Sample records for azure platform electronic

  1. Bioinformatics on the cloud computing platform Azure.

    PubMed

    Shanahan, Hugh P; Owen, Anne M; Harrison, Andrew P

    2014-01-01

    We discuss the applicability of the Microsoft cloud computing platform, Azure, for bioinformatics. We focus on the usability of the resource rather than its performance. We provide an example of how R can be used on Azure to analyse a large amount of microarray expression data deposited at the public database ArrayExpress. We provide a walk through to demonstrate explicitly how Azure can be used to perform these analyses in Appendix S1 and we offer a comparison with a local computation. We note that the use of the Platform as a Service (PaaS) offering of Azure can represent a steep learning curve for bioinformatics developers who will usually have a Linux and scripting language background. On the other hand, the presence of an additional set of libraries makes it easier to deploy software in a parallel (scalable) fashion and explicitly manage such a production run with only a few hundred lines of code, most of which can be incorporated from a template. We propose that this environment is best suited for running stable bioinformatics software by users not involved with its development.

  2. Bioinformatics on the Cloud Computing Platform Azure

    PubMed Central

    Shanahan, Hugh P.; Owen, Anne M.; Harrison, Andrew P.

    2014-01-01

    We discuss the applicability of the Microsoft cloud computing platform, Azure, for bioinformatics. We focus on the usability of the resource rather than its performance. We provide an example of how R can be used on Azure to analyse a large amount of microarray expression data deposited at the public database ArrayExpress. We provide a walk through to demonstrate explicitly how Azure can be used to perform these analyses in Appendix S1 and we offer a comparison with a local computation. We note that the use of the Platform as a Service (PaaS) offering of Azure can represent a steep learning curve for bioinformatics developers who will usually have a Linux and scripting language background. On the other hand, the presence of an additional set of libraries makes it easier to deploy software in a parallel (scalable) fashion and explicitly manage such a production run with only a few hundred lines of code, most of which can be incorporated from a template. We propose that this environment is best suited for running stable bioinformatics software by users not involved with its development. PMID:25050811

  3. Cloud computing for comparative genomics with windows azure platform.

    PubMed

    Kim, Insik; Jung, Jae-Yoon; Deluca, Todd F; Nelson, Tristan H; Wall, Dennis P

    2012-01-01

    Cloud computing services have emerged as a cost-effective alternative for cluster systems as the number of genomes and required computation power to analyze them increased in recent years. Here we introduce the Microsoft Azure platform with detailed execution steps and a cost comparison with Amazon Web Services.

  4. Cloud Computing for Comparative Genomics with Windows Azure Platform

    PubMed Central

    Kim, Insik; Jung, Jae-Yoon; DeLuca, Todd F.; Nelson, Tristan H.; Wall, Dennis P.

    2012-01-01

    Cloud computing services have emerged as a cost-effective alternative for cluster systems as the number of genomes and required computation power to analyze them increased in recent years. Here we introduce the Microsoft Azure platform with detailed execution steps and a cost comparison with Amazon Web Services. PMID:23032609

  5. Spectroscopic studies on the binding interaction of phenothiazinium dyes, azure A and azure B to double stranded RNA polynucleotides

    NASA Astrophysics Data System (ADS)

    Khan, Asma Yasmeen; Suresh Kumar, Gopinatha

    2016-01-01

    This manuscript presents spectroscopic characterization of the interaction of two phenothiazinium dyes, azure A and azure B with double stranded (ds) ribonucleic acids, poly(A).poly(U), poly(C).poly(G) and poly(I).poly(C). Absorbance and fluorescence studies revealed that these dyes bind to the RNAs with binding affinities of the order 106 M-1 to poly(A).poly(U), and 105 M-1 to poly(C).poly(G) and poly(I).poly(C), respectively. Fluorescence quenching and viscosity data gave conclusive evidence for the intercalation of the dyes to these RNA duplexes. Circular dichroism results suggested that the conformation of the RNAs was perturbed on interaction and the dyes acquired strong induced optical activity on binding. Azure B bound to all the three RNAs stronger than azure A and the binding affinity varied as poly(A).poly(U) > poly(C).poly(G) > poly(I).poly(C) for both dyes.

  6. The interactions of azure B, a metabolite of methylene blue, with acetylcholinesterase and butyrylcholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petzer, Anél, E-mail: 12264954@nwu.ac.za; Harvey, Brian H.; Petzer, Jacobus P.

    Methylene blue (MB) is reported to possess diverse pharmacological actions and is attracting increasing attention for the treatment of neurodegenerative disorders such as Alzheimer's disease. Among the pharmacological actions of MB, is the significant inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These activities may, at least in part, underlie MB's beneficial effects in Alzheimer's disease. MB is metabolized to yield N-demethylated products of which azure B, the monodemethyl metabolite, is the predominant species. Azure B has been shown to be pharmacologically active and also possesses a variety of biological actions. Azure B therefore may contribute to the pharmacological profile ofmore » MB. Based on these considerations, the present study investigates the possibility that azure B may, similar to MB, act as an inhibitor of human AChE and BuChE. The results document that azure B inhibits AChE and BuChE with IC{sub 50} values of 0.486 μM and 1.99 μM, respectively. The results further show that azure B inhibits AChE and BuChE reversibly, and that the modes of inhibition are most likely competitive. Although the AChE and BuChE inhibitory activities of azure B are twofold and fivefold, respectively, less potent than those recorded for MB [IC{sub 50}(AChE) = 0.214 μM; IC{sub 50}(BuChE) = 0.389 μM] under identical conditions, azure B may be a contributor to MB's in vivo activation of the cholinergic system and beneficial effects in Alzheimer's disease. - Highlights: • Methylene blue (MB) is a known inhibitor of AChE and BuChE. • Azure B, the major metabolite of MB, also is an inhibitor of AChE and BuChE. • Azure B may be a contributor to MB's in vivo activation of the cholinergic system. • Azure B may contribute to MB's potential in Alzheimer's disease therapy.« less

  7. Electro-oxidation of the dye azure B: kinetics, mechanism, and by-products.

    PubMed

    Olvera-Vargas, Hugo; Oturan, Nihal; Aravindakumar, C T; Paul, M M Sunil; Sharma, Virender K; Oturan, Mehmet A

    2014-01-01

    In this work, the electrochemical degradation of the dye azure B in aqueous solutions was studied by electrochemical advanced oxidation processes (EAOPs), electro-Fenton, and anodic oxidation processes, using Pt/carbon-felt and boron-doped diamond (BDD)/carbon-felt cells with H₂O₂ electrogeneration. The higher oxidation power of the electro-Fenton (EF) process using BDD anode was demonstrated. The oxidative degradation of azure B by the electrochemically generated hydroxyl radicals ((•)OH) follows a pseudo-first-order kinetics. The apparent rate constants of the oxidation of azure B by (•)OH were measured according to pseudo-first-order kinetic model. The absolute rate constant of azure B hydroxylation reaction was determined by competition kinetics method and found to be 1.19 × 10(9) M(-1) s(-1). It was found that the electrochemical degradation of the dye leads to the formation of aromatic by-products which are then oxidized to aliphatic carboxylic acids before their almost mineralization to CO₂ and inorganic ions (sulfate, nitrate, and ammonium). The evolution of the TOC removal and time course of short-chain carboxylic acids during treatment were also investigated.

  8. Enzyme Kinetics: The Use of Amylose Azure.

    ERIC Educational Resources Information Center

    Cusimano, Vincent J.

    1978-01-01

    Amylose azure can be used as a chromogenic substrate for alpha-amylase in studying the effects of temperature and pH enzyme action. This is a model system which students can use to measure the energy of activation using the Arrhenius plot. (Author/BB)

  9. Molecular binding of toxic phenothiazinium derivatives, azures to bovine serum albumin: A comparative spectroscopic, calorimetric, and in silico study.

    PubMed

    Das, Somnath; Islam, Md Maidul; Jana, Gopal Chandra; Patra, Anirudha; Jha, Pradeep K; Hossain, Maidul

    2017-07-01

    In this paper, the comparative binding behavior of antimalarial drug azure A, azure B and azure C with bovine serum albumin (BSA) has been studied. The interaction has been confirmed by multispectroscopic (UV, fluorescence, Fourier transform infrared (FT-IR), and circular dichroism) and molecular docking techniques. The experimental results show that azure B has the highest BSA binding affinity followed by azure A and azure C. The experimental evidence of binding showed a static quenching mechanism in the interaction azures with BSA. The isothermal titration calorimetry result reveals that the binding was exothermic with positive entropy contribution in each case. The thermodynamic parameters ΔH, ΔG, and ΔS at 25°C were calculated, which indicates that the weak van der Waals forces and hydrogen bonding rather than the hydrophobic effect played an important role in the interaction. According to the theory of Förster nonradiative energy transfer, the distance (r) between the donor (BSA) and acceptor azures found to be <7 nm in all the case. The circular dichroism and FT-IR studies show that the content of α-helix structure has increased for the azures-BSA system. Overall, experimental studies characterize the interaction dynamics and energetics of the binding of three toxic analogs towards the physiologically relevant serum albumins. We hope, the outcome of this work will be most helpful for synthesizing a new type of phenothiazinium derivatives of the better therapeutic application. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Non-enzymatic detection of glucose using poly(azure A)-nickel modified glassy carbon electrode.

    PubMed

    Liu, Tong; Luo, Yiqun; Zhu, Jiaming; Kong, Liyan; Wang, Wen; Tan, Liang

    2016-08-15

    A simple, sensitive and selective non-enzymatic glucose sensor was constructed in this paper. The poly(azure A)-nickel modified glassy carbon electrode was successfully fabricated by the electropolymerization of azure A and the adsorption of Ni(2+). The Ni modified electrode, which was characterized by scanning electron microscope, cyclic voltammetry, electrochemical impedance spectra and X-ray photoelectron spectroscopy measurements, respectively, displayed well-defined current responses of the Ni(III)/Ni(II) couple and showed a good activity for electrocatalytic oxidation of glucose in alkaline medium. Under the optimized conditions, the developed sensor exhibited a broad linear calibration range of 5 μM-12mM for quantification of glucose and a low detection limit of 0.64μM (3σ). The excellent analytical performance including simple structure, fast response time, good anti-interference ability, satisfying stability and reliable reproducibility were also found from the proposed amperometric sensor. The results were satisfactory for the determination of glucose in human serum samples as comparison to those from a local hospital. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Classes Azur Astro Espace International Hands-on Space Experience

    NASA Astrophysics Data System (ADS)

    Jung, P.

    2002-01-01

    Created in 1994 in the wake of the closure of the Space Camp of Patrick Baudry in Cannes, Classes Azur Astro Espace (AAE) provide a world's unique combination of space and astronomy courses, as given by active and retired professionals of two of the best space and astronomical facilities extant: Alcatel Space in Cannes and Observatoire de la Côte d'Azur (OCA) in Nice, Grasse and Caussols. Fifteen space modules, of 30 to 60 minutes each, have been established, giving simple and clear explanations on launchers, satellites, their applications, their development, together with an historical background. Basic experiments are included, such as an unique small catapult to explain gravity, or more classical water rockets. The basic AAE sojourn extends over 3 days: one day for space (including a visit of Alcatel Space, the biggest satellite manufacturer outside the US and Russia), one day for astronomy (including a visit of the biggest observatory in Europe) and one day à-la-carte (Côte d'Azur offers much, such as the Oceanographic Museum in Monaco). More and more groups are adding a fourth day, with a visit to the nice old village of Perinaldo in Italy, where famous astronomer Cassini was born. Lycée de Cachan, near Paris, even takes 12-day sojourns every year. The public has been extremely wide, from age 5 to 70, from students to enthusiasts. Coming initially all over from France, participants now include since 2001 German and Italian pupils and teachers. In 2001 also, ESA came in the shape of a Space Camp. ISU's Master of Space Studies participates to a shortened version of AAE every even-year. Up to the end of 2001, 62 classes with 2,025 participants from 20 countries had thus come to enjoy space education on Côte d'Azur. Such success is due in no small part to the very attractive price and flexibility of these activities, notably thanks to the support of ESA, CNES, Rectorat d'Académie de Nice, Conseil Général des Alpes-Maritimes, Ville de Cannes, AAAF, TDF

  12. Azure B and a synthetic structural analogue of methylene blue, ethylthioninium chloride, present with antidepressant-like properties.

    PubMed

    Delport, Anzelle; Harvey, Brian H; Petzer, Anél; Petzer, Jacobus P

    2014-11-11

    The phenothiazinium compound, methylene blue (MB), possesses diverse pharmacological actions and is attracting attention for the treatment of bipolar disorder and Alzheimer's disease. MB acts on both monoamine oxidase (MAO) and the nitric oxide (NO)-cGMP pathway, and possesses antidepressant activity in rodents. The goal of this study was to synthesise a structural analogue of MB, ethylthioninium chloride (ETC), and to evaluate the effects of the structural changes on the MAO inhibitory and antidepressant properties of MB. This study also investigated the antidepressant properties of azure B, the major metabolite of MB, versus MB and imipramine as active comparators. ETC and azure B were firstly evaluated as inhibitors of human MAO, and secondly for antidepressant-like activity in the acute forced swim test (FST) in rats, and compared to saline, imipramine and MB. The results document that ETC is a reversible inhibitor of MAO-A and MAO-B with IC50 values of 0.510 μM and 0.592 μM, respectively, and that it is a weaker MAO-A inhibitor than MB and azure B. ETC and azure B were more effective than imipramine and MB in reversing immobility in the FST without inducing locomotor effects, with evidence supporting a serotonergic action. Of interest is the finding that ETC is more toxic for cultured cells than MB. Azure B may therefore be a contributor to the antidepressant effect of MB. Small structural changes made to MB retain its antidepressant effect, even though the resulting phenothiazinium compound possesses reduced MAO-A inhibitory potency.

  13. Mems: Platform for Large-Scale Integrated Vacuum Electronic Circuits

    DTIC Science & Technology

    2017-03-20

    SECURITY CLASSIFICATION OF: The objective of the LIVEC advanced study project was to develop a platform for large-scale integrated vacuum electronic ...Distribution Unlimited UU UU UU UU 20-03-2017 1-Jul-2014 30-Jun-2015 Final Report: MEMS Platform for Large-Scale Integrated Vacuum Electronic ... Electronic Circuits (LIVEC) Contract No: W911NF-14-C-0093 COR Dr. James Harvey U.S. ARO RTP, NC 27709-2211 Phone: 702-696-2533 e-mail

  14. Implementation and Initial Analysis of a Laboratory-Based Weekly Biosurveillance System, Provence-Alpes-Côte d’Azur, France

    PubMed Central

    Bedubourg, Gabriel; Abat, Cédric; Colson, Philippe; Rolain, Jean Marc; Chaudet, Hervé; Fournier, Pierre Edouard; Raoult, Didier; Deparis, Xavier

    2017-01-01

    We describe the implementation of an automated infectious disease surveillance system that uses data collected from 210 microbiologic laboratories throughout the Provence-Alpes-Côte d’Azur region in France. Each week, these facilities report bacterial species that have been isolated from patients in their area. An alarm is triggered whenever the case count for a bacterial species infection exceeds 2 SDs of the historical mean for that species at the participating laboratory. At its inception in July 2013, the system monitored 611 bacterial species. During July 1, 2013–March 20, 2016, weekly analyses of incoming surveillance data generated 34 alarms signaling possible infectious disease outbreaks; after investigation, 14 (41%) of these alarms resulted in health alerts declared by the regional health authority. We are currently improving the system by developing an Internet-based surveillance platform and extending our surveillance to include more laboratories in the region. PMID:28322712

  15. Implementation of a cloud-based electronic medical record exchange system in compliance with the integrating healthcare enterprise's cross-enterprise document sharing integration profile.

    PubMed

    Wu, Chien Hua; Chiu, Ruey Kei; Yeh, Hong Mo; Wang, Da Wei

    2017-11-01

    In 2011, the Ministry of Health and Welfare of Taiwan established the National Electronic Medical Record Exchange Center (EEC) to permit the sharing of medical resources among hospitals. This system can presently exchange electronic medical records (EMRs) among hospitals, in the form of medical imaging reports, laboratory test reports, discharge summaries, outpatient records, and outpatient medication records. Hospitals can send or retrieve EMRs over the virtual private network by connecting to the EEC through a gateway. International standards should be adopted in the EEC to allow users with those standards to take advantage of this exchange service. In this study, a cloud-based EMR-exchange prototyping system was implemented on the basis of the Integrating the Healthcare Enterprise's Cross-Enterprise Document Sharing integration profile and the existing EMR exchange system. RESTful services were used to implement the proposed prototyping system on the Microsoft Azure cloud-computing platform. Four scenarios were created in Microsoft Azure to determine the feasibility and effectiveness of the proposed system. The experimental results demonstrated that the proposed system successfully completed EMR exchange under the four scenarios created in Microsoft Azure. Additional experiments were conducted to compare the efficiency of the EMR-exchanging mechanisms of the proposed system with those of the existing EEC system. The experimental results suggest that the proposed RESTful service approach is superior to the Simple Object Access Protocol method currently implemented in the EEC system, according to the irrespective response times under the four experimental scenarios. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Quirks of dye nomenclature. 8. Methylene blue, azure and violet.

    PubMed

    Cooksey, C J

    2017-01-01

    Methylene blue was synthesized in 1877 and soon found application in medicine, staining for microscopy and as an industrial dye and pigment. An enormous literature has accumulated since its introduction. Early on, it was known that methylene blue could be degraded easily by demethylation; consequently, the purity of commercial samples often was low. Therefore, demethylation products, such as azures and methylene violet, also are considered here. The names and identity of the components, their varying modes of manufacture, analytical methods and their contribution to biological staining are discussed.

  17. Potential electron mediators to extract electron energies of RBC glycolysis for prolonged in vivo functional lifetime of hemoglobin vesicles.

    PubMed

    Kettisen, Karin; Bülow, Leif; Sakai, Hiromi

    2015-04-15

    Developing a functional blood substitute as an alternative to donated blood for clinical use is believed to relieve present and future blood shortages, and to reduce the risks of infection and blood type mismatching. Hemoglobin vesicle (HbV) encapsulates a purified and concentrated human-derived Hb solution in a phospholipid vesicle (liposome). The in vivo safety and efficacy of HbV as a transfusion alternative have been clarified. Auto-oxidation of ferrous Hb in HbV gradually increases the level of ferric methemoglobin (metHb) and impairs the oxygen transport capabilities. The extension of the functional half-life of HbV has recently been proposed using an electron mediator, methylene blue (MB), which acts as a shuttle between red blood cells (RBC) and HbV. MB transfers electron energies of NAD(P)H, produced by RBC glycolysis, to metHb in HbV. Work presented here focuses on screening of 15 potential electron mediators, with appropriate redox potential and water solubility, for electron transfer from RBC to HbV. The results are assessed with regard to the chemical properties of the candidates. The compounds examined in this study were dimethyl methylene blue (DMB), methylene green, azure A, azure B, azure C, toluidine blue (TDB), thionin acetate, phenazine methosulfate, brilliant cresyl blue, cresyl violet, gallocyanine, toluylene blue, indigo carmine, indigotetrasulfonate, and MB. Six candidates were found to be unsuitable because of their insufficient diffusion across membranes, or overly high or nonexistent reactivity with relevant biomolecules. However, 9 displayed favorable metHb reduction. Among the suitable candidates, phenothiazines DMB and TDB exhibited effectiveness like MB did. In comparison to MB, they showed faster reduction by electron-donating NAD(P)H, coupled with showing a lower rate of reoxidation in the presence of molecular oxygen. Ascertaining the best electron mediator can provide a pathway for extending the lifetime and efficiency of

  18. Scalable, Secure Analysis of Social Sciences Data on the Azure Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmhan, Yogesh; Deng, Litao; Kumbhare, Alok

    2012-05-07

    Human activity and interaction data is beginning to be collected at population scales through the pervasiveness of social media and willingness of people to volunteer information. This can allow social science researchers to understand and model human behavior with better accuracy and prediction power. Political and social scientists are starting to correlate such large scale social media datasets with events that impact society as evidence abound of the virtual and physical public spaces intersecting and influencing each other [1,2]. Managers of Cyber Physical Systems such as Smart Power Grid utilities are investigating the impact of consumer behavior on power consumption,more » and the possibility of influencing the usage profile [3]. Data collection is also made easier through technology such as mobile apps, social media sites and search engines that directly collect data, and sensors such smart meters and room occupancy sensors that indirectly measure human activity. These technology platforms also provide a convenient framework for “human sensors” to record and broadcast data for behavioral studies, as a form of crowd sourced citizen science. This has the added advantage of engaging the broader public in STEM activities and help influence public policy.« less

  19. Developing cloud applications using the e-Science Central platform.

    PubMed

    Hiden, Hugo; Woodman, Simon; Watson, Paul; Cala, Jacek

    2013-01-28

    This paper describes the e-Science Central (e-SC) cloud data processing system and its application to a number of e-Science projects. e-SC provides both software as a service (SaaS) and platform as a service for scientific data management, analysis and collaboration. It is a portable system and can be deployed on both private (e.g. Eucalyptus) and public clouds (Amazon AWS and Microsoft Windows Azure). The SaaS application allows scientists to upload data, edit and run workflows and share results in the cloud, using only a Web browser. It is underpinned by a scalable cloud platform consisting of a set of components designed to support the needs of scientists. The platform is exposed to developers so that they can easily upload their own analysis services into the system and make these available to other users. A representational state transfer-based application programming interface (API) is also provided so that external applications can leverage the platform's functionality, making it easier to build scalable, secure cloud-based applications. This paper describes the design of e-SC, its API and its use in three different case studies: spectral data visualization, medical data capture and analysis, and chemical property prediction.

  20. Developing cloud applications using the e-Science Central platform

    PubMed Central

    Hiden, Hugo; Woodman, Simon; Watson, Paul; Cala, Jacek

    2013-01-01

    This paper describes the e-Science Central (e-SC) cloud data processing system and its application to a number of e-Science projects. e-SC provides both software as a service (SaaS) and platform as a service for scientific data management, analysis and collaboration. It is a portable system and can be deployed on both private (e.g. Eucalyptus) and public clouds (Amazon AWS and Microsoft Windows Azure). The SaaS application allows scientists to upload data, edit and run workflows and share results in the cloud, using only a Web browser. It is underpinned by a scalable cloud platform consisting of a set of components designed to support the needs of scientists. The platform is exposed to developers so that they can easily upload their own analysis services into the system and make these available to other users. A representational state transfer-based application programming interface (API) is also provided so that external applications can leverage the platform's functionality, making it easier to build scalable, secure cloud-based applications. This paper describes the design of e-SC, its API and its use in three different case studies: spectral data visualization, medical data capture and analysis, and chemical property prediction. PMID:23230161

  1. The first sustainable material designed for air particulate matter capture: An introduction to Azure Chemistry.

    PubMed

    Zanoletti, A; Bilo, F; Depero, L E; Zappa, D; Bontempi, E

    2018-07-15

    This work presents a new porous material (SUNSPACE) designed for air particulate matter (PM) capture. It was developed in answer to the European Commission request of an innovative, affordable, and sustainable solution, based on design-driven material, to reduce the concentration of air particulate matter in urban areas. SUNSPACE material was developed from by-products and low-cost materials, such as silica fume and sodium alginate. Its capability to catch ultrafine PM was evaluated by different ad-hoc tests, considering diesel exhaust fumes and incense smoke PM. Despite the fact that procedures and materials can be designed for remediation, the high impact on the environment, for example in terms of natural resources consumption and emissions, are not usually considered. Instead, we believe that the technologies must be always evaluated in terms of material embodied energy (EE) and carbon footprint (CF). We define our approach to solve environment problems by a sustainable methodology "Azure Chemistry". For the SUNSPACE synthesis, the multi-criteria decision analysis was performed to select the best sustainable solution. The emissions and the energies involved in the synthesis of SUNSPACE material were evaluated with the Azure Chemistry approach, showing that this could be the best available technology to face the problem of capturing the PM in urban area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Printable Spacecraft: Flexible Electronic Platforms for NASA Missions. Phase One

    NASA Technical Reports Server (NTRS)

    Short, Kendra (Principal Investigator); Van Buren, David (Principal Investigator)

    2012-01-01

    Atmospheric confetti. Inchworm crawlers. Blankets of ground penetrating radar. These are some of the unique mission concepts which could be enabled by a printable spacecraft. Printed electronics technology offers enormous potential to transform the way NASA builds spacecraft. A printed spacecraft's low mass, volume and cost offer dramatic potential impacts to many missions. Network missions could increase from a few discrete measurements to tens of thousands of platforms improving areal density and system reliability. Printed platforms could be added to any prime mission as a low-cost, minimum resource secondary payload to augment the science return. For a small fraction of the mass and cost of a traditional lander, a Europa flagship mission might carry experimental printed surface platforms. An Enceladus Explorer could carry feather-light printed platforms to release into volcanic plumes to measure composition and impact energies. The ability to print circuits directly onto a variety of surfaces, opens the possibility of multi-functional structures and membranes such as "smart" solar sails and balloons. The inherent flexibility of a printed platform allows for in-situ re-configurability for aerodynamic control or mobility. Engineering telemetry of wheel/soil interactions are possible with a conformal printed sensor tape fit around a rover wheel. Environmental time history within a sample return canister could be recorded with a printed sensor array that fits flush to the interior of the canister. Phase One of the NIAC task entitled "Printable Spacecraft" investigated the viability of printed electronics technologies for creating multi-functional spacecraft platforms. Mission concepts and architectures that could be enhanced or enabled with this technology were explored. This final report captures the results and conclusions of the Phase One study. First, the report presents the approach taken in conducting the study and a mapping of results against the proposed

  3. Wind shear over the Nice Côte d'Azur airport: case studies

    NASA Astrophysics Data System (ADS)

    Boilley, A.; Mahfouf, J.-F.

    2013-09-01

    The Nice Côte d'Azur international airport is subject to horizontal low-level wind shears. Detecting and predicting these hazards is a major concern for aircraft security. A measurement campaign took place over the Nice airport in 2009 including 4 anemometers, 1 wind lidar and 1 wind profiler. Two wind shear events were observed during this measurement campaign. Numerical simulations were carried out with Meso-NH in a configuration compatible with near-real time applications to determine the ability of the numerical model to predict these events and to study the meteorological situations generating an horizontal wind shear. A comparison between numerical simulation and the observation dataset is conducted in this paper.

  4. Wind shear over the Nice Côte d'Azur airport: case studies

    NASA Astrophysics Data System (ADS)

    Boilley, A.; Mahfouf, J.-F.

    2013-04-01

    The Nice Côte d'Azur international airport is subject to horizontal low-level wind shears. Detecting and predicting these hazards is a major concern for aircraft security. A measurement campaign took place over the Nice airport in 2009 including 4 anemometers, 1 wind lidar and 1 wind profiler. Two wind shear events were observed during this measurement campaign. Numerical simulations were carried out with Meso-NH in a configuration compatible with near-real time applications to determine the ability of the numerical model to predict these events and to study the meteorological situations generating a horizontal wind shear. A comparison between numerical simulation and the observation dataset is conducted in this paper.

  5. Compensating Unknown Time-Varying Delay in Opto-Electronic Platform Tracking Servo System.

    PubMed

    Xie, Ruihong; Zhang, Tao; Li, Jiaquan; Dai, Ming

    2017-05-09

    This paper investigates the problem of compensating miss-distance delay in opto-electronic platform tracking servo system. According to the characteristic of LOS (light-of-sight) motion, we setup the Markovian process model and compensate this unknown time-varying delay by feed-forward forecasting controller based on robust H∞ control. Finally, simulation based on double closed-loop PI (Proportion Integration) control system indicates that the proposed method is effective for compensating unknown time-varying delay. Tracking experiments on the opto-electronic platform indicate that RMS (root-mean-square) error is 1.253 mrad when tracking 10° 0.2 Hz signal.

  6. iES - An Intelligent Electronic Sales Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanton, V L; Korbe III, W; Gao, J G

    Current e-commerce systems support online shopping based on electronic product catalogs. The major issues associated with catalog-based commerce systems are: difficulty in distinguishing one retailer from another, complex navigation with confusing links, and a lack of personalized service. This paper reports an intelligent solution to address these issues. Our solution will provide a more personalized sales experience through the use of a transaction-based knowledge model that includes both the rules used for reasoning as well as the corresponding actions. Based on this solution, we have developed an intelligent electronic sales platform that is supported by a framework which provides themore » desired personalization as well as extensibility and customization capabilities. This paper reports our design and development of this system and application examples.« less

  7. Wireless implantable electronic platform for chronic fluorescent-based biosensors.

    PubMed

    Valdastri, Pietro; Susilo, Ekawahyu; Förster, Thilo; Strohhöfer, Christof; Menciassi, Arianna; Dario, Paolo

    2011-06-01

    The development of a long-term wireless implantable biosensor based on fluorescence intensity measurement poses a number of technical challenges, ranging from biocompatibility to sensor stability over time. One of these challenges is the design of a power efficient and miniaturized electronics, enabling the biosensor to move from bench testing to long term validation, up to its final application in human beings. In this spirit, we present a wireless programmable electronic platform for implantable chronic monitoring of fluorescent-based autonomous biosensors. This system is able to achieve extremely low power operation with bidirectional telemetry, based on the IEEE802.15.4-2003 protocol, thus enabling over three-year battery lifetime and wireless networking of multiple sensors. During the performance of single fluorescent-based sensor measurements, the circuit drives a laser diode, for sensor excitation, and acquires the amplified signals from four different photodetectors. In vitro functionality was preliminarily tested for both glucose and calcium monitoring, simply by changing the analyte-binding protein of the biosensor. Electronics performance was assessed in terms of timing, power consumption, tissue exposure to electromagnetic fields, and in vivo wireless connectivity. The final goal of the presented platform is to be integrated in a complete system for blood glucose level monitoring that may be implanted for at least one year under the skin of diabetic patients. Results reported in this paper may be applied to a wide variety of biosensors based on fluorescence intensity measurement.

  8. E-learning platform for automated testing of electronic circuits using signature analysis method

    NASA Astrophysics Data System (ADS)

    Gherghina, Cǎtǎlina; Bacivarov, Angelica; Bacivarov, Ioan C.; Petricǎ, Gabriel

    2016-12-01

    Dependability of electronic circuits can be ensured only through testing of circuit modules. This is done by generating test vectors and their application to the circuit. Testability should be viewed as a concerted effort to ensure maximum efficiency throughout the product life cycle, from conception and design stage, through production to repairs during products operating. In this paper, is presented the platform developed by authors for training for testability in electronics, in general and in using signature analysis method, in particular. The platform allows highlighting the two approaches in the field namely analog and digital signature of circuits. As a part of this e-learning platform, it has been developed a database for signatures of different electronic components meant to put into the spotlight different techniques implying fault detection, and from this there were also self-repairing techniques of the systems with this kind of components. An approach for realizing self-testing circuits based on MATLAB environment and using signature analysis method is proposed. This paper analyses the benefits of signature analysis method and simulates signature analyzer performance based on the use of pseudo-random sequences, too.

  9. INNOVATIVE TECHNOLOGY VERIFICATION REPORT "FIELD MEASUREMENT TECHNOLOGIES FOR TOTAL PETROLEUM HYDROCARBONS IN SOIL" CHEMETRICS, INC., AND AZUR ENVIRONMENTAL LTD REMEDIAID TOTAL PETROLEUM HYDROCARBON STARTER KIT

    EPA Science Inventory

    The RemediAidTm Total Petroleum Hydrocarbon Starter Kit (RemediAidTm kit) developed by CHEMetries, Inc. (CHEMetrics), and AZUR Environmental Ltd was demonstrated under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation Program in June 2000 at the ...

  10. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.

    PubMed

    Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung

    2016-02-24

    Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Vulnerability assessment of a space based weapon platform electronic system exposed to a thermonuclear weapon detonation

    NASA Astrophysics Data System (ADS)

    Perez, C. L.; Johnson, J. O.

    Rapidly changing world events, the increased number of nations with inter-continental ballistic missile capability, and the proliferation of nuclear weapon technology will increase the number of nuclear threats facing the world today. Monitoring these nation's activities and providing an early warning and/or intercept system via reconnaissance and surveillance satellites and space based weapon platforms is a viable deterrent against a surprise nuclear attack. However, the deployment of satellite and weapon platform assets in space will subject the sensitive electronic equipment to a variety of natural and man-made radiation environments. These include Van Allen Belt protons and electrons; galactic and solar flare protons; and neutrons, gamma rays, and x-rays from intentionally detonated fission and fusion weapons. In this paper, the MASH vl.0 code system is used to estimate the dose to the critical electronics components of an idealized space based weapon platform from neutron and gamma-ray radiation emitted from a thermonuclear weapon detonation in space. Fluence and dose assessments were performed for the platform fully loaded, and in several stages representing limited engagement scenarios. The results indicate vulnerabilities to the Command, Control, and Communication bay instruments from radiation damage for a nuclear weapon detonation for certain source/platform orientations. The distance at which damage occurs will depend on the weapon yield (n,(gamma)/kiloton) and size (kilotons).

  12. [New model of doctor-nurse communication based on electronic medical advice platform].

    PubMed

    Cao, Yang; Ding, Aimin; Wang, Yan

    2012-01-01

    This article introduces a new model of the communication between doctors and nurses, with the aid of the electronic medical advice platform. This model has achieved good results in improving doctor and nurse's co-working efficiency, treating patients safely, preventing medical accidents, reducing medical errors and so on.

  13. Enhanced sonochemical degradation of azure B dye by the electroFenton process.

    PubMed

    Martínez, Susana Silva; Uribe, Edgar Velasco

    2012-01-01

    The degradation of azure B dye (C15H16ClN3S; AB) has been studied by Fenton, sonolysis and sono-electroFenton processes employing ultrasound at 23 kHz and the electrogeneration of H2O2 at the reticulated vitreous carbon electrode. It was found that the dye degradation followed apparent first-order kinetics in all the degradation processes tested. The rate constant was affected by both the pH of the solution and initial concentration of Fe2+, with the highest degradation obtained at pH between 2.6 and 3. The first-order rate constant decreased in the following order: sono-electroFenton>Fenton>sonolysis. The rate constant for AB degradation by sono-electroFenton is ∼10-fold that of sonolysis and ∼2-fold the one obtained by Fenton under silent conditions. The chemical oxygen demand was abated ∼68% and ∼85% by Fenton and sono-electroFenton respectively, achieving AB concentration removal over 90% with both processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Electronics design of the airborne stabilized platform attitude acquisition module

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Wei, Guiling; Cheng, Yong; Li, Baolin; Bu, Hongyi; Wang, Hao; Zhang, Zhanwei; Li, Xingni

    2014-02-01

    We present an attitude acquisition module electronics design for the airborne stabilized platform. The design scheme, which is based on Integrated MEMS sensor ADIS16405, develops the attitude information processing algorithms and the hardware circuit. The hardware circuits with a small volume of only 44.9 x 43.6 x 24.6 mm3, has the characteristics of lightweight, modularization and digitalization. The interface design of the PC software uses the combination plane chart with track line to receive the attitude information and display. Attitude calculation uses the Kalman filtering algorithm to improve the measurement accuracy of the module in the dynamic environment.

  15. Using Instant Messaging Systems as a Platform for Electronic Voting

    NASA Astrophysics Data System (ADS)

    Meletiadou, Anastasia; Grimm, Rüdiger

    Many Instant Messaging (IM) systems like Skype or Spark offer ex tended services such as file sharing, VoIP, or a shared whiteboard. As the name suggests, IM applications are predominantly used for spontaneous text-based communication for private or business purposes. In this paper we explore their potential to serve as platforms for secure collaborative applications like electronic contract negotiation, e-payment or electronic voting. Such applications have to deal with challenges like time constraints (“instant” com munication is desired), integration of media channels and the absence of one uni fying “sphere of control” covering all participants. In this paper, we address these challenges by discussing one particular secure collaborative application: secure decision processes for small groups. We provide the following contribu tions: (1) we define three varying scenarios and corresponding security require ments (2) we present an IM-based architecture implementing these scenarios, in cluding a Video-based authentication mechanism, and (3) we discuss poten tial attack patterns.

  16. The COMET Sleep Research Platform.

    PubMed

    Nichols, Deborah A; DeSalvo, Steven; Miller, Richard A; Jónsson, Darrell; Griffin, Kara S; Hyde, Pamela R; Walsh, James K; Kushida, Clete A

    2014-01-01

    The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments-positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment.

  17. The COMET Sleep Research Platform

    PubMed Central

    Nichols, Deborah A.; DeSalvo, Steven; Miller, Richard A.; Jónsson, Darrell; Griffin, Kara S.; Hyde, Pamela R.; Walsh, James K.; Kushida, Clete A.

    2014-01-01

    Introduction: The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Background: Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments—positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. Discussion: The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. Conclusion: COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment. PMID:25848590

  18. Tattoo-Paper Transfer as a Versatile Platform for All-Printed Organic Edible Electronics.

    PubMed

    Bonacchini, Giorgio E; Bossio, Caterina; Greco, Francesco; Mattoli, Virgilio; Kim, Yun-Hi; Lanzani, Guglielmo; Caironi, Mario

    2018-04-01

    The use of natural or bioinspired materials to develop edible electronic devices is a potentially disruptive technology that can boost point-of-care testing. The technology exploits devices that can be safely ingested, along with pills or even food, and operated from within the gastrointestinal tract. Ingestible electronics can potentially target a significant number of biomedical applications, both as therapeutic and diagnostic tool, and this technology may also impact the food industry, by providing ingestible or food-compatible electronic tags that can "smart" track goods and monitor their quality along the distribution chain. Temporary tattoo-paper is hereby proposed as a simple and versatile platform for the integration of electronics onto food and pharmaceutical capsules. In particular, the fabrication of all-printed organic field-effect transistors on untreated commercial tattoo-paper, and their subsequent transfer and operation on edible substrates with a complex nonplanar geometry is demonstrated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. pH-triggered conduction of amine-functionalized single ZnO wire integrated on a customized nanogap electronic platform

    PubMed Central

    2014-01-01

    The electrical conductance response of single ZnO microwire functionalized with amine-groups was tested upon an acid pH variation of a solution environment after integration on a customized gold electrode array chip. ZnO microwires were easily synthesized by hydrothermal route and chemically functionalized with aminopropyl groups. Single wires were deposited from the solution and then oriented through dielectrophoresis across eight nanogap gold electrodes on a platform single chip. Therefore, eight functionalized ZnO microwire-gold junctions were formed at the same time, and being integrated on an ad hoc electronic platform, they were ready for testing without any further treatment. Experimental and simulation studies confirmed the high pH-responsive behavior of the amine-modified ZnO-gold junctions, obtaining in a simple and reproducible way a ready-to-use device for pH detection in the acidic range. We also compared this performance to bare ZnO wires on the same electronic platform, showing the superiority in pH response of the amine-functionalized material. PMID:24484615

  20. Experiment research on inertia-aided adaptive electronic image stabilization of optical stable platform

    NASA Astrophysics Data System (ADS)

    Lu, Xiaodong; Wu, Tianze; Zhou, Jun; Zhao, Bin; Ma, Xiaoyuan; Tang, Xiucheng

    2016-03-01

    An electronic image stabilization method compounded with inertia information, which can compensate the coupling interference caused by the pitch-yaw movement of the optical stable platform system, has been proposed in this paper. Firstly the mechanisms of coning rotation and lever-arm translation of line of sight (LOS) are analyzed during the stabilization process under moving carriers, and the mathematical model which describes the relationship between LOS rotation angle and platform attitude angle are derived. Then the image spin angle caused by coning rotation is estimated by using inertia information. Furthermore, an adaptive block matching method, which based on image edge and angular point, is proposed to smooth the jitter created by the lever-arm translation. This method optimizes the matching process and strategies. Finally, the results of hardware-in-the-loop simulation verified the effectiveness and real-time performance of the proposed method.

  1. Architecture Design of Healthcare Software-as-a-Service Platform for Cloud-Based Clinical Decision Support Service.

    PubMed

    Oh, Sungyoung; Cha, Jieun; Ji, Myungkyu; Kang, Hyekyung; Kim, Seok; Heo, Eunyoung; Han, Jong Soo; Kang, Hyunggoo; Chae, Hoseok; Hwang, Hee; Yoo, Sooyoung

    2015-04-01

    To design a cloud computing-based Healthcare Software-as-a-Service (SaaS) Platform (HSP) for delivering healthcare information services with low cost, high clinical value, and high usability. We analyzed the architecture requirements of an HSP, including the interface, business services, cloud SaaS, quality attributes, privacy and security, and multi-lingual capacity. For cloud-based SaaS services, we focused on Clinical Decision Service (CDS) content services, basic functional services, and mobile services. Microsoft's Azure cloud computing for Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) was used. The functional and software views of an HSP were designed in a layered architecture. External systems can be interfaced with the HSP using SOAP and REST/JSON. The multi-tenancy model of the HSP was designed as a shared database, with a separate schema for each tenant through a single application, although healthcare data can be physically located on a cloud or in a hospital, depending on regulations. The CDS services were categorized into rule-based services for medications, alert registration services, and knowledge services. We expect that cloud-based HSPs will allow small and mid-sized hospitals, in addition to large-sized hospitals, to adopt information infrastructures and health information technology with low system operation and maintenance costs.

  2. Synthetic Diagnostics Platform for Fusion Plasma and a Two-Dimensional Synthetic Electron Cyclotron Emission Imaging Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Lei

    Magnetic confinement fusion is one of the most promising approaches to achieve fusion energy. With the rapid increase of the computational power over the past decades, numerical simulation have become an important tool to study the fusion plasmas. Eventually, the numerical models will be used to predict the performance of future devices, such as the International Thermonuclear Experiment Reactor (ITER) or DEMO. However, the reliability of these models needs to be carefully validated against experiments before the results can be trusted. The validation between simulations and measurements is hard particularly because the quantities directly available from both sides are different.more » While the simulations have the information of the plasma quantities calculated explicitly, the measurements are usually in forms of diagnostic signals. The traditional way of making the comparison relies on the diagnosticians to interpret the measured signals as plasma quantities. The interpretation is in general very complicated and sometimes not even unique. In contrast, given the plasma quantities from the plasma simulations, we can unambiguously calculate the generation and propagation of the diagnostic signals. These calculations are called synthetic diagnostics, and they enable an alternate way to compare the simulation results with the measurements. In this dissertation, we present a platform for developing and applying synthetic diagnostic codes. Three diagnostics on the platform are introduced. The reflectometry and beam emission spectroscopy diagnostics measure the electron density, and the electron cyclotron emission diagnostic measures the electron temperature. The theoretical derivation and numerical implementation of a new two dimensional Electron cyclotron Emission Imaging code is discussed in detail. This new code has shown the potential to address many challenging aspects of the present ECE measurements, such as runaway electron effects, and detection of the cross

  3. Fullerene nanowires as a versatile platform for organic electronics

    PubMed Central

    Maeyoshi, Yuta; Saeki, Akinori; Suwa, Shotaro; Omichi, Masaaki; Marui, Hiromi; Asano, Atsushi; Tsukuda, Satoshi; Sugimoto, Masaki; Kishimura, Akihiro; Kataoka, Kazunori; Seki, Shu

    2012-01-01

    The development of organic semiconducting nanowires that act as charge carrier transport pathways in flexible and lightweight nanoelectronics is a major scientific challenge. We report on the fabrication of fullerene nanowires that is universally applicable to its derivatives (pristine C60, methanofullerenes of C61 and C71, and indene C60 bis-adduct), realized by the single particle nanofabrication technique (SPNT). Nanowires with radii of 8–11 nm were formed via a chain polymerization reaction induced by a high-energy ion beam. Fabrication of a poly(3-hexylthiophene) (P3HT): [6,6]-phenyl C61 butyric acid methyl ester (PC61BM) bulk heterojunction organic photovoltaic cell including PC61BM nanowires with precisely-controlled length and density demonstrates how application of this methodology can improve the power conversion efficiency of these inverted cells. The proposed technique provides a versatile platform for the fabrication of continuous and uniform n-type fullerene nanowires towards a wide range of organic electronics applications. PMID:22934128

  4. Study on the E-commerce platform based on the agent

    NASA Astrophysics Data System (ADS)

    Fu, Ruixue; Qin, Lishuan; Gao, Yinmin

    2011-10-01

    To solve problem of dynamic integration in e-commerce, the Multi-Agent architecture of electronic commerce platform system based on Agent and Ontology has been introduced, which includes three major types of agent, Ontology and rule collection. In this architecture, service agent and rule are used to realize the business process reengineering, the reuse of software component, and agility of the electronic commerce platform. To illustrate the architecture, a simulation work has been done and the results imply that the architecture provides a very efficient method to design and implement the flexible, distributed, open and intelligent electronic commerce platform system to solve problem of dynamic integration in ecommerce. The objective of this paper is to illustrate the architecture of electronic commerce platform system, and the approach how Agent and Ontology support the electronic commerce platform system.

  5. Photoelectrochemical Bioanalysis Platform for Cells Monitoring Based on Dual Signal Amplification Using in Situ Generation of Electron Acceptor Coupled with Heterojunction.

    PubMed

    Li, Ruyan; Zhang, Yue; Tu, Wenwen; Dai, Zhihui

    2017-07-12

    By using in situ generation of electron acceptor coupled with heterojunction as dual signal amplification, a simple photoelectrochemical (PEC) bioanalysis platform was designed. The synergic effect between the photoelectrochemical (PEC) activities of carbon nitride (C 3 N 4 ) nanosheets and PbS quantum dots (QDs) achieved almost nine-fold photocurrent intensity increment compared with the C 3 N 4 alone. After the G-quadruplex/hemin/Pt nanoparticles (NPs) with catalase-like activity toward H 2 O 2 were introduced, oxygen was in situ generated and acted as electron donor by improving charge separation efficiency and further enhancing photocurrent response. The dually amplified signal made enough sensitivity for monitoring H 2 O 2 released from live cells. The photocathode was prepared by the stepwise assembly of C 3 N 4 nanosheets and PbS QDs on indium tin oxide (ITO) electrode, which was characterized by scanning electron microscope. A signal-on protocol was achieved for H 2 O 2 detection in vitro due to the relevance of photocurrent on the concentration of H 2 O 2 . Under the optimized condition, the fabricated PEC bioanalysis platform exhibited a linear range of 10-7000 μM with a detection limit of 1.05 μM at S/N of 3. Besides, the bioanalysis platform displayed good selectivity against other reductive biological species. By using HepG2 cells as a model, a dual signal amplifying PEC bioanalysis platform for monitoring cells was developed. The bioanalysis platform was successfully applied to the detection of H 2 O 2 release from live cells, which provided a novel method for cells monitoring and would have prospect in clinical assay.

  6. The Public Health Community Platform, Electronic Case Reporting, and the Digital Bridge.

    PubMed

    Cooney, Mary Ann; Iademarco, Michael F; Huang, Monica; MacKenzie, William R; Davidson, Arthur J

    At the intersection of new technology advancements, ever-changing health policy, and fiscal constraints, public health agencies seek to leverage modern technical innovations and benefit from a more comprehensive and cooperative approach to transforming public health, health care, and other data into action. State health agencies recognized a way to advance population health was to integrate public health with clinical health data through electronic infectious disease case reporting. The Public Health Community Platform (PHCP) concept of bidirectional data flow and knowledge management became the foundation to build a cloud-based system connecting electronic health records to public health data for a select initial set of notifiable conditions. With challenges faced and lessons learned, significant progress was made and the PHCP grew into the Digital Bridge, a national governance model for systems change, bringing together software vendors, public health, and health care. As the model and technology advance together, opportunities to advance future connectivity solutions for both health care and public health will emerge.

  7. Mobile health platform for pressure ulcer monitoring with electronic health record integration.

    PubMed

    Rodrigues, Joel J P C; Pedro, Luís M C C; Vardasca, Tomé; de la Torre-Díez, Isabel; Martins, Henrique M G

    2013-12-01

    Pressure ulcers frequently occur in patients with limited mobility, for example, people with advanced age and patients wearing casts or prostheses. Mobile information communication technologies can help implement ulcer care protocols and the monitoring of patients with high risk, thus preventing or improving these conditions. This article presents a mobile pressure ulcer monitoring platform (mULCER), which helps control a patient's ulcer status during all stages of treatment. Beside its stand-alone version, it can be integrated with electronic health record systems as mULCER synchronizes ulcer data with any electronic health record system using HL7 standards. It serves as a tool to integrate nursing care among hospital departments and institutions. mULCER was experimented with in different mobile devices such as LG Optimus One P500, Samsung Galaxy Tab, HTC Magic, Samsung Galaxy S, and Samsung Galaxy i5700, taking into account the user's experience of different screen sizes and processing characteristics.

  8. Development of an electronic claim system based on an integrated electronic health record platform to guarantee interoperability.

    PubMed

    Kim, Hwa Sun; Cho, Hune; Lee, In Keun

    2011-06-01

    We design and develop an electronic claim system based on an integrated electronic health record (EHR) platform. This system is designed to be used for ambulatory care by office-based physicians in the United States. This is achieved by integrating various medical standard technologies for interoperability between heterogeneous information systems. The developed system serves as a simple clinical data repository, it automatically fills out the Centers for Medicare and Medicaid Services (CMS)-1500 form based on information regarding the patients and physicians' clinical activities. It supports electronic insurance claims by creating reimbursement charges. It also contains an HL7 interface engine to exchange clinical messages between heterogeneous devices. The system partially prevents physician malpractice by suggesting proper treatments according to patient diagnoses and supports physicians by easily preparing documents for reimbursement and submitting claim documents to insurance organizations electronically, without additional effort by the user. To show the usability of the developed system, we performed an experiment that compares the time spent filling out the CMS-1500 form directly and time required create electronic claim data using the developed system. From the experimental results, we conclude that the system could save considerable time for physicians in making claim documents. The developed system might be particularly useful for those who need a reimbursement-specialized EHR system, even though the proposed system does not completely satisfy all criteria requested by the CMS and Office of the National Coordinator for Health Information Technology (ONC). This is because the criteria are not sufficient but necessary condition for the implementation of EHR systems. The system will be upgraded continuously to implement the criteria and to offer more stable and transparent transmission of electronic claim data.

  9. What Azure blues occur in Canada? A re-assessment of Celastrina Tutt species (Lepidoptera, Lycaenidae)

    PubMed Central

    Schmidt, B. Christian; Layberry, Ross A.

    2016-01-01

    Abstract The identity of Celastrina species in eastern Canada is reviewed based on larval host plants, phenology, adult phenotypes, mtDNA barcodes and re-assessment of published data. The status of the Cherry Gall Azure (Celastrina serotina Pavulaan & Wright) as a distinct species in Canada is not supported by any dataset, and is removed from the Canadian fauna. Previous records of this taxon are re-identified as Celastrina lucia (Kirby) and Celastrina neglecta (Edwards). Evidence is presented that both Celastrina lucia and Celastrina neglecta have a second, summer-flying generation in parts of Canada. The summer generation of Celastrina lucia has previously been misidentified as Celastrina neglecta, which differs in phenology, adult phenotype and larval hosts from summer Celastrina lucia. DNA barcodes are highly conserved among at least three North American Celastrina species, and provide no taxonomic information. Celastrina neglecta has a Canadian distribution restricted to southern Ontario, Manitoba, Saskatchewan and easternmost Alberta. The discovery of museum specimens of Celastrina ladon (Cramer) from southernmost Ontario represents a new species for the Canadian butterfly fauna, which is in need of conservation status assessment. PMID:27199600

  10. PARAMO: A Parallel Predictive Modeling Platform for Healthcare Analytic Research using Electronic Health Records

    PubMed Central

    Ng, Kenney; Ghoting, Amol; Steinhubl, Steven R.; Stewart, Walter F.; Malin, Bradley; Sun, Jimeng

    2014-01-01

    Objective Healthcare analytics research increasingly involves the construction of predictive models for disease targets across varying patient cohorts using electronic health records (EHRs). To facilitate this process, it is critical to support a pipeline of tasks: 1) cohort construction, 2) feature construction, 3) cross-validation, 4) feature selection, and 5) classification. To develop an appropriate model, it is necessary to compare and refine models derived from a diversity of cohorts, patient-specific features, and statistical frameworks. The goal of this work is to develop and evaluate a predictive modeling platform that can be used to simplify and expedite this process for health data. Methods To support this goal, we developed a PARAllel predictive MOdeling (PARAMO) platform which 1) constructs a dependency graph of tasks from specifications of predictive modeling pipelines, 2) schedules the tasks in a topological ordering of the graph, and 3) executes those tasks in parallel. We implemented this platform using Map-Reduce to enable independent tasks to run in parallel in a cluster computing environment. Different task scheduling preferences are also supported. Results We assess the performance of PARAMO on various workloads using three datasets derived from the EHR systems in place at Geisinger Health System and Vanderbilt University Medical Center and an anonymous longitudinal claims database. We demonstrate significant gains in computational efficiency against a standard approach. In particular, PARAMO can build 800 different models on a 300,000 patient data set in 3 hours in parallel compared to 9 days if running sequentially. Conclusion This work demonstrates that an efficient parallel predictive modeling platform can be developed for EHR data. This platform can facilitate large-scale modeling endeavors and speed-up the research workflow and reuse of health information. This platform is only a first step and provides the foundation for our ultimate

  11. PARAMO: a PARAllel predictive MOdeling platform for healthcare analytic research using electronic health records.

    PubMed

    Ng, Kenney; Ghoting, Amol; Steinhubl, Steven R; Stewart, Walter F; Malin, Bradley; Sun, Jimeng

    2014-04-01

    Healthcare analytics research increasingly involves the construction of predictive models for disease targets across varying patient cohorts using electronic health records (EHRs). To facilitate this process, it is critical to support a pipeline of tasks: (1) cohort construction, (2) feature construction, (3) cross-validation, (4) feature selection, and (5) classification. To develop an appropriate model, it is necessary to compare and refine models derived from a diversity of cohorts, patient-specific features, and statistical frameworks. The goal of this work is to develop and evaluate a predictive modeling platform that can be used to simplify and expedite this process for health data. To support this goal, we developed a PARAllel predictive MOdeling (PARAMO) platform which (1) constructs a dependency graph of tasks from specifications of predictive modeling pipelines, (2) schedules the tasks in a topological ordering of the graph, and (3) executes those tasks in parallel. We implemented this platform using Map-Reduce to enable independent tasks to run in parallel in a cluster computing environment. Different task scheduling preferences are also supported. We assess the performance of PARAMO on various workloads using three datasets derived from the EHR systems in place at Geisinger Health System and Vanderbilt University Medical Center and an anonymous longitudinal claims database. We demonstrate significant gains in computational efficiency against a standard approach. In particular, PARAMO can build 800 different models on a 300,000 patient data set in 3h in parallel compared to 9days if running sequentially. This work demonstrates that an efficient parallel predictive modeling platform can be developed for EHR data. This platform can facilitate large-scale modeling endeavors and speed-up the research workflow and reuse of health information. This platform is only a first step and provides the foundation for our ultimate goal of building analytic pipelines

  12. Mine or Theirs, Where Do Users Go? A Comparison of E-Journal Usage at the OhioLINK Electronic Journal Center Platform versus the Elsevier ScienceDirect Platform

    ERIC Educational Resources Information Center

    Swanson, Juleah

    2015-01-01

    This research provides librarians with a model for assessing and predicting which platforms patrons will use to access the same content, specifically comparing usage at the Ohio Library and Information Network (OhioLINK) Electronic Journal Center (EJC) and at Elsevier's ScienceDirect from 2007 to 2013. Findings show that in the earlier years, the…

  13. ESTEST: An Open Science Platform for Electronic Structure Research

    ERIC Educational Resources Information Center

    Yuan, Gary

    2012-01-01

    Open science platforms in support of data generation, analysis, and dissemination are becoming indispensible tools for conducting research. These platforms use informatics and information technologies to address significant problems in open science data interoperability, verification & validation, comparison, analysis, post-processing,…

  14. Microsystems, Space Qualified Electronics and Mobile Sensor Platforms for Harsh Environment Applications and Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Okojie, Robert S.; Krasowski, Michael J.; Beheim, Glenn M.; Fralick, Gustave C.; Wrbanek, John D.; Greenberg, Paul S.; Xu, Jennifer

    2007-01-01

    NASA Glenn Research Center is presently developing and applying a range of sensor and electronic technologies that can enable future planetary missions. These include space qualified instruments and electronics, high temperature sensors for Venus missions, mobile sensor platforms, and Microsystems for detection of a range of chemical species and particulates. A discussion of each technology area and its level of maturity is given. It is concluded that there is a strong need for low power devices which can be mobile and provide substantial characterization of the planetary environment where and when needed. While a given mission will require tailoring of the technology for the application, basic tools which can enable new planetary missions are being developed.

  15. Architecture Design of Healthcare Software-as-a-Service Platform for Cloud-Based Clinical Decision Support Service

    PubMed Central

    Oh, Sungyoung; Cha, Jieun; Ji, Myungkyu; Kang, Hyekyung; Kim, Seok; Heo, Eunyoung; Han, Jong Soo; Kang, Hyunggoo; Chae, Hoseok; Hwang, Hee

    2015-01-01

    Objectives To design a cloud computing-based Healthcare Software-as-a-Service (SaaS) Platform (HSP) for delivering healthcare information services with low cost, high clinical value, and high usability. Methods We analyzed the architecture requirements of an HSP, including the interface, business services, cloud SaaS, quality attributes, privacy and security, and multi-lingual capacity. For cloud-based SaaS services, we focused on Clinical Decision Service (CDS) content services, basic functional services, and mobile services. Microsoft's Azure cloud computing for Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) was used. Results The functional and software views of an HSP were designed in a layered architecture. External systems can be interfaced with the HSP using SOAP and REST/JSON. The multi-tenancy model of the HSP was designed as a shared database, with a separate schema for each tenant through a single application, although healthcare data can be physically located on a cloud or in a hospital, depending on regulations. The CDS services were categorized into rule-based services for medications, alert registration services, and knowledge services. Conclusions We expect that cloud-based HSPs will allow small and mid-sized hospitals, in addition to large-sized hospitals, to adopt information infrastructures and health information technology with low system operation and maintenance costs. PMID:25995962

  16. Electronic desalting for controlling the ionic environment in droplet-based biosensing platforms

    NASA Astrophysics Data System (ADS)

    Swaminathan, Vikhram Vilasur; Dak, Piyush; Reddy, Bobby; Salm, Eric; Duarte-Guevara, Carlos; Zhong, Yu; Fischer, Andrew; Liu, Yi-Shao; Alam, Muhammad A.; Bashir, Rashid

    2015-02-01

    The ability to control the ionic environment in saline waters and aqueous electrolytes is useful for desalination as well as electronic biosensing. We demonstrate a method of electronic desalting at micro-scale through on-chip micro electrodes. We show that, while desalting is limited in bulk solutions with unlimited availability of salts, significant desalting of ≥1 mM solutions can be achieved in sub-nanoliter volume droplets with diameters of ˜250 μm. Within these droplets, by using platinum-black microelectrodes and electrochemical surface treatments, we can enhance the electrode surface area to achieve >99% and 41% salt removal in 1 mM and 10 mM salt concentrations, respectively. Through self-consistent simulations and experimental measurements, we demonstrate that conventional double-layer theory over-predicts the desalting capacity and, hence, cannot be used to model systems that are mass limited or undergoing significant salt removal from the bulk. Our results will provide a better understanding of capacitive desalination, as well as a method for salt manipulation in high-throughput droplet-based microfluidic sensing platforms.

  17. CER Hub: An informatics platform for conducting comparative effectiveness research using multi-institutional, heterogeneous, electronic clinical data.

    PubMed

    Hazlehurst, Brian L; Kurtz, Stephen E; Masica, Andrew; Stevens, Victor J; McBurnie, Mary Ann; Puro, Jon E; Vijayadeva, Vinutha; Au, David H; Brannon, Elissa D; Sittig, Dean F

    2015-10-01

    Comparative effectiveness research (CER) requires the capture and analysis of data from disparate sources, often from a variety of institutions with diverse electronic health record (EHR) implementations. In this paper we describe the CER Hub, a web-based informatics platform for developing and conducting research studies that combine comprehensive electronic clinical data from multiple health care organizations. The CER Hub platform implements a data processing pipeline that employs informatics standards for data representation and web-based tools for developing study-specific data processing applications, providing standardized access to the patient-centric electronic health record (EHR) across organizations. The CER Hub is being used to conduct two CER studies utilizing data from six geographically distributed and demographically diverse health systems. These foundational studies address the effectiveness of medications for controlling asthma and the effectiveness of smoking cessation services delivered in primary care. The CER Hub includes four key capabilities: the ability to process and analyze both free-text and coded clinical data in the EHR; a data processing environment supported by distributed data and study governance processes; a clinical data-interchange format for facilitating standardized extraction of clinical data from EHRs; and a library of shareable clinical data processing applications. CER requires coordinated and scalable methods for extracting, aggregating, and analyzing complex, multi-institutional clinical data. By offering a range of informatics tools integrated into a framework for conducting studies using EHR data, the CER Hub provides a solution to the challenges of multi-institutional research using electronic medical record data. Copyright © 2015. Published by Elsevier Ireland Ltd.

  18. Two-Dimensional Stoichiometric Boron Oxides as a Versatile Platform for Electronic Structure Engineering.

    PubMed

    Zhang, Ruiqi; Li, Zhenyu; Yang, Jinlong

    2017-09-21

    Oxides of two-dimensional (2D) atomic crystals have been widely studied due to their unique properties. In most 2D oxides, oxygen acts as a functional group, which makes it difficult to control the degree of oxidation. Because borophene is an electron-deficient system, it is expected that oxygen will be intrinsically incorporated into the basal plane of borophene, forming stoichiometric 2D boron oxide (BO) structures. By using first-principles global optimization, we systematically explore structures and properties of 2D BO systems with well-defined degrees of oxidation. Stable B-O-B and OB 3 tetrahedron structure motifs are identified in these structures. Interesting properties, such as strong linear dichroism, Dirac node-line (DNL) semimetallicity, and negative differential resistance, have been predicted for these systems. Our results demonstrate that 2D BO represents a versatile platform for electronic structure engineering via tuning the stoichiometric degree of oxidation, which leads to various technological applications.

  19. Single-Crystalline SrRuO 3 Nanomembranes: A Platform for Flexible Oxide Electronics

    DOE PAGES

    Paskiewicz, Deborah M.; Sichel-Tissot, Rebecca; Karapetrova, Evguenia; ...

    2016-12-11

    The field of oxide electronics has benefited from the wide spectrum of functionalities available to the ABO 3 perovskites, and researchers are now employing defect engineering in single crystalline heterostructures to tailor properties. However, bulk oxide single crystals are not conducive to many types of applications, particularly those requiring mechanical flexibility. Here, we demonstrate the realization of an all-oxide, single-crystalline nanomembrane heterostructure. With a surface-to-volume ratio of 2 × 10 7 , the nanomembranes are fully flexible and can be readily transferred to other materials for handling purposes or for new materials integration schemes. Using in situ synchrotron X-ray scattering,more » we find that the nanomembranes can bond to other host substrates near room temperature and demonstrate coupling between surface reactivity and electromechanical properties in ferroelectric nanomembrane systems. Finally, the synthesis technique described here represents a significant advancement in materials integration and provides a new platform for the development of flexible oxide electronics.« less

  20. Diamond nanoparticles as a way to improve electron transfer in sol-gel L-lactate biosensing platforms.

    PubMed

    Briones, M; Casero, E; Vázquez, L; Pariente, F; Lorenzo, E; Petit-Domínguez, M D

    2016-02-18

    In the present work, we have included for the first time diamond nanoparticles (DNPs) in a sol-gel matrix derived from (3-mercaptopropyl)-trimethoxysilane (MPTS) in order to improve electron transfer in a lactate oxidase (LOx) based electrochemical biosensing platform. Firstly, an exhaustive AFM study, including topographical, surface potential (KFM) and capacitance gradient (CG) measurements, of each step involved in the biosensing platform development was performed. The platform is based on gold electrodes (Au) modified with the sol-gel matrix (Au/MPTS) in which diamond nanoparticles (Au/MPTS/DNPs) and lactate oxidase (Au/MPTS/DNPs/LOx) have been included. For the sake of comparison, we have also characterized a gold electrode directly modified with DNPs (Au/DNPs). Secondly, the electrochemical behavior of a redox mediator (hydroxymethyl-ferrocene, HMF) was evaluated at the platforms mentioned above. The response of Au/MPTS/DNPs/LOx towards lactate was obtained. A linear concentration range from 0.053 mM to 1.6 mM, a sensitivity of 2.6 μA mM(-1) and a detection limit of 16 μM were obtained. These analytical properties are comparable to other biosensors, presenting also as advantages that DNPs are inexpensive, environment-friendly and easy-handled nanomaterials. Finally, the developed biosensor was applied for lactate determination in wine samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Robotics-assisted mass spectrometry assay platform enabled by open-source electronics.

    PubMed

    Chiu, Shih-Hao; Urban, Pawel L

    2015-02-15

    Mass spectrometry (MS) is an important analytical technique with numerous applications in clinical analysis, biochemistry, environmental analysis, geology and physics. Its success builds on the ability of MS to determine molecular weights of analytes, and elucidate their structures. However, sample handling prior to MS requires a lot of attention and labor. In this work we were aiming to automate processing samples for MS so that analyses could be conducted without much supervision of experienced analysts. The goal of this study was to develop a robotics and information technology-oriented platform that could control the whole analysis process including sample delivery, reaction-based assay, data acquisition, and interaction with the analyst. The proposed platform incorporates a robotic arm for handling sample vials delivered to the laboratory, and several auxiliary devices which facilitate and secure the analysis process. They include: multi-relay board, infrared sensors, photo-interrupters, gyroscopes, force sensors, fingerprint scanner, barcode scanner, touch screen panel, and internet interface. The control of all the building blocks is achieved through implementation of open-source electronics (Arduino), and enabled by custom-written programs in C language. The advantages of the proposed system include: low cost, simplicity, small size, as well as facile automation of sample delivery and processing without the intervention of the analyst. It is envisaged that this simple robotic system may be the forerunner of automated laboratories dedicated to mass spectrometric analysis of biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Electronic desalting for controlling the ionic environment in droplet-based biosensing platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaminathan, Vikhram Vilasur; Dak, Piyush; Alam, Muhammad A., E-mail: rbashir@illinois.edu, E-mail: alam@purdue.edu

    2015-02-02

    The ability to control the ionic environment in saline waters and aqueous electrolytes is useful for desalination as well as electronic biosensing. We demonstrate a method of electronic desalting at micro-scale through on-chip micro electrodes. We show that, while desalting is limited in bulk solutions with unlimited availability of salts, significant desalting of ≥1 mM solutions can be achieved in sub-nanoliter volume droplets with diameters of ∼250 μm. Within these droplets, by using platinum-black microelectrodes and electrochemical surface treatments, we can enhance the electrode surface area to achieve >99% and 41% salt removal in 1 mM and 10 mM salt concentrations, respectively. Through self-consistentmore » simulations and experimental measurements, we demonstrate that conventional double-layer theory over-predicts the desalting capacity and, hence, cannot be used to model systems that are mass limited or undergoing significant salt removal from the bulk. Our results will provide a better understanding of capacitive desalination, as well as a method for salt manipulation in high-throughput droplet-based microfluidic sensing platforms.« less

  3. Operation of Lanzhou all permanent electron cyclotron resonance ion source No. 2 on 320 kV platform with highly charged ions.

    PubMed

    Lu, W; Li, J Y; Kang, L; Liu, H P; Li, H; Li, J D; Sun, L T; Ma, X W

    2014-02-01

    The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36,000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No. 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H(+), (40)Ar(8+), (129)Xe(30+), (209)Bi(33+), etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.

  4. The SMART Platform: early experience enabling substitutable applications for electronic health records

    PubMed Central

    Mandel, Joshua C; Murphy, Shawn N; Bernstam, Elmer Victor; Ramoni, Rachel L; Kreda, David A; McCoy, J Michael; Adida, Ben; Kohane, Isaac S

    2012-01-01

    Objective The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project seeks to develop a health information technology platform with substitutable applications (apps) constructed around core services. The authors believe this is a promising approach to driving down healthcare costs, supporting standards evolution, accommodating differences in care workflow, fostering competition in the market, and accelerating innovation. Materials and methods The Office of the National Coordinator for Health Information Technology, through the Strategic Health IT Advanced Research Projects (SHARP) Program, funds the project. The SMART team has focused on enabling the property of substitutability through an app programming interface leveraging web standards, presenting predictable data payloads, and abstracting away many details of enterprise health information technology systems. Containers—health information technology systems, such as electronic health records (EHR), personally controlled health records, and health information exchanges that use the SMART app programming interface or a portion of it—marshal data sources and present data simply, reliably, and consistently to apps. Results The SMART team has completed the first phase of the project (a) defining an app programming interface, (b) developing containers, and (c) producing a set of charter apps that showcase the system capabilities. A focal point of this phase was the SMART Apps Challenge, publicized by the White House, using http://www.challenge.gov website, and generating 15 app submissions with diverse functionality. Conclusion Key strategic decisions must be made about the most effective market for further disseminating SMART: existing market-leading EHR vendors, new entrants into the EHR market, or other stakeholders such as health information exchanges. PMID:22427539

  5. The SMART Platform: early experience enabling substitutable applications for electronic health records.

    PubMed

    Mandl, Kenneth D; Mandel, Joshua C; Murphy, Shawn N; Bernstam, Elmer Victor; Ramoni, Rachel L; Kreda, David A; McCoy, J Michael; Adida, Ben; Kohane, Isaac S

    2012-01-01

    The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project seeks to develop a health information technology platform with substitutable applications (apps) constructed around core services. The authors believe this is a promising approach to driving down healthcare costs, supporting standards evolution, accommodating differences in care workflow, fostering competition in the market, and accelerating innovation. The Office of the National Coordinator for Health Information Technology, through the Strategic Health IT Advanced Research Projects (SHARP) Program, funds the project. The SMART team has focused on enabling the property of substitutability through an app programming interface leveraging web standards, presenting predictable data payloads, and abstracting away many details of enterprise health information technology systems. Containers--health information technology systems, such as electronic health records (EHR), personally controlled health records, and health information exchanges that use the SMART app programming interface or a portion of it--marshal data sources and present data simply, reliably, and consistently to apps. The SMART team has completed the first phase of the project (a) defining an app programming interface, (b) developing containers, and (c) producing a set of charter apps that showcase the system capabilities. A focal point of this phase was the SMART Apps Challenge, publicized by the White House, using http://www.challenge.gov website, and generating 15 app submissions with diverse functionality. Key strategic decisions must be made about the most effective market for further disseminating SMART: existing market-leading EHR vendors, new entrants into the EHR market, or other stakeholders such as health information exchanges.

  6. Development of a PDXP platform on NIF

    NASA Astrophysics Data System (ADS)

    Whitley, Heather; Schneider, Marilyn; Garbett, Warren; Pino, Jesse; Shepherd, Ronnie; Brown, Colin; Castor, John; Scott, Howard; Ellison, C. Leland; Benedict, Lorin; Sio, Hong; Lahmann, Brandon; Petrasso, Richard; Graziani, Frank

    2016-10-01

    Over the past several years, we have conducted theoretical investigations of electron-ion coupling and electronic transport in plasmas. In the regime of weakly coupled plasmas, we have identified models that we believe describe the physics well, but experimental measurements are still needed to validate the models. We are developing spectroscopic experiments to study electron-ion equilibration and electron heat transport using a polar direct drive exploding pusher (PDXP) platform at the National Ignition Facility (NIF). Initial measurements are focused on characterizing the laser-target coupling, symmetry of the PDXP implosion, and overall neutron and x-ray signals. We present images from the first set of shots and make comparisons with simulations from ARES and discuss next steps in the platform development. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-697489.

  7. Operation of Lanzhou all permanent electron cyclotron resonance ion source No. 2 on 320 kV platform with highly charged ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, W., E-mail: luwang@impcas.ac.cn; University of Chinese Academy of Sciences, Beijing 100049; Li, J. Y.

    2014-02-15

    The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36 000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No.more » 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H{sup +}, {sup 40}Ar{sup 8+}, {sup 129}Xe{sup 30+}, {sup 209}Bi{sup 33+}, etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.« less

  8. Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics.

    PubMed

    Jia, Chuancheng; Ma, Bangjun; Xin, Na; Guo, Xuefeng

    2015-09-15

    . At the molecular level, to form robust covalent bonds between electrodes and molecules and improve device stability, we developed a reliable system to immobilize individual molecules within a nanoscale gap of either SWCNTs or graphene through covalent amide bond formation, thus affording two classes of carbon electrode-molecule single-molecule junctions. One unique feature of these devices is the fact that they contain only one or two molecules as conductive elements, thus forming the basis for building new classes of chemo/biosensors with ultrahigh sensitivity. We have used these approaches to reveal the dependence of the charge transport of individual metallo-DNA duplexes on π-stacking integrity, and fabricate molecular devices capable of realizing label-free, real-time electrical detection of biological interactions at the single-event level, or switching their molecular conductance upon exposure to external stimuli, such as ion, pH, and light. These investigations highlight the unique advantages and importance of these universal methodologies to produce functional carbon electrode-molecule junctions in current and future researches toward the development of practical molecular devices, thus offering a reliable platform for molecular electronics and the promise of a new generation of multifunctional integrated circuits and sensors.

  9. Nanocomposites in Multifuntional Structures for Spacecraft Platforms

    NASA Astrophysics Data System (ADS)

    Marcos, J.; Mendizabal, M.; Elizetxea, C.; Florez, S.; Atxaga, G.; Del Olmo, E.

    2012-07-01

    The integration of functionalities as electrical, thermal, power or radiation shielding inside carrier electronic boxes, solar panels or platform structures allows reducing weight, volume, and harness for spacecraft. The multifunctional structures represent an advanced design approach for space components and subsystems. The development of such multifunctional structures aims the re-engineering traditional metallic structures by composites in space, which request to provide specific solutions for thermal conductivity, EMI-EMC, radiation shielding and integration. The use of nanomaterials as CNF and nano-adds to reinforce composite structures allows obtaining local solutions for improving electrical conductivity, thermal conductivity and radiation shielding. The paper summarises the results obtained in of three investigations conducted by Tecnalia based on carbon nanofillers for improving electro-thermal characteristics of spacecraft platform, electronic substrates and electronics boxes respectively.

  10. Monitoring system including an electronic sensor platform and an interrogation transceiver

    DOEpatents

    Kinzel, Robert L.; Sheets, Larry R.

    2003-09-23

    A wireless monitoring system suitable for a wide range of remote data collection applications. The system includes at least one Electronic Sensor Platform (ESP), an Interrogator Transceiver (IT) and a general purpose host computer. The ESP functions as a remote data collector from a number of digital and analog sensors located therein. The host computer provides for data logging, testing, demonstration, installation checkout, and troubleshooting of the system. The IT transmits signals from one or more ESP's to the host computer to the ESP's. The IT host computer may be powered by a common power supply, and each ESP is individually powered by a battery. This monitoring system has an extremely low power consumption which allows remote operation of the ESP for long periods; provides authenticated message traffic over a wireless network; utilizes state-of-health and tamper sensors to ensure that the ESP is secure and undamaged; has robust housing of the ESP suitable for use in radiation environments; and is low in cost. With one base station (host computer and interrogator transceiver), multiple ESP's may be controlled at a single monitoring site.

  11. Parameters Identification for Motorcycle Simulator's Platform Characterization

    NASA Astrophysics Data System (ADS)

    Nehaoua, L.; Arioui, H.

    2008-06-01

    This paper presents the dynamics modeling and parameters identification of a motorcycle simulator's platform. This model begins with some suppositions which consider that the leg dynamics can be neglected with respect to the mobile platform one. The objectif is to synthesis a simplified control scheme, adapted to driving simulation application, minimising dealys and without loss of tracking performance. Electronic system of platform actuation is described. It's based on a CAN BUS communication which offers a large transmission robustness and error handling. Despite some disadvanteges, we adapted a control solution which overcome these inconvenients and preserve the quality of tracking trajectory. A bref description of the simulator's platform is given and results are shown and justified according to our specifications.

  12. Development of mobile platform integrated with existing electronic medical records.

    PubMed

    Kim, YoungAh; Kim, Sung Soo; Kang, Simon; Kim, Kyungduk; Kim, Jun

    2014-07-01

    This paper describes a mobile Electronic Medical Record (EMR) platform designed to manage and utilize the existing EMR and mobile application with optimized resources. We structured the mEMR to reuse services of retrieval and storage in mobile app environments that have already proven to have no problem working with EMRs. A new mobile architecture-based mobile solution was developed in four steps: the construction of a server and its architecture; screen layout and storyboard making; screen user interface design and development; and a pilot test and step-by-step deployment. This mobile architecture consists of two parts, the server-side area and the client-side area. In the server-side area, it performs the roles of service management for EMR and documents and for information exchange. Furthermore, it performs menu allocation depending on user permission and automatic clinical document architecture document conversion. Currently, Severance Hospital operates an iOS-compatible mobile solution based on this mobile architecture and provides stable service without additional resources, dealing with dynamic changes of EMR templates. The proposed mobile solution should go hand in hand with the existing EMR system, and it can be a cost-effective solution if a quality EMR system is operated steadily with this solution. Thus, we expect this example to be shared with hospitals that currently plan to deploy mobile solutions.

  13. Development of Mobile Platform Integrated with Existing Electronic Medical Records

    PubMed Central

    Kim, YoungAh; Kang, Simon; Kim, Kyungduk; Kim, Jun

    2014-01-01

    Objectives This paper describes a mobile Electronic Medical Record (EMR) platform designed to manage and utilize the existing EMR and mobile application with optimized resources. Methods We structured the mEMR to reuse services of retrieval and storage in mobile app environments that have already proven to have no problem working with EMRs. A new mobile architecture-based mobile solution was developed in four steps: the construction of a server and its architecture; screen layout and storyboard making; screen user interface design and development; and a pilot test and step-by-step deployment. This mobile architecture consists of two parts, the server-side area and the client-side area. In the server-side area, it performs the roles of service management for EMR and documents and for information exchange. Furthermore, it performs menu allocation depending on user permission and automatic clinical document architecture document conversion. Results Currently, Severance Hospital operates an iOS-compatible mobile solution based on this mobile architecture and provides stable service without additional resources, dealing with dynamic changes of EMR templates. Conclusions The proposed mobile solution should go hand in hand with the existing EMR system, and it can be a cost-effective solution if a quality EMR system is operated steadily with this solution. Thus, we expect this example to be shared with hospitals that currently plan to deploy mobile solutions. PMID:25152837

  14. Integrated Spintronic Platforms for Biomolecular Recognition Detection

    NASA Astrophysics Data System (ADS)

    Martins, V. C.; Cardoso, F. A.; Loureiro, J.; Mercier, M.; Germano, J.; Cardoso, S.; Ferreira, R.; Fonseca, L. P.; Sousa, L.; Piedade, M. S.; Freitas, P. P.

    2008-06-01

    This paper covers recent developments in magnetoresistive based biochip platforms fabricated at INESC-MN, and their application to the detection and quantification of pathogenic waterborn microorganisms in water samples for human consumption. Such platforms are intended to give response to the increasing concern related to microbial contaminated water sources. The presented results concern the development of biological active DNA chips and protein chips and the demonstration of the detection capability of the present platforms. Two platforms are described, one including spintronic sensors only (spin-valve based or magnetic tunnel junction based), and the other, a fully scalable platform where each probe site consists of a MTJ in series with a thin film diode (TFD). Two microfluidic systems are described, for cell separation and concentration, and finally, the read out and control integrated electronics are described, allowing the realization of bioassays with a portable point of care unit. The present platforms already allow the detection of complementary biomolecular target recognition with 1 pM concentration.

  15. The use of regional platforms for managing electronic health records for the production of regional public health indicators in France

    PubMed Central

    2012-01-01

    Background In France, recent developments in healthcare system organization have aimed at strengthening decision-making and action in public health at the regional level. Firstly, the 2004 Public Health Act, by setting 100 national and regional public health targets, introduced an evaluative approach to public health programs at the national and regional levels. Meanwhile, the implementation of regional platforms for managing electronic health records (EHRs) has also been under assessment to coordinate the deployment of this important instrument of care within each geographic area. In this context, the development and implementation of a regional approach to epidemiological data extracted from EHRs are an opportunity that must be seized as soon as possible. Our article addresses certain design and organizational aspects so that the technical requirements for such use are integrated into regional platforms in France. The article will base itself on organization of the Rhône-Alpes regional health platform. Discussion Different tools being deployed in France allow us to consider the potential of these regional platforms for epidemiology and public health (implementation of a national health identification number and a national information system interoperability framework). The deployment of the Rhône-Alpes regional health platform began in the 2000s in France. By August 2011, 2.6 million patients were identified in this platform. A new development step is emerging because regional decision-makers need to measure healthcare efficiency. To pool heterogeneous information contained in various independent databases, the format, norm and content of the metadata have been defined. Two types of databases will be created according to the nature of the data processed, one for extracting structured data, and the second for extracting non-structured and de-identified free-text documents. Summary Regional platforms for managing EHRs could constitute an important data source for

  16. A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform.

    PubMed

    Agarwala, Shweta; Lee, Jia Min; Ng, Wei Long; Layani, Michael; Yeong, Wai Yee; Magdassi, Shlomo

    2018-04-15

    Bioelectronics platforms are gaining widespread attention as they provide a template to study the interactions between biological species and electronics. Decoding the effect of the electrical signals on the cells and tissues holds the promise for treating the malignant tissue growth, regenerating organs and engineering new-age medical devices. This work is a step forward in this direction, where bio- and electronic materials co-exist on one platform without any need for post processing. We fabricate a freestanding and flexible hydrogel based platform using 3D bioprinting. The fabrication process is simple, easy and provides a flexible route to print materials with preferred shapes, size and spatial orientation. Through the design of interdigitated electrodes and heating coil, the platform can be tailored to print various circuits for different functionalities. The biocompatibility of the printed platform is tested using C2C12 murine myoblasts cell line. Furthermore, normal human dermal fibroblasts (primary cells) are also seeded on the platform to ascertain the compatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. An Internet of Things System for Underground Mine Air Quality Pollutant Prediction Based on Azure Machine Learning

    PubMed Central

    Jo, ByungWan

    2018-01-01

    The implementation of wireless sensor networks (WSNs) for monitoring the complex, dynamic, and harsh environment of underground coal mines (UCMs) is sought around the world to enhance safety. However, previously developed smart systems are limited to monitoring or, in a few cases, can report events. Therefore, this study introduces a reliable, efficient, and cost-effective internet of things (IoT) system for air quality monitoring with newly added features of assessment and pollutant prediction. This system is comprised of sensor modules, communication protocols, and a base station, running Azure Machine Learning (AML) Studio over it. Arduino-based sensor modules with eight different parameters were installed at separate locations of an operational UCM. Based on the sensed data, the proposed system assesses mine air quality in terms of the mine environment index (MEI). Principal component analysis (PCA) identified CH4, CO, SO2, and H2S as the most influencing gases significantly affecting mine air quality. The results of PCA were fed into the ANN model in AML studio, which enabled the prediction of MEI. An optimum number of neurons were determined for both actual input and PCA-based input parameters. The results showed a better performance of the PCA-based ANN for MEI prediction, with R2 and RMSE values of 0.6654 and 0.2104, respectively. Therefore, the proposed Arduino and AML-based system enhances mine environmental safety by quickly assessing and predicting mine air quality. PMID:29561777

  18. An Internet of Things System for Underground Mine Air Quality Pollutant Prediction Based on Azure Machine Learning.

    PubMed

    Jo, ByungWan; Khan, Rana Muhammad Asad

    2018-03-21

    The implementation of wireless sensor networks (WSNs) for monitoring the complex, dynamic, and harsh environment of underground coal mines (UCMs) is sought around the world to enhance safety. However, previously developed smart systems are limited to monitoring or, in a few cases, can report events. Therefore, this study introduces a reliable, efficient, and cost-effective internet of things (IoT) system for air quality monitoring with newly added features of assessment and pollutant prediction. This system is comprised of sensor modules, communication protocols, and a base station, running Azure Machine Learning (AML) Studio over it. Arduino-based sensor modules with eight different parameters were installed at separate locations of an operational UCM. Based on the sensed data, the proposed system assesses mine air quality in terms of the mine environment index (MEI). Principal component analysis (PCA) identified CH₄, CO, SO₂, and H₂S as the most influencing gases significantly affecting mine air quality. The results of PCA were fed into the ANN model in AML studio, which enabled the prediction of MEI. An optimum number of neurons were determined for both actual input and PCA-based input parameters. The results showed a better performance of the PCA-based ANN for MEI prediction, with R ² and RMSE values of 0.6654 and 0.2104, respectively. Therefore, the proposed Arduino and AML-based system enhances mine environmental safety by quickly assessing and predicting mine air quality.

  19. Optical sensor array platform based on polymer electronic devices

    NASA Astrophysics Data System (ADS)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  20. Design and research on the platform of network manufacture product electronic trading

    NASA Astrophysics Data System (ADS)

    Zhou, Zude; Liu, Quan; Jiang, Xuemei

    2003-09-01

    With the rapid globalization of market and business, E-trading affects every manufacture enterprise. However, the security of network manufacturing products of transmission on Internet is very important. In this paper we discussed the protocol of fair exchange and platform for network manufacture products E-trading based on fair exchange protocol and digital watermarking techniques. The platform realized reliable and copyright protection.

  1. The Analytic Information Warehouse (AIW): a Platform for Analytics using Electronic Health Record Data

    PubMed Central

    Post, Andrew R.; Kurc, Tahsin; Cholleti, Sharath; Gao, Jingjing; Lin, Xia; Bornstein, William; Cantrell, Dedra; Levine, David; Hohmann, Sam; Saltz, Joel H.

    2013-01-01

    Objective To create an analytics platform for specifying and detecting clinical phenotypes and other derived variables in electronic health record (EHR) data for quality improvement investigations. Materials and Methods We have developed an architecture for an Analytic Information Warehouse (AIW). It supports transforming data represented in different physical schemas into a common data model, specifying derived variables in terms of the common model to enable their reuse, computing derived variables while enforcing invariants and ensuring correctness and consistency of data transformations, long-term curation of derived data, and export of derived data into standard analysis tools. It includes software that implements these features and a computing environment that enables secure high-performance access to and processing of large datasets extracted from EHRs. Results We have implemented and deployed the architecture in production locally. The software is available as open source. We have used it as part of hospital operations in a project to reduce rates of hospital readmission within 30 days. The project examined the association of over 100 derived variables representing disease and co-morbidity phenotypes with readmissions in five years of data from our institution’s clinical data warehouse and the UHC Clinical Database (CDB). The CDB contains administrative data from over 200 hospitals that are in academic medical centers or affiliated with such centers. Discussion and Conclusion A widely available platform for managing and detecting phenotypes in EHR data could accelerate the use of such data in quality improvement and comparative effectiveness studies. PMID:23402960

  2. Leveraging the Libguides Platform for Electronic Resources Access Assistance

    ERIC Educational Resources Information Center

    Erb, Rachel A.; Erb, Brian

    2014-01-01

    This case study offers an alternative use of LibGuides beyond its intended purpose to offer course and subject guides. LibGuides have become an integral part of the virtual instruction landscape at Colorado State University (CSU) Libraries. We discovered that the LibGuides platform can also be effectively harnessed to provide support for…

  3. Patient Perceptions of Treatment Delivery Platforms for Cognitive Behavioral Therapy for Insomnia.

    PubMed

    Cheung, Janet M Y; Bartlett, Delwyn J; Armour, Carol L; Laba, Tracey-Lea; Saini, Bandana

    2017-03-21

    Stepped care has given rise to the proliferation of abbreviated CBT-I programs and delivery formats. This includes interventions delivered by allied health professionals and those delivered electronically through the Internet. This article aims to explore patient perceptions between electronic and face-to-face (FTF) delivery platforms for (abbreviated) CBT-I. Patients with insomnia from specialist sleep or psychology clinics and those from the general community in Sydney, Australia. Semistructured interviews were conducted with patients with insomnia, guided by a schedule of questions and a choice task to explore patient perceptions of the different CBT-I treatment delivery platforms (e.g., perceived advantages and disadvantages or willingness to engage with either platform). Interviews were transcribed verbatim and analyzed using Framework Analysis. Participants also completed a battery of clinical mood and insomnia measures. Fifty-one interviews were conducted with patients with insomnia from specialist sleep or psychology clinics (n = 22) and the general community (n = 29). Synthesis of the qualitative data set revealed three themes pertinent to the patients' perspective toward electronic and FTF CBT-I delivery: Concepts of Efficacy, Concerns About Treatment, and Treatment on My Terms. Participants' choice to engage with either platform was also informed by diverse factors including perceived efficacy of treatment, personal commitments, lifestyle, and beliefs about sleep and insomnia. Clarifying patient treatment priorities and allaying potential concerns about engaging with an electronic treatment platform represent important steps for disseminating eCBT-I into mainstream practice.

  4. The VISPA Internet Platform for Students

    NASA Astrophysics Data System (ADS)

    Asseldonk, D. v.; Erdmann, M.; Fischer, R.; Glaser, C.; Müller, G.; Quast, T.; Rieger, M.; Urban, M.

    2016-04-01

    The VISPA internet platform enables users to remotely run Python scripts and view resulting plots or inspect their output data. With a standard web browser as the only user requirement on the client-side, the system becomes suitable for blended learning approaches for university physics students. VISPA was used in two consecutive years each by approx. 100 third year physics students at the RWTH Aachen University for their homework assignments. For example, in one exercise students gained a deeper understanding of Einsteins mass-energy relation by analyzing experimental data of electron-positron pairs revealing J / Ψ and Z particles. Because the students were free to choose their working hours, only few users accessed the platform simultaneously. The positive feedback from students and the stability of the platform lead to further development of the concept. This year, students accessed the platform in parallel while they analyzed the data recorded by demonstrated experiments live in the lecture hall. The platform is based on experience in the development of professional analysis tools. It combines core technologies from previous projects: an object-oriented C++ library, a modular data-driven analysis flow, and visual analysis steering. We present the platform and discuss its benefits in the context of teaching based on surveys that are conducted each semester.

  5. Autonomous self-organizing resource manager for multiple networked platforms

    NASA Astrophysics Data System (ADS)

    Smith, James F., III

    2002-08-01

    A fuzzy logic based expert system for resource management has been developed that automatically allocates electronic attack (EA) resources in real-time over many dissimilar autonomous naval platforms defending their group against attackers. The platforms can be very general, e.g., ships, planes, robots, land based facilities, etc. Potential foes the platforms deal with can also be general. This paper provides an overview of the resource manager including the four fuzzy decision trees that make up the resource manager; the fuzzy EA model; genetic algorithm based optimization; co-evolutionary data mining through gaming; and mathematical, computational and hardware based validation. Methods of automatically designing new multi-platform EA techniques are considered. The expert system runs on each defending platform rendering it an autonomous system requiring no human intervention. There is no commanding platform. Instead the platforms work cooperatively as a function of battlespace geometry; sensor data such as range, bearing, ID, uncertainty measures for sensor output; intelligence reports; etc. Computational experiments will show the defending networked platform's ability to self- organize. The platforms' ability to self-organize is illustrated through the output of the scenario generator, a software package that automates the underlying data mining problem and creates a computer movie of the platforms' interaction for evaluation.

  6. Biodegradation of Azure-B dye by Serratia liquefaciens and its validation by phytotoxicity, genotoxicity and cytotoxicity studies.

    PubMed

    Haq, Izharul; Raj, Abhay; Markandeya

    2018-04-01

    The azo dyes in textile industry are a major source of environmental pollution and cause serious threat to aquatic flora and fauna. The present study aims to evaluate the potential of previously isolated lignin peroxidase (LiP) enzyme producing Serratia liquefaciens in degradation of Azure-B (AB) dye. S. liquefaciens showed rapid decolourisation of AB dye (100 mg L -1 ) in mineral salt medium (MSM) supplemented with 0.2% glucose and yeast extract, and more than 90% dye decolourisation was observed at 48 h when incubated at 30 °C. Decolourisation conditions were optimized by Response Surface Methodology (RSM) using Box-Behnken Designs (BBD). The dye degradation was further confirmed by ATR-FTIR and GC-MS analysis. Toxicological studies of untreated (UT) and bacterial treated (BT) AB dye solutions were studied by using phytotoxicity, genotoxicity and cytotoxicity endpoints. Phytotoxicity assay using Vigna radiata indicated that bacterial treatment led to detoxification of AB dye. Genotoxicity assay with Allium cepa showed that pure AB dye solutions significantly reduced mitotic index (MI) and induced various chromosomal abnormalities (CAs) like c-mitosis, stickiness, chromosome break, anaphase bridges, vagrant chromosomes and binucleated and micronucleated cell in the root tip cells, whereas, bacterial treated solutions induced relatively less genotoxicity in nature. Improved cell survivability (%) was also noted in kidney cell line (NRK-52E) after S. liquefaciens treated dye solutions than the pure dye solutions. The findings suggest that S. liquefaciens could be a potential bacterium for azo dye degradation, as it is effective in lowering of toxic effects of AB dye. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. User testing and performance evaluation of the Electronic Quality Improvement Platform for Plans and Pharmacies.

    PubMed

    Pringle, Janice L; Kearney, Shannon M; Grasso, Kim; Boyer, Annette D; Conklin, Mark H; Szymanski, Keith A

    2015-01-01

    To user-test and evaluate a performance information management platform that makes standardized, benchmarked medication use quality data available to both health plans and community pharmacy organizations. Multiple health/drug plans and multiple chain and independent pharmacies across the United States. During the first phase of the study, user experience was measured via user satisfaction surveys and interviews with key personnel (pharmacists, pharmacy leaders, and health plan leadership). Improvements were subsequently made to the platform based on these findings. During the second phase of the study, the platform was implemented in a greater number of pharmacies and by a greater number of payers. User experience was then reevaluated to gather information for further improvements. The surveys and interviews revealed that users found the Web-based platform easy to use and beneficial in terms of understanding and comparing performance metrics. Primary concerns included lack of access to real-time data and patient-specific data. Many users also expressed uncertainty as to how they could use the information and data provided by the platform. The study findings indicate that while information management platforms can be used effectively in both pharmacy and health plan settings, future development is needed to ensure that the provided data can be transferred to pharmacy best practices and improved quality care.

  8. Versatile Molecular Silver Ink Platform for Printed Flexible Electronics.

    PubMed

    Kell, Arnold J; Paquet, Chantal; Mozenson, Olga; Djavani-Tabrizi, Iden; Deore, Bhavana; Liu, Xiangyang; Lopinski, Gregory P; James, Robert; Hettak, Khelifa; Shaker, Jafar; Momciu, Adrian; Ferrigno, Julie; Ferrand, Olivier; Hu, Jian Xiong; Lafrenière, Sylvie; Malenfant, Patrick R L

    2017-05-24

    A silver molecular ink platform formulated for screen, inkjet, and aerosol jet printing is presented. A simple formulation comprising silver neodecanoate, ethyl cellulose, and solvent provides improved performance versus that of established inks, yet with improved economics. Thin, screen-printed traces with exceptional electrical (<10 mΩ/□/mil or 12 μΩ·cm) and mechanical properties are achieved following thermal or photonic sintering, the latter having never been demonstrated for silver-salt-based inks. Low surface roughness, submicron thicknesses, and line widths as narrow as 41 μm outperform commercial ink benchmarks based on flakes or nanoparticles. These traces are mechanically robust to flexing and creasing (less than 10% change in resistance) and bind strongly to epoxy-based adhesives. Thin traces are remarkably conformal, enabling fully printed metal-insulator-metal band-pass filters. The versatility of the molecular ink platform enables an aerosol jet-compatible ink that yields conductive features on glass with 2× bulk resistivity and strong adhesion to various plastic substrates. An inkjet formulation is also used to print top source/drain contacts and demonstrate printed high-mobility thin film transistors (TFTs) based on semiconducting single-walled carbon nanotubes. TFTs with mobility values of ∼25 cm 2 V -1 s -1 and current on/off ratios >10 4 were obtained, performance similar to that of evaporated metal contacts in analogous devices.

  9. Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging

    PubMed Central

    Jiang, Xiaocheng; Hu, Jinsong; Fitzgerald, Lisa A.; Biffinger, Justin C.; Xie, Ping; Ringeisen, Bradley R.; Lieber, Charles M.

    2010-01-01

    Microbial fuel cells (MFCs) represent a promising approach for sustainable energy production as they generate electricity directly from metabolism of organic substrates without the need for catalysts. However, the mechanisms of electron transfer between microbes and electrodes, which could ultimately limit power extraction, remain controversial. Here we demonstrate optically transparent nanoelectrodes as a platform to investigate extracellular electron transfer in Shewanella oneidensis MR-1, where an array of nanoholes precludes or single window allows for direct microbe-electrode contacts. Following addition of cells, short-circuit current measurements showed similar amplitude and temporal response for both electrode configurations, while in situ optical imaging demonstrates that the measured currents were uncorrelated with the cell number on the electrodes. High-resolution imaging showed the presence of thin, 4- to 5-nm diameter filaments emanating from cell bodies, although these filaments do not appear correlated with current generation. Both types of electrodes yielded similar currents at longer times in dense cell layers and exhibited a rapid drop in current upon removal of diffusible mediators. Reintroduction of the original cell-free media yielded a rapid increase in current to ∼80% of original level, whereas imaging showed that the positions of > 70% of cells remained unchanged during solution exchange. Together, these measurements show that electron transfer occurs predominantly by mediated mechanism in this model system. Last, simultaneous measurements of current and cell positions showed that cell motility and electron transfer were inversely correlated. The ability to control and image cell/electrode interactions down to the single-cell level provide a powerful approach for advancing our fundamental understanding of MFCs. PMID:20837546

  10. An electron cyclotron resonance ion source based low energy ion beam platform.

    PubMed

    Sun, L T; Shang, Y; Ma, B H; Zhang, X Z; Feng, Y C; Li, X X; Wang, H; Guo, X H; Song, M T; Zhao, H Y; Zhang, Z M; Zhao, H W; Xie, D Z

    2008-02-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed.

  11. Demand for online platforms for medical word-of-mouth.

    PubMed

    Lin, Shih Han; Lin, Tom M Y

    2018-05-01

    The choice of medical services affects an individual's treatment and health. However, few studies have focused on medical electronic word-of-mouth (eWOM), which has the greatest impact on such choices. This study was performed to explore the need for and general public's attitude toward medical eWOM and provide a reference for government, media, and medical practitioners. In this study, 84% of the respondents had experience using online evaluation platforms to search for eWOM, and those who were satisfied with the online evaluation platforms substantially outnumbered those who were dissatisfied. The respondents generally believed that there is a need for physician evaluation platforms, although a difference remained between respondents who needed the online evaluation platforms (72.0%) and were willing to reference them (72.0%) and those who trusted them (46.5%) and were willing to provide their opinions (55.0%). These results could signify that despite the public's need, the public remains doubtful of the information provided by these online evaluation platforms.

  12. SMART Platforms: Building the App Store for Biosurveillance

    PubMed Central

    Mandl, Kenneth D.

    2013-01-01

    Objective To enable public health departments to develop “apps” to run on electronic health records (EHRs) for (1) biosurveillance and case reporting and (2) delivering alerts to the point of care. We describe a novel health information technology platform with substitutable apps constructed around core services enabling EHRs to function as iPhone-like platforms. Introduction Health care information is a fundamental source of data for biosurveillance, yet configuring EHRs to report relevant data to health departments is technically challenging, labor intensive, and often requires custom solutions for each installation. Public health agencies wishing to deliver alerts to clinicians also must engage in an endless array of one-off systems integrations. Despite a $48B investment in HIT, and meaningful use criteria requiring reporting to biosurveillance systems, most vendor electronic health records are architected monolithically, making modification difficult for hospitals and physician practices. An alternative approach is to reimagine EHRs as iPhone-like platforms supporting substitutable apps-based functionality. Substitutability is the capability inherent in a system of replacing one application with another of similar functionality. Methods Substitutability requires that the purchaser of an app can replace one application with another without being technically expert, without requiring re-engineering other applications that they are using, and without having to consult or require assistance of any of the vendors of previously installed or currently installed applications. Apps necessarily compete with each other promoting progress and adaptability. The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project is funded by a $15M grant from Office of the National Coordinator of Health Information Technology’s Strategic Health IT Advanced Research Projects (SHARP) Program. All SMART standards are open and the core software is open

  13. Design summary of a geostationary facility utilized as a communications platform

    NASA Technical Reports Server (NTRS)

    Barberis, N. J.; Brown, J. V.

    1986-01-01

    This paper describes the technical aspects of a geostationary platform facility that makes maximum use of the planned NASA space station and its elements, mainly the orbital maneuvering vehicle (OMV) and the orbital transfer vehicles (OTV). The platform design concept is described, with emphasis on the key technologies utilized to configure the platform. Key systems aspects include a design summary with discussion of the controls, telemetry, command and ranging, power, propulsion, control electronics, thermal control subsystems, and space station interfaces. The use of the facility as a communications platform is developed to demonstrate the attractiveness of the concept. The economic benefits are discussed, as well as the concept of servicing for payload upgrade.

  14. Floor Plans Engine Removal Platform, Hold Down Arm Platform, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Floor Plans - Engine Removal Platform, Hold Down Arm Platform, Hydraulic Equipment Platforms, Isometric Cutaway of Engine Removal Platform, Isometric Cutaway of Hold Down Arm Platform, Isometric Cutaway of Hydraulic Platforms and Engine Support System Access - Marshall Space Flight Center, Saturn V S-IC Static Test Facility, West Test Area, Huntsville, Madison County, AL

  15. Enabling Cross-Platform Clinical Decision Support through Web-Based Decision Support in Commercial Electronic Health Record Systems: Proposal and Evaluation of Initial Prototype Implementations

    PubMed Central

    Zhang, Mingyuan; Velasco, Ferdinand T.; Musser, R. Clayton; Kawamoto, Kensaku

    2013-01-01

    Enabling clinical decision support (CDS) across multiple electronic health record (EHR) systems has been a desired but largely unattained aim of clinical informatics, especially in commercial EHR systems. A potential opportunity for enabling such scalable CDS is to leverage vendor-supported, Web-based CDS development platforms along with vendor-supported application programming interfaces (APIs). Here, we propose a potential staged approach for enabling such scalable CDS, starting with the use of custom EHR APIs and moving towards standardized EHR APIs to facilitate interoperability. We analyzed three commercial EHR systems for their capabilities to support the proposed approach, and we implemented prototypes in all three systems. Based on these analyses and prototype implementations, we conclude that the approach proposed is feasible, already supported by several major commercial EHR vendors, and potentially capable of enabling cross-platform CDS at scale. PMID:24551426

  16. Stabilisation problem in biaxial platform

    NASA Astrophysics Data System (ADS)

    Lindner, Tymoteusz; Rybarczyk, Dominik; Wyrwał, Daniel

    2016-12-01

    The article describes investigation of rolling ball stabilization problem on a biaxial platform. The aim of the control system proposed here is to stabilize ball moving on a plane in equilibrium point. The authors proposed a control algorithm based on cascade PID and they compared it with another control method. The article shows the results of the accuracy of ball stabilization and influence of applied filter on the signal waveform. The application used to detect the ball position measured by digital camera has been written using a cross platform .Net wrapper to the OpenCV image processing library - EmguCV. The authors used the bipolar stepper motor with dedicated electronic controller. The data between the computer and the designed controller are sent with use of the RS232 standard. The control stand is based on ATmega series microcontroller.

  17. A Cloud Based Real-Time Collaborative Platform for eHealth.

    PubMed

    Ionescu, Bogdan; Gadea, Cristian; Solomon, Bogdan; Ionescu, Dan; Stoicu-Tivadar, Vasile; Trifan, Mircea

    2015-01-01

    For more than a decade, the eHealth initiative has been a government concern of many countries. In an Electronic Health Record (EHR) System, there is a need for sharing the data with a group of specialists simultaneously. Collaborative platforms alone are just a part of a solution, while a collaborative platform with parallel editing capabilities and with synchronized data streaming are stringently needed. In this paper, the design and implementation of a collaborative platform used in healthcare is introduced by describing the high level architecture and its implementation. A series of eHealth services are identified and usage examples in a healthcare environment are given.

  18. A Molecular- and Nano-Electronics Test (MONET) platform fabricated using extreme ultraviolet lithography.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentinger, Paul M.; Cardinale, Gregory F.; Hunter, Luke L.

    2003-12-01

    We describe the fabrication and characterization of an electrode array test structure, designed for electrical probing of molecules and nanocrystals. We use Extreme Ultraviolet Lithography (EUVL) to define the electrical test platform features. As fabricated, the platform includes nominal electrode gaps of 0 nm, 40 nm, 60 nm, and 80 nm. Additional variation in electrode gap is achieved by controlling the exposure conditions, such as dose and focus. To enable EUVL based nanofabrication, we develop a novel bi-level photoresist process. The bi-level photoresist consists of a combination of a commercially available polydimethylglutarimide (PMGI) bottom layer and an experimental EUVL photoresistmore » top (imaging) layer. We measure the sensitivity of PMGI to EUV exposure dose as a function of photoresist pre-bake temperature, and using this data, optimize a metal lift-off process. Reliable fabrication of 700 Angstrom thick Au structures with sub-1000 Angstrom critical dimensions is achieved, even without the use of a Au adhesion layer, such as Ti. Several test platforms are used to characterize electrical properties of organic molecules deposited as self assembled monolayers.« less

  19. SPEKTROP DPU: optoelectronic platform for fast multispectral imaging

    NASA Astrophysics Data System (ADS)

    Graczyk, Rafal; Sitek, Piotr; Stolarski, Marcin

    2010-09-01

    In recent years it easy to spot and increasing need of high-quality Earth imaging in airborne and space applications. This is due fact that government and local authorities urge for up to date topological data for administrative purposes. On the other hand, interest in environmental sciences, push for ecological approach, efficient agriculture and forests management are also heavily supported by Earth images in various resolutions and spectral ranges. "SPEKTROP DPU: Opto-electronic platform for fast multi-spectral imaging" paper describes architectural datails of data processing unit, part of universal and modular platform that provides high quality imaging functionality in aerospace applications.

  20. Framework Design of Unified Cross-Authentication Based on the Fourth Platform Integrated Payment

    NASA Astrophysics Data System (ADS)

    Yong, Xu; Yujin, He

    The essay advances a unified authentication based on the fourth integrated payment platform. The research aims at improving the compatibility of the authentication in electronic business and providing a reference for the establishment of credit system by seeking a way to carry out a standard unified authentication on a integrated payment platform. The essay introduces the concept of the forth integrated payment platform and finally put forward the whole structure and different components. The main issue of the essay is about the design of the credit system of the fourth integrated payment platform and the PKI/CA structure design.

  1. An open-source platform to study uniaxial stress effects on nanoscale devices

    NASA Astrophysics Data System (ADS)

    Signorello, G.; Schraff, M.; Zellekens, P.; Drechsler, U.; Bürge, M.; Steinauer, H. R.; Heller, R.; Tschudy, M.; Riel, H.

    2017-05-01

    We present an automatic measurement platform that enables the characterization of nanodevices by electrical transport and optical spectroscopy as a function of the uniaxial stress. We provide insights into and detailed descriptions of the mechanical device, the substrate design and fabrication, and the instrument control software, which is provided under open-source license. The capability of the platform is demonstrated by characterizing the piezo-resistance of an InAs nanowire device using a combination of electrical transport and Raman spectroscopy. The advantages of this measurement platform are highlighted by comparison with state-of-the-art piezo-resistance measurements in InAs nanowires. We envision that the systematic application of this methodology will provide new insights into the physics of nanoscale devices and novel materials for electronics, and thus contribute to the assessment of the potential of strain as a technology booster for nanoscale electronics.

  2. Scanning Electron Microscopy | Materials Science | NREL

    Science.gov Websites

    platform. The electron microprobe JEOL 8900L is the preference when quantitative composition of specimens , electroluminescence, lateral transport measurements, NFCL JEOL JXA-8900L Electron probe microanalysis Quantitative

  3. Development of Photoacoustic Sensing Platforms at the US Army Research Laboratory

    DTIC Science & Technology

    2016-09-01

    RDX and TNT explosives with carbon dioxide laser. J Appl Spectrosc. 2006;73(1):123–129. 45. Petzold A, Niessner R. Photoacoustic soot sensor for in...Development of Photoacoustic Sensing Platforms at the US Army Research Laboratory by Ellen L Holthoff and Paul M Pellegrino Sensors and Electron Devices...NOTES 14. ABSTRACT Traditionally, chemical sensing platforms have been hampered by the opposing concerns of increasing sensor capability while

  4. The Effect of In-Service Training of Computer Science Teachers on Scratch Programming Language Skills Using an Electronic Learning Platform on Programming Skills and the Attitudes towards Teaching Programming

    ERIC Educational Resources Information Center

    Alkaria, Ahmed; Alhassan, Riyadh

    2017-01-01

    This study was conducted to examine the effect of in-service training of computer science teachers in Scratch language using an electronic learning platform on acquiring programming skills and attitudes towards teaching programming. The sample of this study consisted of 40 middle school computer science teachers. They were assigned into two…

  5. Bioelectronic platforms for optimal bio-anode of bio-electrochemical systems: From nano- to macro scopes.

    PubMed

    Kim, Bongkyu; An, Junyeong; Fapyane, Deby; Chang, In Seop

    2015-11-01

    The current trend of bio-electrochemical systems is to improve strategies related to their applicability and potential for scaling-up. To date, literature has suggested strategies, but the proposal of correlations between each research field remains insufficient. This review paper provides a correlation based on platform techniques, referred to as bio-electronics platforms (BEPs). These BEPs consist of three platforms divided by scope scale: nano-, micro-, and macro-BEPs. In the nano-BEP, several types of electron transfer mechanisms used by electrochemically active bacteria are discussed. In the micro-BEP, factors affecting the formation of conductive biofilms and transport of electrons in the conductive biofilm are investigated. In the macro-BEP, electrodes and separators in bio-anode are debated in terms of real applications, and a scale-up strategy is discussed. Overall, the challenges of each BEP are highlighted, and potential solutions are suggested. In addition, future research directions are provided and research ideas proposed to develop research interest. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Business analysis for a sustainable, multi-stakeholder ecosystem for leveraging the Electronic Health Records for Clinical Research (EHR4CR) platform in Europe.

    PubMed

    Dupont, Danielle; Beresniak, Ariel; Sundgren, Mats; Schmidt, Andreas; Ainsworth, John; Coorevits, Pascal; Kalra, Dipak; Dewispelaere, Marc; De Moor, Georges

    2017-01-01

    The Electronic Health Records for Clinical Research (EHR4CR) technological platform has been developed to enable the trustworthy reuse of hospital electronic health records data for clinical research. The EHR4CR platform can enhance and speed up clinical research scenarios: protocol feasibility assessment, patient identification for recruitment in clinical trials, and clinical data exchange, including for reporting serious adverse events. Our objective was to seed a multi-stakeholder ecosystem to enable the scalable exploitation of the EHR4CR platform in Europe, and to assess its economic sustainability. Market analyses were conducted by a multidisciplinary task force to define an EHR4CR emerging ecosystem and multi-stakeholder value chain. This involved mapping stakeholder groups and defining their unmet needs, incentives, potential barriers for adopting innovative solutions, roles and interdependencies. A comprehensive business model, value propositions, and sustainability strategies were developed accordingly. Using simulation modelling (including Monte Carlo simulations) and a 5-year horizon, the potential financial outcomes of the business model were forecasted from the perspective of an EHR4CR service provider. A business ecosystem was defined to leverage the EHR4CR multi-stakeholder value chain. Value propositions were developed describing the expected benefits of EHR4CR solutions for all stakeholders. From an EHR4CR service provider's viewpoint, the business model simulation estimated that a profitability ratio of up to 1.8 could be achieved at year 1, with potential for growth in subsequent years depending on projected market uptake. By enhancing and speeding up existing processes, EHR4CR solutions promise to transform the clinical research landscape. The ecosystem defined provides the organisational framework for optimising the value and benefits for all stakeholders involved, in a sustainable manner. Our study suggests that the exploitation of EHR4CR

  7. Dielectrophoretic lab-on-CMOS platform for trapping and manipulation of cells.

    PubMed

    Park, Kyoungchul; Kabiri, Shideh; Sonkusale, Sameer

    2016-02-01

    Trapping and manipulation of cells are essential operations in numerous studies in biology and life sciences. We discuss the realization of a Lab-on-a-Chip platform for dielectrophoretic trapping and repositioning of cells and microorganisms on a complementary metal oxide semiconductor (CMOS) technology, which we define here as Lab-on-CMOS (LoC). The LoC platform is based on dielectrophoresis (DEP) which is the force experienced by any dielectric particle including biological entities in non-uniform AC electrical field. DEP force depends on the permittivity of the cells, its size and shape and also on the permittivity of the medium and therefore it enables selective targeting of cells based on their phenotype. In this paper, we address an important matter that of electrode design for DEP for which we propose a three-dimensional (3D) octapole geometry to create highly confined electric fields for trapping and manipulation of cells. Conventional DEP-based platforms are implemented stand-alone on glass, silicon or polymers connected to external infrastructure for electronics and optics, making it bulky and expensive. In this paper, the use of CMOS as a platform provides a pathway to truly miniaturized lab-on-CMOS or LoC platform, where DEP electrodes are designed using built-in multiple metal layers of the CMOS process for effective trapping of cells, with built-in electronics for in-situ impedance monitoring of the cell position. We present electromagnetic simulation results of DEP force for this unique 3D octapole geometry on CMOS. Experimental results with yeast cells validate the design. These preliminary results indicate the promise of using CMOS technology for truly compact miniaturized lab-on-chip platform for cell biotechnology applications.

  8. A CMOS enhanced solid-state nanopore based single molecule detection platform.

    PubMed

    Chen, Chinhsuan; Yemenicioglu, Sukru; Uddin, Ashfaque; Corgliano, Ellie; Theogarajan, Luke

    2013-01-01

    Solid-state nanopores have emerged as a single molecule label-free electronic detection platform. Existing transimpedance stages used to measure ionic current nanopores suffer from dynamic range limitations resulting from steady-state baseline currents. We propose a digitally-assisted baseline cancellation CMOS platform that circumvents this issue. Since baseline cancellation is a form of auto-zeroing, the 1/f noise of the system is also reduced. Our proposed design can tolerate a steady state baseline current of 10µA and has a usable bandwidth of 750kHz. Quantitative DNA translocation experiments on 5kbp DNA was performed using a 5nm silicon nitride pore using both the CMOS platform and a commercial system. Comparison of event-count histograms show that the CMOS platform clearly outperforms the commercial system, allowing for unambiguous interpretation of the data.

  9. Floor Plans Rolling Platform, Tech Systems Platform, and Load ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Floor Plans - Rolling Platform, Tech Systems Platform, and Load Platform Plans - Marshall Space Flight Center, F-1 Engine Static Test Stand, On Route 565 between Huntsville and Decatur, Huntsville, Madison County, AL

  10. End-stage renal disease treated in Provence-Alpes Côte d'Azur: 12-years follow-up and forecast to the year 2030.

    PubMed

    Durand, Anne-Claire; Jouve, Elisabeth; Delarozière, Jean-Christophe; Boucekine, Mohamed; Izaaryene, Ghizlane; Crémades, Adeline; Mazoué, Franck; Devictor, Bénédicte; Kakar, Asmatullah; Sambuc, Roland; Brunet, Philippe; Gentile, Stéphanie

    2018-06-15

    This study describes the time trend of renal replacement therapy for end-stage renal disease (ESRD) in the Provence-Alpes Côte d'Azur region (PACA) between 2004 and 2015, and forecasts up to 2030. A longitudinal study was conducted on all ESRD patients treated in PACA and recorded in the French Renal Epidemiology and Information Network (REIN) during this period. Time trends and forecasts to 2030 were analyzed using Poisson regression models. Since 2004, the number of new patients has steadily increased by 3.4% per year (95% CI, 2.8-3.9, p < 0.001) and the number of patients receiving RRT has increased by 3.7% per year (RR 1.037, 95% CI: 1.034-1.039, p < 0.001). If these trends continue, the PACA region will be face with 7371 patients on dialysis and 3891 with a functional renal transplant who will need to be managed in 2030. The two most significant growth rates were the percentage of obese people (RR 1.140, 95% CI: 1.131-1.149, p < 0.001) and those with diabetes (RR 1.070, 95% CI; 1.064-1.075, p < 0.001). This study highlights the increase in the number of ESRD patients over 12 years, with no prospect of stabilization. These findings allow us to anticipate the quality and quantity of care offered and to propose more preventive measures to combat obesity and diabetes.

  11. Platform links clinical data with electronic health records

    Cancer.gov

    To make data gathered from patients in clinical trials available for use in standard care, NCI has created a new computer tool to support interoperability between clinical research and electronic health record systems. This new software represents an inno

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petzer, Anél, E-mail: 12264954@nwu.ac.za; Harvey, Brian H.; Wegener, Gregers

    Methylene blue (MB) has been shown to act at multiple cellular and molecular targets and as a result possesses diverse medical applications. Among these is a high potency reversible inhibition of monoamine oxidase A (MAO-A) that may, at least in part, underlie its adverse effects but also its psycho- and neuromodulatory actions. MB is metabolized to yield N-demethylated products of which azure B, the monodemethyl species, is the major metabolite. Similar to MB, azure B also displays a variety of biological activities and may therefore contribute to the pharmacological profile of MB. Based on these observations, the present study examinesmore » the interactions of azure B with recombinant human MAO-A and -B. The results show that azure B is a potent MAO-A inhibitor (IC{sub 50} = 11 nM), approximately 6-fold more potent than is MB (IC{sub 50} = 70 nM) under identical conditions. Measurements of the time-dependency of inhibition suggest that the interaction of azure B with MAO-A is reversible. Azure B also reversibly inhibits the MAO-B isozyme with an IC{sub 50} value of 968 nM. These results suggest that azure B may be a hitherto under recognized contributor to the pharmacology and toxicology of MB by blocking central and peripheral MAO-A activity and as such needs to be considered during its use in humans and animals. Highlights: ► Methylene blue (MB) is a known potent MAO-A inhibitor. ► Azure B, the major metabolite of MB, is more potent as a MAO-A inhibitor. ► Azure B may be a contributor to the CNS pharmacology and toxicology of MB.« less

  13. Use of the "Moodle" Platform to Promote an Ongoing Learning When Lecturing General Physics in the Physics, Mathematics and Electronic Engineering Programmes at the University of the Basque Country UPV/EHU

    ERIC Educational Resources Information Center

    López, Gabriel A.; Sáenz, Jon; Leonardo, Aritz; Gurtubay, Idoia G.

    2016-01-01

    The "Moodle" platform has been used to put into practice an ongoing evaluation of the students' Physics learning process. The evaluation has been done on the frame of the course General Physics, which is lectured during the first year of the Physics, Mathematics and Electronic Engineering Programmes at the Faculty of Science and…

  14. SMART on FHIR: a standards-based, interoperable apps platform for electronic health records

    PubMed Central

    Kreda, David A; Mandl, Kenneth D; Kohane, Isaac S; Ramoni, Rachel B

    2016-01-01

    Objective In early 2010, Harvard Medical School and Boston Children’s Hospital began an interoperability project with the distinctive goal of developing a platform to enable medical applications to be written once and run unmodified across different healthcare IT systems. The project was called Substitutable Medical Applications and Reusable Technologies (SMART). Methods We adopted contemporary web standards for application programming interface transport, authorization, and user interface, and standard medical terminologies for coded data. In our initial design, we created our own openly licensed clinical data models to enforce consistency and simplicity. During the second half of 2013, we updated SMART to take advantage of the clinical data models and the application-programming interface described in a new, openly licensed Health Level Seven draft standard called Fast Health Interoperability Resources (FHIR). Signaling our adoption of the emerging FHIR standard, we called the new platform SMART on FHIR. Results We introduced the SMART on FHIR platform with a demonstration that included several commercial healthcare IT vendors and app developers showcasing prototypes at the Health Information Management Systems Society conference in February 2014. This established the feasibility of SMART on FHIR, while highlighting the need for commonly accepted pragmatic constraints on the base FHIR specification. Conclusion In this paper, we describe the creation of SMART on FHIR, relate the experience of the vendors and developers who built SMART on FHIR prototypes, and discuss some challenges in going from early industry prototyping to industry-wide production use. PMID:26911829

  15. Toward an E-Government Semantic Platform

    NASA Astrophysics Data System (ADS)

    Sbodio, Marco Luca; Moulin, Claude; Benamou, Norbert; Barthès, Jean-Paul

    This chapter describes the major aspects of an e-government platform in which semantics underpins more traditional technologies in order to enable new capabilities and to overcome technical and cultural challenges. The design and development of such an e-government Semantic Platform has been conducted with the financial support of the European Commission through the Terregov research project: "Impact of e-government on Territorial Government Services" (Terregov 2008). The goal of this platform is to let local government and government agencies offer online access to their services in an interoperable way, and to allow them to participate in orchestrated processes involving services provided by multiple agencies. Implementing a business process through an electronic procedure is indeed a core goal in any networked organization. However, the field of e-government brings specific constraints to the operations allowed in procedures, especially concerning the flow of private citizens' data: because of legal reasons in most countries, such data are allowed to circulate only from agency to agency directly. In order to promote transparency and responsibility in e-government while respecting the specific constraints on data flows, Terregov supports the creation of centrally controlled orchestrated processes; while the cross agencies data flows are centrally managed, data flow directly across agencies.

  16. Encourage student learning of hydraulic matters by the use of Arduino platform

    NASA Astrophysics Data System (ADS)

    Rodriguez Sinobas, Leonor; Granja García, Javier; Sánchez Calvo, Raúl

    2014-05-01

    Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use hardware and software. It's intended for several purposes to anyone interested in creating interactive objects or environments. The hydraulic matters teach at the Agricultural Engineering School at the Technical University of Madrid deal with practical issues regarding the measurement of variables such as pressure, discharge, temperature and soil water content. Most of the data loggers available in the market for these variables at expensive and not always affordable. On the other hand, current students are eager to manage new technological devices thus, their skills could be oriented not only to the application of an electronic platform as Arduino to build low cost data loggers for different purposes, but to encourage their learning in the hydraulic matters improving their self esteem

  17. Reduction of Tribocorrosion Products When using the Platform-Switching Concept.

    PubMed

    Alrabeah, G O; Knowles, J C; Petridis, H

    2018-03-01

    The reduced marginal bone loss observed when using the platform-switching concept may be the result of reduced amounts of tribocorrosion products released to the peri-implant tissues. Therefore, the purpose of this study was to compare the tribocorrosion product release from various platform-matched and platform-switched implant-abutment couplings under cyclic loading. Forty-eight titanium implants were coupled with pure titanium, gold alloy, cobalt-chrome alloy, and zirconia abutments forming either platform-switched or platform-matched groups ( n = 6). The specimens were subjected to cyclic occlusal forces in a wet acidic environment for 24 h followed by static aqueous immersion for 6 d. The amount of metal ions released was measured using inductively coupled plasma mass spectrometry. Microscopic evaluations were performed pre- and postimmersion under scanning electron microscope (SEM) equipped with energy-dispersive spectroscopy X-ray for corrosion assessment at the interface and wear particle characterization. All platform-switched groups showed less metal ion release compared with their platform-matched counterparts within each abutment material group ( P < 0.001). Implants connected to platform-matched cobalt-chrome abutments demonstrated the highest total mean metal ion release (218 ppb), while the least total mean ion release (11 ppb) was observed in the implants connected to platform-switched titanium abutments ( P ≤ 0.001). Titanium was released from all test groups, with its highest mean release (108 ppb) observed in the implants connected to platform-matched gold abutments ( P < 0.001). SEM images showed surface tribocorrosion features such as pitting and bands of fretting scars. Wear particles were mostly titanium, ranging from submicron to 48 µm in length. The platform-matched groups demonstrated a higher amount of metal ion release and more surface damage. These findings highlight the positive effect of the platform-switching concept in the

  18. Increasing Completion Rate of an M4 Emergency Medicine Student End-of-Shift Evaluation Using a Mobile Electronic Platform and Real-Time Completion.

    PubMed

    Tews, Matthew C; Treat, Robert W; Nanes, Maxwell

    2016-07-01

    Medical students on an emergency medicine rotation are traditionally evaluated at the end of each shift with paper-based forms, and data are often missing due to forms not being turned in or completed. Because students' grades depend on these evaluations, change was needed to increase form rate of return. We analyzed a new electronic evaluation form and modified completion process to determine if it would increase the completion rate without altering how faculty scored student performance. During fall 2013, 29 faculty completed paper N=339 evaluations consisting of seven competencies for 33 students. In fall 2014, an electronic evaluation form with the same competencies was designed using an electronic platform and completed N=319 times by 27 faculty using 25 students' electronic devices. Feedback checkboxes were added to facilitate collection of common comments. Data was analyzed with IBM® SPSS® 21.0 using multi-factor analysis of variance with the students' global rating (GR) as an outcome. Inter-item reliability was determined with Cronbach alpha. There was a significantly higher completion rate (p=0.001) of 98% electronic vs. 69% paper forms, lower (p=0.001) missed GR rate (1% electronic. vs 12% paper), and higher mean scores (p=0.001) for the GR with the electronic (7.0±1.1) vs. paper (6.8±1.2) form. Feedback checkboxes were completed on every form. The inter-item reliability for electronic and paper forms was each alpha=0.95. The use of a new electronic form and modified completion process for evaluating students at the end of shift demonstrated a higher faculty completion rate, a lower missed data rate, a higher global rating and consistent collection of common feedback. The use of the electronic form and the process for obtaining the information made our end-of-shift evaluation process for students more reliable and provided more accurate, up-to-date information for student feedback and when determining student grades.

  19. Development of FEB Test Platform for ATLAS New Small Wheel Upgrade

    NASA Astrophysics Data System (ADS)

    Lu, Houbing; Hu, Kun; Wang, Xu; Li, Feng; Han, Liang; Jin, Ge

    2016-10-01

    This concept of test platform is based on the test requirements of the front-end board (FEB) which is developed for the phase I upgrade of the small Thin Gap Chamber(sTGC) detector on New Small Wheel(NSW) of ATLAS. The front-end electronics system of sTGC consists of 1,536 FEBs with about 322,000 readout of strips, wires and pads in total. A test platform for FEB with up to 256 channels has been designed to keep the testing efficiency at a controllable level. We present the circuit model architecture of the platform, and its functions and implementation as well. The firmware based on Field Programmable Gate Array (FPGA) and the software based on PC have been developed, and basic test methods have been established. FEB readout measurements have been performed in analog injection from the test platform, which will provide a fast and efficient test method for the production of FEB.

  20. A Portable and Autonomous Magnetic Detection Platform for Biosensing

    PubMed Central

    Germano, José; Martins, Verónica C.; Cardoso, Filipe A.; Almeida, Teresa M.; Sousa, Leonel; Freitas, Paulo P.; Piedade, Moisés S.

    2009-01-01

    This paper presents a prototype of a platform for biomolecular recognition detection. The system is based on a magnetoresistive biochip that performs biorecognition assays by detecting magnetically tagged targets. All the electronic circuitry for addressing, driving and reading out signals from spin-valve or magnetic tunnel junctions sensors is implemented using off-the-shelf components. Taking advantage of digital signal processing techniques, the acquired signals are processed in real time and transmitted to a digital analyzer that enables the user to control and follow the experiment through a graphical user interface. The developed platform is portable and capable of operating autonomously for nearly eight hours. Experimental results show that the noise level of the described platform is one order of magnitude lower than the one presented by the previously used measurement set-up. Experimental results also show that this device is able to detect magnetic nanoparticles with a diameter of 250 nm at a concentration of about 40 fM. Finally, the biomolecular recognition detection capabilities of the platform are demonstrated by performing a hybridization assay using complementary and non-complementary probes and a magnetically tagged 20mer single stranded DNA target. PMID:22408516

  1. View from second floor platform looking up at subsequent platforms. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from second floor platform looking up at subsequent platforms. Note the Shuttle assembly outlined by the platform edges. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL

  2. Raven-II: an open platform for surgical robotics research.

    PubMed

    Hannaford, Blake; Rosen, Jacob; Friedman, Diana W; King, Hawkeye; Roan, Phillip; Cheng, Lei; Glozman, Daniel; Ma, Ji; Kosari, Sina Nia; White, Lee

    2013-04-01

    The Raven-II is a platform for collaborative research on advances in surgical robotics. Seven universities have begun research using this platform. The Raven-II system has two 3-DOF spherical positioning mechanisms capable of attaching interchangeable four DOF instruments. The Raven-II software is based on open standards such as Linux and ROS to maximally facilitate software development. The mechanism is robust enough for repeated experiments and animal surgery experiments, but is not engineered to sufficient safety standards for human use. Mechanisms in place for interaction among the user community and dissemination of results include an electronic forum, an online software SVN repository, and meetings and workshops at major robotics conferences.

  3. The Drifter Platform for Measurements in Small Rivers

    NASA Astrophysics Data System (ADS)

    Kruger, A.; Niemeier, J. J.; Ceynar, D. L.

    2011-12-01

    Researchers at The University of Iowa have been developing a small, inexpensive floating sensor platform to enable a variety of measurements in small rivers. The platform, dubbed "drifters" consists of a PVC housing and small inflatable rubber tube, data collection electronics, and several sensors. Upon release at strategic locations and times in a river network, drifters interrogate their GPS modules for position, time, and velocity. Researchers then collect the drifters and download and analyze position and velocity data. While our primary interest is to observe river network surface water flows, drifters have the broader application of serving as instrumentation platforms for other sensors such a temperature and turbidity. The drifters are structured as follows. A temperature-compensated MEMS clock provides accurate time information. A GPS disciplines this clock and provides georeference information. A low-power microcontroller orchestrates the data collection on the drifter. The standard sensor configuration of the drifter incorporates the GPS, air- and water temperature sensors, a water turbidity sensor, and an accelerometer. The microcontroller stores the collected data on a high-capacity, non-volatile Flash memory card. Each drifter has a bar code sticker, a small RFID tag, and a unique electronic ID embedded in the electronics. These allow us to manage a fleet of drifters and the data they collect. Each drifter has contact information in case a drifter is lost, and an inexpensive short-range radio and a beeper. These allow for determining the locations of the drifters at the conclusion of an experiment as follows. The microcontroller periodically turns on the receiver and listens for the instruction to turn on the beeper. The beeper, when activated, generates a piercing sound that helps operators locate the drifter. The microcontroller also blinks a super bright LED. Two AA-size alkaline batteries typically power the system. The maximum data collection

  4. Nanofilter platform based on functionalized carbon nanotubes for adsorption and elimination of Acrolein, a toxicant in cigarette smoke

    NASA Astrophysics Data System (ADS)

    Yoosefian, Mehdi; Pakpour, Atef; Etminan, Nazanin

    2018-06-01

    This paper discusses the use of carboxylated single-walled carbon nanotube as a general nanofilter platform for the removal of acrolein carcinogen from cigarette smoke. The analyses carried out in the detailed study of the electronic and structural effects of the adsorption of acrolein onto COOH loaded on single-walled carbon nanotube under the density functional theory framework. The results of Bader theory of atoms in molecules, natural bond orbital, molecular potential electron surface and density of state confirm the potential application of the suggested nanofilter platform.

  5. Open-source mobile digital platform for clinical trial data collection in low-resource settings.

    PubMed

    van Dam, Joris; Omondi Onyango, Kevin; Midamba, Brian; Groosman, Nele; Hooper, Norman; Spector, Jonathan; Pillai, Goonaseelan Colin; Ogutu, Bernhards

    2017-02-01

    Governments, universities and pan-African research networks are building durable infrastructure and capabilities for biomedical research in Africa. This offers the opportunity to adopt from the outset innovative approaches and technologies that would be challenging to retrofit into fully established research infrastructures such as those regularly found in high-income countries. In this context we piloted the use of a novel mobile digital health platform, designed specifically for low-resource environments, to support high-quality data collection in a clinical research study. Our primary aim was to assess the feasibility of a using a mobile digital platform for clinical trial data collection in a low-resource setting. Secondarily, we sought to explore the potential benefits of such an approach. The investigative site was a research institute in Nairobi, Kenya. We integrated an open-source platform for mobile data collection commonly used in the developing world with an open-source, standard platform for electronic data capture in clinical trials. The integration was developed using common data standards (Clinical Data Interchange Standards Consortium (CDISC) Operational Data Model), maximising the potential to extend the approach to other platforms. The system was deployed in a pharmacokinetic study involving healthy human volunteers. The electronic data collection platform successfully supported conduct of the study. Multidisciplinary users reported high levels of satisfaction with the mobile application and highlighted substantial advantages when compared with traditional paper record systems. The new system also demonstrated a potential for expediting data quality review. This pilot study demonstrated the feasibility of using a mobile digital platform for clinical research data collection in low-resource settings. Sustainable scientific capabilities and infrastructure are essential to attract and support clinical research studies. Since many research structures

  6. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    A heavy-lift crane lowers the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, for installation on the south side of High Bay 3 in the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. In view below Platform C are several of the previously installed platforms. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  7. Defensive platform size and survivability. [Platform survivability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canavan, Gregory H.

    1988-06-01

    This report discusses the survivability of space platforms, concentrating on space based kinetic energy interceptors. It evaluates the efficacy of hardening, maneuver, self-defense, and deception in extending the survivability of platforms of varying sizes to expected threats, concluding that they should be adequate in the near and mid terms.

  8. Geosynchronous platform definition study. Volume 5: Geosynchronous platform synthesis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The development is described of the platform configurations, support subsystems, mission equipment, and servicing concepts. A common support module is developed; subsystem concepts are traded off; data relay, TDRS, earth observational, astro-physics, and advanced navigation and traffic control mission equipment concepts are postulated; and ancillary equipment required for delivery and on-orbit servicing interfaces with geosynchronous platforms is grossly defined. The general approach was to develop a platform concept capable of evolving through three on-orbit servicing modes: remote, EVA, and shirtsleeve. The definition of the equipment is to the assembly level. Weight, power, and volumetric data are compiled for all the platforms.

  9. Selection of Electronic Resources.

    ERIC Educational Resources Information Center

    Weathers, Barbara

    1998-01-01

    Discusses the impact of electronic resources on collection development; selection of CD-ROMs, (platform, speed, video and sound, networking capability, installation and maintenance); selection of laser disks; and Internet evaluation (accuracy of content, authority, objectivity, currency, technical characteristics). Lists Web sites for evaluating…

  10. Stabilized floating platforms

    DOEpatents

    Thomas, David G.

    1976-01-01

    The subject invention is directed to a floating platform for supporting nuclear reactors and the like at selected offshore sites. The platform is provided with a stabilizer mechanism which significantly reduces the effects of wave action upon the platform and which comprises a pair of relatively small floats attached by rigid booms to the platform at locations spaced therefrom for reducing wave pitch, acceleration, and the resonance period of the wave.

  11. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    A heavy-lift crane lifts the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. Large Tandemloc bars have been attached to the platform to keep it level during lifting and installation. The C platform will be installed on the south side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  12. MyDiabetesMyWay: An Evolving National Data Driven Diabetes Self-Management Platform.

    PubMed

    Wake, Deborah J; He, Jinzhang; Czesak, Anna Maria; Mughal, Fezan; Cunningham, Scott G

    2016-09-01

    MyDiabetesMyWay (MDMW) is an award-wining national electronic personal health record and self-management platform for diabetes patients in Scotland. This platform links multiple national institutional and patient-recorded data sources to provide a unique resource for patient care and self-management. This review considers the current evidence for online interventions in diabetes and discusses these in the context of current and ongoing developments for MDMW. Evaluation of MDMW through patient reported outcomes demonstrates a positive impact on self-management. User feedback has highlighted barriers to uptake and has guided platform evolution from an education resource website to an electronic personal health record now encompassing remote monitoring, communication tools and personalized education links. Challenges in delivering digital interventions for long-term conditions include integration of data between institutional and personal recorded sources to perform big data analytics and facilitating technology use in those with disabilities, low digital literacy, low socioeconomic status and in minority groups. The potential for technology supported health improvement is great, but awareness and adoption by health workers and patients remains a significant barrier. © 2016 Diabetes Technology Society.

  13. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a construction worker assist with the installation of the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket. The large bolts that hold the platform in place on the south wall are being secured. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  14. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, construction workers assist with the installation of the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket. The large bolts that hold the platform in place on the south wall are being secured. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  15. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, has been installed on the south side of the high bay. In view below are several levels of previously installed platforms. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  16. The Global Sensor Web: A Platform for Citizen Science (Invited)

    NASA Astrophysics Data System (ADS)

    Simons, A. L.

    2013-12-01

    The Global Sensor Web (GSW) is an effort to provide an infrastructure for the collection, sharing and visualizing sensor data from around the world. Over the past three years the GSW has been developed and tested as a standardized platform for citizen science. The most developed of the citizen science projects built onto the GSW has been Distributed Electronic Cosmic-ray Observatory (DECO), which is an Android application designed to harness a global network of mobile devices, to detect the origin and behavior of the cosmic radiation. Other projects which can be readily built on top of GSW as a platform are also discussed. A cosmic-ray track candidate captured on a cell phone camera.

  17. Fast sub-electron detectors review for interferometry

    NASA Astrophysics Data System (ADS)

    Feautrier, Philippe; Gach, Jean-Luc; Bério, Philippe

    2016-08-01

    New disruptive technologies are now emerging for detectors dedicated to interferometry. The detectors needed for this kind of applications need antonymic characteristics: the detector noise must be very low, especially when the signal is dispersed but at the same time must also sample the fast temporal characteristics of the signal. This paper describes the new fast low noise technologies that have been recently developed for interferometry and adaptive optics. The first technology is the Avalanche PhotoDiode (APD) infrared arrays made of HgCdTe. In this paper are presented the two programs that have been developed in that field: the Selex Saphira 320x256 [1] and the 320x255 RAPID detectors developed by Sofradir/CEA LETI in France [2], [3], [4]. Status of these two programs and future developments are presented. Sub-electron noise can now be achieved in the infrared using this technology. The exceptional characteristics of HgCdTe APDs are due to a nearly exclusive impaction ionization of the electrons, and this is why these devices have been called "electrons avalanche photodiodes" or e-APDs. These characteristics have inspired a large effort in developing focal plan arrays using HgCdTe APDs for low photon number applications such as active imaging in gated mode (2D) and/or with direct time of flight detection (3D imaging) and, more recently, passive imaging for infrared wave front correction and fringe tracking in astronomical observations. In addition, a commercial camera solution called C-RED, based on Selex Saphira and commercialized by First Light Imaging [5], is presented here. Some groups are also working with instruments in the visible. In that case, another disruptive technology is showing outstanding performances: the Electron Multiplying CCDs (EMCCD) developed mainly by e2v technologies in UK. The OCAM2 camera, commercialized by First Light Imaging [5], uses the 240x240 EMMCD from e2v and is successfully implemented on the VEGA instrument on the CHARA

  18. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC)

    NASA Astrophysics Data System (ADS)

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B.; Jia, Xun

    2015-09-01

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia’s CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE’s random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by

  19. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).

    PubMed

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun

    2015-10-07

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia's CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE's random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by

  20. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    A heavy-lift crane lifts the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be installed on the south side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  1. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    A heavy-lift crane lifts the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the south wall. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  2. Mobility platform coupling device and method for coupling mobility platforms

    DOEpatents

    Shirey, David L.; Hayward, David R.; Buttz, James H.

    2002-01-01

    A coupling device for connecting a first mobility platform to a second mobility platform in tandem. An example mobility platform is a robot. The coupling device has a loose link mode for normal steering conditions and a locking position, tight link mode for navigation across difficult terrain and across obstacles, for traversing chasms, and for navigating with a reduced footprint in tight steering conditions.

  3. The application of similar image retrieval in electronic commerce.

    PubMed

    Hu, YuPing; Yin, Hua; Han, Dezhi; Yu, Fei

    2014-01-01

    Traditional online shopping platform (OSP), which searches product information by keywords, faces three problems: indirect search mode, large search space, and inaccuracy in search results. For solving these problems, we discuss and research the application of similar image retrieval in electronic commerce. Aiming at improving the network customers' experience and providing merchants with the accuracy of advertising, we design a reasonable and extensive electronic commerce application system, which includes three subsystems: image search display subsystem, image search subsystem, and product information collecting subsystem. This system can provide seamless connection between information platform and OSP, on which consumers can automatically and directly search similar images according to the pictures from information platform. At the same time, it can be used to provide accuracy of internet marketing for enterprises. The experiment shows the efficiency of constructing the system.

  4. The Application of Similar Image Retrieval in Electronic Commerce

    PubMed Central

    Hu, YuPing; Yin, Hua; Han, Dezhi; Yu, Fei

    2014-01-01

    Traditional online shopping platform (OSP), which searches product information by keywords, faces three problems: indirect search mode, large search space, and inaccuracy in search results. For solving these problems, we discuss and research the application of similar image retrieval in electronic commerce. Aiming at improving the network customers' experience and providing merchants with the accuracy of advertising, we design a reasonable and extensive electronic commerce application system, which includes three subsystems: image search display subsystem, image search subsystem, and product information collecting subsystem. This system can provide seamless connection between information platform and OSP, on which consumers can automatically and directly search similar images according to the pictures from information platform. At the same time, it can be used to provide accuracy of internet marketing for enterprises. The experiment shows the efficiency of constructing the system. PMID:24883411

  5. The Research and Application of Information Platform About Community Support Intervention for Patients with Alcohol Dependence.

    PubMed

    Yang, Liqun

    2016-01-01

    Through the establishment of electronic health records, health education and measures such as regional information sharing platform, we explored the management of patients with alcohol dependence living in communities and established a medical information resource sharing model between mental hospital-community to strengthen the supportive intervention management of patients with alcohol dependence, improve the effect of intervention and reduce the rate of compound drink. To design the questionnaire of health state for patients with alcohol dependence. After data collection. We should establish electronic health records and community support intervention, make medical health card with terminal configuration card reader in both mental hospitals and community, develop information platform, establish a variety of supporting interventions and the service function modules, unblock information sharing between hospitals and community to make full use of the platform to carry out health education and health intervention management. The effectives of community supportive intervention are improved, rehabilitation rate of patients is reduced greatly, bad ways of life behavior are better. Establishing electronic health records is an important mean of community supportive interventions which is good for Real-time, dynamic management and promoting self-management skills making the dream of medical information resource between hospital-community sharing come true.

  6. The Common Data Acquisition Platform in the Helmholtz Association

    NASA Astrophysics Data System (ADS)

    Kaever, P.; Balzer, M.; Kopmann, A.; Zimmer, M.; Rongen, H.

    2017-04-01

    Various centres of the German Helmholtz Association (HGF) started in 2012 to develop a modular data acquisition (DAQ) platform, covering the entire range from detector readout to data transfer into parallel computing environments. This platform integrates generic hardware components like the multi-purpose HGF-Advanced Mezzanine Card or a smart scientific camera framework, adding user value with Linux drivers and board support packages. Technically the scope comprises the DAQ-chain from FPGA-modules to computing servers, notably frontend-electronics-interfaces, microcontrollers and GPUs with their software plus high-performance data transmission links. The core idea is a generic and component-based approach, enabling the implementation of specific experiment requirements with low effort. This so called DTS-platform will support standards like MTCA.4 in hard- and software to ensure compatibility with commercial components. Its capability to deploy on other crate standards or FPGA-boards with PCI express or Ethernet interfaces remains an essential feature. Competences of the participating centres are coordinated in order to provide a solid technological basis for both research topics in the Helmholtz Programme ``Matter and Technology'': ``Detector Technology and Systems'' and ``Accelerator Research and Development''. The DTS-platform aims at reducing costs and development time and will ensure access to latest technologies for the collaboration. Due to its flexible approach, it has the potential to be applied in other scientific programs.

  7. Platform C North Installation

    NASA Image and Video Library

    2016-11-10

    A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. In view below Platform C are several of the previously installed platforms. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  8. A Low-cost data-logging platform for long-term field sensor deployment in caves

    NASA Astrophysics Data System (ADS)

    Cruz, M. A.; Myre, J. M.; Covington, M. D.

    2014-12-01

    Active karst systems are notoriously inhospitable environments for humans and equipment. Caves require equipment to cope with high humidity, high velocity flows, submersion, sediment loads, and harassment from local fauna. Equipment taken into caves is often considered "consumable" due to the extreme nature of cave environments and the difficulty of transport. Further, because many interesting monitoring locations within caves can be considered remote, it is ideal for electronic monitoring platforms to require minimal maintenance of parts and power supplies. To partially address the challenge of scientifically monitoring such environments, we have developed an arduino based platform for environmental monitoring of cave systems. The arduino is a general purpose open source microcontroller that is easily programmed with only a basic knowledge of the C programming language. The arduino is capable of controlling digital and analog electronics in a modular fashion. Using this capability, we have created a platform for monitoring CO2 levels in cave systems that costs one-tenth of a comparable commercial system while using a fraction of the power. The modular nature of the arduino system allows the incorporation of additional environmental sensors in the future.

  9. [The Impact of Electronic Monitoring on Healthcare Associated Infections: The Role of the HViTAL Platform].

    PubMed

    Oliveira, Rita Fontes; Castro, Lídia; Almeida, José Pedro; Alves, Carlos; Ferreira, António

    2016-11-01

    In Portugal, 9.8% of patients admitted were inflicted with healthcare associated infections, corresponding to a prevalence of 11.7%. The Hospital de São João has developed a business intelligence platform able to supervise (the patients), monitor (the clinical condition) and notify (the healthcare personnel): HViTAL. This study aims to assess the impact of electronic monitoring on healthcare associated infections since the year of HViTAL implementation. We evaluated data since January 2008 (moment from which computerized records exist) until December 2011, comparing them with subsequent data, those corresponding to January 2012 (implementation date of HViTAL) until 19 October 2015. There was an upward trend of infection parameters in the 2008 - 2011 period. Since January 2012 and October 2015, all parameters of the infection indicator showed a negative linear trend. The results are very suggestive that the HVITAL may have had an impact on improving parameters associated to healthcare associated infections. Basic measures of infection control were highlighted since 2005, with an increasing number of health professional awareness campaigns, a fact which, although not analyzed in this report, may also have contributed to the observed improvement. Our study did not include other variables such as investment in human capital. There was a clear improvement in all areas characterizing the healthcare associated infections, with obvious positive impact with the introduction of HViTAL.

  10. The Wake Shield Facility: A space experiment platform

    NASA Technical Reports Server (NTRS)

    Allen, Joseph P.

    1991-01-01

    Information is given in viewgraph form on Wakeshield, a space experiment platform. The Wake Shield Facility (WSF) flight program objectives, product applications, commercial development approach, and cooperative experiments are listed. The program objectives are to produce new industry-driven electronic, magnetic, and superconducting thin-film materials and devices both in terrestrial laboratories and in space; utilize the ultra-vacuum of space for thin film epitaxial growth and materials processing; and develop commercial space hardware for research and development and enhanced access to space.

  11. Platform C North Installation

    NASA Image and Video Library

    2016-11-10

    A heavy-lift crane lowers the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, into High Bay 3 of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The C platform will be installed on the north side of High Bay 3. In view below are several of the previously installed levels of platforms. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  12. Ultrafast electron microscopy integrated with a direct electron detection camera.

    PubMed

    Lee, Young Min; Kim, Young Jae; Kim, Ye-Jin; Kwon, Oh-Hoon

    2017-07-01

    In the past decade, we have witnessed the rapid growth of the field of ultrafast electron microscopy (UEM), which provides intuitive means to watch atomic and molecular motions of matter. Yet, because of the limited current of the pulsed electron beam resulting from space-charge effects, observations have been mainly made to periodic motions of the crystalline structure of hundreds of nanometers or higher by stroboscopic imaging at high repetition rates. Here, we develop an advanced UEM with robust capabilities for circumventing the present limitations by integrating a direct electron detection camera for the first time which allows for imaging at low repetition rates. This approach is expected to promote UEM to a more powerful platform to visualize molecular and collective motions and dissect fundamental physical, chemical, and materials phenomena in space and time.

  13. Sketched oxide single-electron transistor

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei; Siles, Pablo F.; Bi, Feng; Cen, Cheng; Bogorin, Daniela F.; Bark, Chung Wung; Folkman, Chad M.; Park, Jae-Wan; Eom, Chang-Beom; Medeiros-Ribeiro, Gilberto; Levy, Jeremy

    2011-06-01

    Devices that confine and process single electrons represent an important scaling limit of electronics. Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties. Here, we use an atomic force microscope tip to reversibly `sketch' single-electron transistors by controlling a metal-insulator transition at the interface of two oxides. In these devices, single electrons tunnel resonantly between source and drain electrodes through a conducting oxide island with a diameter of ~1.5 nm. We demonstrate control over the number of electrons on the island using bottom- and side-gate electrodes, and observe hysteresis in electron occupation that is attributed to ferroelectricity within the oxide heterostructure. These single-electron devices may find use as ultradense non-volatile memories, nanoscale hybrid piezoelectric and charge sensors, as well as building blocks in quantum information processing and simulation platforms.

  14. Inverse Perovskites - A New Platform For 3D Dirac Electron Physics

    NASA Astrophysics Data System (ADS)

    Rost, A. W.; Kim, J.; Shota, S.; Hayama, K.; Abdolazimi, V.; Bruin, J. A. N.; Muehle, C.; Schnyder, A.; Yaresko, A. N.; Nuss, J.; Takagi, H.

    3D Dirac semimetals show a wealth of phenomena including ultrahigh mobility, extreme transverse magnetoresistance and potential for negative longitudinal magnetoresistance. Furthermore, by introducing a gap these are often found to be topological crystalline insulators. Here, I will introduce our experiments on a new family of 3D Dirac materials - the inverse perovskites A3BO (A =Ca,Sr,Eu/B =Pb,Sn). These open up the possibility to chemically control the properties of Dirac electrons including (i) the anisotropy of the Dirac dispersion, (ii) role of spin orbit coupling, and (iii) magnetism. Our physical property measurements show all (Ca/Sr)3(Pb/Sn)O compounds host Dirac electrons at the Fermi energy with no other bands crossing EF. Quantum oscillations unveil small Fermi surfaces (frequencies <5 T) and light carriers (<0.02 me) only consistent with Dirac electrons. With the successful synthesis of Sr3Pb0.5Sn0.5O this group of materials therefore offers a unique chemical control over the physical properties of 3D Dirac electrons. Crucially, Eu3(Pb/Sn)O compounds allow for the introduction of magnetism. I will discuss the implications of this in particular with respect to surface states in these topological crystalline insulators.

  15. The reductive aromatization of naphthalene diimide: a versatile platform for 2,7-diazapyrenes.

    PubMed

    Nakazato, Takumi; Kamatsuka, Takuto; Inoue, Junichi; Sakurai, Tsuneaki; Seki, Shu; Shinokubo, Hiroshi; Miyake, Yoshihiro

    2018-05-17

    The reductive aromatization of naphthalene diimide provides tetrapivaloxy-2,7-diazapyrene, which serves as a versatile platform toward peripherally substituted 2,7-diazapyrenes. Time-resolved microwave conductivity measurements demonstrated that the intrinsic electron mobility of 2,7-diazapyrene is significantly higher than that of the corresponding pyrene.

  16. Two-Phase Thermal Switching System for a Small, Extended Duration Lunar Science Platform

    NASA Technical Reports Server (NTRS)

    Bugby, D.; Farmer, J.; OConnor, B.; Wirzburger, M.; Abel, E.; Stouffer, C.

    2010-01-01

    Issue: extended duration lunar science platforms, using solar/battery or radioisotope power, require thermal switching systems that: a) Provide efficient cooling during the 15-earth-day 390 K lunar day; b) Consume minimal power during the 15-earth-day 100 K lunar night. Objective: carry out an analytical study of thermal switching systems that can meet the thermal requirements of: a) International Lunar Network (ILN) anchor node mission - primary focus; b) Other missions such as polar crater landers. ILN Anchor Nodes: network of geophysical science platforms to better understand the interior structure/composition of the moon: a) Rationale: no data since Apollo seismic stations ceased operation in 1977; b) Anchor Nodes: small, low-power, long-life (6-yr) landers with seismographic and a few other science instruments (see next chart); c) WEB: warm electronics box houses ILN anchor node electronics/batteries. Technology Need: thermal switching system that will keep the WEB cool during the lunar day and warm during the lunar night.

  17. ADMS Evaluation Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2018-01-23

    Deploying an ADMS or looking to optimize its value? NREL offers a low-cost, low-risk evaluation platform for assessing ADMS performance. The National Renewable Energy Laboratory (NREL) has developed a vendor-neutral advanced distribution management system (ADMS) evaluation platform and is expanding its capabilities. The platform uses actual grid-scale hardware, large-scale distribution system models, and advanced visualization to simulate realworld conditions for the most accurate ADMS evaluation and experimentation.

  18. Integrated electronics and fluidic MEMS for bioengineering

    NASA Astrophysics Data System (ADS)

    Fok, Ho Him Raymond

    Microelectromechanical systems (MEMS) and microelectronics have become enabling technologies for many research areas. This dissertation presents the use of fluidic MEMS and microelectronics for bioengineering applications. In particular, the versatility of MEMS and microelectronics is highlighted by the presentation of two different applications, one for in-vitro study of nano-scale dynamics during cell division and one for in-vivo monitoring of biological activities at the cellular level. The first application of an integrated system discussed in this dissertation is to utilize fluidic MEMS for studying dynamics in the mitotic spindle, which could lead to better chemotherapeutic treatments for cancer patients. Previous work has developed the use of electrokinetic phenomena on the surface of a glass-based platform to assemble microtubules, the building blocks of mitotic spindles. Nevertheless, there are two important limitations of this type of platform. First, an unconventional microfabrication process is necessary for the glass-based platform, which limits the utility of this platform. In order to overcome this limitation, in this dissertation a convenient microfluidic system is fabricated using a negative photoresist called SU-8. The fabrication process for the SU-8-based system is compatible with other fabrication techniques used in developing microelectronics, and this compatibility is essential for integrating electronics for studying dynamics in the mitotic spindle. The second limitation of the previously-developed glass-based platform is its lack of bio-compatibility. For example, microtubules strongly interact with the surface of the glass-based platform, thereby hindering the study of dynamics in the mitotic spindle. This dissertation presents a novel approach for assembling microtubules away from the surface of the platform, and a fabrication process is developed to assemble microtubules between two self-aligned thin film electrodes on thick SU-8

  19. A Flexible Annular-Array Imaging Platform for Micro-Ultrasound

    PubMed Central

    Qiu, Weibao; Yu, Yanyan; Chabok, Hamid Reza; Liu, Cheng; Tsang, Fu Keung; Zhou, Qifa; Shung, K. Kirk; Zheng, Hairong; Sun, Lei

    2013-01-01

    Micro-ultrasound is an invaluable imaging tool for many clinical and preclinical applications requiring high resolution (approximately several tens of micrometers). Imaging systems for micro-ultrasound, including single-element imaging systems and linear-array imaging systems, have been developed extensively in recent years. Single-element systems are cheaper, but linear-array systems give much better image quality at a higher expense. Annular-array-based systems provide a third alternative, striking a balance between image quality and expense. This paper presents the development of a novel programmable and real-time annular-array imaging platform for micro-ultrasound. It supports multi-channel dynamic beamforming techniques for large-depth-of-field imaging. The major image processing algorithms were achieved by a novel field-programmable gate array technology for high speed and flexibility. Real-time imaging was achieved by fast processing algorithms and high-speed data transfer interface. The platform utilizes a printed circuit board scheme incorporating state-of-the-art electronics for compactness and cost effectiveness. Extensive tests including hardware, algorithms, wire phantom, and tissue mimicking phantom measurements were conducted to demonstrate good performance of the platform. The calculated contrast-to-noise ratio (CNR) of the tissue phantom measurements were higher than 1.2 in the range of 3.8 to 8.7 mm imaging depth. The platform supported more than 25 images per second for real-time image acquisition. The depth-of-field had about 2.5-fold improvement compared to single-element transducer imaging. PMID:23287923

  20. Automated Platform Management System Scheduling

    NASA Technical Reports Server (NTRS)

    Hull, Larry G.

    1990-01-01

    The Platform Management System was established to coordinate the operation of platform systems and instruments. The management functions are split between ground and space components. Since platforms are to be out of contact with the ground more than the manned base, the on-board functions are required to be more autonomous than those of the manned base. Under this concept, automated replanning and rescheduling, including on-board real-time schedule maintenance and schedule repair, are required to effectively and efficiently meet Space Station Freedom mission goals. In a FY88 study, we developed several promising alternatives for automated platform planning and scheduling. We recommended both a specific alternative and a phased approach to automated platform resource scheduling. Our recommended alternative was based upon use of exactly the same scheduling engine in both ground and space components of the platform management system. Our phased approach recommendation was based upon evolutionary development of the platform. In the past year, we developed platform scheduler requirements and implemented a rapid prototype of a baseline platform scheduler. Presently we are rehosting this platform scheduler rapid prototype and integrating the scheduler prototype into two Goddard Space Flight Center testbeds, as the ground scheduler in the Scheduling Concepts, Architectures, and Networks Testbed and as the on-board scheduler in the Platform Management System Testbed. Using these testbeds, we will investigate rescheduling issues, evaluate operational performance and enhance the platform scheduler prototype to demonstrate our evolutionary approach to automated platform scheduling. The work described in this paper was performed prior to Space Station Freedom rephasing, transfer of platform responsibility to Code E, and other recently discussed changes. We neither speculate on these changes nor attempt to predict the impact of the final decisions. As a consequence some of our

  1. Digital Architecture for a Trace Gas Sensor Platform

    NASA Technical Reports Server (NTRS)

    Gonzales, Paula; Casias, Miguel; Vakhtin, Andrei; Pilgrim, Jeffrey

    2012-01-01

    A digital architecture has been implemented for a trace gas sensor platform, as a companion to standard analog control electronics, which accommodates optical absorption whose fractional absorbance equivalent would result in excess error if assumed to be linear. In cases where the absorption (1-transmission) is not equivalent to the fractional absorbance within a few percent error, it is necessary to accommodate the actual measured absorption while reporting the measured concentration of a target analyte with reasonable accuracy. This requires incorporation of programmable intelligence into the sensor platform so that flexible interpretation of the acquired data may be accomplished. Several different digital component architectures were tested and implemented. Commercial off-the-shelf digital electronics including data acquisition cards (DAQs), complex programmable logic devices (CPLDs), field-programmable gate arrays (FPGAs), and microcontrollers have been used to achieve the desired outcome. The most completely integrated architecture achieved during the project used the CPLD along with a microcontroller. The CPLD provides the initial digital demodulation of the raw sensor signal, and then communicates over a parallel communications interface with a microcontroller. The microcontroller analyzes the digital signal from the CPLD, and applies a non-linear correction obtained through extensive data analysis at the various relevant EVA operating pressures. The microcontroller then presents the quantitatively accurate carbon dioxide partial pressure regardless of optical density. This technique could extend the linear dynamic range of typical absorption spectrometers, particularly those whose low end noise equivalent absorbance is below one-part-in-100,000. In the EVA application, it allows introduction of a path-length-enhancing architecture whose optical interference effects are well understood and quantified without sacrificing the dynamic range that allows

  2. Platform C North Installation

    NASA Image and Video Library

    2016-11-10

    A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be installed on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  3. Mapping of MPEG-4 decoding on a flexible architecture platform

    NASA Astrophysics Data System (ADS)

    van der Tol, Erik B.; Jaspers, Egbert G.

    2001-12-01

    In the field of consumer electronics, the advent of new features such as Internet, games, video conferencing, and mobile communication has triggered the convergence of television and computers technologies. This requires a generic media-processing platform that enables simultaneous execution of very diverse tasks such as high-throughput stream-oriented data processing and highly data-dependent irregular processing with complex control flows. As a representative application, this paper presents the mapping of a Main Visual profile MPEG-4 for High-Definition (HD) video onto a flexible architecture platform. A stepwise approach is taken, going from the decoder application toward an implementation proposal. First, the application is decomposed into separate tasks with self-contained functionality, clear interfaces, and distinct characteristics. Next, a hardware-software partitioning is derived by analyzing the characteristics of each task such as the amount of inherent parallelism, the throughput requirements, the complexity of control processing, and the reuse potential over different applications and different systems. Finally, a feasible implementation is proposed that includes amongst others a very-long-instruction-word (VLIW) media processor, one or more RISC processors, and some dedicated processors. The mapping study of the MPEG-4 decoder proves the flexibility and extensibility of the media-processing platform. This platform enables an effective HW/SW co-design yielding a high performance density.

  4. Sketched Oxide Single-Electron Transistor

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei

    2012-02-01

    Devices that confine and process single electrons represent an important scaling limit of electronics. Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties. Here, we use an atomic force microscope tip to reversibly ``sketch'' single-electron transistors by controlling a metal-insulator transition at the interface of two oxides.ootnotetextCheng et al., Nature Nanotechnology 6, 343 (2011). In these devices, single electrons tunnel resonantly between source and drain electrodes through a conducting oxide island with a diameter of ˜1.5 nm. We demonstrate control over the number of electrons on the island using bottom- and side-gate electrodes, and observe hysteresis in electron occupation that is attributed to ferroelectricity within the oxide heterostructure. These single-electron devices may find use as ultradense non-volatile memories, nanoscale hybrid piezoelectric and charge sensors, as well as building blocks in quantum information processing and simulation platforms.

  5. Assuring the privacy and security of transmitting sensitive electronic health information.

    PubMed

    Peng, Charlie; Kesarinath, Gautam; Brinks, Tom; Young, James; Groves, David

    2009-11-14

    The interchange of electronic health records between healthcare providers and public health organizations has become an increasingly desirable tool in reducing healthcare costs, improving healthcare quality, and protecting population health. Assuring privacy and security in nationwide sharing of Electronic Health Records (EHR) in an environment such as GRID has become a top challenge and concern. The Centers for Disease Control and Prevention's (CDC) and The Science Application International Corporation (SAIC) have jointly conducted a proof of concept study to find and build a common secure and reliable messaging platform (the SRM Platform) to handle this challenge. The SRM Platform is built on the open standards of OASIS, World Wide Web Consortium (W3C) web-services standards, and Web Services Interoperability (WS-I) specifications to provide the secure transport of sensitive EHR or electronic medical records (EMR). Transmitted data may be in any digital form including text, data, and binary files, such as images. This paper identifies the business use cases, architecture, test results, and new connectivity options for disparate health networks among PHIN, NHIN, Grid, and others.

  6. Adaptation of a web-based, open source electronic medical record system platform to support a large study of tuberculosis epidemiology

    PubMed Central

    2012-01-01

    Background In 2006, we were funded by the US National Institutes of Health to implement a study of tuberculosis epidemiology in Peru. The study required a secure information system to manage data from a target goal of 16,000 subjects who needed to be followed for at least one year. With previous experience in the development and deployment of web-based medical record systems for TB treatment in Peru, we chose to use the OpenMRS open source electronic medical record system platform to develop the study information system. Supported by a core technical and management team and a large and growing worldwide community, OpenMRS is now being used in more than 40 developing countries. We adapted the OpenMRS platform to better support foreign languages. We added a new module to support double data entry, linkage to an existing laboratory information system, automatic upload of GPS data from handheld devices, and better security and auditing of data changes. We added new reports for study managers, and developed data extraction tools for research staff and statisticians. Further adaptation to handle direct entry of laboratory data occurred after the study was launched. Results Data collection in the OpenMRS system began in September 2009. By August 2011 a total of 9,256 participants had been enrolled, 102,274 forms and 13,829 laboratory results had been entered, and there were 208 users. The system is now entirely supported by the Peruvian study staff and programmers. Conclusions The information system served the study objectives well despite requiring some significant adaptations mid-stream. OpenMRS has more tools and capabilities than it did in 2008, and requires less adaptations for future projects. OpenMRS can be an effective research data system in resource poor environments, especially for organizations using or considering it for clinical care as well as research. PMID:23131180

  7. The community FabLab platform: applications and implications in biomedical engineering.

    PubMed

    Stephenson, Makeda K; Dow, Douglas E

    2014-01-01

    Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.

  8. Eyeglasses based wireless electrolyte and metabolite sensor platform.

    PubMed

    Sempionatto, Juliane R; Nakagawa, Tatsuo; Pavinatto, Adriana; Mensah, Samantha T; Imani, Somayeh; Mercier, Patrick; Wang, Joseph

    2017-05-16

    The demand for wearable sensors has grown rapidly in recent years, with increasing attention being given to epidermal chemical sensing. Here, we present the first example of a fully integrated eyeglasses wireless multiplexed chemical sensing platform capable of real-time monitoring of sweat electrolytes and metabolites. The new concept has been realized by integrating an amperometric lactate biosensor and a potentiometric potassium ion-selective electrode into the two nose-bridge pads of the glasses and interfacing them with a wireless electronic backbone placed on the glasses' arms. Simultaneous real-time monitoring of sweat lactate and potassium levels with no apparent cross-talk is demonstrated along with wireless signal transduction. The electrochemical sensors were screen-printed on polyethylene terephthalate (PET) stickers and placed on each side of the glasses' nose pads in order to monitor sweat metabolites and electrolytes. The electronic backbone on the arms of the glasses' frame offers control of the amperometric and potentiometric transducers and enables Bluetooth wireless data transmission to the host device. The new eyeglasses system offers an interchangeable-sensor feature in connection with a variety of different nose-bridge amperometric and potentiometric sensor stickers. For example, the lactate bridge-pad sensor was replaced with a glucose one to offer convenient monitoring of sweat glucose. Such a fully integrated wireless "Lab-on-a-Glass" multiplexed biosensor platform can be readily expanded for the simultaneous monitoring of additional sweat electrolytes and metabolites.

  9. Carboxylate platform: the MixAlco process part 1: comparison of three biomass conversion platforms.

    PubMed

    Holtzapple, Mark T; Granda, Cesar B

    2009-05-01

    To convert biomass to liquid fuels, three platforms are compared: thermochemical, sugar, and carboxylate. To create a common basis, each platform is fed "ideal biomass," which contains polysaccharides (68.3%) and lignin (31.7%). This ratio is typical of hardwood biomass and was selected so that when gasified and converted to hydrogen, the lignin has sufficient energy to produce ethanol from the carboxylic acids produced by the carboxylate platform. Using balanced chemical reactions, the theoretical yield and energy efficiency were determined for each platform. For all platforms, the ethanol yield can be increased by 71% to 107% by supplying external hydrogen produced from other sources (e.g., solar, wind, nuclear, fossil fuels). The alcohols can be converted to alkanes with a modest loss of energy efficiency (3 to 5 percentage points). Of the three platforms considered, the carboxylate platform has demonstrated the highest product yields.

  10. Platform C North Installation

    NASA Image and Video Library

    2016-11-10

    A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be installed on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  11. Platform C North Installation

    NASA Image and Video Library

    2016-11-10

    A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  12. Platform C North Installation

    NASA Image and Video Library

    2016-11-10

    A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the north wall. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  13. Platform B North Installation

    NASA Image and Video Library

    2016-12-16

    A construction worker solders a section of steel during the installation of the second half of the B-level work platforms, B north, for NASA's Space Launch System (SLS) rocket, in High Bay 3 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Construction workers will secure the large bolts that hold the platform in place on the north wall. The B platforms are the ninth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  14. Recent Progress and Future Plans for Fusion Plasma Synthetic Diagnostics Platform

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Kramer, Gerrit; Tang, William; Tobias, Benjamin; Valeo, Ernest; Churchill, Randy; Hausammann, Loic

    2015-11-01

    The Fusion Plasma Synthetic Diagnostics Platform (FPSDP) is a Python package developed at the Princeton Plasma Physics Laboratory. It is dedicated to providing an integrated programmable environment for applying a modern ensemble of synthetic diagnostics to the experimental validation of fusion plasma simulation codes. The FPSDP will allow physicists to directly compare key laboratory measurements to simulation results. This enables deeper understanding of experimental data, more realistic validation of simulation codes, quantitative assessment of existing diagnostics, and new capabilities for the design and optimization of future diagnostics. The Fusion Plasma Synthetic Diagnostics Platform now has data interfaces for the GTS and XGC-1 global particle-in-cell simulation codes with synthetic diagnostic modules including: (i) 2D and 3D Reflectometry; (ii) Beam Emission Spectroscopy; and (iii) 1D Electron Cyclotron Emission. Results will be reported on the delivery of interfaces for the global electromagnetic PIC code GTC, the extended MHD M3D-C1 code, and the electromagnetic hybrid NOVAK eigenmode code. Progress toward development of a more comprehensive 2D Electron Cyclotron Emission module will also be discussed. This work is supported by DOE contract #DEAC02-09CH11466.

  15. Innovation and development of exhibition electronic-commerce based on the properties of electronic-commerce

    NASA Astrophysics Data System (ADS)

    Zhang, Jiankang

    2017-06-01

    There are two roadmaps of accomplishing exhibition electronic-commerce innovation and development. The first roadmap is that the exhibition organizers should seek mutual benefit cooperation with professional electronic-commerce platform of correspondent area with exhibition projects, thus help exhibitors realize their market object. The second roadmap is to promote innovation and development of electronic-commerce (Business-to-Customer) between both exhibitors and purchasers. Exhibition electronic-commerce must focus on innovative development in the following functions: market research and information service; advertising and business negotiation; online trading and online payment. With the aid of electronic-commerce, exhibition enterprise could have distinctive strengths such as transactions with virtualization, transparency, high efficiency and low cost, enhancing market link during enterprise research and development, promoting the efficiency of internal team collaboration and the individuation of external service, and optimizing resource allocation.

  16. Intra-Platform Repeatability and Inter-Platform Comparability of MicroRNA Microarray Technology

    PubMed Central

    Sato, Fumiaki; Tsuchiya, Soken; Terasawa, Kazuya; Tsujimoto, Gozoh

    2009-01-01

    Over the last decade, DNA microarray technology has provided a great contribution to the life sciences. The MicroArray Quality Control (MAQC) project demonstrated the way to analyze the expression microarray. Recently, microarray technology has been utilized to analyze a comprehensive microRNA expression profiling. Currently, several platforms of microRNA microarray chips are commercially available. Thus, we compared repeatability and comparability of five different microRNA microarray platforms (Agilent, Ambion, Exiqon, Invitrogen and Toray) using 309 microRNAs probes, and the Taqman microRNA system using 142 microRNA probes. This study demonstrated that microRNA microarray has high intra-platform repeatability and comparability to quantitative RT-PCR of microRNA. Among the five platforms, Agilent and Toray array showed relatively better performances than the others. However, the current lineup of commercially available microRNA microarray systems fails to show good inter-platform concordance, probably because of lack of an adequate normalization method and severe divergence in stringency of detection call criteria between different platforms. This study provided the basic information about the performance and the problems specific to the current microRNA microarray systems. PMID:19436744

  17. Driving platform for OLED lighting investigations

    NASA Astrophysics Data System (ADS)

    Vogel, Uwe; Elgner, Andreas; Kreye, Daniel; Amelung, Jörg; Scholles, Michael

    2006-08-01

    OLED technology may be excellently suitable for lighting applications by combining high efficiency, cost effective manufacturing and the use of low cost materials. Certain issues remain to be solved so far, including OLED brightness, color, lifetime, large area uniformity and encapsulation. Another aspect, that might be capable in addressing some of the mentioned issues, is OLED lighting electrical driving. We report on the design of a driving platform for OLED lighting test panels or substrates. It is intended for being a test environment for lighting substrates as well as demonstration/presentation environment. It is based on a 128-channel passive-matrix driver/controller ASIC OC2. Its key component is an MSP430-compatible 16-bit micro-controller core including embedded Flash memory (program), EEPROM (parameter), and RAM (data memory). A significant feature of the device is an electronic approach for improving the lifetime/uniformity behavior of connected OLED. The embedded micro-controller is the key to the high versatility of OC2, since by firmware modification it can be adapted to various applications and conditions. Here its application for an OLED lighting driving platform is presented. Major features of this platform are PC-control mode (via USB interface), stand-alone mode (no external control necessary, just power supply), on-board OLED panel parameter storage, flat geometry of OLED lighting panel carrier (board), AC and DC driving regimes, adjustable reverse voltage, dedicated user SW (PC/Windows-based), sub-tile patterning and single sub-tile control, combination of multiple channels for increasing driving current. This publication contains results of the project "High Brightness OLEDs for ICT & Next Generation Lighting Applications" (OLLA), funded by the European Commission.

  18. An integrated platform for directly widely-targeted quantitative analysis of feces part I: Platform configuration and method validation.

    PubMed

    Song, Yuelin; Song, Qingqing; Li, Jun; Zheng, Jiao; Li, Chun; Zhang, Yuan; Zhang, Lingling; Jiang, Yong; Tu, Pengfei

    2016-07-08

    Direct analysis is of great importance to understand the real chemical profile of a given sample, notably biological materials, because either chemical degradation or diverse errors and uncertainties might be resulted from sophisticated protocols. In comparison with biofluids, it is still challenging for direct analysis of solid biological samples using high performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Herein, a new analytical platform was configured by online hyphenating pressurized liquid extraction (PLE), turbulent flow chromatography (TFC), and LC-MS/MS. A facile, but robust PLE module was constructed based on the phenomenon that noticeable back-pressure can be generated during rapid fluid passing through a narrow tube. TFC column that is advantageous at extracting low molecular analytes from rushing fluid was employed to link at the outlet of the PLE module to capture constituents-of-interest. An electronic 6-port/2-position valve was introduced between TFC column and LC-MS/MS to fragment each measurement into extraction and elution phases, whereas LC-MS/MS took the charge of analyte separation and monitoring. As a proof of concept, simultaneous determination of 24 endogenous substances including eighteen steroids, five eicosanoids, and one porphyrin in feces was carried out in this paper. Method validation assays demonstrated the analytical platform to be qualified for directly simultaneous measurement of diverse endogenous analytes in fecal matrices. Application of this integrated platform on homolog-focused profiling of feces is discussed in a companion paper. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Platform B North Installation

    NASA Image and Video Library

    2016-12-16

    Construction workers wearing safety harnesses and tethered lines assist with the installation of the second half of the B-level work platforms, B north, for NASA’s Space Launch System (SLS) rocket, high up in the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. They are securing the large bolts that hold the platform securely in place on the north side of High Bay 3. The B platforms are the ninth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  20. Azure Avery | NREL

    Science.gov Websites

    of her dissertation research, Dr. Avery probed thermoelectric effects such as the Seebeck effect and .; Zink, B.L. (2011). "Thermopower and Resistivity in Ferromagnetic Thin Films Near Room Temperature Thermoelectric Effects and Wiedemann-Franz Violation in Magnetic Nanostructures via Micromachined Thermal

  1. Fully printable, strain-engineered electronic wrap for customizable soft electronics.

    PubMed

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-24

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  2. Fully printable, strain-engineered electronic wrap for customizable soft electronics

    NASA Astrophysics Data System (ADS)

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-01

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  3. E-Portfolio as a Corrective Platform towards EFL Students' Overall/Componential Writing Performance

    ERIC Educational Resources Information Center

    Saeedi, Zari; Meihami, Hussein

    2015-01-01

    This paper aims at accentuating and exploring the effect of using electronic portfolio (EP) platform in providing corrective feedback (CF) on EFL students' overall and micro-componential writing performance. Moreover, by conducting a semi-structured interview, the study seeks to obtain students' attitudes towards the use of EP in three aspects,…

  4. Development and Characteristics of a Mobile, Semi-Autonomous Floating Platform for in situ Lake Measurements

    NASA Astrophysics Data System (ADS)

    Barry, D.; Lemmin, U.; Le Dantec, N.; Zulliger, L.; Rusterholz, M.; Bolay, M.; Rossier, J.; Kangur, K.

    2013-12-01

    In the development of sustainable management strategies of lakes more insight into their physical, chemical and ecological dynamics is needed. Field data obtained from various types of sensors with adequate spatial and temporal sampling rate are essential to understand better the processes that govern fluxes and pathways of water masses and transported compounds, whether for model validation or for monitoring purposes. One advantage of unmanned platforms is that they limit the disturbances typically affecting the quality of data collected on small vessels, including perturbations caused by movements of onboard crew. We have developed a mobile, semi-autonomous floating platform with 8 h power autonomy using a 5 m long by 2.5 m wide catamaran. Our approach focused on modularity and high payload capacity in order to accommodate a large number of sensors both in terms of electronic (power and data) and mechanical constraints of integration. Software architecture and onboard electronics use National Instruments technology to simplify and standardize integration of sensors, actuators and communication. Piecewise-movable deck sections allow optimizing platform stability depending on the payload. The entire system is controlled by a remote computer located on an accompanying vessel and connected via a wireless link with a range of over 1 km. Real-time transmission of GPS-stamped measurements allows immediate modifications in the survey plan if needed. The displacement of the platform is semi-autonomous, with the options of either autopilot mode following a pre-planned course specified by waypoints or remote manual control from the accompanying vessel. Maintenance of permanent control over the platform displacement is required for safety reasons with respect to other users of the lake. Currently, the sensor payload comprises an array of fast temperature probes, a bottom-tracking ADCP and atmospheric sensors including a radiometer. A towed CTD with additional water quality

  5. Dynamic Gaming Platform (DGP)

    DTIC Science & Technology

    2009-04-01

    GAMING PLATFORM (DGP) Lockheed Martin Corporation...YYYY) APR 09 2. REPORT TYPE Final 3. DATES COVERED (From - To) Jul 07 – Mar 09 4. TITLE AND SUBTITLE DYNAMIC GAMING PLATFORM (DGP) 5a...CMU Carnegie Mellon University DGP Dynamic Gaming Platform GA Genetic Algorithm IARPA Intelligence Advanced Research Projects Activity LM ATL Lockheed Martin Advanced Technology Laboratories PAINT ProActive INTelligence

  6. 77 FR 10714 - Department of the Treasury Acquisition Regulation; Internet Payment Platform

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ...The Department of the Treasury is proposing to amend the Department of the Treasury Acquisition Regulation (DTAR) to implement use of the Internet Payment Platform, a centralized electronic invoicing and payment information system, and to change the definition of bureau to reflect the consolidation on July 21, 2011 of the Office of Thrift Supervision with the Office of the Comptroller of the Currency.

  7. Electrochemical quantum tunneling for electronic detection and characterization of biological toxins

    NASA Astrophysics Data System (ADS)

    Gupta, Chaitanya; Walker, Ross M.; Gharpuray, Rishi; Shulaker, Max M.; Zhang, Zhiyong; Javanmard, Mehdi; Davis, Ronald W.; Murmann, Boris; Howe, Roger T.

    2012-06-01

    This paper introduces a label-free, electronic biomolecular sensing platform for the detection and characterization of trace amounts of biological toxins within a complex background matrix. The mechanism for signal transduction is the electrostatic coupling of molecule bond vibrations to charge transport across an insulated electrode-electrolyte interface. The current resulting from the interface charge flow has long been regarded as an experimental artifact of little interest in the development of traditional charge based biosensors like the ISFET, and has been referred to in the literature as a "leakage current". However, we demonstrate by experimental measurements and theoretical modeling that this current has a component that arises from the rate-limiting transition of a quantum mechanical electronic relaxation event, wherein the electronic tunneling process between a hydrated proton in the electrolyte and the metallic electrode is closely coupled to the bond vibrations of molecular species in the electrolyte. Different strategies to minimize the effect of quantum decoherence in the quantized exchange of energy between the molecular vibrations and electron energy will be discussed, as well as the experimental implications of such strategies. Since the mechanism for the transduction of chemical information is purely electronic and does not require labels or tags or optical transduction, the proposed platform is scalable. Furthermore, it can achieve the chemical specificity typically associated with traditional micro-array or mass spectrometry-based platforms that are used currently to analyze complex biological fluids for trace levels of toxins or pathogen markers.

  8. The Future of Electronic Reserves and the Presence of Librarians in Content Management Systems: A Case Study at Manhattan College

    ERIC Educational Resources Information Center

    Handfield, Amy E.

    2017-01-01

    This article addresses the development of electronic reserves within academic libraries. Libraries have been offering electronic reserve services on separate platforms since the 1990s (Austin, 2013). However, since the integration of campus-wide content management systems (CMSs), the need for a library reserves platform that is independent from an…

  9. Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system.

    PubMed

    Zhou, Ming; Guo, Jidong; Guo, Li-ping; Bai, Jing

    2008-06-15

    In this paper, we report a novel all-carbon two-dimensionally ordered nanocomposite electrode system on the basis of the consideration of host-guest chemistry, which utilizes synergistic interactions between a nanostructured matrix of ordered mesoporous carbon (OMC) and an excellent electron acceptor of nanosized fullerene (C 60) to facilitate heterogeneous electron-transfer processes. The integration of OMC-C 60 by covalent interaction, especially its electrochemical applications for electrocatalysis, has not been explored thus far. Such integration may even appear to be counterintuitive because OMC and C 60 provide opposite electrochemical benefits in terms of facilitating heterogeneous electron-transfer processes. Nevertheless, the present work demonstrates the integration of OMC and C 60 can provide a remarkable synergistic augmentation of the current. To illuminate the concept, eight kinds of inorganic and organic electroactive compounds were employed to study the electrochemical response at an OMC-C 60 modified glassy carbon (OMC-C 60/GC) electrode for the first time, which shows more favorable electron-transfer kinetics than OMC/GC, carbon nanotube modified GC, C 60/GC, and GC electrodes. Such electrocatalytic behavior at OMC-C 60/GC electrode could be attributed to the unique physicochemical properties of OMC and C 60, especially the unusual host-guest synergy of OMC-C 60, which induced a substantial decrease in the overvoltage for NADH oxidation compared with GC electrode. The ability of OMC-C 60 to promote electron transfer not only suggests a new platform for the development of dehydrogenase-based bioelectrochemical devices but also indicates a potential of OMC-C 60 to be of a wide range of sensing applications because the electrocatalysis of different electroactive compounds at the OMC-C 60/GC electrode in this work should be a good model for constructing a novel and promising electrochemical sensing platform for further electrochemical detection of

  10. Printed electronic on flexible and glass substrates

    NASA Astrophysics Data System (ADS)

    Futera, Konrad; Jakubowska, Małgorzata; Kozioł, Grażyna

    2010-09-01

    Organic electronics is a platform technology that enables multiple applications based on organic electronics but varied in specifications. Organic electronics is based on the combination of new materials and cost-effective, large area production processes that provide new fields of application. Organic electronic by its size, weight, flexibility and environmental friendliness electronics enables low cost production of numerous electrical components and provides for such promising fields of application as: intelligent packaging, low cost RFID, flexible solar cells, disposable diagnostic devices or games, and printed batteries [1]. The paper presents results of inkjetted electronics elements on flexible and glass substrates. The investigations was target on characterizing shape, surface and geometry of printed structures. Variety of substrates were investigated, within some, low cost, non specialized substrate, design for other purposes than organic electronic.

  11. An Optical Biosensing Platform using Reprecipitated Polyaniline Microparticles

    NASA Astrophysics Data System (ADS)

    Nemzer, Louis; Epstein, Arthur

    2009-03-01

    A great deal of effort remains focused on the goal of developing a continuous in vivo glucose monitoring system for patients with diabetes mellitus. We report a proof-of-concept study on a reagentless optical biosensing platform that circumvents the problems usually associated with direct glucose detection by utilizing the UV-VIS absorption properties of polyaniline, a biocompatible polymer. When the enzyme glucose oxidase is entrapped within reprecipitated polyaniline microparticles, a glucose molecule readily donates two protons and two electrons to the polyaniline, reversibly altering the polymer's oxidation state. The resultant change can be monitored by measuring the absorption at wavelengths that fall within the ``optical window'' for skin. The micro-structured morphology also insures a high surface-area to volume ratio. Data from in vitro prototype devices indicate that in the low enzyme-loading regime, the response can be fit to the Michaelis-Menten model for enzyme kinetics, but at higher enzyme loading, diffusion effects dominate. As a biosensing platform, the system also has the potential to be adapted to detect other biologically relevant analytes, including cholesterol and ethanol.

  12. Platform C North Arrival

    NASA Image and Video Library

    2016-08-30

    A section of the second half of the C-level platforms, C North, for NASA’s Space Launch System (SLS) rocket, arrives at the agency’s Kennedy Space Center in Florida. The platform was offloaded from a heavy lift transport truck and secured in a staging area in the west parking lot of the Vehicle Assembly Building (VAB). The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.

  13. Implementing an electronic medication overview in Belgium.

    PubMed

    Storms, Hannelore; Marquet, Kristel; Nelissen, Katherine; Hulshagen, Leen; Lenie, Jan; Remmen, Roy; Claes, Neree

    2014-12-16

    An accurate medication overview is essential to reduce medication errors. Therefore, it is essential to keep the medication overview up-to-date and to exchange healthcare information between healthcare professionals and patients. Digitally shared information yields possibilities to improve communication. However, implementing a digitally shared medication overview is challenging. This articles describes the development process of a secured, electronic platform designed for exchanging medication information as executed in a pilot study in Belgium, called "Vitalink". The goal of "Vitalink" is to improve the exchange of medication information between professionals working in healthcare and patients in order to achieve a more efficient cooperation and better quality of care. Healthcare professionals of primary and secondary health care and patients of four Belgian regions participated in the project. In each region project groups coordinated implementation and reported back to the steering committee supervising the pilot study. The electronic medication overview was developed based on consensus in the project groups. The steering committee agreed to establish secured and authorized access through the use of electronic identity documents (eID) and a secured, eHealth-platform conform prior governmental regulations regarding privacy and security of healthcare information. A successful implementation of an electronic medication overview strongly depends on the accessibility and usability of the tool for healthcare professionals. Coordinating teams of the project groups concluded, based on their own observations and on problems reported to them, that secured and quick access to medical data needed to be pursued. According to their observations, the identification process using the eHealth platform, crucial to ensure secured data, was very time consuming. Secondly, software packages should meet the needs of their users, thus be adapted to daily activities of healthcare

  14. The vacuum platform

    NASA Astrophysics Data System (ADS)

    McNab, A.

    2017-10-01

    This paper describes GridPP’s Vacuum Platform for managing virtual machines (VMs), which has been used to run production workloads for WLCG and other HEP experiments. The platform provides a uniform interface between VMs and the sites they run at, whether the site is organised as an Infrastructure-as-a-Service cloud system such as OpenStack, or an Infrastructure-as-a-Client system such as Vac. The paper describes our experience in using this platform, in developing and operating VM lifecycle managers Vac and Vcycle, and in interacting with VMs provided by LHCb, ATLAS, ALICE, CMS, and the GridPP DIRAC service to run production workloads.

  15. Platform C South Arrival

    NASA Image and Video Library

    2016-08-04

    A heavy load transport truck from Tillett Heavy Hauling in Titusville, Florida, arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, carrying a section of the first half of the C-level work platforms, C south, for the agency’s Space Launch System (SLS) rocket. The platform will be delivered to the VAB staging area in the west parking lot. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.

  16. Remote platform power conserving system

    NASA Technical Reports Server (NTRS)

    Kurvin, C. W. (Inventor)

    1974-01-01

    A system is described where an unattended receiver and transmitter equipped data collection platform is interrogated by a substantially polar orbiting satellite. The method and apparatus involve physically representing the orbit of the satellite and the spin of the planetary body with timers, and using these representations to turn on the platform's receiver only when the satellite should be in radio range of the platform, whereby battery power at the platform is conserved.

  17. Fully printable, strain-engineered electronic wrap for customizable soft electronics

    PubMed Central

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-01-01

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form. PMID:28338055

  18. Expanding the Media Mix in Statistics Education through Platform-Independent and Interactive Learning Objects

    ERIC Educational Resources Information Center

    Mittag, Hans-Joachim

    2015-01-01

    The ubiquity of mobile devices demands the exploitation of their potentials in distance and face-to-face teaching, as well for complementing textbooks in printed or electronic format. There is a strong need to develop innovative resources that open up new dimensions of learning and teaching through interactive and platform-independent content.…

  19. Modular electron transfer circuits for synthetic biology

    PubMed Central

    Agapakis, Christina M

    2010-01-01

    Electron transfer is central to a wide range of essential metabolic pathways, from photosynthesis to fermentation. The evolutionary diversity and conservation of proteins that transfer electrons makes these pathways a valuable platform for engineered metabolic circuits in synthetic biology. Rational engineering of electron transfer pathways containing hydrogenases has the potential to lead to industrial scale production of hydrogen as an alternative source of clean fuel and experimental assays for understanding the complex interactions of multiple electron transfer proteins in vivo. We designed and implemented a synthetic hydrogen metabolism circuit in Escherichia coli that creates an electron transfer pathway both orthogonal to and integrated within existing metabolism. The design of such modular electron transfer circuits allows for facile characterization of in vivo system parameters with applications toward further engineering for alternative energy production. PMID:21468209

  20. Electronic laboratory notebook: the academic point of view.

    PubMed

    Rudolphi, Felix; Goossen, Lukas J

    2012-02-27

    Based on a requirement analysis and alternative design considerations, a platform-independent electronic laboratory notebook (ELN) has been developed that specifically targets academic users. Its intuitive design and numerous productivity features motivate chemical researchers and students to record their data electronically. The data are stored in a highly structured form that offers substantial benefits over laboratory notebooks written on paper with regard to data retrieval, data mining, and exchange of results.

  1. Cross-platform learning: on the nature of children's learning from multiple media platforms.

    PubMed

    Fisch, Shalom M

    2013-01-01

    It is increasingly common for an educational media project to span several media platforms (e.g., TV, Web, hands-on materials), assuming that the benefits of learning from multiple media extend beyond those gained from one medium alone. Yet research typically has investigated learning from a single medium in isolation. This paper reviews several recent studies to explore cross-platform learning (i.e., learning from combined use of multiple media platforms) and how such learning compares to learning from one medium. The paper discusses unique benefits of cross-platform learning, a theoretical mechanism to explain how these benefits might arise, and questions for future research in this emerging field. Copyright © 2013 Wiley Periodicals, Inc., A Wiley Company.

  2. Strategies for responding to RAC requests electronically.

    PubMed

    Schramm, Michael

    2012-04-01

    Providers that would like to respond to complex RAC reviews electronically should consider three strategies: Invest in an EHR software package or a high-powered scanner that can quickly scan large amounts of paper. Implement an audit software platform that will allow providers to manage the entire audit process in one place. Use a CONNECT-compatible gateway capable of accessing the Nationwide Health Information Network (the network on which the electronic submission of medical documentation program runs).

  3. Platform C South Arrival

    NASA Image and Video Library

    2016-08-04

    A heavy load transport truck from Tillett Heavy Hauling in Titusville, Florida, arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, carrying a section of the first half of the C-level work platforms, C South, for the agency’s Space Launch System (SLS) rocket. The platform is being lifted and transferred onto support stands in the VAB staging area in the west parking lot. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.

  4. Platform C South Arrival

    NASA Image and Video Library

    2016-08-05

    A heavy load transport truck from Tillett Heavy Hauling in Titusville, Florida, arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, carrying the second section of the first half of the C-level work platforms, C South, for the agency’s Space Launch System (SLS) rocket. The platform will be offloaded in the VAB staging area in the west parking lot. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.

  5. Associations Between Serum Bone Biomarkers in Early Breast Cancer and Development of Bone Metastasis: Results From the AZURE (BIG01/04) Trial.

    PubMed

    Brown, Janet; Rathbone, Emma; Hinsley, Samantha; Gregory, Walter; Gossiel, Fatma; Marshall, Helen; Burkinshaw, Roger; Shulver, Helen; Thandar, Hasina; Bertelli, Gianfilippo; Maccon, Keane; Bowman, Angela; Hanby, Andrew; Bell, Richard; Cameron, David; Coleman, Robert

    2018-02-07

    Adjuvant therapies can prevent/delay bone metastasis development in breast cancer. We investigated whether serum bone turnover markers in early disease have clinical utility in identifying patients with a high risk of developing bone metastasis. Markers of bone formation (N-terminal propeptide of type-1 collagen [P1NP]) and bone resorption (C-telopeptide of type-1 collagen [CTX], pyridinoline cross-linked carboxy-terminal telopeptide of type-1 collagen [1-CTP]) were measured in baseline (pretreatment blood samples from 872 patients from a large randomized trial of adjuvant zoledronic acid (AZURE-ISRCTN79831382) in early breast cancer. Cox proportional hazards regression and cumulative incidence functions (adjusted for factors having a statistically significant effect on outcome) were used to investigate prognostic and predictive associations between recurrence events, bone marker levels, and clinical variables. All statistical tests were two-sided. When considered as continuous variables (log transformed), P1NP, CTX, and 1-CTP were each prognostic for future bone recurrence at any time (P = .006, P = .009, P = .008, respectively). Harrell's c-indices were a P1NP of 0.57 (95% confidence interval [CI] = 0.51 to 0.63), CTX of 0.57 (95% CI = 0.51 to 0.62), and 1-CTP of 0.57 (95% CI = 0.52 to 0.63). In categorical analyses based on the normal range, high baseline P1NP (>70 ng/mL) and CTX (>0.299 ng/mL), but not 1-CTP (>4.2 ng/mL), were also prognostic for future bone recurrence (P = .03, P = .03, P = .10, respectively). None of the markers were prognostic for overall distant recurrence; that is, they were bone metastasis specific, and none of the markers were predictive of treatment benefit from zoledronic acid. Serum P1NP, CTX, and 1-CTP are clinically useful, easily measured markers that show good prognostic ability (though low-to-moderate discrimination) for bone-specific recurrence and are worthy of further study. © The Author(s) 2018. Published by Oxford

  6. Electronic Diaries: Appraisal and Current Status

    PubMed Central

    Broderick, Joan E.

    2009-01-01

    The recent explosion of technology has moved the field of patient reported outcomes (PROs) into a new era. Use of paper-and-pencil questionnaires administered before and after treatment has been eclipsed by highly sophisticated random prompts for symptom ratings at multiple points throughout the day, a method known as ecological momentary assessment (EMA). During the last 25 years, research has demonstrated that retrospective ratings are subject to a variety of cognitive heuristics that can distort the report. Initially, this was addressed by adopting paper diary protocols involving multiple ratings in a day or across a week. Technology was also advancing, and some researchers began to utilize electronic platforms for EMA assessment. A good deal of research has been conducted comparing paper and electronic formats. Issues of compliance have been particularly problematic for paper diaries. Electronic technologies can be expensive and require expertise in programming and data management. Not all research questions will require intensive momentary assessment, and end-of-day ratings may be adequate for many applications. What is required of the investigator is familiarity with the strengths and weaknesses of the methods and platforms available as well as a reasoned decision to elect a particular methodology for the study question at hand. PMID:20037672

  7. Identification of the Rice Wines with Different Marked Ages by Electronic Nose Coupled with Smartphone and Cloud Storage Platform

    PubMed Central

    Wei, Zhebo; Xiao, Xize

    2017-01-01

    In this study, a portable electronic nose (E-nose) was self-developed to identify rice wines with different marked ages—all the operations of the E-nose were controlled by a special Smartphone Application. The sensor array of the E-nose was comprised of 12 MOS sensors and the obtained response values were transmitted to the Smartphone thorough a wireless communication module. Then, Aliyun worked as a cloud storage platform for the storage of responses and identification models. The measurement of the E-nose was composed of the taste information obtained phase (TIOP) and the aftertaste information obtained phase (AIOP). The area feature data obtained from the TIOP and the feature data obtained from the TIOP-AIOP were applied to identify rice wines by using pattern recognition methods. Principal component analysis (PCA), locally linear embedding (LLE) and linear discriminant analysis (LDA) were applied for the classification of those wine samples. LDA based on the area feature data obtained from the TIOP-AIOP proved a powerful tool and showed the best classification results. Partial least-squares regression (PLSR) and support vector machine (SVM) were applied for the predictions of marked ages and SVM (R2 = 0.9942) worked much better than PLSR. PMID:29088076

  8. Identification of the Rice Wines with Different Marked Ages by Electronic Nose Coupled with Smartphone and Cloud Storage Platform.

    PubMed

    Wei, Zhebo; Xiao, Xize; Wang, Jun; Wang, Hui

    2017-10-31

    In this study, a portable electronic nose (E-nose) was self-developed to identify rice wines with different marked ages-all the operations of the E-nose were controlled by a special Smartphone Application. The sensor array of the E-nose was comprised of 12 MOS sensors and the obtained response values were transmitted to the Smartphone thorough a wireless communication module. Then, Aliyun worked as a cloud storage platform for the storage of responses and identification models. The measurement of the E-nose was composed of the taste information obtained phase (TIOP) and the aftertaste information obtained phase (AIOP). The area feature data obtained from the TIOP and the feature data obtained from the TIOP-AIOP were applied to identify rice wines by using pattern recognition methods. Principal component analysis (PCA), locally linear embedding (LLE) and linear discriminant analysis (LDA) were applied for the classification of those wine samples. LDA based on the area feature data obtained from the TIOP-AIOP proved a powerful tool and showed the best classification results. Partial least-squares regression (PLSR) and support vector machine (SVM) were applied for the predictions of marked ages and SVM (R² = 0.9942) worked much better than PLSR.

  9. Assessing the Quality, Feasibility, and Efficacy of Electronic Patient Platforms Designed to Support Adolescents and Young Adults With Cancer: A Systematic Review Protocol

    PubMed Central

    McCann, Lisa

    2017-01-01

    Background A range of innovative websites, mobile technologies, eHealth and mHealth platforms have emerged to support adolescents and young adults (AYAs) with cancer. Previous reviews have identified these various applications and solutions, but no review has summarized the quality, feasibility, and efficacy of existing patient platforms (inclusive of websites, mobile technologies, mHealth and eHealth platforms) developed specifically for young people with cancer. Objective This paper describes the design of a protocol to conduct a review of published studies or reports which describe or report on an existing platform designed specifically for AYAs who have had a cancer diagnosis. Methods A search string was developed using a variety of key words and Medical Subject Heading and applied to bibliographic databases. General data (sample characteristics, patient platform development, design and, if applicable, pilot testing outcomes) will be extracted from reports and studies. Drawing on a previously developed coding schematic, the identified patient platforms will be coded for mode of delivery into (1) automated functions, (2) communicative functions, and (3) use of supplementary modes. An adapted version of the Mobile App Rating Scale (MARS) will be used to assess the of quality of each identified patient platform. The methodological quality of included studies will be assessed using the Quality Assessment Criteria for Evaluating Primary Research Papers from a Variety of Fields (QualSyst). Both authors will independently screen eligible studies for final inclusion and will both be responsible for data extraction and appraisal. Data will be synthesized narratively to provide an overview of identified patient platforms. Results The review began in October 2016 and is currently in progress. The review paper will be submitted for peer-review and publication in the summer of 2017. Conclusions This review will be unique in its focus on assessing, where possible, the

  10. National Community Solar Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rupert, Bart

    This project was created to provide a National Community Solar Platform (NCSP) portal known as Community Solar Hub, that is available to any entity or individual who wants to develop community solar. This has been done by providing a comprehensive portal to make CEC’s solutions, and other proven community solar solutions, externally available for everyone to access – making the process easy through proven platforms to protect subscribers, developers and utilities. The successful completion of this project provides these tools via a web platform and integration APIs, a wide spectrum of community solar projects included in the platform, multiple groupsmore » of customers (utilities, EPCs, and advocates) using the platform to develop community solar, and open access to anyone interested in community solar. CEC’s Incubator project includes web-based informational resources, integrated systems for project information and billing systems, and engagement with customers and users by community solar experts. The combined effort externalizes much of Clean Energy Collective’s industry-leading expertise, allowing third parties to develop community solar without duplicating expensive start-up efforts. The availability of this platform creates community solar projects that are cheaper to build and cheaper to participate in, furthering the goals of DOE’s SunShot Initiative. Final SF 425 Final SF 428 Final DOE F 2050.11 Final Report Narrative« less

  11. On-Board Software Payload Platform over RTEMS and LEON3FT Processing Units

    NASA Astrophysics Data System (ADS)

    Martins, Rodolfo; Ribeiro, Pedro; Furano, Gianluca; Costa Pinto, Joao; Habinc, Sandi

    2013-08-01

    Under ESA and Inmarsat ARTES 8 Alphabus/Alphasat specific programme a technology demonstration payload (TDP) was developed. The payload called TDP8 is an Environment Effects Facility to monitor the GEO radiation environment and its effects on electronic components and sensors. This paper will discuss the on-board software payload platform approach developed since then and based on the TDP8 validation activities.

  12. Amine-functionalized diatom frustules: a platform for specific and sensitive detection of nitroaromatic explosive derivative.

    PubMed

    Selvaraj, Viji; Thomas, Neethi; Anthuvan, Allen Joseph; Nagamony, Ponpandian; Chinnuswamy, Viswanathan

    2017-12-14

    In the present study, an attempt was made to develop a proof of concept for the detection of nitroaromatic explosive derivatives through the photoluminescence (PL) quenching process using functionalized diatom frustules as a sensing platform. The diatom frustules are composed of nanostructured, highly porous biogenic silica material and emit strong, visible blue PL upon UV excitation. PL-active biosilica was isolated from the marine diatom Nitzschia sp. and was amine-functionalized to develop a sensing platform. Functionalized diatom frustules were further characterized using field emission scanning electron microscope and a series of spectroscopic methods. When nitroaromatic compounds were bound to the functionalized diatom frustules biosilica, the PL intensity from the functionalized biosilica was partially quenched due to the electrophilic nature of the nitro (-NO) groups. The quenching process confirmed the Meisenheimer complex formation and was investigated by using Fourier transform infrared spectroscopy and time-resolved photoluminescence studies. The developed platform was further evaluated for its sensitivity and specificity, and the limit of detection (LOD) of the assay was determined as 1 μM for a series of nitroaromatic explosive compounds. In conclusion, the developed sensing platform will have great utility in the development of on-site detection platforms for sensitive detection of warfare explosive nitroaromatic compounds from the environment.

  13. 30 CFR 250.911 - If my platform is subject to the Platform Verification Program, what must I do?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false If my platform is subject to the Platform Verification Program, what must I do? 250.911 Section 250.911 Mineral Resources BUREAU OF SAFETY AND... CONTINENTAL SHELF Platforms and Structures Platform Verification Program § 250.911 If my platform is subject...

  14. 30 CFR 250.911 - If my platform is subject to the Platform Verification Program, what must I do?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false If my platform is subject to the Platform Verification Program, what must I do? 250.911 Section 250.911 Mineral Resources BUREAU OF SAFETY AND... CONTINENTAL SHELF Platforms and Structures Platform Verification Program § 250.911 If my platform is subject...

  15. 30 CFR 250.911 - If my platform is subject to the Platform Verification Program, what must I do?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false If my platform is subject to the Platform Verification Program, what must I do? 250.911 Section 250.911 Mineral Resources BUREAU OF SAFETY AND... CONTINENTAL SHELF Platforms and Structures Platform Verification Program § 250.911 If my platform is subject...

  16. The effect of platform switching on the levels of metal ion release from different implant–abutment couples

    PubMed Central

    Alrabeah, Ghada O; Knowles, Jonathan C; Petridis, Haralampos

    2016-01-01

    The improved peri-implant bone response demonstrated by platform switching may be the result of reduced amounts of metal ions released to the surrounding tissues. The aim of this study was to compare the levels of metal ions released from platform-matched and platform-switched implant–abutment couples as a result of accelerated corrosion. Thirty-six titanium alloy (Ti-6Al-4V) and cobalt–chrome alloy abutments were coupled with titanium cylinders forming either platform-switched or platform-matched groups (n=6). In addition, 18 unconnected samples served as controls. The specimens were subjected to accelerated corrosion by static immersion in 1% lactic acid for 1 week. The amount of metal ions ion of each test tube was measured using inductively coupled plasma mass spectrometry. Scanning electron microscope (SEM) images and energy dispersive spectroscopy X-ray analyses were performed pre- and post-immersion to assess corrosion at the interface. The platform-matched groups demonstrated higher ion release for vanadium, aluminium, cobalt, chrome, and molybdenum compared with the platform-switched groups (P<0.05). Titanium was the highest element to be released regardless of abutment size or connection (P<0.05). SEM images showed pitting corrosion prominent on the outer borders of the implant and abutment platform surfaces. In conclusion, implant–abutment couples underwent an active corrosion process resulting in metal ions release into the surrounding environment. The highest amount of metal ions released was recorded for the platform-matched groups, suggesting that platform-switching concept has a positive effect in reducing the levels of metal ion release from the implant–abutment couples. PMID:27357323

  17. Monolithic integration of a silica AWG and Ge photodiodes on Si photonic platform for one-chip WDM receiver.

    PubMed

    Nishi, Hidetaka; Tsuchizawa, Tai; Kou, Rai; Shinojima, Hiroyuki; Yamada, Takashi; Kimura, Hideaki; Ishikawa, Yasuhiko; Wada, Kazumi; Yamada, Koji

    2012-04-09

    On the silicon (Si) photonic platform, we monolithically integrated a silica-based arrayed-waveguide grating (AWG) and germanium (Ge) photodiodes (PDs) using low-temperature fabrication technology. We confirmed demultiplexing by the AWG, optical-electrical signal conversion by Ge PDs, and high-speed signal detection at all channels. In addition, we mounted a multichannel transimpedance amplifier/limiting amplifier (TIA/LA) circuit on the fabricated AWG-PD device using flip-chip bonding technology. The results show the promising potential of our Si photonic platform as a photonics-electronics convergence.

  18. Fixed-bed column performances of azure-II and auramine-O adsorption by Pinus eldarica stalks activated carbon and its composite with zno nanoparticles: Optimization by response surface methodology based on central composite design.

    PubMed

    Jafari, Maryam; Rahimi, Mahmood Reza; Ghaedi, Mehrorang; Javadian, Hamedreza; Asfaram, Arash

    2017-12-01

    A continuous adsorption was used for removal of azure II (AZ II) and auramine O (AO) from aqueous solutions using Pinus eldarica stalks activated carbon (PES-AC) from aqueous solutions. The effects of initial dye concentration, flow rate, bed height and contact time on removal percentage of AO and AZ II were evaluated and optimized by central composite design (CCD) at optimum pH = 7.0. ZnO nanoparticles loaded on activated carbon were also used to remove AO and AZ II at pH = 7.0 and other optimum conditions. The breakthrough curves were obtained at different flow rates, initial dye concentrations and bed heights and the experimental data were fitted by Thomas, Adams-Bohart and Yoon-Nelson models. The main parameters of fixed-bed column including its adsorption capacity at breakthrough point (q b ), adsorption capacity at saturation point (q s ), mass transfer zone (MTZ), total removal percentage (R%), and empty bed contact time (EBCT) were calculated. The removal percentages calculated for AZ II and AO II were in the range of 51.6-61.1% and 40.6-61.6%, respectively. Bed adsorption capacity (N 0 ) and critical bed depth (Z 0 ) were obtained by BDST model. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Testing, Testing...Managing Electronic Access in Disparate Times.

    ERIC Educational Resources Information Center

    Carrington, Bessie M.

    1996-01-01

    Duke University's Perkins Library (North Carolina) tests electronic resources and services for remote accessibility by examining capabilities on various platforms, operating systems, communications software, and World Wide Web browsers. Problems occur in establishing connections, screen display, navigation or retrieval, keyboard variations, and in…

  20. Near-field observation platform

    NASA Astrophysics Data System (ADS)

    Schlemmer, Harry; Baeurle, Constantin; Vogel, Holger

    2008-04-01

    A miniaturized near-field observation platform is presented comprising a sensitive daylight camera and an uncooled micro-bolometer thermal imager each equipped with a wide angle lens. Both cameras are optimised for a range between a few meters and 200 m. The platform features a stabilised line of sight and can therefore be used also on a vehicle when it is in motion. The line of sight either can be directed manually or the platform can be used in a panoramic mode. The video output is connected to a control panel where algorithms for moving target indication or tracking can be applied in order to support the observer. The near-field platform also can be netted with the vehicle system and the signals can be utilised, e.g. to designate a new target to the main periscope or the weapon sight.

  1. Analysis of Human Plasma Metabolites across Different Liquid Chromatography - Mass Spectrometry Platforms: Cross-platform Transferable Chemical Signatures

    PubMed Central

    Telu, Kelly H.; Yan, Xinjian; Wallace, William E.; Stein, Stephen E.; Simón-Manso, Yamil

    2016-01-01

    RATIONALE The metabolite profiling of a NIST plasma Standard Reference Material (SRM 1950) on different LC-MS platforms showed significant differences. Although these findings suggest caution when interpreting metabolomics results, the degree of overlap of both profiles allowed us to use tandem mass spectral libraries of recurrent spectra to evaluate to what extent these results are transferable across platforms and to develop cross-platform chemical signatures. METHODS Non-targeted global metabolite profiles of SRM 1950 were obtained on different LC-MS platforms using reversed phase chromatography and different chromatographic scales (nano, conventional and UHPLC). The data processing and the metabolite differential analysis were carried out using publically available (XCMS), proprietary (Mass Profiler Professional) and in-house software (NIST pipeline). RESULTS Repeatability and intermediate precision showed that the non-targeted SRM 1950 profiling was highly reproducible when working on the same platform (RSD < 2%); however, substantial differences were found in the LC-MS patterns originating on different platforms or even using different chromatographic scales (conventional HPLC, UHPLC and nanoLC) on the same platform. A substantial degree of overlap (common molecular features) was also found. A procedure to generate consistent chemical signatures using tandem mass spectral libraries of recurrent spectra is proposed. CONLUSIONS Different platforms rendered significantly different metabolite profiles, but the results were highly reproducible when working within one platform. Tandem mass spectral libraries of recurrent spectra are proposed to evaluate the degree of transferability of chemical signatures generated on different platforms. Chemical signatures based on our procedure are most likely cross-platform transferable. PMID:26842580

  2. Geostationary multipurpose platforms

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Bowman, R. M.

    1981-01-01

    In addition to the advantages generally associated with orbital platforms, such as improved reliability, economies of scale, simple connectivity of elements, reduced tracking demands and the restraint of orbital object population growth, geostationary platforms yield: (1) continuous access by fixed ground antennas for communications services; (2) continuous monitoring of phenomena over chosen regions of the earth's surface; (3) a preferred location for many solar-terrestrial physics experiments. The geostationary platform also offers a low-risk and economical solution to the impending saturation of the orbital arc/frequency spectrum, maximizing the capacity of individual slots and increasing the utility of the entire arc. It also allows the use of many small, simple and inexpensive earth stations through complexity inversion and high power per beam. Block diagram and operational flowcharts are provided.

  3. CloudMC: a cloud computing application for Monte Carlo simulation.

    PubMed

    Miras, H; Jiménez, R; Miras, C; Gomà, C

    2013-04-21

    This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.

  4. Carbon Nanotube Flexible and Stretchable Electronics

    NASA Astrophysics Data System (ADS)

    Cai, Le; Wang, Chuan

    2015-08-01

    The low-cost and large-area manufacturing of flexible and stretchable electronics using printing processes could radically change people's perspectives on electronics and substantially expand the spectrum of potential applications. Examples range from personalized wearable electronics to large-area smart wallpapers and from interactive bio-inspired robots to implantable health/medical apparatus. Owing to its one-dimensional structure and superior electrical property, carbon nanotube is one of the most promising material platforms for flexible and stretchable electronics. Here in this paper, we review the recent progress in this field. Applications of single-wall carbon nanotube networks as channel semiconductor in flexible thin-film transistors and integrated circuits, as stretchable conductors in various sensors, and as channel material in stretchable transistors will be discussed. Lastly, state-of-the-art advancement on printing process, which is ideal for large-scale fabrication of flexible and stretchable electronics, will also be reviewed in detail.

  5. Carbon Nanotube Flexible and Stretchable Electronics.

    PubMed

    Cai, Le; Wang, Chuan

    2015-12-01

    The low-cost and large-area manufacturing of flexible and stretchable electronics using printing processes could radically change people's perspectives on electronics and substantially expand the spectrum of potential applications. Examples range from personalized wearable electronics to large-area smart wallpapers and from interactive bio-inspired robots to implantable health/medical apparatus. Owing to its one-dimensional structure and superior electrical property, carbon nanotube is one of the most promising material platforms for flexible and stretchable electronics. Here in this paper, we review the recent progress in this field. Applications of single-wall carbon nanotube networks as channel semiconductor in flexible thin-film transistors and integrated circuits, as stretchable conductors in various sensors, and as channel material in stretchable transistors will be discussed. Lastly, state-of-the-art advancement on printing process, which is ideal for large-scale fabrication of flexible and stretchable electronics, will also be reviewed in detail.

  6. Design, implementation, and application of a microresonator platform for measuring energy dissipation by internal friction in nanowires.

    PubMed

    Das, Kaushik; Sosale, Guruprasad; Vengallatore, Srikar

    2012-12-21

    Accurate measurements of internal friction in nanowires are required for the rational design of high-Q resonators used in nanoelectromechanical systems and for fundamental studies of nanomechanical behavior. However, measuring internal friction is challenging because of the difficulties associated with identifying the contributions of material dissipation to structural damping. Here, we present an approach for overcoming these difficulties by using a composite microresonator platform that is calibrated against the ultimate limits of thermoelastic damping. The platform consists of an array of nanowires patterned at the root of a low-loss single-crystal silicon microcantilever. The structure is processed using a lift-off technique, implemented using electron-beam lithography, to achieve excellent control over the size, alignment, dispersion and location of the nanowire array. As the first application of this platform, we measured internal friction at room temperature in aluminum nanowires that ranged from 50 to 100 nm in thickness and 100 to 400 nm in width. Internal friction is ~0.03 at frequencies of 6.5-21 kHz. Transmission electron microscopy of the nanocrystalline grain structure, and comparison with previously measured values of internal friction in continuous thin films of aluminum, suggest that grain-boundary sliding is a major source of internal friction in these nanowires.

  7. Turbine engine airfoil and platform assembly

    DOEpatents

    Campbell, Christian X [Oviedo, FL; James, Allister W [Chuluota, FL; Morrison, Jay A [Oviedo, FL

    2012-07-31

    A turbine airfoil (22A) is formed by a first process using a first material. A platform (30A) is formed by a second process using a second material that may be different from the first material. The platform (30A) is assembled around a shank (23A) of the airfoil. One or more pins (36A) extend from the platform into holes (28) in the shank (23A). The platform may be formed in two portions (32A, 34A) and placed around the shank, enclosing it. The two platform portions may be bonded to each other. Alternately, the platform (30B) may be cast around the shank (23B) using a metal alloy with better castability than that of the blade and shank, which may be specialized for thermal tolerance. The pins (36A-36D) or holes for them do not extend to an outer surface (31) of the platform, avoiding stress concentrations.

  8. SiGe Based Low Temperature Electronics for Lunar Surface Applications

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad M.; Kolawa, Elizabeth; Blalock, Benjamin; Cressler, John

    2012-01-01

    The temperature at the permanently shadowed regions of the moon's surface is approximately -240 C. Other areas of the lunar surface experience temperatures that vary between 120 C and -180 C during the day and night respectively. To protect against the large temperature variations of the moon surface, traditional electronics used in lunar robotics systems are placed inside a thermally controlled housing which is bulky, consumes power and adds complexity to the integration and test. SiGe Based electronics have the capability to operate over wide temperature range like that of the lunar surface. Deploying low temperature SiGe electronics in a lander platform can minimize the need for the central thermal protection system and enable the development of a new generation of landers and mobility platforms with highly efficient distributed architecture. For the past five years a team consisting of NASA, university and industry researchers has been examining the low temperature and wide temperature characteristic of SiGe based transistors for developing electronics for wide temperature needs of NASA environments such as the Moon, Titan, Mars and Europa. This presentation reports on the status of the development of wide temperature SiGe based electronics for the landers and lunar surface mobility systems.

  9. Dielectrophoretic investigation of Bi₂Te₃ nanowires-a microfabricated thermoelectric characterization platform for measuring the thermoelectric and structural properties of single nanowires.

    PubMed

    Wang, Zhi; Kojda, Danny; Peranio, Nicola; Kroener, Michael; Mitdank, Rüdiger; Toellner, William; Nielsch, Kornelius; Fischer, Saskia F; Gutsch, Sebastian; Zacharias, Margit; Eibl, Oliver; Woias, Peter

    2015-03-27

    In this article a microfabricated thermoelectric nanowire characterization platform to investigate the thermoelectric and structural properties of single nanowires is presented. By means of dielectrophoresis (DEP), a method to manipulate and orient nanowires in a controlled way to assemble them onto our measurement platform is introduced. The thermoelectric platform fabricated with optimally designed DEP electrodes results in a yield of nanowire assembly of approximately 90% under an applied peak-to-peak ac signal Vpp = 10 V and frequency f = 20 MHz within a series of 200 experiments. Ohmic contacts between the aligned single nanowire and the electrodes on the platform are established by electron beam-induced deposition. The Seebeck coefficient and electrical conductivity of electrochemically synthesized Bi2Te3 nanowires are measured to be -51 μV K(-1) and (943 ± 160)/(Ω(-1) cm(-1)), respectively. Chemical composition and crystallographic structure are obtained using transmission electron microscopy. The selected nanowire is observed to be single crystalline over its entire length and no grain boundaries are detected. At the surface of the nanowire, 66.1 ± 1.1 at.% Te and 34.9 ± 1.1 at.% Bi are observed. In contrast, chemical composition of 64.2 at.% Te and 35.8 at.% Bi is detected in the thick center of the nanowire.

  10. Helicopter Flight Simulation Motion Platform Requirements

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery Allyn

    1999-01-01

    To determine motion fidelity requirements, a series of piloted simulations was performed. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositioning. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  11. PR-PR: cross-platform laboratory automation system.

    PubMed

    Linshiz, Gregory; Stawski, Nina; Goyal, Garima; Bi, Changhao; Poust, Sean; Sharma, Monica; Mutalik, Vivek; Keasling, Jay D; Hillson, Nathan J

    2014-08-15

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Golden Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.

  12. Quantitative Analysis of Immunohistochemistry in Melanoma Tumors

    PubMed Central

    Lilyquist, Jenna; White, Kirsten Anne Meyer; Lee, Rebecca J.; Philips, Genevieve K.; Hughes, Christopher R.; Torres, Salina M.

    2017-01-01

    Abstract Identification of positive staining is often qualitative and subjective. This is particularly troublesome in pigmented melanoma lesions, because melanin is difficult to distinguish from the brown stain resulting from immunohistochemistry (IHC) using horse radish peroxidase developed with 3,3′-Diaminobenzidine (HRP-DAB). We sought to identify and quantify positive staining, particularly in melanoma lesions. We visualized G-protein coupled estrogen receptor (GPER) expression developed with HRP-DAB and counterstained with Azure B (stains melanin) in melanoma tissue sections (n = 3). Matched sections (n = 3), along with 22 unmatched sections, were stained only with Azure B as a control. Breast tissue (n = 1) was used as a positive HRP-DAB control. Images of the stained tissues were generated using a Nuance Spectral Imaging Camera. Analysis of the images was performed using the Nuance Spectral Imaging software and SlideBook. Data was analyzed using a Kruskal–Wallis one way analysis of variance (ANOVA). We showed that a pigmented melanoma tissue doubly stained with anti-GPER HRP-DAB and Azure B can be unmixed using spectra derived from a matched, Azure B-only section, and an anti-GPER HRP-DAB control. We unmixed each of the melanoma lesions using each of the Azure B spectra, evaluated the mean intensity of positive staining, and examined the distribution of the mean intensities (P = .73; Kruskal–Wallis). These results suggest that this method does not require a matched Azure B-only stained control tissue for every melanoma lesion, allowing precious tissues to be conserved for other studies. Importantly, this quantification method reduces the subjectivity of protein expression analysis, and provides a valuable tool for accurate evaluation, particularly for pigmented tissues. PMID:28403073

  13. Analysis of human plasma metabolites across different liquid chromatography/mass spectrometry platforms: Cross-platform transferable chemical signatures.

    PubMed

    Telu, Kelly H; Yan, Xinjian; Wallace, William E; Stein, Stephen E; Simón-Manso, Yamil

    2016-03-15

    The metabolite profiling of a NIST plasma Standard Reference Material (SRM 1950) on different liquid chromatography/mass spectrometry (LC/MS) platforms showed significant differences. Although these findings suggest caution when interpreting metabolomics results, the degree of overlap of both profiles allowed us to use tandem mass spectral libraries of recurrent spectra to evaluate to what extent these results are transferable across platforms and to develop cross-platform chemical signatures. Non-targeted global metabolite profiles of SRM 1950 were obtained on different LC/MS platforms using reversed-phase chromatography and different chromatographic scales (conventional HPLC, UHPLC and nanoLC). The data processing and the metabolite differential analysis were carried out using publically available (XCMS), proprietary (Mass Profiler Professional) and in-house software (NIST pipeline). Repeatability and intermediate precision showed that the non-targeted SRM 1950 profiling was highly reproducible when working on the same platform (relative standard deviation (RSD) <2%); however, substantial differences were found in the LC/MS patterns originating on different platforms or even using different chromatographic scales (conventional HPLC, UHPLC and nanoLC) on the same platform. A substantial degree of overlap (common molecular features) was also found. A procedure to generate consistent chemical signatures using tandem mass spectral libraries of recurrent spectra is proposed. Different platforms rendered significantly different metabolite profiles, but the results were highly reproducible when working within one platform. Tandem mass spectral libraries of recurrent spectra are proposed to evaluate the degree of transferability of chemical signatures generated on different platforms. Chemical signatures based on our procedure are most likely cross-platform transferable. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.

  14. Helicopter flight simulation motion platform requirements

    NASA Astrophysics Data System (ADS)

    Schroeder, Jeffery Allyn

    Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  15. Cretaceous tropical carbonate platform changes used as paleoclimatic and paleoceanic indicators: the three lower Cretaceous platform crises

    NASA Astrophysics Data System (ADS)

    Arnaud-Vanneau, A.; Vrielynck, B.

    2009-04-01

    Carbonate platform sediments are of biogenic origin. More commonly the bioclasts are fragments of shells and skeletons. The bioclastic composition of a limestone may reflect the nature of biota inhabiting the area and a carbonate platform can be estimated as a living factory, which reflects the prevailing ecological factors. The rate of carbonate production is highest in the tropics, in oligotrophic environments, and in the photic zone. The rate of carbonate production varies greatly with temperature and nutrient input. Three types of biotic carbonate platform can be distinguished. The highest carbonate production is linked to oligotrophic carbonate platform characterized by the presence of assemblages with hermatypic corals. This type of platform is developed in shallow marine environment, nutrient poor water and warm tropical sea. A less efficient production of carbonate platform is related to mesotrophic environments in cooler and/or deeper water and associated to nutrient flux with, sometime, detrital input. The biota includes red algae, solitary coral and branching ahermatypic corals, common bryozoans, crinoids and echinoids. The less productive carbonate platform is the eutrophic muddy platform where the mud is due to the intense bacterial activity, probably related to strong nutrient flux. All changes of type of carbonate platform can be related to climatic and oceanic changes. Three platform crises occurred during lower Cretaceous time. They are followed by important turnover of microfauna (large benthic foraminifers) and microflora (marine algae). They start with the demise of the previous oligotrophic platform, they continue with oceanic perturbations, expression of which was the widespread deposition of organic-rich sediments, well expressed during Late Aptian/Albian and Cenomanian Turonian boundary and the replacement of previous oligotrophic platforms by mesotrophic to eutrophic platforms. The first crisis occurred during Valanginian and Hauterivian

  16. Platform for monitoring water and solid fluxes in mountainous rivers

    NASA Astrophysics Data System (ADS)

    Nord, Guillaume; Esteves, Michel; Aubert, Coralie; Belleudy, Philippe; Coulaud, Catherine; Bois, Jérôme; Geay, Thomas; Gratiot, Nicolas; Legout, Cédric; Mercier, Bernard; Némery, Julien; Michielin, Yoann

    2016-04-01

    The project aims to develop a platform that electronically integrates a set of existing sensors for the continuous measurement at high temporal frequency of water and solid fluxes (bed load and suspension), characteristics of suspended solids (distribution in particle size, settling velocity of the particles) and other variables on water quality (color, nutrient concentration). The project is preferentially intended for rivers in mountainous catchments draining areas from 10 to 1000 km², with high suspended sediment concentrations (maxima between 10 and 300 g/l) and highly dynamic behavior, water discharge varying of several orders of magnitude in a short period of time (a few hours). The measurement of water and solid fluxes in this type of river remains a challenge and, to date, there is no built-in device on the market to continuously monitor all these variables. The development of this platform is based on a long experience of measurement of sediment fluxes in rivers within the French Critical Zone Observatories (http://portailrbv.sedoo.fr/), especially in the Draix-Bléone (http://oredraixbleone.irstea.fr/) and OHMCV (http://www.ohmcv.fr/) observatories. The choice was made to integrate in the platform instruments already available on the market and currently used by the scientific community (water level radar, surface velocity radar, turbidity sensor, automatic water sampler, video camera) and to include also newly developed instruments (System for the Characterization of Aggregates and Flocs - see EGU2016-8542 - and hydrophone) or commercial instruments (spectrophotometer and radiometer) to be tested in surface water with high suspended sediment concentration. Priority is given to non-intrusive instruments due to their robustness in this type of environment with high destructive potential. Development work includes the construction of a platform prototype "smart" and remotely configurable for implantation in an isolated environment (absence of electric

  17. Universal electronics for miniature and automated chemical assays.

    PubMed

    Urban, Pawel L

    2015-02-21

    This minireview discusses universal electronic modules (generic programmable units) and their use by analytical chemists to construct inexpensive, miniature or automated devices. Recently, open-source platforms have gained considerable popularity among tech-savvy chemists because their implementation often does not require expert knowledge and investment of funds. Thus, chemistry students and researchers can easily start implementing them after a few hours of reading tutorials and trial-and-error. Single-board microcontrollers and micro-computers such as Arduino, Teensy, Raspberry Pi or BeagleBone enable collecting experimental data with high precision as well as efficient control of electric potentials and actuation of mechanical systems. They are readily programmed using high-level languages, such as C, C++, JavaScript or Python. They can also be coupled with mobile consumer electronics, including smartphones as well as teleinformatic networks. More demanding analytical tasks require fast signal processing. Field-programmable gate arrays enable efficient and inexpensive prototyping of high-performance analytical platforms, thus becoming increasingly popular among analytical chemists. This minireview discusses the advantages and drawbacks of universal electronic modules, considering their application in prototyping and manufacture of intelligent analytical instrumentation.

  18. PR-PR: Cross-Platform Laboratory Automation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linshiz, G; Stawski, N; Goyal, G

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Goldenmore » Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.« less

  19. A reconfigurable cryogenic platform for the classical control of quantum processors

    NASA Astrophysics Data System (ADS)

    Homulle, Harald; Visser, Stefan; Patra, Bishnu; Ferrari, Giorgio; Prati, Enrico; Sebastiano, Fabio; Charbon, Edoardo

    2017-04-01

    The implementation of a classical control infrastructure for large-scale quantum computers is challenging due to the need for integration and processing time, which is constrained by coherence time. We propose a cryogenic reconfigurable platform as the heart of the control infrastructure implementing the digital error-correction control loop. The platform is implemented on a field-programmable gate array (FPGA) that supports the functionality required by several qubit technologies and that can operate close to the physical qubits over a temperature range from 4 K to 300 K. This work focuses on the extensive characterization of the electronic platform over this temperature range. All major FPGA building blocks (such as look-up tables (LUTs), carry chains (CARRY4), mixed-mode clock manager (MMCM), phase-locked loop (PLL), block random access memory, and IDELAY2 (programmable delay element)) operate correctly and the logic speed is very stable. The logic speed of LUTs and CARRY4 changes less then 5%, whereas the jitter of MMCM and PLL clock managers is reduced by 20%. The stability is finally demonstrated by operating an integrated 1.2 GSa/s analog-to-digital converter (ADC) with a relatively stable performance over temperature. The ADCs effective number of bits drops from 6 to 4.5 bits when operating at 15 K.

  20. A reconfigurable cryogenic platform for the classical control of quantum processors.

    PubMed

    Homulle, Harald; Visser, Stefan; Patra, Bishnu; Ferrari, Giorgio; Prati, Enrico; Sebastiano, Fabio; Charbon, Edoardo

    2017-04-01

    The implementation of a classical control infrastructure for large-scale quantum computers is challenging due to the need for integration and processing time, which is constrained by coherence time. We propose a cryogenic reconfigurable platform as the heart of the control infrastructure implementing the digital error-correction control loop. The platform is implemented on a field-programmable gate array (FPGA) that supports the functionality required by several qubit technologies and that can operate close to the physical qubits over a temperature range from 4 K to 300 K. This work focuses on the extensive characterization of the electronic platform over this temperature range. All major FPGA building blocks (such as look-up tables (LUTs), carry chains (CARRY4), mixed-mode clock manager (MMCM), phase-locked loop (PLL), block random access memory, and IDELAY2 (programmable delay element)) operate correctly and the logic speed is very stable. The logic speed of LUTs and CARRY4 changes less then 5%, whereas the jitter of MMCM and PLL clock managers is reduced by 20%. The stability is finally demonstrated by operating an integrated 1.2 GSa/s analog-to-digital converter (ADC) with a relatively stable performance over temperature. The ADCs effective number of bits drops from 6 to 4.5 bits when operating at 15 K.

  1. A digital peer-to-peer learning platform for clinical skills development.

    PubMed

    Basnak, Jesse; Ortynski, Jennifer; Chow, Meghan; Nzekwu, Emeka

    2017-02-01

    Due to constraints in time and resources, medical curricula may not provide adequate opportunities for pre-clerkship students to practice clinical skills. To address this, medical students at the University of Alberta developed a digital peer-to-peer learning initiative. The initiative assessed if students can learn clinical skills from their peers in co-curricular practice objective structured clinical exams (OSCEs). A total of 144 first-year medical students participated. Students wrote case scenarios that were reviewed by physicians. Students enacted the cases in practice OSCEs, acting as the patient, physician, and evaluator. Verbal and electronic evaluations were completed. A digital platform was used to automate the process. Surveys were disseminated to assess student perceptions of their experience. Seventy-five percent of participants said they needed opportunities to practice patient histories and physical exams in addition to those provided in the medical school curriculum. All participants agreed that the co-curricular practice OSCEs met this need. The majority of participants also agreed that the digital platform was efficient and easy to use. Students found the practice OSCEs and digital platform effective for learning clinical skills. Thus, peer-to-peer learning and computer automation can be useful adjuncts to traditional medical curricula.

  2. Disposable cartridge biosensor platform for portable diagnostics

    NASA Astrophysics Data System (ADS)

    Yaras, Yusuf S.; Cakmak, Onur; Gunduz, Ali B.; Saglam, Gokhan; Olcer, Selim; Mostafazadeh, Aref; Baris, Ibrahim; Civitci, Fehmi; Yaralioglu, Goksen G.; Urey, Hakan

    2017-03-01

    We developed two types of cantilever-based biosensors for portable diagnostics applications. One sensor is based on MEMS cantilever chip mounted in a microfluidic channel and the other sensor is based on a movable optical fiber placed across a microfluidic channel. Both types of sensors were aimed at direct mechanical measurement of coagulation time in a disposable cartridge using plasma or whole blood samples. There are several similarities and also some important differences between the MEMS based and the optical fiber based solutions. The aim of this paper is to provide a comparison between the two solutions and the results. For both types of sensors, actuation of the cantilever or the moving fiber is achieved using an electro coil and the readout is optical. Since both the actuation and sensing are remote, no electrical connections are required for the cartridge. Therefore it is possible to build low cost disposable cartridges. The reader unit for the cartridge contains light sources, photodetectors, the electro coil, a heater, analog electronics, and a microprocessor. The reader unit has different optical interfaces for the cartridges that have MEMS cantilevers and moving fibers. MEMS based platform has better sensitivity but optomechanical alignment is a challenge and measurements with whole blood were not possible due to high scattering of light by the red blood cells. Fiber sensor based platform has relaxed optomechanical tolerances, ease of manufacturing, and it allows measurements in whole blood. Both sensors were tested using control plasma samples for activated-Partial-Thromboplastin-Time (aPTT) measurements. Control plasma test results matched with the manufacturer's datasheet. Optical fiber based system was tested for aPTT tests with human whole blood samples and the proposed platform provided repeatable test results making the system method of choice for portable diagnostics.

  3. Organic nanowire hierarchy over fabric platform for flexible cold cathode

    NASA Astrophysics Data System (ADS)

    Maiti, Soumen; Narayan Maiti, Uday; Pal, Shreyasi; Chattopadhyay, Kalyan Kumar

    2013-11-01

    Organic charge transfer (CT) complexes initiated a growing interest in modern electronic devices owing to their easy processability and unique characteristics. In this work, three-dimensional field emitters comprising metal-organic charge transfer complex nanostructures of AgTCNQ and CuTCNQ (TCNQ, 7,7,8,8-tetracyanoquinodimethane) over flexible fabric substrate are realized. Deliberate control over the reaction parameter during organic solid phase reaction leads to modification in structural parameters of the nanowires (i.e. length, diameter) as well as their arrangement atop the carbon fibers. The optimized arrays of AgTCNQ and CuTCNQ nanowires exhibit excellent field electron emission performance with very low turn-on (1.72 and 2.56 V μm-1) and threshold fields (4.21 and 6.33 V μm-1) respectively, which are comparable to those of the best organic field emitters reported to date. The underlying conducting carbon cloth with special woven-like geometry not only offers a flexible platform for nanowire growth, but also provides an additional field enhancement to ease the electron emission.

  4. Progress on Platforms, Sensors and Applications with Unmanned Aerial Vehicles in soil science and geomorphology

    NASA Astrophysics Data System (ADS)

    Anders, Niels; Suomalainen, Juha; Seeger, Manuel; Keesstra, Saskia; Bartholomeus, Harm; Paron, Paolo

    2014-05-01

    The recent increase of performance and endurance of electronically controlled flying platforms, such as multi-copters and fixed-wing airplanes, and decreasing size and weight of different sensors and batteries leads to increasing popularity of Unmanned Aerial Systems (UAS) for scientific purposes. Modern workflows that implement UAS include guided flight plan generation, 3D GPS navigation for fully automated piloting, and automated processing with new techniques such as "Structure from Motion" photogrammetry. UAS are often equipped with normal RGB cameras, multi- and hyperspectral sensors, radar, or other sensors, and provide a cheap and flexible solution for creating multi-temporal data sets. UAS revolutionized multi-temporal research allowing new applications related to change analysis and process monitoring. The EGU General Assembly 2014 is hosting a session on platforms, sensors and applications with UAS in soil science and geomorphology. This presentation briefly summarizes the outcome of this session, addressing the current state and future challenges of small-platform data acquisition in soil science and geomorphology.

  5. A platform for exploration into chaining of web services for clinical data transformation and reasoning

    PubMed Central

    Maldonado, José Alberto; Marcos, Mar; Fernández-Breis, Jesualdo Tomás; Parcero, Estíbaliz; Boscá, Diego; Legaz-García, María del Carmen; Martínez-Salvador, Begoña; Robles, Montserrat

    2016-01-01

    The heterogeneity of clinical data is a key problem in the sharing and reuse of Electronic Health Record (EHR) data. We approach this problem through the combined use of EHR standards and semantic web technologies, concretely by means of clinical data transformation applications that convert EHR data in proprietary format, first into clinical information models based on archetypes, and then into RDF/OWL extracts which can be used for automated reasoning. In this paper we describe a proof-of-concept platform to facilitate the (re)configuration of such clinical data transformation applications. The platform is built upon a number of web services dealing with transformations at different levels (such as normalization or abstraction), and relies on a collection of reusable mappings designed to solve specific transformation steps in a particular clinical domain. The platform has been used in the development of two different data transformation applications in the area of colorectal cancer. PMID:28269882

  6. A platform for exploration into chaining of web services for clinical data transformation and reasoning.

    PubMed

    Maldonado, José Alberto; Marcos, Mar; Fernández-Breis, Jesualdo Tomás; Parcero, Estíbaliz; Boscá, Diego; Legaz-García, María Del Carmen; Martínez-Salvador, Begoña; Robles, Montserrat

    2016-01-01

    The heterogeneity of clinical data is a key problem in the sharing and reuse of Electronic Health Record (EHR) data. We approach this problem through the combined use of EHR standards and semantic web technologies, concretely by means of clinical data transformation applications that convert EHR data in proprietary format, first into clinical information models based on archetypes, and then into RDF/OWL extracts which can be used for automated reasoning. In this paper we describe a proof-of-concept platform to facilitate the (re)configuration of such clinical data transformation applications. The platform is built upon a number of web services dealing with transformations at different levels (such as normalization or abstraction), and relies on a collection of reusable mappings designed to solve specific transformation steps in a particular clinical domain. The platform has been used in the development of two different data transformation applications in the area of colorectal cancer.

  7. Platform options for the Space Station program

    NASA Technical Reports Server (NTRS)

    Mangano, M. J.; Rowley, R. W.

    1986-01-01

    Platforms for polar and 28.5 deg orbits were studied to determine the platform requirements and characteristics necessary to support the science objectives. Large platforms supporting the Earth-Observing System (EOS) were initially studied. Co-orbiting platforms were derived from these designs. Because cost estimates indicated that the large platform approach was likely to be too expensive, require several launches, and generally be excessively complex, studies of small platforms were undertaken. Results of these studies show the small platform approach to be technically feasible at lower overall cost. All designs maximized hardware inheritance from the Space Station program to reduce costs. Science objectives as defined at the time of these studies are largely achievable.

  8. Hybrid 3D Printing of Soft Electronics.

    PubMed

    Valentine, Alexander D; Busbee, Travis A; Boley, John William; Raney, Jordan R; Chortos, Alex; Kotikian, Arda; Berrigan, John Daniel; Durstock, Michael F; Lewis, Jennifer A

    2017-10-01

    Hybrid 3D printing is a new method for producing soft electronics that combines direct ink writing of conductive and dielectric elastomeric materials with automated pick-and-place of surface mount electronic components within an integrated additive manufacturing platform. Using this approach, insulating matrix and conductive electrode inks are directly printed in specific layouts. Passive and active electrical components are then integrated to produce the desired electronic circuitry by using an empty nozzle (in vacuum-on mode) to pick up individual components, place them onto the substrate, and then deposit them (in vacuum-off mode) in the desired location. The components are then interconnected via printed conductive traces to yield soft electronic devices that may find potential application in wearable electronics, soft robotics, and biomedical devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electronic publications, a useful technique for astronomy outreach

    NASA Astrophysics Data System (ADS)

    Stavinschi, M.; Mosoia, C.

    2012-09-01

    Thanks to modern technology, astronomy can be communicated to the public through a variety of techniques, from classic conferences (also upgraded to the video projectors, etc.) to TV, print media and social media platforms such as Facebook, Twitter, Linkedin, MySpace, etc. We are going to present advantages of electronic publishing, starting from informing the public with latest astronomy news, to providing a place for public debate. In an era of global crisis e-publishing is a must do, be it seen from the financially perspective, or the desired impact to the public. We are going to present a constant example of year electronic publication dedicated to promoting science and communication; also, the Science Communicators Network Interested in spreading the word of astronomy. The aim is to establish connections with all OEP participants with a view to know each other and try to work in common for the better message transmission to the public. Together, we might build a single platform with multiple educational results.

  10. An open platform for personal health record apps with platform-level privacy protection.

    PubMed

    Van Gorp, P; Comuzzi, M; Jahnen, A; Kaymak, U; Middleton, B

    2014-08-01

    One of the main barriers to the adoption of Personal Health Records (PHR) systems is their closed nature. It has been argued in the literature that this barrier can be overcome by introducing an open market of substitutable PHR apps. The requirements introduced by such an open market on the underlying platform have also been derived. In this paper, we argue that MyPHRMachines, a cloud-based PHR platform recently developed by the authors, satisfies these requirements better than its alternatives. The MyPHRMachines platform leverages Virtual Machines as flexible and secure execution sandboxes for health apps. MyPHRMachines does not prevent pushing hospital- or patient-generated data to one of its instances, nor does it prevent patients from sharing data with their trusted caregivers. External software developers have minimal barriers to contribute innovative apps to the platform, since apps are only required to avoid pushing patient data outside a MyPHRMachines cloud. We demonstrate the potential of MyPHRMachines by presenting two externally contributed apps. Both apps provide functionality going beyond the state-of-the-art in their application domain, while they did not require any specific MyPHRMachines platform extension. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Platform C South Arrival

    NASA Image and Video Library

    2016-08-05

    The second section of the first half of the C-level work platforms, C South, for NASA’s Space Launch System (SLS) rocket was offloaded from a heavy transport truck in a staging area on the west side of the Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.

  12. Single-silicon CCD-CMOS platform for multi-spectral detection from terahertz to x-rays.

    PubMed

    Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P

    2017-11-15

    Charge-coupled devices (CCDs) are a well-established imaging technology in the visible and x-ray frequency ranges. However, the small quantum photon energies of terahertz radiation have hindered the use of this mature semiconductor technological platform in this frequency range, leaving terahertz imaging totally dependent on low-resolution bolometer technologies. Recently, it has been shown that silicon CCDs can detect terahertz photons at a high field, but the detection sensitivity is limited. Here we show that silicon, complementary metal-oxide-semiconductor (CMOS) technology offers enhanced detection sensitivity of almost two orders of magnitude, compared to CCDs. Our findings allow us to extend the low-frequency terahertz cutoff to less than 2 THz, nearly closing the technological gap with electronic imagers operating up to 1 THz. Furthermore, with the silicon CCD/CMOS technology being sensitive to mid-infrared (mid-IR) and the x-ray ranges, we introduce silicon as a single detector platform from 1 EHz to 2 THz. This overcomes the present challenge in spatially overlapping a terahertz/mid-IR pump and x-ray probe radiation at facilities such as free electron lasers, synchrotron, and laser-based x-ray sources.

  13. Platforms.

    PubMed

    Josko, Deborah

    2014-01-01

    The advent of DNA sequencing technologies and the various applications that can be performed will have a dramatic effect on medicine and healthcare in the near future. There are several DNA sequencing platforms available on the market for research and clinical use. Based on the medical laboratory scientist or researcher's needs and taking into consideration laboratory space and budget, one can chose which platform will be beneficial to their institution and their patient population. Although some of the instrument costs seem high, diagnosing a patient quickly and accurately will save hospitals money with fewer hospital stays and targeted treatment based on an individual's genetic make-up. By determining the type of disease an individual has, based on the mutations present or having the ability to prescribe the appropriate antimicrobials based on the knowledge of the organism's resistance patterns, the clinician will be better able to treat and diagnose a patient which ultimately will improve patient outcomes and prognosis.

  14. Evolutionary space platform concept study. Volume 2, part B: Manned space platform concepts

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Logical, cost-effective steps in the evolution of manned space platforms are investigated and assessed. Tasks included the analysis of requirements for a manned space platform, identifying alternative concepts, performing system analysis and definition of the concepts, comparing the concepts and performing programmatic analysis for a reference concept.

  15. Polymer-based platform for microfluidic systems

    DOEpatents

    Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Maghribi, Mariam [Livermore, CA; Hamilton, Julie [Tracy, CA; Rose, Klint [Boston, MA; Wang, Amy W [Oakland, CA

    2009-10-13

    A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.

  16. Massively Parallel, Molecular Analysis Platform Developed Using a CMOS Integrated Circuit With Biological Nanopores

    PubMed Central

    Roever, Stefan

    2012-01-01

    A massively parallel, low cost molecular analysis platform will dramatically change the nature of protein, molecular and genomics research, DNA sequencing, and ultimately, molecular diagnostics. An integrated circuit (IC) with 264 sensors was fabricated using standard CMOS semiconductor processing technology. Each of these sensors is individually controlled with precision analog circuitry and is capable of single molecule measurements. Under electronic and software control, the IC was used to demonstrate the feasibility of creating and detecting lipid bilayers and biological nanopores using wild type α-hemolysin. The ability to dynamically create bilayers over each of the sensors will greatly accelerate pore development and pore mutation analysis. In addition, the noise performance of the IC was measured to be 30fA(rms). With this noise performance, single base detection of DNA was demonstrated using α-hemolysin. The data shows that a single molecule, electrical detection platform using biological nanopores can be operationalized and can ultimately scale to millions of sensors. Such a massively parallel platform will revolutionize molecular analysis and will completely change the field of molecular diagnostics in the future.

  17. Designing an E-Learning Platform for Postoperative Arthroplasty Adverse Events.

    PubMed

    Krumsvik, Ole Andreas; Babic, Ankica

    2017-01-01

    This paper presents a mobile software application development for e-learning based on the adverse events data within the field of arthroplasty. The application aims at providing a learning platform for physicians, patients, and medical students. Design of user interface aims to meet requirements of several user groups concerned with the adverse events of the knee and hip implants. Besides the clinical patient data, the platform wants to include even electronic patient data as a result of self-monitoring. Two different modules were created, one for medical staff and one for patients, both divided into the knee and hip areas. Knowledge is represented in forms of statistics, treatment options, and detailed, actual adverse event reports. Patients are given a choice of recommendation for two main situations: 'about your diagnosis', and 'what if you get a problem' as advice and guidance during the postoperative rehabilitation. Expert evaluation resulted in acceptance of the concept and provided feedback ideas. The patient evaluation has also been positive. Implementation will mean that a high-fidelity prototype will be developed and tested in larger user groups (medical staff, patients).

  18. Highly-sensitive electrochemical sensing platforms for food colourants based on the property-tuning of porous carbon.

    PubMed

    Cheng, Qin; Xia, Shanhong; Tong, Jianhua; Wu, Kangbing

    2015-08-05

    It is very challenging to develop highly-sensitive analytical platforms for toxic synthetic colourants that widely added in food samples. Herein, a series of porous carbon (PC) was prepared using CaCO3 nanoparticles (nano-CaCO3) as the hard template and starch as the carbon precursor. Characterizations of scanning electron microscopy and transmission electron microscopy indicated that the morphology and porous structure were controlled by the weight ratio of starch and nano-CaCO3. The electrochemical behaviours of four kinds of widely-used food colourants, Sunset yellow, Tartrazine, Ponceau 4R and Allura red, were studied. On the surface of PC samples, the oxidation signals of colourants enhanced obviously, and more importantly, the signal enhancement abilities of PC were also dependent on the starch/nano-CaCO3 weight ratio. The greatly-increased electron transfer ability and accumulation efficiency were the main reason for the enhanced signals of colourants, as confirmed by electrochemical impedance spectroscopy and chronocoulometry. The prepared PC-2 sample by 1:1 starch/nano-CaCO3 weight ratio was more active for the oxidation of food colourtants, and increased the signals by 89.4-fold, 79.3-fold, 47.3-fold and 50.7-fold for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. As a result, a highly-sensitive electrochemical sensing platform was developed, and the detection limits were 1.4, 3.5, 2.1 and 1.7 μg L(-1) for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. The practical application of this new sensing platform was demonstrated using drink samples, and the detected results consisted with the values that obtained by high-performance liquid chromatography. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Apparatus to position a microelectromechanical platform

    DOEpatents

    Miller, Samuel Lee; Rodgers, Murray Steven

    2003-09-23

    The present invention comprises a microelectromechanical positioner to achieve substantially translational positioning of a platform without rotational motion, thereby maintaining a constant angular orientation of the platform during movement. A linkage mechanism of the positioner can comprise parallelogram linkages to constrain the rotational motion of the platform. Such linkages further can comprise flexural hinges or other turning joints at the linkage pivots to eliminate the need for rubbing surfaces. A plurality of the linkage mechanisms can be used to enable translational motion of the platform with two degrees of freedom. A variety of means can be used to actuate the positioner. Independent actuation of the anchor links of the linkage mechanisms with rotary electrostatic actuators can be used to provide controlled translational movement of the platform.

  20. A data platform to improve rabies prevention, Sri Lanka.

    PubMed

    De Silva, A Pubudu; Harischandra, Pa Lionel; Beane, Abi; Rathnayaka, Shriyananda; Pimburage, Ruwini; Wijesiriwardana, Wageesha; Gamage, Dilanthi; Jayasinghe, Desika; Sigera, Chathurani; Gunasekara, Amila; Cadre, Mizaya; Amunugama, Sarath; Athapattu, Priyantha L; Jayasinghe, K Saroj A; Dondorp, Arjen M; Haniffa, Rashan

    2017-09-01

    In Sri Lanka, rabies prevention initiatives are hindered by fragmented and delayed information-sharing that limits clinicians' ability to follow patients and impedes public health surveillance. In a project led by the health ministry, we adapted existing technologies to create an electronic platform for rabies surveillance. Information is entered by trained clinical staff, and both aggregate and individual patient data are visualized in real time. An automated short message system (SMS) alerts patients for vaccination follow-up appointments and informs public health inspectors about incidents of animal bites. The platform was rolled out in June 2016 in four districts of Sri Lanka, linking six rabies clinics, three laboratories and the public health inspectorate. Over a 9-month period, 12 121 animal bites were reported to clinics and entered in the registry. Via secure portals, clinicians and public health teams accessed live information on treatment and outcomes of patients started on post-exposure prophylaxis (9507) or receiving deferred treatment (2614). Laboratories rapidly communicated the results of rabies virus tests on dead mammals (328/907 positive). In two pilot districts SMS reminders were sent to 1376 (71.2%) of 1933 patients whose contact details were available. Daily SMS reports alerted 17 public health inspectors to bite incidents in their area for investigation. Existing technologies in low-resource countries can be harnessed to improve public health surveillance. Investment is needed in platform development and training and support for front-line staff. Greater public engagement is needed to improve completeness of surveillance and treatment.

  1. Secure access to patient's health records using SpeechXRays a mutli-channel biometrics platform for user authentication.

    PubMed

    Spanakis, Emmanouil G; Spanakis, Marios; Karantanas, Apostolos; Marias, Kostas

    2016-08-01

    The most commonly used method for user authentication in ICT services or systems is the application of identification tools such as passwords or personal identification numbers (PINs). The rapid development in ICT technology regarding smart devices (laptops, tablets and smartphones) has allowed also the advance of hardware components that capture several biometric traits such as fingerprints and voice. These components are aiming among others to overcome weaknesses and flaws of password usage under the prism of improved user authentication with higher level of security, privacy and usability. To this respect, the potential application of biometrics for secure user authentication regarding access in systems with sensitive data (i.e. patient's data from electronic health records) shows great potentials. SpeechXRays aims to provide a user recognition platform based on biometrics of voice acoustics analysis and audio-visual identity verification. Among others, the platform aims to be applied as an authentication tool for medical personnel in order to gain specific access to patient's electronic health records. In this work a short description of SpeechXrays implementation tool regarding eHealth is provided and analyzed. This study explores security and privacy issues, and offers a comprehensive overview of biometrics technology applications in addressing the e-Health security challenges. We present and describe the necessary requirement for an eHealth platform concerning biometric security.

  2. Unmanned Instrument Platform for Undersea Exploration

    NASA Technical Reports Server (NTRS)

    Paine, G.; Hansen, G. R.; Gulizia, R. W.; Paluzzi, P.

    1984-01-01

    Instruments accommodated on moving underwater platform. Towable underwater platform 3.2 meters long, 1.2 meters wide, 1.4 meters high and has mass of about 1,250 kilogram. Platform remotely operated and unmanned. Serves as test bed for development of ocean-measuring instruments and sonars at depths to 20,000 feet.

  3. Identification of ground targets from airborne platforms

    NASA Astrophysics Data System (ADS)

    Doe, Josh; Boettcher, Evelyn; Miller, Brian

    2009-05-01

    The US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) sensor performance models predict the ability of soldiers to perform a specified military discrimination task using an EO/IR sensor system. Increasingly EO/IR systems are being used on manned and un-manned aircraft for surveillance and target acquisition tasks. In response to this emerging requirement, the NVESD Modeling and Simulation division has been tasked to compare target identification performance between ground-to-ground and air-to-ground platforms for both IR and visible spectra for a set of wheeled utility vehicles. To measure performance, several forced choice experiments were designed and administered and the results analyzed. This paper describes these experiments and reports the results as well as the NVTherm model calibration factors derived for the infrared imagery.

  4. H2S induced coma and cardiogenic shock in the rat: Effects of phenothiazinium chromophores

    PubMed Central

    SONOBE, TAKASHI; HAOUZI, PHILIPPE

    2015-01-01

    Context Hydrogen sulfide (H2S) intoxication produces an acute depression in cardiac contractility-induced circulatory failure, which has been shown to be one of the major contributors to the lethality of H2S intoxication or to the neurological sequelae in surviving animals. Methylene blue (MB), a phenothiazinium dye, can antagonize the effects of the inhibition of mitochondrial electron transport chain, a major effect of H2S toxicity. Objectives We investigated whether MB could affect the immediate outcome of H2S-induced coma in unanesthetized animals. Second, we sought to characterize the acute cardiovascular effects of MB and two of its demethylated metabolites—azure B and thionine—in anesthetized rats during lethal infusion of H2S. Materials and methods First, MB (4 mg/kg, intravenous [IV]) was administered in non-sedated rats during the phase of agonal breathing, following NaHS (20 mg/kg, IP)-induced coma. Second, in 4 groups of urethane-anesthetized rats, NaHS was infused at a rate lethal within 10 min (0.8 mg/min, IV). Whenever cardiac output (CO) reached 40% of its baseline volume, MB, azure B, thionine, or saline were injected, while sulfide infusion was maintained until cardiac arrest occurred. Results Seventy-five percent of the comatose rats that received saline (n = 8) died within 7 min, while all the 7 rats that were given MB survived (p = 0.007). In the anesthetized rats, arterial, left ventricular pressures and CO decreased during NaHS infusion, leading to a pulseless electrical activity within 530 s. MB produced a significant increase in CO and dP/dtmax for about 2 min. A similar effect was produced when MB was also injected in the pre-mortem phase of sulfide exposure, significantly increasing survival time. Azure B produced an even larger increase in blood pressure than MB, while thionine had no effect. Conclusion MB can counteract NaHS-induced acute cardiogenic shock; this effect is also produced by azure B, but not by thionine, suggesting

  5. [Orange Platform].

    PubMed

    Toba, Kenji

    2017-07-01

    The Organized Registration for the Assessment of dementia on Nationwide General consortium toward Effective treatment in Japan (ORANGE platform) is a recently established nationwide clinical registry for dementia. This platform consists of multiple registries of patients with dementia stratified by the following clinical stages: preclinical, mild cognitive impairment, early-stage, and advanced-stage dementia. Patients will be examined in a super-longitudinal fashion, and their lifestyle, social background, genetic risk factors, and required care process will be assessed. This project is also notable because the care registry includes information on the successful, comprehensive management of patients with dementia. Therefore, this multicenter prospective cohort study will contribute participants to all clinical trials for Alzheimer's disease as well as improve the understanding of individuals with dementia.

  6. Electron-phonon coupling in metallic carbon nanotubes: Dispersionless electron propagation despite dissipation

    NASA Astrophysics Data System (ADS)

    Rosati, Roberto; Dolcini, Fabrizio; Rossi, Fausto

    2015-12-01

    A recent study [Rosati, Dolcini, and Rossi, Appl. Phys. Lett. 106, 243101 (2015), 10.1063/1.4922739] has predicted that, while in semiconducting single-walled carbon nanotubes (SWNTs) an electronic wave packet experiences the typical spatial diffusion of conventional materials, in metallic SWNTs, its shape remains essentially unaltered up to micrometer distances at room temperature, even in the presence of the electron-phonon coupling. Here, by utilizing a Lindblad-based density-matrix approach enabling us to account for both dissipation and decoherence effects, we test such a prediction by analyzing various aspects that were so far unexplored. In particular, accounting for initial nonequilibrium excitations, characterized by an excess energy E0, and including both intra- and interband phonon scattering, we show that for realistically high values of E0 the electronic diffusion is extremely small and nearly independent of its energetic distribution, in spite of a significant energy-dissipation and decoherence dynamics. Furthermore, we demonstrate that the effect is robust with respect to the variation of the chemical potential. Our results thus suggest that metallic SWNTs are a promising platform to realize quantum channels for the nondispersive transmission of electronic wave packets.

  7. Advanced propulsion for LEO and GEO platforms

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Pidgeon, David J.

    1990-01-01

    Mission requirements and mass savings applicable to specific low earth orbit and geostationary earth orbit platforms using three highly developed propulsion systems are described. Advanced hypergolic bipropellant thrusters and hydrazine arcjets can provide about 11 percent additional instrument payload to 14,000 kg LEO platforms. By using electric propulsion on a 8,000 kg class GEO platform, mass savings in excess of 15 percent of the beginning-of-life platform mass are obtained. Effects of large, advanced technology solar arrays and antennas on platform propulsion requirements are also discussed.

  8. Rapid Development of Bespoke Unmanned Platforms for Atmospheric Science

    NASA Astrophysics Data System (ADS)

    Sobester, A.; Johnston, S. J.; Scanlan, J. P.; Hart, E. E.; O'Brien, N. S.

    2012-04-01

    The effective deployment of airborne atmospheric science instruments often hinges on the development cycle time of a suitable platform, one that is capable of delivering them to the desired altitude range for a specified amount of time, along a pre-determined trajectory. This could be driven by the need to respond rapidly to sudden, unexpected events (e.g., volcano eruptions, nuclear fallout, etc.) or simply to accommodate the iterative design and flight test cycle of the instrument developer. A shorter development cycle time would also afford us the ability to quickly adapt the hardware and control logic in response to unexpected results during an experimental campaign. We report on recent developments aimed at meeting this demand. As part of the Atmospheric Science Through Robotic Aircraft (ASTRA) initiative we have investigated the use of rapid prototyping technologies to this end, both on the 'airframe' of the platform itself and on the on-board systems. We show how fast multi-disciplinary design optimization techniques, coupled with computer-controlled additive manufacturing (3D printing) and laser cutting methods and electronic prototyping (using standard, modular, programmable building blocks) can lead to the delivery of a fully customized platform integrating a given instrument in a timescale of the order of ten days. Specific examples include the design and testing of a balloon-launched glider sensorcraft and a stratospheric balloon system. The 'vehicle' for the latter was built on a 3D printer using a copolymer thermoplastic material and fitted with a sacrificial protective 'cage' laser-cut from an open-cell foam. The data logging, tracking, sensor integration and communications services of the platform were constructed using the .net Gadgeteer open source hardware kit. The flight planning and eventual post-flight recovery of the system is enabled by a generic, stochastic trajectory simulation tool, also developed as part of the ASTRA initiative. This

  9. Research on distributed virtual reality system in electronic commerce

    NASA Astrophysics Data System (ADS)

    Xue, Qiang; Wang, Jiening; Sun, Jizhou

    2004-03-01

    In this paper, Distributed Virtual Reality (DVR) technology applied in Electronical Commerce (EC) is discussed. DVR has the capability of providing a new means for human being to recognize, analyze and resolve the large scale, complex problems, which makes it develop quickly in EC fields. The technology of CSCW (Computer Supported Cooperative Work) and middleware is introduced into the development of EC-DVR system to meet the need of a platform which can provide the necessary cooperation and communication services to avoid developing the basic module repeatedly. Finally, the paper gives a platform structure of EC-DVR system.

  10. Assembly Platform For Use In Outer Space

    NASA Technical Reports Server (NTRS)

    Rao, Niranjan S.; Buddington, Patricia A.

    1995-01-01

    Report describes conceptual platform or framework for use in assembling other structures and spacecraft in outer space. Consists of three fixed structural beams comprising central beam and two cross beams. Robotic manipulators spaced apart on platform to provide telerobotic operation of platform by either space-station or ground crews. Platform and attached vehicles function synergistically to achieve maximum performance for intended purposes.

  11. Xyce parallel electronic simulator : users' guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Ting; Rankin, Eric Lamont; Thornquist, Heidi K.

    2011-05-01

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers; (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-artmore » algorithms and novel techniques. (3) Device models which are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only); and (4) Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The development of Xyce provides a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms) research and development can be performed. As a result, Xyce is a

  12. Crash problem definition and safety benefits methodology for stability control for single-unit medium and heavy trucks and large-platform buses

    DOT National Transportation Integrated Search

    2009-10-01

    This report presents the findings of a comprehensive engineering analysis of electronic stability control (ESC) and roll stability control (RSC) systems for single-unit medium and heavy trucks and large-platform buses. This report details the applica...

  13. UAH/NASA Workshop on Space Science Platform

    NASA Technical Reports Server (NTRS)

    Wu, S. T. (Editor); Morgan, S. (Editor)

    1978-01-01

    The scientific user requirements for a space science platform were defined. The potential user benefits, technological implications and cost of space platforms were examined. Cost effectiveness of the platforms' capabilities were also examined.

  14. A platform for high-throughput bioenergy production phenotype characterization in single cells

    PubMed Central

    Kelbauskas, Laimonas; Glenn, Honor; Anderson, Clifford; Messner, Jacob; Lee, Kristen B.; Song, Ganquan; Houkal, Jeff; Su, Fengyu; Zhang, Liqiang; Tian, Yanqing; Wang, Hong; Bussey, Kimberly; Johnson, Roger H.; Meldrum, Deirdre R.

    2017-01-01

    Driven by an increasing number of studies demonstrating its relevance to a broad variety of disease states, the bioenergy production phenotype has been widely characterized at the bulk sample level. Its cell-to-cell variability, a key player associated with cancer cell survival and recurrence, however, remains poorly understood due to ensemble averaging of the current approaches. We present a technology platform for performing oxygen consumption and extracellular acidification measurements of several hundreds to 1,000 individual cells per assay, while offering simultaneous analysis of cellular communication effects on the energy production phenotype. The platform comprises two major components: a tandem optical sensor for combined oxygen and pH detection, and a microwell device for isolation and analysis of single and few cells in hermetically sealed sub-nanoliter chambers. Our approach revealed subpopulations of cells with aberrant energy production profiles and enables determination of cellular response variability to electron transfer chain inhibitors and ion uncouplers. PMID:28349963

  15. A novel sensor platform for the rapid hydraulic characterisation of freshwater ecosystems

    NASA Astrophysics Data System (ADS)

    Kriechbaumer, Thomas; Blackburn, Kim; Breckon, Toby; Gill, Andrew; Everard, Nick; Wright, Ros; Rivas Casado, Monica

    2014-05-01

    The spatially explicit quantification of hydraulic features provides valuable information for the physical habitat assessment of freshwater ecosystems. Collection of data on water velocities and depths using in-situ current meters or acoustic sensors on tethered boats is time-consuming and requires good site accessibility. Moreover, on smaller rivers precise spatial data referencing can be challenging, as river bank vegetation can block sky view to navigation satellites over a considerable proportion of the water surface. This paper describes the development and testing of a new small sized remote control sensor platform and a novel approach to spatial data referencing based on computer vision to enable the rapid hydraulic characterisation of habitats in small rivers. It highlights the manifold opportunities that recent achievements in the disciplines of computer science and electronics can create for the environmental sciences. The platform carries an acoustic Doppler current profiler (ADCP) to rapidly collect large amounts of data on water velocities and river depths, from which the spatial and temporal water velocity distributions can be derived. The 1.30m long and 0.60m wide platform hull has been designed to enable single person deployment. Platform pitch and roll magnitudes and periods are quantified at a frequency of 512Hz through a low-cost inertial measurement unit on board, allowing the quantification of the errors that these platform motions can cause in the ADCP data. Jet propulsion and a tail thruster ensure high manoeuvrability, minimum draught operation and greater safety than propellers. An on-board Raspberry Pi computer enables time-synchronised logging of data from a GPS unit, the ADCP and further sensors that may be added to the platform. Real-time serial communication between the Raspberry Pi and the embedded propulsion system control (an Arduino Uno microcontroller) builds the basis for future platform autonomy. This can enable the autonomous

  16. Single electron relativistic clock interferometer

    NASA Astrophysics Data System (ADS)

    Bushev, P. A.; Cole, J. H.; Sholokhov, D.; Kukharchyk, N.; Zych, M.

    2016-09-01

    Although time is one of the fundamental notions in physics, it does not have a unique description. In quantum theory time is a parameter ordering the succession of the probability amplitudes of a quantum system, while according to relativity theory each system experiences in general a different proper time, depending on the system's world line, due to time dilation. It is therefore of fundamental interest to test the notion of time in the regime where both quantum and relativistic effects play a role, for example, when different amplitudes of a single quantum clock experience different magnitudes of time dilation. Here we propose a realization of such an experiment with a single electron in a Penning trap. The clock can be implemented in the electronic spin precession and its time dilation then depends on the radial (cyclotron) state of the electron. We show that coherent manipulation and detection of the electron can be achieved already with present day technology. A single electron in a Penning trap is a technologically ready platform where the notion of time can be probed in a hitherto untested regime, where it requires a relativistic as well as quantum description.

  17. All-Printed Flexible and Stretchable Electronics.

    PubMed

    Mohammed, Mohammed G; Kramer, Rebecca

    2017-05-01

    A fully automated additive manufacturing process that produces all-printed flexible and stretchable electronics is demonstrated. The printing process combines soft silicone elastomer printing and liquid metal processing on a single high-precision 3D stage. The platform is capable of fabricating extremely complex conductive circuits, strain and pressure sensors, stretchable wires, and wearable circuits with high yield and repeatability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Wireless sensor platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  19. Forces and pressures beneath the saddle during mounting from the ground and from a raised mounting platform.

    PubMed

    Geutjens, C A; Clayton, H M; Kaiser, L J

    2008-03-01

    The objective was to use an electronic pressure mat to measure and compare forces and pressures of the saddle on a horse's back when riders mounted from the ground and with the aid of a mounting platform. Ten riders mounted a horse three times each from the ground and from a 35 cm high mounting platform in random order. Total force (summation of forces over all 256 sensors) was measured and compared at specific points on the force-time curve. Total force was usually highest as the rider's right leg was swinging upwards and was correlated with rider mass. When normalized to rider mass, total force and peak pressure were significantly higher when mounting from the ground than from a raised platform (P<0.05). The area of highest pressure was on the right side of the withers in 97% of mounting efforts, confirming the importance of the withers in stabilizing the saddle during mounting.

  20. Progress and process improvements for multiple electron-beam direct write

    NASA Astrophysics Data System (ADS)

    Servin, Isabelle; Pourteau, Marie-Line; Pradelles, Jonathan; Essomba, Philippe; Lattard, Ludovic; Brandt, Pieter; Wieland, Marco

    2017-06-01

    Massively parallel electron beam direct write (MP-EBDW) lithography is a cost-effective patterning solution, complementary to optical lithography, for a variety of applications ranging from 200 to 14 nm. This paper will present last process/integration results to achieve targets for both 28 and 45 nm nodes. For 28 nm node, we mainly focus on line-width roughness (LWR) mitigation by playing with stack, new resist platform and bias design strategy. The lines roughness was reduced by using thicker spin-on-carbon (SOC) hardmask (-14%) or non-chemically amplified (non-CAR) resist with bias writing strategy implementation (-20%). Etch transfer into trilayer has been demonstrated by preserving pattern fidelity and profiles for both CAR and non-CAR resists. For 45 nm node, we demonstrate the electron-beam process integration within optical CMOS flows. Resists based on KrF platform show a full compatibility with multiple stacks to fit with conventional optical flow used for critical layers. Electron-beam resist performances have been optimized to fit the specifications in terms of resolution, energy latitude, LWR and stack compatibility. The patterning process overview showing the latest achievements is mature enough to enable starting the multi-beam technology pre-production mode.

  1. Synthetic diagnostics platform for fusion plasmas (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, L., E-mail: lshi@pppl.gov; Valeo, E. J.; Tobias, B. J.

    A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C{sup 1} are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP’s capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. The importance of synthetic diagnostics in validation ismore » shown by applying the SDP to M3D-C{sup 1} output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.« less

  2. Synthetic diagnostics platform for fusion plasmas (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, L.; Valeo, E. J.; Tobias, B. J.

    A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C-1 are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP's capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. Finally, the importance of synthetic diagnostics in validation ismore » shown by applying the SDP to M3D-C 1 output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.« less

  3. Synthetic diagnostics platform for fusion plasmas (invited)

    DOE PAGES

    Shi, L.; Valeo, E. J.; Tobias, B. J.; ...

    2016-08-26

    A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C-1 are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP's capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. Finally, the importance of synthetic diagnostics in validation ismore » shown by applying the SDP to M3D-C 1 output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.« less

  4. Electron Processing at 50 eV of Terphenylthiol Self-Assembled Monolayers: Contributions of Primary and Secondary Electrons.

    PubMed

    Houplin, Justine; Dablemont, Céline; Sala, Leo; Lafosse, Anne; Amiaud, Lionel

    2015-12-22

    Aromatic self-assembled monolayers (SAMs) can serve as platforms for development of supramolecular assemblies driven by surface templates. For many applications, electron processing is used to locally reinforce the layer. To achieve better control of the irradiation step, chemical transformations induced by electron impact at 50 eV of terphenylthiol SAMs are studied, with these SAMs serving as model aromatic SAMs. High-resolution electron energy loss spectroscopy (HREELS) and electron-stimulated desorption (ESD) of neutral fragment measurements are combined to investigate electron-induced chemical transformation of the layer. The decrease of the CH stretching HREELS signature is mainly attributed to dehydrogenation, without a noticeable hybridization change of the hydrogenated carbon centers. Its evolution as a function of the irradiation dose gives an estimate of the effective hydrogen content loss cross-section, σ = 2.7-4.7 × 10(-17) cm(2). Electron impact ionization is the major primary mechanism involved, with the impact electronic excitation contributing only marginally. Therefore, special attention is given to the contribution of the low-energy secondary electrons to the induced chemistry. The effective cross-section related to dissociative secondary electron attachment at 6 eV is estimated to be 1 order of magnitude smaller. The 1 eV electrons do not induce significant chemical modification for a 2.5 mC cm(-2) dose, excluding their contribution.

  5. Space platform power system hardware testbed

    NASA Technical Reports Server (NTRS)

    Sable, D.; Patil, A.; Sizemore, T.; Deuty, S.; Noon, J.; Cho, B. H.; Lee, F. C.

    1991-01-01

    The scope of the work on the NASA Space Platform includes the design of a multi-module, multi-phase boost regulator, and a voltage-fed, push-pull autotransformer converter for the battery discharger. A buck converter was designed for the charge regulator. Also included is the associated mode control electronics for the charger and discharger, as well as continued development of a comprehensive modeling and simulation tool for the system. The design of the multi-module boost converter is discussed for use as a battery discharger. An alternative battery discharger design is discussed using a voltage-fed, push-pull autotransformer converter. The design of the charge regulator is explained using a simple buck converter. The design of the mode controller and effects of locating the bus filter capacitor bank 20 feet away from the power ORU are discussed. A brief discussion of some alternative topologies for battery charging and discharging is included. The power system modeling is described.

  6. A Hardware-in-the-Loop Simulation Platform for the Verification and Validation of Safety Control Systems

    NASA Astrophysics Data System (ADS)

    Rankin, Drew J.; Jiang, Jin

    2011-04-01

    Verification and validation (V&V) of safety control system quality and performance is required prior to installing control system hardware within nuclear power plants (NPPs). Thus, the objective of the hardware-in-the-loop (HIL) platform introduced in this paper is to verify the functionality of these safety control systems. The developed platform provides a flexible simulated testing environment which enables synchronized coupling between the real and simulated world. Within the platform, National Instruments (NI) data acquisition (DAQ) hardware provides an interface between a programmable electronic system under test (SUT) and a simulation computer. Further, NI LabVIEW resides on this remote DAQ workstation for signal conversion and routing between Ethernet and standard industrial signals as well as for user interface. The platform is applied to the testing of a simplified implementation of Canadian Deuterium Uranium (CANDU) shutdown system no. 1 (SDS1) which monitors only the steam generator level of the simulated NPP. CANDU NPP simulation is performed on a Darlington NPP desktop training simulator provided by Ontario Power Generation (OPG). Simplified SDS1 logic is implemented on an Invensys Tricon v9 programmable logic controller (PLC) to test the performance of both the safety controller and the implemented logic. Prior to HIL simulation, platform availability of over 95% is achieved for the configuration used during the V&V of the PLC. Comparison of HIL simulation results to benchmark simulations shows good operational performance of the PLC following a postulated initiating event (PIE).

  7. Nanopaper as an Optical Sensing Platform.

    PubMed

    Morales-Narváez, Eden; Golmohammadi, Hamed; Naghdi, Tina; Yousefi, Hossein; Kostiv, Uliana; Horák, Daniel; Pourreza, Nahid; Merkoçi, Arben

    2015-07-28

    Bacterial cellulose nanopaper (BC) is a multifunctional material known for numerous desirable properties: sustainability, biocompatibility, biodegradability, optical transparency, thermal properties, flexibility, high mechanical strength, hydrophilicity, high porosity, broad chemical-modification capabilities and high surface area. Herein, we report various nanopaper-based optical sensing platforms and describe how they can be tuned, using nanomaterials, to exhibit plasmonic or photoluminescent properties that can be exploited for sensing applications. We also describe several nanopaper configurations, including cuvettes, plates and spots that we printed or punched on BC. The platforms include a colorimetric-based sensor based on nanopaper containing embedded silver and gold nanoparticles; a photoluminescent-based sensor, comprising CdSe@ZnS quantum dots conjugated to nanopaper; and a potential up-conversion sensing platform constructed from nanopaper functionalized with NaYF4:Yb(3+)@Er(3+)&SiO2 nanoparticles. We have explored modulation of the plasmonic or photoluminescent properties of these platforms using various model biologically relevant analytes. Moreover, we prove that BC is and advantageous preconcentration platform that facilitates the analysis of small volumes of optically active materials (∼4 μL). We are confident that these platforms will pave the way to optical (bio)sensors or theranostic devices that are simple, transparent, flexible, disposable, lightweight, miniaturized and perhaps wearable.

  8. A Photostable Silicon Rhodamine Platform for Optical Voltage Sensing

    PubMed Central

    Huang, Yi-Lin; Walker, Alison S.; Miller, Evan W.

    2015-01-01

    This paper describes the design and synthesis of a photostable, far-red to near-infrared (NIR) platform for optical voltage sensing. We developed a new, sulfonated silicon rhodamine fluorophore and integrated it with a phenylenevinylene molecular wire to create a Berkeley Red Sensor of Transmembrane potential, or BeRST 1 (“burst”). BeRST 1 is the first member of a class of farred to NIR voltage sensitive dyes that make use of a photoinduced electron transfer (PeT) trigger for optical interrogation of membrane voltage. We show that BeRST 1 displays bright, membrane-localized fluorescence in living cells, high photostability, and excellent voltage sensitivity in neurons. Depolarization of the plasma membrane results in rapid fluorescence increases (24% ΔF/F per 100 mV). BeRST 1 can be used in conjunction with fluorescent stains for organelles, Ca2+ indicators, and voltage-sensitive fluorescent proteins. In addition, the red-shifted spectral profile of BeRST 1, relative to commonly employed optogenetic actuators like ChannelRhodopsin2 (ChR2), which require blue light, enables optical electrophysiology in neurons. The high speed, sensitivity, photostability and long-wavelength fluorescence profiles of BeRST 1 make it a useful platform for the non-invasive, optical dissection of neuronal activity. PMID:26237573

  9. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics.

    PubMed

    Kim, Jayoung; Imani, Somayeh; de Araujo, William R; Warchall, Julian; Valdés-Ramírez, Gabriela; Paixão, Thiago R L C; Mercier, Patrick P; Wang, Joseph

    2015-12-15

    This article demonstrates an instrumented mouthguard capable of non-invasively monitoring salivary uric acid (SUA) levels. The enzyme (uricase)-modified screen printed electrode system has been integrated onto a mouthguard platform along with anatomically-miniaturized instrumentation electronics featuring a potentiostat, microcontroller, and a Bluetooth Low Energy (BLE) transceiver. Unlike RFID-based biosensing systems, which require large proximal power sources, the developed platform enables real-time wireless transmission of the sensed information to standard smartphones, laptops, and other consumer electronics for on-demand processing, diagnostics, or storage. The mouthguard biosensor system offers high sensitivity, selectivity, and stability towards uric acid detection in human saliva, covering the concentration ranges for both healthy people and hyperuricemia patients. The new wireless mouthguard biosensor system is able to monitor SUA level in real-time and continuous fashion, and can be readily expanded to an array of sensors for different analytes to enable an attractive wearable monitoring system for diverse health and fitness applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics

    PubMed Central

    Kim, Jayoung; Imani, Somayeh; de Araujo, William R.; Warchall, Julian; Valdés-Ramírez, Gabriela; Paixão, Thiago R.L.C.; Mercier, Patrick P.; Wang, Joseph

    2016-01-01

    This article demonstrates an instrumented mouthguard capable of non-invasively monitoring salivary uric acid (SUA) levels. The enzyme (uricase)-modified screen printed electrode system has been integrated onto a mouthguard platform along with anatomically-miniaturized instrumentation electronics featuring a potentiostat, microcontroller, and a Bluetooth Low Energy (BLE) transceiver. Unlike RFID-based biosensing systems, which require large proximal power sources, the developed platform enables real-time wireless transmission of the sensed information to standard smartphones, laptops, and other consumer electronics for on-demand processing, diagnostics, or storage. The mouthguard biosensor system offers high sensitivity, selectivity, and stability towards uric acid detection in human saliva, covering the concentration ranges for both healthy people and hyperuricemia patients. The new wireless mouthguard biosensor system is able to monitor SUA level in real-time and continuous fashion, and can be readily expanded to an array of sensors for different analytes to enable an attractive wearable monitoring system for diverse health and fitness applications. PMID:26276541

  11. The role of electron irradiation history in liquid cell transmission electron microscopy.

    PubMed

    Moser, Trevor H; Mehta, Hardeep; Park, Chiwoo; Kelly, Ryan T; Shokuhfar, Tolou; Evans, James E

    2018-04-01

    In situ liquid cell transmission electron microscopy (LC-TEM) allows dynamic nanoscale characterization of systems in a hydrated state. Although powerful, this technique remains impaired by issues of repeatability that limit experimental fidelity and hinder the identification and control of some variables underlying observed dynamics. We detail new LC-TEM devices that improve experimental reproducibility by expanding available imaging area and providing a platform for investigating electron flux history on the sample. Irradiation history is an important factor influencing LC-TEM results that has, to this point, been largely qualitatively and not quantitatively described. We use these devices to highlight the role of cumulative electron flux history on samples from both nanoparticle growth and biological imaging experiments and demonstrate capture of time zero, low-dose images on beam-sensitive samples. In particular, the ability to capture pristine images of biological samples, where the acquired image is the first time that the cell experiences significant electron flux, allowed us to determine that nanoparticle movement compared to the cell membrane was a function of cell damage and therefore an artifact rather than visualizing cell dynamics in action. These results highlight just a subset of the new science that is accessible with LC-TEM through the new multiwindow devices with patterned focusing aides.

  12. The role of electron irradiation history in liquid cell transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Trevor H.; Mehta, Hardeep; Park, Chiwoo

    In situ liquid cell transmission electron microscopy (LC-TEM) allows dynamic nanoscale characterization of systems in a hydrated state. Although powerful, this technique remains impaired by issues of repeatability that limit experimental fidelity and hinder the identification and control of some variables underlying observed dynamics. We detail new LC- TEM devices that improve experimental reproducibility by expanding available imaging area and providing a platform for investigating electron flux history on the sample. Irradiation history is an important factor influencing LC-TEM results that has, to this point, been largely qualitatively and not quantitatively described. We use these devices to highlight the rolemore » of cumulative electron flux history on samples from both nanoparticle growth and biological imaging experiments and demonstrate capture of time zero, low-dose images on beam-sensitive samples. In particular, the ability to capture pristine images of biological samples, where the acquired image is the first time that the cell experiences significant electron flux, allowed us to determine that nanoparticle movement compared to the cell membrane was a function of cell damage and therefore an artifact rather than visualizing cell dynamics in action. These results highlight just a subset of the new science that is accessible with LC-TEM through the new multiwindow devices with patterned focusing aides.« less

  13. The role of electron irradiation history in liquid cell transmission electron microscopy

    PubMed Central

    Mehta, Hardeep

    2018-01-01

    In situ liquid cell transmission electron microscopy (LC-TEM) allows dynamic nanoscale characterization of systems in a hydrated state. Although powerful, this technique remains impaired by issues of repeatability that limit experimental fidelity and hinder the identification and control of some variables underlying observed dynamics. We detail new LC-TEM devices that improve experimental reproducibility by expanding available imaging area and providing a platform for investigating electron flux history on the sample. Irradiation history is an important factor influencing LC-TEM results that has, to this point, been largely qualitatively and not quantitatively described. We use these devices to highlight the role of cumulative electron flux history on samples from both nanoparticle growth and biological imaging experiments and demonstrate capture of time zero, low-dose images on beam-sensitive samples. In particular, the ability to capture pristine images of biological samples, where the acquired image is the first time that the cell experiences significant electron flux, allowed us to determine that nanoparticle movement compared to the cell membrane was a function of cell damage and therefore an artifact rather than visualizing cell dynamics in action. These results highlight just a subset of the new science that is accessible with LC-TEM through the new multiwindow devices with patterned focusing aides. PMID:29725619

  14. A microcontroller platform for the rapid prototyping of functional electrical stimulation-based gait neuroprostheses.

    PubMed

    Luzio de Melo, Paulo; da Silva, Miguel Tavares; Martins, Jorge; Newman, Dava

    2015-05-01

    Functional electrical stimulation (FES) has been used over the last decades as a method to rehabilitate lost motor functions of individuals with spinal cord injury, multiple sclerosis, and post-stroke hemiparesis. Within this field, researchers in need of developing FES-based control solutions for specific disabilities often have to choose between either the acquisition and integration of high-performance industry-level systems, which are rather expensive and hardly portable, or develop custom-made portable solutions, which despite their lower cost, usually require expert-level electronic skills. Here, a flexible low-cost microcontroller-based platform for rapid prototyping of FES neuroprostheses is presented, designed for reduced execution complexity, development time, and production cost. For this reason, the Arduino open-source microcontroller platform was used, together with off-the-shelf components whenever possible. The developed system enables the rapid deployment of portable FES-based gait neuroprostheses, being flexible enough to allow simple open-loop strategies but also more complex closed-loop solutions. The system is based on a modular architecture that allows the development of optimized solutions depending on the desired FES applications, even though the design and testing of the platform were focused toward drop foot correction. The flexibility of the system was demonstrated using two algorithms targeting drop foot condition within different experimental setups. Successful bench testing of the device in healthy subjects demonstrated these neuroprosthesis platform capabilities to correct drop foot. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. 77 FR 20558 - Federal Motor Vehicle Safety Standards; Platform Lifts for Motor Vehicles; Platform Lift...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... amendments to the Federal motor vehicle safety standards on platform lift systems for motor vehicles. The... [email protected] . For legal issues, you may contact David Jasinski, Office of the Chief Counsel, NCC... in the Federal Register a final rule establishing FMVSS No. 403, Platform lift systems for motor...

  16. Analysis of offshore platforms lifting with fixed pile structure type (fixed platform) based on ASD89

    NASA Astrophysics Data System (ADS)

    Sugianto, Agus; Indriani, Andi Marini

    2017-11-01

    Platform construction GTS (Gathering Testing Sattelite) is offshore construction platform with fix pile structure type/fixed platform functioning to support the mining of petroleum exploitation. After construction fabrication process platform was moved to barges, then shipped to the installation site. Moving process is generally done by pull or push based on construction design determined when planning. But at the time of lifting equipment/cranes available in the work area then the moving process can be done by lifting so that moving activity can be implemented more quickly of work. This analysis moving process of GTS platform in a different way that is generally done to GTS platform types by lifting using problem is construction reinforcement required, so the construction can be moved by lifting with analyzing and checking structure working stress that occurs due to construction moving process by lifting AISC code standard and analysis using the SAP2000 structure analysis program. The analysis result showed that existing condition cannot be moved by lifting because stress ratio is above maximum allowable value that is 0.950 (AISC-ASD89). Overstress occurs on the member 295 and 324 with stress ratio value 0.97 and 0.95 so that it is required structural reinforcement. Box plate aplication at both members so that it produces stress ratio values 0.78 at the member 295 and stress ratio of 0.77 at the member 324. These results indicate that the construction have qualified structural reinforcement for being moved by lifting.

  17. Designing and Implementation of Fuzzy Case-based Reasoning System on Android Platform Using Electronic Discharge Summary of Patients with Chronic Kidney Diseases

    PubMed Central

    Tahmasebian, Shahram; Langarizadeh, Mostafa; Ghazisaeidi, Marjan; Mahdavi-Mazdeh, Mitra

    2016-01-01

    Introduction: Case-based reasoning (CBR) systems are one of the effective methods to find the nearest solution to the current problems. These systems are used in various spheres as well as industry, business, and economy. The medical field is not an exception in this regard, and these systems are nowadays used in the various aspects of diagnosis and treatment. Methodology: In this study, the effective parameters were first extracted from the structured discharge summary prepared for patients with chronic kidney diseases based on data mining method. Then, through holding a meeting with experts in nephrology and using data mining methods, the weights of the parameters were extracted. Finally, fuzzy system has been employed in order to compare the similarities of current case and previous cases, and the system was implemented on the Android platform. Discussion: The data on electronic discharge records of patients with chronic kidney diseases were entered into the system. The measure of similarity was assessed using the algorithm provided in the system, and then compared with other known methods in CBR systems. Conclusion: Developing Clinical fuzzy CBR system used in Knowledge management framework for registering specific therapeutic methods, Knowledge sharing environment for experts in a specific domain and Powerful tools at the point of care. PMID:27708490

  18. Acceleration of Cherenkov angle reconstruction with the new Intel Xeon/FPGA compute platform for the particle identification in the LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Faerber, Christian

    2017-10-01

    The LHCb experiment at the LHC will upgrade its detector by 2018/2019 to a ‘triggerless’ readout scheme, where all the readout electronics and several sub-detector parts will be replaced. The new readout electronics will be able to readout the detector at 40 MHz. This increases the data bandwidth from the detector down to the Event Filter farm to 40 TBit/s, which also has to be processed to select the interesting proton-proton collision for later storage. The architecture of such a computing farm, which can process this amount of data as efficiently as possible, is a challenging task and several compute accelerator technologies are being considered for use inside the new Event Filter farm. In the high performance computing sector more and more FPGA compute accelerators are used to improve the compute performance and reduce the power consumption (e.g. in the Microsoft Catapult project and Bing search engine). Also for the LHCb upgrade the usage of an experimental FPGA accelerated computing platform in the Event Building or in the Event Filter farm is being considered and therefore tested. This platform from Intel hosts a general CPU and a high performance FPGA linked via a high speed link which is for this platform a QPI link. On the FPGA an accelerator is implemented. The used system is a two socket platform from Intel with a Xeon CPU and an FPGA. The FPGA has cache-coherent memory access to the main memory of the server and can collaborate with the CPU. As a first step, a computing intensive algorithm to reconstruct Cherenkov angles for the LHCb RICH particle identification was successfully ported in Verilog to the Intel Xeon/FPGA platform and accelerated by a factor of 35. The same algorithm was ported to the Intel Xeon/FPGA platform with OpenCL. The implementation work and the performance will be compared. Also another FPGA accelerator the Nallatech 385 PCIe accelerator with the same Stratix V FPGA were tested for performance. The results show that the Intel

  19. Development of an Electronic Nose Sensing Platform for Undergraduate Education in Nanotechnology

    ERIC Educational Resources Information Center

    Russo, Daniel V.; Burek, Michael J.; Iutzi, Ryan M.; Mracek, James A.; Hesjedal, Thorsten

    2011-01-01

    The teaching of the different aspects of a sensor system, with a focus on the involved nanotechnology, is a challenging, yet important task. We present the development of an electronic nose system that utilizes a nanoscale amperometric sensing mechanism for gas mixtures. The fabrication of the system makes use of a basic microfabrication facility,…

  20. Development of a large urban longitudinal HIV clinical cohort using a web-based platform to merge electronically and manually abstracted data from disparate medical record systems: technical challenges and innovative solutions

    PubMed Central

    Hays, Harlen; Castel, Amanda D; Subramanian, Thilakavathy; Happ, Lindsey Powers; Jaurretche, Maria; Binkley, Jeff; Kalmin, Mariah M; Wood, Kathy; Hart, Rachel

    2016-01-01

    Objective Electronic medical records (EMRs) are being increasingly utilized to conduct clinical and epidemiologic research in numerous fields. To monitor and improve care of HIV-infected patients in Washington, DC, one of the most severely affected urban areas in the United States, we developed a city-wide database across 13 clinical sites using electronic data abstraction and manual data entry from EMRs. Materials and Methods To develop this unique longitudinal cohort, a web-based electronic data capture system (Discovere®) was used. An Agile software development methodology was implemented across multiple EMR platforms. Clinical informatics staff worked with information technology specialists from each site to abstract data electronically from each respective site’s EMR through an extract, transform, and load process. Results Since enrollment began in 2011, more than 7000 patients have been enrolled, with longitudinal clinical data available on all patients. Data sets are produced for scientific analyses on a quarterly basis, and benchmarking reports are generated semi-annually enabling each site to compare their participants’ clinical status, treatments, and outcomes to the aggregated summaries from all other sites. Discussion Numerous technical challenges were identified and innovative solutions developed to ensure the successful implementation of the DC Cohort. Central to the success of this project was the broad collaboration established between government, academia, clinics, community, information technology staff, and the patients themselves. Conclusions Our experiences may have practical implications for researchers who seek to merge data from diverse clinical databases, and are applicable to the study of health-related issues beyond HIV. PMID:26721732

  1. Turbine blade and non-integral platform with pin attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Christian X; Eng, Darryl; Marra, John J

    Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pinmore » attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.« less

  2. Turbine blade and non-integral platform with pin attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Christian Xavier; Eng, Darryl; Marra, John J.

    2016-08-02

    Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pinmore » attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.« less

  3. Passive and electro-optic polymer photonics and InP electronics integration

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Katopodis, V.; Groumas, P.; Konczykowska, A.; Dupuy, J.-.; Beretta, A.; Dede, A.; Miller, E.; Choi, J. H.; Harati, P.; Jorge, F.; Nodjiadjim, V.; Dinu, R.; Cangini, G.; Vannucci, A.; Felipe, D.; Maese-Novo, A.; Keil, N.; Bach, H.-.; Schell, Martin; Avramopoulos, H.; Kouloumentas, Ch.

    2015-05-01

    Hybrid photonic integration allows individual components to be developed at their best-suited material platforms without sacrificing the overall performance. In the past few years a polymer-enabled hybrid integration platform has been established, comprising 1) EO polymers for constructing low-complexity and low-cost Mach-Zehnder modulators (MZMs) with extremely high modulation bandwidth; 2) InP components for light sources, detectors, and high-speed electronics including MUX drivers and DEMUX circuits; 3) Ceramic (AIN) RF board that links the electronic signals within the package. On this platform, advanced optoelectronic modules have been demonstrated, including serial 100 Gb/s [1] and 2x100 Gb/s [2] optical transmitters, but also 400 Gb/s optoelectronic interfaces for intra-data center networks [3]. To expand the device functionalities to an unprecedented level and at the same time improve the integration compatibility with diversified active / passive photonic components, we have added a passive polymer-based photonic board (polyboard) as the 4th material system. This passive polyboard allows for low-cost fabrication of single-mode waveguide networks, enables fast and convenient integration of various thin-film elements (TFEs) to control the light polarization, and provides efficient thermo-optic elements (TOEs) for wavelength tuning, light amplitude regulation and light-path switching.

  4. Specification Patent Management for Web Application Platform Ecosystem

    NASA Astrophysics Data System (ADS)

    Fukami, Yoshiaki; Isshiki, Masao; Takeda, Hideaki; Ohmukai, Ikki; Kokuryo, Jiro

    Diversified usage of web applications has encouraged disintegration of web platform into management of identification and applications. Users make use of various kinds of data linked to their identity with multiple applications on certain social web platforms such as Facebook or MySpace. There has emerged competition among web application platforms. Platformers can design relationship with developers by controlling patent of their own specification and adopt open technologies developed external organizations. Platformers choose a way to open according to feature of the specification and their position. Patent management of specification come to be a key success factor to build competitive web application platforms. Each way to attract external developers such as standardization, open source has not discussed and analyzed all together.

  5. Electron attraction mediated by Coulomb repulsion.

    PubMed

    Hamo, A; Benyamini, A; Shapir, I; Khivrich, I; Waissman, J; Kaasbjerg, K; Oreg, Y; von Oppen, F; Ilani, S

    2016-07-21

    One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed 'excitonic', promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the 'glue' that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.

  6. Electron attraction mediated by Coulomb repulsion

    NASA Astrophysics Data System (ADS)

    Hamo, A.; Benyamini, A.; Shapir, I.; Khivrich, I.; Waissman, J.; Kaasbjerg, K.; Oreg, Y.; von Oppen, F.; Ilani, S.

    2016-07-01

    One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed ‘excitonic’, promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the ‘glue’ that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.

  7. UAVSAR Active Electronically Scanned Array

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory, A.; Chamberlain, Neil F.; Zawadzki, Mark S.; Brown, Kyle M.; Fisher, Charles D.; Figueroa, Harry S.; Hamilton, Gary A.; Jones, Cathleen E.; Vorperian, Vatche; Grando, Maurio B.

    2011-01-01

    The Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) is a pod-based, L-band (1.26 GHz), repeatpass, interferometric, synthetic aperture radar (InSAR) used for Earth science applications. Repeat-pass interferometric radar measurements from an airborne platform require an antenna that can be steered to maintain the same angle with respect to the flight track over a wide range of aircraft yaw angles. In order to be able to collect repeat-pass InSAR data over a wide range of wind conditions, UAVSAR employs an active electronically scanned array (AESA). During data collection, the UAVSAR flight software continuously reads the aircraft attitude state measured by the Embedded GPS/INS system (EGI) and electronically steers the beam so that it remains perpendicular to the flight track throughout the data collection

  8. Microfluidic platform for optimization of crystallization conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Shuheng; Gerard, Charline J. J.; Ikni, Aziza; Ferry, Gilles; Vuillard, Laurent M.; Boutin, Jean A.; Ferte, Nathalie; Grossier, Romain; Candoni, Nadine; Veesler, Stéphane

    2017-08-01

    We describe a universal, high-throughput droplet-based microfluidic platform for crystallization. It is suitable for a multitude of applications, due to its flexibility, ease of use, compatibility with all solvents and low cost. The platform offers four modular functions: droplet formation, on-line characterization, incubation and observation. We use it to generate droplet arrays with a concentration gradient in continuous long tubing, without using surfactant. We control droplet properties (size, frequency and spacing) in long tubing by using hydrodynamic empirical relations. We measure droplet chemical composition using both an off-line and a real-time on-line method. Applying this platform to a complicated chemical environment, membrane proteins, we successfully handle crystallization, suggesting that the platform is likely to perform well in other circumstances. We validate the platform for fine-gradient screening and optimization of crystallization conditions. Additional on-line detection methods may well be integrated into this platform in the future, for instance, an on-line diffraction technique. We believe this method could find applications in fields such as fluid interaction engineering, live cell study and enzyme kinetics.

  9. Prototyping Instruments for Chemical Laboratory Using Inexpensive Electronic Modules.

    PubMed

    Urban, Pawel L

    2018-05-15

    Open-source electronics and programming can augment chemical and biomedical research. Currently, chemists can choose from a broad range of low-cost universal electronic modules (microcontroller boards and single-board computers) and use them to assemble working prototypes of scientific tools to address specific experimental problems and to support daily research work. The learning time can be as short as a few hours, and the required budget is often as low as 50 USD. Prototyping instruments using low-cost electronic modules gives chemists enormous flexibility to design and construct customized instrumentation, which can reduce the delays caused by limited access to high-end commercial platforms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A survey on platforms for big data analytics.

    PubMed

    Singh, Dilpreet; Reddy, Chandan K

    The primary purpose of this paper is to provide an in-depth analysis of different platforms available for performing big data analytics. This paper surveys different hardware platforms available for big data analytics and assesses the advantages and drawbacks of each of these platforms based on various metrics such as scalability, data I/O rate, fault tolerance, real-time processing, data size supported and iterative task support. In addition to the hardware, a detailed description of the software frameworks used within each of these platforms is also discussed along with their strengths and drawbacks. Some of the critical characteristics described here can potentially aid the readers in making an informed decision about the right choice of platforms depending on their computational needs. Using a star ratings table, a rigorous qualitative comparison between different platforms is also discussed for each of the six characteristics that are critical for the algorithms of big data analytics. In order to provide more insights into the effectiveness of each of the platform in the context of big data analytics, specific implementation level details of the widely used k-means clustering algorithm on various platforms are also described in the form pseudocode.

  11. 30 CFR 250.909 - What is the Platform Verification Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What is the Platform Verification Program? 250... Platforms and Structures Platform Verification Program § 250.909 What is the Platform Verification Program? The Platform Verification Program is the MMS approval process for ensuring that floating platforms...

  12. Moisture-triggered physically transient electronics

    PubMed Central

    Gao, Yang; Zhang, Ying; Wang, Xu; Sim, Kyoseung; Liu, Jingshen; Chen, Ji; Feng, Xue; Xu, Hangxun; Yu, Cunjiang

    2017-01-01

    Physically transient electronics, a form of electronics that can physically disappear in a controllable manner, is very promising for emerging applications. Most of the transient processes reported so far only occur in aqueous solutions or biofluids, offering limited control over the triggering and degradation processes. We report novel moisture-triggered physically transient electronics, which exempt the needs of resorption solutions and can completely disappear within well-controlled time frames. The triggered transient process starts with the hydrolysis of the polyanhydride substrate in the presence of trace amounts of moisture in the air, a process that can generate products of corrosive organic acids to digest various inorganic electronic materials and components. Polyanhydride is the only example of polymer that undergoes surface erosion, a distinct feature that enables stable operation of the functional devices over a predefined time frame. Clear advantages of this novel triggered transience mode include that the lifetime of the devices can be precisely controlled by varying the moisture levels and changing the composition of the polymer substrate. The transience time scale can be tuned from days to weeks. Various transient devices, ranging from passive electronics (such as antenna, resistor, and capacitor) to active electronics (such as transistor, diodes, optoelectronics, and memories), and an integrated system as a platform demonstration have been developed to illustrate the concept and verify the feasibility of this design strategy. PMID:28879237

  13. [Secure e-mail between physicians--aspect of a telemedicine platform for the health care system].

    PubMed

    Goetz, C F

    2001-10-01

    Ever since the Roland-Berger-Study in 1997, the concept of a "telematics platform" for health care describes the combination of all technical and organizational components and services for the online transmission of patient data. This platform works on an interoperable collection of standards for addressing, security and content-description. In this context the security for application and transport data is based on data protection as well as medical non-disclosure rules. The methods of cryptography can provide security services for data transmitted realizing addressed, direct and indirect privacy. The first German health professional card, the electronic physicians' ID, provides central tools for such applications. First functionally simple pilot projects will prove the effectiveness of chosen methods in this year, even if not all identified construction sites in health care telematics have yet been lead towards a finalized solution.

  14. A new fluorogenic sensing platform for salicylic acid derivatives based on π-π and NH-π interactions between electron-deficient and electron-rich aromatics.

    PubMed

    Pandith, Anup; Hazra, Giridhari; Kim, Hong-Seok

    2017-05-05

    A novel simple fluorescent probe was designed for the recognition of electron-rich salicylic acid derivatives (SAs). The imidazole-appended aminomethyl perylene probe 1 selectively differentiated between electron-rich amino-SAs and electron-deficient nitro-SAs in EtOH, exhibiting the highest selectivity and sensitivity toward 5-aminosalicylic acid (5-ASA) and showing strong 1:1 binding (K a =1.37×10 7 M -1 ). This high selectivity and sensitivity resulted from the synergistic multiple hydrogen bonding interactions of secondary amine and imidazole units and π-π interactions between electron-rich and electron-deficient rings, along with the unusual NH-π interactions between 5-ASA and the perylene moiety of 1. The limit of detection (LOD) for 5-ASA in EtOH was 0.012ppb. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Programming a Detector Emulator on NI's FlexRIO Platform

    NASA Astrophysics Data System (ADS)

    Gervais, Michelle; Crawford, Christopher; Sprow, Aaron; Nab Collaboration

    2017-09-01

    Recently digital detector emulators have been on the rise as a means to test data acquisition systems and analysis toolkits from a well understood data set. National Instruments' PXIe-7962R FPGA module and Active Technologies AT-1212 DAC module provide a customizable platform for analog output. Using a graphical programming language, we have developed a system capable of producing two time-correlated channels of analog output which sample unique amplitude spectra to mimic nuclear physics experiments. This system will be used to model the Nab experiment, in which a prompt beta decay electron is followed by a slow proton according to a defined time distribution. We will present the results of our work and discuss further development potential. DOE under Contract DE-SC0008107.

  16. Multiple Experimental Platform Consistency at NIF

    NASA Astrophysics Data System (ADS)

    Benedetti, L. R.; Barrios, M. A.; Bradley, D. K.; Eder, D. C.; Khan, S. F.; Izumi, N.; Jones, O. S.; Ma, T.; Nagel, S. R.; Peterson, J. L.; Rygg, J. R.; Spears, B. K.; Town, R. P.

    2013-10-01

    ICF experiments at NIF utilize several platforms to assess different metrics of implosion quality. In addition to the point design-a target capsule of DT ice inside a thin plastic ablator-notable platforms include: (i) Symmetry Capsules(SymCaps), mass-adjusted CH capsules filled with DT gas for similar hydrodynamic performance without the need for a DT crystal; (ii) D:3He filled SymCaps, designed for low neutron yield implosions to accommodate a variety of x-ray and optical diagnostics; and (iii) Convergent Ablators, SymCaps coupled with x-radiography to assess in-flight velocity and symmetry of the implosion over ~1 ns before stagnation and burn. These platforms are expected to be good surrogates for one another, and their hohlraum and implosion performance variations have been simulated in detail. By comparing results of similar experiments, we isolate platform-specific variations. We focus on the symmetry, convergence, and timing of x-ray emission as observed in each platform as this can be used to infer stagnation pressure and temperature. This work performed under the auspices of the U.S. Dept. of Energy by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-640865.

  17. Using electron-tunneling refrigerators to cool electrons, membranes, and sensors

    NASA Astrophysics Data System (ADS)

    Miller, Nathan A.

    Many cryogenic devices require temperatures near 100 mK for optimal performance, such as thin-film, superconducting detectors. Examples include the submillimeter SCUBA camera on the James Clerk Maxwell Telescope, high-resolution X-ray sensors for semiconductor defect analysis, and a planned satellite to search for polarization in the cosmic microwave background. The cost, size, and complexity of refrigerators used to reach 100 mK (dilution and adiabatic demagnetization refrigerators) are significant and alternative technologies are desirable. We demonstrate work on developing a new option for cooling detectors to 100 mK bath temperatures. Solid-state refrigerators based on Normal metal/Insulator/Superconductor (NIS) tunnel junctions can provide cooling from pumped 3He bath temperatures (˜300 mK) to 100 mK. The cooling mechanism is the preferential tunneling of the highest energy (hottest) electrons from the normal metal through the biased tunnel junctions into the superconductor. When NIS refrigerators are combined with a micro-machined membrane, both the electrons and phonons of the membrane can be cooled. We have developed NIS-cooled membranes with both large temperature reductions and large cooling powers. We have shown the first cooling of a bulk material by cooling a neutron transmutation doped (NTD) thermistor. The fabrication of NIS refrigerators can be integrated with existing detector technology. For the first time, we have successfully integrated NIS refrigerators with both mm-wave and X-ray detectors. In particular, we have cooled X-ray detectors by more than 100 mK and have achieved a resolution of <10 eV at 6 keV at a bath temperature 85 mK above the transition temperature of the detector. The use of integrated NIS refrigerators makes the remarkable performance of cryogenic detectors available from 300 mK platforms. We have also performed preliminary work towards building a general-purpose cooling platform for microelectronics devices on separate

  18. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode.

    PubMed

    Bücker, K; Picher, M; Crégut, O; LaGrange, T; Reed, B W; Park, S T; Masiel, D J; Banhart, F

    2016-12-01

    High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Applications for the MATILDA robotic platform

    NASA Astrophysics Data System (ADS)

    Munkeby, Steve H.; Jones, Don; Bugg, George; Smith, Kathryn

    2002-07-01

    Most robotic platforms have, up to this point, been designed with emphasis placed on improving mobility technologies. Minimal emphasis has been placed on payloads and mission execution. Using a top-down approach, Mesa Associates, Inc. identified specific UGV mission applications and structured its MATILDA platform using these applications for vehicle mobility and motion control requirements. Specific applications identified for the MATILDA platform include: Target surveillance, explosive device neutralization, material pickup and transport, weapon transport and firing, and law enforcement. Current performance results, lessons-learned, technical hurdles, and future applications are examined.

  20. On-line data collection platform for national dose surveys in diagnostic and interventional radiology.

    PubMed

    Vassileva, J; Simeonov, F; Avramova-Cholakova, S

    2015-07-01

    According to the Bulgarian regulation for radiation protection at medical exposure, the National Centre of Radiobiology and Radiation Protection (NCRRP) is responsible for performing national dose surveys in diagnostic and interventional radiology and nuclear medicine and for establishing of national diagnostic reference levels (DRLs). The next national dose survey is under preparation to be performed in the period of 2015-16, with the aim to cover conventional radiography, mammography, conventional fluoroscopy, interventional and fluoroscopy guided procedures and CT. It will be performed electronically using centralised on-line data collection platform established by the NCRRP. The aim is to increase the response rate and to improve the accuracy by reducing human errors. The concept of the on-line dose data collection platform is presented. Radiological facilities are provided with a tool to determine local typical patient doses, and the NCRRP to establish national DRLs. Future work will include automatic retrieval of dose data from hospital picture archival and communicating system. The on-line data collection platform is expected to facilitate the process of dose audit and optimisation of radiological procedures in Bulgarian hospitals. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Electronic warfare - The next 15 years

    NASA Astrophysics Data System (ADS)

    Quirk, T. G.

    1985-07-01

    On the basis of current trends, it is projected that the EW systems available by the year 2000, including avionics, will be distinguished by their compatibility with stealthy vehicular platforms, high adaptability to combat scenarios, vehicle-conformal containers, and multifunction characteristics. Transmitters and receivers will perhaps be contained within a single IC, and AI techniques may be able to yield such capabilities as instantaneous signal digitalization. Fusion of electronic units will allow a single system to accommodate navigation, identification, communications, countermeasures, and fire control functions. VHSIC and GaAs electronics appear to be the two most fundamental technological bases for the aforementioned developments. The adaptive response of these systems is noted to radically depend on the pace of software development.

  2. Graphene Inks with Cellulosic Dispersants: Development and Applications for Printed Electronics

    NASA Astrophysics Data System (ADS)

    Secor, Ethan Benjamin

    Graphene offers promising opportunities for applications in printed and flexible electronic devices due to its high electrical and thermal conductivity, mechanical flexibility and strength, and chemical and environmental stability. However, scalable production and processing of graphene presents a critical technological challenge preventing the application of graphene for flexible electronic interconnects, electrochemical energy storage, and chemically robust electrical contacts. In this thesis, a promising and versatile platform for the production, patterning, and application of graphene inks is presented based on cellulosic dispersants. Graphene is produced from flake graphite using scalable liquid-phase exfoliation methods, using the polymers ethyl cellulose and nitrocellulose as multifunctional dispersing agents. These cellulose derivatives offer high colloidal stability and broadly tunable rheology for graphene dispersions, providing an effective and tunable platform for graphene ink development. Thermal or photonic annealing decomposes the polymer dispersant to yield high conductivity, flexible graphene patterns for various electronics applications. In particular, the chemical stability of graphene enables robust electrical contacts for ceramic, metallic, organic and electrolytic materials, validating the diverse applicability of graphene in printed electronics. Overall, the strategy for graphene ink design presented here offers a simple, efficient, and versatile method for integrating graphene in a wide range of printed devices and systems, providing both fundamental insight for nanomaterial ink development and realistic opportunities for practical applications.

  3. Molecular-Scale Electronics: From Concept to Function.

    PubMed

    Xiang, Dong; Wang, Xiaolong; Jia, Chuancheng; Lee, Takhee; Guo, Xuefeng

    2016-04-13

    Creating functional electrical circuits using individual or ensemble molecules, often termed as "molecular-scale electronics", not only meets the increasing technical demands of the miniaturization of traditional Si-based electronic devices, but also provides an ideal window of exploring the intrinsic properties of materials at the molecular level. This Review covers the major advances with the most general applicability and emphasizes new insights into the development of efficient platform methodologies for building reliable molecular electronic devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. First, we summarize a number of different approaches of forming molecular-scale junctions and discuss various experimental techniques for examining these nanoscale circuits in details. We then give a full introduction of characterization techniques and theoretical simulations for molecular electronics. Third, we highlight the major contributions and new concepts of integrating molecular functionalities into electrical circuits. Finally, we provide a critical discussion of limitations and main challenges that still exist for the development of molecular electronics. These analyses should be valuable for deeply understanding charge transport through molecular junctions, the device fabrication process, and the roadmap for future practical molecular electronics.

  4. Electrophoretically deposited reduced graphene oxide platform for food toxin detection

    NASA Astrophysics Data System (ADS)

    Srivastava, Saurabh; Kumar, Vinod; Ali, Md Azahar; Solanki, Pratima R.; Srivastava, Anchal; Sumana, Gajjala; Saxena, Preeti Suman; Joshi, Amish G.; Malhotra, B. D.

    2013-03-01

    Reduced graphene oxide (RGO) due to its excellent electrochemical properties and large surface area, has recently aroused much interest for electrochemical biosensing application. Here, the chemically active RGO has been synthesized and deposited onto an indium tin oxide (ITO) coated glass substrate by the electrophoretic deposition technique. This novel platform has been utilized for covalent attachment of the monoclonal antibodies of aflatoxin B1 (anti-AFB1) for food toxin (AFB1) detection. The electron microscopy, X-ray diffraction, and UV-visible studies reveal successful synthesis of reduced graphene oxide while the XPS and FTIR studies suggest its carboxylic functionalized nature. The electrochemical sensing results of the anti-AFB1/RGO/ITO based immunoelectrode obtained as a function of aflatoxin concentration show high sensitivity (68 μA ng-1 mL cm-2) and improved detection limit (0.12 ng mL-1). The association constant (ka) for antigen-antibody interaction obtained as 5 × 10-4 ng mL-1 indicates high affinity of antibodies toward the antigen (AFB1).Reduced graphene oxide (RGO) due to its excellent electrochemical properties and large surface area, has recently aroused much interest for electrochemical biosensing application. Here, the chemically active RGO has been synthesized and deposited onto an indium tin oxide (ITO) coated glass substrate by the electrophoretic deposition technique. This novel platform has been utilized for covalent attachment of the monoclonal antibodies of aflatoxin B1 (anti-AFB1) for food toxin (AFB1) detection. The electron microscopy, X-ray diffraction, and UV-visible studies reveal successful synthesis of reduced graphene oxide while the XPS and FTIR studies suggest its carboxylic functionalized nature. The electrochemical sensing results of the anti-AFB1/RGO/ITO based immunoelectrode obtained as a function of aflatoxin concentration show high sensitivity (68 μA ng-1 mL cm-2) and improved detection limit (0.12 ng mL-1). The

  5. Electronic warfare microwave components

    NASA Astrophysics Data System (ADS)

    Cosby, L. A.

    1984-09-01

    The current and projected state-of-the-art for electronic warfare (EW) microwave components is reviewed, with attention given to microwave components used extensively in EW systems for reconnaissance, threat warning, direction finding, and repeater jamming. It is emphasized that distributed EW systems must be able to operate from manned tactical and strategic platforms, with requirements including remote aerospace and space elements, as well as the need for expandable devices for detection, location, and denial/deception functions. EW coordination, or battle management, across a distributed system is a rapidly emerging requirement that must be integrated into current and projected command-and-control programs.

  6. Graphene Microcapsule Arrays for Combinatorial Electron Microscopy and Spectroscopy in Liquids

    DOE PAGES

    Yulaev, Alexander; Guo, Hongxuan; Strelcov, Evgheni; ...

    2017-04-27

    Atomic-scale thickness, molecular impermeability, low atomic number, and mechanical strength make graphene an ideal electron-transparent membrane for material characterization in liquids and gases with scanning electron microscopy and spectroscopy. Here in this paper, we present a novel sample platform made of an array of thousands of identical isolated graphene-capped microchannels with high aspect ratio. A combination of a global wide field of view with high resolution local imaging of the array allows for high throughput in situ studies as well as for combinatorial screening of solutions, liquid interfaces, and immersed samples. We demonstrate the capabilities of this platform by studyingmore » a pure water sample in comparison with alkali halide solutions, a model electrochemical plating process, and beam-induced crystal growth in liquid electrolyte. Spectroscopic characterization of liquid interfaces and immersed objects with Auger and X-ray fluorescence analysis through the graphene membrane are also demonstrated.« less

  7. Dielectrophoresis-based microfluidic platforms for cancer diagnostics.

    PubMed

    Chan, Jun Yuan; Ahmad Kayani, Aminuddin Bin; Md Ali, Mohd Anuar; Kok, Chee Kuang; Yeop Majlis, Burhanuddin; Hoe, Susan Ling Ling; Marzuki, Marini; Khoo, Alan Soo-Beng; Ostrikov, Kostya Ken; Ataur Rahman, Md; Sriram, Sharath

    2018-01-01

    The recent advancement of dielectrophoresis (DEP)-enabled microfluidic platforms is opening new opportunities for potential use in cancer disease diagnostics. DEP is advantageous because of its specificity, low cost, small sample volume requirement, and tuneable property for microfluidic platforms. These intrinsic advantages have made it especially suitable for developing microfluidic cancer diagnostic platforms. This review focuses on a comprehensive analysis of the recent developments of DEP enabled microfluidic platforms sorted according to the target cancer cell. Each study is critically analyzed, and the features of each platform, the performance, added functionality for clinical use, and the types of samples, used are discussed. We address the novelty of the techniques, strategies, and design configuration used in improving on existing technologies or previous studies. A summary of comparing the developmental extent of each study is made, and we conclude with a treatment of future trends and a brief summary.

  8. 77 FR 76588 - Request for Proposal Platform Pilot

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ...The Small Business Administration (SBA) is announcing a pilot where federal agencies will test a new request for proposal (RFP) platform (RFP-EZ) to streamline the process through which the government buys web design and related technology services from small businesses for acquisitions valued at or below the simplified acquisition threshold (SAT). RFP-EZ is one of five projects sponsored by the Office of Science and Technology Policy's Presidential Innovation Fellows Program, which leverages the ingenuity of leading problem solvers from across America together with federal innovators to tackle projects that aim to fuel job creation, save taxpayers money, and significantly improve how the federal government serves the American people. Under the RFP-EZ pilot, which will initially run from December 28, 2012 through May 1, 2013, agencies will identify individual procurements valued at or below the simplified acquisition threshold that can be set aside for small businesses to test a suite of functional tools for: (1) Simplifying the development of statements of work, (2) improving agency access to information about small businesses, (3) enabling small businesses to submit quotes, bids or proposals (collectively referred to as proposals) electronically in response to a solicitation posted on Federal Business Opportunities (FedBizOpps); (4) enhancing efficiencies for evaluating proposals, and (5) improving how information (including prices paid by federal agencies) is captured and stored. The pilot will be conducted in accordance with existing laws and regulations. Interested parties are encouraged to review and comment on the functionality of RFP-EZ, as described at www.sba.gov/rfpez and highlighted in this notice. Responses to this notice will be considered for possible refinements to the RFP-EZ platform during the pilot and as part of the evaluation of the benefits and costs of making RFP-EZ a permanent platform fully integrated with FedBizOpps, the System for

  9. Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator.

    PubMed

    Im, Chae Ho; Kim, Changman; Song, Young Eun; Oh, Sang-Eun; Jeon, Byong-Hun; Kim, Jung Rae

    2018-01-01

    Conversion of C1 gas feedstock, including carbon monoxide (CO), into useful platform chemicals has attracted considerable interest in industrial biotechnology. Nevertheless, the low conversion yield and/or growth rate of CO-utilizing microbes make it difficult to develop a C1 gas biorefinery process. The Wood-Ljungdahl pathway which utilize CO is a pathway suffered from insufficient electron supply, in which the conversion can be increased further when an additional electron source like carbohydrate or hydrogen is provided. In this study, electrode-based electron transference using a bioelectrochemical system (BES) was examined to compensate for the insufficient reducing equivalent and increase the production of volatile fatty acids. The BES including neutral red (BES-NR), which facilitated electron transfer between bacteria and electrode, was compared with BES without neutral red and open circuit control. The coulombic efficiency based on the current input to the system and the electrons recovered into VFAs, was significantly higher in BES-NR than the control. These results suggest that the carbon electrode provides a platform to regulate the redox balance for improving the bioconversion of CO, and amending the conventional C1 gas fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Cloud Based Earth Observation Data Exploitation Platforms

    NASA Astrophysics Data System (ADS)

    Romeo, A.; Pinto, S.; Loekken, S.; Marin, A.

    2017-12-01

    In the last few years data produced daily by several private and public Earth Observation (EO) satellites reached the order of tens of Terabytes, representing for scientists and commercial application developers both a big opportunity for their exploitation and a challenge for their management. New IT technologies, such as Big Data and cloud computing, enable the creation of web-accessible data exploitation platforms, which offer to scientists and application developers the means to access and use EO data in a quick and cost effective way. RHEA Group is particularly active in this sector, supporting the European Space Agency (ESA) in the Exploitation Platforms (EP) initiative, developing technology to build multi cloud platforms for the processing and analysis of Earth Observation data, and collaborating with larger European initiatives such as the European Plate Observing System (EPOS) and the European Open Science Cloud (EOSC). An EP is a virtual workspace, providing a user community with access to (i) large volume of data, (ii) algorithm development and integration environment, (iii) processing software and services (e.g. toolboxes, visualization routines), (iv) computing resources, (v) collaboration tools (e.g. forums, wiki, etc.). When an EP is dedicated to a specific Theme, it becomes a Thematic Exploitation Platform (TEP). Currently, ESA has seven TEPs in a pre-operational phase dedicated to geo-hazards monitoring and prevention, costal zones, forestry areas, hydrology, polar regions, urban areas and food security. On the technology development side, solutions like the multi cloud EO data processing platform provides the technology to integrate ICT resources and EO data from different vendors in a single platform. In particular it offers (i) Multi-cloud data discovery, (ii) Multi-cloud data management and access and (iii) Multi-cloud application deployment. This platform has been demonstrated with the EGI Federated Cloud, Innovation Platform Testbed Poland

  11. Integrated microfluidic platforms for investigating neuronal networks

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Joon

    This dissertation describes the development and application of integrated microfluidics-based assay platforms to study neuronal activities in the nervous system in-vitro. The assay platforms were fabricated using soft lithography and micro/nano fabrication including microfluidics, surface patterning, and nanomaterial synthesis. The use of integrated microfluidics-based assay platform allows culturing and manipulating many types of neuronal tissues in precisely controlled microenvironment. Furthermore, they provide organized multi-cellular in-vitro model, long-term monitoring with live cell imaging, and compatibility with molecular biology techniques and electrophysiology experiment. In this dissertation, the integrated microfluidics-based assay platforms are developed for investigation of neuronal activities such as local protein synthesis, impairment of axonal transport by chemical/physical variants, growth cone path finding under chemical/physical cues, and synaptic transmission in neuronal circuit. Chapter 1 describes the motivation, objectives, and scope for developing in-vitro platform to study various neuronal activities. Chapter 2 introduces microfluidic culture platform for biochemical assay with large-scale neuronal tissues that are utilized as model system in neuroscience research. Chapter 3 focuses on the investigation of impaired axonal transport by beta-Amyloid and oxidative stress. The platform allows to control neuronal processes and to quantify mitochondrial movement in various regions of axons away from applied drugs. Chapter 4 demonstrates the development of microfluidics-based growth cone turning assay to elucidate the mechanism underlying axon guidance under soluble factors and shear flow. Using this platform, the behaviors of growth cone of mammalian neurons are verified under the gradient of inhibitory molecules and also shear flow in well-controlled manner. In Chapter 5, I combine in-vitro multicellular model with microfabricated MEA

  12. Evolutionary space platform concept study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Evolutionary Space Platform Concept Study encompassed a 10 month effort to define, evaluate and compare approaches and concepts for evolving unmanned and manned capability platforms beyond the current Space Platform concepts to an evolutionary goal of establishing a permanent manned presence in space. Areas addressed included: special emphasis trade studies on the current unmanned concept, assessment of manned platform concepts, and utility analysis of a manned platform for defense related missions.

  13. Bioelectrochemical system platform for sustainable environmental remediation and energy generation.

    PubMed

    Wang, Heming; Luo, Haiping; Fallgren, Paul H; Jin, Song; Ren, Zhiyong Jason

    2015-01-01

    The increasing awareness of the energy-environment nexus is compelling the development of technologies that reduce environmental impacts during energy production as well as energy consumption during environmental remediation. Countries spend billions in pollution cleanup projects, and new technologies with low energy and chemical consumption are needed for sustainable remediation practice. This perspective review provides a comprehensive summary on the mechanisms of the new bioelectrochemical system (BES) platform technology for efficient and low cost remediation, including petroleum hydrocarbons, chlorinated solvents, perchlorate, azo dyes, and metals, and it also discusses the potential new uses of BES approach for some emerging contaminants remediation, such as CO2 in air and nutrients and micropollutants in water. The unique feature of BES for environmental remediation is the use of electrodes as non-exhaustible electron acceptors, or even donors, for contaminant degradation, which requires minimum energy or chemicals but instead produces sustainable energy for monitoring and other onsite uses. BES provides both oxidation (anode) and reduction (cathode) reactions that integrate microbial-electro-chemical removal mechanisms, so complex contaminants with different characteristics can be removed. We believe the BES platform carries great potential for sustainable remediation and hope this perspective provides background and insights for future research and development. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The role of electron irradiation history in liquid cell transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Trevor H.; Mehta, Hardeep; Park, Chiwoo

    In situ liquid cell transmission electron microscopy (LC-TEM) allows dynamic nanoscale characterization of systems in a hydrated state. Although powerful, this technique remains impaired by issues of repeatability that limit experimental fidelity and hinder the identification and control of some variables underlying observed dynamics. We detail new LC-TEM devices that improve experimental reproducibility by expanding available imaging area and providing a platform for investigating electron flux history on the sample. Irradiation history is an important factor influencing LC-TEM results that has, to this point, been largely qualitatively and not quantitatively described. We use these devices to highlight the role ofmore » cumulative electron flux history on samples from both nanoparticle growth and biological imaging experiments and demonstrate capture of time zero, low-dose images on beam-sensitive samples. In particular, the ability to capture pristine images of biological samples, where the acquired image is the first time that the cell experiences significant electron flux, allowed us to determine that nanoparticle movement compared to the cell membrane was a function of cell damage and therefore an artifact rather than visualizing cell dynamics in action. Lastly, these results highlight just a subset of the new science that is accessible with LC-TEM through the new multiwindow devices with patterned focusing aides.« less

  15. The role of electron irradiation history in liquid cell transmission electron microscopy

    DOE PAGES

    Moser, Trevor H.; Mehta, Hardeep; Park, Chiwoo; ...

    2018-04-20

    In situ liquid cell transmission electron microscopy (LC-TEM) allows dynamic nanoscale characterization of systems in a hydrated state. Although powerful, this technique remains impaired by issues of repeatability that limit experimental fidelity and hinder the identification and control of some variables underlying observed dynamics. We detail new LC-TEM devices that improve experimental reproducibility by expanding available imaging area and providing a platform for investigating electron flux history on the sample. Irradiation history is an important factor influencing LC-TEM results that has, to this point, been largely qualitatively and not quantitatively described. We use these devices to highlight the role ofmore » cumulative electron flux history on samples from both nanoparticle growth and biological imaging experiments and demonstrate capture of time zero, low-dose images on beam-sensitive samples. In particular, the ability to capture pristine images of biological samples, where the acquired image is the first time that the cell experiences significant electron flux, allowed us to determine that nanoparticle movement compared to the cell membrane was a function of cell damage and therefore an artifact rather than visualizing cell dynamics in action. Lastly, these results highlight just a subset of the new science that is accessible with LC-TEM through the new multiwindow devices with patterned focusing aides.« less

  16. T2L2 on JASON-2: First Evaluation of the Flying Model

    DTIC Science & Technology

    2007-01-01

    Para, J.-M. Torre R&D Metrology CNRS/GEMINI Observatoire de la Côte d’Azur Caussol, France E-mail: philippe.guillemot@cnes.fr Abstract...Laser Link” experiment T2L2 [1], under development at OCA (Observatoire de la Côte d’Azur) and CNES (Centre National d’Etudes Spatiales), France, will be...Experimental Astronomy, 7, 191-207. [2] P. Fridelance and C. Veillet, 1995, “Operation and data analysis in the LASSO experiment,” Metrologia

  17. 45 CFR Appendix C to Part 1355 - Electronic Data Transmission Format

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... mainframe-to-mainframe data exchange system using the Sterling Software data transfer package called “SUPERTRACS.” This package will allow data exchange between most computer platforms (both mini and mainframe... 45 Public Welfare 4 2010-10-01 2010-10-01 false Electronic Data Transmission Format C Appendix C...

  18. 45 CFR Appendix C to Part 1355 - Electronic Data Transmission Format

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... mainframe-to-mainframe data exchange system using the Sterling Software data transfer package called “SUPERTRACS.” This package will allow data exchange between most computer platforms (both mini and mainframe... 45 Public Welfare 4 2011-10-01 2011-10-01 false Electronic Data Transmission Format C Appendix C...

  19. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy.

    PubMed

    Peng, Fei; Su, Yuanyuan; Zhong, Yiling; Fan, Chunhai; Lee, Shuit-Tong; He, Yao

    2014-02-18

    Silicon nanomaterials are an important class of nanomaterials with great potential for technologies including energy, catalysis, and biotechnology, because of their many unique properties, including biocompatibility, abundance, and unique electronic, optical, and mechanical properties, among others. Silicon nanomaterials are known to have little or no toxicity due to favorable biocompatibility of silicon, which is an important precondition for biological and biomedical applications. In addition, huge surface-to-volume ratios of silicon nanomaterials are responsible for their unique optical, mechanical, or electronic properties, which offer exciting opportunities for design of high-performance silicon-based functional nanoprobes, nanosensors, and nanoagents for biological analysis and detection and disease treatment. Moreover, silicon is the second most abundant element (after oxygen) on earth, providing plentiful and inexpensive resources for large-scale and low-cost preparation of silicon nanomaterials for practical applications. Because of these attractive traits, and in parallel with a growing interest in their design and synthesis, silicon nanomaterials are extensively investigated for wide-ranging applications, including energy, catalysis, optoelectronics, and biology. Among them, bioapplications of silicon nanomaterials are of particular interest. In the past decade, scientists have made an extensive effort to construct a silicon nanomaterials platform for various biological and biomedical applications, such as biosensors, bioimaging, and cancer treatment, as new and powerful tools for disease diagnosis and therapy. Nonetheless, there are few review articles covering these important and promising achievements to promote the awareness of development of silicon nanobiotechnology. In this Account, we summarize recent representative works to highlight the recent developments of silicon functional nanomaterials for a new, powerful platform for biological and

  20. Large communications platforms versus smaller satellites

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Communications systems using large platforms are compared with systems using conventional satellites. Systems models were generated and compared for U.S. domestic application and for 1 INTELSAT's international and domestic transponder lease application. Technology advances were assumed the platforms and the evolution of conventional satellites.

  1. Trust and Decision Making: An Empirical Platform

    DTIC Science & Technology

    2008-06-01

    13th ICCRTS “C2 for Complex Endeavors” Trust and Decision Making : An Empirical Platform Topic(s): Cognitive and Social Issues...and Decision Making : An Empirical Platform 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Trust and Decision Making : An Empirical Platform Dr. Joseph B

  2. Bucket platform cooling scheme and related method

    DOEpatents

    Abuaf, Nesim; Barb, Kevin Joseph; Chopra, Sanjay; Kercher, David Max; Kellock, Iain Robertson; Lenahan, Dean Thomas; Nellian, Sankar; Starkweather, John Howard; Lupe, Douglas Arthur

    2002-01-01

    A turbine bucket includes an airfoil extending from a platform, having high and low pressure sides; a wheel mounting portion; a hollow shank portion located radially between the platform and the wheel mounting portion, the platform having an under surface. An impingement cooling plate is located in the hollow shank portion, spaced from the under surface, and the impingement plate is formed with a plurality of impingement cooling holes therein.

  3. Electronic thermal sensor and Data Collection Platform technology: Part 5 in Thermal surveillance of active volcanoes using the Landsat-1 Data Collection System

    USGS Publications Warehouse

    Preble, Duane M.; Friedman, Jules D.; Frank, David

    1976-01-01

    Five Data Collection Platforms (DCP) were integrated electronically with thermall sensing systems, emplaced and operated in an analog mode at selected thermally significant volcanic and geothermal sites. The DCP's transmitted 3260 messages comprising 26,080 ambient, surface, and near-surface temperature records at an accuracy of ±1.15 °C for 1121 instrument days between November 14, 1972 and April 17, 1974. In harsh, windy, high-altitude volcanic environments the DCP functioned best with a small dipole antenna. Sixteen kg of alkaline batteries provided a viable power supply for the DCP systems, operated at a low-duty cycle, for 5 to 8 months. A proposed solar power supply system would lengthen the period of unattended operation of the system considerably. Special methods of data handling such as data storage via a proposed memory system would increase the significance of the twice-daily data reception enabling the DCP's to record full diurnal-temperature cycles at volcanic or geothermal sites. Refinements in the temperature-monitoring system designed and operated in experiment SR 251 included a backup system consisting of a multipoint temperature scanner, a servo mechanism and an analog-to-digital recorder. Improvements were made in temperature-probe design and in construction of corrosion-resistant seals by use of a hydrofluoric-acid-etching technique.

  4. Electron tunneling in proteins program.

    PubMed

    Hagras, Muhammad A; Stuchebrukhov, Alexei A

    2016-06-05

    We developed a unique integrated software package (called Electron Tunneling in Proteins Program or ETP) which provides an environment with different capabilities such as tunneling current calculation, semi-empirical quantum mechanical calculation, and molecular modeling simulation for calculation and analysis of electron transfer reactions in proteins. ETP program is developed as a cross-platform client-server program in which all the different calculations are conducted at the server side while only the client terminal displays the resulting calculation outputs in the different supported representations. ETP program is integrated with a set of well-known computational software packages including Gaussian, BALLVIEW, Dowser, pKip, and APBS. In addition, ETP program supports various visualization methods for the tunneling calculation results that assist in a more comprehensive understanding of the tunneling process. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Automated Cough Assessment on a Mobile Platform

    PubMed Central

    2014-01-01

    The development of an Automated System for Asthma Monitoring (ADAM) is described. This consists of a consumer electronics mobile platform running a custom application. The application acquires an audio signal from an external user-worn microphone connected to the device analog-to-digital converter (microphone input). This signal is processed to determine the presence or absence of cough sounds. Symptom tallies and raw audio waveforms are recorded and made easily accessible for later review by a healthcare provider. The symptom detection algorithm is based upon standard speech recognition and machine learning paradigms and consists of an audio feature extraction step followed by a Hidden Markov Model based Viterbi decoder that has been trained on a large database of audio examples from a variety of subjects. Multiple Hidden Markov Model topologies and orders are studied. Performance of the recognizer is presented in terms of the sensitivity and the rate of false alarm as determined in a cross-validation test. PMID:25506590

  6. Implementation of Online Veterinary Hospital on Cloud Platform.

    PubMed

    Chen, Tzer-Shyong; Chen, Tzer-Long; Chung, Yu-Fang; Huang, Yao-Min; Chen, Tao-Chieh; Wang, Huihui; Wei, Wei

    2016-06-01

    Pet markets involve in great commercial possibilities, which boost thriving development of veterinary hospital businesses. The service tends to intensive competition and diversified channel environment. Information technology is integrated for developing the veterinary hospital cloud service platform. The platform contains not only pet medical services but veterinary hospital management and services. In the study, QR Code andcloud technology are applied to establish the veterinary hospital cloud service platform for pet search by labeling a pet's identification with QR Code. This technology can break the restriction on veterinary hospital inspection in different areas and allows veterinary hospitals receiving the medical records and information through the exclusive QR Code for more effective inspection. As an interactive platform, the veterinary hospital cloud service platform allows pet owners gaining the knowledge of pet diseases and healthcare. Moreover, pet owners can enquire and communicate with veterinarians through the platform. Also, veterinary hospitals can periodically send reminders of relevant points and introduce exclusive marketing information with the platform for promoting the service items and establishing individualized marketing. Consequently, veterinary hospitals can increase the profits by information share and create the best solution in such a competitive veterinary market with industry alliance.

  7. A Concept for Ionospheric Tomography from a CubeSat Platform at Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Chakrabarti, S.; Cook, T.; Finn, S. C.; Mendillo, C.; Martel, J.; Geddes, G.

    2015-12-01

    Remote sensing of the neutral atmosphere and ionosphere using extreme and far ultraviolet airglow has now been well established. It has been shown that the OI 135.6 nm nightglow can be used to infer the density of singly ionized atomic oxygen ions, the dominant ion in the F2 region. It has also been shown that zenith angle profiles of OII 83.4 nm emissions in the dayglow are sensitive to the electron density profiles as measured by incoherent scatter radar. Finally, simultaneous measurements of OII 61.7 nm and OII 83.4 nm emissions have been shown to yield daytime electron densities. We describe several key technological advances that have made it possible to consider self-consistent characterization of the thermosphere and ionosphere from a CubeSat platform.

  8. Polymeric capsule-cushioned leukocyte cell membrane vesicles as a biomimetic delivery platform

    NASA Astrophysics Data System (ADS)

    Gao, Changyong; Wu, Zhiguang; Lin, Zhihua; Lin, Xiankun; He, Qiang

    2016-02-01

    We report a biomimetic delivery of microsized capsule-cushioned leukocyte membrane vesicles (CLMVs) through the conversion of freshly reassembled leukocyte membrane vesicles (LMVs), including membrane lipids and membrane-bound proteins onto the surface of layer-by-layer assembled polymeric multilayer microcapsules. The leukocyte membrane coating was verified by using electron microscopy, a quartz crystal microbalance, dynamic light scattering, and confocal laser scanning microscopy. The resulting CLMVs have the ability to effectively evade clearance by the immune system and thus prolong the circulation time in mice. Moreover, we also show that the right-side-out leukocyte membrane coating can distinctly improve the accumulation of capsules in tumor sites through the molecular recognition of membrane-bound proteins of CLMVs with those of tumor cells in vitro and in vivo. The natural cell membrane camouflaged polymeric multilayer capsules with the immunosuppressive and tumor-recognition functionalities of natural leukocytes provide a new biomimetic delivery platform for disease therapy.We report a biomimetic delivery of microsized capsule-cushioned leukocyte membrane vesicles (CLMVs) through the conversion of freshly reassembled leukocyte membrane vesicles (LMVs), including membrane lipids and membrane-bound proteins onto the surface of layer-by-layer assembled polymeric multilayer microcapsules. The leukocyte membrane coating was verified by using electron microscopy, a quartz crystal microbalance, dynamic light scattering, and confocal laser scanning microscopy. The resulting CLMVs have the ability to effectively evade clearance by the immune system and thus prolong the circulation time in mice. Moreover, we also show that the right-side-out leukocyte membrane coating can distinctly improve the accumulation of capsules in tumor sites through the molecular recognition of membrane-bound proteins of CLMVs with those of tumor cells in vitro and in vivo. The natural

  9. 30 CFR 250.909 - What is the Platform Verification Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What is the Platform Verification Program? 250... Verification Program § 250.909 What is the Platform Verification Program? The Platform Verification Program is the MMS approval process for ensuring that floating platforms; platforms of a new or unique design...

  10. 30 CFR 250.904 - What is the Platform Approval Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... these requirements will satisfy MMS criteria for approval of fixed platforms of a proven design that... approval for a floating platform; a platform of unique design; or a platform being installed in deepwater (> 400 ft.) or a frontier area, you must also meet the requirements of the Platform Verification Program...

  11. Gas turbine bucket with impingement cooled platform

    DOEpatents

    Jones, Raphael Durand

    2002-01-01

    In a turbine bucket having an airfoil portion and a root portion, with a substantially planar platform at an interface between the airfoil portion and root portion, a platform cooling arrangement including at least one bore in the root portion and at least one impingement cooling tube seated in the bore, the tube extending beyond the bore with an outlet in close proximity to a targeted area on an underside of the platform.

  12. Geospatial Service Platform for Education and Research

    NASA Astrophysics Data System (ADS)

    Gong, J.; Wu, H.; Jiang, W.; Guo, W.; Zhai, X.; Yue, P.

    2014-04-01

    We propose to advance the scientific understanding through applications of geospatial service platforms, which can help students and researchers investigate various scientific problems in a Web-based environment with online tools and services. The platform also offers capabilities for sharing data, algorithm, and problem-solving knowledge. To fulfil this goal, the paper introduces a new course, named "Geospatial Service Platform for Education and Research", to be held in the ISPRS summer school in May 2014 at Wuhan University, China. The course will share cutting-edge achievements of a geospatial service platform with students from different countries, and train them with online tools from the platform for geospatial data processing and scientific research. The content of the course includes the basic concepts of geospatial Web services, service-oriented architecture, geoprocessing modelling and chaining, and problem-solving using geospatial services. In particular, the course will offer a geospatial service platform for handson practice. There will be three kinds of exercises in the course: geoprocessing algorithm sharing through service development, geoprocessing modelling through service chaining, and online geospatial analysis using geospatial services. Students can choose one of them, depending on their interests and background. Existing geoprocessing services from OpenRS and GeoPW will be introduced. The summer course offers two service chaining tools, GeoChaining and GeoJModelBuilder, as instances to explain specifically the method for building service chains in view of different demands. After this course, students can learn how to use online service platforms for geospatial resource sharing and problem-solving.

  13. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform

    NASA Astrophysics Data System (ADS)

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-11-01

    GO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05839b

  14. Evaluating De-centralised and Distributional Options for the Distributed Electronic Warfare Situation Awareness and Response Test Bed

    DTIC Science & Technology

    2013-12-01

    effectors (deployed on ground based or aerial platforms) to detect , identify, locate, track or suppress stationary or slow moving surface based RF...ground based or aerial platforms) to detect , identify, locate, track or suppress stationary or slow moving surface based RF emitting targets. In the...Electronic Support EO Electro-Optic FPGAs Field Programmable Gate Arrays IR Infra-red LADAR Laser Detection and Ranging OSX Mac OS X; the apple

  15. Feasibility of Floating Platform Systems for Wind Turbines: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musial, W.; Butterfield, S.; Boone, A.

    This paper provides a general technical description of several types of floating platforms for wind turbines. Platform topologies are classified into multiple- or single-turbine floaters and by mooring method. Platforms using catenary mooring systems are contrasted to vertical mooring systems and the advantages and disadvantages are discussed. Specific anchor types are described in detail. A rough cost comparison is performed for two different platform architectures using a generic 5-MW wind turbine. One platform is a Dutch study of a tri-floater platform using a catenary mooring system, and the other is a mono-column tension-leg platform developed at the National Renewable Energymore » Laboratory. Cost estimates showed that single unit production cost is $7.1 M for the Dutch tri-floater, and $6.5 M for the NREL TLP concept. However, value engineering, multiple unit series production, and platform/turbine system optimization can lower the unit platform costs to $4.26 M and $2.88 M, respectively, with significant potential to reduce cost further with system optimization. These foundation costs are within the range necessary to bring the cost of energy down to the DOE target range of $0.05/kWh for large-scale deployment of offshore floating wind turbines.« less

  16. Electron-excited energy dispersive x-ray spectrometry in the variable pressure scanning electron microscope (EDS/VPSEM): it's not microanalysis anymore!

    NASA Astrophysics Data System (ADS)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2015-10-01

    X-ray spectra suffer significantly degraded spatial resolution when measured in the variable-pressure scanning electron microscope (VPSEM, chamber pressure 1 Pa to 2500 Pa) as compared to highvacuum SEM (operating pressure < 10 mPa). Depending on the gas path length, electrons that are scattered hundreds of micrometers outside the focused beam can contribute 90% or more of the measured spectrum. Monte Carlo electron trajectory simulation, available in NIST DTSA-II, models the gas scattering and simulates mixed composition targets, e.g., particle on substrate. The impact of gas scattering at the major (C > 0.1 mass fraction), minor (0.01 <= C <= 0.1), and trace (C < 0.01) constituent levels can be estimated. NIST DTSA-II for Java-platforms is available free at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).

  17. Nanocalorimeter platform for in situ specific heat measurements and x-ray diffraction at low temperature

    NASA Astrophysics Data System (ADS)

    Willa, K.; Diao, Z.; Campanini, D.; Welp, U.; Divan, R.; Hudl, M.; Islam, Z.; Kwok, W.-K.; Rydh, A.

    2017-12-01

    Recent advances in electronics and nanofabrication have enabled membrane-based nanocalorimetry for measurements of the specific heat of microgram-sized samples. We have integrated a nanocalorimeter platform into a 4.5 T split-pair vertical-field magnet to allow for the simultaneous measurement of the specific heat and x-ray scattering in magnetic fields and at temperatures as low as 4 K. This multi-modal approach empowers researchers to directly correlate scattering experiments with insights from thermodynamic properties including structural, electronic, orbital, and magnetic phase transitions. The use of a nanocalorimeter sample platform enables numerous technical advantages: precise measurement and control of the sample temperature, quantification of beam heating effects, fast and precise positioning of the sample in the x-ray beam, and fast acquisition of x-ray scans over a wide temperature range without the need for time-consuming re-centering and re-alignment. Furthermore, on an YBa2Cu3O7-δ crystal and a copper foil, we demonstrate a novel approach to x-ray absorption spectroscopy by monitoring the change in sample temperature as a function of incident photon energy. Finally, we illustrate the new insights that can be gained from in situ structural and thermodynamic measurements by investigating the superheated state occurring at the first-order magneto-elastic phase transition of Fe2P, a material that is of interest for magnetocaloric applications.

  18. Two-dimensional electron gas in tricolor oxide interfaces

    NASA Astrophysics Data System (ADS)

    Cao, Yanwei; Kareev, Michael; Liu, Xiaoran; Middey, Srimanta; Meyers, Derek; Tchakhalian, Jak

    2014-03-01

    Understanding and manipulating spin of electrons in nanometer scale is the main challenge of current spintronics, recent emergent two-dimensional electron gas in oxide interface provides a good platform to investigate the spin behavior by covering an insulating magnetic oxide layer. In this work, take titanates as an example, ultra-thin tricolor (tri-compound) titanate superlattices ([LaTiO3/SrTiO3/YTiO3]) were grown in a layer-by-layer way by pulsed laser deposition. High sample quality and their electronic structures were characterized by the combination of in-situ photoelectron and ex-situ structure and surface morphology probes. Temperature-dependent sheet resistance indicates the presence of metallic interfaces in both [LaTiO3 /SrTiO3 ] and all the tricolor structures, whereas a [YTiO3 /SrTiO3] bi-layer shows insulating behavior. The tricolor titanate superlattices provide an opportunity to induce tunable spin-polarization into the two-dimensional electron gas (2DEG) with Mott carriers.

  19. A software platform to analyse the ethical issues of electronic patient privacy policy: the S3P example.

    PubMed

    Mizani, M A; Baykal, N

    2007-12-01

    Paper-based privacy policies fail to resolve the new changes posed by electronic healthcare. Protecting patient privacy through electronic systems has become a serious concern and is the subject of several recent studies. The shift towards an electronic privacy policy introduces new ethical challenges that cannot be solved merely by technical measures. Structured Patient Privacy Policy (S3P) is a software tool assuming an automated electronic privacy policy in an electronic healthcare setting. It is designed to simulate different access levels and rights of various professionals involved in healthcare in order to assess the emerging ethical problems. The authors discuss ethical issues concerning electronic patient privacy policies that have become apparent during the development and application of S3P.

  20. Urban search mobile platform modeling in hindered access conditions

    NASA Astrophysics Data System (ADS)

    Barankova, I. I.; Mikhailova, U. V.; Kalugina, O. B.; Barankov, V. V.

    2018-05-01

    The article explores the control system simulation and the design of the experimental model of the rescue robot mobile platform. The functional interface, a structural functional diagram of the mobile platform control unit, and a functional control scheme for the mobile platform of secure robot were modeled. The task of design a mobile platform for urban searching in hindered access conditions is realized through the use of a mechanical basis with a chassis and crawler drive, a warning device, human heat sensors and a microcontroller based on Arduino platforms.

  1. Implementation and performance test of cloud platform based on Hadoop

    NASA Astrophysics Data System (ADS)

    Xu, Jingxian; Guo, Jianhong; Ren, Chunlan

    2018-01-01

    Hadoop, as an open source project for the Apache foundation, is a distributed computing framework that deals with large amounts of data and has been widely used in the Internet industry. Therefore, it is meaningful to study the implementation of Hadoop platform and the performance of test platform. The purpose of this subject is to study the method of building Hadoop platform and to study the performance of test platform. This paper presents a method to implement Hadoop platform and a test platform performance method. Experimental results show that the proposed test performance method is effective and it can detect the performance of Hadoop platform.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    P-Mart was designed specifically to allow cancer researchers to perform robust statistical processing of publicly available cancer proteomic datasets. To date an online statistical processing suite for proteomics does not exist. The P-Mart software is designed to allow statistical programmers to utilize these algorithms through packages in the R programming language as well as offering a web-based interface using the Azure cloud technology. The Azure cloud technology also allows the release of the software via Docker containers.

  3. Scalable, High-performance 3D Imaging Software Platform: System Architecture and Application to Virtual Colonoscopy

    PubMed Central

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli; Brett, Bevin

    2013-01-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system. PMID:23366803

  4. Spintronic microfluidic platform for biomedical and environmental applications

    NASA Astrophysics Data System (ADS)

    Cardoso, F. A.; Martins, V. C.; Fonseca, L. P.; Germano, J.; Sousa, L. A.; Piedade, M. S.; Freitas, P. P.

    2010-09-01

    Faster, more sensitive and easy to operate biosensing devices still are a need at important areas such as biomedical diagnostics, food control and environmental monitoring. Recently, spintronic-devices have emerged as a promising alternative to the existent technologies [1-3]. A number of advantages, namely high sensitivity, easy integration, miniaturization, scalability, robustness and low cost make these devices potentially capable of responding to the existent technological need. In parallel, the field of microfluidics has shown great advances [4]. Microfluidic systems allow the analysis of small sample volumes (from micro- down to pico-liters), often by automate sample processing with the ability to integrate several steps into a single device (analyte amplification, concentration, separation and/or labeling), all in a reduced assay time (minutes to hours) and affordable cost. The merging of these two technologies, magnetoresistive biochips and microfluidics, will enable the development of highly competitive devices. This work reports the integration of a magnetoresistive biochip with a microfluidic system inside a portable and autonomous electronic platform aiming for a fully integrated device. A microfluidic structure fabricated in polydimethylsiloxane with dimensions of W: 0.5mm, H: 0.1mm, L: 10mm, associated to a mechanical system to align and seal the channel by pressure is presented (Fig. 1) [5]. The goal is to perform sample loading and transportation over the chip and simultaneously control the stringency and uniformity of the wash-out process. The biochip output is acquired by an electronic microsystem incorporating the circuitry to control, address and read-out the 30 spin-valve sensors sequentially (Fig. 1) [2]. This platform is being applied to the detection of water-borne microbial pathogens (e.g. Salmonella and Escherichia coli) and genetic diseases diagnosis (e.g. cystic fibrosis) through DNA hybridization assays. Open chamber measurements were

  5. Optically phase-locked electronic speckle pattern interferometer

    NASA Astrophysics Data System (ADS)

    Moran, Steven E.; Law, Robert; Craig, Peter N.; Goldberg, Warren M.

    1987-02-01

    The design, theory, operation, and characteristics of an optically phase-locked electronic speckle pattern interferometer (OPL-ESPI) are described. The OPL-ESPI system couples an optical phase-locked loop with an ESPI system to generate real-time equal Doppler speckle contours of moving objects from unstable sensor platforms. In addition, the optical phase-locked loop provides the basis for a new ESPI video signal processing technique which incorporates local oscillator phase shifting coupled with video sequential frame subtraction.

  6. Platinum nanoparticles functionalized nitrogen doped graphene platform for sensitive electrochemical glucose biosensing.

    PubMed

    Yang, Zhanjun; Cao, Yue; Li, Juan; Jian, Zhiqin; Zhang, Yongcai; Hu, Xiaoya

    2015-04-29

    In this work, we reported an efficient platinum nanoparticles functionalized nitrogen doped graphene (PtNPs@NG) nanocomposite for devising novel electrochemical glucose biosensor for the first time. The fabricated PtNPs@NG and biosensor were characterized using transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, static water contact angle, UV-vis spectroscopy, electrochemical impedance spectra and cyclic voltammetry, respectively. PtNPs@NG showed large surface area and excellent biocompatibility, and enhanced the direct electron transfer between enzyme molecules and electrode surface. The glucose oxidase (GOx) immobilized on PtNPs@NG nanocomposite retained its bioactivity, and exhibited a surface controlled, quasi-reversible and fast electron transfer process. The constructed glucose biosensor showed wide linear range from 0.005 to 1.1mM with high sensitivity of 20.31 mA M(-1) cm(-2). The detection limit was calculated to be 0.002 mM at signal-to-noise of 3, which showed 20-fold decrease in comparison with single NG-based electrochemical biosensor for glucose. The proposed glucose biosensor also demonstrated excellent selectivity, good reproducibility, acceptable stability, and could be successfully applied in the detection of glucose in serum samples at the applied potential of -0.33 V. This research provided a promising biosensing platform for the development of excellent electrochemical biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Visualizing ligand molecules in Twilight electron density.

    PubMed

    Weichenberger, Christian X; Pozharski, Edwin; Rupp, Bernhard

    2013-02-01

    Three-dimensional models of protein structures determined by X-ray crystallography are based on the interpretation of experimentally derived electron-density maps. The real-space correlation coefficient (RSCC) provides an easily comprehensible, objective measure of the residue-based fit of atom coordinates to electron density. Among protein structure models, protein-ligand complexes are of special interest, given their contribution to understanding the molecular underpinnings of biological activity and to drug design. For consumers of such models, it is not trivial to determine the degree to which ligand-structure modelling is biased by subjective electron-density interpretation. A standalone script, Twilight, is presented for the analysis, visualization and annotation of a pre-filtered set of 2815 protein-ligand complexes deposited with the PDB as of 15 January 2012 with ligand RSCC values that are below a threshold of 0.6. It also provides simplified access to the visualization of any protein-ligand complex available from the PDB and annotated by the Uppsala Electron Density Server. The script runs on various platforms and is available for download at http://www.ruppweb.org/twilight/.

  8. eTRIKS platform: Conception and operation of a highly scalable cloud-based platform for translational research and applications development.

    PubMed

    Bussery, Justin; Denis, Leslie-Alexandre; Guillon, Benjamin; Liu, Pengfeï; Marchetti, Gino; Rahal, Ghita

    2018-04-01

    We describe the genesis, design and evolution of a computing platform designed and built to improve the success rate of biomedical translational research. The eTRIKS project platform was developed with the aim of building a platform that can securely host heterogeneous types of data and provide an optimal environment to run tranSMART analytical applications. Many types of data can now be hosted, including multi-OMICS data, preclinical laboratory data and clinical information, including longitudinal data sets. During the last two years, the platform has matured into a robust translational research knowledge management system that is able to host other data mining applications and support the development of new analytical tools. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Blade platform seal for ceramic/metal rotor assembly

    DOEpatents

    Wertz, John L.

    1982-01-01

    A combination ceramic and metal turbine rotor for use in high temperature gas turbine engines includes a metal rotor disc having a rim with a plurality of circumferentially spaced blade root retention slots therein to receive a plurality of ceramic blades, each including side platform segments thereon and a dovetail configured root slidably received in one of the slots. Adjacent ones of the platform segments including edge portions thereon closely spaced when the blades are assembled to form expansion gaps in an annular flow surface for gas passage through the blades and wherein the assembly further includes a plurality of unitary seal members on the rotor connected to its rim and each including a plurality of spaced, axially extending, flexible fingers that underlie and conform to the edge portions of the platform segments and which are operative at turbine operating temperatures and speeds to distribute loading on the platform segments as the fingers are seated against the underside of the blade platforms to seal the gaps without undesirably stressing thin web ceramic sections of the platform.

  10. Programmable data collection platform study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The results of a feasibility study incorporating microprocessors in data collection platforms in described. An introduction to microcomputer hardware and software concepts is provided. The influence of microprocessor technology on the design of programmable data collection platform hardware is discussed. A standard modular PDCP design capable of meeting the design goals is proposed, and the process of developing PDCP programs is examined. A description of design and construction of the UT PDCP development system is given.

  11. Fully suspended slot waveguide platform

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Cheng, Zhenzhou; Wu, Xinru; Sun, Xiankai; Tsang, Hon Ki

    2018-02-01

    A fully suspended slot waveguide (FSSWG) platform, including straight slot waveguides, 90° bends, high-Q racetrack resonators, and strip-to-slot mode converters, is demonstrated for broadband and low-loss operation in the mid-infrared spectral region. The proposed FSSWG platform has inherent merits of a broad spectral range of transparency which is limited only by the absorption of silicon, strong light-analyte interaction, good mechanical stability, and single lithography step fabrication process. By using asymmetric FSSWGs, the propagation loss, bending loss, and intrinsic optical Q factor are demonstrated to be 2.8 dB/cm, 0.15 dB/90°, and 12 600, respectively. The average conversion efficiency of a mode converter is 95.4% over a bandwidth of 170 nm and 97.0% at 2231 nm. The FSSWG platform would be promising for a long-range and cavity-enhanced light-analyte interaction.

  12. Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques.

    PubMed

    Mohammed, Muzaffer; Clement, Travis C; Aslan, Kadir

    2014-12-02

    In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400-800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72-24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally.

  13. Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques

    PubMed Central

    Mohammed, Muzaffer; Clement, Travis C.; Aslan, Kadir

    2014-01-01

    In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400–800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72–24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally. PMID:25568813

  14. ICDA: A Platform for Intelligent Care Delivery Analytics

    PubMed Central

    Gotz, David; Stavropoulos, Harry; Sun, Jimeng; Wang, Fei

    2012-01-01

    The identification of high-risk patients is a critical component in improving patient outcomes and managing costs. This paper describes the Intelligent Care Delivery Analytics platform (ICDA), a system which enables risk assessment analytics that process large collections of dynamic electronic medical data to identify at-risk patients. ICDA works by ingesting large volumes of data into a common data model, then orchestrating a collection of analytics that identify at-risk patients. It also provides an interactive environment through which users can access and review the analytics results. In addition, ICDA provides APIs via which analytics results can be retrieved to surface in external applications. A detailed review of ICDA’s architecture is provided. Descriptions of four use cases are included to illustrate ICDA’s application within two different data environments. These use cases showcase the system’s flexibility and exemplify the types of analytics it enables. PMID:23304296

  15. A multiple pointing-mount control strategy for space platforms

    NASA Technical Reports Server (NTRS)

    Johnson, C. D.

    1992-01-01

    A new disturbance-adaptive control strategy for multiple pointing-mount space platforms is proposed and illustrated by consideration of a simplified 3-link dynamic model of a multiple pointing-mount space platform. Simulation results demonstrate the effectiveness of the new platform control strategy. The simulation results also reveal a system 'destabilization phenomena' that can occur if the set of individual platform-mounted experiment controllers are 'too responsive.'

  16. The Personal Motion Platform

    NASA Technical Reports Server (NTRS)

    Park, Brian Vandellyn

    1993-01-01

    The Neutral Body Posture experienced in microgravity creates a biomechanical equilibrium by enabling the internal forces within the body to find their own balance. A patented reclining chair based on this posture provides a minimal stress environment for interfacing with computer systems for extended periods. When the chair is mounted on a 3 or 6 axis motion platform, a generic motion simulator for simulated digital environments is created. The Personal Motion Platform provides motional feedback to the occupant in synchronization with their movements inside the digital world which enhances the simulation experience. Existing HMD based simulation systems can be integrated to the turnkey system. Future developments are discussed.

  17. Electronic Self-report Assessment--Cancer (ESRA-C): Working towards an integrated survey system.

    PubMed

    Karras, Bryant T; Wolpin, Seth; Lober, William B; Bush, Nigel; Fann, Jesse R; Berry, Donna L

    2006-01-01

    The Clinical Informatics Research Group and Biobehavioral Nursing and Health Systems at the University of Washington are working with interdisciplinary teams to improve patient care and tracking of patient-reported symptoms and outcomes by creating an extensible web-based survey and intervention platform. The findings and cumulative experience from these processes have led to incremental improvements and variations in each new implementation of the platform. This paper presents progress in the first year of a three-year NIH study entitled Electronic Self Report Assessment--Cancer (ESRA-C). The project's goals are to enhance and evaluate the web-based computerized patient self-reporting and assessment system at the Seattle Cancer Care Alliance. Preliminary work and lessons learned in the modification of the platform and enhancements to the system will be described.

  18. Unsupervised detection of salt marsh platforms: a topographic method

    NASA Astrophysics Data System (ADS)

    Goodwin, Guillaume C. H.; Mudd, Simon M.; Clubb, Fiona J.

    2018-03-01

    Salt marshes filter pollutants, protect coastlines against storm surges, and sequester carbon, yet are under threat from sea level rise and anthropogenic modification. The sustained existence of the salt marsh ecosystem depends on the topographic evolution of marsh platforms. Quantifying marsh platform topography is vital for improving the management of these valuable landscapes. The determination of platform boundaries currently relies on supervised classification methods requiring near-infrared data to detect vegetation, or demands labour-intensive field surveys and digitisation. We propose a novel, unsupervised method to reproducibly isolate salt marsh scarps and platforms from a digital elevation model (DEM), referred to as Topographic Identification of Platforms (TIP). Field observations and numerical models show that salt marshes mature into subhorizontal platforms delineated by subvertical scarps. Based on this premise, we identify scarps as lines of local maxima on a slope raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. We test the TIP method using lidar-derived DEMs from six salt marshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and unsupervised classification exceeds 94 % for DEM resolutions of 1 m, with all but one site maintaining an accuracy superior to 90 % for resolutions up to 3 m. For resolutions of 1 m, platforms detected with the TIP method are comparable in surface area to digitised platforms and have similar elevation distributions. We also find that our method allows for the accurate detection of local block failures as small as 3 times the DEM resolution. Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, unsupervised classification categorises them as part of the tidal flat, causing an increase in false negatives and overall platform

  19. Measurement of baseline and orientation between distributed aerospace platforms.

    PubMed

    Wang, Wen-Qin

    2013-01-01

    Distributed platforms play an important role in aerospace remote sensing, radar navigation, and wireless communication applications. However, besides the requirement of high accurate time and frequency synchronization for coherent signal processing, the baseline between the transmitting platform and receiving platform and the orientation of platform towards each other during data recording must be measured in real time. In this paper, we propose an improved pulsed duplex microwave ranging approach, which allows determining the spatial baseline and orientation between distributed aerospace platforms by the proposed high-precision time-interval estimation method. This approach is novel in the sense that it cancels the effect of oscillator frequency synchronization errors due to separate oscillators that are used in the platforms. Several performance specifications are also discussed. The effectiveness of the approach is verified by simulation results.

  20. Creative Uses of Custom Electronics for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Hicks, S.; Aufdenkampe, A. K.; Montgomery, D. S.

    2012-12-01

    The ability to build custom electronic devices specifically suited to a unique task has gotten easier and cheaper, thanks to the recent popularity of open source electronics platforms like Arduino. Using Arduino-based processor boards, we have been creating a variety of helpful devices to perform functions that would have been too expensive to implement with standard methods and commercial hardware. The Christina River Basin CZO is currently operating dozens of homemade dataloggers that are connected to different types of environmental sensors. Most of these Arduino loggers have been deployed for over a year, so our experiences with them and their sensors have taught us a lot about the reliability and accuracy of both the loggers and the sensors. Some loggers also have the capability for wireless radio or ethernet data transmission for reporting live data to web sites for instant graphing or archiving. Other Arduino devices have the ability to be controlled remotely through web sites or telephones, making it easy to remotely trigger sample pumps or valves. The open-source nature of Arduino means collaboration is easy because the circuit schematics and source code for programming the boards can be shared between users. And because Arduino devices are easy to use and program, we developed an interface board that allows educators to easily connect a variety of inexpensive environmental sensors to an Arduino board. Then the students can write and upload simple programs to interact with the sensors, making it a very effective tool for teaching electronics and environmental science at the same time. The flexibility and capability of electronics prototyping platforms like Arduino mean these simple boards can cheaply and effectively perform a countless number of tasks for projects in environmental science and education.

  1. Drowned carbonate platforms in the Huon Gulf, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Webster, Jody M.; Wallace, Laura; Silver, Eli; Applegate, Bruce; Potts, Donald; Braga, Juan Carlos; Riker-Coleman, Kristin; Gallup, Christina

    2004-11-01

    The western Huon Gulf, Papua New Guinea, is an actively subsiding foreland basin dominated by drowned carbonate platforms. We investigated these platforms using new high-resolution multibeam, side-scan sonar and seismic data, combined with submersible observations and previously published radiometric and sedimentary facies data. The data reveal 14 distinct drowned carbonate platforms and numerous pinnacles/banks that increase in age (˜20-450 kyr) and depth (0.1-2.5 km) NE toward the Ramu-Markham Trench. Superimposed on this overall downward flexing of the platforms toward the trench is a systematic tilting of the deep platforms 15 m/km toward the NW and the shallow platforms 2 m/km toward the SE. This may reflect the encroaching thrust load from the NW (Finisterre Range) and spatial variations in the flexural rigidity of the underlying basement. The drowned platforms form a complex system of promontories and reentrants, with abundant pinnacles and banks preserved at similar depths seaward of the main platforms. This configuration closely mimics the present-day Huon coastline and its seaward islands fringed by modern coral reefs. The platforms retain structural, morphologic, and sedimentary facies evidence of primary platform growth, drowning, and subsequent backstepping, despite some lateral erosion of the platform margins (<100 m slope defacement) by mass wasting. Both platforms and pinnacles are composite features containing multiple terrace levels and notches, corresponding to multiple phases of growth, emergence, and drowning in response to rapid climatic and sea level changes during the evolution of each structure. On the basis of all observational and numerical modeling data, we propose a chronology for the initiation, growth, and drowning of the 14 platforms. Over shorter timescales (≤100 kyr) the rate and amplitude of eustatic sea level changes are critical in controlling initiation, growth, drowning or subaerial exposure, subsequent reinitiation, and

  2. Toward Ubiquitous Communication Platform for Emergency Medical Care

    NASA Astrophysics Data System (ADS)

    Ishibashi, Kenichi; Morishima, Naoto; Kanbara, Masayuki; Sunahara, Hideki; Imanishi, Masami

    Interaction between emergency medical technicians (EMTs) and doctors is essential in emergency medical care. Doctors require diverse information related to a patient to provide efficient aid. In 2005, we started the Ikoma119 project and have developed a ubiquitous communication platform for emergency medical care called Mobile ER. Our platform, which is based on wireless internet technology, has such desirable properties as low-cost, location-independent service, and ease of service introduction. We provide an overview of our platform and describe the services that we have developed. We also discuss the remaining issues to realize our platform's actual operation.

  3. Floor Plans Level 15 Load Platform, Level 17 Lower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Floor Plans - Level 15 Load Platform, Level 17 Lower Platform, Level 22 and Upper Platform, and Level 27 - Marshall Space Flight Center, Saturn V S-IC Static Test Facility, West Test Area, Huntsville, Madison County, AL

  4. Geostationary platform systems concepts definition study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The results of a geostationary platform concept analysis are summarized. Mission and payloads definition, concept selection, the requirements of an experimental platform, supporting research and technology, and the Space Transportation System interface requirements are addressed. It is concluded that platforms represent a logical extension of current trends toward larger, more complex, multifrequency satellites. Geostationary platforms offer significant cost savings compared to individual satellites, with the majority of these economies being realized with single Shuttle launched platforms. Further cost savings can be realized, however, by having larger platforms. Platforms accommodating communications equipment that operates at multiple frequencies and which provide larger scale frequency reuse through the use of large aperture multibeam antennas and onboard switching maximize the useful capacity of the orbital arc and frequency spectrum. Projections of market demand indicate that such conservation measures are clearly essential if orderly growth is to be provided for. In addition, it is pointed out that a NASA experimental platform is required to demonstrate the technologies necessary for operational geostationary platforms of the 1990's.

  5. Gapped electronic structure of epitaxial stanene on InSb(111)

    DOE PAGES

    Xu, Cai-Zhi; Chan, Yang-Hao; Chen, Peng; ...

    2018-01-11

    We report that stanene (single-layer gray tin), with an electronic structure akin to that of graphene but exhibiting a much larger spin-orbit gap, offers a promising platform for room-temperature electronics based on the quantum spin Hall (QSH) effect. This material has received much theoretical attention, but a suitable substrate for stanene growth that results in an overall gapped electronic structure has been elusive; a sizable gap is necessary for room-temperature applications. Here, we report a study of stanene, epitaxially grown on the (111)B-face of indium antimonide (InSb). Angle-resolved photoemission spectroscopy measurements reveal a gap of 0.44 eV, in agreement withmore » our first-principles calculations. Lastly, the results indicate that stanene on InSb(111) is a strong contender for electronic QSH applications.« less

  6. Gapped electronic structure of epitaxial stanene on InSb(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Cai-Zhi; Chan, Yang-Hao; Chen, Peng

    We report that stanene (single-layer gray tin), with an electronic structure akin to that of graphene but exhibiting a much larger spin-orbit gap, offers a promising platform for room-temperature electronics based on the quantum spin Hall (QSH) effect. This material has received much theoretical attention, but a suitable substrate for stanene growth that results in an overall gapped electronic structure has been elusive; a sizable gap is necessary for room-temperature applications. Here, we report a study of stanene, epitaxially grown on the (111)B-face of indium antimonide (InSb). Angle-resolved photoemission spectroscopy measurements reveal a gap of 0.44 eV, in agreement withmore » our first-principles calculations. Lastly, the results indicate that stanene on InSb(111) is a strong contender for electronic QSH applications.« less

  7. Tomato bushy stunt virus (TBSV), a versatile platform for polyvalent display of antigenic epitopes and vaccine design.

    PubMed

    Kumar, Shantanu; Ochoa, Wendy; Singh, Pratik; Hsu, Catherine; Schneemann, Anette; Manchester, Marianne; Olson, Mark; Reddy, Vijay

    2009-05-25

    Viruses-like particles (VLPs) are frequently being used as platforms for polyvalent display of foreign epitopes of interest on their capsid surface to improve their presentation enhancing the antigenicity and host immune response. In the present study, we used the VLPs of Tomato bushy stunt virus (TBSV), an icosahedral plant virus, as a platform to display 180 copies of 16 amino acid epitopes of ricin toxin fused to the C-terminal end of a modified TBSV capsid protein (NDelta52). Expression of the chimeric recombinant protein in insect cells resulted in spontaneous assembly of VLPs displaying the ricin epitope. Cryo-electron microscopy and image reconstruction of the chimeric VLPs at 22 A resolution revealed the locations and orientation of the ricin epitope exposed on the TBSV capsid surface. Furthermore, injection of chimeric VLPs into mice generated antisera that detected the native ricin toxin. The ease of fusing of short peptides of 15-20 residues and their ability to form two kinds (T=1, T=3) of bio-nanoparticles that result in the display of 60 or 180 copies of less constrained and highly exposed antigenic epitopes makes TBSV an attractive and versatile display platform for vaccine design.

  8. A survey of informatics platforms that enable distributed comparative effectiveness research using multi-institutional heterogeneous clinical data

    PubMed Central

    Sittig, Dean F.; Hazlehurst, Brian L.; Brown, Jeffrey; Murphy, Shawn; Rosenman, Marc; Tarczy-Hornoch, Peter; Wilcox, Adam B.

    2012-01-01

    Comparative Effectiveness Research (CER) has the potential to transform the current healthcare delivery system by identifying the most effective medical and surgical treatments, diagnostic tests, disease prevention methods and ways to deliver care for specific clinical conditions. To be successful, such research requires the identification, capture, aggregation, integration, and analysis of disparate data sources held by different institutions with diverse representations of the relevant clinical events. In an effort to address these diverse demands, there have been multiple new designs and implementations of informatics platforms that provide access to electronic clinical data and the governance infrastructure required for inter-institutional CER. The goal of this manuscript is to help investigators understand why these informatics platforms are required and to compare and contrast six, large-scale, recently funded, CER-focused informatics platform development efforts. We utilized an 8-dimension, socio-technical model of health information technology use to help guide our work. We identified six generic steps that are necessary in any distributed, multi-institutional CER project: data identification, extraction, modeling, aggregation, analysis, and dissemination. We expect that over the next several years these projects will provide answers to many important, and heretofore unanswerable, clinical research questions. PMID:22692259

  9. Protein-Based Nanomedicine Platforms for Drug Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Ham, Aihui; Tang, Zhiwen; Wu, Hong

    2009-08-03

    Drug delivery systems have been developed for many years, however some limitations still hurdle the pace of going to clinical phase, for example, poor biodistribution, drug molecule cytotoxicity, tissue damage, quick clearance from the circulation system, solubility and stability of drug molecules. To overcome the limitations of drug delivery, biomaterials have to be developed and applied to drug delivery to protect the drug molecules and to enhance the drug’s efficacy. Protein-based nanomedicine platforms for drug delivery are platforms comprised of naturally self-assembled protein subunits of the same protein or a combination of proteins making up a complete system. They aremore » ideal for drug delivery platforms due to their biocompatibility and biodegradability coupled with low toxicity. A variety of proteins have been used and characterized for drug delivery systems including the ferritin/apoferritin protein cage, plant derived viral capsids, the small Heat shock protein (sHsp) cage, albumin, soy and whey protein, collagen, and gelatin. There are many different types and shapes that have been prepared to deliver drug molecules using protein-based platforms including the various protein cages, microspheres, nanoparticles, hydrogels, films, minirods and minipellets. There are over 30 therapeutic compounds that have been investigated with protein-based drug delivery platforms for the potential treatment of various cancers, infectious diseases, chronic diseases, autoimmune diseases. In protein-based drug delivery platforms, protein cage is the most newly developed biomaterials for drug delivery and therapeutic applications. Their uniform sizes, multifunctions, and biodegradability push them to the frontier for drug delivery. In this review, the recent strategic development of drug delivery has been discussed with a special emphasis upon the polymer based, especially protein-based nanomedicine platforms for drug delivery. The advantages and disadvantages are

  10. Psychosocial burden among offshore drilling platform employees.

    PubMed

    Leszczyńska, Irena; Jeżewska, Maria

    2010-01-01

    Conditions of work on offshore drilling platforms are particularly hard due to extreme environmental situations created both by nature and technological processes. Oil drilling workers employed on the open sea are potentially exposed to permanently high stress. Apart from the obvious objective factors affecting drilling platform employees, a great role in the general work-related stress level is played by the working conditions and work-related psychosocial factors, defined according to Karask's concept as demands, control, and social support. A total of 184 drill platform workers were examined using objective and subjective research methods. The level of subjective stress among drilling platform workers is lower than the level of objective stress and the stress resulting from prognoses related with specificity of work in extremely hard conditions (audit). The examinations of drilling platform workers reveal a positive role of stress in psychological adaptation, being a special case of the "work ethos" and attachment to the firm. In such investigations of work-related stress on drilling platforms, which are very specific workplaces, a multi-aspect character, sociological and economic aspects, organizational culture conditions in the firm, and a tendency to conceal ailments and the stress experienced should be taken into account. It is important to apply measures referring to at least three different types of evidence (objective demands, subjective stress, health problems reported). Otherwise, the result reflecting work-related stress may not be objective and far from the truth.

  11. A novel rotating experimental platform in a superconducting magnet.

    PubMed

    Chen, Da; Cao, Hui-Ling; Ye, Ya-Jing; Dong, Chen; Liu, Yong-Ming; Shang, Peng; Yin, Da-Chuan

    2016-08-01

    This paper introduces a novel platform designed to be used in a strong static magnetic field (in a superconducting magnet). The platform is a sample holder that rotates in the strong magnetic field. Any samples placed in the platform will rotate due to the rotation of the sample holder. With this platform, a number of experiments such as material processing, culture of biological systems, chemical reactions, or other processes can be carried out. In this report, we present some preliminary experiments (protein crystallization, cell culture, and seed germination) conducted using this platform. The experimental results showed that the platform can affect the processes, indicating that it provides a novel environment that has not been investigated before and that the effects of such an environment on many different physical, chemical, or biological processes can be potentially useful for applications in many fields.

  12. Simulation of cooperating robot manipulators on a mobile platform

    NASA Technical Reports Server (NTRS)

    Murphy, Stephen H.; Wen, John Ting-Yung; Saridis, George N.

    1991-01-01

    The dynamic equations of motion are presented for two or more cooperating manipulators on a freely moving mobile platform. The system of cooperating robot manipulators forms a closed kinematic chain where the force of interaction must be included in the formulation of robot and platform dynamics. The formulation includes the full dynamic interactions from arms to platform and arm tip to arm tip, and the possible translation and rotation of the platform. The equations of motion are shown to be identical in structure to the fixed-platform cooperative manipulator dynamics. The number of DOFs of the system is sufficiently large to make recursive dynamic calculation methods potentially more efficient than closed-form solutions. A complete simulation with two 6-DOF manipulators of a free-floating platform is presented along a with a multiple-arm controller to position the common load.

  13. Communications platform payload definition study

    NASA Technical Reports Server (NTRS)

    Clopp, H. W.; Hawkes, T. A.; Bertles, C. R.; Pontano, B. A.; Kao, T.

    1986-01-01

    Large geostationary communications platforms were investigated in a number of studies since 1974 as a possible means to more effectively utilize the geostationary arc and electromagnetic spectrum and to reduce overall satellite communications system costs. The commercial feasibility of various communications platform payload concepts circa 1998 was addressed. Promising payload concepts were defined, recurring costs were estimated, and critical technologies needed to enable eventual commercialization were identified. Ten communications service aggregation scenarios describing potential groupings of service were developed for a range of conditions. Payload concepts were defined for four of these scenarios: (1) Land Mobile Satellite Service (LMSS) meets 100% of Contiguous United States (CONUS) plus Canada demand with a single platform; (2) Fixed Satellite Service (FSS) (trunking + Customer Premises Service (CPS)), meet 20% of CONUS demand;(3) FSS (trunking + CPS + video distribution), 10 to 13% of CONUS demand; and (4) FSS (20% of demand) + Inter Satellite Links (ISL) + Tracking and Data Relay Satellite System (TDRSS)/Tracking and Data Acquisition System (TDAS) Data Distribution.

  14. Impacts from Partial Removal of Decommissioned Oil and Gas Platforms on Fish Biomass and Production on the Remaining Platform Structure and Surrounding Shell Mounds

    PubMed Central

    Claisse, Jeremy T.; Pondella, Daniel J.; Love, Milton; Zahn, Laurel A.; Williams, Chelsea M.; Bull, Ann S.

    2015-01-01

    When oil and gas platforms become obsolete they go through a decommissioning process. This may include partial removal (from the surface to 26 m depth) or complete removal of the platform structure. While complete removal would likely eliminate most of the existing fish biomass and associated secondary production, we find that the potential impacts of partial removal would likely be limited on all but one platform off the coast of California. On average 80% of fish biomass and 86% of secondary fish production would be retained after partial removal, with above 90% retention expected for both metrics on many platforms. Partial removal would likely result in the loss of fish biomass and production for species typically found residing in the shallow portions of the platform structure. However, these fishes generally represent a small proportion of the fishes associated with these platforms. More characteristic of platform fauna are the primarily deeper-dwelling rockfishes (genus Sebastes). “Shell mounds” are biogenic reefs that surround some of these platforms resulting from an accumulation of mollusk shells that have fallen from the shallow areas of the platforms mostly above the depth of partial removal. We found that shell mounds are moderately productive fish habitats, similar to or greater than natural rocky reefs in the region at comparable depths. The complexity and areal extent of these biogenic habitats, and the associated fish biomass and production, will likely be reduced after either partial or complete platform removal. Habitat augmentation by placing the partially removed platform superstructure or some other additional habitat enrichment material (e.g., rock boulders) on the seafloor adjacent to the base of partially removed platforms provides additional options to enhance fish production, potentially mitigating reductions in shell mound habitat. PMID:26332384

  15. Impacts from Partial Removal of Decommissioned Oil and Gas Platforms on Fish Biomass and Production on the Remaining Platform Structure and Surrounding Shell Mounds.

    PubMed

    Claisse, Jeremy T; Pondella, Daniel J; Love, Milton; Zahn, Laurel A; Williams, Chelsea M; Bull, Ann S

    2015-01-01

    When oil and gas platforms become obsolete they go through a decommissioning process. This may include partial removal (from the surface to 26 m depth) or complete removal of the platform structure. While complete removal would likely eliminate most of the existing fish biomass and associated secondary production, we find that the potential impacts of partial removal would likely be limited on all but one platform off the coast of California. On average 80% of fish biomass and 86% of secondary fish production would be retained after partial removal, with above 90% retention expected for both metrics on many platforms. Partial removal would likely result in the loss of fish biomass and production for species typically found residing in the shallow portions of the platform structure. However, these fishes generally represent a small proportion of the fishes associated with these platforms. More characteristic of platform fauna are the primarily deeper-dwelling rockfishes (genus Sebastes). "Shell mounds" are biogenic reefs that surround some of these platforms resulting from an accumulation of mollusk shells that have fallen from the shallow areas of the platforms mostly above the depth of partial removal. We found that shell mounds are moderately productive fish habitats, similar to or greater than natural rocky reefs in the region at comparable depths. The complexity and areal extent of these biogenic habitats, and the associated fish biomass and production, will likely be reduced after either partial or complete platform removal. Habitat augmentation by placing the partially removed platform superstructure or some other additional habitat enrichment material (e.g., rock boulders) on the seafloor adjacent to the base of partially removed platforms provides additional options to enhance fish production, potentially mitigating reductions in shell mound habitat.

  16. Space transportation, satellite services, and space platforms

    NASA Technical Reports Server (NTRS)

    Disher, J. H.

    1979-01-01

    The paper takes a preview of the progressive development of vehicles for space transportation, satellite services, and orbital platforms. A low-thrust upper stage of either the ion engine or chemical type will be developed to transport large spacecraft and space platforms to and from GEO. The multimission spacecraft, space telescope, and other scientific platforms will require orbital serves going beyond that provided by the Shuttle's remote manipulator system, and plans call for extravehicular activity tools, improved remote manipulators, and a remote manned work station (the cherry picker).

  17. Research and application of mobile teaching platform

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Xue, Hongjiao

    2017-08-01

    The application of mobile technology in university digital campus is ripe. This article mainly introduced the necessity of teaching platform based on mobile Internet in the teaching of higher vocational education, and the key to the construction of the feasibility of mobile learning platform, which is a feasible and effective teaching model under the new situation, worthy of promotion. The design and application of teaching platform based on mobile Internet is the change of educational ideas and working methods, and is the new starting point of Higher Vocational education.

  18. Reconfigurable, Intelligently-Adaptive, Communication System, an SDR Platform

    NASA Technical Reports Server (NTRS)

    Roche, Rigoberto

    2016-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework to abstract the application software from the radio platform hardware. STRS aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. The Glenn Research Center (GRC) team made a software-defined radio (SDR) platform STRS compliant by adding an STRS operating environment and a field programmable gate array (FPGA) wrapper, capable of implementing each of the platforms interfaces, as well as a test waveform to exercise those interfaces. This effort serves to provide a framework toward waveform development on an STRS compliant platform to support future space communication systems for advanced exploration missions. Validated STRS compliant applications provided tested code with extensive documentation to potentially reduce risk, cost and efforts in development of space-deployable SDRs. This paper discusses the advantages of STRS, the integration of STRS onto a Reconfigurable, Intelligently-Adaptive, Communication System (RIACS) SDR platform, the sample waveform, and wrapper development efforts. The paper emphasizes the infusion of the STRS Architecture onto the RIACS platform for potential use in next generation SDRs for advance exploration missions.

  19. Reconfigurable, Intelligently-Adaptive, Communication System, an SDR Platform

    NASA Technical Reports Server (NTRS)

    Roche, Rigoberto J.; Shalkhauser, Mary Jo; Hickey, Joseph P.; Briones, Janette C.

    2016-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework to abstract the application software from the radio platform hardware. STRS aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. The NASA Glenn Research Center (GRC) team made a software defined radio (SDR) platform STRS compliant by adding an STRS operating environment and a field programmable gate array (FPGA) wrapper, capable of implementing each of the platforms interfaces, as well as a test waveform to exercise those interfaces. This effort serves to provide a framework toward waveform development onto an STRS compliant platform to support future space communication systems for advanced exploration missions. The use of validated STRS compliant applications provides tested code with extensive documentation to potentially reduce risk, cost and e ort in development of space-deployable SDRs. This paper discusses the advantages of STRS, the integration of STRS onto a Reconfigurable, Intelligently-Adaptive, Communication System (RIACS) SDR platform, and the test waveform and wrapper development e orts. The paper emphasizes the infusion of the STRS Architecture onto the RIACS platform for potential use in next generation flight system SDRs for advanced exploration missions.

  20. Ionospheric observations using GPS radio occultation from a nanosat platform

    NASA Astrophysics Data System (ADS)

    Bishop, R. L.; Redding, M.; Straus, P. R.

    2012-12-01

    The Compact Total Electron Content Sensor (CTECS) is a GPS radio occultation instrument designed for cubesat platforms that utilizes a COTS receiver, modified firmware, and a custom designed antenna. CTECS was placed on the Pico Satellite Solar Cell Testbed 2 (PSSC2) nanosat that was installed on the Space Shuttle Atlantis (STS-135). PSSC2 was successfully released from the shuttle on 20 July 2011 near 380 km altitude. Because of attitude control and power issues, only 13.5 hours of data was collected during its approximately 5-month mission life. Total Electron Content (TEC) observations were obtained and this presentation will present a summary of all TEC data analyzed from the mission. We will discuss the instrument challenges encountered, data issues, and future planned improvements to CTECS. Two CTECS flight units were delivered in the spring of 2012 for integration on the SMC/XR Space Environment NanoSatellite Experiment (SENSE) spacecrafts that are scheduled for launch in the second half of 2013. We will present a summary of the SENSE mission, performance of the improved CTECS sensors, and the results of ground and day-in-the-life testing.

  1. A Novel Sensor Platform Matching the Improved Version of IPMVP Option C for Measuring Energy Savings

    PubMed Central

    Tseng, Yen-Chieh; Lee, Da-Sheng; Lin, Cheng-Fang; Chang, Ching-Yuan

    2013-01-01

    It is easy to measure energy consumption with a power meter. However, energy savings cannot be directly computed by the powers measured using existing power meter technologies, since the power consumption only reflects parts of the real energy flows. The International Performance Measurement and Verification Protocol (IPMVP) was proposed by the Efficiency Valuation Organization (EVO) to quantify energy savings using four different methodologies of A, B, C and D. Although energy savings can be estimated following the IPMVP, there are limitations on its practical implementation. Moreover, the data processing methods of the four IPMVP alternatives use multiple sensors (thermometer, hygrometer, Occupant information) and power meter readings to simulate all facilities, in order to determine an energy usage benchmark and the energy savings. This study proposes a simple sensor platform to measure energy savings. Using usually the Electronic Product Code (EPC) global standard, an architecture framework for an information system is constructed that integrates sensors data, power meter readings and occupancy conditions. The proposed sensor platform is used to monitor a building with a newly built vertical garden system (VGS). A VGS shields solar radiation and saves on energy that would be expended on air-conditioning. With this platform, the amount of energy saved in the whole facility is measured and reported in real-time. The data are compared with those obtained from detailed measurement and verification (M&V) processes. The discrepancy is less than 1.565%. Using measurements from the proposed sensor platform, the energy savings for the entire facility are quantified, with a resolution of ±1.2%. The VGS gives an 8.483% daily electricity saving for the building. Thus, the results show that the simple sensor platform proposed by this study is more widely applicable than the four complicated IPMVP alternatives and the VGS is an effective tool in reducing the carbon

  2. Molecular self-assembly approaches for supramolecular electronic and organic electronic devices

    NASA Astrophysics Data System (ADS)

    Yip, Hin-Lap

    Molecular self-assembly represents an efficient bottom-up strategy to generate structurally well-defined aggregates of semiconducting pi-conjugated materials. The capability of tuning the chemical structures, intermolecular interactions and nanostructures through molecular engineering and novel materials processing renders it possible to tailor a large number of unprecedented properties such as charge transport, energy transfer and light harvesting. This approach does not only benefit traditional electronic devices based on bulk materials, but also generate a new research area so called "supramolecular electronics" in which electronic devices are built up with individual supramolecular nanostructures with size in the sub-hundred nanometers range. My work combined molecular self-assembly together with several novel materials processing techniques to control the nucleation and growth of organic semiconducting nanostructures from different type of pi-conjugated materials. By tailoring the interactions between the molecules using hydrogen bonds and pi-pi stacking, semiconducting nanoplatelets and nanowires with tunable sizes can be fabricated in solution. These supramolecular nanostructures were further patterned and aligned on solid substrates through printing and chemical templating methods. The capability to control the different hierarchies of organization on surface provides an important platform to study their structural-induced electronic properties. In addition to using molecular self-assembly to create different organic nanostructures, functional self-assembled monolayer (SAM) formed by spontaneous chemisorption on surfaces was used to tune the interfacial property in organic solar cells. Devices showed dramatically improved performance when appropriate SAMs were applied to optimize the contact property for efficiency charge collection.

  3. VAB Platform K(2) Lift & Install into Highbay 3

    NASA Image and Video Library

    2016-03-07

    A 250-ton crane is used to lift the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket high above the transfer aisle inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform is being lifted up for transfer into High Bay 3 for installation. The platform will be secured about 86 feet above the VAB floor, on tower E of the high bay. The K work platforms will provide access to the SLS core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.

  4. 30 CFR 250.904 - What is the Platform Approval Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... criteria for approval of fixed platforms of a proven design that will be placed in the shallow water areas... of unique design; or a platform being installed in deepwater (> 400 ft.) or a frontier area, you must also meet the requirements of the Platform Verification Program. The requirements of the Platform...

  5. Hexanuclear gold(I) phosphide complexes as platforms for multiple redox-active ferrocenyl units.

    PubMed

    Lee, Terence Kwok-Ming; Cheng, Eddie Chung-Chin; Zhu, Nianyong; Yam, Vivian Wing-Wah

    2014-01-03

    The synthesis, X-ray crystal structures, electrochemical, and spectroscopic studies of a series of hexanuclear gold(I) μ(3)-ferrocenylmethylphosphido complexes stabilized by bridging phosphine ligands, [Au(6)(P-P)(n)(Fc-CH(2)-P)(2)][PF(6)](2) (n=3, P-P=dppm (bis(diphenylphosphino)methane) (1), dppe (1,2-bis(diphenylphosphino)ethane) (2), dppp (1,3-bis(diphenylphosphino)propane) (3), Ph(2)PN(C(3)H(7))-PPh(2) (4), Ph(2)PN(Ph-CH(3)-p)PPh(2) (5), dppf (1,1′-bis(diphenylphosphino)ferrocene) (6); n=2, P-P=dpepp (bis(2-diphenylphosphinoethyl)phenylphosphine) (7)), as platforms for multiple redox-active ferrocenyl units, are reported. The investigation of the structural changes of the clusters has been probed by introducing different bridging phosphine ligands. This class of gold(I) μ(3)-ferrocenylmethylphosphido complexes has been found to exhibit one reversible oxidation couple, suggestive of the absence of electronic communication between the ferrocene units through the Au(6)P(2) cluster core, providing an understanding of the electronic properties of the hexanuclear Au(I) cluster linkage. The present complexes also serve as an ideal system for the design of multi-electron reservoir and molecular battery systems.

  6. The Prodiguer Messaging Platform

    NASA Astrophysics Data System (ADS)

    Greenslade, Mark; Denvil, Sebastien; Raciazek, Jerome; Carenton, Nicolas; Levavasseur, Guillame

    2014-05-01

    CONVERGENCE is a French multi-partner national project designed to gather HPC and informatics expertise to innovate in the context of running French climate models with differing grids and at differing resolutions. Efficient and reliable execution of these models and the management and dissemination of model output (data and meta-data) are just some of the complexities that CONVERGENCE aims to resolve. The Institut Pierre Simon Laplace (IPSL) is responsible for running climate simulations upon a set of heterogenous HPC environments within France. With heterogeneity comes added complexity in terms of simulation instrumentation and control. Obtaining a global perspective upon the state of all simulations running upon all HPC environments has hitherto been problematic. In this presentation we detail how, within the context of CONVERGENCE, the implementation of the Prodiguer messaging platform resolves complexity and permits the development of real-time applications such as: 1. a simulation monitoring dashboard; 2. a simulation metrics visualizer; 3. an automated simulation runtime notifier; 4. an automated output data & meta-data publishing pipeline; The Prodiguer messaging platform leverages a widely used open source message broker software called RabbitMQ. RabbitMQ itself implements the Advanced Message Queue Protocol (AMPQ). Hence it will be demonstrated that the Prodiguer messaging platform is built upon both open source and open standards.

  7. Developing a social media platform for nurses.

    PubMed

    Jackson, Jennifer; Kennedy, Maggie

    2015-11-18

    Social media tools provide opportunities for nurses to connect with colleagues and patients and to advance personally and professionally. This article describes the process of developing an innovative social media platform at a large, multi-centre teaching hospital, The Ottawa Hospital, Canada, and its benefits for nurses. The platform, TOH Nurses, was developed using a nursing process approach, involving assessment, planning, implementation and evaluation. The aim of this initiative was to address the barriers to communication inherent in the large number of nurses employed by the organisation, the physical size of the multi-centre hospital and the shift-work nature of nursing. The platform was used to provide educational materials for clinical nurses, and to share information about professional practice. The implications of using a social media platform in a healthcare setting were considered carefully during its development and implementation, including concerns regarding privacy and confidentiality.

  8. Adaptive oxide electronics: A review

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Ramanathan, Shriram

    2011-10-01

    Novel information processing techniques are being actively explored to overcome fundamental limitations associated with CMOS scaling. A new paradigm of adaptive electronic devices is emerging that may reshape the frontiers of electronics and enable new modalities. Creating systems that can learn and adapt to various inputs has generally been a complex algorithm problem in information science, albeit with wide-ranging and powerful applications from medical diagnosis to control systems. Recent work in oxide electronics suggests that it may be plausible to implement such systems at the device level, thereby drastically increasing computational density and power efficiency and expanding the potential for electronics beyond Boolean computation. Intriguing possibilities of adaptive electronics include fabrication of devices that mimic human brain functionality: the strengthening and weakening of synapses emulated by electrically, magnetically, thermally, or optically tunable properties of materials.In this review, we detail materials and device physics studies on functional metal oxides that may be utilized for adaptive electronics. It has been shown that properties, such as resistivity, polarization, and magnetization, of many oxides can be modified electrically in a non-volatile manner, suggesting that these materials respond to electrical stimulus similarly as a neural synapse. We discuss what device characteristics will likely be relevant for integration into adaptive platforms and then survey a variety of oxides with respect to these properties, such as, but not limited to, TaOx, SrTiO3, and Bi4-xLaxTi3O12. The physical mechanisms in each case are detailed and analyzed within the framework of adaptive electronics. We then review theoretically formulated and current experimentally realized adaptive devices with functional oxides, such as self-programmable logic and neuromorphic circuits. Finally, we speculate on what advances in materials physics and engineering may

  9. Multi-function microfluidic platform for sensor integration.

    PubMed

    Fernandes, Ana C; Semenova, Daria; Panjan, Peter; Sesay, Adama M; Gernaey, Krist V; Krühne, Ulrich

    2018-03-06

    The limited availability of metabolite-specific sensors for continuous sampling and monitoring is one of the main bottlenecks contributing to failures in bioprocess development. Furthermore, only a limited number of approaches exist to connect currently available measurement systems with high throughput reactor units. This is especially relevant in the biocatalyst screening and characterization stage of process development. In this work, a strategy for sensor integration in microfluidic platforms is demonstrated, to address the need for rapid, cost-effective and high-throughput screening in bioprocesses. This platform is compatible with different sensor formats by enabling their replacement and was built in order to be highly flexible and thus suitable for a wide range of applications. Moreover, this re-usable platform can easily be connected to analytical equipment, such as HPLC, laboratory scale reactors or other microfluidic chips through the use of standardized fittings. In addition, the developed platform includes a two-sensor system interspersed with a mixing channel, which allows the detection of samples that might be outside the first sensor's range of detection, through dilution of the sample solution up to 10 times. In order to highlight the features of the proposed platform, inline monitoring of glucose levels is presented and discussed. Glucose was chosen due to its importance in biotechnology as a relevant substrate. The platform demonstrated continuous measurement of substrate solutions for up to 12 h. Furthermore, the influence of the fluid velocity on substrate diffusion was observed, indicating the need for in-flow calibration to achieve a good quantitative output. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. 30 CFR 250.911 - If my platform is subject to the Platform Verification Program, what must I do?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a project management timeline, Gantt Chart, that depicts when interim and final reports required by... 30 Mineral Resources 2 2010-07-01 2010-07-01 false If my platform is subject to the Platform Verification Program, what must I do? 250.911 Section 250.911 Mineral Resources MINERALS MANAGEMENT SERVICE...

  11. Space platform utilities distribution study

    NASA Technical Reports Server (NTRS)

    Lefever, A. E.

    1980-01-01

    Generic concepts for the installation of power data and thermal fluid distribution lines on large space platforms were discussed. Connections with central utility subsystem modules and pallet interfaces were also considered. Three system concept study platforms were used as basepoints for the detail development. The tradeoff of high voltage low voltage power distribution and the impact of fiber optics as a data distribution mechanism were analyzed. Thermal expansion and temperature control of utility lines and ducts were considered. Technology developments required for implementation of the generic distribution concepts were identified.

  12. Nanocalorimeter platform for in situ specific heat measurements and x-ray diffraction at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willa, K.; Diao, Z.; Campanini, D.

    Recent advances in electronics and nanofabrication have enabled membrane-based nanocalorimetry for measurements of the specific heat of microgram-sized samples. We have integrated a nanocalorimeter platform into a 4.5 T split-pair vertical-field magnet to allow for the simultaneous measurement of the specific heat and x-ray scattering in magnetic fields and at temperatures as low as 4 K. This multi-modal approach empowers researchers to directly correlate scattering experiments with insights from thermodynamic properties including structural, electronic, orbital, and magnetic phase transitions. The use of a nanocalorimeter sample platform enables numerous technical advantages: precise measurement and control of the sample temperature, quantification ofmore » beam heating effects, fast and precise positioning of the sample in the x-ray beam, and fast acquisition of x-ray scans over a wide temperature range without the need for time-consuming re-centering and re-alignment. Furthermore, on an YBa2Cu3O7-delta crystal and a copper foil, we demonstrate a novel approach to x-ray absorption spectroscopy by monitoring the change in sample temperature as a function of incident photon energy. Finally, we illustrate the new insights that can be gained from in situ structural and thermodynamic measurements by investigating the superheated state occurring at the first-order magneto-elastic phase transition of Fe2P, a material that is of interest for magnetocaloric applications.« less

  13. Diamond photonics platform enabled by femtosecond laser writing

    PubMed Central

    Sotillo, Belén; Bharadwaj, Vibhav; Hadden, J. P.; Sakakura, Masaaki; Chiappini, Andrea; Fernandez, Toney Teddy; Longhi, Stefano; Jedrkiewicz, Ottavia; Shimotsuma, Yasuhiko; Criante, Luigino; Osellame, Roberto; Galzerano, Gianluca; Ferrari, Maurizio; Miura, Kiyotaka; Ramponi, Roberta; Barclay, Paul E.; Eaton, Shane Michael

    2016-01-01

    Diamond is a promising platform for sensing and quantum processing owing to the remarkable properties of the nitrogen-vacancy (NV) impurity. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532 nm laser light, even at room temperature. The NV’s states are isolated from environmental perturbations making their spin coherence comparable to trapped ions. An important breakthrough would be in connecting, using waveguides, multiple diamond NVs together optically. However, still lacking is an efficient photonic fabrication method for diamond akin to the photolithographic methods that have revolutionized silicon photonics. Here, we report the first demonstration of three dimensional buried optical waveguides in diamond, inscribed by focused femtosecond high repetition rate laser pulses. Within the waveguides, high quality NV properties are observed, making them promising for integrated magnetometer or quantum information systems on a diamond chip. PMID:27748428

  14. Fluidics platform and method for sample preparation

    DOEpatents

    Benner, Henry W.; Dzenitis, John M.

    2016-06-21

    Provided herein are fluidics platforms and related methods for performing integrated sample collection and solid-phase extraction of a target component of the sample all in one tube. The fluidics platform comprises a pump, particles for solid-phase extraction and a particle-holding means. The method comprises contacting the sample with one or more reagents in a pump, coupling a particle-holding means to the pump and expelling the waste out of the pump while the particle-holding means retains the particles inside the pump. The fluidics platform and methods herein described allow solid-phase extraction without pipetting and centrifugation.

  15. Test Platforms for Model-Based Flight Research

    NASA Astrophysics Data System (ADS)

    Dorobantu, Andrei

    Demonstrating the reliability of flight control algorithms is critical to integrating unmanned aircraft systems into the civilian airspace. For many potential applications, design and certification of these algorithms will rely heavily on mathematical models of the aircraft dynamics. Therefore, the aerospace community must develop flight test platforms to support the advancement of model-based techniques. The University of Minnesota has developed a test platform dedicated to model-based flight research for unmanned aircraft systems. This thesis provides an overview of the test platform and its research activities in the areas of system identification, model validation, and closed-loop control for small unmanned aircraft.

  16. Next generation platforms for high-throughput biodosimetry

    PubMed Central

    Repin, Mikhail; Turner, Helen C.; Garty, Guy; Brenner, David J.

    2014-01-01

    Here the general concept of the combined use of plates and tubes in racks compatible with the American National Standards Institute/the Society for Laboratory Automation and Screening microplate formats as the next generation platforms for increasing the throughput of biodosimetry assays was described. These platforms can be used at different stages of biodosimetry assays starting from blood collection into microtubes organised in standardised racks and ending with the cytogenetic analysis of samples in standardised multiwell and multichannel plates. Robotically friendly platforms can be used for different biodosimetry assays in minimally equipped laboratories and on cost-effective automated universal biotech systems. PMID:24837249

  17. VA's Integrated Imaging System on three platforms.

    PubMed

    Dayhoff, R E; Maloney, D L; Majurski, W J

    1992-01-01

    The DHCP Integrated Imaging System provides users with integrated patient data including text, image and graphics data. This system has been transferred from its original two screen DOS-based MUMPS platform to an X window workstation and a Microsoft Windows-based workstation. There are differences between these various platforms that impact on software design and on software development strategy. Data structures and conventions were used to isolate hardware, operating system, imaging software, and user-interface differences between platforms in the implementation of functionality for text and image display and interaction. The use of an object-oriented approach greatly increased system portability.

  18. VA's Integrated Imaging System on three platforms.

    PubMed Central

    Dayhoff, R. E.; Maloney, D. L.; Majurski, W. J.

    1992-01-01

    The DHCP Integrated Imaging System provides users with integrated patient data including text, image and graphics data. This system has been transferred from its original two screen DOS-based MUMPS platform to an X window workstation and a Microsoft Windows-based workstation. There are differences between these various platforms that impact on software design and on software development strategy. Data structures and conventions were used to isolate hardware, operating system, imaging software, and user-interface differences between platforms in the implementation of functionality for text and image display and interaction. The use of an object-oriented approach greatly increased system portability. PMID:1482983

  19. Stiffened lipid platforms at molecular force foci

    PubMed Central

    Anishkin, Andriy; Kung, Ching

    2013-01-01

    How mechanical forces are sensed remains largely mysterious. The forces that gate prokaryotic and several eukaryotic channels were found to come from the lipid membrane. Our survey of animal cells found that membrane force foci all have cholesterol-gathering proteins and are reinforced with cholesterol. This result is evident in overt force sensors at the tips of stereocilia for vertebrate hearing and the touch receptor of Caenorhabditis elegans and mammalian neurons. For less specialized cells, cadherins sustain the force between neighboring cells and integrins between cells and matrix. These tension bearers also pass through and bind to a cholesterol-enriched platform before anchoring to cytoskeleton through other proteins. Cholesterol, in alliance with sphingomyelin and specialized proteins, enforces a more ordered structure in the bilayer. Such a stiffened platform can suppress mechanical noise, redirect, rescale, and confine force. We speculate that such platforms may be dynamic. The applied force may allow disordered-phase lipids to enter the platform-staging channel opening in the thinner mobile neighborhood. The platform may also contain specialized protein/lipid subdomains enclosing mechanosensitive channels to open with localized tension. Such a dynamic stage can mechanically operate structurally disparate channels or enzymes without having to tie them directly to cadherin, integrin, or other protein tethers. PMID:23476066

  20. Stiffened lipid platforms at molecular force foci.

    PubMed

    Anishkin, Andriy; Kung, Ching

    2013-03-26

    How mechanical forces are sensed remains largely mysterious. The forces that gate prokaryotic and several eukaryotic channels were found to come from the lipid membrane. Our survey of animal cells found that membrane force foci all have cholesterol-gathering proteins and are reinforced with cholesterol. This result is evident in overt force sensors at the tips of stereocilia for vertebrate hearing and the touch receptor of Caenorhabditis elegans and mammalian neurons. For less specialized cells, cadherins sustain the force between neighboring cells and integrins between cells and matrix. These tension bearers also pass through and bind to a cholesterol-enriched platform before anchoring to cytoskeleton through other proteins. Cholesterol, in alliance with sphingomyelin and specialized proteins, enforces a more ordered structure in the bilayer. Such a stiffened platform can suppress mechanical noise, redirect, rescale, and confine force. We speculate that such platforms may be dynamic. The applied force may allow disordered-phase lipids to enter the platform-staging channel opening in the thinner mobile neighborhood. The platform may also contain specialized protein/lipid subdomains enclosing mechanosensitive channels to open with localized tension. Such a dynamic stage can mechanically operate structurally disparate channels or enzymes without having to tie them directly to cadherin, integrin, or other protein tethers.

  1. Design of Initial Opacity Platform at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Heeter, R. F.; Ahmed, M. F.; Ayers, S. L.; Emig, J. A.; Iglesias, C. A.; Liedahl, D. A.; Schneider, M. B.; Wilson, B. G.; Huffman, E. J.; King, J. A.; Opachich, Y. P.; Ross, P. W.; Bailey, J. E.; Rochau, G. A.; Craxton, R. S.; Garcia, E. M.; McKenty, P. W.; Zhang, R.; Cardenas, T.; Devolder, B. G.; Dodd, E. S.; Kline, J. L.; Sherrill, M. E.; Perry, T. S.

    2016-10-01

    The absorption and re-emission of x-rays by partly stripped ions plays a critical role in stars and in many laboratory plasmas. A NIF Opacity Platform has been designed to resolve a persistent disagreement between theory and experiments on the Sandia Z facility, studying iron in conditions closely related to the solar radiation-convection transition boundary. A laser heated hohlraum ``oven'' will produce iron plasmas at temperatures >150 eV and electron densities >=7x1021/cm3, and be probed with continuum X-rays from a capsule implosion backlighter source. The resulting X-ray transmission spectra will be recorded on a specially designed Opacity Spectrometer. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  2. Observation Platform for Dynamic Biomedical and Biotechnology Experiments Using the International Space Station (ISS) Light Microscopy Module (LMM)

    NASA Technical Reports Server (NTRS)

    Kurk, Michael A. (Andy)

    2015-01-01

    Techshot, Inc., has developed an observation platform for the LMM on the ISS that will enable biomedical and biotechnology experiments. The LMM Dynamic Stage consists of an electronics module and the first two of a planned suite of experiment modules. Specimens and reagent solutions can be injected into a small, hollow microscope slide-the heart of the innovation-via a combination of small reservoirs, pumps, and valves. A life science experiment module allows investigators to load up to two different fluids for on-orbit, real-time image cytometry. Fluids can be changed to initiate a process, fix biological samples, or retrieve suspended cells. A colloid science experiment module conducts microparticle and nanoparticle tests for investigation of colloid self-assembly phenomena. This module includes a hollow glass slide and heating elements for the creation of a thermal gradient from one end of the slide to the other. The electronics module supports both experiment modules and contains a unique illuminator/condenser for bright and dark field and phase contrast illumination, power supplies for two piezoelectric pumps, and controller boards for pumps and valves. This observation platform safely contains internal fluids and will greatly accelerate the research and development (R&D) cycle of numerous experiments, products, and services aboard the ISS.

  3. Construction of Multimodal Transport Information Platform

    NASA Astrophysics Data System (ADS)

    Wang, Ya; Cheng, Yu; Zhao, Zhi

    2018-06-01

    With the rapid development of economy, the volume of transportation in China is increasing, the opening process of the market is accelerating, the scale of enterprises is expanding, the service quality is being improved, and the container multimodal transport is developing continuously.The hardware infrastructure of container multimodal transport is improved obviously, but the network platform construction of multimodal transport is still insufficient.Taking Shandong region of China as an example, the present situation of container multimodal transport in Shandong area can no longer meet the requirement of rapid development of container, and the construction of network platform needs to be solved urgently. Therefore, this paper will briefly describe the conception of construction of multimodal transport network platform in Shandong area.In order to achieve the rapid development of multimodal transport.

  4. Stabilizing a graphene platform toward discrete components

    NASA Astrophysics Data System (ADS)

    Mzali, Sana; Montanaro, Alberto; Xavier, Stéphane; Servet, Bernard; Mazellier, Jean-Paul; Bezencenet, Odile; Legagneux, Pierre; Piquemal-Banci, Maëlis; Galceran, Regina; Dlubak, Bruno; Seneor, Pierre; Martin, Marie-Blandine; Hofmann, Stephan; Robertson, John; Cojocaru, Costel-Sorin; Centeno, Alba; Zurutuza, Amaia

    2016-12-01

    We report on statistical analysis and consistency of electrical performances of devices based on a large scale passivated graphene platform. More than 500 graphene field effect transistors (GFETs) based on graphene grown by chemical vapor deposition and transferred on 4 in. SiO2/Si substrates were fabricated and tested. We characterized the potential of a two-step encapsulation process including an Al2O3 protection layer to avoid graphene contamination during the lithographic process followed by a final Al2O3 passivation layer subsequent to the GFET fabrication. Devices were investigated for occurrence and reproducibility of conductance minimum related to the Dirac point. While no conductance minimum was observed in unpassivated devices, 75% of the passivated transistors exhibited a clear conductance minimum and low hysteresis. The maximum of the device number distribution corresponds to a residual doping below 5 × 1011 cm-2 (0.023 V/nm). This yield shows that GFETs integrating low-doped graphene and exhibiting small hysteresis in the transfer characteristics can be envisaged for discrete components, with even further potential for low power driven electronics.

  5. Risk Management of P2P Internet Financing Service Platform

    NASA Astrophysics Data System (ADS)

    Yalei, Li

    2017-09-01

    Since 2005, the world’s first P2P Internet financing service platform Zopa in UK was introduced, in the development of “Internet +” trend, P2P Internet financing service platform has been developed rapidly. In 2007, China’s first P2P platform “filming loan” was established, marking the P2P Internet financing service platform to enter China and the rapid development. At the same time, China’s P2P Internet financing service platform also appeared in different forms of risk. This paper focuses on the analysis of the causes of risk of P2P Internet financing service platform and the performance of risk management process. It provides a solution to the Internet risk management plan, and explains the risk management system of the whole P2P Internet financing service platform and the future development direction.

  6. Nonlinear Silicon Photonics: Extending Platforms, Control, and Applications

    NASA Astrophysics Data System (ADS)

    Miller, Steven Andrew

    Silicon photonics is a revolutionary technology that enables the control of light inside a silicon chip and holds promise to impact many applications from data center optical interconnects to optical sensing and even quantum optics. The tight confinement of light inside these chips greatly enhances light-matter interactions, making this an ideal platform for nonlinear photonics. Recently, microresonator-based Kerr frequency comb generation has become a prevalent emerging field, enabling the generation of a broadband optical pulse train by inputting a low-power continuous-wave laser into a low-loss chip-scale micro-cavity. These chip-scale combs have a wide variety of applications, including optical clocks, optical spectroscopy, and data communications. Several important applications in biological, chemical and atmospheric areas require combs generated in the visible and mid-infrared wavelength ranges, where there has been far less research and development compared with the near-infrared. Additionally, most platforms widely for combs are passive, limiting the ability to control and optimize the frequency combs. In this dissertation, we set out to address these shortcomings and introduce new tunability as well as wavelength flexibility in order to enable new applications for microresonator frequency combs. The silicon nitride platform for near-infrared combs is generally a passive platform with limited tuning capabilities. We overcome dispersion limitations in the visible range by leveraging the second-order nonlinearity of silicon nitride and demonstrate visible comb lines. We then further investigate the second-order nonlinearity of silicon nitride by measuring the linear electro-optic effect, a potential tuning mechanism. Finally, we introduce thermal tuning onto the silicon nitride platform and demonstrate tuning of the resonance extinction and dispersion of a micro-cavity using a coupled cavity design. We also address the silicon mid-infrared frequency comb

  7. VAB Platform K(2) Lift & Install into Highbay 3

    NASA Image and Video Library

    2016-03-07

    Work is underway to secure the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket in High Bay 3 inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform is being secured into position on tower E, about 86 feet above the floor. The K work platforms will provide access to NASA's Space Launch System (SLS) core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.

  8. Carbonate-platform response to the Toarcian Oceanic Anoxic Event in the southern hemisphere: Implications for climatic change and biotic platform demise

    NASA Astrophysics Data System (ADS)

    Han, Zhong; Hu, Xiumian; Kemp, David B.; Li, Juan

    2018-05-01

    The Toarcian Oceanic Anoxic Event (T-OAE, ∼183 Ma) was a profound short-term environmental perturbation associated with the large-scale release of 13C-depleted carbon into the global ocean-atmosphere system, which resulted in a significant negative carbon-isotope excursion (CIE). The general lack of characteristic T-OAE records outside of the northern hemisphere means that the precise environmental effects and significance of this event are uncertain. Many biotic carbonate platforms of the northern hemisphere western Tethys drowned or shifted to non-skeletal platforms during the early Toarcian. However, southern hemisphere records of Toarcian carbonate platforms are rare, and thus the extent and significance of biotic platform demise during the T-OAE is unclear. Here we present high-resolution geochemical and sedimentological data across two Pliensbachian-Toarcian shallow-water carbonate-platform sections exposed in the Tibetan Himalaya. These sections were located paleogeographically on the open southeastern tropical Tethyan margin in the southern hemisphere. The T-OAE in the Tibetan Himalaya is marked by a negative CIE in organic matter. Our sedimentological analysis of the two sections reveals an abundance of storm deposits within the T-OAE interval, which emphasizes a close link between warming and tropical storms during the T-OAE event, in line with evidence recently provided from western Tethyan sections of the northern hemisphere. In addition, our analysis also reveals extensive biotic carbonate-platform demise by drowning or changing to non-skeletal carbonates coincident with the onset of the CIE. Taken together, our results suggest that rapid and pervasive seawater warming in response to carbon release likely played a significant role in sudden biotic carbonate platform demise, and suppression/postponement of biotic platform re-development along the whole tropical/subtropical Tethyan margin.

  9. 29 CFR 1917.115 - Platforms and skids.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... safe condition. Safe working loads, which shall be posted or marked on or adjacent to platforms and... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... nets, to protect employees against falls. (b) Any employee working below a second-story platform or...

  10. Development and Validation of a Portable Platform for Deploying Decision-Support Algorithms in Prehospital Settings

    PubMed Central

    Reisner, A. T.; Khitrov, M. Y.; Chen, L.; Blood, A.; Wilkins, K.; Doyle, W.; Wilcox, S.; Denison, T.; Reifman, J.

    2013-01-01

    Summary Background Advanced decision-support capabilities for prehospital trauma care may prove effective at improving patient care. Such functionality would be possible if an analysis platform were connected to a transport vital-signs monitor. In practice, there are technical challenges to implementing such a system. Not only must each individual component be reliable, but, in addition, the connectivity between components must be reliable. Objective We describe the development, validation, and deployment of the Automated Processing of Physiologic Registry for Assessment of Injury Severity (APPRAISE) platform, intended to serve as a test bed to help evaluate the performance of decision-support algorithms in a prehospital environment. Methods We describe the hardware selected and the software implemented, and the procedures used for laboratory and field testing. Results The APPRAISE platform met performance goals in both laboratory testing (using a vital-sign data simulator) and initial field testing. After its field testing, the platform has been in use on Boston MedFlight air ambulances since February of 2010. Conclusion These experiences may prove informative to other technology developers and to healthcare stakeholders seeking to invest in connected electronic systems for prehospital as well as in-hospital use. Our experiences illustrate two sets of important questions: are the individual components reliable (e.g., physical integrity, power, core functionality, and end-user interaction) and is the connectivity between components reliable (e.g., communication protocols and the metadata necessary for data interpretation)? While all potential operational issues cannot be fully anticipated and eliminated during development, thoughtful design and phased testing steps can reduce, if not eliminate, technical surprises. PMID:24155791

  11. Common tester platform concept.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurst, Michael James

    This report summarizes the results of a case study on the doctrine of a common tester platform, a concept of a standardized platform that can be applicable across the broad spectrum of testing requirements throughout the various stages of a weapons program, as well as across the various weapons programs. The common tester concept strives to define an affordable, next-generation design that will meet testing requirements with the flexibility to grow and expand; supporting the initial development stages of a weapons program through to the final production and surveillance stages. This report discusses a concept investing key leveraging technologies andmore » operational concepts combined with prototype tester-development experiences and practical lessons learned gleaned from past weapons programs.« less

  12. Paper-based Platform for Urinary Creatinine Detection.

    PubMed

    Sittiwong, Jarinya; Unob, Fuangfa

    2016-01-01

    A new paper platform was developed for the colorimetric detection of creatinine. The filter paper was coated with 3-propylsulfonic acid trimethoxysilane and used as the platform. Creatinine in a cationic form was extracted onto the paper via an ion-exchange mechanism and detected through the Jaffé reaction, resulting in a yellow-orange color complex. The color change on the paper could be observed visually, and the quantitative detection of creatinine was achieved through monitoring the color intensity change. The color intensity of creatinine complexes on the paper platform as a function of the creatinine concentration provided a linear range for creatinine detection in the range of 10 - 60 mg L(-1) and a detection limit of 4.2 mg L(-1). The accuracy of the proposed paper-based method was comparable to the conventional standard Jaffé method. This paper platform could be applied for simple and rapid detection of creatinine in human urine samples with a low consumption of reagent.

  13. Privacy and information security risks in a technology platform for home-based chronic disease rehabilitation and education.

    PubMed

    Henriksen, Eva; Burkow, Tatjana M; Johnsen, Elin; Vognild, Lars K

    2013-08-09

    Privacy and information security are important for all healthcare services, including home-based services. We have designed and implemented a prototype technology platform for providing home-based healthcare services. It supports a personal electronic health diary and enables secure and reliable communication and interaction with peers and healthcare personnel. The platform runs on a small computer with a dedicated remote control. It is connected to the patient's TV and to a broadband Internet. The platform has been tested with home-based rehabilitation and education programs for chronic obstructive pulmonary disease and diabetes. As part of our work, a risk assessment of privacy and security aspects has been performed, to reveal actual risks and to ensure adequate information security in this technical platform. Risk assessment was performed in an iterative manner during the development process. Thus, security solutions have been incorporated into the design from an early stage instead of being included as an add-on to a nearly completed system. We have adapted existing risk management methods to our own environment, thus creating our own method. Our method conforms to ISO's standard for information security risk management. A total of approximately 50 threats and possible unwanted incidents were identified and analysed. Among the threats to the four information security aspects: confidentiality, integrity, availability, and quality; confidentiality threats were identified as most serious, with one threat given an unacceptable level of High risk. This is because health-related personal information is regarded as sensitive. Availability threats were analysed as low risk, as the aim of the home programmes is to provide education and rehabilitation services; not for use in acute situations or for continuous health monitoring. Most of the identified threats are applicable for healthcare services intended for patients or citizens in their own homes. Confidentiality

  14. Privacy and information security risks in a technology platform for home-based chronic disease rehabilitation and education

    PubMed Central

    2013-01-01

    Background Privacy and information security are important for all healthcare services, including home-based services. We have designed and implemented a prototype technology platform for providing home-based healthcare services. It supports a personal electronic health diary and enables secure and reliable communication and interaction with peers and healthcare personnel. The platform runs on a small computer with a dedicated remote control. It is connected to the patient’s TV and to a broadband Internet. The platform has been tested with home-based rehabilitation and education programs for chronic obstructive pulmonary disease and diabetes. As part of our work, a risk assessment of privacy and security aspects has been performed, to reveal actual risks and to ensure adequate information security in this technical platform. Methods Risk assessment was performed in an iterative manner during the development process. Thus, security solutions have been incorporated into the design from an early stage instead of being included as an add-on to a nearly completed system. We have adapted existing risk management methods to our own environment, thus creating our own method. Our method conforms to ISO’s standard for information security risk management. Results A total of approximately 50 threats and possible unwanted incidents were identified and analysed. Among the threats to the four information security aspects: confidentiality, integrity, availability, and quality; confidentiality threats were identified as most serious, with one threat given an unacceptable level of High risk. This is because health-related personal information is regarded as sensitive. Availability threats were analysed as low risk, as the aim of the home programmes is to provide education and rehabilitation services; not for use in acute situations or for continuous health monitoring. Conclusions Most of the identified threats are applicable for healthcare services intended for patients or

  15. Digital interface of electronic transformers based on embedded system

    NASA Astrophysics Data System (ADS)

    Shang, Qiufeng; Qi, Yincheng

    2008-10-01

    Benefited from digital interface of electronic transformers, information sharing and system integration in substation can be realized. An embedded system-based digital output scheme of electronic transformers is proposed. The digital interface is designed with S3C44B0X 32bit RISC microprocessor as the hardware platform. The μCLinux operation system (OS) is transplanted on ARM7 (S3C44B0X). Applying Ethernet technology as the communication mode in the substation automation system is a new trend. The network interface chip RTL8019AS is adopted. Data transmission is realized through the in-line TCP/IP protocol of uClinux embedded OS. The application result and character analysis show that the design can meet the real-time and reliability requirements of IEC60044-7/8 electronic voltage/current instrument transformer standards.

  16. Reactions of Standing Bipeds on Moving Platforms to Keep Their Balance May Increase the Amplitude of Oscillations of Platforms Satisfying Hooke's Law.

    PubMed

    Goldsztein, Guillermo H

    2016-01-01

    Consider a person standing on a platform that oscillates laterally, i.e. to the right and left of the person. Assume the platform satisfies Hooke's law. As the platform moves, the person reacts and moves its body attempting to keep its balance. We develop a simple model to study this phenomenon and show that the person, while attempting to keep its balance, may do positive work on the platform and increase the amplitude of its oscillations. The studies in this article are motivated by the oscillations in pedestrian bridges that are sometimes observed when large crowds cross them.

  17. Robust nano-fabrication of an integrated platform for spin control in a tunable microcavity

    NASA Astrophysics Data System (ADS)

    Bogdanović, Stefan; Liddy, Madelaine S. Z.; van Dam, Suzanne B.; Coenen, Lisanne C.; Fink, Thomas; Lončar, Marko; Hanson, Ronald

    2017-12-01

    Coupling nitrogen-vacancy (NV) centers in diamonds to optical cavities is a promising way to enhance the efficiency of diamond-based quantum networks. An essential aspect of the full toolbox required for the operation of these networks is the ability to achieve the microwave control of the electron spin associated with this defect within the cavity framework. Here, we report on the fabrication of an integrated platform for the microwave control of an NV center electron spin in an open, tunable Fabry-Pérot microcavity. A critical aspect of the measurements of the cavity's finesse reveals that the presented fabrication process does not compromise its optical properties. We provide a method to incorporate a thin diamond slab into the cavity architecture and demonstrate the control of the NV center spin. These results show the promise of this design for future cavity-enhanced NV center spin-photon entanglement experiments.

  18. Handheld Microneedle-Based Electrolyte Sensing Platform.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Philip R.; Rivas, Rhiana; Johnson, David

    2015-11-01

    Sandia National Laboratories will provide technical assistance, within time and budget, to Requester on testing and analyzing a microneedle-based electrolyte sensing platform. Hollow microneedles will be fabricated at Sandia and integrated with a fluidic chip using plastic laminate prototyping technology available at Sandia. In connection with commercial ion selective electrodes the sensing platform will be tested for detection of electrolytes (sodium and/or potassium) within physiological relevant concent ration ranges.

  19. Proba-V Mission Exploitation Platform

    NASA Astrophysics Data System (ADS)

    Goor, Erwin; Dries, Jeroen

    2017-04-01

    VITO and partners developed the Proba-V Mission Exploitation Platform (MEP) as an end-to-end solution to drastically improve the exploitation of the Proba-V (a Copernicus contributing mission) EO-data archive (http://proba-v.vgt.vito.be/), the past mission SPOT-VEGETATION and derived vegetation parameters by researchers, service providers and end-users. The analysis of time series of data (+1PB) is addressed, as well as the large scale on-demand processing of near real-time data on a powerful and scalable processing environment. Furthermore data from the Copernicus Global Land Service is in scope of the platform. From November 2015 an operational Proba-V MEP environment, as an ESA operation service, is gradually deployed at the VITO data center with direct access to the complete data archive. Since autumn 2016 the platform is operational and yet several applications are released to the users, e.g. - A time series viewer, showing the evolution of Proba-V bands and derived vegetation parameters from the Copernicus Global Land Service for any area of interest. - Full-resolution viewing services for the complete data archive. - On-demand processing chains on a powerfull Hadoop/Spark backend e.g. for the calculation of N-daily composites. - Virtual Machines can be provided with access to the data archive and tools to work with this data, e.g. various toolboxes (GDAL, QGIS, GrassGIS, SNAP toolbox, …) and support for R and Python. This allows users to immediately work with the data without having to install tools or download data, but as well to design, debug and test applications on the platform. - A prototype of jupyter Notebooks is available with some examples worked out to show the potential of the data. Today the platform is used by several third party projects to perform R&D activities on the data, and to develop/host data analysis toolboxes. In parallel the platform is further improved and extended. From the MEP PROBA-V, access to Sentinel-2 and landsat data will

  20. Volume-rendering on a 3D hyperwall: A molecular visualization platform for research, education and outreach.

    PubMed

    MacDougall, Preston J; Henze, Christopher E; Volkov, Anatoliy

    2016-11-01

    We present a unique platform for molecular visualization and design that uses novel subatomic feature detection software in tandem with 3D hyperwall visualization technology. We demonstrate the fleshing-out of pharmacophores in drug molecules, as well as reactive sites in catalysts, focusing on subatomic features. Topological analysis with picometer resolution, in conjunction with interactive volume-rendering of the Laplacian of the electronic charge density, leads to new insight into docking and catalysis. Visual data-mining is done efficiently and in parallel using a 4×4 3D hyperwall (a tiled array of 3D monitors driven independently by slave GPUs but displaying high-resolution, synchronized and functionally-related images). The visual texture of images for a wide variety of molecular systems are intuitive to experienced chemists but also appealing to neophytes, making the platform simultaneously useful as a tool for advanced research as well as for pedagogical and STEM education outreach purposes. Copyright © 2016. Published by Elsevier Inc.

  1. Usability studies on e-learning platforms: Preliminary study in USM

    NASA Astrophysics Data System (ADS)

    Emang, Devinna Win Anak Boniface; Lukman, Raja Nurul Izzati Raja; Kamarulzaman, Muhammad Izzat Syafiq; Zaaba, Zarul Fitri

    2017-10-01

    This paper explores the end-users' experienced in regards to the usability issues in E-learning platform. An online survey utilising 116 participants were conducted to investigate the end-users understanding and satisfaction on E-learning platform in the Universiti Sains Malaysia (USM). The results indicates that mainly students still experiencing significant challenges in E-learning platform in regards to accessibility, technical terminologies and functionality. On the other hand, the 10 heuristic guideline is chosen to be a referral point to compare five E-learning platforms in order to assess each performance on regards to the usability criteria. Overall, USM E-learning platform can be considered in a good shape. However, there are more works to be done to improve the delivery system of the E-learning if it would like to sustain for a long period of time. Although the result is at the preliminary stage, it provides useful insights to improve the E-learning platform as one of the most popular education platform in Malaysia.

  2. Consciousness platform: the greatest mystery of all time.

    PubMed

    Deutsch, Sid

    2010-01-01

    This article is about the model for a very controversial edifice--the many-sided foundation for consciousness. What I refer to is, undoubtedly, the greatest mystery of all time--why do we have an awareness of our own existence? What is the evolutionary advantage of consciousness? Much of the material printed about consciousness has a religious flavor, with references to the human spirit and/or extrasensory perception, but I will have none of that here. In this study, consciousness is tied in with a platform, not a physical platform, of course, but a conceptual platform. This is because we are most comfortable imagining or visualizing an actual platform that has many connections to various parts of the brain, a sort of an old-fashioned telephone switchboard.

  3. Synthesis of porous NiO/CeO2 hybrid nanoflake arrays as a platform for electrochemical biosensing

    NASA Astrophysics Data System (ADS)

    Cui, Jiewu; Luo, Jinbao; Peng, Bangguo; Zhang, Xinyi; Zhang, Yong; Wang, Yan; Qin, Yongqiang; Zheng, Hongmei; Shu, Xia; Wu, Yucheng

    2015-12-01

    Porous NiO/CeO2 hybrid nanoflake arrays fabricated by a facile hydrothermal method were employed as substrates for electrochemical biosensors. The resulting NiO/CeO2 hybrid nanoflake arrays with a large specific surface area and good biocompatibility presented an excellent platform for electrochemical biosensing.Porous NiO/CeO2 hybrid nanoflake arrays fabricated by a facile hydrothermal method were employed as substrates for electrochemical biosensors. The resulting NiO/CeO2 hybrid nanoflake arrays with a large specific surface area and good biocompatibility presented an excellent platform for electrochemical biosensing. Electronic supplementary information (ESI) available: Optical photographs of the as-prepared samples, SEM, TEM, EDS, XRD and BET data of the samples are presented, I-t curves of glucose biosensors based on NiO and NiO/CeO2 NFAs, EIS results of different electrodes. See DOI: 10.1039/c5nr05924k

  4. Cave Pearl Data Logger: A Flexible Arduino-Based Logging Platform for Long-Term Monitoring in Harsh Environments.

    PubMed

    Beddows, Patricia A; Mallon, Edward K

    2018-02-09

    A low-cost data logging platform is presented that provides long-term operation in remote or submerged environments. Three premade "breakout boards" from the open-source Arduino ecosystem are assembled into the core of the data logger. Power optimization techniques are presented which extend the operational life of this module-based design to >1 year on three alkaline AA batteries. Robust underwater housings are constructed for these loggers using PVC fittings. Both the logging platform and the enclosures, are easy to build and modify without specialized tools or a significant background in electronics. This combination turns the Cave Pearl data logger into a generalized prototyping system and this design flexibility is demonstrated with two field studies recording drip rates in a cave and water flow in a flooded cave system. This paper describes a complete DIY solution, suitable for a wide range of challenging deployment conditions.

  5. Cave Pearl Data Logger: A Flexible Arduino-Based Logging Platform for Long-Term Monitoring in Harsh Environments

    PubMed Central

    Mallon, Edward K.

    2018-01-01

    A low-cost data logging platform is presented that provides long-term operation in remote or submerged environments. Three premade “breakout boards” from the open-source Arduino ecosystem are assembled into the core of the data logger. Power optimization techniques are presented which extend the operational life of this module-based design to >1 year on three alkaline AA batteries. Robust underwater housings are constructed for these loggers using PVC fittings. Both the logging platform and the enclosures, are easy to build and modify without specialized tools or a significant background in electronics. This combination turns the Cave Pearl data logger into a generalized prototyping system and this design flexibility is demonstrated with two field studies recording drip rates in a cave and water flow in a flooded cave system. This paper describes a complete DIY solution, suitable for a wide range of challenging deployment conditions. PMID:29425185

  6. Visualizing ligand molecules in twilight electron density

    PubMed Central

    Weichenberger, Christian X.; Pozharski, Edwin; Rupp, Bernhard

    2013-01-01

    Three-dimensional models of protein structures determined by X-ray crystallo­graphy are based on the interpretation of experimentally derived electron-density maps. The real-space correlation coefficient (RSCC) provides an easily comprehensible, objective measure of the residue-based fit of atom coordinates to electron density. Among protein structure models, protein–ligand complexes are of special interest, given their contribution to understanding the molecular underpinnings of biological activity and to drug design. For consumers of such models, it is not trivial to determine the degree to which ligand-structure modelling is biased by subjective electron-density interpretation. A standalone script, Twilight, is presented for the analysis, visualization and annotation of a pre-filtered set of 2815 protein–ligand complexes deposited with the PDB as of 15 January 2012 with ligand RSCC values that are below a threshold of 0.6. It also provides simplified access to the visualization of any protein–ligand complex available from the PDB and annotated by the Uppsala Electron Density Server. The script runs on various platforms and is available for download at http://www.ruppweb.org/twilight/. PMID:23385767

  7. A Flexible Platform Containing Graphene Mesoporous Structure and Carbon Nanotube for Hydrogen Evolution

    PubMed Central

    Zhang, Rujing; Li, Xiao; Zhang, Li; Lin, Shuyuan

    2016-01-01

    It is of great significance to design a platform with large surface area and high electrical conductivity for poorly conductive catalyst for hydrogen evolution reaction (HER), such as molybdenum sulfide (MoSx), a promising and cost‐effective nonprecious material. Here, the design and preparation of a free‐standing and tunable graphene mesoporous structure/single‐walled carbon nanotube (GMS/SWCNT) hybrid membrane is reported. Amorphous MoSx is electrodeposited on this platform through a wet chemical process under mild temperature. For MoSx@GMS/SWCNT hybrid electrode with a low catalyst loading of 32 μg cm−2, the onset potential is near 113 mV versus reversible hydrogen electrode (RHE) and a high current density of ≈71 mA cm−2 is achieved at 250 mV versus RHE. The excellent HER performance can be attributed to the large surface area for MoSx deposition, as well as the efficient electron transport and abundant active sites on the amorphous MoSx surface. This novel catalyst is found to outperform most previously reported MoSx‐based HER catalysts. Moreover, the flexibility of the electrode facilitates its stable catalytic performance even in extremely distorted states. PMID:27980998

  8. Advanced educational program in optoelectronics for undergraduates and graduates in electronics

    NASA Astrophysics Data System (ADS)

    Vladescu, Marian; Schiopu, Paul

    2015-02-01

    The optoelectronics education included in electronics curricula at Faculty of Electronics, Telecommunications and Information Technology of "Politehnica" University of Bucharest started in early '90s, and evolved constantly since then, trying to address the growing demand of engineers with a complex optoelectronics profile and to meet the increased requirements of microelectronics, optoelectronics, and lately nanotechnologies. Our goal is to provide a high level of theoretical background combined with advanced experimental tools in laboratories, and also with simulation platforms. That's why we propose an advanced educational program in optoelectronics for both grades of our study program, bachelor and master.

  9. Comprehensive comparison of three commercial human whole-exome capture platforms.

    PubMed

    Asan; Xu, Yu; Jiang, Hui; Tyler-Smith, Chris; Xue, Yali; Jiang, Tao; Wang, Jiawei; Wu, Mingzhi; Liu, Xiao; Tian, Geng; Wang, Jun; Wang, Jian; Yang, Huangming; Zhang, Xiuqing

    2011-09-28

    Exome sequencing, which allows the global analysis of protein coding sequences in the human genome, has become an effective and affordable approach to detecting causative genetic mutations in diseases. Currently, there are several commercial human exome capture platforms; however, the relative performances of these have not been characterized sufficiently to know which is best for a particular study. We comprehensively compared three platforms: NimbleGen's Sequence Capture Array and SeqCap EZ, and Agilent's SureSelect. We assessed their performance in a variety of ways, including number of genes covered and capture efficacy. Differences that may impact on the choice of platform were that Agilent SureSelect covered approximately 1,100 more genes, while NimbleGen provided better flanking sequence capture. Although all three platforms achieved similar capture specificity of targeted regions, the NimbleGen platforms showed better uniformity of coverage and greater genotype sensitivity at 30- to 100-fold sequencing depth. All three platforms showed similar power in exome SNP calling, including medically relevant SNPs. Compared with genotyping and whole-genome sequencing data, the three platforms achieved a similar accuracy of genotype assignment and SNP detection. Importantly, all three platforms showed similar levels of reproducibility, GC bias and reference allele bias. We demonstrate key differences between the three platforms, particularly advantages of solutions over array capture and the importance of a large gene target set.

  10. VAB Platform K(2) Lift & Install into Highbay 3

    NASA Image and Video Library

    2016-03-07

    A 250-ton crane is used to lower the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket into High Bay 3 inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform will be secured about 86 feet above the VAB floor, on tower E of the high bay. The K work platforms will provide access to the SLS core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.

  11. An enhanced sensing platform for ultrasensitive impedimetric detection of target genes based on ordered FePt nanoparticles decorated carbon nanotubes.

    PubMed

    Zhang, Wei; Zong, Peisong; Zheng, Xiuwen; Wang, Libin

    2013-04-15

    We demonstrate a novel high-performance DNA hybridization biosensor with a carbon nanotubes (CNTs)-based nanocomposite membrane as the enhanced sensing platform. The platform was constructed by homogenously distributing ordered FePt nanoparticles (NPs) onto the CNTs matrix. The surface structure and electrochemical performance of the FePt/CNTs nanocomposite membrane were systematically investigated. Such a nanostructured composite membrane platform could combine with the advantages of FePt NPs and CNTs, greatly facilitate the electron-transfer process and the sensing behavior for DNA detection, leading to excellent sensitivity and selectivity. The complementary target genes from acute promyelocytic leukemia could be quantified in a wide range of 1.0×10⁻¹² mol/L to 1.0×10⁻⁶ mol/L using electrochemical impedance spectroscopy, and the detection limit was 2.1×10⁻¹³ mol/L under the optimal conditions. In addition, the DNA electrochemical biosensor was highly selective to discriminate single-base or double-base mismatched sequences. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Performance of an Embedded Platform Aggregating and Executing Core Vehicular Interation for C4ISR/EW Interoperability (VICTORY) Services

    DTIC Science & Technology

    2012-08-01

    ELECTRONICS AND ARCHITECTURE (VEA) MINI-SYMPOSIUM AUGUST 14-16, TROY MICHIGAN Performance of an Embedded Platform Aggregating and Executing...NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) UBT Technologies,3250 W. Big Beaver Rd.,Ste. 329, Troy ,MI...Technology Symposium August 14-16 Troy , Michigan 14. ABSTRACT The Vehicular Integration for C4ISR/EW Interoperability (VICTORY) Standard adopts many

  13. Selecting a Virtual World Platform for Learning

    ERIC Educational Resources Information Center

    Robbins, Russell W.; Butler, Brian S.

    2009-01-01

    Like any infrastructure technology, Virtual World (VW) platforms provide affordances that facilitate some activities and hinder others. Although it is theoretically possible for a VW platform to support all types of activities, designers make choices that lead technologies to be more or less suited for different learning objectives. Virtual World…

  14. Mixed protonic and electronic conductors hybrid oxide synaptic transistors

    NASA Astrophysics Data System (ADS)

    Fu, Yang Ming; Zhu, Li Qiang; Wen, Juan; Xiao, Hui; Liu, Rui

    2017-05-01

    Mixed ionic and electronic conductor hybrid devices have attracted widespread attention in the field of brain-inspired neuromorphic systems. Here, mixed protonic and electronic conductor (MPEC) hybrid indium-tungsten-oxide (IWO) synaptic transistors gated by nanogranular phosphorosilicate glass (PSG) based electrolytes were obtained. Unique field-configurable proton self-modulation behaviors were observed on the MPEC hybrid transistor with extremely strong interfacial electric-double-layer effects. Temporally coupled synaptic plasticities were demonstrated on the MPEC hybrid IWO synaptic transistor, including depolarization/hyperpolarization, synaptic facilitation and depression, facilitation-stead/depression-stead behaviors, spiking rate dependent plasticity, and high-pass/low-pass synaptic filtering behaviors. MPEC hybrid synaptic transistors may find potential applications in neuron-inspired platforms.

  15. Ras plasma membrane signalling platforms

    PubMed Central

    2005-01-01

    The plasma membrane is a complex, dynamic structure that provides platforms for the assembly of many signal transduction pathways. These platforms have the capacity to impose an additional level of regulation on cell signalling networks. In this review, we will consider specifically how Ras proteins interact with the plasma membrane. The focus will be on recent studies that provide novel spatial and dynamic insights into the micro-environments that different Ras proteins utilize for signal transduction. We will correlate these recent studies suggesting Ras proteins might operate within a heterogeneous plasma membrane with earlier biochemical work on Ras signal transduction. PMID:15954863

  16. Mechanically latchable tiltable platform for forming micromirrors and micromirror arrays

    DOEpatents

    Garcia, Ernest J [Albuquerque, NM; Polosky, Marc A [Tijeras, NM; Sleefe, Gerard E [Cedar Crest, NM

    2006-12-12

    A microelectromechanical (MEM) apparatus is disclosed which includes a platform that can be electrostatically tilted from being parallel to a substrate on which the platform to being tilted at an angle of 1 20 degrees with respect to the substrate. Once the platform has been tilted to a maximum angle of tilt, the platform can be locked in position using an electrostatically-operable latching mechanism which engages a tab protruding below the platform. The platform has a light-reflective upper surface which can be optionally coated to provide an enhanced reflectivity and form a micromirror. An array of such micromirrors can be formed on a common substrate for applications including optical switching (e.g. for fiber optic communications), optical information processing, image projection displays or non-volatile optical memories.

  17. Assessment of the cPAS-based BGISEQ-500 platform for metagenomic sequencing.

    PubMed

    Fang, Chao; Zhong, Huanzi; Lin, Yuxiang; Chen, Bing; Han, Mo; Ren, Huahui; Lu, Haorong; Luber, Jacob M; Xia, Min; Li, Wangsheng; Stein, Shayna; Xu, Xun; Zhang, Wenwei; Drmanac, Radoje; Wang, Jian; Yang, Huanming; Hammarström, Lennart; Kostic, Aleksandar D; Kristiansen, Karsten; Li, Junhua

    2018-03-01

    More extensive use of metagenomic shotgun sequencing in microbiome research relies on the development of high-throughput, cost-effective sequencing. Here we present a comprehensive evaluation of the performance of the new high-throughput sequencing platform BGISEQ-500 for metagenomic shotgun sequencing and compare its performance with that of 2 Illumina platforms. Using fecal samples from 20 healthy individuals, we evaluated the intra-platform reproducibility for metagenomic sequencing on the BGISEQ-500 platform in a setup comprising 8 library replicates and 8 sequencing replicates. Cross-platform consistency was evaluated by comparing 20 pairwise replicates on the BGISEQ-500 platform vs the Illumina HiSeq 2000 platform and the Illumina HiSeq 4000 platform. In addition, we compared the performance of the 2 Illumina platforms against each other. By a newly developed overall accuracy quality control method, an average of 82.45 million high-quality reads (96.06% of raw reads) per sample, with 90.56% of bases scoring Q30 and above, was obtained using the BGISEQ-500 platform. Quantitative analyses revealed extremely high reproducibility between BGISEQ-500 intra-platform replicates. Cross-platform replicates differed slightly more than intra-platform replicates, yet a high consistency was observed. Only a low percentage (2.02%-3.25%) of genes exhibited significant differences in relative abundance comparing the BGISEQ-500 and HiSeq platforms, with a bias toward genes with higher GC content being enriched on the HiSeq platforms. Our study provides the first set of performance metrics for human gut metagenomic sequencing data using BGISEQ-500. The high accuracy and technical reproducibility confirm the applicability of the new platform for metagenomic studies, though caution is still warranted when combining metagenomic data from different platforms.

  18. Design of a portable electronic nose for real-fake detection of liquors

    NASA Astrophysics Data System (ADS)

    Qi, Pei-Feng; Zeng, Ming; Li, Zhi-Hua; Sun, Biao; Meng, Qing-Hao

    2017-09-01

    Portability is a major issue that influences the practical application of electronic noses (e-noses). For liquors detection, an e-nose must preprocess the liquid samples (e.g., using evaporation and thermal desorption), which makes the portable design even more difficult. To realize convenient and rapid detection of liquors, we designed a portable e-nose platform that consists of hardware and software systems. The hardware system contains an evaporation/sampling module, a reaction module, a control/data acquisition and analysis module, and a power module. The software system provides a user-friendly interface and can achieve automatic sampling and data processing. This e-nose platform has been applied to the real-fake recognition of Chinese liquors. Through parameter optimization of a one-class support vector machine classifier, the error rate of the negative samples is greatly reduced, and the overall recognition accuracy is improved. The results validated the feasibility of the designed portable e-nose platform.

  19. Constructing temporary sampling platforms for hydrologic studies

    Treesearch

    Manuel H. Martinez; Sandra E. Ryan

    2000-01-01

    This paper presents instructions for constructing platforms that span the width of stream channels to accommodate the measurement of hydrologic parameters over a wide range of discharges. The platforms provide a stable, safe, noninvasive, easily constructed, and relatively inexpensive means for permitting data collection without wading in the flow. We have used the...

  20. Earth resources instrumentation for the Space Station Polar Platform

    NASA Technical Reports Server (NTRS)

    Donohoe, Martin J.; Vane, Deborah

    1986-01-01

    The spacecraft and payloads of the Space Station Polar Platform program are described in a brief overview. Present plans call for one platform in a descending morning-equator-crossing orbit at 824 km and two or three platforms in ascending afternoon-crossing orbits at 542-824 km. The components of the NASA Earth Observing System (EOS) and NOAA payloads are listed in tables and briefly characterized, and data-distribution requirements and the mission development schedule are discussed. A drawing of the platform, a graph showing the spectral coverage of the EOS instruments, and a glossary of acronyms are provided.

  1. A truly Lego®-like modular microfluidics platform

    NASA Astrophysics Data System (ADS)

    Vittayarukskul, Kevin; Lee, Abraham Phillip

    2017-03-01

    Ideally, a modular microfluidics platform should be simple to assemble and support 3D configurations for increased versatility. The modular building blocks should also be mass producible like electrical components. These are fundamental features of world-renowned Legos® and why Legos® inspire many existing modular microfluidics platforms. In this paper, a truly Lego®-like microfluidics platform is introduced, and its basic feasibility is demonstrated. Here, PDMS building blocks resembling 2  ×  2 Lego® bricks are cast from 3D-printed master molds. The blocks are pegged and stacked on a traditional Lego® plate to create simple, 3D microfluidic networks, such as a single basket weave. Characteristics of the platform, including reversible sealing and automatic alignment of channels, are also analyzed and discussed in detail.

  2. The Geohazards Exploitation Platform

    NASA Astrophysics Data System (ADS)

    Laur, Henri; Casu, Francesco; Bally, Philippe; Caumont, Hervé; Pinto, Salvatore

    2016-04-01

    The Geohazards Exploitation Platform, or Geohazards TEP (GEP), is an ESA originated R&D activity of the EO ground segment to demonstrate the benefit of new technologies for large scale processing of EO data. This encompasses on-demand processing for specific user needs, systematic processing to address common information needs of the geohazards community, and integration of newly developed processors for scientists and other expert users. The platform supports the geohazards community's objectives as defined in the context of the International Forum on Satellite EO and Geohazards organised by ESA and GEO in Santorini in 2012. The GEP is a follow on to the Supersites Exploitation Platform (SSEP) an ESA initiative to support the Geohazards Supersites & Natural Laboratories initiative (GSNL). Today the GEP allows to exploit 70+ Terabyte of ERS and ENVISAT archive and the Copernicus Sentinel-1 data available on line. The platform has already engaged 22 European early adopters in a validation activity initiated in March 2015. Since September, this validation has reached 29 single user projects. Each project is concerned with either integrating an application, running on demand processing or systematically generating a product collection using an application available in the platform. The users primarily include 15 geoscience centres and universities based in Europe: British Geological Survey (UK), University of Leeds (UK), University College London (UK), ETH University of Zurich (CH), INGV (IT), CNR-IREA and CNR-IRPI (IT), University of L'Aquila (IT), NOA (GR), Univ. Blaise Pascal & CNRS (FR), Ecole Normale Supérieure (FR), ISTERRE / University of Grenoble-Alpes (FR). In addition, there are users from Africa and North America with the University of Rabat (MA) and the University of Miami (US). Furthermore two space agencies and four private companies are involved: the German Space Research Centre DLR (DE), the European Space Agency (ESA), Altamira Information (ES

  3. Xyce Parallel Electronic Simulator : users' guide, version 2.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoekstra, Robert John; Waters, Lon J.; Rankin, Eric Lamont

    2004-06-01

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator capable of simulating electrical circuits at a variety of abstraction levels. Primarily, Xyce has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability the current state-of-the-art in the following areas: {sm_bullet} Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers. {sm_bullet} Improved performance for allmore » numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. {sm_bullet} Device models which are specifically tailored to meet Sandia's needs, including many radiation-aware devices. {sm_bullet} A client-server or multi-tiered operating model wherein the numerical kernel can operate independently of the graphical user interface (GUI). {sm_bullet} Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing of computing platforms. These include serial, shared-memory and distributed-memory parallel implementation - which allows it to run efficiently on the widest possible number parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. One feature required by designers is the ability to add device models, many specific to the needs of Sandia, to the code. To this end, the device package in the

  4. Tomato bushy stunt virus (TBSV), a versatile platform for polyvalent display of antigenic epitopes and vaccine design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shantanu; Ochoa, Wendy; Singh, Pratik

    2009-05-25

    Viruses-like particles (VLPs) are frequently being used as platforms for polyvalent display of foreign epitopes of interest on their capsid surface to improve their presentation enhancing the antigenicity and host immune response. In the present study, we used the VLPs of Tomato bushy stunt virus (TBSV), an icosahedral plant virus, as a platform to display 180 copies of 16 amino acid epitopes of ricin toxin fused to the C-terminal end of a modified TBSV capsid protein (NDELTA52). Expression of the chimeric recombinant protein in insect cells resulted in spontaneous assembly of VLPs displaying the ricin epitope. Cryo-electron microscopy and imagemore » reconstruction of the chimeric VLPs at 22 A resolution revealed the locations and orientation of the ricin epitope exposed on the TBSV capsid surface. Furthermore, injection of chimeric VLPs into mice generated antisera that detected the native ricin toxin. The ease of fusing of short peptides of 15-20 residues and their ability to form two kinds (T = 1, T = 3) of bio-nanoparticles that result in the display of 60 or 180 copies of less constrained and highly exposed antigenic epitopes makes TBSV an attractive and versatile display platform for vaccine design.« less

  5. Strategies Used by Professors through Virtual Educational Platforms in Face-to-Face Classes: A View from the Chamilo Platform

    ERIC Educational Resources Information Center

    Valencia, Heriberto Gonzalez; Villota Enriquez, Jackeline Amparo; Agredo, Patricia Medina

    2017-01-01

    This study consisted in characterizing the strategies used by professors; implemented through virtual educational platforms. The context of this research were the classrooms of the Santiago de Cali University and the virtual space of the Chamilo virtual platform, where two professors from the Faculty of Education of the same university…

  6. [No-fault medical accidents: review of two years' activity of the regional commission for the compensation of medical accidents of the Provence-Alpes-Côtes d'Azur region (PACA)].

    PubMed

    Piercecchi-Marti, M-D; Sastre, B; Zuck, S; François, A; Genety, C; Bartoli, C; Leonetti, G

    2008-01-01

    Compensation for victims of medical accidents identified as no-fault medical accidents (NFMA) will be financed by national solidarity: this is a major and innovative feature of the Law of March 4, 2002 relative to Patients' Rights. In this review, we analyse the decisions of the regional commission on compensation of medical accidents in the Provence-Alpes-Côtes d'Azur (PACA) region of France in 2004 and 2005, and we attempt to identify the prevalence of certain surgical procedures liable to result in NFMA and to define the concept of "unintended consequences" in the context of state of health of the patient and the predictable course of the malady. We hope to improve the medical information given to the patient and thereby the overall quality of management. NFMA was acknowledged in 57 claims, about 10% of all those received by the commission during this period. Nearly half of the claims were within the competence of the commission because of the existence of serious sequelae (Permanent Partial Disability) in 47%. No typical profile of age or gender emerged in the patients with NFMA. The majority of cases occurred after surgical procedures, in particular gastrointestinal surgery and orthopaedic surgery; 91% were planned procedures. We did not identify increased risk related to any given type of surgery, particular disease condition, or precise anatomic region. Complications were those usually observed such as neurological complications in vascular surgery or perforations in gastrointestinal surgery. The interpretation of NFMA has undergone an evolution during this two-year period. In 2004, previous poor health status precluded acknowledgment of a medical accident, the argument being that there was a predisposition to the complication which occurred. In 2005, compensation was based on a reduced Partial Permanent Disability score compared to the patient's previous health status. This became a means of measuring the impact of the medical complication on an already

  7. Thiolene and SIFEL-based Microfluidic Platforms for Liquid-Liquid Extraction

    PubMed Central

    Goyal, Sachit; Desai, Amit V.; Lewis, Robert W.; Ranganathan, David R.; Li, Hairong; Zeng, Dexing; Reichert, David E.; Kenis, Paul J.A.

    2014-01-01

    Microfluidic platforms provide several advantages for liquid-liquid extraction (LLE) processes over conventional methods, for example with respect to lower consumption of solvents and enhanced extraction efficiencies due to the inherent shorter diffusional distances. Here, we report the development of polymer-based parallel-flow microfluidic platforms for LLE. To date, parallel-flow microfluidic platforms have predominantly been made out of silicon or glass due to their compatibility with most organic solvents used for LLE. Fabrication of silicon and glass-based LLE platforms typically requires extensive use of photolithography, plasma or laser-based etching, high temperature (anodic) bonding, and/or wet etching with KOH or HF solutions. In contrast, polymeric microfluidic platforms can be fabricated using less involved processes, typically photolithography in combination with replica molding, hot embossing, and/or bonding at much lower temperatures. Here we report the fabrication and testing of microfluidic LLE platforms comprised of thiolene or a perfluoropolyether-based material, SIFEL, where the choice of materials was mainly guided by the need for solvent compatibility and fabrication amenability. Suitable designs for polymer-based LLE platforms that maximize extraction efficiencies within the constraints of the fabrication methods and feasible operational conditions were obtained using analytical modeling. To optimize the performance of the polymer-based LLE platforms, we systematically studied the effect of surface functionalization and of microstructures on the stability of the liquid-liquid interface and on the ability to separate the phases. As demonstrative examples, we report (i) a thiolene-based platform to determine the lipophilicity of caffeine, and (ii) a SIFEL-based platform to extract radioactive copper from an acidic aqueous solution. PMID:25246730

  8. A novel platform to study magnetized high-velocity collisionless shocks

    DOE PAGES

    Higginson, D. P.; Korneev, Ph; Béard, J.; ...

    2014-12-13

    An experimental platform to study the interaction of two colliding high-velocity (0.01–0.2c; 0.05–20 MeV) proton plasmas in a high strength (20 T) magnetic field is introduced. This platform aims to study the collision of magnetized plasmas accelerated via the Target-Normal-Sheath-Acceleration mechanism and initially separated by distances of a few hundred microns. The plasmas are accelerated from solid targets positioned inside a few cubic millimeter cavity located within a Helmholtz coil that provides up to 20 T magnetic fields. Various parameters of the plasmas at their interaction location are estimated. These show an interaction that is highly non-collisional, and that becomesmore » more and more dominated by the magnetic fields as time progresses (from 5 to 60 ps). Particle-in-cell simulations are used to reproduce the initial acceleration of the plasma both via simulations including the laser interaction and via simulations that start with preheated electrons (to save dramatically on computational expense). The benchmarking of such simulations with the experiment and with each other will be used to understand the physical interaction when a magnetic field is applied. In conclusion, the experimental density profile of the interacting plasmas is shown in the case without an applied magnetic magnetic field, so to show that without an applied field that the development of high-velocity shocks, as a result of particle-to-particle collisions, is not achievable in the configuration considered.« less

  9. A novel platform to study magnetized high-velocity collisionless shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginson, D. P.; Korneev, Ph; Béard, J.

    An experimental platform to study the interaction of two colliding high-velocity (0.01–0.2c; 0.05–20 MeV) proton plasmas in a high strength (20 T) magnetic field is introduced. This platform aims to study the collision of magnetized plasmas accelerated via the Target-Normal-Sheath-Acceleration mechanism and initially separated by distances of a few hundred microns. The plasmas are accelerated from solid targets positioned inside a few cubic millimeter cavity located within a Helmholtz coil that provides up to 20 T magnetic fields. Various parameters of the plasmas at their interaction location are estimated. These show an interaction that is highly non-collisional, and that becomesmore » more and more dominated by the magnetic fields as time progresses (from 5 to 60 ps). Particle-in-cell simulations are used to reproduce the initial acceleration of the plasma both via simulations including the laser interaction and via simulations that start with preheated electrons (to save dramatically on computational expense). The benchmarking of such simulations with the experiment and with each other will be used to understand the physical interaction when a magnetic field is applied. In conclusion, the experimental density profile of the interacting plasmas is shown in the case without an applied magnetic magnetic field, so to show that without an applied field that the development of high-velocity shocks, as a result of particle-to-particle collisions, is not achievable in the configuration considered.« less

  10. Analyzing Cyber-Physical Threats on Robotic Platforms.

    PubMed

    Ahmad Yousef, Khalil M; AlMajali, Anas; Ghalyon, Salah Abu; Dweik, Waleed; Mohd, Bassam J

    2018-05-21

    Robots are increasingly involved in our daily lives. Fundamental to robots are the communication link (or stream) and the applications that connect the robots to their clients or users. Such communication link and applications are usually supported through client/server network connection. This networking system is amenable of being attacked and vulnerable to the security threats. Ensuring security and privacy for robotic platforms is thus critical, as failures and attacks could have devastating consequences. In this paper, we examine several cyber-physical security threats that are unique to the robotic platforms; specifically the communication link and the applications. Threats target integrity, availability and confidential security requirements of the robotic platforms, which use MobileEyes/arnlServer client/server applications. A robot attack tool (RAT) was developed to perform specific security attacks. An impact-oriented approach was adopted to analyze the assessment results of the attacks. Tests and experiments of attacks were conducted in simulation environment and physically on the robot. The simulation environment was based on MobileSim; a software tool for simulating, debugging and experimenting on MobileRobots/ActivMedia platforms and their environments. The robot platform PeopleBot TM was used for physical experiments. The analysis and testing results show that certain attacks were successful at breaching the robot security. Integrity attacks modified commands and manipulated the robot behavior. Availability attacks were able to cause Denial-of-Service (DoS) and the robot was not responsive to MobileEyes commands. Integrity and availability attacks caused sensitive information on the robot to be hijacked. To mitigate security threats, we provide possible mitigation techniques and suggestions to raise awareness of threats on the robotic platforms, especially when the robots are involved in critical missions or applications.

  11. Developing field emission electron sources based on ultrananocrystalline diamond for accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baryshev, Sergey V.; Jing, Chunguang; Qiu, Jiaqi

    Radiofrequency (RF) electron guns work by establishing an RF electromagnetic field inside a cavity having conducting walls. Electrons from a cathode are generated in the injector and immediately become accelerated by the RF electric field, and exit the gun as a series of electron bunches. Finding simple solutions for electron injection is a long standing problem. While energies of 30-50 MeV are achievable in linear accelerators (linacs), finding an electron source able to survive under MW electric loads and provide an average current of 1-10 mA is important. Meeting these requirements would open various linac applications for industry. The naturalmore » way to simplify and integrate RF injector architectures with the electron source would be to place the source directly into the RF cavity with no need for additional heaters/lasers. Euclid TechLabs in collaboration with Argonne National Lab are prototyping a family of highly effective field emission electron sources based on a nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) platform. Determined metrics suggest that our emitters are emissive enough to meet requirements for magnetized cooling at electron-ion colliders, linac-based radioisotope production and X-ray sterilization, and others.« less

  12. Interactions between avidin and graphene for development of a biosensing platform.

    PubMed

    Macwan, Isaac; Khan, Md Daud Hossain; Aphale, Ashish; Singh, Shrishti; Liu, Juan; Hingorani, Manju; Patra, Prabir

    2017-03-15

    Fundamental understanding of interactions at the interface of biological molecules, such as proteins, and nanomaterials is crucial for developing various biocompatible hybrid materials and biosensing platforms. Biosensors comprising of graphene-based conductive nanomaterials offer the advantage of higher sensitivity and reliable diagnosis mainly due to their superior specific surface area and ballistic conductivity. Furthermore, conductive nanocomposite structures that immobilize proteins can synergize the properties of both transducers and molecular recognition elements improving the performance of the biosensing device. Here we report for the first time, using a combined molecular dynamics simulations and experimental approach, the interactions between avidin and graphene for the development of a sensing platform that can be used for the detection of biological macromolecules such as mismatch repair proteins through biotinylated DNA substrates. We find that the interactive forces between avidin and graphene are mainly hydrophobic, along with some van der Waals, electrostatic and hydrogen bonding interactions. Notably, the structure and function of the avidin molecule are largely preserved after its adsorption on the graphene surface. The MD results agree well with scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) analysis of avidin immobilized on a graphenated polypyrrole (G-PPy) conductive nanocomposite confirming the adsorption of avidin on graphene nanoplatelets as observed from the Fourier-transform infrared spectroscopy (FTIR). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A gimbal platform stabilization for topographic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michele, Mangiameli, E-mail: michele.mangiameli@dica.unict.it; Giuseppe, Mussumeci

    2015-03-10

    The aim of this work is the stabilization of a Gimbal platform for optical sensors acquisitions in topographic applications using mobile vehicles. The stabilization of the line of sight (LOS) consists in tracking the command velocity in presence of nonlinear noise due to the external environment. The hardware architecture is characterized by an Ardupilot platform that allows the control of both the mobile device and the Gimbal. Here we developed a new approach to stabilize the Gimbal platform, which is based on neural network. For the control system, we considered a plant that represents the transfer function of the servomore » system control model for an inertial stabilized Gimbal platform. The transductor used in the feed-back line control is characterized by the Rate Gyro transfer function installed onboard of Ardupilot. For the simulation and investigation of the system performance, we used the Simulink tool of Matlab. Results show that the hardware/software approach is efficient, reliable and cheap for direct photogrammetry, as well as for general purpose applications using mobile vehicles.« less

  14. Hot air balloons fill gap in atmospheric and sensing platforms

    NASA Astrophysics Data System (ADS)

    Watson, Steven M.; Price, Russ

    Eric Edgerton was having a problem he could not solve: how to noninvasively collect in situ incinerator plume data. So he called in the Air Force and learned about its Atmospheric and Sensor Test Platform program; its platform is a manned hot air balloon. Many investigators are discovering the advantages of hot air balloons as stable, inexpensive platforms for performing in situ atmospheric measurements. Some are also using remote sensing capabilities on the balloon platforms.

  15. Field programmable chemistry: integrated chemical and electronic processing of informational molecules towards electronic chemical cells.

    PubMed

    Wagler, Patrick F; Tangen, Uwe; Maeke, Thomas; McCaskill, John S

    2012-07-01

    The topic addressed is that of combining self-constructing chemical systems with electronic computation to form unconventional embedded computation systems performing complex nano-scale chemical tasks autonomously. The hybrid route to complex programmable chemistry, and ultimately to artificial cells based on novel chemistry, requires a solution of the two-way massively parallel coupling problem between digital electronics and chemical systems. We present a chemical microprocessor technology and show how it can provide a generic programmable platform for complex molecular processing tasks in Field Programmable Chemistry, including steps towards the grand challenge of constructing the first electronic chemical cells. Field programmable chemistry employs a massively parallel field of electrodes, under the control of latched voltages, which are used to modulate chemical activity. We implement such a field programmable chemistry which links to chemistry in rather generic, two-phase microfluidic channel networks that are separated into weakly coupled domains. Electric fields, produced by the high-density array of electrodes embedded in the channel floors, are used to control the transport of chemicals across the hydrodynamic barriers separating domains. In the absence of electric fields, separate microfluidic domains are essentially independent with only slow diffusional interchange of chemicals. Electronic chemical cells, based on chemical microprocessors, exploit a spatially resolved sandwich structure in which the electronic and chemical systems are locally coupled through homogeneous fine-grained actuation and sensor networks and play symmetric and complementary roles. We describe how these systems are fabricated, experimentally test their basic functionality, simulate their potential (e.g. for feed forward digital electrophoretic (FFDE) separation) and outline the application to building electronic chemical cells. Copyright © 2012 Elsevier Ireland Ltd. All rights

  16. Reactions of Standing Bipeds on Moving Platforms to Keep Their Balance May Increase the Amplitude of Oscillations of Platforms Satisfying Hooke’s Law

    PubMed Central

    Goldsztein, Guillermo H.

    2016-01-01

    Consider a person standing on a platform that oscillates laterally, i.e. to the right and left of the person. Assume the platform satisfies Hooke’s law. As the platform moves, the person reacts and moves its body attempting to keep its balance. We develop a simple model to study this phenomenon and show that the person, while attempting to keep its balance, may do positive work on the platform and increase the amplitude of its oscillations. The studies in this article are motivated by the oscillations in pedestrian bridges that are sometimes observed when large crowds cross them. PMID:27304857

  17. Geostationary platform systems concepts definition study. Volume 2: Technical, book 1

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The initial selection and definition of operational geostationary platform concepts is discussed. Candidate geostationary platform missions and payloads were identified from COMSAT, Aerospace, and NASA studies. These missions and payloads were cataloged; classified with to communications, military, or scientific uses; screened for application and compatibility with geostationary platforms; and analyzed to identify platform requirements. Two platform locations were then selected (Western Hemisphere - 110 deg W, and Atlantic - 15 deg W), and payloads allocated based on nominal and high traffic models. Trade studies were performed leading to recommendation of selected concepts. Of 30 Orbit Transfer Vehicle (0TV) configuration and operating mode options identified, 18 viable candidates compatible with the operational geostationary platform missions were selected for analysis. Each was considered using four platform operational modes - 8 or 16 year life, and serviced or nonserviced, providing a total of 72 OTV/platform-mode options. For final trade study concept selection, a cost program was developed considering payload and platform costs and weight; transportation unit and total costs for the shuttle and OTV; and operational costs such as assembly or construction time, mating time, and loiter time. Servicing costs were added for final analysis and recommended selection.

  18. Efficient Sensor Integration on Platforms (NeXOS)

    NASA Astrophysics Data System (ADS)

    Memè, S.; Delory, E.; Del Rio, J.; Jirka, S.; Toma, D. M.; Martinez, E.; Frommhold, L.; Barrera, C.; Pearlman, J.

    2016-12-01

    In-situ ocean observing platforms provide power and information transmission capability to sensors. Ocean observing platforms can be mobile, such as ships, autonomous underwater vehicles, drifters and profilers, or fixed, such as buoys, moorings and cabled observatories. The process of integrating sensors on platforms can imply substantial engineering time and resources. Constraints range from stringent mechanical constraints to proprietary communication and control firmware. In NeXOS, the implementation of a PUCK plug and play capability is being done with applications to multiple sensors and platforms. This is complemented with a sensor web enablement that addresses the flow of information from sensor to user. Open standards are being tested in order to assess their costs and benefits in existing and future observing systems. Part of the testing implied open-source coding and hardware prototyping of specific control devices in particular for closed commercial platforms where firmware upgrading is not straightforward or possible without prior agreements or service fees. Some platform manufacturers such as European companies ALSEAMAR[1] and NKE Instruments [2] are currently upgrading their control and communication firmware as part of their activities in NeXOS. The sensor development companies Sensorlab[3] SMID[4] and TRIOS [5]upgraded their firmware with this plug and play functionality. Other industrial players in Europe and the US have been sent NeXOS sensors emulators to test the new protocol on their platforms. We are currently demonstrating that with little effort, it is also possible to have such middleware implemented on very low-cost compact computers such as the open Raspberry Pi[6], and have a full end-to-end interoperable communication path from sensor to user with sensor plug and play capability. The result is an increase in sensor integration cost-efficiency and the demonstration will be used to highlight the benefit to users and ocean observatory

  19. Lessons on electronic decoherence in molecules from exact modeling

    NASA Astrophysics Data System (ADS)

    Hu, Wenxiang; Gu, Bing; Franco, Ignacio

    2018-04-01

    Electronic decoherence processes in molecules and materials are usually thought and modeled via schemes for the system-bath evolution in which the bath is treated either implicitly or approximately. Here we present computations of the electronic decoherence dynamics of a model many-body molecular system described by the Su-Schrieffer-Heeger Hamiltonian with Hubbard electron-electron interactions using an exact method in which both electronic and nuclear degrees of freedom are taken into account explicitly and fully quantum mechanically. To represent the electron-nuclear Hamiltonian in matrix form and propagate the dynamics, the computations employ the Jordan-Wigner transformation for the fermionic creation/annihilation operators and the discrete variable representation for the nuclear operators. The simulations offer a standard for electronic decoherence that can be used to test approximations. They also provide a useful platform to answer fundamental questions about electronic decoherence that cannot be addressed through approximate or implicit schemes. Specifically, through simulations, we isolate basic mechanisms for electronic coherence loss and demonstrate that electronic decoherence is possible even for one-dimensional nuclear bath. Furthermore, we show that (i) decreasing the mass of the bath generally leads to faster electronic decoherence; (ii) electron-electron interactions strongly affect the electronic decoherence when the electron-nuclear dynamics is not pure-dephasing; (iii) classical bath models with initial conditions sampled from the Wigner distribution accurately capture the short-time electronic decoherence dynamics; (iv) model separable initial superpositions often used to understand decoherence after photoexcitation are only relevant in experiments that employ delta-like laser pulses to initiate the dynamics. These insights can be employed to interpret and properly model coherence phenomena in molecules.

  20. Microarray platform for omics analysis

    NASA Astrophysics Data System (ADS)

    Mecklenburg, Michael; Xie, Bin

    2001-09-01

    Microarray technology has revolutionized genetic analysis. However, limitations in genome analysis has lead to renewed interest in establishing 'omic' strategies. As we enter the post-genomic era, new microarray technologies are needed to address these new classes of 'omic' targets, such as proteins, as well as lipids and carbohydrates. We have developed a microarray platform that combines self- assembling monolayers with the biotin-streptavidin system to provide a robust, versatile immobilization scheme. A hydrophobic film is patterned on the surface creating an array of tension wells that eliminates evaporation effects thereby reducing the shear stress to which biomolecules are exposed to during immobilization. The streptavidin linker layer makes it possible to adapt and/or develop microarray based assays using virtually any class of biomolecules including: carbohydrates, peptides, antibodies, receptors, as well as them ore traditional DNA based arrays. Our microarray technology is designed to furnish seamless compatibility across the various 'omic' platforms by providing a common blueprint for fabricating and analyzing arrays. The prototype microarray uses a microscope slide footprint patterned with 2 by 96 flat wells. Data on the microarray platform will be presented.

  1. Studying the Effectiveness of an Online Language Learning Platform in China

    ERIC Educational Resources Information Center

    Baker, Ryan; Wang, Feng; Ma, Zhenjun; Ma, Wei; Zheng, Shiyue

    2018-01-01

    In this paper we evaluate the effectiveness of an adaptive online learning platform, designed to support Chinese students in learning the English language. The adaptive platform is studied in three studies, where the experimental platform is compared to an alternate, non-adaptive platform, with random assignment to conditions (the adaptive…

  2. Characterization of a low-level unknown isomeric degradation product using an integrated online-offline top-down tandem mass spectrometry platform.

    PubMed

    Yu, Xiang; Warme, Christopher; Lee, Dinah; Zhang, Jing; Zhong, Wendy

    2013-10-01

    An integrated online-offline platform was developed combining automated online LC-MS fraction collection, continuous accumulation of selected ions (CASI), and offline top-down electron capture dissociation (ECD) tandem mass spectrometry experiments to identify a low-level, unknown isomeric degradant in a formulated drug product during an accelerated stability study. By identifying the diagnostic ions of the isoaspartic acid (isoAsp), the top-down ECD experiment showed that the Asp9 in exenatide was converted to isoAsp9 to form the unknown isomeric degradant. The platform described here provides an accurate, straightforward, and low limit of detection method for the analysis of Asp isomerization as well as other potential low-level degradants in therapeutic polypeptides and proteins. It is especially useful for unstable and time-sensitive degradants and impurities.

  3. VAB Platform K(2) Lift & Install into Highbay 3

    NASA Image and Video Library

    2016-03-07

    Preparations are underway to lift the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket up from High Bay 4 inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform will be lifted up and over the transfer aisle and then lowered into High Bay 3 for installation. It will be secured about 86 feet above the VAB floor, on tower E of the high bay. The K work platforms will provide access to the SLS core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.

  4. VAB Platform K(2) Lift & Install into Highbay 3

    NASA Image and Video Library

    2016-03-07

    A 250-ton crane is used to lift the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket up from High Bay 4 inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform will be lifted up and over the transfer aisle and then lowered into High Bay 3 for installation. It will be secured about 86 feet above the VAB floor, on tower E of the high bay. The K work platforms will provide access to the SLS core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.

  5. VAB Platform K(2) Lift & Install into Highbay 3

    NASA Image and Video Library

    2016-03-07

    A 250-ton crane is used to lift the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket up from High Bay 4 inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform is being lifted up and over the transfer aisle and will be lowered into High Bay 3 for installation. It will be secured about 86 feet above the VAB floor, on tower E of the high bay. The K work platforms will provide access to the SLS core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.

  6. [Porting Radiotherapy Software of Varian to Cloud Platform].

    PubMed

    Zou, Lian; Zhang, Weisha; Liu, Xiangxiang; Xie, Zhao; Xie, Yaoqin

    2017-09-30

    To develop a low-cost private cloud platform of radiotherapy software. First, a private cloud platform which was based on OpenStack and the virtual GPU hardware was builded. Then on the private cloud platform, all the Varian radiotherapy software modules were installed to the virtual machine, and the corresponding function configuration was completed. Finally the software on the cloud was able to be accessed by virtual desktop client. The function test results of the cloud workstation show that a cloud workstation is equivalent to an isolated physical workstation, and any clients on the LAN can use the cloud workstation smoothly. The cloud platform transplantation in this study is economical and practical. The project not only improves the utilization rates of radiotherapy software, but also makes it possible that the cloud computing technology can expand its applications to the field of radiation oncology.

  7. Measuring the Electron Temperature in the Corona

    NASA Technical Reports Server (NTRS)

    Davila, Joseph; SaintCyr, Orville C.; Reginald, Nelson

    2008-01-01

    We report on an experiment to demonstrate the feasibility of a new method to obtain the electron temperature and flow speed in the solar corona by observing the visible Kcoronal spectrum during the total solar eclipse on 29 March 2006 in Libya. Results show that this new method is indeed feasible, giving electron temperatures and speeds of 1.10 $\\pm$ 0.05 MK, 103.0 $\\pm$ 92.0 $kmsA{-l}$; 0.98 $\\pm$ 0.12 MK, 0.0 + 10.0 $kmsA{-1)s; 0.70 $\\pm$ 0.08 MK, 0.0 + 10.0 $kmsA{-l)$ at l.l{\\it R)$ {\\odot}$ in the solar north, east and west, respectively, and 0.93 $\\pm$ 0.12 MK, 0.0 + 10.0 $kmsA{-l}$ at 1.2{\\it R}$ {\\odot}$ in the solar east. This new technique could be easily used from a space-based platform in a coronagraph to produce two dimensional maps of the electron temperature and bulk flow speed at the base of the solar wind useful for the study of heliospheric structure and space weather.

  8. SERS diagnostic platforms, methods and systems microarrays, biosensors and biochips

    DOEpatents

    Vo-Dinh, Tuan [Knoxville, TN

    2007-09-11

    A Raman integrated sensor system for the detection of targets including biotargets includes at least one sampling platform, at least one receptor probe disposed on the sampling platform, and an integrated circuit detector system communicably connected to the receptor. The sampling platform is preferably a Raman active surface-enhanced scattering (SERS) platform, wherein the Raman sensor is a SERS sensor. The receptors can include at least one protein receptor and at least one nucleic acid receptor.

  9. The Prodiguer Messaging Platform

    NASA Astrophysics Data System (ADS)

    Denvil, S.; Greenslade, M. A.; Carenton, N.; Levavasseur, G.; Raciazek, J.

    2015-12-01

    CONVERGENCE is a French multi-partner national project designed to gather HPC and informatics expertise to innovate in the context of running French global climate models with differing grids and at differing resolutions. Efficient and reliable execution of these models and the management and dissemination of model output are some of the complexities that CONVERGENCE aims to resolve.At any one moment in time, researchers affiliated with the Institut Pierre Simon Laplace (IPSL) climate modeling group, are running hundreds of global climate simulations. These simulations execute upon a heterogeneous set of French High Performance Computing (HPC) environments. The IPSL's simulation execution runtime libIGCM (library for IPSL Global Climate Modeling group) has recently been enhanced so as to support hitherto impossible realtime use cases such as simulation monitoring, data publication, metrics collection, simulation control, visualizations … etc. At the core of this enhancement is Prodiguer: an AMQP (Advanced Message Queue Protocol) based event driven asynchronous distributed messaging platform. libIGCM now dispatches copious amounts of information, in the form of messages, to the platform for remote processing by Prodiguer software agents at IPSL servers in Paris. Such processing takes several forms: Persisting message content to database(s); Launching rollback jobs upon simulation failure; Notifying downstream applications; Automation of visualization pipelines; We will describe and/or demonstrate the platform's: Technical implementation; Inherent ease of scalability; Inherent adaptiveness in respect to supervising simulations; Web portal receiving simulation notifications in realtime.

  10. Automated Detection of Salt Marsh Platforms : a Topographic Method

    NASA Astrophysics Data System (ADS)

    Goodwin, G.; Mudd, S. M.; Clubb, F. J.

    2017-12-01

    Monitoring the topographic evolution of coastal marshes is a crucial step toward improving the management of these valuable landscapes under the pressure of relative sea level rise and anthropogenic modification. However, determining their geometrically complex boundaries currently relies on spectral vegetation detection methods or requires labour-intensive field surveys and digitisation.We propose a novel method to reproducibly isolate saltmarsh scarps and platforms from a DEM. Field observations and numerical models show that saltmarshes mature into sub-horizontal platforms delineated by sub-vertical scarps: based on this premise, we identify scarps as lines of local maxima on a slope*relief raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. Non-dimensional search parameters allow batch-processing of data without recalibration. We test our method using lidar-derived DEMs of six saltmarshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and automatic segregation exceeds 90% for resolutions of 1m, with all but one sites maintaining this performance for resolutions up to 3.5m. For resolutions of 1m, automatically detected platforms are comparable in surface area and elevation distribution to digitised platforms. We also find that our method allows the accurate detection of local bloc failures 3 times larger than the DEM resolution.Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, automatic detection classifies them as part of the tidal flat, causing an increase in false negatives and overall platform perimeter. This suggests our method would benefit from a combination with existing creek detection algorithms. Fallen blocs and pioneer zones are inconsistently identified, particularly in macro-tidal marshes, leading to differences between digitisation and the automated method

  11. All-carbon suspended nanowire sensors as a rapid highly-sensitive label-free chemiresistive biosensing platform.

    PubMed

    Thiha, Aung; Ibrahim, Fatimah; Muniandy, Shalini; Dinshaw, Ignatius Julian; Teh, Swe Jyan; Thong, Kwai Lin; Leo, Bey Fen; Madou, Marc

    2018-06-01

    Nanowire sensors offer great potential as highly sensitive electrochemical and electronic biosensors because of their small size, high aspect ratios, and electronic properties. Nevertheless, the available methods to fabricate carbon nanowires in a controlled manner remain limited to expensive techniques. This paper presents a simple fabrication technique for sub-100 nm suspended carbon nanowire sensors by integrating electrospinning and photolithography techniques. Carbon Microelectromechanical Systems (C-MEMS) fabrication techniques allow fabrication of high aspect ratio carbon structures by patterning photoresist polymers into desired shapes and subsequent carbonization of resultant structures by pyrolysis. In our sensor platform, suspended nanowires were deposited by electrospinning while photolithography was used to fabricate support structures. We have achieved suspended carbon nanowires with sub-100 nm diameters in this study. The sensor platform was then integrated with a microfluidic chip to form a lab-on-chip device for label-free chemiresistive biosensing. We have investigated this nanoelectronics label-free biosensor's performance towards bacterial sensing by functionalization with Salmonella-specific aptamer probes. The device was tested with varying concentrations of Salmonella Typhimurium to evaluate sensitivity and various other bacteria to investigate specificity. The results showed that the sensor is highly specific and sensitive in detection of Salmonella with a detection limit of 10 CFU mL -1 . Moreover, this proposed chemiresistive assay has a reduced turnaround time of 5 min and sample volume requirement of 5 µL which are much less than reported in the literature. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. RMG An Open Source Electronic Structure Code for Multi-Petaflops Calculations

    NASA Astrophysics Data System (ADS)

    Briggs, Emil; Lu, Wenchang; Hodak, Miroslav; Bernholc, Jerzy

    RMG (Real-space Multigrid) is an open source, density functional theory code for quantum simulations of materials. It solves the Kohn-Sham equations on real-space grids, which allows for natural parallelization via domain decomposition. Either subspace or Davidson diagonalization, coupled with multigrid methods, are used to accelerate convergence. RMG is a cross platform open source package which has been used in the study of a wide range of systems, including semiconductors, biomolecules, and nanoscale electronic devices. It can optionally use GPU accelerators to improve performance on systems where they are available. The recently released versions (>2.0) support multiple GPU's per compute node, have improved performance and scalability, enhanced accuracy and support for additional hardware platforms. New versions of the code are regularly released at http://www.rmgdft.org. The releases include binaries for Linux, Windows and MacIntosh systems, automated builds for clusters using cmake, as well as versions adapted to the major supercomputing installations and platforms. Several recent, large-scale applications of RMG will be discussed.

  13. Sedimentological evolution of the Cretaceous carbonate platform of Chiapas (Mexico)

    NASA Astrophysics Data System (ADS)

    Cros, Pierre; Michaud, François; Fourcade, Eric; Fleury, Jean-Jacques

    1998-07-01

    The Cretaceous epicontinental carbonate platform of Chiapas (south-east of Mexico) extends along a 200 km NW-SE narrow strip, north of the Sierra Madre basement, from Ocozocoautla to Comitan. In the western and central domain, three stratigraphic sections of the Sierra Madre Formation (late Aptian to early Senonian) display well exposed facies sequences enabling broad facies correlations about: (1) The successive transgressive-regressive stages, (2) the different subsidence rates controlling the outer to inner platform environmental evolution, (3) the conditions of tectonically controlled partial platform drowning during Campanian-Maastrichtian. Three other sections through the eastern Maastrichtian carbonate platform area record the changes from limestone to dolomite during the Angostura Maastrichtian platform stage. This evolution of thickness and facies in the occidental domain of Piedra Parada and in the central domain of Guadalupe Victoria and Julian Grajales illustrates the settlement process of the carbonate platform and the general decreasing of the thickness of the Sierra Madre Formation from west to east. The eastern platform domain (Comitan) crops out extensively and enables new correlations along a south-north transect. The Sierra Madre Formation and Angostura Formation documents continuous carbonate platform sedimentation with foraminifers, rudists and dasycladacean algae during Campanian and Maastrichtian. These sections permit palaeogeographical comparisons of depositional conditions of the Mexican margin of the Maya block.

  14. 30 CFR 250.609 - Well-workover structures on fixed platforms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Well-workover structures on fixed platforms. 250.609 Section 250.609 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR... consideration the corrosion protection, age of the platform, and previous stresses to the platform. ...

  15. Co-integrating plasmonics with Si3N4 photonics towards a generic CMOS compatible PIC platform for high-sensitivity multi-channel biosensors: the H2020 PlasmoFab approach (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tsiokos, Dimitris M.; Dabos, George; Ketzaki, Dimitra; Weeber, Jean-Claude; Markey, Laurent; Dereux, Alain; Giesecke, Anna Lena; Porschatis, Caroline; Chmielak, Bartos; Wahlbrink, Thorsten; Rochracher, Karl; Pleros, Nikos

    2017-05-01

    Silicon photonics meet most fabrication requirements of standard CMOS process lines encompassing the photonics-electronics consolidation vision. Despite this remarkable progress, further miniaturization of PICs for common integration with electronics and for increasing PIC functional density is bounded by the inherent diffraction limit of light imposed by optical waveguides. Instead, Surface Plasmon Polariton (SPP) waveguides can guide light at sub-wavelength scales at the metal surface providing unique light-matter interaction properties, exploiting at the same time their metallic nature to naturally integrate with electronics in high-performance ASPICs. In this article, we demonstrate the main goals of the recently introduced H2020 project PlasmoFab towards addressing the ever increasing needs for low energy, small size and high performance mass manufactured PICs by developing a revolutionary yet CMOS-compatible fabrication platform for seamless co-integration of plasmonics with photonic and supporting electronic. We demonstrate recent advances on the hosting SiN photonic hosting platform reporting on low-loss passive SiN waveguide and Grating Coupler circuits for both the TM and TE polarization states. We also present experimental results of plasmonic gold thin-film and hybrid slot waveguide configurations that can allow for high-sensitivity sensing, providing also the ongoing activities towards replacing gold with Cu, Al or TiN metal in order to yield the same functionality over a CMOS metallic structure. Finally, the first experimental results on the co-integrated SiN+plasmonic platform are demonstrated, concluding to an initial theoretical performance analysis of the CMOS plasmo-photonic biosensor that has the potential to allow for sensitivities beyond 150000nm/RIU.

  16. Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces.

    PubMed

    Zhao, Siwei; Tseng, Peter; Grasman, Jonathan; Wang, Yu; Li, Wenyi; Napier, Bradley; Yavuz, Burcin; Chen, Ying; Howell, Laurel; Rincon, Javier; Omenetto, Fiorenzo G; Kaplan, David L

    2018-06-01

    The increased need for wearable and implantable medical devices has driven the demand for electronics that interface with living systems. Current bioelectronic systems have not fully resolved mismatches between engineered circuits and biological systems, including the resulting pain and damage to biological tissues. Here, salt/poly(ethylene glycol) (PEG) aqueous two-phase systems are utilized to generate programmable hydrogel ionic circuits. High-conductivity salt-solution patterns are stably encapsulated within PEG hydrogel matrices using salt/PEG phase separation, which route ionic current with high resolution and enable localized delivery of electrical stimulation. This strategy allows designer electronics that match biological systems, including transparency, stretchability, complete aqueous-based connective interface, distribution of ionic electrical signals between engineered and biological systems, and avoidance of tissue damage from electrical stimulation. The potential of such systems is demonstrated by generating light-emitting diode (LED)-based displays, skin-mounted electronics, and stimulators that deliver localized current to in vitro neuron cultures and muscles in vivo with reduced adverse effects. Such electronic platforms may form the basis of future biointegrated electronic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. User definition and mission requirements for unmanned airborne platforms, revised

    NASA Technical Reports Server (NTRS)

    Kuhner, M. B.; Mcdowell, J. R.

    1979-01-01

    The airborne measurement requirements of the scientific and applications experiment user community were assessed with respect to the suitability of proposed strawman airborne platforms. These platforms provide a spectrum of measurement capabilities supporting associated mission tradeoffs such as payload weight, operating altitude, range, duration, flight profile control, deployment flexibility, quick response, and recoverability. The results of the survey are used to examine whether the development of platforms is warranted and to determine platform system requirements as well as research and technology needs.

  18. Particle-based platforms for malaria vaccines.

    PubMed

    Wu, Yimin; Narum, David L; Fleury, Sylvain; Jennings, Gary; Yadava, Anjali

    2015-12-22

    Recombinant subunit vaccines in general are poor immunogens likely due to the small size of peptides and proteins, combined with the lack or reduced presentation of repetitive motifs and missing complementary signal(s) for optimal triggering of the immune response. Therefore, recombinant subunit vaccines require enhancement by vaccine delivery vehicles in order to attain adequate protective immunity. Particle-based delivery platforms, including particulate antigens and particulate adjuvants, are promising delivery vehicles for modifying the way in which immunogens are presented to both the innate and adaptive immune systems. These particle delivery platforms can also co-deliver non-specific immunostimodulators as additional adjuvants. This paper reviews efforts and advances of the Particle-based delivery platforms in development of vaccines against malaria, a disease that claims over 600,000 lives per year, most of them are children under 5 years of age in sub-Sahara Africa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Creating Math Videos: Comparing Platforms and Software

    ERIC Educational Resources Information Center

    Abbasian, Reza O.; Sieben, John T.

    2016-01-01

    In this paper we present a short tutorial on creating mini-videos using two platforms--PCs and tablets such as iPads--and software packages that work with these devices. Specifically, we describe the step-by-step process of creating and editing videos using a Wacom Intuos pen-tablet plus Camtasia software on a PC platform and using the software…

  20. 30 CFR 250.509 - Well-completion structures on fixed platforms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Well-completion structures on fixed platforms. 250.509 Section 250.509 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR... consideration the corrosion protection, age of platform, and previous stresses to the platform. [53 FR 10690...