. L. D.

    2014-10-01

    Changes in the coastal landscape of Southern Sinaloa (Mexico), between 2000 and 2010, were analyzed to relate spatial variations in wetlands extent with the provision and economic value of the ecosystem services (ES). Remote sensing techniques applied to Landsat TM imagery were used to evaluate land use/land cover changes while the value transfer method was used to assess the value of ES by land cover category. Five wetland types and other four land covers were found as representative of the coastal landscape. Findings reveal a 14 % decrease in the saltmarsh/forested mangrove area and a 12 % increase in the area of shrimp pond aquaculture (artificial wetland) during the study period. ES valuation shows that the total value flow increased by 9 % from 215 to 233 million (2007 USD) during the 10-year period. This increase is explained as result of the high value worldwide assigned to saltmarsh. We recognize limitations in the transfer-based approach in quantifying and mapping ES values in the region, but this method provides with value estimates spatially defined, and also provides some guidance in the preliminary screening of policies and projected development in the context of data-scarce regions.

  11. Hydrocarbons in Victorian coastal ecosystems (Australia): chronic petroleum inputs to Western Port and Port Phillip Bays.

    PubMed

    Burns, K A; Smith, J L

    1982-01-01

    This study was undertaken to assess the impact of current land use practices, to provide data on which to base recommendations for petroleum discharge regulations, and to develop reliable methods for monitoring hydrocarbon pollution in Victorian coastal waters. Analyses of sediments and mussels were used to identify areas of chronic contamination and probable sources. A mussel transplant experiment detailed the movement of major industrial effluents. petroleum hydrocarbons varied from non-detectable to maximum values of 30 mg/g lipid in areas near points of continuous discharge. Problem areas were identified where tissue levels of hydrocarbons in mussels consistently exceeded 4 mg/g lipid and petroleum buildup was evident in sediments. Differences in chemical composition of hydrocarbons in various ecosystem components reflected biogeochemical processes acting to disperse, degrade, and transport hydrocarbons discharged into coastal waters. Results showed Port Phillip Bay is subject to much larger and more complex discharges of petroleum-containing wastes than Western Port from both discrete ship and shore-based inputs and from diffuse urban/industrial inputs, including surface run-off and atmospheric precipitation.

  12. Evaluating the distribution of terrestrial dissolved organic matter in a complex coastal ecosystem using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamashita, Youhei; Boyer, Joseph N.; Jaffé, Rudolf

    2013-09-01

    The coastal zone of the Florida Keys features the only living coral reef in the continental United States and as such represents a unique regional environmental resource. Anthropogenic pressures combined with climate disturbances such as hurricanes can affect the biogeochemistry of the region and threaten the health of this unique ecosystem. As such, water quality monitoring has historically been implemented in the Florida Keys, and six spatially distinct zones have been identified. In these studies however, dissolved organic matter (DOM) has only been studied as a quantitative parameter, and DOM composition can be a valuable biogeochemical parameter in assessing environmental change in coastal regions. Here we report the first data of its kind on the application of optical properties of DOM, in particular excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC), throughout these six Florida Keys regions in an attempt to assess spatial differences in DOM sources. Our data suggests that while DOM in the Florida Keys can be influenced by distant terrestrial environments such as the Everglades, spatial differences in DOM distribution were also controlled in part by local surface runoff/fringe mangroves, contributions from seasgrass communities, as well as the reefs and waters from the Florida Current. Application of principal component analysis (PCA) of the relative abundance of EEM-PARAFAC components allowed for a clear distinction between the sources of DOM (allochthonous vs. autochthonous), between different autochthonous sources and/or the diagenetic status of DOM, and further clarified contribution of terrestrial DOM in zones where levels of DOM were low in abundance. The combination between EEM-PARAFAC and PCA proved to be ideally suited to discern DOM composition and source differences in coastal zones with complex hydrology and multiple DOM sources.

  13. Ecosystem Resilience and Threshold Response in the Galápagos Coastal Zone

    PubMed Central

    Seddon, Alistair W. R.; Froyd, Cynthia A.; Leng, Melanie J.; Milne, Glenn A.; Willis, Katherine J.

    2011-01-01

    Background The Intergovernmental Panel on Climate Change (IPCC) provides a conservative estimate on rates of sea-level rise of 3.8 mm yr−1 at the end of the 21st century, which may have a detrimental effect on ecologically important mangrove ecosystems. Understanding factors influencing the long-term resilience of these communities is critical but poorly understood. We investigate ecological resilience in a coastal mangrove community from the Galápagos Islands over the last 2700 years using three research questions: What are the ‘fast and slow’ processes operating in the coastal zone? Is there evidence for a threshold response? How can the past inform us about the resilience of the modern system? Methodology/Principal Findings Palaeoecological methods (AMS radiocarbon dating, stable carbon isotopes (δ13C)) were used to reconstruct sedimentation rates and ecological change over the past 2,700 years at Diablas lagoon, Isabela, Galápagos. Bulk geochemical analysis was also used to determine local environmental changes, and salinity was reconstructed using a diatom transfer function. Changes in relative sea level (RSL) were estimated using a glacio-isostatic adjustment model. Non-linear behaviour was observed in the Diablas mangrove ecosystem as it responded to increased salinities following exposure to tidal inundations. A negative feedback was observed which enabled the mangrove canopy to accrete vertically, but disturbances may have opened up the canopy and contributed to an erosion of resilience over time. A combination of drier climatic conditions and a slight fall in RSL then resulted in a threshold response, from a mangrove community to a microbial mat. Conclusions/Significance Palaeoecological records can provide important information on the nature of non-linear behaviour by identifying thresholds within ecological systems, and in outlining responses to ‘fast’ and ‘slow’ environmental change between alternative stable states. This study

  14. Carbon Biogeochemistry: A Stable Isotope Approach to Trophic Dynamics in an Indian Coastal Ecosystem

    NASA Astrophysics Data System (ADS)

    Mathukumalli, B.; Alagappan, R.

    2005-12-01

    Stable isotope(δ13C & δ15N) approach was applied to understand carbon biogeochemistry and trophic dynamics in an Indian coastal mangrove wetland. The δ13C and δ15N values of potential nutrient sources (mangrove plant leaves, lichen, sediment and suspended material) and in seven species of consumers (invertebrates) were measured. The value of δ13C and δ15N isotopes of different potential nutrient sources and the consumers determine the sources of nutrients for the invertebrate consumer community of the mangrove. There is a significant variation in the stable carbon in the nutrient sources; however, δ15N signatures were not significantly different among the different potential nutrient sources. Organic matter in the sediments under the mangrove vegetation was characterized by relatively negatively fractionated and moderately high C:N ratios, indicating that mangrove derived organic matter was the principal diet source for the invertebrate consumer communities in the mangrove ecosystem. Invertebrates in the mangrove showed a wide range of δ13C signatures and are enriched relative to the mangrove leaf stable isotope values. Micro-environmental differences certainly drive the variability in the nutrient sources and consumable nature among the different regions of the ecosystem. Therefore, further research is needed to determine whether carbon assimilation is different from one zone to another.

  15. Review: phytoplankton primary production in the world's estuarine-coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Cloern, J. E.; Foster, S. Q.; Kleckner, A. E.

    2013-11-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land - estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m-2 yr-1, but the range is large: from -105 (net pelagic production in the Scheldt Estuary) to 1890 g C m-2 yr-1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year-to-year (but we only found 8 APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148 reported values of APPP, 958 come from sites

  16. Sea Level Rise Enhanced Halocarbon Production in Low-lying Coastal Ecosystem in the Southeastern US

    NASA Astrophysics Data System (ADS)

    Chow, A. T.; Conner, W.; Williams, T.; Song, B.

    2010-12-01

    Saltwater tides bring high concentrations of chloride and bromide inland where it mixes with terrestrial humic substances from surrounding forested watersheds and ferric/ferrous ions from shallow groundwater. With all the essential precursors (i.e., chloride, bromide, and humic substances) and catalysts (ferric/ferrous ions with sunlight), low-lying coastal ecosystems could be a hotspot for halocarbon formation. Fluctuating water levels and salinity due to the tidal cycle alter both redox reactions and water chemistry, influencing the formation and fate of halocarbons. A controlled study was conducted to confirm the abiotic formation of trihalomethanes (THMs) by the photo-Fenton reaction and the effects of the precursors on their formation. Four THM species, including chloroform (CHCl3), bromodichloromethane (CHBrCl2), dibromochloromethane (CHBr2Cl), and bromoform (CHBr3), were examined. Sets of aqueous solutions were prepared using filtered Waccamaw River samples and synthesized NaCl / NaBr, and Fe2(SO4)3 and H2O2 solutions. Solutions were enclosed in quartz tubes and exposed for 7 days to natural sunlight. Although total THM formation increased with DOC concentration, the reactivity of C in forming THM was relatively consistent across DOC concentrations, with an average of 2.6 nmol-THM mmol-C-1. The reactivity in forming THMs through the photo-Fenton reaction was significantly lower than that in chlorinated water. Reactivity generally ranged from 3-20 mmol-THM mol-C-1. The differences in reactivity suggested that greater yield of THMs could be produced under the right reaction condition. In particular, the study showed that bromide increases the reactivity of DOC in forming THMs and enhances the formation of brominated THMs. The bromine substitution factor in the NaCl treatment ranged from 19 to 24% but increased to 43 and 46% when NaBr was added. Results suggest that increased salinity and bromide concentration in saltwater-impacted coastal ecosystems could

  17. Salinization of Freshwater-Dependent Coastal Ecosystems: Understanding Landscapes in Transition Along the Leading Edge of Climate Change

    NASA Astrophysics Data System (ADS)

    Emanuel, R. E.; Bernhardt, E. S.; Ardón, M.; Wright, J. P.; BenDor, T.; Bhattachan, A.

    2015-12-01

    Climate change is transforming the outer edge of the Southern US coastal plain. Lower-lying parts of this region, characterized by extensive freshwater-dependent ecosystems, will be largely inundated by gradual sea level rise by the end of this century. In the interim, however, ocean waters are already penetrating and influencing freshwater-dependent coastal landscapes due to a combination of human and natural factors. This landward movement of salinity from the coast onto the coastal plain or "saltwater intrusion" is a critical water resource issue representing the leading edge of climate change for many coastal areas. The salinization of surface waters and adjacent lands has implications for crop and timber yields in managed ecosystems, ecosystem carbon sequestration in unmanaged ecosystems, and degradation of coastal water quality due to extraction of soil nutrients by seasalts. With this in mind, we seek to understand more broadly how vulnerability of coastal landscapes to saltwater intrusion shapes and is shaped by both natural and anthropogenic processes. We present a novel framework that couples intensive, in situ monitoring of hydrological and ecological conditions with a geospatial saltwater intrusion vulnerability index (SIVI). We discuss application of this framework to the Albemarle-Pamlico region of coastal North Carolina, where we are learning how climate, natural landscape structure, and human activities interact to mediate or exacerbate the vulnerability of freshwater-dependent lands to saltwater intrusion. We discuss the involvement of stakeholders and local knowledge in the research process as well. This work advances understanding of vulnerability to climate change in coastal regions by moving beyond simple inundation models to gain a more sophisticated understanding of the human and natural processes influencing salinization of surface waters and adjacent lands. As the Albemarle-Pamlico and similar regions worldwide transform in response to and

  18. Effect of an Invasive Plant and Moonlight on Rodent Foraging Behavior in a Coastal Dune Ecosystem

    PubMed Central

    Johnson, Matthew D.; De León, Yesenia L.

    2015-01-01

    Understanding how invasive plants may alter predator avoidance behaviors is important for granivorous rodents because their foraging can trigger ripple effects in trophic webs. Previous research has shown that European beach grass Ammophila arenaria, an invasive species in coastal California, affects the predation of other seeds by the rodents Microtus californicus, Peromyscus maniculatus, and Reithrodontomys megalotis. This may be due to lower perceived predation risk by rodents foraging in close proximity to the cover provided by Ammophila, but this mechanism has not yet been tested. We examined the perceived predation risk of rodents by measuring the ‘giving up density’ of food left behind in experimental patches of food in areas with and without abundant cover from Ammophila and under varying amount of moonlight. We found strong evidence that giving up density was lower in the thick uniform vegetation on Ammophila-dominated habitat than it was in the more sparsely and diversely vegetated restored habitat. There was also evidence that moonlight affected giving up density and that it mediated the effects of habitat, although with our design we were unable to distinguish the effects of lunar illumination and moon phase. Our findings illustrate that foraging rodents, well known to be risk-averse during moonlit nights, are also affected by the presence of an invasive plant. This result has implications for granivory and perhaps plant demography in invaded and restored coastal habitats. Future research in this system should work to unravel the complex trophic links formed by a non-native invasive plant (i.e., Ammophila) providing cover favored by native rodents, which likely forage on and potentially limit the recruitment of native and non-native plants, some of which have ecosystem consequences of their own. PMID:25679785

  19. Effect of an invasive plant and moonlight on rodent foraging behavior in a coastal dune ecosystem.

    PubMed

    Johnson, Matthew D; De León, Yesenia L

    2015-01-01

    Understanding how invasive plants may alter predator avoidance behaviors is important for granivorous rodents because their foraging can trigger ripple effects in trophic webs. Previous research has shown that European beach grass Ammophila arenaria, an invasive species in coastal California, affects the predation of other seeds by the rodents Microtus californicus, Peromyscus maniculatus, and Reithrodontomys megalotis. This may be due to lower perceived predation risk by rodents foraging in close proximity to the cover provided by Ammophila, but this mechanism has not yet been tested. We examined the perceived predation risk of rodents by measuring the 'giving up density' of food left behind in experimental patches of food in areas with and without abundant cover from Ammophila and under varying amount of moonlight. We found strong evidence that giving up density was lower in the thick uniform vegetation on Ammophila-dominated habitat than it was in the more sparsely and diversely vegetated restored habitat. There was also evidence that moonlight affected giving up density and that it mediated the effects of habitat, although with our design we were unable to distinguish the effects of lunar illumination and moon phase. Our findings illustrate that foraging rodents, well known to be risk-averse during moonlit nights, are also affected by the presence of an invasive plant. This result has implications for granivory and perhaps plant demography in invaded and restored coastal habitats. Future research in this system should work to unravel the complex trophic links formed by a non-native invasive plant (i.e., Ammophila) providing cover favored by native rodents, which likely forage on and potentially limit the recruitment of native and non-native plants, some of which have ecosystem consequences of their own.

  20. Characterization of arbuscular mycorrhizal fungal communities with respect to zonal vegetation in a coastal dune ecosystem.

    PubMed

    Kawahara, Ai; Ezawa, Tatsuhiro

    2013-10-01

    Coastal dune vegetation distributes zonally along the environmental gradients of, e.g., soil disturbance. In the preset study, arbuscular mycorrhizal fungal communities in a coastal dune ecosystem were characterized with respect to tolerance to soil disturbance. Two grass species, Elymus mollis and Miscanthus sinensis, are distributed zonally in the seaward and landward slopes, respectively, in the primary dunes in Ishikari, Japan. The seaward slope is severely disturbed by wind, while the landward slope is stabilized by the thick root system of M. sinensis. The roots and rhizosphere soils of the two grasses were collected from the slopes. The soils were sieved to destruct the fungal hyphal networks, and soil trap culture was conducted to assess tolerance of the communities to disturbance, with parallel analysis of the field communities using a molecular ecological tool. In the landward communities, large shifts in the composition and increases in diversity were observed in the trap culture compared with the field, but in the seaward communities, the impact of trap culture was minimal. The landward field community was significantly nested within the landward trap culture community, implying that most members in the field community did not disappear in the trap culture. No nestedness was observed in the seaward communities. These observations suggest that disturbance-tolerant fungi have been preferentially selected in the seaward slope due to severe disturbance in the habitat. Whereas a limited number of fungi, which are not necessarily disturbance-sensitive, dominate in the stable landward slope, but high-potential diversity has been maintained in the habitat.

  1. The new Seafloor Observatory (OBSEA) for remote and long-term coastal ecosystem monitoring.

    PubMed

    Aguzzi, Jacopo; Mànuel, Antoni; Condal, Fernando; Guillén, Jorge; Nogueras, Marc; del Rio, Joaquin; Costa, Corrado; Menesatti, Paolo; Puig, Pere; Sardà, Francesc; Toma, Daniel; Palanques, Albert

    2011-01-01

    A suitable sampling technology to identify species and to estimate population dynamics based on individual counts at different temporal levels in relation to habitat variations is increasingly important for fishery management and biodiversity studies. In the past two decades, as interest in exploring the oceans for valuable resources and in protecting these resources from overexploitation have grown, the number of cabled (permanent) submarine multiparametric platforms with video stations has increased. Prior to the development of seafloor observatories, the majority of autonomous stations were battery powered and stored data locally. The recently installed low-cost, multiparametric, expandable, cabled coastal Seafloor Observatory (OBSEA), located 4 km off of Vilanova i la Gertrú, Barcelona, at a depth of 20 m, is directly connected to a ground station by a telecommunication cable; thus, it is not affected by the limitations associated with previous observation technologies. OBSEA is part of the European Multidisciplinary Seafloor Observatory (EMSO) infrastructure, and its activities are included among the Network of Excellence of the European Seas Observatory NETwork (ESONET). OBSEA enables remote, long-term, and continuous surveys of the local ecosystem by acquiring synchronous multiparametric habitat data and bio-data with the following sensors: Conductivity-Temperature-Depth (CTD) sensors for salinity, temperature, and pressure; Acoustic Doppler Current Profilers (ADCP) for current speed and direction, including a turbidity meter and a fluorometer (for the determination of chlorophyll concentration); a hydrophone; a seismometer; and finally, a video camera for automated image analysis in relation to species classification and tracking. Images can be monitored in real time, and all data can be stored for future studies. In this article, the various components of OBSEA are described, including its hardware (the sensors and the network of marine and land nodes

  2. Fluvial fluxes into the Caribbean Sea and their impact on coastal ecosystems: The Magdalena River, Colombia

    NASA Astrophysics Data System (ADS)

    Restrepo, Juan D.; Zapata, Paula; Díaz, Juan M.; Garzón-Ferreira, Jaime; García, Camilo B.

    2006-02-01

    The Magdalena, a world-class river, in the top ten in terms of sediment load ˜ 150 MT/yr, is the largest river discharging directly into the Caribbean Sea. Data on water discharge, sediment load, and dissolved load of the Magdalena River is presented as an initial interpretation of coastal ecosystems changes in relation to water discharge and sediment load from the Magdalena. During the 1972-1998 yr-period, the Magdalena River has delivered approximately 4022 MT of sediment to the Caribbean coast. The river reflects high inter-annual variability and delivers large portions of its fluvial discharge and sediment loads in short periods of time. The analysis of annual deviations from the 27-yr mean sediment load indicates that 59% of the total sediment load variability of the Magdalena at Calamar could be attributed to flashy peak events. Further analyses of sediment load anomalies suggest that there was a high discharge period in the Magdalena River between 1985 and 1995 and another one in the Canal del Dique between 1985 and 1992. These increasing trends in sediment load coincide with the overall decline of live coral cover around the Rosario Islands, a 145 km 2 coral reef complex in the Caribbean Sea that constitutes a marine protected area. The comparison of live coral: algae ratios for the 1983-2004 yr-period, also indicates that there has been an associated increase in the percentage of algae cover (i.e., Grande Island 1983 = 5%, 2004 = 59%). Other analyses show that nearly 850 ha of seagrass existing in the Cartagena Bay in the 1930s, only 76 ha remained in 2001, which is less than 8% of the original cover. There has been a mix of multiple stressors (natural and anthropogenic; local, regional and global; temporal and chronic) affecting the coastal ecosystems in the area, but the effect of the Magdalena River runoff has been constant and very prolonged (several decades). The impacts of heavy sediment loads and freshwater discharges from the Canal del Dique to

  3. The new Seafloor Observatory (OBSEA) for remote and long-term coastal ecosystem monitoring.

    PubMed

    Aguzzi, Jacopo; Mànuel, Antoni; Condal, Fernando; Guillén, Jorge; Nogueras, Marc; del Rio, Joaquin; Costa, Corrado; Menesatti, Paolo; Puig, Pere; Sardà, Francesc; Toma, Daniel; Palanques, Albert

    2011-01-01

    A suitable sampling technology to identify species and to estimate population dynamics based on individual counts at different temporal levels in relation to habitat variations is increasingly important for fishery management and biodiversity studies. In the past two decades, as interest in exploring the oceans for valuable resources and in protecting these resources from overexploitation have grown, the number of cabled (permanent) submarine multiparametric platforms with video stations has increased. Prior to the development of seafloor observatories, the majority of autonomous stations were battery powered and stored data locally. The recently installed low-cost, multiparametric, expandable, cabled coastal Seafloor Observatory (OBSEA), located 4 km off of Vilanova i la Gertrú, Barcelona, at a depth of 20 m, is directly connected to a ground station by a telecommunication cable; thus, it is not affected by the limitations associated with previous observation technologies. OBSEA is part of the European Multidisciplinary Seafloor Observatory (EMSO) infrastructure, and its activities are included among the Network of Excellence of the European Seas Observatory NETwork (ESONET). OBSEA enables remote, long-term, and continuous surveys of the local ecosystem by acquiring synchronous multiparametric habitat data and bio-data with the following sensors: Conductivity-Temperature-Depth (CTD) sensors for salinity, temperature, and pressure; Acoustic Doppler Current Profilers (ADCP) for current speed and direction, including a turbidity meter and a fluorometer (for the determination of chlorophyll concentration); a hydrophone; a seismometer; and finally, a video camera for automated image analysis in relation to species classification and tracking. Images can be monitored in real time, and all data can be stored for future studies. In this article, the various components of OBSEA are described, including its hardware (the sensors and the network of marine and land nodes

  4. The New Seafloor Observatory (OBSEA) for Remote and Long-Term Coastal Ecosystem Monitoring

    PubMed Central

    Aguzzi, Jacopo; Mànuel, Antoni; Condal, Fernando; Guillén, Jorge; Nogueras, Marc; del Rio, Joaquin; Costa, Corrado; Menesatti, Paolo; Puig, Pere; Sardà, Francesc; Toma, Daniel; Palanques, Albert

    2011-01-01

    A suitable sampling technology to identify species and to estimate population dynamics based on individual counts at different temporal levels in relation to habitat variations is increasingly important for fishery management and biodiversity studies. In the past two decades, as interest in exploring the oceans for valuable resources and in protecting these resources from overexploitation have grown, the number of cabled (permanent) submarine multiparametric platforms with video stations has increased. Prior to the development of seafloor observatories, the majority of autonomous stations were battery powered and stored data locally. The recently installed low-cost, multiparametric, expandable, cabled coastal Seafloor Observatory (OBSEA), located 4 km off of Vilanova i la Gertrú, Barcelona, at a depth of 20 m, is directly connected to a ground station by a telecommunication cable; thus, it is not affected by the limitations associated with previous observation technologies. OBSEA is part of the European Multidisciplinary Seafloor Observatory (EMSO) infrastructure, and its activities are included among the Network of Excellence of the European Seas Observatory NETwork (ESONET). OBSEA enables remote, long-term, and continuous surveys of the local ecosystem by acquiring synchronous multiparametric habitat data and bio-data with the following sensors: Conductivity-Temperature-Depth (CTD) sensors for salinity, temperature, and pressure; Acoustic Doppler Current Profilers (ADCP) for current speed and direction, including a turbidity meter and a fluorometer (for the determination of chlorophyll concentration); a hydrophone; a seismometer; and finally, a video camera for automated image analysis in relation to species classification and tracking. Images can be monitored in real time, and all data can be stored for future studies. In this article, the various components of OBSEA are described, including its hardware (the sensors and the network of marine and land nodes

  5. NASA COAST and OCEANIA Airborne Missions in Support of Ecosystem and Water Quality Research in the Coastal Zone

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Hooker, Stanford B.; Kudela, Raphael; Morrow, John; Russell, Philip; Myers, Jeffrey; Dunagan, Stephen; Palacios, Sherry; Livingston, John; Negrey, Kendra; Torres-Perez, Juan

    2015-01-01

    Worldwide, coastal marine ecosystems are exposed to land-based sources of pollution and sedimentation from anthropogenic activities including agriculture and coastal development. Ocean color products from satellite sensors provide information on chlorophyll (phytoplankton pigment), sediments, and colored dissolved organic material. Further, ship-based in-water measurements and emerging airborne measurements provide in situ data for the vicarious calibration of current and next generation satellite ocean color sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal of the airborne missions was to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. Utilizing an imaging spectrometer optimized in the blue to green spectral domain enables higher signal for detection of the relatively dark radiance measurements from marine and freshwater ecosystem features. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic

  6. Application of satellite infrared data for mapping of thermal plume contamination in coastal ecosystem of Korea.

    PubMed

    Ahn, Yu-Hwan; Shanmugam, Palanisamy; Lee, Jae-Hak; Kang, Yong Q

    2006-03-01

    The 5900 MW Younggwang nuclear power station on the west coast of Korea discharges warm water affecting coastal ecology [KORDI report (2003). Wide area observation of the impact of the operation of Younggwang nuclear power plant 5 and 6, No. BSPI 319-00-1426-3, KORDI, Seoul, Korea]. Here the spatial and temporal characteristics of the thermal plume signature of warm water are reported from a time series (1985-2003) of space-borne, thermal infrared data from Landsat and National Oceanic and Atmospheric Administration (NOAA) satellites. Sea surface temperature (SST) were characterized using advanced very high resolution radiometer data from the NOAA satellites. These data demonstrated the general pattern and extension of the thermal plume signature in the Younggwang coastal areas. In contrast, the analysis of SST from thematic mapper data using the Landsat-5 and 7 satellites provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. The thermal plume signature was detected from 70 to 100 km to the south of the discharge during the summer monsoon and 50 to 70 km to the northwest during the winter monsoon. The mean detected plume temperature was 28 degrees C in summer and 12 degrees C in winter. The DeltaT varied from 2 to 4 degrees C in winter and 2 degrees C in summer. These values are lower than the re-circulating water temperature (6-9 degrees C). In addition the temperature difference between tidal flats and offshore (SSTtidal flats - SSToffsore) was found to vary from 5.4 to 8.5 degrees C during the flood tides and 3.5 degrees C during the ebb tide. The data also suggest that water heated by direct solar radiation on the tidal flats during the flood tides might have been transported offshore during the ebb tide. Based on these results we suggest that there is an urgent need to protect the health of Younggwang coastal marine ecosystem from the severe thermal impact by the large quantity of warm water discharged from

  7. Application of satellite infrared data for mapping of thermal plume contamination in coastal ecosystem of Korea.

    PubMed

    Ahn, Yu-Hwan; Shanmugam, Palanisamy; Lee, Jae-Hak; Kang, Yong Q

    2006-03-01

    The 5900 MW Younggwang nuclear power station on the west coast of Korea discharges warm water affecting coastal ecology [KORDI report (2003). Wide area observation of the impact of the operation of Younggwang nuclear power plant 5 and 6, No. BSPI 319-00-1426-3, KORDI, Seoul, Korea]. Here the spatial and temporal characteristics of the thermal plume signature of warm water are reported from a time series (1985-2003) of space-borne, thermal infrared data from Landsat and National Oceanic and Atmospheric Administration (NOAA) satellites. Sea surface temperature (SST) were characterized using advanced very high resolution radiometer data from the NOAA satellites. These data demonstrated the general pattern and extension of the thermal plume signature in the Younggwang coastal areas. In contrast, the analysis of SST from thematic mapper data using the Landsat-5 and 7 satellites provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. The thermal plume signature was detected from 70 to 100 km to the south of the discharge during the summer monsoon and 50 to 70 km to the northwest during the winter monsoon. The mean detected plume temperature was 28 degrees C in summer and 12 degrees C in winter. The DeltaT varied from 2 to 4 degrees C in winter and 2 degrees C in summer. These values are lower than the re-circulating water temperature (6-9 degrees C). In addition the temperature difference between tidal flats and offshore (SSTtidal flats - SSToffsore) was found to vary from 5.4 to 8.5 degrees C during the flood tides and 3.5 degrees C during the ebb tide. The data also suggest that water heated by direct solar radiation on the tidal flats during the flood tides might have been transported offshore during the ebb tide. Based on these results we suggest that there is an urgent need to protect the health of Younggwang coastal marine ecosystem from the severe thermal impact by the large quantity of warm water discharged from

  8. A novel approach to model exposure of coastal-marine ecosystems to riverine flood plumes based on remote sensing techniques.

    PubMed

    Álvarez-Romero, Jorge G; Devlin, Michelle; Teixeira da Silva, Eduardo; Petus, Caroline; Ban, Natalie C; Pressey, Robert L; Kool, Johnathan; Roberts, Jason J; Cerdeira-Estrada, Sergio; Wenger, Amelia S; Brodie, Jon

    2013-04-15

    Increased loads of land-based pollutants are a major threat to coastal-marine ecosystems. Identifying the affected marine areas and the scale of influence on ecosystems is critical to assess the impacts of degraded water quality and to inform planning for catchment management and marine conservation. Studies using remotely-sensed data have contributed to our understanding of the occurrence and influence of river plumes, and to our ability to assess exposure of marine ecosystems to land-based pollutants. However, refinement of plume modeling techniques is required to improve risk assessments. We developed a novel, complementary, approach to model exposure of coastal-marine ecosystems to land-based pollutants. We used supervised classification of MODIS-Aqua true-color satellite imagery to map the extent of plumes and to qualitatively assess the dispersal of pollutants in plumes. We used the Great Barrier Reef (GBR), the world's largest coral reef system, to test our approach. We combined frequency of plume occurrence with spatially distributed loads (based on a cost-distance function) to create maps of exposure to suspended sediment and dissolved inorganic nitrogen. We then compared annual exposure maps (2007-2011) to assess inter-annual variability in the exposure of coral reefs and seagrass beds to these pollutants. We found this method useful to map plumes and qualitatively assess exposure to land-based pollutants. We observed inter-annual variation in exposure of ecosystems to pollutants in the GBR, stressing the need to incorporate a temporal component into plume exposure/risk models. Our study contributes to our understanding of plume spatial-temporal dynamics of the GBR and offers a method that can also be applied to monitor exposure of coastal-marine ecosystems to plumes and explore their ecological influences.

  9. Dynamic exchanges between DOM and POM pools in coastal and inland aquatic ecosystems: A review.

    PubMed

    He, Wei; Chen, Meilian; Schlautman, Mark A; Hur, Jin

    2016-05-01

    Dynamic exchanges between dissolved organic matter (DOM) and particulate organic matter (POM) plays a critical role in organic carbon cycling in coastal and inland aquatic ecosystems, interactions with aquatic organisms, mobility and bioavailability of pollutants, among many other ecological and geochemical phenomena. Although DOM-POM exchange processes have been widely studied from different aspects, little to no effort has been made to date to provide a comprehensive, mechanistic, and micro-spatial schema for understanding various exchange processes occurring in different aquatic ecosystems in a unified way. The phenomena occurring between DOM and POM were explained here with the homogeneous and heterogeneous mechanisms. In the homogeneous mechanism, the participating components are only organic matter (OM) constituents themselves with aggregation and dissolution involved, whereas OM is associated with other components such as minerals and particulate colloids in the heterogeneous counterpart. Besides the generally concerned processes of aggregation/dissolution and adsorption/desorption, other ecological factors such as sunlight and organisms can also participate in DOM-POM exchanges through altering the chemical nature of OM. Despite the limitation of current analytical technologies, many unknown and/or unquantified processes need to be identified to unravel the complicated exchanges of OM between its dissolved and particulate states. Based on the review of several previous mathematical models, we proposed a unified conceptual model to describe all major dynamic exchange mechanisms on the basis of exergy theory. More knowledge of dynamic DOM-POM exchanges is warranted to overcome the potential problems arising from a simple division of OM into dissolved versus particulate states and to further develop more sophisticated mathematic models.

  10. Byers Peninsula: A reference site for coastal, terrestrial and limnetic ecosystem studies in maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Quesada, A.; Camacho, A.; Rochera, C.; Velázquez, D.

    2009-11-01

    This article describes the development of an international and multidisciplinary project funded by the Spanish Polar Programme on Byers Peninsula (Livingston Island, South Shetlands). The project adopted Byers Peninsula as an international reference site for coastal and terrestrial (including inland waters) research within the framework of the International Polar Year initiative. Over 30 scientists from 12 countries and 26 institutions participated in the field work, and many others participated in the processing of the samples. The main themes investigated were: Holocene changes in climate, using both lacustrine sediment cores and palaeo-nests of penguins; limnology of the lakes, ponds, rivers and wetlands; microbiology of microbial mats, ecology of microbial food webs and viral effects on aquatic ecosystems; ornithology, with investigations on a Gentoo penguin rookery ( Pygoscelis papua) as well as the flying ornithofauna; biocomplexity and life cycles of species from different taxonomic groups; analysis of a complete watershed unit from a landscape perspective; and human impacts, specifically the effect of trampling on soil characteristics and biota. Byers Peninsula offers many features as an international reference site given it is one of the largest ice-free areas in the Antarctic Peninsula region, it has a variety of different landscape units, and it hosts diverse aquatic ecosystems. Moreover, the Byers Peninsula is a hotspot for Antarctic biodiversity, and because of its high level of environmental protection, it has been very little affected by human activities. Finally, the proximity to the Spanish polar installations on Livingston Island and the experience derived from previous expeditions to the site make it logistically feasible as a site for ongoing monitoring and research.

  11. Is economic valuation of ecosystem services useful to decision-makers? Lessons learned from Australian coastal and marine management.

    PubMed

    Marre, Jean-Baptiste; Thébaud, Olivier; Pascoe, Sean; Jennings, Sarah; Boncoeur, Jean; Coglan, Louisa

    2016-08-01

    Economic valuation of ecosystem services is widely advocated as being useful to support ecosystem management decision-making. However, the extent to which it is actually used or considered useful in decision-making is poorly documented. This literature blindspot is explored with an application to coastal and marine ecosystems management in Australia. Based on a nation-wide survey of eighty-eight decision-makers representing a diversity of management organizations, the perceived usefulness and level of use of economic valuation of ecosystem services, in support of coastal and marine management, are examined. A large majority of decision-makers are found to be familiar with economic valuation and consider it useful - even necessary - in decision-making, although this varies across groups of decision-makers. However, most decision-makers never or rarely use economic valuation. The perceived level of importance and trust in estimated dollar values differ across ecosystem services, and are especially high for values that relate to commercial activities. A number of factors are also found to influence respondent's use of economic valuation. Such findings concur with conclusions from other studies on the usefulness and use of ESV in environmental management decision-making. They also demonstrate the strength of the survey-based approach developed in this application to examine this issue in a variety of contexts.

  12. Effluents of Shrimp Farms and Its Influence on the Coastal Ecosystems of Bahía de Kino, Mexico

    PubMed Central

    Barraza-Guardado, Ramón H.; Arreola-Lizárraga, José A.; López-Torres, Marco A.; Casillas-Hernández, Ramón; Miranda-Baeza, Anselmo; Magallón-Barrajas, Francisco; Ibarra-Gámez, Cuauhtemoc

    2013-01-01

    The impact on coastal ecosystems of suspended solids, organic matter, and bacteria in shrimp farm effluents is presented. Sites around Bahía de Kino were selected for comparative evaluation. Effluent entering Bahia Kino (1) enters Laguna La Cruz (2). A control site (3) was outside the influence of effluents. Water quality samples were collected every two weeks during the shrimp culture period. Our data show that the material load in shrimp farm effluents changes biogeochemical processes and aquatic health of the coastal ecosystem. Specifically, the suspended solids, particulate organic matter, chlorophyll a, viable heterotrophic bacteria, and Vibrio-like bacteria in the bay and lagoon were two- to three-fold higher than the control site. This can be mitigated by improvements in the management of aquaculture systems. PMID:23861653

  13. Depth shapes α- and β-diversities of microbial eukaryotes in surficial sediments of coastal ecosystems.

    PubMed

    Gong, Jun; Shi, Fei; Ma, Bin; Dong, Jun; Pachiadaki, Maria; Zhang, Xiaoli; Edgcomb, Virginia P

    2015-10-01

    Little is known about the relative influence of historic processes and environmental gradients on shaping the diversity of single-celled eukaryotes in marine benthos. By combining pyrosequencing of 18S ribosomal RNA genes with data on multiple environmental factors, we investigated the diversity of microeukaryotes in surficial sediments of three basins of the Yellow Sea Large Marine Ecosystem. A considerable proportion (about 20%) of reads was affiliated with known parasitoid protists. Dinophyta and Ciliophora appeared dominant in terms of relative proportion of reads and operational taxonomic unit (OTU) richness. Overall, OTU richness of benthic microeukaryotes decreased with increasing water depth and decreasing pH. While community composition was significantly different among basins, partial Mantel tests indicated a depth-decay pattern of community similarity, whereby water depth, rather than geographic distance or environment, shaped β-diversity of benthic microeukaryotes (including both the abundant and the rare biosphere) on a regional scale. Similar hydrographic and mineralogical factors contributed to the biogeography of both the abundant and the rare OTUs. The trace metal vanadium had a significant effect on the biogeography of the rare biosphere. Our study sheds new light on the composition, diversity patterns and underlying mechanisms of single-celled eukaryote distribution in surficial sediments of coastal oceans. PMID:25581721

  14. Depth shapes α- and β-diversities of microbial eukaryotes in surficial sediments of coastal ecosystems.

    PubMed

    Gong, Jun; Shi, Fei; Ma, Bin; Dong, Jun; Pachiadaki, Maria; Zhang, Xiaoli; Edgcomb, Virginia P

    2015-10-01

    Little is known about the relative influence of historic processes and environmental gradients on shaping the diversity of single-celled eukaryotes in marine benthos. By combining pyrosequencing of 18S ribosomal RNA genes with data on multiple environmental factors, we investigated the diversity of microeukaryotes in surficial sediments of three basins of the Yellow Sea Large Marine Ecosystem. A considerable proportion (about 20%) of reads was affiliated with known parasitoid protists. Dinophyta and Ciliophora appeared dominant in terms of relative proportion of reads and operational taxonomic unit (OTU) richness. Overall, OTU richness of benthic microeukaryotes decreased with increasing water depth and decreasing pH. While community composition was significantly different among basins, partial Mantel tests indicated a depth-decay pattern of community similarity, whereby water depth, rather than geographic distance or environment, shaped β-diversity of benthic microeukaryotes (including both the abundant and the rare biosphere) on a regional scale. Similar hydrographic and mineralogical factors contributed to the biogeography of both the abundant and the rare OTUs. The trace metal vanadium had a significant effect on the biogeography of the rare biosphere. Our study sheds new light on the composition, diversity patterns and underlying mechanisms of single-celled eukaryote distribution in surficial sediments of coastal oceans.

  15. SICS: the Southern Inland and Coastal System interdisciplinary project of the USGS South Florida Ecosystem Program

    USGS Publications Warehouse

    ,

    2011-01-01

    State and Federal agencies are working jointly on structural modifications and improved water-delivery strategies to reestablish more natural surface-water flows through the Everglades wetlands and into Florida Bay. Changes in the magnitude, duration, timing, and distribution of inflows from the headwaters of the Taylor Slough and canal C-111 drainage basins have shifted the seasonal distribution and extent of wetland inundation, and also contributed to the development of hypersaline conditions in nearshore embayments of Florida Bay. Such changes are altering biological and vegetative communities in the wetlands and creating stresses on aquatic habitat. Affected biotic resources include federally listed species such as the Cape Sable seaside sparrow, American crocodile, wood stork, and roseate spoonbill. The U.S. Geological Survey (USGS) is synthesizing scientific findings from hydrologic process studies, collecting data to characterize the ecosystem properties and functions, and integrating the results of these efforts into a research tool and management model for this Southern Inland and Coastal System(SICS). Scientists from all four disciplinary divisions of the USGS, Biological Resources, Geology, National Mapping, and Water Resources are contributing to this interdisciplinary project.

  16. Spatial Simulation of Land Use based on Terrestrial Ecosystem Carbon Storage in Coastal Jiangsu, China

    PubMed Central

    Chuai, Xiaowei; Huang, Xianjin; Wang, Wanjing; Wu, Changyan; Zhao, Rongqin

    2014-01-01

    This paper optimises projected land-use structure in 2020 with the goal of increasing terrestrial ecosystem carbon storage and simulates its spatial distribution using the CLUE-S model. We found the following: The total carbon densities of different land use types were woodland > water area > cultivated land > built-up land > grassland > shallows. Under the optimised land-use structure projected for 2020, coastal Jiangsu showed the potential to increase carbon storage, and our method was effective even when only considering vegetation carbon storage. The total area will increase by reclamation and the original shallows will be exploited, which will greatly increase carbon storage. For built-up land, rural land consolidation caused the second-largest carbon storage increase, which might contribute the most as the rural population will continue to decrease in the future, while the decrease of cultivated land will contribute the most to carbon loss. The area near the coastline has the greatest possibility for land-use change and is where land management should be especially strengthened. PMID:25011476

  17. Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida's Gulf Coast: Implications for Adaptation Planning.

    PubMed

    Geselbracht, Laura L; Freeman, Kathleen; Birch, Anne P; Brenner, Jorge; Gordon, Doria R

    2015-01-01

    The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida's Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway. PMID:26207914

  18. Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida's Gulf Coast: Implications for Adaptation Planning.

    PubMed

    Geselbracht, Laura L; Freeman, Kathleen; Birch, Anne P; Brenner, Jorge; Gordon, Doria R

    2015-01-01

    The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida's Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway.

  19. Nutrient dynamics and primary production in a pristine coastal mangrove ecosystem: Andaman Islands, India

    NASA Astrophysics Data System (ADS)

    Jenkins, E. N.; Nickodem, K.; Siemann, A. L.; Hoeher, A.; Sundareshwar, P. V.; Ramesh, R.; Purvaja, R.; Banerjee, K.; Manickam, S.; Haran, H.

    2012-12-01

    Mangrove ecosystems play a key role in supporting coastal food webs and nutrient cycles in the coastal zone. Their strategic position between the land and the sea make them important sites for land-ocean interaction. As part of an Indo-US summer field course we investigated changes in the water chemistry in a pristine mangrove creek located at Wright Myo in the Andaman Islands, India. This study was conducted during the wet season (June 2012) to evaluate the influence of the coastal mangrove wetlands on the water quality and productivity in adjoining pelagic waters. Over a full tidal cycle spanning approximately 24 hrs, we measured nutrient concentrations and other ancillary parameters (e.g. dissolved oxygen, turbidity, salinity, etc.) hourly to evaluate water quality changes in incoming and ebbing tides. Nutrient analyses had the following concentration ranges (μM): nitrite 0.2-0.9, nitrate 2.0-11.5, ammonium 1.3-7.5, dissolved inorganic phosphate 0.7-2.8. The dissolved inorganic nitrogen to dissolved inorganic phosphate (DIN/DIP) ratio was very low relative to an optimal ratio, suggesting growth is nitrogen limited. In addition, we conducted primary production assays to investigate the factors that controlled primary production in this pristine creek. The experiment was carried out in situ using the Winkler method at low and high tide. Four-hour incubation of light and dark bottles representing a fixed control, non-fertilized, fertilized with nitrate, and fertilized with phosphate enabled the measurement of both net oxygen production and dark respiration. The low tide experiment suggests the ecosystem is heterotrophic because the oxygen measured in the light bottles was consistently less than that of the dark bottles. This result may be an experimental artifact of placing the glass bottles in the sun for too long prior to incubation, potentially leading to photolysis of large organic molecules in the light bottles. The high tide experiment also displayed

  20. South Florida Ecosystem Program: quantifying freshwater discharge for coastal hydraulic control structures in eastern Dade County, Florida

    USGS Publications Warehouse

    Kapadia, Amit; Swain, Eric D.

    1996-01-01

    The South Florida Ecosystem Restoration Program is an intergovernmental effort, involving a number of agencies, to reestablish and maintain the ecosystem of south Florida. One element of the restoration effort is the development of a firm scientific basis for resource decision making. The U.S. Geological Survey (USGS), one of the agencies, provides scientific information as part of the South Florida Ecosystem Restoration Program. The USGS began their ow program, called the South Florida Ecosystem Program, in fiscal year 1995 for the purpose of gathering hydrologic, cartographic, and geologic data that relate to the mainland of south Florida, Florida Bay, and the Florida Keys and Reef ecosystems. As part of the South Florida Ecosystem Program, the USGS, in cooperation with the South Florida Water Management District (SFWMD), has conducted a study to determine discharge ratings for 16 coastal hydraulic control structures in eastern Dade County, Fla. (fig. 1 ). Discharge data are needed to quantify water that can be made available for water supply and ecosystem restoration and to calibrate regional hydrologic models.

  1. Biological indicators of changes in water quality and habitats of the coastal and estuarine areas of the Greater Everglades Ecosystem; Chapter 11

    USGS Publications Warehouse

    Wachnicka, Anna; Wingard, Georgiana L.; Entry, James A.; Gottlieb, Andrew D.; Jayachandran, Krish; Ogram, Andrew

    2015-01-01

    This chapter summarizes the application of various biological indicators to studying the anthropogenic and natural changes in water quality and habitats that have occurred in the coastal and estuarine areas of the Greater Everglades ecosystem.

  2. Tidal river hydraulics, morphology, and biogeochemistry: Implications for management and restoration of coastal ecosystems (Invited)

    NASA Astrophysics Data System (ADS)

    Doyle, M. W.; Ensign, S.

    2010-12-01

    While much research exists for rivers and creeks that are entirely within the tidal zone, little geomorphic research exists for the region where rivers encounter tides. TFZs have distinct ecosystem processes shaped by upstream watershed fluxes and tidal forcing from downstream. Population growth worldwide is increasing rapidly in coastal areas; understanding these systems is thus imperative. We sought to quantify how tides affect river hydraulics and sediment transport, how these processes influence morphology over time, and how this altered and evolving morphology influences denitrification and primary productivity. We measured the tidal influence on energy expenditure and sediment transport over semi-diurnal tidal cycles along a 9 km tidal gradient of the Newport River, NC. Tides dampened energy in the upper tidal river relative to non-tidal river, but energy dissipation farther downstream was 44-fold greater than would have occurred without influence of tides. Sediment flux was dominated by tidal cycles rather than storm flows despite the large upstream watershed area. Bankfull channel size increased dramatically along the tidal gradient, much more so than was predicted with normal downstream hydraulic geometry relations. These geomorphic characteristics heavily influenced fundamental ecological processes. Geomorphic-biogeochemical relations were examined by measuring rates of N2 production from sediment cores taken from inter-tidal portion of the river, and in-situ measurements of redox potential in the TFZ riparian zone. Fluctuations between oxidized and reduced conditions, soil moisture, and an inundation from floods or tides were used to model location, timing, and rates of denitrification. By modeling total denitrification flux (kg N per day), we could estimate the influence of hydrology, geomorphology, and tidal forcing on N cycles. Results indicate that tidally-driven changes in channel morphology (e.g., rapid downstream widening), combined with

  3. Avian influenza virus wild bird surveillance in the Azov and Black Sea regions of Ukraine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Azov and Black Sea basins are transcontinental migration routes of wild birds from Northern Asia and Europe to the Mediterranean, Africa and Southwest Asia. These regions constitute an area of transit, stops during migration, and nesting of many migratory bird species with a very high level of ...

  4. Distribution of macroalgae and seaweed in the Azov Sea, Kerch Strait, and Taman Bay

    NASA Astrophysics Data System (ADS)

    Stepanian, O. V.

    2009-06-01

    The analysis of the macroalgae distribution along the salinity gradient in the Azov Sea, the Kerch strait, and Taman Bay during the summer allowed finding two macroalgae complexes. The first complex (brackish) is formed by algae belonging to the Enteromorpha, Cladophora, Rhizoclonium, and Chaetomorpha genera in the Taganrog Gulf. The second complex (marine) with dominating algae belonging to the Enteromorpha, Chaetomorpha, Ceramium, and Polysiphonia inhabits the littoral part of the Azov Sea itself, the Kerch Strait, and Taman Bay. The saprobe analysis of the flora showed that the majority of macroalgae species inhabiting the Azov Sea are represented by meso- and polysaprobes and a small number of oligosaprobe species inhabit the Kerch Strait. The biggest species diversity of macroalgae was noted in the southwestern part of the sea; the value of Shannon’s index was 0.65 in the Taganrog Gulf, 1.04 in the Azov Sea, 1.38 in Taman Bay. The leading role in the littoral communities of Taganrog Gulf belongs to aquatic flowering plants with Potamogeton perfoliatus being dominant; as the salinity increases, the share of such species as P. pectinatus, Zostera marina, Z. noltii, Ruppia maritime, and Zannichellia major starts to increase.

  5. Information Needs Assessment for Coastal and Marine Management and Policy: Ecosystem Services Under Changing Climatic, Land Use, and Demographic Conditions

    NASA Astrophysics Data System (ADS)

    Goldsmith, Kaitlin A.; Granek, Elise F.; Lubitow, Amy

    2015-12-01

    Changing climatic, demographic, and land use conditions are projected to alter the provisioning of ecosystem services in estuarine, coastal, and nearshore marine ecosystems, necessitating mitigation and adaptation policies and management. The current paradigm of research efforts occurring in parallel to, rather than in collaboration with, decision makers will be insufficient for the rapid responses required to adapt to and mitigate for projected changing conditions. Here, we suggest a different paradigm: one where research begins by engaging decision makers in the identification of priority data needs (biophysical, economic, and social). This paper uses synthesized interview data to provide insight into the varied demands for scientific research as described by decision makers working on coastal issues in Oregon, USA. The findings highlight the need to recognize (1) the differing framing of ecosystem services by decision makers versus scientists; and (2) the differing data priorities relevant to inland versus coastal decision makers. The findings further serve to highlight the need for decision makers, scientists, and funders to engage in increased communication. This research is an important first step in advancing efforts toward evidence-based decision making in Oregon and provides a template for further research across the US.

  6. Information Needs Assessment for Coastal and Marine Management and Policy: Ecosystem Services Under Changing Climatic, Land Use, and Demographic Conditions.

    PubMed

    Goldsmith, Kaitlin A; Granek, Elise F; Lubitow, Amy

    2015-12-01

    Changing climatic, demographic, and land use conditions are projected to alter the provisioning of ecosystem services in estuarine, coastal, and nearshore marine ecosystems, necessitating mitigation and adaptation policies and management. The current paradigm of research efforts occurring in parallel to, rather than in collaboration with, decision makers will be insufficient for the rapid responses required to adapt to and mitigate for projected changing conditions. Here, we suggest a different paradigm: one where research begins by engaging decision makers in the identification of priority data needs (biophysical, economic, and social). This paper uses synthesized interview data to provide insight into the varied demands for scientific research as described by decision makers working on coastal issues in Oregon, USA. The findings highlight the need to recognize (1) the differing framing of ecosystem services by decision makers versus scientists; and (2) the differing data priorities relevant to inland versus coastal decision makers. The findings further serve to highlight the need for decision makers, scientists, and funders to engage in increased communication. This research is an important first step in advancing efforts toward evidence-based decision making in Oregon and provides a template for further research across the US. PMID:26133482

  7. Information Needs Assessment for Coastal and Marine Management and Policy: Ecosystem Services Under Changing Climatic, Land Use, and Demographic Conditions.

    PubMed

    Goldsmith, Kaitlin A; Granek, Elise F; Lubitow, Amy

    2015-12-01

    Changing climatic, demographic, and land use conditions are projected to alter the provisioning of ecosystem services in estuarine, coastal, and nearshore marine ecosystems, necessitating mitigation and adaptation policies and management. The current paradigm of research efforts occurring in parallel to, rather than in collaboration with, decision makers will be insufficient for the rapid responses required to adapt to and mitigate for projected changing conditions. Here, we suggest a different paradigm: one where research begins by engaging decision makers in the identification of priority data needs (biophysical, economic, and social). This paper uses synthesized interview data to provide insight into the varied demands for scientific research as described by decision makers working on coastal issues in Oregon, USA. The findings highlight the need to recognize (1) the differing framing of ecosystem services by decision makers versus scientists; and (2) the differing data priorities relevant to inland versus coastal decision makers. The findings further serve to highlight the need for decision makers, scientists, and funders to engage in increased communication. This research is an important first step in advancing efforts toward evidence-based decision making in Oregon and provides a template for further research across the US.

  8. Application of the Benthic Ecosystem Quality Index 2 to benthos in Dutch transitional and coastal waters

    NASA Astrophysics Data System (ADS)

    van Loon, W. M. G. M.; Boon, A. R.; Gittenberger, A.; Walvoort, D. J. J.; Lavaleye, M.; Duineveld, G. C. A.; Verschoor, A. J.

    2015-09-01

    The Benthic Ecosystem Quality Index 2 (BEQI2) is the Dutch multi-metric index (MMI) for assessing the status and trend of benthic invertebrates in transitional and coastal waters for the Water Framework Directive (WFD). It contains the same indicators, i.e. species richness, Shannon index and AMBI, as in the multivariate m-AMBI. The latter MMI has been adopted by several European countries in the context of WFD implementation. In contrast to m-AMBI, the BEQI2 calculation procedure has been strongly simplified and consists of two steps, i.e. the separate indicator values are normalized using their long-term reference values resulting in three Ecological Quality Ratios (EQRs), which are subsequently averaged to give one BEQI2 value. Using this method only small numbers of samples need to be analysed by Dutch benthos laboratories annually, without the necessity to co-analyse a larger historical dataset. BEQI2 EQR values appeared to correlate quantitatively very well with m-AMBI EQR values. In addition, a data pooling procedure has been added to the BEQI2 tool which enables the pooling of small core samples (0.01-0.025 m2) into larger standardized data pools of 0.1 m2 in order to meet the data requirements of the AMBI indicator and to obtain comparable reference values. Furthermore, the BEQI2 tool automatically and efficiently converts species synonym names into standardized species names. The BEQI2 tool has been applied to all Dutch benthos data monitored by Rijkswaterstaat in the period of 1991-2010 in the transitional and coastal waters and salt lakes and these results are reported here for the first time. Reference values for species richness and Shannon index (99 percentile values) and AMBI reference values (1 percentile values) were estimated for all water body-ecotopes and are discussed. BEQI2 results for all these water bodies are discussed in view of natural and human pressures. The pressure sensitivity of the BEQI2 for sewage and dredging/dumping, via the

  9. Trophic efficiency of the planktonic food web in a coastal ecosystem dominated by Phaeocystis colonies

    NASA Astrophysics Data System (ADS)

    Rousseau, V.; Becquevort, S.; Parent, J.-Y.; Gasparini, S.; Daro, M.-H.; Tackx, M.; Lancelot, C.

    2000-08-01

    The trophic efficiency of the planktonic food web in the Phaeocystis-dominated ecosystem of the Belgian coastal waters was inferred from the analysis of the carbon flow network of the planktonic system subdivided into its different trophodynamic groups. A carbon budget was constructed on the basis of process-level field experiments conducted during the spring bloom period of 1998. Biomass and major metabolic activities of auto- and heterotrophic planktonic communities (primary production, bacterial production, nanoproto-, micro- and mesozooplankton feeding activities) were determined in nine field assemblages collected during spring at reference station 330. In 1998, the phytoplankton spring flowering was characterised by a moderate diatom bloom followed by a massive Phaeocystis colony bloom. Phaeocystis colonies, contributing 70% to the net primary production, escaped the linear food chain while the early spring diatom production supplied 74% of the mesozooplankton carbon uptake. The rest of mesozooplankton food requirement was, at the time of the Phaeocystis colony bloom, partially fulfilled by microzooplankton. Only one-third of the microzooplankton production, however, was controlled by mesozooplankton grazing pressure. Ungrazed Phaeocystis colonies were stimulating the establishment of a very active microbial network. On the one hand, the release of free-living cells from ungrazed colonies has been shown to stimulate the growth of microzooplankton, which was controlling 97% of the nanophytoplankton production. On the other hand, the disruption of ungrazed Phaeocystis colonies supplied the water column with large amounts of dissolved organic matter available for planktonic bacteria. The budget calculation suggests that ungrazed colonies contributed up to 60% to the bacterial carbon demand, while alternative sources (exudation, zooplankton egestion and lysis of other organisms) provided some 30% of bacterial carbon requirements. This suggests that the spring

  10. Capturing Ecosystem Services, Stakeholders' Preferences and Trade-Offs in Coastal Aquaculture Decisions: A Bayesian Belief Network Application

    PubMed Central

    Schmitt, Laetitia Helene Marie; Brugere, Cecile

    2013-01-01

    Aquaculture activities are embedded in complex social-ecological systems. However, aquaculture development decisions have tended to be driven by revenue generation, failing to account for interactions with the environment and the full value of the benefits derived from services provided by local ecosystems. Trade-offs resulting from changes in ecosystem services provision and associated impacts on livelihoods are also often overlooked. This paper proposes an innovative application of Bayesian belief networks - influence diagrams - as a decision support system for mediating trade-offs arising from the development of shrimp aquaculture in Thailand. Senior experts were consulted (n = 12) and primary farm data on the economics of shrimp farming (n = 20) were collected alongside secondary information on ecosystem services, in order to construct and populate the network. Trade-offs were quantitatively assessed through the generation of a probabilistic impact matrix. This matrix captures nonlinearity and uncertainty and describes the relative performance and impacts of shrimp farming management scenarios on local livelihoods. It also incorporates export revenues and provision and value of ecosystem services such as coastal protection and biodiversity. This research shows that Bayesian belief modeling can support complex decision-making on pathways for sustainable coastal aquaculture development and thus contributes to the debate on the role of aquaculture in social-ecological resilience and economic development. PMID:24155876

  11. Capturing ecosystem services, stakeholders' preferences and trade-offs in coastal aquaculture decisions: a Bayesian belief network application.

    PubMed

    Schmitt, Laetitia Helene Marie; Brugere, Cecile

    2013-01-01

    Aquaculture activities are embedded in complex social-ecological systems. However, aquaculture development decisions have tended to be driven by revenue generation, failing to account for interactions with the environment and the full value of the benefits derived from services provided by local ecosystems. Trade-offs resulting from changes in ecosystem services provision and associated impacts on livelihoods are also often overlooked. This paper proposes an innovative application of Bayesian belief networks - influence diagrams - as a decision support system for mediating trade-offs arising from the development of shrimp aquaculture in Thailand. Senior experts were consulted (n = 12) and primary farm data on the economics of shrimp farming (n = 20) were collected alongside secondary information on ecosystem services, in order to construct and populate the network. Trade-offs were quantitatively assessed through the generation of a probabilistic impact matrix. This matrix captures nonlinearity and uncertainty and describes the relative performance and impacts of shrimp farming management scenarios on local livelihoods. It also incorporates export revenues and provision and value of ecosystem services such as coastal protection and biodiversity. This research shows that Bayesian belief modeling can support complex decision-making on pathways for sustainable coastal aquaculture development and thus contributes to the debate on the role of aquaculture in social-ecological resilience and economic development.

  12. Oceanographic implications of the Cabo Catoche (Northeast Yucatan) upwelling and its effects on the coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Reyes-Mendoza, O.; Marino-Tapia, I.; Herrera Silveira, J.; Cárdenas-Palómo, N.; Ruiz, G.

    2013-05-01

    The coasts of the world where upwelling events occur are intrinsically related to the human population, mainly because of their large fisheries, socioeconomic repercussion and implications concerning the health of the ecosystem. In the northeast of the Yucatan Peninsula occurs an upwelling event known as the Yucatan upwelling (YU) associated with the current of the same name. The mechanisms that generate the YU are still under discussion. In terms of seasonality it is agreed that this is annual, occurring between April and September. During spring and summer, the northeast coast of the Peninsula between CaboCatoche and Isla Contoy becomes a productive and diverse pelagic ecosystem, unique to the region. It is classified as a priority marine zone host to close to 59 species protected by the national laws. It is also recognized as an important priority marine site because of its fishery. Also, the largest global aggregation of whale sharks, the world's biggest fish, is found at this site. There is a strong connection between the physical and the biological components of the system, however the coastal extent, seasonality, and magnitude of these processes need to be determined. Therefore an in-situ study was designed in the coastal region of CaboCatoche, where a 50 km transect was positioned along shelf and another across shelf 20 km, where water was collected to determine nutrient concentrations and CTD profiles were casted during the summer of 2007, 2008 and 2011. Two acoustic profilers were installed 12 km from the coast, which recorded currents and temperature by 2 years. Another profiler located 17 km from the coast to recorded data by 8 years. Atmospheric pressure and temperature were measured, as a wind fields from NOAA. Maps were created for the vertical distribution of temperature (18-31°C), salinity (35-38 psu), density (22-27 kg/m3) and chlorophyll (0.05-12.7 mg/m3). Frequency periods were estimated for temperature, currents, wind and atmospheric pressure

  13. Experimental restoration of a salt marsh with some comments on ecological restoration of coastal vegetated ecosystems in Korea

    NASA Astrophysics Data System (ADS)

    Koo, Bon Joo; Je, Jong Geel; Woo, Han Jun

    2011-03-01

    Since the 1980s, the coastal wetlands in Korea have been rapidly degraded and destroyed mainly due to reclamation and landfills for coastal development. In order to recover damaged coastal environments and to develop wetland restoration technologies, a 4-year study on ecological the restoration of coastal vegetated ecosystems was started in 1998. As one of a series of studies, a small-scale experiment on salt marsh restoration was carried out from April 2000 to August 2001. The experiment was designed to find effective means of ecological restoration through a comparison of the changes in environmental components and species structure between two different experimental plots created using sediment fences, one with and one without small canals. Temporal variation in surface elevation, sedimentary facies, and benthic species were measured seasonally in each plot and in the adjacent natural reference sites. Monthly exposure occurred from 330 cm to mean sea level, which represents the critical tidal level (CTL) at which salt marsh plants colonize. Vegetation, especially Suaeda japonica, colonized the site the following spring and recovered to a similar extent in the natural marshes 16 months later. The sedimentary results indicated that the sediment fences had effects on particle size and sediment accumulation, especially in the plot with small canals. This experiment also showed that tidal height, especially that exceeding the CTL, is an important factor in the recovery of the benthic fauna of salt marshes. From these results, we suggested that designs for the restoration of salt marsh ecosystems must consider the inclusion of a tidal height exceeding CTL, as this may allow reconstruction of the previous natural ecosystem without artificial transplanting.

  14. Parasites of the grouper fish Epinephelus coioides (Serranidae) as potential environmental indicators in Indonesian coastal ecosystems.

    PubMed

    Kleinertz, S; Palm, H W

    2015-01-01

    A total of 195 Epinephelus coioides (Hamilton, 1822) were studied for fish parasites from Javanese (Segara Anakan lagoon) and Balinese waters. Up to 25 different parasite species belonging to the following taxa: one Ciliata, one Microsporea, five Digenea, one Monogenea, four Cestoda, four Nematoda, one Acanthocephala, one Hirudinea and seven Crustacea were identified with four new host and locality records. The dominant parasites included the monogenean Pseudorhabdosynochus lantauensis (53.3-97.1%), the nematode Spirophilometra endangae (23.3-42.9%), the digenean Didymodiclinus sp. (2.9-40.0%), the nematodes Philometra sp. (22.6-34.3%) and Raphidascaris sp. (2.9-28.6%), and the isopod Alcirona sp. (6.7-31.4%). Regional differences for E. coioides were found in terms of endoparasite diversity, total diversity according to Shannon-Wiener, Simpson index and Evenness. A comparison with published data from Sumatera revealed highest endoparasite diversity (Shannon-Wiener: 1.86/1.67-2.04) and lowest ectoparasite/endoparasite ratio (0.73/0.57-0.88) off the Balinese coast, followed by Lampung Bay, Sumatera (1.84; 0.67), off the coast of Segara Anakan lagoon (1.71; 0.71), and in the lagoon (0.30/0.19-0.66; 0.85/0.67-1.00). The presented data demonstrate the natural range of these parameters and parasite prevalences according to habitat and region, allowing adjustment of the scale that has been used in the visual integration of the parasite parameters into a star graph. The parasite fauna of E. coioides in Segara Anakan lagoon 'improved' from 2004 until 2008/09, possibly related to earlier oil spill events in 2002 and 2004. The use of grouper fish parasites as an early warning system for environmental change in Indonesian coastal ecosystems is discussed.

  15. Organization of marine phenology data in support of planning and conservation in ocean and coastal ecosystems

    USGS Publications Warehouse

    Thomas, Kathryn A.; Fornwall, Mark D.; Weltzin, Jake F.; Griffis, R.B.

    2014-01-01

    Among the many effects of climate change is its influence on the phenology of biota. In marine and coastal ecosystems, phenological shifts have been documented for multiple life forms; however, biological data related to marine species' phenology remain difficult to access and is under-used. We conducted an assessment of potential sources of biological data for marine species and their availability for use in phenological analyses and assessments. Our evaluations showed that data potentially related to understanding marine species' phenology are available through online resources of governmental, academic, and non-governmental organizations, but appropriate datasets are often difficult to discover and access, presenting opportunities for scientific infrastructure improvement. The developing Federal Marine Data Architecture when fully implemented will improve data flow and standardization for marine data within major federal repositories and provide an archival repository for collaborating academic and public data contributors. Another opportunity, largely untapped, is the engagement of citizen scientists in standardized collection of marine phenology data and contribution of these data to established data flows. Use of metadata with marine phenology related keywords could improve discovery and access to appropriate datasets. When data originators choose to self-publish, publication of research datasets with a digital object identifier, linked to metadata, will also improve subsequent discovery and access. Phenological changes in the marine environment will affect human economics, food systems, and recreation. No one source of data will be sufficient to understand these changes. The collective attention of marine data collectors is needed—whether with an agency, an educational institution, or a citizen scientist group—toward adopting the data management processes and standards needed to ensure availability of sufficient and useable marine data to understand

  16. Effects of olive oil wastes on river basins and an oligotrophic coastal marine ecosystem: a case study in Greece.

    PubMed

    Pavlidou, A; Anastasopoulou, E; Dassenakis, M; Hatzianestis, I; Paraskevopoulou, V; Simboura, N; Rousselaki, E; Drakopoulou, P

    2014-11-01

    This work aims to contribute to the knowledge of the impacts of olive oil waste discharge to freshwater and oligotrophic marine environments, since the ecological impact of olive oil wastes in riverine and coastal marine ecosystems, which are the final repositories of the pollutants, is a great environmental problem on a global scale, mostly concerning all the Mediterranean countries with olive oil production. Messinia, in southwestern Greece, is one of the greatest olive oil production areas in Europe. During the last decade around 1.4×10(6)tons of olive oil mill wastewater has been disposed in the rivers of Messinia and finally entered the marine ecosystem of Messiniakos gulf. The pollution from olive oil mill wastewater in the main rivers of Messinia and the oligotrophic coastal zone of Messiniakos gulf and its effects on marine organisms were evaluated, before, during and after the olive oil production period. Elevated amounts of phenols (36.2-178 mg L(-1)) and high concentrations of ammonium (7.29-18.9 mmol L(-1)) and inorganic phosphorus (0.5-7.48 mmol L(-1)) were measured in small streams where the liquid disposals from several olive oil industries were gathered before their discharge in the major rivers of Messinia. The large number of olive oil units has downgraded the riverine and marine ecosystems during the productive period and a period more than five months is needed for the recovery of the ecosystem. Statistical analysis showed that the enrichment of freshwater and the coastal zone of Messiniakos gulf in ammonia, nitrite, phenols, total organic carbon, copper, manganese and nickel was directly correlated with the wastes from olive oil. Toxicity tests using 24h LC50 Palaemonidae shrimp confirm that olive mill wastewater possesses very high toxicity in the aquatic environment. PMID:25112823

  17. Effects of olive oil wastes on river basins and an oligotrophic coastal marine ecosystem: a case study in Greece.

    PubMed

    Pavlidou, A; Anastasopoulou, E; Dassenakis, M; Hatzianestis, I; Paraskevopoulou, V; Simboura, N; Rousselaki, E; Drakopoulou, P

    2014-11-01

    This work aims to contribute to the knowledge of the impacts of olive oil waste discharge to freshwater and oligotrophic marine environments, since the ecological impact of olive oil wastes in riverine and coastal marine ecosystems, which are the final repositories of the pollutants, is a great environmental problem on a global scale, mostly concerning all the Mediterranean countries with olive oil production. Messinia, in southwestern Greece, is one of the greatest olive oil production areas in Europe. During the last decade around 1.4×10(6)tons of olive oil mill wastewater has been disposed in the rivers of Messinia and finally entered the marine ecosystem of Messiniakos gulf. The pollution from olive oil mill wastewater in the main rivers of Messinia and the oligotrophic coastal zone of Messiniakos gulf and its effects on marine organisms were evaluated, before, during and after the olive oil production period. Elevated amounts of phenols (36.2-178 mg L(-1)) and high concentrations of ammonium (7.29-18.9 mmol L(-1)) and inorganic phosphorus (0.5-7.48 mmol L(-1)) were measured in small streams where the liquid disposals from several olive oil industries were gathered before their discharge in the major rivers of Messinia. The large number of olive oil units has downgraded the riverine and marine ecosystems during the productive period and a period more than five months is needed for the recovery of the ecosystem. Statistical analysis showed that the enrichment of freshwater and the coastal zone of Messiniakos gulf in ammonia, nitrite, phenols, total organic carbon, copper, manganese and nickel was directly correlated with the wastes from olive oil. Toxicity tests using 24h LC50 Palaemonidae shrimp confirm that olive mill wastewater possesses very high toxicity in the aquatic environment.

  18. Are coastal lagoons physically or biologically controlled ecosystems? Revisiting r vs. K strategies in coastal lagoons and estuaries

    NASA Astrophysics Data System (ADS)

    Pérez-Ruzafa, Angel; Marcos, Concepción; Pérez-Ruzafa, Isabel María; Pérez-Marcos, María

    2013-11-01

    Environmental stress influences biological assemblages, with species responding to stress by adopting particular life-history strategies (e.g., r vs. K). Coastal lagoons and estuaries are considered naturally stressed and physically controlled systems with frequent environmental disturbances and fluctuations. At the same time, their transitional nature (between terrestrial, freshwater and marine) makes them especially vulnerable to human impacts and land and freshwater inputs. As a result, it is hypothesised that residents of coastal lagoons would display characteristics of r-selected species. The r-strategy involves increased reproductive effort through early reproduction, small and numerous offspring with a large dispersive capability, short lifespan and small adult body size. Together, these traits provide a selective advantage in such unpredictable or short-lived environments. Alternatively, immigrants to coastal lagoons should mostly be K-strategists, with a competitive advantage over the r-strategists, at least on a temporary time scale. These hypotheses were explored using a dataset from 73 Atlanto-Mediterranean sites: 27 estuaries, 42 coastal lagoons and 4 from the sea, obtained from published sources. A detailed analysis of the distributions of the different resident fish species according to lagoon characteristics indicated that in lagoons with a higher marine influence the families Gobiidae, Blenniidae and Syngnathidae were common, while lagoons with freshwater influence are characterized by Cyprinidae and other freshwater species. In analyzing the biological strategies of lagoon species we found that fish assemblages inhabiting marine influenced lagoons were characterized by solitary, necto-benthonic sedentary species. These species are often hermaphroditic, with benthic broods and many exhibit brooding behaviour. This suggests that marine influenced lagoons are dominated by K-strategist species, while r-strategy species will be more common in

  19. Contrasting Patterns of Carbon Flux and Storage in Pine Forest Ecosystems of the Atlantic Coastal Plain: Implications for Ecosystem Restoration and Climate Change Mitigation.

    NASA Astrophysics Data System (ADS)

    Mitchell, S. R.; Christensen, N.; Cohen, S.; Cunningham, P.

    2015-12-01

    Forest ecosystems in the Southeastern US have high rates of productivity but are underutilized as a medium for the mitigation of atmospheric CO2. In the lower Atlantic coastal plain, three pine species (longleaf [Pinus palustris], loblolly [P. taeda] and pond [P. serotina]) are the dominant overstory trees in a variety of wetland and upland ecosystems. These forest types can exist in close proximity throughout coastal plain landscapes, but exhibit contrasting patterns of productivity, pyrogenic C emissions, and mortality, thereby creating contrasting patterns of C assimilation and long-term C storage. Here, we combine field-based estimates of forest C storage and pyrogenic C emissions with LiDAR-based estimates of forest canopy heights in three contrasting forest ecosystems to 1) model their respective patterns of forest growth, mortality, and decomposition, 2) estimate the contribution of pyrogenic C fluxes to the ecosystem C budget, 3) estimate their potential upper bounds of forest C storage, and 4) model the impacts of current forest management practices and disturbance regimes on long-term forest C storage. Our results suggest that even though longleaf pine forests store comparatively little C in soil or belowground biomass, these forests nevertheless have the highest capacity for long-term C storage, in part due to their longevity. By contrast, while pond pine ecosystems have the highest capacity for long-term belowground C storage, they also have the lowest capacity for long-term aboveground C storage, one that is rarely achieved due to infrequent, high-severity disturbance regimes. Loblolly pine forests, while capable of higher growth rates than either longleaf or pond pine when in early stages of succesion, lack the long-term C storage capabilities of longleaf pine due to earlier senescence. Pyrogenic C emissions in these ecosystems are dominated by the combustion of ground and duff materials and occur over timescales ranging from rapid combustion in fire

  20. Contribution of remote sensing data to oil spills monitoring. A pilot study in the Black and Azov Seas.

    NASA Astrophysics Data System (ADS)

    Kuchma, T.

    Oil pollution belongs to the most widespread man-caused emergency situations considerably harming natural ecosystems and different types of economic activity fishing tourism and other About 50 of oil pollution of the World Ocean is on transportation where 75 is on the ordinary process of transportation related to the illicit vessel discharges such as ballasts water tank washings flowing of engine-room and other But this type of pollution can be considerably decreased due to the effective monitoring and penalty system For monitoring of marine pollution the state inspections as a rule use marine or aviation facilities which are quite expensive limited by a day light and weather conditions and cover only a territorial waters The satellites SAR Synthetic Aperture Radar images instead can be used for studding the large equatorials and does not depend on cloud coverage season and daytime Oil discharged in the water damps gravity-capillary waves and changes the slope angle Thus oil spills could be viewed on the SAR images as black spots on an unpolluted sea surface However one of the problems in odder to create an operational integrated space-based monitoring system is an absence of various pilot researches to develop methodological principles for the unified algorithm of monitoring on international level To contribute to this need a pilot research on Oil Spills Monitoring in the Black and Azov Seas was conducted by SSPC Pryroda with a support of European Space Agency under the ERUNET project within the framework of

  1. Abundance, biomass and growth rates of Synechococcus sp. in a tropical coastal ecosystem (Philippines, South China Sea)

    NASA Astrophysics Data System (ADS)

    Agawin, N. S. R.; Duarte, C. M.; Agustí, S.; McManus, L.

    2003-03-01

    The abundance, biomass and growth rates of Synechococcus sp. were estimated in a tropical coastal ecosystem (Philippines, South China Sea). The patterns of change of these parameters were further examined in relation to human-derived disturbance such as siltation, and by short-term episodic disturbances such as the typhoons, which are frequent in the region. The average abundance and biomass of Synechococcus sp. in the coastal ecosystem ranged from 0.13 to 21×10 6 cells l -1, and from 0.01 to l.6 mg C m -3, respectively, with higher biomass occurring near river sources rich in inorganic nutrients. There was, however, a significant decline of specific growth rates and maximum frequency of cells in division with increasing siltation, which suggests a deterioration of the environmental conditions to support picocyanobacterial populations. The low biomass of Synechococcus sp. in more pristine sites, in spite of relatively high growth rates there suggests that loss factors (i.e. grazing) are important in controlling the biomass in the area. The temporal pattern of picocyanobacterial abundance in the tropical ecosystem studied was tightly coupled with their temporal patterns of growth indicating that changes in abundance may result from changes in growth rate. There was not, however, a clear annual pattern of Synechococcus sp. abundance in the study site but there was some evidence for effects of storms on Synechococcus sp. abundance.

  2. Development of the steppe zone in southern Russia based on the reconstruction from the loess-soil formation in the Don-Azov Region

    NASA Astrophysics Data System (ADS)

    Velichko, A.; Morozova, T. D.; Borisova, O. K.; Timireva, S. N.; Semenov, V. V.; Kononov, Yu. M.; Titov, V. V.; Tesakov, A. S.; Konstantinov, E..; Kurbanov, R. N.

    2012-08-01

    Herbaceous communities in forest ecosystems on the southern part of the Russian Plain appeared in the Middle Miocene (˜10 Ma BP). In the Late Miocene (˜7 Ma BP), feather-grass steppe associations appeared among them. In the time span of 2.7 to 2.1 Ma BP (i.e., in the Early Quaternary, according to the current chronostratigraphic scale), the steppe zone arose on the southern Russian Plain in the Don-Azov Region. Seven stages of this zone development here have been distinguished throughout the Quaternary. The first one (Eopleistocene-Early Pleistocene) was characterized by savanna-like subtropic ecosystems. Then, in the Middle Pleistocene, the temperate zone ecosystems (tallgrass prairie-like steppes) developed here and were followed by steppe ecosystems close to the modern ones in Central Europe. The ecosystems of rich-species forb steppes developed in the Late Pleistocene. Finally, in the optimum of the modern interglacial (Holocene), steppes became similar to the modern ones here, but with a slightly higher precipitation. The general trend is characterized by reduction in heat and water provision and increase in aridization progressing from earlier to later stages.

  3. Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems.

    PubMed

    Cloern, James E; Abreu, Paulo C; Carstensen, Jacob; Chauvaud, Laurent; Elmgren, Ragnar; Grall, Jacques; Greening, Holly; Johansson, John Olov Roger; Kahru, Mati; Sherwood, Edward T; Xu, Jie; Yin, Kedong

    2016-02-01

    Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2-5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters influenced by runoff. We synthesize information contained in these time series to develop a global view of changes occurring in marine systems influenced by connectivity to land. Our review is organized around four themes: (i) human activities as drivers of change; (ii) variability of the climate system as a driver of change; (iii) successes, disappointments and challenges of managing change at the sea-land interface; and (iv) discoveries made from observations over time. Multidecadal time series reveal that many of the world's estuarine-coastal ecosystems are in a continuing state of change, and the pace of change is faster than we could have imagined a decade ago. Some have been transformed into novel ecosystems with habitats, biogeochemistry and biological communities outside the natural range of variability. Change takes many forms including linear and nonlinear trends, abrupt state changes and oscillations. The challenge of managing change is daunting in the coastal zone where diverse human pressures are concentrated and intersect with different responses to climate variability over land and over ocean basins. The pace of change in estuarine-coastal ecosystems will likely accelerate as the human population and economies continue to grow and as global climate change accelerates. Wise stewardship of the resources upon which we depend is critically dependent upon a continuing flow of information from observations to measure, understand and anticipate future changes along the world's coastlines. PMID:26242490

  4. Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems

    USGS Publications Warehouse

    Cloern, James E.; Abreu, Paulo C.; Carstensen, Jacob; Chauvaud, Laurent; Elmgren, Ragnar; Grall, Jacques; Greening, Holly; Johansson, John O.R.; Kahru, Mati; Sherwood, Edward T.; Xu, Jie; Yin, Kedong

    2016-01-01

    Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2–5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters influenced by runoff. We synthesize information contained in these time series to develop a global view of changes occurring in marine systems influenced by connectivity to land. Our review is organized around four themes: (i) human activities as drivers of change; (ii) variability of the climate system as a driver of change; (iii) successes, disappointments and challenges of managing change at the sea-land interface; and (iv) discoveries made from observations over time. Multidecadal time series reveal that many of the world's estuarine–coastal ecosystems are in a continuing state of change, and the pace of change is faster than we could have imagined a decade ago. Some have been transformed into novel ecosystems with habitats, biogeochemistry and biological communities outside the natural range of variability. Change takes many forms including linear and nonlinear trends, abrupt state changes and oscillations. The challenge of managing change is daunting in the coastal zone where diverse human pressures are concentrated and intersect with different responses to climate variability over land and over ocean basins. The pace of change in estuarine–coastal ecosystems will likely accelerate as the human population and economies continue to grow and as global climate change accelerates. Wise stewardship of the resources upon which we depend is critically dependent upon a continuing flow of information from observations to measure, understand and anticipate future changes along the world's coastlines.

  5. Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems.

    PubMed

    Cloern, James E; Abreu, Paulo C; Carstensen, Jacob; Chauvaud, Laurent; Elmgren, Ragnar; Grall, Jacques; Greening, Holly; Johansson, John Olov Roger; Kahru, Mati; Sherwood, Edward T; Xu, Jie; Yin, Kedong

    2016-02-01

    Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2-5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters influenced by runoff. We synthesize information contained in these time series to develop a global view of changes occurring in marine systems influenced by connectivity to land. Our review is organized around four themes: (i) human activities as drivers of change; (ii) variability of the climate system as a driver of change; (iii) successes, disappointments and challenges of managing change at the sea-land interface; and (iv) discoveries made from observations over time. Multidecadal time series reveal that many of the world's estuarine-coastal ecosystems are in a continuing state of change, and the pace of change is faster than we could have imagined a decade ago. Some have been transformed into novel ecosystems with habitats, biogeochemistry and biological communities outside the natural range of variability. Change takes many forms including linear and nonlinear trends, abrupt state changes and oscillations. The challenge of managing change is daunting in the coastal zone where diverse human pressures are concentrated and intersect with different responses to climate variability over land and over ocean basins. The pace of change in estuarine-coastal ecosystems will likely accelerate as the human population and economies continue to grow and as global climate change accelerates. Wise stewardship of the resources upon which we depend is critically dependent upon a continuing flow of information from observations to measure, understand and anticipate future changes along the world's coastlines.

  6. Plankton origin of particulate dimethylsulfoniopropionate in a Mediterranean oligotrophic coastal and shallow ecosystem

    NASA Astrophysics Data System (ADS)

    Jean, Natacha; Bogé, Gérard; Jamet, Jean-Louis; Jamet, Dominique; Richard, Simone

    2009-03-01

    We report here dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) levels as a function of plankton communities and abiotic factors over a 12-month cycle in the Mediterranean oligotrophic coastal and shallow ecosystem of Niel Bay (N.W. Mediterranean Sea, France). Total particulate DMSP (DMSP p) and DMS concentrations were highly seasonal, peaking during a spring (April) bloom at 8.9 nM and 73.9 nM, respectively. Significant positive correlations were found between total DMSP p concentration and the abundance or biomass of the dinoflagellate Prorocentrum compressum (Spearman's rank correlation test: r = 0.704; p = 0.011). Similarly, DMS concentrations peaked during the development of blooms of P. compressum and Gymnodinium sp. There seemed to be a positive relationship between the chlorophyll a to pheopigment ratio and DMS concentrations, suggesting that DMS was released during phytoplankton growth. High DMS levels recorded in the shallow Niel Bay may also result from the activity of benthic macroalgae, and/or macrophytes such as Posidonia spp., or the resuspension of sulfur species accumulating in sediments. The fractionation of particulate DMSP into three size classes (>90 μm, 5-90 μm and 0.2-5 μm) revealed that 5-90 μm DMSP-containing particles made the greatest contribution to the total DMSP p pool (annual mean contribution = 62%), with a maximal contribution in April (96%). This size class consisted mainly of dinoflagellates (annual mean contribution = 68%), with P. compressum and Gymnodinium sp. the predominant species, together accounting for up to 44% of the phytoplankton present. The positive correlation between DMSP concentration in the 5-90 μm size class and the abundance of P. compressum (Spearman's rank correlation test: r = 0.648; p = 0.023) suggests that this phytoplankton species would be the major DMSP producer in Niel Bay. The DMSP collected in the >90 μm fraction was principally associated with zooplankton organisms, dominated by

  7. Water table height and microtopography control biogeochemical cycling in an Arctic coastal tundra ecosystem

    NASA Astrophysics Data System (ADS)

    Lipson, D. A.; Zona, D.; Raab, T. K.; Bozzolo, F.; Mauritz, M.; Oechel, W. C.

    2011-07-01

    Drained thaw lake basins (DTLB) are the dominant land form of the Arctic coastal plain in northern Alaska. The presence of continuous permafrost prevents drainage and so water tables generally remain close to the soil surface, creating saturated, suboxic soil conditions. However, ice wedge polygons produce microtopographic variation in these landscapes, with raised areas such as polygon rims creating more oxic microenvironments. The peat soils in this ecosystem store large amounts of organic carbon which is vulnerable to loss as arctic regions continue to rapidly warm, and so there is great motivation to understand the controls over microbial activity in these complex landscapes. Here we report the effects of experimental flooding, along with seasonal and spatial variation in soil chemistry and microbial activity in a DTLB. The flooding treatment generally mirrored the effects of natural landscape variation in water table height due to microtopography. Areas in the flooded areas had lower dissolved oxygen, lower oxidation-reduction potential (ORP) and higher pH, as did lower elevation areas of the landscape. Similarly, soil pore water concentrations of dissolved ferric iron (Fe III), organic carbon, and aromatic compounds were higher in flooded and low elevation areas. Dissolved carbon dioxide (CO2) and methane (CH4) concentrations were higher in low elevation areas. In anaerobic laboratory incubations, more CH4 was produced by soils from low and flooded areas, whereas anaerobic CO2 production only responded to flooding in high elevation areas. Seasonal changes in the oxidation state of solid phase Fe minerals showed that significant dissimilatory Fe reduction occurred, especially in topographically low areas. This suite of results can all be attributed to the effect of water table on oxygen availability: flooded conditions promote anoxia, stimulating anaerobic processes, methanogenesis and Fe(III) reduction. Flooding also increased soil temperature, which might

  8. Managing Data, Provenance and Chaos through Standardization and Automation at the Georgia Coastal Ecosystems LTER Site

    NASA Astrophysics Data System (ADS)

    Sheldon, W.

    2013-12-01

    Managing data for a large, multidisciplinary research program such as a Long Term Ecological Research (LTER) site is a significant challenge, but also presents unique opportunities for data stewardship. LTER research is conducted within multiple organizational frameworks (i.e. a specific LTER site as well as the broader LTER network), and addresses both specific goals defined in an NSF proposal as well as broader goals of the network; therefore, every LTER data can be linked to rich contextual information to guide interpretation and comparison. The challenge is how to link the data to this wealth of contextual metadata. At the Georgia Coastal Ecosystems LTER we developed an integrated information management system (GCE-IMS) to manage, archive and distribute data, metadata and other research products as well as manage project logistics, administration and governance (figure 1). This system allows us to store all project information in one place, and provide dynamic links through web applications and services to ensure content is always up to date on the web as well as in data set metadata. The database model supports tracking changes over time in personnel roles, projects and governance decisions, allowing these databases to serve as canonical sources of project history. Storing project information in a central database has also allowed us to standardize both the formatting and content of critical project information, including personnel names, roles, keywords, place names, attribute names, units, and instrumentation, providing consistency and improving data and metadata comparability. Lookup services for these standard terms also simplify data entry in web and database interfaces. We have also coupled the GCE-IMS to our MATLAB- and Python-based data processing tools (i.e. through database connections) to automate metadata generation and packaging of tabular and GIS data products for distribution. Data processing history is automatically tracked throughout the data

  9. Investigating Ecosystem Pattern and Process Across a Land-Sea Gradient: A New Coastal Margin Observatory in the Pacific Coastal Temperate Rainforest

    NASA Astrophysics Data System (ADS)

    Giesbrecht, I.; Lertzman, K. P.; Oliver, A. A.; Tank, S. E.; Floyd, B. C.; Frazer, G. W.; Hunt, B. P.; Kellogg, C.; Heger, T.; Levy-Booth, D.; Mohn, W. H.; Hallam, S. J.; Keeling, P.; Sanborn, P.; Brunsting, R.; D'Amore, D. V.

    2015-12-01

    Terrestrial organic matter exported from coastal watersheds influences marine ecosystems and carbon budgets across the globe, yet much is unknown about the fundamental processes of land-sea carbon cycling or system response to climate change. On two outer-coast islands near the center of the Pacific Coastal Temperate Rainforest (PCTR), the Hakai Institute has established a coastal margin observatory to examine the flux of terrestrial organic matter from land to sea - the origins, pathways, processes and marine consequences - in the context of long-term environmental change. The outer-coast PCTR is characterized by an ocean-moderated climate, subdued terrain, extensive wetlands and lower forest productivity than the mountainous mainland coast. Here we give an overview of, and initial results from, a new long-term multi-disciplinary investigation of processes that link PCTR watersheds with the carbon balance and food web of northeastern subarctic Pacific coastal waters. Beginning in 2013, we established year-round sampling and a sensor network to quantify - at high temporal resolution - the amount and character of terrestrial exports from seven focal watersheds on Calvert and Hecate Islands, British Columbia. Early results show that freshwater dissolved organic carbon concentrations are high on average, fluctuate temporally and vary spatially across watersheds. A real-time hydrological sensor network shows rapid responses of stream stages and soil water tables to rainfall inputs. Carbon export can vary greatly with stream discharge in these flashy systems. We use paired marine monitoring stations at stream outlets to concurrently track ocean conditions and to trace terrestrial organic matter. Across a larger set of watersheds, we examine the role of catchment topography, hydrology and composition in controlling biogeochemical exports. On land, we use airborne LiDAR data to evaluate landscape controls on vegetation height - a proxy for forest productivity and biomass

  10. Editorial: Eutrophication and hypoxia and their impacts on the ecosystem of the Changjiang Estuary and adjacent coastal environment

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Xiao, Tian; Huang, Daji; Liu, Su Mei; Fang, Jianguang

    2016-02-01

    The Changjiang (Yangtze River) Estuary plays an important role in the land-ocean interactions of East Asia, particularly in regard to the fate of land-derived materials and their impact on marine ecosystems in the Northwest Pacific Ocean. The 12 papers included in this special issue describe results from the MEcoPAM Study, an IMBER-China project, which occurred in 2011-2015. This project used a multi-disciplinary approach to understand ecosystem function of the Changjiang Estuary in response to multiple stressors (i.e. combined external forcings). The results presented here show that human activities in the watersheds have greatly changed the flux and variation of dissolved and particulate materials from the river. Further interactions between the Changjiang Watersheds and the East China Sea can dramatically modify the pathways of biogeochemistry and food web dynamics of the estuary and adjacent coastal environment at seasonal and inter-annual scales.

  11. Anthropogenic chemicals as drivers of change for coastal ecosystems: wetlands, mangroves and seagrass habitats.

    EPA Science Inventory

    Coastal wetlands, mangrove and seagrass habitats are rapidly declining worldwide which reduces their many ecological services. This presentation summarizes the results of a literature survey conducted to determine scientific understanding of contaminant uptake and toxicity of non...

  12. Ecology of a key ecosystem engineer on hard coastal infrastructure and natural rocky shores.

    PubMed

    Martins, Gustavo M; Neto, Ana I; Cacabelos, Eva

    2016-02-01

    The numbers of hard coastal artificial structures is increasing worldwide and there is now cumulative evidence that they support assemblages that are less diverse than natural shores. Here we investigated patterns of distribution and demography of the native barnacle Chthamalus stellatus on hard coastal structures and on natural rocky shores. Barnacles were 35% less abundant on hard structures regardless of substratum type (concrete or basalt). On a subset of sites we found that temporal population stability, growth and mortality were similar on natural rocky shores and hard structures. In contrast, barnacles were significantly larger and recruited more onto natural rocky shores. These results emphasise the important role of recruitment in determining the abundance of a key space occupier on hard coastal structures. Experimental work building on these results may generate insights that can be used as guidelines for the management of urbanised coastal areas. PMID:26686564

  13. Ecology of a key ecosystem engineer on hard coastal infrastructure and natural rocky shores.

    PubMed

    Martins, Gustavo M; Neto, Ana I; Cacabelos, Eva

    2016-02-01

    The numbers of hard coastal artificial structures is increasing worldwide and there is now cumulative evidence that they support assemblages that are less diverse than natural shores. Here we investigated patterns of distribution and demography of the native barnacle Chthamalus stellatus on hard coastal structures and on natural rocky shores. Barnacles were 35% less abundant on hard structures regardless of substratum type (concrete or basalt). On a subset of sites we found that temporal population stability, growth and mortality were similar on natural rocky shores and hard structures. In contrast, barnacles were significantly larger and recruited more onto natural rocky shores. These results emphasise the important role of recruitment in determining the abundance of a key space occupier on hard coastal structures. Experimental work building on these results may generate insights that can be used as guidelines for the management of urbanised coastal areas.

  14. Tools and methods for evaluating and refining alternative futures for coastal ecosystem management—the Puget Sound Ecosystem Portfolio Model

    USGS Publications Warehouse

    Byrd, Kristin B.; Kreitler, Jason R.; Labiosa, William B.

    2011-01-01

    The U.S. Geological Survey Puget Sound Ecosystem Portfolio Model (PSEPM) is a decision-support tool that uses scenarios to evaluate where, when, and to what extent future population growth, urban growth, and shoreline development may threaten the Puget Sound nearshore environment. This tool was designed to be used iteratively in a workshop setting in which experts, stakeholders, and decisionmakers discuss consequences to the Puget Sound nearshore within an alternative-futures framework. The PSEPM presents three possible futures of the nearshore by analyzing three growth scenarios developed out to 2060: Status Quo—continuation of current trends; Managed Growth—adoption of an aggressive set of land-use management policies; and Unconstrained Growth—relaxation of land-use restrictions. The PSEPM focuses on nearshore environments associated with barrier and bluff-backed beaches—the most dominant shoreforms in Puget Sound—which represent 50 percent of Puget Sound shorelines by length. This report provides detailed methodologies for development of three submodels within the PSEPM—the Shellfish Pollution Model, the Beach Armoring Index, and the Recreation Visits Model. Results from the PSEPM identify where and when future changes to nearshore ecosystems and ecosystem services will likely occur within the three growth scenarios. Model outputs include maps that highlight shoreline sections where nearshore resources may be at greater risk from upland land-use changes. The background discussed in this report serves to document and supplement model results displayed on the PSEPM Web site located at http://geography.wr.usgs.gov/pugetSound/.

  15. Stability and bistability of seagrass ecosystems in shallow coastal lagoons: Role of feedbacks with sediment resuspension and light attenuation

    NASA Astrophysics Data System (ADS)

    Carr, J.; D'Odorico, P.; McGlathery, K.; Wiberg, P.

    2010-09-01

    Shallow coastal lagoons are environments where a dynamic equilibrium exists between water quality and seagrass cover. Dense seagrass canopies limit the resuspension of bed sediments thereby creating a clearer water column and a positive feedback for seagrass growth. Positive feedbacks are often associated with the existence of bistable dynamics in ecosystems. For example, a bare and a seagrass covered sediment bed could both be stable states of the system. This study describes a one-dimensional hydrodynamic model of vegetation-sediment-water flow interactions and uses it to investigate the strengths of positive feedbacks between seagrass cover, stabilization of bed sediments, turbidity of the water column, and the existence of a favorable light environment for seagrasses. The model is applied to Hog Island Bay, a shallow coastal lagoon on the eastern shore of Virginia. The effects of temperature, eutrophication, and bed grain size on bistability of seagrass ecosystems in the lagoon are explored. The results indicate that under typical conditions, seagrass is stable in water depths < 2.2 m (51% of the bay bottom deep enough for seagrass growth) and bistable conditions exist for depths of 2.2-3.6 m (23% of bay) where the preferred state depends on initial seagrass cover. The remaining 26% of the bay is too deep to sustain seagrass. Decreases in sediment size and increases in water temperature and degree of eutrophication shift the bistable range to shallower depths, with more of the bay bottom unable to sustain seagrass.

  16. Loss of an ecological baseline through the eradication of oyster reefs from coastal ecosystems and human memory.

    PubMed

    Alleway, Heidi K; Connell, Sean D

    2015-06-01

    Oyster reefs form over extensive areas and the diversity and productivity of sheltered coasts depend on them. Due to the relatively recent population growth of coastal settlements in Australia, we were able to evaluate the collapse and extirpation of native oyster reefs (Ostrea angasi) over the course of a commercial fishery. We used historical records to quantify commercial catch of O. angasi in southern Australia from early colonization, around 1836, to some of the last recorded catches in 1944 and used our estimates of catch and effort to map their past distribution and assess oyster abundance over 180 years. Significant declines in catch and effort occurred from 1886 to 1946 and no native oyster reefs occur today, but historically oyster reefs extended across more than 1,500 km of coastline. That oyster reefs were characteristic of much of the coastline of South Australia from 1836 to 1910 appears not to be known because there is no contemporary consideration of their ecological and economic value. Based on the concept of a shifted baseline, we consider this contemporary state to reflect a collective, intergenerational amnesia. Our model of generational amnesia accounts for differences in intergenerational expectations of food, economic value, and ecosystem services of nearshore areas. An ecological system that once surrounded much of the coast and possibly the past presence of oyster reefs altogether may be forgotten and could not only undermine progress towards their recovery, but also reduce our expectations of these coastal ecosystems.

  17. Loss of an ecological baseline through the eradication of oyster reefs from coastal ecosystems and human memory.

    PubMed

    Alleway, Heidi K; Connell, Sean D

    2015-06-01

    Oyster reefs form over extensive areas and the diversity and productivity of sheltered coasts depend on them. Due to the relatively recent population growth of coastal settlements in Australia, we were able to evaluate the collapse and extirpation of native oyster reefs (Ostrea angasi) over the course of a commercial fishery. We used historical records to quantify commercial catch of O. angasi in southern Australia from early colonization, around 1836, to some of the last recorded catches in 1944 and used our estimates of catch and effort to map their past distribution and assess oyster abundance over 180 years. Significant declines in catch and effort occurred from 1886 to 1946 and no native oyster reefs occur today, but historically oyster reefs extended across more than 1,500 km of coastline. That oyster reefs were characteristic of much of the coastline of South Australia from 1836 to 1910 appears not to be known because there is no contemporary consideration of their ecological and economic value. Based on the concept of a shifted baseline, we consider this contemporary state to reflect a collective, intergenerational amnesia. Our model of generational amnesia accounts for differences in intergenerational expectations of food, economic value, and ecosystem services of nearshore areas. An ecological system that once surrounded much of the coast and possibly the past presence of oyster reefs altogether may be forgotten and could not only undermine progress towards their recovery, but also reduce our expectations of these coastal ecosystems. PMID:25588455

  18. Consumer diversity across kingdoms supports multiple functions in a coastal ecosystem.

    PubMed

    Hensel, Marc J S; Silliman, Brian R

    2013-12-17

    The global biodiversity crisis impairs the valuable benefits ecosystems provide humans. These nature-generated benefits are defined by a multitude of different ecosystem functions that operate simultaneously. Although several studies have simulated species loss in communities and tracked the response of single functions such as productivity or nutrient cycling, these studies have involved relatively similar taxa, and seldom are strikingly different functions examined. With the exception of highly managed ecosystems such as agricultural fields, rarely are we interested in only one function being performed well. Instead, we rely on ecosystems to deliver several different functions at the same time. Here, we experimentally investigated the extinction impacts of dominant consumers in a salt marsh. These consumers are remarkably phylogenetically diverse, spanning two kingdoms (i.e., Animalia and Fungi). Our field studies reveal that a diverse consumer assemblage significantly enhances simultaneous functioning of disparate ecosystem processes (i.e., productivity, decomposition, and infiltration). Extreme functional and phylogenetic differences among consumers underlie this relationship. Each marsh consumer affected at least one different ecosystem function, and each individual function was affected by no more than two consumers. The implications of these findings are profound: If we want ecosystems to perform many different functions well, it is not just number of species that matter. Rather, the presence of species representing markedly different ecologies and biology is also essential to maximizing multiple functions. Moreover, this work emphasizes the need to incorporate both microcomponents and macrocomponents of food webs to accurately predict biodiversity declines on integrated-ecosystem functioning.

  19. Consumer diversity across kingdoms supports multiple functions in a coastal ecosystem

    PubMed Central

    Hensel, Marc J. S.; Silliman, Brian R.

    2013-01-01

    The global biodiversity crisis impairs the valuable benefits ecosystems provide humans. These nature-generated benefits are defined by a multitude of different ecosystem functions that operate simultaneously. Although several studies have simulated species loss in communities and tracked the response of single functions such as productivity or nutrient cycling, these studies have involved relatively similar taxa, and seldom are strikingly different functions examined. With the exception of highly managed ecosystems such as agricultural fields, rarely are we interested in only one function being performed well. Instead, we rely on ecosystems to deliver several different functions at the same time. Here, we experimentally investigated the extinction impacts of dominant consumers in a salt marsh. These consumers are remarkably phylogenetically diverse, spanning two kingdoms (i.e., Animalia and Fungi). Our field studies reveal that a diverse consumer assemblage significantly enhances simultaneous functioning of disparate ecosystem processes (i.e., productivity, decomposition, and infiltration). Extreme functional and phylogenetic differences among consumers underlie this relationship. Each marsh consumer affected at least one different ecosystem function, and each individual function was affected by no more than two consumers. The implications of these findings are profound: If we want ecosystems to perform many different functions well, it is not just number of species that matter. Rather, the presence of species representing markedly different ecologies and biology is also essential to maximizing multiple functions. Moreover, this work emphasizes the need to incorporate both microcomponents and macrocomponents of food webs to accurately predict biodiversity declines on integrated-ecosystem functioning. PMID:24297926

  20. Assessment of Metal Toxicity in Marine Ecosystems: Comparative Toxicity Potentials for Nine Cationic Metals in Coastal Seawater.

    PubMed

    Dong, Yan; Rosenbaum, Ralph K; Hauschild, Michael Z

    2016-01-01

    This study is a first attempt to develop globally applicable and spatially differentiated marine comparative toxicity potentials (CTPs) or ecotoxicity characterization factors for metals in coastal seawater for use in life cycle assessment. The toxicity potentials are based exclusively on marine ecotoxicity data and take account of metal speciation and bioavailability. CTPs were developed for nine cationic metals (Cd, Cr(III), Co, Cu(II), Fe(III), Mn, Ni, Pb, and Zn) in 64 large marine ecosystems (LMEs) covering all coastal waters in the world. The results showed that the CTP of a specific metal varies 3-4 orders of magnitude across LMEs, largely due to different seawater residence times. Therefore, the highest toxicity potential for metals was found in the LMEs with the longest seawater residence times. Across metals, the highest CTPs were observed for Cd, Pb, and Zn. At the concentration levels occurring in coastal seawaters, Fe acts not as a toxic agent but as an essential nutrient and thus has CTPs of zero.

  1. Effects of Sewage Discharge on Trophic State and Water Quality in a Coastal Ecosystem of the Gulf of California

    PubMed Central

    Vargas-González, Héctor Hugo; Arreola-Lizárraga, José Alfredo; Mendoza-Salgado, Renato Arturo; Méndez-Rodríguez, Lía Celina; Lechuga-Deveze, Carlos Hernando; Padilla-Arredondo, Gustavo; Cordoba-Matson, Miguel

    2014-01-01

    This paper provides evidence of the effects of urban wastewater discharges on the trophic state and environmental quality of a coastal water body in a semiarid subtropical region in the Gulf of California. The concentrations of dissolved inorganic nutrients and organic matter from urban wastewater primary treatment were estimated. La Salada Cove was the receiving water body and parameters measured during an annual cycle were temperature, salinity, dissolved oxygen, nitrite, nitrate, ammonia, orthophosphate, and chlorophyll a. The effects of sewage inputs were determined by using Trophic State Index (TRIX) and the Arid Zone Coastal Water Quality Index (AZCI). It was observed that urban wastewater of the city of Guaymas provided 1,237 ton N yr−1 and 811 ton P yr−1 and TRIX indicated that the receiving water body showed symptoms of eutrophication from an oligotrophic state to a mesotrophic state; AZCI also indicated that the environmental quality of the water body was poor. The effects of urban wastewater supply with insufficient treatment resulted in symptoms of eutrophication and loss of ecological functions and services of the coastal ecosystem in La Salada Cove. PMID:24711731

  2. Interaction between coastal and oceanic ecosystems of the Western and Central Pacific Ocean through predator-prey relationship studies.

    PubMed

    Allain, Valerie; Fernandez, Emilie; Hoyle, Simon D; Caillot, Sylvain; Jurado-Molina, Jesus; Andréfouët, Serge; Nicol, Simon J

    2012-01-01

    The Western and Central Pacific Ocean sustains the highest tuna production in the world. This province is also characterized by many islands and a complex bathymetry that induces specific current circulation patterns with the potential to create a high degree of interaction between coastal and oceanic ecosystems. Based on a large dataset of oceanic predator stomach contents, our study used generalized linear models to explore the coastal-oceanic system interaction by analyzing predator-prey relationship. We show that reef organisms are a frequent prey of oceanic predators. Predator species such as albacore (Thunnus alalunga) and yellowfin tuna (Thunnus albacares) frequently consume reef prey with higher probability of consumption closer to land and in the western part of the Pacific Ocean. For surface-caught-predators consuming reef prey, this prey type represents about one third of the diet of predators smaller than 50 cm. The proportion decreases with increasing fish size. For predators caught at depth and consuming reef prey, the proportion varies with predator species but generally represents less than 10%. The annual consumption of reef prey by the yellowfin tuna population was estimated at 0.8 ± 0.40 CV million tonnes or 2.17 × 10(12)± 0.40 CV individuals. This represents 6.1% ± 0.17 CV in weight of their diet. Our analyses identify some of the patterns of coastal-oceanic ecosystem interactions at a large scale and provides an estimate of annual consumption of reef prey by oceanic predators.

  3. Interaction between coastal and oceanic ecosystems of the Western and Central Pacific Ocean through predator-prey relationship studies.

    PubMed

    Allain, Valerie; Fernandez, Emilie; Hoyle, Simon D; Caillot, Sylvain; Jurado-Molina, Jesus; Andréfouët, Serge; Nicol, Simon J

    2012-01-01

    The Western and Central Pacific Ocean sustains the highest tuna production in the world. This province is also characterized by many islands and a complex bathymetry that induces specific current circulation patterns with the potential to create a high degree of interaction between coastal and oceanic ecosystems. Based on a large dataset of oceanic predator stomach contents, our study used generalized linear models to explore the coastal-oceanic system interaction by analyzing predator-prey relationship. We show that reef organisms are a frequent prey of oceanic predators. Predator species such as albacore (Thunnus alalunga) and yellowfin tuna (Thunnus albacares) frequently consume reef prey with higher probability of consumption closer to land and in the western part of the Pacific Ocean. For surface-caught-predators consuming reef prey, this prey type represents about one third of the diet of predators smaller than 50 cm. The proportion decreases with increasing fish size. For predators caught at depth and consuming reef prey, the proportion varies with predator species but generally represents less than 10%. The annual consumption of reef prey by the yellowfin tuna population was estimated at 0.8 ± 0.40 CV million tonnes or 2.17 × 10(12)± 0.40 CV individuals. This represents 6.1% ± 0.17 CV in weight of their diet. Our analyses identify some of the patterns of coastal-oceanic ecosystem interactions at a large scale and provides an estimate of annual consumption of reef prey by oceanic predators. PMID:22615796

  4. Interaction between Coastal and Oceanic Ecosystems of the Western and Central Pacific Ocean through Predator-Prey Relationship Studies

    PubMed Central

    Allain, Valerie; Fernandez, Emilie; Hoyle, Simon D.; Caillot, Sylvain; Jurado-Molina, Jesus; Andréfouët, Serge; Nicol, Simon J.

    2012-01-01

    The Western and Central Pacific Ocean sustains the highest tuna production in the world. This province is also characterized by many islands and a complex bathymetry that induces specific current circulation patterns with the potential to create a high degree of interaction between coastal and oceanic ecosystems. Based on a large dataset of oceanic predator stomach contents, our study used generalized linear models to explore the coastal-oceanic system interaction by analyzing predator-prey relationship. We show that reef organisms are a frequent prey of oceanic predators. Predator species such as albacore (Thunnus alalunga) and yellowfin tuna (Thunnus albacares) frequently consume reef prey with higher probability of consumption closer to land and in the western part of the Pacific Ocean. For surface-caught-predators consuming reef prey, this prey type represents about one third of the diet of predators smaller than 50 cm. The proportion decreases with increasing fish size. For predators caught at depth and consuming reef prey, the proportion varies with predator species but generally represents less than 10%. The annual consumption of reef prey by the yellowfin tuna population was estimated at 0.8±0.40CV million tonnes or 2.17×1012±0.40CV individuals. This represents 6.1%±0.17CV in weight of their diet. Our analyses identify some of the patterns of coastal-oceanic ecosystem interactions at a large scale and provides an estimate of annual consumption of reef prey by oceanic predators. PMID:22615796

  5. Water-table height and microtopography control biogeochemical cycling in an Arctic coastal tundra ecosystem

    NASA Astrophysics Data System (ADS)

    Lipson, D. A.; Zona, D.; Raab, T. K.; Bozzolo, F.; Mauritz, M.; Oechel, W. C.

    2012-01-01

    Drained thaw lake basins (DTLB's) are the dominant land form of the Arctic Coastal Plain in northern Alaska. The presence of continuous permafrost prevents drainage and so water tables generally remain close to the soil surface, creating saturated, suboxic soil conditions. However, ice wedge polygons produce microtopographic variation in these landscapes, with raised areas such as polygon rims creating more oxic microenvironments. The peat soils in this ecosystem store large amounts of organic carbon which is vulnerable to loss as arctic regions continue to rapidly warm, and so there is great motivation to understand the controls over microbial activity in these complex landscapes. Here we report the effects of experimental flooding, along with seasonal and spatial variation in soil chemistry and microbial activity in a DTLB. The flooding treatment generally mirrored the effects of natural landscape variation in water-table height due to microtopography. The flooded portion of the basin had lower dissolved oxygen, lower oxidation-reduction potential (ORP) and higher pH, as did lower elevation areas throughout the entire basin. Similarly, soil pore water concentrations of organic carbon and aromatic compounds were higher in flooded and low elevation areas. Dissolved ferric iron (Fe(III)) concentrations were higher in low elevation areas and responded to the flooding treatment in low areas, only. The high concentrations of soluble Fe(III) in soil pore water were explained by the presence of siderophores, which were much more concentrated in low elevation areas. All the aforementioned variables were correlated, showing that Fe(III) is solubilized in response to anoxic conditions. Dissolved carbon dioxide (CO2) and methane (CH4) concentrations were higher in low elevation areas, but showed only subtle and/or seasonally dependent effects of flooding. In anaerobic laboratory incubations, more CH4 was produced by soils from low and flooded areas, whereas anaerobic CO2

  6. Assessment of Eutrophication Quality in Greek Coastal Ecosystem (Eastern Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Pavlidou, Alexandra; Rousselaki, Eleni; Assimakopoulou, Georgia; Tsapakis, Manolis; Simboura, Nomiki

    2014-05-01

    The Mediterranean Sea has always been considered as one of the most oligotrophic areas in the world, especially in the Eastern part of the Sea. However, eutrophication problems occur in some coastal areas of the Mediterranean (e.g. eastern coasts of Spain, Gulf of Lions, northern Adriatic Sea, Apulian coasts, Saronikos Gulf, Thessaloniki Bay, northern coasts of Greece, etc.). This work is focused on the assessment of the Eutrophication Quality in different coastal areas of Greece affected by various anthropogenic and natural pressures and was performed under the Water Framework Directive. A network of 28 sampling stations was used during two relevant sampling periods, April - May 2012 and March - April 2013, in the framework of the National Monitoring Project of Greece. The Eutrophication assessment method integrates chemical and biological parameters of the water column. A synthetic Eutrophication Index (E.I.) was produced for the greek coastal areas by Primpas et al. quality classification scheme, combining the concentrations of nutrients (phosphate, nitrate, nitrite, ammonia) and chlorophyll-α biomass into a single formula. The E.I. assesses the eutrophication status using a five scale scheme according to the requirements of WFD: (High) less than 0.04; (Good) 0.04-0.38; (moderate) 0.38-0.85; (poor) 0.85-1.51; (bad) >1.51. Nutrient and chlorophyll-a concentrations revealed significant spatial variation among the various coastal areas of Greece influenced by different point and/or diffuse anthropogenic pressures (related to nutrient enrichment), reflecting the level of human-induced impairment where an increase in nutrient loads leads to increased water quality problems. The assessment of E.I showed that during 2012, 32% of the selected coastal areas were characterized as Good, 54% as Moderate and 14% of the selected greek coastal areas were characterized as Poor. During 2012, none of the study areas corresponded to High or Bad eutrophication status. During 2013

  7. Modelling dissolved oxygen and benthic algae dynamics in a coastal ecosystem by exploiting real-time monitoring data

    NASA Astrophysics Data System (ADS)

    Lovato, T.; Ciavatta, S.; Brigolin, D.; Rubino, A.; Pastres, R.

    2013-03-01

    In this work we propose a methodological approach for the detection and simulation of relevant changes in coastal ecosystems, i.e. oxygen depletion and proliferation of benthic algae. This approach is based on the integration of the data provided by real-time monitoring systems with the output of complex ecosystem models. We tested the method in a case study, where real-time Dissolved Oxygen (DO) data and a 2D Reaction-Transport model were used to simulate the growth of macroalgae and the daily dynamics of DO in the Lagoon of Venice (Italy). The spatiotemporal relationships among the macroalgae distribution and the DO observations were quantified by analysing and comparing the Dissolved Oxygen time series and model outputs. The outcomes were used for the inverse estimation of the initial, i.e. late winter, biomass of macroalgae. The model was then applied to simulate the growth of macroalgae and the daily dynamic of DO during the productive (i.e., spring and summer) seasons. The comparison between the model output and the real-time data indicates that the model had skill in simulating the short term (daily) DO dynamic at several lagoon sites impacted by macroalgae proliferation. The simulated intra-daily variability of Dissolved Oxygen is significantly correlated with the observations in half of the monitoring sites, as well the simulated algal growth, which resulted comparable with the field measurements. The estimated average value of macroalgae biomass was ˜1 kgfw m-2 in 2007, which is consistent with a good to moderate quality status of the Lagoon of Venice. The proposed methodology can be useful in the assessment of the environmental status of coastal ecosystems as required by recent national and international legislation.

  8. High-resolution chemical and hydrologic records identify environmental factors that control coastal anchialine cave ecosystem function

    NASA Astrophysics Data System (ADS)

    Brankovits, D.; Pohlman, J.; Lapham, L.; Casso, M.; Roth, E.; Lowell, N. S.; Iliffe, T. M.

    2015-12-01

    Anchialine caves host a coastal aquifer ecosystem occupied by cave-adapted crustaceans that reside within distinct fresh, brackish and marine waters. Our initial investigation of this subsurface ecotone in the Yucatan Peninsula (Mexico) provides stable isotope-based evidence that methane and dissolved organic carbon (DOC) are the primary sources of energy and carbon for the food web. However, the frequency of observations is sparse, leaving us 'in the dark' with respect to the temporal dynamics of the ecosystem function. In this study, we obtained undisturbed vertical profiles of methane, DOC and DIC concentration and isotopic composition with the 'Octopipi' water sampler from an anchialine cave located ~8 km from the coastline. To document the temporal variability of methane availability in the cave, we deployed an osmotically-driven pump (OsmoSampler). Data loggers recorded dissolved oxygen (DO), salinity, temperature and current velocities, and a rain gauge recorded precipitation. A high-methane water mass near the ceiling (up to 7795 nM) contained elevated concentration (900 µM), 13C-depleted (-27.8 to -28.2 ‰) DOC, suggesting terrestrial organic matter input from the overlying soils. Low-methane saline water (36 to 84 nM) had lower concentration DOC (15 to 97 µM) with a similar δ13C (-25.9 to -27.2 ‰), suggesting significant terrestrial organic matter consumption or removal with increasing depth, from fresh to saline water, within the water column. Our 6-month water chemistry record reveals high concentrations of methane in the wet season, especially following rainfall events, and relatively lower methane concentrations in the dry season. These observations suggest rain flushes methane generated in overlying anoxic soils into the cave. DO, water level, and groundwater flow patterns were also linked to the precipitation record. These data provide novel insight into the interconnections between external climate forcing and subterranean anchialine

  9. Dominance, Biomass and Extinction Resistance Determine the Consequences of Biodiversity Loss for Multiple Coastal Ecosystem Processes

    PubMed Central

    Davies, Thomas W.; Jenkins, Stuart R.; Kingham, Rachel; Kenworthy, Joseph; Hawkins, Stephen J.; Hiddink, Jan G.

    2011-01-01

    Key ecosystem processes such as carbon and nutrient cycling could be deteriorating as a result of biodiversity loss. However, currently we lack the ability to predict the consequences of realistic species loss on ecosystem processes. The aim of this study was to test whether species contributions to community biomass can be used as surrogate measures of their contribution to ecosystem processes. These were gross community productivity in a salt marsh plant assemblage and an intertidal macroalgae assemblage; community clearance of microalgae in sessile suspension feeding invertebrate assemblage; and nutrient uptake in an intertidal macroalgae assemblage. We conducted a series of biodiversity manipulations that represented realistic species extinction sequences in each of the three contrasting assemblages. Species were removed in a subtractive fashion so that biomass was allowed to vary with each species removal, and key ecosystem processes were measured at each stage of community disassembly. The functional contribution of species was directly proportional to their contribution to community biomass in a 1∶1 ratio, a relationship that was consistent across three contrasting marine ecosystems and three ecosystem processes. This suggests that the biomass contributed by a species to an assemblage can be used to approximately predict the proportional decline in an ecosystem process when that species is lost. Such predictions represent “worst case scenarios” because, over time, extinction resilient species can offset the loss of biomass associated with the extinction of competitors. We also modelled a “best case scenario” that accounts for compensatory responses by the extant species with the highest per capita contribution to ecosystem processes. These worst and best case scenarios could be used to predict the minimum and maximum species required to sustain threshold values of ecosystem processes in the future. PMID:22163297

  10. Dominance, biomass and extinction resistance determine the consequences of biodiversity loss for multiple coastal ecosystem processes.

    PubMed

    Davies, Thomas W; Jenkins, Stuart R; Kingham, Rachel; Kenworthy, Joseph; Hawkins, Stephen J; Hiddink, Jan G

    2011-01-01

    Key ecosystem processes such as carbon and nutrient cycling could be deteriorating as a result of biodiversity loss. However, currently we lack the ability to predict the consequences of realistic species loss on ecosystem processes. The aim of this study was to test whether species contributions to community biomass can be used as surrogate measures of their contribution to ecosystem processes. These were gross community productivity in a salt marsh plant assemblage and an intertidal macroalgae assemblage; community clearance of microalgae in sessile suspension feeding invertebrate assemblage; and nutrient uptake in an intertidal macroalgae assemblage. We conducted a series of biodiversity manipulations that represented realistic species extinction sequences in each of the three contrasting assemblages. Species were removed in a subtractive fashion so that biomass was allowed to vary with each species removal, and key ecosystem processes were measured at each stage of community disassembly. The functional contribution of species was directly proportional to their contribution to community biomass in a 1:1 ratio, a relationship that was consistent across three contrasting marine ecosystems and three ecosystem processes. This suggests that the biomass contributed by a species to an assemblage can be used to approximately predict the proportional decline in an ecosystem process when that species is lost. Such predictions represent "worst case scenarios" because, over time, extinction resilient species can offset the loss of biomass associated with the extinction of competitors. We also modelled a "best case scenario" that accounts for compensatory responses by the extant species with the highest per capita contribution to ecosystem processes. These worst and best case scenarios could be used to predict the minimum and maximum species required to sustain threshold values of ecosystem processes in the future. PMID:22163297

  11. The Impact of the Danube River Mouths Geomorphological Processes on the Ecosystem, Coastal Development and Regional Navigation

    NASA Astrophysics Data System (ADS)

    Mateescu, Razvan; Malciu, Viorel; Spinu, Alina

    2013-04-01

    The anthropogenic influences on the Danube Delta Coast, with major effect on the evolution of its littoral processes are represented by the perturbation of the longshore sediment transport, due to coastal constructions, and as well due to the decrease of solid discharge, as a consequence of the hydro-technical works/dams extension in the reception basin, as well in the main course of the rivers. Certain vulnerable areas of the Danube Delta Coast are strongly influenced by inland works/development as well as Danube flow regime, at regional and local scale. In the Sulina arm area, the extension of the channel jetties had a double effect, representing the cut-off of the south coast current, carrier of a portion of the solid load on the Chilia arm, and removal of its own load out of the coastal circulation in the offshore currents. The sand dunes dynamics including the sediment changes between submerged shore and dunes system are major issues within the channel entrance. The work presents the results on the impacts of the coastal geomorphological processes of the Danube Delta on navigation and ecological areas. Thus, the variability of the sea-land interface, for a period of several decades, has been revisited on the basis of the historical maps, coastal survey of emerged beach profiles, sand dunes and recent GPS measurement, developed on the Romanian Danube Delta littoral, together with certain impact assessments in the delta areas, including the ecosystem response to shoreline variability, sediment transport on short and medium term, in the context in which the major factor is the Danube discharge, as well the sea-level rise.

  12. Historical and contemporary imagery to assess ecosystem change on the Arctic coastal plain of northern Alaska

    USGS Publications Warehouse

    Tape, Ken D.; Pearce, John M.; Walworth, Dennis; Meixell, Brandt W.; Fondell, Tom F.; Gustine, David D.; Flint, Paul L.; Hupp, Jerry W.; Schmutz, Joel A.; Ward, David H.

    2014-01-01

    In this report, we describe and make available a set of 61 georectified aerial images of the Arctic Coastal Plain (taken from 1948 to 2010) that were obtained by the USGS to inform research objectives of the USGS CAE Initiative. Here, we describe the origins, metadata, and public availability of these images that were obtained within four main study areas on the Arctic Coastal Plain: Teshekpuk Lake Special Area, Chipp River, the Colville River Delta, and locations along the Dalton Highway Corridor between the Brooks Range and Deadhorse. We also provide general descriptions of observable changes to the geomorphology of landscapes that are apparent by comparing historical and contemporary images. These landscape changes include altered river corridors, lake drying, coastal erosion, and new vegetation communities. All original and georectified images and metadata are available through the USGS Alaska Science Center Portal (search under ‘Project Name’ using title of this report) or by contacting ascweb@usgs.gov.

  13. Interannual hypoxia variability in a coastal upwelling system: Ocean shelf exchange, climate and ecosystem-state implications

    NASA Astrophysics Data System (ADS)

    Monteiro, P. M. S.; van der Plas, A. K.; Mélice, J.-L.; Florenchie, P.

    2008-04-01

    In this study we use multi-year time series to examine the dynamic characteristics of coupled physical-biogeochemical processes that modulate interannual coastal hypoxia in the Benguela upwelling system in the southeast Atlantic. The results confirmed earlier findings on the role of advection to explain much of the seasonal-decadal variability. These results challenge the predominantly biogeochemical basis, namely benthic-pelagic coupling, to understand the variability of hypoxia and its ecosystem implications. Unexpectedly, the results showed that the variability was insensitive to changes in the electron-donating capacity (carbon export fluxes) but strongly dependent on the advected oxygen fluxes. The dynamics of the interaction of equatorial and polar boundary conditions (ocean-shelf exchange) and seasonally phased shelf advection were the key forcing functions that explained hypoxia variability in seasonal-decadal time scales. The vulnerability of the system to climate change lies in the long-term response of the equatorial system that governs seasonal and interannual warming at the Angola-Benguela front as well as wind stress in the Luderitz southern boundary that governs ventilation. The proposed model was able to explain most of the decadal scale variability of two different ecosystem-state indicators. The model predicts a long-term decline of present ecosystem function with climate change.

  14. Migratory patterns of pelagic fishes and possible linkages between open ocean and coastal ecosystems off the Pacific coast of North America

    NASA Astrophysics Data System (ADS)

    Beamish, R. J.; McFarlane, G. A.; King, J. R.

    2005-03-01

    We review studies relevant to the migration of pelagic fishes between the coastal and open-ocean ecosystems off the subarctic coast of North America. We review the life history strategies of these migratory fish and to compare to the life history strategies of major coastal migrants. The oceanography in this region is dominated by north and south currents that provide a boundary between the offshore and coastal waters. Commercial fisheries off the west coast of North America are virtually all inshore of this oceanographic separation. Migrations for some species in these major fisheries are also north and south rather than east and west. However, exceptions occur for Pacific salmon, species associated with seamounts, and for transitional pelagic species such as tuna, squid and sharks. Three species of Pacific salmon, sockeye, pink and chum salmon, migrate along the coast in their first marine year and move off shore in the fall and winter in their first marine year. Three other species, coho salmon, chinook salmon, and steelhead trout, also migrate offshore, although they are less abundant and some stocks remain within the coastal regions. Pacific salmon species are a dominant daytime biomass in the surface waters in the offshore areas. It is known that albacore tuna and some sharks migrate between the offshore and coastal areas, but more research is needed to assess the relative importance of these migrations. Although the biomass of species on seamounts is small relative to coastal areas, the similarity in fauna is evidence that there is recruitment from coastal ecosystems.

  15. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification.

    PubMed

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D; Rivest, Emily B; Sesboüé, Marine; Caldeira, Ken

    2016-03-18

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ω arag), with potentially substantial impacts on marine ecosystems over the 21(st) Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ω arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ω arag. If the short-term sensitivity of community calcification to Ω arag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.

  16. Coastal Prairie

    USGS Publications Warehouse

    ,

    2000-01-01

    The coastal prairie, located along the coastal plain of southwestern Louisiana and southcentral Texas, is the southernmost tip of the tallgrass prairie ecosystem so prevalent in the Midwest. The coastal prairie ecosystem once covered as much as 3.8 million ha (9 million acres); today, more than 99% of this land has been lost to agriculture, range improvement, and urbanization. The remainder is highly fragmented and severely threatened by invasions of exotic species and urban sprawl. In Louisiana, the former 1 million ha of coastal prairie have now been reduced to about 100 ha. In Texas, only about 100,000 ha of coastal prairie remain intact.

  17. USING MUSSEL ISOTOPE RATIOS TO ASSESS ANTHROPOGEN NITROGEN INPUTS TO COASTAL ECOSYSTEMS

    EPA Science Inventory

    The stable nitrogen isotope ratio in ribbed mussel (Geukensia demissus) tissue was investigated as an indicator of the source of nitrogen inputs to coastal salt marshes. Mussels fed a diet of 15N enriched algae in the laboratory showed an increase in tissue nitrogen isotope rati...

  18. Human health-related ecosystem services of avian-dense coastal wetlands adjacent to a Western Lake Erie swimming beach.

    PubMed

    Rea, Chris L; Bisesi, Michael S; Mitsch, William; Andridge, Rebecca; Lee, Jiyoung

    2015-03-01

    Wetlands provide many valuable ecosystem services, including water quality improvement to protect downstream aquatic ecosystems such as lakes, rivers, and estuaries. However, their ability to improve water quality to safe levels for direct human exposure while largely surrounded by agricultural lands and hosting large wildlife populations remains unknown. Our aim was to examine the ecosystem service capabilities of an avian-dense coastal wetland surrounded by agricultural lands along the southwestern shore of Lake Erie in Ohio by assessing the quality of water as it flows through the wetland (Ottawa National Wildlife Refuge (ONWR)) and into Lake Erie beach waters. Our study used total phosphorus and fecal indicator (Escherichia coli) concentrations as water quality metrics across the wetland and at an adjacent Lake Erie swimming beach during the 2012 summer swim season. E. coli and total P levels were consistently highest at the site, where water enters the ONWR (mean E. coli = 507 CFU/100 mL; mean total P = 535 μg/L), and steadily decreased as water flowed through the wetland and into the adjacent beach (mean E. coli = 10 CFU/100 mL; mean total P = 41 μg/L). E. coli and total P showed statistically significant (α = 0.01) correlations with phycocyanin, chlorophyll-a, turbidity, specific conductivity, dissolved oxygen, and pH; total P was also significantly correlated with total N. The results suggest that this wetland may be contributing to improving water quality, which is beneficial for human health as well as to downstream ecosystem health (e.g., limiting eutrophication promoting conditions, etc.). PMID:25582638

  19. Human health-related ecosystem services of avian-dense coastal wetlands adjacent to a Western Lake Erie swimming beach.

    PubMed

    Rea, Chris L; Bisesi, Michael S; Mitsch, William; Andridge, Rebecca; Lee, Jiyoung

    2015-03-01

    Wetlands provide many valuable ecosystem services, including water quality improvement to protect downstream aquatic ecosystems such as lakes, rivers, and estuaries. However, their ability to improve water quality to safe levels for direct human exposure while largely surrounded by agricultural lands and hosting large wildlife populations remains unknown. Our aim was to examine the ecosystem service capabilities of an avian-dense coastal wetland surrounded by agricultural lands along the southwestern shore of Lake Erie in Ohio by assessing the quality of water as it flows through the wetland (Ottawa National Wildlife Refuge (ONWR)) and into Lake Erie beach waters. Our study used total phosphorus and fecal indicator (Escherichia coli) concentrations as water quality metrics across the wetland and at an adjacent Lake Erie swimming beach during the 2012 summer swim season. E. coli and total P levels were consistently highest at the site, where water enters the ONWR (mean E. coli = 507 CFU/100 mL; mean total P = 535 μg/L), and steadily decreased as water flowed through the wetland and into the adjacent beach (mean E. coli = 10 CFU/100 mL; mean total P = 41 μg/L). E. coli and total P showed statistically significant (α = 0.01) correlations with phycocyanin, chlorophyll-a, turbidity, specific conductivity, dissolved oxygen, and pH; total P was also significantly correlated with total N. The results suggest that this wetland may be contributing to improving water quality, which is beneficial for human health as well as to downstream ecosystem health (e.g., limiting eutrophication promoting conditions, etc.).

  20. A keystone mutualism underpins resilience of a coastal ecosystem to drought.

    PubMed

    Angelini, Christine; Griffin, John N; van de Koppel, Johan; Lamers, Leon P M; Smolders, Alfons J P; Derksen-Hooijberg, Marlous; van der Heide, Tjisse; Silliman, Brian R

    2016-01-01

    Droughts are increasing in severity and frequency, yet the mechanisms that strengthen ecosystem resilience to this stress remain poorly understood. Here, we test whether positive interactions in the form of a mutualism between mussels and dominant cordgrass in salt marshes enhance ecosystem resistance to and recovery from drought. Surveys spanning 250 km of southeastern US coastline reveal spatially dispersed mussel mounds increased cordgrass survival during severe drought by 5- to 25-times. Surveys and mussel addition experiments indicate this positive effect of mussels on cordgrass was due to mounds enhancing water storage and reducing soil salinity stress. Observations and models then demonstrate that surviving cordgrass patches associated with mussels function as nuclei for vegetative re-growth and, despite covering only 0.1-12% of die-offs, markedly shorten marsh recovery periods. These results indicate that mutualisms, in supporting stress-resistant patches, can play a disproportionately large, keystone role in enhancing ecosystem resilience to climatic extremes.

  1. A keystone mutualism underpins resilience of a coastal ecosystem to drought.

    PubMed

    Angelini, Christine; Griffin, John N; van de Koppel, Johan; Lamers, Leon P M; Smolders, Alfons J P; Derksen-Hooijberg, Marlous; van der Heide, Tjisse; Silliman, Brian R

    2016-01-01

    Droughts are increasing in severity and frequency, yet the mechanisms that strengthen ecosystem resilience to this stress remain poorly understood. Here, we test whether positive interactions in the form of a mutualism between mussels and dominant cordgrass in salt marshes enhance ecosystem resistance to and recovery from drought. Surveys spanning 250 km of southeastern US coastline reveal spatially dispersed mussel mounds increased cordgrass survival during severe drought by 5- to 25-times. Surveys and mussel addition experiments indicate this positive effect of mussels on cordgrass was due to mounds enhancing water storage and reducing soil salinity stress. Observations and models then demonstrate that surviving cordgrass patches associated with mussels function as nuclei for vegetative re-growth and, despite covering only 0.1-12% of die-offs, markedly shorten marsh recovery periods. These results indicate that mutualisms, in supporting stress-resistant patches, can play a disproportionately large, keystone role in enhancing ecosystem resilience to climatic extremes. PMID:27534803

  2. Coral Reef and Coastal Ecosystems Decision Support Workshop April 27-29, 2010 Caribbean Coral Reef Institute, La Parguera, Puerto Rico

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) and Caribbean Coral Reef Institute (CCRI) hosted a Coral Reef and Coastal Ecosystems Decision Support Workshop on April 27-28, 2010 at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico. Forty-three participants, includin...

  3. The relative importance of light and nutrient limitation of phytoplankton growth: A simple index of coastal ecosystem sensitivity to nutrient enrichment

    USGS Publications Warehouse

    Cloern, J.E.

    1999-01-01

    Anthropogenic nutrient enrichment of the coastal zone is now a well-established fact. However, there is still uncertainty about the mechanisms through which nutrient enrichment can disrupt biological communities and ecosystem processes in the coastal zone. For example, while some estuaries exhibit classic symptoms of acute eutrophication, including enhanced production of algal biomass, other nutrient-rich estuaries maintain low algal biomass and primary production. This implies that large differences exist among coastal ecosystems in the rates and patterns of nutrient assimilation and cycling. Part of this variability comes from differences among ecosystems in the other resource that can limit algal growth and production - the light energy required for photosynthesis. Complete understanding of the eutrophication process requires consideration of the interacting effects of light and nutrients, including the role of light availability as a regulator of the expression of eutrophication. A simple index of the relative strength of light and nutrient limitation of algal growth can be derived from models that describe growth rate as a function of these resources. This index can then be used as one diagnostic to classify the sensitivity of coastal ecosystems to the harmful effects of eutrophication. Here I illustrate the application of this diagnostic with light and nutrient measurements made in three California estuaries and two Dutch estuaries.

  4. Metagenomic insights into particles and their associated microbiota in a coastal margin ecosystem

    PubMed Central

    Simon, Holly M.; Smith, Maria W.; Herfort, Lydie

    2014-01-01

    Our previously published research was one of the pioneering studies on the use of metagenomics to directly compare taxonomic and metabolic properties of aquatic microorganisms from different filter size-fractions. We compared size-fractionated water samples representing free-living and particle-attached communities from four diverse habitats in the Columbia River coastal margin, analyzing 12 metagenomes consisting of >5 million sequence reads (>1.6 Gbp). With predicted peptide and rRNA data we evaluated eukaryotic, bacterial and archaeal populations across size fractions and related their properties to attached and free-living lifestyles, and their potential roles in carbon and nutrient cycling. In this focused review, we expand our discussion on the use of high-throughput sequence data to relate microbial community structure and function to the origin, fate and transport of particulate organic matter (POM) in coastal margins. We additionally discuss the potential impact of the priming effect on organic matter cycling at the land-ocean interface, and build a case for the importance, in particle-rich estuaries and coastal margin waters, of microbial activities in low-oxygen microzones within particle interiors. PMID:25250019

  5. Assessing the impact of historical coastal landfill sites on sensitive ecosystems: A case study from Dorset, Southern England

    NASA Astrophysics Data System (ADS)

    Njue, C. N.; Cundy, A. B.; Smith, M.; Green, I. D.; Tomlinson, N.

    2012-12-01

    Uncontrolled landfill disposal can cause the release of significant contamination. In Southern England and in other parts of the UK, historical landfills are located along many coastal and estuarine marshes and mudflats. At these sites waste, often significantly contaminated with heavy metals and other contaminants, was dumped with little engineering control and without regard to the surrounding environment. The aim of this study is to investigate the degree to which heavy metals from these historical sites may have contaminated adjacent marshes and mudflats, using the Lodmoor marsh, Dorset, UK as a test site. Surface and sediment core samples were collected from brackish marsh and mudflat areas around the former landfill at Lodmoor, which was operational between 1949 and 1990. Sediment samples were investigated for metallic pollutants, grain size, and mineralogy, and core samples dated via 137Cs and 210Pb. To examine the transfer of heavy metals through the food chain, Phragmites australis leaves were analysed for metallic pollutants. Geochemical data revealed that sediments from the Lodmoor marsh are probably contaminated with Pb. 137Cs dating indicates that concentration maxima for heavy metals correlate to the 1950s and 1960s when landfill activities commenced in Lodmoor. Shallow electromagnetic surveys indicate potential continued leaching from the historic landfill complex. This study indicates the potential for possible landfill-derived contaminants to persist in coastal systems for decades after landfill closure. Over the longer term, it is possible that salinisation and enhanced coastal erosion may cause significant metal release from the landfills and their surrounding sedimentary systems into adjacent ecosystems.

  6. Assessing Impacts of Climate and Land Use Change on Terrestiral-Ocean Fluxes of Carbon and Nutrients and their Cycling in Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Lohrenz, S. E.; Tian, H.; He, R.; Cai, W. J.; Xue, Z. G.

    2014-12-01

    Climate change, increasing population, and associated changes in land use have placed tremendous pressures on coastal ecosystems. We describe an integrated research effort involving observations, modeling and prediction to explore how climate and weather-related forcing in conjunction with changing human activity can alter the transfer of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters, ultimately impacting the biogeochemistry and trophic dynamics of the coastal ocean. We refer to recent NSF- and NASA-funded research applying an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations to understand processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. Past and present conditions across land-ocean continua are examined, as well as coupled model projections of future scenarios for climate, land-use and other human activity. Finally, we provide examples of approaches for determining an overall carbon balance in coastal margins and for describing and predicting how climate and land use changes impact coastal water quality, including coastal eutrophication, hypoxia and ocean acidification.

  7. Statistics and analysis of storm waves in the Sea of Azov

    NASA Astrophysics Data System (ADS)

    Silvestrova, Ksenia; Arkhipkin, Victor; Surkova, Galina

    2013-04-01

    For the study of storm waves in the Sea of Azov spectral wave model of the third-generation SWAN (Simulating Waves Nearshore) was used. The inputs to the model were the bottom topography in grid (pitch axis x 0,02 ° and the axis y 0,01 °) and wind field of a new high-resolution(~ 0.3°) reanalysis NCEP CFSR from 1978 to 2010 with a time step of 1 hour. This model calculates significant wave height, swell height, direction of wave propagation, its length and the period, and the wave energy transport. The time interval output was 3 hours. Results of calculation of the last 2 days of the year are used as input for the next year. Supercomputers of Lomonosov Moscow State University were used for this research. The physical processes such as quadruplet interactions, whitecapping, triads, bottom friction, depth-induced breaking and diffraction are considered. The simulation results were used to calculate the number of storms, their duration, for the period of settlement, and for each month. Total number of storms with significant wave height greater than 2 m was 165. The highest values of calculated parameters are found in the central part of the sea: significant wave height is 3.5 m, a period of waves is 5 seconds, the length is 25 m. According to model simulation, the distribution of waves with 100 years return period were calculated. As a result, it was found that the heights of "100-year" waves in the Sea of Azov do not exceed 5 m. The study presents climatic variability of storms. Found that there was downward trend of storm activity in the Sea of Azov in the simulating period from 1978 to 2010. Synoptic situations that led to increase of storm waves were analyzed for extreme cases. The work is done in Natural Risk Assessment Laboratory under contract G.34.31.0007.

  8. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification

    PubMed Central

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J.; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D.; Rivest, Emily B.; Sesboüé, Marine; Caldeira, Ken

    2016-01-01

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ωarag), with potentially substantial impacts on marine ecosystems over the 21st Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ωarag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ωarag. If the short-term sensitivity of community calcification to Ωarag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences. PMID:26987406

  9. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J.; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D.; Rivest, Emily B.; Sesboüé, Marine; Caldeira, Ken

    2016-03-01

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ωarag), with potentially substantial impacts on marine ecosystems over the 21st Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ωarag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ωarag. If the short-term sensitivity of community calcification to Ωarag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.

  10. The nearshore western Beaufort Sea ecosystem: Circulation and importance of terrestrial carbon in arctic coastal food webs

    NASA Astrophysics Data System (ADS)

    Dunton, Kenneth H.; Weingartner, Thomas; Carmack, Eddy C.

    2006-10-01

    . Calculations from isotopic mixing equations indicate cod from lagoons may derive 70% of their carbon from terrestrial sources. The δ15N values of lagoon fish were also 4‰ lower than coastal specimens, reflective of the lower δ15N values of terrestrially derived nitrogen (0-1.5‰ compared to 5-7‰ for phytoplankton). The role of terrestrial carbon in arctic estuarine food webs is especially important in view of the current warming trend in the arctic environment and the role of advective processes that transport carbon along the nearshore shelf. Biogeochemical studies of the arctic coastal estuarine environment may provide more insights into the function of these biologically complex ecosystems.

  11. Ecosystem-based management and refining governance of wind energy in the Massachusetts coastal zone: A case study approach

    NASA Astrophysics Data System (ADS)

    Kumin, Enid C.

    While there are as yet no wind energy facilities in New England coastal waters, a number of wind turbine projects are now operating on land adjacent to the coast. In the Gulf of Maine region (from Maine to Massachusetts), at least two such projects, one in Falmouth, Massachusetts, and another on the island of Vinalhaven, Maine, began operation with public backing only to face subsequent opposition from some who were initially project supporters. I investigate the reasons for this dynamic using content analysis of documents related to wind energy facility development in three case study communities. For comparison and contrast with the Vinalhaven and Falmouth case studies, I examine materials from Hull, Massachusetts, where wind turbine construction and operation has received steady public support and acceptance. My research addresses the central question: What does case study analysis of the siting and initial operation of three wind energy projects in the Gulf of Maine region reveal that can inform future governance of wind energy in Massachusetts state coastal waters? I consider the question with specific attention to governance of wind energy in Massachusetts, then explore ways in which the research results may be broadly transferable in the U.S. coastal context. I determine that the change in local response noted in Vinalhaven and Falmouth may have arisen from a failure of consistent inclusion of stakeholders throughout the entire scoping-to-siting process, especially around the reporting of environmental impact studies. I find that, consistent with the principles of ecosystem-based and adaptive management, design of governance systems may require on-going cycles of review and adjustment before the implementation of such systems as intended is achieved in practice. I conclude that evolving collaborative processes must underlie science and policy in our approach to complex environmental and wind energy projects; indeed, collaborative process is fundamental to

  12. A keystone mutualism underpins resilience of a coastal ecosystem to drought

    PubMed Central

    Angelini, Christine; Griffin, John N.; van de Koppel, Johan; Lamers, Leon P. M.; Smolders, Alfons J. P.; Derksen-Hooijberg, Marlous; van der Heide, Tjisse; Silliman, Brian R.

    2016-01-01

    Droughts are increasing in severity and frequency, yet the mechanisms that strengthen ecosystem resilience to this stress remain poorly understood. Here, we test whether positive interactions in the form of a mutualism between mussels and dominant cordgrass in salt marshes enhance ecosystem resistance to and recovery from drought. Surveys spanning 250 km of southeastern US coastline reveal spatially dispersed mussel mounds increased cordgrass survival during severe drought by 5- to 25-times. Surveys and mussel addition experiments indicate this positive effect of mussels on cordgrass was due to mounds enhancing water storage and reducing soil salinity stress. Observations and models then demonstrate that surviving cordgrass patches associated with mussels function as nuclei for vegetative re-growth and, despite covering only 0.1–12% of die-offs, markedly shorten marsh recovery periods. These results indicate that mutualisms, in supporting stress-resistant patches, can play a disproportionately large, keystone role in enhancing ecosystem resilience to climatic extremes. PMID:27534803

  13. Polychlorinated biphenyls in coastal tropical ecosystems: Distribution, fate and risk assessment

    SciTech Connect

    Dodoo, D.K.; Essumang, D.K.; Jonathan, J.W.A.; Bentum, J.K.

    2012-10-15

    Polychlorinated biphenyls (PCBs) though banned still find use in most developing countries including Ghana. PCB congener residues in sediments in the coastal regions of Ghana were determined. Sediment samples (n=80) were collected between June 2008 and March 2009, extracted by the continuous soxhlet extraction using (1:1) hexane-acetone mixture for 24 h and analyzed with a CP 3800 gas chromatogram equipped with {sup 65}Ni electron capture detector (GC-ECD) and a mixed PCBs standard of the ICES 7 as marker, after clean-up. Validation of the efficiency and precision of the extraction and analytical methods were done by extracting samples spiked with 2 ppm ICES PCB standard and a certified reference material 1941b for marine sediments from NIST, USA, and analyzed alongside the samples. Total PCBs detected in sediments during the dry and wet seasons were, respectively, 127 and 112 {mu}g/kg dry weight (dw), with a mean concentration of 120 {mu}g/kg (dw). The composition of PCB homologues in the sediments were dominated by tri-, penta- and tetra-PCBs. There was no correlation between organic carbon (OC) of the sediments and total PCBs content. Risk assessments conducted on the levels indicated that PCB levels in sediments along the coastal region of Ghana poses no significant health risk to humans.

  14. Avian influenza virus wild bird surveillance in the Azov and Black Sea regions of Ukraine (2010-2011)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Azov and Black Sea basins are part of the transcontinental wild bird migration routes from Northern Asia and Europe to the Mediterranean, Africa and Southwest Asia. These regions constitute an area of transit, stops during migration, and nesting for many different bird species. From September ...

  15. Evaluation of the health status of a coastal ecosystem in southeast Mexico: Assessment of water quality, phytoplankton and submerged aquatic vegetation.

    PubMed

    Herrera-Silveira, Jorge A; Morales-Ojeda, Sara M

    2009-01-01

    The coastal environment of the Yucatan Peninsula (SE, Mexico) includes a wide variety of ecosystems ranging from mangroves to coral reefs, resulting in a heterogeneous landscape. Specifically, the marine system is characterized by environmental differences which respond to regional and local forcing functions such as marine currents and groundwater discharges (GD). Such functional characteristics were used here to define four subregions across the Yucatan coast and diagnose the health status of this coastal marine ecosystem. To achieve this goal, we conducted an analysis and integration of water quality variables, an eutrophic assessment, evaluated changes in submerged aquatic vegetation (SAV), and analyzed the community structure and distribution of harmful phytoplankton. The first step was to determine the reference values for each subregion based on data previously collected from 2002 to 2006 along the coast of Yucatan, 200m offshore. The trophic index (TRIX) and Canadian index for aquatic life (CCMEWQI) were used to diagnose each subregion and then the ASSETS approach was conducted for Dzilam and Progreso, sampling localities on each end of the health status continuum (those with the best and worst conditions). Overall, results indicated that the marine coastal ecosystem of Yucatan is in good condition; however, differences were observed between subregions that can be attributed to local forcing functions and human impacts. Specifically, the central region (zone HZII, Progreso-Telchac) showed symptoms of initial eutrophication due to nutrient inputs from human activities. The eastern region (zone HZ III, Dzilam-Las Bocas) showed a meso-eutrophic condition linked to natural groundwater discharges, while the other two subregions western (zone HZI Celestun-Palmar) and caribbean (zone HZ IV Ria Lagartos-El Cuyo) exhibited symptoms of oligo-mesotrophic condition. These findings may be considered baseline information for coastal ecosystem monitoring programs in

  16. Climate change. Climate change and wind intensification in coastal upwelling ecosystems.

    PubMed

    Sydeman, W J; García-Reyes, M; Schoeman, D S; Rykaczewski, R R; Thompson, S A; Black, B A; Bograd, S J

    2014-07-01

    In 1990, Andrew Bakun proposed that increasing greenhouse gas concentrations would force intensification of upwelling-favorable winds in eastern boundary current systems that contribute substantial services to society. Because there is considerable disagreement about whether contemporary wind trends support Bakun's hypothesis, we performed a meta-analysis of the literature on upwelling-favorable wind intensification. The preponderance of published analyses suggests that winds have intensified in the California, Benguela, and Humboldt upwelling systems and weakened in the Iberian system over time scales ranging up to 60 years; wind change is equivocal in the Canary system. Stronger intensification signals are observed at higher latitudes, consistent with the warming pattern associated with climate change. Overall, reported changes in coastal winds, although subtle and spatially variable, support Bakun's hypothesis of upwelling intensification in eastern boundary current systems.

  17. Climate change. Climate change and wind intensification in coastal upwelling ecosystems.

    PubMed

    Sydeman, W J; García-Reyes, M; Schoeman, D S; Rykaczewski, R R; Thompson, S A; Black, B A; Bograd, S J

    2014-07-01

    In 1990, Andrew Bakun proposed that increasing greenhouse gas concentrations would force intensification of upwelling-favorable winds in eastern boundary current systems that contribute substantial services to society. Because there is considerable disagreement about whether contemporary wind trends support Bakun's hypothesis, we performed a meta-analysis of the literature on upwelling-favorable wind intensification. The preponderance of published analyses suggests that winds have intensified in the California, Benguela, and Humboldt upwelling systems and weakened in the Iberian system over time scales ranging up to 60 years; wind change is equivocal in the Canary system. Stronger intensification signals are observed at higher latitudes, consistent with the warming pattern associated with climate change. Overall, reported changes in coastal winds, although subtle and spatially variable, support Bakun's hypothesis of upwelling intensification in eastern boundary current systems. PMID:24994651

  18. Introduction to the special issue on “Understanding and predicting change in the coastal ecosystems of the northern Gulf of Mexico”

    USGS Publications Warehouse

    Brock, John C.; Barras, John A.; Williams, S. Jeffress

    2013-01-01

    The coastal region of the northern Gulf of Mexico owes its current landscape structure to an array of tectonic, erosional and depositional, climatic, geochemical, hydrological, ecological, and human processes that have resulted in some of the world's most complex, dynamic, productive, and threatened ecosystems. Catastrophic hurricane landfalls, ongoing subsidence and erosion exacerbated by sea-level rise, disintegration of barrier island chains, and high rates of wetland loss have called attention to the vulnerability of northern Gulf coast ecosystems, habitats, built infrastructure, and economy to natural and anthropogenic threats. The devastating hurricanes of 2005 (Katrina and Rita) motivated the U.S. Geological Survey Coastal and Marine Geology Program and partnering researchers to pursue studies aimed at understanding and predicting landscape change and the associated storm hazard vulnerability of northern Gulf coast region ecosystems and human communities. Attaining this science goal requires increased knowledge of landscape evolution on geologic, historical, and human time scales, and analysis of the implications of such changes in the natural and built components of the landscape for hurricane impact susceptibility. This Special Issue of the Journal of Coastal Research communicates northern Gulf of Mexico research results that (1) improve knowledge of prior climates and depositional environments, (2) assess broad regional ecosystem structure and change over Holocene to human time scales, (3) undertake process studies and change analyses of dynamic landscape components, and (4) integrate framework, climate, variable time and spatial scale mapping, monitoring, and discipline-specific process investigations within interdisciplinary studies.

  19. Biodiversity and ecosystem processes in shallow coastal waters: an experimental approach

    NASA Astrophysics Data System (ADS)

    Raffaelli, D.; Emmerson, M.; Solan, M.; Biles, C.; Paterson, D.

    2003-03-01

    The relationship between biodiversity and ecological processes is currently the focus of considerable research effort, made all the more urgent by the rate of biodiversity loss world-wide. Rigorous experimental approaches to this question have been dominated by terrestrial ecologists, but shallow-water marine systems offer great opportunities by virtue of their relative ease of manipulation, fast response times and well-understood effects of macrofauna on sediment processes. In this paper, we describe a series of experiments whereby species richness has been manipulated in a controlled way and the concentrations of nutrients (ammonium, nitrate and phosphate) in the overlying water measured under these different treatments. The results indicate variable effects of species and location on ecosystem processes, and are discussed in the context of emerging mainstream ecological theory on biodiversity and ecosystem relations. Extensions of the application of the experimental approach to species-rich, large-scale benthic systems are discussed and the potential for novel analyses of existing data sets is highlighted.

  20. How habitat-modifying organisms structure the food web of two coastal ecosystems.

    PubMed

    van der Zee, Els M; Angelini, Christine; Govers, Laura L; Christianen, Marjolijn J A; Altieri, Andrew H; van der Reijden, Karin J; Silliman, Brian R; van de Koppel, Johan; van der Geest, Matthijs; van Gils, Jan A; van der Veer, Henk W; Piersma, Theunis; de Ruiter, Peter C; Olff, Han; van der Heide, Tjisse

    2016-03-16

    The diversity and structure of ecosystems has been found to depend both on trophic interactions in food webs and on other species interactions such as habitat modification and mutualism that form non-trophic interaction networks. However, quantification of the dependencies between these two main interaction networks has remained elusive. In this study, we assessed how habitat-modifying organisms affect basic food web properties by conducting in-depth empirical investigations of two ecosystems: North American temperate fringing marshes and West African tropical seagrass meadows. Results reveal that habitat-modifying species, through non-trophic facilitation rather than their trophic role, enhance species richness across multiple trophic levels, increase the number of interactions per species (link density), but decrease the realized fraction of all possible links within the food web (connectance). Compared to the trophic role of the most highly connected species, we found this non-trophic effects to be more important for species richness and of more or similar importance for link density and connectance. Our findings demonstrate that food webs can be fundamentally shaped by interactions outside the trophic network, yet intrinsic to the species participating in it. Better integration of non-trophic interactions in food web analyses may therefore strongly contribute to their explanatory and predictive capacity. PMID:26962135

  1. How habitat-modifying organisms structure the food web of two coastal ecosystems.

    PubMed

    van der Zee, Els M; Angelini, Christine; Govers, Laura L; Christianen, Marjolijn J A; Altieri, Andrew H; van der Reijden, Karin J; Silliman, Brian R; van de Koppel, Johan; van der Geest, Matthijs; van Gils, Jan A; van der Veer, Henk W; Piersma, Theunis; de Ruiter, Peter C; Olff, Han; van der Heide, Tjisse

    2016-03-16

    The diversity and structure of ecosystems has been found to depend both on trophic interactions in food webs and on other species interactions such as habitat modification and mutualism that form non-trophic interaction networks. However, quantification of the dependencies between these two main interaction networks has remained elusive. In this study, we assessed how habitat-modifying organisms affect basic food web properties by conducting in-depth empirical investigations of two ecosystems: North American temperate fringing marshes and West African tropical seagrass meadows. Results reveal that habitat-modifying species, through non-trophic facilitation rather than their trophic role, enhance species richness across multiple trophic levels, increase the number of interactions per species (link density), but decrease the realized fraction of all possible links within the food web (connectance). Compared to the trophic role of the most highly connected species, we found this non-trophic effects to be more important for species richness and of more or similar importance for link density and connectance. Our findings demonstrate that food webs can be fundamentally shaped by interactions outside the trophic network, yet intrinsic to the species participating in it. Better integration of non-trophic interactions in food web analyses may therefore strongly contribute to their explanatory and predictive capacity.

  2. Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems.

    PubMed

    Maie, Nagamitsu; Scully, Norman M; Pisani, Oliva; Jaffé, Rudolf

    2007-02-01

    This study demonstrates the compositional heterogeneity of a protein-like fluorescence emission signal (T-peak; excitation/emission maximum at 280/325 nm) of dissolved organic matter (DOM) samples collected from subtropical river and estuarine environments. Natural water samples were collected from the Florida Coastal Everglades ecosystem. The samples were ultrafiltered and excitation-emission fluorescence matrices were obtained. The T-peak intensity correlated positively with N concentration of the ultrafiltered DOM solution (UDON), although, the low correlation coefficient (r(2)=0.140, p<0.05) suggested the coexistence of proteins with other classes of compounds in the T-peak. As such, the T-peak was unbundled on size exclusion chromatography. The elution curves showed that the T-peak was composed of two compounds with distinct molecular weights (MW) with nominal MWs of about >5 x 10(4) (T(1)) and approximately 7.6 x 10(3) (T(2)) and with varying relative abundance among samples. The T(1)-peak intensity correlated strongly with [UDON] (r(2)=0.516, p<0.001), while T(2)-peak did not, which suggested that the T-peak is composed of a mixture of compounds with different chemical structures and ecological roles, namely proteinaceous materials and presumably phenolic moieties in humic-like substances. Natural source of the latter may include polyphenols leached from senescent plant materials, which are important precursors of humic substances. This idea is supported by the fact that polyphenols, such as gallic acid, an important constituent of hydrolysable tannins, and condensed tannins extracted from red mangrove (Rhizophora mangle) leaves exhibited the fluorescence peak in the close vicinity of the T-peak (260/346 and 275/313 nm, respectively). Based on this study the application of the T-peak as a proxy for [DON] in natural waters may have limitations in coastal zones with significant terrestrial DOM input. PMID:17187842

  3. Cascading effects of fishing can alter carbon flow through a temperate coastal ecosystem.

    PubMed

    Salomon, Anne K; Shears, Nick T; Langlois, Timothy J; Babcock, Russell C

    2008-12-01

    Mounting evidence suggests that fishing can trigger trophic cascades and alter food web dynamics, yet its effects on ecosystem function remain largely unknown. We used the large-scale experimental framework of four marine reserves, spanning an oceanographic gradient in northeastern New Zealand, to test the extent to which the exploitation of reef predators can alter kelp carbon flux and secondary production. We provide evidence that the reduction of predatory snapper (Pagrus auratus) and lobster (Jasus edwardsii) can lead to an increase in sea urchins (Evechinus chloroticus) and indirect declines in kelp biomass in some locations but not others. Stable carbon isotope ratios (delta13C) of oysters (Crassostrea gigas) and mussels (Perna canaliculus) transplanted in reserve and fished sites within four locations revealed that fishing indirectly reduced the proportion of kelp-derived organic carbon assimilated by filter feeders in two locations where densities of actively grazing sea urchins were 23.7 and 8.3 times higher and kelp biomass was an order of magnitude lower than in non-fished reserve sites. In contrast, in the two locations where fishing had no effect on urchin density or kelp biomass, we detected no effect of fishing on the carbon signature of filter feeders. We show that the effects of fishing on nearshore trophic structure and carbon flux are context-dependent and hinge on large-scale, regional oceanographic factors. Where cascading effects of fishing on kelp biomass were documented, enhanced assimilation of kelp carbon did not result in the magnification of secondary production. Instead, a strong regional gradient in filter feeder growth emerged, best predicted by chlorophyll a. Estimates of kelp contribution to the diet of transplanted consumers averaged 56.9% +/- 6.2% (mean +/- SE) for mussels and 33.8% +/- 7.3% for oysters, suggesting that organic carbon fixed by kelp is an important food source fueling northeastern New Zealand's nearshore food webs

  4. Cascading effects of fishing can alter carbon flow through a temperate coastal ecosystem.

    PubMed

    Salomon, Anne K; Shears, Nick T; Langlois, Timothy J; Babcock, Russell C

    2008-12-01

    Mounting evidence suggests that fishing can trigger trophic cascades and alter food web dynamics, yet its effects on ecosystem function remain largely unknown. We used the large-scale experimental framework of four marine reserves, spanning an oceanographic gradient in northeastern New Zealand, to test the extent to which the exploitation of reef predators can alter kelp carbon flux and secondary production. We provide evidence that the reduction of predatory snapper (Pagrus auratus) and lobster (Jasus edwardsii) can lead to an increase in sea urchins (Evechinus chloroticus) and indirect declines in kelp biomass in some locations but not others. Stable carbon isotope ratios (delta13C) of oysters (Crassostrea gigas) and mussels (Perna canaliculus) transplanted in reserve and fished sites within four locations revealed that fishing indirectly reduced the proportion of kelp-derived organic carbon assimilated by filter feeders in two locations where densities of actively grazing sea urchins were 23.7 and 8.3 times higher and kelp biomass was an order of magnitude lower than in non-fished reserve sites. In contrast, in the two locations where fishing had no effect on urchin density or kelp biomass, we detected no effect of fishing on the carbon signature of filter feeders. We show that the effects of fishing on nearshore trophic structure and carbon flux are context-dependent and hinge on large-scale, regional oceanographic factors. Where cascading effects of fishing on kelp biomass were documented, enhanced assimilation of kelp carbon did not result in the magnification of secondary production. Instead, a strong regional gradient in filter feeder growth emerged, best predicted by chlorophyll a. Estimates of kelp contribution to the diet of transplanted consumers averaged 56.9% +/- 6.2% (mean +/- SE) for mussels and 33.8% +/- 7.3% for oysters, suggesting that organic carbon fixed by kelp is an important food source fueling northeastern New Zealand's nearshore food webs

  5. Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Francisco Bay, California

    USGS Publications Warehouse

    Cloern, James E.

    1996-01-01

    Phytoplankton blooms are prominent features of biological variability in shallow coastal ecosystems such as estuaries, lagoons, bays, and tidal rivers. Long-term observation and research in San Francisco Bay illustrates some patterns of phytoplankton spatial and temporal variability and the underlying mechanisms of this variability. Blooms are events of rapid production and accumulation of phytoplankton biomass that are usually responses to changing physical forcings originating in the coastal ocean (e.g., tides), the atmosphere (wind), or on the land surface (precipitation and river runoff). These physical forcings have different timescales of variability, so algal blooms can be short-term episodic events, recurrent seasonal phenomena, or rare events associated with exceptional climatic or hydrologic conditions. The biogeochemical role of phytoplankton primary production is to transform and incorporate reactive inorganic elements into organic forms, and these transformations are rapid and lead to measurable geochemical change during blooms. Examples include the depletion of inorganic nutrients (N, P, Si), supersaturation of oxygen and removal of carbon dioxide, shifts in the isotopic composition of reactive elements (C, N), production of climatically active trace gases (methyl bromide, dimethylsulfide), changes in the chemical form and toxicity of trace metals (As, Cd, Ni, Zn), changes in the biochemical composition and reactivity of the suspended particulate matter, and synthesis of organic matter required for the reproduction and growth of heterotrophs, including bacteria, zooplankton, and benthic consumer animals. Some classes of phytoplankton play special roles in the cycling of elements or synthesis of specific organic molecules, but we have only rudimentary understanding of the forces that select for and promote blooms of these species. Mounting evidence suggests that the natural cycles of bloom variability are being altered on a global scale by human

  6. Effects of Ocean Acidification on Temperate Coastal Marine Ecosystems and Fisheries in the Northeast Pacific

    PubMed Central

    Haigh, Rowan; Ianson, Debby; Holt, Carrie A.; Neate, Holly E.; Edwards, Andrew M.

    2015-01-01

    As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA). Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC), sport (recreational) fishing generates more income than commercial fishing (including the expanding aquaculture industry). Salmon (fished recreationally and farmed) and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH) waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2–3 (where most local fishery-income is generated), little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty. PMID

  7. Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation

    PubMed Central

    Boström, Christoffer; Baden, Susanne; Bockelmann, Anna-Christina; Dromph, Karsten; Fredriksen, Stein; Gustafsson, Camilla; Krause-Jensen, Dorte; Möller, Tiia; Nielsen, Søren Laurentius; Olesen, Birgit; Olsen, Jeanine; Pihl, Leif; Rinde, Eli

    2014-01-01

    This paper focuses on the marine foundation eelgrass species, Zostera marina, along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km2 eelgrass (maximum >2100 km2), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe.Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4–6 spp.) of angiosperms overall, but eelgrass productivity is low (<2 g dw m-2 d-1) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3–10 g dw m-2 d-1) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic.Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows.The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them. © 2014 The Authors. Aquatic Conservation: Marine and Freshwater Ecosystems published by John Wiley & Sons, Ltd. PMID:26167100

  8. Effects of ocean acidification on temperate coastal marine ecosystems and fisheries in the northeast Pacific.

    PubMed

    Haigh, Rowan; Ianson, Debby; Holt, Carrie A; Neate, Holly E; Edwards, Andrew M

    2015-01-01

    As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA). Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC), sport (recreational) fishing generates more income than commercial fishing (including the expanding aquaculture industry). Salmon (fished recreationally and farmed) and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH) waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2-3 (where most local fishery-income is generated), little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty.

  9. Harmful algal toxins of the Florida red tide (Karenia brevis): natural chemical stressors in South Florida coastal ecosystems

    PubMed Central

    Henry, M. S.

    2009-01-01

    The Florida red tide is a descriptive name for high concentrations of the harmful marine alga, Karenia brevis. Although most prevalent along the south-west Florida coast, periodic blooms have occurred throughout the entire US and Mexico Gulf coasts and the Atlantic coast to North Carolina. This dinoflagellate produces a suite of polyether neurotoxins, called brevetoxins, that cause severe impacts to natural resources, as well as public health. These naturally produced biotoxins may represent one of the most common chemical stressors impacting South Florida coastal and marine ecosystems. Impacts include massive fish kills, marine mammal, sea turtle and sea bird mortalities, benthic community die-off and public health effects from shellfish contamination and inhalation of air-borne toxins. The primary mode of action is binding to voltage-gated sodium channels causing depolarization of nerve cells, thus interfering with nerve transmission. Other effects include immune depression, bronchial constriction and haemolysis. Parent algal toxins are synthesized within the unicellular organism, others are produced as metabolic products. Recent studies into the composition of brevetoxins in cells, water, air and organisms have shown PbTx-2 to be the primary intracellular brevetoxin that is converted over time to PbTx-3 when the cells are ruptured, releasing extracellular brevetoxins into the environment. Brevetoxins become aerosolized by bubble-mediated transport of extracellular toxins, the composition of which varies depending on the composition in the source water. Bivalved molluscs rapidly accumulate brevetoxins as they filter feed on K. brevis cells. However, the parent algal toxins are rapidly metabolized to other compounds, some of which are responsible for neurotoxic shellfish poisoning (NSP). These results provide new insight into the distribution, persistence and impacts of red tide toxins to south-west Florida ecosystems. PMID:18758951

  10. Ecosystem Productivity Responses to Saltwater Intrusion and P Loading As a Result of Future Sea Level Rise in the Coastal Everglades

    NASA Astrophysics Data System (ADS)

    Wilson, B.; Troxler, T.; Gaiser, E.; Kominoski, J. S.; Richards, J.; Servais, S.; Stachelek, J.; Kelly, S.; Sklar, F.; Coronado-Molina, C.; Madden, C.; Davis, S. E., III; Mazzi, V.; Schulte, N.; Bauman, L.

    2014-12-01

    Coastal wetlands, which have immense potential to store carbon (C) in vegetation and sediments, are a vital part of the global C cycle. How C storage in coastal wetlands will be affected by accelerated sea level rise as a result of a warming climate, however, is uncertain. In oligotrophic wetlands such as the Everglades in the southeastern USA, saltwater intrusion will bring ions (Cl-, SO42-) and phosphorus (P), a limiting nutrient for ecosystem productivity. It is hypothesized that shifts in stressors and subsidies can shift the soil carbon balance from a net C sink to a source, stimulating peat collapse, which will, in turn, accelerate the effects of sea level rise. The objective of this study is to investigate how simulated saltwater intrusion into freshwater and oligohaline wetlands will change net ecosystem productivity and affect the soil C balance. Using coupled field and mesocosm experiments beginning in August 2014, we are examining how plant gross primary production, plant respiration, ecosystem respiration, and net ecosystem exchange in freshwater and oligohaline wetlands will change when exposed to saltwater and an increase in P loading. We predict that a higher saltwater load will increase ecosystem respiration while decreasing ecosystem productivity, possibly shifting the C balance of these marshes from a net sink to a source. In contrast, increased P loading has been shown to increase ecosystem productivity in oligotrophic wetlands; sawgrass, the dominant macrophyte in Everglades marshes, increases productivity with increased P, but periphyton decreases productivity. Therefore, it is still unknown how the interaction of an increased P subsidy coupled with saltwater intrusion will affect overall net ecosystem productivity and the C balance. Results from this study will reveal how the soil C balance in freshwater and oligohaline wetlands changes with saltwater intrusion due to sea level rise.

  11. Relationships among multiple trace elements in coastal Casuarina equisetifolia ecosystems on Hainan Island, South China.

    PubMed

    Liu, Qiang; Bi, Hua; Hung, Lan; Peng, Shaolin; Sheng, Chengde

    2006-01-01

    Forty-six trace elements in coastal Casuarina equisetifolia plant-soil systems at nine sampling sites on Hainan Island were analyzed using ICP-MS. The relationships among the trace elements of the same group or the same periodicity of the Periodic Table in the plants and soils were complex and no consistent patterns were found. More combinations of elements occurred with high positive correlation coefficients within the same periodicity than within the same group of the Periodic Table, and there were more high positive correlations in soils than in plants. However, there were many element combinations in Block d (transition elements) with high positive correlation coefficients in plants. Markedly high positive correlation coefficients between individual rare earth elements and Y and among Zr, Nb, Cd existed in both plants and soils. The dendrograms obtained by cluster analysis show that rare earth elements had very similar occurrence and distribution in both soils and plants. Thus, they behaved as a coherent group of elements both geochemically and biogeochemically. The transition elements were more coherent in plants than in soils.

  12. Linkages between coastal runoff and the Florida Keys ecosystem: A study of a dark plume event

    NASA Astrophysics Data System (ADS)

    Hu, Chuanmin; Muller-Karger, Frank E.; Vargo, Gabriel A.; Neely, Merrie Beth; Johns, Elizabeth

    2004-08-01

    Using data collected by satellite sensors, rain and river gauges, and ship surveys, we studied the development and wind-driven transport of a dark water plume from near Charlotte Harbor, Florida, to the Dry Tortugas in the Florida Keys in mid-October 2003. MODIS and SeaWiFS imagery showed that the patch contained an extensive (~5,500 km2) phytoplankton bloom that formed originally near the central coast of Florida. The data linked the bloom to high nutrient coastal runoff caused by heavy rainfall in June and August. Total N and P required for the bloom, which may contain some Karenia brevis cells, was estimated to be 2.3 × 107 and 1.5 × 106 moles, respectively. The dark color became increasingly dominated by colored dissolved organic matter, toward the Dry Tortugas, where CDOM absorption coefficients (0.08-0.12 m-1 at 400 nm) were 2-3 times higher than the surrounding shelf waters, while chlorophyll and inorganic nutrients decreased to negligible levels.

  13. Lagrangian studies of phytoplankton growth and grazing relationships in a coastal upwelling ecosystem off Southern California

    NASA Astrophysics Data System (ADS)

    Landry, Michael R.; Ohman, Mark D.; Goericke, Ralf; Stukel, Michael R.; Tsyrklevich, Kate

    2009-12-01

    Experimental studies of phytoplankton growth and grazing processes were conducted in the coastal upwelling system off Point Conception, California to test the hypothesis that phytoplankton growth and grazing losses determine, to first order, the local dynamics of phytoplankton in the upwelling circulation. Eight experiments of 3-5 days each were conducted over the course of two cruises in May-June 2006 and April 2007 following the trajectories of satellite-tracked drifters. Rates of phytoplankton growth and microzooplankton grazing were determined by daily in situ dilution incubations at 8 depths spanning the euphotic zone. Mesozooplankton grazing was assessed by gut fluorescence analysis of animals collected from net tows through the euphotic zone. We compared directly the net rates of change observed for the ambient phytoplankton community to the net growth rates predicted from experimental determinations of each process rate. The resulting relationship accounted for 91% of the variability observed, providing strong support for the growth-grazing hypothesis. In addition, grazing by mesozooplankton was unexpectedly high and variable, driving a substantial positive to negative shift in phytoplankton net rate of change between years despite comparable environmental conditions and similar high growth rates and suggesting strong top-down control potential. The demonstrated agreement between net ambient and experimental community changes is an important point of validation for using field data to parameterize models. Data sets of this type may provide an important source of new information and rate constraints for developing better coupled biological-physical models of upwelling system dynamics.

  14. Variation in fatty acid composition among nine forage species from a southeastern US estuarine and nearshore coastal ecosystem.

    PubMed

    Recks, Melissa A; Seaborn, Gloria T

    2008-09-01

    The fatty acid (FA) composition of nine potentially important forage species was determined (n = 330): red drum (Sciaenops ocellatus), spot (Leiostomus xanthurus), spotted seatrout (Cynoscion nebulosus), striped mullet (Mugil cephalus), pinfish (Lagodon rhomboides), Atlantic croaker (Micropogonias undulatus), star drum (Stellifer lanceolatus), striped anchovy (Anchoa hepsetus), and brief squid (Lolliguncula brevis). Samples were collected from estuarine and nearshore coastal waters around Charleston, South Carolina, USA, from March 2002-February 2003. Twenty-nine of 125 identified FAs were included in multivariate analyses of FA profiles. Despite existing intraspecific variation, the PRIMER routine analysis of similarity (ANOSIM) indicated each species was distinct, and discriminant function analysis correctly classified 99.5% of the training data set samples (n = 221) and 98.2% of the validation samples (n = 109). Most species could be characterized by distinctive levels of a suite of FAs. Our results indicated FA profiles can be used to reliably distinguish even closely related forage species in this southeastern US estuarine ecosystem. The information gained from this study not only provides insight into the biochemical composition of these important species but also provides fundamental information to support studies on the feeding ecology of local higher-level predators.

  15. Twelve years of repeated wild hog activity promotes population maintenance of an invasive clonal plant in a coastal dune ecosystem.

    PubMed

    Oldfield, Callie A; Evans, Jonathan P

    2016-04-01

    Invasive animals can facilitate the success of invasive plant populations through disturbance. We examined the relationship between the repeated foraging disturbance of an invasive animal and the population maintenance of an invasive plant in a coastal dune ecosystem. We hypothesized that feral wild hog (Sus scrofa) populations repeatedly utilized tubers of the clonal perennial, yellow nutsedge (Cyperus esculentus) as a food source and evaluated whether hog activity promoted the long-term maintenance of yellow nutsedge populations on St. Catherine's Island, Georgia, United States. Using generalized linear mixed models, we tested the effect of wild hog disturbance on permanent sites for yellow nutsedge culm density, tuber density, and percent cover of native plant species over a 12-year period. We found that disturbance plots had a higher number of culms and tubers and a lower percentage of native live plant cover than undisturbed control plots. Wild hogs redisturbed the disturbed plots approximately every 5 years. Our research provides demographic evidence that repeated foraging disturbances by an invasive animal promote the long-term population maintenance of an invasive clonal plant. Opportunistic facultative interactions such as we demonstrate in this study are likely to become more commonplace as greater numbers of introduced species are integrated into ecological communities around the world.

  16. Twelve years of repeated wild hog activity promotes population maintenance of an invasive clonal plant in a coastal dune ecosystem.

    PubMed

    Oldfield, Callie A; Evans, Jonathan P

    2016-04-01

    Invasive animals can facilitate the success of invasive plant populations through disturbance. We examined the relationship between the repeated foraging disturbance of an invasive animal and the population maintenance of an invasive plant in a coastal dune ecosystem. We hypothesized that feral wild hog (Sus scrofa) populations repeatedly utilized tubers of the clonal perennial, yellow nutsedge (Cyperus esculentus) as a food source and evaluated whether hog activity promoted the long-term maintenance of yellow nutsedge populations on St. Catherine's Island, Georgia, United States. Using generalized linear mixed models, we tested the effect of wild hog disturbance on permanent sites for yellow nutsedge culm density, tuber density, and percent cover of native plant species over a 12-year period. We found that disturbance plots had a higher number of culms and tubers and a lower percentage of native live plant cover than undisturbed control plots. Wild hogs redisturbed the disturbed plots approximately every 5 years. Our research provides demographic evidence that repeated foraging disturbances by an invasive animal promote the long-term population maintenance of an invasive clonal plant. Opportunistic facultative interactions such as we demonstrate in this study are likely to become more commonplace as greater numbers of introduced species are integrated into ecological communities around the world. PMID:27110354

  17. Reconstruction of metal pollution and recent sedimentation processes in Havana Bay (Cuba): a tool for coastal ecosystem management.

    PubMed

    Díaz-Asencio, M; Alvarado, J A Corcho; Alonso-Hernández, C; Quejido-Cabezas, A; Ruiz-Fernández, A C; Sanchez-Sanchez, M; Gómez-Mancebo, M B; Froidevaux, P; Sanchez-Cabeza, J A

    2011-11-30

    Since 1998 the highly polluted Havana Bay ecosystem has been the subject of a mitigation program. In order to determine whether pollution-reduction strategies were effective, we have evaluated the historical trends of pollution recorded in sediments of the Bay. A sediment core was dated radiometrically using natural and artificial fallout radionuclides. An irregularity in the (210)Pb record was caused by an episode of accelerated sedimentation. This episode was dated to occur in 1982, a year coincident with the heaviest rains reported in Havana over the XX century. Peaks of mass accumulation rates (MAR) were associated with hurricanes and intensive rains. In the past 60 years, these maxima are related to strong El Niño periods, which are known to increase rainfall in the north Caribbean region. We observed a steady increase of pollution (mainly Pb, Zn, Sn, and Hg) since the beginning of the century to the mid 90 s, with enrichment factors as high as 6. MAR and pollution decreased rapidly after the mid 90 s, although some trace metal levels remain high. This reduction was due to the integrated coastal zone management program introduced in the late 90 s, which dismissed catchment erosion and pollution.

  18. The role of pre-existing disturbances in the effect of marine reserves on coastal ecosystems: a modelling approach.

    PubMed

    Savina, Marie; Condie, Scott A; Fulton, Elizabeth A

    2013-01-01

    We have used an end-to-end ecosystem model to explore responses over 30 years to coastal no-take reserves covering up to 6% of the fifty thousand square kilometres of continental shelf and slope off the coast of New South Wales (Australia). The model is based on the Atlantis framework, which includes a deterministic, spatially resolved three-dimensional biophysical model that tracks nutrient flows through key biological groups, as well as extraction by a range of fisheries. The model results support previous empirical studies in finding clear benefits of reserves to top predators such as sharks and rays throughout the region, while also showing how many of their major prey groups (including commercial species) experienced significant declines. It was found that the net impact of marine reserves was dependent on the pre-existing levels of disturbance (i.e. fishing pressure), and to a lesser extent on the size of the marine reserves. The high fishing scenario resulted in a strongly perturbed system, where the introduction of marine reserves had clear and mostly direct effects on biomass and functional biodiversity. However, under the lower fishing pressure scenario, the introduction of marine reserves caused both direct positive effects, mainly on shark groups, and indirect negative effects through trophic cascades. Our study illustrates the need to carefully align the design and implementation of marine reserves with policy and management objectives. Trade-offs may exist not only between fisheries and conservation objectives, but also among conservation objectives. PMID:23593432

  19. Drivers of change in estuarine-coastal ecosystems: Discoveries from four decades of study in San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Cloern, James E.; Jassby, Alan D.

    2012-12-01

    Poised at the interface of rivers, ocean, atmosphere and dense human settlement, estuaries are driven by a large array of natural and anthropogenic forces. San Francisco Bay exemplifies the fast-paced change occurring in many of the world's estuaries, bays, and inland seas in response to these diverse forces. We use observations from this particularly well-studied estuary to illustrate responses to six drivers that are common agents of change where land and sea meet: water consumption and diversion, human modification of sediment supply, introduction of nonnative species, sewage input, environmental policy, and climate shifts. In San Francisco Bay, responses to these drivers include, respectively, shifts in the timing and extent of freshwater inflow and salinity intrusion, decreasing turbidity, restructuring of plankton communities, nutrient enrichment, elimination of hypoxia and reduced metal contamination of biota, and food web changes that decrease resistance of the estuary to nutrient pollution. Detection of these changes and discovery of their causes through environmental monitoring have been essential for establishing and measuring outcomes of environmental policies that aim to maintain high water quality and sustain services provided by estuarine-coastal ecosystems. The many time scales of variability and the multiplicity of interacting drivers place heavy demands on estuarine monitoring programs, but the San Francisco Bay case study illustrates why the imperative for monitoring has never been greater.

  20. Drivers of change in estuarine-coastal ecosystems: Discoveries from four decades of study in San Francisco Bay

    USGS Publications Warehouse

    Cloern, J.E.; Jassby, A.D.

    2012-01-01

    Poised at the interface of rivers, ocean, atmosphere and dense human settlement, estuaries are driven by a large array of natural and anthropogenic forces. San Francisco Bay exemplifies the fast-paced change occurring in many of the world's estuaries, bays and inland seas in response to these diverse forces. We use observations from this particularly well-studied estuary to illustrate responses to six drivers that are common agents of change where land and sea meet: water consumption and diversion; human modification of sediment supply; introduction of non-native species; sewage input; environmental policy; and climate shifts. In San Francisco Bay, responses to these drivers include, respectively, shifts in the timing and extent of freshwater inflow and salinity intrusion; decreasing turbidity; restructuring of plankton communities; nutrient enrichment; elimination of hypoxia and reduced metal contamination of biota; and food web changes that decrease resistance of the estuary to nutrient pollution. Detection of these changes and discovery of their causes through environmental monitoring have been essential for establishing and measuring outcomes of environmental policies that aim to maintain high water quality and sustain services provided by estuarine-coastal ecosystems. The wide range of variability time scales and the multiplicity of interacting drivers place heavy demands on estuarine monitoring programs. But the San Francisco Bay case study illustrates why the imperative for monitoring has never been greater.

  1. Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida’s Gulf Coast: Implications for Adaptation Planning

    PubMed Central

    Birch, Anne P.; Brenner, Jorge; Gordon, Doria R.

    2015-01-01

    The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida’s Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway. PMID:26207914

  2. Multisensor sampling of pelagic ecosystem variables in a coastal environment to estimate zooplankton grazing impact

    NASA Astrophysics Data System (ADS)

    Sutton, Tracey; Hopkins, Thomas; Remsen, Andrew; Burghart, Scott

    2001-01-01

    Sampling was conducted on the west Florida continental shelf ecosystem modeling site to estimate zooplankton grazing impact on primary production. Samples were collected with the high-resolution sampler, a towed array bearing electronic and optical sensors operating in tandem with a paired net/bottle verification system. A close biological-physical coupling was observed, with three main plankton communities: 1. a high-density inshore community dominated by larvaceans coincident with a salinity gradient; 2. a low-density offshore community dominated by small calanoid copepods coincident with the warm mixed layer; and 3. a high-density offshore community dominated by small poecilostomatoid and cyclopoid copepods and ostracods coincident with cooler, sub-pycnocline oceanic water. Both high-density communities were associated with relatively turbid water. Applying available grazing rates from the literature to our abundance data, grazing pressure mirrored the above bio-physical pattern, with the offshore sub-pycnocline community contributing ˜65% of grazing pressure despite representing only 19% of the total volume of the transect. This suggests that grazing pressure is highly localized, emphasizing the importance of high-resolution sampling to better understand plankton dynamics. A comparison of our grazing rate estimates with primary production estimates suggests that mesozooplankton do not control the fate of phytoplankton over much of the area studied (<5% grazing of daily primary production), but "hot spots" (˜25-50% grazing) do occur which may have an effect on floral composition.

  3. Trip report: pilot studies of factors linking watershed function and coastal ecosystem health in American Samoa

    USGS Publications Warehouse

    Atkinson, Carter T.; Medeiros, Arthur C.

    2010-01-01

    Coral reef resources in the territory of American Samoa face significant problems from overfishing, non-point source pollution, global warming, and continuing population growth and development. The islands are still relatively isolated relative to other parts of the Pacific and have managed to avoid some of the more devastating invasive species that have reached other archipelagoes. As a result, there are opportunities for collaborative and integrative research and monitoring programs to help restore and maintain biodiversity and functioning natural ecosystem in the archipelago. We found that the 'Ridge to Reef' paradigm already exists in American Samoa, with a high degree of interagency cooperation and efficient use of limited resources already taking place in the Territory. USGS may be able to make contributions as a partner organization in the Coral Reef Advisory Group (CRAG) through deployment of sediment monitoring instrumentation to supplement stream monitoring by the American Samoa Environmental Protection Agency, by providing high resolution vegetation and land-use maps of main islands, by providing additional support to the American Samoa Department of Marine and Wildlife Resources and the National Park Service for monitoring of invasive species, by working with members of CRAG to initiate sediment transport studies on Samoan reefs, and by developing new projects on the effects of bacterial contamination and pollutants on coral reef physiology and demography.

  4. Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India

    NASA Astrophysics Data System (ADS)

    Nobi, E. P.; Dilipan, E.; Thangaradjou, T.; Sivakumar, K.; Kannan, L.

    2010-04-01

    Spatial distribution of metal concentrations in the surface sediment samples collected from 16 marine locations covering different coastal ecosystems such as mangroves, seagrasses, dead coral and sandy beaches of the Andaman islands, India was studied. pH, EC, sediment grain size and heavy metal (Al, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb and Zn) concentrations were determined and contamination factor (CF) and geo-accumulation index (I geo) were calculated to understand the pollution status of the study area based on the background values. CF of different heavy metals has revealed that different metals have different levels of accumulation viz. Al: 0.01-0.22, Mg: 0.38-1.85, Fe: 0.06-0.74, Mn: 0.04-1.18, Cu: 0.18-2.93, Cr: 0.52-12.6, Zn: 0.3-1.39, Ni: 0.06-0.89, Pb: BDL-0.74, Co: 0.1-0.35 and Cd: 2.3-12.9. In general the metal concentration was less in these ecosystems when compared to similar ecosystems of mainland of India. Concentration of some metals like Cr and Cd was comparatively higher than the background values which is an important issue of concern to the coastal managers of the region. Spatial data on heavy metals, collected now, would help the coastal zone managers to identify the vulnerable sites and take remedial actions.

  5. Effect of Changes in Seasonal Rain Regime on Coastal Ecosystem Structure and Aquaculture Activities

    NASA Astrophysics Data System (ADS)

    Cosimo, S.; Melaku Canu, D.; Libralato, S.; Cossarini, G.; Giorgi, F.

    2008-12-01

    A downscaling experiment linked climate forcing produced by a Regional Climate Model for Europe to a 3D high resolution coupled transport biogeochemical model for the Lagoon of Venice, which in turn forced: a) a food web model for evaluation of cascading effects on ecosystem structure and b) a population dynamic bioenergetic filter feeders bivalvae model for evaluation of effects on aquaculture activities. The hierarchy of models was used to compare result for a reference situation (RF, 1961-1990) with results for two future IPCC scenarios (2071-2100), representing market oriented and local sustainability policies (scenarios A2 and B2, respectively). Future climate projections suggest that, locally, annual mean rain will not change much but the seasonal patterns will likely do so. Summer and spring will be more dry and winter and autumn more rainy. This will potentially increase winter nutrient concentrations but -because of unfavourable timing - primary and secondary productions will decrease, and nutrient surplus will be exported from the Lagoon of Venice to the Adriatic Sea. The impacts on higher trophic levels could be softened thanks to presence of alternative energy pathways and role of omnivory. However, in our future scenario of the lagoon food web the suitability for higher trophic level organisms seems lower. A more detailed analysis on clam aquaculture indicates that this activity will suffer the decrease of primary productivity, and point to the need of implementation of proper aquaculture management policies. In the light of adaptive management. These policies cannot be a straightfoward extrapolation of present practises, but need to be defined basing on future conditions.

  6. Assessing the sensitivity of Alaska's Coastal Ecosystem to Changes in Glacier Runoff

    NASA Astrophysics Data System (ADS)

    Oneel, S.; Hood, E. W.; Arendt, A. A.; Sass, L. C.; March, R. S.

    2012-12-01

    The timing and magnitude of freshwater discharge to the Gulf of Alaska impacts rates of sea level change and the health of near shore ecosystems and fisheries. Glaciers strongly modulate the freshwater flux into this region and contribute to approximately 50% of its annual freshwater budget. It is generally assumed that persistently negative annual mass balances, forced by recent climate changes, are driving increases in glacier stream discharge. However, increases in runoff also depend on increased mass turnover rates, wherein the amplitude of seasonal mass balance increases due to enhanced snowfall and summer melt intensity. To quantify and partition runoff into the Gulf of Alaska we examine 1966-2010 US Geological Survey glacier mass balance and streamflow records from the Gulkana/Wolverine glaciers located in continental/maritime Alaska climate regimes. We compare annual, summer and winter balances with associated discharge magnitudes at each glacier to determine the primary controls on runoff magnitude and timing. We find that both glaciers have experienced increases in runoff and mass turnover, but only the Gulkana Glacier shows increases in stream discharge due to long term changes in annual mass balance. Conversely, Wolverine Glacier runoff is more sensitive to the amplitude of winter accumulation. The data suggest that changes in summer climate forcing are occurring over broader spatial scales than are changes in winter forcing. The analyses demonstrate that care is warranted when formulating assumptions relating glacier volume change to surface water hydrologic processes. Predicting future changes in runoff and implications for sea level rise, water resources and biological resources in this highly productive region requires that we better understand the processes that produce and modulate glacier runoff.

  7. Coastal Ecosystems of Latin America and the Caribbean. Objectives, Priorities and Activities of Unesco's COMAR Project for the Latin American and Caribbean Region, Caracas, Venezuela, 15-19 November 1982. Unesco Reports in Marine Science 24.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    To further the knowledge of the resources of coastal ecosystems and the general lines along which they function, Unesco implemented a "Major Interregional Project on Research and Training Leading to the Integrated Management of Coastal Systems" (COMAR). In addition, a proposed regional cooperative program called the "Regional Project for Research…

  8. Advancing the use of local ecological knowledge for assessing data-poor species in coastal ecosystems.

    PubMed

    Beaudreau, Anne H; Levin, Phillip S

    2014-03-01

    Many of the world's most vulnerable and rapidly changing ecosystems are also among the most data-poor, leading to an increased interest in use of local ecological knowledge (LEK) to document long-term environmental change. The integration of multiple knowledge sources for assessing species abundance and distribution has gained traction over the past decade as a growing number of case studies show concordance between LEK and scientific data. This study advances the use of quantitative approaches for synthesizing LEK by presenting a novel application of bootstrapping and statistical modeling to evaluate variance in ecological observations of fisheries practitioners. We developed an historical record of abundance for 22 marine species in Puget Sound, Washington (USA), using LEK, and we quantified variation in perceptions of abundance trends among fishers, divers, and researchers. These individuals differed in aspects of their information environments, which are characterized by how, when, and where an individual has acquired ecological information. Abundance trends derived from interviews suggest that populations of long-lived rockfishes (Sebastes spp.) have been in decline since at least the 1960s and that three rockfishes protected under the Endangered Species Act were perceived as relatively less abundant than other species. Differences in perception of rockfish abundance trends among age groups were consistent with our hypothesis that the reported magnitude of decline in abundance would increase with age, with younger respondents more likely to report high abundance than older individuals across all periods. Temporal patterns in the mean and variance of reported rockfish abundance indices were qualitatively similar between fishers and researchers; however, fishers reported higher indices of abundance than researchers for all but one rockfish species. The two respondent groups reported similar changes in rockfish abundance from the 1940s to 2000s, except for two

  9. The Impacts Of The Indian Ocean Tsunami On Coastal Ecosystems And Resultant Effects On The Human Communities Of Sri Lanka

    NASA Astrophysics Data System (ADS)

    Ingram, J.; Rumbaitis-del Rio, C.; Franco, G.; Khazai, B.

    2005-12-01

    The devastating tsunami that hit Sri Lanka on December 26, 2004 has demonstrated vividly the inter-connections between social and ecological resilience. Before the tsunami, the coastal zone of Sri Lanka was inhabited by predominantly poor populations, most of whom were directly dependent upon coastal natural resources, such as fisheries and coconut trees, for supporting their livelihoods. Many of these people have now lost their livelihoods through the destruction of their boats and nets for fishing, the contamination of drinking sources, homes, family members and assets. This presentation focuses on observations of the tsunami impacts on both social and ecological communities made along the affected coastline of Sri Lanka in April-May 2005. This assessment recorded patterns of ecological resistance and damage resulting from the tsunami in relation to damage on the human environment, with an exploration of the physical factors that may have contributed to vulnerability or resistance. This work also involved a preliminary assessment of the resilience and recovery of different natural resource based livelihood strategies following the disaster and an exploration of livelihood possibilities in proposed resettlement sites. From observations made in this and other recent studies, it is apparent that intact ecosystems played a vital role in protection from the impact of the tsunami and are vital for supporting people as they seek to rebuild their livelihoods. However, certain structural and biological characteristics appear to offer certain tree species, such as coconut (Cocos nucifera), an advantage in surviving such events and have been important for providing food and drink to people in the days after the tsunami. Areas where significant environmental damage had occurred prior to the tsunami or where there were few natural defenses present to protect human communities, devastation of homes and lives was extremely high. Although, there is evidence that many previously

  10. Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem

    PubMed Central

    Smith, Maria W.; Zeigler Allen, Lisa; Allen, Andrew E.; Herfort, Lydie; Simon, Holly M.

    2013-01-01

    The Columbia River (CR) is a powerful economic and environmental driver in the US Pacific Northwest. Microbial communities in the water column were analyzed from four diverse habitats: (1) an estuarine turbidity maximum (ETM), (2) a chlorophyll maximum of the river plume, (3) an upwelling-associated hypoxic zone, and (4) the deep ocean bottom. Three size fractions, 0.1–0.8, 0.8–3, and 3–200 μm were collected for each habitat in August 2007, and used for DNA isolation and 454 sequencing, resulting in 12 metagenomes of >5 million reads (>1.6 Gbp). To characterize the dominant microorganisms and metabolisms contributing to coastal biogeochemistry, we used predicted peptide and rRNA data. The 3- and 0.8-μm metagenomes, representing particulate fractions, were taxonomically diverse across habitats. The 3-μm size fractions contained a high abundance of eukaryota with diatoms dominating the hypoxic water and plume, while cryptophytes were more abundant in the ETM. The 0.1-μm metagenomes represented mainly free-living bacteria and archaea. The most abundant archaeal hits were observed in the deep ocean and hypoxic water (19% of prokaryotic peptides in the 0.1-μm metagenomes), and were homologous to Nitrosopumilus maritimus (ammonia-oxidizing Thaumarchaeota). Bacteria dominated metagenomes of all samples. In the euphotic zone (estuary, plume and hypoxic ocean), the most abundant bacterial taxa (≥40% of prokaryotic peptides) represented aerobic photoheterotrophs. In contrast, the low-oxygen, deep water metagenome was enriched with sequences for strict and facultative anaerobes. Interestingly, many of the same anaerobic bacterial families were enriched in the 3-μm size fraction of the ETM (2–10X more abundant relative to the 0.1-μm metagenome), indicating possible formation of anoxic microniches within particles. Results from this study provide a metagenome perspective on ecosystem-scale metabolism in an upwelling-influenced river-dominated coastal margin

  11. Spatial and temporal dynamics of biotic and abiotic features of temperate coastal ecosystems as revealed by a combination of ecological indicators

    NASA Astrophysics Data System (ADS)

    Grangeré, K.; Lefebvre, S.; Blin, J.-L.

    2012-08-01

    Coastal ecosystems exhibit complex spatio-temporal patterns due to their position at the interface between land and sea. This is particularly the case of temperate ecosystems where exploitation of coastal resources (fisheries and aquaculture) and intensive agricultural use of watersheds further complicate our understanding of their dynamics. The aim of the present study was to unravel the spatio-temporal dynamics of contrasted megatidal coastal ecosystems located at the same regional scale (i.e. under the same regional climate), but under different kinds of human pressure. Two kinds of ecological indicators were assessed over a period of four years at 11 locations along the coast of the Cotentin peninsula (Normandy, France). A first set of hydrobiological variables (dissolved nutrients, Chl a, temperature, salinity, etc.) was measured fortnightly in the water column. These data were analysed by principal components analysis (PCA). A second set of variables were the carbon and nitrogen stable isotope ratios of the adductor muscles of cultured Crassostrea gigas introduced every year to typify the bentho-pelagic coupling at each location. Food sources were also investigated using a mixing model with data on the isotopic composition of the food sources obtained previously. To identify which environmental variables played a significant role in determining the oyster diet, the contributions of oyster food sources were combined with environmental variables in a canonical correspondence analysis (CCA). Isotopic values of adductor muscles varied significantly between -20.12‰ and -16.79‰ for δ13C and between 8.28‰ and 11.87‰ for δ15N. The PCA distinguished two groups of coastal ecosystems that differed in their coastal hydrology, nutrient inputs, and the size of their respective watershed, irrespective of the year. In each zone, different spatial patterns in the measured variables were observed depending on the year showing that local impacts differed temporally

  12. The potential of Tillandsia dune ecosystems for revealing past and present variations in advective fog along the coastal Atacama Desert, northern Chile

    NASA Astrophysics Data System (ADS)

    Latorre Hidalgo, C.; García, J. L.; Gonzalez, A. L.; Marquet, P. A.

    2015-12-01

    The coastal Atacama Desert is home to a complex geo-ecosystem supported by fog with multiple atmospheric and oceanic drivers. Fog collectors in place for the last 17 years reveal that monthly fog intensity and amount are significantly linked to the El Niño-Southern Oscillation (ENSO 1+2) with cold (warm) anomalies correlated to increased (decreased) fog (R2 = 0.41). Rainfall, however, can occur during extreme positive ENSO anomalies. Tillandsia landbeckii is an epiarenitic plant common to the coastal Atacama where fog is intercepted by the coastal escarpment between 950-1250 m.a.s.l. These plants possess multiple adaptations to survive exclusively on fog, including the construction of "dune" ecosystems known as "tillandsiales". Buried T. landbeckii layers in such dunes contain a record of past variations of fog over time (dunes can top 3 m in height) and alternating plant and sand layers are readily visible in dune stratigraphy. Stable N isotopes on modern plants and fog indicate that these plants reflect δ15N values of total N dissolved in fog. We measured δ15N values from buried T. landbeckii layers from five different tillandsiales found across c. 50 km the coastal escarpment. The isotope values in these buried plants indicate a prominent c. 8.0 ‰ shift towards more negative δ15N values on average over the last 3,200 years. Based on differences in δ15N between modern and more extensive "paleo" tillandsiales at one of our lowest elevation study sites, we interpret this shift as an increase in available moisture due to increased fog input during the late Holocene. Increased variability in ENSO as well as increased upwelling and southerly winds along the coastal Atacama would explain in part this increase. Clearly, the Atacama tillandsiales have considerable potential for monitoring past and present change of these large-scale ocean-atmosphere systems.

  13. What happens to soil organic carbon as coastal marsh ecosystems change in response to increasing salinity? An exploration using ramped pyrolysis

    NASA Astrophysics Data System (ADS)

    Williams, Elizabeth K.; Rosenheim, Brad E.

    2015-07-01

    Coastal wetlands store vast amounts of organic carbon, globally, and are becoming increasingly vulnerable to the effects of anthropogenic sea level rise. To understand the effect of sea level rise on organic carbon fate and preservation in this global sink, it is necessary to characterize differences in the biogeochemical stability of coastal wetland soil organic carbon (SOC). Here we use ramped pyrolysis/oxidation decomposition characteristics as proxies for SOC stability to understand the fate of carbon storage in coastal wetlands comprising the Mississippi River deltaic plain, undergoing rapid rates of local sea level rise. Soils from three wetland types (fresh, brackish, and salt marshes) along a salinity gradient were subjected to ramped pyrolysis analysis to evaluate decomposition characteristics related to thermochemical stability of SOC. At equivalent soil depths, we observed that fresh marsh SOC was more stable than brackish and salt marsh SOC. Depth, isotopic, elemental, and chemical compositions, bulk density, and water content of SOC all exhibited different relationships with SOC stability across the marsh salinity gradient, indicative of different controls on SOC stability within each marsh type. The differences in stability imply stronger preservation potential of fresh marsh soil carbon, compared to that of salt and brackish marshes. Considering projected marsh ecosystem responses to sea level rise, these observed stability differences are important in planning and implementing coastal wetland carbon-focused remediation and improving climate model feedbacks with the carbon cycle. Specifically, our results imply that ecosystem changes associated with sea level rise will initiate the accumulation of less stable carbon in coastal wetlands.

  14. Climatic impacts on phenology in chaparral- and coastal sage scrub-dominated ecosystems in southern California using MODIS-derived time series

    NASA Astrophysics Data System (ADS)

    Willis, K. S.; Gillespie, T.; Okin, G. S.; MacDonald, G. M.

    2013-12-01

    Remote sensing monitoring of vegetation phenology can be an important tool for detecting the impacts of climate change on whole ecosystem functioning at local to regional scales. This study elucidates climate-phenology relations and the changes occurring in the phenology of both chaparral and coastal sage scrub-dominated ecosystems in southern California. Whole ecosystem phenology is monitored for the period 2001-2012 using the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) derived from MODIS MOD13Q1. Changes in phenology are assessed through a comparison of the time series with temperature, precipitation, and Palmer Drought Severity Index (PDSI) data and by computing time series phenology metrics. Overall we find that the vegetation index values have fluctuated around a stable mean for vegetation types for the entire time period. However, interannual variability is high, likely due to annual variations in climate. The most significant statistical correlation in chaparral ecosystems were found between NDVI and PDSI, indicating that chaparral phenology is likely driven by drought and soil water deficit at the multi-monthly timescale. However, coastal sage scrub correlations were highest between NDVI and temperature + precipitation combined with no time lag. This reflects a more immediate response by these shallow rooted and deciduous species. The start of the growing season in both plant communities occurred early in rainy years, and later in years with lower PDSI (drought-associated). This suggests that future predicted climate change in southern California may cause increased interannual variability in chaparral phenology cycles, with early initiation of the growing season occurring in years following large rain events, and later initiation in drought years. Coastal sage scrub-dominated areas will be less influenced by lower frequency, long-term drought, but more immediately affected by discrete precipitation events and timing.

  15. Assessment of undiscovered oil and gas resources of the Azov-Kuban Basin Province, Ukraine and Russia, 2010

    USGS Publications Warehouse

    Klett, T.R.

    2011-01-01

    The U.S. Geological Survey, using a geology-based assessment methodology, estimated mean volumes of technically recoverable, conventional, undiscovered petroleum resources at 218 million barrels of crude oil, 4.1 trillion cubic feet of natural gas, and 94 million barrels of natural gas liquids for the Azov-Kuban Basin Province as part of a program to estimate petroleum resources for priority basins throughout the world.

  16. Evaluation of the ecological integrity and ecosystem health of three benthic networks influenced by coastal upwelling in the northern Chile

    EPA Science Inventory

    The ecological health of ecosystems relates to the maintenance or restoration of optimal system function when confronted with a disturbance. A healthy ecosystem is a prerequisite for ecological sustainability. Ecological integrity has been defined as an emergent property of ecosy...

  17. Human Impacts to Coastal Ecosystems in Puerto Rico (HICE-PR): A Long-Term Remote Sensing, Hydrologic, Ecologic, and Socio-Economic Assessment with Management Implications

    NASA Astrophysics Data System (ADS)

    Torres-Perez, J. L.; Barreto-Orta, M.; Ortiz, J.; Santiago, L.; Setegn, S. G.; Guild, L. S.; Ramos-Scharron, C. E.; Armstrong, R.; Detres, Y.

    2014-12-01

    For several decades Puerto Rico's coastal and marine ecosystems (CMEs) have suffered the effects of anthropogenic stresses associated to population growth and varying land use. Coral reefs, for instance, have been impacted by sedimentation, increased eutrophication, and coastal water contamination. Here we present an overview of a new NASA project to study human impacts in two priority watersheds (Manatí and Guánica). The project uses an interdisciplinary approach that includes historic and recent remote sensing analysis and hydrological, ecological and socio-economic modeling to provide a multi-decadal assessment of change in coral reefs, seagrass beds, mangroves and sandy beaches. The project's main goal is to evaluate the impacts of land use/land cover changes on the quality and extent of CMEs in priority watersheds in the north and south coasts of Puerto Rico. Methods include assessments of coral reefs benthic communities cover, monitoring of short- and long-term beach geomorphological changes associated with riverine and sediment input, calculation of the economical value of selected CMEs, establish permanent monitoring transects in never before studied coral reef areas, provide recommendations to enhance current coastal policy management practices, and disseminate the results to local stakeholders. This project will include imagery from the Operational Land Imager of Landsat 8 to assess coastal ecosystems extent. Habitat and species distribution maps will be created by incorporating field and remotely-sensed data into an Ecological Niche Factor Analysis. The social component will allow us to study the valuation of specific CMEs attributes from the stakeholder's point of view. Our results and the generality of the methodology will provide for its application to other similar tropical locations.

  18. A conceptual framework for Lake Michigan coastal/nearshore ecosystems, with application to Lake Michigan Lakewide Management Plan (LaMP) objectives

    USGS Publications Warehouse

    Seelbach, Paul W.; Fogarty, Lisa R.; Bunnell, David Bo; Haack, Sheridan K.; Rogers, Mark W.

    2013-01-01

    The Lakewide Management Plans (LaMPs) within the Great Lakes region are examples of broad-scale, collaborative resource-management efforts that require a sound ecosystems approach. Yet, the LaMP process is lacking a holistic framework that allows these individual actions to be planned and understood within the broader context of the Great Lakes ecosystem. In this paper we (1) introduce a conceptual framework that unifies ideas and language among Great Lakes managers and scientists, whose focus areas range from tributary watersheds to open-lake waters, and (2) illustrate how the framework can be used to outline the geomorphic, hydrologic biological, and societal processes that underlie several goals of the Lake Michigan LaMP, thus providing a holistic and fairly comprehensive roadmap for tackling these challenges. For each selected goal, we developed a matrix that identifies the key ecosystem processes within the cell for each lake zone and each discipline; we then provide one example where a process is poorly understood and a second where a process is understood, but its impact or importance is unclear. Implicit in these objectives was our intention to highlight the importance of the Great Lakes coastal/nearshore zone. Although the coastal/nearshore zone is the important linkage zone between the watershed and open-lake zones—and is the zone where most LaMP issues are focused--scientists and managers have a relatively poor understanding of how the coastal/nearshore zone functions. We envision follow-up steps including (1) collaborative development of a more detailed and more complete conceptual model of how (and where) identified processes are thought to function, and (2) a subsequent gap analysis of science and monitoring priorities.

  19. Linking a Large-Watershed Hydrogeochemical Model to a Wetland Community-Ecosystem Model to Estimate Plant Invasion Risk in the Coastal Great Lakes Region, USA

    NASA Astrophysics Data System (ADS)

    Currie, W. S.; Bourgeau-Chavez, L. L.; Elgersma, K. J.; French, N. H. F.; Goldberg, D. E.; Hart, S.; Hyndman, D. W.; Kendall, A. D.; Martin, S. L.; Martina, J. P.

    2014-12-01

    In the Laurentian Great Lakes region of the Upper Midwest, USA, agricultural and urban land uses together with high N deposition are contributing to elevated flows of N in rivers and groundwater to coastal wetlands. The functioning of coastal wetlands, which provide a vital link between land and water, are imperative to maintaining the health of the entire Great Lakes Basin. Elevated N inflows are believed to facilitate the spread of large-stature invasive plants (cattails and Phragmites) that reduce biodiversity and have complex effects on other ecosystem services including wetland N retention and C accretion. We enhanced the ILHM (Integrated Landscape Hydrology Model) to simulate the effects of land use on N flows in streams, rivers, and groundwater throughout the Lower Peninsula of Michigan. We used the hydroperiods and N loading rates simulated by ILHM as inputs to the Mondrian model of wetland community-ecosystem processes to estimate invasion risk and other ecosystem services in coastal wetlands around the Michigan coast. Our linked models produced threshold behavior in the success of invasive plants in response to N loading, with the threshold ranging from ca. 8 to 12 g N/m2 y, depending on hydroperiod. Plant invasions increased wetland productivity 3-fold over historically oligotrophic native communities, decreased biodiversity but slightly increased wetland N retention. Regardless of invasion, elevated N loading resulted in significantly enhanced rates of C accretion, providing an important region-wide mechanism of C storage. The linked models predicted a general pattern of greater invasion risk in the southern basins of lakes Michigan and Huron relative to northern areas. The basic mechanisms of invasion have been partially validated in our field mesocosms constructed for this project. The general regional patterns of increased invasion risk have been validated through our field campaigns and remote sensing conducted for this project.

  20. The United States' Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission

    NASA Technical Reports Server (NTRS)

    Fishman, J.; Iraci, Laura T.; Al-Saddi, J.; Chance, K.; Chavez, F.; Chin, M.; Coble, P.; Davis, C.; DiGiacomo, P. M.; Edwards, D.; Eldering, A.; Goes, J.; Herman, J.; Hu, C.; Jacob, D. J.; Jordan, C.; Kawa, S. R.; Key, R.; Liu, X.; Lohrenz, S.; Mannino, A.; Natraj, V.; Neil, D.; Neu, J.; Newchurch, M.; Pickering, K.; Salisbury, J.; Sosik, H.; Subramaniam, A.; Tzortziou, M; Wang, J.; Wang, M.

    2012-01-01

    The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, and biogeochemistry from geostationary orbit, providing continuous observations within the field of view. To fulfill the mandate and address the challenge put forth by the NRC, two GEO-CAPE Science Working Groups (SWGs), representing the atmospheric composition and ocean color disciplines, have developed realistic science objectives using input drawn from several community workshops. The GEO-CAPE mission will take advantage of this revolutionary advance in temporal frequency for both of these disciplines. Multiple observations per day are required to explore the physical, chemical, and dynamical processes that determine tropospheric composition and air quality over spatial scales ranging from urban to continental, and over temporal scales ranging from diurnal to seasonal. Likewise, high-frequency satellite observations are critical to studying and quantifying biological, chemical, and physical processes within the coastal ocean. These observations are to be achieved from a vantage point near 95deg-100degW, providing a complete view of North America as well as the adjacent oceans. The SWGs have also endorsed the concept of phased implementation using commercial satellites to reduce mission risk and cost. GEO-CAPE will join the global constellation of geostationary atmospheric chemistry and coastal ocean color sensors planned to be in orbit in the 2020 time frame.

  1. Contemporary condition of macrozoobenthos in ultrashallow zone of Taman Bay, Sea of Azov

    NASA Astrophysics Data System (ADS)

    Spiridonov, V. A.; Kolyuchkina, G. A.; Belyaev, N. A.; Basin, A. B.; Kozlovsky, V. V.

    2016-03-01

    The distribution of macrozoobenthic communities was studied in a vast ultrashallow (0-1.2 m deep) zone of northwestern Taman Bay (separated from the Kerch Strait by Chushka spit) in 2008-2009. Fifty-two species of benthic invertebrates were recorded. The species number, as well as Shannon and Pielou diversity indices, increased along Chushka spit from base to tip. The usual inhabitants of lagoons and estuaries of the Mediterranean Basin and the open Sea of Azov dominated in benthic communities: mollusks Abra segmentum and Hydrobia acuta and polychaetes Heteromastus filiformis and Hediste diversicolor (the latter only in summer). Changes in the community structure were largely determined by the seasonal dynamics of dominant species populations, which was similar to their dynamics in certainother transitional water bodies of the Mediterranean Basin. These changes indicate normal running of seasonal processes in the macrobenthic communities of Taman Bay in 2008 rather than the consequences of a catastrophic black oil spill in the Kerch Strait in November 2007.

  2. Information preferences for the evaluation of coastal development impacts on ecosystem services: A multi-criteria assessment in the Australian context.

    PubMed

    Marre, Jean-Baptiste; Pascoe, Sean; Thébaud, Olivier; Jennings, Sarah; Boncoeur, Jean; Coglan, Louisa

    2016-05-15

    Ecosystem based management requires the integration of various types of assessment indicators. Understanding stakeholders' information preferences is important, in selecting those indicators that best support management and policy. Both the preferences of decision-makers and the general public may matter, in democratic participatory management institutions. This paper presents a multi-criteria analysis aimed at quantifying the relative importance to these groups of economic, ecological and socio-economic indicators usually considered when managing ecosystem services in a coastal development context. The Analytic Hierarchy Process (AHP) is applied within two nationwide surveys in Australia, and preferences of both the general public and decision-makers for these indicators are elicited and compared. Results show that, on average across both groups, the priority in assessing a generic coastal development project is for the ecological assessment of its impacts on marine biodiversity. Ecological assessment indicators are globally preferred to both economic and socio-economic indicators regardless of the nature of the impacts studied. These results are observed for a significantly larger proportion of decision-maker than general public respondents, questioning the extent to which the general public's preferences are well reflected in decision-making processes.

  3. Information preferences for the evaluation of coastal development impacts on ecosystem services: A multi-criteria assessment in the Australian context.

    PubMed

    Marre, Jean-Baptiste; Pascoe, Sean; Thébaud, Olivier; Jennings, Sarah; Boncoeur, Jean; Coglan, Louisa

    2016-05-15

    Ecosystem based management requires the integration of various types of assessment indicators. Understanding stakeholders' information preferences is important, in selecting those indicators that best support management and policy. Both the preferences of decision-makers and the general public may matter, in democratic participatory management institutions. This paper presents a multi-criteria analysis aimed at quantifying the relative importance to these groups of economic, ecological and socio-economic indicators usually considered when managing ecosystem services in a coastal development context. The Analytic Hierarchy Process (AHP) is applied within two nationwide surveys in Australia, and preferences of both the general public and decision-makers for these indicators are elicited and compared. Results show that, on average across both groups, the priority in assessing a generic coastal development project is for the ecological assessment of its impacts on marine biodiversity. Ecological assessment indicators are globally preferred to both economic and socio-economic indicators regardless of the nature of the impacts studied. These results are observed for a significantly larger proportion of decision-maker than general public respondents, questioning the extent to which the general public's preferences are well reflected in decision-making processes. PMID:26861223

  4. Compound-Specific δ15N Amino Acid Measurements in Littoral Mussels in the California Upwelling Ecosystem: A New Approach to Generating Baseline δ15N Isoscapes for Coastal Ecosystems

    PubMed Central

    Vokhshoori, Natasha L.; McCarthy, Matthew D.

    2014-01-01

    We explored δ15N compound-specific amino acid isotope data (CSI-AA) in filter-feeding intertidal mussels (Mytilus californianus) as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ15N gradients in the California Upwelling Ecosystem (CUE), determining bulk δ15N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ15N values showed a strong linear trend with latitude, increasing from North to South (from ∼7‰ to ∼12‰, R2 = 0.759). In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ15N trend is therefore most consistent with a baseline δ15N gradient, likely due to the mixing of two source waters: low δ15N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC), with15N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ15N values of phenylalanine (δ15NPhe), the best AA proxy for baseline δ15N values. We hypothesize δ15NPhe values in intertidal mussels can approximate annual integrated δ15N values of coastal phytoplankton primary production. We therefore used δ15NPhe values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ15N values. We propose that δ15NPhe isoscapes derived from filter feeders can directly characterize baseline δ15N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives. PMID:24887109

  5. A complex-systems approach to predicting effects of sea level rise and nitrogen loading on nitrogen cycling in coastal wetland ecosystems

    USGS Publications Warehouse

    Larsen, Laurel G.; Serena Moseman,; Alyson Santoro,; Kristine Hopfensperger,; Amy Burgin,

    2010-01-01

    To effectively manage coastal ecosystems, we need an improvedunderstanding of how tidal marsh ecosystem services will respond to sea-level rise and increased nitrogen (N) loading to coastal areas. Here we review existing literature to better understand how these interacting perturbations s will likely impact N removal by tidal marshes. We propose that the keyy factors controlling long-term changes in N removal are plant-community changes, soil accretion rates, surface-subsurface flow paths, marsh geomorphology microbial communities, and substrates for microbial reactions. Feedbacks affecting relative elevations and sediment accretion ratess will serve as dominant controls on future N removal throughout the marsh. Given marsh persistence, we hypothesize that the processes dominating N removal will vary laterally across the marsh and longitudinallyalong the estuarine gradient. In salt marsh interiors, where nitrate reduction rates are often limited by delivery of nitrate to bacterial communities, reductions in groundwater discharge due to sea level rise may trigger a net reduction in N removal. In freshwater marshes, we expect a decreasee in N removal efficiency due to increased sulfide concentrations. Sulfide encroachment will increase the relative importance of dissimilatory nitrate reduction to ammonium and lead to greater bacterial nitrogen immobilization, ultimately resulting in an ecosystem that retains more N and is less effective at permanent N removal from the watershed. In contrast, we predict that sealevel–driven expansion of the tidal creek network and the degree of surface-subsurface exchange flux through tidal creek banks will result in greater N-removal efficiency from these locations.

  6. Assessing anthropogenic pressures on coastal marine ecosystems using stable CNS isotopes: State of the art, knowledge gaps, and community-scale perspectives

    NASA Astrophysics Data System (ADS)

    Mancinelli, Giorgio; Vizzini, Salvatrice

    2015-04-01

    In recent decades, the analysis of carbon, nitrogen and sulfur stable isotopes (SIA) has emerged as a powerful, viable methodology for examining food web structure and dynamics, as well as addressing a number of applied issues. Here, we provide a state-of-the-art review of the use of SIA for assessing anthropogenic pressures on natural ecosystems, in order to establish current knowledge gaps and identify promising applications for evaluating the ecological status of marine coastal waters. Specifically, the potential of SIA to provide food web-scale indicators for estimating cumulative anthropogenic pressures is addressed. The review indicates that the methodology has been used for virtually the whole spectrum of human pressures known to influence marine ecosystems. However, only the effects of chemical pollution, release of dissolved and particulate nutrients, and invasive species have been extensively investigated. For the first two pressures, substantial efforts have been made to implement isotopic quantitative approaches and metrics for inter-system comparisons; however, with the exception of nutrient release, the majority of aquatic studies have been carried out in freshwater systems, and only limited information is available on marine environments. In particular, the effects of invasive species on coastal habitats have received scant attention. Trophic position of indicator species emerges as the isotopic metric most ubiquitously adopted for measuring the impact of anthropogenic pressures. Conversely, the application of other recently implemented metrics, proven to be highly effective in integrating information on the spatial-temporal dynamics of aquatic food webs, is to date still limited. The potential of stable isotope analysis to provide a unifying methodological-theoretical framework for effective, inter-ecosystem comparisons of both single and multiple anthropogenic pressures is emphasised. Additionally, a plea for the implementation and intercalibration

  7. Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model analysis.

    PubMed

    Glibert, Patricia M; Icarus Allen, J; Artioli, Yuri; Beusen, Arthur; Bouwman, Lex; Harle, James; Holmes, Robert; Holt, Jason

    2014-12-01

    Harmful algal blooms (HABs), those proliferations of algae that can cause fish kills, contaminate seafood with toxins, form unsightly scums, or detrimentally alter ecosystem function have been increasing in frequency, magnitude, and duration worldwide. Here, using a global modeling approach, we show, for three regions of the globe, the potential effects of nutrient loading and climate change for two HAB genera, pelagic Prorocentrum and Karenia, each with differing physiological characteristics for growth. The projections (end of century, 2090-2100) are based on climate change resulting from the A1B scenario of the Intergovernmental Panel on Climate Change Institut Pierre Simon Laplace Climate Model (IPCC, IPSL-CM4), applied in a coupled oceanographic-biogeochemical model, combined with a suite of assumed physiological 'rules' for genera-specific bloom development. Based on these models, an expansion in area and/or number of months annually conducive to development of these HABs along the NW European Shelf-Baltic Sea system and NE Asia was projected for both HAB genera, but no expansion (Prorocentrum spp.), or actual contraction in area and months conducive for blooms (Karenia spp.), was projected in the SE Asian domain. The implications of these projections, especially for Northern Europe, are shifts in vulnerability of coastal systems to HAB events, increased regional HAB impacts to aquaculture, increased risks to human health and ecosystems, and economic consequences of these events due to losses to fisheries and ecosystem services.

  8. The emerging threats of climate change on tropical coastal ecosystem services, public health, local economies and livelihood sustainability of small islands: Cumulative impacts and synergies.

    PubMed

    Hernández-Delgado, E A

    2015-12-15

    Climate change has significantly impacted tropical ecosystems critical for sustaining local economies and community livelihoods at global scales. Coastal ecosystems have largely declined, threatening the principal source of protein, building materials, tourism-based revenue, and the first line of defense against storm swells and sea level rise (SLR) for small tropical islands. Climate change has also impacted public health (i.e., altered distribution and increased prevalence of allergies, water-borne, and vector-borne diseases). Rapid human population growth has exacerbated pressure over coupled social-ecological systems, with concomitant non-sustainable impacts on natural resources, water availability, food security and sovereignty, public health, and quality of life, which should increase vulnerability and erode adaptation and mitigation capacity. This paper examines cumulative and synergistic impacts of climate change in the challenging context of highly vulnerable small tropical islands. Multiple adaptive strategies of coupled social-ecological ecosystems are discussed. Multi-level, multi-sectorial responses are necessary for adaptation to be successful.

  9. Spatio-temporal variation in small mammal species richness, relative abundance and body mass reveal changes in a coastal wetland ecosystem in Ghana.

    PubMed

    Ofori, Benjamin Y; Attuquayefio, Daniel K; Owusu, Erasmus H; Musah, Yahaya; Ntiamoa-Baidu, Yaa

    2016-06-01

    Coastal wetlands in Ghana are under severe threat of anthropogenic drivers of habitat degradation and climate change, thereby increasing the need for assessment and monitoring to inform targeted and effective conservation of these ecosystems. Here, we assess small mammal species richness, relative abundance and body mass in three habitats at the Muni-Pomadze Ramsar site of Ghana, and compare these to baseline data gathered in 1997 to evaluate changes in the wetland ecosystem. Small mammals were live-trapped using Sherman collapsible and pitfall traps. We recorded 84 individuals of 10 species in 1485 trap-nights, whereas the baseline study recorded 45 individuals of seven species in 986 trap-nights. The overall trap-success was therefore greater in the present study (5.66 %) than the baseline study (4.56 %). The species richness increased from one to four in the forest, and from zero to eight in the thicket, but decreased from six to four in the grassland. The total number of individuals increased in all habitats, with the dominant species in the grassland shifting from Lemniscomys striatus to Mastomys erythroleucus. Three species, Malacomys edwardsi, Grammomys poensis and Praomys tullbergi are the first records for the Muni-Pomadze Ramsar site. Generally, the average body mass of individual species in the grassland was lower in the present study. The considerable changes in small mammal community structure suggest changes in the wetland ecosystem. The conservation implications of our findings are discussed. PMID:27154051

  10. Spatio-temporal variation in small mammal species richness, relative abundance and body mass reveal changes in a coastal wetland ecosystem in Ghana.

    PubMed

    Ofori, Benjamin Y; Attuquayefio, Daniel K; Owusu, Erasmus H; Musah, Yahaya; Ntiamoa-Baidu, Yaa

    2016-06-01

    Coastal wetlands in Ghana are under severe threat of anthropogenic drivers of habitat degradation and climate change, thereby increasing the need for assessment and monitoring to inform targeted and effective conservation of these ecosystems. Here, we assess small mammal species richness, relative abundance and body mass in three habitats at the Muni-Pomadze Ramsar site of Ghana, and compare these to baseline data gathered in 1997 to evaluate changes in the wetland ecosystem. Small mammals were live-trapped using Sherman collapsible and pitfall traps. We recorded 84 individuals of 10 species in 1485 trap-nights, whereas the baseline study recorded 45 individuals of seven species in 986 trap-nights. The overall trap-success was therefore greater in the present study (5.66 %) than the baseline study (4.56 %). The species richness increased from one to four in the forest, and from zero to eight in the thicket, but decreased from six to four in the grassland. The total number of individuals increased in all habitats, with the dominant species in the grassland shifting from Lemniscomys striatus to Mastomys erythroleucus. Three species, Malacomys edwardsi, Grammomys poensis and Praomys tullbergi are the first records for the Muni-Pomadze Ramsar site. Generally, the average body mass of individual species in the grassland was lower in the present study. The considerable changes in small mammal community structure suggest changes in the wetland ecosystem. The conservation implications of our findings are discussed.

  11. The emerging threats of climate change on tropical coastal ecosystem services, public health, local economies and livelihood sustainability of small islands: Cumulative impacts and synergies.

    PubMed

    Hernández-Delgado, E A

    2015-12-15

    Climate change has significantly impacted tropical ecosystems critical for sustaining local economies and community livelihoods at global scales. Coastal ecosystems have largely declined, threatening the principal source of protein, building materials, tourism-based revenue, and the first line of defense against storm swells and sea level rise (SLR) for small tropical islands. Climate change has also impacted public health (i.e., altered distribution and increased prevalence of allergies, water-borne, and vector-borne diseases). Rapid human population growth has exacerbated pressure over coupled social-ecological systems, with concomitant non-sustainable impacts on natural resources, water availability, food security and sovereignty, public health, and quality of life, which should increase vulnerability and erode adaptation and mitigation capacity. This paper examines cumulative and synergistic impacts of climate change in the challenging context of highly vulnerable small tropical islands. Multiple adaptive strategies of coupled social-ecological ecosystems are discussed. Multi-level, multi-sectorial responses are necessary for adaptation to be successful. PMID:26455783

  12. E-estuary: A Decision Support System for Coastal Water and Ecosystem Management in the US (CZ09)

    EPA Science Inventory

    Ready access to geographic information is needed to support management decisions for estuaries at local, state, regional, and national scales. The U.S. Environmental Protection Agency (US EPA) is developing e-Estuary, a decision-support system for coastal management. E-Estuary ...

  13. Interagency Working Group on Ocean Social Science: Incorporating ecosystem services approaches into ocean and coastal decision-making and governance

    EPA Science Inventory

    The application of social science has been recognized as a priority for effective ocean and coastal management, driving much discussion and fostering emerging efforts in several areas. The Interagency Working Group on Ocean Social Science (IWG-OSS) is tasked with assisting the Su...

  14. Isolation and genetic characterization of avian influenza viruses isolated from wild birds in the Azov-Black Sea Region of Ukraine (2001–2012)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild bird surveillance for avian influenza virus (AIV) was conducted from 2001 to 2012 in the Azov - Black Sea region of the Ukraine, considered part of the transcontinental wild bird migration routes from northern Asia and Europe to the Mediterranean, Africa, and southwest Asia. A total of 6281 sam...

  15. Phytoplankton and nutrient distributions in a front-eddy area adjacent to the coastal upwelling zone off Concepcion (Chile): implications for ecosystem productivity.

    NASA Astrophysics Data System (ADS)

    Morales, Carmen; Anabalón, Valeria; Hormazábal, Samuel; Cornejo, Marcela; Bento, Joaquim; Silva, Nelson

    2016-04-01

    exportation of coastal communities to the open ocean in this region. We discuss how this interaction might affect ecosystem productivity in the coastal band.

  16. Comparison between Atlantic and Pacific Tropical Marine Coastal Ecosystems: Community Structure, Ecological Processes, and Productivity. Results and Scientific Papers of a Unesco/COMAR Workshop (Suva, Fiji, March 24-29, 1986). Unesco Reports in Marine Science 46.

    ERIC Educational Resources Information Center

    Birkeland, Charles, Ed.

    This report presents the Unesco workshop conclusions concerning important differences among tropical seas in terms of ecological processes in coastal marine ecosystems, and the corresponding implications for resource management guidelines. The conclusions result from the presentation and discussion of eight review papers which are included in this…

  17. The contribution of Fe(III) and humic acid reduction to ecosystem respiration in drained thaw lake basins of the Arctic Coastal Plain

    NASA Astrophysics Data System (ADS)

    Lipson, David A.; Raab, Theodore K.; Goria, Dominic; Zlamal, Jaime

    2013-04-01

    research showed that anaerobic respiration using iron (Fe) oxides as terminal electron acceptor contributed substantially to ecosystem respiration (ER) in a drained thaw lake basin (DTLB) on the Arctic coastal plain. As DTLBs age, the surface organic layer thickens, progressively burying the Fe-rich mineral layers. We therefore hypothesized that Fe(III) availability and Fe reduction would decline with basin age. We studied four DTLBs across an age gradient, comparing seasonal changes in the oxidation state of dissolved and extractable Fe pools and the estimated contribution of Fe reduction to ER. The organic layer thickness did not strictly increase with age for these four sites, though soil Fe levels decreased with increasing organic layer thickness. However, there were surprisingly high levels of Fe minerals in organic layers, especially in the ancient basin where cryoturbation may have transported Fe upward through the profile. Net reduction of Fe oxides occurred in the latter half of the summer and contributed an estimated 40-45% to ecosystem respiration in the sites with the thickest organic layers and 61-63% in the sites with the thinnest organic layers. All sites had high concentrations of soluble Fe(II) and Fe(III), explained by the presence of siderophores, and this pool became progressively more reduced during the first half of the summer. Redox titrations with humic acid (HA) extracts and chelated Fe support our view that this pattern indicates the reduction of HA during this interval. We conclude that Fe(III) and HA reductions contribute broadly to ER in the Arctic coastal plain.

  18. Human Impacts to Coastal Ecosystems in Puerto Rico (HICE-PR): Actual Condition of Coral Reefs Associated with the Guanica and Manati Watersheds in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Torres-Perez, J. L.; Barreto, M.; Guild, L. S.; Ortiz, J.; Setegn, S. G.; Ramos-Scharron, C. E.; Armstrong, R.; Santiago, L.

    2015-12-01

    For several decades Puerto Rico's coastal and marine ecosystems (CMEs), particularly coral reefs, have suffered the effects of anthropogenic stresses associated to population growth and varying land use. Here we present an overview of the first year of findings of a NASA-funded project that studies human impacts in two priority watersheds (Manatí and Guánica). The project includes remote sensing analysis and hydrological, ecological and socio-economic modeling to provide a multi-decadal assessment of change of CMEs. The project's main goal is to evaluate the impacts of land use/land cover changes on the quality and extent of CMEs in priority watersheds in the north and south coasts of Puerto Rico. This project will include imagery from Landsat 8 to assess coastal ecosystems extent. Habitat and species distribution maps will be created by incorporating field and remotely-sensed data into an Ecological Niche Factor Analysis. The social component will allow us to study the valuation of specific CMEs attributes from the stakeholder's point of view. Field data was collected through a series of phototransects at the main reefs associated with these two priority watersheds. A preliminary assessment shows a range in coral cover from 0.2-30% depending on the site (Guánica) whereas apparently healthy corals dominate the reef in the north coast (Manatí). Reefs on the southwest coast of PR (Guánica) show an apparent shift from hard corals to a more algae and soft corals dominance after decades of anthropogenic impacts (sedimentation, eutrophication, mechanical damage through poorly supervised recreational activities, etc.). Additionally preliminary results from land cover/land use changes analyses show dynamic historical shoreline changes in beaches located west of the Manatí river mouth and a degradation of water quality in Guánica possibly being one of the main factors affecting the actual condition of its CMEs.

  19. Impacts of climate change on coastal benthic ecosystems: assessing the current risk of mortality outbreaks associated with thermal stress in NW Mediterranean coastal areas

    NASA Astrophysics Data System (ADS)

    Pairaud, Ivane Lilian; Bensoussan, Nathaniel; Garreau, Pierre; Faure, Vincent; Garrabou, Joaquim

    2014-01-01

    In the framework of climate change, the increase in ocean heat wave frequency is expected to impact marine life. Large-scale positive temperature anomalies already occurred in the northwestern Mediterranean Sea in 1999, 2003 and 2006. These anomalies were associated with mass mortality events of macrobenthic species in coastal areas (0-40 m in depth). The anomalies were particularly severe in 1999 and 2003 when thousands of kilometres of coasts and about 30 species were affected. The aim of this study was to develop a methodology to assess the current risk of mass mortality associated with temperature increase along NW Mediterranean continental coasts. A 3D regional ocean model was used to obtain the temperature conditions for the period 2001-2010, for which the model outputs were validated by comparing them with in situ observations in affected areas. The model was globally satisfactory, although extremes were underestimated and required correction. Combined with information on the thermo-tolerance of a key species (the red gorgonian P. clavata) as well as its spatial distribution, the modelled temperature conditions were then used to assess the risk of mass mortality associated with thermal stress for the first time. Most of the known areas of observed mass mortality were found using the model, although the degree of risk in certain areas was underestimated. Using climatic IPCC scenarios, the methodology could be applied to explore the impacts of expected climate change in the NW Mediterranean. This is a key issue for the development of sound management and conservation plans to protect Mediterranean marine biodiversity in the face of climate change.

  20. Dom Export from Coastal Temperate Bog Forest Watersheds to Marine Ecosystems: Improving Understanding of Watershed Processes and Terrestrial-Marine Linkages on the Central Coast of British Columbia

    NASA Astrophysics Data System (ADS)

    Oliver, A. A.; Giesbrecht, I.; Tank, S. E.; Hunt, B. P.; Lertzman, K. P.

    2014-12-01

    The coastal temperate bog forests of British Columbia, Canada, export high amounts of dissolved organic matter (DOM) relative to the global average. Little is known about the factors influencing the quantity and quality of DOM exported from these forests or the role of this terrestrially-derived DOM in near-shore marine ecosystems. The objectives of this study are to better understand patterns and controls of DOM being exported from bog forest watersheds and its potential role in near-shore marine ecosystems. In 2013, the Kwakshua Watershed Ecosystems Study at Hakai Beach Institute (Calvert Island, BC) began year-round routine collection and analysis of DOM, nutrients, and environmental variables (e.g. conductivity, pH, temperature, dissolved oxygen) of freshwater grab samples from the outlets of seven watersheds draining directly to the ocean, as well as near-shore marine samples adjacent to freshwater outflows. Dissolved organic carbon (DOC) varied across watersheds (mean= 11.45 mg L-1, sd± 4.22) and fluctuated synchronously with seasons and storm events. In general, higher DOC was associated with lower specific UV absorbance (SUVA254; mean= 4.59 L mg-1 m-1, sd± 0.55). The relationship between DOC and SUVA254 differed between watersheds, suggesting exports in DOM are regulated by individual watershed attributes (e.g. landscape classification, flow paths) as well as precipitation. We are using LiDAR and other remote sensing data to examine watershed controls on DOC export. At near-shore marine sites, coupled CTD (Conductivity Temperature Depth) and optical measures (e.g. spectral slopes, slope ratios (SR), EEMs), showed a clear freshwater DOM signature within the system following rainfall events. Ongoing work will explore the relationship between bog forest watershed attributes and DOM flux and composition, with implications for further studies on biogeochemical cycling, carbon budgets, marine food webs, and climate change.

  1. Recovery of coastal ecosystems after large tsunamis in various climatic zones - review of cases from tropical, temperate and polar zones (Invited)

    NASA Astrophysics Data System (ADS)

    Szczucinski, W.

    2013-12-01

    Large tsunamis cause significant changes in coastal ecosystems. They include modifications in shoreline position, sediment erosion and deposition, new initial soil formation, salination of soils and waters, removal of vegetation, as well as direct impact on humans and infrastructure. The processes and rate of coastal zone recovery from large tsunamis has been little studied but during the last decade a noteworthy progress has been made. This study focus on comparison of recovery processes in various climatic zones, namely in monsoonal-tropical, temperate and polar zone. It is based on own observation and monitoring in areas affected by 2004 Indian Ocean Tsunami in Thailand, 2011 Tohoku-oki tsunami in Japan and 2000 Paatuut landslide-generated tsunami in Vaigat Strait (west Greenland), as well as on review of published studies from those areas. The particular focus is on physical and biological recoveries of beaches, recovery of coastal vegetation, new soil formation in eroded areas and those covered by tsunami deposits, marine salt removal from soils, surface- and groundwater, as well as landscape adjustment after the tsunamis. The beach zone - typically the most tsunami-eroded zone, has been recovered already within weeks to months and has been observed to be in the pre-tsunami equilibrium stage within one year in all the climate zones, except for sediment-starved environments. The existing data on beach ecosystems point also to relatively fast recovery of meio- and macrofauna (within weeks to several months). The recovery of coastal vegetation depends on the rate of salt removal from soils or on the rate of soil formation in case of its erosion or burial by tsunami deposits. The salt removal have been observed to depend mainly on precipitation and effective water drainage. In tropical climate with seasonal rainfall of more 3000 mm the salt removal was fast, however, in temperate climate with lower precipitation and flat topography the salinities still exceeded

  2. California coastal upwelling onset variability: cross-shore and bottom-up propagation in the planktonic ecosystem.

    PubMed

    Chenillat, Fanny; Rivière, Pascal; Capet, Xavier; Franks, Peter J S; Blanke, Bruno

    2013-01-01

    The variability of the California Current System (CCS) is primarily driven by variability in regional wind forcing. In particular, the timing of the spring transition, i.e., the onset of upwelling-favorable winds, varies considerably in the CCS with changes in the North Pacific Gyre Oscillation. Using a coupled physical-biogeochemical model, this study examines the sensitivity of the ecosystem functioning in the CCS to a lead or lag in the spring transition. An early spring transition results in an increased vertical nutrient flux at the coast, with the largest ecosystem consequences, both in relative amplitude and persistence, hundreds of kilometers offshore and at the highest trophic level of the modeled food web. A budget analysis reveals that the propagation of the perturbation offshore and up the food web is driven by remineralization and grazing/predation involving both large and small plankton species. PMID:23690935

  3. Downscaling the marine modelling effort: Development, application and assessment of a 3D ecosystem model implemented in a small coastal area

    NASA Astrophysics Data System (ADS)

    Kolovoyiannis, V. N.; Tsirtsis, G. E.

    2013-07-01

    The present study deals with the development, application and evaluation of a modelling tool, implemented along with a field sampling program, in a limited coastal area in the Northeast Aegean. The aim was to study, understand and quantify physical circulation and water column ecological processes in a high resolution simulation of a past annual cycle. The marine ecosystem model consists of a three dimensional hydrodynamic component suitable for coastal areas (Princeton Ocean Model) coupled to a simple ecological model of five variables, namely, phytoplankton, nitrate, ammonia, phosphate and dissolved organic carbon concentrations. The ecological parameters (e.g. half saturation constants and maximum uptake rates for nutrients) were calibrated using a specially developed automated procedure. Model errors were evaluated using qualitative, graphic techniques and were quantified with a number of goodness-of-fit measures. Regarding physical variables, the goodness-of-fit of model to field data varied from fairly to quite good. Indicatively, the cost function, expressed as mean value per sampling station, ranged from 0.15 to 0.23 for temperature and 0.81 to 3.70 for current speed. The annual cycle of phytoplankton biomass was simulated with sufficient accuracy (e.g. mean cost function ranging from 0.49 to 2.67), partly attributed to the adequate reproduction of the dynamics of growth limiting nutrients, nitrate, ammonia and the main limiting nutrient, phosphate, whose mean cost function ranged from 0.97 to 1.88. Model results and field data provided insight to physical processes such as the development of a wind-driven, coastal jet type of surface alongshore flow with a subsurface countercurrent flowing towards opposite direction and the formation of rotational flows in the embayments of the coastline when the offshore coastal current speed approaches values of about 0.1 m/s. The percentage of field measurements where the N:P ratio was found over 16:1 varied between

  4. Origin and composition of sediment organic matter in a coastal semi-enclosed ecosystem: An elemental and isotopic study at the ecosystem space scale

    NASA Astrophysics Data System (ADS)

    Dubois, S.; Savoye, N.; Grémare, A.; Plus, M.; Charlier, K.; Beltoise, A.; Blanchet, H.

    2012-06-01

    The origin and composition of sediment organic matter (SOM) were investigated together with its spatial distribution in the Arcachon Bay - a macrotidal lagoon that shelters the largest Zostera noltii meadow in Europe - using elemental and isotopic ratios. Subtidal and intertidal sediments and primary producers were both sampled in April 2009. Their elemental and isotopic compositions were assessed. Relative contributions of each source to SOM were estimated using a mixing model. The SOM composition tended to be homogeneous over the whole ecosystem and reflected the high diversity of primary producers in this system. On average, SOM was composed of 25% of decayed phanerogams, 19% of microphytobenthos, 20% of phytoplankton, 19% of river SPOM and 17% of macroalgae. There was no evidence of anthropogenic N-sources and SOM was mainly of autochthonous origin. None of the tested environmental parameters - salinity, current speed, emersion, granulometry and chlorophyll a - nor a combination of them explained the low spatial variability of SOM composition and characteristics. Resuspension, mixing and redistribution of the different particulate organic matters by wind-induced and tidal currents in combination with shallow depth probably explain the observed homogeneity at the whole bay scale.

  5. Detection of DNA damage in haemocytes of Mytilus galloprovincialis in the coastal ecosystems of Kastela and Trogir bays, Croatia.

    PubMed

    Klobucar, Göran I V; Stambuk, Anamaria; Hylland, Ketil; Pavlica, Mirjana

    2008-11-01

    Coastal waters are burdened with different contaminants of anthropogenic origin due to intensive urbanisation and economical development. Bays, semi-enclosed areas with limited water renewal ability, are particularly endangered by contaminant inputs. Kastela Bay (Dalmatia, Eastern Adriatic) has earlier been identified as an area loaded with diffuse sources of pollution, including genotoxic agents. However, there is lack of data on the effects of these contaminants on the local marine fauna. The aim of this study was to assess genotoxic impacts in Kastela Bay and the neighbouring Trogir Bay using the micronucleus test and Comet assay with mussel (Mytilus galloprovincialis) haemocytes. Native and caged mussels were included in the studies. Our results confirmed that mussels in Kastela and Trogir Bays are affected by genotoxic contaminants. In addition to mussels from the most known polluted site (Vranjic), there was evidence for genotoxic effects in mussels collected at other locations. The response in the micronucleus test and the Comet assay differed somewhat between sites, the latter apparently being more sensitive, but the two methods complement each other and it is therefore desirable to use them both in monitoring the impacts of genotoxic pollution in coastal waters. PMID:18632135

  6. Free-Living and Plankton-Associated Vibrios: Assessment in Ballast Water, Harbor Areas, and Coastal Ecosystems in Brazil

    PubMed Central

    Rivera, Irma N. G.; Souza, Keili M. C.; Souza, Claudiana P.; Lopes, Rubens M.

    2013-01-01

    Ballast water (BW) is a major transport vector of exotic aquatic species and pathogenic microorganisms. The wide-ranging spread of toxigenic Vibrio cholerae O1 from harbor areas has been frequently ascribed to discharge of contaminated BW into eutrophic coastal environments, such as during the onset of the seventh cholera pandemic in South America in the early 1990s. To determine the microbiological hazards of BWs transported to Brazilian ports, we evaluated water and plankton samples taken from (i) BW tanks of recently arrived ships, (ii) port areas along the Brazilian coastline from ∼1 to 32°S and (iii) three coastal areas in São Paulo State. Vibrio concentration and toxigenic V. cholerae O1 occurrence were analyzed. Plankton-associated vibrios were more abundant than free-living vibrios in all studied environments. V. cholerae was found in 9.5% of ballast tanks and 24.2% of port samples, both as free-living and attached forms and, apart from the Santos harbor, was absent off São Paulo State. Toxigenic V. cholerae O1 isolates (ctxA+, tcpA+), involved in cholera disease, were found in BW (2%) and harbor (2%) samples. These results confirm that BW is an important carrier of pathogenic organisms, and that monitoring of vibrios and other plankton-attached bacteria is of paramount importance in BW management programs. PMID:23335920

  7. An Assessment of Perfluorinated Organic Compounds and the Potentail Impacts to Water Quality and Biota in Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Erhunse, A.; Gragg, R.

    2006-12-01

    Urbanized estuaries are well-documented to have elevated contaminant levels in sediments, water and associated biota. Most previous research efforts examining the effects of anthropogenic contamination in urbanized estuaries has focused on persistent priority pollutants, such as trace metals, pesticides, PCBs and PAHs. Recently, concerns have been raised about the occurrence, transport and distribution and effects of emerging contaminants being released into coastal watersheds through upland runoff from both urban and agricultural lands, sewage discharges, industrial releases, and aquaculture. Apalachicola Bay a major estuarine, commercial and recreational seafood resource is the endpoint of the Apalachicola-Chattahoochee-Flint River Basin. Today the river basin encapsulates a vast and evolving expanse of agricultural, urban, industrial, silvaculture, and natural landscapes and activities. The purpose of this study is to monitor the occurrence of an emerging class of compounds (perfluorinated organic compounds) in the Apalachicola Bay watershed. Given the dynamic growth and development up river from the Bay organic substances (lipophillic and water soluble compounds) inputs may be increasing and impacting the ecology of the Bay which compared to other bay areas is at this time relatively pristine. This issue can be investigated utilizing in-situ permeable membrane sampling devices specific for lipophillic and water-soluble compounds in concert with sediment samples. The results may serve as a baseline for the hypothesized increase in inputs coinciding with upstream and coastal development.

  8. Marine sponges with contrasting life histories can be complementary biomonitors of heavy metal pollution in coastal ecosystems.

    PubMed

    Batista, Daniela; Muricy, Guilherme; Rocha, Rafael Chávez; Miekeley, Norbert F

    2014-05-01

    In this study, we compared the usefulness of a long-living sponge (Hymeniacidon heliophila, Class Demospongiae) and a short-living one (Paraleucilla magna, Class Calcarea) as biomonitors of metallic pollution. The concentrations of 16 heavy metals were analyzed in both species along a gradient of decreasing pollution from the heavily polluted Guanabara Bay to the less impacted coastal islands in Rio de Janeiro, SE Brazil (SW Atlantic). The levels of most elements analyzed were higher in H. heliophila (Al, Co, Cr, Cu, Fe, Mn, Ni, Hg, Ni, and Sn) and P. magna (Ni, Cu, Mn, Al, Ti, Fe, Pb, Co, Cr, Zn, and V) collected from the heavily polluted bay when compared with the cleanest sites. Hymeniacidon heliophila accumulates 11 elements more efficiently than P. magna. This difference may be related to their skeleton composition, histological organization, symbiont bacteria and especially to their life cycle. Both species can be used as a biomonitors of metallic pollution, but while Hymeniacidon heliophila was more effective in concentrating most metals, Paraleucilla magna is more indicated to detect recent pollutant discharges due to its shorter life cycle. We suggest that the complementary use of species with contrasting life histories can be an effective monitoring strategy of heavy metals in coastal environments.

  9. An approach to analyzing environmental drivers to spatial variations in annual distribution of periphytic protozoa in coastal ecosystems.

    PubMed

    Xu, Guangjian; Xu, Henglong

    2016-03-15

    The environmental drivers to the spatial variation in annual distribution were studied based on an annual dataset of periphytic protozoa using multivariate approaches. Samples were monthly collected at four stations within a pollution gradient in coastal waters of the Yellow Sea, northern China during a 1-year period. The second-stage (2STAGE) analyses showed that the internal patterns of the annual distribution were changed along the pollution gradient in terms of abundance. The dominant species represented different succession dynamics among four sampling stations during a 1-year cycle. Best matching analysis demonstrated that the spatial variations in annual distribution of the protozoa were significantly correlated with ammonium nitrogen (NH4-N), alone or in combination with salinity and dissolved oxygen (DO). Based on the results, we suggest that the nutrients, salinity and DO may be the main drivers to shape the spatial variations in annual distribution of periphytic protozoa.

  10. Retrospective analysis of changes in land uses on vertic soils of closed mesodepressions on the Azov plain

    NASA Astrophysics Data System (ADS)

    Rukhovich, D. I.; Simakova, M. S.; Kulyanitsa, A. L.; Bryzzhev, A. V.; Koroleva, P. V.; Kalinina, N. V.; Vil'chveskaya, E. V.; Dolinina, E. A.; Rukhovich, S. V.

    2015-10-01

    A retrospective analysis of changes in land uses within the bottoms of closed mesodepressions in Azov district of Rostov oblast for the period from 1968 to 2014 was performed. A cartographic analysis of changes in the degree of waterlogging of these depressions and the related changes in the character of land use was based on remote sensing data. This study was performed within the framework of a general problem-oriented system of the retrospective monitoring of the soil and land cover. It was found that the waterlogged area in the mesodepressions in the particular years does not depend on the anthropogenic loads and is subjected to cyclic variations. Temporal intervals for the wetting-drying cycles were determined. The maximum drying of the bottoms of mesodepressions was observed in 1975, 1990, and 2011.

  11. Drained coastal peatlands: A potential nitrogen source to marine ecosystems under prolonged drought and heavy storm events-A microcosm experiment.

    PubMed

    Wang, Hongjun; Richardson, Curtis J; Ho, Mengchi; Flanagan, Neal

    2016-10-01

    Over the past several decades there has been a massive increase in coastal eutrophication, which is often caused by increased runoff input of nitrogen from landscape alterations. Peatlands, covering 3% of land area, have stored about 12-21% of global soil organic nitrogen (12-20Pg N) around rivers, lakes and coasts over millennia and are now often drained and farmed. Their huge nitrogen pools may be released by intensified climate driven hydrologic events-prolonged droughts followed by heavy storms-and later transported to marine ecosystems. In this study, we collected peat monoliths from drained, natural, and restored coastal peatlands in the Southeastern U.S., and conducted a microcosm experiment simulating coupled prolonged-drought and storm events to (1) test whether storms could trigger a pulse of nitrogen export from drought-stressed peatlands and (2) assess how differentially hydrologic managements through shifting plant communities affect nitrogen export by combining an experiment of nitrogen release from litter. During the drought phase, we observed a significant temporal variation in net nitrogen mineralization rate (NMR). NMR spiked in the third month and then decreased rapidly. This pattern indicates that drought duration significantly affects nitrogen mineralization in peat. NMR in the drained site reached up to 490±110kgha(-1)year(-1), about 5 times higher than in the restored site. After the 14-month drought phase, we simulated a heavy storm by bringing peat monoliths to saturation. In the discharge waters, concentrations of total dissolved nitrogen in the monoliths from the drained site (72.7±16.3mgL(-1)) was about ten times as high as from the restored site. Our results indicate that previously drained peatlands under prolonged drought are a potent source of nitrogen export. Moreover, drought-induced plant community shifts to herbaceous plants substantially raise nitrogen release with lasting effects by altering litter quality in peatlands. PMID

  12. Edaphic and climatic effects on forest stand development, net primary production, and net ecosystem productivity simulated for Coastal Plain loblolly pine in Virginia

    NASA Astrophysics Data System (ADS)

    Sampson, D. A.; Wynne, R. H.; Seiler, J. R.

    2008-03-01

    We used SECRETS-3PG to simulate net primary production (NPP) and net ecosystem productivity (NEP) of loblolly pine (Pinus taeda L.) growing on the Virginia Coastal Plain, focusing on the effects of soils and climate, and stand age over a 30-year rotation. Soil type was influential, with heavier soils having greater NEP earlier in the rotation than lighter, sandier soils, although these differences disappeared by the rotation end. Climate had only a small effect. Stand age had the largest effect, with simulated annual NEP strongly negative during the first 5 to 8 years of development but peaking at +600 g C m-2 a-1 by age 13. Modest declines in NEP after 13 years were associated with declines in LAI as stands aged. The 30-year mean annual NEP was positive over most of the study area but in a few cases was indistinguishable from zero for northwestern portions of the study. Simulated annual NPP rose from zero to over 2300 g biomass m-2 a-1 by age 12, after which it declined to ˜1700 g biomass m-2 a-1 by rotation end. These results suggest that loblolly pine plantations on the Coastal Plain of Virginia may become net annual C sinks 5 to 9 years after planting but that when averaged over a whole rotation the net carbon accumulation during the baseline rotation simulated here is indistinguishable from zero. Our results also suggest, however, that this finding is sensitive to the length of the rotation, soil type (and thus fertility), and climate, implying that changes in management practices could significantly influence the carbon balance in managed loblolly pine plantations.

  13. Fog as an ecosystem service: Quantifying fog-mediated reductions in maximum temperature across coastal to inland transects in northern California

    NASA Astrophysics Data System (ADS)

    Torregrosa, A.; Flint, L. E.; Flint, A. L.; Combs, C.; Peters, J.

    2013-12-01

    Several studies have documented the human benefits of temperature cooling derived from coastal fog such as the reduction in the number of hospital visits/emergency response requests from heat stress-vulnerable population sectors or decreased energy consumption during periods when summer maximum temperatures are lower than normal. In this study we quantify the hourly, daily, monthly and seasonal thermal effect of fog and low clouds (FLC) hours on maximum summer temperatures across a northern California landscape. The FLC data summaries are calculated from the CIRA (Cooperative Institute for Research in the Atmosphere) 10 year archive that were derived from hourly night and day images using channels 1 (Visible), 2 (3.6 μm) and 4 (10.7 μm) NOAA GOES (Geostationary Operational Environmental Satellite). The FLC summaries were analyzed with two sets of site based data, meteorological (met) station-based measurements and downscaled interpolated PRISM data for selected point locations spanning a range of coastal to inland geographic conditions and met station locations. In addition to finding a 0.4 degree C per hour of FLC effect, our results suggest variability related to site specific thermal response. For example, sites closest to the coast have less thermal variability between low cloud and sunny days than sites further from the coast suggesting a much stronger influence of ocean temperature than of FLC thermal dynamics. The thermal relief provided by summertime FLC is equivalent in magnitude to the temperature increase projected by the driest and hottest of regional downscaled climate models using the A2 ('worst') IPCC scenario. Extrapolating these thermal calculations can facilitate future quantifications of the ecosystem service provided by summertime low clouds and fog.

  14. Drained coastal peatlands: A potential nitrogen source to marine ecosystems under prolonged drought and heavy storm events-A microcosm experiment.

    PubMed

    Wang, Hongjun; Richardson, Curtis J; Ho, Mengchi; Flanagan, Neal

    2016-10-01

    Over the past several decades there has been a massive increase in coastal eutrophication, which is often caused by increased runoff input of nitrogen from landscape alterations. Peatlands, covering 3% of land area, have stored about 12-21% of global soil organic nitrogen (12-20Pg N) around rivers, lakes and coasts over millennia and are now often drained and farmed. Their huge nitrogen pools may be released by intensified climate driven hydrologic events-prolonged droughts followed by heavy storms-and later transported to marine ecosystems. In this study, we collected peat monoliths from drained, natural, and restored coastal peatlands in the Southeastern U.S., and conducted a microcosm experiment simulating coupled prolonged-drought and storm events to (1) test whether storms could trigger a pulse of nitrogen export from drought-stressed peatlands and (2) assess how differentially hydrologic managements through shifting plant communities affect nitrogen export by combining an experiment of nitrogen release from litter. During the drought phase, we observed a significant temporal variation in net nitrogen mineralization rate (NMR). NMR spiked in the third month and then decreased rapidly. This pattern indicates that drought duration significantly affects nitrogen mineralization in peat. NMR in the drained site reached up to 490±110kgha(-1)year(-1), about 5 times higher than in the restored site. After the 14-month drought phase, we simulated a heavy storm by bringing peat monoliths to saturation. In the discharge waters, concentrations of total dissolved nitrogen in the monoliths from the drained site (72.7±16.3mgL(-1)) was about ten times as high as from the restored site. Our results indicate that previously drained peatlands under prolonged drought are a potent source of nitrogen export. Moreover, drought-induced plant community shifts to herbaceous plants substantially raise nitrogen release with lasting effects by altering litter quality in peatlands.

  15. The use of cyprinodont fish, Aphanius fasciatus, as a sentinel organism to detect complex genotoxic mixtures in the coastal lagoon ecosystem.

    PubMed

    Mosesso, Pasquale; Angeletti, Dario; Pepe, Gaetano; Pretti, Carlo; Nascetti, Giuseppe; Bellacima, Raffaela; Cimmaruta, Roberta; Jha, Awadhesh N

    2012-02-18

    In the present work we aimed to standardise the alkaline comet assay with erythrocytes of the cyprinodont, Mediterranean Killifish, Aphanius fasciatus. The aims of the study were to explore the suitability of this fish to assess biomarkers of genotoxic effects and as a sentinel organism to detect complex genotoxic mixtures in coastal lagoon ecosystems. Following proper optimisation, the application and effectiveness of the comet assay in erythrocytes of A. fasciatus were tested by measuring the tail DNA (%) induced by (a) in vivo exposure of individual fish to X-rays (dose, 3Gy) and (b) following in vitro challenge of erythrocytes with restriction endonucleases Fok-I and Eco-RI, which selectively induce double-strand breaks with cohesive and blunt termini, respectively. Furthermore, in order to evaluate whether circulating fish blood contained actively proliferating cells that could influence the extent of DNA damage in control (untreated) fish, we measured the number of "comets" positive for 5-bromo-2'-deoxyuridine (BrdU) by the use of anti-BrdU antibody and immuno-histochemical methods. Both treatments (i.e. with X-rays and restriction endonucleases) induced statistically significant increases in tail DNA (%) values compared with the relevant untreated controls, indicating the effectiveness of the comet assay in the erythrocytes of A. fasciatus to detect different types of DNA lesions. Results from anti-BrdU antibody labelling of erythrocytes indicated a very low percentage (5%) of "comets" positive for BrdU. Following optimisation and validation of the assay under laboratory conditions, fish were collected in the Orbetello lagoon (Tuscany, Italy), considered to be a significantly polluted site. The results showed statistically significant increases for tail DNA (%) compared with corresponding values observed in erythrocytes of fish caught in the unpolluted reference site "Saline di Tarquinia". The effects of physico-chemical parameters of the water (i

  16. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO 2

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Tung Arthur; Borges, Alberto V.

    2009-04-01

    Despite their moderately sized surface area, continental marginal seas play a significant role in the biogeochemical cycles of carbon, as they receive huge amounts of upwelled and riverine inputs of carbon and nutrients, sustaining a disproportionate large biological activity compared to their relative surface area. A synthesis of worldwide measurements of the partial pressure of CO 2 (pCO 2) indicates that most open shelves in the temperate and high-latitude regions are under-saturated with respect to atmospheric CO 2 during all seasons, although the low-latitude shelves seem to be over-saturated. Most inner estuaries and near-shore coastal areas on the other hand are over-saturated with respect to atmospheric CO 2. The scaling of air-sea CO 2 fluxes based on pCO 2 measurements and carbon mass-balance calculations indicate that the continental shelves absorb atmospheric CO 2 ranging between 0.33 and 0.36 Pg C yr -1 that corresponds to an additional sink of 27% to ˜30% of the CO 2 uptake by the open oceans based on the most recent pCO 2 climatology [Takahashi, T., Sutherland, S.C., Wanninkhof, R., Sweeney, C., Feely, R.A., Chipman, D., Hales, B., Friederich, G., Chavez, F., Watson, A., Bakker, D., Schuster, U., Metzl, N., Inoue, H.Y., Ishii, M., Midorikawa, T., Sabine, C., Hoppema, M., Olafsson, J., Amarson, T., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., De Baar, H., Nojiri, Y., Wong, C.S., Delille, B., Bates, N., 2009. Climatological mean and decadal change in surface ocean pCO 2, and net sea-air CO 2 flux over the global oceans. Deep-Sea Research II, this issue [doi: 10.1016/j.dsr2.2008.12.009].]. Inner estuaries, salt marshes and mangroves emit up to 0.50 Pg C yr -1, although these estimates are prone to large uncertainty due to poorly constrained ecosystem surface area estimates. Nevertheless, the view of continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO 2 allows reconciling long-lived opposing views on carbon

  17. De novo sequencing and analysis of the Ulva linza transcriptome to discover putative mechanisms associated with its successful colonization of coastal ecosystems

    PubMed Central

    2012-01-01

    Background The green algal genus Ulva Linnaeus (Ulvaceae, Ulvales, Chlorophyta) is well known for its wide distribution in marine, freshwater, and brackish environments throughout the world. The Ulva species are also highly tolerant of variations in salinity, temperature, and irradiance and are the main cause of green tides, which can have deleterious ecological effects. However, limited genomic information is currently available in this non-model and ecologically important species. Ulva linza is a species that inhabits bedrock in the mid to low intertidal zone, and it is a major contributor to biofouling. Here, we presented the global characterization of the U. linza transcriptome using the Roche GS FLX Titanium platform, with the aim of uncovering the genomic mechanisms underlying rapid and successful colonization of the coastal ecosystems. Results De novo assembly of 382,884 reads generated 13,426 contigs with an average length of 1,000 bases. Contiguous sequences were further assembled into 10,784 isotigs with an average length of 1,515 bases. A total of 304,101 reads were nominally identified by BLAST; 4,368 isotigs were functionally annotated with 13,550 GO terms, and 2,404 isotigs having enzyme commission (EC) numbers were assigned to 262 KEGG pathways. When compared with four other full sequenced green algae, 3,457 unique isotigs were found in U. linza and 18 conserved in land plants. In addition, a specific photoprotective mechanism based on both LhcSR and PsbS proteins and a C4-like carbon-concentrating mechanism were found, which may help U. linza survive stress conditions. At least 19 transporters for essential inorganic nutrients (i.e., nitrogen, phosphorus, and sulphur) were responsible for its ability to take up inorganic nutrients, and at least 25 eukaryotic cytochrome P450s, which is a higher number than that found in other algae, may be related to their strong allelopathy. Multi-origination of the stress related proteins, such as glutamate

  18. From Ecosystem-Scale to Litter Biochemistry: Controls on Carbon Sequestration in Coastal Wetlands of the Western Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Louchouarn, P.; Kaiser, K.; Norwood, M. J.; Sterne, A. M. E.; Armitage, A. R.; HighField, W.; Brody, S.

    2015-12-01

    Landscape-level shifts in plant species distribution and abundance can fundamentally change the structure and services of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones of the U.S., where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. Here we present the synthesis of 3 years of multidisciplinary work to quantify ecosystem shifts at the regional scale, along the entire Texas (USA) coast of the western Gulf of Mexico, and transcribe these shifts into carbon (C) sequestration mass balances. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify shifts in areal coverage of black mangrove (Avicennia germinans) and salt marsh (Spartina alterniflora and other grass and forb species) over 20 years across the Texas Gulf coast. Between 1990 and 2010, mangrove area expanded by 74% (+16 km2). Concurrently, salt marsh area experienced a net loss of 24% (-78 km2). Most of that loss was due to conversion to tidal flats or water, likely a result of relative sea level rise, with only 6% attributable to mangrove expansion. Although relative carbon load (per surface area) are statistically larger for mangrove wetlands, total C loads are larger for salt marsh wetlands due to their greater aerial coverage. The entire loss of above ground C (~7.0·109 g), was offset by salt marsh expansion (2.0·109 g) and mangrove expansion (5.6·109 g) over the study period. Concurrently, the net loss in salt marsh coverage led to a loss in below ground C accumulation capacity of 2.0·109 g/yr, whereas the net expansion of mangrove wetlands led to an added below ground C accumulation capacity of 0.4·109 g/yr. Biomarker data show that neutral carbohydrates and lignin contributed 30-70% and 10-40% of total C, respectively, in plant litter and surface sediments. Sharp declines of carbohydrate yields with depth occur parallel to increases in lignin

  19. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.

    PubMed

    Yuan, Junji; Ding, Weixin; Liu, Deyan; Kang, Hojeong; Freeman, Chris; Xiang, Jian; Lin, Yongxin

    2015-04-01

    Coastal salt marshes are sensitive to global climate change and may play an important role in mitigating global warming. To evaluate the impacts of Spartina alterniflora invasion on global warming potential (GWP) in Chinese coastal areas, we measured CH4 and N2O fluxes and soil organic carbon sequestration rates along a transect of coastal wetlands in Jiangsu province, China, including open water; bare tidal flat; and invasive S. alterniflora, native Suaeda salsa, and Phragmites australis marshes. Annual CH4 emissions were estimated as 2.81, 4.16, 4.88, 10.79, and 16.98 kg CH4 ha(-1) for open water, bare tidal flat, and P. australis, S. salsa, and S. alterniflora marshes, respectively, indicating that S. alterniflora invasion increased CH4 emissions by 57-505%. In contrast, negative N2O fluxes were found to be significantly and negatively correlated (P < 0.001) with net ecosystem CO2 exchange during the growing season in S. alterniflora and P. australis marshes. Annual N2O emissions were 0.24, 0.38, and 0.56 kg N2O ha(-1) in open water, bare tidal flat and S. salsa marsh, respectively, compared with -0.51 kg N2O ha(-1) for S. alterniflora marsh and -0.25 kg N2O ha(-1) for P. australis marsh. The carbon sequestration rate of S. alterniflora marsh amounted to 3.16 Mg C ha(-1) yr(-1) in the top 100 cm soil profile, a value that was 2.63- to 8.78-fold higher than in native plant marshes. The estimated GWP was 1.78, -0.60, -4.09, and -1.14 Mg CO2 eq ha(-1) yr(-1) in open water, bare tidal flat, P. australis marsh and S. salsa marsh, respectively, but dropped to -11.30 Mg CO2 eq ha(-1) yr(-1) in S. alterniflora marsh. Our results indicate that although S. alterniflora invasion stimulates CH4 emissions, it can efficiently mitigate increases in atmospheric CO2 and N2O along the coast of China.

  20. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.

    PubMed

    Yuan, Junji; Ding, Weixin; Liu, Deyan; Kang, Hojeong; Freeman, Chris; Xiang, Jian; Lin, Yongxin

    2015-04-01

    Coastal salt marshes are sensitive to global climate change and may play an important role in mitigating global warming. To evaluate the impacts of Spartina alterniflora invasion on global warming potential (GWP) in Chinese coastal areas, we measured CH4 and N2O fluxes and soil organic carbon sequestration rates along a transect of coastal wetlands in Jiangsu province, China, including open water; bare tidal flat; and invasive S. alterniflora, native Suaeda salsa, and Phragmites australis marshes. Annual CH4 emissions were estimated as 2.81, 4.16, 4.88, 10.79, and 16.98 kg CH4 ha(-1) for open water, bare tidal flat, and P. australis, S. salsa, and S. alterniflora marshes, respectively, indicating that S. alterniflora invasion increased CH4 emissions by 57-505%. In contrast, negative N2O fluxes were found to be significantly and negatively correlated (P < 0.001) with net ecosystem CO2 exchange during the growing season in S. alterniflora and P. australis marshes. Annual N2O emissions were 0.24, 0.38, and 0.56 kg N2O ha(-1) in open water, bare tidal flat and S. salsa marsh, respectively, compared with -0.51 kg N2O ha(-1) for S. alterniflora marsh and -0.25 kg N2O ha(-1) for P. australis marsh. The carbon sequestration rate of S. alterniflora marsh amounted to 3.16 Mg C ha(-1) yr(-1) in the top 100 cm soil profile, a value that was 2.63- to 8.78-fold higher than in native plant marshes. The estimated GWP was 1.78, -0.60, -4.09, and -1.14 Mg CO2 eq ha(-1) yr(-1) in open water, bare tidal flat, P. australis marsh and S. salsa marsh, respectively, but dropped to -11.30 Mg CO2 eq ha(-1) yr(-1) in S. alterniflora marsh. Our results indicate that although S. alterniflora invasion stimulates CH4 emissions, it can efficiently mitigate increases in atmospheric CO2 and N2O along the coast of China. PMID:25367159

  1. First world wide annual time-series of silica production and dissolution rates in a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Beucher, C.; Treguer, P.; Corvaisier, R.

    2003-04-01

    This study was conducted, from April 2001 to April 2002, in the surface waters of SOMLIT-Brest station located at the outlet of the bay of Brest, a well-mixed anthropogenically nitrate-enriched macrotidal ecosystem, typical of western Europe. This study presents: (1) the first world wide annual time-series of the weekly variability of the rates of production (P) and dissolution (D) of biosilica (BSiO2) measured using 30Si stable isotope technique and validated by mass balance, and (2) the first evidence of the end of the year-round dominance of diatoms in this ecosystem. From spring to mid-summer the successive phytoplankton blooms were dominated by diatoms. The silicic acid concentration, although severely depleted relative to winter, was not completely exhausted (mean: 1.62 µM); the BSiO2 concentration, production and dissolution rates were high, averaging 1.26 µmol L-1, 0.96 µmol L-1 d-1, and 0.40 µmol L-1 d-1, respectively. From mid-summer to mid-fall the non-siliceous phytoplankters predominated, silicic acid being poorly used (mean : 4.67 µM); the BSiO2 concentration, production and dissolution rates were low averaging 0.69 µmol L-1, 0.10 µmol L-1 d-1, and 0.04 µmol L-1 d-1, respectively. The shift from diatoms to dinoflagellates dominance was under bottom-up control (phosphate and dissolved inorganic nitrogen being at limiting concentrations contrary to silicic acid).

  2. Effects of eutrophication on the planktonic food web dynamics of marine coastal ecosystems: The case study of two tropical inlets.

    PubMed

    Schmoker, Claire; Russo, Francesca; Drillet, Guillaume; Trottet, Aurore; Mahjoub, Mohamed-Sofiane; Hsiao, Shih-Hui; Larsen, Ole; Tun, Karenne; Calbet, Albert

    2016-08-01

    We studied the plankton dynamics of two semi-enclosed marine coastal inlets of the north of Jurong Island separated by a causeway (SW Singapore; May 2012-April 2013). The west side of the causeway (west station) has residence times of ca. one year and is markedly eutrophic. The east side (east station) has residence times of one month and presents lower nutrient concentrations throughout the year. The higher nutrient concentrations at the west station did not translate into significantly higher concentrations of chlorophyll a, with the exception of some peaks at the end of the South West Monsoon. Microzooplankton were more abundant at the west station. The west station exhibited more variable abundances of copepods during the year than did the east station, which showed a more stable pattern and higher diversity. Despite the higher nutrient concentrations at the west station (never limiting phytoplankton growth), the instantaneous phytoplankton growth rates there were generally lower than at the east station. The phytoplankton communities at the west station were top-down controlled, largely by microzooplankton grazing, whereas those of the east station alternated between top-down and bottom-up control, with mesozooplankton being the major grazers. Overall, the trophic transfer efficiency from nutrients to mesozooplankton in the eutrophic west station was less efficient than in the east station, but this was mostly because a poor use of inorganic nutrients by phytoplankton rather than an inefficient trophic transfer of carbon. Some hypotheses explaining this result are discussed.

  3. Pigmented nanoflagellates grazing on Synechococcus: seasonal variations and effect of flagellate size in the coastal ecosystem of subtropical Western Pacific.

    PubMed

    Chan, Ya-Fan; Tsai, An-Yi; Chiang, Kuo-Ping; Hsieh, Chih-Hao

    2009-10-01

    We investigated seasonal variation of grazing impact of the pigmented nanoflagellates (PNF) with different sizes upon Synechococcus in the subtropical western Pacific coastal waters using grazing experiments with fluorescently labeled Synechococcus (FLS). For total PNF, conspicuous seasonal variations of ingestion rates on Synechococcus were found, and a functional response was observed. To further investigate the impact of different size groups, we separated the PNF into four categories (<3, 3-5, 5-10, and >10 microm). Our results indicated that the smallest PNF (<3 microm PNF) did not ingest FLS and was considered autotrophic. PNF of 3-5 microm in size made up most of the PNF community; however, their ingestion on Synechococcus was too low (0.1-1.9 Syn PNF(-1) h(-1)) to support their growth, and they had to depend on other prey or photosynthesis to survive. The ingestion rate of the 3-5 microm group exhibited no significant seasonal variation; by contrast, the ingestion rates of 5-10 and >10 microm PNFs showed significant seasonal variation. During the warm season, 3-5 microm PNF were responsible for the grazing of 12% of Synechococcus production, 5-10 microm PNF for 48%, and >10 microm PNF for 2%. Taken together, our results demonstrate that the PNF of 3-10 microm consumed most Synechococcus during the warm season and exhibited a significant functional response to the increase in prey concentration. PMID:19655080

  4. Transfer of carbon and a polychlorinated biphenyl through the pelagic microbial food web in a coastal ecosystem

    SciTech Connect

    Wallberg, P.; Andersson, A.

    2000-04-01

    In order to estimate fluxes of carbon within the microbial community, seawater was collected in a coastal area off Zanzibar Island, Tanzania, during a rainy season (November 1994) and a dry season (September 1996). Diel experiments were conducted in a 24-L polycarbonate bottle and samples were retrieved every third hour over a period of 30 to 33 h. Abundance and production rates of bacteria, nonoflagellates, and microplankton were determined. To determine possible connections between the fluxes of carbon and the fate of 2,2{prime},4,4{prime},5,5{prime}-hexachlorobiphenyl International Union of Pure and Applied Chemistry (IUPAC) no. 153, a time-course experiment was conducted after the diel experiment. The initial PCB partitioning was similar in the two experiments, but the subsequent distribution among the organism groups was different. In the rainy season experiment, the PCB concentration in the largest size fraction was almost three times higher than during the dry season experiment. This was in line with results from the diel experiments where the carbon flux through the microbial food web was approximately three times higher during the rainy season than during the dry season experiment. These results suggest that the transfer rate of 2,2{prime},4,4{prime},5,5{prime}-hexachlorobiphenyl through the microbial food web is coupled to the carbon flux.

  5. Bacterial community shift is induced by dynamic environmental parameters in a changing coastal ecosystem (northern Adriatic, northeastern Mediterranean Sea)--a 2-year time-series study.

    PubMed

    Tinta, T; Vojvoda, J; Mozetič, P; Talaber, I; Vodopivec, M; Malfatti, F; Turk, V

    2015-10-01

    The potential link between the microbial dynamics and the environmental parameters was investigated in a semi-enclosed and highly dynamic coastal system (Gulf of Trieste, northern Adriatic Sea, NE Mediterranean Sea). Our comprehensive 2-year time-series study showed that despite the shallowness of this area, there was a significant difference between the surface and the bottom bacterial community structure. The bottom bacterial community was more diverse than the surface one and influenced by sediment re-suspension. The surface seawater temperature had a profound effect on bacterial productivity, while the bacterial community structure was more affected by freshwater-borne nutrients and phytoplankton blooms. Phytoplankton blooms caused an increase of Gammaproteobacteria (Alteromonadaceae, SAR86 and Vibrionaceae) and shift in dominance from SAR11 to Rhodobacteraceae taxon at the surface. Our results propose the importance of the water mass movements as drivers of freshwater-borne nutrients and of allochthonous microbial taxa. This study emphasizes the prediction power based on association networks analyses that are fed with long-term measurements of microbial and environmental parameters. These interaction maps offer valuable insights into the response of marine ecosystem to climate- and anthropogenic-driven stressors.

  6. Assessing wildlife benefits and carbon storage from restored and natural coastal marshes in the Nisqually River Delta: Determining marsh net ecosystem carbon balance

    USGS Publications Warehouse

    Anderson, Frank; Bergamaschi, Brian; Windham-Myers, Lisamarie; Woo, Isa; De La Cruz, Susan; Drexler, Judith; Byrd, Kristin; Thorne, Karen M.

    2016-01-01

    Working in partnership since 1996, the U.S. Fish and Wildlife Service and the Nisqually Indian Tribe have restored 902 acres of tidally influenced coastal marsh in the Nisqually River Delta (NRD), making it the largest estuary-restoration project in the Pacific Northwest to date. Marsh restoration increases the capacity of the estuary to support a diversity of wildlife species. Restoration also increases carbon (C) production of marsh plant communities that support food webs for wildlife and can help mitigate climate change through long-term C storage in marsh soils.In 2015, an interdisciplinary team of U.S. Geological Survey (USGS) researchers began to study the benefits of carbon for wetland wildlife and storage in the NRD. Our primary goals are (1) to identify the relative importance of the different carbon sources that support juvenile chinook (Oncorhynchus tshawytscha) food webs and contribute to current and historic peat formation, (2) to determine the net ecosystem carbon balance (NECB) in a reference marsh and a restoration marsh site, and (3) to model the sustainability of the reference and restoration marshes under projected sea-level rise conditions along with historical vegetation change. In this fact sheet, we focus on the main C sources and exchanges to determine NECB, including carbon dioxide (CO2) uptake through plant photosynthesis, the loss of CO2 through plant and soil respiration, emissions of methane (CH4), and the lateral movement or leaching loss of C in tidal waters.

  7. Assessing wildlife benefits and carbon storage from restored and natural coastal marshes in the Nisqually River Delta: Determining marsh net ecosystem carbon balance

    USGS Publications Warehouse

    Anderson, Frank; Bergamaschi, Brian; Windham-Myers, Lisamarie; Woo, Isa; De La Cruz, Susan; Drexler, Judith; Byrd, Kristin; Thorne, Karen M.

    2016-06-24

    Working in partnership since 1996, the U.S. Fish and Wildlife Service and the Nisqually Indian Tribe have restored 902 acres of tidally influenced coastal marsh in the Nisqually River Delta (NRD), making it the largest estuary-restoration project in the Pacific Northwest to date. Marsh restoration increases the capacity of the estuary to support a diversity of wildlife species. Restoration also increases carbon (C) production of marsh plant communities that support food webs for wildlife and can help mitigate climate change through long-term C storage in marsh soils.In 2015, an interdisciplinary team of U.S. Geological Survey (USGS) researchers began to study the benefits of carbon for wetland wildlife and storage in the NRD. Our primary goals are (1) to identify the relative importance of the different carbon sources that support juvenile chinook (Oncorhynchus tshawytscha) food webs and contribute to current and historic peat formation, (2) to determine the net ecosystem carbon balance (NECB) in a reference marsh and a restoration marsh site, and (3) to model the sustainability of the reference and restoration marshes under projected sea-level rise conditions along with historical vegetation change. In this fact sheet, we focus on the main C sources and exchanges to determine NECB, including carbon dioxide (CO2) uptake through plant photosynthesis, the loss of CO2 through plant and soil respiration, emissions of methane (CH4), and the lateral movement or leaching loss of C in tidal waters.

  8. Temporal variability and phylogenetic characterization of planktonic anammox bacteria in the coastal upwelling ecosystem off central Chile

    NASA Astrophysics Data System (ADS)

    Galán, Alexander; Molina, Verónica; Belmar, Lucy; Ulloa, Osvaldo

    2012-01-01

    The phylogenetic affiliation and temporal variability in the abundance of planktonic anammox bacteria were studied at a time-series station above the continental shelf off central Chile (∼36°S; bottom depth 93 m), a wind-driven, seasonal upwelling area, between August 2006 and April 2008. The study was carried out by cloning and sequencing the 16S rRNA gene and by using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Our results showed the presence of a single anammox bacteria-like ribotype during both upwelling and non-upwelling seasons, which was phylogenetically associated with a recently described oxygen-minimum-zone subcluster within the Candidatus Scalindua clade. Moreover, clear differences were observed in the temporal and vertical distribution of anammox cells. During the upwelling season (austral spring-summer), relatively high abundances (∼5500 cells mL -1) and large cells (0.8 μm 3-75.7 fg C cell -1) were found below 20 m depth. In contrast, during the non-upwelling season (austral fall-winter), lower abundances (∼600 cells mL -1) and smaller cells (0.1 μm 3-22.8 fg C cell -1) were found, predominantly associated with the bottom layer. Overall, our results indicate that the abundance and vertical distribution of anammox planktonic assemblages are related to the occurrence of seasonal, wind-driven, coastal upwelling, which in turn appears to offer favorable conditions for the development of these microorganisms. The dominance of a unique anammox bacteria-like ribotype could be related to the high environmental variability observed in the system, which prevents the establishment of other anammox lineages.

  9. Organochlorine contaminants in coastal marine ecosystems of southern Alaska: inferences from spatial patterns in blue mussels (Mytilus trossulus).

    PubMed

    Reese, Stacey L; Estes, James A; Jarman, Walter M

    2012-08-01

    We measured the concentrations and chemical structures of persistent organochlorines (OCs) in blue mussels (Mytilus trossulus) from 44 sites across southwest and southeast Alaska in an effort to determine both the sources of these compounds and the extent to which this region might be contaminated. High PCB concentrations were detected at Amchitka, Adak, and Unalaska Islands (83, 430, and 2800μgkg(-1) dry weight, respectively) in the Aleutians with relatively low concentrations elsewhere (7.1-51μgkg(-1) dry weight). Heavy PCB congener profiles (indicative of localized point sources) characterized the high concentration sites whereas distinctly lighter congener profiles (indicative of atmospheric transport) characterized the lower concentration sites. Elevated PCB concentrations at Adak were restricted to a small area along the island's eastern shore, suggesting either limited dispersion or rapid dilution of these compounds. More uniform chlorinated pesticide concentrations among the collection sites suggests that these compounds are entering the Aleutian ecosystem from distant sources. Pesticide concentrations correlated significantly with seabird density across the islands we sampled, thus identifying biological transport as a delivery mechanism of these compounds to the Aleutian archipelago. Our findings do not implicate persistent organochlorines as a significant factor in the recent pinniped and sea otter population declines across southwest Alaska.

  10. [Association of sardine fishery, Sardinella aurita (Teleostei: Clupeidae) and environmental variability of the coastal upwelling ecosystem of Nueva Esparta, Venezuela].

    PubMed

    Gonzźlez, Leo W; Euán, Jorge; Eslava, Nora; Suniaga, Jesús

    2007-03-01

    The present research is an analysis of Spanish sardine fishing (Sardinella aurita) associated with some climatic and meteorologic parameters of the ecosystem from El Morro Nueva Esparta, Venezuela. The catch and environmental data from the area were taken in the period 1996-2000. Catch data as a function of wind speed, sea surface temperature, air temperature and rain were analyzed by means of simple lineal regression and multiple models. We found a positive correlation of catch with wind speed, and a negative correlation with sea surface temperature, air temperature, and rain. The multiple regression model with intercept had a poor fit, therefore, we made a model without intercept, which improve greatly the fit. A selection of the variables using the forward procedure verified that the independent variables "wind speed" and "air temperature" have a significant relation with catch (p < 0.001) at real time. This method suggests that sea surface temperature and rain have little influence on the catch, and suggests a major availability of resources in the months with low air temperature and the highest wind speed (January-June). Rev. PMID:18457137

  11. The use of biotic and abiotic components of Red Sea coastal areas as indicators of ecosystem health.

    PubMed

    Omar, Wael A; Saleh, Yousef S; Marie, Mohamed-Assem S

    2016-03-01

    A biomonitoring study was conducted using some biotic (Pomadasys hasta and Lutjanus russellii fish) and abiotic (water and sediment) components of the Red Sea coast of Hodeida, Yemen Republic along two polluted sites (Al-Dawar beach and Urj village) in comparison to a reference site (Al-Nukhailah beach). The studied fish biomarkers included hepatosomatic index (HSI), condition factor (K), scaled mass index (SMI), catalase, glutathione-S-transferase (GST), malondialdehyde (MDA), total protein and albumin. In addition, metals (Fe, Cu, Zn, Pb and Cd) concentrations in water and sediment were measured and sediment pollution assessment was carried out using contamination factor (CF), geoaccumulation index (Igeo), pollution load index (PLI) and enrichment factor (EF). The studied metals concentration in water and sediment samples showed significant increase among the polluted sites in comparison to the reference site. Sediment pollution assessment generally confirmed that Urj village was the most contaminated site followed by Al-Dawar beach. Catalase, GST and MDA proved to be the most responsive biomarkers with increased values of GST and MDA at sites influenced by agricultural, urban and industrial activities while catalase, HSI, K, SMI, total protein and albumin showed the opposite trend. This study recommends monitoring of sediment Igeo and EF values as well as SMI, catalase, GST and MDA as sensitive indicators of different anthropogenic activities and their effects on aquatic ecosystems under complex and different gradients of metal pollution. In addition, P. hasta proved to be more sensitive towards the detected pollution condition.

  12. Organic contamination identification in sediments from a Mediterranean coastal ecosystem: The case of the Nador lagoon (Eastern Morocco)

    NASA Astrophysics Data System (ADS)

    Karim Bloundi, Mohamed; Faure, Pierre; Duplay, Joëlle

    2008-12-01

    The Nador lagoon ecosystem (North-East of Morocco) displays a major socioeconomic interest. In fact, it is essential to evaluate consequences of anthropogenic activities in the lagoon especially by organic matter studies (nature and distribution) in the sedimentary compartment. Surface sediments show variable rates in total organic carbon and in sulfur, high in some cases (7.5 and 1.8% respectively). These high contents are recorded in the center of the lagoon. Their distributions are controlled by the hydrodynamism and the anthropogenic degree. The molecular biomarkers analyses and especially n-alkanes distribution reveal: a zone of marine influence; and a zone of continental influence. The occurrence of pentacyclic triterpanes with a typical distribution of a thermally mature organic matter reveals a contamination due to petroleum products in the entire lagoon except for the center. Coprostanol occurrence near cities indicates wastewater effluents inputs and reducing conditions underlined by high values of stanols/sterol ratios. Thus, the organic contamination (petroleum by-products and wastewater effluents) occurs in the vicinity of the cities whereas the littoral edge and center remain weakly affected by these contaminations.

  13. Living benthic foraminifera as an environmental proxy in coastal ecosystems: A case study from the Aegean Sea (Greece, NE Mediterranean)

    NASA Astrophysics Data System (ADS)

    Koukousioura, Olga; Dimiza, Margarita D.; Triantaphyllou, Maria V.; Hallock, Pamela

    2011-12-01

    The species composition of the epiphytic benthic foraminiferal fauna was compared at two coastal locations in the Aegean Sea. Samples were collected during August 2001 and July 2003 along the southeastern coast of Andros Island at Korthi Gulf, where there are minimal anthropogenic activities, and at Kastro Gulf, with substantial anthropogenic influence. This study represents the first application of the FORAM Index (FI), which is a single-metric index for water quality originally developed for western Atlantic reef foraminiferal assemblages, to Mediterranean assemblages. Multivariate analyses distinguished three clusters of sample sites representing three foraminiferal assemblages. Samples dominated by the mixotrophic species, A. lobifera, were collected primarily from sites along the northern coasts of both gulfs. Characteristics of this assemblage, including relatively high dominance (D = 0.27-0.51), lower Shannon-Wiener diversity (H' = 1.3-2.1) and high FI (6.6-8.2), all reflect oligotrophic environmental conditions typical of pristine waters of the Aegean Sea. A. lobifera was typically the most common species in the second assemblage, though relative abundances of heterotrophic taxa were higher, resulting in somewhat higher diversity (H' = 1.6-2.4) and lower dominance (D = 0.14-0.36). These indices, as well as the FI range of 3.5-7.0 indicated somewhat more prevalent organic carbon resources but still relatively high water quality. This assemblage was found along the southern coast of Korthi Gulf and at more interior sites in northern Kastro Gulf. The third assemblage was dominated by smaller heterotrophic species, including notable proportions of the stress-tolerant taxa Ammonia spp. and Elphidium spp., and had few or no A. lobifera. Diversity (H' = 1.4-2.0) and dominance (D = 0.22-0.47) indices were similar to those for the first assemblage, but FI values were much lower (2.0-3.4). Samples characterized by this assemblage were collected only from the southern

  14. Comparative Analysis of Reproductive Traits in Black-Chinned Tilapia Females from Various Coastal Marine, Estuarine and Freshwater Ecosystems

    PubMed Central

    Kantoussan, Justin; Ndiaye, Papa; Thiaw, Omar Thiom; Albaret, Jean-Jacques

    2012-01-01

    The black-chinned tilapia Sarotherodon melanotheron is a marine teleost characterised by an extreme euryhalinity. However, beyond a certain threshold at very high salinity, the species exhibits impaired growth and precocious reproduction. In this study, the relationships between reproductive parameters, environmental salinity and condition factor were investigated in wild populations of this species that were sampled in two consecutive years (2003 and 2004) from three locations in Senegal with different salinities: Guiers lake (freshwater, 0 psu), Hann bay (seawater, 37 psu) and Saloum estuary (hypersaline water, 66–127 psu). The highest absolute fecundity and spawning weight were recorded in seawater by comparison to either freshwater or hypersaline water whereas the poorest condition factors were observed in the most saline sampling site. These results reflect higher resource allocation to the reproduction due to the lowest costs of adaptation to salinity in seawater (the natural environment of this species) rather than differences in food resources at sites and/or efficiency at foraging and prey availability. Fecundities, oocyte size as well as spawning weight were consistent from year to year. However, the relative fecundity in the Saloum estuary varied significantly between the dry and rainy raisons with higher values in the wet season, which seems to reflect seasonal variations in environmental salinity. Such a reproductive tactic of producing large amounts of eggs in the rainy season when the salinity in the estuary was lower, would give the fry a better chance at survival and therefore assures a high larval recruitment. An inverse correlation was found between relative fecundity and oocyte size at the two extreme salinity locations, indicating that S. melanotheron has different reproductive strategies in these ecosystems. The adaptive significance of these two reproductive modes is discussed in regard to the heavy osmotic constraint imposed by extreme

  15. Trophic resource use by macrozoobenthic primary consumers within a semi-enclosed coastal ecosystem: Stable isotope and fatty acid assessment

    NASA Astrophysics Data System (ADS)

    Dubois, Sophie; Blanchet, Hugues; Garcia, Aurélie; Massé, Marjorie; Galois, Robert; Grémare, Antoine; Charlier, Karine; Guillou, Gaël; Richard, Pierre; Savoye, Nicolas

    2014-04-01

    The diet of different macrozoobenthic trophic groups was investigated in the Arcachon Bay-a semi-enclosed macrotidal ecosystem that shelters the largest Zostera noltei seagrass meadow in Europe-in early spring and late summer 2009, using stable isotopes and fatty acids. Fatty acid profiles and literature information about the biology and physiology of benthic consumers were combined to identify the main organic matter sources for the benthic primary consumers. An isotope mixing model was then run to evaluate the contribution of each organic matter source to each identified trophic group (suspension feeders, sub-surface deposit feeders, micro-and macrograzers, suspension-oriented interface feeders and deposit-oriented interface feeders). Variations in organism' diets with respect to both habitats (intertidal seagrass meadows, intertidal bare sediments and subtidal bare sediments) and study periods were also investigated. At the scale of this study, it appeared that the diet of macrozoobenthos primary consumers was based exclusively on autochthonous material (no use of terrestrial organic matter): mainly microphytobenthos, seagrasses and their epiphytes, and phytoplankton. In addition, the different trophic groups relied on different organic matter pools: for instance, suspension feeders mainly fed on microphytobenthos and phytoplankton, whereas subsurface deposit feeders fed on microphytobenthos, decayed seagrasses and bacteria, and grazers mainly fed on microphytobenthos, and seagrasses and their epiphytes. The same pattern was observed in both early spring and late summer, indicating a stability of the benthic system at a six-month time scale. Finally our results showed that, in Arcachon Bay, the seagrass meadow directly or indirectly (through detritus) plays a significant role in the diet of most benthic consumers.

  16. Impact of Sea Level Rise on Mangrove Ecosystem and its Dependent Fishing Communities in the Coastal Regions of Cauvery Delta: A Message for Policy Planners to Frame Suitable Antcipatory Adaptation Strategies

    NASA Astrophysics Data System (ADS)

    Amsad Ibrahim Khan, S. K.; Ramachandran, A.; Kandasamy, P.; Selvam, V.; Shanmugam, P.

    2014-12-01

    Coastal adaptation to sea-level rise (SLR) in the deltaic region is a multidimensional and complex process requiring informed decisions based on predicted impact and vulnerability assessment of SLR. Elevation plays a key role in determining the impact and vulnerability of coastal land areas to inundation from SLR. Highly accurate mapping of the elevation of the landscape is essential to identify low-lying coastal deltaic regions with valuable ecosystem like mangroves and its dependent human communities that are potentially at risk of inundation. It is difficult for policy planners and decision makers to identify suitable adaptation strategies without having information on the predicted impact and degree of vulnerability of coastal systems to SLR. Importantly, modeling and mapping will provide valuable input to climate change adaptation planning (NOAA 2010). Unfortunately, the comprehensive range of information that is typically required is seldom available and rarely in the possession of decision makers responsible for management of the deltaic and coastal zone (O'Regan, 1996). The present study seeks to provide insights on predicted impact of climate change induced SLR on mangrove ecosystem and its dependent human communities of Pichavaram mangroves, located at the Vellar-Coleroon estuarine region on the banks of Cauvery delta, Tamil Nadu, India. Based on real-time on-ground elevation measurement by DGPS (Differential Global Positioning System) survey and by using GIS portals, the study has identified about 597 ha of mangroves (one third of total mangrove regions) and about 9 fishing hamlets with 12,000 and more of human population that directly depends on this mangrove ecosystem for their livelihood are under threat of inundation to the predicted impact of 0.5m SLR. The present study is intended to showcase a method by providing reliable scientific information on predicted impact of SLR on mangroves and its dependent human communities to policy planner for

  17. Early Season Goose Grazing Has a Greater Effect Than Advancement of the Growing Season on Net Ecosystem Exchange in a Sub-Arctic Coastal Wetland of Western Alaska

    NASA Astrophysics Data System (ADS)

    Leffler, A. J.; Choi, R. T.; Beard, K. H.; Schmutz, J. A.; Welker, J. M.

    2014-12-01

    The wetlands of the Yukon-Kuskokwim Delta in western Alaska are important breeding areas for geese and are experiencing rapid climate change. Growing seasons now begin earlier but geese have not advanced their breeding enough to match the advancement of spring. Consequently, geese enter a greener system that may be less nutritious than in the past because grasses and sedges have highest nutrient density shortly following emergence. One consequence of this changing phenology is that vegetation consumed by geese and returned as feces may have a different carbon to nitrogen ratio than in the past, which may influence net ecosystem exchange (NEE). We examine the effect of the advancement of the growing season and different arrival times by Brant Geese on NEE. Our study consists of six experimental blocks, each with nine plots. Half of the plots are warmed to advance the growing season. Two plots each receive early, mid, and late season grazing; the remaining two plots are not grazed and there is one control plot. In one block, we monitor NEE hourly with an automatic gas exchange system. In the other blocks, survey measurements of NEE and ecosystem respiration (ER) are made periodically with a portable system. Geese remove considerable vegetation from the system and maintain "grazing lawns" <1 cm tall of high quality forage. Plots grazed in the early summer were net sources of C to the atmosphere, releasing ca. 2-4 g m-2 d-1. Non-grazed plots were C sinks of similar magnitude. Grazing had little effect on ER but an advanced growing season enhanced ER in the plots by ca. 0.5 μmol m-2 s-1. We observed a similar advanced growing season effect on NEE that we attribute to enhanced ER. Consequently, the larger influence on NEE in the system is grazing and this influence is through removal of photosynthetic tissue. Grazing by Brant Geese shifts large areas of this coastal wetland to a C source while advanced growing season only reduces the strength of the C sink.

  18. Avian influenza virus wild bird surveillance in the Azov and Black Sea regions of Ukraine (2010-2011).

    PubMed

    Muzyka, Denys; Pantin-Jackwood, Mary; Spackman, Erica; Stegniy, Borys; Rula, Oleksandr; Shutchenko, Pavlo

    2012-12-01

    The Azov and Black Sea basins are part of the transcontinental wild bird migration routes from Northern Asia and Europe to the Mediterranean, Africa, and Southwest Asia. These regions constitute an area of transit, stops during migration, and nesting for many different bird species. From September 2010 to September 2011, a wild bird surveillance study was conducted in these regions to identify avian influenza viruses. Biological samples consisting of cloacal and tracheal swabs and fecal samples were collected from wild birds of different ecological groups, including waterfowl and sea- and land-based birds, in places of mass bird accumulations in Sivash Bay and the Utlyuksky and Molochniy estuaries. The sampling covered the following wild bird biological cycles: autumn migration, wintering, spring migration, nesting, and postnesting seasons. A total of 3634 samples were collected from 66 different species of birds. During the autumn migration, 19 hemagglutinating viruses were isolated, 14 of which were identified as low pathogenicity avian influenza (LPAI) virus subtypes H1N?, H3N8, H5N2, H7N?, H8N4, H10N7, and H11N8. From the wintering samples, 45 hemagglutinating viruses were isolated, 36 of which were identified as LPAI virus subtypes H1N1, H1N? H1N2, H4N?, H6N1, H7N3, H7N6, H7N7, H8N2, H9N2, H10N7, H10N4, H11N2, H12N2, and H15N7. Only three viruses were isolated during the spring migration, nesting, and postnesting seasons (serotypes H6, H13, and H16). The HA and NA genes were sequenced from the isolated H5 and N1 viruses, and the phylogenetic analysis revealed possible ecological connections between the Azov and Black Sea regions and Europe. The LPAI viruses were isolated mostly from mallard ducks, but also from shellducks, shovelers, teals, and white-fronted geese. The rest of the 14 hemagglutinating viruses isolated were identified as different serotypes of avian paramyxoviruses (APMV-1, APMV-4, APMV-6, and APMV-7). This information furthers our understanding

  19. Prediction of plant vulnerability to salinity increase in a coastal ecosystem by stable isotopic composition (δ18O) of plant stem water: a model study

    USGS Publications Warehouse

    Zhai, Lu; Jiang, Jiang; DeAngelis, Don; Sternberg, Leonel d.S.L

    2016-01-01

    Sea level rise and the subsequent intrusion of saline seawater can result in an increase in soil salinity, and potentially cause coastal salinity-intolerant vegetation (for example, hardwood hammocks or pines) to be replaced by salinity-tolerant vegetation (for example, mangroves or salt marshes). Although the vegetation shifts can be easily monitored by satellite imagery, it is hard to predict a particular area or even a particular tree that is vulnerable to such a shift. To find an appropriate indicator for the potential vegetation shift, we incorporated stable isotope 18O abundance as a tracer in various hydrologic components (for example, vadose zone, water table) in a previously published model describing ecosystem shifts between hammock and mangrove communities in southern Florida. Our simulations showed that (1) there was a linear relationship between salinity and the δ18O value in the water table, whereas this relationship was curvilinear in the vadose zone; (2) hammock trees with higher probability of being replaced by mangroves had higher δ18O values of plant stem water, and this difference could be detected 2 years before the trees reached a tipping point, beyond which future replacement became certain; and (3) individuals that were eventually replaced by mangroves from the hammock tree population with a 50% replacement probability had higher stem water δ18O values 3 years before their replacement became certain compared to those from the same population which were not replaced. Overall, these simulation results suggest that it is promising to track the yearly δ18O values of plant stem water in hammock forests to predict impending salinity stress and mortality.

  20. Geochemical characterization of loess-soil complexes on the Terek-Kuma Plain and the Azov-Kuban' Lowland

    NASA Astrophysics Data System (ADS)

    Kalinin, P. I.; Alekseev, A. O.

    2011-12-01

    The changes in the material composition of the buried soils and loesses in relation to the dynamics of the climate and sediment accumulation were studied for revealing the pedogenetic features and assessing the natural conditions in the steppe zone of the southern Russian Plain. A comparative analysis of the chemical compositions of the different-aged Pleistocene loess-soil complexes (the Otkaznoe, Port-Katon, and Shabel'skoe profiles) on the Terek-Kuma Plain and the Azov-Kuban' Lowland was performed. An increase in the concentrations of Fe and Mn, which are intensively involved in the biological cycle, and Rb, which is accumulated due to the activation of weathering processes, was observed in the paleosols that developed in interglacial periods of activation of pedogenesis. Increased coefficients of weathering (chemical index of alteration (CIA)) = [Al/(Al + Ca + Na + K)] 100, Al/(Al + Ca + Na + Mg), Rb/Sr, and Mn/Sr), leaching (Ba/Sr), and biological activity and bioproductivity (Mn/Fe, Mn/Al) were also noted for the paleosol horizons as compared with the loess horizons. It is argued that geochemical coefficients can be used as an efficient tool in the soil and paleogeographic studies aimed at the reconstruction and refinement of the schemes of changes in the bioclimatic conditions during the Pleistocene.

  1. Assessment of climate change downscaling and non-stationarity on the spatial pattern of a mangrove ecosystem in an arid coastal region of southern Iran

    NASA Astrophysics Data System (ADS)

    Etemadi, Halimeh; Samadi, S. Zahra; Sharifikia, Mohammad; Smoak, Joseph M.

    2015-07-01

    Mangrove wetlands exist in the transition zone between terrestrial and marine environments and have remarkable ecological and socio-economic value. This study uses climate change downscaling to address the question of non-stationarity influences on mangrove variations (expansion and contraction) within an arid coastal region. Our two-step approach includes downscaling models and uncertainty assessment, followed by a non-stationary and trend procedure using the Extreme Value Analysis (extRemes code). The Long Ashton Research Station Weather Generator (LARS-WG) model along with two different general circulation model (GCMs) (MIRH and HadCM3) were used to downscale climatic variables during current (1968-2011) and future (2011-2030, 2045-2065, and 2080-2099) periods. Parametric and non-parametric bootstrapping uncertainty tests demonstrated that the LARS-WGS model skillfully downscaled climatic variables at the 95 % significance level. Downscaling results using MIHR model show that minimum and maximum temperatures will increase in the future (2011-2030, 2045-2065, and 2080-2099) during winter and summer in a range of +4.21 and +4.7 °C, and +3.62 and +3.55 °C, respectively. HadCM3 analysis also revealed an increase in minimum (˜+3.03 °C) and maximum (˜+3.3 °C) temperatures during wet and dry seasons. In addition, we examined how much mangrove area has changed during the past decades and, thus, if climate change non-stationarity impacts mangrove ecosystems. Our results using remote sensing techniques and the non-parametric Mann-Whitney two-sample test indicated a sharp decline in mangrove area during 1972,1987, and 1997 periods (p value = 0.002). Non-stationary assessment using the generalized extreme value (GEV) distributions by including mangrove area as a covariate further indicated that the null hypothesis of the stationary climate (no trend) should be rejected due to the very low p values for precipitation (p value = 0.0027), minimum (p value = 0

  2. Assessment of climate change downscaling and non-stationarity on the spatial pattern of a mangrove ecosystem in an arid coastal region of southern Iran

    NASA Astrophysics Data System (ADS)

    Etemadi, Halimeh; Samadi, S. Zahra; Sharifikia, Mohammad; Smoak, Joseph M.

    2016-10-01

    Mangrove wetlands exist in the transition zone between terrestrial and marine environments and have remarkable ecological and socio-economic value. This study uses climate change downscaling to address the question of non-stationarity influences on mangrove variations (expansion and contraction) within an arid coastal region. Our two-step approach includes downscaling models and uncertainty assessment, followed by a non-stationary and trend procedure using the Extreme Value Analysis (extRemes code). The Long Ashton Research Station Weather Generator (LARS-WG) model along with two different general circulation model (GCMs) (MIRH and HadCM3) were used to downscale climatic variables during current (1968-2011) and future (2011-2030, 2045-2065, and 2080-2099) periods. Parametric and non-parametric bootstrapping uncertainty tests demonstrated that the LARS-WGS model skillfully downscaled climatic variables at the 95 % significance level. Downscaling results using MIHR model show that minimum and maximum temperatures will increase in the future (2011-2030, 2045-2065, and 2080-2099) during winter and summer in a range of +4.21 and +4.7 °C, and +3.62 and +3.55 °C, respectively. HadCM3 analysis also revealed an increase in minimum (˜+3.03 °C) and maximum (˜+3.3 °C) temperatures during wet and dry seasons. In addition, we examined how much mangrove area has changed during the past decades and, thus, if climate change non-stationarity impacts mangrove ecosystems. Our results using remote sensing techniques and the non-parametric Mann-Whitney two-sample test indicated a sharp decline in mangrove area during 1972,1987, and 1997 periods ( p value = 0.002). Non-stationary assessment using the generalized extreme value (GEV) distributions by including mangrove area as a covariate further indicated that the null hypothesis of the stationary climate (no trend) should be rejected due to the very low p values for precipitation ( p value = 0.0027), minimum ( p value = 0

  3. Exploring new issues for coastal lagoons monitoring and management

    NASA Astrophysics Data System (ADS)

    Gaertner-Mazouni, Nabila; De Wit, Rutger

    2012-12-01

    Coastal lagoons are productive and highly vulnerable ecosystems, but their management is still problematic mostly because they constitute transitional interface between terrestrial and marine domains. The "4th European Conference on Coastal Lagoon Research - Research and Management for the conservation of coastal lagoon ecosystems, South North comparisons", was focused on the scientific research on coastal lagoons and the management for their conservation and sustainable use. Selected contributions were considered in this special issue of Estuarine Coastal and Shelf Science "Research and Management for the conservation of coastal lagoon ecosystems" as they deal with three important aspects for coastal lagoons management: (1) the design of monitoring programmes using biological compartments, (2) the ecosystem functioning and the impacts of perturbations and (3) ecosystem trajectories particularly after ecosystem restoration. Here we introduce the selected papers published in this issue, place these contributions in the perspective of the science-management interface and discuss new issues for coastal lagoon management.

  4. Impact of the tsunami and earthquake of 26th December 2004 on the vital coastal ecosystems of the Andaman and Nicobar Islands assessed using RESOURCESAT AWiFS data

    NASA Astrophysics Data System (ADS)

    Bahuguna, Anjali; Nayak, Shailesh; Roy, Dam

    2008-06-01

    Tsunami waves struck the Indian coast on 26th December 2004 affecting the Andaman and Nicobar group of islands. A quick assessment of the status of the vital coastal ecosystems has been made using pre- and post-tsunami Advance Wide Field Sensor (AWiFS) data of Indian satellite RESOURCESAT with an accuracy of 87-90% and the Kappa ranging from 0.8696 to 0.9053. Among the coastal ecosystems the coral reefs have suffered the maximum with the Nicobar reefs (69% eroded and 29% degraded) bearing the brunt more than the Andaman reefs (54% eroded and 22% degraded). Significant improvement to the condition of the reef damaged due to backwash has been noted. About 41% of the Sentinel reef area has undergone significant improvement. The continuance of the erosion of the southwestern Andaman reefs is due to the impact of recurring earthquakes. The impact on mangroves of both the groups of islands has been due to uprooting as well as inundation of seawater and resulting stagnation. Changes are expected in community structure of mangroves as a result of tsunami.

  5. Nitrogen Flux in Watersheds: The Role of Atmospheric Deposition, Waste Water Treatment Plants and Climate Oscillations in Nitrogen Exported to the Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Showers, W. J.; Harris, J.; Genna, B.

    2007-12-01

    Quantifying the flux of nitrate from different sources in watersheds is important to understand the increased flux of nitrogen to coastal ecosystems. Recent technological advances in chemical sensor networks has demonstrated that chemical variability in aquatic environments are chronically under-sampled, and that many chemical monitoring programs with monthly or daily sampling rates are inadequate to characterize the dominate seasonal, daily or semi-diurnal process and episodic storm event fluxes. The RiverNet program has measured the nitrate flux in the Neuse River Basin, NC on a 15 minute interval over the past six years. Significant diurnal variation has been observed in nitrate concentrations during high and low flow periods associated with waste water treatment plants in the basin. Other species of riverine nitrogen do not show this type of concentration variation. Comparison of 15 minute versus 24 hour nitrate flux calculations show that daily monitoring programs underestimate N flux by 10-40%. Two RiverNet stations were used to estimate nitrate gains in the river from biosolid application fields at one waste water treatment plant. Over a 4 year period non-point source nitrate entering the river from the fields was 50% of the nitrogen released in plant effluent. Non-point source flux from biosolid application fields is event driven and can not be determined from daily or weekly sampling. These results suggest that the importance of waste water treatment plant N flux has been under-estimated in current models. The δ15N and δ 18O composition of nitrate has been used to assess importance of atmospheric sources to watershed N flux, but because of transformations contaminant source tracing with these isotopes has been complicated. We have used multiple isotope tracers of nitrate δ 15N, Δ 17O, δ 18O to distinguish between different N contamination sources, areas of extensive denitrification, and areas of atmospheric N. Areas of extensive denitrification are

  6. Buried paleo-sedimentary basins in the north-eastern Black Sea-Azov Sea area and tectonic implications (DOBRE-2)

    NASA Astrophysics Data System (ADS)

    Starostenko, Vitaly; Stephenson, Randell; Janik, Tomasz; Tolkunov, Anatoly

    2014-05-01

    A number of independent but inter-related projects carried out under the auspices of various national and international programmes in Ukraine including DARIUS were aimed at imaging the upper lithosphere, crustal and sedimentary basin architecture in the north-eastern Black Sea, southern Crimea and Kerch peninsulas and the Azov Sea. This region marks the transition from relatively undisturbed Precambrian European cratonic crust and lithosphere north of the Azov Sea to areas of significant Phanerozoic tectonics and basin development, in both extensional as well as compressional environments, to the south, including the eastern Black Sea rift, which is the main sedimentary basin of the study area. The wide-angle reflection and refraction (WARR) profile DOBRE-2, a Ukrainian national project with international participation (see below), overlapping some 115 km of the southern end of the DOBREfraction'99 profile (that crosses the intracratonic Donbas Foldbelt) in the north and running to the eastern Black Sea basin in the south, utilised on- and offshore recording and energy sources. It maps crustal velocity structure across the craton margin and documents, among other things, that the Moho deepens from 40 km to ~47 km to the southwest below the Azov Sea and Crimean-Caucasus deformed zone. A regional CDP seismic profile coincident with DOBRE-2, crossing the Azov Sea, Kerch Peninsula and the north-eastern Black Sea southwest to the Ukraine-Turkey border, acquired by Ukrgeofisika (the Ukrainian national geophysical company) reveals in its inferred structural relationships the ages of Cretaceous and younger extensional and subsequent basin inversion tectonic events as well as the 2D geometry of basement displacement associated with post mid-Eocene inversion. A direct comparison of the results of the WARR velocity model and the near-vertical reflection structural image has been made by converting the former into the time domain. The results dramatically demonstrate that

  7. Isolation and Genetic Characterization of Avian Influenza Viruses Isolated from Wild Birds in the Azov-Black Sea Region of Ukraine (2001-2012).

    PubMed

    Muzyka, Denys; Pantin-Jackwood, Mary; Spackman, Erica; Smith, Diane; Rula, Oleksandr; Muzyka, Nataliia; Stegniy, Borys

    2016-05-01

    Wild bird surveillance for avian influenza virus (AIV) was conducted from 2001 to 2012 in the Azov - Black Sea region of the Ukraine, considered part of the transcontinental wild bird migration routes from northern Asia and Europe to the Mediterranean, Africa, and southwest Asia. A total of 6281 samples were collected from wild birds representing 27 families and eight orders for virus isolation. From these samples, 69 AIVs belonging to 15 of the 16 known hemagglutinin (HA) subtypes and seven of nine known neuraminidase (NA) subtypes were isolated. No H14, N5, or N9 subtypes were identified. In total, nine H6, eight H1, nine H5, seven H7, six H11, six H4, five H3, five H10, four H8, three H2, three H9, one H12, one H13, one H15, and one H16 HA subtypes were isolated. As for the NA subtypes, twelve N2, nine N6, eight N8, seven N7, six N3, four N4, and one undetermined were isolated. There were 27 HA and NA antigen combinations. All isolates were low pathogenic AIV except for eight highly pathogenic (HP) AIVs that were isolated during the H5N1 HPAI outbreaks of 2006-08. Sequencing and phylogenetic analysis of the HA genes revealed epidemiological connections between the Azov-Black Sea regions and Europe, Russia, Mongolia, and Southeast Asia. H1, H2, H3, H7, H8, H6, H9, and H13 AIV subtypes were closely related to European, Russian, Mongolian, and Georgian AIV isolates. H10, H11, and H12 AIV subtypes were epidemiologically linked to viruses from Europe and Southeast Asia. Serology conducted on serum and egg yolk samples also demonstrated previous exposure of many wild bird species to different AIVs. Our results demonstrate the great genetic diversity of AIVs in wild birds in the Azov-Black Sea region as well as the importance of this region for monitoring and studying the ecology of influenza viruses. This information furthers our understanding of the ecology of avian influenza viruses in wild bird species.

  8. Science and Measurement Requirements for a Plant Physiology and Functional Types Mission: Measuring the Composition, Function and Health of Global Land and Coastal Ocean Ecosystems

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Rogez, Francois; Green, Rob; Ungar, Steve; Knox, Robert; Asner, Greg; Muller-Karger, Frank; Bissett, Paul; Chekalyuk, Alex; Dierssen, Heidi; Gamon, John; Hook, Simon; Meister, Gerhard; Middleton, Betsy; Ollinger, Scott; Roberts, Dar; Siegel, Dave; Townsend, Phil; Saatchi, Sassan; Unstin, Susan; Turner, Woody; Wickland, Diane; Bontempi, Paula; Emanuel, Bill

    2007-01-01

    This slide presentation reviews the proposed Plant Physiology and Functional Types (PPFT) Mission. The National Academy of Sciences Decadal Survey, placed a critical priority on a Mission to observe distribution and changes in ecosystem functions. The PPFT satellite mission provides the essential measurements needed to assess drivers of change in biodiversity and ecosystem services that affect human welfare. The presentation reviews the science questions that the mission will be designed to answer, the science rationale, the science measurements, the mission concept, the planned instrumentation, the calibration method, and key signal to noise ratios and uniformity requirements.

  9. Quantitative Analysis and Simulation of Mediterranean Coastal Ecosystems: The Gulf of Naples, a Case Study. Report of a Workshop on Ecosystem Modelling (Naples, Italy, March 28-April 10, 1981).

    ERIC Educational Resources Information Center

    Carrada, G., Ed.; And Others

    The third workshop on marine ecosystem modeling is one in a sequence of activities designed to promote modeling as a research and management tool among Mediterranean marine scientists. Previous workshops served mainly as a forum for a familiarization with modeling, while this workshop focused on specific implementation of modeling technology. The…

  10. Restoring the Mississippi River Basin from the Catchment to the Coast Defines Science and Policy Issues of Ecosystem Services Associated with Alluvial and Coastal Deltaic Floodplains: Soil Conservation, Nutrient Reduction, Carbon Sequestration, and Flood Control

    NASA Astrophysics Data System (ADS)

    Twilley, R.

    2014-12-01

    Large river systems are major economic engines that provide national economic wealth in transporting commerce and providing extensive agriculture production, and their coastal deltas are sites of significant ports, energy resources and fisheries. These coupled natural and social systems from the catchment to the coast depend on how national policies manage the river basins that they depend. The fundamental principle of the Mississippi River Basin, as in all basins, is to capitalize on the ability of fertile soil that moves from erosional regions of a large watershed, through downstream regions of the catchment where sediment transport and storage builds extensive floodplains, to the coastal region of deposition where deltas capture sediment and nutrients before exported to the oceans. The fate of soil, and the ability of that soil to do work, supports the goods and services along its path from the catchment to the coast in all large river basin and delta systems. Sediment is the commodity of all large river basin systems that together with the seasonal pulse of floods across the interior of continents provide access to the sea forming the assets that civilization and economic engines have tapped to build national and global wealth. Coastal landscapes represent some of the most altered ecosystems worldwide and often integrate the effects of processes over their entire catchment, requiring systemic solutions to achieve restoration goals from alluvial floodplains upstream to coastal deltaic floodplains downstream. The urgent need for wetland rehabilitation at landscape scales has been initiated through major floodplain reclamation and hydrologic diversions to reconnect the river with wetland processes. But the constraints of sediment delivery and nutrient enrichment represent some critical conflicts in earth surface processes that limit the ability to design 'self sustaining' public work projects; particularly with the challenges of accelerated sea level rise. Only

  11. Ecosystem functioning approach applied to a large contaminated coastal site: the study case of the Mar Piccolo of Taranto (Ionian Sea).

    PubMed

    Cibic, Tamara; Bongiorni, Lucia; Borfecchia, Flavio; Di Leo, Antonella; Franzo, Annalisa; Giandomenico, Santina; Karuza, Ana; Micheli, Carla; Rogelja, Manja; Spada, Lucia; Del Negro, Paola

    2016-07-01

    Knowledge on ecosystem functioning can largely contribute to promote ecosystem-based management and its application. The Mar Piccolo of Taranto is a densely populated area at a high risk of environmental crisis. Here, planktonic primary production (PP) and heterotrophic prokaryotic production (HPP) were measured as proxies of functioning in three sampling sites located in two inlets at different levels of industrial contamination, during three sampling surveys (June 2013, February and April 2014). To have a better overall view and provide some insights into the benthic-pelagic coupling, we integrated PP and HPP in the water column with those in the sediments and then discussed this with the origin of the organic matter pools based on analysis of stable isotopes. Heavy metals and polychlorobiphenyls (PCBs) were also analysed in the surface (1 cm) sediment layer and related to the overall ecosystem functioning. Multidimensional scaling (MDS) analysis, based on the main data, clearly separated the second inlet from the first one, more severely impacted by anthropogenic activities. The stable isotope mixing model suggested the prevalent terrestrial/riverine origin of the particulate organic matter pools (mean 45.5 %) in all sampling periods, whereas phytoplankton contributed up to 29 % in February. Planktonic PP and HPP rates followed the same pattern over the entire study period and seemed to respond to phytoplankton dynamics confirming this community as the main driver for the C cycling in the water column. On the contrary, benthic PP rates were almost negligible while HPP rates were lower or comparable to those in the water column indicating that although the Mar Piccolo is very shallow, the water column is much more productive than the surface sediments. The sediment resuspension is likely responsible for a pulsed input of contaminants into the water column. However, their interference with the proper functioning of the pelagic ecosystem seems to be limited to

  12. Changes in Landscape-level Carbon Balance of an Arctic Coastal Plain Tundra Ecosystem Between 1970-2100, in Response to Projected Climate Change

    NASA Astrophysics Data System (ADS)

    Lara, M. J.; McGuire, A. D.; Euskirchen, E. S.; Genet, H.; Sloan, V. L.; Iversen, C. M.; Norby, R. J.; Zhang, Y.; Yuan, F.

    2014-12-01

    Northern permafrost regions are estimated to cover 16% of the global soil area and account for approximately 50% of the global belowground organic carbon pool. However, there are considerable uncertainties regarding the fate of this soil carbon pool with projected climate warming over the next century. In northern Alaska, nearly 65% of the terrestrial surface is composed of polygonal tundra, where geomorphic land cover types such as high-, flat-, and low-center polygons influence local surface hydrology, plant community composition, nutrient and biogeochemical cycling, over small spatial scales. Due to the lack of representation of these fine-scale geomorphic types and ecosystem processes, in large-scale terrestrial ecosystem models, future uncertainties are large for this tundra region. In this study, we use a new version of the terrestrial ecosystem model (TEM), that couples a dynamic vegetation model (in which plant functional types compete for water, nitrogen, and light) with a dynamic soil organic model (in which temperature, moisture, and associated organic/inorganic carbon and nitrogen pools/fluxes vary together in vertically resolved layers) to simulate ecosystem carbon balance. We parameterized and calibrated this model using data specific to the local climate, vegetation, and soil associated with tundra geomorphic types. We extrapolate model results at a 1km2 resolution across the ~1800 km2 Barrow Peninsula using a tundra geomorphology map, describing ten dominant geomorphic tundra types (Lara et al. submitted), to estimate the likely change in landscape-level carbon balance between 1970 and 2100 in response to projected climate change. Preliminary model runs for this region indicated temporal variability in carbon and active layer dynamics, specific to tundra geomorphic type over time. Overall, results suggest that it is important to consider small-scale discrete polygonal tundra geomorphic types that control local structure and function in regional

  13. Ecosystem functioning approach applied to a large contaminated coastal site: the study case of the Mar Piccolo of Taranto (Ionian Sea).

    PubMed

    Cibic, Tamara; Bongiorni, Lucia; Borfecchia, Flavio; Di Leo, Antonella; Franzo, Annalisa; Giandomenico, Santina; Karuza, Ana; Micheli, Carla; Rogelja, Manja; Spada, Lucia; Del Negro, Paola

    2016-07-01

    Knowledge on ecosystem functioning can largely contribute to promote ecosystem-based management and its application. The Mar Piccolo of Taranto is a densely populated area at a high risk of environmental crisis. Here, planktonic primary production (PP) and heterotrophic prokaryotic production (HPP) were measured as proxies of functioning in three sampling sites located in two inlets at different levels of industrial contamination, during three sampling surveys (June 2013, February and April 2014). To have a better overall view and provide some insights into the benthic-pelagic coupling, we integrated PP and HPP in the water column with those in the sediments and then discussed this with the origin of the organic matter pools based on analysis of stable isotopes. Heavy metals and polychlorobiphenyls (PCBs) were also analysed in the surface (1 cm) sediment layer and related to the overall ecosystem functioning. Multidimensional scaling (MDS) analysis, based on the main data, clearly separated the second inlet from the first one, more severely impacted by anthropogenic activities. The stable isotope mixing model suggested the prevalent terrestrial/riverine origin of the particulate organic matter pools (mean 45.5 %) in all sampling periods, whereas phytoplankton contributed up to 29 % in February. Planktonic PP and HPP rates followed the same pattern over the entire study period and seemed to respond to phytoplankton dynamics confirming this community as the main driver for the C cycling in the water column. On the contrary, benthic PP rates were almost negligible while HPP rates were lower or comparable to those in the water column indicating that although the Mar Piccolo is very shallow, the water column is much more productive than the surface sediments. The sediment resuspension is likely responsible for a pulsed input of contaminants into the water column. However, their interference with the proper functioning of the pelagic ecosystem seems to be limited to

  14. The use of protozoa in ecotoxicology: application of multiple endpoint tests of the ciliate E. crassus for the evaluation of sediment quality in coastal marine ecosystems.

    PubMed

    Gomiero, A; Dagnino, A; Nasci, C; Viarengo, A

    2013-01-01

    Despite an increasing number of surveys describing adverse effects of contaminated sediments on marine organisms, few studies have addressed protists. In this study, the free-crawling marine ciliate Euplotes crassus was evaluated as the test organism for the screening of sediment toxicity using sediments from both coastal and estuarine sites of the Venice Lagoon (Marghera harbour [MH], Valle Millecampi [MV], Murano island [MI] and Lido inlet [LI]). Two endpoints of high ecological value, mortality (Mry) and replication rate (RpR), were assessed in combination with the two sublethal biomarkers of stress, endocytotic rate (Ecy) and lysosomal membrane stability (NRRT). The results showed a significant inhibition of RpR, Ecy and NRRT paralleled by a small and insignificantly increased Mry of the exposed specimens. Our results thus demonstrate that only a combination of mortality and sublethal biomarkers was able to characterise an exposure-related stress syndrome. The suite of biomarkers described here was also able to detect and resolve a pollution-induced stress syndrome at an early stage of pollution. The contamination level of the sediments was assessed using chemical analysis, by estimating bioavailability and by computing a toxic pressure coefficient (TPC) to account for potential additive effects of different pollutants. The observed biological responses were consistent with the contamination levels in sediments, suggesting a high potential for using Protozoa in bioassays to assess environmental risk in coastal marine systems.

  15. Ecosystem services provided by pacific NW Estuaries: State of knowledge

    EPA Science Inventory

    Coastal regions in the United States are rapidly developing areas, with increasing urbanization and growing populations. Estuarine and nearshore coastal marine waters provide valuable ecosystem services to resident and transient human communities. In the Pacific Northwest (PNW)...

  16. Megacities in the Coastal Zone

    NASA Astrophysics Data System (ADS)

    von Glasow, R.; Jickells, T.; Baklanov, A.; Carmichael, G. R.; Church, T. M.; Gallardo, L.; Hughes, C.; Kanakidou, M.; Liss, P. S.; Mee, L.; Raine, R.; Ramachandran, P.; Ramesh, R.; Sundseth, K.; Tsunogai, U.; Uematsu, M.; Zhu, T.

    2012-04-01

    Megacities have long been recognised as important drivers for socioeconomic development but also as sources of environmental challenges. A large number of megacities are located in the coastal zone where land, atmosphere and ocean meet, posing additional challenges for our understanding of the interactions. The atmospheric flow is complicated not only by urban heat island effects but also topographic flows and sea breezes which also lead to profound changes in clouds and precipitation. Inflow of oceanic air (rich in sea salt) into the polluted city's atmosphere and outflow of polluted air onto a much cleaner ocean lead to very specific interactions, the net effects of which are not well understood. The addition of contaminants to the coastal waters both by atmospheric deposition and fluvial inputs can affect the coastal ecosystems dramatically, limiting their ability to function and provide ecosystem services, e.g. fisheries and aquaculture. Changes to coastal ecosystems also affect fluxes of gases and particles to the atmosphere and can lead to harmful algal blooms. The scale of influence of megacities in the coastal zone is at least hundreds if not thousands of kilometres in the atmosphere and tens to hundreds of kilometres in the ocean, the latter strongly dependent on the hydrographic setting. Coastal megacities are at risk by sea level rise, floods and storms; they are at the forefront of change and scientifically well informed planning can improve livelihoods and ecosystem health but only if we take a holistic approach to study and monitor these regions.

  17. How is Shrimp Aquaculture Transforming Coastal Livelihoods and Lagoons in Estero Real, Nicaragua?: The Need to Integrate Social-Ecological Research and Ecosystem-Based Approaches

    NASA Astrophysics Data System (ADS)

    Benessaiah, Karina; Sengupta, Raja

    2014-08-01

    Ecosystem-based approaches to aquaculture integrate environmental concerns into planning. Social-ecological systems research can improve this approach by explicitly relating ecological and social dynamics of change at multiple scales. Doing so requires not only addressing direct effects of aquaculture but also considering indirect factors such as changes in livelihood strategies, governance dynamics, and power relations. We selected the community of Puerto Morazán, Nicaragua as a case study to demonstrate how the introduction of small-scale aquaculture radically transformed another key livelihood activity, lagoon shrimp fishing, and the effects that these changes have had on lagoons and the people that depend on them. We find that shrimp aquaculture played a key role in the collapse, in the 1990s, of an existing lagoon common-property management. Shrimp aquaculture-related capital enabled the adoption of a new fishing technique that not only degraded lagoons but also led to their gradual privatization. The existence of social ties between small-scale shrimp farmers and other community members mitigated the impacts of privatization, illustrating the importance of social capital. Since 2008, community members are seeking to communally manage the lagoons once again, in response to degraded environmental conditions and a consolidation of the shrimp industry at the expense of smaller actors. This research shows that shrimp aquaculture intersects with a complex set of drivers, affecting not only how ecosystems are managed but also how they are perceived and valued. Understanding these social-ecological dynamics is essential to implement realistic policies and management of mangrove ecosystems and address the needs of resource-dependent people.

  18. How is shrimp aquaculture transforming coastal livelihoods and lagoons in Estero Real, Nicaragua? The need to integrate social-ecological research and ecosystem-based approaches.

    PubMed

    Benessaiah, Karina; Sengupta, Raja

    2014-08-01

    Ecosystem-based approaches to aquaculture integrate environmental concerns into planning. Social-ecological systems research can improve this approach by explicitly relating ecological and social dynamics of change at multiple scales. Doing so requires not only addressing direct effects of aquaculture but also considering indirect factors such as changes in livelihood strategies, governance dynamics, and power relations. We selected the community of Puerto Morazán, Nicaragua as a case study to demonstrate how the introduction of small-scale aquaculture radically transformed another key livelihood activity, lagoon shrimp fishing, and the effects that these changes have had on lagoons and the people that depend on them. We find that shrimp aquaculture played a key role in the collapse, in the 1990s, of an existing lagoon common-property management. Shrimp aquaculture-related capital enabled the adoption of a new fishing technique that not only degraded lagoons but also led to their gradual privatization. The existence of social ties between small-scale shrimp farmers and other community members mitigated the impacts of privatization, illustrating the importance of social capital. Since 2008, community members are seeking to communally manage the lagoons once again, in response to degraded environmental conditions and a consolidation of the shrimp industry at the expense of smaller actors. This research shows that shrimp aquaculture intersects with a complex set of drivers, affecting not only how ecosystems are managed but also how they are perceived and valued. Understanding these social-ecological dynamics is essential to implement realistic policies and management of mangrove ecosystems and address the needs of resource-dependent people.

  19. Effects of ammonium effluents on planktonic primary production and decomposition in a coastal brackish water environment. II. Interrelations between abiotic and biotic components of the planktonic ecosystem

    NASA Astrophysics Data System (ADS)

    Tamminen, T.

    Interaction between abiotic and biotic components of the planktonic ecosystem in an ammonium-loaded archipelago area were studied at the entrance of the Gulf of Finland, Baltic Sea. Gradients of chlorophyll a, primary productivity and heterotrophic activity evolved around the discharge site. Multivariate analyses described typical stages in the succession of the planktonic community. A pronounced heterotrophic phase was observed, which referred especially to the innermost research area. Since acute stimulations of heterotrophic activity were observed only exceptionally in effluent tests, planktonic and benthic primary production and sediment metabolism were considered as mediators of effluent effects on heterotrophy.

  20. Unravelling the carbon and sulphur metabolism in coastal soil ecosystems using comparative cultivation-independent genome-level characterisation of microbial communities.

    PubMed

    Yousuf, Basit; Kumar, Raghawendra; Mishra, Avinash; Jha, Bhavanath

    2014-01-01

    Bacterial autotrophy contributes significantly to the overall carbon balance, which stabilises atmospheric CO2 concentration and decelerates global warming. Little attention has been paid to different modes of carbon/sulphur metabolism mediated by autotrophic bacterial communities in terrestrial soil ecosystems. We studied these pathways by analysing the distribution and abundance of the diagnostic metabolic marker genes cbbM, apsA and soxB, which encode for ribulose-1,5-bisphosphate carboxylase/oxygenase, adenosine phosphosulphate reductase and sulphate thiohydrolase, respectively, among different contrasting soil types. Additionally, the abundance of community members was assessed by quantifying the gene copy numbers for 16S rRNA, cbbL, cbbM, apsA and soxB. Distinct compositional differences were observed among the clone libraries, which revealed a dominance of phylotypes associated with carbon and sulphur cycling, such as Gammaproteobacteria (Thiohalomonas, Allochromatium, Chromatium, Thiomicrospira) and Alphaproteobacteria (Rhodopseudomonas, Rhodovulum, Paracoccus). The rhizosphere soil was devoid of sulphur metabolism, as the soxB and apsA genes were not observed in the rhizosphere metagenome, which suggests the absence or inadequate representation of sulphur-oxidising bacteria. We hypothesise that the novel Gammaproteobacteria sulphur oxidisers might be actively involved in sulphur oxidation and inorganic carbon fixation, particularly in barren saline soil ecosystems, suggesting their significant putative ecological role and contribution to the soil carbon pool.

  1. Methane and Dissolved Organic Carbon Sustain an Ecosystem within a Density Stratified Coastal Aquifer of the Yucatan Peninsula, Mexico. Evidence for a Subterranean Microbial Loop?

    NASA Astrophysics Data System (ADS)

    Brankovits, David; Pohlman, John W.; Niemann, Helge; Leigh, Mary Beth; Casso, Michael; Alvarez Noguera, Fernando; Lehmann, Moritz F.; Iliffe, Thomas M.

    2016-04-01

    In coastal karst terrains, anchialine caves that meander in density stratified aquifers provide an exceptional opportunity for scientists to study in situ biogeochemical processes within the groundwater. The Caribbean coast of Mexico's Yucatan Peninsula contains over 1000 km of mapped cave passages, the densest known accumulation of anchialine caves in the world. A decades-old study based on the simple observation of 13C-depleted biomass in the cave-adapted fauna suggested biogeochemical processes related to methane-linked carbon cycling and/or other chemoautotrophic pathways as a source of energy and carbon. In this study, we utilized cave diving and a novel sampling device (the Octopipi) to obtain cm-scale water column profiles of methane, DOC and DIC concentrations and stable carbon isotope ratios to identify the energy sources and microbial processes that sustain life in these subterranean estuaries. High concentrations (up to 9522 nM) low-δ13C (as low as -67.5 permil) methane near the ceiling of the cave (in the fresh water section of the stratified water column) and evidence for methane oxidation in the brackish water portion of the water column suggest methane availability and consumption. Profiles obtained by the Octopipi demonstrate that virtually all of the methane (˜99%) is oxidized at the interface of anoxic freshwater and hypoxic brackish water masses. The high-methane water mass near the ceiling also contained elevated concentrations of DOC (851 μM) that displayed comparatively high δ13C (-27.8 to -28.2 permil), suggesting terrestrial organic matter input from the overlying soils. Low-methane brackish and saline water was characterized by lower DOC concentration (15 to 97 μM), yet with similar δ13C (-25.9 to -27.2 permil), suggesting significant terrestrial organic matter consumption or removal with increasing depth, from fresh to saline water, within the water column. The presence of 13C-depleted fatty acids (e.g., C16:1ω7c with δ13C

  2. Ten Years after the Prestige Oil Spill: Seabird Trophic Ecology as Indicator of Long-Term Effects on the Coastal Marine Ecosystem

    PubMed Central

    Moreno, Rocío; Jover, Lluís; Diez, Carmen; Sardà, Francesc; Sanpera, Carola

    2013-01-01

    Major oil spills can have long-term impacts since oil pollution does not only result in acute mortality of marine organisms, but also affects productivity levels, predator-prey dynamics, and damages habitats that support marine communities. However, despite the conservation implications of oil accidents, the monitoring and assessment of its lasting impacts still remains a difficult and daunting task. Here, we used European shags to evaluate the overall, lasting effects of the Prestige oil spill (2002) on the affected marine ecosystem. Using δ15N and Hg analysis, we trace temporal changes in feeding ecology potentially related to alterations of the food web due to the spill. Using climatic and oceanic data, we also investigate the influence of North Atlantic Oscillation (NAO) index, the sea surface temperature (SST) and the chlorophyll a (Chl a) on the observed changes. Analysis of δ15N and Hg concentrations revealed that after the Prestige oil spill, shag chicks abruptly switched their trophic level from a diet based on a high percentage of demersal-benthic fish to a higher proportion of pelagic/semi-pelagic species. There was no evidence that Chl a, SST and NAO reflected any particular changes or severity in environmental conditions for any year or season that may explain the sudden change observed in trophic level. Thus, this study highlighted an impact on the marine food web for at least three years. Our results provide the best evidence to date of the long-term consequences of the Prestige oil spill. They also show how, regardless of wider oceanographic variability, lasting impacts on predator-prey dynamics can be assessed using biochemical markers. This is particularly useful if larger scale and longer term monitoring of all trophic levels is unfeasible due to limited funding or high ecosystem complexity. PMID:24130877

  3. Pipe dream? Envisioning a grassroots Python ecosystem of open, common software tools and data access in support of river and coastal biogeochemical research (Invited)

    NASA Astrophysics Data System (ADS)

    Mayorga, E.

    2013-12-01

    Practical, problem oriented software developed by scientists and graduate students in domains lacking a strong software development tradition is often balkanized into the scripting environments provided by dominant, typically proprietary tools. In environmental fields, these tools include ArcGIS, Matlab, SAS, Excel and others, and are often constrained to specific operating systems. While this situation is the outcome of rational choices, it limits the dissemination of useful tools and their integration into loosely coupled frameworks that can meet wider needs and be developed organically by groups addressing their own needs. Open-source dynamic languages offer the advantages of an accessible programming syntax, a wealth of pre-existing libraries, multi-platform access, linkage to community libraries developed in lower level languages such as C or FORTRAN, and access to web service infrastructure. Python in particular has seen a large and increasing uptake in scientific communities, as evidenced by the continued growth of the annual SciPy conference. Ecosystems with distinctive physical structures and organization, and mechanistic processes that are well characterized, are both factors that have often led to the grass-roots development of useful code meeting the needs of a range of communities. In aquatic applications, examples include river and watershed analysis tools (River Tools, Taudem, etc), and geochemical modules such as CO2SYS, PHREEQ and LOADEST. I will review the state of affairs and explore the potential offered by a Python tool ecosystem in supporting aquatic biogeochemistry and water quality research. This potential is multi-faceted and broadly involves accessibility to lone grad students, access to a wide community of programmers and problem solvers via online resources such as StackExchange, and opportunities to leverage broader cyberinfrastructure efforts and tools, including those from widely different domains. Collaborative development of such

  4. Ten years after the prestige oil spill: seabird trophic ecology as indicator of long-term effects on the coastal marine ecosystem.

    PubMed

    Moreno, Rocío; Jover, Lluís; Diez, Carmen; Sardà-Palomera, Francesc; Sardà, Francesc; Sanpera, Carola

    2013-01-01

    Major oil spills can have long-term impacts since oil pollution does not only result in acute mortality of marine organisms, but also affects productivity levels, predator-prey dynamics, and damages habitats that support marine communities. However, despite the conservation implications of oil accidents, the monitoring and assessment of its lasting impacts still remains a difficult and daunting task. Here, we used European shags to evaluate the overall, lasting effects of the Prestige oil spill (2002) on the affected marine ecosystem. Using δ ¹⁵N and Hg analysis, we trace temporal changes in feeding ecology potentially related to alterations of the food web due to the spill. Using climatic and oceanic data, we also investigate the influence of North Atlantic Oscillation (NAO) index, the sea surface temperature (SST) and the chlorophyll a (Chl a) on the observed changes. Analysis of δ ¹⁵N and Hg concentrations revealed that after the Prestige oil spill, shag chicks abruptly switched their trophic level from a diet based on a high percentage of demersal-benthic fish to a higher proportion of pelagic/semi-pelagic species. There was no evidence that Chl a, SST and NAO reflected any particular changes or severity in environmental conditions for any year or season that may explain the sudden change observed in trophic level. Thus, this study highlighted an impact on the marine food web for at least three years. Our results provide the best evidence to date of the long-term consequences of the Prestige oil spill. They also show how, regardless of wider oceanographic variability, lasting impacts on predator-prey dynamics can be assessed using biochemical markers. This is particularly useful if larger scale and longer term monitoring of all trophic levels is unfeasible due to limited funding or high ecosystem complexity.

  5. High abundance and diversity of consumers associated with eutrophic areas in a semi-desert macrotidal coastal ecosystem in Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Martinetto, Paulina; Daleo, Pedro; Escapa, Mauricio; Alberti, Juan; Isacch, Juan Pablo; Fanjul, Eugenia; Botto, Florencia; Piriz, Maria Luz; Ponce, Gabriela; Casas, Graciela; Iribarne, Oscar

    2010-07-01

    Here we evaluated the response to eutrophication in terms of abundance and diversity of flora and fauna in a semi-desert macrotidal coastal system (San Antonio bay, Patagonia, Argentina, 40° 48' S) where signs of eutrophication (high nutrient concentration, seaweed blooms, high growth rate of macroalgae) have been reported. We compared abundances and species composition of macroalgae, small infaunal and epifaunal invertebrates, and birds associated with tidal channels of the San Antonio Bay subject to contrasting anthropogenic influence. Macroalgae were more abundant and diverse in the channel closer to human activity where nutrient concentrations were also higher. In contrast to what others have observed in eutrophic sites, small invertebrates and birds were also more abundant and diverse in the channel with macroalgal blooms and high nutrient concentration. The large water flushing during the tidal cycle could prevent anoxic or hypoxic events, making the environment suitable for consumers. Thus, this could be a case in which eutrophication supports high densities of consumers by increasing food availability, rather than negatively affecting the survival of organisms.

  6. Life-history- and ecosystem-driven variation in composition and residence pattern of seabream species (Perciformes: Sparidae) in two Mediterranean coastal lagoons.

    PubMed

    Mariani, Stefano

    2006-01-01

    Species composition and length-frequency distributions of six sparid fish species were investigated in two central Mediterranean coastal lagoons off the western coast of Italy: Fogliano and Caprolace. In the former, the sparid fauna was dominated by the gilt-head seabream (Sparus aurata), whereas in Caprolace, species composition was more homogeneous across all six species. Size structure varied considerably among species: S. aurata, Diplodus puntazzo and Diplodus vulgaris had a single-cohort structure in both lagoons, whereas in Diplodus annularis and Diplodus sargus at least two cohorts were identified. In Lithognathus mormyrus inter-lagoon variation was detected, with a single-cohort structure in Fogliano and a two-cohort structure in Caprolace. While inter-specific differences can be explained by variation in life-history strategies among species, intra-specific variation in L. mormyrus is likely to be determined by the known differences between the two habitats: Fogliano being a more confined lagoon, and Caprolace more extensively influenced by the sea. PMID:16266729

  7. Sediment analysis does not provide a good measure of heavy metal bioavailability to Cerastoderma glaucum (Mollusca: Bivalvia) in confined coastal ecosystems

    SciTech Connect

    Arjonilla, M.; Gomez-Parra, A. ); Forja, J.M. )

    1994-06-01

    Sediments are considered a sink for metals entering the marine environment, especially in coastal areas. Once in the sediment layer, metals are distributed amongst all different phases of the sediment, governed by physicochemical conditions. One fraction is immobilized due to its incorporation into weakly reactive phases of the sediment; Another fraction may remain weakly bound to organic or mineral phases as sorbed, precipitated, or coprecipitated and complexed forms and can be assimilated by detritivorous and suspension-feeding benthic organisms. Many selective procedures have been suggested for metal extraction from sediments in order to estimate concentrations of fractions which are directly or indirectly available to the biota. The absence of a chemical treatment adequate for accurate quantification of metal bioavailability is well-known. Nevertheless, a good correlation between metal content in some organisms and in the sediment after a specific extraction treatment has sometimes been found so sediments are frequently used as indicators in pollution studies. In this paper, concentrations of heavy metals (Fe, Mn, Cu, Ph and Cd) in the cockle Cerastoderma glaucum, and in sediments at the same sampling locations are compared. C. glaucum is a suspension and deposit feeder, inhabiting a wide range of salinities. The study sampled 8 saltponds in the south of Cadiz Bay, located along a gradient of contamination produced by urban and industrial sewage effluents. The study sought to identify areas with different relative risk from metal pollution, in terms of biological effects and effects on water quality due to natural resuspension of sediments or to human relocation of sediments. C. glaucum was selected because of its wide distribution in the Bay, and also because it has no commercial value. This second fact means that its distribution and growth is not directly affected by man. 19 refs., 4 figs., 1 tab.

  8. Plant Host Species and Geographic Distance Affect the Structure of Aboveground Fungal Symbiont Communities, and Environmental Filtering Affects Belowground Communities in a Coastal Dune Ecosystem.

    PubMed

    David, Aaron S; Seabloom, Eric W; May, Georgiana

    2016-05-01

    Microbial symbionts inhabit tissues of all plants and animals. Their community composition depends largely on two ecological processes: (1) filtering by abiotic conditions and host species determining the environments that symbionts are able to colonize and (2) dispersal-limitation determining the pool of symbionts available to colonize a given host and community spatial structure. In plants, the above- and belowground tissues represent such distinct habitats for symbionts that we expect different effects of filtering and spatial structuring on their symbiont communities. In this study, we characterized above- and belowground communities of fungal endophytes--fungi living asymptomatically within plants--to understand the contributions of filtering and spatial structure to endophyte community composition. We used a culture-based approach to characterize endophytes growing in leaves and roots of three species of coastal beachgrasses in dunes of the USA Pacific Northwest. For leaves, endophyte isolation frequency and OTU richness depended primarily on plant host species. In comparison, for roots, both isolation frequency and OTU richness increased from the nutrient-poor front of the dune to the higher-nutrient backdune. Endophyte community composition in leaves exhibited a distance-decay relationship across the region. In a laboratory assay, faster growth rates and lower spore production were more often associated with leaf- than root-inhabiting endophytes. Overall, our results reveal a greater importance of biotic filtering by host species and dispersal-limitation over regional geographic distances for aboveground leaf endophyte communities and stronger effects of abiotic environmental filtering and locally patchy distributions for belowground root endophyte communities. PMID:26626912

  9. Seagrasses and the Coastal Marine Environment

    ERIC Educational Resources Information Center

    Phillips, Ronald C.

    1978-01-01

    Coastal ecosystems are the most highly productive in the world. This article discusses seagrasses, major coastal producers, and provides information on their ecology, productivity, position in food chains, and role in sediment stabilization. Recent attempts to restore seagrasses in areas of massive kills are described. (MA)

  10. Shifting paradigms in coastal restoration: Six decades' lessons from China.

    PubMed

    Liu, Zezheng; Cui, Baoshan; He, Qiang

    2016-10-01

    With accelerating degradation of coastal environment worldwide, restoration has been elevated as a global strategy to enhance the functioning and social services of coastal ecosystems. While many developing countries suffer from intense coastal degradation, current understanding of the science and practice of their coastal restorations is extremely limited. Based on analysis of >1000 restoration projects, we provide the first synthesis of China's coastal restorations. We show that China's coastal restoration has recently entered a rapidly developing stage, with an increasing number of restoration projects carried out in multiple types of coastal ecosystems. While long-term, national-level restorations enforced by the government appear promising for some coastal ecosystems, especially mangroves, restorations of many other coastal ecosystems, such as salt marshes, seagrasses and coral reefs, have been much less implemented, likely due to under-appreciation of their ecosystem services values. Furthermore, the planning, techniques, research/assessment, and participation models underlying current restorations remain largely inadequate for restoration to effectively halt rapid coastal degradation. To promote success, we propose a framework where paradigms in current restorations from planning to implementation and assessment are transformed in multiple ways. Our study has broad implications for coastal environmental management policies and practices, and should inform sustainable development of coupled human-ocean systems in many countries. PMID:27220097

  11. Shifting paradigms in coastal restoration: Six decades' lessons from China.

    PubMed

    Liu, Zezheng; Cui, Baoshan; He, Qiang

    2016-10-01

    With accelerating degradation of coastal environment worldwide, restoration has been elevated as a global strategy to enhance the functioning and social services of coastal ecosystems. While many developing countries suffer from intense coastal degradation, current understanding of the science and practice of their coastal restorations is extremely limited. Based on analysis of >1000 restoration projects, we provide the first synthesis of China's coastal restorations. We show that China's coastal restoration has recently entered a rapidly developing stage, with an increasing number of restoration projects carried out in multiple types of coastal ecosystems. While long-term, national-level restorations enforced by the government appear promising for some coastal ecosystems, especially mangroves, restorations of many other coastal ecosystems, such as salt marshes, seagrasses and coral reefs, have been much less implemented, likely due to under-appreciation of their ecosystem services values. Furthermore, the planning, techniques, research/assessment, and participation models underlying current restorations remain largely inadequate for restoration to effectively halt rapid coastal degradation. To promote success, we propose a framework where paradigms in current restorations from planning to implementation and assessment are transformed in multiple ways. Our study has broad implications for coastal environmental management policies and practices, and should inform sustainable development of coupled human-ocean systems in many countries.

  12. A First Look at the Turnover Dynamics of Low Molecular Weight Organic Carbon in Shallow and Deep Soils of Coastal Prairie Grassland Ecosystem

    NASA Astrophysics Data System (ADS)

    Mcfarland, J. W.; Lawrence, C. R.; Haw, M.; Waldrop, M. P.

    2015-12-01

    The functional importance of low molecular weight organic compounds (LMWOC) is in disproportion to their abundance within soil organic carbon (SOC) pools. They are critical in driving microbial metabolism, though microbial utilization of LMWOC is likely dependent on C chemistry. Studies of C turnover in soils tend to focus in shallower horizons despite that for many ecosystems a substantial fraction of SOC resides below 1 m. In this study, we examined the fate of two important components of soluble SOC, sugars and carboxylic acids, through a soil profile extending to 150 cm. Our objective was to evaluate the turnover of LMWOC under varying physical, biological, and chemical conditions through the soil column. Our study area is part of a soil chronosequence near Santa Cruz, CA. From the side wall of a soil pit we installed intact soil collars and injected 13C-labeled glucose (GLU), 13C-labeled oxalic acid (OA), or deionized water (control) into the A, B (argillic) , and B/C (mottled) horizons at depths of 25, 75, and 125 cm, respectively. We sampled soil gas for 13CO2 intensively at graduated sampling intervals (6 hours to 2 weeks). The entire experiment was also replicated in the laboratory. We measured dissolved organic C (DOC) and microbial biomass C (MBC), and calculated total recovery of 13C in atmospheric and soil pools. Measures of DOC indicated a significant priming effect in the deepest (mottled) horizon and an increase in MBC in the argillic and mottled horizons. In all instances residence time was significantly lower for GLU than OA and increased with depth for both substrates. Mass balance calculations from the laboratory component indicated stronger retention for GLU than OA for the upper soils; however, this trend reversed below the argillic horizon. We hypothesize the greater retention of OA in the deepest (mottled) soil horizon may result from enhanced organo-metal complexation (e.g., between OA and dissolved Fe or Al). This hypothesis is consistent

  13. Across Hydrological Interfaces from Coastal Watersheds to the Open Lake: Finding Landscape Signals in the Great Lakes Coastal Zone

    EPA Science Inventory

    Over the past decade, our group has been working to bring coastal ecosystems into integrated basin-lakewide monitoring and assessment strategies for the Great Lakes. We have conducted a wide range of research on coastal tributaries, coastal wetlands, semi-enclosed embayments an...

  14. Coastal Adaptation and Ecological Engineering

    NASA Astrophysics Data System (ADS)

    Cheong, S. M.

    2014-12-01

    Ecological engineering combines ecology and engineering to sustain coastal environment and facilitate adaptation to climate change. This paper discusses how the cases of mangroves, oyster reefs, and marshes help mainstream climate change with ecosystem conservation. It demonstrates the benefits of combining strategies to combat changing climate given the financial and political constraints.

  15. Belowground Dynamics in Mangrove Ecosystems

    USGS Publications Warehouse

    McKee, Karen L.

    2004-01-01

    MANGROVE ECOSYSTEMS Mangrove ecosystems are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal communities are important coastal ecosystems that are valued for a variety of ecological and societal goods and services (fig. 1). Mangrove wetlands are important filters of materials moving between the land and sea, trapping sediment, nutrients, and pollutants in runoff from uplands and preventing their direct introduction into sensitive marine ecosystems such as seagrass beds and coral reefs. Mangroves serve as nursery grounds and refuge for a variety of organisms and are consequently vital to the biological productivity of coastal waters. Furthermore, because mangroves are highly resilient to disturbances such as hurricanes, they represent a self-sustaining, protective barrier for human populations living in the coastal zone. Mangrove ecosystems also contribute to shoreline stabilization through consolidation of unstable mineral sediments and peat formation. In order to help conserve mangrove ecoystems, scientists with the United States Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand the dynamics that impact these vital ecosystems.

  16. AN OVERVIEW OF COASTAL ENVIRONMENTAL HEALTH INDICATORS

    EPA Science Inventory

    Discussions of the coastal environment and its health can be improved by more precise use of terms and clarification of the relationship, if any, between the health of ecosystems and the risks to human health. Ecosystem health is seldom defined and, in any case, has to be regarde...

  17. Integrated Research Approaches to Coastal Zone Management

    NASA Astrophysics Data System (ADS)

    Nandini Menon, N.; Singh, Tanya; Pettersson, Lasse H.

    2014-12-01

    Coastal zones around the world are extremely vulnerable today because of the unprecedented pressures of industrial and urban development as well as climate change related devastations, such as the growing intensities of cyclonic storms, the rise in sea surface temperature, sea surges, and sea level rise. In India, where about 35% of the population lives within 100 kilometers of the coastline, fisheries are a major driver and safety net for economic development and coastal livelihoods. Coastal ecosystems are closely linked with socio-economic systems, which require carefully planned coastal zone management (CZM) actions.

  18. Tampa Bay Ecosystem Services webpage

    EPA Science Inventory

    Public website describing research on the large-scale physical, chemical, and biological dynamics of coastal wetlands and estuaries, with emphasis on the Gulf of Mexico. Hyperlinks direct users to mapped ecosystem services of interest and value to Tampa Bay area residents, and i...

  19. Engineering approaches to ecosystem restoration

    SciTech Connect

    Hayes, D.F.

    1998-07-01

    This proceedings CD ROM contains 127 papers on developing and evaluating engineering approaches to wetlands and river restoration. The latest engineering developments are discussed, providing valuable insights to successful approaches for river restoration, wetlands restoration, watershed management, and constructed wetlands for stormwater and wastewater treatment. Potential solutions to a wide variety of ecosystem concerns in urban, suburban, and coastal environments are presented.

  20. The Impact of Regular and Periodic Irrigation on the Fertility and Productivity of an Ordinary Chernozem of the Azov Irrigation System

    NASA Astrophysics Data System (ADS)

    Shchedrin, V. N.

    2016-02-01

    The effect of regular and periodic irrigation on the fertility and productivity of an ordinary chernozem cultivated under different conditions within the same cereal-fodder crop rotation is discussed. The investigation object is located in the area of the Azov irrigation system on the second terrace of the Don River in Rostov oblast. Irrigation water for the system is taken from the Veselovsk water reservoir. Its salinity is 1.7-2.1 g/dm3, and the salt composition is sulfate-sodium. The field experiments were performed in 2006-2013 on three experimental plots. Two of them were regularly irrigated; the third plot was periodically irrigated with alternation of 2-year-long periods with and without irrigation. Our study proved that periodic irrigation could be applied in the chernozemic zone. This new irrigation mode contributes to the preservation of the natural soil-forming process and stops the development of unfavorable processes typical of the lands irrigated with water of inadequate quality. In eight years of cultivation of the ordinary chernozem with periodic irrigation, the soil humus content increased by 10% (from 3.80 to 4.15%), and the yield reached 66.0 t/ha of fodder units. This was 9% higher than the yield obtained upon regular irrigation without agroameliorative measures and 12% lower than the yield upon regular irrigation in combination with soil-protective measures. Our data suggest that periodic irrigation is promising for the chernozemic zone, because it ensures lower water loads and preservation of the irrigated chernozems.

  1. Linking restoration ecology with coastal dune restoration

    NASA Astrophysics Data System (ADS)

    Lithgow, D.; Martínez, M. L.; Gallego-Fernández, J. B.; Hesp, P. A.; Flores, P.; Gachuz, S.; Rodríguez-Revelo, N.; Jiménez-Orocio, O.; Mendoza-González, G.; Álvarez-Molina, L. L.

    2013-10-01

    Restoration and preservation of coastal dunes is urgently needed because of the increasingly rapid loss and degradation of these ecosystems because of many human activities. These activities alter natural processes and coastal dynamics, eliminate topographic variability, fragment, degrade or eliminate habitats, reduce diversity and threaten endemic species. The actions of coastal dune restoration that are already taking place span contrasting activities that range from revegetating and stabilizing the mobile substrate, to removing plant cover and increasing substrate mobility. Our goal was to review how the relative progress of the actions of coastal dune restoration has been assessed, according to the ecosystem attributes outlined by the Society of Ecological Restoration: namely, integrity, health and sustainability and that are derived from the ecological theory of succession. We reviewed the peer reviewed literature published since 1988 that is listed in the ISI Web of Science journals as well as additional references, such as key books. We exclusively focused on large coastal dune systems (such as transgressive and parabolic dunefields) located on natural or seminatural coasts. We found 150 articles that included "coastal dune", "restoration" and "revegetation" in areas such as title, keywords and abstract. From these, 67 dealt specifically with coastal dune restoration. Most of the studies were performed in the USA, The Netherlands and South Africa, during the last two decades. Restoration success has been assessed directly and indirectly by measuring one or a few ecosystem variables. Some ecosystem attributes have been monitored more frequently (ecosystem integrity) than others (ecosystem health and sustainability). Finally, it is important to consider that ecological succession is a desirable approach in restoration actions. Natural dynamics and disturbances should be considered as part of the restored system, to improve ecosystem integrity, health and

  2. DYNAMICS OF NUTRIENTS AND HYDROLOGY IN A LAKE SUPERIOR COASTAL WETLAND

    EPA Science Inventory

    Coastal wetlands are hydrologically complex ecosystems situated at the interface of upland catchments and oligotrophic Lake Superior. Little is known about nutrient dynamics within coastal wetlands or their role in modifying or contributing to nutrient fluxes from watersheds to ...

  3. CLASSIFYING COASTAL WATERS: HISTORICAL PERSPECTIVE AND CURRENT FOCUS ON AQUATIC STRESSORS

    EPA Science Inventory

    Coastal ecosystems are ecologically and commercially productive habitats that are experiencing significant impacts associated with accelerated population growth in coastal zones. The Clean Water Act requires identification of impaired water bodies and determination of the causes ...

  4. Belowground dynamics in mangrove ecosystems

    USGS Publications Warehouse

    McKee, Karen L.

    2004-01-01

    Mangrove ecosystems are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal communities are important coastal ecosystems that are valued for a variety of ecological and societal goods and services (fig. 1). Mangrove wetlands are important filters of materials moving between the land and sea, trapping sediment, nutrients, and pollutants in runoff from uplands and preventing their direct introduction into sensitive marine ecosystems such as seagrass beds and coral reefs. Mangroves serve as nursery grounds and refuge for a variety of organisms and are consequently vital to the biological productivity of coastal waters. Furthermore, because mangroves are highly resilient to disturbances such as hurricanes, they represent a self-sustaining, protective barrier for human populations living in the coastal zone. Mangrove ecosystems also contribute to shoreline stabilization through consolidation of unstable mineral sediments and peat formation. In order to help conserve mangrove ecoystems, scientists with the United States Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand the dynamics that impact these vital ecosystems.

  5. Ecosystem services provided by Pacific NW estuaries: State of knowledge - March 3, 2011

    EPA Science Inventory

    Coastal regions in the United States are rapidly developing areas, with increasing urbanization and growing populations. Estuarine and nearshore coastal marine waters provide valuable ecosystem services to resident and transient human communities. In the Pacific Northwest (PNW) ...

  6. Microplastics in Singapore's coastal mangrove ecosystems.

    PubMed

    Nor, Nur Hazimah Mohamed; Obbard, Jeffrey Philip

    2014-02-15

    The prevalence of microplastics was studied in seven intertidal mangroves habitats of Singapore. Microplastics were extracted from mangrove sediments via a floatation method, and then counted and categorized according to particle shape and size. Representative microplastics from Berlayar Creek, Sungei Buloh, Pasir Ris and Lim Chu Kang were isolated for polymer identification using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. Microplastics were identified in all seven habitats, with the highest concentration found in sediments at Lim Chu Kang in the northwest of Singapore. The majority of microplastics were fibrous and smaller than 20 μm. A total of four polymer types were identified, including polyethylene, polypropylene, nylon and polyvinyl chloride. The relationship between abundance of microplastics and sediment grain size was also investigated, but no relationship was apparent. The presence of microplastics is likely due to the degradation of marine plastic debris accumulating in the mangroves.

  7. Understanding and managing human threats to the coastal marine environment.

    PubMed

    Crain, Caitlin M; Halpern, Benjamin S; Beck, Mike W; Kappel, Carrie V

    2009-04-01

    Coastal marine habitats at the interface of land and sea are subject to threats from human activities in both realms. Researchers have attempted to quantify how these various threats impact different coastal ecosystems, and more recently have focused on understanding the cumulative impact from multiple threats. Here, the top threats to coastal marine ecosystems and recent efforts to understand their relative importance, ecosystem-level impacts, cumulative effects, and how they can best be managed and mitigated, are briefly reviewed. Results of threat analysis and rankings will differ depending on the conservation target (e.g., vulnerable species, pristine ecosystems, mitigatable threats), scale of interest (local, regional, or global), whether externalities are considered, and the types of management tools available (e.g., marine-protected areas versus ecosystem-based management). Considering the cumulative effect of multiple threats has only just begun and depends on spatial analysis to predict overlapping threats and a better understanding of multiple-stressor effects and interactions. Emerging conservation practices that hold substantial promise for protecting coastal marine systems include multisector approaches, such as ecosystem-based management (EBM), that account for ecosystem service valuation; comprehensive spatial management, such as ocean zoning; and regulatory mechanisms that encourage or require cross-sector goal setting and evaluation. In all cases, these efforts require a combination of public and private initiatives for success. The state of our ecological understanding, public awareness, and policy initiatives make the time ripe for advancing coastal marine management and improving our stewardship of coastal and marine ecosystems.

  8. Nitrogen Fertilization Effects on Net Ecosystem and Net Primary Productivities as Determined from Flux Tower, Biometric, and Model Estimates for a Coastal Douglas-fir Forest in British Columbia

    NASA Astrophysics Data System (ADS)

    Trofymow, J. A.; Metsaranta, J. M.; Black, T. A.; Jassal, R. S.; Filipescu, C.

    2013-12-01

    In coastal BC, 6,000-10,000 ha of public and significant areas of private forest land are annually fertilized with nitrogen, with or without thinning, to increase merchantable wood and reduce rotation age. Fertilization has also been viewed as a way to increase carbon (C) sequestration in forests and obtain C offsets. Such offset projects must demonstrate additionality with reference to a baseline and include monitoring to verify net C gains over the project period. Models in combination with field-plot measurements are currently the accepted methods for most C offset protocols. On eastern Vancouver Island, measurements of net ecosystem production (NEP), ecosystem respiration (Re) and gross primary productivity (GPP) using the eddy-covariance (EC) technique as well as component C fluxes and stocks have been made since 1998 in an intermediate-aged Douglas-fir dominated forest planted in 1949. In January 2007 an area around the EC flux tower was aerially fertilized with 200 kg urea-N ha-1. Ground plots in the fertilized area and an adjacent unfertilized control area were also monitored for soil (Rs) and heterotrophic (Rh) respiration, litterfall, and tree growth. To determine fertilization effects on whole tree growth, sample trees were felled in both areas for the 4-year (2003-06) pre- and the 4-year (2007-10) post-fertilization periods and were compared with EC NEP estimates and tree-ring based NEP estimates from Carbon Budget Model - Canadian Forest Sector (CBM-CFS3) for the same periods. Empirical equations using climate and C fluxes from 1998-2006 were derived to estimate what the EC fluxes would have been in 2007-10 for the fertilized area had it been unfertilized. Mean EC NEP for 2007-10 was 561 g C m2 y-1 , a 64% increase above pre-fertilization NEP (341 g C m2 y-1) or 28% increase above estimated unfertilized NEP (438 g C m2 y-1). Most of the increase was attributed to increased tree C uptake (i.e., GPP), with little change in Re. In 2007 fertilization

  9. Ecosystem Journalism

    ERIC Educational Resources Information Center

    Robertson, Amy; Mahlin, Kathryn

    2005-01-01

    If the organisms in a prairie ecosystem created a newspaper, what would it look like? What important news topics of the ecosystem would the organisms want to discuss? Imaginative and enthusiastic third-grade students were busy pondering these questions as they tried their hands at "ecosystem journalism." The class had recently completed a study of…

  10. Ecosystem Jenga!

    ERIC Educational Resources Information Center

    Umphlett, Natalie; Brosius, Tierney; Laungani, Ramesh; Rousseau, Joe; Leslie-Pelecky, Diandra L.

    2009-01-01

    To give students a tangible model of an ecosystem and have them experience what could happen if a component of that ecosystem were removed; the authors developed a hands-on, inquiry-based activity that visually demonstrates the concept of a delicately balanced ecosystem through a modification of the popular game Jenga. This activity can be…

  11. Natural ecosystems

    USGS Publications Warehouse

    Fleishman, Erica; Belnap, Jayne; Cobb, Neil; Enquist, Carolyn A.F.; Ford, Karl; MacDonald, Glen; Pellant, Mike; Schoennagel, Tania; Schmit, Lara M.; Schwartz, Mark; van Drunick, Suzanne; Westerling, Anthony LeRoy; Keyser, Alisa; Lucas, Ryan

    2013-01-01

    Natural Ecosystems analyzes the association of observed changes in climate with changes in the geographic distributions and phenology (the timing of blossoms or migrations of birds) for Southwestern ecosystems and their species, portraying ecosystem disturbances—such as wildfires and outbreaks of forest pathogens—and carbon storage and release, in relation to climate change.

  12. Multisensor monitoring of sea surface state of the coastal zone

    NASA Astrophysics Data System (ADS)

    Lavrova, Olga; Mityagina, Marina; Bocharova, Tatina

    Results of many-year monitoring of the state of coastal zone based on a multisensor approach are presented. The monitoring is aimed at solving the following tasks: operational mapping of parameters characterizing the state and pollution (coastal, ship and biogenic) of water; analysis of meteorological state and its effect on the drift and spread of pollutants; study of coastal circulation patterns and their impact on the drift and spread of pollutants; deriving typical pollution distribution patterns in the coastal zone.Processing and analysis is performed using data in visual, infrared and microwave ranges from ERS-2 SAR, Envisat ASAR/MERIS, Terra and Aqua MODIS and NOAA AVHRR instruments. These are complimented with ground data from meteorological stations on the shore and results of satellite data processing of previous periods. The main regions of interest are the Russian sectors of the Black and Azov Seas, southeastern part of the Baltic Sea, and northern and central regions of the Caspian Sea. Adjacent coasts are extremely populated and have well-developed industry, agriculture and rapidly growing tourist sectors. The necessity of constant monitoring of the sea state there is obvious.The monitoring activities allow us to accumulate extensive material for the study of hydrodynamic processes in the regions, in particular water circulation. Detailing the occurrence, evolution and drift of smalland meso-scale vortex structures is crucial for the knowledge of the mechanisms determining mixing and circulation processes in the coastal zone. These mechanisms play an important role in ecological, hydrodynamic and meteorological status of a coastal zone. Special attention is paid to the sea surface state in the Kerch Strait, where a tanker catastrophe took place on November 11, 2007 causing a spillage of over 1.5 thousand tons of heavy oil. The Kerch Strait is characterized by a complex current system with current directions changing to their opposites depending on

  13. Coastal Center

    NASA Astrophysics Data System (ADS)

    The U.S. Geological Survey dedicated its new Center for Coastal Geology June 12 at the University of South Florida in St. Petersburg. Robert Halley leads the staff of nine USGS scientists studying coastal erosion and pollution and underwater mineral resources in cooperation with the university's Marine Science Department. Current research is on erosion along Lake Michigan and the Gulf Coast of Louisiana. The number of USGS scientists at the center should increase to 30 over five years.

  14. Continental Margins: Linking Ecosystems

    NASA Astrophysics Data System (ADS)

    Kelly-Gerreyn, Boris; Rabalais, Nancy; Middelburg, Jack; Roy, Sylvie; Liu, Kon-Kee; Thomas, Helmuth; Zhang, Jing

    2008-02-01

    Impacts of Global, Local and Human Forcings on Biogeochemical Cycles and Ecosystems, IMBER/LOICZ Continental Margins Open Science Conference; Shanghai, China, 17-21 September 2007; More than 100 scientists from 25 countries came together to address global, regional, local, and human pressures interactively affecting continental margin biogeochemical cycles, marine food webs, and society. Continental margins cover only 12% of the global ocean area yet account for more than 30% of global oceanic primary production. In addition, continental margins are the most intensely used regions of the world's ocean for natural commodities, including productive fisheries and mineral and petroleum resources. The land adjacent to continental margins hosts about 50% of the world's population, which will bear many direct impacts of global change on coastal margins. Understanding both natural and human-influenced alterations of biogeochemical cycles and ecosystems on continental margins and the processes (including feedbacks) that threaten sustainability of these systems is therefore of global interest.

  15. Ecomarkets for conservation and sustainable development in the coastal zone.

    PubMed

    Fujita, Rod; Lynham, John; Micheli, Fiorenza; Feinberg, Pasha G; Bourillón, Luis; Sáenz-Arroyo, Andrea; Markham, Alexander C

    2013-05-01

    Because conventional markets value only certain goods or services in the ocean (e.g. fish), other services provided by coastal and marine ecosystems that are not priced, paid for, or stewarded tend to become degraded. In fact, the very capacity of an ecosystem to produce a valued good or service is often reduced because conventional markets value only certain goods and services, rather than the productive capacity. Coastal socio-ecosystems are particularly susceptible to these market failures due to the lack of clear property rights, strong dependence on resource extraction, and other factors. Conservation strategies aimed at protecting unvalued coastal ecosystem services through regulation or spatial management (e.g. Marine Protected Areas) can be effective but often result in lost revenue and adverse social impacts, which, in turn, create conflict and opposition. Here, we describe 'ecomarkets' - markets and financial tools - that could, under the right conditions, generate value for broad portfolios of coastal ecosystem services while maintaining ecosystem structure and function by addressing the unique problems of the coastal zone, including the lack of clear management and exclusion rights. Just as coastal tenure and catch-share systems generate meaningful conservation and economic outcomes, it is possible to imagine o