Science.gov

Sample records for azufres mexico geothermal

  1. Wood and fruit drying in Los Azufres geothermal field, Mexico

    SciTech Connect

    Casimiro, E.; Pastrana, E.

    1996-12-31

    The main object of Comision Federal de Electricidad (CFE`s) Geothermal Field at Los Azufres, is to generate geothermal electricity; however with the new politics in Mexico CFE has built a pilot project in order to profit from the geothermal residual energy and to attract national or foreign investors and convince them that direct-use of geothermal energy is an attractive feasible and economical possibility. The object of this paper is to present the CFE experiences in wood and fruit drying using geothermal energy.

  2. Pilot fruit drier for Los Azufres geothermal field, Michoacan, Mexico

    SciTech Connect

    Lund, J.W.

    1993-02-01

    Comision Federal de Electricidad (CFE) has a Division in charge of the exploration of a geothermal reservoir located in Los Azufres, State of Michoacan. At present, CFE is only using the steam of the wells and rejecting the hot water that comes off associated with the steam. Based on a trip to the Los Azufres geothermal field in December of 1992, a design for a pilot geothermal fruit drier was undertaken for CFE. The details of the geothermal field and the local fruit production are detailed.

  3. Direct use of the geothermal energy at Los Azufres geothermal field, Mexico

    SciTech Connect

    Sanchez-Velasco, E.; Casimiro-Espinoza, E.

    1995-12-31

    The main object of Comision Federal de Electricidad (CFE`s) Geothermal Field at Los Azufres, is to generate geothermal electricity; however with the new politics in Mexico, CFE has designed a pilot project in order to profit from the geothermal residual energy and to attract national or foreign investors and convince them that direct use of geothermal energy is an attractive feasible and economical project. The object of this paper is to present the CFE experiences in different pilot projects applied to direct uses of geothermal energy.

  4. Natural Vertical Flow in the Los Azufres, Mexico, Geothermal Reservoir

    SciTech Connect

    Iglesias, E.R.; Arellano, V.M.; Ortiz-Ramirez, J.

    1986-01-21

    This work focuses on estimating the mass (M) and energy (E) flow rates, the permeability k, and the relative permeability functions R{sub L} and R{sub V} associated with the natural vertical flow in the reservoir. To estimate M and E we used the standard 1-D vertical equations for two-phase flow, complemented with boundary conditions at the boiling and dew interfaces. These boundary conditions were derived in an earlier stage of this study that established an approximate 1-D vertical model of the reservoir. The estimated values of M and E were then used together with the previously established liquid saturation vertical profile of the reservoir, and the differential equation expressing the pressure gradient, to fit, by trial and error, the observed natural pressure profile. The accuracy of the fit depends on the assumed value for the vertical permeability and on the chosen forms for the relative permeability functions. They estimated M {approx} 6.9 x 10{sup -8} kg m{sup -2} s{sup -1} and E {approx} 0.2 W m{sup -2}. These results lie well within the ample ranges of mass and energy flowrates per unit area found in geothermal fields worldwide. The estimated values of M and E support the previous inference that there is an extensive caprock in the reservoir. The best fit to the natural pressure gradient implies a vertical permeability of about 0.08 mD, residual water- and steam-saturations of about 0.04 and 0.00 respectively, and ''fracture relative permeabilities'' (i.e., R{sub L} + R{sub V} = 1). This work addresses a major obstacle for a successful analysis of the Los Azufres geothermal reservoir, which is characterized by an extensive two-phase region: the former unavailability of reasonably reliable relative permeability functions. Furthermore, the present characterization of the vertical natural flow provides important constraints for both lumped- and distributed-parameter models of the reservoir. Finally, this work gives information on reservoir properties that

  5. Geochemical model update of the Los Azufres, Mexico, geothermal reservoir

    SciTech Connect

    Hinojosa, E.T.

    1997-12-31

    Chemical and isotopic analyses of fluids produced by wells the Los Azuftes, Michoacan, geothermal field, have been studied to establish a geochemical model of the field. Water produced by the wells has a sodium-chloride composition characteristic of geothermal brine. This to be in equilibrium with the host rock at temperatures which vary from 280{degrees}C to 340{degrees}C. Based on steam data, the wells are producing from a liquid dominanted zone. The isotopic composition of the wells presents a shift with respect to meteoric line of {delta}{sup 18}O typical to fluids of geothermal origin which have equilibrated with rock at high temperatures.

  6. Hydrothermal characteristics of the well A-29 at the Los Azufres geothermal field, Mexico

    SciTech Connect

    Viggiano-Guerra, J.C.; Gutierrez-Negrin, L.C.A.

    1995-12-31

    Three distinct hydrothermal zones can be identified in the well A-29, located at the northeastern border of the Los Azufres, Mexico, geothermal field. They are the zeolite, epidote and amphibole-gamet zones. High temperatures (over 300{degrees}C) were measured, but the well did not produce mass flow. This can be explained by a self-sealing process as a result of three trends recognized in the evolution of geothermal fluids: boiling, boiling and gas losses, and dilution. A certain cooling of at least 25{degrees}C seems to be happening in the well, especially in the epidote zone and in the upper portions of the amphibole-gamet zone.

  7. Vapliq hydrothermal systems, and the vertical permeability of Los Azufres, Mexico, geothermal reservoir

    SciTech Connect

    Iglesias, Eduardo R.; Arellano, Victor M.

    1988-01-01

    We identify a new category of natural hydrothermal systems intermediate between liquid- and vapor-dominated. This category is characterized by a “vapliq” vertical pressure profile, which is nearly vaporstatic in the shallower portion of the system, and nearly boiling-point-for-depth at depth. The prototype of these systems is the geothermal field of Los Azufres, Mexico. To explore the thermohydrological conditions conducent to this type of system, we propose a 1-D vertical scenario based on generally accepted conceptual models of liquid- and vapor-dominated geothermal reservoirs. We use the corresponding mass and thermal energy transport equations to establish that a necessary condition for the existence of 2-phase hydrothermal systems is that the absolute value of the vertical thermal flux must exceed Q{sub min}, a parameter that depends only on the values of the pressure and of the thermal conductivity at the boiling point of the system. The values of Q{sub min} are typically 1-4 times the average terrestrial flux. We also find that geothermal systems in which convective heat transport is accomplished by the well-known heat-pipe mechanism can exist only if the corresponding heat flux exceeds Q{sub min} and the permeability at the boiling point of the system is smaller than k{sub Bmax}, a parameter that depends only on the values of the pressure and of the thermal conductivity at the boiling point. Typical values of k{sub Bmax} are 1-3 {times} 10{sup -18} m{sup 2}, suggesting a reason for the fact that all vapor-dominated systems are associated with very-low matrix permeability formations. Applying these insights, and the mass and heat transport equations to Los Azufres, we conclude that a contrast of 1-3 orders of magnitude exists between the vertical permeability at the boiling point and that corresponding to the vapor-dominated portion of the system. We propose that similar permeability contrasts may be responsible for the characteristic composite pressure

  8. Initial Measurements of Petrophysical Properties on Rocks from the Los Azufres, Mexico, Geothermal Field

    SciTech Connect

    Contreras, E.; Iglesias, E.; Razo, E.

    1986-01-21

    Petrophysical properties of geothermal reservoir rocks are valuable information for many activities, including reservoir characterization, modeling, field test analysis and planning of exploitation techniques. Petrophysical data of rocks from geothermal reservoirs located in volcanic areas is in general very scarce. In particular, no petrophysical data of rocks from the Los Azufres geothermal field area has ever been published. This work presents the results of initial petrophysical studies on outcrop rocks and drill core samples from the Los Azufres geothermal field. These studies are the first part of an ongoing experimental program intended to establish a data-base about physical properties of the Los Azufres rocks, in support of the many reservoir engineering activities which require of such information. The experimental work carried out consisted of laboratory measurements of density, porosity, permeability, compressibility, thermal conductivity, thermal expansion, electrical resistivity and sonic wave velocities. Some of the experiments were aimed at investigation of the effects of temperature, pressure, saturation and other parameters on the physical properties of rocks.

  9. Origin of rainwater acidity near the Los Azufres geothermal field, Mexico

    USGS Publications Warehouse

    Verma, M.P.; Quijano, J.L.; Johnson, Chad; Gerardo, J.Y.; Arellano, V.

    2000-01-01

    The chemical and isotopic compositions of rainwater were monitored at Los Azufres geothermal field (88 MWe) and its surroundings during May - September 1995, which is the rainy season. Samples were collected from eight sites: three within the field, three in its surroundings and two sufficiently far from the field such that they have no geothermal input. The concentrations of Cl-, SO42- and NO3- were measured in about 350 samples and found to be generally <5 ppm. Chloride concentrations remained constant with time, but sulfate and nitrate concentrations decreased, which suggests a nearby industrial source for the sulfate and nitrate. A mixing model for Cl-, SO42- and ??34S also suggests an industrial source for the rainwater sulfur. The determination of pH was found to be necessary, but is not sufficient to characterize rainwater acidity. The Gran titration method was used to determine alkalinity with respect to equivalence point of H2CO3(*). Values of alkalinity were found to range from 10-4 to 10-6 eq/L, and were negative only for some samples from Vivero and Guadalajara. Thus, SO42- and NO3- are in general not in acidic form (i.e. balanced by Na+, Ca2+, etc. rather than H+). Sulfate ??34S values were about -1.5??? in Los Azufres and its surroundings, and in Morelia, but differed from the value of -0.2??? for Guadalajara. The ??34S values for H2S from the Los Azufres geothermal wells are in the range -3.4 to 0.0???. The ??34S ranges for the natural and anthropogenic sources for environmental sulfur overlap, making it difficult to differentiate between the contribution of different sources. However, a similarity of values of ??34S at Los Azufres and Morelia (85 km distant) suggest a regional source of sulfate that is not associated with geothermal emissions from Los Azufres. (C) 2000 Published by Elsevier Science Ltd on behalf of CNR.The chemical compositions of rainwater were analyzed at Los Azufres geothermal field in Spain from May-September 1995. The

  10. Naturally occurring heavy radioactive elements in the geothermal microcosm of the Los Azufres (Mexico) volcanic complex.

    PubMed

    Abuhani, W A; Dasgupta-Schubert, N; Villaseñor, L M; García Avila, D; Suárez, L; Johnston, C; Borjas, S E; Alexander, S A; Landsberger, S; Suárez, M C

    2015-01-01

    The Los Azufres geothermal complex of central Mexico is characterized by fumaroles and boiling hot-springs. The fumaroles form habitats for extremophilic mosses and ferns. Physico-chemical measurements of two relatively pristine fumarolic microcosms point to their resemblance with the paleo-environment of earth during the Ordovician and Devonian periods. These geothermal habitats were analysed for the distribution of elemental mass fractions in the rhizospheric soil (RS), the native volcanic substrate (VS) and the sediments (S), using the new high-sensitivity technique of polarized x-ray energy dispersive fluorescence spectrometry (PEDXRF) as well as instrumental neutron activation analysis (INAA) for selected elements. This work presents the results for the naturally occurring heavy radioactive elements (NOHRE) Bi, Th and U but principally the latter two. For the RS, the density was found to be the least and the total organic matter content the most. Bi was found to be negligibly present in all substrate types. The average Th and U mass fractions in the RS were higher than in the VS and about equal to their average mass fractions in the S. The VS mass fraction of Th was higher, and of U lower, than the mass fractions in the earth's crust. In fact for the fumaroles of one site, the average RS mass fractions of these elements were higher than the averaged values for S (without considering the statistical dispersion). The immobilization of the NOHRE in the RS is brought about by the bio-geochemical processes specific to these extremophiles. Its effectiveness is such that despite the small masses of these plants, it compares with, or may sometimes exceed, the immobilization of the NOHRE in the S by the abiotic and aggressive chemical action of the hot-springs. These results indicate that the fumarolic plants are able to transform the volcanic substrate to soil and to affect the NOHRE mass fractions even though these elements are not plant nutrients. Mirrored back to

  11. Predicting thermal conductivity of rocks from the Los Azufres geothermal field, Mexico, from easily measurable properties

    SciTech Connect

    Garcia, Alfonso; Contreras, Enrique; Dominquez, Bernardo A.

    1988-01-01

    A correlation is developed to predict thermal conductivity of drill cores from the Los Azufres geothermal field. Only andesites are included as they are predominant. Thermal conductivity of geothermal rocks is in general scarce and its determination is not simple. Almost all published correlations were developed for sedimentary rocks. Typically, for igneous rocks, chemical or mineral analyses are used for estimating conductivity by using some type of additive rule. This requires specialized analytical techniques and the procedure may not be sufficiently accurate if, for instance, a chemical analysis is to be changed into a mineral analysis. Thus a simple and accurate estimation method would be useful for engineering purposes. The present correlation predicts thermal conductivity from a knowledge of bulk density and total porosity, properties which provide basic rock characterization and are easy to measure. They may be determined from drill cores or cuttings, and the procedures represent a real advantage given the cost and low availability of cores. The multivariate correlation proposed is a quadratic polynomial and represents a useful tool to estimate thermal conductivity of igneous rocks since data on this property is very limited. For porosities between 0% and 25%, thermal conductivity is estimated with a maximum deviation of 22% and a residual mean square deviation of 4.62E-3 n terms of the log{sub 10}(k{rho}{sub b}) variable. The data were determined as part of a project which includes physical, thermal and mechanical properties of drill cores from Los Azufres. For the correlation, sixteen determinations of thermal conductivity, bulk density and total porosity are included. The conductivity data represent the first determinations ever made on these rocks.

  12. Heterogeneity of the Liquid Phase, and Vapor Separation in Los Azufres (Mexico) Geothermal Reservoir

    SciTech Connect

    Nieva, D.; Quijano, L.; Garfias, A.; Barragan, R.M.; Laredo, F.

    1983-12-15

    Data of chemical and isotopic composition of fluids from Los Azufres geothermal wells is interpreted in order to characterize the composition of the liquid phase, and to define the relation between this phase and fluids from steam-producing wells. Chemical and specific enthalpy data show that most wells considered are fed a mixture of steam and liquid. Thus, flashing occurs in the formation. This poses a problem on the interpretation of isotopic data, because the composition of the feeding mixture need not be representative of the composition of the liquid phase in the reservoir. Two extreme alternatives for the interpretation of isotopic data are considered. In the first alternative the composition of the total discharge is considered to be the same as that of the liquid in the reservoir. In the second alternative the feeding fluid is considered to be a mixture of the liquid phase in the reservoir and the calculated fraction of steam. In addition, this steam is assumed to separate from a much larger mass of that liquid phase at the downhole temperature. The contribution of steam is then subtracted from the total discharge to yield the composition of the liquid phase. Using data for silica concentration in total discharge and separated water, the chloride concentration in the reservoir liquid is calculated. This result is used to calculate the fraction of steam in the feeding mixture of each well. The isotopic data is then corrected as proposed for the second alternative, to yield the composition of the liquid phase. Comparison of the corrected and uncorrected isotopic values shows that the correction has an important effect only when the steam mass fraction in the feeding mixture is large (> 20%). The correction tends to reduce the dispersion of data points in a {delta} D vs {delta}{sup 18}O diagram. Points representing composition of liquid phase show an approximately linear distribution, suggesting a process of mixing of two fluids. Available data appears to

  13. Petrophysical Properties of Twenty Drill Cores from the Los Azufres, Mexico, Geothermal Field

    SciTech Connect

    Iglesias, E.R.; Contreras L., E.; Garcia G., A.; Dominquez A., Bernardo

    1987-01-20

    For this study we selected 20 drill cores covering a wide range of depths (400-3000 m), from 15 wells, that provide a reasonable coverage of the field. Only andesite, the largely predominant rock type in the field, was included in this sample. We measured bulk density, grain (solids) density, effective porosity and (matrix) permeability on a considerable number of specimens taken from the cores; and inferred the corresponding total porosity and fraction of interconnected total porosity. We characterized the statistical distributions of the measured and inferred variables. The distributions of bulk density and grain density resulted approximately normal; the distributions of effective porosity, total porosity and fraction of total porosity turned out to be bimodal; the permeability distribution resulted highly skewed towards very small (1 mdarcy) values, though values as high as 400 mdarcies were measured. We also characterized the internal inhomogeneity of the cores by means of the ratio (standard deviation/mean) corresponding to the bulk density in each core (in average there are 9 specimens per core). The cores were found to present clearly discernible inhomogeneity; this quantitative characterization will help design new experimental work and interpret currently available and forthcoming results. We also found statistically significant linear correlations between total density and density of solids, effective porosity and total density, total porosity and total density, fraction of interconnected total porosity and the inverse of the effective porosity, total porosity and effective porosity; bulk density and total porosity also correlate with elevation. These results provide the first sizable and statistically detailed database available on petrophysical properties of the Los Azufres andesites. 1 tab., 16 figs., 4 refs.

  14. Microbial diversity in Los Azufres geothermal field (Michoacán, Mexico) and isolation of representative sulfate and sulfur reducers.

    PubMed

    Brito, Elcia M S; Villegas-Negrete, Norberto; Sotelo-González, Irene A; Caretta, César A; Goñi-Urriza, Marisol; Gassie, Claire; Hakil, Florence; Colin, Yannick; Duran, Robert; Gutiérrez-Corona, Felix; Piñón-Castillo, Hilda A; Cuevas-Rodríguez, Germán; Malm, Olaf; Torres, João P M; Fahy, Anne; Reyna-López, Georgina E; Guyoneaud, Rémy

    2014-03-01

    Los Azufres spa consists of a hydrothermal spring system in the Mexican Volcanic Axis. Five samples (two microbial mats, two mud pools and one cenote water), characterized by high acidity (pH between 1 and 3) and temperatures varying from 27 to 87 °C, were investigated for their microbial diversity by Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and 16S rRNA gene library analyses. These data are the first to describe microbial diversity from Los Azufres geothermal belt. The data obtained from both approaches suggested a low bacterial diversity in all five samples. Despite their proximity, the sampling points differed by their physico-chemical conditions (mainly temperature and matrix type) and thus exhibited different dominant bacterial populations: anoxygenic phototrophs related to the genus Rhodobacter in the biomats, colorless sulfur oxidizers Acidithiobacillus sp. in the warm mud and water samples, and Lyzobacter sp.-related populations in the hot mud sample (87 °C). Molecular data also allowed the detection of sulfate and sulfur reducers related to Thermodesulfobium and Desulfurella genera. Several strains affiliated to both genera were enriched or isolated from the mesophilic mud sample. A feature common to all samples was the dominance of bacteria involved in sulfur and iron biogeochemical cycles (Rhodobacter, Acidithiobacillus, Thiomonas, Desulfurella and Thermodesulfobium genera).

  15. Permeability enhancement due to cold water injection: A Case Study at the Los Azufres Geothermal Field, Mexico

    SciTech Connect

    Benson, S.M.; Daggett, J.; Ortiz, J.; Iglesias, E.; Comision Federal de Electricidad, Morelia; Instituto de Investigaciones Electricas, Cuernavaca )

    1989-04-01

    Pressure transient buildup and falloff data from 3 wells at the Los Azufres geothermal field have been evaluated to determine the extent to which cold water infection increases the permeability of the near-bore reservoir formation. Simultaneous analysis of the buildup and falloff data provides estimates of the permeability-thickness of the reservoir, the skin factor of the well, and the degree of permeability enhancement in the region behind the thermal front. Estimates of permeability enhancement range from a factor of 4 to 9, for a temperature change of about 150{degree}C. The permeability enhancement is attributed to thermally induced contraction and stress-cracking of the formation. 9 refs., 18 figs.

  16. Mineralogical-chemical composition and environmental risk potential of pond sediments at the geothermal field of Los Azufres, Mexico

    NASA Astrophysics Data System (ADS)

    Birkle, P.; Merkel, B.

    2002-01-01

    Since 1982, estimated amounts of 9,400 t, 15,000 kg, 720 kg and 105 kg of Si, Fe, As and Cs respectively have accumulated at the bottom of 18 evaporation ponds as part of the geothermal production cycle at Los Azufres. This accumulation is caused by precipitation of brine solutes during the evaporation of 10% of the total pond water volume before its re-injection into the reservoir. Extraction experiments with pond precipitates and geochemical simulations with the PHREEQC program indicate the high solubility of most precipitates under natural environmental conditions. The comparisons with the primary brine composition indicate that less than 1% of most dissolved brine solutes, except for Co, Cu, Mn, Pb, Ag, Fe and Si, are accumulated at the pond bottom. Arsenic has maximum values of 160 mg/kg in the pond sediments, and Mo, Hg and Tl also exceed international environmental standards for contaminated soils. Elevated concentrations and the mobility potential of several metals and non-metals require the application of remediation techniques for the final disposal of the sediments in the future.

  17. Los Azufres geothermal field: Observed response after 12-year exploitation

    SciTech Connect

    Maldonado, G.J.

    1995-12-31

    Exploitation of the Los Azufres Geothermal field was initiated in August 1982, with the electric power generation of five 5-MW wellhead units. Since then another 70 MW have been installed. A large amount of information has been compiled, including geologic, geochemical, production, and reservoir characteristics. The data were evaluated to detect the extent of observable changes in the main reservoir parameters over the twelve-year production period. Pressure and temperature measurements in Los Azufres wells show that geothermal fluid distribution is strongly influenced by the presence of permeable structures. Wellhead production and chemical analysis of the separated brine show that we are dealing with a highly heterogeneous reservoir, were the drawdown and enthalpy changes depend on the position of the well being studied.

  18. Status of geothermal electrical power development in Mexico

    SciTech Connect

    Alonso E.H.; Manon M.A.

    1983-09-01

    A review of geothermal power generation in Mexico is given. The status of power plants on-line and under construction at Cerro Prieto, Los Azufres, and Los Humeros is presented. A forecast of generating capacity for the future is given along with the obstacles to geothermal energy development in Mexico.

  19. Geothermal Field Development in Mexico

    SciTech Connect

    Espinosa, Hector Alonso

    1983-12-15

    Mexico is a Country characterized by its diversified means of Power Gerneration. Actual installed capacity is almost 19000 MW, of which 205 MW corresponds to Geothermal Plants, that is, 180 MW in Cerro Prieto and 25 MW of Portable Plants in Los Azufres. To date, 346 area with exploitation possibilites, are known. They are mainly distributed along the Volcanic Belt where the most prominent are, Los Azufres, La Primavera, Los Humeros, Ixtlan De Los Hervores and Los Negritos, among others. Proved reserves are 920 MW, and the accessible resource base are 4600 MW identified and 6000 MW undiscovered. The long range construction studies intends to achieve a total installed capacity of 100000 MW, by the end of this century, including 2000 MW Geothermal, through conventional and Portable Plants. It is not a definite program but a development strategy. The carrying out of a definite program, will depend upon the confirmation of Hypothesis made in previous studies, and the economic decisions related to the financial sources availability, and techologies to be used in the future as well.

  20. Pressure Buildup Testing of Well 18 in Los Azufres Field, Mexico

    SciTech Connect

    Upton, Pedro Sanchez; Gudmundsson, Jon-Steinar

    1987-01-20

    Well 18 is a production well in the southern zone of Los Azufres geothermal field in México (see Figure 1). The well is located on the eastern flank of the drilled area, and produces a steam/water mixture from a depth of 1200-1250 m. A 19 hour pressure buildup test that was carried out in March 1986, is the subject of this paper. It is part of work reported by Sánchez-U. (1986) at the Geothermal Training Programme in Iceland. The permeability-thickness product of well 18 in Los Azufres field was determined 5.4 dm from a Horner plot. The well was found to be intersected by a fracture, as evident from the slope on a log-log plot at early time, and a skin value of -5.3. The overall pressure buildup of the well was found to be typical for double-porosity reservoir behavior, having a storativity ratio of 0.1. An outer boundary behavior was observed in the pressure buildup data. 1 tab., 6 figs., 14 refs.

  1. Response of the Los Azufres Geothermal Field to Four Years of 25 MW Wellhead Generation

    SciTech Connect

    Kruger, P.; Ortiz, J.; Miranda, G.; Gallardo, M.

    1987-01-20

    Production and chemical data have been compiled and analyzed on a six-month averaged basis for the first four years of electric energy generation with five 5-MW wellhead generators at the Los Azufres geothermal field. The data were evaluated with respect to the extent of observable thermal drawdown of the reservoir from 25 MW of generation in relation to the estimated capacity of the field of several hundred megawatts of power. The analysis updates the previous one compiled after the first two years of continuous production, at which time the results indicated that differences in reservoir temperature estimated from geochemical thermometers and wellhead production data were not statistically significant based on the number of data and the standard deviations. Analysis of the data after four years of operation were made for the larger number of data and smaller standard deviations. The results review the adequacy of the sampling frequency and the reliability of the measurements from statistical t-Test of the means of the first and second two-year periods. 3 figs., 5 tabs., 20 refs.

  2. Geothermal Fields on the Volcanic Axis of Mexico

    SciTech Connect

    Mercado, S.; Gonzalez, A.

    1980-12-16

    At present in Mexico, geothermal energy is receiving a great impulse due to the excellent results obtained in the Cerro Prieto geothermal field, in which a geothermoelectric plant is operated. This plant has four units of 37.5 MW each, with a total capacity of 150 MW, and under program 470 MW more by 1984. The Government Institution, Comisi6n Federal de Electricidad, is in charge of the exploration and exploitation of geothermal fields as well as construction and operation of power plants in Mexico. By this time CFE has an extensive program of exploration in the central part of Mexico, in the Eje Neovolcdnico. In this area, several fields with hydrothermal alteration are under exploration, like the Michoac6n geothermal area, where Los Azufres geothermal field is being developed. Seventeen wells have been drilled and twelve of them presented excellent results, including two dry steam wells. In other areas, such as Arar6, Cuitzeo, San Agustln del Maiz,Ixtldn de Los Hervores and Los Negritos, geological, geophysical and geochemical explorations have been accomplished, including shallow well drilling with good results. Another main geothermal area is in the State of Jalisco with an extension of 5,000 m2, where La Primavera geothermal field shows a lot of volcanic domes and has an intensive hydrothermal activity. Deep wells have been drilled, one of them with a bottom temperature of 29OOC. Other fields in this area, like San Narcos, Hervores de La Vega, La Soledad, Villa Corona, etc., have a good geothermal potential. A new geothermal area has been explored recently in the eastern part of the country named Los Humeros, Puebla. In this area studies are being made and there are plans for well drilling exploration by the beginning of 1981. Like this one, there are many other areas in the country in which 300 hydrothermal alteration zones are been classified and 100 of them are considered economically exploitable.

  3. The use of air as a natural tracer infractured hydrothermal systems, Los Azufres, Mexico, case study

    SciTech Connect

    Mario Cesar Sudrez Arriaga; Hector Gutierrez Puente, Josefina Moreno Ochoa

    1991-01-01

    Injection of atmospheric air mixed with cold water has been occurring since 1982 at the Los Azufres geothermal field. Several chemical and thermodynamical evidences show that air injection into this fractured hydrothermal system could be considered as a long term natural tracer test. Nitrogen and Argon separated from the air mixture migrate, under the action of the induced injection-extraction gradient, from reinjection sectors to production zones following preferential paths closely related to high permeability conduits. A coarse numerical estimation of the average permeability tensor existing at Tejamaniles, the southern sector, explains the unsuccessful recovery of the artificial tracer tests performed in past years: the anisotropic nature of the fractured volcanic rock would demand considerably quantities of tracer in order to be detected at the producing wells, especially when fluid extraction was low. At the same time concentrations of calcium, cesium, chloride, potassium, rubidium and sodium, are increasing in the liquid produced by the oldest wells of this field's sector.

  4. Renewed Volcano-Stratigraphc Studies of Calderas with Geothermal Potential in Mexico

    NASA Astrophysics Data System (ADS)

    Macias, J. L.; Arce, J. L.; García-Tenorio, F.; Layer, P. W.; Saucedo, R.; Castro, R.; Garduño, V. H.; Jimenez, A.; Pérez, H.; Valdez, G.; Meriggi, L.

    2014-12-01

    During the past six years we have carried out volcanologic fieldwork either in active geothermal fields in Mexico (Los Azufres, Tres Vírgenes, and Cerro Prieto) or in potential sites in which some geothermal exploration studied had been done by the National Power Company (CFE). These studies have been very successful in reassessing the location of the geothermal reservoirs within the volcanic successions through detailed mapping of the volcanic units using high resolution topography and satellite imagery to produce 3-D imagery in conjunction with field work to produce preliminary geologic maps. Detailed stratigraphy of volcanic units, assisted with 40Ar/39Ar and radiocarbon geochronology have redefined the evolution of some of these complexes. For example, our studies at Los Azufres geothermal field located in the State of Michoacán indicate that the volcanic complex of the same name sits upon a structural high transected by E-W faults related to the youngest structures of the Trans-Mexican Volcanic Belt. The volcanic complex has been emplaced during the past ~1.5 Ma. During this time, magmas evolved from basaltic to rhyolitic in composition with the emplacement of circa 100 vents. Several landforms have undergone intense hydrothermal alteration and, in some cases, generated debris avalanches. The revised stratigraphy based on drill holes and new dates of cores suggested that the geothermal reservoir is hosted in Miocene rocks bracketed between the Miocene Sierra de Mil Cumbres volcanics (17-22 Ma) and the products of the volcanic field itself. Similar studies will be carried out at four other Pleistocene calderas (Acoculco, La Primavera, Aguajito and Reforma) attempting to refine their volcanic stratigraphy, evolution, and the location of the geothermal system, and those results will help in the design of exploration strategies for geothermal sources.

  5. SW New Mexico BHT geothermal gradient calculations

    SciTech Connect

    Shari Kelley

    2015-07-24

    This file contains a compilation of BHT data from oil wells in southwestern New Mexico. Surface temperature is calculated using the collar elevation. An estimate of geothermal gradient is calculated using the estimated surface temperature and the uncorrected BHT data.

  6. A geothermal resource data base: New Mexico

    SciTech Connect

    Witcher, J.C.

    1995-07-01

    This report provides a compilation of geothermal well and spring information in New Mexico up to 1993. Economically important geothermal direct-use development in New Mexico and the widespread use of personal computers (PC) in recent years attest to the need for an easily used and accessible data base of geothermal data in a digital format suitable for the PC. This report and data base are a part of a larger congressionally-funded national effort to encourage and assist geothermal direct-use. In 1991, the US Department of Energy, Geothermal Division (DOE/GD) began a Low Temperature Geothermal Resources and Technology Transfer Program. Phase 1 of this program includes updating the inventory of wells and springs of ten western states and placing these data into a digital format that is universally accessible to the PC. The Oregon Institute of Technology GeoHeat Center (OIT) administers the program and the University of Utah Earth Sciences and Resources Institute (ESRI) provides technical direction.

  7. Geothermal production results and plans in Mexico

    SciTech Connect

    Hiriart-Le Bert, G.; Gutierrez-Negrin, L.C.A.

    1997-12-31

    Almost 7,000 MWe of geothermal power plants are in operation in the world. There are estimations about this capacity could be almost 10,000 MWe in three more years. Mexico, with 743 MWe of geothermal-electric capacity, is developing more projects, taking into account the encouraging results of exploitation of these energy resources. In 1996, such results include production of 56.2 million tons of steam, generation of 5,737 gigawatts-hour (GWh) and an average capacity factor of 87.5%.

  8. Eruptive History of the Rhyolitic Guangoche Volcano, Los Azufres Volcanic Field, Central Mexico

    NASA Astrophysics Data System (ADS)

    Rangel Granados, E.; Arce, J. L.; Macias, J. L.; Layer, P. W.

    2014-12-01

    Guangoche is a rhyolitic and polygenetic volcano with a maximum elevation of 2,760 meters above sea level. It is situated to the southwest of the Los Azufres Volcanic Field (LAVF), in the central sector of the Trans-Mexican Volcanic Belt. Guangoche volcano is the youngest volcano described within the LAVF. It shows a horseshoe shaped crater open to the south, with a central lava dome. Its eruptive history during late Pleistocene has been intense with six explosive eruptions that consists of: 1) A southwards sector collapse of the volcano that generated a debris avalanche deposit with megablocks of heterogenous composition; 2) A plinian-type eruption that generated a pumice fall deposit and pyroclastic density currents by column collapse at 30.6 ka; 3) A plinian-type eruption "White Pumice Sequence" (29 ka) that developed a 22-km-high eruptive column, with a MDR of 7.0 x 107 kg/s (vol. = 0.53 km3); 4) A dome-destruction event, "Agua Blanca Pyroclastic Sequence" at 26.7 ka, that deposited a block-and-ash flow deposit; 5) A subplinian-plinian type eruption "Ochre Pyroclastic Sequence" (<26 ka) with an important initial phreatomagmatic phase, that generated pyroclastic density currents and pumice fallouts. The subplinian-plinian event generated a 16-km-high eruptive column, with a MDR of 1.9 x 107 kg/s, and magma volume of 0.38 km3; 6) The eruptive history ended with a subplinian eruption (<<26 ka), that generated a multilayered fall deposit, that developed a 11-km-high eruptive column, with a MDR of 2.9 x 106 kg/s and a magma volume of 0.26 km3. Volcanic activity at Guangoche volcano has been intense and future activity should not be discarded. Unfortunately, the last two events have not been dated yet. Guangoche rhyolitic magma is characterized by low-Ba contents suggesting crystal mush extraction for their genesis.

  9. Small geothermal binary plants in Mexico

    SciTech Connect

    Lopez-Diaz, M.

    1996-12-31

    In Mexico, Comision Federal de Electricidad (CFE Federal Commission of Electricity) has identified several low enthalpy sites related with thermal water, at shallow depths. Some of those geothermal prospects are located far from the electrical national grid. In some cases, the population solve their electricity needs by internal combustion engines with very high operating costs. CFE has started a project oriented to use the energy contained in the thermal waters with off-grid binary plants. The two first projects are in the state of Chihuahua at the north of the country: San Antonio El Bravo and Maguarichic. At both places CFE will install a 300 kW, unattended binary power units.

  10. Mechanisms of arsenic enrichment in geothermal and petroleum reservoirs fluids in Mexico.

    PubMed

    Birkle, Peter; Bundschuh, Jochen; Sracek, Ondra

    2010-11-01

    The lack of chemical similarity between thermal fluids in geothermal and petroleum reservoirs in Mexico indicates a distinct origin for arsenic in both types of reservoirs. Deep fluids from geothermal reservoirs along the Transmexican Volcanic Belt (TMVB) are characterized by elevated arsenic concentrations, within a range between 1 and 100 mg L(-1) at a depth from 600 to 3000 m b.s.l. Based on hierarchical cluster analysis (HCA), arsenic is linked to typical geothermal species like lithium, silica, and boron. The lack of correlation between arsenic and salinity reflects the importance of secondary water-rock interaction processes. The predominance of arsenic compared to Fe- and Cu-concentrations, and the occurrence of secondary minerals (sulfides and clay minerals) in temperature-dependent hydrothermal zones, supports this hypothesis. Neither magmatic fluids input, nor As mineralization is a prerequisite for As enrichment in Mexican geothermal fluids. In contrast, petroleum reservoir waters from sedimentary basins in SE-Mexico show maximum As concentrations of 2 mg L(-1), at depths from 2900 to 6100 m b.s.l. The linear chloride-arsenic correlation indicates that evaporated seawater represents the major source for aqueous arsenic in oil reservoirs, and only minor arsenic proportions are derived from interaction with carbonate host rock. Speciation modeling suggests the lack of arsenic solubility control in both geothermal and petroleum reservoirs, but precipitation/co-precipitation of As with secondary sulfides could occur in petroleum reservoirs with high iron concentrations. Geothermal fluids from magmatic-type reservoirs (Los Azufres and Los Humeros at the TMVB and Las Tres Vírgenes with a granodioritic basement) show relative constant arsenic concentrations through varying temperature conditions, which indicates that temperatures above 230-250 °C provide optimal and stable conditions for arsenic mobility. In contrast, temperature conditions for sedimentary

  11. Geothermal training centers in the world

    SciTech Connect

    Dickson, M.H.; Fanelli, M.

    1998-12-01

    The first geothermal training centers began operating in Pisa (Italy) and Kyushu (Japan) in 1970, at the request of UNESCO. From 1979 on, they were joined by another five training centers in Auckland (New Zealand), Reykjavik (Iceland), Mexicali (Mexico), Skopje (Macedonia), and Los Azufres (Mexico). The courses organized in these centers last from one--two weeks to eight--nine months, and they cover all aspects of the research and utilization of geothermal energy. At the moment, these centers seem capable of providing all the qualified and competent personnel required for geothermal projects currently in-flow; but, this situation could deteriorate in the future.

  12. New Mexico statewide geothermal energy program. Final technical report

    SciTech Connect

    Icerman, L.; Parker, S.K.

    1988-04-01

    This report summarizes the results of geothermal energy resource assessment work conducted by the New Mexico Statewide Geothermal Energy Program during the period September 7, 1984, through February 29, 1988, under the sponsorship of the US Dept. of Energy and the State of New Mexico Research and Development Institute. The research program was administered by the New Mexico Research and Development Institute and was conducted by professional staff members at New Mexico State University and Lightning Dock Geothermal, Inc. The report is divided into four chapters, which correspond to the principal tasks delineated in the above grant. This work extends the knowledge of the geothermal energy resource base in southern New Mexico with the potential for commercial applications.

  13. Mexican geothermal development and the future

    SciTech Connect

    Serrano, J.M.E.V.

    1998-10-01

    Geothermics in Mexico started in 1954, by drilling the first geothermal well in Pathe, State of Hidalgo, which reached a depth of 237 meters. In 1959 electrical generation from geothermal origin began, with an installed capacity of 3.5 MW. From 1959 to 1994 Mexico increased its installed capacity to 753 MW, by developing three geothermal fields: Cerro Prieto, Los Azufres, and Los Humeros. Currently, 177 wells produce steam at a rate of 36 tons per hour (t/h) each. Comision Federal de Electricidad (CFE, Federal Commission of Electricity) has planned to increase the geothermal-electric installed capacity through construction and installation of several projects. Repowering of operating units and development of new geothermal zones will also allow Mexican geothermal growth.

  14. Geothermal studies at Kirtland Air Force Base, Albuquerque, New Mexico

    SciTech Connect

    Riddle, L.; Grant, B.

    1981-05-01

    Due to an effort by government installations to discontinue use of natural gas, alternative energy sources are being investigated at Kirtland Air Force Base, Albuquerque, New Mexico. New Mexico has geologic characteristics favorable for geothermal energy utilization. Local heat flow and geochemical studies indicate a normal subsurface temperature regime. The alluvial deposits, however, extend to great depths where hot fluids, heated by the normal geothermal gradient, could be encountered. Two potential models for tapping geothermal energy are presented: the basin model and the fault model.

  15. Application of the Gauss theorem to the study of silicic calderas: The calderas of La Primavera, Los Azufres, and Los Humeros (Mexico)

    NASA Astrophysics Data System (ADS)

    Campos-Enríquez, J. O.; Domínguez-Méndez, F.; Lozada-Zumaeta, M.; Morales-Rodríguez, H. F.; Andaverde-Arredondo, J. A.

    2005-10-01

    We explored applications (including limitations) of Gauss's theorem to the study of silicic calderas. First it enables us to determine the mass deficiency from calderas. Mass deficiency itself has also other potential applications. It enables to make qualitative comparisons between calderas. We can use the mass deficiency to test, in a quick way and as a preliminary step to a formal gravity inversion, for the feasibility of caldera types of simple geometry (i.e., piston subsidence and funnel models). This application can be done in a straightforward way, once the mass deficiency has been determined. For this purpose the mass deficiency is converted to the volume of material missing at the caldera. Subsequently, for example, this volume and the respective caldera diameter enable us to estimate the height of the cylinder fitting the piston subsidence model. If the obtained parameters are congruent with the known geology and geophysical information then the model may be considered further in the inversion of the gravity data for the detailed structure. Other simple models (i.e., the funnel model) can also be analyzed in this way. In particular, when working with a piston subsidence caldera type, the Gauss theorem enables us to estimate the caldera collapse (very difficult to obtain based on geologic information alone). These possible uses of Gauss's theorem are illustrated with the calderas of La Primavera, Los Azufres, and Los Humeros caldera (Mexico). The obtained mass deficiency from these calderas follow the linear mass deficiency-diameter trend observed for other calderas. In particular, because of their diameters and mass deficiencies, La Primavera and Krakatau calderas can be considered equiparable. This comparison is of the most importance considering that La Primavera is located in the neighbourhood of a metropolis (Guadalajara City). Since geophysical studies have already established a piston subsidence model for these calderas, we assessed Gauss's theorem

  16. Regional geothermal exploration in north central New Mexico. Final report

    SciTech Connect

    Icerman, L.

    1984-02-01

    A broad-based geothermal resource reconnaissance study covering Bernalillo, Los Alamos, Rio Arriba, San Miguel, Sandoval, Santa Fe, Taos, Torrance, and Valencia counties in north central New Mexico was conducted from June 15, 1981, through September 30, 1983. Specific activities included the compilation of actual temperature, bottom-hole temperature gradient, and geotemperature data; tabulation of water chemistry data; field collection of temperature-depth data from existing wells; and drilling of temperature gradient holes in the Ojo Caliente, San Ysidro, Rio Puerco, and Polvadera areas. The data collected were used to perform: (1) a regional analysis of the geothermal energy potential of north central New Mexico; (2) two site-specific studies of the potential relationship between groundwater constrictions and geothermal resources; (3) an evaluation of the geothermal energy potential at Santa Ana Pueblo; (4) a general analysis of the geothermal energy resources of the Rio Grande Rift, including specific data on the Valles Caldera; and (5) an evaluation of the use of geothermometers on New Mexico groundwaters. Separate abstracts were prepared for individual chapters.

  17. New Mexico Geothermal Play Fairway Analysis from LANL

    DOE Data Explorer

    Rick Kelley

    2015-10-27

    This submission contains geospatial (GIS) data on water table gradient and depth, subcrop gravity and magnetic, propsectivity, heat flow, physiographic, boron and BHT for the Southwest New Mexico Geothermal Play Fairway Analysis by LANL Earth & Environmental Sciences. GIS data is in ArcGIS map package format.

  18. Valles Caldera geothermal systems, New Mexico, U.S.A.

    NASA Astrophysics Data System (ADS)

    Goff, Fraser; Grigsby, Charles O.

    1982-03-01

    Valles Caldera is part of a Quaternary silicic volcano in northern New Mexico that possesses enormous geothermal potential. The caldera has formed at the intersection of the volcanically active Jemez lineament and the tectonically active Rio Grande rift. Volcanic rocks of the Jemez Mountains overlie Paleozoic—Mesozoic sediments, and Precambrian granitic basement. Although the regional heat flow along the Rio Grande rift is ~2.7 HFU , convective heat flow within the caldera exceeds 10 HFU. A moderately saline hotwater geothermal system ( T > 260° C, Cl ⋍ 3000 mg/ l) has been tapped in fractured caldera-fill ignimbrites at depths of 1800 m. Surface geothermal phenomena include central fumaroles and acid-sulfate springs surrounded by dilute thermal meteoric hot springs. Derivative hot springs from the deep geothermal reservoir issue along the Jemez fault zone, 10 km southwest of the caldera. Present geothermal projects are: (1) proposed construction of an initial 50-MW el power plant utilizing the known geothermal reservoir; (2) research and development of the prototype hot dry rock (HDR) geothermal system that circulates surface water through deep Precambrian basement (˜5MW th); (3) exploration for deep hot fluids in adjacent basin-fill sediments of the Rio Grande rift; and (4) shallow exploration drilling for hot fluids along the Jemez fault zone. 1 HFU (heat flow unit) = 1 μcal. s -2 cm -2 = 41.67 mW m -2.

  19. Geothermal energy from deep sedimentary basins: The Valley of Mexico (Central Mexico)

    NASA Astrophysics Data System (ADS)

    Lenhardt, Nils; Götz, Annette E.

    2015-04-01

    The geothermal potential of the Valley of Mexico has not been addressed in the past, although volcaniclastic settings in other parts of the world contain promising target reservoir formations. A first assessment of the geothermal potential of the Valley of Mexico is based on thermophysical data gained from outcrop analogues, covering all lithofacies types, and evaluation of groundwater temperature and heat flow values from literature. Furthermore, the volumetric approach of Muffler and Cataldi (1978) leads to a first estimation of ca. 4000 TWh (14.4 EJ) of power generation from Neogene volcanic rocks within the Valley of Mexico. Comparison with data from other sedimentary basins where deep geothermal reservoirs are identified shows the high potential of the Valley of Mexico for future geothermal reservoir utilization. The mainly low permeable lithotypes may be operated as stimulated systems, depending on the fracture porosity in the deeper subsurface. In some areas also auto-convective thermal water circulation might be expected and direct heat use without artificial stimulation becomes reasonable. Thermophysical properties of tuffs and siliciclastic rocks qualify them as promising target horizons (Lenhardt and Götz, 2015). The here presented data serve to identify exploration areas and are valuable attributes for reservoir modelling, contributing to (1) a reliable reservoir prognosis, (2) the decision of potential reservoir stimulation, and (3) the planning of long-term efficient reservoir utilization. References Lenhardt, N., Götz, A.E., 2015. Geothermal reservoir potential of volcaniclastic settings: The Valley of Mexico, Central Mexico. Renewable Energy. [in press] Muffler, P., Cataldi, R., 1978. Methods for regional assessment of geothermal resources. Geothermics, 7, 53-89.

  20. Geothermal materials survey: Baca Geothermal Demonstration Power Plant, Baca, New Mexico

    SciTech Connect

    Ellis, P.F. II

    1980-10-07

    The results of a materials survey for the Baca 50 MW(e) single flash geothermal plant in the Valles Caldera of New Mexico are presented. From the design documents provided, materials proposed for use in contact with the plant atmosphere, the two-phase geofluid, the separated steam, and the recirculating condensate cooling water were assessed for suitability. Special emphasis was given to records of performance of the materials in other geothermal plants. Based upon these considerations of chemical reactivity and plant operating experience, a number of recommendations were made.

  1. Mushroom growing project at the Los Humeros, Mexico geothermal field

    SciTech Connect

    Rangel, M.E.R.

    1998-12-01

    There are several projects of direct (non-electrical) use of geothermal energy in Mexico. Personnel of the Comision Federal de Electricidad (CFE) have experience in various of these projects, like drying of timber and fruits, space heating, food processing, etc. Taking this in consideration, CFE built the Los Humeros mushroom plant using for heat source the geothermal steam from Well H-1. The main purpose of the project was to take advantage of residual geothermal energy in a food production operation and to develop the appropriate technology. In 1992, existing installations were renovated, preparing appropriate areas for pasteurization, inoculation and production. The mushroom Pleurotus ostreatus var. florida and columbinus was used. A year later, CFE proposed the construction of improved facilities for growing edible mushrooms. New materials and equipment, as well as different operation conditions, were proposed on the basis of the experience gained in the initial project. The construction and renovation activities were completed in 1994.

  2. Southern New Mexico low temperature geothermal resource economic analysis

    SciTech Connect

    Fischer, C.L.; Whittier, J.; Witcher, J.C.; Schoenmackers, R.

    1990-08-01

    This report presents an overview of geothermal resource development for three-low temperature (i.e, <200{degree}F) sites in southern New Mexico: the Lower Animas Valley, the Las Cruces East Mesa, and Truth or Consequences. This report is intended to provide potential geothermal developers with detailed information on each site for planning and decision making purposes. Included in the overview for each site is both a full site characterization and an economic analysis of development costs associated with the construction and operation of both geothermal and fresh water systems at each of the three locations. The economic analysis focuses on providing utility services to a commercial greenhouse because greenhouse operations are among the most likely candidates for use of the resource base. 9 tabs., 8 figs.

  3. Ecological protection in the Las Tres Virgenes, Mexico, geothermal field

    SciTech Connect

    Zirahuen Ortega Varela, J.R.

    1996-12-31

    The programs of environmental protection designed by Comision Federal de Electricidad are described in a general way. These programs detect, avoid, soften and compensate the environmental impacts product of the exploration, construction and operation activities of the geothermal field Las Tres Virgenes, this field is in the buffer zone of the biosphere reserve {open_quotes}El Vizcaino{close_quotes} at the north of the State of Baja California Sur, Mexico.

  4. Geothermal resources of the northern gulf of Mexico basin

    USGS Publications Warehouse

    Jones, P.H.

    1970-01-01

    Published geothermal gradient maps for the northern Gulf of Mexico basin indicate little or no potential for the development of geothermal resources. Results of deep drilling, from 4000 to 7000 meters or more, during the past decade however, define very sharp increases in geothermal gradient which are associated with the occurrence of abnormally high interstitial fluid pressure (geopressure). Bounded by regional growth faults along the landward margin of the Gulf Basin, the geopressured zone extends some 1300 km from the Rio Grande (at the boundary between the United States and Mexico) to the mouth of the Mississippi river. Gulfward, it extends to an unknown distance across the Continental Shelf. Within geopressured deposits, geothermal gradients range upwards to 100 ??C/km, being greatest within and immediately below the depth interval in which the maximum pressure gradient change occurs. The 120 ??C isogeotherm ranges from about 2500 to 5000 m below sea level, and conforms in a general way with depth of occurrence of the top of the geopressured zone. Measured geostatic ratios range upward to 0.97; the maximum observed temperature is 273 ??C, at a depth of 5859 m. Dehydration of montmorillonite, which comprises 60 to 80 percent of clay deposited in the northern Gulf Basin during the Neogene, occurs at depths where temperature exceeds about 80 ??C, and is generally complete at depths where temperature exceeds 120 ??C. This process converts intracrystalline and bound water to free pore water, the volume produced being roughly equivalent to half the volume of montmorillonite so altered. Produced water is fresh, and has low viscosity and density. Sand-bed aquifers of deltaic, longshore, or marine origin form excellent avenues for drainage of geopressured deposits by wells, each of which may yield 10,000 m3 or more of superheated water per day from reservoirs having pressures up to 1000 bars at depths greater than 5000 m. ?? 1971.

  5. Heating the New Mexico Tech Campus with geothermal energy. Final report, July 1, 1978-October 31, 1979

    SciTech Connect

    LeFebre, V.; Miller, A.

    1980-01-01

    An area between the base of Socorro Peak and the New Mexico Tech Campus (located in central New Mexico) has been proposed as a site for geothermal exploratory drilling. The existing site environment is summarized, a program for site monitoring is proposed, impacts of geothermal production and reinjection are listed, and problems associated with geothermal development are examined. The most critical environmental impact is the increased seismic activity that may be associated with geothermal fluid migration resulting from geothermal production and reinjection.

  6. Hydrocarbons emissions from Cerro Prieto Geothermal Power Plant, Mexico

    NASA Astrophysics Data System (ADS)

    Navarro, Karina; Navarro-González, Rafael; de la Rosa, José; Peralta, Oscar; Castro, Telma; Imaz, Mireya

    2014-05-01

    One of the most important environmental issues related to the use of geothermal fluids to generate electricity is the emission of non-condensable gases to the atmosphere. Mexico has one of the largest geothermal plants in the world. The facility is located at Cerro Prieto, Baja California, roughly 30 km south of Mexicali and the international boundary between Mexico and United States. The Cerro Prieto power plant has 13 units grouped on four individual powerhouses. Gas samples from 9 units of the four powerhouses were collected during 4 campaigns conducted in May-July, 2010, February, 2012, December, 2012, and May, 2013. Gas samples from the stacks were collected in 1000 ml Pyrex round flasks with Teflon stopcocks, and analyzed by gas chromatography-mass spectrometry. Methane was the most abundant aliphatic hydrocarbon, with a concentration that ranged from less than 1% up to 3.5% of the total gas mixture. Normal alkanes represented the second most abundant species, and displayed a decreasing abundance with increasing carbon number in the homologous series. Isoalkanes were also present as isobutane and isopentane. Cycloalkanes occurring as cyclopentane and cyclohexane, were detected only at trace level. Unsaturated hydrocarbons (alkenes and alkynes) were not detected. Benzene was detected at levels ranging from less than 1% up to 3.4% of the total gas mixture. Other aromatic hydrocarbons detected were toluene, and xylenes, and were present at lower concentrations (

  7. Utilization of geothermal energy for agribusiness development in southwestern New Mexico. Technical completion report, July 19, 1978-May 30, 1980

    SciTech Connect

    Landsford, R.R.; Abernathy, G.H.; Gollehon, N.R.

    1981-01-01

    An evaluation is presented of the direct heat utilization from geothermal resources for agribusiness uses in the Animas Valley, Southwestern New Mexico. The analysis includes an evaluation of the groundwater and geothermal resources in the Animas Valley, monitoring of an existing geothermal greenhouse, and evaluation of two potential agribusiness applications of geothermal waters (greenhouses and meat precooking).

  8. Microfossils from Cerro Prieto geothermal wells, Baja California, Mexico

    SciTech Connect

    Cotton, M.L.; Vonder Haar, S.

    1980-01-01

    To aid in a paleoenvironmental and age reconstruction of the Cerro Prieto reservoir system, 59 samples of well cuttings were analyzed for microfossils. The cuttings were obtained at depths from 351 to 3495 m in 14 geothermal wells in the Cerro Prieto field, Baja California, Mexico. We found foraminifera in 6 samples, ostracodes in 19 samples, and nannoplankton as coccoliths in 24 samples. Other groups, such as molluscs, insects, fish skeletal parts, and plant material were occasionally present. Detailed interpretations are not possible at this time because of poor preservation of samples. This is primarily due to causes: dissolution by geothermal fluids that reach 350{sup 0}C, and the extensive mixing of filled Cretaceous forms (reworked from the Colorado Plateau region) with Tertiary species during drilling. Further studies of ostracodes and foraminifera from colder portions of the wells are needed. The abundant and well-preserved ostracodes indicate marine to brackish water environments that correspond, in part, to lagoonal or estuarine facies. The presence of the mid-Tertiary (15-My-old) marine foraminifera, Cassigerinela chipolensis, in wells M-11 and M-38, 350 to 500 m deep, is perplexing. These are not laboratory contaminates and, as yet, have not been found in the drilling mud. If further studies confirm their presence at Cerro Prieto, established ideas about the opening of the Gulf of California and about Pacific Coast mid-Tertiary history will need to be rewritten.

  9. Microfossils from Cerro Prieto geothermal wells, Baja California, Mexico

    SciTech Connect

    Cotton, M.L.; Haar, S.V.

    1982-08-10

    To aid in a paleonenvironmental and age reconstruction of the Cerro Prieto reservoir system, 59 samples of well cuttings were analyzed for microfossils. The cuttings were obtained at depths from 351 to 3495m in 14 geothermal wells in the Cerro Prieto field, Baja California, Mexico. Foraminifera was found in 6 samples, ostracodes in 19 samples and mannoplankton as coccoliths in 24 samples. Other groups, such as molluscus, insects, fish skeletal parts, and plant material were occasionally present. Detailed interpretations at this time cannot be made because of poor preservation of samples. This is primarily due to causes: dissolution by geothermal fluids that reach 350/sup 0/C, and the extensive mixing of filled Cretaceous forms (reworked from the Colorado Plateau region) with Tertiary species during drilling. Further studies of ostracodes and foraminifera from colder portions of the wells are needed. The abundant and well-preserved ostracodes indicate marine to backish water inviroments that correspond in part, to lagoonal or estuarine facies. The presence of the mid-Tertiary (15-m.y.-old) marine foraminifera, Cassigerinela chipolensis, in wells M-11 and M-38, 350 to 500m deep, is perplexing. These are not laboratory contaminates and, as yet have not been found in the drilling mud. If further studies confirm their presence at Cerro Prieto, established ideas about the opening of the Gulf of California and about Pacific Coast mid-Tertiary history will need to be rewritten.

  10. H2S and CO2 emissions from Cerro Prieto geothermal power plant, Mexico

    NASA Astrophysics Data System (ADS)

    Peralta, Oscar; Franco, Luis; Castro, Telma; Taran, Yuri; Bernard, Ruben; Inguaggiato, Salvatore; Navarro, Rafael; Saavedra, Isabel

    2014-05-01

    Cerro Prieto geothermal power plant has an operation capacity of 570 MW distributed in four powerhouses being the largest geothermal plant in Mexico. The geothermal field has 149 production wells. It is located in Cerro Prieto, Baja California, 30 km to the south of the Mexico-US border. Two sampling campaigns were performed in December 2012 and May 2013 where geothermal fluids from 46 production wells and 10 venting stacks were obtained and analyzed by gas chromatography coupled to mass spectrometry. Average CO2 and H2S composition of samples from venting stacks were 49.4% and 4.79%, respectively. Based on the chemical composition of samples, the geothermal power plant emits every day from venting stacks 869 tons of CO2, plus 68 tons of H2S, among other non-condensable gases.

  11. Seismic and magneto-telluric imaging for geothermal exploration at Jemez pueblo in New Mexico

    SciTech Connect

    Huang, Lianjie; Albrecht, Michael

    2011-01-25

    A shallow geothermal reservoir in the Pueblo of Jemez in New Mexico may indicate a commercial-scale geothermal energy potential in the area. To explore the geothermal resource at Jemez Pueblo, seismic surveys are conducted along three lines for the purpose of imaging complex subsurface structures near the Indian Springs fault zone. A 3-D magneto-telluric (MT) survey is also carried out in the same area. Seismic and MT imaging can provide complementary information to reveal detailed geologic formation properties around the fault zones. The high-resolution seismic images will be used together with MT images, geologic mapping, and hydrogeochemistry, to explore the geothermal resource at Jemez Pueblo, and to determine whether a conunercial-scale geothermal resource exists for power generation or direct use applications after drilling and well testing.

  12. Environmental overview for the development of geothermal resources in the State of New Mexico. Final report

    SciTech Connect

    Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

    1980-06-01

    A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies planned or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.

  13. Soil mercury levels in the area surrounding the Cerro Prieto geothermal complex, MEXICO.

    PubMed

    Pastrana-Corral, M A; Wakida, F T; García-Flores, E; Rodriguez-Mendivil, D D; Quiñonez-Plaza, A; Piñon-Colin, T D J

    2016-08-01

    Even though geothermal energy is a renewable energy source that is seen as cost-effective and environmentally friendly, emissions from geothermal plants can impact air, soil, and water in the vicinity of geothermal power plants. The Cerro Prieto geothermal complex is located 30 km southeast of the city of Mexicali in the Mexican state of Baja California. Its installed electricity generation capacity is 720 MW, being the largest geothermal complex in Mexico. The objective of this study was to evaluate whether the emissions generated by the geothermal complex have increased the soil mercury concentration in the surrounding areas. Fifty-four surface soil samples were collected from the perimeter up to an approximate distance of 7660 m from the complex. Additionally, four soil depth profiles were performed in the vicinity of the complex. Mercury concentration in 69 % of the samples was higher than the mercury concentration found at the baseline sites. The mercury concentration ranged from 0.01 to 0.26 mg/kg. Our results show that the activities of the geothermal complex have led to an accumulation of mercury in the soil of the surrounding area. More studies are needed to determine the risk to human health and the ecosystems in the study area.

  14. Geothermal development in Cerro Prieto Baja California, Mexico (1983)

    SciTech Connect

    Manon M.A.

    1983-09-01

    The actual stage of the expansion program and some of the main characteristics of the Cerro Prieto Geothermal Field are presented. This is similar to the one presented in this same conference back in 1981, but it has been updated.

  15. Geothermal exploration in Trans-Pecos, Texas/New Mexico. Final report

    SciTech Connect

    Roy, R.; Taylor, B.; Miklas, M.P. Jr.

    1983-09-01

    Interest in alternative energy has encouraged the investigation of possible geothermal resources in Trans Pecos, Texas/New Mexico in an area of extensive Cenozoic volcanism with several hot springs. Geochemical analysis of groundwater samples resulted in the definition of two major areas of geothermal interest: the Hueco Bolson in northeastern El Paso County, and the Presidio Bolson. Regional temperature gradient measurements also supported the existence of anomalies in these places, and showed another smaller anomaly in the Finlay Mountains, Hudspeth County. Detailed geophysical and geochemical studies were conducted on these three targets.

  16. Utilization of geothermal energy-feasibility study, Ojo Caliente Mineral Springs Company, Ojo Caliente, New Mexico

    SciTech Connect

    Not Available

    1982-04-01

    This report investigates the feasibility of a geothermal heating system at the Ojo Caliente Mineral Springs Co. The geothermal energy will be used to preheat hot water for the laundry facilities and to heat the water for a two-pipe fan coil heating system in the hotel. Present annual heating fuel costs of $11,218 for propane will be replaced by electricity to operate fans and pump at an annual cost of $2547, resulting in a net savings of $8671. Installation costs include $10,100 for a well system, $1400 for a laundry system, and $41,100 for a heating system. With the addition of a 10% design fee the total installation cost is $57,860. Ignoring escalating propane fuel prices, tax credits for energy conservation equipment, and potential funding from the State of New Mexico for a geothermal demonstration project, the simple economic payback period for this project is 6.7 years.

  17. Utilization of geothermal energy-feasibility study, Ojo Caliente Mineral Springs Company, Ojo Caliente, New Mexico

    NASA Astrophysics Data System (ADS)

    1982-04-01

    The feasibility of a geothermal heating system at the Ojo Caliente Mineral Springs Co. was investigated. The geothermal energy will be used to preheat hot water for the laundry facilities and to heat the water for a two pipe fan coil heating system in the hotel. Present annual heating fuel costs of $11,218 for propane will be replaced by electricity to operate fans and pump at an annual cost of $2547, resulting in a net savings of $8671. Installation costs include $10,100 for a well system, $1400 for a laundry system, and $41,100 for a heating system. With the addition of a 10% design fee the total installation cost is $57,860. Ignoring escalating propane fuel prices, tax credits for energy conservation equipment, and potential funding from the State of New Mexico for a geothermal demonstration project, the simple economic payback period for this project is 6.7 years.

  18. Geothermal space heating for the Senior Citizens Center at Truth or Consequences, New Mexico. Final report

    SciTech Connect

    Mancini, T.R.; Chaturvedi, L.N.; Gebhard, T.G.

    1982-03-01

    A demonstration project to heat the Senior Citizens Center at Truth or Consequences, New Mexico with geothermal waters is described. There were three phases to the project: Phase I - design and permitting; Phase II - installation of the heating system and well drilling; and Phase III - operation of the system. All three phases went well and there was only one major problem encountered. This was that the well which was drilled to serve as the geothermal source was dry. This could not have been anticipated and there was, as a contingency plan, the option of using an existing sump in the Teen Center adjacent to the Senior Citizens Center as the geothermal source. The system was made operational in August of 1981 and has virtually supplied all of the heat to the Senior Citizens Center during this winter.

  19. Environmental Considerations for a Geothermal Development in the Jemez Mountains of Central New Mexico

    SciTech Connect

    Sabo, David G.

    1980-12-01

    The demonstration nature of the Baca Geothermal Project and the contractual arrangements between Public Service Company of New Me (PNM) and Union Geothermal Company of New Mexico (Union) with the Department of Energy mandate on environmental monitoring effort previously not seen for an energy development of this size. One of the most often stated goals of the Baca Project is to demonstrate the acceptability and viability of geothermal energy in an environmentally responsible manner. If this statement is to be followed, then a program would have to be developed which would (1) identify all the environmental baseline parameters, (2) monitor them during construction and operation, and (3) alleviate any possible negative impacts. The situation of the Baca project in the Jemez Mountains of north-central New Mexico offers a challenging vehicle with which to demonstrate the acceptability of geothermal energy. A few of the reasons for this are: these mountains are one of the most heavily used recreational resource areas in the state, numerous prehistoric people utilized the canyons and have left considerable archeological resources, the mountains are home for a number of individuals who prefer their serenity to the hustle and bustle of urban dwelling, and finally, the mountains are considered sacred by a number of local Indian tribes, a few of which use the mountaintop as religious sites.

  20. Some Comments on the La Primavera Geothermal Field, Mexico

    SciTech Connect

    A., Bernardo Dominguez; Lippmann, Marcelo J.

    1983-12-15

    The La Primavera geothermal field is located about 20 km west of the city of Guadalajara, Jalisco, in the western part of the Mexican Neovolcanic Axis. Initial results of five deep exploration wells (down to 2000 m depth) were very promising; measured downhole temperatures exceed 300{degrees}C. During production, however, downhole temperatures dropped, and the chemistry of the fluids changed. The analysis of geologic, mineralogic, geochemical, and well completion data indicate that colder fluids flow down the wellbore from shallower aqifers cooling the upper zones of the gothermal reservoir. This problem is attributed to inadequate well completions. Doubts have arisen about continuing the exploration of the field because of the somewhat disappointing drilling results. However, a more thorough analysis of all available data indicates that a good geothermal prospect might exist below 3000 m, and that it could be successfully developed with appropriately located and completed wells.

  1. Geothermal Energy--Heat from the Earth: New Mexico; GeoPowering the West Series Fact Sheet

    SciTech Connect

    Not Available

    2002-04-01

    New Mexico holds considerable reserves of this clean, reliable form of energy that to date have barely been tapped. New Mexico has more acres of geothermally heated greenhouses than any other state, and aquaculture, or fish farming, is a burgeoning enterprise for state residents. Several electric power generation opportunities also have been identified.

  2. On the magma chamber characteristics as inferred from surface geology and geochemistry: examples from Mexican geothermal areas

    NASA Astrophysics Data System (ADS)

    Verma, Surendra P.

    1985-12-01

    A procedure is described which enables us to obtain estimates of some physical and chemical characteristics of sub-surface magma chambers. This is applied to three geothermal areas of the Mexican Volcanic Belt (MVB) in central Mexico. The approximate volumes estimated for the underlying chemically and thermally zoned magma chambers are: 1500 km 3 for Los Humeros, 600 km 3 for La Primavera, and 400 km 3 for Los Azufres. These estimates will have to be modified as more geological-geochemical data become available.

  3. Thermal extraction analysis of five Los Azufres production wells

    SciTech Connect

    Kruger, Paul; Quijano, Luis

    1995-01-26

    Thermal energy extraction from five wells supplying 5-MWe wellhead generators in three zones of the Los Azufres geothermal field has been examined from production and chemical data compiled over 14-years of operation. The data, as annual means, are useful in observing small-scale changes in reservoir performance with continuous production. The chemical components are chloride for quality control and the geothermometer elements for reservoir temperatures. The flowrate and fluid enthalpy data are used to calculate the thermal extraction rates. Integration of these data provides an estimate of the total energy extracted from the zone surrounding the well. The combined production and chemical geothermometer data are used to model the produced fluid as coming from just-penetrating wells for which the annual produced mass originates from a series of concentric hemispheric shells moving out into the reservoir. Estimates are made of the drawdown distance into the reservoir and the far-field conditions.

  4. Evaluation of thermal remote sensing as a low-cost regional geothermal exploration technique in New Mexico. Final report

    SciTech Connect

    Inglis, M.; Budge, T.K.

    1985-03-01

    Airborne and satellite borne thermal infrared scanner data were analyzed for application in the exploration of geothermal resources in New Mexico. The location for this study was the East Mesa Geothermal Field near Las Cruces, New Mexico. Primary sensor was the Thermal Infrared Multispectral Scanner (TIMS) which obtained data at 10-meter resolution. Additional data for comparison came from the Heat Capacity Mapping Mission (HCMM) satellite which provided data at 600-meter resolution. These data were compared to the soils, vegetation, and geology of the area, as well as borehole temperature data in an attempt to explain temperature patterns and anomalies. Thermal infrared scanner data were found to be too sensitive to solar-induced temperature anomalies to directly reflect the presence of subsurface geothermal anomalies but may provide valuable supporting information for a geothermal exploration program. 15 refs., 16 figs., 3 tabs.

  5. Geothermal hydrology of Valles Caldera and the southwestern Jemez Mountains, New Mexico

    USGS Publications Warehouse

    Trainer, Frank W.; Rogers, Robert J.; Sorey, M.L.

    2000-01-01

    The Jemez Mountains in north-central New Mexico are volcanic in origin and have a large central caldera known as Valles Caldera. The mountains contain the Valles geothermal system, which was investigated during 1970-82 as a source of geothermal energy. This report describes the geothermal hydrology of the Jemez Mountains and presents results of an earlier 1972-75 U.S. Geological Survey study of the area in light of more recent information. Several distinct types of thermal and nonthermal ground water are recognized in the Jemez Mountains. Two types of near-surface thermal water are in the caldera: thermal meteoric water and acid sulfate water. The principal reservoir of geothermal fluids is at depth under the central and western parts of the caldera. Nonthermal ground water in Valles Caldera occurs in diverse perched aquifers and deeper valley-fill aquifers. The geothermal reservoir is recharged by meteorically derived water that moves downward from the aquifers in the caldera fill to depths of 6,500 feet or more and at temperatures reaching about 330 degrees Celsius. The heated geothermal water rises convectively to depths of 2,000 feet or less and mixes with other ground water as it flows away from the geothermal reservoir. A vapor zone containing steam, carbon dioxide, and other gases exists above parts of the liquid-dominated geothermal zone. Two subsystems are generally recognized within the larger geothermal system: the Redondo Creek subsystem and the Sulphur Creek subsystem. The permeability in the Redondo Creek subsystem is controlled by stratigraphy and fault-related structures. Most of the permeability is in the high-angle, normal faults and associated fractures that form the Redondo Creek Graben. Faults and related fractures control the flow of thermal fluids in the subsystem, which is bounded by high-angle faults. The Redondo Creek subsystem has been more extensively studied than other parts of the system. The Sulphur Springs subsystem is not as well

  6. Annotated bibliography of the hydrology, geology, and geothermal resources of the Jemez Mountains and vicinity, north-central New Mexico

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Delaney, B.M.

    1986-01-01

    The Jemez Mountains volcanic complex, located in north-central New Mexico at the intersection of the Rio Grande rift and Jemez lineament, is a potential location for geothermal energy exploration. This bibliography lists selected papers pertaining to the geology, hydrology, geochemistry, geothermometry, geophysics, ecology, and geothermal and hydrologic modeling aspects of the Jemez region. The bibliography is composed of 795 citations with annotations and a subject and author index. (USGS)

  7. Mercury in freshwater fish and clams from the Cerro Prieto geothermal field of Baja California, Mexico

    SciTech Connect

    Gutierrez-Galindo, E.A.; Munoz, G.F.; Flores, A.A.

    1988-08-01

    Several reports have expressed concern about the potential toxicity hazards and environmental contamination of mercury emissions from geothermal fields in Hawaii, New Zealand, Iceland, California and Mexico. Inorganic mercury discharged from the sources may accumulate in the sediments of rivers or lakes and, after microbiological methylation may become concentrated in the edible tissue of fish. This study involves assessment of geothermal mercury pollution arising from Cerro Prieto. For this purpose the fish Tilapia mossambica and the clam Corbicula fluminea were collected from the freshwater courses of the Mexicali Valley. Reports indicated that in 1982, 13 t of T. mossambica were destinated for human consumption. A further aim was to provide base line data and information relevant to the level of mercury contamination for the Mexicali Valley.

  8. Seismotectonics of the Cerro Prieto Geothermal Field, Baja California, Mexico.

    NASA Astrophysics Data System (ADS)

    Rebollar, C. J.; Reyes, L. M.; Quintanar, L.; Arellano, J. F.

    2002-12-01

    We studied the background seismic activity in the Cerro Prieto geothermal field (CPGF) using a network of 21 digital stations. Earthquakes are located below the exploitation area of the CPGF, between 3 and 12 km depth, within the basement. Earthquakes follow roughly a N30°E trend perpendicular to the Cerro Prieto fault. This activity is located on a horst-like structure below the geothermal field and coincides with the zone of maximum subsidence in the CPGF. Two earthquake swarms occurred along the SE-NW strike of the Cerro Prieto fault and in the neighborhood of the Cerro Prieto volcano. Magnitudes range from -0.3 to 2.5. A Vp/Vs=1.91 ratio of the activity below the volcano suggests a water-saturated medium and/or a partial-melt medium. We calculated 76 focal mechanisms of individual events. On June 1 and September 10, 1999, two earthquakes of Mw 5.2 and 5.3 occurred in the basement at depths of 7.4 and 3.8 km below the CPGF. Maximum peak accelerations above the hypocenter ranged from 128.0 to 432.0 cm/s2. Waveform modeling results in a fault geometries given by strike=236°, dip=60°, rake=-58° (normal) and strike=10°, dip=90°, rake=159° (right lateral strike-slip) for the June and September events. Observed triangular source time function of 0.7 seconds and a double source with a total duration of 1.9 seconds for the June and September events were used to calculate the synthetics seismograms. Static stress drops and seismic moments for the June and September events are: Δ\\sigma=82.5 MPa (825 bars), Mo= 7.65x1016 Nm (7.65x1023 dyne-cm) and Δ\\sigma=31.3 MPa (313 bars) and Mo=1.27x1017 Nm (1.27x1024 dyne-cm). These stress drops are typical of continental events rather than stress drops of events originated in spreading centers. We concluded from the focal mechanisms of the background seismicity and June and September 1999 events, that a complex stress environment exits in the CPGF due to the continual thinning of the crust in the Cerro Prieto basin.

  9. Field Studies of Geothermal Reservoirs Rio Grande Rift, New Mexico

    SciTech Connect

    James C Witcher

    2002-07-30

    The Rio Grande rift provides an excellent field laboratory to study the nature of geothermal systems in an extensional environment. Much of the geologic complexity that is found in the Basin and Range is absent because the rift is located on cratonic crust with a thin and well-characterized Phanerozoic stratigraphy and tectonic history. On the other hand, the Neogene thermo-tectonic history of the rift has many parallels with the Basin and Range to the west. The geology of the southern Rio Grande rift is among the best characterized of any rift system in the world. Also, most geologic maps for the region are rather unique in that detailed analyses of Quaternary stratigraphic and surficial unit are added in concert with the details of bedrock geology. Pleistocene to Holocene entrenchment of the Rio Grande and tributaries unroofs the alteration signatures and permeability attributes of paleo outflow plumes and upflow zones, associated with present-day, but hidden or ''blind,'' hydrothermal systems at Rincon and San Diego Mountain.

  10. Geothermal Energy for New Mexico: Assessment of Potential and Exploratory Drilling

    SciTech Connect

    Mark Person, Lara Owens, James Witcher

    2010-02-17

    This report summarizes the drilling operations and subsequent interpretation of thermal and geochemical data from the New Mexico Tech NMT-2GT (OSE RG- 05276 POD) test well. This slim hole was drilled along an elongate heat-flow anomaly at the base of the Socorro Mountains to better assess the geothermal resource potential (Socorro Peak geothermal system) on the western side of the New Mexico Tech campus in Socorro, New Mexico. The reservoir depth, hydraulic properties, temperature and chemistry were unknown prior to drilling. The purpose of the NMT-2GT (OSE RG-05276 POD) well was to explore the feasibility of providing geothermal fluids for a proposed district space heating system on the New Mexico Tech campus. With DOE cost over runs funds we completed NMT-2GT to a depth of 1102 feet at the Woods Tunnel drill site. Temperatures were nearly constant (41 oC ) between a depth of 1102 feet. Above this isothermal zone, a strong temperature gradient was observed (210 oC /km) beneath the water table consistent with vertical convective heat transfer. The existence of a groundwater upflow zone was further supported by measured vertical hydraulic head measurements which varied between about 258 feet at the water table to 155 feet at a depth of 1102 feet yielding a vertical hydraulic a gradient of about 0.1. If the upflow zone is 1 km deep, then a vertical flow rate is about 0.6 m/yr could have produced the observed curvature in the thermal profile. This would suggest that the deep bedrock permeability is about 20 mD. This is much lower than the permeability measured in a specific capacity aquifer test completed in 2009 within fracture Paleozoic sandstones near the water table (3000 D). Flow rates measured during drilling were measured using a v-notch weir. Flow rates were consistently around 1000 gpm. While the temperatures are lower than we had anticipated, this geothermal resource can still be developed to heat the NM Tech campus using heat pump technology.

  11. Reservoir processes and fluid origins in the Baca geothermal system, Valles Caldera, New Mexico ( USA).

    USGS Publications Warehouse

    Truesdell, A.H.; Janik, C.J.

    1986-01-01

    At the Baca geothermal field in the Valles caldera, New Mexico, 19 deep wells were drilled in an attempt to develop a 50-MW (megawatts electric) power plant. The chemical and isotopic compositions of steam and water samples have been used to indicate uniquely the origin of reservoir fluids and natural reservoir processes. Two distinct reservoir fluids exist at Baca. These fluids originate from the same deep, high-temperature (335oC), saline (2500 mg/kg Cl) parent water but have had different histories during upflow which are described.-after Authors

  12. Preliminary plasma spectrometric analyses for selected elements in some geothermal waters from Cerro Prieto, Mexico

    USGS Publications Warehouse

    Ball, J.W.; Jenne, E.A.

    1983-01-01

    As part of a cooperative study with Dr. Alfred Truesdell, water samples collected from geothermal power production wells at Cerro Prieto, Mexico, were analyzed for selected elements by d.c. argon plasma emission spectroscopy. Spectral interferences due to the presence of high concentrations of Ca, Si, Na and K in these water affected the apparent concentration values obtained. These effects were evaluated and correction techniques were developed and applied to the analytical values. Precipitates present in the samples at the time of analysis adversely affected the accuracy, precision and interpretability of the data. (USGS)

  13. Active and Fossil Geothermal Activity at Lake Chapala, Mexico

    NASA Astrophysics Data System (ADS)

    Zârate-del Vall, P.

    2002-12-01

    Geothermal systems are very abundant in the tectonically active zones of the earth's crust and the Citala rift, where Lake Chapala is located, is not the exception. The Lake Chapala basin is characterized by its paleo- and actual geothermal activity that includes: thermal springs, fossil sinter deposits and hydrothermal petroleum manifestations. Thermal springs occur both inside and outside the lake. The spring water in out-shore thermal springs around Lake Chapala is carbonate (Medina-Heredia A, 1986). To the NE area is San Luis Agua Caliente (69°C; ~ 240 mg L-1 [HCO3]1) in the NW at Jocotepec (36°C; ~263mg L-1 [HCO3]-); in the South we find Tuxcueca and Tizap n El Alto (30°C; 193 mg L-1 [HCO3]-). However, there is an exception, the spring water at the San Juan Cosal sector (North), which is sulfate (64-83°C; ~479 mg L-1, [SO4]-2). Examples of in-shore thermal springs are "Los Gorgos" (near South shore) and "El Fuerte" (near East shore and temporary "out-shore" because of actual severe drought); the characterisation of water of this in-shore sites is in progress. On the SE shore and five km NW from Regules village, outcrops a carbonate deposit named "La Calera". This carbonate fossil sinter outcrops 2 km in E-W direction and 600 m in N-S direction and overlays andesitic rock. With a thickness of approximately 5m and a roughly horizontal attitude, the carbonated sinter material is characterized by both massive and banded structure. When massive, it is colored in yellow brownish and grey and elsewhere it shows a pseudo-brecciated structure and when banded, alternated of yellow and dark millimetre bands can be seen; is characterized by vuggy porosity and silica (quartz and chalcedony) vein lets. Under microscope a pseudo-micritic texture is observed; vugs coated by iron oxides, are filled with calcite, and/or quartz, chalcedony and clay minerals. Six samples of carbonate of "La Calera" deposit were analysed for their stable isotopes (LODC-UParis VI). From δ 13

  14. INITIAL CHEMICAL AND RESERVOIR CONDITIONS AT LOS AZUFRES WELLHEAD POWER PLANT STARTUP

    SciTech Connect

    Kruger, P.; Semprini, L.; Verma, S.; Barragan, R.; Molinar, R.; Aragon, A.; Ortiz, J.; Miranda, C.

    1985-01-22

    One of the major concerns of electric utilities in installing geothermal power plants is not only the longevity of the steam supply, but also the potential for changes in thermodynamic properties of the resource that might reduce the conversion efficiency of the design plant equipment. Production was initiated at Los Azufres geothermal field with wellhead generators not only to obtain electric energy at a relatively early date, but also to acquire needed information about the resource so that plans for large central power plants could be finalized. Commercial electric energy production started at Los Azufres during the summer of 1982 with five 5-MWe wellhead turbine-generator units. The wells associated with these units had undergone extensive testing and have since been essentially in constant production. The Los Azufres geothermal reservoir is a complex structural and thermodynamic system, intersected by at least 4 major parallel faults and producing geothermal fluids from almost all water to all steam. The five wellhead generators are associated with wells of about 30%, 60%, and 100% steam fraction. A study to compile existing data on the chemical and reservoir conditions during the first two years of operation has been completed. Data have been compiled on mean values of wellhead and separator pressures, steam and liquid flowrates, steam fraction, enthalpy, and pertinent chemical components. The compilation serves both as a database of conditions during the start-up period and as an initial point to observe changes with continued and increased production. Current plans are to add additional wellhead generators in about two years followed by central power plants when the data have been sufficiently evaluated for optimum plant design. During the next two years, the data acquired at the five 5-MWe wellhead generator units can be compared to this database to observe any significant changes in reservoir behavior at constant production.

  15. Geothermal Information Dissemination and Outreach

    SciTech Connect

    Ted J. Clutter

    2005-02-18

    Project Purpose. To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work. GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and TV

  16. Small biphase wellhead plant for the Cerro Prieto Mexico geothermal field

    SciTech Connect

    Oropeza, A.; Hays, L.

    1996-12-31

    In a system of geothermal wells in a geothermal field, there are different production conditions of the flows, temperatures and pressures. At plants where the installed capacity requires the use of many wells, it is necessary to regulate the well`s pressure to ensure a stable condition for the turbines. Reducing the steam pressure on the wellhead is achieved by using an orifice plate (flash orifice). Use of an orifice plate results in a waste or loss of well pressure that could be utilized for production of electricity. The Cerro Prieto field, operated by the Comision Federal de Electricidad (CFE), has many wells operating at a very high pressure and producing a lot of water. Much of this pressure and water is not utilized in the production of electricity. With the purpose of taking advantage of this pressure CFE has evaluated a proposal by Biphase Energy Co. Biphase has designed and patented a turbine that works directly with the steam and water mixture coming from the wellhead, acting as a separator. Biphase has developed a model of its turbine and successfully operated it in Coso Hot Springs California. Knowing this CFE has signed an agreement with Biphase Energy Company to install and operate a biphasic turbine at the Cerro Prieto geothermal field located near Mexicali, Mexico.

  17. Geologic and preliminary reservoir data on the Los Humeros Geothermal System, Puebla, Mexico

    SciTech Connect

    Ferriz, H.

    1982-01-01

    Exploratory drilling has confirmed the existence of a geothermal system in the Los Humeros volcanic center, located 180 km east of Mexico City. Volcanic activity in the area began with the eruption of andesites, followed by two major caldera-forming pyroclastic eruptions. The younger Los Potreros caldera is nested inside the older Los Humeros caldera. At later stages, basaltic andesite, dacite, and olivine basalt lavas erupted along the ring-fracture zones of both calderas. Geologic interpretation of structural, geophysical, and drilling data suggests that: (1) the water-dominated geothermal reservoir is hosted by the earliest andesitic volcanic pile, is bounded by the ring-fracture zone of the Los Potreros caldera, and is capped by the products of the oldest caldera-forming eruption; (2) permeability within the andesitic pile is provided by faults and fractures related to intracaldera uplift; (3) the geothermal system has potential for a large influx of meteoric water through portions of the ring-fracture zones of both calderas; and (4) volcanic centers with similar magmatic and structural conditions can be found in the eastern Cascades, USA.

  18. Geochemical exploration of a promissory Enhanced Geothermal System (EGS): the Acoculco caldera, Mexico.

    NASA Astrophysics Data System (ADS)

    Peiffer, Loic; Romero, Ruben Bernard; Pérez-Zarate, Daniel; Guevara, Mirna; Santoyo Gutiérrez, Edgar

    2014-05-01

    The Acoculco caldera (Puebla, Mexico) has been identified by the Mexican Federal Electricity Company (in Spanish 'Comisión Federal de Electricidad', CFE) as a potential Enhanced Geothermal System (EGS) candidate. Two exploration wells were drilled and promising temperatures of ~300° C have been measured at a depth of 2000 m with a geothermal gradient of 11oC/100m, which is three times higher than the baseline gradient measured within the Trans-Mexican Volcanic Belt. As usually observed in Hot Dry Rock systems, thermal manifestations in surface are scarce and consist in low-temperature bubbling springs and soil degassing. The goals of this study were to identify the origin of these fluids, to estimate the soil degassing rate and to explore new areas for a future detailed exploration and drilling activities. Water and gas samples were collected for chemical and isotopic analysis (δ18O, δD, 3He/4He, 13C, 15N) and a multi-gas (CO2, CH4, H2S) soil survey was carried out using the accumulation chamber method. Springs' compositions indicate a meteoric origin and the dissolution of CO2 and H2S-rich gases, while gas compositions reveal a MORB-type origin mixed with some arc-type contribution. Gas geothermometry results are similar to temperatures measured during well drilling (260° C-300° C). Amongst all measured CO2 fluxes, only 5% (mean: 5543 g m-2 day-1) show typical geothermal values, while the remaining fluxes are low and correspond to biogenic degassing (mean: 18 g m-2 day-1). The low degassing rate of the geothermal system is a consequence of the intense hydrothermal alteration observed in the upper 800 m of the system which acts as an impermeable caprock. Highest measured CO2 fluxes (above > 600 g m-2 day-1) have corresponding CH4/CO2 flux ratios similar to mass ratios of sampled gases, which suggest an advective fluid transport. To represent field conditions, a numerical model was also applied to simulate the migration of CO2 towards the surface through a

  19. One Year Experience with Portable Back-Pressure Turbines in Los Azufres

    SciTech Connect

    Hiriart, Gerardo L.

    1983-12-15

    This paper contains the experience gained after one year operating five 5 MW portable, back-pressure, geothermal power plants at Los Azufres. A brief description of the field and te equipment is given. Cost figures of the whole installation and a list of what they believe are the advantages and disadvantages is also presented. The main conclusion is that the use of this type of turbogenerators is quite attractive in new undeveloped fields and also in countries with financial problems where initial capital cost investments must be kept as low as possible at the expenses of long term steam consumption.

  20. Design of a small fruit drier using geothermal energy

    SciTech Connect

    Lund, J.W.

    1996-02-01

    A fruit drier was originally proposed for a project at the Los Azufres geothermal field in Mexico. Since the drier was to be used in a demonstration project to interest local fruit growers and processors, the size was minimal to expedite construction and minimize cost. The design was based on preliminary work reported by Herman Guillen. The design is described here, as it can be adapted to many small or experimental situations. The actual design will handle about 900 kg (2000 lbs) of fruit (wet) per drying cycle. Cutting, storing and packaging of the fruit should be done on site in a separate building. A cold-storage facility may be designed to keep fresh fruit when harvest exceeds the capacity of the drier.

  1. Water geochemistry of the Lucero Uplift, New Mexico: geothermal investigation of low-temperature mineralized fluids

    SciTech Connect

    Goff, F.; McCormick, T.; Gardner, J.N.; Trujillo, P.E.; Counce, D.; Vidale, R.; Charles, R.

    1983-04-01

    A detailed geochemical investigation of 27 waters of the Lucero uplift, central New Mexico, was performed to determine if the fluids originate from a high-temperature geothermal system along the Rio Grande rift. Two types of mineralized water issue from the Lucero region: a relatively saline (high-Cl, high-SO/sub 4/) type and a relatively dilute (low-Cl, high-SO/sub 4/) type. Emergence temperatures of both types range from 12 to 26/sup 0/C. Chemical data and thermodynamic and geothermometer calculations all indicate that both water types are in equilibrium with carbonate and evaporite minerals found in local Colorado Plateau rocks at surface temperatures or slightly higher. Stable isotope data do not indicate high-temperature rock-water interaction. Although evidence is seen for mixing between mineralized waters and dilute surface waters, no evidence for mixing of a deep hot fluid and surface waters is seen. Dilute mineral waters, which issue from a large area of Chinle Formation on the west side of the Lucero uplift, may be useful for low-temperature geothermal applications with appropriate design of equipment. Saline mineral waters, which leak from a zone of faulted and folded rocks along the Comanche fault zone, do not appear to have much, if any, geothermal potential due to their low-temperature, restricted distribution, and high concentration of dissolved solids. No evidence that saline mineral waters are associated with Quaternary faults of the Rio Grande rift or Quaternary basaltic volcanism within the immediate area is seen.

  2. Geothermal low-temperature reservoir assessment in northern Dona Ana County, New Mexico. Final report

    SciTech Connect

    Lohse, R.L.; Schoenmackers, R.

    1985-07-01

    Fifty-four shallow temperature gradient holes were drilled along Interstate Highway 25 and the Rio Grande, from Las Cruces to Rincon, in northern Dona Ana County, New Mexico. This shallow temperature study (a joint exploration program performed with the cooperation and financial assistance of Trans-Pacific Geothermal, Inc. of Oakland, California) resulted in the discovery and confirmation of new and suspected major low-temperature geothermal resources. Elevated temperature and heat flow data suggest a thermal anomaly which can be generally described as being a nearly continuous linear feature which extends some 25 miles in length in a northwest-southeast direction with the only break being a 5-mile gap near the southern end of the study area. The width of the anomaly is only a few miles but tends to thicken around individual anomalies located within this larger anomaly. There are five main individual anomalies situated within the major anomaly and, listed from north to south, they are the: (1) Rincon Anomaly, (2) San Diego Mountain Anomaly, (3) Radium Springs KGRA, (4) Grande Dome Anomaly, and (5) Goat Mountain Anomaly. The main anomaly is well defined by a 4 HFU contour and the individual anomalies range from about 10 HFU to a high of near 30 HFU, estimated for the Rincon Anomaly. A bottom-hole temperature of 54/sup 0/C at 50 meters was also recorded at Rincon. Deeper drilling is certainly warranted and required in the Rincon Anomaly in order to discover and confirm the true commercially exploitable potential of this geothermal resource. 12 refs., 9 figs., 3 tabs.

  3. Geothermal potential of West-Central New Mexico from geochemical and thermal gradient data

    SciTech Connect

    Levitte, D.; Gambill, D.T.

    1980-11-01

    To study the low temperature and Hot Dry Rock (HDR) geothermal potential of west-central New Mexico, 46 water samples were collected and geothermal gradient measurements were made in 29 wells. Water chemistry data indicate that all the samples collected are meteoric waters. High temperatures of samples taken from wells between Gallup and Tohatchi indicate these wells may derive water from a warm aquifer below the depth of the wells. The chemistries of the samples farther south on the Zuni Indian reservation suggest these waters are not circulating below 600 m of the surface. Geothermometry calculations support the conclusion that the waters sampled are meteoric. The geothermometry also indicates that the deep reservoir between Gallup and Tohatchi may be greater than 60/sup 0/C. Thermal gradient data indicate an area of high gradient on the Zuni Indian Reservation with a measured maximum of 67/sup 0/C/km between 181 m and 284 m. This high probably is not hydrologically controlled. The maximum gradients in the study area are 76/sup 0/C/km and 138/sup 0/C/km, measured just east of Springerville, Arizona. These gradients are undoubtedly controlled by circulating water, possibly heated by a magmatic source at depth and circulating back to the surface.

  4. Surface Deformation Associated with Geothermal Fluids Extraction at the Cerro Prieto Geothermal Field, Baja California, Mexico Revealed by DInSAR Technique

    NASA Astrophysics Data System (ADS)

    Sarychikhina, O.; Glowacka, E.; Mojarro, J.

    2016-08-01

    The Differential Synthetic Aperture Radar Interferometry (DInSAR) is widely used for surface deformation detection and monitoring.In this paper, ERS-1/2, ENVISAT and RADARSAT-2 synthetic aperture radar (SAR) images acquired between 1993 and 2014 were processed to investigate the evolution of surface deformation at the Cerro Prieto geothermal field, Baja California, Mexico. The conventional DInSAR together with the interferogram stacking method was applied. Average LOS (line of sight) displacement velocity maps were generated for different periods: 1993 - 1997, 1998 - 2000, 2004, 2005, 2007, 2009, and 2012 - 2014, revealing that the area corresponding to Cerro Prieto basin presented the important surface deformation (mainly subsidence) during the entire time of investigation. The changes in the surface deformation pattern and rate were identified. These changes have a good correlation in time with the changes of production in the Cerro Prieto geothermal field.

  5. Anomalously High Geothermal Gradients in the Buckman Well Field, Santa Fe County, New Mexico

    NASA Astrophysics Data System (ADS)

    Pollack, A.; Munda, R.; Farrell, T. F.; Kelley, S. A.; Frost, J.; Jiracek, G. R.

    2013-12-01

    . Sediment deformation as modeled in the upper 1 km could generate a local thermal transient and it would modify local thermal conductivity values with attendant changes in temperature gradients. Lastly, the anomaly may be of anthropogenic causes. The Buckman wells used to be the most extensively pumped wells in New Mexico. Discharge temperatures from the wells are high. One of the pumping wells has discharge temperatures of 26°C at only 116 meters depth (a geothermal gradient of 138 °C/km). Though the nearby wells were not pumping on the days of the temperature measurements, the geothermal anomaly may just be remnant heat from warmer waters previously pumped upwards.

  6. Seismic Activity at tres Virgenes Volcanic and Geothermal Field

    NASA Astrophysics Data System (ADS)

    Antayhua, Y. T.; Lermo, J.; Quintanar, L.; Campos-Enriquez, J. O.

    2013-05-01

    The volcanic and geothermal field Tres Virgenes is in the NE portion of Baja California Sur State, Mexico, between -112°20'and -112°40' longitudes, and 27°25' to 27°36' latitudes. Since 2003 Power Federal Commission and the Engineering Institute of the National Autonomous University of Mexico (UNAM) initiated a seismic monitoring program. The seismograph network installed inside and around the geothermal field consisted, at the beginning, of Kinemetrics K2 accelerometers; since 2009 the network is composed by Guralp CMG-6TD broadband seismometers. The seismic data used in this study covered the period from September 2003 - November 2011. We relocated 118 earthquakes with epicenter in the zone of study recorded in most of the seismic stations. The events analysed have shallow depths (≤10 km), coda Magnitude Mc≤2.4, with epicentral and hypocentral location errors <2 km. These events concentrated mainly below Tres Virgenes volcanoes, and the geothermal explotation zone where there is a system NW-SE, N-S and W-E of extensional faults. Also we obtained focal mechanisms for 38 events using the Focmec, Hash, and FPFIT methods. The results show normal mechanisms which correlate with La Virgen, El Azufre, El Cimarron and Bonfil fault systems, whereas inverse and strike-slip solutions correlate with Las Viboras fault. Additionally, the Qc value was obtained for 118 events. This value was calculated using the Single Back Scattering model, taking the coda-waves train with window lengths of 5 sec. Seismograms were filtered at 4 frequency bands centered at 2, 4, 8 and 16 Hz respectively. The estimates of Qc vary from 62 at 2 Hz, up to 220 at 16 Hz. The frequency-Qc relationship obtained is Qc=40±2f(0.62±0.02), representing the average attenuation characteristics of seismic waves at Tres Virgenes volcanic and geothermal field. This value correlated with those observed at other geothermal and volcanic fields.

  7. A GEOLOGICAL AND GEOPHYSICAL STUDY OF THE BACA GEOTHERMAL FIELD, VALLES CALDERA, NEW MEXICO

    SciTech Connect

    Wilt, M.; Haar, S.V.

    1982-03-01

    The Baca location {number_sign}1 geothermal field is located in north-central New Mexico within the western half of the Plio-Pleistocene valles Caldera. Steam and hot water are produced primarily from the northeast-trending Redondo Creek graben, where downhole temperatures exceed 500 F. Stratigraphically the reservoir region can be described as a five-layer sequence that includes (1) caldera fill and the upper units of the Bandelier ash flow tuff, (2) the lower members of this tuff, which comprise the main reservoir rock at Baca, (3) the Pliocene Paliza Canyon volcanics, (4) Tertiary sands and Paleozoic sedimentary rocks, and (5) Precambrian granitic basement. Production is controlled by fractures and faults that are ultimately related to activity in the Rio Grande Rift system. Geophysically, the caldera is characterized by a gravity minimum and a resistivity low. A 40-mgal gravity minimum over the caldera is due mostly to the relatively low-density volcanics and sediments that fill the caldera and probably bears no relation to deep-seated magmatic sources. Two-dimensional gravity modeling indicates that the depth to Precambrian basement in Redondo Canyon is probably at least 3 km and may exceed 5 km in eastern parts of the caldera. Telluric and magnetotelluric surveys have shown that the reservoir region is associated with low resistivity and that a deep low-resistivity zone correlates well with the depth of the primary reservoir inferred from well data.

  8. Geothermal data for 95 thermal and nonthermal waters of the Valles Caldera - southern Jemez Mountains region, New Mexico

    SciTech Connect

    Goff, F.; McCormick, Trujillo, P.E. Jr.; Counce, D.; Grigsby, C.O.

    1982-05-01

    Field, chemical, and isotopic data for 95 thermal and nonthermal waters of the southern Jemez Mountains, New Mexico are presented. This region includes all thermal and mineral waters associated with Valles Caldera and many of those located near the Nacimiento Uplift, near San Ysidro. Waters of the region can be categorized into five general types: (1) surface and near surface meteoric waters; (2) acid-sulfate waters (Valles Caldera); (3) thermal meteoric waters (Valles Caldera); (4) deep geothermal and derivative waters (Valles Caldera); and (5) mineralized waters near San Ysidro. Some waters display chemical and isotopic characteristics intermediate between the types listed. The object of the data is to help interpret geothermal potential of the Jemez Mountains region and to provide background data for investigating problems in hydrology, structural geology, hydrothermal alterations, and hydrothermal solution chemistry.

  9. Consumer-behavorial analysis of alternate-energy adoption: the case of geothermal energy in New Mexico. Final report, 6/1/80-8/1/81

    SciTech Connect

    McDevitt, P.; Pratt, E.; Michie, D.

    1981-08-01

    The overall objectives of the research described here are the determination of the market penetration prospects of geothermal energy in New Mexico and the identification of the key determinants of geothermal adoption by prospective consumers. The resources considered are intermediate temperature (65/sup 0/C less than or equal to T less than or equal to 150/sup 0/C) hydrothermal resources, and the applications examined are direct (non-electric) uses. In order to achieve the overall research objectives, four specific work tasks were undertaken: the design of a marketing research instrument for investigating prospects for the market penetration of geothermal energy; the implementation of the marketing research instrument through a pilot study of adoption behavior of prospective consumers of geothermal energy in the state of New Mexico; the identification and evaluation of market considerations which will affect the commercialization of direct geothermal applications within the state; and the design of a comprehensive marketing program to maximize the commercialization of geothermal energy in New Mexico.

  10. Fluid circulation and reservoir conditions of the Los Humeros Geothermal Field (LHGF), Mexico, as revealed by a noble gas survey

    NASA Astrophysics Data System (ADS)

    Pinti, Daniele L.; Castro, M. Clara; Lopez-Hernandez, Aida; Han, Guolei; Shouakar-Stash, Orfan; Hall, Chris M.; Ramírez-Montes, Miguel

    2017-03-01

    Los Humeros Geothermal Field (LHGF) is one of four geothermal fields currently operating in Mexico, in exploitation since 1990. Located in a caldera complex filled with very low-permeability rhyolitic ignimbrites that are the reservoir cap-rock, recharge of the geothermal field is both limited and localized. Because of this, planning of any future geothermal exploitation must be based on a clear understanding of the fluid circulation. To this end, a first noble gas survey was carried out in which twenty-two production wells were sampled for He, Ne, Ar, Kr, and Xe isotope analysis. Air-corrected 3He/4He ratios (Rc) measured in the fluid, normalized to the helium atmospheric ratio (Ra; 1.384 × 10- 6), are consistently high across the field, with an average value of 7.03 ± 0.40 Ra. This value is close to that of the sub-continental upper mantle, indicating that LHGF mines heat from an active magmatic system. Freshwater recharge does not significantly affect He isotopic ratios, contributing 1-10% of the total fluid amount. The presence of radiogenic 40Ar* in the fluid suggests a fossil fluid component that might have circulated within the metacarbonate basement with radiogenic argon produced from detrital dispersed illite. Solubility-driven elemental fractionation of Ne/Ar, Kr/Ar, and Xe/Ar confirm extreme boiling in the reservoir. However, a combined analysis of these ratios with 40Ar/36Ar reveals mixing with an air component, possibly introduced by re-injected geothermal fluids.

  11. The structural architecture of the Los Humeros volcanic complex and geothermal field, Trans-Mexican Volcanic Belt, Central Mexico

    NASA Astrophysics Data System (ADS)

    Norini, Gianluca; Groppelli, Gianluca; Sulpizio, Roberto; Carrasco Núñez, Gerardo; Davila Harris, Pablo

    2014-05-01

    The development of geothermal energy in Mexico is a very important goal, given the presence of a large heat anomaly, associated with the Trans-Mexican Volcanic Belt, the renewability of the resource and the low environmental impact. The Quaternary Los Humeros volcanic complex is an important geothermal target, whose evolution involved at least two caldera events, that alternated with other explosive and effusive activity. The first caldera forming event was the 460 ka eruption that produced the Xaltipan ignimbrite and formed a 15-20 km wide caldera. The second collapse event occurred 100 ka with the formation of the Zaragoza ignimbrite and a nested 8-10 km wide caldera. The whole volcano structure, the style of the collapses and the exact location of the calderas scarps and ring faults are still a matter of debate. The Los Humeros volcano hosts the productive Los Humeros Geothermal Field, with an installed capacity of 40 MW and additional 75 MW power plants under construction. Recent models of the geothermal reservoir predict the existence of at least two reservoirs in the geothermal system, separated by impermeable rock units. Hydraulic connectivity and hydrothermal fluids circulation occurs through faults and fractures, allowing deep steam to ascend while condensate flows descend. As a consequence, the plans for the exploration and exploitation of the geothermal reservoir have been based on the identification of the main channels for the circulation of hydrothermal fluids, constituted by faults, so that the full comprehension of the structural architecture of the caldera is crucial to improve the efficiency and minimize the costs of the geothermal field operation. In this study, we present an analysis of the Los Humeros volcanic complex focused on the Quaternary tectonic and volcanotectonics features, like fault scarps and aligned/elongated monogenetic volcanic centres. Morphostructural analysis and field mapping reveal the geometry, kinematics and dynamics of

  12. Lightning dock geothermal space heating project, Lightning Dock KGRA, New Mexico. Final report

    SciTech Connect

    McCants, T.W.

    1980-12-01

    The proposed project was to take the existing geothermal greenhouse and home heating systems, which consisted of pumping geothermal water and steam through passive steam heaters, and convert the systems to one using modern heat exchange units. It was proposed to complete the existing unfinished, re-inforced glass side wall, wood framed structure, as a nursery lath house, the purpose of which would be to use geothermal water in implementing university concepts on the advantages of bottom heat to establish hardy root systems in nursery and bedding plants. The use of this framework was abandoned in favor of erecting new structures for the proposed purpose. The final project of the proposal was the establishment of a drip irrigation system, to an area just west of the existing greenhouse and within feet of the geothermal well. Through this drip irrigation system geothermal water would be pumped, to prevent killing spring frosts. The purpose of this area of the proposal is to increase the potential use of existing geothermal waters of the Lightning Dock KGRA, in opening a new geothermal agri-industry which is economically feasible for the area and would be extremely energy efficient.

  13. Geologic map of the Sulphur Springs Area, Valles Caldera Geothermal System, New Mexico

    SciTech Connect

    Goff, F.E.; Gardner, J.N.

    1980-12-01

    The geologic and tectonic setting and geology of Sulphur Springs Area are described. Geologic faults, sheared or brecciated rock, volcanic vents, geothermal wells, hydrothermal alteration, springs, thermal springs, fumaroles, and geologic deposits are indicated on the map. (MHR)

  14. Photogeologic and thermal infrared reconnaissance surveys of the Los Negritos-Ixtlan de los Hervores geothermal area, Michoacan, Mexico

    USGS Publications Warehouse

    Gomez, Valle R.; Friedman, J.D.; Gawarecki, S.J.; Banwell, C.J.

    1970-01-01

    New techniques, involving interpretation of panchromatic, ektachrome and ektachrome infrared aerographic photogaphs and thermographic infrared imagery recording emission from the earth's surface in middle and far infrared wavelengths (3-5??m and 8-14??m), are being introduced in geothermal investigations in Mexico to identify outstanding structural and geologic features in a rapid and economical manner. The object of this work is to evaluate the new airborne infrared techniques and equipment as a complement to the data obtained from panchromatic aerial photography. This project is part of the Mexican remote sensing program of natural resources carried out under the auspices of the Comision Nacional del Espacio Exterior and in which the Research Institute (Instituto de Investigaciones de la Industria Electrica) is actively participating. The present study was made cooperatively with the U.S. National Aeronautics and Space Administration and the U.S. Geological Survey. The Los Negritos-Ixtlan de los Hervores geothermal fields are located east of Lake Chapala at the intersection of the Sierra Madre occidental and the west-central segment of the neovolcanic axis of Mexico. The two principal zones of hydrothermal activity occur in a tectonic trench filled with lake sediments of the Quaternary intercalated with Quaternary and Holocene volcanic rocks and characterized by an intricate system of block-fault tectonics, part of the Chapala-Acambay tectonic system, along which there has been volcanic activity in modern time. Surface manifestations of geothermal activity consist of relatively high heat flow and hot springs, small geysers and small steam vents aligned along an E-W axis at Ixtlan, possibly at the intersection of major fault trends and mud volcanoes and hot pools aligned NE-SW at Los Negritos. More than 20 exit points of thermal waters are shown on infrared imagery to be aligned along an extension of the Ixtlan fault between Ixtlan and El Salitre. A narrow zone of

  15. Engineering and economic evaluation of direct hot-water geothermal energy applications on the University of New Mexico campus. Final technical report

    SciTech Connect

    Kauffman, D.; Houghton, A.V.

    1980-12-31

    The potential engineering and economic feasibility of low-temperature geothermal energy applications on the campus of the University of New Mexico is studied in detail. This report includes three phases of work: data acquisition and evaluation, system synthesis, and system refinement and implementation. Detailed process designs are presented for a system using 190/sup 0/F geothermal water to substitute for the use of 135 x 10/sup 9/ Btu/y (141 TJ/y) of fossil fuels to provide space and domestic hot water heating for approximately 23% of the campus. Specific areas covered in the report include economic evaluation, environmental impact and program implementation plans.

  16. Deep Production Well for Geothermal Direct-Use Heating of A Large Commercial Greenhouse, Radium Springs, Rio Grande Rift, New Mexico

    SciTech Connect

    James C. Witcher

    2002-01-02

    Expansion of a large commercial geothermally-heated greenhouse is underway and requires additional geothermal fluid production. This report discusses the results of a cost-shared U.S. Department of Energy (DOE) and A.R. Masson, Inc. drilling project designed to construct a highly productive geothermal production well for expansion of the large commercial greenhouse at Radium Springs. The well should eliminate the potential for future thermal breakthrough from existing injection wells and the inducement of inflow from shallow cold water aquifers by geothermal production drawdown in the shallow reservoir. An 800 feet deep production well, Masson 36, was drilled on a US Bureau of Land Management (BLM) Geothermal Lease NM-3479 at Radium Springs adjacent to the A. R. Masson Radium Springs Farm commercial greenhouse 15 miles north of Las Cruces in Dona Ana County, New Mexico just west of Interstate 25 near the east bank of the Rio Grande. The area is in the Rio Grande rift, a tectonically-active region with high heat flow, and is one of the major geothermal provinces in the western United State.

  17. Summary of recent progress in understanding the Cerro Prieto Geothermal Field, Baja, California, Mexico

    SciTech Connect

    Lippmann, M.J.; Witherspoon, P.A.

    1980-07-01

    Geological and geophysical studies indicate that the Cerro Prieto reservoir is quite heterogeneous due to complex lithofacies fault structures, and hydrothermal alteration. Geochemical investigations have provided clues on the origin of the geothermal fluids, their recharge paths and on the reservoir processes accompanying the exploitation of the field. Well tests have yielded information on the permeability of the reservoir. (MHR)

  18. Thermal history of the Acoculco geothermal system, eastern Mexico: Insights from numerical modeling and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Canet, Carles; Trillaud, Frederic; Prol-Ledesma, Rosa María; González-Hernández, Galia; Peláez, Berenice; Hernández-Cruz, Berenice; Sánchez-Córdova, María M.

    2015-10-01

    Acoculco is a geothermal prospective area hosted by a volcanic caldera complex in the eastern Trans-Mexican Volcanic Belt. Surface manifestations are scarce and consist of gas discharges (CO2-rich) and acid-sulfate springs of low temperature, whereas hydrothermal explosive activity is profusely manifested by meter-scale craters and mounds of hydrothermal debris and breccias. Silicic alteration extends for several square kilometers around the zone with gas manifestations and explosive features, affecting surficial volcanic rocks, primarily tuffs and breccias. In the subsurface, an argillic alteration zone (ammonium illite) extends down to a depth of ∼ 600 m, and underneath it a propylitic zone (epidote-calcite-chlorite) occurs down to ∼ 1000 m. Thermal logs from an exploratory borehole (EAC-1, drilled in 1995 down to 1810 m) showed a conductive heat transfer regime under high geothermal gradient (∼ 140 °C/1000 m). In contrast, the thermal profile established from temperatures of homogenization of fluid inclusions-measured on core samples from the same drill hole-suggests that convection occurred in the past through the upper ~ 1400 m of the geothermal system. A drop in permeability due to the precipitation of alteration minerals would have triggered the cessation of the convective heat transfer regime to give place to a conductive one. With the purpose of determining when the transition of heat transfer regime occurred, we developed a 1D model that simulates the time-depth distribution of temperature. According to our numerical simulations, this transition happened ca. 7000 years ago; this date is very recent compared to the lifespan of the geothermal system. In addition, radiocarbon chronology indicates that the hydrothermal explosive activity postdates the end of the convective heat transfer regime, having dated at least three explosive events, at 4867-5295, 1049-1417 and 543-709 y cal. BP. Therefore, hydrothermal explosions arise from the self-sealing of

  19. New Mexico handbook for geothermal resource development state and local government regulations

    SciTech Connect

    Not Available

    1980-07-01

    The regulatory aspects of a wide range of potential projects and sequences within the projects are covered, such as: exploration, demonstration, construction, commercialization, and operation. Such topics as environmental studies, water rights, district heating, taxation archaeological clearances, and construction permits are addressed. Other general information is provided which may assist a prospective geothermal developer in understanding which state and local agencies have review responsibilities, their review procedures, and the appropriate time frame necessary to complete their review process. (MHR)

  20. Geothermal Potential on Kirtland Air Force Base Lands, Bernalillo County, New Mexico.

    DTIC Science & Technology

    1981-10-01

    junction is identi- fied throughout much of this region by a tectonic depression occupied Ly the Rio Grande that is structurally complex, stratigraphically...and hdroloically unique, and coincides with geologically recent volcanic centers. This trough, the Rio Grande rift, has been identified as a major...geothermal resource area. The western part of)Kirtland AFB is in the Albuquerque Basin segment of the Rio Grande rift) Virtually all of the principal

  1. Assessment of the geothermal potential of southwestern New Mexico. Final report, July 1, 1978-April 30, 1980

    SciTech Connect

    Elston, W.E.

    1981-07-01

    Results are reported of geologic mapping of geothermal anomalies in the Gila Hot Springs KGRA/Mimbres Hot Springs area, Grant County. They suggest that both hot-spring occurrences are structurally controlled by the intersection of a major Basin and Range fault and the disturbed margin of an ash-flow tuff cauldron. Hydrothermal alteration in both areas is related to mid-Tertiary volcanism, not to modern hot springs. At Gila Hot Springs, the geothermal aquifer is a zone at the contact between the unwelded top of a major ash-flow tuff sheet (Bloodgood Canyon Rhyolite Tuff) and a succession of interlayered vesicular basaltic andesite flows and thin sandstone beds (Bearwallow Mountain Formation). Scattered groups of natural hot springs occur at intersections of this zone and the faults bordering the northeastern side of the Gila Hot Springs graben. Hydrothermal alteration of Bloodgood Canyon Rhyolite Tuff near major faults seems to have increased its permeability. At Mimbres Hot Springs, a single group of hot springs is controlled by the intersection of the Mimbres Hot Springs fault and a fractured welded ash-flow tuff that fills the Emory cauldron (Kneeling Nun Tuff). Gila Hot Springs and Mimbres Hot Springs do not seem to be connected by throughgoing faults. At both localities, hot spring water is used locally for space heating and domestic hot water; at Gila Hot Springs, water of 65.6/sup 0/C (150/sup 0/F) is used to generate electricity by means of a 10 kw freon Rankine Cycle engine. This is the first such application in New Mexico.

  2. Geothermal Exploration Using Remote Sensing in the South of Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Báncora, Cristina; Prol-Ledesma, Rosa María

    2008-05-01

    The area from Ciudad Constitución to Los Cabos in Baja California Sur was studied using a mosaic of four Landsat ETM+images. The main objective was to define favorable areas for utilization and exploitation of geothermal energy. The approach was to spectrally and spatially enhance the images to define characteristics related with geothermal activity, as are the presence of altered rock and main geological structures. The products of hydrothermal alteration are minerals that belong to two main groups: oxides and hydroxyls. Therefore, image processing is necessary to enhance oxides and hydroxyls spectral features and subdue the vegetation spectral characteristics. The band subtraction (4-3, 3-1, 5-7) gave the finest results due to the fact that it is a linear equation that does not cause loss of information when it is stretched. A color composite was done with these three layers and after a detailed visual analysis three areas were point out to be prospective to contain hydrothermal activity.

  3. Imaging Faults with Reverse-Time Migration for Geothermal Exploration at Jemez Pueblo in New Mexico

    SciTech Connect

    Huang, Lianjie; Albrecht, Michael; Kaufman, Greg; Kelley, Shari; Rehfeldt, Kenneth; Zhang, Zhifu

    2011-01-01

    The fault zones at Jemez Pueblo may dominate the flow paths of hot water, or confine the boundaries of the geothermal reservoir. Therefore, it is crucial to image the geometry of these fault zones for geothermal exploration in the area. We use reverse-time migration with a separation imaging condition to image the faults at Jemez Pueblo. A finite-difference full-wave equation method with a perfectly-matching-layer absorbing boundary condition is used for backward propagation of seismic reflection data from receivers and forward propagation of wavefields from sources. In the imaging region, the wavefields are separated into the upgoing and downgoing waves, and leftgoing and rightgoing waves. The upgoing and downgoing waves are used to obtain the downward-looking image, and the leftgoing and rightgoing waves are used to form the left-looking image and right-looking image from sources. The left-looking and right-looking images are normally weaker than the downward-looking image because the reflections from the fault zones are much weaker than those from sedimentary layers, but these migration results contain the images of the faults. We apply our reverse-time migration with a wavefield separation imaging condition to seismic data acquired at Jemez Pueblo, and our preliminary results reveal many faults in the area.

  4. Evaluation of the geothermal resource in the area of Albuquerque, New Mexico

    SciTech Connect

    Jiracek, G.R.; Swanberg, C.A.; Morgan, P.; Parker, M.D.

    1983-07-01

    Factors indicating a potential geothermal resource near Albuquerque are: (1) nearby volcanoes active as recently as 120,000 years ago, (2) gravity interpretation indicating a potential reservoir averaging 1.5 km thickness, (3) high heat flow near the city, (4) warm waters (>30/sup 0/C) in municipal wells, (5) recent seismicity indicating active faulting, thereby, allowing the possibility of deep hydrothermal circulation, (6) high shallow (<30 m) temperature gradients (>100/sup 0/C/km) discovered in our drillholes, (7) deeper (<500 m) gradients from water wells exceeding 80/sup 0/C/km, and (8) chemical analyses of 88 groundwater samples yielding estimated base reservoir temperatures as high as 190/sup 0/C. An area of elevated shallow temperature gradients (less than or equal to 140/sup 0/C/km) was discovered a few kilometers west of Albuquerque by our 69 hole drilling program. Resistivity, magnetic, and gravity measurements combined with computer modeling suggests that heated ground water is forced closer to the surface here by flow over a buried ridge. A well drilled nearby yielded the highest recorded temperature in the Albuquerque area at its maximum depth (32.8/sup 0/C at 364 m). The deep gradient is 35/sup 0/C/km. An oil test well close by reported large volumes of water at 1 km; therefore, the possibility of a low temperature (>50/sup 0/C) geothermal resource exists west of Albuquerque at less than 1 km depth.

  5. Shallow geothermal investigations into the existence of the Valles Caldera outflow plume near Ponderosa and Jemez Pueblo, north-central, New Mexico

    NASA Astrophysics Data System (ADS)

    Salaz, Robert Ezekiel

    Geothermal research within the Jemez Mountains spans several decades and is documented in many papers. This study serves to extend the research boundary to the south and east outside of Valles caldera and Canon de San Diego, where the main occurrences of geothermal activity are located. The focus of this investigation is to test for a deep ~900 m, stratigraphically-bound thermal aquifer within the Madera Limestone along the western margin of the Santo Domingo basin transition zone near Ponderosa and Jemez Pueblo, in north-central New Mexico. Numerous springs were sampled for aqueous geochemistry to identify leakage of a deeper geothermal aquifer into shallow aquifers. Wells were sampled for temperature anomalies. In addition, two travertine deposits were analyzed for stable isotope composition and one deposit was dated using U-Series techniques to assess the timing and origin of deposition. This study is important because researchers in other extensional basins have identified reasonably good geothermal reservoirs in deep carbonate aquifers that are similar in geologic setting to the Madera Limestone aquifer of this study. The existence of a deep geothermal aquifer near Ponderosa and Jemez Pueblo, New Mexico could prove to be another prospect for geothermal exploration in the Jemez Mountains. Aqueous geochemistry of springs are plotted on ternary Piper diagrams to help classify similar geochemical trends and group these trends into recognizable patterns. These data indicate calcium carbonate rich waters in the north that may gradationally change to alkaline type waters as they flow south through the study area. Contrasting this data, SiO2 and TDS concentrations show two separate systems that may indicate separate confined aquifers. Two distinct TDS regions are observed, one with higher concentrations (>1000 ppm) shows a decrease from N-S and one with lower concentrations (<600 ppm) shows an increase from N-S. The data indicate that the waters can be classified as

  6. Evaluation of the solute geothermometry of thermal springs and drilled wells of La Primavera (Cerritos Colorados) geothermal field, Mexico: A geochemometrics approach

    NASA Astrophysics Data System (ADS)

    Pandarinath, Kailasa; Domínguez-Domínguez, Humberto

    2015-10-01

    A detailed study on the solute geothermometry of thermal water (18 springs and 8 drilled wells) of La Primavera geothermal field (LPGF) in Mexico has been carried out by employing a geochemical database compiled from the literature and by applying all the available solute geothermometers. The performance of these geothermometers in predicting the reservoir temperatures has been evaluated by applying a geochemometrics (geochemical and statistical) method. The springs of the LPGF are of bicarbonate type and the majority have attained partial-equilibrium chemical conditions and the remaining have shown non-equilibrium conditions. In the case of geothermal wells, water is dominantly of chloride-type and, among the studied eight geothermal wells, four have shown full-equilibrium chemical conditions and another four have indicated partial-equilibrium conditions. All springs of HCO3-​ type water have provided unreliable reservoir temperatures, whereas the only one available spring of SO42- type water has provided the reservoir temperature nearer to the average BHT of the wells. Contrary to the general expected behavior, spring water of non-equilibrium and geothermal well water of partial-equilibrium chemical conditions have indicated more reliable reservoir temperatures than those of partially-equilibrated and fully-equilibrated water, respectively. Among the chemical concentration data, Li and SiO2 of two springs, SO42- and Mg of four springs, and HCO3 and Na concentrations of two geothermal wells were identified as outliers and this has been reflected in very low reservoir temperatures predicted by the geothermometers associated with them (Li-Mg, Na-Li, Na-K-Mg, SiO2 etc.). Identification of the outlier data points may be useful in differentiating the chemical characteristics, lithology and the physico-chemical and geological processes at the sample locations of the study area. In general, the solute geothermometry of the spring waters of LPGF indicated a dominantly

  7. Dynamics of a geothermal field traced by noble gases: Cerro Prieto, Mexico

    USGS Publications Warehouse

    Mazor, E.; Truesdell, A.H.

    1984-01-01

    Noble gases have been measured mass spectrometrically in samples collected during 1977 from producing wells at Cerro Prieto. Positive correlations between concentrations of radiogenic (He and 40Ar) and atmospheric noble gases (Ne, Ar and Kr) suggest the following dynamic model: the geothermal fluids originated from meteoric water that penetrated to more than 2500 m depth (below the level of first boiling) and mixed with radiogenic He and 40Ar formed in the aquifer rocks. Subsequently, small amounts of steam were lost by a Raleigh process (0 - 30%) and mixing with shallow cold water occurred (0 - 30%). Noble gases are sensitive tracers of boiling in the initial stages of 0 - 3% steam separation and complement other tracers, such as C1 or temperature, which are effective only beyond this range. ?? 1984.

  8. Dynamics of a geothermal field traced by noble gases: Cerro Prieto, Mexico

    SciTech Connect

    Mazor, E.; Truesdell, A.H.

    1981-01-01

    Noble gases have been measured mass spectrometrically in samples collected during 1977 from producing wells at Cerro Prieto. Positive correlations between concentrations of radiogenic (He, /sup 40/Ar) and atmospheric noble gases (Ne, Ar, and Kr) suggest the following dynamic model: the geothermal fluids originated from meteoric water penetrated to more than 2500 m depth (below the level of first boiling) and mixed with radiogenic helium and argon-40 formed in the aquifer rocks. Subsequently, small amounts of steam were lost by a Raleigh process (0 to 3%) and mixing with shallow cold water occurred (0 to 30%). Noble gases are sensitive tracers of boiling in the initial stages of 0 to 3% steam separation and complement other tracers, such as Cl or temperature, which are effective only beyond this range.

  9. Low-temperature geothermal potential of the Ojo Caliente warm springs area, northern New Mexico

    SciTech Connect

    Vuataz, F.D.; Stix, J.; Goff, F.; Pearson, C.F.

    1984-05-01

    A detailed geochemical investigation of 17 waters (thermal and cold, mineralized and dilute) was performed in the Ojo Caliente-La Madera area. Two types of thermomineral waters have separate and distinctive geologic, geochemical, and geothermal characteristics. The water from Ojo Caliente Resort emerges with temperatures less than or equal to 54/sup 0/C from a Precambrian metarhyolite. Its chemistry, typically Na-HCO/sub 3/, has a total mineralization of 3600 mg/l. Isotopic studies have shown that the thermal water emerges from the springs and a hot well without significant mixing with the cold shallow aquifer of the valley alluvium. However, the cold aquifer adjacent to the resort does contain varying amounts of thermal water that originates from the warm spring system. Geothermometry calculations indicate that the thermal water may be as hot as 85/sup 0/C at depth before its ascent toward surface. Thermodynamic computations on the reaction states of numerous mineral phases suggest that the thermal water will not cause major scaling problems if the hot water is utilized for direct-use geothermal applications. By means of a network of very shallow holes, temperature and electrical conductivity anomalies have been found elsewhere in the valley around Ojo Caliente, and resistivity soundings have confirmed the presence of a plume of thermal water entering the shallow aquifer. The group of lukewarm springs around La Madera, with temperatures less than or equal to 29/sup 0/C, chemical type of NaCaMg-HCO/sub 3/Cl and with a total mineralization less than or equal to 1500 mg/l behaves as a different system without any apparent relation to the Ojo Caliente system. Its temperature at depth is not believed to exceed 35 to 40/sup 0/C.

  10. Los Humeros Volcanic Center, Puebla, Mexico: geology, petrology, geothermal system, and geoarchaeology

    SciTech Connect

    Ferriz-Dominguez, H.G.

    1985-01-01

    Los Humeros volcanic center located 180 km east of Mexico City, is the surface manifestation of a magma chamber zoned from rhyolitic uppermost levels to andesitic and perhaps basaltic lower levels. Compositional zonation of major and most trace elements seems to have been controlled largely by crystal-liquid equilibria. Partial melting of young crustal lithologies accounts best for volume relations, but must be complemented by fractional crystallization coupled with assimilation to explain compositional and isotopic variations. Systematic trends in Cr, Ni, Rb, and Ba, however, further suggest episodic magma mixing.

  11. Geothermal potential on Kirtland Air Force Base lands, Bernalillo County, New Mexico

    SciTech Connect

    Grant, P.R. Jr.

    1981-10-01

    Extensive sampling and geochemical analysis of groundwater in and near the base disclosed no significant geothermal parameters. However, structural conditions and current hydrologic regimes strongly suggest that thermal waters would be masked by near surface, low temperature meteoric water originating as rain and snowfall in the nearby mountains. Controlled source audio-magnetotelluric (CSAMT) electromagnetic techniques, refraction seismic experiments, and gravity traverses were utilized on the base. These, together with published geohysical information that presents evidence for a shallow magma body beneath the Albuquerque Basin; favorable terrestrial heat flow, water chemistry, and shallow temperature gradient holes on the nearby mesa west of the Rio Grande; interpretation of regional gravity data; and geological data from nearby deep wells tend to confirm structural, stratigraphic, and hydrologic conditions favorable for developing an extensive intermediate to high-temperature hydrothermal regime on portions of Kirtland AFB lands where intensive land use occurs. Two possible exploration and development scenarios are presented. One involves drilling a well to a depth of 3000 to 5000 ft (914 to 1524 m) to test the possibility of encountering higher than normal water temperatures on the basinward side of the faults underlying the travertine deposits. The other is to conduct limited reflection seismograph surveys in defined areas on the base to determine the depth to basement (granite) and thickness of the overyling, unconfined, water filled, relatively unconsolidated sand and gravel aquifer.

  12. Carbon isotope geochemistry of hydrocarbons in the Cerro Prieto geothermal field, Baja California Norte, Mexico

    USGS Publications Warehouse

    Des Marais, D.J.; Stallard, M.L.; Nehring, N.L.; Truesdell, A.H.

    1988-01-01

    Hydrocarbon abundances and stable-isotopic compositions were measured in wells M5, M26, M35 and M102, which represent a range of depths (1270-2000 m) and temperatures (275-330??C) in the field. In order to simulate the production of the geothermal hydrocarbons, gases were collected from the pyrolysis of lignite in the laboratory. This lignite was obtained from a well which sampled rock strata which are identical to those occurring in the field, but which have experienced much lower subsurface temperatures. In both the well and the laboratory observations, high-temperature environments favored higher relative concentrations of methane, ethane and benzene and generally higher ??13C-values in the individual hydrocarbons. The best correlation between the laboratory and well data is obtained when laboratory-produced gases from experiments conducted at lower (400??C) and higher (600??C) temperatures are mixed. This improved correlation suggests that the wells are sampling hydrocarbons produced from a spectrum of depths and temperatures in the sediments. ?? 1988.

  13. Carbon isotope geochemistry of hydrocarbons in the Cerro Prieto geothermal field, Baja California Norte, Mexico

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.; Stallard, M. L.; Nehring, N. L.; Truesdell, A. H.

    1988-01-01

    Hydrocarbon abundances and stable-isotopic compositions were measured in wells M5, M26, M35 and M102, which represent a range of depths (1270-2000 m) and temperatures (275-330 degrees C) in the field. In order to simulate the production of the geothermal hydrocarbons, gases were collected from the pyrolysis of lignite in the laboratory. This lignite was obtained from a well which sampled rock strata which are identical to those occurring in the field, but which have experienced much lower subsurface temperatures. In both the well and the laboratory observations, high-temperature environments favored higher relative concentrations of methane, ethane and benzene and generally higher delta 13C-values in the individual hydrocarbons. The best correlation between the laboratory and well data is obtained when laboratory-produced gases from experiments conducted at lower (400 degrees C) and higher (600 degrees C) temperatures are mixed. This improved correlation suggests that the wells are sampling hydrocarbons produced from a spectrum of depths and temperatures in the sediments.

  14. Hydrothermal flow regime and magmatic heat source of the Cerro Prieto geothermal system, Baja California, Mexico

    SciTech Connect

    Elders, W.A.; Bird, D.K.; Schiffman, P.; Williams, A.E.

    1984-01-01

    This detailed three-dimensional model of the natural flow regime of the Cerro Prieto geothermal field, before steam production began, is based on patterns of hydrothermal mineral zones and light stable isotopic ratios observed in rock samples from more than 50 deep wells, together with temperature gradients, wireline logs and other data. At the level so far penetrated by drilling, this hydrothermal system was heated by a thermal plume of water close to boiling, inclined at 45/sup 0/, rising from the northeast and discharging to the west. To the east a zone of cold water recharge overlies the inclined thermal plume. Fission track annealing studies show the reservoir reached 170/sup 0/C only 10/sup 4/ years ago. Oxygen isotope exchange data indicate that a 12 km/sup 3/ volume of rock subsequently reacted with three times its volume of water hotter than 200/sup 0/C. Averaged over the duration of the heating event this would require a flow velocity through a typical cross-section of the reservoir of about 6 m/year. The heat in storage in that part of the reservoir hotter than 200/sup 0/C and shallower than 3 km depth is equivalent to that which would be released by the cooling of about 1 or 2 km/sup 3/ of basalt or gabbro magma.

  15. Preliminary assessment of the geologic setting, hydrology, and geochemistry of the Hueco Tanks geothermal area, Texas and New Mexico. Geological Circular 81-1

    SciTech Connect

    Henry, C.D.; Gluck, J.K.

    1981-01-01

    The Hueco Tanks geothermal area contains five known but now inactive hot wells (50/sup 0/ to 71/sup 0/C). The area trends north-south along the east side of Tularosa-Hueco Bolson astride the Texas-New Mexico border approximately 40 km northeast of El Paso. Because of its proximity to El Paso, geothermal water in the Hueco Tanks area could be a significant resource. Hueco Bolson is an asymmetric graben. Greatest displacement along boundary faults is on the west side adjacent to the Franklin Mountains. Faults, probably with less displacement, also form an irregular boundary on the east side of the bolson. Several probable faults may allow the rise of thermal waters from depth. Ground water in the central part of Hueco Bolson flows southward to the Rio Grande. However, four of the five hot wells occur in a ground-water trough along the eastern margin of the bolson. The trough may be bounded by one of the postulated faults serving as a barrier to ground-water flow. Data on permeability of potential reservoir rocks, including basin fill and fractured bedrock, suggest that they may be sufficiently permeable for development of geothermal water. The concentration of dissolved solids in the geothermal waters varies from 1100 to at least 12,500 mg/L, but most waters show high concentrations. They are Na-Cl-(SO/sub 4/) waters similar in composition to nonthermal waters in basin fill. The composition probably results from contact with evaporite deposits either in basin fill or in Paleozoic bedrock. Shallow reservoirs reach maximum temperatures of about 80/sup 0/ to 110/sup 0/C. Available data are too limited to evaluate adequately the resource potential of geothermal water in the Hueco Tanks area.

  16. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    SciTech Connect

    none,

    2011-06-17

    The Geothermal Technologies Program assembled a geothermal Blue Ribbon Panel on March 22-23, 2011 in Albuquerque, New Mexico for a guided discussion on the future of geothermal energy in the United States and the role of the DOE Program. The Geothermal Blue Ribbon Panel Report captures the discussions and recommendations of the experts. An addendum is available here: http://www.eere.energy.gov/geothermal/pdfs/gtp_blue_ribbon_panel_report_addendum10-2011.pdf

  17. The Significance of Acid Alteration in the Los Humeros High-Temperature Geothermal Field, Puebla, Mexico.

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Izquierdo, G.

    2014-12-01

    The Los Humeros geothermal field is a high-enthalpy hydrothermal system with more than 40 drilled deep wells, mostly producing high steam fractions at > 300oC. However, although it has a large resource potential, low permeability and corrosive acid fluids have hampered development so that it currently has an installed electrical generating capacity of only 40 MWe. The widespread production of low pH fluids from the reservoir is inconsistent with the marked absence in the reservoir rocks of hydrothermal minerals typical of acid alteration. Instead the hydrothermal alteration observed is typical of that due to neutral to alkaline pH waters reacting with the volcanic rocks of the production zones. Thus it appears that since the reservoir has recently suffered a marked drop in fluid pressure and is in process of transitioning from being water-dominated to being vapor-dominated. However sparse examples of acid leaching are observed locally at depths of about 2 km in the form of bleached, intensely silicified zones, in low permeability and very hot (>350oC) parts of reservoir. Although these leached rocks retain their primary volcanic and pyroclastic textures, they are altered almost entirely to microcrystalline quartz, with some relict pseudomorphs of plagioclase phenocrysts and traces of earlier-formed hydrothermal chlorite and pyrite. These acid-altered zones are usually only some tens of meters thick and deeper rocks lack such silicification. The acid fluids responsible for their formation could either be magmatic volatiles, or could be formed during production (e.g. reaction of water and salts forming hydrogen chloride by hydrolysis at high temperatures). The very high boron content of the fluids produced by the Los Humeros wells suggests that their ultimate source is most likely magmatic gases. However, these acid gases did not react widely with the rocks. We suggest that the silicified zones are forming locally where colder descending waters are encountering

  18. A reconnaissance geochemical study of La Primavera geothermal area, Jalisco, Mexico

    USGS Publications Warehouse

    Mahood, G.A.; Truesdell, A.H.; Templos, M.L.A.

    1983-01-01

    The Sierra La Primavera, a late Pleistocene rhyolitic caldera complex in Jalisco, Me??xico, contains fumaroles and large-discharge 65??C hot springs that are associated with faults related to caldera collapse and to later magma insurgence. The nearly-neutral, sodium bicarbonate, hot springs occur at low elevations at the margins of the complex, whereas the water-rich fumaroles are high and central. The Comisio??n Federal de Electricidad de Me??xico (CFE) has recently drilled two deep holes at the center of the Sierra (PR-1 and Pr-2) and one deep hole at the western margin. Temperatures as high as 285??C were encountered at 1160 m in PR-1, which produced fluids with 820 to 865 mg/kg chloride after flashing to one atmosphere. Nearby, PR-2 encountered temperatures to 307??C at 2000 m and yielded fluids with chloride contents fluctuating between 1100 and 1560 mg/kg after flashing. Neither of the high-temperature wells produced steam in commercial quantities. The well at the western margin of the Sierra produced fluids similar to those from the hot springs. The temperature reached a maximum of 100??C near the surface and decreased to 80??C at 2000 m. Various geothermometers (quartz conductive, Na/K, Na-K-Ca, ??18O(SO4-H2O) and D/H (steam-water) all yield temperatures of 170 ?? 20??C when applied to the hot spring waters, suggesting that these spring waters flow from a large shallow reservoir at this temperature. Because the hot springs are much less saline than the fluids recovered in PR-1 and PR-2, the mixed fluid in the shallow reservoir can contain no more than 10-20% deep fluid. This requires that most of the heat is transferred by steam. There is probably a thin vapor-dominated zone in the central part of the Sierra, through which steam and gases are transferred to the overlying shallow reservoir. Fluids from this reservoir cool from ???170??C to 65??C by conduction during the 5-7 km of lateral flow to the hot springs. ?? 1983.

  19. Evaluation of geothermal potential of Rio Grande rift and Basin and Range province, New Mexico. Final technical report, January 1, 1977-May 31, 1978

    SciTech Connect

    Callender, J.F.

    1985-04-01

    A study was made of the geological, geochemical and geophysical characteristics of potential geothermal areas in the Rio Grande rift and Basin and Range province of New Mexico. Both regional and site-specific information is presented. Data was collected by: (1) reconnaissance and detailed geologic mapping, emphasizing Neogene stratigraphy and structure; (2) petrologic studies of Neogene igneous rocks; (3) radiometric age-dating; (4) geochemical surveying, including regional and site-specific water chemistry, stable isotopic analyses of thermal waters, whole-rock and mineral isotopic studies, and whole-rock chemical analyses; and (5) detailed geophysical surveys, using electrical, gravity and magnetic techniques, with electrical resistivity playing a major role. Regional geochemical water studies were conducted for the whole state. Integrated site-specific studies included the Animas Valley, Las Cruces area (Radium Springs and Las Alturas Estates), Truth or Consequences region, the Albuquerque basin, the San Ysidro area, and the Abiquiu-Ojo Caliente region. The Animas Valley and Las Cruces areas have the most significant geothermal potential of the areas studied. The Truth or Consequences and Albuquerque areas need further study. The San Ysidro and Abiquiu-Ojo Caliente regions have less significant geothermal potential. 78 figs., 16 tabs.

  20. Mexico.

    ERIC Educational Resources Information Center

    Semaan, Leslie

    The text explores Mexico's history, geography, art, religion, and lifestyles in the context of its complex economy. The text focuses on Mexico's economy and reasons for its current situation. Part I of this teaching unit includes: Teacher Overview, Why Study Mexico, Mexico Fact Sheet, Map of Mexico, the Land and Climate, History, Government,…

  1. Geothermal activity at continental rift Citala, Western Mexico, where Lake Chapala is emplaced: past and present

    NASA Astrophysics Data System (ADS)

    Zárate-del Valle, P. F.

    2003-04-01

    Lake Chapala is a tectonic lake developed on a continental rift named Citala (CRC) which belongs to a tectonically active zone in Western Mexico: the so-called Jalisco continental triple junction. Fossil sinter deposit, thermal spring, hydrothermal (hy) petroleum manifestation and hy alteration halo characterized the Lake Chapala basin. On the SE shore, outcrops a carbonate deposit named ``La Calera" (LC) which consists of a carbonate fossil sinter that measures 2 km in E-W direction and 600 m in N-S direction and overlays andesitic rock. With a thickness of approximately 5 m and a roughly horizontal attitude, the LC is characterized by a two-fold structure: when massive, it is colored in yellow brownish and grey and elsewhere it shows a pseudo-brecciated structure and when banded, yellow and dark millimetre alternated bands can be seen. The LC is marked by vuggy porosity and silica (quartz and chalcedony) vein lets. Under microscope a pseudo-micritic texture is observed; vugs coated by iron oxides, are filled with calcite, and/or quartz, chalcedony and clay minerals. Six samples of LC were analysed (LODC-UParis VI) for their stable isotopes (δ18O and δ13C): From δ13C{PDB} values we have two sets of data: -8.03 to -8.69 ppm that means a no contribution of organic carbon (oc) and -0.35 to -0.75 ppm meaning an important contribution of oc; from δ18O{PDB} values: -8.5 to -10.27 ppm we deduced a deposit in meteoric water with a temperature deposition higher than the surface. The CRC is characterized also by the presence of hydrothermal petroleum (hp): Inside the Chapala and ˜2 km from SE shore (Los Arcos) there are some small spots made of hp which look like islands (<3-4 m^2) linked to the bottom of the lake which consist of solid bitumen. Thermal springs (ths) occur both inside and outside the lake Chapala: the water in out-shore ths is of carbonate type (69^oC; ˜ 240 mg L-1 [HCO_3]^-; with one exception: the ths at the San Juan Cosalá spa (N shore), which is

  2. Implications for organic maturation studies of evidence of a geologically rapid increase and stabilization of vitrinite reflectance at peak temperature: Cerro Prieto geothermal system, Mexico

    USGS Publications Warehouse

    Barker, C.E.

    1991-01-01

    A short-term rapid heating and cooling of the rock in well M-94 below 1300 m was caused by a pulse of hot water passing through the edge of the Cerro Prieto, Mexico, geothermal system. Below 1300 m, the peak paleotemperatures were about 225-250??C, but equilibrium well log temperatures indicate a decrease to 150-210??C at present. This hot water pulse sharply increased vitrinite reflectance to levels comparable to those measured in the central part of the system, even though studies of apatite fission-track annealing indicate that the duration of heating was only 100-101 yr in M-94, in contrast to 103-104 yr in the central part of the system. The quick change of the vitrinite reflectance geothermometer indicates that thermal maturation reactions can stabilize, after a geologically short period of heating, to a level consistent with peak temperature under moderate to high-temperature diagenesis in open, fluid-rich, geothermal systems. -from Author

  3. Geothermal Energy.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    An introduction to geothermal energy is provided in this discussion of: (1) how a geothermal reservoir works; (2) how to find geothermal energy; (3) where it is located; (4) electric power generation using geothermal energy; (5) use of geothermal energy as a direct source of heat; (6) geopressured reservoirs; (7) environmental effects; (8)…

  4. Orientation of minimum principal stress in the hot dry rock geothermal reservoir at Fenton Hill, New Mexico

    SciTech Connect

    Burns, K.L.

    1991-01-01

    The stress field at the source of microearthquakes in the interior of the hot dry rock geothermal reservoir at Fenton Hill appears to be different to the far field stress outside the reservoir. The stress field seems to be re-oriented prior to failure, during the course of processes that inflate the reservoir. The state of stress, both inside and outside, the hot dry rock (HDR) geothermal reservoir at Fenton Hill, is important in predicting the course of stress-dependent processes, and in transferring HDR technology developed at Fenton Hill, to sites, such as at Clearlake in California, where the stress field is expected to be substantially different. The state of stress at Fenton Hill is not well known because of limitations in stress measuring technology. It is necessary to use a variety of indirect methods and seek an estimate of the stress. 5 refs.

  5. Active metasomatism in the Cerro Prieto geothermal system, Baja California, Mexico: a telescoped low pressure/temperature metamorphic facies series

    SciTech Connect

    Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D.; Bird, D.K.

    1983-01-01

    In the Cerro Prieto geothermal field, carbonate-cemented, quartzofeldspathic sediments of the Colorado River delta are being actively metasomatized into calc-silicate metamorphic rocks by reaction with alkali chloride brines between 200/sup 0/ and 370/sup 0/C, low fluid and lithostatic pressures, and low oxygen fugacities. Petrologic investigations of drill cores and cutting from over 50 wells in this field identified a prograde series of calc-silicate mineral zones which include as index minerals: wairakite, epidote, prehnite, and clinopyroxene. Associated divariant mineral assemblages are indicative of a very low pressure/temperature metamorphic facies series which encompasses the clay-carbonate, zeolite, greenschist, and amphibolite facies. This hydrothermal metamorphic facies series, which is becoming increasingly recognized in other active geothermal systems, is characterized by temperature-telescoped dehydration and decarbonation mineral equilibria. Its equivalent should now be sought in fossil hydrothermal systems.

  6. Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field, Baja, California, Mexico

    SciTech Connect

    Valette-Silver, J.N.; Esquer-Patino, I.; Elders, W.A.; Collier, P.C.; Hoagland, J.R.

    1981-01-01

    Surface emissions from the Cerro Prieto geothermal reservoir are restricted to a 100 km/sup 2/ area on the western side of the field, near the volcano Cerro Prieto and the lake Laguna Vulcano. Some 57 surface emissions, explored in 1979, were classified into hot springs, mud pots, pools, fumaroles and geysers (Valette and Esquer-Patino, 1979). A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samples from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180/sup 0/C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristics of the discharge from high intensity geothermal fields.

  7. Arsenic and fluoride in the groundwater of Mexico.

    PubMed

    Armienta, M A; Segovia, N

    2008-08-01

    Concentrations of arsenic and fluoride above Mexican drinking water standards have been detected in aquifers of various areas of Mexico. This contamination has been found to be mainly caused by natural sources. However, the specific processes releasing these toxic elements into groundwater have been determined in a few zones only. Many studies, focused on arsenic-related health effects, have been performed at Comarca Lagunera in northern México. High concentrations of fluoride in water were also found in this area. The origin of the arsenic there is still controversial. Groundwater in active mining areas has been polluted by both natural and anthropogenic sources. Arsenic-rich minerals contaminate the fractured limestone aquifer at Zimapán, Central México. Tailings and deposits smelter-rich fumes polluted the shallow granular aquifer. Arsenic contamination has also been reported in the San Antonio-El Triunfo mining zone, southern Baja California, and Santa María de la Paz, in San Luis Potosí state. Even in the absence of mining activities, hydrogeochemistry and statistical techniques showed that arsenopyrite oxidation may also contaminate water, as in the case of the Independencia aquifer in the Mexican Altiplano. High concentrations of arsenic have also been detected in geothermal areas like Los Azufres, Los Humeros, and Acoculco. Prevalence of dental fluorosis was revealed by epidemiological studies in Aguascalientes and San Luis Potosí states. Presence of fluoride in water results from dissolution of acid-volcanic rocks. In Mexico, groundwater supplies most drinking water. Current knowledge and the geology of Mexico indicate the need to include arsenic and fluoride determinations in groundwater on a routine basis, and to develop interdisciplinary studies to assess the contaminant's sources in all enriched areas.

  8. Mexico

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image of Mexico was acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. In areal extent, Mexico is the third largest country on the continent of North America (not counting Greenland, which is a province of Denmark), comprised of almost 2 million square kilometers (756,000 square miles) of land. Home to roughly 100 million people, Mexico is second only to the United States in population, making it the world's largest Spanish-speaking nation. To the north, Mexico shares its border with the United States-a line that runs some 3,100 kilometers (1,900 miles) east to west. About half of this border is defined by the Rio Grande River, which runs southeast to the Gulf of Mexico (partially obscured by clouds in this image) and marks the dividing line between Texas and Mexico. Toward the upper left (northwest) corner of this image is the Baja California peninsula, which provides the western land boundary for the Gulf of California. Toward the northwestern side of the Mexican mainland, you can see the Sierra Madre Occidental Mountains (brownish pixels) running southeast toward Lake Chapala and the city of Guadalajara. About 400 km (250 miles) east and slightly south of Lake Chapala is the capital, Mexico City. Extending northward from Mexico City is the Sierra Madre Oriental Mountains, the irregular line of brownish pixels that seem to frame the western edges of the bright white cumulus clouds in this image. Between these two large mountain ranges is a large, relatively dry highland region. To the south, Mexico shares borders with Guatemala and Belize, both of which are located south of Mexico's Yucatan Peninsula. Image courtesy Reto Stockli, Brian Montgomery, and Robert Simmon, based on data from the MODIS Science Team

  9. Mexico.

    PubMed

    1988-02-01

    Focus in this discussion of Mexico is on the following: geography; the people; history; political conditions; the economy; foreign relations; and relations between the US and Mexico. As of July 1987, the population of Mexico numbered 81.9 million with an estimated annual growth rate of 2.09%. 60% of the population is Indian-Spanish (mestizo), 30% American Indian, 9% white, and 1% other. Mexico is the most populous Spanish-speaking country in the world and the 2nd most populous country in Latin America. Education is decentralized and expanded. Mexico's topography ranges from low desert plains and jungle-like coastal strips to high plateaus and rugged mountains. Hernan Cortes conquered Mexico in 1919-21 and founded a Spanish colony that lasted for almost 300 years. Independence from Spain was proclaimed by Father Miguel Hidalgo on September 16, 1810; the republic was established on December 6, 1822. Mexico's constitution of 1917 provides for a federal republic with a separation of powers into independent executive, legislative, and judicial branches of government. Significant political themes of the administration of President Miguel de la Madrid Hurtado, who began his 6-year term in 1982, have been restructuring the economy, liberalizing trade practices, decentralizing government services, and eliminating corruption among public servants. In 1987, estimates put the real growth of the Mexican economy at 1.5%; the gross domestic product (GDP) had shrunk by 3.5% in 1986. Yet, on the positive side, Mexico's international reserves increased to record levels in 1987 (to about $15 billion), and its current account surplus reached more than $3 billion. Mexico has made considerable progress in moving to restructure its economy. It has substantially reduced impediments to international trade and has moved to reduce the number of parastatal firms. 1987 was the 2nd consecutive year in which Mexico recorded triple-digit inflation; inflation reached 158.8%. Other problems include

  10. DYNAMIC MIXING MODEL OF THE CHIGNAHUAPAN THERMAL SPRING IN THE GEOTHERMAL ZONE OF THE ACOCULCO CALDERA, PUEBLA, MEXICO

    NASA Astrophysics Data System (ADS)

    Gutierrez-Cirlos, A.; Torres-Rodriguez, V.

    2009-12-01

    The Acoculco Caldera, of Pliocenic age, is located within the limits of the Transmexican Volcanic Belt (CVT) and the Sierra Madre Oriental (SMOr). The Acoculco geothermal zone consists of a 790m thick igneous sequence, related to a volcanic complex formed by andesites and rhyolitic domes emplaced in an 18 Km diameter annular fracture. It unconformably overlies a 5000 m thick section of folded and faulted Jurassic-Cretaceous carbonate rocks. The Chignahuapan Spring, located in the extreme eastern part of the Geothermal Zone of the Acoculco Caldera, yields temperatures of 49°C and discharges an estimated of 98 lps from the karstified Lower Cretaceous limestone. Both major and trace element geochemical analysis were carried out, and results were interpreted using Piper and Stiff diagrams, as well as geothermometry. The results indicate that water belongs to the calcium-bicarbonate type and yield temperatures in a range of 70-80°C at depth, which suggest an extensive lateral flow from the main reservoir and mixing with shallow groundwaters. The spring suffers significant variations in its temperature throughout the year, especially during the rainy season, when water temperature decreases up to 10°C. Analyzing the hot spring water temperature data from of the last 10 years and comparing it with the precipitation and air temperature curves of the region, we expect to develop a dynamic mixing model which depicts the relation between these factors and the importance of each one in the water temperature variation. We also look forward to be able to forecast water temperature trends for the next several years and correlate it with climate change in the area.

  11. Geothermal systems: Principles and case histories

    NASA Astrophysics Data System (ADS)

    Rybach, L.; Muffler, L. J. P.

    The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.

  12. Geothermal pipeline

    SciTech Connect

    1997-08-01

    The Geothermal Pipeline is a progress and development update from the Geothermal Progress Monitor and includes brief descriptions of various geothermal projects around the world. The following topics are covered: The retirement of Geo-Heat Center Director Paul Lienau, announcement of two upcoming geothermal meetings, and a proposed geothermal power plant project in the Medicine Lake/Glass Mountain area of California. Also included is an article about the Bonneville Power Administration`s settlements with two California companies who had agreed to build geothermal power plants on the federal agency`s behalf, geothermal space heating projects and use of geothermal energy for raising red crayfish in Oregon, and some updates on geothermal projects in Minnesota, Pennsylvania, and China.

  13. The SGP-CFE geothermal hydrogen study

    SciTech Connect

    Fioravanti, M.; Kruger, P.; Cadenas, C.; Rangel, M.

    1995-12-31

    Excess baseload geothermal electric power could be used to manufacture hydrogen as an alternate automotive fuel, providing several synergistic economic and environmental health benefits. A study is underway as part of the DOE-CFE Geothermal Agreement to estimate the potential for producing hydrogen at geothermal fields in Mexico with low-cost excess capacity and the concomitant potential for air pollution abatement in the Mexico City metropolitan area. Case studies have been made for excess capacity at three scales: (1) small (10 MWe) at a new developing field as an experimental facility; (2) moderate (100 MWe) at Cerro Prieto as a demonstration project; and (3) large (1000 MWe) using the entire output of Mexico`s geothermal resources for significant air quality improvement.

  14. Geothermal steam condensate reinjection

    NASA Technical Reports Server (NTRS)

    Chasteen, A. J.

    1974-01-01

    Geothermal electric generating plants which use condensing turbines and generate and excess of condensed steam which must be disposed of are discussed. At the Geysers, California, the largest geothermal development in the world, this steam condensate has been reinjected into the steam reservoir since 1968. A total of 3,150,000,000 gallons of steam condensate has been reinjected since that time with no noticeable effect on the adjacent producing wells. Currently, 3,700,000 gallons/day from 412 MW of installed capacity are being injected into 5 wells. Reinjection has also proven to be a satisfactory method of disposing of geothermal condensate a Imperial Valley, California, and at the Valles Caldera, New Mexico.

  15. Geothermal energy as a source of electricity. A worldwide survey of the design and operation of geothermal power plants

    SciTech Connect

    DiPippo, R.

    1980-01-01

    An overview of geothermal power generation is presented. A survey of geothermal power plants is given for the following countries: China, El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, Philippines, Turkey, USSR, and USA. A survey of countries planning geothermal power plants is included. (MHR)

  16. Applied technology in the solution of geothermal drilling problems of deep wells in La Primavera caldera (Mexico)

    NASA Astrophysics Data System (ADS)

    Santoyo-Gutiérrez, S.; García, A.; Morales, M.; Perezyera, J.; Rosas, A.

    1991-07-01

    The drilling of deep wells in the La Primavera caldera has evidenced a highly complex and hazardous problematic situation due to considerable losses of drilling fluids. Such large losses have not occurred in any other geothermal field in the world. These losses are due mainly to the structural conditions of the geological formations which are penetrated. The technology employed in the construction of deep wells has played a very important role in the solution to these problems. Field case histories describe the effectiveness of the developments of drilling fluids and cement materials in cavernous formations with severe lost-circulation problems. A processed clay bentonite was developed whose high performance and rapid hydration characteristics allowed a reduction of up to 5 hours in the drilling fluid conditioning time. Also, useful results were obtained through the development of a granular plugging mixture which maintained sealing properties at 70 kg/cm 2 under cavernous simulated conditions. This granular plugging mixture kept losses of the volume of drilling fluid under 8% with respect to the total volume. Special cement plugs with thixotropic behavior allowed the handling and placement of this slurry in the problematic zone. The CaSO 4 addition to the cement slurry was optimized so that a placement time of 30 min could be obtained. Additionally, the mechanical compressive strength values of this special cement plug ranged from 50 to 100 kg/cm 2.

  17. Geothermal Energy.

    ERIC Educational Resources Information Center

    Reed, Marshall J.

    1979-01-01

    During 1978, exploration for geothermal energy continued at the same moderately low level of the past few years in most countries. The U.S. is the only country where the development of geothermal energy depends on private industry. (BB)

  18. Geothermal Energy

    SciTech Connect

    Steele, B.C.; Harman, G.; Pitsenbarger, J.

    1996-02-01

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  19. Geothermal systems

    NASA Technical Reports Server (NTRS)

    Mohl, C.

    1978-01-01

    Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

  20. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  1. Advanced geothermal technologies

    NASA Astrophysics Data System (ADS)

    Whetten, J. T.; Murphy, H. D.; Hanold, R. J.; Myers, C. W.; Dunn, J. C.

    Research and development in advanced technologies for geothermal energy production continue to increase the energy production options for the Nation. The high-risk investment over the past few years by the U.S. Department of Energy in geopressured, hot dry rock, and magma energy resources is producing new means to lower production costs and to take advantage of these resources. The Nation has far larger and more regionally extensive geothermal resources than heretofore realized. At the end of a short 30-day closed-loop flow test, the manmade hot dry rock reservoir at Fenton Hill, New Mexico was producing 10 MW thermal, and still climbing, proving the technical feasibility of this new technology. The scientific feasibility of magma energy extraction was demonstrated, and new field tests to evaluate this technology are planned. Analysis and field tests confirm the viability of geopressured-geothermal energy and the prospect that many dry-hole or depleted petroleum wells can be turned into producing geopressured-geothermal wells. Technological advances achieved through hot dry rock, magma, geopressured, and other geothermal research are making these resources and conventional hydrothermal resources more competitive.

  2. Geothermal Energy.

    ERIC Educational Resources Information Center

    Bufe, Charles Glenn

    1983-01-01

    Major activities, programs, and conferences in geothermal energy during 1982 are highlighted. These include first comprehensive national assessment of U.S. low-temperature geothermal resources (conducted by U.S. Geological Survey and Department of Energy), map production by U.S. Geological Survey, geothermal plant production, and others. (JN)

  3. Geology and geothermal waters of Lightning Dock region, Animas Valley and Pyramid Mountains, Hidalgo County, New Mexico

    SciTech Connect

    Elston, W.E.; Deal, E.G.; Logsdon, M.J.

    1983-01-01

    This circular covers the geology of the Pyramid Peak, Swallow Fork Peak, Table Top Mountain, and South Pyramid Peak 7-1/2-min quadrangles, which include the Lightning Dock KGRA. Hot wells (70 to 115.5/sup 0/C) seem to be structurally controlled by intersections of the ring-fracture zone of an Oligocene ash-flow tuff cauldron (Muir cauldron), a Miocene-to-Holocene north-trending basin-and-range fault (Animas Valley fault), and a northeast-trending lineament that appears to control anomalously heated underground waters and Pliocene-Pleistocene basalt cones in the San Bernardino, San Simon, and Animas Valleys. The Muir cauldron, approximately 20 km in diameter, collapsed in two stages, each associated with the eruption of a rhyolite ash-flow-tuff sheet and of ring-fracture domes. Most of the hydrothermal alteration of the Lightning Dock KGRA is related to the first stage of eruption and collapse, not to the modern geothermal system. Contrary to previous reports, no silicic volcanic rocks younger than basin-and-range faulting are known; unconformities beneath rhyolite ring-fracture domes are caused by Oligocene caldera collapse, not by basin-and-range faulting. The Animas Valley is the site of widespread post-20 My travertine deposits and near-surface veins of calcite, fluorite, and/or psilomelane, controlled by north- or northwest-trending basin-and-range faults. The fluoride-bearing waters of the Lightning Dock KGRA may be a late stage of this hydrothermal activity. Distribution of Pliocene-Pleistocene basalt suggests that deep-seated basalt near the solids may be the ultimate heat source.

  4. Hydrothermal-flow regime and magmatic heat source of the Cerro Prieto geothermal system, Baja California, Mexico

    SciTech Connect

    Elders, W.A.; Bird, D.K.; Williams, A.E.; Schiffman, P.

    1982-01-01

    This detailed three-dimensional model of the natural flow regime of the Cerro Prieto geothermal field, before steam production began, is based on patterns of hydrothermal mineral zones and light stable isotopic ratios observed in rock samples from more than fifty deep wells, together with temperature gradients, wireline logs and other data. At the level so far penetrated by drilling, this hydrothermal system was heated by a thermal plume of water close to boiling, inclined at 45/sup 0/, rising from the northeast and discharging to the west. To the east a zone of cold water recharge overlies the inclined thermal plume. Fission track annealing studies shows that the reservoir reached 170/sup 0/C only 10/sup 4/ years ago. Oxygen isotope exchange data indicate that a 12 km/sup 3/ volume of rock subsequently reacted with three times its volume of water hotter than 200/sup 0/C. Averaged over the duration of the heating event this would require a flow velocity of about 6 m/year through the pores of a typical cross section of the reservoir having an average porosity of 10%. Although this is an extensional tectonic environment of leaky transform faulting in which repeated intrusions of basalt magma are likely, for simplicity of computation possible heat sources were modelled as simple two dimensional basalt intrusions of various sizes, shapes and locations. We have calculated a series of two-dimensional convective heat transfer models, with different heat sources and permeability distributions. The models which produce the best fit for the temperature distributions observed in the field today have in common a heat source which is a funnel-shaped basalt intrusion, 4 km wide at the top, emplaced at a depth of 5 km to 6 km about 40,000 to 50,000 years ago.

  5. Geothermal well log interpretation state of the art. Final report

    SciTech Connect

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1980-01-01

    An in-depth study of the state of the art in Geothermal Well Log Interpretation has been made encompassing case histories, technical papers, computerized literature searches, and actual processing of geothermal wells from New Mexico, Idaho, and California. A classification scheme of geothermal reservoir types was defined which distinguishes fluid phase and temperature, lithology, geologic province, pore geometry, salinity, and fluid chemistry. Major deficiencies of Geothermal Well Log Interpretation are defined and discussed with recommendations of possible solutions or research for solutions. The Geothermal Well Log Interpretation study and report has concentrated primarily on Western US reservoirs. Geopressured geothermal reservoirs are not considered.

  6. Mexico.

    PubMed

    1993-01-01

    The background notes on Mexico provide text and recent statistical information on the geography, population, government, economy, and foreign relations, specifically the North American Free Trade Agreement with US. The 1992 population is estimated at 89 million of which 60% are mestizo (Indian-Spanish), 30% are American Indian, 9% are Caucasian, and 1% are other. 90% are Roman Catholic. There are 8 years of compulsory education. Infant mortality is 30/1000 live births. Life expectancy for males is 68 years and 76 years for females. The labor force is comprised of 30% in services, 24% in agriculture and fishing, 19% in manufacturing, 13% in commerce, 7% in construction, 4% in transportation and communication, and .4% in mining. There are 31 states and a federal district. Gross domestic product (GDP) per capita was $3200 in 1991. Military expenditures were .5% of GDP in 1991. The average inflation rate is 19%. Mexico City with 20 million is the largest urban center in the world. In recent years, the economy has been restructured with market oriented reforms; the result has been a growth of GDP of 3.6% in 1991 from 2% in 1987. Dependence on oil exports has decreased. There has been privatization and deregulation of state-owned companies. Subsidies to inefficient companies have been stopped. Tariff rates were reduced. The financial debt has been reduced and turned into a surplus of .8% in 1992. Mexico's foreign debt has been reduced from its high in 1987 of $107 billion. Agricultural reforms have been ongoing for 50 years. Land was redistributed, but standards of living and productivity have improved only slightly. Rural land tenure regulations have been changed, and other economic reforms are expected. Mexico engages in ad hoc international groups and is selective about membership in international organizations.

  7. Advanced geothermal technologies

    SciTech Connect

    Whetten, J.T.; Murphy, H.D.; Hanold, R.J.; Myers, C.W.; Dunn, J.C.

    1988-01-01

    Research and development in advanced technologies for geothermal energy production continue to increase the energy production options for the Nation. The high-risk investment over the past few years by the US Department of Energy in geopressured, hot dry rock, and magma energy resources is producing new means to lower production costs and to take advantage of these resources. The Nation has far larger and more regionally extensive geothermal resources than heretofore realized. At the end of a short 30-day closed-loop flow test, the manmade hot dry rock reservoir at Fenton Hill, New Mexico, was producing 10 MW thermal - and still climbing - proving the technical feasibility of this new technology. The scientific feasibility of magma energy extraction has been demonstrated, and new field tests to evaluate this technology are planned. Analysis and field tests confirm the viability of geopressured-geothermal energy and the prospect that many dry-hole or depleted petroleum wells can be turned into producing geopressured-geothermal wells. Technological advances achieved through hot dry rock, magma, geopressured, and other geothermal research are making these resources and conventional hydrothermal resources more competitive. Noteworthy among these technological advances are techniques in computer simulation of geothermal reservoirs, new means for well stimulation, new high-temperature logging tools and packers, new hard-rock penetration techniques, and new methods for mapping fracture flow paths across large underground areas in reservoirs. In addition, many of these same technological advances can be applied by the petroleum industry to help lower production costs in domestic oil and gas fields. 5 refs., 4 figs.

  8. Symposium in the field of geothermal energy

    SciTech Connect

    Ramirez, Miguel; Mock, John E.

    1989-04-01

    Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must be surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.

  9. Investigation of deep permeable strata in the permian basin for future geothermal energy reserves

    SciTech Connect

    Erdlac, Richard J., Jr.; Swift, Douglas B.

    1999-09-23

    This project will investigate a previously unidentified geothermal energy resource, opening broad new frontiers to geothermal development. Data collected by industry during oil and gas development demonstrate deep permeable strata with temperatures {ge} 150 C, within the optimum window for binary power plant operation. The project will delineate Deep Permeable Strata Geothermal Energy (DPSGE) assets in the Permian Basin of western Texas and southeastern New Mexico. Presently, geothermal electrical power generation is limited to proximity to shallow, high-temperature igneous heat sources. This geographically restricts geothermal development. Delineation of a new, less geographically constrained geothermal energy source will stimulate geothermal development, increasing available clean, renewable world energy reserves. This proposal will stimulate geothermal reservoir exploration by identifying untapped and unrealized reservoirs of geothermal energy. DPSGE is present in many regions of the United States not presently considered as geothermally prospective. Development of this new energy source will promote geothermal use throughout the nation.

  10. Materials selection guidelines for geothermal energy utilization systems

    SciTech Connect

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  11. Geothermal Energy.

    ERIC Educational Resources Information Center

    Nemzer, Marilyn; Page, Deborah

    This curriculum unit describes geothermal energy in the context of the world's energy needs. It addresses renewable and nonrenewable energy sources with an in-depth study of geothermal energy--its geology, its history, and its many uses. Included are integrated activities involving science, as well as math, social studies, and language arts.…

  12. Geothermal Energy

    SciTech Connect

    Steele, B.C.; Pichiarella, L.S.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  13. GeoSys.Chem: Estimate of reservoir fluid characteristics as first step in geochemical modeling of geothermal systems

    NASA Astrophysics Data System (ADS)

    Verma, Mahendra P.

    2012-12-01

    A computer code GeoSys.Chem for the calculation of deep geothermal reservoir fluid characteristics from the measured physical-chemical parameters of separated water and condensed vapor samples obtained from drilled wells is presented. It was written as a dynamic link library (DLL) in Visual Basic in Visual Studio 2010 (VB.NET). Using this library a demonstration program GeoChem was developed in VB.NET, which accepts the input data file in the XML format. A stepwise calculation of deep reservoir fluid characteristics of 11 production wells of Los Azufres geothermal system is performed. The calculated concentration of CO2 (e.g.=1270 mmole/kg in the well AZ-09) in the vapor, discharged into the atmosphere at the weir box, from the water sample indicates some problem in the analysis of carbonic species concentrations. In the absence of good quality analysis of carbonic species it is suggested to consider the CO2 in the vapor sample at the separator and the total dissolved carbonic species concentration in the water sample (i.e., without considering the liberation of CO2 in the atmospheric vapor at the weir box) for the geothermal reservoir fluid composition calculations. Similarly, it presents various diagrams developed in Excel for the thermodynamic evolution of Los Azufres geothermal reservoir.

  14. Application of HydroGeoSphere to model the response to anthropogenic climate change of three-dimensional hydrological processes in the geologically, geothermally, and topographically complex Valles Caldera super volcano, New Mexico: Preliminary results

    NASA Astrophysics Data System (ADS)

    Wine, M.; Cadol, D. D.

    2014-12-01

    Anthropogenic climate change is expected to reduce streamflow in the southwestern USA due to reduction in precipitation and increases in evaporative demand. Understanding the effects of climate change in this region is particularly important for mountainous areas since these are primary sources of recharge in arid and semi-arid environments. Therefore we undertook to model effects of climate change on the hydrological processes in Valles Caldera (448 km2), located in the Jemez Mountains of northern New Mexico. In Valles Caldera modeling the surficial, hydrogeological, and geothermal processes that influence hydrologic fluxes each present challenges. The surficial dynamics of evaporative demand and snowmelt both serve to control recharge dynamics, but are complicated by the complex topography and spatiotemporal vegetation dynamics. Complex factors affecting evaporative demand include leaf area index, temperature, albedo, and radiation affected by topographic shading; all of these factors vary in space and time. Snowmelt processes interact with evaporative demand and geology to serve as an important control on streamflow generation, but modeling the effects of spatiotemporal snow distributions on streamflow generation remains a challenge. The complexity of Valles Caldera's geology—and its associated hydraulic properties—rivals that of its surficial hydrologic forcings. Hydrologically important geologic features that have formed in the Valles Caldera are three-dimensionally intricate and include a dense system of faults, alluvium, landslides, lake deposits, and features associated with the eruption and collapse of this super volcano. Coupling geothermally-driven convection to the hydrologic cycle in this still-active geothermal system presents yet an additional challenge in modeling Valles Caldera. Preliminary results from applying the three-dimensional distributed hydrologic finite element model HydroGeoSphere to a sub-catchment of Valles Caldera will be

  15. Analysis of production decline in geothermal reservoirs

    SciTech Connect

    Zais, Elliot J.; Bodvarsson, Gunnar

    1980-09-01

    The major objectives of the Decline Curve project were to: (1) test the decline analysis methods used in the petroleum industry on geothermal production data; (2) examine and/or develop new analysis methods; and (3) develop a standard operating procedure for analyzing geothermal production data. Various analysis methods have long been available but they have not been tested on geothermal data because of the lack of publicly available data. The recent release to publication of substantial data sets from Wairakei, New Zealand, Cerro Prieto, Mexico and The Geysers, USA has made this study possible. Geothermal reservoirs are quite different from petroleum reservoirs in many ways so the analysis methods must be tested using geothermal data.

  16. Energia geotermica at the present time: Geothermal Today (Spanish version); La energia geotermica en la actualidad

    SciTech Connect

    Not Available

    2003-09-01

    This outreach publication highlights federal program milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. This is a special 8-page Spanish supplement for the audience at the Geothermal Resources Council/Geothermal Energy Association Annual Meeting and Industry Exhibit, Morelia, Mexico.

  17. 76 FR 38648 - Availability of the Geothermal Technologies Program Blue Ribbon Panel Report and Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... of Energy Efficiency and Renewable Energy Availability of the Geothermal Technologies Program Blue... Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Geothermal Technologies... Albuquerque, New Mexico for a guided discussion on the future of geothermal energy in the United States...

  18. Land subsidence in the Cerro Prieto Geothermal Field, 1 Baja California, Mexico, from 1994 to 2005. An integrated analysis of DInSAR, levelingand geological data.

    SciTech Connect

    Sarychikhina, O; Glowacka, E; Mellors, R; Vidal, F S

    2011-03-03

    Cerro Prieto is the oldest and largest Mexican geothermal field in operation and has been producing electricity since 1973. The large amount of geothermal fluids extracted to supply steam to the power plants has resulted in considerable deformation in and around the field. The deformation includes land subsidence and related ground fissuring and faulting. These phenomena have produced severe damages to infrastructure such as roads, irrigation canals and other facilities. In this paper, the technique of Differential Synthetic Aperture Radar Interferometry (DInSAR) is applied using C-band ENVISAR ASAR data acquired between 2003 and 2006 to determine the extent and amount of land subsidence in the Mexicali Valley near Cerro Prieto Geothermal Field. The DInSAR results were compared with published data from precise leveling surveys (1994- 1997 and 1997-2006) and detailed geological information in order to improve the understanding of temporal and spatial distributions of anthropogenic subsidence in the Mexicali Valley. The leveling and DInSAR data were modeled to characterize the observed deformation in terms of fluid extraction. The results confirm that the tectonic faults control the spatial extent of the observed subsidence. These faults likely act as groundwater flow barriers for aquifers and reservoirs. The shape of the subsiding area coincides with the Cerro Prieto pull-apart basin. In addition, the spatial pattern of the subsidence as well as changes in rate are highly correlated with the development of the Cerro Prieto Geothermal Field.

  19. Land subsidence in the Cerro Prieto Geothermal Field, Baja California, Mexico, from 1994 to 2005: An integrated analysis of DInSAR, leveling and geological data

    NASA Astrophysics Data System (ADS)

    Sarychikhina, Olga; Glowacka, Ewa; Mellors, Robert; Vidal, Francisco Suárez

    2011-07-01

    Cerro Prieto is the oldest and largest Mexican geothermal field in operation and has been producing electricity since 1973. The large amount of geothermal fluids extracted to supply steam to the power plants has resulted in considerable deformation in and around the field. The deformation includes land subsidence and related ground fissuring and faulting. These phenomena have produced severe damages to the local infrastructure such as roads, irrigation canals and other facilities. In this paper, the technique of Differential Synthetic Aperture Radar Interferometry (DInSAR) is applied using C-band ENVISAR ASAR data acquired between 2003 and 2006 to determine the extent and amount of land subsidence in the Mexicali Valley near Cerro Prieto Geothermal Field. The DInSAR results were compared with published data from precise leveling surveys (1994-1997 and 1997-2006) and detailed geological information in order to improve understanding of the temporal and spatial distributions of anthropogenic subsidence in the Mexicali Valley. The leveling and DInSAR data were modeled to characterize the observed deformation in terms of fluid extraction. The results confirm that the tectonic faults control the spatial extent of the observed subsidence. These faults likely act as groundwater flow barriers for aquifers and reservoirs. The shape of the subsiding area coincides with the Cerro Prieto pull-apart basin. In addition, the changes in spatial pattern and rate of the subsidence are correlated with the development of the Cerro Prieto Geothermal Field.

  20. Geothermal heating

    SciTech Connect

    Aureille, M.

    1982-01-01

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  1. State-coupled low-temperature geothermal-resource assessment program, Fiscal Year 1979. Final technical report

    SciTech Connect

    Icerman, L.; Starkey, A.; Trentman, N.

    1980-10-01

    The results of low-temperature geothermal energy resource assessment efforts in New Mexico during the period from 1 October 1978 to 30 June 1980 are summarized. The results of the efforts to extend the inventory of geothermal energy resources in New Mexico to low-temperature geothermal reservoirs with the potential for direct heating applications are given. These efforts focused on compiling basic geothermal data and new hydrology and temperature gradient data throughout New Mexico in a format suitable for direct transfer to the US Geological Survey and the National Oceanic and Atmospheric Administration for inclusion in the GEOTHERM data file and for preparation of New Mexico low-temperature geothermal resources maps. The results of geothermal reservoir confirmation studies are presented. (MHR)

  2. Geothermal handbook

    USGS Publications Warehouse

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  3. Development of a Plan to Implement Enhanced Geothermal Systems (EGS) in the Animas Valley, New Mexico - Final Report - 07/26/2000 - 02/01/2001

    SciTech Connect

    Schochet, Daniel N.; Cunniff, Roy A.

    2001-02-01

    The concept of producing energy from hot dry rock (HDR), originally proposed in 1971 at the Los Alamos National Laboratory, contemplated the generation of electric power by injecting water into artificially created fractures in subsurface rock formations with high heat flow. Recognizing the inherent difficulties associated with HDR, the concept of Enhanced Geothermal Systems was proposed. This embraces the idea that the amount of permeability and fluid in geothermal resources varies across a spectrum, with HDR at one end, and conventional hydrothermal systems at the other. This report provides a concept for development of a ''Combined Technologies Project'' with construction and operation of a 6 MW (net) binary-cycle geothermal power plant that uses both the intermediate-depth hydrothermal system at 1,200 to 3,300 feet and a deeper EGS capable system at 3,000 to 4,000 feet. Two production/injection well pairs will be drilled, one couplet for the hydrothermal system, and one for the E GS system. High-pressure injection may be required to drive fluid through the EGS reservoir from the injection to the production well.

  4. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2015-08-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  5. Geothermal pipeline

    SciTech Connect

    Not Available

    1992-12-01

    A number of new ideas for geothermal power development and use have been proposed or initiated. British engineers have proposed using North Sea oil rigs as geothermal power stations. These stations would use the low temperature heat from the water that now occupies the former oil reservoirs to generate electricity. NASA recently retrofitted its engine test facility to enable it to use warm water from an underground aquifer as source water in a heat pump. A major policy guideline regarding electricity is issued by the California Energy Commission (CEC) every two years. This year, CEC appears to be revising its method for determining the total societal cost of various electricity supply options. The change may impact geothermal energy usage in a positive way. Virtually untapped geothermal resources in Preston, Idaho will be utilized for warm water catfish farming. Stockton State College in New Jersey will be the site of one of the nation's largest geothermal projects when it is completed in 1993. It is designed to satisfy the college's energy requirements at an estimated cost savings of $300,000 per year. Aquaculture projects using thermal springs are under consideration in Utah and Washington State. Utah may be the site of an alligator farm and Washington State is being considered for raising golden tilapia, a food fish.

  6. Geothermal Reservoir Engineering Research. Fourth annual report, October 1, 1983-September 30, 1984

    SciTech Connect

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.

    1984-09-01

    Reservoir definition research consisted of well test analysis and bench-scale experiments. Well testing included both single-well pressure drawdown and buildup testing, and multiple-well interference testing. The development of new well testing methods continued to receive major emphasis during the year. Work included a project on multiphase compressibility, including the thermal content of the rock. Several projects on double-porosity systems were completed, and work was done on relative-permeability. Heat extraction from rock will determine the long-term response of geothermal reservoirs to development. The work in this task area involved a combination of physical and mathematical modeling of heat extraction from fractured geothermal reservoirs. International cooperative research dealt with adsorption of water on reservoir cores, the planning of tracer surveys, and an injection and tracer test in the Los Azufres fields. 32 refs.

  7. Geothermal Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are the origin and nature of geothermal energy. Included is the history of its development as an energy source, technological considerations affecting its development as an energy source, its environmental effects, economic considerations, and future prospects of development in this field. Basic system diagrams of the operation of a…

  8. Geothermal tomorrow 2008

    SciTech Connect

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  9. Geothermal Technologies Program: Utah

    SciTech Connect

    Not Available

    2005-06-01

    Geothermal Technologies Program Utah fact sheet describes the geothermal areas and use in Utah, focusing on power generation as well as direct use, including geothermally heated greenhouses, swimming pools, and therapeutic baths.

  10. State-coupled low temperature geothermal resource assessment program, fiscal year 1982. Final Technical Report

    SciTech Connect

    Icerman, Larry

    1983-08-01

    This report summarizes the results of low-temperature geothermal energy resource assessment efforts in New Mexico during the period from June 15, 1981 through September 30, 1983, under the sponsorship of the US Department of Energy (Contract DE-AS07-78ID01717). The report is divided into four chapters which correspond to the tasks delineated in the contract. Chapter 5 is a brief summary of the tasks performed under this contract during the period October 1, 1978, through June 30, 1983. This work extends the knowledge of low-temperature geothermal reservoirs with the potential for direct heating applications in New Mexico. The research effort focused on compiling basic geothermal data throughout selected areas in New Mexico in a format suitable for direct transfer to the US Geological Survey for inclusion in the GEOTHERM data file and to the National Oceanic and Atmospheric Administration for use with New Mexico geothermal resources maps.

  11. Geothermal probabilistic cost study

    NASA Astrophysics Data System (ADS)

    Orren, L. H.; Ziman, G. M.; Jones, S. C.; Lee, T. K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined.

  12. Geothermal probabilistic cost study

    NASA Technical Reports Server (NTRS)

    Orren, L. H.; Ziman, G. M.; Jones, S. C.; Lee, T. K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-01-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined.

  13. State-coupled low-temperature geothermal-resource-assessment program, Fiscal Year 1980. Final technical report

    SciTech Connect

    Icerman, L.; Starkey, A.; Trentman, N.

    1981-08-01

    Magnetic, gravity, seismic-refraction, and seismic-reflection profiles across the Las Alturas Geothermal Anomaly, New Mexico, are presented. Studies in the Socorro area include the following: seismic measurements of the tertiary fill in the Rio Grande Depression west of Socorro, geothermal data availability for computer simulation in the Socorro Peak KGRA, and ground water circulation in the Socorro Geothermal Area. Regional geothermal exploration in the Truth or Consequences Area includes: geological mapping of the Mud Springs Mountains, hydrogeology of the thermal aquifer, and electrical-resistivity investigation of the geothermal potential. Other studies included are: geothermal exploration with electrical methods near Vado, Chamberino, and Mesquite; a heat-flow study of Dona Ana County; preliminary heat-flow assessment of Southeast Luna County; active fault analysis and radiometric dating of young basalts in southern New Mexico; and evaluation of the geothermal potential of the San Juan Basin in northwestern New Mexico.

  14. Summary of the geology of the San Luis Basin, Colorado-New Mexico with emphasis on the geothermal potential for the Monte Vista Graben. Special Publication 17

    SciTech Connect

    Burroughs, R.L.

    1981-01-01

    The known geologic data of the San Luis Basin are reviewed and related to an understanding of the hydrogeothermal potential of the Alamosa-Monte Vista area. The physiographic setting of the region, the structural framework of the basin, and its influence on the stratigraphic makeup of the rock sequence, which in turn control the occurrence of potential deep water reservoirs, are reviewed. It is suggested that the San Luis Basin was well-developed by Miocene time, and that although the basin was modified by Neogene faulting, it is essentially a late Laramide event having been produced during the Paleogene. Attention is also given to high heat flow along the Rio Grande Rift and to the geothermal gradient of the San Luis Basin. The confined aquifer is then considered in respect to its hydrogeology, water quality, and as to the legal aspects of the system. (LEW)

  15. Gas geochemistry of the Valles caldera region, New Mexico and comparisons with gases at Yellowstone, Long Valley and other geothermal systems

    USGS Publications Warehouse

    Goff, F.; Janik, C.J.

    2002-01-01

    Noncondensible gases from hot springs, fumaroles, and deep wells within the Valles caldera geothermal system (210-300??C) consist of roughly 98.5 mo1% CO2, 0.5 mol% H2S, and 1 mol% other components. 3He/4He ratios indicate a deep magmatic source (R/Ra up to 6) whereas ??13C-CO2 values (-3 to -5???) do not discriminate between a mantle/magmatic source and a source from subjacent, hydrothermally altered Paleozoic carbonate rocks. Regional gases from sites within a 50-km radius beyond Valles caldera are relatively enriched in CO2 and He, but depleted in H2S compared to Valles gases. Regional gases have R/Ra values ???1.2 due to more interaction with the crust and/or less contribution from the mantle. Carbon sources for regional CO2 are varied. During 1982-1998, repeat analyses of gases from intracaldera sites at Sulphur Springs showed relatively constant CH4, H2, and H2S contents. The only exception was gas from Footbath Spring (1987-1993), which experienced increases in these three components during drilling and testing of scientific wells VC-2a and VC-2b. Present-day Valles gases contain substantially less N2 than fluid inclusion gases trapped in deep, early-stage, post-caldera vein minerals. This suggests that the long-lived Valles hydrothermal system (ca. 1 Myr) has depleted subsurface Paleozoic sedimentary rocks of nitrogen. When compared with gases from many other geothermal systems, Valles caldera gases are relatively enriched in He but depleted in CH4, N2 and Ar. In this respect, Valles gases resemble end-member hydrothermal and magmatic gases discharged at hot spots (Galapagos, Kilauea, and Yellowstone). Published by Elsevier Science B.V.

  16. Alaska geothermal bibliography

    SciTech Connect

    Liss, S.A.; Motyka, R.J.; Nye, C.J.

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  17. Chemical and Isotopic Evidence of Steam Upflow and Partial Condensation in Los Azufres Reservoir

    SciTech Connect

    Nieva, D.; Verma, M.; Santoyo, E.; Barragan, R.M.; Portugal, E.; Ortiz, J.; Quijano, J.L.

    1987-01-20

    Data of chemical and isotopic composition of fluids from Los Azufres wells, collected over a two year period, provide evidence of a process of upward flow and partial condensation of steam in the reservoir, which explains part of the previously reported heterogeneity in isotopic composition of the liquid phase (Nieva et al, 1983). For the southern part of the field, a direct correlation is found between chloride and oxygen-18 concentrations, and an inverse correlation between these parameters and deuterium and carbon dioxide concentrations in the liquid phase of the reservoir. Chloride ion concentrations increase gradually from ca 660 ppm in the production zones of shallow wells to ca 1900 ppm in the case of deep wells. This observation agrees with predictions based on the well-known model for vapor dominated systems of White et al (1971). For the northern part of the field the same correlations are observed, except for the deuterium concentration which in this case correlates directly with oxygen-18. It is concluded that the same process of steam upflow occurs in the northern section but that some other process — perhaps a mixture with other hydrothermal fluid — is also occurring. 3 tabs., 16 refs., 8 figs.

  18. GILA WILDERNESS, NEW MEXICO.

    USGS Publications Warehouse

    Ratte, James C.; Stotelmeyer, Ronald B.

    1984-01-01

    Geologic, geochemical and geophysical indicators delineated during a study of the Gila Wilderness, New Mexico indicate that there are areas of probable and substantiated mineral-resource potential for gold, silver, tellurium, molybdenum, copper, lead, zinc, and fluorite. The areas which have resource potential lie along both sides of the western and southwestern boundaries of the wilderness, and adjacent to the access corridor to the Gila Cliff Dwellings National Monument in the eastern part of the wilderness. Areas marked by geothermal springs along Turkey Creek and Middle Fork of the Gila River have a probable potential for geothermal energy. No other energy-resource potential was identified within the study area.

  19. Evaluation of geothermal energy in Arizona. Quarterly topical progress report, January 1, 1980-March 31, 1981

    SciTech Connect

    White, D.H.; Goldstone, L.A.; Malysa, L.

    1981-03-31

    The tasks, objectives and completed work are discussed for the legislative and institutional program, cities program, geothermal applications utilization technology, and outreach. The work on the Maryvale Terrace development and the New Mexico Energy Institute are described. (MHR)

  20. Guidebook to Geothermal Finance

    SciTech Connect

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  1. Solute fluxes from Tacaná volcano-hydrothermal system, Mexico-Guatemala. Implications for estimation of geothermal potential of the deep aquifer.

    NASA Astrophysics Data System (ADS)

    Collard, N.; Taran, Y.; Jácome Paz, M. P.; Campion, R.

    2014-12-01

    Tacaná (4100 m asl) is the northernmost volcano of the Central America Volcanic Arc. The volcano hosts a volcano-hydrothermal system that is manifested as a low-temperature fumarolic field at 3600 m asl and several groups of thermal springs principally located at the northwestern slopes of the volcanic edifice, at altitudes 1500 - 2000 m asl. These thermal springs discharge SO4-HCO3-enriched water (up to 1 g/kg of each one) with temperatures in the 25-63°C range. There are two distinct groups of springs with a different chloride-temperature and chloride-sulfate correlations but with the same 87Sr/86Sr ratio (~0.7046±0.0002) indicating the same wall rock composition for different aquifers. On April 2014, we found a cold spring (Manantial Nuevo), located at an elevation ~500 m lower than the others and with a different chemical composition, that discharges Na-Cl-type water with Cl concentration of 1.4 g/l and Na+K concentration up to 1.5 g/l. This new spring forms a fourth group, representing a stratified geothermal aquifer. Each thermal spring feeds a thermal stream that flows into the main drainage of the area, Río Coatán. Solute and heat fluxes from thermal springs of Tacaná volcano are estimated by the chloride-inventory method. The total observed chloride discharge from the thermal springs is estimated as 14.8 g/s and the total measured heat output of ~9.5 MW. Considering a deep fluid temperature of 250°C, the corresponding advective heat transport from the deep reservoirs that feed these springs may be estimate as 26 MW. However, the total chloride output measured in the main drainage (Coatán river) is 4 times higher (~59 g/s) than the measured Cl output of all known thermal springs. This means that other, undiscovered, thermal discharges exist in the area and that the natural heat output through thermal springs at Tacaná is significantly higher and depends on the Cl content and temperatures of the unknown thermal water discharges. If chloride

  2. Tables of co-located geothermal-resource sites and BLM Wilderness Study Areas

    SciTech Connect

    Foley, D.; Dorscher, M.

    1982-11-01

    Matched pairs of known geothermal wells and springs with BLM proposed Wilderness Study Areas (WSAs) were identified by inspection of WSA and Geothermal resource maps for the states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming. A total of 3952 matches, for geothermal sites within 25 miles of a WSA, were identified. Of these, only 71 (1.8%) of the geothermal sites are within one mile of a WSA, and only an additional 100 (2.5%) are within one to three miles. Approximately three-fourths of the matches are at distances greater than ten miles. Only 12 of the geothermal sites within one mile of a WSA have surface temperatures reported above 50/sup 0/C. It thus appears that the geothermal potential of WSAs overall is minimal, but that evaluation of geothermal resources should be considered in more detail for some areas prior to their designation as Wilderness.

  3. Geothermal Technologies Program: Washington

    SciTech Connect

    Not Available

    2005-02-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Washington State. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

  4. GEOTHERM Data Set

    DOE Data Explorer

    DeAngelo, Jacob

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  5. Geothermal exploration in Indonesia

    SciTech Connect

    Radja, V.T.

    1984-03-01

    Indonesia is blessed with geothermal resources. This fortunate aspect is directly related to the fact that the archipelago is an island arc created by a subduction zone. Evidence of geothermal activity is common throughout the Islands. Among the islands' many active volcanos are numerous geothermal phenomena. Almost half of the volcanic centers in Indonesia (88 out of 177 centers) contain fumarole and sulfatare features. A brief history of the exploration for geothermal energy in Indonesia is presented.

  6. Geothermal district G1

    SciTech Connect

    Not Available

    1988-12-01

    Geothermal District G1 includes 37 northeastern California counties and six geothermal fields: Lake City, Susanville, Litchfield, Wendel, Amedee, and Casa Diablo. Electrical generation from geothermal resources occurs in three of the fields: Wendel, Amedee, and Casa Diablo. Low-temperature geothermal projects are underway throughout the district and are described in a road log format. The ten projects described are located at Big Bend, Glass Mountain, Bieber, Alturas, Cedarville, Lake City, Honey Lake Valley, Greenville, and in Sierra and Mono Counties.

  7. South Dakota geothermal handbook

    SciTech Connect

    Not Available

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  8. Geothermal energy in Nevada

    SciTech Connect

    Not Available

    1980-01-01

    The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

  9. Seventeenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W.

    1992-01-31

    PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

  10. Geothermal monitor report

    NASA Astrophysics Data System (ADS)

    1982-06-01

    Geothermal Progress Monitor Report No. 6 presents a state-by-state summary of the status of geothermal leasing, exploration, and development in major physiographic regions where geothermal resource potential has been identified. Recent state-specific activities are reported at the end of each state status report, while recent activities of a more general nature are summarized briefly in Part 2 of the report. A list of recent publications of potential interest to the geothermal community and a directory of contributors to the geothermal progress monitoring system are also included.

  11. Mono County geothermal activity

    SciTech Connect

    Lyster, D.L.

    1986-01-01

    Three geothermal projects have been proposed or are underway in Mono County, California. The Mammoth/Chance geothermal development project plans to construct a 10-MW geothermal binary power plant which will include 8 production and 3 injection wells. Pacific Lighting Energy Systems is also planning a 10-MW binary power plant consisting of 5 geothermal wells and up to 4 injection wells. A geothermal research project near Mammoth Lakes has spudded a well to provide a way to periodically measure temperature gradient, pressure, and chemistry of the thermal waters and to investigate the space-heating potential of the area in the vicinity of Mammoth Lakes. All three projects are briefly described.

  12. Hawaii geothermal project

    NASA Technical Reports Server (NTRS)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  13. Geothermal, an alternate energy source for power generation

    SciTech Connect

    Espinosa, H.A.

    1985-02-01

    The economic development of nations depends on an escalating use of energy sources. With each passing year the dependence increases, reaching a point where the world will require, in the next six years, a volume of energetics equal to that consumed during the last hundred years. Statistics show that in 1982 about 70% of the world's energy requirements were supplied by oil, natural gas and coal. The remaining 30% came from other sources such as nuclear energy, hydroelectricity, and geothermal. In Mexico the situation is more extreme. For the same year (1982) 85% of the total energy consumed was supplied through the use of hydrocarbons, and only 15% through power generated by the other sources of electricity. Of the 15%, 65% used hydrocarbons somewhere in the power generation system. Geothermal is an energy source that can help solve the problem, particularly in Mexico, because the geological and structural characteristics of Mexico make it one of the countries in the world with a tremendous geothermal potential. The potential of geothermal energy for supplying part of Mexico's needs is discussed.

  14. Comparison of theoretical and observed pressure profiles in geothermal wells

    SciTech Connect

    Marquez M, R.

    1981-01-01

    Two-phase water-steam flow conditions in geothermal wells are studied aimed at predicting pressure drops in these wells. Five prediction methods were selected to be analyzed and compared with each other and with actual pressure measurements. These five correlations were tested on five wells: three in New Zealand, one in Mexico, and one in the Philippines.

  15. Reference book on geothermal direct use

    SciTech Connect

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

    1994-08-01

    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  16. Sixteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W.

    1991-01-25

    The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland, Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes

  17. Twelfth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Rivera, J.

    1987-01-22

    Preface The Twelfth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 20-22, 1987. The year ending December 1986 was very difficult for the domestic geothermal industry. Low oil prices caused a sharp drop in geothermal steam prices. We expected to see some effect upon attendance at the Twelfth Workshop. To our surprise, the attendance was up by thirteen from previous years, with one hundred and fifty-seven registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, Japan, Mexico, New Zealand, and Turkey. Despite a worldwide surplus of oil, international geothermal interest and development is growing at a remarkable pace. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Seven technical papers not presented at the Workshop are also published; they concern geothermal developments and research in Iceland, Italy, and New Zealand. In addition to these forty-eight technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was John R. Berg from the Department of Energy. We thank him for sharing with the Workshop participants his thoughts on the expectations of this agency in the role of alternative energy resources, specifically geothermal, within the country???s energy framework. His talk is represented as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: M. Gulati, K. Goyal, G.S. Bodvarsson, A.S. Batchelor, H. Dykstra, M.J. Reed, A. Truesdell, J.S. Gudmundsson, and J.R. Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank Jean Cook, Marilyn King, Amy Osugi, Terri Ramey, and Rosalee Benelli for their valued help with the meeting

  18. Geothermal direct heat program: roundup technical conference proceedings. Volume II. Bibliography of publications. State-coupled geothermal resource assessment program

    SciTech Connect

    Ruscetta, C.A.

    1982-07-01

    Lists of publications are presented for the Geothermal Resource Assessment Program for the Utah Earth Science Laboratory and the following states: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Kansas, Montana, Nebraska, Nevada, New Mexico, New York, North Dakota, Oregon, Texas, Utah, and Washington.

  19. The geothermal power organization

    SciTech Connect

    Scholl, K.L.

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  20. Subsidence due to geothermal fluid withdrawal

    SciTech Connect

    Narasimhan, T. N.; Goyal, K. P.

    1984-12-01

    Single-phase and two-phase geothermal reservoirs are currently being exploited for power production in Italy, Mexico, New Zealand, the United States, and elsewhere. Vertical ground displacements of up to 4.5 m and horizontal ground displacements of up to 0.5 m have been observed at Wairakei, New Zealand, that are clearly attributable to the resource exploitation. Similarly, vertical displacements of about 0.13 m have been recorded at The Geysers, California. No significant ground displacements that are attributable to large-scale fluid production have been observed at Larderello, Italy, and Cerro Prieto, Mexico. In this paper, observations show that subsidence due to geothermal fluid production is characterized by such features as an offset of the subsidence bowl from the main area of production, time-lag between production and subsidence, and nonlinear stress-strain relationships. Several plausible conceptual models, of varying degrees of sophistication, have been proposed to explain the observed features. At present, relatively more is known about the physical mechanisms that govern subsidence than the relevant thermal mechanisms. Finally, although attempts have been made to simulate observed geothermal subsidence, the modeling efforts have been seriously limited by a lack of relevant field data needed to sufficiently characterize the complex field system.

  1. Subsidence due to geothermal fluid withdrawal

    SciTech Connect

    Narasimhan, T.N.; Goyal, K.P.

    1982-10-01

    Single-phase and two-phase geothermal reservoirs are currently being exploited for power production in Italy, Mexico, New Zealand, the U.S. and elsewhere. Vertical ground displacements of upto 4.5 m and horizontal ground displacements of up t o 0.5 m have been observed at Wairakei, New Zealand that are clearly attributable to the resource exploitation. Similarly, vertical displacements of about 0.13 m have been recorded at The Geysers, California. No significant ground displacements that are attributable to large-scale fluid production have been observed at Larderello, Italy and Cerro Prieto, Mexico. Observations show that subsidence due to geothermal fluid production is characterized by such features as an offset of the subsidence bowl from the main area of production, time-lag between production and subsidence and nonlinear stress-strain relationships. Several plausible conceptual models, of varying degrees of sophistication, have been proposed to explain the observed features. At present, relatively more is known about the physical mechanisms that govern subsidence than the relevant therma mechanisms. Although attempts have been made to simulate observed geothermal subsidence, the modeling efforts have been seriously limited by a lack of relevant field data needed to sufficiently characterize the complex field system.

  2. Geothermal Today - 2001

    SciTech Connect

    2001-08-01

    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  3. Geothermal Today - 1999

    SciTech Connect

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  4. Critiquing ';pore connectivity' as basis for in situ flow in geothermal systems

    NASA Astrophysics Data System (ADS)

    Kenedi, C. L.; Leary, P.; Malin, P.

    2013-12-01

    indications that geothermal system flow essentially obeys the same ';universal' in situ flow rules as does clastic rock: Well-log data from Los Azufres, MX, show power-law scaling S(k) ~ 1/k^β, 1.2 < β < 1.4, for spatial frequency range 2cycles/km to 0.5cycle/m; higher β-values are likely due to the relatively fresh nature of geothermal systems; Well-core at Bulalo (PH) and Ohaaki (NZ) show statistically significant spatial correlation, δφ ~ δlog(κ) Well productivity at Ohaaki/Ngawha (NZ) and in geothermal systems elsewhere are lognormally distributed; K/Th/U abundances lognormally distributed in Los Azufres well-logs We therefore caution that small-scale evidence for in situ flow fabric in geothermal systems that is interpreted in terms of ';pore connectivity' may in fact not reflect how small-scale chemical processes are integrated into a large-scale geothermal flow structure. Rather such small scale studies should (perhaps) be considered in term of the above flow rules. These flow rules are easily incorporated into standard flow simulation codes, in particular the OPM = Open Porous Media open-source industry-standard flow code. Geochemical transport data relevant to geothermal systems can thus be expected to be well modeled by OPM or equivalent (e.g., INL/LANL) codes.

  5. Geothermal Life Cycle Calculator

    DOE Data Explorer

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  6. Geothermal development attitudes surveyed

    SciTech Connect

    Not Available

    1986-01-01

    The State of Hawaii has conducted several surveys on public opinion towards the development of geothermal energy. The latest poll was designed to: measure public opinion in the County of Hawaii relevant to geothermal development for electrical power supplied to Island of Hawaii residents only; measure public opinion in the County of Hawaii relevant to geothermal development of electricity to be exported for use on Oahu; and identify barriers to, and opportunities for energy conservation programs, including geothermal development. In general, the residents of the County of Hawaii favor some form of geothermal development. Issues on geothermal development of concern to the public were similar to those mentioned in the 1982 study. Basically, the issues amount to a trade-off between the economic advantages and the environmental problems of geothermal development. The strong points in favor of development include a perceived need for more energy, a strong preference for alternate energy forms over petroleum, perceived benefits for the local economy and the employment rates, and the possibility that development may reduce or contain utility bills. On the other hand, it appears that geothermal development will cause health problems for those who live near the wells, be hazardous to flora and fauna in the Puna area, and create noise and odor above tolerable levels. These are oversimplified statements of the reasons behind both support and opposition for geothermal development.

  7. Geothermal energy program overview

    NASA Astrophysics Data System (ADS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  8. Well-test data from geothermal reservoirs

    SciTech Connect

    Bodvarsson, M.G.; Benson, S.M.

    1982-09-01

    Extensive well testing in geothermal resources has been carried out throughout the western United States and in northern Mexico since 1975. Each resource tested and each well test conducted by LBL during the eight-year period are covered in brief. The information, collected from published reports and memoranda, includes test particulars, special instrumentation, data interpretation when available, and plots of actual data. Brief geologic and hydrologic descriptions of the geothermal resources are also presented. The format is such that well test descriptions are grouped, in the order performed, into major sections according to resource, each section containing a short resource description followed by individual test details. Additional information regarding instrumentation is provided. Source documentation is provided throughout to facilitate access to further information and raw data.

  9. United Nations geothermal activities in developing countries

    SciTech Connect

    Beredjick, N.

    1987-07-01

    The United Nations implements technical cooperation projects in developing countries through its Department of Technical Cooperation for Development (DTCD). The DTCD is mandated to explore for and develop natural resources (water, minerals, and relevant infrastructure) and energy - both conventional and new and renewable energy sources. To date, the United Nations has been involved in over 30 geothermal exploration projects (completed or underway) in 20 developing countries: 8 in Africa (Djibouti, Ethiopia, Kenya, Madagascar); 8 in Asia (China, India, Jordan, Philippines, Thailand); 9 in Latin America (Bolivia, Chile, El Salvador, Honduras, Mexico, Nicaragua, Panama) and 6 in Europe (Greece, Romania, Turkey, Yugoslavia). Today, the DTCD has seven UNDP geothermal projects in 6 developing countries. Four of these (Bolivia, China, Honduras, and Kenya) are major exploration projects whose formulation and execution has been possible thanks to the generous contributions under cost-sharing arrangements from the government of Italy. These four projects are summarized.

  10. Geothermal Direct Heat Applications Program Summary

    SciTech Connect

    1981-09-25

    Because of the undefined risk in the development and use of geothermal energy as a thermal energy source, the Department of Energy Division of Geothermal Energy solicited competitive proposals for field experiments in the direct use of geothermal energy. Twenty-two proposals were selected for cost-shared funding with one additional project co-funded by the State of New Mexico. As expected, the critical parameter was developing a viable resource. So far, of the twenty resources drilled, fourteen have proved to be useful resources. These are: Boise, Idaho; Elko heating Company in Nevada; Pagosa Springs, Colorado; Philip School, Philip, South Dakota; St. Mary's Hospital, Pierre, South Dakota; Utah Roses near Salt Lake City; Utah State Prison, Utah; Warm Springs State Hospital, Montana; T-H-S Hospital, Marlin, Texas; Aquafarms International in the Cochella Valley, California; Klamath County YMCA and Klamath Falls in Oregon; Susanville, California and Monroe, utah. Monroe's 164 F and 600 gpm peak flow was inadequate for the planned project, but is expected to be used in a private development. Three wells encountered a resource insufficient for an economical project. These were Madison County at Rexburg, Idaho; Ore-Ida Foods at Ontario, Oregon and Holly Sugar at Brawley, California. Three projects have yet to confirm their resource. The Navarro College well in Corsicana, Texas is being tested; the Reno, Moana, Nevada well is being drilled and the El Centro, California well is scheduled to be drilled in January 1982. The agribusiness project at Kelly Hot Springs was terminated because a significant archeological find was encountered at the proposed site. The Diamond Ring Ranch in South Dakota, and the additional project, Carrie Tingley Hospital in Truth or Consequences, New Mexico both used existing wells. The projects that encountered viable resources have proceeded to design, construct, and in the most advanced projects, to operate geothermal systems for district

  11. Geothermal Financing Workbook

    SciTech Connect

    Battocletti, E.C.

    1998-02-01

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  12. Benefits of Geothermal Energy

    SciTech Connect

    2004-07-01

    One of the principal benefits of geothermal power plants is that they provide baseload power. Baseload power plants provide power all or most of the time and contrast with peaker plants which turn on or off as demand rises, or peaks, throughout the day. Geothermal plants contrast with other renewable energy resources like wind and solar energy that generate power intermittently.

  13. Geothermal energy program summary

    SciTech Connect

    Not Available

    1990-01-01

    This document reviews Geothermal Energy Technology and the steps necessary to place it into service. Specific topics covered are: four types of geothermal resources; putting the resource to work; power generation; FY 1989 accomplishments; hard rock penetration; conversion technology; and geopressured brine research. 16 figs. (FSD)

  14. Geothermal energy: a brief assessment

    SciTech Connect

    Lunis, B.C.; Blackett, R.; Foley, D.

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  15. Geothermal energy in Iceland

    SciTech Connect

    Ragnarsson, A.

    1996-11-01

    The annual primary energy supply in Iceland, which has a population of 268,000, is 98,000 TJ (T = 10{sup 12}) or 366 GJ per capita, which is among the highest in the world. Geothermal energy provides about 48.8% of the total, hydropower 17.2%, oil 31.5% and coal 2.5%. The main use of geothermal energy is for space heating. About 85% of all houses are heated with geothermal energy; the rest are heated mainly by electricity. So far, geothermal resources have only, to a limited extent, been used for electric power generation, because of the availability of relatively cheap hydropower resources. Of the total electricity production of 5,000 GWh in 1995, only 288 GWh or 5.8% came from geothermal energy, 94% from hydro and 0.2% from fuels.

  16. Advanced Geothermal Turbodrill

    SciTech Connect

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  17. Eighteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1993-01-28

    PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  18. Eleventh workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Counsil, J.R.

    1986-01-23

    The Eleventh Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 21-23, 1986. The attendance was up compared to previous years, with 144 registered participants. Ten foreign countries were represented: Canada, England, France, Iceland, Indonesia, Italy, Japan, Mexico, New Zealand and Turkey. There were 38 technical presentations at the Workshop which are published as papers in this Proceedings volume. Six technical papers not presented at the Workshop are also published and one presentation is not published. In addition to these 45 technical presentations or papers, the introductory address was given by J. E. Mock from the Department of Energy. The Workshop Banquet speaker was Jim Combs of Geothermal Resources International, Inc. We thank him for his presentation on GEO geothermal developments at The Geysers. The chairmen of the technical sessions made an important contribution to the Workshop. Other than Stanford faculty members they included: M. Gulati, E. Iglesias, A. Moench, S. Prestwich, and K. Pruess. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank J.W. Cook, J.R. Hartford, M.C. King, A.E. Osugi, P. Pettit, J. Arroyo, J. Thorne, and T.A. Ramey for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment. The Eleventh Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract DE-AS03-80SF11459. We deeply appreciate this continued support. January 1986 H.J. Ramey, Jr. P. Kruger R.N. Horne W.E. Brigham F.G. Miller J.R. Counsil

  19. Some considerations on the optimum size for geothermal turbine

    SciTech Connect

    Cadenas, C.

    1996-12-31

    The main focus of this work is to show the maximum capacity that is possible from a geothermal turbine. The theorical analysis is made using the concept of the maximum length of the last wheel blades. The theoretical results are compared with the main manufacturers existing information on steam turbines for geothermal application. This work also shows some operational concepts and observations from the central plants installed in the Mexican geothermal fields. In Mexico, from approximately 1970 to present, 28 turbines for geothermal application have been acquired. These turbines have capacities ranging from 1.5 MW to 110 MW, with a total installed capacity of 753 MW. To expand the installed capacity, we would be required to improve the way turbines are selected for all new geothermal projects. Because of the diverse panorama of steam geothermal turbines that are offered at the present time, it is very important to know the maximum capacity that one could get for the established thermodynamic conditions of the steam in the Mexican fields, in order to exploit the resource in the most efficient, economical and functional manner.

  20. Thirteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.; Cook, J.W.

    1988-01-21

    PREFACE The Thirteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 19-21, 1988. Although 1987 continued to be difficult for the domestic geothermal industry, world-wide activities continued to expand. Two invited presentations on mature geothermal systems were a keynote of the meeting. Malcolm Grant presented a detailed review of Wairakei, New Zealand and highlighted plans for new development. G. Neri summarized experience on flow rate decline and well test analysis in Larderello, Italy. Attendance continued to be high with 128 registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, New Zealand, Japan, Mexico and The Philippines. A discussion of future workshops produced a strong recommendation that the Stanford Workshop program continue for the future. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Four technical papers not presented at the Workshop are also published. In addition to these forty five technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was Gustavo Calderon from the Inter-American Development Bank. We thank him for sharing with the Workshop participants a description of the Bank???s operations in Costa Rica developing alternative energy resources, specifically Geothermal, to improve the country???s economic basis. His talk appears as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: J. Combs, G. T. Cole, J. Counsil, A. Drenick, H. Dykstra, K. Goyal, P. Muffler, K. Pruess, and S. K. Sanyal. The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Marilyn King, Pat Oto, Terri Ramey, Bronwyn Jones

  1. Hydraulic fracture stimulation treatment of Well Baca 23. Geothermal Reservoir Well-Stimulation Program

    SciTech Connect

    Not Available

    1981-06-01

    Well Stimulation Experiment No. 5 of the Geothermal Reservoir Well Stimulation Program (GRWSP) was performed on March 22, 1981 in Baca 23, located in Union's Redondo Creek Project Area in Sandoval County, New Mexico. The treatment selected was a large hydraulic fracture job designed specifically for, and utilizing frac materials chosen for, the high temperature geothermal environment. The well selection, fracture treatment, experiment evaluation, and summary of the job costs are presented herein.

  2. Navy Geothermal Plan

    SciTech Connect

    Not Available

    1984-12-01

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  3. Geothermal aquaculture in Nevada

    SciTech Connect

    Birk, S.

    1987-06-01

    Work in geothermal aquaculture and vertically integrated agriculture is undertaken by Washoe Aquaculture Limited, Gourmet Prawnz Inc., General Managing Partners. This approach to agriculture is researched at the integrated Prototype Aquaculture Facility (IPAF) at Hobo Hot Springs, Nevada. The principal objective at the IPAF is to use geothermal aquifers to commercially raise food, plants, and ornamental fish. At the IPAF, the feasibility of geothermal aquaculture has been demonstrated. The company has implemented many demonstration projects, including the cultivation of freshwater prawns, native baitfish, exotic tropical species, and commercially important aquatic plants.

  4. New Mexico GPW Fact Sheet

    SciTech Connect

    2002-04-01

    N e w M e x i c o New Mexico holds considerable reserves of this clean, reliable form of energy that to date have barely been tapped. New Mexico has more acres of geothermally heated greenhouses than any other state, and aquaculture, or fish farming, is a burgeoning enterprise for state residents. Several electric power generation opportunities also have been identified. G e o t h e r m a l ? W h y Homegrown Energy It's here, right beneath our feet! No need to import! Current Development New Mex

  5. Fort Bliss Geothermal Area Data: Temperature profile, logs, schematic model and cross section

    SciTech Connect

    Adam Brandt

    2015-11-15

    This dataset contains a variety of data about the Fort Bliss geothermal area, part of the southern portion of the Tularosa Basin, New Mexico. The dataset contains schematic models for the McGregor Geothermal System, a shallow temperature survey of the Fort Bliss geothermal area. The dataset also contains Century OH logs, a full temperature profile, and complete logs from well RMI 56-5, including resistivity and porosity data, drill logs with drill rate, depth, lithology, mineralogy, fractures, temperature, pit total, gases, and descriptions among other measurements as well as CDL, CNL, DIL, GR Caliper and Temperature files. A shallow (2 meter depth) temperature survey of the Fort Bliss geothermal area with 63 data points is also included. Two cross sections through the Fort Bliss area, also included, show well position and depth. The surface map included shows faults and well spatial distribution. Inferred and observed fault distributions from gravity surveys around the Fort Bliss geothermal area.

  6. Hydraulic Fracture Stimulation and Acid Treatment of Well Baca 20; Geothermal Reservoir Well Stimulation Program

    SciTech Connect

    1983-07-01

    The U.S. Department of Energy-sponsored Geothermal Reservoir Well Stimulation Program was initiated in February 1979 to pursue industry interest in geothermal well stimulation work and to develop technical expertise in areas directly related to geothermal well stimulation activities. This report provides an overview of the two experiments conducted in the high-temperature reservoir in Baca, New Mexico. The report discusses resource and reservoir properties, and provides a description of the stimulation experiment, a description of the treatment evaluation, and a summary of the experiment costs. (DJE-2005)

  7. Geothermal materials development

    SciTech Connect

    Kukacka, L.E.

    1982-01-01

    Among the most pressing problems constraining the development of geothermal energy is the lack of satisfactory component and system reliability. This is due to the unavailability, on a commercial scale, of cost-effective materials that can function in a wide range of geothermal environments and to the unavailability of a comprehensive body of directly relevant test data or materials selection experience. Suitable materials are needed for service in geothermal wells and in process plant equipment. For both situations, this requires materials that can withstand high-temperature, highly-corrosive, and scale-forming geothermal fluids. In addition to requiring a high degree of chemical and thermal resistance, the downhole environment places demands on the physical/mechanical properties of materials for components utilized in well drilling, completion, pumping, and logging. Technical and managerial assistance provided by Brookhaven in the program for studying these materials problems is described.

  8. Geothermal Energy: Current abstracts

    SciTech Connect

    Ringe, A.C.

    1988-02-01

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  9. Geothermal Orientation Handbook

    SciTech Connect

    1984-07-01

    This is a useful overview of the Department of Energy's outlook on geothermal energy development in the U.S. as of late 1983. For example, Exhibit 4 shows how electric utility planners' estimates of likely amounts of geothermal power on line for 1990 and 2000 first increased and then declined over time as they were surveyed in 1977 through 1983 (date are from the EPRI Survey). Additions to direct heat uses in 1979 through 1981 are in Exhibit 7. A Table (not numbered) at the back of the report "Historical Development of Geothermal Power ..." shows world installed geothermal capacity by nation at decadal intervals from 1950 to 1980, and the first year of power production for each country. (DJE 2005)

  10. Geothermal reservoir simulation

    NASA Technical Reports Server (NTRS)

    Mercer, J. W., Jr.; Faust, C.; Pinder, G. F.

    1974-01-01

    The prediction of long-term geothermal reservoir performance and the environmental impact of exploiting this resource are two important problems associated with the utilization of geothermal energy for power production. Our research effort addresses these problems through numerical simulation. Computer codes based on the solution of partial-differential equations using finite-element techniques are being prepared to simulate multiphase energy transport, energy transport in fractured porous reservoirs, well bore phenomena, and subsidence.

  11. Geothermal irrigation pump

    SciTech Connect

    Matthews, H.B.

    1982-04-20

    A deep well pumping apparatus utilizing a geothermal source of energy is disposed within or above a stratum having a cool irrigating fluid, and an associated heat exchange unit is disposed within a stratum having the geothermal source. An organic working fluid is conveyed under pressure through the heat exchange unit and applied as a gas to a turbine assembly operatively coupled to the pump. The spent working fluid and cool irrigation fluid are then conveyed to the surface.

  12. Geothermal Energy Retrofit

    SciTech Connect

    Bachman, Gary

    2015-07-28

    The Cleary University Geothermal Energy Retrofit project involved: 1. A thermal conductivity test; 2. Assessment of alternative horizontal and vertical ground heat exchanger options; 3. System design; 4. Asphalt was stripped from adjacent parking areas and a vertical geothermal ground heat exchanger system installed; 5. the ground heat exchanger was connected to building; 6. a system including 18 heat pumps, control systems, a manifold and pumps, piping for fluid transfer and ductwork for conditioned air were installed throughout the building.

  13. Twentieth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect

    1995-01-26

    PREFACE The Twentieth Workshop on Geothermal Reservoir Engineering, dedicated to the memory of Professor Hank Ramey, was held at Stanford University on January 24-26, 1995. There were ninety-five registered participants. Participants came from six foreign countries: Japan, Mexico, England, Italy, New Zealand and Iceland. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors to the campus. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Thirty-two papers were presented in the technical sessions of the workshop. Technical papers were organized into eleven sessions concerning: field development, modeling, well tesubore, injection, geoscience, geochemistry and field operations. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bob Fournier, Mark Walters, John Counsil, Marcelo Lippmann, Keshav Goyal, Joel Renner and Mike Shook. In addition to the technical sessions, a panel discussion was held on ''What have we learned in 20 years?'' Panel speakers included Patrick Muffler, George Frye, Alfred Truesdell and John Pritchett. The subject was further discussed by Subir Sanyal, who gave the post-dinner speech at the banquet. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager

  14. Arsenic in volcanic geothermal fluids of Latin America.

    PubMed

    López, Dina L; Bundschuh, Jochen; Birkle, Peter; Armienta, Maria Aurora; Cumbal, Luis; Sracek, Ondra; Cornejo, Lorena; Ormachea, Mauricio

    2012-07-01

    Numerous volcanoes, hot springs, fumaroles, and geothermal wells occur in the Pacific region of Latin America. These systems are characterized by high As concentrations and other typical geothermal elements such as Li and B. This paper presents a review of the available data on As concentrations in geothermal systems and their surficial discharges and As data on volcanic gases of Latin America. Data for geothermal systems in Mexico, Guatemala, Honduras, El Salvador, Nicaragua, Costa Rica, Ecuador, Bolivia, and Chile are presented. Two sources of As can be recognized in the investigated sites: Arsenic partitioned into volcanic gases and emitted in plumes and fumaroles, and arsenic in rocks of volcanic edifices that are leached by groundwaters enriched in volcanic gases. Water containing the most elevated concentrations of As are mature Na-Cl fluids with relatively low sulfate content and As concentrations reaching up to 73.6 mg L⁻¹ (Los Humeros geothermal field in Mexico), but more commonly ranging from a few mg L⁻¹ to tens of mg L⁻¹. Fluids derived from Na-Cl enriched waters formed through evaporation and condensation at shallower depths have As levels of only a few μg L⁻¹. Mixing of Na-Cl waters with shallower meteoric waters results in low to intermediate As concentrations (up to a few mg L⁻¹). After the waters are discharged at the ground surface, As(III) oxidizes to As(V) and attenuation of As concentration can occur due to sorption and co-precipitation processes with iron minerals and organic matter present in sediments. Understanding the mechanisms of As enrichment in geothermal waters and their fate upon mixing with shallower groundwater and surface waters is important for the protection of water resources in Latin America.

  15. The National Geothermal Collaborative, EERE-Geothermal Program, Final Report

    SciTech Connect

    Jody Erikson

    2006-05-26

    Summary of the work conducted by the National Geothermal Collaborative (a consensus organization) to identify impediments to geothermal development and catalyze events and dialogues among stakeholders to over those impediments.

  16. National Geothermal Data System

    NASA Astrophysics Data System (ADS)

    Anderson, A. F.; Cuyler, D.; Snyder, W. S.; Allison, M. L.; Blackwell, D. D.; Williams, C. F.

    2011-12-01

    The goal of the U.S. Department of Energy's National Geothermal Data System is to design, build, implement, deploy and populate a national, sustainable, distributed, interoperable network of data and service (application) providers. These providers will develop, collect, serve, and maintain geothermal-relevant data that operates as an integral component of NGDS. As a result the geothermal industry, the public, and policy makers will have access to consistent and reliable data, which in turn, reduces the amount of staff time devoted to finding, retrieving, integrating, and verifying information. With easier access to information, the high cost and risk of geothermal power projects (especially exploration drilling) is reduced. Five separate NGDS projects provide the data support, acquisition, and access to cyber infrastructure necessary to reduce cost and risk of the nation's geothermal energy strategy and US DOE program goals focused on the production and utilization of geothermal energy. The U.S DOE Office of Energy Efficiency and Renewable Energy Geothermal Technologies Program is developing the knowledge and data foundation necessary for discovery and development of large-scale energy production while the Buildings Technology Program is focused on other practical applications such as direct use and residential/commercial ground source heat pumps. The NGDS provides expanded reference and resource data for research and development activities (a subset of the US DOE goals) and includes data from across all fifty states and the nation's leading academic geothermal centers. Thus, the project incorporates not only high-temperature potential but also moderate and low-temperature locations incorporating US DOE's goal of adding more geothermal electricity to the grid. The program, through its development of data integration cyberinfrastructure, will help lead to innovative exploration technologies through increased data availability on geothermal energy capacity. Finally

  17. Geothermal energy: 1992 program overview

    SciTech Connect

    Not Available

    1993-04-01

    Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

  18. Geothermal resources of Utah, 1980

    SciTech Connect

    Not Available

    1980-01-01

    This map shows heat flow, Known Geothermal Resources Areas, thermal springs and wells, and areas of low-temperature geothermal waters. Also shown are Indian reservations, military reservation, national or state forests, and parks, wildlife refuges, wilderness areas, etc. (MHR)

  19. Nineteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1994-01-20

    PREFACE The Nineteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 18-20, 1994. This workshop opened on a sad note because of the death of Prof. Henry J. Ramey, Jr. on November 19, 1993. Hank had been fighting leukemia for a long time and finally lost the battle. Many of the workshop participants were present for the celebration of his life on January 21 at Stanford's Memorial Church. Hank was one of the founders of the Stanford Geothermal Program and the Geothermal Reservoir Engineering Workshop. His energy, kindness, quick wit, and knowledge will long be missed at future workshops. Following the Preface we have included a copy of the Memorial Resolution passed by the Stanford University Senate. There were one hundred and four registered participants. Participants were from ten foreign countries: Costa Rica, England, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, Philippines and Turkey. Workshop papers described the performance of fourteen geothermal fields outside the United States. Roland N. Home opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a presentation about the future of geothermal development. The banquet speaker was Jesus Rivera and he spoke about Energy Sources of Central American Countries. Forty two papers were presented at the Workshop. Technical papers were organized in twelve sessions concerning: sciences, injection, production, modeling, and adsorption. Session chairmen are an important part of the workshop and our thanks go to: John Counsil, Mark Walters, Dave Duchane, David Faulder, Gudmundur Bodvarsson, Jim Lovekin, Joel Renner, and Iraj Ershaghi. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual

  20. QrtzGeotherm: A revised algorithm for quartz solubility geothermometry to estimate geothermal reservoir temperature and vapor fraction with multivariate analytical uncertainty propagation

    NASA Astrophysics Data System (ADS)

    Verma, Mahendra P.

    2012-11-01

    The quartz solubility geothermometry to calculate geothermal reservoir temperature and vapor fraction with multivariate analytical uncertainty propagation is programmed as two classes, SiO2TD and QrtzGeotherm in Visual Basic in Visual Studio 2010 (VB.NET). The class, SiO2TD calculates the total discharge concentration, SiO2TD and its uncertainty, SiO2TDErr from the analytical concentration of silica, SiO2msd and uncertainty, SiO2msdErr of separated water, sampled after N-separations of vapor and liquid. The class, QrtzGeotherm uses the following properties as input parameters: (i) HRes-reservoir enthalpy (kJ/kg), (ii) HResErr-uncertainty in the reservoir enthalpy (kJ/kg), (iii) SiO2TD-total discharge silica concentration (ppm), (iv) SiO2TDErr-uncertainty in the total discharge silica concentration (ppm) (v) GeoEq-number of quartz solubility regression equation, (vi) TempGuess-a guess value of the reservoir temperature (°C). The properties corresponding to the output parameters are (i) TempRes-reservoir temperature (K), (ii) TempResErr-uncertainty in the reservoir temperature (K), (iii) VaporRes-reservoir vapor fraction and (iv) VaporResErr-uncertainty in the reservoir vapor fraction. Similarly, it has a method, SiO2Eqn(EqNo, Temp) to provide the silica solubility as function of temperature corresponding to the regression equation. Four quartz solubility equations along the liquid-vapor saturation curve: (i) a quadratic equation of 1/T and pressure, (ii) a linear equation relating log SiO2to the inverse of absolute temperature (T), (iii) a polynomial of T including logarithmic terms and (iv) temperature as a polynomial of SiO2including logarithmic terms are programmed. A demonstration program, QGeotherm is written VB.NET. Similarly, the applicability of classes SiO2TD and QrtzGeotherm in MS-Excel is illustrated considering Los Azufres geothermal field as an example.

  1. South Dakota Geothermal Energy Handbook

    SciTech Connect

    Not Available

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are detailed. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resources are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized.

  2. Accelerating Geothermal Research (Fact Sheet)

    SciTech Connect

    Not Available

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  3. Geothermal Energy - An Emerging Resource

    SciTech Connect

    Berg, John R.

    1987-01-20

    Address on the Department of Energy's overall energy policy, the role of alternative energy sources within the policy framework, and expectations for geothermal energy. Commendation of the industry's decision to pursue the longer-term field effort while demand for geothermal energy is low, and thus prepare for a substantial geothermal contribution to the nation's energy security.

  4. National Geothermal Academy. Geo-Heat Center Quarterly Bulletin, Vol. 31 No. 2 (Complete Bulletin). A Quarterly Progress and Development Report on the Direct Utilization of Geothermal Resources

    SciTech Connect

    Boyd, Tonya; Maddi, Phillip

    2012-08-01

    The National Geothermal Academy (NGA) is an intensive 8-week overview of the different aspects involved in developing a geothermal project, hosted at University of Nevada, Reno. The class of 2012 was the second graduating class from the academy and included 21 students from nine states, as well as Saudi Arabia, Dominica, India, Trinidad, Mexico. The class consisted of people from a wide range of scholastic abilities from students pursuing a Bachelor’s or Master’s degrees, to entrepreneurs and professionals looking to improve their knowledge in the geothermal field. Students earned 6 credits, either undergraduate or graduate, in engineering or geology. Overall, the students of the NGA, although having diverse backgrounds in engineering, geology, finance, and other sciences, came together with a common passion to learn more about geothermal.

  5. Enhanced geothermal systems

    SciTech Connect

    McLarty, L.; Grabowski, P.

    1998-07-01

    A vast amount of geothermal energy is stored in the upper portion of the earth's crust; this energy is accessible with current drilling technology. The US Geological Survey has estimated that in the US, the heat energy stored in the upper 10 kilometers of the earth's crust is over 33 {times} 10{sup 24} Joules. Only a small fraction of this energy could conceivably be extracted. However, just one tenth of one percent of this energy is sufficient to provide the US with all its current level of non-transportation energy needs for over 500 years. Current technology is being used widely to extract geothermal energy in areas where subterranean water contacted hot rock formations, became heated, and was trapped by an impermeable layer in the earth's crust, forming a geothermal hydrothermal reservoir. The water serves as a medium to transport the heat to the surface through a conventional well similar to an oil well. Unfortunately, hydrothermal reservoirs are not widespread and represent only a minuscule portion of the geothermal energy that is accessible with current technology. Scientists and engineers in the US, Europe, Japan, and Australia, are developing systems that extract heat from the earth where there is insufficient permeability or water in the rock formation to transport the heat to the surface. Such systems are referred to as Enhanced Geothermal Systems.

  6. Geothermal reservoir engineering research

    NASA Technical Reports Server (NTRS)

    Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.

    1974-01-01

    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.

  7. Geothermal hydrogen sulfide removal

    SciTech Connect

    Urban, P.

    1981-04-01

    UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

  8. Geothermal Plant Capacity Factors

    SciTech Connect

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  9. Geothermal energy program summary

    SciTech Connect

    Not Available

    1990-01-01

    The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

  10. Mexico City, Mexico

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In this rare clear view of Mexico City, Mexico (19.5N, 99.0W), the network of broad avenues and plazas of the capital city are very evident. The city, built on the remnants of a lake in the caldera of a tremendous extinct volcano, is home to over twenty million people and is slowly sinking as subsidence takes it's toll on the lakebed.

  11. Geothermal Energy; (USA)

    SciTech Connect

    Raridon, M.H.; Hicks, S.C.

    1991-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

  12. California's geothermal resource potential

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1978-01-01

    According to a U.S. Geological Survey estimate, recoverable hydrothermal energy in California may amount to 19,000 MW of electric power for a 30-year period. At present, a geothermal installation in the Geysers region of the state provides 502 MWe of capacity; an additional 1500 MWe of electric generating capacity is scheduled to be in operation in geothermal fields by 1985. In addition to hydrothermal energy sources, hot-igneous and conduction-dominated resources are under investigation for possible development. Land-use conflicts, environmental concerns and lack of risk capital may limit this development.

  13. Geothermal hazards - Mercury emission

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.; Siegel, B. Z.

    1975-01-01

    Enthusiasm for intensified geothermal exploration may induce many participants to overlook a long-term potential toxicity hazard possibly associated with the tapping of magmatic steam. The association of high atmospheric Hg levels with geothermal activity has been established both in Hawaii and Iceland, and it has been shown that mercury can be introduced into the atmosphere from fumaroles, hot springs, and magmatic sources. These arguments, extended to thallium, selenium, and other hazardous elements, underscore the need for environmental monitoring in conjunction with the delivery of magmatic steam to the surface.

  14. Multidisciplinary research of geothermal modeling

    NASA Astrophysics Data System (ADS)

    -Ing. Ulvi Arslan, Univ., ., Dr. _., Prof.; Heiko Huber, Dipl.-Ing.

    2010-05-01

    KEYWORDS Geothermal sciences, geothermics, research, theory and application, numerical calculation, geothermal modeling, Technical University Darmstadt, Ministry of Economics and Technology (BMWi) INTRODUCTION In times of global warming renewable, green energies are getting more and more important. The development of application of geothermal energy as a part of renewable energies in Germany is a multidisciplinary process of fast growing research and improvements. Geothermal energy is the energy, which is stored below earth's surface. The word geothermal derives from the Greek words geo (earth) and thermos (heat), so geothermal is a synonym to earth heat. Geothermal energy is one of the auspicious renewable energies. In average the temperature increases 3°C every 100 m of depth, which is termed as geothermal gradient. Therefore 99 percent of our planet is hotter than 1.000°C, while 99 percent of that last percent is even hotter than 100°C. Already in a depth of about 1 kilometer temperatures of 35 - 40°C can be achieved. While other renewable energies arise less or more from the sun, geothermal energy sources its heat from the earth's interior, which is caused mostly by radioactive decay of persistent isotopes. This means a possibility of a base-loadable form of energy supply. Especially efficient is the use of deep geothermal energy of high-enthalpie reservoirs, which means a high energy potential in low depths. In Germany no high-enthalpie reservoirs are given. To use the given low-enthalpie potential and to generate geothermal power efficiently inventions and improvements need to be performed. An important part of geothermal progresses is performed by universities with multidisciplinary research of geothermal modeling. Especially in deep geothermal systems numerical calculations are essential for a correct dimensioning of the geothermal system. Therefore German universities and state aided organizations are developing numerical programs for a detailed use of

  15. Human Resources in Geothermal Development

    SciTech Connect

    Fridleifsson, I.B.

    1995-01-01

    Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

  16. Geothermal energy survey and technology

    NASA Astrophysics Data System (ADS)

    This is an FY-1990 Annual Report on 'geothermal energy survey and technology' by New Energy and Industrial Technology Development Organization (NEDO). First, concerning geothermal resources exploration project in which surveys have been executed throughout Japan since 1980, outlines of surveys in 1990 and objectives for FY-1992 are summarized. As for surveys for promoting development of geothermal energy, surveys in 8 areas conducted for three years from 1988 to 1990 as well as future plans are also described. Then, the verification investigation for geothermal survey technologies, which has been executed since 1980 for the purpose of establishing geothermal survey technologies to promote the development of geothermal resources in Japan, is introduced with outlines of surveys in 1990 and objectives for FY-1992. Furthermore, development conditions of power generation technologies utilizing geothermal energy such as binary-cycle power generation and hot dry rock power generation are described.

  17. 2008 Geothermal Technologies Market Report

    SciTech Connect

    Cross, J.; Freeman, J.

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  18. Geopressured-Geothermal Research Program: An Overview

    SciTech Connect

    Fortuna, Raymond; Jelacic, Allan

    1989-04-01

    The geopressured-geothermal resource consists of deeply buried reservoirs of hot brine, under abnormally high pressures, that contain dissolved methane. Geopressured brine reservoirs with pressures approaching the lithostatic load are known to occur both onshore and offshore beneath the Gulf of Mexico coast, along the Pacific west coast, in Appalachia, as well as in deep sedimentary basins elsewhere in the United States. The Department of Energy (DOE) has concentrated its research on the northern Gulf of Mexico sedimentary basin (Figure 1) which consists largely of Tertiary interbedded sandstones and shales deposited in alternating deltaic, fluvial, and marine environments. Thorsen (1964) and Norwood and Holland (1974) describe three generalized depositional facies in sedimentary beds of the Gulf Coast Geosyncline (Figure 2 ): (1) a massive sandstone facies in which sandstone constitutes 50 percent o r more of the sedimentary volume; (2) an alternating sandstone and shale facies in which sandstone constitutes 15 to 35 percent of the sedimentary volume. (3) a massive shale facies in which sandstone constitutes 15 percent or less of the sedimentary volume. In general, at any given location the volume of sandstone decreases with increasing depth. The datum of higher-than-normal fluid pressures is associated with the alternating sandstone and shale facies and the massive shale facies. Faulting and salt tectonics have complicated the depositional patterns and influenced the distribution of geopressured reservoirs (Wallace et a1 1978). The sandstones in the alternating sandstone and shale facies have the greatest potential for geopressured-geothermal energy development. Due to the insulating effect of surrounding shales, temperatures of the geopressured-geothermal brines typically range from 250 F to over 350 F, and under prevailing temperature, pressure, and salinity conditions, the brine contains 20 or more cubic feet of methane per barrel. Wallace et al (1978

  19. Modern geothermal power: GeoPP with geothermal steam turbines

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2017-03-01

    The first part of the review presents information on the scale and specific features of geothermal energy development in various countries. The classification of geothermal power plant (GeoPP) process flow diagrams by a phase state of the primary heat source (a geothermal fluid), thermodynamic cycle, and applicable turbines is proposed. Features of geothermal plants using methods of flashing and steam separation in the process loop and a flowsheet and thermodynamic process of a geothermal fluid heat-to-power conversion in a GeoPP of the most widespread type using a double-flash separation are considered. It is shown that, for combined cycle power units, the specific power-to-consumption geothermal fluid ratio is 20-25% higher than that for traditional single-loop GeoPP. Information about basic chemical components and their concentration range for geothermal fluids of various formations around the world is presented. Three historic stages of improving geothermal energy technologies are determined, such as development of high-temperature geothermal resources (dry, superheated steam) and application of a two-phase wet-steam geothermal fluid in GeoPP power units with one or two expansion pressures and development of binary cycle GeoPPs. A current trend of more active use of binary power plants in GeoPP technological processes is noted. Design features of GeoPP's steam turbines and steam separating devices, determined by the use of low-potential geothermal saturated steam as a working medium, which is characterized by corrosion aggressiveness and a tendency to form deposits, are considered. Most promising Russian geothermal energy projects are determined. A list of today's most advanced geothermal turbine performance technologies is presented. By an example of a 25 MW steam turbine design, made by JSC Kaluga Turbine Works, advantages of the internal moisture separation with a special turbine-separator stage are shown.

  20. Geothermal industry assessment

    SciTech Connect

    Not Available

    1980-07-01

    An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

  1. OIT geothermal system improvements

    SciTech Connect

    Lienau, P.J.

    1996-08-01

    Three geothermal wells drilled during the original campus construction vary from 396 m (1,300 ft) to 550 m (1,800 ft). These wells supply all of the heating and part of the cooling needs of the 11-building, 62,200 m{sup 2} (670,000 ft{sup 2}) campus. The combined capacity of the well pumps is 62 L/s(980 gpm) of 89{degrees}C (192{degrees}F) geothermal fluids. Swimming pool and domestic hot water heating impose a small but nearly constant year-round flow requirement. In addition to heating, a portion of the campus is also cooled using the geothermal resource. This is accomplished through the use of an absorption chiller. The chiller, which operates on the same principle as a gas refrigerator, requires a flow of 38 L/s (600 gpm) of geothermal fluid and produces 541 kW (154 tons) of cooling capacity (Rafferty, 1989). The annual operating costs for the system is about $35,000 including maintenance salary, equipment replacement and cost of pumping. This amounts to about $0.05 per square foot per year.

  2. Energy 101: Geothermal Energy

    SciTech Connect

    2014-05-27

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  3. Geothermal energy conversion facility

    SciTech Connect

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  4. Geothermal Systems for School.

    ERIC Educational Resources Information Center

    Dinse, David H.

    1998-01-01

    Describes an award-winning school heating and cooling system in which two energy-efficient technologies, variable-flow pumping and geothermal heat pumps, were combined. The basic system schematic and annual energy use and cost savings statistics are provided. (GR)

  5. Geothermal Grows Up

    ERIC Educational Resources Information Center

    Johnson, William C.; Kraemer, Steven; Ormond, Paul

    2011-01-01

    Self-declared energy and carbon reduction goals on the part of progressive colleges and universities have driven ground source geothermal space heating and cooling systems into rapid evolution, as part of long-term climate action planning efforts. The period of single-building or single-well solutions is quickly being eclipsed by highly engineered…

  6. Reinjection into geothermal reservoirs

    SciTech Connect

    Bodvarsson, G.S.; Stefansson, V.

    1987-08-01

    Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

  7. Energy 101: Geothermal Energy

    ScienceCinema

    None

    2016-07-12

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  8. National Geothermal Data System (NGDS)

    DOE Data Explorer

    The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry.

  9. Water-related constraints to the development of geothermal electric generating stations

    SciTech Connect

    Robertson, R.C.; Shepherd, A.D.; Rosemarin, C.S.; Mayfield, M.W.

    1981-06-01

    The water-related constraints, which may be among the most complex and variable of the issues facing commercialization of geothermal energy, are discussed under three headings: (1) water requirements of geothermal power stations, (2) resource characteristics of the most promising hydrothermal areas and regional and local water supply situations, and (3) legal issues confronting potential users of water at geothermal power plants in the states in which the resource areas are located. A total of 25 geothermal resource areas in California, New Mexico, Oregon, Idaho, Utah, Hawaii, and Alaska were studied. Each had a hydrothermal resource temperature in excess of 150/sup 0/C (300/sup 0/F) and an estimated 30-year potential of greater than 100-MW(e) capacity.

  10. Enhancement of existing geothermal resource utilization by cascading to intensive aquaculture

    SciTech Connect

    Zachritz, W.H. II; Polka, R.; Schoenmackers, R.

    1995-12-04

    Aquaculture, the farming and husbandry of freshwater and marine organisms, is the newest and fastest growing US agricultural sector. In New Mexico, low winter temperatures and limited freshwater sources narrow culture production possibilities; however, it has long been recognized that the state has abundant supplies of both saline and geothermal ground waters. The purpose of this project was to demonstrate the achievable energy savings and value enhancement of the byproduct geothermal energy by cascading fluids for the production of commercial aquaculture species. Specifically the project involved evaluating the heating systems performance in terms of heating budget for the geothermal assist, determine the total quantity of water used for culture and heating, amount of geothermal byproduct heat extracted, and ability of the system to maintain culture water temperatures during critical heating periods of the year. In addition, an analysis was conducted to determine the compatibility of this new system with existing greenhouse heating requirements.

  11. Geothermal reservoir engineering research at Stanford University. First annual report, October 1, 1980-September 30, 1981

    SciTech Connect

    Brigham, W.E.; Horne, R.N.; Kruger, P.; Miller, F.G.; Ramey, H.J. Jr.

    1981-09-01

    The work on energy extraction experiments concerns the efficiency with which the in-place heat and fluids can be produced. The work on noncondensable gas reservoir engineering covers both the completed and continuing work in these two interrelated research areas: radon emanation from the rock matrix of geothermal reservoirs, and radon and ammonia variations with time and space over geothermal reservoirs. Cooperative research programs with Italy and Mexico are described. The bench-scale experiments and well test analysis section covers both experimental and theoretical studies. The small core model continues to be used for the study of temperature effects on absolute permeability. The unconsolidated sand study was completed at the beginning of this contract period. The Appendices describe some of the Stanford Geothermal program activities that results in interactions with the geothermal community. These occur in the form of SGP Technical Reports, presentations at technical meetings and publications in the open literature.

  12. Geothermal energy in Nevada: development and utilization

    SciTech Connect

    Not Available

    1982-01-01

    The nature of geothermal resources in Nevada and resource applications are discussed. The social and economic advantages of using geothermal energy are outlined. Federal and state programs established to foster the development of geothermal energy are discussed. (MHR)

  13. Chemical logging of geothermal wells

    DOEpatents

    Allen, Charles A.; McAtee, Richard E.

    1981-01-01

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  14. Chemical logging of geothermal wells

    DOEpatents

    Allen, C.A.; McAtee, R.E.

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  15. Geothermal development plan: Yuma county

    SciTech Connect

    White, D.H.

    1981-01-01

    One hot spring and 33 wells drilled in the county discharge water at temperatures sufficient for direct-use geothermal applications such as process heat and space heating and cooling. Currently, one industry within the county has been identified which may be able to use geothermal energy for its process heat requirements. Also, a computer simulation model was used to predict geothermal energy on line as a function of time under both private and city-owned utility development of the resource.

  16. Analysis of Production Decline in Geothermal Reservoirs

    SciTech Connect

    Byrns, R.

    1980-09-01

    Data and analysis methods were gathered from the petroleum, geothermal, and hydrological literature. The data sets examined include: Wairakei, New Zealand -141 wells; Cerro Prieto, Mexico - 18 wells; The Geysers, USA - 27 wells; Larderello, Italy - 9 wells and groups; Matsukawa and Otake, Japan - 8 wells; and Olkaria, Kenya - 1 well. The analysis methods tested were; Arps's equations, Fetkovich type curves, Slider's method for Arps, Gentry's method for Arps, Gentry's and McCray's method, other type curves, P/z vs. Q method, Coats' influence function method, and Bodvarsson's Linearized Free Surface Green's Function method. The conclusions are: (1) The exponential equation fit is satisfactory for geothermal data. (2) The hyperbolic equation should be used only if the data fit well on a hyperbolic type curve. (3) The type curve methods are useful if the data are not too scattered. They work well for vapor dominated systems and poorly for liquid dominated systems. (4) Coats' influence function method can be used even with very scattered data. (5) Bodvarsson's method is still experimental but it shows much promise as a useful tool.

  17. A Method to Recover Useful Geothermal-Reservoir Parameters from Production Characteristic Curves (1) Steam Reservoirs

    SciTech Connect

    Iglesias, E.; Arellano, V.; Garfias, A.; Miranda, C.; Hernandez, J.; Gonzalez, J.

    1983-12-15

    In this paper we develop and demonstrate a method to estimate the reservoir pressure and a productivity index for vertical steam wells, from its production characteristic (also called output) curves. In addition, the method allows to estimate the radius of influence of the well, provided that a value of the reservoir transmisivity is available. The basic structure of the present method is: first, the measured well head mass flowrates and pressures are transformed to downhole conditions by means of a numerical simulator; then, the computed downhole variables are fitted to a simple radial model that predicts the sandface flowrate in terms of the flowing pressure. For demonstration, the method was applied to several steam wells from the Los Azufres Geothermal field. We found excellent agreement of the model with this ample set of field data. As a bonus, the processed data allowed several inferences about the steam producing zone of the reservoir: that the wells considered produce from relatively isolated pockets of steam, which are probably fed by near-by inmobile water; and that these feed zones are in poor hydraulic communication with the field surface waters. our method are that it provides a way to retrieve important reservoir information from usually available production characteristic curves, and that the method works from easily and accurately taken wellhead measurements.

  18. Direct application of geothermal energy

    SciTech Connect

    Reistad, G.M.

    1980-01-01

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  19. The Philippines geothermal success story

    NASA Astrophysics Data System (ADS)

    Birsic, R. J.

    1980-09-01

    Geothermal electrical plants currently in operation in the Philippines are presented. Following a brief review of the geographical and energy situation of the nation, attention is given to the first 55,000-kW unit of the Tiwi Geothermal Electric Plant, which commenced operation in January 1979, the portable 3,000-kE Leyte Geothermal Pilot Plant, which commenced operation in July, 1977 as the first geothermal power plant in the country, the Makiling-Banahaw (Mak-Ban) Geothermal Power Plant, the first 55,000-kW unit of which began operation in May, 1979 and the second 55,000-kW unit of the Tiwi plant, which came into service in June, 1979, thus making the Philippines the fourth largest producer of geothermal electricity in the world. Factors favoring the use of geothermal plants in developing nations are pointed out, including low capital costs, no foreign exchange costs for fuel, small units, and little environmental impact, and the start-up of two more plants, the second 55,000-kW unit at Mak-Ban in September 1979 and the third Tiwi unit in January 1980, are noted. It is predicted that in 1981, when the Philippines is expected to become the largest user of geothermal energy from hot-water fields, it will have a total capacity of 552 MW from the Mak-Ban, Tiwi and Leyte sites. Further areas with geothermal potential are also pointed out.

  20. Slim wells for exploration purposes in Mexico

    SciTech Connect

    Vaca Serrano, J.M.E.; Soto Alvarez, M.

    1996-12-31

    To invest in the construction of wells with definitive designs considerably increases the cost of a geothermal electric project in its analysis and definition stage. The Federal Commission for Electricity (Comision Federal de Electricidad, CFE) has concentrated on the task to design wells which casing and cementing programs would provide the minimum installation necessary to reach the structural objective, to confirm the existence of geothermal reservoirs susceptible to commercial exploitation, to check prior geological studies, to define the stratigraphic column and to obtain measurements of pressure, temperature and permeability. Problems of brittle, hydratable and permeable formations with severe circulation losses, must be considered within the design and drilling programs of the wells. This work explains the slim wells designs used in the exploration of three geothermal zones in Mexico: Las Derrumbadas and Acoculco in the State of Puebla and Los Negritos in the State of Michoacan.

  1. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    SciTech Connect

    Anderson, Arlene; Blackwell, David; Chickering, Cathy; Boyd, Toni; Horne, Roland; MacKenzie, Matthew; Moore, Joseph; Nickull, Duane; Richard, Stephen; Shevenell, Lisa A.

    2013-01-01

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

  2. Geothermal Ultrasonic Fracture Imager

    SciTech Connect

    Patterson, Doug; Leggett, Jim

    2013-07-29

    The Geothermal Ultrasonic Fracture Imager project has a goal to develop a wireline ultrasonic imager that is capable of operating in temperatures up to 300°C (572°F) and depths up to 10 km (32,808 ft). This will address one of the critical needs in any EGS development of understanding the hydraulic flow paths in the reservoir. The ultrasonic imaging is well known in the oil and gas industry as one of the best methods for fracture evaluation; providing both high resolution and complete azimuthal coverage of the borehole. This enables fracture detection and characterization, both natural and induced, providing information as to their location, dip direction and dip magnitude. All of these factors are critical to fully understand the fracture system to enable the optimization of the thermal drainage through injectors and producers in a geothermal resource.

  3. Geothermal Progress Monitor 12

    SciTech Connect

    1990-12-01

    Some of the more interesting articles in this GPM are: DOE supporting research on problems at The Geysers; Long-term flow test of Hot Dry Rock system (at Fenton Hill, NM) to begin in Fiscal Year 1992; Significant milestones reached in prediction of behavior of injected fluids; Geopressured power generation experiment yields good results. A number of industry-oriented events and successes are reported, and in that regard it is noteworthy that this report comes near the end of the most active decade of geothermal power development in the U.S. There is a table of all operating U.S. geothermal power projects. The bibliography of research reports at the end of this GPM is useful. (DJE 2005)

  4. Hawaii's geothermal program

    SciTech Connect

    Zorpette, G.

    1992-02-01

    This paper reports that in a forest on the island of Hawaii, legal and regulatory activity has postponed the start-up of a small new power plant and imperilled the design and construction of several facilities like it. The same old story Hardly. The power plants at stake are not nuclear or coal- or even oil-fired, but geothermal, widely considered one of the more environmentally benign ways of generating electricity. In a further twist, the opposition is coming not only from the usual citizens; and environmental groups, but also from worshippers of a native good and, it has been alleged, growers of marijuana, a lucrative local crop. The clash occurs just as geothermal power sources have finally proven commercially viable, experts say, adding that technological advances and industry trends in the United States and elsewhere seem to factor great expansion in its use.

  5. Geothermal materials development

    SciTech Connect

    Kukacka, L.E.

    1991-02-01

    Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level 1 and 2 Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results transferred to industry. In FY 1990, the R D efforts were focused on reducing well drilling and completion costs and on mitigating corrosion in well casing. Activities on lost circulation control materials, CO{sub 2}- resistant lightweight cements, and thermally conductive corrosion and scale-resistant protective liner systems have reached the final development stages, and cost-shared field tests are planned for the FY 1991--1992 time frame. Technology transfer efforts on high temperature elastomers for use in drilling tools are continuing under Geothermal Drilling Organization (GDO) sponsorship.

  6. Amedee geothermal power plant

    SciTech Connect

    Hodgson, S.F.

    1988-12-01

    In September 1988, the power plant began generating electricity in Northern California, near Honey Lake. The plant generates 2 megawatts, net, of electricity in the winter, and from 20 to 30% less in the summer, depending on the temperature. Geothermal fluids from two wells are used to operate the plant, and surface discharge is used to dispose of the spent fluids. This is possible because the geothermal fluids have a very low salinity and a composition the same as area hot spring waters. The binary power plant has a Standard Offer No. 4 contract for 5 megawatts with pacific Gas and Electric Company. Sometime in the near future, they will expand the project to add another 3 megawatts of electrical generation.

  7. Colorado Geothermal Commercialization Program

    SciTech Connect

    Healy, F.C.

    1980-04-01

    Chaffee County, located in central Colorado, has immense potential for geothermal development. This report has been prepared to assist residents and developers in and outside the area to develop the hydrothermal resources of the county. Data has been collected and interpreted from numerous sources in order to introduce a general description of the area, estimate energy requirements, describe the resources and postulate a development plan. Electric power generation and direct heat application potential for the region are described.

  8. Federal Interagency Geothermal Activities

    SciTech Connect

    Anderson, Arlene; Prencipe, Loretta; Todaro, Richard M.; Cuyler, David; Eide, Elizabeth

    2011-06-01

    This collaborative document describes the roles and responsibilities of key Federal agencies in the development of geothermal technologies including the U.S. Department of Energy (DOE); the U.S. Department of Agriculture (USDA), including the U.S. Forest Service; the U.S. Department of Interior (DOI), including the United States Geological Survey (USGS) and Bureau of Land Management (BLM); the Environmental Protection Agency (EPA); and the Department of Defense (DOD).

  9. Geothermal resources of Montana

    SciTech Connect

    Metesh, J.

    1994-06-01

    The Montana Bureau of Mines and Geology has updated its inventory of low and moderate temperature resources for the state and has assisted the Oregon Institute of Technology - GeoHeat Center and the University of Utah Research Institute in prioritizing and collocating important geothermal resource areas. The database compiled for this assessment contains information on location, flow, water chemistry, and estimated reservoir temperatures for 267 geothermal well and springs in Montana. For this assessment, the minimum temperature for low-temperature resource is defined as 10{degree} C above the mean annual air temperature at the surface. The maximum temperature for a moderate-temperature resource is defined as greater than 50{degree} C. Approximately 12% of the wells and springs in the database have temperatures above 50{degree} C, 17% are between 30{degree} and 50{degree} C, 29% are between 20{degree} and 30{degree}C, and 42% are between 10{degree} and 20{degree} C. Low and moderate temperature wells and springs can be found in nearly all areas of Montana, but most are in the western third of the state. Information sources for the current database include the MBMG Ground Water Information Center, the USGS statewide database, the USGS GEOTHERM database, and new information collected as part of this program. Five areas of Montana were identified for consideration in future investigations of geothermal development. The areas identified are those near Bozeman, Ennis, Butte, Boulder, and Camas Prairie. These areas were chosen based on the potential of the resource and its proximity to population centers.

  10. Navy Geothermal Plan

    DTIC Science & Technology

    1984-12-01

    the geothermal portion of the R&D program are those that require attention because of operational expansion and mission-related problems such as...RESOURCE/ PROBLEM MAJOR CLAIMA.. ’ ASSESSMENT - ACTIVITY, CONSULTED , I"" C NI E U R&D J EGTORD OA RECOMMENDSI I NNO FURTHER CONSIDERATION zz7 MILITARY...disposal problems and environmental concerns. Resource Confirmation The exploration methods discussed under the sections titled "Preliminary Site Survey

  11. Stanford Geothermal Program

    SciTech Connect

    R. Horn

    1999-06-30

    Reliable measurement of steam-water relative permeability functions is of great importance for geothermal reservoir performance simulation. Despite their importance, these functions are poorly known due to the lack of fundamental understanding of steam-water flows, and the difficulty of making direct measurements. The Stanford Geothermal Program has used an X-ray CT (Computer Tomography) scanner to obtain accurate saturation profiles by direct measurement. During the last five years, the authors have carried out experiments with nitrogen-water flow and with steam-water flow, and examined the effects of heat transfer and phase change by comparing these sets of results. In porous rocks, it was found that the steam-water relative permeabilities follow Corey type relationships similar to those in nitrogen-water flow, but that the irreducible gas phase saturation is smaller for steam than for nitrogen. The irreducible saturations represent substantial fractions of the recoverable energy in place yet are hard to determine in the field. Understanding the typical magnitude of irreducible saturations will lead to a much clearer forecast of geothermal field performance. In fracture flow, indirect measurements suggested that the relative permeabilities follow a linear (or ''X-curve'') behavior - but there is still considerable uncertainty in the knowledge of this behavior.

  12. UWC geothermal resource exploration

    SciTech Connect

    1996-04-01

    A program was developed to explore the strength of the geothermal and hot dry rock (HDR) resource at the Montezuma Hot Springs at the United World College (UWC). The purpose of the UWC {number_sign}1 well is to obtain hydrologic, geologic, and temperature information for ongoing geothermal evaluation of the Montezuma Hot Springs area. If sufficient fluids are encountered, the hole will be cased with a 4 1/2 inch production casing and re-permitted as a geothermal low-temperature well. If no fluid is encountered, the well will be abandoned per Oil Conservation Division regulation. The objectives of the exploration are to evaluate the resource potential to provide space heating for the entire campus of the United World College, determine the effect of a well on the Hot Springs outflow, accurately measure the UWC heating loads versus time, evaluate the potential to support local thermal industry development, assess the feasibility of HDR development, and create an educational program from the collection of data derived from the research effort.

  13. Geothermal Power Generation Plant

    SciTech Connect

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  14. Geotherm: the U.S. geological survey geothermal information system

    USGS Publications Warehouse

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  15. Geotherm: the U.S. geological survey geothermal information system

    NASA Astrophysics Data System (ADS)

    Bliss, J. D.; Rapport, A.

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request.

  16. Potential effects of environmental regulatory procedures on geothermal development

    SciTech Connect

    Beeland, G.V.; Boies, D.B.

    1981-01-01

    The potential effects of several types of applicable environmental regulatory procedures on geothermal development were assessed, and particular problem areas were identified. The possible impact of procedures adopted pursuant to the following Federal statutes were analyzed: Clean Air Act; Clean Water Act; Safe Drinking Water Act; and Resource Conservation and Recovery Act. State regulations applicable, or potentially applicable, to geothermal facilities were also reviewed to determine: permit information requirements; pre-permit air or water quality monitoring requirements; effect of mandated time frames for permit approval; and potential for exemption of small facilities. The regulations of the following states were covered in the review: Alaska; Arizona; California; Colorado; Hawaii; Idaho; Montana; Nevada; New Mexico; Oregon; Utah; Washington; and Wyoming. (MHR)

  17. Field testing advanced geothermal turbodrill (AGT). Phase 1 final report

    SciTech Connect

    Maurer, W.C.; Cohen, J.H.

    1999-06-01

    Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill at the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.

  18. Energy 101: Geothermal Heat Pumps

    ScienceCinema

    None

    2016-07-12

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  19. Geothermal Energy: Prospects and Problems

    ERIC Educational Resources Information Center

    Ritter, William W.

    1973-01-01

    An examination of geothermal energy as a means of increasing the United States power resources with minimal pollution problems. Developed and planned geothermal-electric power installations around the world, capacities, installation dates, etc., are reviewed. Environmental impact, problems, etc. are discussed. (LK)

  20. Energy 101: Geothermal Heat Pumps

    SciTech Connect

    2011-01-01

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  1. The Future of Geothermal Energy

    SciTech Connect

    Kubik, Michelle

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  2. Silica extraction from geothermal water

    DOEpatents

    Bourcier, William L; Bruton, Carol J

    2014-09-23

    A method of producing silica from geothermal fluid containing low concentration of the silica of less than 275 ppm includes the steps of treating the geothermal fluid containing the silica by reverse osmosis treatment thereby producing a concentrated fluid containing the silica, seasoning the concentrated fluid thereby producing a slurry having precipitated colloids containing the silica, and separating the silica from the slurry.

  3. Empirical equation estimates geothermal gradients

    SciTech Connect

    Kutasov, I.M. )

    1995-01-02

    An empirical equation can estimate geothermal (natural) temperature profiles in new exploration areas. These gradients are useful for cement slurry and mud design and for improving electrical and temperature log interpretation. Downhole circulating temperature logs and surface outlet temperatures are used for predicting the geothermal gradients.

  4. Geothermal Energy: Tapping the Potential

    ERIC Educational Resources Information Center

    Johnson, Bill

    2008-01-01

    Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…

  5. Middlesex Community College Geothermal Project

    SciTech Connect

    Klein, Jessie; Spaziani, Gina

    2013-03-29

    The purpose of the project was to install a geothermal system in the trustees house on the Bedford campus of Middlesex Community College. In partnership with the environmental science faculty, learning activities for environmental science courses were developed to explain geothermal energy and more specifically the newly installed system to Middlesex students. A real-time monitoring system highlights the energy use and generation.

  6. Health impacts of geothermal energy

    SciTech Connect

    Layton, D.W.; Anspaugh, L.R.

    1981-06-15

    The focus is on electric power production using geothermal resources greater than 150/sup 0/C because this form of geothermal energy utilization has the most serious health-related consequences. Based on measurements and experience at existing geothermal power plants, atmospheric emissions of noncondensing gases such as hydrogen sulfide and benzene pose the greatest hazards to public health. Surface and ground waters contaminated by discharges of spent geothermal fluids constitute another health hazard. It is shown that hydrogen sulfide emissions from most geothermal power plants are apt to cause odor annoyances among members of the exposed public - some of whom can detect this gas at concentrations as low as 0.002 parts per million by volume. A risk assessment model is used to estimate the lifetime risk of incurring leukemia from atmospheric benzene caused by 2000 MW(e) of geothermal development in California's Imperial Valley. The risk of skin cancer due to the ingestion of river water in New Zealand that is contaminated by waste geothermal fluids containing arsenic is also assessed. Finally, data on the occurrence of occupational disease in the geothermal industry are summarized briefly.

  7. World Geothermal Congress WGC-2015

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2016-08-01

    This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a

  8. Geothermal resource evaluation of the Yuma area

    SciTech Connect

    Poluianov, E.W.; Mancini, F.P.

    1985-11-29

    This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

  9. Geothermal reconnaissance of northeastern Venezuela

    SciTech Connect

    Urbani, F. )

    1989-01-01

    About 60% of Venezuela has been covered by a reconnaissance geothermal survey that includes geologic and water geochemical studies. The information is stored in a computerized data bank that holds data from 361 geothermal localities. The subsurface reservoir temperatures of the geothermal systems have been estimated using chemical geothermometry and mixing models and in many cases conceptual geothermal modes have been postulated. Preliminary assessments of the northeastern Venezuelan geothermal systems indicate that the most promising system is Las Minas near El Pilar in the state of Sucre, with an estimated deep reservoir temperature of 200-220{sup 0}C. Further studies are intended to evaluate its potential for electricity generation. Based on present data, other medium and low temperature systems in Venezuela appear useful for direct applications.

  10. Geopressured geothermal bibliography (Geopressure Thesaurus)

    SciTech Connect

    Hill, T.R.; Sepehrnoori, K.

    1981-08-01

    This thesaurus of terminology associated with the geopressured geothermal energy field has been developed as a part of the Geopressured Geothermal Information System data base. A thesaurus is a compilation of terms displaying synonymous, hierarchical, and other relationships between terms. These terms, which are called descriptors, constitute the special language of the information retrieval system, the system vocabulary. The Thesaurus' role in the Geopressured Geothermal Information System is to provide a controlled vocabulary of sufficient specificity for subject indexing and retrieval of documents in the geopressured geothermal energy field. The thesauri most closely related to the Geopressure Thesaurus in coverage are the DOE Energy Information Data Base Subject Thesaurus and the Geothermal Thesaurus being developed at the Lawrence Berkeley Laboratory (LBL). The Geopressure Thesaurus differs from these thesauri in two respects: (1) specificity of the vocabulary or subject scope and (2) display format.

  11. 2008 Geothermal Technologies Market Report

    SciTech Connect

    Jonathan Cross

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the GTP’s involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including GHPs.† The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  12. Geothermal resource data base: Arizona

    SciTech Connect

    Witcher, J.C.

    1995-09-01

    This report provides a compilation of geothermal well and spring information in Arizona up to 1993. This report and data base are a part of a larger congressionally-funded national effort to encourage and assist geothermal direct-use. In 1991, the US Department of Energy, Geothermal Division (DOE/GD) began a Low-Temperature Geothermal Resources and Technology Transfer Program. Phase 1 of this program includes updating the inventory of wells and springs of ten western states and placing these data into a digital format that is universally accessible to the PC. The Oregon Institute of Technology GeoHeat Center (OIT) administers the program and the University of Utah Earth Sciences and Resources Institute (ESRI) provides technical direction. In recent years, the primary growth in geothermal use in Arizona has occurred in aquaculture. Other uses include minor space heating and supply of warm mineral waters for health spas.

  13. Environmental Assessment Lakeview Geothermal Project

    SciTech Connect

    Treis, Tania

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  14. Geothermal Small Business Workbook [Geothermal Outreach and Project Financing

    SciTech Connect

    Elizabeth Battocletti

    2003-05-01

    Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you--the geothermal entrepreneur, small company, or

  15. Final Technical Report; Geothermal Resource Evaluation and Definitioni (GRED) Program-Phases I, II, and III for the Animas Valley, NM Geothermal Resource

    SciTech Connect

    Cunniff, Roy A.; Bowers, Roger L.

    2005-08-01

    This report contains a detailed summary of a methodical and comprehensive assessment of the potential of the Animas Valley, New Mexico geothermal resource leasehold owned by Lightning Dock Geothermal, Inc. Work described herein was completed under the auspices of the Department of Energy (DOE) Cooperative Agreement DE-FC04-00AL66977, Geothermal Resource Evaluation and Definition (GRED) Program, and the work covers the time span from June 2001 through June 2004. Included in this new report are detailed results from the GRED Program, including: geophysical and geochemical surveys, reflection seismic surveys, aeromagnetic surveys, gravity and electrical resistivity surveys, soil thermal ion and soil carbon dioxide flux surveys, four temperature gradient holes, and one deep exploratory well.

  16. Coupling Magnetotellurics and Hydrothermal Modeling to Further Understand Geothermal Resources

    NASA Astrophysics Data System (ADS)

    Folsom, M.; Pepin, J.; Kelley, S.; Person, M. A.; Blom, L.; Love, D.

    2015-12-01

    A comprehensive knowledge of the groundwater flow patterns associated with geothermal resources is critical to sustainable resource management and to discovering blind geothermal systems. Magnetotellurics (MT), which provides subsurface electrical conductivity information to substantial depths, has the ability to image geothermal reservoir features, such as conductive clay caps and hot, saline groundwater circulating within geothermal systems. We have used MT data along with 2D hydrothermal modeling, constrained by temperature, salinity and carbon-14 data, to explore possible deep groundwater circulation scenarios near the Sevilleta National Wildlife Refuge, in the Rio Grande Rift, central New Mexico. The area is underlain by a 100 to 150-m thick molten sill emplaced approximately 19 km below the surface. This sill is referred to locally as the Socorro Magma Body (SMB). Previous studies by Mailloux et al. (1999) and Pepin et al. (2015) suggest that the crystalline basement rocks in this region of the Rio Grande Rift can be significantly fractured to depths of 4-8 km and have permeabilities as high as 10-14 to 10-12 m2. The combination of high permeability conditions and the presence of the SMB makes this particular region a promising candidate for discovering a blind geothermal system at depth. We constructed a 2D hydrothermal model that traverses a 64-km zone of active uplift that is associated with the SMB. We also completed a 12-km long, 9-station MT transect across a portion of this profile, where land access was permitted and electromagnetic noise was minimal. Preliminary results suggest a deep convection-dominated system is a possibility, although further analysis of the MT data is necessary and ongoing. We hypothesize that using hydrothermal modeling in conjunction with MT surveys may prove to be an effective approach to discovering and managing deep regional hydrothermal resources.

  17. Geothermal Heat Pumps are Scoring High Marks

    SciTech Connect

    2000-08-01

    Geothermal Energy Program Office of Geothermal and Wind Technologies Geothermal Heat Pumps are Scoring High Marks Geothermal heat pumps, one of the clean energy technology stars Geothermal heat pumps (GHPs) are one of the most cost-effective heating, cooling, and water heating systems available for both residential and commercial buildings. GHPs extract heat from the ground during the heating season and discharge waste heat to the ground during the cooling season. The U.S. Environmental Protecti

  18. Geothermal resource assessment of the New England states

    SciTech Connect

    Brophy, G.P.

    1982-01-01

    With the exception of Sand Springs in Williamstown, Massachusetts, there are no identifiable hydrothermal geothermal resources in the New England region. The radioactive plutons of the White Mountains of New Hampshire do not, apparently, contain sufficient stored heat to make them a feasible target for an induced hydrothermal system such as exists at Fenton Hill near Los Alamos, New Mexico. The only potential source of low grade heat is the large volume of ground water contained within the unconsolidated sediments related to the Pleistocene glaciation of the region. During the course of the survey an unusual and unexplained thermal anomaly was discovered in St. Johnsbury, Vermont, which is described.

  19. Geothermal development plan: Yuma County

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The Yuma County Area Development Plan evaluated the county-wide market potential for utilizing geothermal energy. The study identified four potential geothermal resource areas with temperatures less than 90/sup 0/C (194/sup 0/F), and in addition, two areas are inferred to contain geothermal resources with intermediate (90/sup 0/C to 150/sup 0/C, 194/sup 0/F to 300/sup 0/F) temperature potential. The resource areas are isolated, although one resource area is located near Yuma, Arizona. One resource site is inferred to contain a hot dry rock resource. Anticipated population growth in the county is expected to be 2 percent per year over the next 40 years. The primary employment sector is agriculture, though some light industry is located in the county. Water supplies are found to be adequate to support future growth without advese affect on agriculture. Six firms were found in Yuma County which may be able to utilize geothermal energy for process heat needs. In addition, several agricultural processors were found, concentrated in citrus processing and livestock raising. Geothermal energy utilization projections suggest that by the year 2000, geothermal energy may economically provide the energy equivalent of 53,000 barrels of oil per year to the industrial sector if developed privately. Geothermal utilization projections increase to 132,000 barrels of oil per year by 2000 if a municipal utility developed the resource.

  20. Geothermal heating for Caliente, Nevada

    SciTech Connect

    Wallis, F.; Schaper, J.

    1981-02-01

    Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms of energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.

  1. Geothermal development plan: Pima County

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The Pima County Area Development evaluated the county-wide market potential for utilizing geothermal energy. Four potential geothermal resource areas with temperatures less than 1000 C (2120 F) were identified. In addition, one area is identified as having a temperature of 1470 F (2970 F). Geothermal resources are found to occur in Tecson where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing sector and the existence of major copper mines provide opportunities for the direct utilization of geothermal energy. However, available water supplies are identified as a major constraing to projected growth. A regional energy analysis, future predictions for energy consumption, and energy prices are given. Potential geothermal users in Pima County are identified and projections of maximum economic geothermal utilization are given. One hundred fifteen firms in 32 industrial classes have some potential for geothermal use are identified. In addition, 26 agribusiness firms were found in the county.

  2. Tracing Geothermal Fluids

    SciTech Connect

    Michael C. Adams; Greg Nash

    2004-03-01

    Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

  3. What is an Enhanced Geothermal System (EGS)? Fact Sheet

    SciTech Connect

    U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    2012-09-14

    This Geothermal Technologies Office fact sheet explains how engineered geothermal reservoirs called Enhanced Geothermal Systems are used to produce energy from geothermal resources that are otherwise not economical due to a lack of fluid and/or permeability.

  4. NREL Geothermal Policymakers' Guidebooks Web site (Fact Sheet)

    SciTech Connect

    Not Available

    2010-10-01

    This document highlights the NREL Geothermal Policymakers' Guidebooks Web site, including the five steps to effective geothermal policy development for geothermal electricity generation and geothermal heating and cooling technologies.

  5. Geothermal development plan: northern Arizona

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1981-01-01

    Much of the northern counties (Apache, Coconino, Gila, Mohave, Navajo and Yavapai) is located in the Colorado Plateau province, a region of low geothermal potential. Two areas that do show some potential are the Flagstaff - San Francisco Peaks area and the Springerville area. Flagstaff is rapidly becoming the manufacturing center of Arizona and will have many opportunities to use geothermal energy to satisfy part of its increasing need for energy. Using a computer simulation model, projections of geothermal energy on line as a function of time are made for both private and city-owned utility development of a resource.

  6. Geothermal Energy Production With Innovative Methods Of Geothermal Heat Recovery

    SciTech Connect

    Swenson, Allen; Darlow, Rick; Sanchez, Angel; Pierce, Michael; Sellers, Blake

    2014-12-19

    The ThermalDrive™ Power System (“TDPS”) offers one of the most exciting technological advances in the geothermal power generation industry in the last 30 years. Using innovations in subsurface heat recovery methods, revolutionary advances in downhole pumping technology and a distributed approach to surface power production, GeoTek Energy, LLC’s TDPS offers an opportunity to change the geothermal power industry dynamics.

  7. Geothermal Data from the National Geothermal Data System (NGDS)

    DOE Data Explorer

    The National Geothermal Data System (NGDS) is a distributed data system providing access to information resources related to geothermal energy from a network of data providers. Data are contributed by academic researchers, private industry, and state and federal agencies. Built on a scalable and open platform through the U.S. Geoscience Information Network (USGIN), NGDS respects data provenance while promoting shared resources.Since NGDS is built using a set of open protocols and standards, relying on the Open Geospatial Consortium (OGC) and International Organization for Standardization (ISO), members of the community may access the data in a variety of proprietary and open-source applications and software. In addition, developers can add functionality to the system by creating new applications based on the open protocols and standards of the NGDS. The NGDS, supported by the U.S. Department of Energy’s Geothermal Technology Program, is intended to provide access to all types of geothermal data to enable geothermal analysis and widespread public use in an effort to reduce the risk of geothermal energy development [copied from http://www.geothermaldata.org/page/about]. See the long list of data contributors at http://geothermaldata.org/page/data-types-and-contributors#data-contributors.

  8. Geothermal energy abstract sets. Special report No. 14

    SciTech Connect

    Stone, C.

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  9. Geothermal energy for American Samoa

    SciTech Connect

    Not Available

    1980-03-01

    The geothermal commercialization potential in American Samoa was investigated. With geothermal energy harnessed in American Samoa, a myriad of possibilities would arise. Existing residential and business consumers would benefit from reduced electricity costs. The tuna canneries, demanding about 76% of the island's process heat requirements, may be able to use process heat from a geothermal source. Potential new industries include health spas, aquaculture, wood products, large domestic and transhipment refrigerated warehouses, electric cars, ocean nodule processing, and a hydrogen economy. There are no territorial statutory laws of American Samoa claiming or reserving any special rights (including mineral rights) to the territorial government, or other interests adverse to a land owner, for subsurface content of real property. Technically, an investigation has revealed that American Samoa does possess a geological environment conducive to geothermal energy development. Further studies and test holes are warranted.

  10. Advances in geothermal energy use

    SciTech Connect

    Kilkis, I.B.; Eltez, M.

    1996-10-01

    One of the earliest examples of large scale use of the geothermal energy is the district heating system in Boise, Idaho. Established in 1892, this system now serves 266 customers--mostly residential. Today, excluding heat pumps, there are about 300 sites in America where geothermal energy is currently used in various applications; including district heating, absorption cooling and refrigeration, industrial processes, aquaculture, horticulture, and snow melting/freeze protection. Among these, 18 geothermal district heating systems are operating with 677 GBtu (714 TJ) total annual heat output. Geothermal activity was first generated in Italy, in 1904, with a 10 kWe capacity. Now, commercial power plants are in service using vapor-dominated and liquid-dominated plants with a world-wide installed capacity of 6 GWe. This paper looks at a hybrid cycle/integrated district HVAC system.

  11. Geothermal resources assessed in Honduras

    SciTech Connect

    Not Available

    1986-01-01

    The investigation of the Platanares geothermal site is part of a joint Honduras (Empresa Nacional de Energia Electrica)/US (Los Alamos National Laboratory and US Geological Survey) assessment of the nationwide geothermal resource potential of Honduras. Platanares was selected as one of the initial sites for detailed study on the basis of previous geothermal reconnaissance work. The results of the geologic studies indicate that Platarnares' potential for development as an electrical power source is extremely good. This preliminary conclusion must be substantiated and refined through additional studies. Geophysical investigations are needed to further define the subsurface geology and fracture system. Several wells should be drilled to a depth of several hundred meters to measure thermal gradients. This will allow the calculation of the geothermal potential of the Platanares site and will indicate whether further development of the site is warranted.

  12. Hawaii geothermal resource assessment: 1982

    SciTech Connect

    Thomas, D.M.; Cox, M.; Kavahikaua, J.P.; Lienert, B.R.; Mattice, M.

    1982-10-01

    The Geothermal Resource Assessment Program of the Hawaii Institute of Geophysics has conducted a series of geochemical and geophysical surveys throughout the State of Hawaii since February 1978. The results compiled during this study have been used to prepare a map of potential geothermal resource areas throughout the state. Approximately thirteen separate locations on three islands have been studied in detail. Of these, four areas are known to have direct evidence of a geothermal anomaly (Kilauea East Rift Zone, Kilauea Southwest Rift Zone, Kawaihae, and Olowalu-Ukumehame) and three others are strongly suspected of having at least a low-temperature resource (Hualalai west flank, Haleakala Southwest Rift, and Lualualei Valley). In the remainder of the areas surveyed, the data obtained either were contradictory or gave no evidence of a geothermal resource.

  13. Geothermal Program Review IV: proceedings

    SciTech Connect

    Not Available

    1985-01-01

    The research and development program of DOE's Geothermal Technology Division is reviewed in separate presentations according to program area. Separate abstracts have been prepared for the individual papers. (ACR)

  14. Geothermal Permeability Enhancement - Final Report

    SciTech Connect

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  15. Process for cementing geothermal wells

    SciTech Connect

    Eilers, L. H.

    1985-12-03

    A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight monoor copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

  16. Engineered Geothermal System Demonstration Project

    SciTech Connect

    Petty, Susan

    2014-06-19

    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  17. Direct-flash-steam geothermal-power-plant assessment. Final report

    SciTech Connect

    Alt, T.E.

    1982-01-01

    The objective of the project was to analyze the capacity and availability factors of an operating direct flash geothermal power plant. The analysis was to include consideration of system and component specifications, operating procedures, maintenance history, malfunctions, and outage rate. The plant studied was the 75 MW(e) geothermal power plant at Cerro Prieto, Mexico, for the years 1973 to 1979. To describe and assess the plant, the project staff reviewed documents, visited the plant, and met with staff of the operating utility. The high reliability and availability of the plant was documented and actions responsible for the good performance were identified and reported. The results are useful as guidance to US utilities considering use of hot water geothermal resources for power generation through a direct flash conversion cycle.

  18. Computerized international geothermal information systems

    SciTech Connect

    Phillips, S.L.; Lawrence, J.D.; Lepman, S.R.

    1980-03-01

    The computerized international geothermal energy information system is reviewed. The review covers establishment of the Italy - United States linked data centers by the NATO Committee on Challenges of Modern Society, through a bilateral agreement, and up to the present time. The result of the information exchange project is given as the bibliographic and numerical data available from the data centers. Recommendations for the exchange of computerized geothermal information at the international level are discussed.

  19. The Marysville, Montana Geothermal Project

    NASA Technical Reports Server (NTRS)

    Mcspadden, W. R.; Stewart, D. H.; Kuwada, J. T.

    1974-01-01

    Drilling the first geothermal well in Montana presented many challenges, not only in securing materials and planning strategies for drilling the wildcat well but also in addressing the environmental, legal, and institutional issues raised by the request for permission to explore a resource which lacked legal definition. The Marysville Geothermal Project was to investigate a dry hot rock heat anomaly. The well was drilled to a total depth of 6790 feet and many fractured water bearing zones were encountered below 1800 feet.

  20. Geothermal resource assessment in Oklahoma

    SciTech Connect

    Harrison, W.E.; Luza, K.V.; Prater, M.L.; Cheung, P.K.; Ruscetta, C.A.

    1982-07-01

    The procedures and methods used to develop a geothermal gradient map of Oklahoma are discussed. Two areas, Haskell and Pittsburg Counties, in the Arkoma Basin, are discussed in detail. Three sandstone units, the Spiro, Cromwell, and Hartshorne were selected as potential low-temperature geothermal water sources. The average temperature ranged from 103/sup 0/F at Hartshorne to 158/sup 0/F at Cromwell. (MJF)

  1. Optimizing Sustainable Geothermal Heat Extraction

    NASA Astrophysics Data System (ADS)

    Patel, Iti; Bielicki, Jeffrey; Buscheck, Thomas

    2016-04-01

    Geothermal heat, though renewable, can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal. As such, the sustainability of a geothermal resource is typically viewed as preserving the energy of the reservoir by weighing heat extraction against renewability. But heat that is extracted from a geothermal reservoir is used to provide a service to society and an economic gain to the provider of that service. For heat extraction used for market commodities, sustainability entails balancing the rate at which the reservoir temperature renews with the rate at which heat is extracted and converted into economic profit. We present a model for managing geothermal resources that combines simulations of geothermal reservoir performance with natural resource economics in order to develop optimal heat mining strategies. Similar optimal control approaches have been developed for managing other renewable resources, like fisheries and forests. We used the Non-isothermal Unsaturated-saturated Flow and Transport (NUFT) model to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are integrated into the optimization model to determine the extraction path over time that maximizes the net present profit given the performance of the geothermal resource. Results suggest that the discount rate that is used to calculate the net present value of economic gain is a major determinant of the optimal extraction path, particularly for shallower and cooler reservoirs, where the regeneration of energy due to the natural geothermal heat flux is a smaller percentage of the amount of energy that is extracted from the reservoir.

  2. The Oregon Geothermal Planning Conference

    SciTech Connect

    1980-10-02

    Oregon's geothermal resources represent a large portion of the nation's total geothermal potential. The State's resources are substantial in size, widespread in location, and presently in various stages of discovery and utilization. The exploration for, and development of, geothermal is presently dependent upon a mixture of engineering, economic, environmental, and legal factors. In response to the State's significant geothermal energy potential, and the emerging impediments and incentives for its development, the State of Oregon has begun a planning program intended to accelerate the environmentally prudent utilization of geothermal, while conserving the resource's long-term productivity. The program, which is based upon preliminary work performed by the Oregon Institute of Technology's Geo-Heat Center, will be managed by the Oregon Department of Energy, with the assistance of the Departments of Economic Development, Geology and Mineral Industries, and Water Resources. Funding support for the program is being provided by the US Department of Energy. The first six-month phase of the program, beginning in July 1980, will include the following five primary tasks: (1) coordination of state and local agency projects and information, in order to keep geothermal personnel abreast of the rapidly expanding resource literature, resource discoveries, technological advances, and each agency's projects. (2) Analysis of resource commercialization impediments and recommendations of incentives for accelerating resource utilization. (3) Compilation and dissemination of Oregon geothermal information, in order to create public and potential user awareness, and to publicize technical assistance programs and financial incentives. (4) Resource planning assistance for local governments in order to create local expertise and action; including a statewide workshop for local officials, and the formulation of two specific community resource development plans. (5) Formulation and

  3. Geothermal Money Book [Geothermal Outreach and Project Financing

    SciTech Connect

    Elizabeth Battocletti

    2004-02-01

    Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This is where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing

  4. Ninth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Gudmundsson, J.S.

    1983-12-15

    The attendance at the Workshop was similar to last year's with 123 registered participants of which 22 represented 8 foreign countries. A record number of technical papers (about 60) were submitted for presentation at the Workshop. The Program Committee, therefore, decided to have several parallel sessions to accommodate most of the papers. This format proved unpopular and will not be repeated. Many of the participants felt that the Workshop lost some of its unique qualities by having parallel sessions. The Workshop has always been held near the middle of December during examination week at Stanford. This timing was reviewed in an open discussion at the Workshop. The Program Committee subsequently decided to move the Workshop to January. The Tenth Workshop will be held on January 22-24, 1985. The theme of the Workshop this year was ''field developments worldwide''. The Program Committee addressed this theme by encouraging participants to submit field development papers, and by inviting several international authorities to give presentations at the Workshop. Field developments in at least twelve countries were reported: China, El Salvador, France, Greece, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, the Philippines, and the United States. There were 58 technical presentations at the Workshop, of which 4 were not made available for publication. Several authors submitted papers not presented at the Workshop. However, these are included in the 60 papers of these Proceedings. The introductory address was given by Ron Toms of the U.S. Department of Energy, and the banquet speaker was A1 Cooper of Chevron Resources Company. An important contribution was made to the Workshop by the chairmen of the technical sessions. Other than Stanford Geothermal Program faculty members, they included: Don White (Field Developments), Bill D'Olier (Hydrothermal Systems), Herman Dykstra (Well Testing), Karsten Pruess (Well Testing), John Counsil (Reservoir Chemistry), Malcolm Mossman

  5. Geothermal development in Australia

    NASA Astrophysics Data System (ADS)

    Burns, K. L.; Creelman, R. A.; Buckingham, N. W.; Harrington, H. J.

    In Australia, natural hot springs and hot artesian bores have been developed for recreational and therapeutic purposes. A district heating system at Portland, in the Otway Basin of western Victoria, has provided uninterrupted service for 12 Sears without significant problems, is servicing a building area of 18 990 sq m, and has prospects of expansion to manufacturing uses. A geothermal well has provided hot water for paper manufacture at Traralgon, in the Gippsland Basin of eastern Victoria. Power production from hot water aquifers was tested at Mulka in South Australia, and is undergoing a four-year production trial at Birdsville in Queensland. An important Hot Dry Rock resource has been confirmed in the Cooper Basin. It has been proposed to build an HDR experimental facility to test power production from deep conductive resources in the Sydney Basin near Muswellbrook.

  6. Geothermal development in Australia

    SciTech Connect

    Burns, K.L.; Creelman, R.A.; Buckingham, N.W.; Harrington, H.J. |

    1995-03-01

    In Australia, natural hot springs and hot artesian bores have been developed for recreational and therapeutic purposes. A district heating system at Portland, in the Otway Basin of western Victoria, has provided uninterrupted service for 12 Sears without significant problems, is servicing a building area of 18 990 m{sup 2}, and has prospects of expansion to manufacturing uses. A geothermal well has provided hot water for paper manufacture at Traralgon, in the Gippsland Basin of eastern Victoria. Power production from hot water aquifers was tested at Mulka in South Australia, and is undergoing a four-year production trial at Birdsville in Queensland. An important Hot Dry Rock resource has been confirmed in the Cooper Basin. It has been proposed to build an HDR experimental facility to test power production from deep conductive resources in the Sydney Basin near Muswellbrook.

  7. Enhanced Geothermal Systems

    SciTech Connect

    Jeanloz, R.; Stone, H.

    2013-12-31

    DOE, through the Geothermal Technologies Office (GTO) within the Office of Energy Efficiency and Renewable Energy, requested this study, identifying a focus on: i) assessment of technologies and approaches for subsurface imaging and characterization so as to be able to validate EGS opportunities, and ii) assessment of approaches toward creating sites for EGS, including science and engineering to enhance permeability and increase the recovery factor. Two days of briefings provided in-depth discussion of a wide range of themes and challenges in EGS, and represented perspectives from industry, government laboratories and university researchers. JASON also contacted colleagues from universities, government labs and industry in further conversations to learn the state of the field and potential technologies relevant to EGS.

  8. Geothermal energy geopressure subprogram

    SciTech Connect

    Not Available

    1981-02-01

    The proposed action will consist of drilling one geopressured-geothermal resource fluid well for intermittent production testing over the first year of the test. During the next two years, long-term testing of 40,000 BPD will be flowed. A number of scenarios may be implemented, but it is felt that the total fluid production will approximate 50 million barrels. The test well will be drilled with a 22 cm (8.75 in.) borehole to a total depth of approximately 5185 m (17,000 ft). Up to four disposal wells will provide disposal of the fluid from the designated 40,000 BPD test rate. The following are included in this assessment: the existing environment; probable environmental impacts-direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, regional, and local agencies; and alternative actions. (MHR)

  9. Geothermal innovative technologies catalog

    SciTech Connect

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  10. Geohydrologic data from the Jemez Mountains and vicinity, north-central New Mexico

    USGS Publications Warehouse

    Trainer, Frank W.

    1978-01-01

    The Jemez Mountains volcanic region, on the west margin of the Rio Grande rift in north-central New Mexico, is the site of studies for power development from geothermal heat. This report summarizes geohydrologic data to provide background information relative to the geothermal exploration and to investigate the usefulness of hydrology in assessment of the geothermal resource. Eleven tables present chemical, temperature, discharge , and other data for springs, wells, and streams. Accompanying figures show locations of the data points and present temperature profiles and geophysical logs for selected wells. (Woodard-USGS)

  11. Another Mexico

    ERIC Educational Resources Information Center

    Romano, Carlin

    2009-01-01

    A Mexican saying holds that "Como Mexico no hay dos"--There is only one Mexico. American media these days interpret that notion with a vengeance. Story after story depicts a country overrun by out-of-control drug wars and murder, where corrupt police officers trip over beheaded victims more often than they nab perpetrators. South of the…

  12. Geothermal -- The Energy Under Our Feet: Geothermal Resource Estimates for the United States

    SciTech Connect

    Green, B. D.; Nix, R. G.

    2006-11-01

    On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource or application: (1) Hydrothermal, (2) Deep Geothermal Systems, (3) Direct Use, (4) Geothermal Heat Pumps (GHPs), and (5) Co-Produced and Geopressured. The workshop found that the domestic geothermal resource is very large, with significant benefits.

  13. Outstanding issues for new geothermal resource assessments

    USGS Publications Warehouse

    Williams, C.F.; Reed, M.J.

    2005-01-01

    A critical question for the future energy policy of the United States is the extent to which geothermal resources can contribute to an ever-increasing demand for electricity. Electric power production from geothermal sources exceeds that from wind and solar combined, yet the installed capacity falls far short of the geothermal resource base characterized in past assessments, even though the estimated size of the resource in six assessments completed in the past 35 years varies by thousands of Megawatts-electrical (MWe). The U. S. Geological Survey (USGS) is working closely with the Department of Energy's (DOE) Geothermal Research Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir permeability, limits to temperatures and depths for electric power production, and include the potential impact of evolving Enhanced (or Engineered) Geothermal Systems (EGS) technology.

  14. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect

    Not Available

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  15. An Evaluation of Enhanced Geothermal Systems Technology

    SciTech Connect

    Jelacic, Allan; Fortuna, Raymond; LaSala, Raymond; Nathwani, Jay; Nix, Gerald; Visser, Charles; Green, Bruce; Renner, Joel; Blankenship, Douglas; Kennedy, Mack; Bruton, Carol

    2008-04-01

    This 2008 document presents the results of an eight-month study by the Department of Energy (DOE) and its support staff at the national laboratories concerning the technological requirements to commercialize a new geothermal technology, Enhanced Geothermal Systems (EGS).

  16. Geothermal Energy: Evaluation of a Resource

    ERIC Educational Resources Information Center

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  17. Imperial County geothermal development annual meeting: summary

    SciTech Connect

    Not Available

    1983-01-01

    All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

  18. Choosing a Geothermal as an HVAC System.

    ERIC Educational Resources Information Center

    Lensenbigler, John D.

    2002-01-01

    Describes the process of selecting and installing geothermal water source heat pumps for new residence halls at Johnson Bible College in Knoxville, Tennessee, including choosing the type of geothermal design, contractors, and interior equipment, and cost and payback. (EV)

  19. Exploring for Geothermal Resources with Electromagnetic Methods

    NASA Astrophysics Data System (ADS)

    Muñoz, Gerard

    2014-01-01

    Electrical conductivity of the subsurface is known to be a crucial parameter for the characterization of geothermal settings. Geothermal systems, composed by a system of faults and/or fractures filled with conducting geothermal fluids and altered rocks, are ideal targets for electromagnetic (EM) methods, which have become the industry standard for exploration of geothermal systems. This review paper presents an update of the state-of-the-art geothermal exploration using EM methods. Several examples of high-enthalpy geothermal systems as well as non-volcanic systems are presented showing the successful application of EM for geothermal exploration but at the same time highlighting the importance of the development of conceptual models in order to avoid falling into interpretation pitfalls. The integration of independent data is key in order to obtain a better understanding of the geothermal system as a whole, which is the ultimate goal of exploration.

  20. Twenty-first workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect

    1996-01-26

    PREFACE The Twenty-First Workshop on Geothermal Reservoir Engineering was held at the Holiday Inn, Palo Alto on January 22-24, 1996. There were one-hundred fifty-five registered participants. Participants came from twenty foreign countries: Argentina, Austria, Canada, Costa Rica, El Salvador, France, Iceland, Indonesia, Italy, Japan, Mexico, The Netherlands, New Zealand, Nicaragua, the Philippines, Romania, Russia, Switzerland, Turkey and the UK. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Sixty-six papers were presented in the technical sessions of the workshop. Technical papers were organized into twenty sessions concerning: reservoir assessment, modeling, geology/geochemistry, fracture modeling hot dry rock, geoscience, low enthalpy, injection, well testing, drilling, adsorption and stimulation. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bobbie Bishop-Gollan, Tom Box, Jim Combs, John Counsil, Sabodh Garg, Malcolm Grant, Marcel0 Lippmann, Jim Lovekin, John Pritchett, Marshall Reed, Joel Renner, Subir Sanyal, Mike Shook, Alfred Truesdell and Ken Williamson. Jim Lovekin gave the post-dinner speech at the banquet and highlighted the exciting developments in the geothermal field which are taking place worldwide. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager.

  1. Geothermal Heat Pumps for Federal Buildings

    SciTech Connect

    1999-08-01

    OFFICE OF GEOTHERMAL TECHNOLOGIES Geothermal Heat Pumps for Federal Buildings The U.S. Government spends approximately $8 billion annually on its energy needs. To reduce energy use in Federal buildings, President Bill Clinton issued Executive Order 13123 in June 1999, which calls for a 35% reduction in Federal energy use from 1985 levels by 2010. Geothermal heat pumps--when installed in virtually any type of building--can help accomplish this goal with energy savings of up to 40%. Geothermal he.

  2. Geothermal direct-heat utilization assistance. Quarterly progress report, January--March 1993

    SciTech Connect

    Lienau, P.

    1993-03-30

    CHC (Geo-Heated Center) staff provided assistance to 103 requests from 26 states, and from Canada, Egypt, Mexico, China, Poland and Greece. A breakdown of the requests according to application include: space and district heating (19), geothermal heat pumps (24), greenhouses (10), aquaculture (4), industrial (4), equipment (3), resources (27), electric power (2) and other (20). Progress is reported on: (1) evaluation of lineshaft turbine pump problems, (2) pilot fruit drier and (3) geothermal district heating marketing tools and equipment investigation. Four presentations and two tours were conducted during the quarter, GHC Quarterly Bulletin Vol. 14, No. 4 was prepared, 14 volumes were added to the library and information was disseminated to 45 requests. Progress reports are on: (1) GHP Teleconference 93, (2) California Energy Buys Glass Mountain Prospect from Unocal and Makes Deal for Newberry Caldera, (3) New Power Plant Planned, (4) Vale to Get Power Plant, (5) BPA Approves Geothermal Project, (6) Update: San Bernardino Reservoir Study, (7) Twenty-nine Palms Geothermal Resources, (8) Geo-Ag Heat Center, Lake County, and (9) Update: Geothermal Wells at Alturas.

  3. Strategic plan for the geothermal energy program

    SciTech Connect

    1998-06-01

    Geothermal energy (natural heat in the Earth`s crust) represents a truly enormous amount of energy. The heat content of domestic geothermal resources is estimated to be 70,000,000 quads, equivalent to a 750,000-year supply of energy for the entire Nation at current rates of consumption. World geothermal resources (exclusive of resources under the oceans) may be as much as 20 times larger than those of the US. While industry has focused on hydrothermal resources (those containing hot water and/or steam), the long-term future of geothermal energy lies in developing technology to enable use of the full range of geothermal resources. In the foreseeable future, heat may be extracted directly from very hot rocks or from molten rocks, if suitable technology can be developed. The US Department of Energy`s Office of Geothermal Technologies (OGT) endorses a vision of the future in which geothermal energy will be the preferred alternative to polluting energy sources. The mission of the Program is to work in partnership with US industry to establish geothermal energy as a sustainable, environmentally sound, economically competitive contributor to the US and world energy supply. In executing its mission and achieving its long-term vision for geothermal energy, the Program has identified five strategic goals: electric power generation; direct use applications and geothermal heat pumps; international geothermal development; science and technology; and future geothermal resources. This report discusses the objectives of these five goals.

  4. Geothermal Energy Development annual report 1979

    SciTech Connect

    Not Available

    1980-08-01

    This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

  5. Geothermal progress monitor. Progress report No. 7

    SciTech Connect

    Not Available

    1983-04-01

    A state-by-state review of major geothermal-development activities during 1982 is presented. It also inlcudes a summary of recent drilling and exploration efforts and the results of the 1982 leasing program. Two complementary sections feature an update of geothermal direct-use applications and a site-by-site summary of US geothermal electric-power development.

  6. Advanced seismic imaging for geothermal development

    SciTech Connect

    Louie, John; Pullammanappallil, Satish; Honjas, Bill

    2016-08-01

    J. N. Louie, Pullammanappallil, S., and Honjas, W., 2011, Advanced seismic imaging for geothermal development: Proceedings of the New Zealand Geothermal Workshop 2011, Nov. 21-23, Auckland, paper 32, 7 pp. Preprint available at http://crack.seismo.unr.edu/geothermal/Louie-NZGW11.pdf

  7. Geothermal energy for Hawaii: a prospectus

    SciTech Connect

    Yen, W.W.S.; Iacofano, D.S.

    1981-01-01

    An overview of geothermal development is provided for contributors and participants in the process: developers, the financial community, consultants, government officials, and the people of Hawaii. Geothermal energy is described along with the issues, programs, and initiatives examined to date. Hawaii's future options are explored. Included in appendices are: a technical glossary, legislation and regulations, a geothermal directory, and an annotated bibliography. (MHR)

  8. Microbiological monitoring in geothermal plants

    NASA Astrophysics Data System (ADS)

    Alawi, M.; Lerm, S.; Vetter, A.; Vieth, A.; Seibt, A.; Wolfgramm, M.; Würdemann, H.

    2009-12-01

    In times of increasing relevance of alternative energy resources the utilization of geothermal energy and subsurface energy storage gains importance and arouses increasing interest of scientists. The research project “AquiScreen” investigates the operational reliability of geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. Microbiological analyses based on fluid and solid phases of geothermal systems are conducted to evaluate the impact of microbial populations on these systems. The presentation focuses on first results obtained from microbiological monitoring of geothermal plants located in two different regions of Germany: the North German Basin and the Molasse Basin in the southern part characterized by different salinities and temperatures. Fluid and filter samples taken during regular plant operation were investigated using genetic fingerprinting based on PCR-amplified 16S rRNA genes to characterize the microbial biocenosis of the geothermal aquifer. Sequencing of dominant bands of the fingerprints and the subsequent comparison to 16S rRNA genes from public databases enables a correlation to metabolic classes and provides information about the biochemical processes in the deep biosphere. The genetic profiles revealed significant differences in microbiological community structures of geothermal aquifers investigated. Phylogenetic analyses indicate broad metabolical diversity adapted to the specific conditions in the aquifers. Additionally a high amount of so far uncultivated microorganisms was detected indicating very specific indigenous biocenosis. However, in all geothermal plants bacteria were detected despite of fluid temperatures from 45° to 120°C. The identified microorganisms are closely related to thermophilic and hyperthermophilic species detectable in hot wells and hot springs, like Thermus scotoductus and Thermodesulfovibrio yellowstonii, respectively. Halophilic species were detected in

  9. Hot Dry Rock Geothermal Energy Development Program

    SciTech Connect

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  10. Estimating the Prospectivity of Geothermal Resources Using the Concept of Hydrogeologic Windows

    NASA Astrophysics Data System (ADS)

    Bielicki, Jeffrey; Blackwell, David; Harp, Dylan; Karra, Satish; Kelley, Richard; Kelley, Shari; Middleton, Richard; Person, Mark; Sutula, Glenn; Witcher, James

    2016-04-01

    In this Geothermal Play Fairways Analysis project we sought to develop new ways to analyze geologic, geochemical, and geophysical data to reduce the risk and increase the prospects of successful geothermal exploration and development. We collected, organized, and analyzed data from southwest New Mexico in the context of an integrated framework that combines the data for various signatures of a geothermal resource into a cohesive analysis of the presence of heat, fluid, and permeability. We incorporated data on structural characteristics (earthquakes, geophysical logs, fault location and age, basement depth), topographic and water table elevations, conservative ion concentrations, and thermal information (heat flow, bottom hole temperature, discharge temperature, and basement heat generation). These data were combined to create maps that indicate structural analysis, slope, geothermometry, and heat. We also mapped discharge areas (to constrain elevations where groundwater may be discharged through modern thermal springs or paleo-thermal springs) and subcrops: possible erosionally- or structurally-controlled breaches in regional-scale aquitards that form the basis of our hydrogeologic windows concept. These two maps were particularly useful in identifying known geothermal systems and narrowing the search for unknown geothermal prospects. We further refined the "prospectivity" of the areas within the subcrops and discharge areas by developing and applying a new method for spatial association analysis to data on known and inferred faults, earthquakes, geochemical thermometers, and heat flow. This new methodology determines the relationships of the location and magnitudes of observations of these data with known geothermal sites. The results of each of the six spatial association analyses were weighted between 0 and 1 and summed to produce a prospectivity score between 0 and 6, with 6 indicating highest geothermal potential. The mean value of prospectivity for all

  11. Models for geothermal wells

    SciTech Connect

    Michaelides, E.E.

    1980-06-01

    The problem of two-phase flow pressure loss is examined in order to give an answer to the problem of determination of the wellhead conditions. For this purpose two models have been developed, the first based on the pattern structure of the flow and the second on the mixing length theory. The void fraction correlations and the transition conditions are presented in the first model as a means of estimating the pressure loss. Heat losses, and the effect of impurities are examined in detail. An expression for the critical flow conditions is also derived. The model is used to predict the available power at the wellhead under various conditions and an answer to the problem of well pumping is given. For the second model an outline of the mixing length theory and the boundary layer coordinates is given; a density distribution in the geothermal well is assumed and the equations for the pressure loss are derived by means of the entropy production function. Finally a comparison of the two models is made and their predictive power is tested against known well data. A brief comparison with the Denver Research Institute is also made.

  12. Thermodynamics of geothermal fluids

    SciTech Connect

    Rogers, P.S.Z.

    1981-03-01

    A model to predict the thermodynamic properties of geothermal brines, based on a minimum amount of experimental data on a few key systems, is tested. Volumetric properties of aqueous sodium chloride, taken from the literature, are represented by a parametric equation over the range 0 to 300{sup 0}C and 1 bar to 1 kbar. Density measurements at 20 bar needed to complete the volumetric description also are presented. The pressure dependence of activity and thermal properties, derived from the volumetric equation, can be used to complete an equation of state for sodium chloride solutions. A flow calorimeter, used to obtain heat capacity data at high temperatures and pressures, is described. Heat capacity measurements, from 30 to 200{sup 0}C and 1 bar to 200 bar, are used to derive values for the activity coefficient and other thermodynamic properties of sodium sulfate solutions as a function of temperature. Literature data on the solubility of gypsum in mixed electrolyte solutions have been used to evaluate model parameters for calculating gypsum solubility in seawater and natural brines. Predictions of strontium and barium sulfate solubility in seawater also are given.

  13. Colorado Potential Geothermal Pathways

    DOE Data Explorer

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Colorado PRS Cool Fairways Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the weakened basement rocks. Isostatic gravity was utilized to identify structural basin areas, characterized by gravity low values reflecting weakened basement rocks. Together interpreted regional fault zones and basin outlines define geothermal "exploration fairways", where the potential exists for deep, superheated fluid flow in the absence of Pliocene or younger volcanic units Spatial Domain: Extent: Top: 4544698.569273 m Left: 144918.141004 m Right: 763728.391299 m Bottom: 4094070.397932 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  14. Geothermal resource of Sumatra

    SciTech Connect

    Hochstein, M.P. . Geothermal Inst.); Sudarman, Sayogi . Geothermal Section)

    1993-06-01

    There are at least 30 high temperatures systems (with inferred reservoir temperatures > 200 C) along the active Sumatra Arc that transfer heat from crustal intrusions to the surface. These systems, together with eleven active volcanoes, five degassing volcanoes and one caldera volcano (Lake Toba), are controlled by the Sumatra Fault Zone, an active mega shear zone that follows the median axis of the arc. At least half of the active and degassing volcanoes are associated with volcanic geothermal reservoirs containing magmatic gases and acid fluids. Large, low temperature resources exist in the Tertiary sedimentary basins of east Sumatra (back-arc region), where anomalously higher thermal gradients (up to 8 C/100 m) have been measured. Volcanic activity was not continuous during the Cenozoic; subduction and arc volcanism probably decreased after the Eocene as a result of a clockwise rotation of Sumatra. In the Late Miocene, subduction started again, and andesitic volcanism reached a new peak of intensity in the Pliocene and has been continuous ever since. Rhyolitic volcanism, which has produced voluminous ignimbrite flows, began later (Pliocene/Pleistocene). All known rhyolitic centers associated with ignimbrite flows appear to lie along the Sumatra Fault Zone.

  15. Egade, Mexico.

    ERIC Educational Resources Information Center

    Kubany, Elizabeth

    2001-01-01

    Presents a business school design in Mexico, whose spiral building sits atop a parking structure creating a compact, symbolic form for an arid urban landscape. Includes seven photographs, a floor plan, and sectional drawing. (GR)

  16. Geothermal district piping - A primer

    SciTech Connect

    Rafferty, K.

    1989-11-01

    Transmission and distribution piping constitutes approximately 40 -60% of the capital costs of typical geothermal district heating systems. Selections of economical piping suitable for the fluid chemistry is critical. Presently, most piping (56%) in geothermal systems is of asbestos cement construction. Some fiberglass (19%) and steel (19%) is also in use. Identification of an economical material to replace asbestos cement is important to future project development. By providing information on relative costs, purchase considerations, existing material performance and new products, this report seeks to provide a background of information to the potential pipe purchaser. A brief discussion of the use of uninsulated piping in geothermal district heating systems is also provided. 5 refs., 19 figs., 1 tab.

  17. Geothermometer calculations for geothermal assessment

    USGS Publications Warehouse

    Reed, M.J.; Mariner, R.H.

    2007-01-01

    Geothermal exploration programs have relied on the calculation of geothermometers from hot spring chemistry as an early estimation of geothermal reservoir temperatures. Calibration of the geothermometers has evolved from experimental determinations of mineral solubility as a function of temperature to calibration from analyses of water chemistry from known depths and temperatures in thermal wells. Most of the geothermometers were calibrated from analyses of sodium-chloride type waters, and the application of some geothermometers should be restricted to waters of the chemical types that were used in their calibration. Chemical analyses must be determined to be reliable before they are used to calculate geothermometers. The USGS Geothermal Resource Assessment will rely on the silica geothermometer developed by Giggenbach that approximates the transition between chalcedony at 20??C and quartz at 200??C. Above 200??C, the assessment will rely on the quartz geothermometer. In addition, the assessment will also rely on the potassium-magnesium geothermometer.

  18. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  19. Environmental problems and geothermal permitting

    SciTech Connect

    Windrem, P.F.; Marr, G.L.

    1982-01-01

    This paper describes the stages of geothermal development, the attendant environmental hazards, and the jurisdictions of the various government agencies. Most examples of environmental hazards are drawn from the electric-power production in the geysers of northern California. The major enviromental effects of geothermal development are observed on air quality (including noise), land (including soil erosion, seismic activity and subsidence, wildlife habitat, and visual quality), and water quality. Ownership determines which agencies have jurisdiction, with the preparation of an environmental impact statement at the heart of the federal regulatory process and an environmental-impact report required at the state level. Environmental rules also cover power-plant construction and geothermal field abandonment. 58 references.

  20. Geothermal progress monitor report No. 6

    SciTech Connect

    Not Available

    1982-06-01

    Geothermal Progress Monitor Report No. 6 presents a state-by-state summary of the status of geothermal leasing, exploration, and development in major physiographic regions where geothermal resource potential has been identified. Recent state-specific activities are reported at the end of each state status report, while recent activities of a more general nature are summarized briefly in Part II of the report. A list of recent publications of potential interest to the geothermal community and a directory of contributors to the geothermal progress monitoring system are also included.

  1. "Assistance to States on Geothermal Energy"

    SciTech Connect

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the NGC

  2. Geothermal Progress Monitor: Report No. 14

    SciTech Connect

    Not Available

    1992-12-01

    This issue of the Geothermal Progress Monitor, the 14th since its inception in 1980, highlights the anticipated rapid growth in the use of geothermal heat pumps and documents the continued growth in the use of geothermal energy for power generation, both in this country and abroad. In countries with a relatively large demand for new generation capacity, geothermal, if available, is being called on as a preferable alternative to the use of domestic or imported oil. On the other hand, in this country where current demand for new capacity is less, geothermal energy is commonly being put to use in small power generation units operating on the hot water resource.

  3. Hot Dry Rock; Geothermal Energy

    SciTech Connect

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  4. Geothermal resources of California sedimentary basins

    USGS Publications Warehouse

    Williams, C.F.; Grubb, F.V.; Galanis, S.P.

    2004-01-01

    The 2004 Department of Energy (DOE) Strategic Plan for geothermal energy calls for expanding the geothermal resource base of the United States to 40,000 MW of electric power generating potential. This will require advances in technologies for exploiting unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and geopressured geothermal. An investigation of thermal conditions in California sedimentary basins through new temperature and heat flow measurements reveals significant geothermal potential in some areas. In many of the basins, the combined cooling effects of recent tectonic and sedimentary processes result in relatively low (<60 mW/m2) heat flow and geothermal gradients. For example, temperatures in the upper 3 km of San Joaquin, Sacramento and Ventura basins are typically less than 125??C and do not reach 200??c by 5 km. By contrast, in the Cuyama, Santa Maria and western Los Angeles basins, heat flow exceeds 80 mW/m2 and temperatures near or above 200??C occur at 4 to 5 km depth, which represents thermal conditions equivalent to or hotter than those encountered at the Soultz EGS geothermal site in Europe. Although the extractable geothermal energy contained in these basins is not large relative to the major California producing geothermal fields at The Geysers or Salton Sea, the collocation in the Los Angeles basin of a substantial petroleum extraction infrastructure and a major metropolitan area may make it attractive for eventual geothermal development as EGS technology matures.

  5. Modeling discharge requirements for deep geothermal wells at the Cerro Prieto geothermal field, MX

    SciTech Connect

    Menzies, Anthony J.; Granados, Eduardo E.; Puente, Hector Gutierrez; Pierres, Luis Ortega

    1995-01-26

    During the mid-l980's, Comision Federal de Electricidad (CFE) drilled a number of deep wells (M-200 series) at the Cerro Prieto geothermal field, Baja California, Mexico to investigate the continuation of the geothermal reservoir to the east of the Cerro Prieto-II and III production areas. The wells encountered permeability at depths ranging from 2,800 to 4,400 m but due to the reservoir depth and the relatively cold temperatures encountered in the upper 1,000 to 2,000 m of the wells, it was not possible to discharge some of the wells. The wells at Cerro Prieto are generally discharged by injecting compressed air below the water level using 2-3/8-inch tubing installed with either a crane or workover rig. The objective of this technique is to lift sufficient water out of the well to stimulate flow from the reservoir into the wellbore. However, in the case of the M-200 series wells, the temperatures in the upper 1,000 to 2,000 m are generally below 50 C and the heat loss to the formation is therefore significant. The impact of heat loss on the stimulation process was evaluated using both a numerical model of the reservoir/wellbore system and steady-state wellbore modeling. The results from the study indicate that if a flow rate of at least 300 liters/minute can be sustained, the well can probably be successfully stimulated. This is consistent with the flow rates obtained during the successful stimulations of wells M-202 and M-203. If the flow rate is closer to 60 liters/minute, the heat loss is significant and it is unlikely that the well can be successfully discharged. These results are consistent with the unsuccessful discharge attempts in wells M-201 and M-205.

  6. Geothermal Program Review XII: proceedings. Geothermal Energy and the President's Climate Change Action Plan

    SciTech Connect

    Not Available

    1994-12-31

    Geothermal Program Review XII, sponsored by the Geothermal Division of US Department of Energy, was held April 25--28, 1994, in San Francisco, California. This annual conference is designed to promote effective technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal energy developers; suppliers of geothermal goods and services; representatives from federal, state, and local agencies; and others with an interest in geothermal energy. In-depth reviews of the latest technological advancements and research results are presented during the conference with emphasis on those topics considered to have the greatest potential to impact the near-term commercial development of geothermal energy.

  7. Geothermal Research and Development Program

    SciTech Connect

    Not Available

    1993-01-25

    Results are reported on adsorption of water vapor on reservoir rocks, physics of injection of water into vapor-dominated geothermal reservoirs, earth-tide effects on downhole pressures, injection optimization at the Geysers, effects of salinity in adsorption experiments, interpreting multiwell pressure data from Ohaaki, and estimation of adsorption parameters from transient experiments.

  8. Turbodrilling in the Geothermal Environment

    SciTech Connect

    Herbert, P.

    1981-01-01

    Geothermal drilling, historically, has presented what seemed to be insurmountable barriers to the efficient and extended use of downhole drilling motors, especially those containing elastomeric bearing or motor components. In addition to being damaging to rubber, the typical temperatures of 177 to 371 C (350 to 700 F) create other operating problems as well. Recent innovations, specifically in turbodrill design, have opened heretofore unrealized potentials and allowed, for the first time, extended downhole drilling of geothermal wells. A considerable amount of experience has been obtained both in The Geysers and Imperial County areas of California primarily in directional drilling applications using insert, diamond, and polycrystallines diamond compact bits. Other hot-hole applications are currently being drilled successfully or planned in other states, both onshore and offshore. The turbodrill is devoid of any elastomers or other temperature-sensitive materials, hence, its capabilities are closely matched to the requirements of the industry. The bearing assembly can withstand the rigors found in the drilling of typical geothermal formations and provide the performance necessary to stay in the hole, thus providing increased penetration rates and, hence, more economical drilling. This paper presents case histories of recent turbodrill performances in all areas where used. Furthermore, data will be presented showing the performance of insert, diamond, and polycrystalline diamond bits as they relate to the turbodrill, together with forecasts as to the potential that turbodrills have to offer in accelerating and controlling the drilling of geothermal wells.

  9. Geothermal gradients in Mississippi embayment

    SciTech Connect

    Staub, W.P.; Treat, N.L.

    1983-09-01

    A statistical analysis of bottom-hole temperatures from oil and gas wells in the northern Mississippi embayment suggests that the geothermal gradient below a depth of 1 km is low (22.2/sup 0/C/km) and for the New Madrid seismic zone, it is even lower (15.7/sup 0/C/km). These data support the tentative conclusion of Swanberg et al that ground-water convection is the source of near-surface heat in shallow water wells of the region. Research by Mitchell et al had suggested a high geothermal gradient in the crust and upper mantel beneath the New Madrid seismic zone as a plausible explanation for the lower than average compressional wave velocities observed there. Warmer than normal wells in the northern Mississippi embayment are scattered at random and may be attributed to random error in the data. Deep wells in the southern Mississippi embayment are substantially hotter than wells at a comparable depth farther north. The regional geothermal gradient below a depth of 1 km from northern Louisiana to central Mississippi is 26.9/sup 0/C/km. From central Mississippi to central Alabama, the geothermal gradient (23.1/sup 0/C/km) is comparable to that of the northern Mississippi embayment.

  10. Process for cementing geothermal wells

    DOEpatents

    Eilers, Louis H.

    1985-01-01

    A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight mono- or copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

  11. Guide to Geothermal Heat Pumps

    SciTech Connect

    2011-02-01

    Geothermal heat pumps, also known as ground source heat pumps, geoexchange, water-source, earth-coupled, and earth energy heat pumps, take advantage of this resource and represent one of the most efficient and durable options on the market to heat and cool your home.

  12. Leasing of federal geothermal resources

    NASA Technical Reports Server (NTRS)

    Stone, R. T.

    1974-01-01

    Pursuant to the Geothermal Steam Act of 1970 and the regulations published on December 21, 1973, the first Federal geothermal competitive lease sale was held on January 22, 1974, by the Department of the Interior, offering 33 tracts totalling over 50,000 acres in three Known Geothermal Resource Areas in California. On January 1, 1974, Federal lands outside Known Geothermal Resource Areas were opened to noncompetitive lease applications, of which, 3,763 had been received by June 1, 1974. During fiscal year 1974, a total of 22 competitive leases had been issued in California and Oregon. The principal components in the Department involved in the leasing program are the Geological Survey and the Bureau of Land Management. The former has jurisdiction over drilling and production operations and other activities in the immediate area of operations. The latter receives applications and issues leases and is responsible for managing leased lands under its jurisdiction outside the area of operations. The interrelationships of the above agencies and the procedures in the leasing program are discussed.

  13. Experiments Demonstrate Geothermal Heating Process

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    When engineers design heat-pump-based geothermal heating systems for homes and other buildings, they can use coil loops buried around the perimeter of the structure to gather low-grade heat from the earth. As an alternative approach, they can drill well casings and store the summer's heat deep in the earth, then bring it back in the winter to warm…

  14. Geothermal Exploration Cost and Time

    DOE Data Explorer

    Jenne, Scott

    2013-02-13

    The Department of Energy’s Geothermal Technology Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. The National Renewable Energy Laboratory (NREL) was tasked with developing a metric in 2012 to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this cost and time metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration cost and time improvements can be compared, and developing an online tool for graphically showing potential project impacts (all available at http://en.openei.org/wiki/Gateway: Geothermal). This paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open Energy Information website (OpenEI, http://en.openei.org) for public access. - Published 01/01/2013 by US National Renewable Energy Laboratory NREL.

  15. Remote sensing application on geothermal exploration

    NASA Astrophysics Data System (ADS)

    Gaffar, Eddy Z.

    2013-09-01

    Geothermal energy is produced when water coming down from the surface of the earth and met with magma or hot rocks, which the heat comes from the very high levels of magma rises from the earth. This process produced a heated fluid supplied to a power generator system to finally use as energy. Geothermal field usually associated with volcanic area with a component from igneous rocks and a complex geological structures. The fracture and fault structure are important geological structures associated with geothermal. Furthermore, their geothermal manifestations also need to be evaluated associated their geological structures. The appearance of a geothermal surface manifestation is close to the structure of the fracture and the caldera volcanic areas. The relationship between the fault and geothermal manifestations can be seen in the form of a pattern of alignment between the manifestations of geothermal locations with other locations on the fault system. The use of remote sensing using electromagnetic radiation sensors to record images of the Earth's environment that can be interpreted to be a useful information. In this study, remote sensing was applied to determine the geological structure and mapping of the distribution of rocks and alteration rocks. It was found that remote sensing obtained a better localize areas of geothermal prospects, which in turn could cut the chain of geothermal exploration to reduce a cost of geothermal exploration.

  16. Microbiological Monitoring in Geothermal Plants

    NASA Astrophysics Data System (ADS)

    Alawi, M.; Lerm, S.; Linder, R.; Vetter, A.; Vieth-Hillebrand, A.; Miethling-Graff, R.; Seibt, A.; Wolfgramm, M.; Wuerdemann, H.

    2010-12-01

    In the scope of the research projects “AquiScreen” and “MiProTherm” we investigated geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. On one side an enhanced process understanding of engineered geothermal systems is mandatory to optimize plant reliability and economy, on the other side this study provides insights into the microbiology of terrestrial thermal systems. Geothermal systems located in the North German Basin and the Molasse Basin were analyzed by sampling of fluids and solid phases. The investigated sites were characterized by different temperatures, salinities and potential microbial substrates. The microbial population was monitored by the use of genetic fingerprinting techniques and PCR-cloning based on PCR-amplified 16S rRNA and dissimilatory sulfite reductase (DSR) genes. DNA-sequences of fingerprints and cloned PCR-products were compared to public databases and correlated with metabolic classes to provide information about the biogeochemical processes. In all investigated geothermal plants, covering a temperature range from 5° to 120°C, microorganisms were found. Phylogenetic gene analyses indicate a broad diversity of microorganisms adapted to the specific conditions in the engineered system. Beside characterized bacteria like Thermus scotoductus, Siderooxidans lithoautotrophicus and the archaeon Methanothermobacter thermoautotrophicus a high number of so far uncultivated microorganisms was detected. As it is known that - in addition to abiotic factors - microbes like sulfate-reducing bacteria (SRB) are involved in the processes of corrosion and scaling in plant components, we identified SRB by specific analyses of DSR genes. The SRB detected are closely related to thermotolerant and thermophilic species of Desulfotomaculum, Thermodesulfovibrio, Desulfohalobium and Thermodesulfobacterium, respectively. Overall, the detection of microbes known to be involved in biocorrosion and the

  17. Submarine geothermal resources

    USGS Publications Warehouse

    Williams, D.L.

    1976-01-01

    Approximately 20% of the earth's heat loss (or 2 ?? 1012 cal/s) is released through 1% of the earth's surface area and takes the form of hydrothermal discharge from young (Pleistocene or younger) rocks adjacent to active seafloor-spreading centers and submarine volcanic areas. This amount is roughly equivalent to man's present gross energy consumption rate. A sub-seafloor geothermal reservoir, to be exploitable under future economic conditions, will have to be hot, porous, permeable, large, shallow, and near an energy-deficient, populated land mass. Furthermore, the energy must be recoverable using technology achievable at a competitive cost and numerous environmental, legal and institutional problems will have to be overcome. The highest-temperature reservoirs should be found adjacent to the zones of the seafloor extension or volcanism that are subject to high sedimentation rates. The relatively impermeable sediments reduce hydrothermal-discharge flow rates, forcing the heat to be either conducted away or released by high-temperature fluids, both of which lead to reservoir temperatures that can exceed 300??C. There is evidence that the oceanic crust is quite permeable and porous and that it was amenable to deep (3-5 km) penetration by seawater at least some time in the early stages of its evolution. Most of the heat escapes far from land, but there are notable exceptions. For example, in parts of the Gulf of California, thermal gradients in the bottom sediments exceed 1??C/m. In the coastal areas of the Gulf of California, where electricity and fresh water are at a premium, this potential resource lies in shallow water (< 200 m) and within sight of land. Other interesting areas include the Sea of Japan, the Sea of Okhotsk and the Andaman Sea along the margins of the western Pacific, the Tyrrhenian Sea west of Italy, and the southern California borderland and west flank of the Juan de Fuca Ridge off the west coast of the United States. Many questions remain to be

  18. DOE Webinar - Residential Geothermal Heat Pump Retrofits (Presentation)

    SciTech Connect

    Anderson, E. R.

    2010-12-14

    This presentation was given December 14, 2010, as part of DOE's Webinar series. The presentation discusses geothermal heat pump retrofits, technology options, and an overview of geothermal energy and geothermal heat pumps.

  19. Low-Temperature Geothermal Resources, Geothermal Technologies Program (GTP) (Fact Sheet)

    SciTech Connect

    Not Available

    2010-05-01

    This document highlights the applications of low-temperature geothermal resources and the potential for future uses as well as current Geothermal Technologies Program-funded projects related to low-temperature resources.

  20. Geothermal Technologies Program - Geothermal Energy: Putting Creative Ideas to Work (Green Jobs)

    SciTech Connect

    2010-06-01

    Rapid expansion of U.S. geothermal capacity is opening new job opportunities across the nation. With more than 3,000 megawatts (MW) already installed, the United States leads the world in existing geothermal capacity.

  1. Monitoring of Acoustic Emissions Within Geothermal Areas in Iceland: A new Tool for Geothermal Exploration.

    NASA Astrophysics Data System (ADS)

    Brandsdóttir, B.; Gudmundsson, O.

    2007-12-01

    With increased emphasis on geothermal development new exploration methods are needed in order to improve general understanding of geothermal reservoirs, characterize their extent and assess the potential for sustainable power production. Monitoring of acoustic emissions within geothermal areas may provide a new tool to evaluate the spatial extent of geothermal fields and model rock-fluid interactions. Three-dimensional seismic data have been used to assess the spatial and temporal distribution of noise within several high-temperature geothermal fields in Iceland. Seismic noise in the 4-6 Hz range within the Svartsengi field can be attributed to steam hydraulics and pressure oscillations within the geothermal reservoirs. Seismic noise surveys compliment electrical resistivity soundings and TEM-surveys by providing information pertinent to the current geothermal activity and extent of steam fields within the uppermost crust of the geothermal reservoir. Information related to acoustic emissions can thus help define targets for future wells.

  2. Water Resource Assessment of Geothermal Resources and Water Use in Geopressured Geothermal Systems

    SciTech Connect

    Clark, C. E.; Harto, C. B.; Troppe, W. A.

    2011-09-01

    This technical report from Argonne National Laboratory presents an assessment of fresh water demand for future growth in utility-scale geothermal power generation and an analysis of fresh water use in low-temperature geopressured geothermal power generation systems.

  3. National Geothermal Data System (NGDS) Geothermal Data: Community Requirements and Information Engineering

    SciTech Connect

    Anderson, Arlene; Blackwell, David; Chickering, Cathy; Boyd, Toni; Horne, Roland; MacKenzie, Matthew; Moore, Joseph; Nickull, Duane; Richard, Stephen; Shevenell, Lisa A.

    2013-10-01

    To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is investing in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to supply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are discussed. In particular, this paper addresses the various types of data required to effectively assess geothermal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS includes a work plan that addresses data assets and resources of interest to users, a survey of data providers, data content models, and how data will be exchanged and promoted, as well as lessons learned within the geothermal community.

  4. Geothermal direct use in the United States update: 1990-1994

    SciTech Connect

    Lienau, P.J.; Lund, J.W.; Culver, G.G.

    1995-02-01

    Geothermal energy is estimated to currently supply approximately 13,885 TJ/yr (13,180 x 10{sup 9} BTU/yr) of heat energy through direct heat applications in the United States. Table 1 summarizes the U.S. geothermal direct heat uses. It should be noted that Table 1 does not contain enhanced oil recovery, which was included in the 1990 update report. In the oil fields of the upper midwest (Montana, North Dakota and Wyoming), thermal waters are not being injected at higher temperatures than the oil producing zones. This means that there is no benefit to reducing oil viscosity, which would have increased production rates; therefore, resulting in this use being deleted from direct uses in the table. In the 1990 report two geothermal district heating systems were listed as under construction, Mammoth Lakes and Bridgeport, these systems have not been built although exploratory wells have been drilled. They are not included in the current summary of direct uses. There have been no new geothermal district heating systems started; however, San Bernardino and Klamath Falls have expanded their systems. Annual energy use of direct heat applications reported for both the 1990 and 1994 updates are shown. All of the categories experienced some increase in use, however the largest growth has been in geothermal heat pumps. From 1985 to 1990 the highest growth rate in geothermal heat pumps occurred, then tapered off some from 1990 to 1994. In the other five categories there has been a steady growth with the largest occurring in space heating, greenhouses and industrial plants. Greenhouse development has been significant in New Mexico and Utah and a new onion and garlic dehydration plant was built in Nevada.

  5. Investigating ultra high-enthalpy geothermal systems: a collaborative initiative to promote scientific opportunities

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Nielson, D.; Schiffman, P.; Schriener, A., Jr.

    2014-12-01

    Scientists, engineers, and policy makers gathered at a workshop in the San Bernardino Mountains of southern California in October 2013 to discuss the science and technology involved in developing high-enthalpy geothermal fields. A typical high-enthalpy geothermal well between 2000 and 3000 m deep produces a mixture of hot water and steam at 200-300 °C that can be used to generate about 5-10 MWe of electric power. The theme of the workshop was to explore the feasibility and economic potential of increasing the power output of geothermal wells by an order of magnitude by drilling deeper to reach much higher pressures and temperatures. Development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Plans for resource assessment and drilling in such higher enthalpy areas are already underway in Iceland, New Zealand, and Japan. There is considerable potential for similar developments in other countries that already have a large production of electricity from geothermal steam, such as Mexico, the Philippines, Indonesia, Italy, and the USA. However drilling deeper involves technical and economic challenges. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope of investigation. An excellent example of such collaboration is the Iceland Deep Drilling Project (IDDP), which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs, and this approach could serve as model for future developments elsewhere. A planning committee was formed to explore creating a similar initiative in the USA.

  6. Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects

    SciTech Connect

    1986-02-12

    These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

  7. Geothermal demonstration: Zunil food dehydration facility

    SciTech Connect

    Maldonado, O. ); Altseimer, J.; Thayer, G.R. ); Cooper, L. ); Caicedo, A. . Inst. Nacional de Electrificacion)

    1991-08-01

    A food dehydration facility was constructed near the town of Zunil, Guatemala, to demonstrate the use of geothermal energy for industrial applications. The facility, with some modifications to the design, was found to work quite satisfactorily. Tests using five different products were completed during the time geothermal energy was used in the plant. During the time the plant was not able to use geothermal energy, a temporary diesel-fueled boiler provided the energy to test dehydration on seven other crops available in this area. The system demonstrates that geothermal heat can be used successfully for dehydrating food products. Many other industrial applications of geothermal energy could be considered for Zunil since a considerable amount of moderate-temperature heat will become available when the planned geothermal electrical facility is constructed there. 6 refs., 15 figs., 7 tabs.

  8. Geothermal direct use engineering and design guidebook

    SciTech Connect

    Lienau, P.J.; Lunis, B.C.

    1990-01-01

    The use of low- and moderate-temperature (50 to 300{degree}F) geothermal resources for direct use applications has increased significantly since the late 1970s. As a result of this growth, and the need for state-of-the-art information on geothermal direct use project development, the Geothermal Direct Use Engineering and Design Guidebook was published. The book contains 20 chapters titled: Introduction; Demonstration projects lessons learned; Nature of geothermal resources; Exploration for direct heat resources; Geothermal fluid sampling techniques; Drilling and well construction; Well testing and reservoir evaluation; Materials selection guidelines; Well pumps; Piping geothermal fluids; Heat exchangers; Space heating equipment; Heat pumps; Absorption refrigeration; Greenhouses; Aquaculture; Industrial applications; Engineering cost analysis; Regulatory and commercial aspects; and Environmental considerations.

  9. The National Geothermal Energy Research Program

    NASA Technical Reports Server (NTRS)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  10. Direct contact, binary fluid geothermal boiler

    DOEpatents

    Rapier, Pascal M.

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  11. Direct contact, binary fluid geothermal boiler

    DOEpatents

    Rapier, P.M.

    1979-12-27

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carryover through the turbine causing corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  12. Geothermal energy: tomorrow's alternative today. A handbook for geothermal-energy development in Delaware

    SciTech Connect

    Mancus, J.; Perrone, E.

    1982-08-01

    This is a general procedure guide to various technical, economic, and institutional aspects of geothermal development in Delaware. The following are covered: geothermal as an alternative, resource characteristics, geology, well mechanics and pumping systems, fluid disposal, direct heat utilization-feasibility, environmental and legal issues, permits and regulations, finance and taxation, and steps necessary for geothermal development. (MHR)

  13. Small-Scale Geothermal Power Plant Field Verification Projects: Preprint

    SciTech Connect

    Kutscher, C.

    2001-07-03

    In the spring of 2000, the National Renewable Energy Laboratory issued a Request for Proposal for the construction of small-scale (300 kilowatt [kW] to 1 megawatt [MW]) geothermal power plants in the western United States. Five projects were selected for funding. Of these five, subcontracts have been completed for three, and preliminary design work is being conducted. The three projects currently under contract represent a variety of concepts and locations: a 1-MW evaporatively enhanced, air-cooled binary-cycle plant in Nevada; a 1-MW water-cooled Kalina-cycle plant in New Mexico; and a 750-kW low-temperature flash plant in Utah. All three also incorporate direct heating: onion dehydration, heating for a fish hatchery, and greenhouse heating, respectively. These projects are expected to begin operation between April 2002 and September 2003. In each case, detailed data on performance and costs will be taken over a 3-year period.

  14. Reservoir engineering studies of the Cerro Prieto geothermal field

    NASA Astrophysics Data System (ADS)

    Goyal, K. P.; Lippmann, M. J.; Tsang, C. F.

    1982-09-01

    Reservoir engineering studies of the Cerro Prieto geothermal field began in 1978 under a five-year cooperative agreement between the US Department of Energy and the Comision Federal de Electricidad de Mexico, with the ultimate objective of simulating the reservoir to forecast its production capacity, energy longevity, and recharge capability under various production and injection scenarios. During the fiscal year 1981, attempts were made to collect information on the evolution history of the field since exploitation began; the information is to be used later to validate the reservoir model. To this end, wellhead production data were analyzed for heat and mass flow and also for changes in reservoir pressures, temperatures, and saturations for the period from March 1973 to November 1980.

  15. Geothermal policy development program: expediting the local geothermal permitting process

    SciTech Connect

    Not Available

    1981-07-01

    For a number of years, concerns have been raised about the length of time and the complexity involved in obtaining required permits in order to develop the geothermal resource at the Geysers. Perhaps the most important factor is jurisdiction. At the Geysers, all three levels of government - local, state, and federal - exercise significant authority over various aspects of geothermal development. In addition, several agencies within each governmental level play an active role in the permitting process. The present study is concerned primarily with the local permitting process, and the ways in which this process could be expedited. This report begins by looking at the local role in the overall permitting process, and then reviews the findings and conclusions that have been reached in other studies of the problem. This is followed by a case study evaluation of recent permitting experience in the four Geysers-Calistoga KGRA counties, and the report concludes by outlining several approaches to expediting the local permitting process.

  16. Geothermal fracture stimulation technology. Volume III. Geothermal fracture fluids

    SciTech Connect

    Not Available

    1981-01-01

    A detailed study of all available and experimental frac fluid systems is presented. They have been examined and tested for physical properties that are important in the stimulation of hot water geothermal wells. These fluids consist of water-based systems containing high molecular weight polymers in the uncrosslinked and crosslinked state. The results of fluid testing for many systems are summarized specifically at geothermal conditions or until breakdown occurs. Some of the standard tests are ambient viscosity, static aging, high temperature viscosity, fluid-loss testing, and falling ball viscosity at elevated temperatures and pressures. Results of these tests show that unalterable breakdown of the polymer solutions begins above 300/sup 0/F. This continues at higher temperatures with time even if stabilizers or other high temperature additives are included.

  17. Design and construction of the NMSU Geothermally Heated Greenhouse Research Facility: Final technical report

    SciTech Connect

    Schoenmackers, R.

    1988-11-01

    This report describes the design, construction, and performance of the New Mexico State University (NMSU) Geothermal Greenhouse Research Facility. Two 6000-square-foot greenhouses were built on the NMSU campus and supplied with geothermal energy for heating. The geothermal water is pumped from one of three wells producing water at temperatures from 141/degree/F to 148/degree/F. Heat is delivered to the greenhouse space by means of overhead fan-coil unit heaters. The two greenhouses are double-glazed on roof and wall surfaces employing a total of four different film materials: Tedlar/Reg Sign/, Melinex/Reg Sign/, Softglass/Reg Sign/, and Agrifilm/Reg Sign/. One greenhouse is cooled using a traditional fan and pad cooling system. The second greenhouse is cooled with a high-pressure fog system and natural ventilation through roof and side vents. A 2400-square-foot metal building next to the greenhouses provides office, work, and storage space for the facility. The greenhouse facility was leased to two commerical tenants who produced a variety of crops. The performance of the greenhouses was monitored and reported both qualitatively and quantitatively. Results from the tenant's pilot-scale studies in the NMSU greenhouse facility were transferred and applied to two commercial greenhouse ranges that were built in southern New Mexico during 1986/87. 9 figs., 5 tabs.

  18. Mexico City

    Atmospheric Science Data Center

    2013-04-18

    ... Two small brighter patches within the hazy area indicate low fog. In the left-hand panel, the city basin appears significantly clearer, but ... very high altitudes, in contrast to the low-lying haze and fog near Mexico City. When the stereo retrieval determines that a location is ...

  19. Geothermal programs at Lawrence Livermore National Laboratory

    SciTech Connect

    Kasameyer, P.W.; Younker, L.W.

    1987-07-10

    Lawrence Livermore National Laboratory has a number of geothermal programs supported through two offices in the Department of Energy: the Office of Renewable Technologies, Geothermal Technologies Division, and the Office of Basic Energy Sciences, Division of Engineering, Mathematics and Geosciences. Within these programs, we are carrying out research in injection monitoring, optical instrumentation for geothermal wells, seismic imaging methods, geophysical and drilling investigations of young volcanic systems in California, and fundamental studies of the rock and mineral properties.

  20. Plant support capabilities of a geothermal fluid

    SciTech Connect

    Robinson, F.E.; Singh, K.; Berry, W.; Thomas, T.R.

    1980-09-01

    Geothermal fluids and shallow groundwater from Republic Geothermal, Inc. lease area of East Mesa in Imperial County, California were used successfully to irrigate sugar beet, alfalfa, asparagus, date palm, tamarisk, and desert climax vegetation. Chemical characteristics of the two irrigation fluids differed, but total dissolved solids content of the fluids were similar and within the 2000 mg/l range. The geothermal fluid contains elements which could be harmful to irrigated plants or plant consumers.

  1. Origins of acid fluids in geothermal reservoirs

    USGS Publications Warehouse

    Truesdell, Alfred

    1991-01-01

    Acid fluids in geothermal reservoirs are rare. Their occurrence in geothermal systems associated with recent volcanism (Tatun, Sumikawa, Miravalles) probably indicates that the geothermal reservoir fluid was derived from volcanic fluid incompletely neutralized by reaction with feldspars and micas. Superheated steam containing HCl (Larderello, The Geysers) forms acid where it condenses or mixes with liquid at moderate temperatures (325??C). Cryptoacidity occurs at Los Humeros where HCl acidity is formed and neutralized without reaching the surface.

  2. Geothermal drilling research in the United States

    SciTech Connect

    Varnado, S.G.; Maish, A.B.

    1980-01-01

    The high cost of drilling and completing geothermal wells is an impediment to the development of this resource. The Department of Energy (DOE), Division of Geothermal Energy (DGE), is conducting an R and D program directed at reducing well costs through improvements in geothermal drilling and completion technology. This program includes R and D activities in high temperature drilling hardware, drilling fluids, lost circulation control methods, completion technology, and advanced drilling systems. An overview of the program is presented.

  3. Exploration and development of the Cerro Prieto geothermal field

    SciTech Connect

    Lippmann, M.J.; Goldstein, N.E.; Halfman, S.E.; Witherspoon, P.A.

    1983-10-01

    A multidisciplinary effort to locate, delineate, and characterize the geothermal system at Cerro Prieto, Baja California, Mexico, began about 25 years ago. It led to the identification of an important high-temperature, liquid-dominated geothermal system which went into production in 1973. Initially, the effort was undertaken principally by the Mexican electric power agency, the Comision Federal de Electricidad (CFE). Starting in 1977 a group of U.S. organizations sponsored by the U.S. Department of Energy, joined CFE in this endeavor. An evaluation of the different studies carried out at Cerro Prieto has shown that: surface electrical resistivity and seismic reflection surveys are useful in defining targets for exploratory drilling; the mineralogical studies of cores and cuttings and the analysis of well logs are important in designing the completion of wells, identifying geological controls on fluid movement, determining thermal effects and inferring the thermal history of the field; geochemical surveys help to define zones of recharge and paths of fluid migration; and reservoir engineering studies are necessary in establishing the characteristics of the reservoir and in predicting its response to fluid production.

  4. Exploration and development of the Cerro Prieto geothermal field

    SciTech Connect

    Lippmann, M.J.; Goldstein, N.E.; Halfman, S.E.; Witherspoon, P.A.

    1983-07-01

    A multidisciplinary effort to locate, delineate, and characterize the geothermal system at Cerro Prieto, Baja California, Mexico, began about 25 years ago. It led to the identification of an important high-temperature, liquid-dominated geothermal system which went into production in 1973. Initially, the effort was undertaken principally by the Mexican electric power agency, the Comision Federal de Electricidad (CFE). Starting in 1977 a group of US organizations sponsored by the US Department of Energy, joined CFE in this endeavor. An evaluation of the different studies carried out at Cerro Prieto has shown that: (1) surface electrical resistivity and seismic reflection surveys are useful in defining targets for exploratory drilling; (2) the mineralogical studies of cores and cuttings and the analysis of well logs are important in designing the completion of wells, identifying geological controls on fluid movement, determining thermal effects and inferring the thermal history of the field; (3) geochemical surveys help to define zones of recharge and paths of fluid migration; and (4) reservoir engineering studies are necessary in establishing the characteristics of the reservoir and in predicting its response to fluid production.

  5. Materials for Geothermal Production

    SciTech Connect

    Kukacka, Lawrence E.

    1992-03-24

    Advances in the development of new materials continue to be made in the Geothermal Materials Project. Many successes have already been accrued and the results used commercially. In FY 1991, work was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities performed included lightweight CO{sub 2}-resistant well cements, thermally conductive and scale resistant protective liner systems, chemical systems for lost circulation control, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems. Efforts to transfer the technologies developed in these efforts to other energy-related sectors of the economy continued and considerable success was achieved. Laboratory testing of BNL-developed phosphate modified calcium aluminate cements confirmed their hydrolytic stability in 300 C brine and their resistance to chemical attack by CO{sub 2}. Specimens were found to be >20 times more resistant to carbonation than Class H cement and twice as resistant as unmodified calcium aluminate cements. Testing of thermally conductive polymer cements as potential corrosion resistant liner materials for use in heat exchanger applications was continued. Field test were conducted in flowing hypersaline brine and the results indicated scale deposition rates lower than those on a high alloy steel. Additional tests for bottoming cycle heat exchange use are planned for FY 1992. Progress was also made with chemical systems for lost circulation control. If materials placement is to be performed by pumping through an open drillpipe or through a drillable straddle packer, a bentonite-ammonium polyphosphate-borax-magnesium oxide formulation, containing fibers or particulates when large fissures are encountered, can be used. This system was ready for demonstration in FY 1991, but a suitable test site did not become available. Optimization of this and three other formulations for use with other Sandia National Laboratories

  6. Geoelectrical Characterization of the Punta Banda System: A Possible Structural Control for the Geothermal Anomalies

    NASA Astrophysics Data System (ADS)

    Arango-Galvan, C.; Flores-Marquez, E.; Prol-Ledesma, R.; Working Group, I.

    2007-05-01

    The lack of sufficient drinking water in México has become a very serious problem, especially in the northern desert regions of the country. In order to give a real solution to this phenomenon the IMPULSA research program has been created to develope novel technologies based on desalination of sea and brackish water using renewable sources of energy to face the problem. The Punta Banda geothermal anomaly is located towards the northern part of Baja California Peninsula (Mexico). High water temperatures in some wells along the coast depicted a geothermal anomaly. An audiomagnetotelluric survey was carried out in the area as a preliminary study, both to understand the process generating these anomalous temperatures and to assess its potential exploitation to supply hot water to desalination plants. Among the electromagnetic methods, the audiomagnetotellurics (AMT) method is appropriated for deep groundwater and geothermal studies. The survey consisted of 27 AMT stations covering a 5 km profile along the Agua Blanca Fault. The employed array allowed us to characterize the geoelectrical properties of the main structures up to 500 m depth. Two main geoelectrical zones were identified: 1) a shallow low resistivity media located at the central portion of the profile, coinciding with the Maneadero valley and 2) two high resitivity structures bordering the conductive zone possibly related to NS faulting, already identified by previous geophysical studies. These results suggest that the main geothermal anomalies are controlled by the dominant structural regime in the zone.

  7. Geothermal Resources of the Cascades: USGS Workshop

    NASA Astrophysics Data System (ADS)

    Guffanti, Marianne; Muffler, Patrick

    Since 1979, the Geothermal Research Program of the U.S. Geological Survey (USGS) has carried out a multidisciplinary research effort in the Cascade Range. The goal of this effort is to understand the tectonics, geology, and hydrology of the Cascades as a framework for characterizing and quantifying its geothermal resources. In May 1985, 5 years after an initial USGS-sponsored Cascades conference [Bacon, 1980], the Geothermal Research Program again sponsored a workshop on geothermal resources of the Cascade Range. Motivation for the workshop came primarily from the conviction within the Geothermal Research Program that the Cascade effort had advanced sufficiently that a forum with an explicitly geothermal focus was needed to promote the synthesis of ideas from diverse research projects. In addition, it was thought that research drilling plans in the Cascades that were being formulated by various other agencies also could benefit from the examination and evaluation that a workshop would foster. Accordingly, the workshop was designed to develop a common understanding of the status of various investigations among USGS and other scientists working in the Cascades, to stimulate renewed interest in understanding the geothermal regime of this volcanic chain, and to encourage the tectonic, geologic, and hydrologic synthesis necessary for a quantitative assessment of geothermal resources of the Cascades, a major objective of the USGS Geothermal Research Program.

  8. Geothermal Energy Information Dissemination and Outreach

    SciTech Connect

    Dr. John W. Lund

    2005-12-31

    The objective of this project is to continue on-going work by the Geo-Heat Center to develop and disseminate information; provide educational materials; develop short courses and workshops; maintain a comprehensive geothermal resource database; respond to inquiries from the public, industry and government; provide engineering, economic and environmental information and analysis on geothermal technology to potential users and developers; and provide information on market opportunities for geothermal development. These efforts are directed towards increasing the utilization of geothermal energy in the US and developing countries, by means of electric power generation and direct-use.

  9. Washington: a guide to geothermal energy development

    SciTech Connect

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01

    Washington's geothermal potential is discussed. The following topics are covered: exploration, drilling, utilization, legal and institutional setting, and economic factors of direct use projects. (MHR)

  10. Uncertainty analysis of geothermal energy economics

    NASA Astrophysics Data System (ADS)

    Sener, Adil Caner

    This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be

  11. Updated U.S. Geothermal Supply Characterization

    SciTech Connect

    Petty, S.; Porro, G.

    2007-03-01

    This paper documents the approach taken to characterize and represent an updated assessment of U.S. geothermal supply for use in forecasting the penetration of geothermal electrical generation in the National Energy Modeling System (NEMS). This work is motivated by several factors: The supply characterization used as the basis of several recent U.S. Department of Energy (DOE) forecasts of geothermal capacity is outdated; additional geothermal resource assessments have been published; and a new costing tool that incorporates current technology, engineering practices, and associated costs has been released.

  12. Geothermal development opportunities in developing countries

    SciTech Connect

    Kenkeremath, D.C.

    1989-11-16

    This report is the proceedings of the Seminar on geothermal development opportunities in developing countries, sponsored by the Geothermal Division of the US Department of Energy and presented by the National Geothermal Association. The overall objectives of the seminar are: (1) Provide sufficient information to the attendees to encourage their interest in undertaking more geothermal projects within selected developing countries, and (2) Demonstrate the technological leadership of US technology and the depth of US industry experience and capabilities to best perform on these projects.

  13. Geothermal Progress Monitor. Report No. 15

    SciTech Connect

    Not Available

    1993-12-01

    Two themes dominate this issue of the Geothermal Progress Monitor, the 15th since its inception in 1980. The first of these is the significance of the government/industry partnership role in geothermal development. This joint effort is reflected in the continued, measured growth in the use of geothermal energy, for both power generation and direct use applications, in this country and abroad, as well as in the development of new, innovative technologies to ensure a bright future for the resource. The second theme is the growing popularity of geothermal heat pumps (GHPs) among utilities, their customers, and federal agencies, all with disparate interests in the technology.

  14. Fiscal 1991 geothermal development promotion energy

    NASA Astrophysics Data System (ADS)

    1993-02-01

    The paper surveys the spouting of geothermal fluids in test boring wells, the well logging, and the status of geothermal fluids, as a part of the geothermal development promotion survey in the Mizuwake-Toge south area. In the spouting test of N3-MW-6 well, the 53rd swabbing led successfully to spouting. The spouting amounted to 3.6 tons/h in steam and geothermal water, but stopped spontaneously in 100 minutes. Results of the logging are hardly different between before and after the spouting indicating a maximum temperature of 200 C, barometric pressure of 75, and water levels of a 250-300m section. The geothermal water is a neutral Cl deep-area type. N2-MW-2 well spouted immediately after the 10th swabbing, indicating steam of 3 tons/h at the stable time, geothermal water of 7.3 tons/h, pH9, Cl of 1500ppm, and the total spouting time of 4029 minutes. The place where the geothermal fluid flows in is 635m deep, and when the well head pressure was 1.7-3.9 barometric pressure, the spouted fluid temperature was 199-198 C. The geothermal water is a Cl-HCO3 type. In both wells geothermal water is ground water originated from meteoric water which reacted with peripheral rocks by volcanic heating and was formed in the deep area.

  15. Corrosion reference for geothermal downhole materials selection

    SciTech Connect

    Ellis, P.F. II, Smith, C.C.; Keeney, R.C.; Kirk, D.K.; Conover, M.F.

    1983-03-01

    Geothermal downhole conditions that may affect the performance and reliability of selected materials and components used in the drilling, completion, logging, and production of geothermal wells are reviewed. The results of specific research and development efforts aimed at improvement of materials and components for downhole contact with the hostile physicochemical conditions of the geothermal reservoir are discussed. Materials and components covered are tubular goods, stainless steels and non-ferrous metals for high-temperature downhole service, cements for high-temperature geothermal wells, high-temperature elastomers, drilling and completion tools, logging tools, and downhole pumps. (MHR)

  16. Fracturing operations in a dry geothermal reservoir

    SciTech Connect

    Rowley, J.C.; Pettitt, R.A.; Hendron, R.H.; Sinclair, A.R.; Nicholson, R.W.

    1983-01-01

    Fracturing operations at the Fenton Hill, New Mexico, Hot Dry Rock (HDR) Geothermal Test Site initiated unique developments necessary to solve problems caused by an extremely harsh downhole environment. Two deep wells were drilled to approximately 15,000 ft (4.6 km); formation temperatures are in excess of 600/sup 0/F (315/sup 0/C). The wells were drilled during 1979 to 1981, inclined at 35 degrees, one above the other, and directionally drilled in an azimuthal direction orthogonal to the least principal in-situ crustal stress field. Hydraulic fracturing experiments to connect the two wells have used openhole packers, hydraulic jet notching of the borehole wall, cemented-in insolation liners and casing packers. Problems were encountered with hole drag, high fracture gradients, H/sub 2/S in vent back fluids, stress corrosion cracking of tubulars, and the complex nature of three-dimensional fracture growth that requires very large volumes of injected water. Two fractured zones have been formed by hydraulic fracturing and defined by close-in, borehole deployed, microseismic detectors. Initial operations were focused in the injection wellbore near total depth, where water injection treatments totalling 51,000 bbls (8100 m/sup 3/) were accomplished by pumping through a cemented-in 4-1/2 in. liner/PBR assembly. Retrievable casing packers were used to inject 26,000 bbls (4100 m/sup 3/) in the upper section of the open hole. Surface injection pressures (ISIP) varied from 4000 to 5900 psi (27 to 41 MPa) and the fracture gradient ranged from 0.7 to 0.96 psi/ft.

  17. Regional geothermal exploration in Egypt

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Boulos, F. K.; Swanberg, C. A.

    1983-01-01

    A study is presented of the evaluation of the potential geothermal resources of Egypt using a thermal gradient/heat flow technique and a groundwater temperature/chemistry technique. Existing oil well bottom-hole temperature data, as well as subsurface temperature measurements in existing boreholes, were employed for the thermal gradient/heat flow investigation before special thermal gradient holes were drilled. The geographic range of the direct subsurface thermal measurements was extended by employing groundwater temperature and chemistry data. Results show the presence of a regional thermal high along the eastern margin of Egypt with a local thermal anomaly in this zone. It is suggested that the sandstones of the Nubian Formation may be a suitable reservoir for geothermal fluids. These findings indicate that temperatures of 150 C or higher may be found in this reservoir in the Gulf of Suez and Red Sea coastal zones where it lies at a depth of 4 km and deeper.

  18. Models of Geothermal Brine Chemistry

    SciTech Connect

    Nancy Moller Weare; John H. Weare

    2002-03-29

    Many significant expenses encountered by the geothermal energy industry are related to chemical effects. When the composition, temperature of pressure of the fluids in the geological formation are changed, during reservoir evolution, well production, energy extraction or injection processes, the fluids that were originally at equilibrium with the formation minerals come to a new equilibrium composition, temperature and pressure. As a result, solid material can be precipitated, dissolved gases released and/or heat lost. Most geothermal energy operations experience these phenomena. For some resources, they create only minor problems. For others, they can have serious results, such as major scaling or corrosion of wells and plant equipment, reservoir permeability losses and toxic gas emission, that can significantly increase the costs of energy production and sometimes lead to site abandonment. In future operations that exploit deep heat sources and low permeability reservoirs, new chemical problems involving very high T, P rock/water interactions and unknown injection effects will arise.

  19. Geothermal Heat Pump Benchmarking Report

    SciTech Connect

    1997-01-17

    A benchmarking study was conducted on behalf of the Department of Energy to determine the critical factors in successful utility geothermal heat pump programs. A Successful program is one that has achieved significant market penetration. Successfully marketing geothermal heat pumps has presented some major challenges to the utility industry. However, select utilities have developed programs that generate significant GHP sales. This benchmarking study concludes that there are three factors critical to the success of utility GHP marking programs: (1) Top management marketing commitment; (2) An understanding of the fundamentals of marketing and business development; and (3) An aggressive competitive posture. To generate significant GHP sales, competitive market forces must by used. However, because utilities have functioned only in a regulated arena, these companies and their leaders are unschooled in competitive business practices. Therefore, a lack of experience coupled with an intrinsically non-competitive culture yields an industry environment that impedes the generation of significant GHP sales in many, but not all, utilities.

  20. Boise geothermal district heating system

    SciTech Connect

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  1. Volcanostratigraphy for supporting geothermal exploration

    NASA Astrophysics Data System (ADS)

    Bronto, S.; Sianipar, J. Y.; Pratopo, A. K.

    2016-09-01

    Volcanostratigraphy is stratigraphy related to volcanism and its products. This includes stratigraphy for a general scoping of a regional area and detailed analysis in a local area. On the basis of Indonesian Stratigraphic Code 1996, from low to high rank, volcanostratigraphic units are Hummock (Gumuk), Crown (Khuluk), Brigade (Bregada), Super Brigade (Manggala), and Arc (Busur). For more detailed stratigraphic study these ranked units can be classified into genetic rock units based on source location, processes and absolute age. Genetic processes include transportation and cooling or deposition mechanisms. These lead to physical- and chemical- properties of the volcanic rocks and provide the history of volcanism and potentially geothermal processes in an area. For many areas in Indonesia the understanding of the volcanostratigraphy is an important dataset for geothermal exploration.

  2. Geothermal systems of northern Nevada

    USGS Publications Warehouse

    Hose, Richard Kenneth; Taylor, Bruce Edward

    1974-01-01

    Hot springs are numerous and nearly uniformly distributed in northern Nevada. Most occur on the flanks of basins, along Basin and Range (late Miocene to Holocene) faults, while some occur in the inner parts of the basins. Surface temperatures of the springs range from slightly above ambient to, boiling; some springs are superheated. Maximum subsurface water temperatures calculated on the basis of quartz solubility range as high as 252?C, although most are below 190?C. Flows range from a trickle to several hundred liters per minute. The Nevada geothermal systems differ markedly from the power-producing system at The Geysers, Calif., and from those areas with a high potential, for power production (e.g., Yellowstone Park, Wyo.; Jemez Mountains, N. Mex.). These other systems are associated with Quaternary felsic volcanic rocks and probably derive their heat from cooling magma rather high in the crust. In northern Nevada, however, felsic volcanic rocks are virtually all older than 10 million years, and. analogous magmatic heat sources are, therefore, probably lacking. Nevada is part of an area of much higher average heat flow than the rest of the United States. In north-central Nevada, geothermal gradients are as great as 64?C per kilometer in bedrock and even higher in basin fill. The high gradients probably result from a combination of thin crust and high temperature upper mantle. We suggest that the geothermal systems of northern Nevada result from circulation of meteoric waters along Basin and Range faults and that their temperature chiefly depends upon (1) depth of circulation and (2) the geothermal gradient near the faults.

  3. Annotated geothermal bibliography of Utah

    SciTech Connect

    Budding, K.E.; Bugden, M.H.

    1986-01-01

    The bibliography includes all the Utah geothermal references through 1984. Some 1985 citations are listed. Geological, geophysical, and tectonic maps and reports are included if they cover a high-temperature thermal area. The references are indexed geographically either under (1) United States (national studies), (2) regional - western United States or physiographic province, (3) Utah - statewide and regional, or (4) county. Reports concerning a particular hot spring or thermal area are listed under both the thermal area and the county names.

  4. Process for purifying geothermal steam

    DOEpatents

    Li, Charles T.

    1980-01-01

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  5. Process for purifying geothermal steam

    DOEpatents

    Li, C.T.

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  6. Geothermal Prospector: Supporting Geothermal Analysis Through Spatial Data Visualization and Querying Tools

    SciTech Connect

    Getman, Daniel; Anderson, Arlene; Augustine, Chad

    2015-09-02

    Determining opportunities for geothermal energy can involve a significant investment in data collection and analysis. Analysts within a variety of industry and research domains collect and use these data; however, determining the existence and availability of data needed for a specific analysis activity can be challenging and represents one of the initial barriers to geothermal development [2]. This paper describes the motivating factors involved in designing and building the Geothermal Prospector application, how it can be used to reduce risks and costs related to geothermal exploration, and where it fits within the larger collection of tools that is the National Geothermal Data System (NGDS) [5].

  7. Archean geotherms and supracrustal assemblages

    NASA Astrophysics Data System (ADS)

    Condie, Kent C.

    1984-06-01

    Metamorphic mineral assemblages suggest the existence of variable geotherms and lithospheric thicknesses beneath late Archean continental crust. Archean granite-greenstone terranes reflect steep geotherms (50-70°C/km) while high-grade terranes reflect moderate geotherms similar to present continental crust with high heat flow (25-40°C/km). Corresponding lithosphere thicknesses for each terrane during the late Archean are 35-50 km and 50-75 km, respectively. Early Archean (⩾ 3.0 b.y.) greenstones differ from late Archean (˜ 2.7 b.y.) greenstones by the rarity or absence of andesite and graywacke and the relative abundance of pelite, quartzite, and komatiite. Mature clastic sediments in early greenstones reflect shallow-water, stable-basin deposition. Such rocks, together with granite-bearing conglomerate and felsic volcanics imply the existence of still older granitic source terranes. The absence or rarity of andesite in early greenstones reflects the absence of tectonic conditions in which basaltic and tonalitic magmas are modified to produce andesite. A model is presented in which early Archean greenstones form at the interface between tonalite islands and oceanic lithosphere, over convective downcurrents; high-grade supracrustals form on stable continental edges or interiors; and late Archean greenstones form in intracontinental rifts over mantle plumes.

  8. Klamath Falls geothermal field, Oregon

    SciTech Connect

    Lienau, P.J.; Culver, G.; Lund, J.W.

    1989-09-01

    Klamath Falls, Oregon, is located in a Known Geothermal Resource Area which has been used by residents, principally to obtain geothermal fluids for space heating, at least since the turn of the century. Over 500 shallow-depth wells ranging from 90 to 2,000 ft (27 to 610 m) in depth are used to heat (35 MWt) over 600 structures. This utilization includes the heating of homes, apartments, schools, commercial buildings, hospital, county jail, YMCA, and swimming pools by individual wells and three district heating systems. Geothermal well temperatures range from 100 to 230{degree}F (38 to 110{degree}C) and the most common practice is to use downhole heat exchangers with city water as the circulating fluid. Larger facilities and district heating systems use lineshaft vertical turbine pumps and plate heat exchangers. Well water chemistry indicates approximately 800 ppM dissolved solids, with sodium sulfate having the highest concentration. Some scaling and corrosion does occur on the downhole heat exchangers (black iron pipe) and on heating systems where the geo-fluid is used directly. 73 refs., 49 figs., 6 tabs.

  9. Update and assessment of geothermal economic models, geothermal fluid flow and heat distribution models, and geothermal data bases

    SciTech Connect

    Kenkeremath, D.

    1985-05-01

    Numerical simulation models and data bases that were developed for DOE as part of a number of geothermal programs have been assessed with respect to their overall stage of development and usefulness. This report combines three separate studies that focus attention upon: (1) economic models related to geothermal energy; (2) physical geothermal system models pertaining to thermal energy and the fluid medium; and (3) geothermal energy data bases. Computerized numerical models pertaining to the economics of extracting and utilizing geothermal energy have been summarized and catalogued with respect to their availability, utility and function. The 19 models that are discussed in detail were developed for use by geothermal operators, public utilities, and lending institutions who require a means to estimate the value of a given resource, total project costs, and the sensitivity of these values to specific variables. A number of the models are capable of economically assessing engineering aspects of geothermal projects. Computerized simulations of heat distribution and fluid flow have been assessed and are presented for ten models. Five of the models are identified as wellbore simulators and five are described as reservoir simulators. Each model is described in terms of its operational characteristics, input, output, and other pertinent attributes. Geothermal energy data bases are reviewed with respect to their current usefulness and availability. Summaries of eight data bases are provided in catalogue format, and an overall comparison of the elements of each data base is included.

  10. Field trip guide to the Valles Caldera and its geothermal systems

    SciTech Connect

    Goff, F.E.; Bolivar, S.L.

    1983-12-01

    This field trip guide has been compiled from extensive field trips led at Los Alamos National Laboratory during the past six years. The original version of this guide was designed to augment a workshop on the Valles Caldera for the Continental Scientific Drilling Program (CSDP). This workshop was held at Los Alamos, New Mexico, 5-7 October 1982. More stops were added to this guide to display the volcanic and geothermal features at the Valles Caldera. The trip covers about 90 miles (one way) and takes two days to complete; however, those who wish to compress the trip into one day are advised to use the designated stops listed in the Introduction. Valles Caldera and vicinity comprise both one of the most exciting geothermal areas in the United States and one of the best preserved Quaternary caldera complexes in the world.

  11. Geothermal test hints at oil potential in eastern Arizona volcanic field

    SciTech Connect

    Rauzi, S.L. )

    1993-01-03

    A recently drilled geothermal well, funded by the US Department of Energy and the Arizona Department of Commerce, has provided information about the geology of east-central Arizona and west-central New Mexico. Tonto Drilling Services in cooperation with New Mexico State University completed the well, the 1 Alpine-Federal, at a total depth of 4,505 ft. The well is located among volcanic rocks in the Apache-Sitgreaves National Forest about 6 miles north of the town of Alpine and 6.2 miles west of the Arizona-New Mexico line. The well was drilled to determine the hot dry rock geothermal potential of Precambrian rocks. The operator expected to penetrate Precambrian at about 4,200 ft, but the hole was still in Permian rocks at that depth and was in a mafic dike that intruded the Permian rocks at the total depth of 4,505 ft. The hole did show that Cretaceous and Permian strata contain potentially important source rocks for oil and gas that are apparently unaffected by nearby volcanism. These potential oil source rocks are the focus of this article.

  12. Assessment of Geothermal Data Resources and Requirements

    SciTech Connect

    none,

    2008-09-01

    This paper is a review of Geothermal Technologies Program activities and archives related to data collection and analysis. It includes an assessment of the current state of geothermal data, future program and stakeholder data needs, existence of and access to critical data, and high-level direction and prioritization of next steps to meet the Program’s data needs.

  13. Geothermal Progress Monitor report No. 11

    SciTech Connect

    Not Available

    1989-12-01

    This issue of the Geothermal Progress Monitor (GPM) is the 11th since the inception of the publication in 1980. It continues to synthesize information on all aspects of geothermal development in this country and abroad to permit identification and quantification of trends in the use of this energy technology. In addition, the GPM is a mechanism for transferring current information on geothermal technology development to the private sector, and, over time, provides a historical record for those interested in the development pathway of the resource. In sum, the Department of Energy makes the GPM available to the many diverse interests that make up the geothermal community for the multiple uses it may serve. This issue of the GPM points up very clearly how closely knit many of those diverse interests have become. It might well be called an international issue'' since many of its pages are devoted to news of geothermal development abroad, to the efforts of the US industry to participate in overseas development, to the support given those efforts by federal and state agencies, and to the formation of the International Geothermal Association (IGA). All of these events indicate that the geothermal community has become truly international in character, an occurrence that can only enhance the future of geothermal energy as a major source of energy supply worldwide. 15 figs.

  14. Geothermal Energy Contract List: Fiscal Year 1990

    SciTech Connect

    Not Available

    1991-10-01

    The Geothermal Division of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The Geothermal Energy R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. The program is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. The Geothermal Energy Contract List, Fiscal Year 1990 is a tabulation of geothermal R D contracts that were begun, ongoing, or completed during FY 1990 (October 1, 1989 through September 30, 1990). The R D activities are performed by national laboratories or industrial, academic, and nonprofit research institutions. The contract list is organized in accordance with the Geothermal Division R D work breakdown structure. The structure hierarchy consists of Resource Category (hydrothermal, geopressured-geothermal, hot dry rock, and magma energy), Project (hard rock penetration, reservoir technology, etc.), and Task (lost circulation control, rock penetration mechanics, etc.). For each contract, the contractor, the FY 1990 funding, and a brief description of the milestones planned for FY 1991 are provided.

  15. Civil litigation and the geothermal industry

    SciTech Connect

    Moore, George M.

    1991-01-01

    This paper offers some reflections on the interactions between the legal profession and the realm of the geothermal scientist and engineer. The author, now a litigation attorney, became an attorney after about fifteen years as an engineer and physicist. Over the past several years the author was involved in litigation related to geothermal contracts.

  16. Environmental overview of geothermal development: northern Nevada

    SciTech Connect

    Slemmons, D.B.; Stroh, J.M.; Whitney, R.A.

    1980-08-01

    Regional environmental problems and issues associated with geothermal development in northern Nevada are studied to facilitate environmental assessment of potential geothermal resources. The various issues discussed are: environmental geology, seismicity of northern Nevada, hydrology and water quality, air quality, Nevada ecosystems, noise effects, socio-economic impacts, and cultural resources and archeological values. (MHR)

  17. Puna Geothermal Venture Hydrologic Monitoring Program

    SciTech Connect

    1990-04-01

    This document provides the basis for the Hydrologic Monitoring Program (HMP) for the Puna Geothermal Venture. The HMP is complementary to two additional environmental compliance monitoring programs also being submitted by Puma Geothermal Venture (PGV) for their proposed activities at the site. The other two programs are the Meteorology and Air Quality Monitoring Program (MAQMP) and the Noise Monitoring Program (NMP), being submitted concurrently.

  18. Missing a trick in geothermal exploration

    NASA Astrophysics Data System (ADS)

    Younger, Paul L.

    2014-07-01

    Expansion of geothermal energy use across the globe is restricted by out-of-date prejudices. It is time for geothermal exploration to be extended to a broader range of environments and rejuvenated with the latest insights from relevant geoscience disciplines.

  19. Geothermal well completions in Cerro Prieto

    SciTech Connect

    Dominguez, B.; Cobo Rivera, J.M.

    1981-01-01

    Geothermal well completion criteria have evolved from 1964 to this date. The evolution started with the common techniques used in oil-well completion and gradually changed to accommodate the parameters directly related to the mineralogic characteristics of the geothermal fluids. While acceptable completions can now be achieved, research techniques and data collection should be improved to optimize the procedures.

  20. Survey of Geothermal Solid Toxic Waste

    SciTech Connect

    Darnell, A.J.; Gay, R.L.; Klenck, M.M.; Nealy, C.L.

    1982-09-30

    This is an early survey and analysis of the types and quantities of solid toxic wastes to be expected from geothermal power systems, particularly at the Salton Sea, California. It includes a literature search (48 references/citations), descriptions of methods for handling wastes, and useful quantitative values. It also includes consideration of reclaiming metals and mineral byproducts from geothermal power systems. (DJE 2005)

  1. Geothermal gradient map of the United States

    SciTech Connect

    Kron, A.; Heiken, G.

    1980-01-01

    A geothermal gradient map is needed in order to determine the hot dry rock (HDR) geothermal resource of the United States. Based on published and unpublished data (including new measurements) the HDR program will produce updated gradient maps annually, to be used as a tool for resource evaluation and exploration. The 1980 version of this map is presented.

  2. Forecast of geothermal-drilling activity

    SciTech Connect

    Mansure, A.J.; Brown, G.L.

    1982-07-01

    The number of geothermal wells that will be drilled to support electric power production in the United States through 2000 A.D. are forecasted. Results of the forecast are presented by 5-year periods for the five most significant geothermal resources.

  3. Geothermal Cogeneration: Iceland's Nesjavellir Power Plant

    ERIC Educational Resources Information Center

    Rosen, Edward M.

    2008-01-01

    Energy use in Iceland (population 283,000) is higher per capita than in any other country in the world. Some 53.2% of the energy is geothermal, which supplies electricity as well as heated water to swimming pools, fish farms, snow melting, greenhouses, and space heating. The Nesjavellir Power Plant is a major geothermal facility, supplying both…

  4. Careers in Geothermal Energy: Power from below

    ERIC Educational Resources Information Center

    Liming, Drew

    2013-01-01

    In the search for new energy resources, scientists have discovered ways to use the Earth itself as a valuable source of power. Geothermal power plants use the Earth's natural underground heat to provide clean, renewable energy. The geothermal energy industry has expanded rapidly in recent years as interest in renewable energy has grown. In 2011,…

  5. Geothermal Energy Potential in Western United States

    ERIC Educational Resources Information Center

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  6. Geothermal progress monitor. Progress report No. 4

    SciTech Connect

    Not Available

    1980-09-01

    The following are included: geothermal power plants proposed and on-line; direct heat applications proposed and operational; trends in drilling activities; exploration; leases; outreach and technical assistance; feasibility studies and application demonstrations; geothermal loan guaranty program; research and development activities; legal, institutional, and regulatory activities; environmental activities; reports and publications; and a directory. (MHR)

  7. Report on Hawaii Geothermal Power Plant Project

    SciTech Connect

    Not Available

    1983-06-01

    The report describes the design, construction, and operation of the Hawaii Geothermal Generator Project. This power plant, located in the Puna District on the island of Hawaii, produces three megawatts of electricity from the steam phase of a geothermal well. (ACR)

  8. Geothermal development issues: Recommendations to Deschutes County

    SciTech Connect

    Gebhard, C.

    1982-07-01

    This report discusses processes and issues related to geothermal development. It is intended to inform planners and interested individuals in Deschutes County about geothermal energy, and advise County officials as to steps that can be taken in anticipation of resource development. (ACR)

  9. Geothermal progress monitor: Report Number 19

    SciTech Connect

    1997-12-01

    Short articles are presented related to activities in the federal government and the geothermal industry, international developments, state and local government activities, technology development, and technology transfer. Power plant tables and a directory of organizations involved in geothermal resource development are included.

  10. Geothermal Power/Oil & Gas Coproduction Opportunity

    SciTech Connect

    DOE

    2012-02-01

    Coproduced geothermal resources can deliver near-term energy savings, diminish greenhouse gas emissions, extend the economic life of oil and gas fields, and profitably utilize oil and gas field infrastructure. This two-pager provides an overview of geothermal coproduced resources.

  11. Geothermal energy exploitation in New Zealand

    SciTech Connect

    Elder, J.W.

    1980-01-01

    The essential factors, human and technical, which control the operation of geothermal systems, particularly those which allow prediction of behavior during and after exploitation, are sketched. The strategy and co-ordination involved in using New Zealand's geothermal resources for power production are considered. The broader aspects of the technical matters involved in the design of the parasitic plant reservoir system are described. (MHR)

  12. Appendix F - GPRA06 geothermal technologies program documentation

    SciTech Connect

    None, None

    2009-01-18

    The primary goal of the Geothermal Technologies Program is to reduce the cost of geothermal generation technologies, including both conventional and enhanced geothermal systems (EGS). EGS are defined as geothermal systems where the reservoir requires substantial engineering manipulation to make using the reservoir economically feasible.

  13. Geothermal heat pump system assisted by geothermal hot spring

    NASA Astrophysics Data System (ADS)

    Nakagawa, M.; Koizumi, Y.

    2016-01-01

    The authors propose a hybrid geothermal heat pump system that could cool buildings in summer and melt snow on the pedestrian sidewalks in winter, utilizing cold mine water and hot spring water. In the proposed system, mine water would be used as cold thermal energy storage, and the heat from the hot spring after its commercial use would be used to melt snow for a certain section of sidewalks. Neither of these sources is viable for direct use application of geothermal resources, however, they become contributing energy factors without producing any greenhouse gases. To assess the feasibility of the proposed system, a series of temperature measurements in the Edgar Mine (Colorado School of Mines' experimental mine) in Idaho Springs, Colorado, were first conducted, and heat/mass transfer analyses of geothermal hot spring water was carried out. The result of the temperature measurements proved that the temperature of Edgar Mine would be low enough to store cold groundwater for use in summer. The heat loss of the hot spring water during its transportation was also calculated, and the heat requirement for snow melt was compared with the heat available from the hot spring water. It was concluded that the heat supply in the proposed usage of hot spring water was insufficient to melt the snow for the entire area that was initially proposed. This feasibility study should serve as an example of "local consumption of locally available energy". If communities start harnessing economically viable local energy in a responsible manner, there will be a foundation upon which to build a sustainable community.

  14. Heat deliverability of homogeneous geothermal reservoirs

    SciTech Connect

    Iglesias, Eduardo R.; Moya, Sara L.

    1991-01-01

    For the last two decades, the petroleum industry has been successfully using simple inflow performance relationships (IPR's) to predict oil deliverability. In contrast, the geothermal industry lacked a simple and reliable method to estimate geothermal wells' heat deliverability. To address this gap in the standard geothermal-reservoir-assessment arsenal, we developed generalized dimensionless geothermal inflow performance relationships (GIPR's). These ''reference curves'' may be regarded as an approximate general solution of the equations describing the practically important case of radial 2-phase inflow. Based on this approximate solution, we outline a straightforward approach to estimate the reservoir contribution to geothermal wells heat and mass deliverability for 2-phase reservoirs. This approach is far less costly and in most cases as reliable as numerically modeling the reservoir, which is the alternative for 2-phase inflow.

  15. Electric utility companies and geothermal power

    NASA Technical Reports Server (NTRS)

    Pivirotto, D. S.

    1976-01-01

    The requirements of the electric utility industry as the primary potential market for geothermal energy are analyzed, based on a series of structured interviews with utility companies and financial institution executives. The interviews were designed to determine what information and technologies would be required before utilities would make investment decisions in favor of geothermal energy, the time frame in which the information and technologies would have to be available, and the influence of the governmental politics. The paper describes the geothermal resources, electric utility industry, its structure, the forces influencing utility companies, and their relationship to geothermal energy. A strategy for federal stimulation of utility investment in geothermal energy is suggested. Possibilities are discussed for stimulating utility investment through financial incentives, amelioration of institutional barriers, and technological improvements.

  16. Geothermal development plan: Graham/Greenlee Counties

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The region wide market potential for utilizing geothermal energy was evaluated. Five potential geothermal resource areas with temperature less than 1000C were identified. Seven areas are inferred to contain higher temperature resources and the Clifton Hot Springs have electrical potential. Geothermal resources occur near Safford and Clifton, the two major population centers. Future population growth in the two counties is expected to average less than 2% per year over the next 40 years. Growth in the mining, trade and services economic sectors provide opportunities for the direct utilization of geothermal energy. A regional energy use analysis is included containing energy use and price projections. Water supplies are found to be adequate for urban needs, through agricultural and mineral water use may be limited in the future. A preliminary economic analysis for two district heating systems and a section matching geothermal resources to potential users is presented.

  17. Resource assessment for geothermal direct use applications

    SciTech Connect

    Beer, C.; Hederman, W.F. Jr.; Dolenc, M.R.; Allman, D.W.

    1984-04-01

    This report discusses the topic geothermal resource assessment and its importance to laymen and investors for finding geothermal resources for direct-use applications. These are applications where the heat from lower-temperature geothermal fluids, 120 to 200/sup 0/F, are used directly rather than for generating electricity. The temperatures required for various applications are listed and the various types of geothermal resources are described. Sources of existing resource data are indicated, and the types and suitability of tests to develop more data are described. Potential development problems are indicated and guidance is given on how to decrease technical and financial risk and how to use technical consultants effectively. The objectives of this report are to provide: (1) an introduction low-temperature geothermal resource assessment; (2) experience from a series of recent direct-use projects; and (3) references to additional information.

  18. Geothermal energy and the production of electricity

    NASA Astrophysics Data System (ADS)

    Varet, J.

    Geothermal production of electricity, about 2,500 MW throughout the world, is considered. The types of geothermal resources are reviewed. A geothermal field can be used for the production of electricity only if the layer, a porous and permeable stock located at depths of 500 and 1500 m, is carried by a magmatic source at high temperatures. Prospecting and development of high energy geothermal energy are discussed, including feasibility studies and the construction of electric power stations. Once the existence of a field is determined, exploitation can begin, consisting of drilling, steam collecting and purifying, and the construction of turboalternator power plants. An example, the Bouillante-Guadeloupe geothermal power station, is presented. Production sites across the globe are reviewed, and electrical energy costs are discussed.

  19. Community Geothermal Technology Program: Electrodeposition of minerals in geothermal brine

    SciTech Connect

    Not Available

    1990-12-31

    Objective was to study the materials electrodeposited from geothermal brine, from the HGP-A well in Puna, Hawaii. Due to limitations, only one good set of electrodeposited material was obtained; crystallography indicates that vaterite forms first, followed by calcite and then perhaps aragonite as current density is increased. While the cost to weight ratio is reasonable, the deposition rate is very slow. More research is needed, such as reducing the brittleness. The electrodeposited material possibly could be used as building blocks, tables, benches, etc. 49 figs, 4 tabs, 7 refs.

  20. Federal Geothermal Research Program Update, FY 2000

    SciTech Connect

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  1. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance for Geothermal Resource Evaluation Projects

    SciTech Connect

    Robert P. Breckenridge; Thomas R. Wood; Joel Renner

    2010-09-01

    The purpose of this document is to report on the evaluation of geothermal resource potential on and around three different United States (U. S.) Air Force Bases (AFBs): Nellis AFB and Air Force Range (AFR) in the State of Nevada (see maps 1 and 5), Holloman AFB in the State of New Mexico (see map 2), and Mountain Home AFB in the State of Idaho (see map 3). All three sites are located in semi-arid parts of the western U. S. The U. S. Air Force, through its Air Combat Command (ACC) located at Langley AFB in the State of Virginia, asked the Federal Energy Management Program (FEMP) for technical assistance to conduct technical and feasibility evaluations for the potential to identify viable geothermal resources on or around three different AFBs. Idaho National Laboratory (INL) is supporting FEMP in providing technical assistance to a number of different Federal Agencies. For this report, the three different AFBs are considered one project because they all deal with potential geothermal resource evaluations. The three AFBs will be evaluated primarily for their opportunity to develop a geothermal resource of high enough quality grade (i.e., temperature, productivity, depth, etc.) to consider the possibility for generation of electricity through a power plant. Secondarily, if the resource for the three AFBs is found to be not sufficient enough for electricity generation, then they will be described in enough detail to allow the base energy managers to evaluate if the resource is suitable for direct heating or cooling. Site visits and meetings by INL personnel with the staff at each AFB were held in late FY-2009 and FY-2010. This report provides a technical evaluation of the opportunities and challenges for developing geothermal resources on and around the AFBs. An extensive amount of literature and geographic information was evaluated as a part of this assessment. Resource potential maps were developed for each of the AFBs.

  2. Federal Geothermal Research Program Update - Fiscal Year 2001

    SciTech Connect

    Laney, P.T.

    2002-08-31

    This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2001. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  3. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, January-July 1981

    SciTech Connect

    Lunis, B.C.; Toth, W.J.

    1982-05-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. For each state (Colorado, Montana, New Mexico, North and South Dakota, Utah, and Wyoming), prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are also covered, and findings and recommendations are given for each state. Some background information about the program is provided. (LEW)

  4. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1980

    SciTech Connect

    Lunis, B. C.; Toth, W. J.

    1981-10-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. Background information is provided; program objectives and the technical approach that is used are discussed; and the benefits of the program are described. The summary of findings is presented. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized. The commercialization activities carried out by the respective state teams are described for the following: Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming.

  5. Geothermal pump dual cycle system

    SciTech Connect

    Matthews, H.B.

    1982-05-11

    Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a primary turbine-motor for driving a primary electrical generator at the earth's surface, the solute-bearing water being returned by a reinjection well. A surface-located auxiliary turbine-pump combination with both turbine and brine pump elements acting in series with down-well counterparts to furnish the pressure necessary for reinjection of the brine.

  6. Geothermal-well design handbook

    SciTech Connect

    Not Available

    1982-02-01

    A simplified process is presented for estimating the performance of geothermal wells which are produced by natural, flashing flows. The well diameter and depth, and reservoir conditions must be known; then it is possible to determine the total pressure drop in a flowing well, and therefore to find the fluid pressure, temperature, and steam quality at the wellhead. By applying the handbook process to several input data sets, the user can compile sufficient information to determine the interdependence of input and output parameters. (MHR)

  7. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    SciTech Connect

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well cements, and further

  8. Colorado State Capitol Geothermal project

    SciTech Connect

    Shepherd, Lance

    2016-04-29

    Colorado State Capitol Geothermal Project - Final report is redacted due to space constraints. This project was an innovative large-scale ground-source heat pump (GSHP) project at the Colorado State Capitol in Denver, Colorado. The project employed two large wells on the property. One for pulling water from the aquifer, and another for returning the water to the aquifer, after performing the heat exchange. The two wells can work in either direction. Heat extracted/added to the water via a heat exchanger is used to perform space conditioning in the building.

  9. New geothermal database for Utah

    USGS Publications Warehouse

    Blackett, Robert E.; ,

    1993-01-01

    The Utah Geological Survey complied a preliminary database consisting of over 800 records on thermal wells and springs in Utah with temperatures of 20??C or greater. Each record consists of 35 fields, including location of the well or spring, temperature, depth, flow-rate, and chemical analyses of water samples. Developed for applications on personal computers, the database will be useful for geochemical, statistical, and other geothermal related studies. A preliminary map of thermal wells and springs in Utah, which accompanies the database, could eventually incorporate heat-flow information, bottom-hole temperatures from oil and gas wells, traces of Quaternary faults, and locations of young volcanic centers.

  10. Geothermal activity near Clearlake, California

    NASA Astrophysics Data System (ADS)

    Burns, K. L.; Potter, R. M.

    Geothermal activity in the region of high heat flow near the city of Clearlake includes hot springs, fumeroles, vents, and areas of hydrothermal alteration. Onshore, the location is controlled by Quaternary longitudinal NNW-trending faults of the San Andreas systems, and the transverse Burns Valley fault. Offshore, an additional control is arcuate graben-forming faults. The city is bracketed by three hydrothermal 'hot spots,' which are Sulphur Bank hot spring, resurgences in Burns Valley, and the Oak Cove hot spot. All three are associated with sharp 'spikes' in the isotherms and locally enhanced heat flow.

  11. Geothermal : Economic Impacts of Geothermal Development in Skamania County, Washington.

    SciTech Connect

    Lesser, Jonathan A.

    1992-07-01

    This report estimates the local economic impacts that could be anticipated from the development of a 100 megawatt (MW) geothermal power plant in eastern Skamania County, Washington, near Mt. Adams, as shown in Figure 1. The study was commissioned by the Bonneville Power Administration to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council. Skamania County was chosen due to both identified geothermal resources and developer interest. The analysis will focus on two phases: a plant construction phase, including well field development, generating plant construction, and transmission line construction; and an operations phase. Economic impacts will occur to the extent that construction and operations affect the local economy. These impacts will depend on the existing structure of the Skamania County economy and estimates of revenues that may accrue to the county as a result of plant construction, operation, and maintenance. Specific impacts may include additional direct employment at the plant, secondary impacts from wage payments being used to purchase locally produced goods and services, and impacts due to expenditures of royalty and tax payments received by the county. The basis for the analysis of economic impacts in this study is the US Forest Service IMPLAN input-output modeling system.

  12. HAWC @ Mexico

    NASA Astrophysics Data System (ADS)

    Carramiñana, Alberto; González, María Magdalena; Salazar, Humberto; Alfaro, Ruben; Medina Tanco, Gustavo; Valdés Galicia, José; Delepine, David; Zepeda, Arnulfo; Villaseñor, Luis; Mendoza, Eduardo; Nava, Janina; Vázquez, Lilí; Tenorio Tagle, Guillermo; Carrasco, Luis; Silich, Sergey; Rogríguez Liñán, Gustavo; de la Fuente, Eduardo; Page, Dany; Lee, William; Dultzin, Deborah; Benitez, Erika; Ávila Reese, Vladimir; Mendoza, Sergio; Martos, Marco; Hernández Toledo, Héctor; Valenzuela, Octavio; Martínez, Oscar; Fernández, Arturo; Álvarez Ochoa, Cesar; Díaz, Lorenzo; Rosado, Alfonso; Ramírez, Cupatitzio; Menchaca, Arturo; Belmont, Ernesto; Sandoval, Andrés; Martínez, Arnulfo; Grabski, Varlen; Nellen, Lukas; D'Olivo, Juan Carlos; Lara, Alejandro; Caballero, Rogelio; Moreno, Gerardo; Napsuciale, Mauro; Ureña, Luis; Reyes, Marco; Migénes, Victor; Herrera, Gerardo; Saavedra, Oscar; Carrillo, Alejandro; Carrasco Nuñez, Gerardo; Vargas, Carlos

    The High Altitude Water Cerenkov detector HAWC will be a powefull instrument to survey the TeV sky. Mexico has proposed to locate this experiment in the Parque Nacional Pico de Orizaba, between Citlaltepetl and Tliltepetl, host of the Large Millimeter Telescope (LMT). The region has a sizeable technical infrastructure related to the LMT and we recently studied a 4100m location in terms of its feasibility to host HAWC. We present the proposed site location and extension, its water acquisition, experimental and complementary infrastructures.

  13. Data Review of the Hot Dry Rock Project at Fenton Hill, New Mexico

    SciTech Connect

    GeothermEx, Inc.

    1998-12-01

    This report reviews the data collected during the hot dry rock experimental project conducted by the US Department of Energy and Los Alamos National Laboratory at Fenton Hill, New Mexico from about 1971 through 1995. Five main categories of data were reviewed: (1) geologic data; (2) flow test data; (3) reservoir modeling data; (4) chemical tracer data; and (5) seismic data. The review determines the important data sets from the project, determines where and how these data are stored, and evaluates whether further analyses of the data might be likely to yield additional information valuable to the geothermal industry or to the further development of enhanced geothermal systems.

  14. A study of geothermal drilling and the production of electricity from geothermal energy

    SciTech Connect

    Pierce, K.G.; Livesay, B.J.

    1994-01-01

    This report gives the results of a study of the production of electricity from geothermal energy with particular emphasis on the drilling of geothermal wells. A brief history of the industry, including the influence of the Public Utilities Regulatory Policies Act, is given. Demand and supply of electricity in the United States are touched briefly. The results of a number of recent analytical studies of the cost of producing electricity are discussed, as are comparisons of recent power purchase agreements in the state of Nevada. Both the costs of producing electricity from geothermal energy and the costs of drilling geothermal wells are analyzed. The major factors resulting in increased cost of geothermal drilling, when compared to oil and gas drilling, are discussed. A summary of a series of interviews with individuals representing many aspects of the production of electricity from geothermal energy is given in the appendices. Finally, the implications of these studies are given, conclusions are presented, and program recommendations are made.

  15. A Geothermal GIS for Nevada: Defining Regional Controls and Favorable Exploration Terrains for Extensional Geothermal Systems

    USGS Publications Warehouse

    Coolbaugh, M.F.; Taranik, J.V.; Raines, G.L.; Shevenell, L.A.; Sawatzky, D.L.; Bedell, R.; Minor, T.B.

    2002-01-01

    Spatial analysis with a GIS was used to evaluate geothermal systems in Nevada using digital maps of geology, heat flow, young faults, young volcanism, depth to groundwater, groundwater geochemistry, earthquakes, and gravity. High-temperature (>160??C) extensional geothermal systems are preferentially associated with northeast-striking late Pleistocene and younger faults, caused by crustal extension, which in most of Nevada is currently oriented northwesterly (as measured by GPS). The distribution of sparse young (160??C) geothermal systems in Nevada are more likely to occur in areas where the groundwater table is shallow (<30m). Undiscovered geothermal systems may occur where groundwater levels are deeper and hot springs do not issue at the surface. A logistic regression exploration model was developed for geothermal systems, using young faults, young volcanics, positive gravity anomalies, and earthquakes to predict areas where deeper groundwater tables are most likely to conceal geothermal systems.

  16. Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada

    SciTech Connect

    David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

    2003-08-14

    Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

  17. The first geothermal power generation project by Enhanced Geothermal System (EGS) in Korea

    NASA Astrophysics Data System (ADS)

    Jong Lee, Tae; Song, Yoonho; Yoon, Woon-Sang

    2013-04-01

    Though Korea does not have high-enthalpy geothermal resources from volcanic sources, it still has huge amount of geothermal resources at depth; i.e. technical geothermal potential of 19.6 GWe within 6.5 km deep by enhanced geothermal system (EGS) technologies. The first proof of concept project for geothermal power generation by EGS has started in Pohang, Korea in Dec. 2010. The project aims to develop a pilot geothermal power plant of 1 MW or more of installed capacity from a doublet EGS system in 5 years. This work summarizes our two years efforts including geological/geophysical surveys, site selection, civil engineering, permission for drilling, setting up the drill rig, and setting up the micro-seismic network and monitoring. At the end of Dec. 2012, drilling reached down to 2,250 m deep. Results of borehole investigation will be also discussed about.

  18. Neutron imaging for geothermal energy systems

    SciTech Connect

    Bingham, Philip R; Anovitz, Lawrence {Larry} M; Polsky, Yarom

    2013-01-01

    Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

  19. Updated U.S. Geothermal Supply Curve

    SciTech Connect

    Augustine, C.; Young, K. R.; Anderson, A.

    2010-02-01

    This paper documents the approach used to update the U.S. geothermal supply curve. The analysis undertaken in this study estimates the supply of electricity generation potential from geothermal resources in the United States and the levelized cost of electricity (LCOE), capital costs, and operating and maintenance costs associated with developing these geothermal resources. Supply curves were developed for four categories of geothermal resources: identified hydrothermal (6.4 GWe), undiscovered hydrothermal (30.0 GWe), near-hydrothermal field enhanced geothermal systems (EGS) (7.0 GWe) and deep EGS (15,900 GWe). Two cases were considered: a base case and a target case. Supply curves were generated for each of the four geothermal resource categories for both cases. For both cases, hydrothermal resources dominate the lower cost range of the combined geothermal supply curve. The supply curves indicate that the reservoir performance improvements assumed in the target case could significantly lower EGS costs and greatly increase EGS deployment over the base case.

  20. Reno Industrial Park geothermal district heating system

    SciTech Connect

    Lienau, P.J.

    1997-04-01

    Ten miles south of Reno, on U.S. 395 near the junction of the road to historic Virginia City, is Steamboat Hot Springs, a popular stop for travelers since the mid-1800s. Legend has it that Mark Twain named the geothermal area because it looked and sounded like a chugging Mississippi River paddle-wheeler. It is said when he first saw the steam rising from the ground he exclaimed, {open_quotes}Behold! A Steamboat in the desert.{close_quotes} Over the years, the area has been used for its relaxing and curative qualities by Indians, settlers, and geothermal experts. Since the mid-1980s five geothermal power plants have been built at Steamboat Springs and in December 1996 it was announced that the proposed largest geothermal district heating system in the U.S. would supply an industrial park in the area. The active geothermal area is located within the north-south trending graben like trough between the Carson and Virginia Ranges at the southern end of Truckee Meadows. Hot springs and other geothermal features occur over an area of about one square mile. The mid-basin location is controlled by faulting more or less parallel to the major mountain-front faults. It is believed that the heat source for the system is a cooling magmatic body at depth. The Steamboat geothermal area consists of a deep, high-temperature (215{degrees}C to 240{degrees} C) geothermal system, a shallower, moderate-temperature (160{degrees}C to 18{degrees} C) system, and a number of shallow low-temperature (30{degrees}C to 80{degrees}C) subsystems. The higher temperature systems are used for electric-power generation. It is proposed that the exit fluids from the electric power plants be used for the geothermal district heating system.