Sample records for b-3 cells results

  1. Decoy receptor 3 suppresses TLR2-mediated B cell activation by targeting NF-κB.

    PubMed

    Huang, Zi-Ming; Kang, Jhi-Kai; Chen, Chih-Yu; Tseng, Tz-Hau; Chang, Chien-Wen; Chang, Yung-Chi; Tai, Shyh-Kuan; Hsieh, Shie-Liang; Leu, Chuen-Miin

    2012-06-15

    Decoy receptor 3 (DcR3) is a soluble protein in the TNFR superfamily. Its known ligands include Fas ligand, homologous to lymphotoxin, showing inducible expression, and competing with HSV glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes, TNF-like molecule 1A, and heparan sulfate proteoglycans. DcR3 has been reported to modulate the functions of T cells, dendritic cells, and macrophages; however, its role in regulating B cell activation is largely unknown. In this study, we found that the DcR3.Fc fusion protein bound to human and mouse B cells and suppressed the activation of B cells. DcR3.Fc attenuated Staphylococcus aureus, IgM-, Pam(3)CSK(4)-, and LPS-mediated B cell proliferation but did not affect cytokine-induced B cell growth. In the presence of these mitogens, DcR3.Fc did not induce B cell apoptosis, suggesting that DcR3 may inhibit the signal(s) important for B cell activation. Because the combination of Fas.Fc, LT-βR.Fc (homologous to lymphotoxin, showing inducible expression, and competing with HSV glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes receptor), and DR3.Fc (TNF-like molecule 1A receptor) did not suppress B cell proliferation and because the biological effect of DcR3.Fc on B cells was not blocked by heparin, we hypothesize that a novel ligand(s) of DcR3 mediates its inhibitory activity on B cells. Moreover, we found that TLR2-stimulated NF-κB p65 activation and NF-κB-driven luciferase activity were attenuated by DcR3.Fc. The TLR2-induced cytokine production by B cells was consistently reduced by DcR3. These results imply that DcR3 may regulate B cell activation by suppressing the activation of NF-κB.

  2. Runx2 mediates epigenetic silencing of the bone morphogenetic protein-3B (BMP-3B/GDF10) in lung cancer cells

    PubMed Central

    2012-01-01

    Background The Runt-related transcription factor Runx2 is essential for bone development but is also implicated in progression of several cancers of breast, prostate and bone, where it activates cancer-related genes and promotes invasive properties. The transforming growth factor β (TGF-β) family member bone morphogenetic protein-3B (BMP-3B/GDF10) is regarded as a tumor growth inhibitor and a gene silenced in lung cancers; however the regulatory mechanisms leading to its silencing have not been identified. Results Here we show that Runx2 is highly expressed in lung cancer cells and downregulates BMP-3B. This inverse relationship between Runx2 and BMP-3B expression is further supported by increased expression of BMP-3B in mesenchymal cells from Runx2 deficient mice. The ectopic expression of Runx2, but not DNA binding mutant Runx2, in normal lung fibroblast cells and lung cancer cells resulted in suppression of BMP-3B levels. The chromatin immunoprecipitation studies identified that the mechanism of Runx2-mediated suppression of BMP-3B is due to the recruitment of Runx2 and histone H3K9-specific methyltransferase Suv39h1 to BMP-3B proximal promoter and a concomitant increase in histone methylation (H3K9) status. The knockdown of Runx2 in H1299 cells resulted in decreased histone H3K9 methylation on BMP-3B promoter and increased BMP-3B expression levels. Furthermore, co-immunoprecipitation studies showed a direct interaction of Runx2 and Suv39h1 proteins. Phenotypically, Runx2 overexpression in H1299 cells increased wound healing response to TGFβ treatment. Conclusions Our studies identified BMP-3B as a new Runx2 target gene and revealed a novel function of Runx2 in silencing of BMP-3B in lung cancers. Our results suggest that Runx2 is a potential therapeutic target to block tumor suppressor gene silencing in lung cancer cells. PMID:22537242

  3. Wiskott-Aldrich syndrome protein deficiency in B cells results in impaired peripheral homeostasis

    PubMed Central

    Meyer-Bahlburg, Almut; Becker-Herman, Shirly; Humblet-Baron, Stephanie; Khim, Socheath; Weber, Michele; Bouma, Gerben; Thrasher, Adrian J.; Batista, Facundo D.

    2008-01-01

    To more precisely identify the B-cell phenotype in Wiskott-Aldrich syndrome (WAS), we used 3 distinct murine in vivo models to define the cell intrinsic requirements for WAS protein (WASp) in central versus peripheral B-cell development. Whereas WASp is dispensable for early bone marrow B-cell development, WASp deficiency results in a marked reduction in each of the major mature peripheral B-cell subsets, exerting the greatest impact on marginal zone and B1a B cells. Using in vivo bromodeoxyuridine labeling and in vitro functional assays, we show that these deficits reflect altered peripheral homeostasis, partially resulting from an impairment in integrin function, rather than a developmental defect. Consistent with these observations, we also show that: (1) WASp expression levels increase with cell maturity, peaking in those subsets exhibiting the greatest sensitivity to WASp deficiency; (2) WASp+ murine B cells exhibit a marked selective advantage beginning at the late transitional B-cell stage; and (3) a similar in vivo selective advantage is manifest by mature WASp+ human B cells. Together, our data provide a better understanding of the clinical phenotype of WAS and suggest that gene therapy might be a useful approach to rescue altered B-cell homeostasis in this disease. PMID:18687984

  4. CTLA4 Promotes Tyk2-STAT3-Dependent B-cell Oncogenicity.

    PubMed

    Herrmann, Andreas; Lahtz, Christoph; Nagao, Toshikage; Song, Joo Y; Chan, Wing C; Lee, Heehyoung; Yue, Chanyu; Look, Thomas; Mülfarth, Ronja; Li, Wenzhao; Jenkins, Kurt; Williams, John; Budde, Lihua E; Forman, Stephen; Kwak, Larry; Blankenstein, Thomas; Yu, Hua

    2017-09-15

    CTL-associated antigen 4 (CTLA4) is a well-established immune checkpoint for antitumor immune responses. The protumorigenic function of CTLA4 is believed to be limited to T-cell inhibition by countering the activity of the T-cell costimulating receptor CD28. However, as we demonstrate here, there are two additional roles for CTLA4 in cancer, including via CTLA4 overexpression in diverse B-cell lymphomas and in melanoma-associated B cells. CTLA4-CD86 ligation recruited and activated the JAK family member Tyk2, resulting in STAT3 activation and expression of genes critical for cancer immunosuppression and tumor growth and survival. CTLA4 activation resulted in lymphoma cell proliferation and tumor growth, whereas silencing or antibody-blockade of CTLA4 in B-cell lymphoma tumor cells in the absence of T cells inhibits tumor growth. This inhibition was accompanied by reduction of Tyk2/STAT3 activity, tumor cell proliferation, and induction of tumor cell apoptosis. The CTLA4-Tyk2-STAT3 signal pathway was also active in tumor-associated nonmalignant B cells in mouse models of melanoma and lymphoma. Overall, our results show how CTLA4-induced immune suppression occurs primarily via an intrinsic STAT3 pathway and that CTLA4 is critical for B-cell lymphoma proliferation and survival. Cancer Res; 77(18); 5118-28. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. Activation of the PI3K/AKT pathway by microRNA-22 results in CLL B-cell proliferation.

    PubMed

    Palacios, F; Abreu, C; Prieto, D; Morande, P; Ruiz, S; Fernández-Calero, T; Naya, H; Libisch, G; Robello, C; Landoni, A I; Gabus, R; Dighiero, G; Oppezzo, P

    2015-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by accumulation of clonal B cells arrested in G0/G1 stages that coexist, in different proportions, with proliferative B cells. Understanding the crosstalk between the proliferative subsets and their milieu could provide clues on CLL biology. We previously identified one of these subpopulations in the peripheral blood from unmutated patients that appears to be a hallmark of a progressive disease. Aiming to characterize the molecular mechanism underlying this proliferative behavior, we performed gene expression analysis comparing the global mRNA and microRNA expression of this leukemic subpopulation, and compared it with their quiescent counterparts. Our results suggest that proliferation of this fraction depend on microRNA-22 overexpression that induces phosphatase and tensin homolog downregulation and phosphoinositide 3-kinase (PI3K)/AKT pathway activation. Transfection experiments demonstrated that miR-22 overexpression in CLL B cells switches on PI3K/AKT, leading to downregulation of p27(-Kip1) and overexpression of Survivin and Ki-67 proteins. We also demonstrated that this pathway could be triggered by microenvironment signals like CD40 ligand/interleukin-4 and, more importantly, that this regulatory loop is also present in lymph nodes from progressive unmutated patients. Altogether, these results underline the key role of PI3K/AKT pathway in the generation of the CLL proliferative pool and provide additional rationale for the usage of PI3K inhibitors.

  6. EBV latent membrane protein 1 activates Akt, NFkappaB, and Stat3 in B cell lymphomas.

    PubMed

    Shair, Kathy H Y; Bendt, Katherine M; Edwards, Rachel H; Bedford, Elisabeth C; Nielsen, Judith N; Raab-Traub, Nancy

    2007-11-01

    Latent membrane protein 1 (LMP1) is the major oncoprotein of Epstein-Barr virus (EBV). In transgenic mice, LMP1 promotes increased lymphoma development by 12 mo of age. This study reveals that lymphoma develops in B-1a lymphocytes, a population that is associated with transformation in older mice. The lymphoma cells have deregulated cell cycle markers, and inhibitors of Akt, NFkappaB, and Stat3 block the enhanced viability of LMP1 transgenic lymphocytes and lymphoma cells in vitro. Lymphoma cells are independent of IL4/Stat6 signaling for survival and proliferation, but have constitutively activated Stat3 signaling. These same targets are also deregulated in wild-type B-1a lymphomas that arise spontaneously through age predisposition. These results suggest that Akt, NFkappaB, and Stat3 pathways may serve as effective targets in the treatment of EBV-associated B cell lymphomas.

  7. Compare the Difference of B-cell Epitopes of EgAgB1 and EgAgB3 Proteins Selected through Bioinformatic Analysis

    NASA Astrophysics Data System (ADS)

    An, Mengting; Zhang, Fengbo; Zhu, Yuejie; Zhao, Xiao; Ding, Jianbing

    2018-01-01

    Cystic echinococcosis, as a zoonosis, seriously endangers humans and animals, so early diagnosis of this disease is particularly important. Therefore, this study is to predict B-cell epitopes of EgAgB1 and EgAgB3 proteins by bioinformatics software. B-cell epitopes of EgAgB1 and EgAgB3 proteins are predicted using DNAStar and IEDB software. The results suggest that there are two potential B-cell epitopes in EgAgB1, which located in the 8-15 and 31-37 amino acid residue segments. And two potential B-cell epitopes in EgAgB2, located in the 20∼27 and 47∼53 amino acid residue segments. This study predicted the B-cell epitopes of EgAgB1 and EgAgB3 proteins, which laid the foundation for the early diagnosis of Cystic echinococcosis.

  8. Regulation of Mitochondria Function by TRAF3 in B Lymphocytes and B Cell Malignancies

    DTIC Science & Technology

    2014-08-01

    PARP1, PHB2 4 Background B cell neoplasms account for over 90% of lymphoid tumors worldwide, and comprise >50% of blood cancers. Despite recent... cells examined include common lymphoid progenitor, pre-pro-B, pro-B, pre-B, newly-formed B, and transitional (T1, T2 and T3) B cells . The data in...factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity 2007, 27:253-267. 13. Moore CR, Liu Y, Shao CS, Covey LR

  9. BmCyclin B and BmCyclin B3 are required for cell cycle progression in the silkworm, Bombyx mori.

    PubMed

    Pan, Minhui; Hong, Kaili; Chen, Xiangyun; Pan, Chun; Chen, Xuemei; Kuang, Xiuxiu; Lu, Cheng

    2013-04-01

    Cyclin B is an important regulator of the cell cycle G2 to M phase transition. The silkworm genomic database shows that there are two Cyclin B genes in the silkworm (Bombyx mori), BmCyclin B and BmCyclin B3. Using silkworm EST data, the cyclin B3 (EU074796) gene was cloned. Its complete cDNA was 1665 bp with an ORF of 1536 bp derived from seven exons and six introns. The BmCyclin B3 gene encodes 511 amino acids, and the predicted molecular weight is 57.8 kD with an isoelectric point of 9.18. The protein contains one protein damage box and two cyclin boxes. RNA interference-mediated reduction of BmCyclin B and BmCyclin B3 expression induced cell cycle arrest in G2 or M phase in BmN-SWU1 cells, thus inhibiting cell proliferation. These results suggest that BmCyclin B and BmCyclin B3 are necessary for completing the cell cycle in silkworm cells.

  10. Overexpression of B7-H3 augments anti-apoptosis of colorectal cancer cells by Jak2-STAT3.

    PubMed

    Zhang, Ting; Jiang, Bo; Zou, Shi-Tao; Liu, Fen; Hua, Dong

    2015-02-14

    To investigate the role of the overexpression of B7-H3 in apoptosis in colorectal cancer cell lines and the underlying molecular mechanisms. SW620 cells that highly overexpressed B7-H3 (SW620-B7-H3-EGFP) and HCT8 cells stably transfected with B7-H3 shRNA (HCT8-shB7-H3) were previously constructed in our laboratory. Cells transfected with pIRES2-EGFP were used as negative controls (SW620-NC and HCT8-NC). Real-time PCR and western blotting analysis were used to detect the mRNA and protein expressions of the apoptosis regulator proteins Bcl-2, Bcl-xl and Bax. A cell proliferation assay was used to evaluate the survival rate and drug sensitivity of the cells. The effect of drug resistance was detected by a cell cycle assay. Active caspase-3 western blotting was used to reflect the anti-apoptotic ability of cells. Western blotting was also performed to determine the expression of proteins associated with the Jak2-STAT3 signaling pathway and the apoptosis regulator proteins after the treatment with AG490, a Jak2 specific inhibitor, in B7-H3 overexpressing cells. The data were analyzed by GraphPad Prism 6 using a non-paired t-test. Whether by overexpression in SW620 cells or downregulation in HCT8, B7-H3 significantly affected the expression of anti- and pro-apoptotic proteins, at both the transcriptional and translational levels, compared with the negative control (P < 0.05). A cell proliferation assay revealed that B7-H3 overexpression increased the drug resistance of cells and resulted in a higher survival rate (P < 0.05). In addition, the results of cell cycle and active caspase-3 western blotting proved that B7-H3 overexpression inhibited apoptosis in colorectal cancer cell lines (P < 0.05). B7-H3 overexpression improved Jak2 and STAT3 phosphorylation and, in turn, increased the expression of the downstream anti-apoptotic proteins B-cell CLL/lymphoma 2 (Bcl-2) and Bcl-xl, based on western blotting (P < 0.05). After treating B7-H3 overexpressing cells with the Jak2

  11. Casticin impairs cell migration and invasion of mouse melanoma B16F10 cells via PI3K/AKT and NF-κB signaling pathways.

    PubMed

    Shih, Yung-Luen; Chou, Hsiao-Min; Chou, Hsiu-Chen; Lu, Hsu-Feng; Chu, Yung-Lin; Shang, Hung-Sheng; Chung, Jing-Gung

    2017-09-01

    Casticin, a polymethoxyflavone, is one of the major active components obtained from Fructus viticis, which have been shown to have anticancer activities including induce cell apoptosis in human cancer cells. The aim of this study was to investigate the molecular mechanisms by which casticin inhibits cell migration and invasion of mouse melanoma B16F10 cells. Cell viability was examined by MTT assay and the results indicated that casticin decreased the total percentages of viable cells in dose-dependent manners. Casticin affected cell migration and invasion in B16F10 cells were examined by wound healing mobility assay and Boyden chamber migration and invasion assay and results indicated that casticin inhibited cell migration and invasion in dose-dependent manners. Western blotting was used to examine the protein expression of B16F10 cells after exposed to casticin and the results showed that casticin decreased the expressions of MMP-9, MMP-2, MMP-1, FAK, 14-3-3, GRB2, Akt, NF-κB p65, SOS-1, p-EGFR, p-JNK 1/2, uPA, and Rho A in B16F10 cells. Furthermore, cDNA microarray assay was used to show that casticin affected associated gene expression of cell migration and invasion and the results indicated that casticin affected some of the gene expression such as increased SCN1B (cell adhesion molecule 1) and TIMP2 (TIMP metallopeptidase inhibitor 2) and decreased NDUFS4 (NADH dehydrogenase (ubiquinone) Fe-S protein4), VEGFA (vascular endothelial growth factor A), and DDIT3 (DNA-damage-inducible transcript 3) which associated cell migration and invasion in B16F10 cells. Based on those observations, we suggest that casticin could be used as a novel anticancer metastasis of melanoma cancer in the future. © 2017 Wiley Periodicals, Inc.

  12. Susceptibility of Hep3B cells in different phases of cell cycle to tBid.

    PubMed

    Ma, Shi-Hong; Chen, George G; Ye, Caiguo; Leung, Billy C S; Ho, Rocky L K; Lai, Paul B S

    2011-01-01

    tBid is a pro-apoptotic molecule. Apoptosis inducers usually act in a cell cycle-specific fashion. The aim of this study was to elucidate whether effect of tBid on hepatocellular carcinoma (HCC) Hep3B cells was cell cycle phase specific. We synchronized Hep3B cells at G0/G1, S or G2/M phases by chemicals or flow sorting and tested the susceptibility of the cells to recombinant tBid. Cell viability was measured by MTT assay and apoptosis by TUNEL. The results revealed that tBid primarily targeted the cells at G0/G1 phase of cell cycle, and it also increased the cells at the G2/M phase. 5-Fluorouracil (5-FU), on the other hand, arrested Hep3B cells at the G0/G1 phase, but significantly reduced cells at G2/M phase. The levels of cell cycle-related proteins and caspases were altered in line with the change in the cell cycle. The combination of tBid with 5-FU caused more cells to be apoptotic than either agent alone. Therefore, the complementary effect of tBid and 5-FU on different phases of the cell cycle may explain their synergistric effect on Hep3B cells. The elucidation of the phase-specific effect of tBid points to a possible therapeutic option that combines different phase specific agents to overcome resistance of HCC. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Mbd3/NuRD controls lymphoid cell fate and inhibits tumorigenesis by repressing a B cell transcriptional program

    PubMed Central

    Hamey, Fiona K.; Errami, Youssef

    2017-01-01

    Differentiation of lineage-committed cells from multipotent progenitors requires the establishment of accessible chromatin at lineage-specific transcriptional enhancers and promoters, which is mediated by pioneer transcription factors that recruit activating chromatin remodeling complexes. Here we show that the Mbd3/nucleosome remodeling and deacetylation (NuRD) chromatin remodeling complex opposes this transcriptional pioneering during B cell programming of multipotent lymphoid progenitors by restricting chromatin accessibility at B cell enhancers and promoters. Mbd3/NuRD-deficient lymphoid progenitors therefore prematurely activate a B cell transcriptional program and are biased toward overproduction of pro–B cells at the expense of T cell progenitors. The striking reduction in early thymic T cell progenitors results in compensatory hyperproliferation of immature thymocytes and development of T cell lymphoma. Our results reveal that Mbd3/NuRD can regulate multilineage differentiation by constraining the activation of dormant lineage-specific enhancers and promoters. In this way, Mbd3/NuRD protects the multipotency of lymphoid progenitors, preventing B cell–programming transcription factors from prematurely enacting lineage commitment. Mbd3/NuRD therefore controls the fate of lymphoid progenitors, ensuring appropriate production of lineage-committed progeny and suppressing tumor formation. PMID:28899870

  14. Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells.

    PubMed

    Dolatshad, H; Pellagatti, A; Fernandez-Mercado, M; Yip, B H; Malcovati, L; Attwood, M; Przychodzen, B; Sahgal, N; Kanapin, A A; Lockstone, H; Scifo, L; Vandenberghe, P; Papaemmanuil, E; Smith, C W J; Campbell, P J; Ogawa, S; Maciejewski, J P; Cazzola, M; Savage, K I; Boultwood, J

    2015-05-01

    The splicing factor SF3B1 is the most commonly mutated gene in the myelodysplastic syndrome (MDS), particularly in patients with refractory anemia with ring sideroblasts (RARS). We investigated the functional effects of SF3B1 disruption in myeloid cell lines: SF3B1 knockdown resulted in growth inhibition, cell cycle arrest and impaired erythroid differentiation and deregulation of many genes and pathways, including cell cycle regulation and RNA processing. MDS is a disorder of the hematopoietic stem cell and we thus studied the transcriptome of CD34(+) cells from MDS patients with SF3B1 mutations using RNA sequencing. Genes significantly differentially expressed at the transcript and/or exon level in SF3B1 mutant compared with wild-type cases include genes that are involved in MDS pathogenesis (ASXL1 and CBL), iron homeostasis and mitochondrial metabolism (ALAS2, ABCB7 and SLC25A37) and RNA splicing/processing (PRPF8 and HNRNPD). Many genes regulated by a DNA damage-induced BRCA1-BCLAF1-SF3B1 protein complex showed differential expression/splicing in SF3B1 mutant cases. This is the first study to determine the target genes of SF3B1 mutation in MDS CD34(+) cells. Our data indicate that SF3B1 has a critical role in MDS by affecting the expression and splicing of genes involved in specific cellular processes/pathways, many of which are relevant to the known RARS pathophysiology, suggesting a causal link.

  15. Modulation of Pathogenic B Cells through Inhibition of Phosphatidylinositol 3-Kinases

    DTIC Science & Technology

    2016-03-01

    of the antibodies bound to the proteins can lodge in the kidneys resulting in damage to the filtering capacity of the kidney . The disease is most...such as nuclear proteins and DNA. These antibodies can cause additional pathologic changes because immune complexes lodge in the kidney which...secreting B cells in a mouse model for lupus, which results in less kidney damage and increased lifespan. 2. KEYWORDS: Lupus, PI3K, B cell, signal

  16. WAVE3-NFκB interplay is essential for the survival and invasion of cancer cells.

    PubMed

    Davuluri, Gangarao; Augoff, Katarzyna; Schiemann, William P; Plow, Edward F; Sossey-Alaoui, Khalid

    2014-01-01

    The WAVE3 cytoskeletal protein promotes cancer invasion and metastasis. We have shown that the WAVE3-mediated activation of cancer cell invasion is due, in part, to its regulation of expression and activity of key metalloproteinases (MMPs), including MMP9, which is centrally involved in invadopodia-mediated degradation of the extracellular matrix (ECM). MMP9 is also a major NFκB target gene, suggesting a potential linkage of WAVE3 to this pathway, which we sought to investigate. Mechanistically, we found that loss of WAVE3 in cancer cells leads to inhibition of NFκB signaling as a result of a decrease in the nuclear translocation of NFκB and therefore loss of activation of NFκB target genes. Conversely, overexpression of WAVE3 was sufficient to enhance NFκB activity. Both pharmacologic and genetic manipulations of NFκB effector molecules show that the biological consequence of loss of WAVE3 function in the NFκB pathway result the inhibition of invadopodia formation and ECM degradation by cancer cells, and these changes are a consequence of decreased MMP9 expression and activity. Loss of WAVE3 also sensitized cancer cells to apoptosis and cell death driven by TNFα, through the inhibition of the AKT pro-survival pathway. Our results identify a novel function of WAVE3 in NFκB signaling, where its activity is essential for the regulation of invadopodia and ECM degradation. Therefore, targeted therapeutic inhibition of WAVE3 will sensitize cancer cells to apoptosis and cell death, and suppress cancer invasion and metastasis.

  17. WAVE3-NFκB Interplay Is Essential for the Survival and Invasion of Cancer Cells

    PubMed Central

    Davuluri, Gangarao; Augoff, Katarzyna; Schiemann, William P.; Plow, Edward F.; Sossey-Alaoui, Khalid

    2014-01-01

    The WAVE3 cytoskeletal protein promotes cancer invasion and metastasis. We have shown that the WAVE3-mediated activation of cancer cell invasion is due, in part, to its regulation of expression and activity of key metalloproteinases (MMPs), including MMP9, which is centrally involved in invadopodia-mediated degradation of the extracellular matrix (ECM). MMP9 is also a major NFκB target gene, suggesting a potential linkage of WAVE3 to this pathway, which we sought to investigate. Mechanistically, we found that loss of WAVE3 in cancer cells leads to inhibition of NFκB signaling as a result of a decrease in the nuclear translocation of NFκB and therefore loss of activation of NFκB target genes. Conversely, overexpression of WAVE3 was sufficient to enhance NFκB activity. Both pharmacologic and genetic manipulations of NFκB effector molecules show that the biological consequence of loss of WAVE3 function in the NFκB pathway result the inhibition of invadopodia formation and ECM degradation by cancer cells, and these changes are a consequence of decreased MMP9 expression and activity. Loss of WAVE3 also sensitized cancer cells to apoptosis and cell death driven by TNFα, through the inhibition of the AKT pro-survival pathway. Our results identify a novel function of WAVE3 in NFκB signaling, where its activity is essential for the regulation of invadopodia and ECM degradation. Therefore, targeted therapeutic inhibition of WAVE3 will sensitize cancer cells to apoptosis and cell death, and suppress cancer invasion and metastasis. PMID:25329315

  18. B29 Gene Silencing in Pituitary Cells is Regulated by Its 3′ Enhancer

    PubMed Central

    Malone, Cindy S.; Kuraishy, Ali I.; Fike, Francesca M.; Loya, Ruchika G.; Mikkili, Minil R.; Teitell, Michael A.; Wall, Randolph

    2007-01-01

    Summary B cell-specific B29 (Igβ, CD79b) genes in rat, mouse, and human are situated between the 5′ growth hormone (GH) locus control region (LCR) and the 3′ GH gene cluster. The entire GH genomic region is DNase1 hypersensitive in GH-expressing pituitary cells, which predicts an “open” chromatin configuration, and yet B29 is not expressed. The B29 promoter and enhancers exhibit histone deacetylation in pituitary cells, but histone deacetylase inhibition failed to activate B29 expression. The B29 promoter and a 3′ enhancer showed local dense DNA methylation in both pituitary and non-lymphoid cells consistent with gene silencing. However, DNA methyltransferase inhibition did not activate B29 expression either. B29 promoter constructs were minimally activated in transfected pituitary cells. Co-transfection of the B cell-specific octamer transcriptional co-activator Bob1 with the B29 promoter construct resulted in high level promoter activity in pituitary cells comparable to B29 promoter activity in transfected B cells. Unexpectedly, inclusion of the B29 3′ enhancer in B29 promoter constructs strongly inhibited B29 transcriptional activity even when pituitary cells were co-transfected with Bob1. Both Oct-1 and Pit-1 bind the B29 3′ enhancer in in vitro EMSA and in in vivo chromatin immunoprecipitation analyses. These data indicate that the GH locus-embedded, tissue-specific B29 gene is silenced in GH-expressing pituitary cells by epigenetic mechanisms, the lack of a B cell-specific transcription factor, and likely by the B29 3′ enhancer acting as a powerful silencer in a context and tissue-specific manner. PMID:16920149

  19. Covalent binding of C3b to tetanus toxin: influence on uptake/internalization of antigen by antigen-specific and non-specific B cells.

    PubMed Central

    Villiers, M B; Villiers, C L; Jacquier-Sarlin, M R; Gabert, F M; Journet, A M; Colomb, M G

    1996-01-01

    Antigen opsonization by the C3b fragment of complement is a significant event in the modulation of cell-mediated immune response, but its mechanism is still largely unknown. The structural characteristics of C3b allow it to act as a bifunctional ligand between antigen and cells via their membrane C3b receptors. It was thus of interest to study the influence of the covalent link between C3b and antigen on the fixation and internalization of this antigen by antigen-presenting cells. Tetanus toxin (TT) was used as antigen, either free or covalently linked to C3b (TT-C3b). The antigen-presenting cells were TT-specific (4.2) or non-specific (BL15) Epstein-Barr virus (EBV)-transformed B cells. C3b was found to play an important role in antigen fixation and internalization by both antigen-specific and antigen non-specific cells. Covalent binding of C3b on TT (1) permitted fixation and internalization of this antigen by non-specific cells via their complement receptors; (2) enhanced antigen fixation and resulted in cross-linking between membrane immunoglobulins and complement receptors on antigen-specific cells. The consequences of covalent C3b binding to TT were analysed using antigen-specific and antigen-nonspecific cells. In both cases, a net increase in antigen fixation was observed. At the intracellular level, covalent C3b binding to TT resulted in a large TT incorporation in endosomes of nonspecific cells, similar to that observed in antigen-specific cells. Thus, C3b covalently linked to antigen enlarges the array of B-cell types capable of presenting antigen, including non-specific cells. Images Figure 2 PMID:8958046

  20. Decoy receptor 3 attenuates collagen-induced arthritis by modulating T cell activation and B cell expansion.

    PubMed

    Cheng, Chia-Pi; Sytwu, Huey-Kang; Chang, Deh-Ming

    2011-12-01

    To investigate the immune-modulated effects of decoy receptor 3 (DCR3) in an experimental model of rheumatoid arthritis (RA). We delivered DCR3 plasmid into collagen-induced arthritis (CIA) mice using the hydrodynamic method and evaluated the serum level of DCR3 protein by ELISA. After immunization, we assessed disease severity of arthritis incidence, arthritis scores, paw thickness, and means of arthritic limbs, and used hematoxylin and eosin staining to observe synovial hyperplasia. We analyzed numbers of murine splenocytes and inguinal lymphocyte cells, cell populations, and serum proinflammatory cytokines by flow cytometry. We investigated B cell proliferation by carboxyfluorescein succinimidyl ester assay. We evaluated serum levels of total IgG2a and type II collagen-specific IgG and IgG2a using ELISA. DCR3 expression in sera significantly attenuated disease severity in CIA mice. We found that DCR3 inhibited the volume of inguinal lymph nodes, numbers of CD19+ B cells, and populations of interferon-γ, interleukin 4 (IL-4), IL-17A, and Foxp3-producing CD4+ T cell in vivo. We found that DCR3 inhibited Pam3CSK4 (Toll-like receptor 1/2 ligand)-induced B220+ B cell proliferation in vitro. DCR3 treatment reduced the serum level of IL-6, total IgG2a, and CII-specific IgG2a antibody. We postulated that the protective effects of DCR3 in CIA resulted from modulation of the immune system by maintaining the B/T cell balance and decreasing lymphocyte expansion. We suggest DCR3 as a prophylactic and potential therapeutic agent in the treatment of RA.

  1. Monomethylarsonous acid (MMA+3) Inhibits IL-7 Signaling in Mouse Pre-B Cells

    PubMed Central

    Ezeh, Peace C.; Xu, Huan; Lauer, Fredine T.; Liu, Ke Jian; Hudson, Laurie G.; Burchiel, Scott W.

    2016-01-01

    Our previously published data show that As+3 in vivo and in vitro, at very low concentrations, inhibits lymphoid, but not myeloid stem cell development in mouse bone marrow. We also showed that the As+3 metabolite, monomethylarsonous acid (MMA+3), was responsible for the observed pre-B cell toxicity caused by As+3. Interleukin-7 (IL-7) is the primary growth factor responsible for pre-lymphoid development in mouse and human bone marrow, and Signal Transducer and Activator of Transcription 5 (STAT5) is a transcriptional factor in the IL-7 signaling pathway. We found that MMA+3 inhibited STAT5 phosphorylation at a concentration as low as 50 nM in mouse bone marrow pre-B cells. Inhibition of STAT5 phosphorylation by As+3 occurred only at a concentration of 500 nM. In the IL-7 dependent mouse pre-B 2E8 cell line, we also found selective inhibition of STAT5 phosphorylation by MMA+3, and this inhibition was dependent on effects on JAK3 phosphorylation. IL-7 receptor expression on 2E8 cell surface was also suppressed by 50 nM MMA+3 at 18 h. As further evidence for the inhibition of STAT5, we found that the induction of several genes required in B cell development, cyclin D1, E2A, EBF1, and PAX5, were selectively inhibited by MMA+3. Since 2E8 cells lack the enzymes responsible for the conversion of As+3 to MMA+3 in vitro, the results of these studies suggest that As+3 induced inhibition of pre-B cell formation in vivo is likely dependent on the formation of MMA+3 which in turn inhibits IL-7 signaling at several steps in mouse pre-B cells. PMID:26518055

  2. A novel role of KIF3b in the seminoma cell cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Hao-Qing; Xiao, Yu-Xi; She, Zhen-Yu

    KIF3b is a protein of the kinesin-2 family which plays an important role in intraflagellar transport. Testis cancer is a common cancer among young men. Its diagnostic rate is increasing and over half of the cases are seminomas. Many aspects of the mechanism and gene expression background of this cancer remain unclear. Using western-blotting and semi-quantitative PCR we found high protein levels of KIF3b enrichment in seminoma tissue despite the mRNA levels remaining equivalent to that of normal testicular tissues. The distribution of KIF3b was mainly in cells with division potential. Wound-healing assays and cell counting kit assays showed thatmore » the knockdown of KIF3b significantly suppressed cell migration ability, viability and number in HeLa cells. Immunofluorescence images during the cell cycle revealed that KIF3b tended to gather at the spindles and was enriched at the central spindle. This indicated that KIF3b may also have direct impacts upon spindle formation and cytokinesis. By counting the numbers of nuclei, spindles and cells, we found that the rates of multipolar division and multi-nucleation were raised in KIF3b-knockdown cells. In this way we demonstrate that KIF3b functions importantly in mitosis and may be essential to seminoma cell division and proliferation as well as being necessary for normal cell division. - Highlights: • A significant upregulation of KIF3b is detected in seminoma. • Knockdown of KIF3b impacts on cell proliferation and migration. • KIF3b may have direct impacts upon spindle formation and cytokinesis.« less

  3. Sca-1(+) mesenchymal stromal cells inhibit splenic marginal zone B lymphocytes commitment through Caspase-3.

    PubMed

    Chen, Yaozhen; Yang, Jialei; Zhang, Hui-Jie; Fan, Hong; An, Ning; Xin, Jiajia; Li, Na; Xu, Jinmei; Yin, Wen; Wu, Zhongliang; Hu, Xingbin

    2016-05-01

    Mesenchymal stromal cells (MSCs) have been characterized as an important component of hematopoietic niche, which are capable of modulating the immune system through interaction with a wide range of immune cells. Marginal zone B cells, one main type of mature B lymphocytes, play a central role in eliciting antibody response against pathogens. However, how MSCs and its subpopulations regulate marginal zone B cells commitment is unknown yet. In this study, we assessed the contribution of Sca-1(+) MSCs on marginal zone B cells commitment. Our results showed that Sca-1(+) MSCs inhibit the commitment of marginal zone B lymphocytes. The inhibition was exerted through lowered Caspase-3 expression. Furthermore, we found marginal zone B lymphocytes in spleen of Caspase-3 knockout mice decreased and Caspase-3 knockout Sca-1(+) MSCs accounted for the MZB lymphocytes decrease. In conclusion, our investigation provided clues about Sca-1(+) MSCs regulation on the commitment of marginal zone B cells through Caspase-3 gene. © 2016 International Federation for Cell Biology.

  4. SOCS3 deletion in B cells alters cytokine responses and germinal center output

    PubMed Central

    Jones, Sarah A.; White, Christine A.; Robb, Lorraine; Alexander, Warren S.; Tarlinton, David M.

    2011-01-01

    B cell behaviour is fine-tuned by internal regulatory mechanisms and external cues such as cytokines and chemokines. SOCS3 is a key regulator of STAT3-dependent cytokine responses in many cell types, and has been reported to inhibit CXCL12-induced retention of immature B cells in the bone marrow. Using mice with SOCS3 exclusively deleted in the B cell lineage (Socs3Δ/Δmb1cre+), we analysed the role of SOCS3 in the response of these cells to CXCL12 and the STAT3-inducing cytokines IL-6 and IL-21. Our findings refute a B cell-intrinsic role for SOCS3 in B cell development, as SOCS3 deletion in the B lineage did not affect B cell populations in naïve mice. SOCS3 was strongly induced in B cells stimulated with IL-21 and in plasma cells exposed to IL-6. Its deletion permitted excessive and prolonged STAT3 signaling following IL-6 stimulation of plasma cells, and in a T cell-dependent immunization model, reduced the number of GC B cells formed and altered the production of antigen-specific IgM and IgE. These data demonstrate a novel regulatory signal transduction circuit in plasma cells, providing the first evidence of how these long-lived, sessile cells respond to the external signals that mediate their longevity. PMID:22075701

  5. Phosphatidylinositol 3-Kinase (PI3K) δ blockade increases genomic instability in B cells

    PubMed Central

    Compagno, Mara; Wang, Qi; Pighi, Chiara; Cheong, Taek-Chin; Meng, Fei-Long; Poggio, Teresa; Yeap, Leng-Siew; Karaca, Elif; Blasco, Rafael B.; Langellotto, Fernanda; Ambrogio, Chiara; Voena, Claudia; Wiestner, Adrian; Kasar, Siddha N.; Brown, Jennifer R.; Sun, Jing; Wu, Catherine J.; Gostissa, Monica; Alt, Frederick W.; Chiarle, Roberto

    2017-01-01

    Activation-induced cytidine deaminase (AID) is a B-cell specific enzyme that targets immunoglobulin (Ig) genes to initiate class switch recombination (CSR) and somatic hypermutation (SHM)1. Through off-target activity, however, AID has a much broader impact on genomic instability by initiating oncogenic chromosomal translocations and mutations involved in lymphoma development and progression2. AID expression is tightly regulated in B cells and its overexpression leads to enhanced genomic instability and lymphoma formation3. The phosphatidylinositol 3-kinase (PI3K) δ pathway plays a key role in AID regulation by suppressing its expression in B cells4. Novel drugs for leukemia or lymphoma therapy such as idelalisib, duvelisib or ibrutinib block PI3Kδ activity directly or indirectly5–8, potentially affecting AID expression and, consequently, genomic stability in B cells. Here we show that treatment of primary mouse B cells with idelalisib or duvelisib, and to a lesser extent ibrutinib, enhanced the expression of AID and increased somatic hypermutation (SHM) and chromosomal translocation frequency to the Igh locus and to several AID off-target sites. Both these effects were completely abrogated in AID deficient B cells. PI3Kδ inhibitors or ibrutinib increased the formation of AID-dependent tumors in pristane-treated mice. Consistently, PI3Kδ inhibitors enhanced AID expression and translocation frequency to IgH and AID off-target sites in human chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) cell lines, and patients treated with idelalisib, but not ibrutinib, showed increased SHM in AID off-targets. In summary, we show that PI3Kδ or BTK inhibitors increase genomic instability in normal and neoplastic B cells by an AID-dependent mechanism, an effect that should be carefully considered as such inhibitors are administered for years to patients. PMID:28199309

  6. Genetic modification of human B-cell development: B-cell development is inhibited by the dominant negative helix loop helix factor Id3.

    PubMed

    Jaleco, A C; Stegmann, A P; Heemskerk, M H; Couwenberg, F; Bakker, A Q; Weijer, K; Spits, H

    1999-10-15

    Transgenic and gene targeted mice have contributed greatly to our understanding of the mechanisms underlying B-cell development. We describe here a model system that allows us to apply molecular genetic techniques to the analysis of human B-cell development. We constructed a retroviral vector with a multiple cloning site connected to a gene encoding green fluorescent protein by an internal ribosomal entry site. Human CD34(+)CD38(-) fetal liver cells, cultured overnight in a combination of stem cell factor and interleukin-7 (IL-7), could be transduced with 30% efficiency. We ligated the gene encoding the dominant negative helix loop helix (HLH) factor Id3 that inhibits many enhancing basic HLH transcription factors into this vector. CD34(+)CD38(-) FL cells were transduced with Id3-IRES-GFP and cultured with the murine stromal cell line S17. In addition, we cultured the transduced cells in a reaggregate culture system with an SV-transformed human fibroblast cell line (SV19). It was observed that overexpression of Id3 inhibited development of B cells in both culture systems. B-cell development was arrested at a stage before expression of the IL-7Ralpha. The development of CD34(+)CD38(-) cells into CD14(+) myeloid cells in the S17 system was not inhibited by overexpression of Id3. Moreover, Id3(+) cells, although inhibited in their B-cell development, were still able to develop into natural killer (NK) cells when cultured in a combination of Flt-3L, IL-7, and IL-15. These findings confirm the essential role of bHLH factors in B-cell development and demonstrate the feasibility of retrovirus-mediated gene transfer as a tool to genetically modify human B-cell development.

  7. Monomethylarsonous acid (MMA+3) Inhibits IL-7 Signaling in Mouse Pre-B Cells.

    PubMed

    Ezeh, Peace C; Xu, Huan; Lauer, Fredine T; Liu, Ke Jian; Hudson, Laurie G; Burchiel, Scott W

    2016-02-01

    Our previously published data show that As(+3) in vivo and in vitro, at very low concentrations, inhibits lymphoid, but not myeloid stem cell development in mouse bone marrow. We also showed that the As(+3) metabolite, monomethylarsonous acid (MMA(+3)), was responsible for the observed pre-B cell toxicity caused by As(+3). Interleukin-7 (IL-7) is the primary growth factor responsible for pre-lymphoid development in mouse and human bone marrow, and Signal Transducer and Activator of Transcription 5 (STAT5) is a transcriptional factor in the IL-7 signaling pathway. We found that MMA(+3) inhibited STAT5 phosphorylation at a concentration as low as 50 nM in mouse bone marrow pre-B cells. Inhibition of STAT5 phosphorylation by As(+3) occurred only at a concentration of 500 nM. In the IL-7 dependent mouse pre-B 2E8 cell line, we also found selective inhibition of STAT5 phosphorylation by MMA(+3), and this inhibition was dependent on effects on JAK3 phosphorylation. IL-7 receptor expression on 2E8 cell surface was also suppressed by 50 nM MMA(+3) at 18 h. As further evidence for the inhibition of STAT5, we found that the induction of several genes required in B cell development, cyclin D1, E2A, EBF1, and PAX5, were selectively inhibited by MMA(+3). Since 2E8 cells lack the enzymes responsible for the conversion of As(+3) to MMA(+3) in vitro, the results of these studies suggest that As(+3) induced inhibition of pre-B cell formation in vivo is likely dependent on the formation of MMA(+3) which in turn inhibits IL-7 signaling at several steps in mouse pre-B cells. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Hydroxyframoside B, a secoiridoid of Fraxinus rhynchophylla, inhibits adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Choi, Kyeong-Mi; Shin, Eunjin; Liu, Qing; Yoo, Hwan-Soo; Kim, Young Choong; Sung, Sang Hyun; Hwang, Bang Yeon; Lee, Mi Kyeong

    2011-07-01

    Fraxinus rhynchophylla showed significant inhibitory activity on adipocyte differentiation in the 3T3-L1 preadipocyte cell line as assessed by measuring fat accumulation using Oil Red O staining. Further fractionation led to the isolation of two secoiridoids, oleuropein and hydroxyframoside B. Hydroxyframoside B significantly reduced fat accumulation and triglyceride content in differentiated 3T3-L1 cells without affecting cell viability, whereas oleuropein showed little effect. Further studies with interval treatment demonstrated that hydroxyframoside B exerted inhibitory activity on adipocyte differentiation when treated within 2 days (days 0-2) after differentiation induction. In addition, hydroxyframoside B significantly blocked the induction of adipogenic transcription factors such as C/EBP α, C/EBP β, and PPAR γ. Taken together, these results suggest that hydroxyframoside B inhibited early/middle stage of adipogenic differentiation, in part, via inhibition of C/EBP α, C/EBP β, and PPAR γ-dependent pathways. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Tight regulation between cell survival and programmed cell death in GBM stem-like cells by EGFR/GSK3b/PP2A signaling.

    PubMed

    Gürsel, Demirkan B; Banu, Matei A; Berry, Nicholas; Marongiu, Roberta; Burkhardt, Jan-Karl; Kobylarz, Keith; Kaplitt, Michael G; Rafii, Shahin; Boockvar, John A

    2015-01-01

    Malignant gliomas represent one of the most aggressive forms of cancer, displaying high mortality rates and limited treatment options. Specific subpopulations of cells residing in the tumor niche with stem-like characteristics have been postulated to initiate and maintain neoplasticity while resisting conventional therapies. The study presented here aims to define the role of glycogen synthase kinase 3 beta (GSK3b) in patient-derived glioblastoma (GBM) stem-like cell (GSC) proliferation, apoptosis and invasion. To evaluate the potential role of GSK3b in GBM, protein profiles from 68 GBM patients and 20 normal brain samples were analyzed for EGFR-mediated PI3kinase/Akt and GSK3b signaling molecules including protein phosphatase 2A (PP2A). To better understand the function of GSK3b in GBM, GSCs were isolated from GBM patient samples. Blocking GSK3b phosphorylation at Serine 9 attenuated cell proliferation while concomitantly stimulating apoptosis through activation of Caspase-3 in patient-derived GSCs. Increasing GSK3b protein content resulted in the inhibition of cell proliferation, colony formation and stimulated programmed cell death. Depleting GSK3b in GSCs down regulated PP2A. Furthermore, knocking down PP2A or blocking its activity by okadaic acid inactivated GSK3b by increasing GSK3b phosphorylation at Serine 9. Our data suggests that GSK3b may function as a regulator of apoptosis and tumorigenesis in GSCs. Therapeutic approaches targeting GSK3b in glioblastoma stem-like cells may be a useful addition to our current therapeutic armamentarium.

  10. Human APOBEC3B interacts with the heterogenous nuclear ribonucleoprotein A3 in cancer cells.

    PubMed

    Mishra, Nawneet; Reddy, K Sony; Timilsina, Uddhav; Gaur, Deepak; Gaur, Ritu

    2018-04-25

    Human APOBEC3B (A3B), like other APOBEC3 members, is a cytosine deaminase which causes hypermutation of single stranded genome. Recent studies have shown that A3B is predominantly elevated in multiple cancer tissues and cell lines such as the bladder, cervix, lung, head and neck, and breast. Upregulation and activation of A3B in developing tumors can cause an unexpected cluster of mutations which promote cancer development and progression. The cellular proteins which facilitate A3B function through direct or indirect interactions remain largely unknown. In this study, we performed LC-MS-based proteomics to identify cellular proteins which coimmunoprecipitated with A3B. Our results indicated a specific interaction of A3B with hnRNP A3 (heterogeneous nuclear ribonucleoprotein). This interaction was verified by co-immunoprecipitation and was found to be RNA-dependent. Furthermore, A3B and hnRNP A3 colocalized as evident from immunofluorescence analysis. © 2018 Wiley Periodicals, Inc.

  11. Expression of progesterone receptor B is associated with G0/G1 arrest of the cell cycle and growth inhibition in NIH3T3 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horiuchi, Shinji; Kato, Kiyoko; Suga, Shin

    2005-05-01

    Previously, we found a significant reduction of progesterone receptor B (PR-B) expression levels in the Ras-mediated NIH3T3 cell transformation, and re-expression of exogenous PR-B eliminated the tumorigenic potential. We hypothesized that this reduction is of biological significance in cell transformation. In the present study, we determined the correlation between PR-B expression and cell cycle progression. In synchronized NIH3T3 cells, we found an increase in PR-B protein and p27 CDK inhibitor levels in the G0/G1 phase and a reduction due to redistribution in the S and G2/M phases. The MEK inhibitor or cAMP stimulation arrested NIH3T3 cells in the G0/G1 phasemore » of the cell cycle. The expression of PR-B and p27 CDK inhibitors was up-regulated by treatment with both the MEK inhibitor and cAMP. Treatment of synchronized cells with a PKA inhibitor in the presence of 1% calf serum resulted in a significant reduction in both PR-B and p27 levels. The decrease in the PR-B levels caused by anti-sense oligomers or siRNA corresponded to the reduction in p27 levels. PR-B overexpression by adenovirus infection induced p27 and suppressed cell growth. Finally, we showed that PR-B modulation involved in the regulation of NIH3T3 cell proliferation was independent of nuclear estrogen receptor (ER) activity but dependent on non-genomic ER activity.« less

  12. Lack of galectin-3 up-regulates IgA expression by peritoneal B1 lymphocytes during B cell differentiation.

    PubMed

    Oliveira, Felipe L; Bernardes, Emerson S; Brand, Camila; dos Santos, Sofia N; Cabanel, Mariana P; Arcanjo, Kátia D; Brito, José M; Borojevic, Radovan; Chammas, Roger; El-Cheikh, Márcia C

    2016-02-01

    Galectin-3 is a β-galactoside-binding protein with an inhibitory role in B cell differentiation into plasma cells in distinct lymphoid tissues. We use a model of chronic schistosomiasis, a well-characterized experimental disease hallmarked by polyclonal B cell activation, in order to investigate the role of galectin-3 in controlling IgA production through peritoneal B1 cells. Chronically infected, galectin-3-deficient mice (Lgals3(-/-)) display peritoneal fluid hypercellularity, increased numbers of atypical peritoneal IgM(+)/IgA(+) B1a and B1b lymphocytes and histological disturbances in plasma cell niches when compared with Lgals3(+/+) mice. Similar to our infection model, peritoneal B1 cells from uninfected Lgals3(-/-) mice show enhanced switching to IgA after in vitro treatment with interleukin-5 plus transforming growth factor-β (IL-5 + TGF-β1). A higher number of IgA(+) B1a lymphocytes was found in the peritoneal cavity of Lgals3(-/-)-uninfected mice at 1 week after i.p. injection of IL-5 + TGF-β1; this correlates with the increased levels of secreted IgA detected in the peritoneal fluid of these mice after cytokine treatment. Interestingly, a higher number of degranulated mast cells is present in the peritoneal cavity of uninfected and Schistosoma mansoni-infected Lgals3(-/-) mice, indicating that, at least in part, mast cells account for the enhanced differentiation of B1 into IgA-producing B cells found in the absence of galectin-3. Thus, a novel role is revealed for galectin-3 in controlling the expression of surface IgA by peritoneal B1 lymphocytes; this might have important implications for manipulating the mucosal immune response.

  13. Tailoring CD19xCD3-DART exposure enhances T-cells to eradication of B-cell neoplasms.

    PubMed

    Circosta, Paola; Elia, Angela Rita; Landra, Indira; Machiorlatti, Rodolfo; Todaro, Maria; Aliberti, Sabrina; Brusa, Davide; Deaglio, Silvia; Chiaretti, Sabina; Bruna, Riccardo; Gottardi, Daniela; Massaia, Massimo; Giacomo, Filomena Di; Guarini, Anna Rita; Foà, Robin; Kyriakides, Peter W; Bareja, Rohan; Elemento, Olivier; Chichili, Gurunadh R; Monteleone, Emanuele; Moore, Paul A; Johnson, Syd; Bonvini, Ezio; Cignetti, Alessandro; Inghirami, Giorgio

    2018-01-01

    Many patients with B-cell malignancies can be successfully treated, although tumor eradication is rarely achieved. T-cell-directed killing of tumor cells using engineered T-cells or bispecific antibodies is a promising approach for the treatment of hematologic malignancies. We investigated the efficacy of CD19xCD3 DART bispecific antibody in a broad panel of human primary B-cell malignancies. The CD19xCD3 DART identified 2 distinct subsets of patients, in which the neoplastic lymphocytes were eliminated with rapid or slow kinetics. Delayed responses were always overcome by a prolonged or repeated DART exposure. Both CD4 and CD8 effector cytotoxic cells were generated, and DART-mediated killing of CD4 + cells into cytotoxic effectors required the presence of CD8 + cells. Serial exposures to DART led to the exponential expansion of CD4 + and CD8 + cells and to the sequential ablation of neoplastic cells in absence of a PD-L1-mediated exhaustion. Lastly, patient-derived neoplastic B-cells (B-Acute Lymphoblast Leukemia and Diffuse Large B Cell Lymphoma) could be proficiently eradicated in a xenograft mouse model by DART-armed cytokine induced killer (CIK) cells. Collectively, patient tailored DART exposures can result in the effective elimination of CD19 positive leukemia and B-cell lymphoma and the association of bispecific antibodies with unmatched CIK cells represents an effective modality for the treatment of CD19 positive leukemia/lymphoma.

  14. INPP4B promotes cell survival via SGK3 activation in NPM1-mutated leukemia.

    PubMed

    Jin, Hongjun; Yang, Liyuan; Wang, Lu; Yang, Zailin; Zhan, Qian; Tao, Yao; Zou, Qin; Tang, Yuting; Xian, Jingrong; Zhang, Shuaishuai; Jing, Yipei; Zhang, Ling

    2018-01-17

    . High levels of INPP4B were at least partially caused by the NPM1 mutant via ERK/Ets-1 signaling. Finally, high expression of INPP4B showed a trend towards lower overall survival and event-free survival in NPM1-mutated AML patients. Our results indicate that INPP4B promotes leukemia cell survival via SGK3 activation, and INPP4B might be a potential target in the treatment of NPM1-mutated AML.

  15. Epothilone B induces extrinsic pathway of apoptosis in human SKOV-3 ovarian cancer cells.

    PubMed

    Rogalska, Aneta; Gajek, Arkadiusz; Marczak, Agnieszka

    2014-06-01

    The molecular mechanisms underlying epothilone B (EpoB) induced apoptosis were investigated in SKOV-3 human ovarian cancer cells. The aim of this research was to compare EpoB's, which belongs to the new class of anticancer drugs, with paclitaxel's (PTX) ability to induce apoptosis. The mode of cell death was assessed colorimetrically, fluorimetrically and by immunoblot analyses through measuring DNA fragmentation, the level of intracellular calcium, the level of cytochrome c, TRAIL, the cleavage of poly(ADP-ribose) polymerase (PARP) and the activation of caspase-9, -8 and -3. EpoB leads to an increase of the cytosolic level of cytochrome c after 4 h of cell treatment. After 24 and 48 h of cell treatment the level of intracellular calcium also increased by about 21% and 24% respectively. Moreover, EpoB, similarly to PTX, promoted the expression of TRAIL in lymphocytes, although high TRAIL expression on tumor cells was detected only after adding EpoB to SKOV-3 cells. EpoB mediates caspases-8 and -3 activation, which is independent of the reduction in the amount of caspase-9. Epitope-specific monoclonal and polyclonal antibodies revealed characteristic apoptotic changes that included cleavage of the 116 kDa PARP polypeptide to 25 kDa fragments. The results of our study show that EpoB induces mainly the extrinsic pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. 1,25-dihydroxyvitamin D3 induces CCR10 expression in terminally differentiating human B cells.

    PubMed

    Shirakawa, Aiko-Konno; Nagakubo, Daisuke; Hieshima, Kunio; Nakayama, Takashi; Jin, Zhe; Yoshie, Osamu

    2008-03-01

    In the B cell lineage, CCR10 is known to be selectively expressed by plasma cells, especially those secreting IgA. In this study, we examined the regulation of CCR10 expression in terminally differentiating human B cells. As reported previously, IL-21 efficiently induced the differentiation of activated human CD19+ B cells into IgD-CD38+ plasma cells in vitro. A minor proportion of the resulting CD19+IgD-CD38+ cells expressed CCR10 at low levels. 1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3), the active metabolite of vitamine D3, dramatically increased the proportion of CD19+IgD-CD38+ cells expressing high levels of CCR10. The 1,25-(OH)2D3 also increased the number of CCR10+ cells expressing surface IgA, although the majority of CCR10+ cells remained negative for surface IgA. Thus, 1,25-(OH)2D3 alone may not be sufficient for the induction of IgA expression in terminally differentiating human B cells. To further determine whether 1,25-(OH)2D3 directly induces CCR10 expression in terminally differentiating B cells, we next performed the analysis on the human CCR10 promoter. We identified a proximal Ets-1 site and an upstream potential vitamin D response element to be critical for the inducible expression of CCR10 by 1,25-(OH)2D3. We confirmed the specific binding of Ets-1 and 1,25-(OH)2D3-activated vitamin D receptor to the respective sites. In conclusion, 1,25-(OH)2D3 efficiently induces CCR10 expression in terminally differentiating human B cells in vitro. Furthermore, the human CCR10 promoter is cooperatively activated by Ets-1 and vitamin D receptor in the presence of 1,25-(OH)2D3.

  17. Impaired B cell development in the absence of Krüppel-like factor 3.

    PubMed

    Vu, Thi Thanh; Gatto, Dominique; Turner, Vivian; Funnell, Alister P W; Mak, Ka Sin; Norton, Laura J; Kaplan, Warren; Cowley, Mark J; Agenès, Fabien; Kirberg, Jörg; Brink, Robert; Pearson, Richard C M; Crossley, Merlin

    2011-11-15

    Krüppel-like factor 3 (Klf3) is a member of the Klf family of transcription factors. Klfs are widely expressed and have diverse roles in development and differentiation. In this study, we examine the function of Klf3 in B cell development by studying B lymphopoiesis in a Klf3 knockout mouse model. We show that B cell differentiation is significantly impaired in the bone marrow, spleen, and peritoneal cavity of Klf3 null mice and confirm that the defects are cell autonomous. In the bone marrow, there is a reduction in immature B cells, whereas recirculating mature cells are noticeably increased. Immunohistology of the spleen reveals a poorly structured marginal zone (MZ) that may in part be caused by deregulation of adhesion molecules on MZ B cells. In the peritoneal cavity, there are significant defects in B1 B cell development. We also report that the loss of Klf3 in MZ B cells is associated with reduced BCR signaling strength and an impaired ability to respond to LPS stimulation. Finally, we show increased expression of a number of Klf genes in Klf3 null B cells, suggesting that a Klf regulatory network may exist in B cells.

  18. ATP1B3 Protein Modulates the Restriction of HIV-1 Production and Nuclear Factor κ Light Chain Enhancer of Activated B Cells (NF-κB) Activation by BST-2*

    PubMed Central

    Nishitsuji, Hironori; Sugiyama, Ryuichi; Abe, Makoto; Takaku, Hiroshi

    2016-01-01

    Here, we identify ATP1B3 and fibrillin-1 as novel BST-2-binding proteins. ATP1B3 depletion in HeLa cells (BST-2-positive cells), but not 293T cells (BST-2-negative cells), induced the restriction of HIV-1 production in a BST-2-dependent manner. In contrast, fibrillin-1 knockdown reduced HIV-1 production in 293T and HeLa cells in a BST-2-independent manner. Moreover, NF-κB activation was enhanced by siATP1B3 treatment in HIV-1- and HIV-1ΔVpu-infected HeLa cells. In addition, ATP1B3 silencing induced high level BST-2 expression on the surface of HeLa cells. These results indicate that ATP1B3 is a co-factor that accelerates BST-2 degradation and reduces BST-2-mediated restriction of HIV-1 production and NF-κB activation. PMID:26694617

  19. The loss of Gnai2 and Gnai3 in B cells eliminates B lymphocyte compartments and leads to a hyper-IgM like syndrome.

    PubMed

    Hwang, Il-Young; Park, Chung; Luong, Thuyvi; Harrison, Kathleen A; Birnbaumer, Lutz; Kehrl, John H

    2013-01-01

    B lymphocytes are compartmentalized within lymphoid organs. The organization of these compartments depends upon signaling initiated by G-protein linked chemoattractant receptors. To address the importance of the G-proteins Gαi2 and Gαi3 in chemoattractant signaling we created mice lacking both proteins in their B lymphocytes. While bone marrow B cell development and egress is grossly intact; mucosal sites, splenic marginal zones, and lymph nodes essentially lack B cells. There is a partial block in splenic follicular B cell development and a 50-60% reduction in splenic B cells, yet normal numbers of splenic T cells. The absence of Gαi2 and Gαi3 in B cells profoundly disturbs the architecture of lymphoid organs with loss of B cell compartments in the spleen, thymus, lymph nodes, and gastrointestinal tract. This results in a severe disruption of B cell function and a hyper-IgM like syndrome. Beyond the pro-B cell stage, B cells are refractory to chemokine stimulation, and splenic B cells are poorly responsive to antigen receptor engagement. Gαi2 and Gαi3 are therefore critical for B cell chemoattractant receptor signaling and for normal B cell function. These mice provide a worst case scenario of the consequences of losing chemoattractant receptor signaling in B cells.

  20. Human CD40 ligand-expressing type 3 innate lymphoid cells induce IL-10-producing immature transitional regulatory B cells.

    PubMed

    Komlósi, Zsolt I; Kovács, Nóra; van de Veen, Willem; Kirsch, Anna Isabella; Fahrner, Heinz Benedikt; Wawrzyniak, Marcin; Rebane, Ana; Stanic, Barbara; Palomares, Oscar; Rückert, Beate; Menz, Günter; Akdis, Mübeccel; Losonczy, György; Akdis, Cezmi A

    2017-09-20

    Type 3 innate lymphoid cells (ILC3s) are involved in maintenance of mucosal homeostasis; however, their role in immunoregulation has been unknown. Immature transitional regulatory B (itBreg) cells are innate-like B cells with immunosuppressive properties, and the in vivo mechanisms by which they are induced have not been fully clarified. We aimed to investigate the ILC3-B-cell interaction that probably takes place in human tonsils. ILC3s were isolated from peripheral blood and palatine tonsils, expanded, and cocultured with naive B cells. Tonsillar ILC3s and regulatory B cells were visualized with immunofluorescence histology. ILC3 frequencies were measured in tonsil tissue of allergic and nonallergic patients and in peripheral blood of allergic asthmatic patients and healthy control subjects. A mutually beneficial relationship was revealed between ILC3s and B cells: ILC3s induced IL-15 production in B cells through B cell-activating factor receptor, whereas IL-15, a potent growth factor for ILC3s, induced CD40 ligand (CD40L) expression on circulating and tonsillar ILC3s. IL-15-activated CD40L + ILC3s helped B-cell survival, proliferation, and differentiation of IL-10-secreting, PD-L1-expressing functional itBreg cells in a CD40L- and B cell-activating factor receptor-dependent manner. ILC3s and regulatory B cells were in close connection with each other in palatine tonsils. ILC3 frequency was reduced in tonsil tissue of allergic patients and in peripheral blood of allergic asthmatic patients. Human CD40L + ILC3s provide innate B-cell help and are involved in an innate immunoregulatory mechanism through induction of itBreg cell differentiation, which takes place in palatine tonsils in vivo. This mechanism, which can contribute to maintenance of immune tolerance, becomes insufficient in allergic diseases. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. Genetic defects in PI3Kδ affect B-cell differentiation and maturation leading to hypogammaglobulineamia and recurrent infections.

    PubMed

    Wentink, Marjolein; Dalm, Virgil; Lankester, Arjan C; van Schouwenburg, Pauline A; Schölvinck, Liesbeth; Kalina, Tomas; Zachova, Radana; Sediva, Anna; Lambeck, Annechien; Pico-Knijnenburg, Ingrid; van Dongen, Jacques J M; Pac, Malgorzata; Bernatowska, Ewa; van Hagen, Martin; Driessen, Gertjan; van der Burg, Mirjam

    2017-03-01

    Mutations in PIK3CD and PIK3R1 cause activated PI3K-δ syndrome (APDS) by dysregulation of the PI3K-AKT pathway. We studied precursor and peripheral B-cell differentiation and apoptosis via flowcytometry. Furthermore, we performed AKT-phosphorylation assays and somatic hypermutations (SHM) and class switch recombination (CSR) analysis. We identified 13 patients of whom 3 had new mutations in PIK3CD or PIK3R1. Patients had low total B-cell numbers with increased frequencies of transitional B cells and plasmablasts, while the precursor B-cell compartment in bone marrow was relatively normal. Basal AKT phosphorylation was increased in lymphocytes from APDS patients and natural effector B cells where most affected. PI3K mutations resulted in altered SHM and CSR and increased apoptosis. The B-cell compartment in APDS patients is affected by the mutations in PI3K. There is reduced differentiation beyond the transitional stage, increased AKT phosphorylation and increased apoptosis. This B-cell phenotype contributes to the clinical phenotype. Copyright © 2017. Published by Elsevier Inc.

  2. T cell-recruiting triplebody 19-3-19 mediates serial lysis of malignant B-lymphoid cells by a single T cell

    PubMed Central

    Roskopf, Claudia C.; Schiller, Christian B.; Braciak, Todd A.; Kobold, Sebastian; Schubert, Ingo A.; Fey, Georg H.; Hopfner, Karl-Peter; Oduncu, Fuat S.

    2014-01-01

    Triplebody 19-3-19, an antibody-derived protein, carries three single chain fragment variable domains in tandem in a single polypeptide chain. 19-3-19 binds CD19-bearing lymphoid cells via its two distal domains and primary T cells via its CD3-targeting central domain in an antigen-specific manner. Here, malignant B-lymphoid cell lines and primary cells from patients with B cell malignancies were used as targets in cytotoxicity tests with pre-stimulated allogeneic T cells as effectors. 19-3-19 mediated up to 95% specific lysis of CD19-positive tumor cells and, at picomolar EC50 doses, had similar cytolytic potency as the clinically successful agent BlinatumomabTM. 19-3-19 activated resting T cells from healthy unrelated donors and mediated specific lysis of both autologous and allogeneic CD19-positive cells. 19-3-19 led to the elimination of 70% of CD19-positive target cells even with resting T cells as effectors at an effector-to-target cell ratio of 1 : 10. The molecule is therefore capable of mediating serial lysis of target cells by a single T cell. These results highlight that central domains capable of engaging different immune effectors can be incorporated into the triplebody format to provide more individualized therapy tailored to a patient’s specific immune status. PMID:25115385

  3. Structure and signalling functions of C3 receptors on human B cells.

    PubMed

    Frade, R

    1990-03-01

    CR1 (C3b receptor) and CR2 (C3d/EBV receptor) are two C3 receptors expressed on B lymphocytes. CR1 and CR2 have structural similarities and their cross-linking at the B cell surface by antibodies or specific ligands in multimeric forms induce B cell activation. However, activation of human B cells through cell surface interactions or by intracellular protein kinase C activators leads to phosphorylation of CR2 but not CR1. CR2 is phosphorylated on serine and tyrosine residues. Analysis of post-membrane events associated with CR2 revealed intracellular interactions of CR2 with p53, a plasma membrane anti-oncogene-encoded phosphoprotein, and with p120, a nuclear phosphoribonucleoprotein. These intracellular interactions probably represent important steps in the signalling functions of CR2.

  4. Endogenous APOBEC3B restricts LINE-1 retrotransposition in transformed cells and human embryonic stem cells.

    PubMed

    Wissing, Silke; Montano, Mauricio; Garcia-Perez, Jose Luis; Moran, John V; Greene, Warner C

    2011-10-21

    Members of the APOBEC3 (A3) family of cytidine deaminase enzymes act as host defense mechanisms limiting both infections by exogenous retroviruses and mobilization of endogenous retrotransposons. Previous studies revealed that the overexpression of some A3 proteins could restrict engineered human Long INterspersed Element-1 (LINE-1 or L1) retrotransposition in HeLa cells. However, whether endogenous A3 proteins play a role in restricting L1 retrotransposition remains largely unexplored. Here, we show that HeLa cells express endogenous A3B and A3C, whereas human embryonic stem cells (hESCs) express A3B, A3C, A3DE, A3F, and A3G. To study the relative contribution of endogenous A3 proteins in restricting L1 retrotransposition, we first generated small hairpin RNAs (shRNAs) to suppress endogenous A3 mRNA expression, and then assessed L1 mobility using a cell-based L1 retrotransposition assay. We demonstrate that in both HeLa and hESCs, shRNA-based knockdown of A3B promotes a ∼2-3.7-fold increase in the retrotransposition efficiency of an engineered human L1. Knockdown of the other A3s produced no significant increase in L1 activity. Thus, A3B appears to restrict engineered L1 retrotransposition in a broad range of cell types, including pluripotent cells.

  5. The effect of organic anion-transporting polypeptides 1B1, 1B3 and 2B1 on the antitumor activity of flavopiridol in breast cancer cells.

    PubMed

    Brenner, Stefan; Riha, Juliane; Giessrigl, Benedikt; Thalhammer, Theresia; Grusch, Michael; Krupitza, Georg; Stieger, Bruno; Jäger, Walter

    2015-01-01

    The contribution of organic anion transporting polypeptides (OATPs) to the cellular uptake of flavopiridol was investigated in OATP1B1-, OATP1B3- and OATP2B1-expressing Chinese hamster ovary (CHO) cells. Uptake of flavopiridol into these cells showed typical Michaelis-Menten kinetics with much higher transport capacity for OATP1B3 compared to OATP1B1 and OATP2B1 (Vmax/Km, 33.9 vs. 8.84 and 2.41 µl/mg/min, respectively). The predominant role of OATPs was further supported by a dramatic inhibition of flavopiridol uptake in the presence of the OATP substrate rifampicin. Uptake of flavopiridol by OATPs also seems to be an important determinant in breast cancer cells. The much higher mRNA level for OATP1B1 found in wild-type compared to ZR-75-1 OATP1B1 knockdown cells correlated with higher flavopiridol initial uptake leading to 4.6-fold decreased IC50 values in the cytotoxicity assay (IC50, 1.45 vs. 6.64 µM). Cell cycle profile also showed a clear incidence for a stronger cell cycle arrest in the G2/M phase for ZR-75-1 wild-type cells compared to OATP1B1 knockdown cells, further indicating an active uptake via OATP1B1. In conclusion, our results revealed OATP1B1, OATP1B3 and OATP2B1 as uptake transporters for flavopiridol in cancer cells, which may also apply in patients during cancer therapy.

  6. Base-Resolution Analysis of DNA Methylation Patterns Downstream of Dnmt3a in Mouse Naïve B Cells.

    PubMed

    Duncan, Christopher G; Kondilis-Mangum, Hrisavgi D; Grimm, Sara A; Bushel, Pierre R; Chrysovergis, Kaliopi; Roberts, John D; Tyson, Frederick L; Merrick, B Alex; Wade, Paul A

    2018-03-02

    The DNA methyltransferase, Dnmt3a , is dynamically regulated throughout mammalian B cell development and upon activation by antigenic stimulation. Dnmt3a inactivation in hematopoietic stem cells has been shown to drive B cell-related malignancies, including chronic lymphocytic leukemia, and associates with specific DNA methylation patterns in transformed cells. However, while it is clear that inactivation of Dnmt3a in hematopoietic stem cells has profound functional effects, the consequences of Dnmt3a inactivation in cells of the B lineage are unclear. To assess whether loss of Dnmt3a at the earliest stages of B cell development lead to DNA methylation defects that might impair function, we selectively inactivated Dnmt3a early in mouse B cell development and then utilized whole genome bisulfite sequencing to generate base-resolution profiles of Dnmt3a +/+ and Dnmt3a -/- naïve splenic B cells. Overall, we find that global methylation patterns are largely consistent between Dnmt3a +/+ and Dnmt3a -/- naïve B cells, indicating a minimal functional effect of DNMT3A in mature B cells. However, loss of Dnmt3a induced 449 focal DNA methylation changes, dominated by loss-of-methylation events. Regions found to be hypomethylated in Dnmt3a -/- naïve splenic B cells were enriched in gene bodies of transcripts expressed in B cells, a fraction of which are implicated in B cell-related disease. Overall, the results from this study suggest that factors other than Dnmt3a are the major drivers for methylome maintenance in B cell development. Copyright © 2018 Duncan et al.

  7. The B-cell receptor controls fitness of MYC-driven lymphoma cells via GSK3β inhibition.

    PubMed

    Varano, Gabriele; Raffel, Simon; Sormani, Martina; Zanardi, Federica; Lonardi, Silvia; Zasada, Christin; Perucho, Laura; Petrocelli, Valentina; Haake, Andrea; Lee, Albert K; Bugatti, Mattia; Paul, Ulrike; Van Anken, Eelco; Pasqualucci, Laura; Rabadan, Raul; Siebert, Reiner; Kempa, Stefan; Ponzoni, Maurilio; Facchetti, Fabio; Rajewsky, Klaus; Casola, Stefano

    2017-06-08

    Similar to resting mature B cells, where the B-cell antigen receptor (BCR) controls cellular survival, surface BCR expression is conserved in most mature B-cell lymphomas. The identification of activating BCR mutations and the growth disadvantage upon BCR knockdown of cells of certain lymphoma entities has led to the view that BCR signalling is required for tumour cell survival. Consequently, the BCR signalling machinery has become an established target in the therapy of B-cell malignancies. Here we study the effects of BCR ablation on MYC-driven mouse B-cell lymphomas and compare them with observations in human Burkitt lymphoma. Whereas BCR ablation does not, per se, significantly affect lymphoma growth, BCR-negative (BCR - ) tumour cells rapidly disappear in the presence of their BCR-expressing (BCR + ) counterparts in vitro and in vivo. This requires neither cellular contact nor factors released by BCR + tumour cells. Instead, BCR loss induces the rewiring of central carbon metabolism, increasing the sensitivity of receptor-less lymphoma cells to nutrient restriction. The BCR attenuates glycogen synthase kinase 3 beta (GSK3β) activity to support MYC-controlled gene expression. BCR - tumour cells exhibit increased GSK3β activity and are rescued from their competitive growth disadvantage by GSK3β inhibition. BCR - lymphoma variants that restore competitive fitness normalize GSK3β activity after constitutive activation of the MAPK pathway, commonly through Ras mutations. Similarly, in Burkitt lymphoma, activating RAS mutations may propagate immunoglobulin-crippled tumour cells, which usually represent a minority of the tumour bulk. Thus, while BCR expression enhances lymphoma cell fitness, BCR-targeted therapies may profit from combinations with drugs targeting BCR - tumour cells.

  8. The arthritis-associated HLA-B*27:05 allele forms more cell surface B27 dimer and free heavy chain ligands for KIR3DL2 than HLA-B*27:09

    PubMed Central

    Shaw, Jacqueline; Giles, Joanna; Hatano, Hiroko; Rysnik, Oliwia; Payeli, Sravan; McHugh, Kirsty; Dessole, Grazia; Porru, Giovanni; Desogus, Elisabetta; Fiedler, Sarah; Hölper, Soraya; Carette, Amanda; Blanco-Gelaz, Miguel Angel; Vacca, Alessandra; Piga, Matteo; Ibba, Valentina; Garau, Pietro; La Nasa, Giorgio; López-Larrea, Carlos; Mathieu, Alessandro; Renner, Christoph; Bowness, Paul; Kollnberger, Simon

    2013-01-01

    Objectives. HLA-B*27:05 is associated with AS whereas HLA-B*27:09 is not associated. We hypothesized that different interactions with KIR immune receptors could contribute to the difference in disease association between HLA-B*27:05 and HLAB*27:09. Thus, the objective of this study was to compare the formation of β2m-free heavy chain (FHC) including B27 dimers (B272) by HLA-B*27:05 and HLA-B*27:09 and their binding to KIR immunoreceptors. Methods. We studied the formation of HLA-B*27:05 and HLA-B*27:09 heterotrimers and FHC forms including dimers in vitro and in transfected cells. We investigated HLA-B*27:05 and HLA-B*27:09 binding to KIR3DL1, KIR3DL2 and LILRB2 by FACS staining with class I tetramers and by quantifying interactions with KIR3DL2CD3ε-reporter cells and KIR3DL2-expressing NK cells. We also measured KIR expression on peripheral blood NK and CD4 T cells from 18 HLA-B*27:05 AS patients, 8 HLA-B27 negative and 12 HLA-B*27:05+ and HLA-B*27:09+ healthy controls by FACS staining. Results. HLA-B*27:09 formed less B272 and FHC than HLA-B*27:05. HLA-B*27:05-expressing cells stimulated KIR3DL2CD3ε-reporter T cells more effectively. Cells expressing HLA-B*27:05 promoted KIR3DL2+ NK cell survival more strongly than HLA-B*27:09. HLA-B*27:05 and HLA-B*27:09 dimer tetramers stained KIR3DL1, KIR3DL2 and LILRB2 equivalently. Increased proportions of NK and CD4 T cells expressed KIR3DL2 in HLA-B*27:05+ AS patients compared with HLA-B*27:05+, HLA-B*27:09+ and HLA-B27− healthy controls. Conclusion. Differences in the formation of FHC ligands for KIR3DL2 by HLA-B*27:05 and HLA-B*27:09 could contribute to the differential association of these alleles with AS. PMID:23804219

  9. Activation‐Induced Killer Cell Immunoglobulin‐like Receptor 3DL2 Binding to HLA–B27 Licenses Pathogenic T Cell Differentiation in Spondyloarthritis

    PubMed Central

    Ridley, Anna; Hatano, Hiroko; Wong‐Baeza, Isabel; Shaw, Jacqueline; Matthews, Katherine K.; Al‐Mossawi, Hussein; Ladell, Kristin; Price, David A.; Bowness, Paul

    2016-01-01

    Objective In the spondyloarthritides (SpA), increased numbers of CD4+ T cells express killer cell immunoglobulin‐like receptor 3DL2 (KIR‐3DL2). The aim of this study was to determine the factors that induce KIR‐3DL2 expression, and to characterize the relationship between HLA–B27 and the phenotype and function of KIR‐3DL2–expressing CD4+ T cells in SpA. Methods In total, 34 B27+ patients with SpA, 28 age‐ and sex‐matched healthy controls (20 B27− and 8 B27+), and 9 patients with rheumatoid arthritis were studied. KIR-3DL2 expression and other phenotypic characteristics of peripheral blood and synovial fluid CD4+ T cells were studied by flow cytometry, quantitative polymerase chain reaction, and Western blotting. T cell receptor clonality was determined by template‐switch anchored reverse transcription–polymerase chain reaction and sequencing analysis. Cytokines were measured by enzyme‐linked immunosorbent assay. Results Cellular activation induced KIR‐3DL2 expression on both naive and effector CD4+ T cells. KIR‐3DL2 binding to B27+ cells promoted expression of KIR‐3DL2, the Th17‐specific transcription factor retinoic acid receptor–related orphan nuclear receptor γt, and the antiapoptotic factor B cell lymphoma 2. KIR‐3DL2+CD4+ T cells in patients with ankylosing spondylitis were oligoclonal and enriched for markers of T cell activation and for the gut homing receptor CCR9. In the presence of B27+ antigen‐presenting cells, KIR‐3DL2+CD4+ T cells produced less interleukin‐2 (IL‐2) but more IL‐17. This effect was blocked by HC10, an antibody that inhibits the binding of KIR‐3DL2 to B27 heavy chains. Conclusion KIR‐3DL2 binding to HLA–B27 licenses Th17 cell differentiation in SpA. These findings raise the therapeutic potential of targeting HLA–B27–KIR‐3DL2 interactions for the treatment of B27+ patients with SpA. PMID:26841353

  10. Immunoregulatory protein B7-H3 promotes growth and decreases sensitivity to therapy in metastatic melanoma cells.

    PubMed

    Flem-Karlsen, Karine; Tekle, Christina; Andersson, Yvonne; Flatmark, Kjersti; Fodstad, Øystein; Nunes-Xavier, Caroline E

    2017-09-01

    B7-H3 (CD276) belongs to the B7 family of immunoregulatory proteins and has been implicated in cancer progression and metastasis. In this study, we found that metastatic melanoma cells with knockdown expression of B7-H3 showed modest decrease in proliferation and glycolytic capacity and were more sensitive to dacarbazine (DTIC) chemotherapy and small-molecule inhibitors targeting MAP kinase (MAPK) and AKT/mTOR pathways: vemurafenib (PLX4032; BRAF inhibitor), binimetinib (MEK-162; MEK inhibitor), everolimus (RAD001; mTOR inhibitor), and triciribidine (API-2; AKT inhibitor). Similar effects were observed in melanoma cells in the presence of an inhibitory B7-H3 monoclonal antibody, while the opposite was seen in B7-H3-overexpressing cells. Further, combining B7-H3 inhibition with small-molecule inhibitors resulted in significantly increased antiproliferative effect in melanoma cells, as well as in BRAF V 600E mutated cell lines derived from patient biopsies. Our findings indicate that targeting B7-H3 may be a novel alternative to improve current therapy of metastatic melanoma. © 2017 The Authors Pigment Cell & Melonoma Research Published by John Wiley & Sons Ltd.

  11. Cyanidin-3-Glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2

    PubMed Central

    2010-01-01

    Background Ethanol is a tumor promoter. Both epidemiological and experimental studies suggest that ethanol may enhance the metastasis of breast cancer cells. We have previously demonstrated that ethanol increased the migration/invasion of breast cancer cells expressing high levels of ErbB2. Amplification of ErbB2 is found in 20-30% of breast cancer patients and is associated with poor prognosis. We sought to identify agents that can prevent or ameliorate ethanol-induced invasion of breast cancer cells. Cyanidin-3-glucoside (C3G), an anthocyanin present in many vegetables and fruits, is a potent natural antioxidant. Ethanol exposure causes the accumulation of intracellular reactive oxygen species (ROS). This study evaluated the effect of C3G on ethanol-induced breast cancer cell migration/invasion. Results C3G attenuated ethanol-induced migration/invasion of breast cancer cells expressing high levels of ErbB2 (BT474, MDA-MB231 and MCF7ErbB2) in a concentration dependent manner. C3G decreased ethanol-mediated cell adhesion to the extracellular matrix (ECM) as well as the amount of focal adhesions and the formation of lamellipodial protrusion. It inhibited ethanol-stimulated phosphorylation of ErbB2, cSrc, FAK and p130Cas, as well as interactions among these proteins. C3G abolished ethanol-mediated p130Cas/JNK interaction. Conclusions C3G blocks ethanol-induced activation of the ErbB2/cSrc/FAK pathway which is necessary for cell migration/invasion. C3G may be beneficial in preventing/reducing ethanol-induced breast cancer metastasis. PMID:21034468

  12. Endogenous APOBEC3B Restricts LINE-1 Retrotransposition in Transformed Cells and Human Embryonic Stem Cells*

    PubMed Central

    Wissing, Silke; Montano, Mauricio; Garcia-Perez, Jose Luis; Moran, John V.; Greene, Warner C.

    2011-01-01

    Members of the APOBEC3 (A3) family of cytidine deaminase enzymes act as host defense mechanisms limiting both infections by exogenous retroviruses and mobilization of endogenous retrotransposons. Previous studies revealed that the overexpression of some A3 proteins could restrict engineered human Long INterspersed Element-1 (LINE-1 or L1) retrotransposition in HeLa cells. However, whether endogenous A3 proteins play a role in restricting L1 retrotransposition remains largely unexplored. Here, we show that HeLa cells express endogenous A3B and A3C, whereas human embryonic stem cells (hESCs) express A3B, A3C, A3DE, A3F, and A3G. To study the relative contribution of endogenous A3 proteins in restricting L1 retrotransposition, we first generated small hairpin RNAs (shRNAs) to suppress endogenous A3 mRNA expression, and then assessed L1 mobility using a cell-based L1 retrotransposition assay. We demonstrate that in both HeLa and hESCs, shRNA-based knockdown of A3B promotes a ∼2–3.7-fold increase in the retrotransposition efficiency of an engineered human L1. Knockdown of the other A3s produced no significant increase in L1 activity. Thus, A3B appears to restrict engineered L1 retrotransposition in a broad range of cell types, including pluripotent cells. PMID:21878639

  13. PI3K-delta mediates double-stranded RNA-induced upregulation of B7-H1 in BEAS-2B airway epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kan-o, Keiko; Matsumoto, Koichiro, E-mail: koichi@kokyu.med.kyushu-u.ac.jp; Asai-Tajiri, Yukari

    Highlights: •Double-stranded RNA upregulates B7-H1 on BEAS-2B airway epithelial cells. •The upregulation of B7-H1 is attenuated by inhibition of PI3Kδ isoform. •PI3Kδ-mediated upregulation of B7-H1 is independent of NF-κB activation. •Inhibition of PI3Kδ may prevent persistent viral infection induced by B7-H1. -- Abstract: Airway viral infection disturbs the health-related quality of life. B7-H1 (also known as PD-L1) is a coinhibitory molecule associated with the escape of viruses from the mucosal immunity, leading to persistent infection. Most respiratory viruses generate double-stranded (ds) RNA during replication. The stimulation of cultured airway epithelial cells with an analog of viral dsRNA, polyinosinic-polycytidylic acid (polymore » IC) upregulates the expression of B7-H1 via activation of the nuclear factor κB(NF-κB). The mechanism of upregulation was investigated in association with phosphatidylinositol 3-kinases (PI3Ks). Poly IC-induced upregulation of B7-H1 was profoundly suppressed by a pan-PI3K inhibitor and partially by an inhibitor or a small interfering (si)RNA for PI3Kδ in BEAS-2B cells. Similar results were observed in the respiratory syncytial virus-infected cells. The expression of p110δ was detected by Western blot and suppressed by pretreatment with PI3Kδ siRNA. The activation of PI3Kδ is typically induced by oxidative stress. The generation of reactive oxygen species was increased by poly IC. Poly IC-induced upregulation of B7-H1 was attenuated by N-acetyl-L-cysteine, an antioxidant, or by oxypurinol, an inhibitor of xanthine oxidase. Poly IC-induced activation of NF-κB was suppressed by a pan-PI3K inhibitor but not by a PI3Kδ inhibitor. These results suggest that PI3Kδ mediates dsRNA-induced upregulation of B7-H1 without affecting the activation of NF-κB.« less

  14. Homeobox protein TLX3 activates miR-125b expression to promote T-cell acute lymphoblastic leukemia

    PubMed Central

    Renou, Laurent; Boelle, Pierre-Yves; Deswarte, Caroline; Spicuglia, Salvatore; Benyoucef, Aissa; Calvo, Julien; Uzan, Benjamin; Belhocine, Mohamed; Cieslak, Agata; Landman-Parker, Judith; Baruchel, Andre; Asnafi, Vahid; Pflumio, Françoise; Ballerini, Paola

    2017-01-01

    The oncogenic mechanisms driven by aberrantly expressed transcription factors in T-cell acute leukemia (T-ALL) are still elusive. MicroRNAs (miRNAs) play an important role in normal development and pathologies. Here, we examined the expression of 738 miRNA species in 41 newly diagnosed pediatric T-ALLs and in human thymus-derived cells. We found that expression of 2 clustered miRNAs, miR-125b/99a, peaks in primitive T cells and is upregulated in the T leukemia homeobox 3 (TLX3)–positive subtype of T-ALL. Using loss- and gain-of-function approaches, we established functional relationships between TLX3 and miR-125b. Both TLX3 and miR-125b support in vitro cell growth and in vivo invasiveness of T-ALL. Besides, ectopic expression of TLX3 or miR-125b in human hematopoietic progenitor cells enhances production of T-cell progenitors and favors their accumulation at immature stages of T-cell development resembling the differentiation arrest observed in TLX3 T-ALL. Ectopic miR-125b also remarkably accelerated leukemia in a xenograft model, suggesting that miR125b is an important mediator of the TLX3-mediated transformation program that takes place in immature T-cell progenitors. Mechanistically, TLX3-mediated activation of miR-125b may impact T-cell differentiation in part via repression of Ets1 and CBFβ genes, 2 regulators of T-lineage. Finally, we established that TLX3 directly regulates miR-125b production through binding and transactivation of LINC00478, a long noncoding RNA gene, which is the host of miR-99a/Let-7c/miR-125b. Altogether, our results reveal an original functional link between TLX3 and oncogenic miR-125b in T-ALL development. PMID:29296717

  15. Inhibition of NFkappaB reduces cellular viability in GH3 pituitary adenoma cells.

    PubMed

    Vender, John R; Laird, Melissa D; Dhandapani, Krishnan M

    2008-05-01

    Adenomas of the pituitary gland are among the most common types of tumors of the adult brain. Although adenomas are histologically benign, they may be associated with significant morbidity and mortality, mostly because of their invasive growth pattern and hormone hypersecretion. Current medical therapies are suppressive, acting at a receptor level. Thus, there is a need to identify novel cellular and molecular targets for pituitary tumors. We investigated the possible role of the NFkappaB transcription factor in pituitary tumor cell growth. The effect of NFkappaB pathway inhibition on cellular viability was studied in the GH3 pituitary adenoma cell line, a well-characterized rat cell line that secretes growth hormone and prolactin. Cells were treated with mechanistically diverse pharmacological NFkappaB pathway inhibitors or with molecular inhibitors that were overexpressed in tumor cells before the assessment of cellular viability. NFkappaB activity was also assessed in GH3 cells using deoxyribonucleic acid binding assays. GH3 cells exhibited constitutive NFkappaB activity, which contributed to increased cellular proliferation. Treatment with wedelolactone, an IkappaB kinase inhibitor, or overexpression of an IkappaB super-repressor reduced cell viability, further implicating NFkappaB in pituitary tumor cell growth. Pharmacological or molecular inhibition of Akt similarly reduced GH3 viability and NFkappaB binding, suggesting that constitutive activation of NFkappaB may be, at least in part, mediated by Akt. Directed targeting of the Akt and NFkappaB signaling pathways may be a useful adjunct in the clinical management of pituitary tumors. Further elucidation of this pathway may yield novel information regarding the behavior of pituitary tumors in humans.

  16. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duangtum, Natapol; Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700; Junking, Mutita

    Highlights: {yields} Impaired trafficking of kAE1 causes distal renal tubular acidosis (dRTA). {yields} The interaction between kAE1 and kinesin family member 3B (KIF3B) is reported. {yields} The co-localization between kAE and KIF3B was detected in human kidney tissues. {yields} A marked reduction of kAE1 on the cell membrane was observed when KIF3B was knockdown. {yields} KFI3B plays an important role in trafficking of kAE1 to the plasma membrane. -- Abstract: Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of {alpha}-intercalated cells of the kidney collecting duct leads to the defect of the Cl{sup -}/HCO{sub 3}{supmore » -} exchange and the failure of proton (H{sup +}) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney {alpha}-intercalated cells.« less

  17. Downregulation of STAT3/NF-κB potentiates gemcitabine activity in pancreatic cancer cells.

    PubMed

    Gong, Jingjing; Muñoz, Amanda R; Pingali, Subramanya; Payton-Stewart, Florastina; Chan, Daniel E; Freeman, James W; Ghosh, Rita; Kumar, Addanki P

    2017-02-01

    There is an unmet need to develop new agents or strategies against therapy resistant pancreatic cancer (PanCA). Recent studies from our laboratory showed that STAT3 negatively regulates NF-κB and that inhibition of this crosstalk using Nexrutine® (Nx) reduces transcriptional activity of COX-2. Inhibition of these molecular interactions impedes pancreatic cancer cell growth as well as reduces fibrosis in a preclinical animal model. Nx is an extract derived from the bark of Phellodendron amurense and has been utilized in traditional Chinese medicine as antidiarrheal, astringent, and anti-inflammatory agent for centuries. We hypothesized that "Nx-mediated inhibition of survival molecules like STAT3 and NF-κB in pancreatic cancer cells will improve the efficacy of the conventional chemotherapeutic agent, gemcitabine (GEM)." Therefore, we explored the utility of Nx, one of its active constituents berberine and its derivatives, to enhance the effects of GEM. Using multiple human pancreatic cancer cells we found that combination treatment with Nx and GEM resulted in significant alterations of proteins in the STAT3/NF-κB signaling axis culminating in growth inhibition in a synergistic manner. Furthermore, GEM resistant cells were more sensitive to Nx treatment than their parental GEM-sensitive cells. Interestingly, although berberine, the Nx active component used, and its derivatives were biologically active in GEM sensitive cells they did not potentiate GEM activity when used in combination. Taken together, these results suggest that the natural extract, Nx, but not its active component, berberine, has the potential to improve GEM sensitivity, perhaps by down regulating STAT3/NF-κB signaling. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Blazeispirol A from Agaricus blazei fermentation product induces cell death in human hepatoma Hep 3B cells through caspase-dependent and caspase-independent pathways.

    PubMed

    Su, Zheng-Yuan; Tung, Yen-Chen; Hwang, Lucy Sun; Sheen, Lee-Yan

    2011-05-11

    Currently, liver cancer is a leading cause of cancer-related death in the world. Hepatocellular carcinoma is the most common type of liver cancer. Previously, it was reported that blazeispirol A (BA) is the most active antihepatoma compound in an ethanolic extract of Agaricus blazei fermentation product. The aim of this study was to understand the antihepatoma mechanism of BA in human liver cancer Hep 3B cells. The results showed that BA inhibited the growth of Hep 3B cells and increased the percentage of cells in sub-G1 phase in a concentration- and time-dependent manner. In addition, BA treatment resulted in DNA fragmentation, caspase-9 and caspase-3 activations, poly(ADP-ribose)polymerase (PARP) degradation, down-regulation of Bcl-2 and Bcl-xL expressions, up-regulation of Bax expression, and disruption of the mitochondrial membrane potential (MMP) in Hep 3B cells. Furthermore, z-VAD-fmk, a caspase inhibitor, did not enhance the viability of BA-treated Hep 3B cells, and BA induced the release of HtrA2/Omi and apoptosis-inducing factor (AIF) from mitochondria into the cytosol. These findings suggested that BA with novel chemopreventive and chemotherapeutic potentials causes both caspase-dependent and caspase-independent cell death in Hep 3B cells.

  19. Effect of the Molar Ratio of B2O3 to Bi2O3 in Al Paste with Bi2O3-B2O3-ZnO Glass on Screen Printed Contact Formation and Si Solar Cell Performance

    NASA Astrophysics Data System (ADS)

    Kim, Bit-Na; Kim, Hyeong Jun; Chang, Hyo Sik; Hong, Hyun Seon; Ryu, Sung-Soo; Lee, Heon

    2013-10-01

    In this study, eco-friendly Pb-free Bi2O3-B2O3-ZnO glass frits were chosen as an inorganic additive for the Al paste used in Si solar cells. The effects of the molar ratio of Bi2O3 to B2O3 in the glass composition on the electrical resistance of the Al electrode and on the cell performance were investigated. The results showed that as the molar ratio of Bi2O3 to B2O3 increased, the glass transition temperature and softening temperature decreased because of the reduced glass viscosity. In Al screen-printed Si solar cells, as the molar ratio of Bi2O3 to B2O3 increased, the sheet electrical resistance of the Al electrode decreased and the cell efficiency increased. The uniformity and thickness of the back-surface field was significantly influenced by the glass composition.

  20. Ligand stimulation of ErbB4 and a constitutively-active ErbB4 mutant result in different biological responses in human pancreatic tumor cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mill, Christopher P.; Auburn University Harrison School of Pharmacy, Auburn, AL 36849-5501; Gettinger, Kathleen L.

    2011-02-15

    Pancreatic cancer is the fourth leading cause of cancer death in the United States. Indeed, it has been estimated that 37,000 Americans will die from this disease in 2010. Late diagnosis, chemoresistance, and radioresistance of these tumors are major reasons for poor patient outcome, spurring the search for pancreatic cancer early diagnostic and therapeutic targets. ErbB4 (HER4) is a member of the ErbB family of receptor tyrosine kinases (RTKs), a family that also includes the Epidermal Growth Factor Receptor (EGFR/ErbB1/HER1), Neu/ErbB2/HER2, and ErbB3/HER3. These RTKs play central roles in many human malignancies by regulating cell proliferation, survival, differentiation, invasiveness, motility,more » and apoptosis. In this report we demonstrate that human pancreatic tumor cell lines exhibit minimal ErbB4 expression; in contrast, these cell lines exhibit varied and in some cases abundant expression and basal tyrosine phosphorylation of EGFR, ErbB2, and ErbB3. Expression of a constitutively-dimerized and -active ErbB4 mutant inhibits clonogenic proliferation of CaPan-1, HPAC, MIA PaCa-2, and PANC-1 pancreatic tumor cell lines. In contrast, expression of wild-type ErbB4 in pancreatic tumor cell lines potentiates stimulation of anchorage-independent colony formation by the ErbB4 ligand Neuregulin 1{beta}. These results illustrate the multiple roles that ErbB4 may be playing in pancreatic tumorigenesis and tumor progression.« less

  1. Deacetylase activity of histone deacetylase 3 is required for productive VDJ recombination and B-cell development

    PubMed Central

    Stengel, Kristy R.; Barnett, Kelly R.; Wang, Jing; Liu, Qi; Hodges, Emily; Hiebert, Scott W.; Bhaskara, Srividya

    2017-01-01

    Histone deacetylase 3 (HDAC3) is the catalytic component of NCoR/SMRT corepressor complexes that mediate the actions of transcription factors implicated in the regulation of B-cell development and function. We crossed Hdac3 conditional knockout mice with Mb1-Cre knockin animals to delete Hdac3 in early progenitor B cells. The spleens of Hdac3F/−Mb1-Cre+/− mice were virtually devoid of mature B cells, and B220+CD43+ B-cell progenitors accumulated within the bone marrow. Quantitative deep sequencing of the Ig heavy chain locus from B220+CD43+ populations identified a defect in VHDJH recombination with a severe reduction in productive rearrangements, which directly corresponded to the loss of pre-B cells from Hdac3Δ/− bone marrow. For Hdac3Δ/− B cells that did show productive VDJ rearrangement, there was significant skewing toward the incorporation of proximal VH gene segments and a corresponding reduction in distal VH gene segment use. Although transcriptional effects within these loci were modest, Hdac3Δ/− progenitor cells displayed global changes in chromatin structure that likely hindered effective distal V-DJ recombination. Reintroduction of wild-type Hdac3 restored normal B-cell development, whereas an Hdac3 point mutant lacking deacetylase activity failed to complement this defect. Thus, the deacetylase activity of Hdac3 is required for the generation of mature B cells. PMID:28739911

  2. B-cell homeostasis requires complementary CD22 and BLyS/BR3 survival signals.

    PubMed

    Smith, Susan H; Haas, Karen M; Poe, Jonathan C; Yanaba, Koichi; Ward, Christopher D; Migone, Thi-Sau; Tedder, Thomas F

    2010-08-01

    Peripheral B-cell numbers are tightly regulated by homeostatic mechanisms that influence the transitional and mature B-cell compartments and dictate the size and clonotypic diversity of the B-cell repertoire. B-lymphocyte stimulator (BLyS, a trademark of Human Genome Sciences, Inc.) plays a key role in regulating peripheral B-cell homeostasis. CD22 also promotes peripheral B-cell survival through ligand-dependent mechanisms. The B-cell subsets affected by the absence of BLyS and CD22 signals overlap, suggesting that BLyS- and CD22-mediated survival are intertwined. To examine this, the effects of BLyS insufficiency following neutralizing BLyS mAb treatment in mice also treated with CD22 ligand-blocking mAb were examined. Combined targeting of the BLyS and CD22 survival pathways led to significantly greater clearance of recirculating bone marrow, blood, marginal zone and follicular B cells than either treatment alone. Likewise, BLyS blockade further reduced bone marrow, blood and spleen B-cell numbers in CD22(-/-) mice. Notably, BLyS receptor expression and downstream signaling were normal in CD22(-/-) B cells, suggesting that CD22 does not directly alter BLyS responsiveness. CD22 survival signals were likewise intact in the absence of BLyS, as CD22 mAb treatment depleted blood B cells from mice with impaired BLyS receptor 3 (BR3) signaling. Finally, enforced BclxL expression, which rescues BR3 impairment, did not affect B-cell depletion following CD22 mAb treatment. Thus, the current studies support a model whereby CD22 and BLyS promote the survival of overlapping B-cell subsets but contribute to their maintenance through independent and complementary signaling pathways.

  3. FoxP3 Expression in Macrophages, Cancer, and B Cells-Is It Real?

    PubMed

    Vadasz, Zahava; Toubi, Elias

    2017-06-01

    During the last decade, B regulatory cells are appreciated to have a central role in preventing autoimmunity and maintaining self-tolerance. They are characterized by expressing different phenotypic markers and the production of either IL-10 or TGF-β or both. The recent recognition of Fas ligand expressing B regulatory cells as "killer" cells established their role in maintaining viral persistence by preventing effective antiviral immune responses. The forkhead lineage-transcription factor (FoxP3) was considered for many years to be a highly specific intracellular regulatory marker of CD4+CD25+ T regulatory cells. The possibility of FoxP3 being expressed in B regulatory cells was suggested in many studies. Though controversial, FoxP3 expression was also reported in macrophages and cancer cells. Aiming to avoid artifact staining, many researchers required the usage of FoxP3 messenger RNA (mRNA) and PCR in order to prove a true expression of FoxP3 in these different cells. In addition, most studies' report on that FoxP3 expression in all abovementioned cells is related to their status of activation since naïve (non-activated cells) were found poorly FoxP3 expressing. In this review, we present the existing data on FoxP3 expression in non-T-regulatory cells, but we suggest that further studies are needed to better establish this concept.

  4. miR-342-3p affects hepatocellular carcinoma cell proliferation via regulating NF-κB pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Liang; Zhang, Yubao, E-mail: zhyb880077@sina.com

    2015-02-13

    Recent research indicates that non-coding microRNAs (miRNAs) help regulate basic cellular processes in many types of cancer cells. We hypothesized that overexpression of miR-342-3p might affect proliferation of hepatocellular carcinoma (HCC) cells. After confirming overexpression of miR-342-3p with qRT-PCR, MTT assay showed that HCC cell proliferation was significantly inhibited by miR-342-3p, and that it significantly decreased BrdU-positive cell proliferation by nearly sixfold. Searching for targets using three algorithms we found that miR-342-3p is related to the NF-κB pathway and luciferase assay found that IKK-γ, TAB2 and TAB3 are miR-342-3p target genes. Results of western blot on extracted nuclear proteins ofmore » HepG2 and HCT-116 cells showed that miR-342-3p reduced and miR-342-3p-in increased p65 nuclear levels and qRT-PCR found that NF-κB pathway downstream genes were downregulated by miR-342-3p and upregulated by miR-342-3p-in, confirming that miR-342 targets NF-κB pathway. Overexpression of Ikk-γ, TAB2 and TAB3 partially rescued HCC cells proliferation inhibited by miR-342-3p. Using the GSE54751 database we evaluated expression from 10 HCC samples, which strongly suggested downregulation of miR-342-3p and we also found inverse expression between miR-342-3p and its targets IKK-γ, TAB2 and TAB3 from 71 HCC samples. Our results show that miR-342-3p has a significant role in HCC cell proliferation and is suitable for investigation of therapeutic targets. - Highlights: • MiR-342-3p suppresses hepatocellular carcinoma cell proliferation. • MiR-342-3p targets IKK-γ, TAB2 and TAB3 genes. • MiR-342-3p downregulates NF-kB signaling pathway. • MiR-342-3p is downregulated in clinical hepatocellular carcinoma samples. • The expression of miR-342-3p and its target gene is inversely related.« less

  5. Pembrolizumab and Combination Chemotherapy in Treating Patients With Previously Untreated Diffuse Large B-cell Lymphoma or Grade 3b Follicular Lymphoma

    ClinicalTrials.gov

    2017-10-24

    Composite Lymphoma; Grade 3b Follicular Lymphoma; Stage I Diffuse Large B-Cell Lymphoma; Stage I Follicular Lymphoma; Stage II Diffuse Large B-Cell Lymphoma; Stage II Follicular Lymphoma; Stage III Diffuse Large B-Cell Lymphoma; Stage III Follicular Lymphoma; Stage IV Diffuse Large B-Cell Lymphoma; Stage IV Follicular Lymphoma

  6. Forced expression of Hnf1b/Foxa3 promotes hepatic fate of embryonic stem cells.

    PubMed

    Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Hakhamaneshi, Mohammad Saeed; Ebadifar, Asghar; Fathi, Fardin; Baharvand, Hossein

    2016-05-20

    Embryonic stem (ES) cell-derived hepatocytes have the potential to be used for basic research, regenerative medicine, and drug discovery. Recent reports demonstrated that in addition to conventional differentiation inducers such as chemical compounds and cytokines, overexpression of lineage-specific transcription factors could induce ES cells to differentiate to a hepatic fate. Here, we hypothesized that lentivirus-mediated inducible expression of hepatic lineage transcription factors could enhance mouse ES cells to hepatocyte-like cells. We screened the effects of candidate transcription factors Hnf1b, Hnf1a, Hnf4a, Foxa1, Foxa3 and Hex, and determined that the combination of Hnf1b/Foxa3 promoted expression of several hepatic lineage-specific markers and proteins, in addition to glycogen storage, ICG uptake, and secretion of albumin and urea. The differentiated cells were engraftable and expressed albumin when transplanted into a carbon tetrachloride-injured mouse model. These results demonstrated the crucial role of Hnf1b and Foxa3 in hepatogenesis in vitro and provided a valuable tool for the efficient differentiation of HLCs from ES cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Grb2 regulates B-cell maturation, B-cell memory responses and inhibits B-cell Ca2+ signalling.

    PubMed

    Ackermann, Jochen A; Radtke, Daniel; Maurberger, Anna; Winkler, Thomas H; Nitschke, Lars

    2011-04-20

    Grb2 is a ubiquitously expressed adaptor protein, which activates Ras and MAP kinases in growth factor receptor signalling, while in B-cell receptor (BCR) signalling this role is controversial. In B cell lines it was shown that Grb2 can inhibit BCR-induced Ca(2+) signalling. Nonetheless, the physiological role of Grb2 in primary B cells is still unknown. We generated a B-cell-specific Grb2-deficient mouse line, which had a severe reduction of mature follicular B cells in the periphery due to a differentiation block and decreased B-cell survival. Moreover, we found several changes in important signalling pathways: enhanced BCR-induced Ca(2+) signalling, alterations in mitogen-activated protein kinase activation patterns and strongly impaired Akt activation, the latter pointing towards a defect in PI3K signalling. Interestingly, B-cell-specific Grb2-deficient mice showed impaired IgG and B-cell memory responses, and impaired germinal centre formation. Thus, Grb2-dependent signalling pathways are crucial for lymphocyte differentiation processes, as well as for control of secondary humoral immune responses.

  8. A monoclonal antibody that recognizes B cells and B cell precursors in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffman, R.L.; Weissman, I.L.

    1981-02-01

    The monoclonal antibody, RA3-2C2, appears to be specific for cells within the B cell lineage. This antibody does not recognize thymocytes, peripheral T cells, or nonlymphoid hematopoietic cells in the spleen or bone marrow. Nor does it recognize the pluripotent hematopoietic stem cells, the spleen colony-forming unit, All sIg+ B cells and most plasma cells are RA3-2C2+. In addition, approximately 20% of nucleated bone marrow cells are RA3-2C2+ but sIg-. This population contains B cell precursors that can give rise to sIg+ cells within 2 d in vitro.

  9. Modulation of Immune Cell Functions by the E3 Ligase Cbl-b

    PubMed Central

    Lutz-Nicoladoni, Christina; Wolf, Dominik; Sopper, Sieghart

    2015-01-01

    Maintenance of immunological tolerance is a critical hallmark of the immune system. Several signaling checkpoints necessary to balance activating and inhibitory input to immune cells have been described so far, among which the E3 ligase Cbl-b appears to be a central player. Cbl-b is expressed in all leukocyte subsets and regulates several signaling pathways in T cells, NK cells, B cells, and different types of myeloid cells. In most cases, Cbl-b negatively regulates activation signals through antigen or pattern recognition receptors and co-stimulatory molecules. In line with this function, cblb-deficient immune cells display lower activation thresholds and cblb knockout mice spontaneously develop autoimmunity and are highly susceptible to experimental autoimmunity. Interestingly, genetic association studies link CBLB-polymorphisms with autoimmunity also in humans. Vice versa, the increased activation potential of cblb-deficient cells renders them more potent to fight against malignancies or infections. Accordingly, several reports have shown that cblb knockout mice reject tumors, which mainly depends on cytotoxic T and NK cells. Thus, targeting Cbl-b may be an interesting strategy to enhance anti-cancer immunity. In this review, we summarize the findings on the molecular function of Cbl-b in different cell types and illustrate the potential of Cbl-b as target for immunomodulatory therapies. PMID:25815272

  10. Bone marrow stromal-B cell interactions in polycyclic aromatic hydrocarbon-induced pro/pre-B cell apoptosis.

    PubMed

    Allan, Lenka L; Mann, Koren K; Matulka, Raymond A; Ryu, Heui-Young; Schlezinger, Jennifer J; Sherr, David H

    2003-12-01

    Environmental polycyclic aromatic hydrocarbons (PAH) and related halogenated hydrocarbons are immunotoxic in a variety of systems. In a model system of B lymphopoiesis, PAH exposure rapidly induces apoptosis in CD43- pre-B and CD43+ pro/pre-B cells. Apoptosis induction by 7,12-dimethylbenzo[a]anthracene (DMBA) is dependent upon AhR+ bone marrow stromal cells and likely involves DMBA metabolism within the stromal cell. However, it is not known if PAH-treated stromal cells release free metabolites or soluble factors that may directly induce B cell death or if the effector death signal is delivered by stromal cell-B cell contact. Here, we demonstrate that supernatants from DMBA-treated bone marrow stromal cells contain an activity capable of inducing apoptosis in pro/pre-B cells cocultured with stromal cells. This activity (1) is not produced when stromal cells are cotreated with DMBA and alpha-naphthoflavone (alpha-NF), an aryl hydrocarbon receptor (AhR) and cytochrome P-450 inhibitor, (2) is > or = 50 kDa, (3) is trypsin and heat sensitive, and (4) is dependent on AhR+ stromal cells, which in turn deliver the effector death signal to pro/pre-B cells. The results (1) argue against a role for a soluble, stromal cell-derived cytokine as the effector of PAH-induced pro/pre-B cell death, (2) exclude the possibility of a free metabolite acting directly on AhR- pro/pre-B cell targets, and (3) suggest the elaboration by stromal cells of a relatively stable, DMBA metabolite-protein complex capable of acting on other stromal cells at some distance. Collectively, these studies suggest that, while stromal cell products, e.g., metabolite-protein complexes, may affect the function of distant stromal cells, the effector death signal delivered by stromal cells to bone marrow B cells is mediated by cell-cell contact.

  11. A STAT3-decoy oligonucleotide induces cell death in a human colorectal carcinoma cell line by blocking nuclear transfer of STAT3 and STAT3-bound NF-κB

    PubMed Central

    2011-01-01

    Background The transcription factor STAT3 (signal transducer and activator of transcription 3) is frequently activated in tumor cells. Activated STAT3 forms homodimers, or heterodimers with other TFs such as NF-κB, which becomes activated. Cytoplasmic STAT3 dimers are activated by tyrosine phosphorylation; they interact with importins via a nuclear localization signal (NLS) one of which is located within the DNA-binding domain formed by the dimer. In the nucleus, STAT3 regulates target gene expression by binding a consensus sequence within the promoter. STAT3-specific decoy oligonucleotides (STAT3-decoy ODN) that contain this consensus sequence inhibit the transcriptional activity of STAT3, leading to cell death; however, their mechanism of action is unclear. Results The mechanism of action of a STAT3-decoy ODN was analyzed in the colon carcinoma cell line SW 480. These cells' dependence on activated STAT3 was verified by showing that cell death is induced by STAT3-specific siRNAs or Stattic. STAT3-decoy ODN was shown to bind activated STAT3 within the cytoplasm, and to prevent its translocation to the nucleus, as well as that of STAT3-associated NF-κB, but it did not prevent the nuclear transfer of STAT3 with mutations in its DNA-binding domain. The complex formed by STAT3 and the STAT3-decoy ODN did not associate with importin, while STAT3 alone was found to co-immunoprecipitate with importin. Leptomycin B and vanadate both trap STAT3 in the nucleus. They were found here to oppose the cytoplasmic trapping of STAT3 by the STAT3-decoy ODN. Control decoys consisting of either a mutated STAT3-decoy ODN or a NF-κB-specific decoy ODN had no effect on STAT3 nuclear translocation. Finally, blockage of STAT3 nuclear transfer correlated with the induction of SW 480 cell death. Conclusions The inhibition of STAT3 by a STAT3-decoy ODN, leading to cell death, involves the entrapment of activated STAT3 dimers in the cytoplasm. A mechanism is suggested whereby this

  12. Decoy receptor 3 suppresses B cell functions and has a negative correlation with disease activity in rheumatoid arthritis.

    PubMed

    Chen, Ming-Han; Liu, Po-Chun; Chang, Chien-Wen; Chen, Yi-Ann; Chen, Ming-Huang; Liu, Chun-Yu; Leu, Chuen-Miin; Lin, Hsiao-Yi

    2014-01-01

    The decoy receptor 3 (DcR3) is a member of the tumour necrosis factor (TNF) receptor superfamily and may regulate inflammation. The aim of this study was to investigate the role of DcR3 in B cell functions and its correlation to disease activity in patients with rheumatoid arthritis (RA). The concentrations of DcR3 and TNF-α were measured by ELISA. B cell proliferation was assessed by quantification of 3H-thymidine uptake. Staphylococcus aureus Cowan (SAC) strain were used to stimulate B cell proliferation and TNF-α production. Compared to the osteoarthritis (OA) patients, the RA group had higher synovial DcR3 levels (3273.6±1623.2 vs. 1594.8±1190.0 pg/ml, p=0.003), which were negatively correlated with the serum erythrocyte sedimentation rate and Disease Activity Score using 28 joint counts (DAS28) scores (r=-0.560, p=0.002; r=-0.579, p<0.001, respectively). Although the RA B cells have more active characteristics, B cell proliferation induced by SAC was successfully suppressed by recombinant DcR3.Fc fusion protein with an average inhibition of 44.8%. Moreover, DcR3.Fc fusion protein was found to suppress SAC-induced TNF-α production by B cells in 8 RA patients (average inhibition 47.0%). The results of our study indicated that the inhibition of B cell functions by DcR3 may partially explain the negative correlation between DcR3 level and disease activity in RA patients. Our findings imply that DcR3 may be used as a biomarker for disease activity and a potential therapeutic agent in the treatment of RA.

  13. Specific requirement of the chromatin modifier mSin3B in cell cycle exit and cellular differentiation

    PubMed Central

    David, Gregory; Grandinetti, Kathryn B.; Finnerty, Patricia M.; Simpson, Natalie; Chu, Gerald C.; DePinho, Ronald A.

    2008-01-01

    The Sin3-histone deacetylase (HDAC) corepressor complex is conserved from yeast to humans. Mammals possess two highly related Sin3 proteins, mSin3A and mSin3B, which serve as scaffolds tethering HDAC enzymatic activity, and numerous sequence-specific transcription factors to enable local chromatin regulation at specific gene targets. Despite broad overlapping expression of mSin3A and mSin3B, mSin3A is cell-essential and vital for early embryonic development. Here, genetic disruption of mSin3B reveals a very different phenotype characterized by the survival of cultured cells and lethality at late stages of embryonic development with defective differentiation of multiple lineages—phenotypes that are strikingly reminiscent of those associated with loss of retinoblastoma family members or E2F transcriptional repressors. Additionally, we observe that, whereas mSin3B−/− cells cycle normally under standard growth conditions, they show an impaired ability to exit the cell cycle with limiting growth factors. Correspondingly, mSin3B interacts physically with the promoters of known E2F target genes, and its deficiency is associated with derepression of these gene targets in vivo. Together, these results reveal a critical role for mSin3B in the control of cell cycle exit and terminal differentiation in mammals and establish contrasting roles for the mSin3 proteins in the growth and development of specific lineages. PMID:18332431

  14. Berberine Induces Cell Cycle Arrest in Cholangiocarcinoma Cell Lines via Inhibition of NF-κB and STAT3 Pathways.

    PubMed

    Puthdee, Nattapong; Seubwai, Wunchana; Vaeteewoottacharn, Kulthida; Boonmars, Thidarut; Cha'on, Ubon; Phoomak, Chatchai; Wongkham, Sopit

    2017-01-01

    Berberine is a natural compound found in several herbs. Anticancer activity of berberine was reported in several cancers, however, little is known regarding the effects of berberine against cholangiocarcinoma (CCA). In this study, the growth inhibitory effects of berberine on CCA cell lines and its molecular mechanisms were explored. Cell growth and cell cycle distribution were examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. The expression levels of cell cycle regulatory proteins were determined by Western blot analysis. Berberine significantly inhibited growth of CCA cell lines in a dose and time dependent fashion. The inhibition was largely attributed to cell cycle arrest at the G1 phase through the reduction of cyclin D1, and cyclin E. Moreover, berberine could reduce the expression and activation of signal transducers and activator of transcription 3 (STAT3) and probably nuclear factor-kappaB (NF-κB) via suppression of extracellular signal-regulated kinase (ERK) 1/2 action. These results highlight the potential of berberine to be a multi-target agent for CCA treatment.

  15. Adenosine production by human B cells and B cell–mediated suppression of activated T cells

    PubMed Central

    Saze, Zenichiro; Schuler, Patrick J.; Hong, Chang-Sook; Cheng, Dongmei; Jackson, Edwin K.

    2013-01-01

    Antibody-independent role of B cells in modulating T-cell responses is incompletely understood. Freshly isolated or cultured B cells isolated from the peripheral blood of 30 normal donors were evaluated for CD39 and CD73 coexpression, the ability to produce adenosine 5′-monophosphate (AMP) and adenosine (ADO) in the presence of exogenous adenosine triphosphate (ATP) as well as A1, A2A, A2B, and A3 adenosine receptor (ADOR) expression. Human circulating B cells coexpress ectonucleotidases CD39 and CD73, hydrolyze exogenous ATP to 5′-AMP and ADO, and express messenger RNA for A1R, A2AR, and A3R. 2-chloroadenosine inhibited B-cell proliferation and cytokine expression, and only A3R selective antagonist restored B-cell functions. This suggested that B cells use the A3R for autocrine signaling and self-regulation. Mediated effects on B-cell growth ± ADOR antagonists or agonists were tested in carboxyfluorescein diacetate succinimidyl ester assays. In cocultures, resting B cells upregulated functions of CD4+ and CD8+ T cells. However, in vitro–activated B cells downregulated CD73 expression, mainly produced 5′-AMP, and inhibited T-cell proliferation and cytokine production. These B cells acquire the ability to restrict potentially harmful effects of activated T cells. Thus, B cells emerge as a key regulatory component of T cell–B cell interactions, and their dual regulatory activity is mediated by the products of ATP hydrolysis, 5′-AMP, and ADO. PMID:23678003

  16. The PI3K Isoforms p110α and p110δ are Essential for Pre-B Cell Receptor Signaling and B Cell Development

    PubMed Central

    Ramadani, Faruk; Bolland, Daniel J.; Garcon, Fabien; Emery, Juliet L.; Vanhaesebroeck, Bart; Corcoran, Anne E.; Okkenhaug, Klaus

    2013-01-01

    B cell development is controlled by a series of checkpoints that ensure that the immunoglobulin (Ig)-encoding genes are assembled in frame to produce a functional B cell receptor (BCR) and antibodies. The BCR consists of Ig proteins in complex with the immunoreceptor tyrosine-based activation motif (ITAM)-containing Igα and Igβ chains. Whereas the activation of Src and Syk tyrosine kinases is essential for BCR signaling, the pathways that act downstream of these kinases are incompletely defined. Previous work has revealed a key role for the p110δ isoform of phosphoinositide 3-kinase (PI3K) in agonist-induced BCR signaling; however, early B cell development and mature B cell survival, which depend on tonic BCR signaling, are not substantially affected by a deficiency in p110δ. Here, we show that in the absence of p110δ, p110α, but not p110β, can compensate to promote early B cell development in the bone marrow and B cell survival in the spleen. In the absence of both p110α and p110δ activities, pre-BCR signaling fails to suppress the production of recombination-activating gene (Rag) protein and to promote developmental progression of B cell progenitors. By contrast, p110α does not contribute to agonist-induced BCR signaling. These studies indicate that either p110α or p110δ can mediate tonic signaling from the BCR, but that only p110δ can contribute to antigen-dependent activation of B cells. PMID:20699475

  17. Epstein-Barr virus EBNA2 directs doxorubicin resistance of B cell lymphoma through CCL3 and CCL4-mediated activation of NF-κB and Btk.

    PubMed

    Kim, Joo Hyun; Kim, Won Seog; Hong, Jung Yong; Ryu, Kung Ju; Kim, Seok Jin; Park, Chaehwa

    2017-01-17

    Epstein-Barr virus (EBV)-encoded nuclear antigen, EBNA2, expressed in EBV-infected B lymphocytes is critical for lymphoblastoid cell growth. Microarray profiling and cytokine array screening revealed that EBNA2 is associated with upregulation of the chemokines CCL3 and CCL4 in lymphoma cells. Depletion or inactivation of CCL3 or CCL4 sensitized DLBCL cells to doxorubicin. Our results indicate that EBV influences cell survival via an autocrine mechanism whereby EBNA2 increases CCL3 and CCL4, which in turn activate the Btk and NF-κB pathways, contributing to doxorubicin resistance of B lymphoma cells. Western blot data further confirmed that CCL3 and CCL4 direct activation of Btk and NF-κB. Based on these findings, we propose that a pathway involving EBNA2/Btk/NF-κB/CCL3/CCL4 plays a key role in doxorubicin resistance, and therefore, inhibition of specific components of this pathway may sensitize lymphoma cells to doxorubicin. Evaluation of the relationship between CCL3 expression and EBV infection revealed high CCL3 levels in EBV-positive patients. Our data collectively suggest that doxorubicin treatment for EBNA2-positive DLBCL cells may be effectively complemented with a NF-κB or Btk inhibitor. Moreover, evaluation of the CCL3 and CCL4 levels may be helpful for selecting DLBCL patients likely to benefit from doxorubicin treatment in combination with the velcade or ibrutinib.

  18. CD19xCD3 DART protein mediates human B-cell depletion in vivo in humanized BLT mice

    PubMed Central

    Tsai, Perry; Thayer, William O; Liu, Liqin; Silvestri, Guido; Nordstrom, Jeffrey L; Garcia, J Victor

    2016-01-01

    Novel therapeutic strategies are needed for the treatment of hematologic malignancies; and bispecific antibody-derived molecules, such as dual-affinity re-targeting (DART) proteins, are being developed to redirect T cells to kill target cells expressing tumor or viral antigens. Here we present our findings of specific and systemic human B-cell depletion by a CD19xCD3 DART protein in humanized BLT mice. Administration of the CD19xCD3 DART protein resulted in a dramatic sustained depletion of human CD19+ B cells from the peripheral blood, as well as a dramatic systemic reduction of human CD19+ B-cell levels in all tissues (bone marrow, spleen, liver, lung) analyzed. When human CD8+ T cells were depleted from the mice, no significant B-cell depletion was observed in response to CD19xCD3 DART protein treatment, confirming that human CD8+ T cells are the primary effector cells in this in vivo model. These studies validate the use of BLT humanized mice for the in vivo evaluation and preclinical development of bispecific molecules that redirect human T cells to selectively deplete target cells. PMID:27119115

  19. KCC isoforms in a human lens epithelial cell line (B3) and lens tissue extracts.

    PubMed

    Misri, Sandeep; Chimote, Ameet A; Adragna, Norma C; Warwar, Ronald; Brown, Thomas L; Lauf, Peter K

    2006-11-01

    We recently reported potassium-chloride cotransporter activity in human lens epithelial B3 (HLE-B3) cells. The purpose of the present study was to demonstrate in these cells as well as in human lens tissue the potassium-chloride cotransport (KCC) isoforms by reverse transcriptase-polymerase chain reaction (RT-PCR), Western blotting and immunofluorescence microscopy. Of the four KCC genes known to encode the respective proteins and their spliced variants, RT-PCR with both rat and human primers revealed the predicted cDNA fragments of KCC1, KCC3a, KCC3b, and KCC4 but not KCC2 in both HLE-B3 cells and in human lens tissue extracts from cataractous patients. Polyclonal rabbit (rb) anti-rat (rt) and anti-human (hm) antibodies against rtKCC1 and hmKCC3, respectively, and a commercially available rb-anti-mouse (ms) KCC4 antibody were used. Rb anti-rtKCC1-ECL3 [against epitopes within the large extracellular loop 3 (ECL3)] revealed a 150kDa band in HLE-B3 cells consistent with the known molecular weight of KCC1. Rb anti-hmKCC3-ECL3 yielded three bands of 150, 122 and 105kDa, evidence for the presence of KCC3a, KCC3b and possibly KCC3c isoforms. The 122 and 112kDa bands were also demonstrated by rb anti-hmKCC3-CTD [the C-terminal domain (CTD)]. Rb anti-msKCC4 antibody only showed a 100kDa band in HLE-B3 cells. In the human lens tissues, a 115kDa protein was detected with rb anti-rtKCC1-ECL3 and a 100kDa band with rb anti-msKCC4, however, no bands with rb anti-hmKCC3-ECL3 or rb anti-hmKCC3-CTD. Fluorescence microscopy revealed immunocytochemical cytoplasmic and membrane labeling of HLE-B3 cells with anti-KCC1, -KCC3 (laser confocal microscopy) and -KCC4 antibodies and a Cy3-tagged secondary antibody. Hence HLE-B3 cells expressed proteins of the KCC1, KCC3a, b, and KCC4 isoforms, whereas surgically removed cataractous lens tissue expressed only those of KCC1 and KCC4.

  20. Cyclin D1b splice variant promotes αvβ3-mediated adhesion and invasive migration of breast cancer cells.

    PubMed

    Wu, Feng-Hua; Luo, Li-Qiong; Liu, Yi; Zhan, Qiu-Xiao; Luo, Chao; Luo, Jing; Zhang, Gui-Mei; Feng, Zuo-Hua

    2014-12-01

    Cyclin D1b, a splice variant of the cell cycle regulator cyclin D1, holds oncogenic functions in human cancer. However, the mechanisms underlying cyclin D1b function remain poorly understood. Here we introduced wild-type cyclin D1a or cyclin D1b variant into non-metastatic MCF-7 cells. Our results show that ectopic expression of cyclin D1b promotes invasiveness of the cancer cells in a cyclin D1a independent manner. Specifically, cyclin D1b is found to modulate the expression of αvβ3, which characterizes the metastatic phenotype, and enhance tumor cell invasive potential in cooperating with HoxD3. Notably, cyclin D1b promotes αvβ3-mediated adhesion and invasive migration, which are associated with invasive potential of breast cancer cells. Further exploration indicates that cyclin D1b makes breast cancer cells more sensitive to toll-like receptor 4 ligand released from damaged tumor cells. These findings reveal a role of cyclin D1b as a possible mediator of αvβ3 transcription to promote tumor metastasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Activation-Induced Killer Cell Immunoglobulin-like Receptor 3DL2 Binding to HLA-B27 Licenses Pathogenic T Cell Differentiation in Spondyloarthritis.

    PubMed

    Ridley, Anna; Hatano, Hiroko; Wong-Baeza, Isabel; Shaw, Jacqueline; Matthews, Katherine K; Al-Mossawi, Hussein; Ladell, Kristin; Price, David A; Bowness, Paul; Kollnberger, Simon

    2016-04-01

    In the spondyloarthritides (SpA), increased numbers of CD4+ T cells express killer cell immunoglobulin-like receptor 3DL2 (KIR-3DL2). The aim of this study was to determine the factors that induce KIR-3DL2 expression, and to characterize the relationship between HLA-B27 and the phenotype and function of KIR-3DL2-expressing CD4+ T cells in SpA. In total, 34 B27+ patients with SpA, 28 age- and sex-matched healthy controls (20 B27- and 8 B27+), and 9 patients with rheumatoid arthritis were studied. KIR-3DL2 expression and other phenotypic characteristics of peripheral blood and synovial fluid CD4+ T cells were studied by flow cytometry, quantitative polymerase chain reaction, and Western blotting. T cell receptor clonality was determined by template-switch anchored reverse transcription-polymerase chain reaction and sequencing analysis. Cytokines were measured by enzyme-linked immunosorbent assay. Cellular activation induced KIR-3DL2 expression on both naive and effector CD4+ T cells. KIR-3DL2 binding to B27+ cells promoted expression of KIR-3DL2, the Th17-specific transcription factor retinoic acid receptor-related orphan nuclear receptor γt, and the antiapoptotic factor B cell lymphoma 2. KIR-3DL2+CD4+ T cells in patients with ankylosing spondylitis were oligoclonal and enriched for markers of T cell activation and for the gut homing receptor CCR9. In the presence of B27+ antigen-presenting cells, KIR-3DL2+CD4+ T cells produced less interleukin-2 (IL-2) but more IL-17. This effect was blocked by HC10, an antibody that inhibits the binding of KIR-3DL2 to B27 heavy chains. KIR-3DL2 binding to HLA-B27 licenses Th17 cell differentiation in SpA. These findings raise the therapeutic potential of targeting HLA-B27-KIR-3DL2 interactions for the treatment of B27+ patients with SpA. © 2016 The Authors. Arthritis & Rheumatology published by Wiley Periodicals, Inc. on behalf of the American College of Rheumatology.

  2. Targeted therapy with MXD3 siRNA, anti-CD22 antibody and nanoparticles for precursor B-cell acute lymphoblastic leukaemia.

    PubMed

    Satake, Noriko; Duong, Connie; Chen, Cathy; Barisone, Gustavo A; Diaz, Elva; Tuscano, Joseph; Rocke, David M; Nolta, Jan; Nitin, Nitin

    2014-11-01

    Conventional chemotherapy for precursor B-cell (preB) acute lymphoblastic leukaemia (ALL) has limitations that could be overcome by targeted therapy. Previously, we discovered a potential therapeutic molecular target, MDX3 (MAX dimerization protein 3), in preB ALL. In this study, we hypothesize that an effective siRNA therapy for preB ALL can be developed using antiCD22 antibody (αCD22 Ab) and nanoparticles. We composed nanocomplexes with super paramagnetic iron oxide nanoparticles (SPIO NPs), αCD22 Abs and MXD3 siRNA molecules based on physical interactions between the molecules. We demonstrated that the MXD3 siRNA-αCD22 Ab-SPIO NP complexes entered leukaemia cells and knocked down MXD3, leading the cells to undergo apoptosis and resulting in decreased live cell counts in the cell line Reh and in primary preB ALL samples in vitro. Furthermore, the cytotoxic effects of the MXD3 siRNA-αCD22 Ab-SPIO NP complexes were significantly enhanced by addition of the chemotherapy drugs vincristine or doxorubicin. We also ruled out potential cytotoxic effects of the MXD3 siRNA-αCD22 Ab-SPIO NP complexes on normal primary haematopoietic cells. Normal B cells were affected while CD34-positive haematopoietic stem cells and non-B cells were not. These data suggest that MXD3 siRNA-αCD22 Ab-SPIO NP complexes have the potential to be a new targeted therapy for preB ALL. © 2014 John Wiley & Sons Ltd.

  3. Utilization of a photoactivatable antigen system to examine B-cell probing termination and the B-cell receptor sorting mechanisms during B-cell activation

    PubMed Central

    Wang, Jing; Tang, Shan; Wan, Zhengpeng; Gao, Yiren; Cao, Yiyun; Yi, Junyang; Si, Yanyan; Zhang, Haowen; Liu, Lei; Liu, Wanli

    2016-01-01

    Antigen binding to the B-cell receptor (BCR) induces several responses, resulting in B-cell activation, proliferation, and differentiation. However, it has been difficult to study these responses due to their dynamic, fast, and transient nature. Here, we attempted to solve this problem by developing a controllable trigger point for BCR and antigen recognition through the construction of a photoactivatable antigen, caged 4-hydroxy-3-nitrophenyl acetyl (caged-NP). This photoactivatable antigen system in combination with live cell and single molecule imaging techniques enabled us to illuminate the previously unidentified B-cell probing termination behaviors and the precise BCR sorting mechanisms during B-cell activation. B cells in contact with caged-NP exhibited probing behaviors as defined by the unceasing extension of membrane pseudopods in random directions. Further analyses showed that such probing behaviors are cell intrinsic with strict dependence on F-actin remodeling but not on tonic BCR signaling. B-cell probing behaviors were terminated within 4 s after photoactivation, suggesting that this response was sensitive and specific to BCR engagement. The termination of B-cell probing was concomitant with the accumulation response of the BCRs into the BCR microclusters. We also determined the Brownian diffusion coefficient of BCRs from the same B cells before and after BCR engagement. The analysis of temporally segregated single molecule images of both BCR and major histocompatibility complex class I (MHC-I) demonstrated that antigen binding induced trapping of BCRs into the BCR microclusters is a fundamental mechanism for B cells to acquire antigens. PMID:26764382

  4. TLR3-mediated NF-{kappa}B signaling in human esophageal epithelial cells.

    PubMed

    Lim, Diana M; Narasimhan, Sneha; Michaylira, Carmen Z; Wang, Mei-Lun

    2009-12-01

    Despite its position at the front line against ingested pathogens, very little is presently known about the role of the esophageal epithelium in host innate immune defense. As a key player in the innate immune response, Toll-like receptor (TLR) signaling has not been well characterized in human esophageal epithelial cells. In the present study, we investigated the inflammatory response and signaling pathways activated by TLR stimulation of human esophageal cells in vitro. Using quantitative RT-PCR, we profiled the expression pattern of human TLRs 1-10 in primary esophageal keratinocytes (EPC2), immortalized nontransformed esophageal keratinocytes (EPC2-hTERT), and normal human esophageal mucosal biopsies and found that TLRs 1, 2, 3, and 5 were expressed both in vivo and in vitro. Using the cytokine IL-8 as a physiological read out of the inflammatory response, we found that TLR3 is the most functional of the expressed TLRs in both primary and immortalized esophageal epithelial cell lines in response to its synthetic ligand polyinosinic polycytidylic acid [poly(I:C)]. Through reporter gene studies, we show that poly(I:C)-induced NF-kappaB activation is critical for the transactivation of the IL-8 promoter in vitro and that nuclear translocation of NF-kappaB occurs at an early time point following poly(I:C) stimulation of esophageal epithelial cells. Importantly, we also show that poly(I:C) stimulation induces the NF-kappaB-dependent esophageal epithelial expression of TLR2, leading to enhanced epithelial responsiveness of EPC2-hTERT cells to TLR2 ligand stimulation, suggesting an important regulatory role for TLR3-mediated NF-kappaB signaling in the innate immune response of esophageal epithelial cells. Our findings demonstrate for the first time that TLR3 is highly functional in the human esophageal epithelium and that TLR3-mediated NF-kappaB signaling may play an important regulatory role in esophageal epithelial homeostasis.

  5. Cyanidin-3-glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2.

    PubMed

    Xu, Mei; Bower, Kimberly A; Wang, Siying; Frank, Jacqueline A; Chen, Gang; Ding, Min; Wang, Shiow; Shi, Xianglin; Ke, Zunji; Luo, Jia

    2010-10-29

    Ethanol is a tumor promoter. Both epidemiological and experimental studies suggest that ethanol may enhance the metastasis of breast cancer cells. We have previously demonstrated that ethanol increased the migration/invasion of breast cancer cells expressing high levels of ErbB2. Amplification of ErbB2 is found in 20-30% of breast cancer patients and is associated with poor prognosis. We sought to identify agents that can prevent or ameliorate ethanol-induced invasion of breast cancer cells. Cyanidin-3-glucoside (C3G), an anthocyanin present in many vegetables and fruits, is a potent natural antioxidant. Ethanol exposure causes the accumulation of intracellular reactive oxygen species (ROS). This study evaluated the effect of C3G on ethanol-induced breast cancer cell migration/invasion. C3G attenuated ethanol-induced migration/invasion of breast cancer cells expressing high levels of ErbB2 (BT474, MDA-MB231 and MCF7(ErbB2)) in a concentration dependent manner. C3G decreased ethanol-mediated cell adhesion to the extracellular matrix (ECM) as well as the amount of focal adhesions and the formation of lamellipodial protrusion. It inhibited ethanol-stimulated phosphorylation of ErbB2, cSrc, FAK and p130(Cas), as well as interactions among these proteins. C3G abolished ethanol-mediated p130(Cas)/JNK interaction. C3G blocks ethanol-induced activation of the ErbB2/cSrc/FAK pathway which is necessary for cell migration/invasion. C3G may be beneficial in preventing/reducing ethanol-induced breast cancer metastasis.

  6. [Results of the SHOP LNHB98 (LMB89) trial in pediatric patients with B-cell non-Hodgkin's lymphoma].

    PubMed

    Forns, Marga; Javier, Germán; Estella, Jesús; Fernández-Delgado, Rafael; Gallego, Soledad; García-Miguel, Purificación; Indiano, José M; Navajas, Aurora; Pardo, Nuria

    2007-05-05

    After the good results obtained by the Société Française d'Oncologie Pédiatrique (SFOP) regarding the pediatric B-type non-Hodgkin's (Burkitt and large B-cell) lymphoma and L3 leukemia, the Sociedad Española de Hematología y Oncología Pediátricas (SHOP) decided to use the same treatment protocol. Pediatric patients diagnosed with B-type non-Hodgkin's lymphoma without a previous history of malignant diseases were eligible for this study. They were classified in 3 groups of risk: group A (resected stage I and abdominal stage II), group B (not eligible for groups A or C), and group C (with central nervous system involvement and L3 leukemia). All received treatment according to the SFOP's LMB89 protocol. A total of 153 patients were considered in this multicenter, prospective and non-randomized trial (1997-2005). The global and event-free survival (EFS) were found to be of 88% (0.88; 95% confidence interval [CI], 0.83-0.93) and 85% (0.85; 95% CI, 0.79-0.90), respectively. The EFS was 100% for the group A (n = 16), 86% (0.86; 95% CI, 0.79-0.92) for the group B (n = 113), and 68% (0.68; 95% CI, 0.49-0.86) for the group C (n = 24). The results confirm the good efficiency of the LMB89 protocol for treating B-cell lymphoma and L3 leukemia, despite having diminished the treatment intensity in the less risk groups. The worst prognostic factor was found to be a central nervous system involvement, whereas being younger than 10 years was confirmed to be a favorable prognostic factor. In addition, no differences were evidenced between Burkitt and large B-cell lymphoma.

  7. Role of T cells in the B-cell response: glutaraldehyde-fixed T-helper hybridoma cells synergize with the lymphokine IL-4 to induce B-cell activation and proliferation.

    PubMed

    Kubota, E; McKenzie, D T; Dutton, R W; Swain, S L

    1991-01-01

    Antigen-unselected helper T-cell hybridomas (Th) which activate normal resting B cells to RNA synthesis and proliferation in the presence of concanavalin A (Con A) have been developed. The response is completely Th cell dependent, and not restricted by the haplotype of the B-cell major histocompatibility complex (MHC). Culture supernatants from the Con A-stimulated Th hybridomas contain interleukin-4 (IL-4) and IL-2, but undetectable level of IL-5. The supernatant alone, however, does not induce B-cell activation or proliferation. Although the Con A-mediated Th cell-dependent B-cell response occurs in an MHC-unrestricted manner, the response of resting B cells can be blocked by monoclonal Ia antibody specific for the surface class II molecules of the responding B cell. The response is also blocked by monoclonal antibody to L3T4. Significant activation and proliferation of resting B cells can also be triggered by glutaraldehyde-fixed Th hybridomas and Con A when exogenous IL-4 is added. The stimulation with fixed Th hybridomas plus IL-4 can be inhibited by monoclonal anti-L3T4 or anti-Ia. These results suggest that maximal B-cell activation requires a direct helper T cell-B cell interaction which depends on availability of Ia on the B cell and L3T4 on the T cell, even when Con A overcomes the requirement for MHC-restricted T-cell recognition. We suggest that this signal, in conjunction with T-cell produced lymphokine IL-4, is responsible for the activation and subsequent proliferation of the B cells which occurs following interaction with T cells.

  8. Cineromycin B isolated from Streptomyces cinerochromogenes inhibits adipocyte differentiation of 3T3-L1 cells via Krüppel-like factors 2 and 3.

    PubMed

    Matsuo, Hirotaka; Kondo, Yoshiyuki; Kawasaki, Takashi; Imamura, Nobutaka

    2015-08-15

    3T3-L1 cells are preadipocytes and often used as a model for cellular differentiation to adipocytes; however, the mechanism of this differentiation is not completely understood even in these model cells. In this study, we sought to identify a unique anti-adipogenesis agent from microorganisms and to examine its mechanism of action to gain knowledge and create a tool and/or seed compound for anti-obesity drug discovery research. Screening for anti-adipogenesis agents from microorganisms was performed using a 3T3-L1 cell differentiation system, and an active compound was isolated. The inhibitory mechanism of the compound was investigated by measuring the expression of key regulators using quantitative real-time PCR and Western blot analysis. The compound with anti-adipogenic activity in 3T3-L1 cells was identified as cineromycin B. Cineromycin B at 50 μg/mL suppressed intracellular lipid accumulation and the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein alpha (C/EBPα), which are master regulators of adipocyte differentiation. Further investigations showed that cineromycin B increased significantly the mRNA expression of two negative regulators of adipocyte differentiation, Krüppel-like factor (KLF) 2 and KLF3, at an early stage of the differentiation. The results of siRNA transfection experiments indicated that cineromycin B is a unique adipocyte differentiation inhibitor, acting mainly via upregulation of KLF2 and KLF3, and these KLFs may play a role in the early stage of differentiation. Cineromycin B inhibited adipocyte differentiation in 3T3-L1 cells mainly via upregulation of KLF2 and KLF3 mRNA expression at an early stage of the differentiation. Copyright © 2015. Published by Elsevier Inc.

  9. Inhibition of STAT3 and ErbB2 Suppresses Tumor Growth, Enhances Radiosensitivity, and Induces Mitochondria-Dependent Apoptosis in Glioma Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Ling; Li Fengsheng; Dong Bo

    2010-07-15

    Purpose: Constitutively activated signal transducer and activator of transcription 3 (STAT3) and ErbB2 are involved in the pathogenesis of many tumors, including astrocytoma. Inactivation of these molecules is reported to result in radiosensitization. The purpose of this study was to investigate whether inhibition of STAT3, ErbB2, or both could enhance radiotherapy in the human glioma model (U251 and U87 cell lines). Methods and Materials: The RNAi plasmids targeting STAT3 or ErbB2 were constructed, and their downregulatory effects on target proteins were examined by immunoblotting. After combination treatment of RNAi with or without irradiation, the cell viability was determined using 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazoliummore » bromide (MTT) and clonogenic assays. The in vivo effect of combined treatment was determined using the U251 xenograft model. The apoptosis caused by the inhibition of STAT3 and ErbB2 was detected, and the mechanism involved in the apoptosis was investigated, including increases in caspase proteins, mitochondrial damage, and the expression of key modulating protein of different apoptosis pathways. Results: Transfection of U251 cells with STAT3 or ErbB2 siRNA plasmids specifically reduced their target gene expressions. Inhibition of STAT3 or ErbB2 greatly decreased glioma cell survival after 2, 4, or 6 Gy irradiation. Inhibition of STAT3 and ErbB2 also enhanced radiation-induced tumor growth inhibition in the U251 xenograft model. Furthermore, the suppression of either STAT3 or ErbB2 could induce U251 cell apoptosis, which was related primarily to the mitochondrial apoptotic pathway. Conclusions: These results indicated that simultaneous inhibition of STAT3 and ErbB2 expression can promote potent antitumor activity and radiosensitizing activity in human glioma.« less

  10. EBNA3C-Mediated Regulation of Aurora Kinase B Contributes to Epstein-Barr Virus-Induced B-Cell Proliferation through Modulation of the Activities of the Retinoblastoma Protein and Apoptotic Caspases

    PubMed Central

    Jha, Hem Chandra; Lu, Jie; Saha, Abhik; Cai, Qiliang; Banerjee, Shuvomoy; Prasad, Mahadesh A. J.

    2013-01-01

    Epstein-Barr virus (EBV) is an oncogenic gammaherpesvirus that is implicated in several human malignancies, including Burkitt's lymphoma (BL), posttransplant lymphoproliferative disease (PTLD), nasopharyngeal carcinoma (NPC), and AIDS-associated lymphomas. Epstein-Barr nuclear antigen 3C (EBNA3C), one of the essential EBV latent antigens, can induce mammalian cell cycle progression through its interaction with cell cycle regulators. Aurora kinase B (AK-B) is important for cell division, and deregulation of AK-B is associated with aneuploidy, incomplete mitotic exit, and cell death. Our present study shows that EBNA3C contributes to upregulation of AK-B transcript levels by enhancing the activity of its promoter. Further, EBNA3C also increased the stability of the AK-B protein, and the presence of EBNA3C leads to reduced ubiquitination of AK-B. Importantly, EBNA3C in association with wild-type AK-B but not with its kinase-dead mutant led to enhanced cell proliferation, and AK-B knockdown can induce nuclear blebbing and cell death. This phenomenon was rescued in the presence of EBNA3C. Knockdown of AK-B resulted in activation of caspase 3 and caspase 9, along with poly(ADP-ribose) polymerase 1 (PARP1) cleavage, which is known to be an important contributor to apoptotic signaling. Importantly, EBNA3C failed to stabilize the kinase-dead mutant of AK-B compared to wild-type AK-B, which suggests a role for the kinase domain in AK-B stabilization and downstream phosphorylation of the cell cycle regulator retinoblastoma protein (Rb). This study demonstrates the functional relevance of AK-B kinase activity in EBNA3C-regulated B-cell proliferation and apoptosis. PMID:23986604

  11. Different sensitivity of germinal center B cell-like diffuse large B cell lymphoma cells towards ibrutinib treatment

    PubMed Central

    2014-01-01

    Background Although rituximab in the combination of CHOP chemotherapy has been widely used as the standard treatment for several kinds of B-cell non-Hodgkin lymphoma (B-NHL), a great number of B-NHL patients treated with this immunotherapy still develop primary and secondary resistance. Recently Bruton’s tyrosine kinase (Btk) inhibitor ibrutinib showed promising therapeutic effect in relapsed/refractory CLL and B-cell NHL, which provided essential alternatives for these patients. Methods The proliferation and apoptosis induction of tumor cells were measured by cell viability assay and Annexin-V staining. Western Blotting analysis and real-time PCR were used to detect the expression level of target proteins and chemokines production. Results We demonstrated that ibrutinib inhibited the proliferation and induced apoptosis of GCB-DLBCL cell lines through suppression of BCR signaling pathway and activation of caspase-3. Furthermore, the chemokines CCL3 and CCL4 production from tumor cells were also found to be attenuated by ibrutinib treatment. But different cell lines exhibited distinct sensitivity after ibrutinib treatment. Interestingly, the decreasing level of p-ERK after ibrutinib treatment, but not the basal expression level of Btk, correlated with different drug sensitivity. Conclusions Ibrutinib could be a potentially useful therapy for GCB-DLBCL and the decreasing level of p-ERK could become a useful biomarker to predict related therapeutic response. PMID:24693884

  12. Separation of plasmacytoid dendritic cells from B-cell-biased lymphoid progenitor (BLP) and Pre-pro B cells using PDCA-1.

    PubMed

    Medina, Kay L; Tangen, Sarah N; Seaburg, Lauren M; Thapa, Puspa; Gwin, Kimberly A; Shapiro, Virginia Smith

    2013-01-01

    B-cell-biased lymphoid progenitors (BLPs) and Pre-pro B cells lie at a critical juncture between B cell specification and commitment. However, both of these populations are heterogenous, which hampers investigation into the molecular changes that occur as lymphoid progenitors commit to the B cell lineage. Here, we demonstrate that there are PDCA-1(+)Siglec H(+) plasmacytoid dendritic cells (pDCs) that co-purify with BLPs and Pre-pro B cells, which express little or no CD11c or Ly6C. Removal of PDCA-1(+) pDCs separates B cell progenitors that express high levels of a Rag1-GFP reporter from Rag1-GFP(low/neg) pDCs within the BLP and Pre-pro B populations. Analysis of Flt3-ligand knockout and IL-7Rα knockout mice revealed that there is a block in B cell development at the all-lymphoid progenitor (ALP) stage, as the majority of cells within the BLP or Pre-pro B gates were PDCA-1(+) pDCs. Thus, removal of PDCA-1(+) pDCs is critical for analysis of BLP and Pre-pro B cell populations. Analysis of B cell potential within the B220(+)CD19(-) fraction demonstrated that AA4.1(+)Ly6D(+)PDCA-1(-) Pre-pro B cells gave rise to CD19(+) B cells at high frequency, while PDCA-1(+) pDCs in this fraction did not. Interestingly, the presence of PDCA-1(+) pDCs within CLPs may help to explain the conflicting results regarding the origin of these cells.

  13. [Study on the specific immunity induced by dendritic cell vaccine loading allogenic microvascular endothelial cell bEnd.3 antigen against U14 cervical cancer cell in mice].

    PubMed

    Zhao, Jun; Lu, Jing; Liu, Ya-qin; Yang, Hong-yan; Huang, You-tian; Zhao, Ji-min; Li, Shan; Zhai, Jing-ming; Zhao, Ming-yao; Zhang, Xi; Dong, Zi-ming

    2011-01-01

    To explore the specific cellular and humoral immunity induced by dendritic cells (DC) vaccine loading allogenic microvascular endothelial cell bEnd.3 antigen against U14 cervical cancer cell of mice. Mouse brain microvascular endothelial cell bEnd.3 was cultured and identified for preparation endothelial cell bEnd.3 antigen. The level of mRNA expression of vascular endothelial growth factor receptor 2 (VEGF-R₂) and integrin αV was detected by reverse transcription (RT)-PCR. The BALB/c mice were immuned with DC loading bEnd.3 antigen 4 times in 4 weeks (bEnd.3-DC group), while the mice only were immuned with DC or injected with phosphate buffer saline (PBS group) as control group. One week after last vaccination, U14 cervical cancer cells were injected subcutaneously into the mice. The tumor size, cytotoxic T lymphocyte (CTL) response of spleen lymphocytes in vitro, the percentage of CD₃+CD₈+ surface markers of spleen lymphocytes, and the titer of serum antibody were detected. The specific immunity was examined by immunocytochemistry and western blot. The expression of VEGF-R₂ and integrin αV gene in bEnd.3 cells were expressed highly. After the vaccine was injected, the tumors of mice in PBS group grew faster than those in other groups, while the tumors in bEnd.3-DC group grew slowly and disappeared after 2 weeks. The volume of tumors in DC group grew slower than those in PBS group [(0.11 ± 0.13) cm³ versus (3.38 ± 0.34) cm³]. The CTL response of spleen lymphocytes in vitro showed that bEnd.3-DC cells could kill bEnd.3 cells, the special lysis rate was more than 60%. The percentage of CD₃+CD₈+ spleen lymphocytes in bEnd.3-DC group [(38.6 ± 0.7)%] was higher than those in other groups (P < 0.05). The titer of serum antibody of bEnd.3-DC group was 1:3200, while it was 1:800 in DC group and there were not any in PBS group. Immunocytochemistry analysis indicated there were specific antigen-antibody reaction to bEnd.3 cell in bEnd.3-DC group. Western

  14. Oxymatrine induces nasopharyngeal cancer cell death through inhibition of PI3K/AKT and NF‑κB pathways.

    PubMed

    Ni, Zhili; Yi, Jingmei

    2017-12-01

    Oxymatrine may inhibit tumor cell proliferation, induce cell cycle arrest, promote apoptosis, induce tumor cell differentiation and fight against tumor angiogenesis, as well as inhibit tumor invasion and metastasis. The present study aimed to investigate the anticancer effects of oxymatrine on nasopharyngeal cancer (NPC) cell death, and the underlying molecular mechanisms of these effects. NPC HK‑1 cells were incubated overnight and treated with oxymatrine (0, 2, 4, 6 and 8 mg/ml) for 1, 2 or 3 days. The results demonstrated that oxymatrine significantly inhibited NPC cell proliferation in a time‑ and dose‑dependent manner. Oxymatrine treatment also induced apoptosis, induced the activities of caspase‑3 and caspase‑9, promoted p53 and Bax protein expression, and suppressed cyclin D protein expression in these cells. The protein expression levels of phosphoinositide 3 kinase (PI3K), phosphorylated (p)‑AKT, p‑mammalian target of rapamycin, p‑p70 ribosomal protein S6 kinase and nuclear factor (NF)‑κB were significantly downregulated by oxymatrine treatment. In conclusion, results from the present study suggested that oxymatrine may induce NPC cell death through the inhibition of PI3K/AKT and NF‑κB signaling pathways.

  15. The Rab GTPase RabG3b Positively Regulates Autophagy and Immunity-Associated Hypersensitive Cell Death in Arabidopsis1[W

    PubMed Central

    Kwon, Soon Il; Cho, Hong Joo; Kim, Sung Ryul; Park, Ohkmae K.

    2013-01-01

    A central component of the plant defense response to pathogens is the hypersensitive response (HR), a form of programmed cell death (PCD). Rapid and localized induction of HR PCD ensures that pathogen invasion is prevented. Autophagy has been implicated in the regulation of HR cell death, but the functional relationship between autophagy and HR PCD and the regulation of these processes during the plant immune response remain controversial. Here, we show that a small GTP-binding protein, RabG3b, plays a positive role in autophagy and promotes HR cell death in response to avirulent bacterial pathogens in Arabidopsis (Arabidopsis thaliana). Transgenic plants overexpressing a constitutively active RabG3b (RabG3bCA) displayed accelerated, unrestricted HR PCD within 1 d of infection, in contrast to the autophagy-defective atg5-1 mutant, which gradually developed chlorotic cell death through uninfected sites over several days. Microscopic analyses showed the accumulation of autophagic structures during HR cell death in RabG3bCA cells. Our results suggest that RabG3b contributes to HR cell death via the activation of autophagy, which plays a positive role in plant immunity-triggered HR PCD. PMID:23404918

  16. Epratuzumab modulates B-cell signaling without affecting B-cell numbers or B-cell functions in a mouse model with humanized CD22.

    PubMed

    Özgör, Lamia; Brandl, Carolin; Shock, Anthony; Nitschke, Lars

    2016-09-01

    Treatment of systemic lupus erythematosus patients with epratuzumab (Emab), a humanized monoclonal antibody targeting CD22, leads to moderately reduced B-cell numbers but does not completely deplete B cells. Emab appears to induce immunomodulation of B cells, but the exact mode of action has not been defined. In the present study, we aimed to understand the effects of Emab on B cells using a humanized mouse model (Huki CD22), in which the B cells express human instead of murine CD22. Emab administration to Huki CD22 mice results in rapid and long-lasting CD22 internalization. There was no influence on B-cell turnover, but B-cell apoptosis ex vivo was increased. Emab administration to Huki CD22 mice had no effect on B-cell numbers in several lymphatic organs, nor in blood. In vitro exposure of B cells from Huki CD22 mice to Emab resulted in decreased B-cell receptor (BCR) induced Ca(2+) mobilization, whereas B-cell proliferation after Toll-like receptor (TLR) stimulation was not affected. In addition, IL-10 production was slightly increased after TLR and anti-CD40 stimulation, whereas IL-6 production was unchanged. In conclusion, Emab appears to inhibit BCR signaling in a CD22-dependent fashion without strong influence on B-cell development and B-cell populations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Characterization of monoclonal antibodies against hepatitis C virus nonstructural protein 3: different antigenic determinants from human B cells.

    PubMed

    Ou-Yang, P; Chiang, B L; Hwang, L H; Chen, Y G; Yang, P M; Chi, W K; Chen, P J; Chen, D S

    1999-04-01

    The nonstructural (NS3) region protein of hepatitis C virus (HCV) possesses major B-cell epitopes that induce antibodies after infection. To elucidate further the characteristics of these B cells and their role in the immune regulation of HCV infection, T9 (portion of NS3 region, amino acids [a.a.] 1188-1493)-specific monoclonal antibodies were derived and mapped for B-cell antigenic determinants with recombinant proteins. A total of 10 T9-specific hybridomas were generated and tested for B-cell antigenic determinants. To analyze the B-cell antigenic determinants, eight recombinant proteins including NS3-e (a.a. 1175-1334), NS3-a' (a.a. 1175-1250), NS3-a (a.a. 1251-1334), NS3-b (a.a. 1323-1412), NS3-c (a.a. 1407-1499), NS3-a/b (a.a. 1251-1412), NS3-bc (a.a. 1323-1499), and NS3-abc (a.a. 1251-1499) encoded by NS3-region internal clones were expressed and tested for immunoblotting. The data suggested IgG hybridomas recognized NS3-a, NS3-a', or NS3-b protein by immunoblotting. By contrast, the NS3-e protein bears the major antigenic determinant recognized by human sera. Half of the hybridomas were found to react with protein NS3-a', which is not a major B-cell antigenic determinant in humans. These data suggested that conformational epitopes in vivo may be important for B-cell recognition.

  18. Immunomodulation by adoptive regulatory T-cell transfer improves Coxsackievirus B3-induced myocarditis.

    PubMed

    Pappritz, Kathleen; Savvatis, Konstantinos; Miteva, Kapka; Kerim, Bahtiyar; Dong, Fengquan; Fechner, Henry; Müller, Irene; Brandt, Christine; Lopez, Begoña; González, Arantxa; Ravassa, Susana; Klingel, Karin; Diez, Javier; Reinke, Petra; Volk, Hans-Dieter; Van Linthout, Sophie; Tschöpe, Carsten

    2018-06-04

    Regulatory T (T reg ) cells offer new therapeutic options for controlling undesired systemic and local immune responses. The aim of the current study was to determine the impact of therapeutic T reg administration on systemic and cardiac inflammation and remodeling in coxsackievirus B3 (CVB3) -induced myocarditis. Therefore, syngeneic T reg cells were applied intravenously in CVB3-infected mice 3 d after infection. Compared with CVB3 + PBS mice, CVB3 + T reg mice exhibited lower left ventricular (LV) chemokine expression, accompanied by reduced cardiac presence of proinflammatory Ly6C high CCR2 high Cx3Cr1 low monocytes and higher retention of proinflammatory Ly6C mid CCR2 high Cx3Cr1 low monocytes in the spleen. In addition, splenic myelopoiesis was reduced in CVB3 + T reg compared with CVB3 + PBS mice. Coculture of T reg cells with splenocytes isolated from mice 3 d post-CVB3 infection further demonstrated the ability of T reg cells to modulate monocyte differentiation in favor of the anti-inflammatory Ly6C low CCR2 low Cx3Cr1 high subset. T reg -mediated immunomodulation was paralleled by lower collagen 1 protein expression and decreased levels of soluble and insoluble collagen in LV of CVB3 + T reg compared with CVB3 + PBS mice. In agreement with these findings, LV systolic and diastolic function was improved in CVB3 + T reg mice compared with CVB3 + PBS mice. In summary, adoptive T reg transfer in the inflammatory phase of viral-induced myocarditis protects the heart against inflammatory damage and fibrosis via modulation of monocyte subsets.-Pappritz, K., Savvatis, K., Miteva, K., Kerim, B., Dong, F., Fechner, H., Müller, I., Brandt, C., Lopez, B., González, A., Ravassa, S., Klingel, K., Diez, J., Reinke, P., Volk, H.-D., Van Linthout, S., Tschöpe, C. Immunomodulation by adoptive regulatory T-cell transfer improves Coxsackievirus B3-induced myocarditis.

  19. Trivalent dimethylarsenic compound induces histone H3 phosphorylation and abnormal localization of Aurora B kinase in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Toshihide, E-mail: toshi-su@pharm.teikyo-u.ac.j; Miyazaki, Koichi; Kita, Kayoko

    2009-12-15

    Trivalent dimethylarsinous acid [DMA(III)] has been shown to induce mitotic abnormalities, such as centrosome abnormality, multipolar spindles, multipolar division, and aneuploidy, in several cell lines. In order to elucidate the mechanisms underlying these mitotic abnormalities, we investigated DMA(III)-mediated changes in histone H3 phosphorylation and localization of Aurora B kinase, which is a key molecule in cell mitosis. DMA(III) caused the phosphorylation of histone H3 (ser10) and was distributed predominantly in mitotic cells, especially in prometaphase cells. By contrast, most of the phospho-histone H3 was found to be localized in interphase cells after treatment with inorganic arsenite [iAs(III)], suggesting the involvementmore » of a different pathway in phosphorylation. DMA(III) activated Aurora B kinase and slightly activated ERK MAP kinase. Phosphorylation of histone H3 by DMA(III) was effectively reduced by ZM447439 (Aurora kinase inhibitor) and slightly reduced by U0126 (MEK inhibitor). By contrast, iAs(III)-dependent histone H3 phosphorylation was markedly reduced by U0126. Aurora B kinase is generally localized in the midbody during telophase and plays an important role in cytokinesis. However, in some cells treated with DMA(III), Aurora B was not localized in the midbody of telophase cells. These findings suggested that DMA(III) induced a spindle abnormality, thereby activating the spindle assembly checkpoint (SAC) through the Aurora B kinase pathway. In addition, cytokinesis was not completed because of the abnormal localization of Aurora B kinase by DMA(III), thereby resulting in the generation of multinucleated cells. These results provide insight into the mechanism of arsenic tumorigenesis.« less

  20. Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis.

    PubMed

    Ge, Y; Cai, Y-M; Bonneau, L; Rotari, V; Danon, A; McKenzie, E A; McLellan, H; Mach, L; Gallois, P

    2016-09-01

    Programmed cell death (PCD) is used by plants for development and survival to biotic and abiotic stresses. The role of caspases in PCD is well established in animal cells. Over the past 15 years, the importance of caspase-3-like enzymatic activity for plant PCD completion has been widely documented despite the absence of caspase orthologues. In particular, caspase-3 inhibitors blocked nearly all plant PCD tested. Here, we affinity-purified a plant caspase-3-like activity using a biotin-labelled caspase-3 inhibitor and identified Arabidopsis thaliana cathepsin B3 (AtCathB3) by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Consistent with this, recombinant AtCathB3 was found to have caspase-3-like activity and to be inhibited by caspase-3 inhibitors. AtCathepsin B triple-mutant lines showed reduced caspase-3-like enzymatic activity and reduced labelling with activity-based caspase-3 probes. Importantly, AtCathepsin B triple mutants showed a strong reduction in the PCD induced by ultraviolet (UV), oxidative stress (H2O2, methyl viologen) or endoplasmic reticulum stress. Our observations contribute to explain why caspase-3 inhibitors inhibit plant PCD and provide new tools to further plant PCD research. The fact that cathepsin B does regulate PCD in both animal and plant cells suggests that this protease may be part of an ancestral PCD pathway pre-existing the plant/animal divergence that needs further characterisation.

  1. MiRNA-133b promotes the proliferation of human Sertoli cells through targeting GLI3

    PubMed Central

    Yao, Chencheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Chen, Zheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping

    2016-01-01

    Sertoli cells play critical roles in regulating spermatogenesis and they can be reprogrammed to the cells of other lineages, highlighting that they have significant applications in reproductive and regenerative medicine. The fate determinations of Sertoli cells are regulated precisely by epigenetic factors. However, the expression, roles, and targets of microRNA (miRNA) in human Sertoli cells remain unknown. Here we have for the first time revealed that 174 miRNAs were distinctly expressed in human Sertoli cells between Sertoli-cell-only syndrome (SCOS) patients and obstructive azoospermia (OA) patients with normal spermatogenesis using miRNA microarrays and real time PCR, suggesting that these miRNAs may be associated with the pathogenesis of SCOS. MiR-133b is upregulated in Sertoli cells of SCOS patients compared to OA patients. Proliferation assays with miRNA mimics and inhibitors showed that miR-133b enhanced the proliferation of human Sertoli cells. Moreover, we demonstrated that GLI3 was a direct target of miR-133b and the expression of Cyclin B1 and Cyclin D1 was enhanced by miR-133b mimics but decreased by its inhibitors. Gene silencing of GLI3 using RNA inference stimulated the growth of human Sertoli cells. Collectively, miR-133b promoted the proliferation of human Sertoli cells by targeting GLI3. This study thus sheds novel insights into epigenetic regulation of human Sertoli cells and the etiology of azoospermia and offers new targets for treating male infertility PMID:26755652

  2. MicroRNA-187, down-regulated in clear cell renal cell carcinoma and associated with lower survival, inhibits cell growth and migration though targeting B7-H3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jun; Lei, Ting; Xu, Congjie

    2013-08-23

    Highlights: •miR-187 is down-regulated in clear cell renal cell carcinoma (ccRCC). •Down-regulation of miR-187 is associated with poor outcomes in patients with ccRCC. •miR-187 inhibits cell growth and migration though targeting B7-H3 in ccRCC. -- Abstract: Aberrantly expressed microRNAs (miRNAs) are frequently associated with the aggressive malignant behavior of human cancers, including clear cell renal cell carcinoma (ccRCC). Based on the preliminary deep sequencing data, we hypothesized that miR-187 may play an important role in ccRCC development. In this study, we found that miR-187 was down-regulated in both tumor tissue and plasma of ccRCC patients. Lower miR-187 expression levels weremore » associated with higher tumor grade and stage. All patients with high miR-187 expression survived 5 years, while with low miR-187 expression, only 42% survived. Suppressed in vitro proliferation, inhibited in vivo tumor growth, and decreased motility were observed in cells treated with the miR-187 expression vector. Further studies showed that B7 homolog 3 (B7-H3) is a direct target of miR-187. Over-expression of miR-187 decreased B7-H3 mRNA level and repressed B7-H3-3′-UTR reporter activity. Knockdown of B7-H3 using siRNA resulted in similar phenotype changes as that observed for overexpression of miR-187. Our data suggest that miR-187 is emerging as a novel player in the disease state of ccRCC. miR-187 plays a tumor suppressor role in ccRCC.« less

  3. MicroRNA-29b-1 impairs in vitro cell proliferation, self‑renewal and chemoresistance of human osteosarcoma 3AB-OS cancer stem cells.

    PubMed

    Di Fiore, Riccardo; Drago-Ferrante, Rosa; Pentimalli, Francesca; Di Marzo, Domenico; Forte, Iris Maria; D'Anneo, Antonella; Carlisi, Daniela; De Blasio, Anna; Giuliano, Michela; Tesoriere, Giovanni; Giordano, Antonio; Vento, Renza

    2014-11-01

    Osteosarcoma (OS) is the most common type of bone cancer, with a peak incidence in the early childhood. Emerging evidence suggests that treatments targeting cancer stem cells (CSCs) within a tumor can halt cancer and improve patient survival. MicroRNAs (miRNAs) have been implicated in the maintenance of the CSC phenotype, thus, identification of CSC-related miRNAs would provide information for a better understanding of CSCs. Downregulation of miRNA-29 family members (miR-29a/b/c; miR‑29s) was observed in human OS, however, little is known about the functions of miR-29s in human OS CSCs. Previously, during the characterization of 3AB-OS cells, a CSC line selected from human OS MG63 cells, we showed a potent downregulation of miR-29b. In this study, after stable transfection of 3AB-OS cells with miR-29b-1, we investigated the role of miR-29b-1 in regulating cell proliferation, sarcosphere-forming ability, clonogenic growth, chemosensitivity, migration and invasive ability of 3AB-OS cells, in vitro. We found that, miR-29b-1 overexpression consistently reduced both, 3AB-OS CSCs growth in two- and three-dimensional culture systems and their sarcosphere- and colony-forming ability. In addition, while miR-29b-1 overexpression sensitized 3AB-OS cells to chemotherapeutic drug-induced apoptosis, it did not influence their migratory and invasive capacities, thus suggesting a context-depending role of miR-29b-1. Using publicly available databases, we proceeded to identify potential miR-29b target genes, known to play a role in the above reported functions. Among these targets we analyzed CD133, N-Myc, CCND2, E2F1 and E2F2, Bcl-2 and IAP-2. We also analyzed the most important stemness markers as Oct3/4, Sox2 and Nanog. Real-time RT-PCR and western-blot analyses showed that miR-29b-1 negatively regulated the expression of these markers. Overall, the results show that miR-29b-1 suppresses stemness properties of 3AB-OS CSCs and suggest that developing miR-29b-1 as a novel

  4. Inhibitory activity of synthesized acetylated Procyanidin B1 analogs against HeLa S3 cells proliferation.

    PubMed

    Okamoto, Syuhei; Ishihara, Sayaka; Okamoto, Taisuke; Doi, Syoma; Harui, Kota; Higashino, Yusuke; Kawasaki, Takashi; Nakajima, Noriyuki; Saito, Akiko

    2014-02-04

    Proanthocyanidins, also known as condensed tannins and/or oligomeric flavonoids, occur in many edible plants and have various interesting biological activities. Previously, we reported a synthetic method for the preparation of various procyanidins in pure form and described their biological activities. Here, we describe the synthesis of procyanidin B1 acetylated analogs and discuss their inhibition activities against HeLa S3 cell proliferation. Surprisingly, the lower-unit acetylated procyanidin B1 strongly inhibited the proliferation of HeLa S3 cells. This molecule showed much stronger inhibitory activity than did epigallocatechin-3-O-gallate (EGCG), green tea polyphenol, and dimeric compounds that included EGCG as a unit. This result suggests that the phenolic hydroxyl groups of the upper-units in flavan-3-ols are important for their inhibitory activity against cancer cell proliferation and that a hydrophobic lower unit dimer enhances this activity.

  5. Integrin-mediated interactions between B cells and follicular dendritic cells influence germinal center B cell fitness1

    PubMed Central

    Wang, Xiaoming; Rodda, Lauren; Bannard, Oliver; Cyster, Jason G.

    2014-01-01

    Integrin-ligand interactions between germinal center (GC) B cells and antigen-presenting follicular dendritic cells (FDCs) have been suggested to play central roles during GC responses but their in vivo requirement has not been directly tested. Here we show that while integrins αLβ2 and α4β1 are highly expressed and functional on mouse GC B cells, removal of single integrins or their ligands had little effect on B cell participation in the GC response. Combined β2-integrin deficiency and α4-integrin blockade also did not affect the GC response against a particulate antigen. However, the combined integrin deficiency did cause B cells to be outcompeted in splenic GC responses against a soluble protein antigen and in mesenteric lymph node GC responses against gut-derived antigens. Similar findings were made for β2-deficient B cells in mice lacking VCAM1 on FDCs. The reduced fitness of the GC B cells did not appear to be due to decreased antigen acquisition, proliferation rates or pAKT levels. In summary, our findings provide evidence that αLβ2 and α4β1 play overlapping and context-dependent roles in supporting interactions with FDCs that can augment the fitness of responding GC B cells. We also find that mouse GC B cells upregulate αvβ3 and adhere to vitronectin and milk fat globule EGF-factor-8 protein. Integrin β3-deficient B cells contributed in a slightly exaggerated manner to GC responses suggesting this integrin has a regulatory function in GC B cells. PMID:24740506

  6. Induction of IgA B cell differentiation of bone marrow-derived B cells by Peyer's patch autoreactive helper T cells.

    PubMed

    Kihira, T; Kawanishi, H

    1995-08-01

    The objective of this study was to demonstrate in vitro that bone marrow-derived pro/pre-B cells bearing mu mRNA can switch their Ig heavy-chain isotype to that of alpha mRNA-expressing B cells after contact with Peyer's patches-derived activated autoreactive CD4+ T cells. Bone marrow-derived pro/pre-B cells and activated autoreactive Peyer's patch, mesenteric lymph node, or spleen CD4+ T cells were co-cultured in the presence of recombinant (r) IL-2, rIL-7, and Con A for 3 days. The mixed cultured cells were isolated for preparation of total RNA. Dot/slot hybridization, using murine C mu (pu3741) and C alpha (P alpha J558) Ig heavy-chain cDNA probes, detected C mu and C alpha Ig heavy-chain mRNA transcripts. The magnitude of each mRNA expression was measured demsitometrically. In addition, the secreted class-specific Ig contents from the co-cultured supernatants were measured. The results indicate that activated autoreactive Peyer's patch and mesenteric lymph node CD4+ T cells provide a specific Ig heavy-chain switch from mu to alpha (Peyer's patch CD4+ T cells > mesenteric lymph node CD4+ T cells) in bone marrow-derived pro/pre-B cells and also assist to develop IgA-secreting plasma cells. The alpha heavy-chain switch and IgA production do not occur in the presence of activated autoreactive spleen CD4+ T cells. These results support the view that autoreactive gut Peyer's patch CD4+ T cells, at least, regulate IgA B cell heavy-chain switching and terminal differentiation during gut mucosal B cell development.

  7. ISL1 and BRN3B co-regulate the differentiation of murine retinal ganglion cells

    PubMed Central

    Pan, Ling; Deng, Min; Xie, Xiaoling; Gan, Lin

    2009-01-01

    SUMMARY LIM-homeodomain (HD) and POU-HD transcription factors play critical roles in neurogenesis. However, it remains largely unknown how they cooperate in this process and what downstream target genes they regulate. Here we show that ISL1, a LIM-HD protein, is co-expressed with BRN3B, a POU-HD factor, in nascent, post-mitotic retinal ganglion cells (RGCs). Similar to the Brn3b-null retinas, retina-specific deletion of Isl1 results in the apoptosis of a majority of RGCs and in RGC axon guidance defects. The Isl1 and Brn3b double null mice display more severe retinal abnormalities with a near complete loss of RGCs, indicating the synergistic functions of these two factors. Furthermore, we show that both Isl1 and Brn3b function downstream of Math5 to regulate the expression of a common set of RGC-specific genes. Whole retina chromatin immunoprecipitation and in vitro transactivation assays reveal that ISL1 and BRN3B concurrently bind to and synergistically regulate the expression of a common set of RGC-specific genes. Thus, our results uncover a novel regulatory mechanism of BRN3B and ISL1 in RGC differentiation. PMID:18434421

  8. Reduced expression of HSP27 following HAD-B treatment is associated with Her2 downregulation in NIH:OVCAR-3 human ovarian cancer cells.

    PubMed

    Li, Kuo Chu; Heo, Kyun; Ambade, Nitin; Kim, Min Kyung; Kim, Kyung-Hee; Yoo, Byong Chul; Yoo, Hwa-Seung

    2015-09-01

    The Korean traditional medicine, HangAmDan (HAD), was developed in 1996 for use as an antitumor agent, and has since been modified to HAD‑B (an altered form of HAD), in order to potentiate its therapeutic effects. In the present study, the effect of HAD‑B on the proliferation and invasion of NIH:OVCAR‑3 and SKOV‑3 human ovarian cancer cell lines was investigated. In addition, the expression of major signal transduction molecules and changes in the proteome in these cells were measured. HAD‑B treatment effectively induced a reduction in the levels of cell proliferation in serum‑free conditioned media. However, unaltered levels of PARP and caspase‑3 indicated that HAD‑B does not reduce proliferation by inducing apoptotic cell death. Fluorescence‑activated cell sorting analysis revealed no significant change in apoptosis following HAD-B treatment. Invasion assay results indicated a reduced rate of invasion following HAD‑B treatment. HAD‑B also influenced the expression of major signal transduction molecules; the phosphorylation of mTOR and AKT was reduced, while that of ERK was increased. Alterations in the proteomes of the two cell lines were investigated following HAD‑B treatment. Among the 9 proteins with differential expression, heat‑shock protein β‑1 (HSP27) was downregulated in NIH:OVCAR‑3 cells treated with HAD‑B. The reduced expression of HSP27 was associated with human epidermal growth factor receptor 2 (Her2) downregulation in these cells. In conclusion, the results of the current proteome assessment suggest that HAD‑B has the potential to suppress the proliferation and invasion of human ovarian cancer cells. HAD‑B treatment of NIH:OVCAR‑3 cells suppressed HSP27 expression and was also associated with Her2 downregulation.

  9. Homeobox NKX2-3 promotes marginal-zone lymphomagenesis by activating B-cell receptor signalling and shaping lymphocyte dynamics

    PubMed Central

    Robles, Eloy F.; Mena-Varas, Maria; Barrio, Laura; Merino-Cortes, Sara V.; Balogh, Péter; Du, Ming-Qing; Akasaka, Takashi; Parker, Anton; Roa, Sergio; Panizo, Carlos; Martin-Guerrero, Idoia; Siebert, Reiner; Segura, Victor; Agirre, Xabier; Macri-Pellizeri, Laura; Aldaz, Beatriz; Vilas-Zornoza, Amaia; Zhang, Shaowei; Moody, Sarah; Calasanz, Maria Jose; Tousseyn, Thomas; Broccardo, Cyril; Brousset, Pierre; Campos-Sanchez, Elena; Cobaleda, Cesar; Sanchez-Garcia, Isidro; Fernandez-Luna, Jose Luis; Garcia-Muñoz, Ricardo; Pena, Esther; Bellosillo, Beatriz; Salar, Antonio; Baptista, Maria Joao; Hernandez-Rivas, Jesús Maria; Gonzalez, Marcos; Terol, Maria Jose; Climent, Joan; Ferrandez, Antonio; Sagaert, Xavier; Melnick, Ari M.; Prosper, Felipe; Oscier, David G.; Carrasco, Yolanda R.; Dyer, Martin J. S.; Martinez-Climent, Jose A.

    2016-01-01

    NKX2 homeobox family proteins have a role in cancer development. Here we show that NKX2-3 is overexpressed in tumour cells from a subset of patients with marginal-zone lymphomas, but not with other B-cell malignancies. While Nkx2-3-deficient mice exhibit the absence of marginal-zone B cells, transgenic mice with expression of NKX2-3 in B cells show marginal-zone expansion that leads to the development of tumours, faithfully recapitulating the principal clinical and biological features of human marginal-zone lymphomas. NKX2-3 induces B-cell receptor signalling by phosphorylating Lyn/Syk kinases, which in turn activate multiple integrins (LFA-1, VLA-4), adhesion molecules (ICAM-1, MadCAM-1) and the chemokine receptor CXCR4. These molecules enhance migration, polarization and homing of B cells to splenic and extranodal tissues, eventually driving malignant transformation through triggering NF-κB and PI3K-AKT pathways. This study implicates oncogenic NKX2-3 in lymphomagenesis, and provides a valid experimental mouse model for studying the biology and therapy of human marginal-zone B-cell lymphomas. PMID:27297662

  10. Anticancer effect of cucurbitacin B on MKN-45 cells via inhibition of the JAK2/STAT3 signaling pathway

    PubMed Central

    Xie, You-Li; Tao, Wen-Hui; Yang, Ti-Xiong; Qiao, Jian-Guo

    2016-01-01

    The aim of the present study was to investigate the effect of cucurbitacin B on MKN-45 gastric carcinoma cells. Cell proliferation was determined using a cell counting kit-8 assay, and commercial cell cycle and apoptosis analysis kits were used to determine the cell cycle by flow cytometry. The mRNA expression of genes which mediate cell cycle checkpoints and apoptosis was detected using reverse transcription-quantitative polymerase chain reaction, and a terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to determine apoptosis rate. Western blot analysis was used to detect the protein expression levels of JAK2/STAT3 signaling pathway-associated proteins. The presented data show that cucurbitacin B significantly inhibited the proliferation of MKN-45 cells in a dose- and time-dependent manner. In accordance with these findings, cucurbitacin B blocked the progression of the cell cycle from G0/G1 to S phase, which was confirmed by the mRNA expression analysis. Cucurbitacin B treatment significantly suppressed the expression of cyclin D1, cyclin E, cyclin-dependent kinase 4 (CDK4) and CDK2, while increasing the expression of p27. Cucurbitacin B also promoted cell apoptosis, as was determined by TUNEL assay and evaluation of mRNA expression. Further experiments suggested that the beneficial effect of cucurbitacin B on blocking the proliferation and inducing the apoptosis of MKN-45 cells may have been associated with suppression of the JAK2/STAT3 signaling pathway. Thus, the present results indicate that cucurbitacin B suppresses proliferation and promoted apoptosis of MKN-45 cells, which may be mediated by inhibition of the JAK2/STAT3 signaling pathway. Cucurbitacin B therefore may warrant further investigation as a feasible therapy for gastric carcinoma. PMID:27698776

  11. Escape of Actively Secreting Shigella flexneri from ATG8/LC3-Positive Vacuoles Formed during Cell-To-Cell Spread Is Facilitated by IcsB and VirA

    PubMed Central

    Sachse, Martin; Sansonetti, Philippe J.; Parsot, Claude

    2015-01-01

    ABSTRACT The enteropathogenic bacterium Shigella flexneri uses a type 3 secretion apparatus (T3SA) to transfer proteins dubbed translocators and effectors inside host cells, inducing bacterial uptake and subsequent lysis of the entry vacuole. Once in the cytoplasm, the outer membrane protein IcsA induces actin polymerization, enabling cytoplasmic movement and cell-to-cell spread of bacteria. During this infectious process, S. flexneri is targeted by ATG8/LC3. The effector IcsB was proposed to inhibit LC3 recruitment by masking a region of IcsA recognized by the autophagy pathway component ATG5. The effector VirA, a GTPase-activating protein (GAP) for Rab1, was also shown to prevent LC3 recruitment. However, the context of LC3 recruitment around S. flexneri is not fully understood. Here, we show that LC3 is recruited specifically around secreting bacteria that are still present in vacuoles formed during entry and cell-to-cell spread. While LC3 recruitment occurs around a small proportion of intracellular wild-type bacteria, the icsB, virA, and icsB virA mutants display incremental defaults in escape from LC3-positive vacuoles formed during cell-to-cell spread. Our results indicate that IcsB and VirA act synergistically to allow bacteria to escape from LC3-positive vacuoles by acting at or in the immediate vicinity of the vacuole membrane(s). We also demonstrate that LC3 is recruited around bacteria still present in the single-membrane entry vacuole, in a manner akin to that seen with LC3-associated phagocytosis. Our results indicate that LC3 recruitment occurs around bacteria still, or already, in membrane compartments formed during entry and cell-to-cell spread, and not around bacteria free in the cytoplasm. PMID:26015503

  12. Lenticular mitoprotection. Part B: GSK-3β and regulation of mitochondrial permeability transition for lens epithelial cells in atmospheric oxygen

    PubMed Central

    Brooks, Morgan M.; Neelam, Sudha

    2013-01-01

    Purpose Loss of integrity of either the inner or outer mitochondrial membrane results in the dissipation of the mitochondrial electrochemical gradient that leads to mitochondrial membrane permeability transition (mMPT). This study emphasizes the role of glycogen synthase kinase 3beta (GSK-3β) in maintaining mitochondrial membrane potential, thus preventing mitochondrial depolarization (hereafter termed mitoprotection). Using 3-(2,4-dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione (SB216763), an inhibitor of GSK-3β, and drawing a distinction between it and 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (UO126), an inhibitor of extracellular-signal-regulated kinase (ERK) phosphorylation, the means by which GSK-3β influences mitoprotection in cultured human lens epithelial (HLE-B3) cells and normal, secondary cultures of bovine lens epithelial cells, maintained in atmospheric oxygen, was investigated. Methods Virally transfected human lens epithelial cells (HLE-B3) and normal cultures of bovine lens epithelial cells were exposed to acute hypoxic conditions (about 1% O2) followed by exposure to atmospheric oxygen (about 21% O2). Specific antisera and western blot analysis was used to examine the state of phosphorylation of ERK and GSK-3β, as well as the phosphorylation of a downstream substrate of GSK-3β, glycogen synthase (GS, useful in monitoring GSK-3β activity). The potentiometric dye, 1H-benzimidazolium-5,6-dichloro-2-[3-(5,6-dichloro-1,3-diethyl-1,3-dihydro-2H-benzimidazol-2-ylidene)-1-propenyl]-1,3-diethyl-iodide (JC-1), was used to monitor mitochondrial depolarization upon exposure of inhibitor treatment relative to the control cells (mock inhibition) in atmospheric oxygen. Caspase-3 activation was scrutinized to determine whether mitochondrial depolarization inevitably leads to apoptosis. Results Treatment of HLE-B3 cells with SB216763 (12 µM) inactivated GSK-3β activity as verified by the enzyme’s inability to

  13. The cachectic mediator proteolysis inducing factor activates NF-kappaB and STAT3 in human Kupffer cells and monocytes.

    PubMed

    Watchorn, Tammy M; Dowidar, Nabil; Dejong, Cornelis H C; Waddell, Ian D; Garden, O James; Ross, James A

    2005-10-01

    A novel proteoglycan, proteolysis inducing factor (PIF), is capable of inducing muscle proteolysis during the process of cancer cachexia, and of inducing an acute phase response in human hepatocytes. We investigated whether PIF is able to activate pro-inflammatory pathways in human Kupffer cells, the resident macrophages of the liver, and in monocytes, resulting in the production of pro-inflammatory cytokines. Normal liver tissue was obtained from patients undergoing partial hepatectomy and Kupffer cells were isolated. Monocytes were isolated from peripheral blood. Following exposure to native PIF, pro-inflammatory cytokine production from Kupffer cells and monocytes was measured and the NF-kappaB and STAT3 transcriptional pathways were investigated using electrophoretic mobility shift assays. We demonstrate that PIF is able to activate the transcription factor NF-kappaB and NF-kappaB-inducible genes in human Kupffer cells, and in monocytes, resulting in the production of pro-inflammatory cytokines such as TNF-alpha, IL-8 and IL-6. PIF enhances the expression of the cell surface molecules LFA-1 and CD14 on macrophages. PIF also activates the transcription factor STAT3 in Kupffer cells. The pro-inflammatory effects of PIF, mediated via NF-kappaB and STAT3, are important in macrophage behaviour and may contribute to the inflammatory pro-cachectic process in the liver.

  14. Paracellular tightness and the functional expression of efflux transporters P-gp and BCRP in bEnd3 cells.

    PubMed

    Yang, Shu; Jin, Hong; Zhao, Zhigang

    2018-04-23

    Objective The blood-brain barrier (BBB), regulating brain homeostasis and limiting the entry of most drugs, is characterized by intercellular tight junctions and the presence of transporters. In this study, the paracellular tightness and functional expression of efflux transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) were evaluated in mouse brain immortalized cell line bEnd3 to prove it as a useful BBB-mimicking system for biological and pharmacological research. Methods The presence of P-gp, BCRP and tight junction proteins occludin, claudin-5 and ZO-1 were validated by RT-PCR and Western blot. The tightness of bEnd3 monolayers was evaluated by measuring the permeability of hydrophilic marker Lucifer yellow. The P-gp functionality was identified by intracellular uptake assay using Rhodamine 123 (R123) as P-gp substrate and verapamil as P-gp inhibitor. The BCRP functionality was identified by flow cytometric analysis of mitoxantrone accumulation and fluorescence microscopic analysis of Hoechst 33342 accumulation using Ko-143 as BCRP inhibitor. Results The bEnd3 cells demonstrated the expression of P-gp, BCRP and tight junction proteins occludin, claudin-5 and ZO-1 at mRNA and protein levels. The permeability coefficient of Lucifer yellow was 1.3 ± 0.13 × 10 -3  cm/min, indicating the moderate paracellular tightness barrier formed by bEnd3 cells. The verapamil induced a higher cellular uptake of Rhodamine 123, and Ko-143 significantly elevated cellular accumulation of mitoxantrone and Hoechst 33342, suggesting the P-gp and BCRP functionality shown by bEnd3 cells. Conclusions The bEnd3 cell line represents a useful in vitro tool for studying BBB characteristics and drug transport mechanisms at the BBB.

  15. Relative Contributions of B Cells and Dendritic Cells from Lupus-Prone Mice to CD4+ T Cell Polarization.

    PubMed

    Choi, Seung-Chul; Xu, Zhiwei; Li, Wei; Yang, Hong; Roopenian, Derry C; Morse, Herbert C; Morel, Laurence

    2018-05-01

    Mouse models of lupus have shown that multiple immune cell types contribute to autoimmune disease. This study sought to investigate the involvement of B cells and dendritic cells in supporting the expansion of inflammatory and regulatory CD4 + T cells that are critical for lupus pathogenesis. We used lupus-prone B6.NZM2410.Sle1.Sle2.Sle3 (TC) and congenic C57BL/6J (B6) control mice to investigate how the genetic predisposition of these two cell types controls the activity of normal B6 T cells. Using an allogeneic in vitro assay, we showed that TC B1-a and conventional B cells expanded Th17 cells significantly more than their B6 counterparts. This expansion was dependent on CD86 and IL-6 expression and mapped to the Sle1 lupus-susceptibility locus. In vivo, TC B cells promoted greater differentiation of CD4 + T cells into Th1 and follicular helper T cells than did B6 B cells, but they limited the expansion of Foxp3 regulatory CD4 + T cells to a greater extent than did B6 B cells. Finally, when normal B6 CD4 + T cells were introduced into Rag1 -/- mice, TC myeloid/stromal cells caused their heightened activation, decreased Foxp3 regulatory CD4 + T cell differentiation, and increased renal infiltration of Th1 and Th17 cells in comparison with B6 myeloid/stromal cells. The results show that B cells from lupus mice amplify inflammatory CD4 + T cells in a nonredundant manner with myeloid/stromal cells. Copyright © 2018 by The American Association of Immunologists, Inc.

  16. Bcl11b, a novel GATA3-interacting protein, suppresses Th1 while limiting Th2 cell differentiation.

    PubMed

    Fang, Difeng; Cui, Kairong; Hu, Gangqing; Gurram, Rama Krishna; Zhong, Chao; Oler, Andrew J; Yagi, Ryoji; Zhao, Ming; Sharma, Suveena; Liu, Pentao; Sun, Bing; Zhao, Keji; Zhu, Jinfang

    2018-05-07

    GATA-binding protein 3 (GATA3) acts as the master transcription factor for type 2 T helper (Th2) cell differentiation and function. However, it is still elusive how GATA3 function is precisely regulated in Th2 cells. Here, we show that the transcription factor B cell lymphoma 11b (Bcl11b), a previously unknown component of GATA3 transcriptional complex, is involved in GATA3-mediated gene regulation. Bcl11b binds to GATA3 through protein-protein interaction, and they colocalize at many important cis-regulatory elements in Th2 cells. The expression of type 2 cytokines, including IL-4, IL-5, and IL-13, is up-regulated in Bcl11b -deficient Th2 cells both in vitro and in vivo; such up-regulation is completely GATA3 dependent. Genome-wide analyses of Bcl11b- and GATA3-regulated genes (from RNA sequencing), cobinding patterns (from chromatin immunoprecipitation sequencing), and Bcl11b-modulated epigenetic modification and gene accessibility suggest that GATA3/Bcl11b complex is involved in limiting Th2 gene expression, as well as in inhibiting non-Th2 gene expression. Thus, Bcl11b controls both GATA3-mediated gene activation and repression in Th2 cells. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  17. Mutation of Breast Cancer Cell Genomic DNA by APOBEC3B

    DTIC Science & Technology

    2012-09-01

    down Yes, A3B expression increases the steady-state level of genomic uracil Fig. 2a-2c 2) Can A3B mutate a target gene to escape drug...somatic mutation in human cancer genomes. Nature 446, 153-158 (2007). 10 2 Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in...processes molding the genomes of 21 breast cancers. Cell 149, 979-993 (2012). 9 Stephens, P. J. et al. The landscape of cancer genes and mutational

  18. Hormonal Regulation and Distinct Functions of Semaphorin-3B and Semaphorin-3F in Ovarian Cancer

    PubMed Central

    Joseph, Doina; Ho, Shuk-Mei; Syed, Viqar

    2009-01-01

    Semaphorins comprise a family of molecules that influence neuronal growth and guidance. Class-3 semaphorins, semaphorin-3B (SEMA3B) and semaphorin-3F (SEMA3F) illustrate their effects by forming a complex with neuropilins (NP-1 or NP-2) and plexins. We examined the status and regulation of semaphorins and their receptors in human ovarian cancer cells. A significantly reduced expression of SEMA3B (83 kD), SEMA3F (90 kD), and plexin-A3 was observed in ovarian cancer (OVCA) cell lines when compared to normal human ovarian surface epithelial (HOSE) cells. The expression of NP-1, NP-2 and plexin-A1 was not altered in HOSE and OVCA cells. The decreased expression of SEMA3B, SEMA3F, and plexin-A3 was confirmed in stage 3 ovarian tumors. Treatment of OVCA cells with luteinizing hormone, follicle-stimulating hormone, and estrogen induced a significant upregulation of SEMA3B, whereas SEMA3F was upregulated only by estrogen. Co-treatment of cell lines with a hormone and its specific antagonist blocked the effect of the hormone. Ectopic expression of SEMA3B or SEMA3F reduced soft-agar colony formation, adhesion, and cell invasion of OVCA cell cultures. Forced expression of SEMA3B, but not SEMA3F, inhibited viability of OVCA cells. Overexpression of SEMA3B and SEMA3F reduced focal adhesion kinase (FAK) phosphorylation and matrix metalloproteinase (MMP)-2 and -9 expression in OVCA cells. Forced expression of SEMA3F, but not SEMA3B in OVCA cells, significantly inhibited endothelial cell tube formation. Collectively, our results suggest loss of SEMA3 expression could be a hallmark of cancer progression. Furthermore, gonadotropin- and/or estrogen-mediated maintenance of SEMA3 expression could control ovarian cancer angiogenesis and metastasis. PMID:20124444

  19. Effects of dipotassium-trioxohydroxytetrafluorotriborate, K2[B3O3F4OH], on cell viability and gene expression of common human cancer drug targets in a melanoma cell line.

    PubMed

    Pojskic, Lejla; Haveric, Sanin; Lojo-Kadric, Naida; Hadzic, Maida; Haveric, Anja; Galic, Zoran; Galic, Borivoj; Vullo, Daniela; Supuran, Claudiu T; Milos, Mladen

    2016-12-01

    Recently it was found that dipotassium-trioxohydroxytetrafluorotriborate, K2(B3O3F4OH), is a potent and highly specific inhibitor of precancerous cell processes. We conducted gene expression profiling of human melanoma cells before and after treatment with two concentrations (0.1 and 1 mM) of this boron inorganic derivative in order to assess its effects on deregulation of genes associated with tumor pathways. Parallel trypan blue exclusion assay was performed to assess the cytotoxicity effects of this chemical. Treatment with K2(B3O3F4OH) induced a significant decrease of cell viability in melanoma cellline at both tested concentrations. Furthermore, these treatments caused deregulation of more than 30 genes known as common anti-tumor drug targets. IGF-1 and hTERT were found to be significantly downregulated and this result may imply potential use of K2(B3O3F4OH) as an inhibitor or human telomerase and insulin-like growth factor 1, both of which are associated with various tumor pathways.

  20. CD4+CD25+ T-Cells Control Autoimmunity in the Absence of B-Cells

    PubMed Central

    Mariño, Eliana; Villanueva, Jeanette; Walters, Stacey; Liuwantara, David; Mackay, Fabienne; Grey, Shane T.

    2009-01-01

    OBJECTIVE Tumor necrosis factor ligand family members B-cell–activating factor (BAFF) and a proliferation-inducing ligand (APRIL) can exert powerful effects on B-cell activation and development, type 1 T-helper cell (Th1) immune responses, and autoimmunity. We examined the effect of blocking BAFF and APRIL on the development of autoimmune diabetes. RESEARCH DESIGN AND METHODS Female NOD mice were administered B-cell maturation antigen (BCMA)-Fc from 9 to 15 weeks of age. Diabetes incidence, islet pathology, and T- and B-cell populations were examined. RESULTS BCMA-Fc treatment reduced the severity of insulitis and prevented diabetes development in NOD mice. BCMA-Fc–treated mice showed reduced follicular, marginal-zone, and T2MZ B-cells. B-cell reduction was accompanied by decreased frequencies of pathogenic CD4+CD40+ T-cells and reduced Th1 cytokines IL-7, IL-15, and IL-17. Thus, T-cell activation was blunted with reduced B-cells. However, BCMA-Fc–treated mice still harbored detectable diabetogenic T-cells, suggesting that regulatory mechanisms contributed to diabetes prevention. Indeed, BCMA-Fc–treated mice accumulated increased CD4+CD25+ regulatory T-cells (Tregs) with age. CD4+CD25+ cells were essential for maintaining euglycemia because their depletion abrogated BCMA-Fc–mediated protection. BCMA-Fc did not directly affect Treg homeostasis given that CD4+CD25+Foxp3+ T-cells did not express TACI or BR3 receptors and that CD4+CD25+Foxp3+ T-cell frequencies were equivalent in wild-type, BAFF−/−, TACI−/−, BCMA−/−, and BR3−/− mice. Rather, B-cell depletion resulted in CD4+CD25+ T-cell–mediated protection from diabetes because anti-CD25 monoclonal antibody treatment precipitated diabetes in both diabetes-resistant NOD.μMT−/− and BCMA-Fc–treated mice. CONCLUSIONS BAFF/APRIL blockade prevents diabetes. BCMA-Fc reduces B-cells, subsequently blunting autoimmune activity and allowing endogenous regulatory mechanisms to preserve a

  1. Tetravalent anti-CD20/CD3 bispecific antibody for the treatment of B cell lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Chia-Yen; Chen, Gregory J.; Tai, Pei-Han

    Bispecific antibodies (bsAbs) are second generation antibodies for therapeutic application in immunotherapy. One of the major strategies of the bsAb platform is the recruitment of immune effector T cells by incorporating an anti-CD3 domain. A bispecific T-cell engager (BiTE), with one end having an affinity for CD3 and the other end with affinity for CD19, has been approved in the US and Europe for the treatment of acute lymphoblastic leukemia. However, due to their small size and lack of Fc region, these single-chain variable fragment (scFv) bsAbs have short half-lives in vivo. Additionally, poor solubility, structural instability, and low production yieldsmore » have also become major challenges in the bulk production process. To overcome these challenges, we have engineered a tetravalent bsAb with bivalent binding specificity for the CD20 and CD3 antigen in an immunoglobulin G (IgG) format. The fusion of the anti-CD3 scFvs to the CD20 antibody via a linker-hinge domain (LHD) results in improved antibody stabilization and properties. Here we demonstrate this antibody's highly efficient cancer cell elimination in a dose-dependent manner in a CD20-expressing B lymphoblastoid cell line in vitro. Our data suggest the potential clinical application of this bsAb for the treatment of CD20-expressing B cell malignancies. - Highlights: • A bispecific antibody (bsAb) can increase immunotherapeutic efficacy. • A tetravalent bsAb with binding specificity for the CD20 and CD3 antigens is proposed. • A linker-hinge domain (LHD) within the bsAb results in improved antibody properties.« less

  2. Colorectal cancer cell-derived exosomes containing miR-10b regulate fibroblast cells via the PI3K/Akt pathway.

    PubMed

    Dai, Guangyao; Yao, Xiaoguang; Zhang, Yubin; Gu, Jianbin; Geng, Yunfeng; Xue, Fei; Zhang, Jingcheng

    2018-04-01

    Cancer-associated fibroblasts (CAFs) contribute to the proliferation of colorectal cancer(CRC) cells. However, the mechanism by which CAFs develop in the tumor microenvironment remains unknown. Exosomes may be involved in activating CAFs. Using a miRNA expression profiling array, we determined the miRNA expression profile of secretory exosomes in CRC cells and then identified potential miRNAs with significant differential expression compared to normal cells via enrichment analysis. Predicted targets of candidate miRNAs were then assessed via bioinformatics analysis. Realtime qPCR, western blot, and cell cycle analyses were performed to evaluate the role of candidate exosomal miRNAs. Luciferase reporter assays were applied to confirm whether candidate exosomal miRNAs control target pathway expression. A CRC xenograft mouse model was constructed to evaluate tumor growth in vivo. Exosomes from CRC cells contained significantly higher levels of miR-10b than did exosomes from normal colorectal epithelial cells. Moreover, exosomes containing miR-10b were transferred to fibroblasts. Bioinformatics analysis identified PIK3CA, as a potential target of miR-10b. Luciferase reporter assays confirmed that miR-10b directly inhibited PIK3CA expression. Co-culturing fibroblasts with exosomes containing miR-10b significantly suppressed PIK3CA expression and decreased PI3K/Akt/mTOR pathway activity. Finally, exosomes containing miR-10b reduced fibroblast proliferation but promoted expression of TGF-β and SM α-actin, suggesting that exosomal miR-10b may activate fibroblasts to become CAFs that express myofibroblast markers. These activated fibroblasts were able to promote CRC growth in vitro and in vivo. CRC-derived exosomes actively promote disease progression by modulating surrounding stromal cells, which subsequently acquire features of CAFs. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  3. Regulation of VH Replacement by B Cell Receptor (BCR)-mediated Signaling in Human Immature B Cells

    PubMed Central

    Liu, Jing; Lange, Miles D.; Hong, Sang Yong; Xie, Wanqin; Xu, Kerui; Huang, Lin; Yu, Yangsheng; Ehrhardt, Götz R. A.; Zemlin, Michael; Burrows, Peter D.; Su, Kaihong; Carter, Robert H.; Zhang, Zhixin

    2013-01-01

    VH replacement provides a unique RAG-mediated recombination mechanism to edit non-functional IgH genes or IgH genes encoding self reactive B cell receptors (BCRs) and contributes to the diversification of antibody repertoire in mouse and human. Currently, it is not clear how VH replacement is regulated during early B lineage cell development. Here we show that crosslinking BCRs induces VH replacement in human EU12 μHC+ cells and in the newly emigrated immature B cells purified from peripheral blood of healthy donors or tonsillar samples. BCR signaling-induced VH replacement is dependent on the activation of Syk and Src kinases; but is inhibited by CD19 co-stimulation, presumably through activation of the PI3 kinase pathway. These results show for the first time that VH replacement is regulated by BCR-mediated signaling in human immature B cells, which can be modulated by physiological and pharmacological treatments. PMID:23630348

  4. Quercetin 3-O-methyl ether protects FL83B cells from copper induced oxidative stress through the PI3K/Akt and MAPK/Erk pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, Hsiao-Ling, E-mail: lily1001224@gmail.com; Li, Chia-Jung, E-mail: 97751101@stmail.tcu.edu.tw; Huang, Lin-Huang, E-mail: yg1236@yahoo.com.tw

    2012-10-01

    Quercetin is a bioflavonoid that exhibits several biological functions in vitro and in vivo. Quercetin 3-O-methyl ether (Q3) is a natural product reported to have pharmaceutical activities, including antioxidative and anticancer activities. However, little is known about the mechanism by which it protects cells from oxidative stress. This study was designed to investigate the mechanisms by which Q3 protects against Cu{sup 2+}-induced cytotoxicity. Exposure to Cu{sup 2+} resulted in the death of mouse liver FL83B cells, characterized by apparent apoptotic features, including DNA fragmentation and increased nuclear condensation. Q3 markedly suppressed Cu{sup 2+}-induced apoptosis and mitochondrial dysfunction, characterized by reducedmore » mitochondrial membrane potential, caspase-3 activation, and PARP cleavage, in Cu{sup 2+}-exposed cells. The involvement of PI3K, Akt, Erk, FOXO3A, and Mn-superoxide dismutase (MnSOD) was shown to be critical to the survival of Q3-treated FL83B cells. The liver of both larval and adult zebrafish showed severe damage after exposure to Cu{sup 2+} at a concentration of 5 μM. Hepatic damage induced by Cu{sup 2+} was reduced by cotreatment with Q3. Survival of Cu{sup 2+}-exposed larval zebrafish was significantly increased by cotreatment with 15 μM Q3. Our results indicated that Cu{sup 2+}-induced apoptosis in FL83B cells occurred via the generation of ROS, upregulation and phosphorylation of Erk, overexpression of 14-3-3, inactivation of Akt, and the downregulation of FOXO3A and MnSOD. Hence, these results also demonstrated that Q3 plays a protective role against oxidative damage in zebrafish liver and remarked the potential of Q3 to be used as an antioxidant for hepatocytes. Highlights: ► Protective effects of Q3 on Cu{sup 2+}-induced oxidative stress in vitro and in vivo. ► Cu{sup 2+} induced apoptosis in FL83B cells via ROS and the activation of Erk. ► Q3 abolishes Cu{sup 2+}-induced apoptosis through the PI3K/Akt and MAPK

  5. Transcriptome profiling of UPF3B/NMD-deficient lymphoblastoid cells from patients with various forms of intellectual disability

    PubMed Central

    Nguyen, LS; Jolly, L; Shoubridge, C; Chan, WK; Huang, L; Laumonnier, F; Raynaud, M; Hackett, A; Field, M; Rodriguez, J; Srivastava, AK; Lee, Y; Long, R; Addington, AM; Rapoport, JL; Suren, S; Hahn, CN; Gamble, J; Wilkinson, MF; Corbett, MA; Gecz, J

    2014-01-01

    The nonsense-mediated mRNA decay (NMD) pathway was originally discovered by virtue of its ability to rapidly degrade aberrant mRNAs with premature termination codons. More recently, it was shown that NMD also directly regulates subsets of normal transcripts, suggesting that NMD has roles in normal biological processes. Indeed, several NMD factors have been shown to regulate neurological events (for example, neurogenesis and synaptic plasticity) in numerous vertebrate species. In man, mutations in the NMD factor gene UPF3B, which disrupts a branch of the NMD pathway, cause various forms of intellectual disability (ID). Using Epstein Barr virus—immortalized B cells, also known as lymphoblastoid cell lines (LCLs), from ID patients that have loss-of-function mutations in UPF3B, we investigated the genome-wide consequences of compromised NMD and the role of NMD in neuronal development and function. We found that ~5% of the human transcriptome is impacted in UPF3B patients. The UPF3B paralog, UPF3A, is stabilized in all UPF3B patients, and partially compensates for the loss of UPF3B function. Interestingly, UPF3A protein, but not mRNA, was stabilised in a quantitative manner that inversely correlated with the severity of patients’ phenotype. This suggested that the ability to stabilize the UPF3A protein is a crucial modifier of the neurological symptoms due to loss of UPF3B. We also identified ARHGAP24, which encodes a GTPase-activating protein, as a canonical target of NMD, and we provide evidence that deregulation of this gene inhibits axon and dendrite outgrowth and branching. Our results demonstrate that the UPF3B-dependent NMD pathway is a major regulator of the transcriptome and that its targets have important roles in neuronal cells. PMID:22182939

  6. Smad3 contributes to positioning of proliferating cells in colonic crypts by inducing EphB receptor protein expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, Kiyoshi; Sato, Toru; Katsuno, Tatsuro, E-mail: katsuno@faculty.chiba-u.jp

    2011-02-25

    Research highlights: {yields} Smad3{sup -/-} mice showed an increased number of proliferating epithelial cells in colonic crypts. {yields} Proliferating epithelial cells showed activated Wnt/{beta}-catenin pathway. {yields} Smad3{sup -/-} mice also showed intermingling of proliferating cells with differentiated cells. {yields} Loss of EphB receptor expression was observed in the colonic crypts of Smad3{sup -/-} mice. {yields} Loss of EphB receptor expression is likely responsible for cell intermingling. -- Abstract: Deficiency of Smad3, an intracellular mediator of TGF-{beta}, was shown to significantly accelerate re-epithelialization of the colonic mucosa. This study was performed to investigate the molecular mechanisms by which Smad3 controls colonicmore » epithelial cell proliferation and crypt formation. Smad3{sup ex8/ex8} C57BL/6 mice were used in this study and wild-type littermates served as controls. The number of proliferating cells in the isolated colonic epithelium of Smad3{sup -/-} mice was significantly increased compared to that in wild-type littermates. Protein levels of the cell cycle inhibitors p21 and p27 were significantly decreased, while that of c-Myc was increased in the isolated colonic epithelium from Smad3{sup -/-} mice. In the colonic tissue of wild-type mice, cell proliferation was restricted to the bottom of the crypts in accordance with nuclear {beta}-catenin staining, whereas proliferating cells were located throughout the crypts in Smad3{sup -/-} mice in accordance with nuclear {beta}-catenin staining, suggesting that Smad3 is essential for locating proliferating cells at the bottom of the colonic crypts. Notably, in Smad3{sup -/-} mice, there was loss of EphB2 and EphB3 receptor protein expression, critical regulators of proliferating cell positioning, while EphB receptor protein expression was confirmed at the bottom of the colonic crypts in wild-type mice. These observations indicated that disturbance of the EphB/ephrin B system

  7. Lenticular mitoprotection. Part B: GSK-3β and regulation of mitochondrial permeability transition for lens epithelial cells in atmospheric oxygen.

    PubMed

    Brooks, Morgan M; Neelam, Sudha; Cammarata, Patrick R

    2013-01-01

    Loss of integrity of either the inner or outer mitochondrial membrane results in the dissipation of the mitochondrial electrochemical gradient that leads to mitochondrial membrane permeability transition (mMPT). This study emphasizes the role of glycogen synthase kinase 3beta (GSK-3β) in maintaining mitochondrial membrane potential, thus preventing mitochondrial depolarization (hereafter termed mitoprotection). Using 3-(2,4-dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione (SB216763), an inhibitor of GSK-3β, and drawing a distinction between it and 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (UO126), an inhibitor of extracellular-signal-regulated kinase (ERK) phosphorylation, the means by which GSK-3β influences mitoprotection in cultured human lens epithelial (HLE-B3) cells and normal, secondary cultures of bovine lens epithelial cells, maintained in atmospheric oxygen, was investigated. Virally transfected human lens epithelial cells (HLE-B3) and normal cultures of bovine lens epithelial cells were exposed to acute hypoxic conditions (about 1% O2) followed by exposure to atmospheric oxygen (about 21% O2). Specific antisera and western blot analysis was used to examine the state of phosphorylation of ERK and GSK-3β, as well as the phosphorylation of a downstream substrate of GSK-3β, glycogen synthase (GS, useful in monitoring GSK-3β activity). The potentiometric dye, 1H-benzimidazolium-5,6-dichloro-2-[3-(5,6-dichloro-1,3-diethyl-1,3-dihydro-2H-benzimidazol-2-ylidene)-1-propenyl]-1,3-diethyl-iodide (JC-1), was used to monitor mitochondrial depolarization upon exposure of inhibitor treatment relative to the control cells (mock inhibition) in atmospheric oxygen. Caspase-3 activation was scrutinized to determine whether mitochondrial depolarization inevitably leads to apoptosis. Treatment of HLE-B3 cells with SB216763 (12 µM) inactivated GSK-3β activity as verified by the enzyme's inability to phosphorylate its substrate, GS. SB

  8. B cells flying solo.

    PubMed

    Groom, Joanna; Mackay, Fabienne

    2008-01-01

    Systemic autoimmunity such as systemic lupus erythematosus (SLE) is associated with the loss of B-cell tolerance, B-cell dysregulation and autoantibody production. While some autoantibodies may contribute to the pathology seen with SLE, numerous studies have shown that dysregulation of T-cell function is another critical aspect driving disease. The positive results obtained in clinical trials using T-cell- or B-cell-specific treatments have suggested that cooperation between T and B cells probably underlies disease progression in many patients. A similar cooperative mechanism seemed to explain SLE developing in mice overexpressing the B-cell-activating factor from the tumor necrosis factor family (BAFF). However, surprisingly, T-cell-deficient BAFF transgenic (Tg) mice develop SLE similar to T-cell-sufficient BAFF Tg mice, and the disease was linked to innate activation of B cells and production of proinflammatory autoantibody isotypes. In conclusion, dysregulated innate activation of B cells alone can drive disease independently of T cells, and as such this aspect represents a new pathogenic mechanism in autoimmunity.

  9. Id-1 activation of PI3K/Akt/NFkappaB signaling pathway and its significance in promoting survival of esophageal cancer cells.

    PubMed

    Li, Bin; Cheung, Pak Yan; Wang, Xianghong; Tsao, Sai Wah; Ling, Ming Tat; Wong, Yong Chuan; Cheung, Annie L M

    2007-11-01

    Inhibitor of differentiation or DNA binding (Id-1) is a helix-loop-helix protein that is over-expressed in many types of cancer including esophageal cancer. This study aims to investigate its effects on the phosphatidylinositol-3-kinase (PI3K)/Akt/ nuclear factor kappa B (NFkappaB) signaling pathway and the significance in protecting esophageal cancer cells against apoptosis. We found elevated expression of phosphorylated forms of Akt, glycogen synthase kinase 3beta and inhibitor of kappa B, as well as increased nuclear translocation of NFkappaB subunit p65 and NFkappaB DNA-binding activity, in esophageal cancer cells with stable ectopic Id-1 expression. Transient transfection of Id-1 into HEK293 cells confirmed activation of PI3K/Akt/NFkappaB signaling and the effects were counteracted by the PI3K inhibitor LY294002. Treatment with tumor necrosis factor-alpha (TNF-alpha) elicited a significantly weaker apoptotic response, following a marked and sustained activation of Akt and NFkappaB in the Id-1-over-expressing cells, compared with the vector control. The effects of Id-1 on the PI3K/Akt/NFkappaB signaling pathway and apoptosis were reversed in esophageal cancer cells transfected with siRNA against Id-1. In addition, inhibition of PI3K or NFkappaB signaling using the PI3K inhibitor LY294002 or the NFkappaB inhibitor Bay11-7082 increased the sensitivity of Id-1-over-expressing esophageal cancer cells to TNF-alpha-induced apoptosis. Our results provide the first evidence that Id-1 induces the activation of PI3K/Akt/NFkappaB signaling pathway, and protects esophageal cancer cells from TNF-alpha-induced apoptosis in vitro. Inactivation of Id-1 may provide us with a novel strategy to improve the treatment and survival of patients with esophageal cancer.

  10. Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B cells.

    PubMed

    Pène, Jérôme; Gauchat, Jean-François; Lécart, Sandrine; Drouet, Elodie; Guglielmi, Paul; Boulay, Vera; Delwail, Adriana; Foster, Don; Lecron, Jean-Claude; Yssel, Hans

    2004-05-01

    IL-21 is a cytokine that regulates the activation of T and NK cells and promotes the proliferation of B cells activated via CD40. In this study, we show that rIL-21 strongly induces the production of all IgG isotypes by purified CD19(+) human spleen or peripheral blood B cells stimulated with anti-CD40 mAb. Moreover, it was found to specifically induce the production of IgG(1) and IgG(3) by CD40-activated CD19(+)CD27(-) naive human B cells. Although stimulation of CD19(+) B cells via CD40 alone induced gamma 1 and gamma 3 germline transcripts, as well as the expression of activation-induced cytidine deaminase, only stimulation with both anti-CD40 mAb and rIL-21 resulted in the production of S gamma/S mu switch circular DNA. These results show that IL-21, in addition to promoting growth and differentiation of committed B cells, is a specific switch factor for the production of IgG(1) and IgG(3).

  11. Sedanolide induces autophagy through the PI3K, p53 and NF-κB signaling pathways in human liver cancer cells.

    PubMed

    Hsieh, Shu-Ling; Chen, Chi-Tsai; Wang, Jyh-Jye; Kuo, Yu-Hao; Li, Chien-Chun; Hsieh, Lan-Chi; Wu, Chih-Chung

    2015-12-01

    Sedanolide (SN), a phthalide-like compound from celery seed oil, possesses antioxidant effects. However, the effect of SN on cell death in human liver cancer cells has yet to be determined. In this study, cell viability determination, monodansylcadaverine (MDC) fluorescent staining and immunoblot analysis were performed to determine autophagy induction and autophagy-induced protein expression changes via molecular examination after human liver cancer (J5) cells were treated with SN. Our studies demonstrate that SN suppressed J5 cell viability by inducing autophagy. Phosphoinositide 3-kinase (PI3K)-I, mammalian target of rapamycin (mTOR) and Akt protein levels decreased, whereas PI3K-III, LC3-II and Beclin-1 protein levels increased following SN treatment in J5 cells. In addition, SN treatment upregulated nuclear p53 and damage-regulated autophagy modulator (DRAM) and downregulated cytosolic p53 and Tp53-induced glycolysis and apoptosis regulator (TIGAR) expression in J5 cells. Furthermore, the cytosolic phosphorylation of inhibitor of kappa B (IκB) and nuclear p65 and the DNA-binding activity of NF-κB increased after SN treatment. These results suggest that SN induces J5 cell autophagy by regulating PI3K, p53 and NF-κB autophagy-associated signaling pathways in J5 cells.

  12. B-Cell Depletion Promotes Aortic Infiltration of Immunosuppressive Cells and Is Protective of Experimental Aortic Aneurysm.

    PubMed

    Schaheen, Basil; Downs, Emily A; Serbulea, Vlad; Almenara, Camila C P; Spinosa, Michael; Su, Gang; Zhao, Yunge; Srikakulapu, Prasad; Butts, Cherié; McNamara, Coleen A; Leitinger, Norbert; Upchurch, Gilbert R; Meher, Akshaya K; Ailawadi, Gorav

    2016-11-01

    B-cell depletion therapy is widely used for treatment of cancers and autoimmune diseases. B cells are abundant in abdominal aortic aneurysms (AAA); however, it is unknown whether B-cell depletion therapy affects AAA growth. Using experimental models of murine AAA, we aim to examine the effect of B-cell depletion on AAA formation. Wild-type or apolipoprotein E-knockout mice were treated with mouse monoclonal anti-CD20 or control antibodies and subjected to an elastase perfusion or angiotensin II infusion model to induce AAA, respectively. Anti-CD20 antibody treatment significantly depleted B1 and B2 cells, and strikingly suppressed AAA growth in both models. B-cell depletion resulted in lower circulating IgM levels, but did not affect the levels of IgG or cytokine/chemokine levels. Although the total number of leukocyte remained unchanged in elastase-perfused aortas after anti-CD20 antibody treatment, the number of B-cell subtypes was significantly lower. Interestingly, plasmacytoid dendritic cells expressing the immunomodulatory enzyme indole 2,3-dioxygenase were detected in the aortas of B-cell-depleted mice. In accordance with an increase in indole 2,3-dioxygenase+ plasmacytoid dendritic cells, the number of regulatory T cells was higher, whereas the expression of proinflammatory genes was lower in aortas of B-cell-depleted mice. In a coculture model, the presence of B cells significantly lowered the number of indole 2,3-dioxygenase+ plasmacytoid dendritic cells without affecting total plasmacytoid dendritic cell number. The present results demonstrate that B-cell depletion protects mice from experimental AAA formation and promotes emergence of an immunosuppressive environment in aorta. © 2016 American Heart Association, Inc.

  13. Latency-Associated Nuclear Antigen E3 Ubiquitin Ligase Activity Impacts Gammaherpesvirus-Driven Germinal Center B Cell Proliferation.

    PubMed

    Cerqueira, Sofia A; Tan, Min; Li, Shijun; Juillard, Franceline; McVey, Colin E; Kaye, Kenneth M; Simas, J Pedro

    2016-09-01

    Viruses have evolved mechanisms to hijack components of cellular E3 ubiquitin ligases, thus modulating the ubiquitination pathway. However, the biological relevance of such mechanisms for viral pathogenesis in vivo remains largely unknown. Here, we utilized murid herpesvirus 4 (MuHV-4) infection of mice as a model system to address the role of MuHV-4 latency-associated nuclear antigen (mLANA) E3 ligase activity in gammaherpesvirus latent infection. We show that specific mutations in the mLANA SOCS box (V199A, V199A/L202A, or P203A/P206A) disrupted mLANA's ability to recruit Elongin C and Cullin 5, thereby impairing the formation of the Elongin BC/Cullin 5/SOCS (EC5S(mLANA)) complex and mLANA's E3 ligase activity on host NF-κB and Myc. Although these mutations resulted in considerably reduced mLANA binding to viral terminal repeat DNA as assessed by electrophoretic mobility shift assay (EMSA), the mutations did not disrupt mLANA's ability to mediate episome persistence. In vivo, MuHV-4 recombinant viruses bearing these mLANA SOCS box mutations exhibited a deficit in latency amplification in germinal center (GC) B cells. These findings demonstrate that the E3 ligase activity of mLANA contributes to gammaherpesvirus-driven GC B cell proliferation. Hence, pharmacological inhibition of viral E3 ligase activity through targeting SOCS box motifs is a putative strategy to control gammaherpesvirus-driven lymphoproliferation and associated disease. The gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause lifelong persistent infection and play causative roles in several human malignancies. Colonization of B cells is crucial for virus persistence, and access to the B cell compartment is gained by virus-driven proliferation in germinal center (GC) B cells. Infection of B cells is predominantly latent, with the viral genome persisting as a multicopy episome and expressing only a small subset of viral genes. Here, we focused on

  14. Down-regulation of PKHD1 induces cell apoptosis through PI3K and NF-{kappa}B pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Liping; Wang, Shixuan; Hu, Chaofeng

    2011-04-15

    Mutations in PKHD1 (polycystic kidney and hepatic disease gene 1) gene cause the autosomal recessive polycystic kidney disease (ARPKD). Fibrocystin/polyductin (FPC), encoded by PKHD1, is a membrane-associated receptor-like protein. Although it is widely accepted that cystogenesis is mostly due to aberrant cell proliferation and apoptosis, it is still unclear how apoptosis is regulated. The aim of this study is to analyze the relationship among apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor {kappa}B (NF-{kappa}B) in FPC knockdown kidney cells. We show that PKHD1-silenced HEK293 cells demonstrate a higher PI3K/Akt activity. Selective inhibition of PI3K/Akt using LY294002 or wortmannin in these cellsmore » increases serum starvation-induced HEK293 cell apoptosis with a concomitant decrease in cell proliferation and higher caspase-3 activity. PI3K/Akt inhibition also leads to increased NF-{kappa}B activity in these cells. We conclude that the PI3K/Akt pathway is involved in apoptotic function in PKHD1-silenced cells, and PI3K/Akt inhibition correlates with upregulation of NF-{kappa}B activity. These observations provide a potential platform for determining FPC function and therapeutic investigation of ARPKD.« less

  15. Effect of purified fractions from cell culture supernate of high-density pre-B acute lymphoblastic leukemia cells (ALL3) on the growth of ALL3 cells at low density.

    PubMed

    Patel, Sapan J; Darie, Costel C; Clarkson, Bayard D

    2017-02-01

    The mechanisms underlying the aberrant growth and interactions between cells are not understood very well. The pre-B acute lymphoblastic leukemia cells directly obtained from an adult patient grow very poorly or do not grow at all at low density (LD), but grow better at high starting cell density (HD). We found that the LD ALL3 cells can be stimulated to grow in the presence of diffusible, soluble factors secreted by ALL3 cells themselves growing at high starting cell density. We then developed a biochemical purification procedure that allowed us to purify the factor(s) with stimulatory activity and analyzed them by nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). Using nanoLC-MS/MS we have identified several proteins which were further processed using various bioinformatics tools. This resulted in eight protein candidates which might be responsible for the growth activity on non-growing LD ALL3 cells and their involvement in the stimulatory activity are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Negative Effects of SRD5A1 on Nuclear Activity of Progesterone Receptor Isoform B in JEG3 Cells.

    PubMed

    Miao, Zhuo; Sun, Min; Jiang, Feng; Yao, Yuanqing; Li, Yi

    2016-02-01

    Progesterone withdrawal signals labor in mammals. Elevated intracellular metabolism contributes to progesterone functional withdrawal through unknown mechanism, which is thought to act via progesterone receptor (PR). This study aims to investigate molecular mechanisms underlying progesterone withdrawal during pregnancy and labor. We investigated the role of 5α-reductase type I (SRD5A1) in enzymatic catalysis of progesterone and loss of PR function in a human trophoblast choriocarcinoma cell line JEG3. The PR isoform B (PR-B) was robustly expressed in JEG3 cells. The SRD5A1 small-interfering RNA knockdown led to significant increase in PR-B nuclear import, ectopic, whereas SRD5A1 overexpression resulted in remarkable inhibition of nuclear PR-B in P4-treated cells. Repression of SRD5A1 activated PR-B responsive gene, whereas overexpression of SRD5A1 possessed an inhibitory effect. JEG3 cell line is a valuable tool to study mechanisms responsible for loss of PR function and screening of drugs for preterm birth treatment. Our study aims to investigate the molecular mechanisms underlying progesterone withdrawal during pregnancy and labor. © The Author(s) 2015.

  17. Inhibition of PTP1B disrupts cell-cell adhesion and induces anoikis in breast epithelial cells.

    PubMed

    Hilmarsdottir, Bylgja; Briem, Eirikur; Halldorsson, Skarphedinn; Kricker, Jennifer; Ingthorsson, Sævar; Gustafsdottir, Sigrun; Mælandsmo, Gunhild M; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2017-05-11

    Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell-cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype.

  18. GATA4 promotes hepatoblastoma cell proliferation by altering expression of miR125b and DKK3.

    PubMed

    Pei, Yihua; Yao, Qin; Yuan, Sibo; Xie, Bozhen; Liu, Yan; Ye, Chunsheng; Zhuo, Huiqin

    2016-11-22

    GATA4 is a zinc finger DNA-binding protein that plays an important role in mammalian liver development. However, the effects of GATA4 in hepatoblastoma (HB), a common liver cancer in pediatric patients, remain largely unknown. In this study, we demonstrate that GATA4 promotes growth and survival in the Huh6 human hepatoblastoma cell line. GATA4 expression was high in Huh6 cells, and its knockdown decreased expression of Dickkopf-related protein 3 (DKK3), a gene that may contribute to premature or undifferentiated phenotypes in HB. GATA4 also directly bound to the promoter regions of the miRNA miR125b and inhibited its expression in Huh6 cells. DKK3 was a direct target of miR125b in Huh6 cells. Inhibition of miR125b or overexpression of DKK3 promoted proliferation, survival, migration, and invasion in Huh6 cells. This is the first report to demonstrate that GATA4 promotes oncogenesis by inhibiting miR125b-dependent suppression of DKK3 expression. This GATA4/miR125b/DKK3 axis may be a major regulator of growth, migration, invasion, and survival in hepatoma cells, and is therefore a potential therapeutic target or biomarker for progression in HB patients.

  19. Effect of carbamate pesticides on perforin, granzymes A-B-3/K, and granulysin in human natural killer cells.

    PubMed

    Li, Qing; Kobayashi, Maiko; Kawada, Tomoyuki

    2015-09-01

    We previously found that ziram, a carbamate pesticide, significantly reduced perforin, granzyme A (GrA), granzyme B (GrB), granzyme 3/K (Gr3/K), and granulysin (GRN) levels in NK-92MI cells, a human natural killer (NK) cell line. To investigate whether other carbamate pesticides also show similar toxicity on human NK cells, we conducted further experiments with NK-92CI cells, a human NK cell line, using a more sensitive assay. We previously confirmed that NK-92CI cells express CD56, perforin, GrA, GrB, Gr3/K, and GRN and are highly cytotoxic to K562 cells in a chromium release assay, which are more sensitive to organophosphorus pesticides and ziram than the NK-92MI cell line. NK-92CI cells were treated with ziram, thiram, maneb, or carbaryl at various concentrations for 4-24 h at 37°C in vitro. Thereafter, intracellular levels of perforin, GrA, GrB, Gr3/K, and GRN were determined by flow cytometry. It was found that all carbamate pesticides significantly reduced the intracellular levels of perforin, GrA, GrB, Gr3/K, and GRN in NK-92CI cells in a dose-dependent manner. However, the strength of the effect differed among the pesticides, and the order was thiram > ziram > maneb > carbaryl. In addition, it was also found that the degree of the reductions differed among the five proteins, with perforin more sensitive to pesticides than GRN, GrA, GrB, and Gr3/K, and the order was perforin > GRN > Gr3/K ≒ GrA ≒ GrB. © The Author(s) 2015.

  20. Involvement of I-A-restricted B-B cell interaction in the polyclonal B cell differentiation induced by lipopolysaccharide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahama, Y.; Ono, S.; Ishihara, K.

    1990-01-01

    The present study has examined a functional role of Ia molecules expressed on murine B cells in polyclonal B cell differentiation induced by lipopolysaccharide (LPS). Reverse, IgM PFC responses of unprimed B cells induced by LPS in the apparent absence of T cells and adherent accessory cells were markedly inhibited in a haplotype-specific manner by Fab monomer fragment of anti-class II (Ia) but not anti-class I MHC monoclonal antibody (mAb). However, the degree of inhibition of LPS responses of H-2-heterozygous F1 B cells expressing both parental I-A products by either one of anti-I-A mAb was at best half that ofmore » the parental B cells. Interestingly, when (B10 x B10.-BR)F1 (H-2b/k) B cells were fractionated into adherent and nonadherent populations by their ability to bind to parental B10 B cell monolayers, LPS responses of F1 B cells adherent to and nonadherent to the B10 B cell monolayers were selectively inhibited by anti-I-Ab and anti-I-Ak mAb, respectively. These results suggest that LPS-responsive F1 B cells comprise at least two separate populations with restriction specificity for only one of the parental I-A products expressed on B cells. In addition, it was demonstrated that the I-A-restriction specificity of LPS-responsive B cells is plastic and determined by H-2-genotype of bone marrow cells present during B cell ontogeny but not by that of radiation-resistant host elements. Namely, the LPS responses of B10-derived B cells from (B10 + B10.BR) (H-2b x H - 2k)F1 radiation bone marrow chimeras but not from B10 (H-2b x H-2k)F1 chimeras became sensitive to the inhibition of anti-I-Ak mAb in the presence of mitomycin C-treated I-Ak-positive B cells, supporting a notion of receptor-Ia molecules interactions rather than like-like interactions.« less

  1. Jumonji/Arid1b (Jarid1b) protein modulates human esophageal cancer cell growth

    PubMed Central

    KANO, YOSHIHIRO; KONNO, MASAMITSU; OHTA, KATSUYA; HARAGUCHI, NAOTSUGU; NISHIKAWA, SHIMPEI; KAGAWA, YOSHINORI; HAMABE, ATSUSHI; HASEGAWA, SHINICHIRO; OGAWA, HISATAKA; FUKUSUMI, TAKAHITO; NOGUCHI, YUKO; OZAKI, MIYUKI; KUDO, TOSHIHIRO; SAKAI, DAISUKE; SATOH, TAROH; ISHII, MASARU; MIZOHATA, EIICHI; INOUE, TAKESHI; MORI, MASAKI; DOKI, YUICHIRO; ISHII, HIDESHI

    2013-01-01

    Although esophageal cancer is highly heterogeneous and the involvement of epigenetic regulation of cancer stem cells is highly suspected, the biological significance of epigenetically modified molecules that regulate different subpopulations remains to be firmly established. Using esophageal cancer cells, we investigated the functional roles of the H3K4 demethylase Jumonji/Arid1b (Jarid1b) (Kdm5b/Plu-1/Rbp2-h1), an epigenetic factor that is required for continuous cell growth in melanoma. JARID1B knockdown resulted in the suppression of esophageal cancer cell growth, sphere formation and invasion ability and was associated with loss of epithelial marker expression. However, these inhibitory effects observed on tumor formation were reverted subsequent to subcutaneous inoculation of these cells into immune-deficient mice. These results indicated that JARID1B plays a role in maintaining cancer stem cells in the esophagus and justifies the rationale for studying the effects of continuous inhibition of this epigenetic factor in esophageal cancer. PMID:24649241

  2. 3,4-Dihydroxybenzalactone Suppresses Human Non-Small Cell Lung Carcinoma Cells Metastasis via Suppression of Epithelial to Mesenchymal Transition, ROS-Mediated PI3K/AKT/MAPK/MMP and NFκB Signaling Pathways.

    PubMed

    Chao, Wei; Deng, Jeng-Shyan; Li, Pei-Ying; Liang, Yu-Chia; Huang, Guan-Jhong

    2017-03-28

    3,4-Dihydroxybenzalactone (DBL) was isolated from Phellinus linteus (PL), which is a folk medicine possessing various physiological effects. In this study, we used highly metastatic A549 cells to investigate efficacy of DBL inhibition of cancer metastasis and possible mechanisms. The results revealed DBL inhibited migratory and invasive abilities of cancer cells at noncytotoxic concentrations. We found DBL suppressed enzymatic activities, protein expression, and RNA levels of matrix metalloproteinase (MMP)-2 and MMP-9. Western blot results showed DBL decreased phosphoinositide 3-kinase (PI3K)/AKT, phosphorylation status of mitogen-activated protein kinases (MAPKs), and focal adhesion kinase (FAK)/paxillin, which correlated with cell migratory ability. DBL also affected epithelial to mesenchymal transition (EMT)-related biomarkers. In addition, DBL enhanced cytoprotective effects through elevated antioxidant enzymes including heme oxygenase 1 (HO-1), catalase, glutathione peroxidase (GPx), and superoxide dismutase (SOD). Moreover, DBL influenced the nuclear translocation of nuclear factor κB (NFκB), nuclear factor erythroid 2-related factor 2 (Nrf2), Snail, and Slug in A549 cells. Taken together, these results suggested that treatment with DBL may act as a potential candidate to inhibit lung cancer metastasis by inhibiting MMP-2 and -9 via affecting PI3K/AKT, MAPKs, FAK/paxillin, EMT/Snail and Slug, Nrf2/antioxidant enzymes, and NFκB signaling pathways.

  3. Gastric Adenocarcinomas Express the Glycosphingolipid Gb3/CD77: Targeting of Gastric Cancer Cells with Shiga Toxin B-Subunit.

    PubMed

    Geyer, Philipp Emanuel; Maak, Matthias; Nitsche, Ulrich; Perl, Markus; Novotny, Alexander; Slotta-Huspenina, Julia; Dransart, Estelle; Holtorf, Anne; Johannes, Ludger; Janssen, Klaus-Peter

    2016-05-01

    The B-subunit of the bacterial Shiga toxin (STxB), which is nontoxic and has low immunogenicity, can be used for tumor targeting of breast, colon, and pancreatic cancer. Here, we tested whether human gastric cancers, which are among the most aggressive tumor entities, express the cellular receptor of Shiga toxin, the glycosphingolipid globotriaosylceramide (Gb3/CD77). The majority of cases showed an extensive staining for Gb3 (36/50 cases, 72%), as evidenced on tissue sections of surgically resected specimen. Gb3 expression was detected independent of type (diffuse/intestinal), and was negatively correlated to increasing tumor-node-metastasis stages (P = 0.0385), as well as with markers for senescence. Gb3 expression in nondiseased gastric mucosa was restricted to chief and parietal cells at the bottom of the gastric glands, and was not elevated in endoscopic samples of gastritis (n = 10). Gb3 expression in established cell lines of gastric carcinoma was heterogeneous, with 6 of 10 lines being positive, evidenced by flow cytometry. STxB was taken up rapidly by live Gb3-positive gastric cancer cells, following the intracellular retrograde transport route, avoiding lysosomes and rapidly reaching the Golgi apparatus and the endoplasmic reticulum. Treatment of the Gb3-expressing gastric carcinoma cell line St3051 with STxB coupled to SN38, the active metabolite of the topoisomerase type I inhibitor irinotecan, resulted in >100-fold increased cytotoxicity, as compared with irinotecan alone. No cytotoxicity was observed on gastric cancer cell lines lacking Gb3 expression, demonstrating receptor specificity of the STxB-SN38 compound. Thus, STxB is a highly specific transport vehicle for cytotoxic agents in gastric carcinoma. Mol Cancer Ther; 15(5); 1008-17. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. CD22 regulates adaptive and innate immune responses of B cells.

    PubMed

    Kawasaki, Norihito; Rademacher, Christoph; Paulson, James C

    2011-01-01

    B cells sense microenvironments through the B cell receptor (BCR) and Toll-like receptors (TLRs). While signals from BCR and TLRs synergize to distinguish self from nonself, inappropriate regulation can result in development of autoimmune disease. Here we show that CD22, an inhibitory co-receptor of BCR, also negatively regulates TLR signaling in B cells. CD22-deficient (Cd22(-/-)) B cells exhibit hyperactivation in response to ligands of TLRs 3, 4 and 9. Evidence suggests that this results from impaired induction of suppressors of cytokine signaling 1 and 3, well-known suppressors of TLR signaling. Antibody-mediated sequestration of CD22 on wild-type (WT) B cells augments proliferation by TLR ligands. Conversely, expression of CD22 in a Cd22(-/-) B cell line blunts responses to TLR ligands. We also show that lipopolysaccharide-induced transcription by nuclear factor-κB is inhibited by ectopic expression of CD22 in a TLR4 reporter cell line. Taken together, these results suggest that negative regulation of TLR signaling is an intrinsic property of CD22. Since TLRs and BCR activate B cells through different signaling pathways, and are differentially localized in B cells, CD22 exhibits a broader regulation of receptors that mediate adaptive and innate immune responses of B cells than previously recognized. Copyright © 2010 S. Karger AG, Basel.

  5. Guggulsterone (GS) inhibits smokeless tobacco and nicotine-induced NF-κB and STAT3 pathways in head and neck cancer cells.

    PubMed

    Macha, Muzafar A; Matta, Ajay; Chauhan, S S; Siu, K W Michael; Ralhan, Ranju

    2011-03-01

    Understanding the molecular pathways perturbed in smokeless tobacco- (ST) associated head and neck squamous cell carcinoma (HNSCC) is critical for identifying novel complementary agents for effective disease management. Activation of nuclear factor-kappaB (NF-κB) and cyclooxygenase-2 (COX-2) was reported in ST-associated HNSCC by us [Sawhney,M. et al. (2007) Expression of NF-kappaB parallels COX-2 expression in oral precancer and cancer: association with smokeless tobacco. Int. J. Cancer, 120, 2545-2556]. In search of novel agents for treatment of HNSCC, we investigated the potential of guggulsterone (GS), (4,17(20)-pregnadiene-3,16-dione), a biosafe nutraceutical, in inhibiting ST- and nicotine-induced activation of NF-κB and signal transducer and activator of transcription (STAT) 3 pathways in HNSCC cells. GS inhibited the activation of NF-κB and STAT3 proteins in head and neck cancer cells. This inhibition of NF-κB by GS resulted from decreased phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha the inhibitory subunit of NF-κB. Importantly, treatment of HNSCC cells with GS abrogated both ST- and nicotine-induced nuclear activation of NF-κB and pSTAT3 proteins and their downstream targets COX-2 and vascular endothelial growth factor. Furthermore, GS treatment decreased the levels of ST- and nicotine-induced secreted interleukin-6 in culture media of HNSCC cells. In conclusion, our findings demonstrated that GS treatment abrogates the effects of ST and nicotine on activation of NF-κB and STAT3 pathways in HNSCC cells that contribute to inflammatory and angiogenic responses as well as its progression and metastasis. These findings provide a biologic rationale for further clinical investigation of GS as an effective complementary agent for inhibiting ST-induced head and neck cancer.

  6. TGF-β-induced IκB-ζ controls Foxp3 gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MaruYama, Takashi, E-mail: ta-maru@umin.ac.jp; School of Medicine, Gifu University, Gifu 501-1194

    2015-08-21

    Inhibitor of kappa B (IκB)-ζ, a member of the nuclear IκB family of proteins, is induced by the transforming growth factor (TGF)-β signaling pathway and plays a pivotal role in maintaining the balance of T helper (Th) cell subsets. IκB-ζ deficiency results in reduced percentages of Th17 cells and increased percentages of Th1 cells. In this study, the effects of IκB-ζ deficiency on T-cell subsets were examined further. The data showed that IκB-ζ-deficient T cells had a high capacity for generation of regulatory T cells (Tregs) when T cells were cultured under TGF-β stimulation in the presence of cytokine-neutralizing antibodies.more » Mechanistically, IκB-ζ itself negatively regulated activation of the Foxp3 promoter in a nuclear factor of kappaB-dependent manner. Thus, this study showed that IκB-ζ controlled Treg differentiation. - Highlights: • IκB-ζ-deficient T cells exhibited increased generation of Foxp3{sup +} Tregs. • IκB-ζ played a key role in Foxp3 gene expression. • Retroviral overexpression of IκB-ζ was achieved in T cells.« less

  7. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells.

    PubMed

    Paolino, Magdalena; Choidas, Axel; Wallner, Stephanie; Pranjic, Blanka; Uribesalgo, Iris; Loeser, Stefanie; Jamieson, Amanda M; Langdon, Wallace Y; Ikeda, Fumiyo; Fededa, Juan Pablo; Cronin, Shane J; Nitsch, Roberto; Schultz-Fademrecht, Carsten; Eickhoff, Jan; Menninger, Sascha; Unger, Anke; Torka, Robert; Gruber, Thomas; Hinterleitner, Reinhard; Baier, Gottfried; Wolf, Dominik; Ullrich, Axel; Klebl, Bert M; Penninger, Josef M

    2014-03-27

    Tumour metastasis is the primary cause of mortality in cancer patients and remains the key challenge for cancer therapy. New therapeutic approaches to block inhibitory pathways of the immune system have renewed hopes for the utility of such therapies. Here we show that genetic deletion of the E3 ubiquitin ligase Cbl-b (casitas B-lineage lymphoma-b) or targeted inactivation of its E3 ligase activity licenses natural killer (NK) cells to spontaneously reject metastatic tumours. The TAM tyrosine kinase receptors Tyro3, Axl and Mer (also known as Mertk) were identified as ubiquitylation substrates for Cbl-b. Treatment of wild-type NK cells with a newly developed small molecule TAM kinase inhibitor conferred therapeutic potential, efficiently enhancing anti-metastatic NK cell activity in vivo. Oral or intraperitoneal administration using this TAM inhibitor markedly reduced murine mammary cancer and melanoma metastases dependent on NK cells. We further report that the anticoagulant warfarin exerts anti-metastatic activity in mice via Cbl-b/TAM receptors in NK cells, providing a molecular explanation for a 50-year-old puzzle in cancer biology. This novel TAM/Cbl-b inhibitory pathway shows that it might be possible to develop a 'pill' that awakens the innate immune system to kill cancer metastases.

  8. The E3 ubiquitin ligase mind bomb-2 (MIB2) protein controls B-cell CLL/lymphoma 10 (BCL10)-dependent NF-κB activation.

    PubMed

    Stempin, Cinthia C; Chi, Liying; Giraldo-Vela, Juan P; High, Anthony A; Häcker, Hans; Redecke, Vanessa

    2011-10-28

    B-cell CLL/lymphoma 10 (BCL10) is crucial for the activation of NF-κB in numerous immune receptor signaling pathways, including the T-cell receptor (TCR) and B-cell receptor signaling pathways. However, the molecular mechanisms that lead to signal transduction from BCL10 to downstream NF-κB effector kinases, such as TAK1 and components of the IKK complex, are not entirely understood. Here we used a proteomic approach and identified the E3 ligase MIB2 as a novel component of the activated BCL10 complex. In vitro translation and pulldown assays suggest direct interaction between BCL10 and MIB2. Overexpression experiments show that MIB2 controls BCL10-mediated activation of NF-κB by promoting autoubiquitination and ubiquitination of IKKγ/NEMO, as well as recruitment and activation of TAK1. Knockdown of MIB2 inhibited BCL10-dependent NF-κB activation. Together, our results identify MIB2 as a novel component of the activated BCL10 signaling complex and a missing link in the BCL10-dependent NF-κB signaling pathway.

  9. EMMPRIN reduction via scFv-M6-1B9 intrabody affects α3β1-integrin and MCT1 functions and results in suppression of progressive phenotype in the colorectal cancer cell line Caco-2.

    PubMed

    Sangboonruang, S; Thammasit, P; Intasai, N; Kasinrerk, W; Tayapiwatana, C; Tragoolpua, K

    2014-06-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) exhibits overexpression in various cancers and promotes cancer progression and metastasis via the interaction with its associated molecules. The scFv-M6-1B9 intrabody has a potential ability to reduce EMMPRIN cell surface expression. However, the subsequent effect of scFv-M6-1B9 intrabody-mediated EMMPRIN abatement on its related molecules, α3β1-integrin, MCT1, MMP-2 and MMP-9, is undefined. Our results demonstrated that the scFv-M6-1B9 intrabody efficiently decreased α3β1-integrin cell surface expression levels. In addition, intracellular accumulation of MCT1 and lactate were increased. These results lead to suppression of features characteristic for tumor progression, including cell migration, proliferation and invasion, in a colorectal cancer cell line (Caco-2) although there was no difference in MMP expression. Thus, EMMPRIN represents an attractive target molecule for the disruption of cancer proliferation and metastasis. An scFv-M6-1B9 intrabody-based approach could be relevant for cancer gene therapy.

  10. Tolerogenic CX3CR1+ B cells suppress food allergy-induced intestinal inflammation in mice.

    PubMed

    Liu, Z Q; Wu, Y; Song, J P; Liu, X; Liu, Z; Zheng, P Y; Yang, P C

    2013-10-01

    B lymphocytes are an important cell population of the immune regulation; their role in the regulation of food allergy has not been fully understood yet. This study aims to investigate the role of a subpopulation of tolerogenic B cells (TolBC) in the generation of regulatory T cells (Treg) and in the suppression of food allergy-induced intestinal inflammation in mice. The intestinal mucosa-derived CD5+ CD19+ CX3CR1+ TolBCs were characterized by flow cytometry; a mouse model of intestinal T helper (Th)2 inflammation was established to assess the immune regulatory role of this subpopulation of TolBCs. A subpopulation of CD5+ CD19+ CX3CR1+ B cells was detected in the mouse intestinal mucosa. The cells also expressed transforming growth factor (TGF)-β and carried integrin alpha v beta 6 (αvβ6). Exposure to recombinant αvβ6 and anti-IgM antibody induced naive B cells to differentiate into the TGF-β-producing TolBCs. Coculturing this subpopulation of TolBCs with Th0 cells generated CD4+ CD25+ Foxp3+ Tregs. Adoptive transfer with the TolBCs markedly suppressed the food allergy-induced intestinal Th2 pattern inflammation in mice. CD5+ CD19+ CX3CR1+ TolBCs are capable of inducing Tregs in the intestine and suppress food allergy-related Th2 pattern inflammation in mice. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. B Cell Development in the Bone Marrow Is Regulated by Homeostatic Feedback Exerted by Mature B Cells

    PubMed Central

    Shahaf, Gitit; Zisman-Rozen, Simona; Benhamou, David; Melamed, Doron; Mehr, Ramit

    2016-01-01

    Cellular homeostasis in the B cell compartment is strictly imposed to balance cell production and cell loss. However, it is not clear whether B cell development in the bone marrow is an autonomous process or subjected to regulation by the peripheral B cell compartment. To specifically address this question, we used mice transgenic for human CD20, where effective depletion of B lineage cells is obtained upon administration of mouse anti-human CD20 antibodies, in the absence of any effect on other cell lineages and/or tissues. We followed the kinetics of B cell return to equilibrium by BrdU labeling and flow cytometry and analyzed the resulting data by mathematical modeling. Labeling was much faster in depleted mice. Compared to control mice, B cell-depleted mice exhibited a higher proliferation rate in the pro-/pre-B compartment, and higher cell death and lower differentiation in the immature B cell compartment. We validated the first result by analysis of the expression of Ki67, the nuclear protein expressed in proliferating cells, and the second using Annexin V staining. Collectively, our results suggest that B lymphopoiesis is subjected to homeostatic feedback mechanisms imposed by mature B cells in the peripheral compartment. PMID:27047488

  12. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site.

    PubMed

    Letessier, Anne; Millot, Gaël A; Koundrioukoff, Stéphane; Lachagès, Anne-Marie; Vogt, Nicolas; Hansen, R Scott; Malfoy, Bernard; Brison, Olivier; Debatisse, Michelle

    2011-02-03

    Common fragile sites have long been identified by cytogeneticists as chromosomal regions prone to breakage upon replication stress. They are increasingly recognized to be preferential targets for oncogene-induced DNA damage in pre-neoplastic lesions and hotspots for chromosomal rearrangements in various cancers. Common fragile site instability was attributed to the fact that they contain sequences prone to form secondary structures that may impair replication fork movement, possibly leading to fork collapse resulting in DNA breaks. Here we show, in contrast to this view, that the fragility of FRA3B--the most active common fragile site in human lymphocytes--does not rely on fork slowing or stalling but on a paucity of initiation events. Indeed, in lymphoblastoid cells, but not in fibroblasts, initiation events are excluded from a FRA3B core extending approximately 700 kilobases, which forces forks coming from flanking regions to cover long distances in order to complete replication. We also show that origins of the flanking regions fire in mid-S phase, leaving the site incompletely replicated upon fork slowing. Notably, FRA3B instability is specific to cells showing this particular initiation pattern. The fact that both origin setting and replication timing are highly plastic in mammalian cells explains the tissue specificity of common fragile site instability we observed. Thus, we propose that common fragile sites correspond to the latest initiation-poor regions to complete replication in a given cell type. For historical reasons, common fragile sites have been essentially mapped in lymphocytes. Therefore, common fragile site contribution to chromosomal rearrangements in tumours should be reassessed after mapping fragile sites in the cell type from which each tumour originates.

  13. TIM-1 signaling in B cells regulates antibody production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Juan; Usui, Yoshihiko; Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku-ku, Tokyo 160-0023

    Highlights: {yields} TIM-1 is highly expressed on anti-IgM + anti-CD40-stimulated B cells. {yields} Anti-TIM-1 mAb enhanced proliferation and Ig production on activated B cell in vitro. {yields} TIM-1 signaling regulates Ab production by response to TI-2 and TD antigens in vivo. -- Abstract: Members of the T cell Ig and mucin (TIM) family have recently been implicated in the control of T cell-mediated immune responses. In this study, we found TIM-1 expression on anti-IgM- or anti-CD40-stimulated splenic B cells, which was further up-regulated by the combination of anti-IgM and anti-CD40 Abs. On the other hand, TIM-1 ligand was constitutively expressedmore » on B cells and inducible on anti-CD3{sup +} anti-CD28-stimulated CD4{sup +} T cells. In vitro stimulation of activated B cells by anti-TIM-1 mAb enhanced proliferation and expression of a plasma cell marker syndecan-1 (CD138). We further examined the effect of TIM-1 signaling on antibody production in vitro and in vivo. Higher levels of IgG2b and IgG3 secretion were detected in the culture supernatants of the anti-TIM-1-stimulated B cells as compared with the control IgG-stimulated B cells. When immunized with T-independent antigen TNP-Ficoll, TNP-specific IgG1, IgG2b, and IgG3 Abs were slightly increased in the anti-TIM-1-treated mice. When immunized with T-dependent antigen OVA, serum levels of OVA-specific IgG2b, IgG3, and IgE Abs were significantly increased in the anti-TIM-1-treated mice as compared with the control IgG-treated mice. These results suggest that TIM-1 signaling in B cells augments antibody production by enhancing B cell proliferation and differentiation.« less

  14. Proapoptotic BIM Impacts B Lymphoid Homeostasis by Limiting the Survival of Mature B Cells in a Cell-Autonomous Manner.

    PubMed

    Liu, Rui; King, Ashleigh; Bouillet, Philippe; Tarlinton, David M; Strasser, Andreas; Heierhorst, Jörg

    2018-01-01

    The proapoptotic BH3-only protein BIM ( Bcl2l11 ) plays key roles in the maintenance of multiple hematopoietic cell types. In mice, germline knockout or conditional pan-hematopoietic deletion of Bim results in marked splenomegaly and significantly increased numbers of B cells. However, it has remained unclear whether these abnormalities reflect the loss of cell-intrinsic functions of BIM within the B lymphoid lineage and, if so, which stages in the lifecycle of B cells are most impacted by the loss of BIM. Here, we show that B lymphoid-specific conditional deletion of Bim during early development (i.e., in pro-B cells using Mb1-Cre ) or during the final differentiation steps (i.e., in transitional B cells using Cd23-Cre ) led to a similar >2-fold expansion of the mature follicular B cell pool. Notably, while the expansion of mature B cells was quantitatively similar in conditional and germline Bim -deficient mice, the splenomegaly was significantly attenuated after B lymphoid-specific compared to global Bim deletion. In vitro , conditional loss of Bim substantially increased the survival of mature B cells that were refractory to activation by lipopolysaccharide. Finally, we also found that conditional deletion of just one Bim allele by Mb1-Cre dramatically accelerated the development of Myc -driven B cell lymphoma, in a manner that was comparable to the effect of germline Bim heterozygosity. These data indicate that, under physiological conditions, BIM regulates B cell homeostasis predominantly by limiting the life span of non-activated mature B cells, and that it can have additional effects on developing B cells under pathological conditions.

  15. Proapoptotic BIM Impacts B Lymphoid Homeostasis by Limiting the Survival of Mature B Cells in a Cell-Autonomous Manner

    PubMed Central

    Liu, Rui; King, Ashleigh; Bouillet, Philippe; Tarlinton, David M.; Strasser, Andreas; Heierhorst, Jörg

    2018-01-01

    The proapoptotic BH3-only protein BIM (Bcl2l11) plays key roles in the maintenance of multiple hematopoietic cell types. In mice, germline knockout or conditional pan-hematopoietic deletion of Bim results in marked splenomegaly and significantly increased numbers of B cells. However, it has remained unclear whether these abnormalities reflect the loss of cell-intrinsic functions of BIM within the B lymphoid lineage and, if so, which stages in the lifecycle of B cells are most impacted by the loss of BIM. Here, we show that B lymphoid-specific conditional deletion of Bim during early development (i.e., in pro-B cells using Mb1-Cre) or during the final differentiation steps (i.e., in transitional B cells using Cd23-Cre) led to a similar >2-fold expansion of the mature follicular B cell pool. Notably, while the expansion of mature B cells was quantitatively similar in conditional and germline Bim-deficient mice, the splenomegaly was significantly attenuated after B lymphoid-specific compared to global Bim deletion. In vitro, conditional loss of Bim substantially increased the survival of mature B cells that were refractory to activation by lipopolysaccharide. Finally, we also found that conditional deletion of just one Bim allele by Mb1-Cre dramatically accelerated the development of Myc-driven B cell lymphoma, in a manner that was comparable to the effect of germline Bim heterozygosity. These data indicate that, under physiological conditions, BIM regulates B cell homeostasis predominantly by limiting the life span of non-activated mature B cells, and that it can have additional effects on developing B cells under pathological conditions. PMID:29623080

  16. Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b.

    PubMed

    Ebata, Kevin T; Mesh, Kathryn; Liu, Shichong; Bilenky, Misha; Fekete, Alexander; Acker, Michael G; Hirst, Martin; Garcia, Benjamin A; Ramalho-Santos, Miguel

    2017-01-01

    Histone methylation patterns regulate gene expression and are highly dynamic during development. The erasure of histone methylation is carried out by histone demethylase enzymes. We had previously shown that vitamin C enhances the activity of Tet enzymes in embryonic stem (ES) cells, leading to DNA demethylation and activation of germline genes. We report here that vitamin C induces a remarkably specific demethylation of histone H3 lysine 9 dimethylation (H3K9me2) in naïve ES cells. Vitamin C treatment reduces global levels of H3K9me2, but not other histone methylation marks analyzed, as measured by western blot, immunofluorescence and mass spectrometry. Vitamin C leads to widespread loss of H3K9me2 at large chromosomal domains as well as gene promoters and repeat elements. Vitamin C-induced loss of H3K9me2 occurs rapidly within 24 h and is reversible. Importantly, we found that the histone demethylases Kdm3a and Kdm3b are required for vitamin C-induced demethylation of H3K9me2. Moreover, we show that vitamin C-induced Kdm3a/b-mediated H3K9me2 demethylation and Tet-mediated DNA demethylation are independent processes at specific loci. Lastly, we document Kdm3a/b are partially required for the upregulation of germline genes by vitamin C. These results reveal a specific role for vitamin C in histone demethylation in ES cells and document that DNA methylation and H3K9me2 cooperate to silence germline genes in pluripotent cells.

  17. Sin3b interacts with Myc and decreases Myc levels.

    PubMed

    Garcia-Sanz, Pablo; Quintanilla, Andrea; Lafita, M Carmen; Moreno-Bueno, Gema; García-Gutierrez, Lucia; Tabor, Vedrana; Varela, Ignacio; Shiio, Yuzuru; Larsson, Lars-Gunnar; Portillo, Francisco; Leon, Javier

    2014-08-08

    Myc expression is deregulated in many human cancers. A yeast two-hybrid screen has revealed that the transcriptional repressor Sin3b interacts with Myc protein. Endogenous Myc and Sin3b co-localize and interact in the nuclei of human and rat cells, as assessed by co-immunoprecipitation, immunofluorescence, and proximity ligation assay. The interaction is Max-independent. A conserved Myc region (amino acids 186-203) is required for the interaction with Sin3 proteins. Histone deacetylase 1 is recruited to Myc-Sin3b complexes, and its deacetylase activity is required for the effects of Sin3b on Myc. Myc and Sin3a/b co-occupied many sites on the chromatin of human leukemia cells, although the presence of Sin3 was not associated with gene down-regulation. In leukemia cells and fibroblasts, Sin3b silencing led to Myc up-regulation, whereas Sin3b overexpression induced Myc deacetylation and degradation. An analysis of Sin3b expression in breast tumors revealed an association between low Sin3b expression and disease progression. The data suggest that Sin3b decreases Myc protein levels upon Myc deacetylation. As Sin3b is also required for transcriptional repression by Mxd-Max complexes, our results suggest that, at least in some cell types, Sin3b limits Myc activity through two complementary activities: Mxd-dependent gene repression and reduction of Myc levels. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Cryptotanshinone induces cell cycle arrest and apoptosis through the JAK2/STAT3 and PI3K/Akt/NFκB pathways in cholangiocarcinoma cells

    PubMed Central

    Ke, Fayong; Wang, Zheng; Song, Xiaoling; Ma, Qiang; Hu, Yunping; Jiang, Lin; Zhang, Yijian; Liu, Yingbin; Zhang, Yong; Gong, Wei

    2017-01-01

    Background Cholangiocarcinoma (CCA) is the most common biliary tract malignancy in the world with high resistance to current chemotherapies and extremely poor prognosis. The main objective of this study was to investigate the inhibitory effects of cryptotanshinone (CTS), a natural compound isolated from Salvia miltiorrhiza Bunge, on CCA both in vitro and in vivo and to explore the underlying mechanisms of CTS-induced apoptosis and cell cycle arrest. Methods The anti-tumor activity of CTS on HCCC-9810 and RBE cells was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and colony forming assays. Cell cycle changes were detected by flow cytometric analysis. Apoptosis was detected by annexin V/propidium iodide double staining and Hoechst 33342 staining assays. The efficacy of CTS in vivo was evaluated using a HCCC-9810 xenograft model in athymic nude mice. The expression of key proteins involved in cell apoptosis and signaling pathway in vitro was analyzed by Western blot analysis. Results CTS induced potent growth inhibition, S-phase arrest, apoptosis, and colony-forming inhibition in HCCC-9810 and RBE cells in a dose-dependent manner. Intraperitoneal injection of CTS (0, 10, or 25 mg/kg) for 4 weeks significantly inhibited the growth of HCCC-9810 xenografts in athymic nude mice. CTS treatment induced S-phase arrest with a decrease of cyclin A1 and an increase of cyclin D1 protein level. Bcl-2 expression was downregulated remarkably, while Bax expression was increased after apoptosis occurred. Additionally, the activation of JAK2/STAT3 and PI3K/Akt/NFκB was significantly inhibited in CTS-treated CCA cells. Conclusion CTS induced CCA cell apoptosis by suppressing both the JAK2/STAT3 and PI3K/Akt/NFκB signaling pathways and altering the expression of Bcl-2/Bax family, which was regulated by these two signaling pathways. CTS may serve as a potential therapeutic agent for CCA. PMID:28670110

  19. EBNA3C Augments Pim-1 Mediated Phosphorylation and Degradation of p21 to Promote B-Cell Proliferation

    PubMed Central

    Banerjee, Shuvomoy; Lu, Jie; Cai, Qiliang; Sun, Zhiguo; Jha, Hem Chandra; Robertson, Erle S.

    2014-01-01

    Epstein–Barr virus (EBV), a ubiquitous human herpesvirus, can latently infect the human population. EBV is associated with several types of malignancies originating from lymphoid and epithelial cell types. EBV latent antigen 3C (EBNA3C) is essential for EBV-induced immortalization of B-cells. The Moloney murine leukemia provirus integration site (PIM-1), which encodes an oncogenic serine/threonine kinase, is linked to several cellular functions involving cell survival, proliferation, differentiation, and apoptosis. Notably, enhanced expression of Pim-1 kinase is associated with numerous hematological and non-hematological malignancies. A higher expression level of Pim-1 kinase is associated with EBV infection, suggesting a crucial role for Pim-1 in EBV-induced tumorigenesis. We now demonstrate a molecular mechanism which reveals a direct role for EBNA3C in enhancing Pim-1 expression in EBV-infected primary B-cells. We also showed that EBNA3C is physically associated with Pim-1 through its amino-terminal domain, and also forms a molecular complex in B-cells. EBNA3C can stabilize Pim-1 through abrogation of the proteasome/Ubiquitin pathway. Our results demonstrate that EBNA3C enhances Pim-1 mediated phosphorylation of p21 at the Thr145 residue. EBNA3C also facilitated the nuclear localization of Pim-1, and promoted EBV transformed cell proliferation by altering Pim-1 mediated regulation of the activity of the cell-cycle inhibitor p21/WAF1. Our study demonstrated that EBNA3C significantly induces Pim-1 mediated proteosomal degradation of p21. A significant reduction in cell proliferation of EBV-transformed LCLs was observed upon stable knockdown of Pim-1. This study describes a critical role for the oncoprotein Pim-1 in EBV-mediated oncogenesis, as well as provides novel insights into oncogenic kinase-targeted therapeutic intervention of EBV-associated cancers. PMID:25121590

  20. Positive contrast of SPIO-labeled cells by off-resonant reconstruction of 3D radial half-echo bSSFP.

    PubMed

    Diwoky, Clemens; Liebmann, Daniel; Neumayer, Bernhard; Reinisch, Andreas; Knoll, Florian; Strunk, Dirk; Stollberger, Rudolf

    2015-01-01

    This article describes a new acquisition and reconstruction concept for positive contrast imaging of cells labeled with superparamagnetic iron oxides (SPIOs). Overcoming the limitations of a negative contrast representation as gained with gradient echo and fully balanced steady state (bSSFP), the proposed method delivers a spatially localized contrast with high cellular sensitivity not accomplished by other positive contrast methods. Employing a 3D radial bSSFP pulse sequence with half-echo sampling, positive cellular contrast is gained by adding artificial global frequency offsets to each half-echo before image reconstruction. The new contrast regime is highlighted with numerical intravoxel simulations including the point-spread function for 3D half-echo acquisitions. Furthermore, the new method is validated on the basis of in vitro cell phantom measurements on a clinical MRI platform, where the measured contrast-to-noise ratio (CNR) of the new approach exceeds even the negative contrast of bSSFP. Finally, an in vivo proof of principle study based on a mouse model with a clear depiction of labeled cells within a subcutaneous cell islet containing a cell density as low as 7 cells/mm(3) is presented. The resultant isotropic images show robustness to motion and a high CNR, in addition to an enhanced specificity due to the positive contrast of SPIO-labeled cells. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Senescence-associated SIN3B promotes inflammation and pancreatic cancer progression

    PubMed Central

    Rielland, Maïté; Cantor, David J.; Graveline, Richard; Hajdu, Cristina; Mara, Lisa; de Diego Diaz, Beatriz; Miller, George; David, Gregory

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is strikingly resistant to conventional therapeutic approaches. We previously demonstrated that the histone deacetylase–associated protein SIN3B is essential for oncogene-induced senescence in cultured cells. Here, using a mouse model of pancreatic cancer, we have demonstrated that SIN3B is required for activated KRAS-induced senescence in vivo. Surprisingly, impaired senescence as the result of genetic inactivation of Sin3B was associated with delayed PDAC progression and correlated with an impaired inflammatory response. In murine and human pancreatic cells and tissues, levels of SIN3B correlated with KRAS-induced production of IL-1α. Furthermore, evaluation of human pancreatic tissue and cancer cells revealed that Sin3B was decreased in control and PDAC samples, compared with samples from patients with pancreatic inflammation. These results indicate that senescence-associated inflammation positively correlates with PDAC progression and suggest that SIN3B has potential as a therapeutic target for inhibiting inflammation-driven tumorigenesis. PMID:24691445

  2. Antiproliferative activity of amino substituted benzo[b]thieno[2,3-b]pyrido[1,2-a]benzimidazoles explored by 2D and 3D cell culture system.

    PubMed

    Perin, Nataša; Bobanović, Kristina; Zlatar, Ivo; Jelić, Dubravko; Kelava, Vanja; Koštrun, Sanja; Marković, Vesna Gabelica; Brajša, Karmen; Hranjec, Marijana

    2017-01-05

    Benzimidazo[1,2-a]quinolines and benzo[b]thieno[2,3-b]pyrido[1,2-a]benzimidazoles with amino chains on the different positions have been evaluated by 2D and 3D assays on the human breast cancer cells. Pentacyclic derivatives were synthesized by microwave assisted amination to study the influence of the thiophene substructure on antitumor activity in comparison to tetracyclic analogues. The results obtained from 2D assay reveals that the antitumor activity is strongly dependent on the nature and position of amino chains. Tetracyclic derivatives displayed selective activity on SK-BR-3 with the 2-amino substituted derivatives as the most active ones while pentacyclic derivatives 6-16 and 21-25 showed more pronounced activity on T-47D. The evaluation of antitumor activity in the 3D assay pointed out that some of the tetracyclic and pentacyclic amino substituted derivatives showed selective activity on the MDA-MB-231 cell line. Influence of physico-chemical properties of the compounds on antiproliferative activity have been investigated by multivariate statistical methods. As a measure of lipophilicity, experimental Chrom LogD values have been determined and number of structural parameters have been calculated for investigated compounds. Main factors contributing to the antiproliferative effect for both 2D and 3D cell cultures are found to be basicity, lipophilicity, molecular weight and number of H-bond donors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. N-acetyl cysteine inhibits lipopolysaccharide-mediated induction of interleukin-6 synthesis in MC3T3-E1 cells through the NF-kB signaling pathway.

    PubMed

    Guo, Ling; Zhang, Hui; Li, Wangyang; Zhan, Danting; Wang, Min

    2018-06-06

    Interleukin-6 (IL-6) is a potent stimulator of osteoclastic activity. Lipopolysaccharide (LPS) has been shown to regulate the expression of potent inflammatory factors, including TNF-α and IL-6. Currently, effective therapeutic treatments for bacteria-caused bone destruction are limited. N-acetyl cysteine (NAC) is an antioxidant small molecule that possibly modulates osteoblastic differentiation. However, whether NAC can affect the LPS-mediated reduction of IL-6 synthesis in MC3T3-E1 cells is still unknown. The aim of this study was to investigate the role of NAC in the LPS -mediated reduction of IL-6 synthesis by MC3T3-E1 cells and to explore the underlying molecular mechanisms. In addition, we aimed to determine the involvement of the NF-kB pathway in any changes in IL-6 expression observed in response to LPS and NAC. MC3T3-E1 cells (ATCC, CRL-2593) were cultured in α-minimum essential medium. Cells were stimulated using NAC or LPS at various concentrations. Cell proliferation was observed at multiple time points using a cell counting kit 8 (CCK-8). IL-6 mRNA expression and protein synthesis were determined using quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay analyses. NF-kB mRNA expression and protein synthesis was determined using qPCR and Western blots analyses. The results demonstrate that LPS induced IL-6 and NF-kB mRNA expression and protein synthesis in the cultured MC3T3-E1 cells. However, these effects were abolished following pre-treatment with NAC. Pretreatment with NAC (1 mmol/l) or BAY11-7082 (10 μmol/l) both significantly inhibited the NF-kB activity induced by LPS. NAC inhibits the LPS-mediated induction of IL-6 synthesis in MC3T3-E1 cells through the NF-kB pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Myeloid Kdm6b deficiency results in advanced atherosclerosis.

    PubMed

    Neele, Annette E; Gijbels, Marion J J; van der Velden, Saskia; Hoeksema, Marten A; Boshuizen, Marieke C S; Prange, Koen H M; Chen, Hung-Jen; Van den Bossche, Jan; van Roomen, Cindy P P A; Shami, Annelie; Levels, Johannes H M; Kroon, Jeffrey; Lucas, Tina; Dimmeler, Stefanie; Lutgens, Esther; de Winther, Menno P J

    2018-06-01

    Atherosclerosis is a lipid-driven chronic inflammatory disorder of the arteries, and monocytes and macrophages play a central role in this process. Within the atherosclerotic lesion, macrophages can scavenge modified lipids and become the so-called foam cells. We previously reported that the epigenetic enzyme Kdm6b (also known as Jmjd3) controls the pro-fibrotic transcriptional profile of peritoneal foam cells. Given the importance of these cells in atherosclerosis, we now studied the effect of myeloid Kdm6b on disease progression. Bone marrow of myeloid Kdm6b deficient (Kdm6b del ) mice or wild type littermates (Kdm6b wt ) was transplanted to lethally irradiated Ldlr -/- mice fed a high fat diet for 9 weeks to induce atherosclerosis. Lesion size was similar in Kdm6b wt and Kdm6b del transplanted mice. However, lesions of Kdm6b del mice contained more collagen and were more necrotic. Pathway analysis on peritoneal foam cells showed that the pathway involved in leukocyte chemotaxis was most significantly upregulated. Although macrophage and neutrophil content was similar after 9 weeks of high fat diet feeding, the relative increase in collagen content and necrosis revealed that atherosclerotic lesions in Kdm6b del mice progress faster. Myeloid Kdm6b deficiency results in more advanced atherosclerosis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Killer cell immunoglobulin-like receptor 3DL1 variation modifies HLA-B*57 protection against HIV-1.

    PubMed

    Martin, Maureen P; Naranbhai, Vivek; Shea, Patrick R; Qi, Ying; Ramsuran, Veron; Vince, Nicolas; Gao, Xiaojiang; Thomas, Rasmi; Brumme, Zabrina L; Carlson, Jonathan M; Wolinsky, Steven M; Goedert, James J; Walker, Bruce D; Segal, Florencia P; Deeks, Steven G; Haas, David W; Migueles, Stephen A; Connors, Mark; Michael, Nelson; Fellay, Jacques; Gostick, Emma; Llewellyn-Lacey, Sian; Price, David A; Lafont, Bernard A; Pymm, Phillip; Saunders, Philippa M; Widjaja, Jacqueline; Wong, Shu Cheng; Vivian, Julian P; Rossjohn, Jamie; Brooks, Andrew G; Carrington, Mary

    2018-05-01

    HLA-B*57 control of HIV involves enhanced CD8+ T cell responses against infected cells, but extensive heterogeneity exists in the level of HIV control among B*57+ individuals. Using whole-genome sequencing of untreated B*57+ HIV-1-infected controllers and noncontrollers, we identified a single variant (rs643347A/G) encoding an isoleucine-to-valine substitution at position 47 (I47V) of the inhibitory killer cell immunoglobulin-like receptor KIR3DL1 as the only significant modifier of B*57 protection. The association was replicated in an independent cohort and across multiple outcomes. The modifying effect of I47V was confined to B*57:01 and was not observed for the closely related B*57:03. Positions 2, 47, and 54 tracked one another nearly perfectly, and 2 KIR3DL1 allotypes differing only at these 3 positions showed significant differences in binding B*57:01 tetramers, whereas the protective allotype showed lower binding. Thus, variation in an immune NK cell receptor that binds B*57:01 modifies its protection. These data highlight the exquisite specificity of KIR-HLA interactions in human health and disease.

  6. Substantial decrease in cell wall α-1,3-glucan caused by disruption of the kexB gene encoding a subtilisin-like processing protease in Aspergillus oryzae.

    PubMed

    Mizutani, Osamu; Shiina, Matsuko; Yoshimi, Akira; Sano, Motoaki; Watanabe, Takeshi; Yamagata, Youhei; Nakajima, Tasuku; Gomi, Katsuya; Abe, Keietsu

    2016-09-01

    Disruption of the kexB encoding a subtilisin-like processing protease in Aspergillus oryzae (ΔkexB) leads to substantial morphological defects when the cells are grown on Czapek-Dox agar plates. We previously found that the disruption of kexB causes a constitutive activation of the cell wall integrity pathway. To understand how the disruption of the kexB affects cell wall organization and components, we analyzed the cell wall of ΔkexB grown on the plates. The results revealed that both total N-acetylglucosamine content, which constitutes chitin, and chitin synthase activities were increased. Whereas total glucose content, which constitutes β-1,3-glucan and α-1,3-glucan, was decreased; this decrease was attributed to a remarkable decrease in α-1,3-glucan. Additionally, the β-1,3-glucan in the alkali-insoluble fraction of the ΔkexB showed a high degree of polymerization. These results suggested that the loss of α-1,3-glucan in the ΔkexB was compensated by increases in the chitin content and the average degree of β-1,3-glucan polymerization.

  7. DNA methylation by DNMT1 and DNMT3b methyltransferases is driven by the MUC1-C oncoprotein in human carcinoma cells.

    PubMed

    Rajabi, H; Tagde, A; Alam, M; Bouillez, A; Pitroda, S; Suzuki, Y; Kufe, D

    2016-12-15

    Aberrant expression of the DNA methyltransferases (DNMTs) and disruption of DNA methylation patterns are associated with carcinogenesis and cancer cell survival. The oncogenic MUC1-C protein is aberrantly overexpressed in diverse carcinomas; however, there is no known link between MUC1-C and DNA methylation. Our results demonstrate that MUC1-C induces the expression of DNMT1 and DNMT3b, but not DNMT3a, in breast and other carcinoma cell types. We show that MUC1-C occupies the DNMT1 and DNMT3b promoters in complexes with NF-κB p65 and drives DNMT1 and DNMT3b transcription. In this way, MUC1-C controls global DNA methylation as determined by analysis of LINE-1 repeat elements. The results further demonstrate that targeting MUC1-C downregulates DNA methylation of the CDH1 tumor suppressor gene in association with induction of E-cadherin expression. These findings provide compelling evidence that MUC1-C is of functional importance to induction of DNMT1 and DNMT3b and, in turn, changes in DNA methylation patterns in cancer cells.

  8. Maintenance of cancer stemness by miR-196b-5p contributes to chemoresistance of colorectal cancer cells via activating STAT3 signaling pathway

    PubMed Central

    Zhang, Xin; Peng, Yao; Ye, Ziyu; Ma, Yan; Liang, Yangfang; Cao, Longbin; Li, Xiangyong; Li, Ronggang; Sun, Lixia; Liu, Qiongru; Wu, Jinhua; Zhou, Keyuan; Zeng, Jincheng

    2017-01-01

    Emerging studies indicated that cancer stem cells represent a subpopulation of cells within the tumor that is responsible for chemotherapeutic resistance. However, the underlying mechanism is still not clarified yet. Here we report that miR-196b-5p is dramatically upregulated in CRC tissues and high expression of miR-196b-5p correlates with poor survival in CRC patients. Moreover, recurrent gains (amplification) contribute to the miR-196b-5p overexpression in CRC tissues. Silencing miR-196b-5p suppresses spheroids formation ability, the fraction of SP cells, expression of stem cell factors and the mitochondrial potential, and enhances the apoptosis induced by 5-fluorouracil in CRC cells; while ectopic expression of miR-196b-5p yields an opposite effect. In addition, downregulation of miR-196b-5p resensitizes CRC cells to 5-fluorouracil in vivo. Our results further demonstrate that miR-196b-5p promotes stemness and chemoresistance of CRC cells to 5-fluorouracil via targeting negative regulators SOCS1 and SOCS3 of STAT3 signaling pathway, giving rise to activation of STAT3 signaling. Interestingly, miR-196b-5p is highly enriched in the serum exosomes of patients with CRC compared to the healthy control subjects. Thus, our results unravel a novel mechanism of miR-196b-5p implicating in the maintenance of stem cell property and chemotherapeutic resistance in CRC, offering a potential rational registry of anti-miR-196b-5p combining with conventional chemotherapy against CRC. PMID:28591704

  9. Activation of macrophages by an exopolysaccharide isolated from Antarctic Psychrobacter sp. B-3

    NASA Astrophysics Data System (ADS)

    Yu, Leiye; Sun, Guojie; Wei, Jingfang; Wang, Yingze; Du, Chao; Li, Jiang

    2016-09-01

    An exopolysaccharide (EPS) was isolated and purified from an Antarctic psychrophilic bacterium B-3, identified as Psychrobacter sp., and the activation of RAW264.7 cells by B-3 EPS was investigated. The results show that B-3 EPS, over a certain concentration range, promoted cell viability, nitric oxide production, tumor necrosis factor (TNF)α secretion, and phagocytic ability. Furthermore, TAK-242, an inhibitor of the toll-like receptor 4 (TLR4) significantly reduced nitric oxide production by these cells after stimulation with B-3 EPS. Moreover, B-3 EPS induced p65 phosphorylation and IκBα degradation in these cells. In conclusion, B-3 EPS might have activated RAW264.7 cells by combining with TLR4 on cell surface and triggering activation of NF-κB signaling pathways, implying that this EPS could activate macrophages and regulate initial immune response.

  10. Doxycycline down-regulates matrix metalloproteinase expression and inhibits NF-κB signaling in LPS-induced PC3 cells.

    PubMed

    Ogut, Deniz; Reel, Buket; Gonen Korkmaz, Ceren; Arun, Mehmet Zuhuri; Cilaker Micili, Serap; Ergur, Bekir Ugur

    2016-01-01

    Matrix metalloproteinase enzymes (MMPs) play important role in inflammation, malignant cell proliferation, invasion and angiogenesis by mediating extracellular matrix degradation. Doxycycline, a synthetic tetracycline, behaves as a MMP inhibitor at a subantimicrobial dose and inhibits tumor cell proliferation, invasion and angiogenesis. The aberrant activity of nuclear factor kappa B (NF-κB) causes activation of MMPs and thereby proliferation and invasion of cancer cells. The aim of this study was to investigate the effects of doxycycline on the expression of MMPs in lipopolysaccharide (LPS)-induced PC3 human prostate cancer cells and the possible role of NF-κB signaling. PC3 cells were incubated with LPS (0.5 μg/mL) for 24 h in the presence or absence of doxycycline (5 μg/mL). The effects of LPS and doxycycline on the expressions of MMP-2, MMP-8, MMP-9, MMP-10, NF-κB/p65, IκB-α, p-IκB-α, IKK-β were examined by Western blotting and immunohistochemistry in PC3 cells. Furthermore, relative proteinase activities of MMP-2 and MMP-9 were determined by gelatin zymography. LPS increased expression and activity of MMP-9 and expression of MMP-8, MMP-10, NF-κB /p65, p-IκB-α, IKK-β and doxycycline down-regulated its effects with the exception of MMP-10 expression. The expression of MMP-2 and IκB-α was affected by neither LPS nor doxycycline. Our findings indicate that doxycycline inhibits the expression of various MMPs and NF-κB signaling may play a role in the regulation of MMPs expression in LPS-induced PC3 human prostate cancer cells.

  11. MiR-374b Promotes Proliferation and Inhibits Apoptosis of Human GIST Cells by Inhibiting PTEN through Activation of the PI3K/Akt Pathway.

    PubMed

    Long, Zi-Wen; Wu, Jiang-Hong; Hong, Cai-; Wang, Ya-Nong; Zhou, Ye

    2018-06-14

    Gastrointestinal stromal tumours (GIST) are the most common mesenchymal tumors of the gastrointestinal (GI) tract. In order to investigate a new treatment fot GIST, we hypothesized the effect of miR-374b targeting PTEN gene-mediated PI3K/Akt signal transduction pathway on proliferation and apoptosis of human gastrointestinal stromal tumor (GIST) cells. We obtained GIST tissues and adjacent normal tissues from 143 patients with GIST to measure the levels of miR- 374b, PTEN, PI3K, Akt, caspase9, Bax, MMP2, MMP9, ki67, PCNA, P53 and cyclinD1. Finally, cell viability, cell cycle and apoptosis were detected. According to the KFGG analysis of DEGs, PTEN was involved in a variety of signaling pathways and miRs were associated with cancer development. The results showed that MiR-374b was highly expressed, while PTEN was downregulated in the GIST tissues. The levels of miR-374b, PI3K, AKT and PTEN were related to tumor diameter and pathological stage. Additionally, miR-374b increased the mRNA and protein levels of PI3K, Akt, MMP2, MMP9, P53 and cyclinD1, suggesting that miR-374b activates PI3K/Akt signaling pathway in GIST-T1 cells. Moreover, MiR- 374b promoted cell viability, migration, invasion, and cell cycle entry, and inhibited apoptosis in GIST cells. Taken together, the results indicated that miR-374b promotes viability and inhibits apoptosis of human GIST cells by targeting PTEN gene through the PI3K/Akt signaling pathway. Thus, this study provides a new potential target for GIST treatment.

  12. Stimulation of complement component C3 synthesis in macrophagelike cell lines by group B streptococci.

    PubMed Central

    Goodrum, K J

    1987-01-01

    Complement levels and complement activation are key determinants in streptococcus-induced inflammatory responses. Activation of macrophage functions, such as complement synthesis, by group B streptococci (GBS) was examined as a possible component of GBS-induced chronic inflammation. Using an enzyme-linked immunosorbent assay, secreted C3 from mouse macrophagelike cell lines (PU5-1.8 and J774A.1) was monitored after cultivation with GBS. Whole, heat-killed GBS (1 to 10 CFU per macrophage) of both type Ia and III strains induced 25 to 300% increases in secreted C3 in both cell lines after a 24-h cultivation. GBS-treated cell lines exhibited increases in secreted lysozyme (10%) and in cellular protein (25 to 50%). Inhibition of macrophage phagocytosis by cytochalasin B inhibited GBS stimulation of C3. Purified cell walls of GBS type III strain 603-79 (1 to 10 micrograms/ml) also enhanced C3 synthesis. Local enhancement of macrophage C3 production by ingested streptococci or by persistent cell wall antigens may serve to promote chronic inflammatory responses. PMID:3552987

  13. Stem/Progenitor Cell Proteoglycans Decorated with 7-D-4, 4-C-3 and 3-B-3(-) Chondroitin Sulphate Motifs Are Morphogenetic Markers Of Tissue Development.

    PubMed

    Hayes, Anthony J; Smith, Susan M; Caterson, Bruce; Melrose, James

    2018-06-11

    This study reviewed the occurrence of chondroitin sulphate (CS) motifs 4-C-3, 7-D-4 and 3-B-3(-) which are expressed by progenitor cells in tissues undergoing morphogenesis. These motifs have a transient early expression pattern during tissue development and also appear in mature tissues during pathological remodeling and attempted repair processes by activated adult stem cells. The CS motifs are information and recognition modules, which may regulate cellular behavior and delineate stem cell niches in developmental tissues. One of the difficulties in determining the precise role of stem cells in tissue development and repair processes is their short engraftment period and the lack of specific markers, which differentiate the activated stem cell lineages from the resident cells. The CS sulphation motifs 7-D-4, 4-C-3 and 3-B-3 (-) decorate cell surface proteoglycans on activated stem/progenitor cells and appear to identify these cells in transitional areas of tissue development and in tissue repair and may be applicable to determining a more precise role for stem cells in tissue morphogenesis. This article is protected by copyright. All rights reserved. © 2018 AlphaMed Press.

  14. Coxiella burnetii Avirulent Nine Mile Phase II Induces Caspase-1-Dependent Pyroptosis in Murine Peritoneal B1a B Cells.

    PubMed

    Schoenlaub, Laura; Cherla, Rama; Zhang, Yan; Zhang, Guoquan

    2016-12-01

    Our recent study demonstrated that virulent Coxiella burnetii Nine Mile phase I (NMI) is capable of infecting and replicating within peritoneal B1a cells and that B1a cells play an important role in host defense against C. burnetii infection in mice. However, it remains unknown if avirulent Nine Mile phase II (NMII) can infect and replicate in B1a cells and whether NMI and NMII can differentially interact with B1a cells. In this study, we examined if NMI and NMII can differentially modulate host cell apoptotic signaling in B1a cells. The results showed that NMII induced dose-dependent cell death in murine peritoneal B1a cells but NMI did not, suggesting that NMI and NMII may differentially activate host cell apoptotic signaling in B1a cells. Western blotting indicated that NMII-induced B1a cell death was not dependent on either caspase-3 or PARP-1 cleavage, but cleavage of caspase-1 was detected in NMII-infected B1a cells. In addition, inhibition or deficiency of caspase-1 activity blocked NMII-induced B1a cell death. These results suggest that NMII induces a caspase-1-dependent pyroptosis in murine peritoneal B1a cells. We also found that heat-killed NMII and type 4 secretion system (T4SS) mutant NMII were unable to induce B1a cell death and that NMII infection did not induce cell death in peritoneal B1a cells from Toll-like receptor 2 (TLR-2)- or NLRP3 inflammasome-deficient mice. These data suggest that NMII-induced caspase-1-dependent pyroptosis may require its T4SS and activation of the TLR-2 and NLRP3 signaling pathways. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. VMY-1-103, a dansylated analog of purvalanol B, induces caspase-3-dependent apoptosis in LNCaP prostate cancer cells

    PubMed Central

    Yenugonda, Venkata Mahidhar; Ghosh, Anup; Divito, Kyle; Trabosh, Valerie; Patel, Yesha; Brophy, Amanda; Grindrod, Scott; Lisanti, Michael P; Rosenthal, Dean; Brown, Milton L; Avantaggiati, Maria Laura; Rodriguez, Olga

    2010-01-01

    The 2,6,9-trisubstituted purine group of cyclin dependent kinase inhibitors have the potential to be clinically relevant inhibitors of cancer cell proliferation. We have recently designed and synthesized a novel dansylated analog of purvalanol B, termed VMY-1-103, that inhibited cell cycle progression in breast cancer cell lines more effectively than did purvalanol B and allowed for uptake analyses by fluorescence microscopy. ErbB-2 plays an important role in the regulation of signal transduction cascades in a number of epithelial tumors, including prostate cancer (PCa). Our previous studies demonstrated that transgenic expression of activated ErbB-2 in the mouse prostate initiated PCa and either the overexpression of ErbB-2 or the addition of the ErbB-2/ErbB-3 ligand, heregulin (HRG), induced cell cycle progression in the androgen-responsive prostate cancer cell line, LNCaP. In the present study, we tested the efficacy of VMY-1-103 in inhibiting HRG-induced cell proliferation in LNCaP prostate cancer cells. At concentrations as low as 1 µM, VMY-1-103 increased both the proportion of cells in G1 and p21CIP1 protein levels. At higher concentrations (5 µM or 10 µM), VMY-1-103 induced apoptosis via decreased mitochondrial membrane polarity and induction of p53 phosphorylation, caspase-3 activity and PARP cleavage. Treatment with 10 µM Purvalanol B failed to either influence proliferation or induce apoptosis. Our results demonstrate that VMY-1-103 was more effective in inducing apoptosis in PCa cells than its parent compound, purvalanol B, and support the testing of VMY-1-103 as a potential small molecule inhibitor of prostate cancer in vivo. PMID:20574155

  16. Cognate interactions between helper T cells and B cells. IV. Requirements for the expression of effector phase activity by helper T cells.

    PubMed

    Bartlett, W C; McCann, J; Shepherd, D M; Roy, M; Noelle, R J

    1990-12-15

    After activation with anti-CD3, activated Th (THCD3), but not resting Th, fixed with paraformaldehyde induce B cell RNA synthesis when co-cultured with resting B cells. This activity is expressed by Th of both Th1 and Th2 subtypes, as well as a third Th clone that is not classified into either subtype. It is proposed that anti-CD3 activation of Th results in the expression of Th membrane proteins that trigger B cell cycle entry. Kinetic studies reveal that 4 to 8 h of activation with anti-CD3 is sufficient for ThCD3 to express B cell-activating function. However, activation of Th with anti-CD3 for extended periods of time results in reduced Th effector activity. Inhibition of Th RNA synthesis during the anti-CD3 activation period ablates the ability of ThCD3 to induce B cell cycle entry. This indicates that de novo synthesis of proteins is required for ThCD3 to express effector function. The ability of fixed ThCD3 to induce entry of B cell into cycle is not due to an increase in expression of CD3, CD4, LFA-1, ICAM-1, class I MHC or Thy-1. Other forms of Th activation (PMA and A23187, Con A) also induced Th effector function. Furthermore, purified plasma membranes from anti-CD3 activated, but not resting Th, induced resting B cells to enter cycle. The addition of IL-4, but not IL-2, IL-5, or IFN-gamma amplified the DNA synthetic response of B cells stimulated with PM from activated Th. Taken together these data indicate that de novo expression of Th surface proteins on activated Th is required for Th to induce B cell cycle entry into G1 and the addition of IL-4 is required for the heightened progression into S phase.

  17. Selective blockade of B7-H3 enhances antitumour immune activity by reducing immature myeloid cells in head and neck squamous cell carcinoma.

    PubMed

    Mao, Liang; Fan, Teng-Fei; Wu, Lei; Yu, Guang-Tao; Deng, Wei-Wei; Chen, Lei; Bu, Lin-Lin; Ma, Si-Rui; Liu, Bing; Bian, Yansong; Kulkarni, Ashok B; Zhang, Wen-Feng; Sun, Zhi-Jun

    2017-09-01

    Immature myeloid cells including myeloid-derived suppressor cells (MDSCs) and tumour-associated macrophages (TAMs) promote tumour growth and metastasis by facilitating tumour transformation and angiogenesis, as well as by suppressing antitumour effector immune responses. Therefore, strategies designed to reduce MDSCs and TAMs accumulation and their activities are potentially valuable therapeutic goals. In this study, we show that negative immune checkpoint molecule B7-H3 is significantly overexpressed in human head and neck squamous cell carcinoma (HNSCC) specimen as compared with normal oral mucosa. Using immunocompetent transgenic HNSCC models, we observed that targeting inhibition of B7-H3 reduced tumour size. Flow cytometry analysis revealed that targeting inhibition of B7-H3 increases antitumour immune response by decreasing immunosuppressive cells and promoting cytotoxic T cell activation in both tumour microenvironment and macroenvironment. Our study provides direct in vivo evidence for a rationale for B7-H3 blockade as a future therapeutic strategy to treat patients with HNSCC. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  18. Effects of Cot expression on the nuclear translocation of NF-kappaB in RBL-2H3 cells.

    PubMed

    Chikamatsu, Satomi; Furuno, Tadahide; Kinoshita, Yosuke; Inoh, Yoshikazu; Hirashima, Naohide; Teshima, Reiko; Nakanishi, Mamoru

    2007-03-01

    Cot is a serine/threonine protein kinase and is classified as a mitogen-activated protein (MAP) kinase kinase kinase. Overexpression of this protein has been shown to activate the extracellular signal-regulated kinase, the c-Jun N-terminal kinase, and the p38 MAP kinase pathways and to stimulate NF-AT and NF-kappaB-dependent transcription. Here we have shown that Cot kinase activity is intimately involved in the high affinity receptor for IgE (FcvarepsilonRI)-mediated nuclear translocation of NF-kappaB1 independent of NF-kappaB-inducing kinase (NIK) in rat basophilic leukemia (RBL-2H3) cells. A transfected green fluorescent protein-tagged NF-kappaB1 (GFP-NF-kappaB1) resided in the cytoplasm in RBL-2H3 cells and it remained in the cytoplasm even when Cot tagged with red fluorescent protein (Cot-RFP) was co-expressed. Western blotting analysis showed that IkappaB kinases (IKKs) were expressed in RBL-2H3 cells but NIK was not. GFP-NF-kappaB1 translocated from the cytoplasm to the nucleus after the aggregation of FcvarepsilonRI in Cot-transfected cells but not in kinase-deficient Cot-transfected cells. This finding gives a new insight into the role of Cot in the FcvarepsilonRI-mediated NF-kappaB activation in mast cells.

  19. Betulinic acid derivative B10 inhibits glioma cell proliferation through suppression of SIRT1, acetylation of FOXO3a and upregulation of Bim/PUMA.

    PubMed

    Huo, Longwei; Bai, Xiaobin; Wang, Yafei; Wang, Maode

    2017-08-01

    Glioma is the most common primary malignant tumor of the central nervous system. B10 is a new glycosylated derivative of betulinic acid with enhanced cytotoxic activity. The present study was designed to explore the molecular mechanism underlying the anticancer effect of B10 in glioma cells. 25-50μM B10 resulted in a significant decrease of cell viability and BrdU incorporation. 25-50mg/kg B10 significantly reduced the implanted tumor weight and volume in nude mice. Activation of apoptosis was found in glioma cells when the cells were exposed to B10, as evidenced by increased number of TUNEL-stained cells, increased caspase 3 and 9 activities, and Bax and cleaved PARP expression. B10 caused a significant decrease in mitochondrial oxygen consumption rate, mitochondrial complex I, II, III, IV, and V activities, and ATP level, and increase of mitochondrial ROS production, indicating the induction of mitochondrial dysfunction. B10 reduced the expression of sirtuin (SIRT) 1 and resulted in an increase in forkhead box O (FOXO) 3a expression and acetylation. Activation of SIRT1 by SRT-1720 and downregualtion of FOXO3a using shRNA significantly inhibited B10-induced cytotoxicity. B10 markedly increased the expression of Bim and PUMA. Downregualtion of FOXO3a or activation of SIRT1 significantly inhibited B10-induced increase of Bim and PUMA expression. Downregualtion of Bim or PUMA could suppress B10-induced increase of Bax expression. Moreover, B10-induced cytotoxicity was significantly suppressed by downregulation of Bim or PUMA. In summary, we identified B10 as a potent therapeutic candidate for glioma treatment and SIRT1-FOXO3a-Bim/PUMA axis as a novel therapeutic target. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. PTEN and PI-3 kinase inhibitors control LPS signaling and the lymphoproliferative response in the CD19+ B cell compartment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Alok R.; Peirce, Susan K.; Joshi, Shweta

    Pattern recognition receptors (PRRs), e.g. toll receptors (TLRs) that bind ligands within the microbiome have been implicated in the pathogenesis of cancer. LPS is a ligand for two TLR family members, TLR4 and RP105 which mediate LPS signaling in B cell proliferation and migration. Although LPS/TLR/RP105 signaling is well-studied; our understanding of the underlying molecular mechanisms controlling these PRR signaling pathways remains incomplete. Previous studies have demonstrated a role for PTEN/PI-3K signaling in B cell selection and survival, however a role for PTEN/PI-3K in TLR4/RP105/LPS signaling in the B cell compartment has not been reported. Herein, we crossed a CD19cremore » and PTEN{sup fl/fl} mouse to generate a conditional PTEN knockout mouse in the CD19+ B cell compartment. These mice were further crossed with an IL-14α transgenic mouse to study the combined effect of PTEN deletion, PI-3K inhibition and expression of IL-14α (a cytokine originally identified as a B cell growth factor) in CD19+ B cell lymphoproliferation and response to LPS stimulation. Targeted deletion of PTEN and directed expression of IL-14α in the CD19+ B cell compartment (IL-14+PTEN-/-) lead to marked splenomegaly and altered spleen morphology at baseline due to expansion of marginal zone B cells, a phenotype that was exaggerated by treatment with the B cell mitogen and TLR4/RP105 ligand, LPS. Moreover, LPS stimulation of CD19+ cells isolated from these mice display increased proliferation, augmented AKT and NFκB activation as well as increased expression of c-myc and cyclinD1. Interestingly, treatment of LPS treated IL-14+PTEN-/- mice with a pan PI-3K inhibitor, SF1126, reduced splenomegaly, cell proliferation, c-myc and cyclin D1 expression in the CD19+ B cell compartment and normalized the splenic histopathologic architecture. These findings provide the direct evidence that PTEN and PI-3K inhibitors control TLR4/RP105/LPS signaling in the CD19+ B cell compartment and that

  1. Cloning of B cell-specific membrane tetraspanning molecule BTS possessing B cell proliferation-inhibitory function.

    PubMed

    Suenaga, Tadahiro; Arase, Hisashi; Yamasaki, Sho; Kohno, Masayuki; Yokosuka, Tadashi; Takeuchi, Arata; Hattori, Takamichi; Saito, Takashi

    2007-11-01

    Lymphocyte proliferation is regulated by signals through antigen receptors, co-stimulatory receptors, and other positive and negative modulators. Several membrane tetraspanning molecules are also involved in the regulation of lymphocyte growth and death. We cloned a new B cell-specific tetraspanning (BTS) membrane molecule, which is similar to CD20 in terms of expression, structure and function. BTS is specifically expressed in the B cell line and its expression is increased after the pre-B cell stage. BTS is expressed in intracellular granules and on the cell surface. Overexpression of BTS in immature B cell lines induces growth retardation through inhibition of cell cycle progression and cell size increase without inducing apoptosis. This inhibitory function is mediated predominantly by the N terminus of BTS. The development of mature B cells is inhibited in transgenic mice expressing BTS, suggesting that BTS is involved in the in vivo regulation of B cells. These results indicate that BTS plays a role in the regulation of cell division and B cell growth.

  2. 2B4-SAP signaling is required for the priming of naive CD8+ T cells by antigen-expressing B cells and B lymphoma cells

    PubMed Central

    2017-01-01

    ABSTRACT Mutations in SH2D1A gene that encodes SAP (SLAM-associated protein) result in X-linked lymphoproliferative disease (XLP), a rare primary immunodeficiency disease defined by exquisite sensitivity to the B-lymphotropic Epstein–Barr virus (EBV) and B cell lymphomas. However, the precise mechanism of how the loss of SAP function contributes to extreme vulnerability to EBV and the development of B cell lymphomas remains unclear. Here, we investigate the hypothesis that SAP is critical for CD8+ T cell immune surveillance of antigen (Ag)-expressing B cells or B lymphoma cells under conditions of defined T cell receptor (TCR) signaling. Sh2d1a−/− CD8+ T cells exhibited greatly diminished proliferation relative to wild type when Ag-presenting-B cells or -B lymphoma cells served as the primary Ag-presenting cell (APC). By contrast, Sh2d1a−/− CD8+ T cells responded equivalently to wild-type CD8+ T cells when B cell-depleted splenocytes, melanoma cells or breast carcinoma cells performed Ag presentation. Through application of signaling lymphocyte activation molecule (SLAM) family receptor blocking antibodies or SLAM family receptor-deficient CD8+ T cells and APCs, we found that CD48 engagement on the B cell surface by 2B4 is crucial for initiating SAP-dependent signaling required for the Ag-driven CD8+ T cell proliferation and differentiation. Altogether, a pivotal role for SAP in promoting the expansion and differentiation of B cell-primed viral-specific naive CD8+ T cells may explain the selective immune deficiency of XLP patients to EBV and B cell lymphomas. PMID:28344876

  3. 2B4-SAP signaling is required for the priming of naive CD8+ T cells by antigen-expressing B cells and B lymphoma cells.

    PubMed

    Huang, Yu-Hsuan; Tsai, Kevin; Tan, Sara Y; Kang, Sohyeong; Ford, Mandy L; Harder, Kenneth W; Priatel, John J

    2017-01-01

    Mutations in SH2D1A gene that encodes SAP (SLAM-associated protein) result in X-linked lymphoproliferative disease (XLP), a rare primary immunodeficiency disease defined by exquisite sensitivity to the B-lymphotropic Epstein-Barr virus (EBV) and B cell lymphomas. However, the precise mechanism of how the loss of SAP function contributes to extreme vulnerability to EBV and the development of B cell lymphomas remains unclear. Here, we investigate the hypothesis that SAP is critical for CD8 + T cell immune surveillance of antigen (Ag)-expressing B cells or B lymphoma cells under conditions of defined T cell receptor (TCR) signaling. Sh2d1a - / - CD8 + T cells exhibited greatly diminished proliferation relative to wild type when Ag-presenting-B cells or -B lymphoma cells served as the primary Ag-presenting cell (APC). By contrast, Sh2d1a - / - CD8 + T cells responded equivalently to wild-type CD8 + T cells when B cell-depleted splenocytes, melanoma cells or breast carcinoma cells performed Ag presentation. Through application of signaling lymphocyte activation molecule (SLAM) family receptor blocking antibodies or SLAM family receptor-deficient CD8 + T cells and APCs, we found that CD48 engagement on the B cell surface by 2B4 is crucial for initiating SAP-dependent signaling required for the Ag-driven CD8 + T cell proliferation and differentiation. Altogether, a pivotal role for SAP in promoting the expansion and differentiation of B cell-primed viral-specific naive CD8 + T cells may explain the selective immune deficiency of XLP patients to EBV and B cell lymphomas.

  4. Misexpression of cyclin B3 leads to aberrant spermatogenesis.

    PubMed

    Refik-Rogers, Jale; Manova, Katia; Koff, Andrew

    2006-09-01

    Mus musculus cyclin B3 is an early meiotic cyclin that is expressed in leptotene and zygotene phases during gametogenesis. In order to determine whether downregulation of cyclin B3 at zygotene-pachytene transition was important for normal spermatogenesis, we investigated the consequences of expressing H. sapiens cyclin B3 after zygotene in mouse testes. Prolonging expression of cyclin B3 until the end of meiosis led to a reduction in sperm counts and disruption of spermatogenesis in four independent lines of transgenic mice. There were three distinct morphological defects associated with the ectopic expression of cyclin B3. Seminiferous tubules were either depleted of germ cells, had an abnormal cell mass in the lumen, or were characterized by the presence of abnormal round spermatids. These defects were associated with increased apoptosis in the testes. These results suggest that downregulation of cyclin B3 at the zygotene-pachytene transition is required to ensure normal spermatogenesis.

  5. Metformin Suppresses Systemic Autoimmunity in Roquinsan/san Mice through Inhibiting B Cell Differentiation into Plasma Cells via Regulation of AMPK/mTOR/STAT3.

    PubMed

    Lee, Seon-Yeong; Moon, Su-Jin; Kim, Eun-Kyung; Seo, Hyeon-Beom; Yang, Eun-Ji; Son, Hye-Jin; Kim, Jae-Kyung; Min, Jun-Ki; Park, Sung-Hwan; Cho, Mi-La

    2017-04-01

    Circulating autoantibodies and immune complex deposition are pathological hallmarks of systemic lupus erythematosus (SLE). B cell differentiation into plasma cells (PCs) and some T cell subsets that function as B cell helpers can be therapeutic targets of SLE. Mechanistic target of rapamycin (mTOR) signaling is implicated in the formation of B cells and germinal centers (GCs). We assessed the effect of metformin, which inhibits mTOR, on the development of autoimmunity using Roquin san/san mice. Oral administration of metformin inhibited the formation of splenic follicles and inflammation in kidney and liver tissues. It also decreased serum levels of anti-dsDNA Abs without affecting serum glucose levels. Moreover, metformin inhibited CD21 high CD23 low marginal zone B cells, B220 + GL7 + GC B cells, B220 - CD138 + PCs, and GC formation. A significant reduction in ICOS + follicular helper T cells was found in the spleens of the metformin-treated group compared with the vehicle-treated group. In addition, metformin inhibited Th17 cells and induced regulatory T cells. These alterations in B and T cell subsets by metformin were associated with enhanced AMPK expression and inhibition of mTOR-STAT3 signaling. Furthermore, metformin induced p53 and NF erythroid-2-related factor-2 activity in splenic CD4 + T cells. Taken together, metformin-induced alterations in AMPK-mTOR-STAT3 signaling may have therapeutic value in SLE by inhibiting B cell differentiation into PCs and GCs. Copyright © 2017 by The American Association of Immunologists, Inc.

  6. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway.

    PubMed

    Sun, H; Lesche, R; Li, D M; Liliental, J; Zhang, H; Gao, J; Gavrilova, N; Mueller, B; Liu, X; Wu, H

    1999-05-25

    To investigate the molecular basis of PTEN-mediated tumor suppression, we introduced a null mutation into the mouse Pten gene by homologous recombination in embryonic stem (ES) cells. Pten-/- ES cells exhibited an increased growth rate and proliferated even in the absence of serum. ES cells lacking PTEN function also displayed advanced entry into S phase. This accelerated G1/S transition was accompanied by down-regulation of p27(KIP1), a major inhibitor for G1 cyclin-dependent kinases. Inactivation of PTEN in ES cells and in embryonic fibroblasts resulted in elevated levels of phosphatidylinositol 3,4,5,-trisphosphate, a product of phosphatidylinositol 3 kinase. Consequently, PTEN deficiency led to dosage-dependent increases in phosphorylation and activation of Akt/protein kinase B, a well-characterized target of the phosphatidylinositol 3 kinase signaling pathway. Akt activation increased Bad phosphorylation and promoted Pten-/- cell survival. Our studies suggest that PTEN regulates the phosphatidylinositol 3,4, 5,-trisphosphate and Akt signaling pathway and consequently modulates two critical cellular processes: cell cycle progression and cell survival.

  7. The TEL-AML1 fusion protein of acute lymphoblastic leukemia modulates IRF3 activity during early B-cell differentiation.

    PubMed

    de Laurentiis, A; Hiscott, J; Alcalay, M

    2015-12-03

    The t(12;21) translocation is the most common genetic rearrangement in childhood acute lymphoblastic leukemia (ALL) and gives rise to the TEL-AML1 fusion gene. Many studies on TEL-AML1 describe specific properties of the fusion protein, but a thorough understanding of its function is lacking. We exploited a pluripotent hematopoietic stem/progenitor cell line, EML1, and generated a cell line (EML-TA) stably expressing the TEL-AML1 fusion protein. EML1 cells differentiate to mature B-cells following treatment with IL7; whereas EML-TA display an impaired differentiation capacity and remain blocked at an early stage of maturation. Global gene expression profiling of EML1 cells at different stages of B-lymphoid differentiation, compared with EML-TA, identified the interferon (IFN)α/β pathway as a primary target of repression by TEL-AML1. In particular, expression and phosphorylation of interferon-regulatory factor 3 (IRF3) was decreased in EML-TA cells; strikingly, stable expression of IRF3 restored the capacity of EML-TA cells to differentiate into mature B-cells. Similarly, IRF3 silencing in EML1 cells by siRNA was sufficient to block B-lymphoid differentiation. The ability of TEL-AML1 to block B-cell differentiation and downregulate the IRF3-IFNα/β pathway was confirmed in mouse and human primary hematopoietic precursor cells (Lin- and CD34+ cells, respectively), and in a patient-derived cell line expressing TEL-AML1 (REH). Furthermore, treatment of TEL-AML1 expressing cells with IFNα/β was sufficient to overcome the maturation block. Our data provide new insight on TEL-AML1 function and may offer a new therapeutic opportunity for B-ALL.

  8. miR-125b suppresses the proliferation and migration of osteosarcoma cells through down-regulation of STAT3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Li-hong; Li, Hui; Li, Jin-ping

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer miR-125b is frequently down-regulated in osteosarcoma samples and human osteosarcoma cell lines. Black-Right-Pointing-Pointer Ectopic restoration of miR-125b suppresses cell proliferation and migration in vitro. Black-Right-Pointing-Pointer STAT3 is the direct and functional downstream target of miR-125b. Black-Right-Pointing-Pointer STAT3 can bind to the promoter region of miR-125b and serves as a transactivator. -- Abstract: There is accumulating evidence that microRNAs are involved in multiple processes in development and tumor progression. Abnormally expressed miR-125b was found to play a fundamental role in several types of cancer; however, whether miR-125b participates in regulating the initiation and progress of osteosarcoma still remains unclear.more » Here we demonstrate that miR-125b is frequently down-regulated in osteosarcoma samples and human osteosarcoma cell lines. The ectopic restoration of miR-125b expression in human osteosarcoma cells suppresses proliferation and migration in vitro and inhibits tumor formation in vivo. We further identified signal transducer and activator of transcription 3 (STAT3) as the direct and functional downstream target of miR-125b. Interestingly, we discovered that the expression of miR-125b is regulated by STAT3 at the level of transcription. STAT3 binds to the promoter region of miR-125b in vitro and serves as a transactivator. Taken together, our findings point to an important role in the molecular etiology of osteosarcoma and suggest that miR-125b is a potential target in the treatment of osteosarcoma.« less

  9. VS-5584 as a PI3K/mTOR inhibitor enhances apoptotic effects of subtoxic dose arsenic trioxide via inhibition of NF-κB activity in B cell precursor-acute lymphoblastic leukemia.

    PubMed

    Toosi, Bahareh; Zaker, Farhad; Alikarami, Fatemeh; Kazemi, Ahmad; Teremmahi Ardestanii, Majid

    2018-06-01

    Activation of the phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway as a survival signaling cascade is a prominent feature of cancers such as acute lymphoblastic leukemia (ALL). In patients with B-cell precursor-ALL (BCP-ALL), the high activity of the pathway correlates with the weak response to anti-leukemic drugs and relapse as a result of downstream prosurvival pathway activation, such as nuclear factor kappa B (NF-κB). Recent targeted therapy (PI3K/mTOR inhibitors) in combination with a multifunctional conventional chemotherapeutic drug may be useful for treatment of BCP-ALL patients. In the current study, the potential of a subtoxic dose (0.2 μM) of arsenic trioxide (ATO) in combination with VS-5584 (a highly potent PI3K/mTOR dual inhibitor) was tested for blocking of the PI3K/Akt/mTOR pathway, inhibition of NF-κB activation and induction of apoptosis and cell-cycle arrest. The data indicate that VS-5584 as a PI3K/mTOR inhibitor inhibited cell proliferation and induced apoptosis in NALM-6 cells by means of NF-κB transcriptional activity suppression. This apoptotic process markedly increased 72 h after administration of the subtoxic dose of ATO. We also showed that concomitant treatment of VS-5584 and the subtoxic dose of ATO significantly inhibited phosphorylation of NF-κB inhibitor alpha (IκBα) and S6 ribosomal protein (S6) as the downstream proteins of the PI3K/Akt/mTOR pathway. Combining VS-5584 and a subtoxic dose of ATO also resulted in down expression of the NF-κB target genes involved in cell proliferation and survival. These results indicate that incorporation of VS-5584/ATO combination into BCP-ALL therapeutic protocols can improve treatment and the survival of patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Cell cycle-dependent regulation of Greatwall kinase by protein phosphatase 1 and regulatory subunit 3B.

    PubMed

    Ren, Dapeng; Fisher, Laura A; Zhao, Jing; Wang, Ling; Williams, Byron C; Goldberg, Michael L; Peng, Aimin

    2017-06-16

    Greatwall (Gwl) kinase plays an essential role in the regulation of mitotic entry and progression. Mitotic activation of Gwl requires both cyclin-dependent kinase 1 (CDK1)-dependent phosphorylation and its autophosphorylation at an evolutionarily conserved serine residue near the carboxyl terminus (Ser-883 in Xenopus ). In this study we show that Gwl associates with protein phosphatase 1 (PP1), particularly PP1γ, which mediates the dephosphorylation of Gwl Ser-883. Consistent with the mitotic activation of Gwl, its association with PP1 is disrupted in mitotic cells and egg extracts. During mitotic exit, PP1-dependent dephosphorylation of Gwl Ser-883 occurs prior to dephosphorylation of other mitotic substrates; replacing endogenous Gwl with a phosphomimetic S883E mutant blocks mitotic exit. Moreover, we identified PP1 regulatory subunit 3B (PPP1R3B) as a targeting subunit that can direct PP1 activity toward Gwl. PPP1R3B bridges PP1 and Gwl association and promotes Gwl Ser-883 dephosphorylation. Consistent with the cell cycle-dependent association of Gwl and PP1, Gwl and PPP1R3B dissociate in M phase. Interestingly, up-regulation of PPP1R3B facilitates mitotic exit and blocks mitotic entry. Thus, our study suggests PPP1R3B as a new cell cycle regulator that functions by governing Gwl dephosphorylation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. The targeted inhibition of mitochondrial Hsp90 overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Chunlan; Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058; Oh, Joon Seok

    Previous studies have reported that a Gamitrinib variant containing triphenylphosphonium (G-TPP) binds to mitochondrial Hsp90 and rapidly inhibits its activity, thus inducing the apoptotic pathway in the cells. Accordingly, G-TPP shows a potential as a promising drug for the treatment of cancer. A cell can die from different types of cell death such as apoptosis, necrosis, necroptosis, and autophagic cell death. In this study, we further investigated the mechanisms and modes of cell death in the G-TPP-treated Hep3B and U937 cell lines. We discovered that G-TPP kills the U937 cells through the apoptotic pathway and the overexpression of Bcl-2 significantlymore » inhibits U937 cell death to G-TPP. We further discovered that G-TPP kills the Hep3B cells by activating necroptosis in combination with the partial activation of caspase-dependent apoptosis. Importantly, G-TPP overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. We also observed that G-TPP induces compensatory autophagy in the Hep3B cell line. We further found that whereas there is a Bcl-2-Beclin 1 interaction in response to G-TPP, silencing the beclin 1 gene failed to block LC3-II accumulation in the Hep3B cells, indicating that G-TPP triggers Beclin 1-independent protective autophagy in Hep3B cells. Taken together, these data reveal that G-TPP induces cell death through a combination of death pathways, including necroptosis and apoptosis, and overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. These findings are important for the therapeutic exploitation of necroptosis as an alternative cell death program to bypass the resistance to apoptosis. Highlights: ► G-TPP binds to mitochondrial Hsp90. ► G-TPP induces apoptosis in U937 human leukemia cancer cells. ► G-TPP induces combination of death pathways in Hep3B cell. ► G-TPP overcomes the resistance conferred by Bcl-2 in Hep3B cells via necroptosis. ► G-TPP triggers Beclin 1

  12. Mutated PPP1R3B is recognized by T cells used to treat a melanoma patient who experienced a durable complete tumor regression

    PubMed Central

    Lu, Yong-Chen; Yao, Xin; Li, Yong F.; El-Gamil, Mona; Dudley, Mark E.; Yang, James C.; Almeida, Jorge R.; Douek, Daniel C.; Samuels, Yardena; Rosenberg, Steven A.; Robbins, Paul F.

    2013-01-01

    Adoptive cell therapy with tumor infiltrating lymphocytes (TILs) represents an effective treatment for patients with metastatic melanoma. However, most of the antigen targets recognized by effective melanoma reactive TILs remain elusive. In this study, patient 2369 experienced a complete response, including regressions of bulky liver tumor masses ongoing beyond seven years following adoptive TILs transfer. The screening of a cDNA library generated from the autologous melanoma cell line resulted in the isolation of a mutated PPP1R3B (protein phosphatase 1, regulatory (inhibitor) subunit 3B) gene product. The mutated PPP1R3B peptide represents the immunodominant epitope recognized by tumor reactive T cells in TIL 2369. Five years following adoptive transfer, peripheral blood T lymphocytes obtained from patient 2369 recognized the mutated PPP1R3B epitope. These results demonstrate that adoptive T cell therapy targeting a tumor-specific antigen can mediate long-term survival for a patient with metastatic melanoma. This study also provides an impetus to develop personalized immunotherapy targeting tumor-specific, mutated antigens. PMID:23690473

  13. B cells regulate thymic CD8+T cell differentiation in lupus-prone mice.

    PubMed

    Xing, Chen; Zhu, Gaizhi; Xiao, He; Fang, Ying; Liu, Xiaoling; Han, Gencheng; Chen, Guojiang; Hou, Chunmei; Shen, Beifen; Li, Yan; Ma, Ning; Wang, Renxi

    2017-10-27

    Previous studies have shown that under normal physiological conditions thymic B cells play a critical function in T cell negative selection. We tested the effect of thymic B cells on thymic T-cell differentiation in autoimmune diseases including systemic lupus erythematosus (SLE). We found that thymic B cells and CD8 - CD4 + and CD4 - CD8 + T cells increased, whereas CD4 + CD8 + T cells decreased in lupus-prone mice. Once B cells were reduced, the change was reversed. Furthermore, we found that B cells blocked thymic immature single positive (ISP) CD4 - CD8 + CD3 lo/- RORγt - T cells progression into CD4 + CD8 + T cells. Interestingly, we found a novel population of thymic immature T cells (CD4 - CD8 + CD3 lo RORγt + ) that were induced into mature CD4 - CD8 + CD3 + RORγt + T cells by B cells in lupus-prone mice. Importantly, we found that IgG, produced by thymic B cells, played a critical role in the differentiation of thymic CD8 + ISP and mature RORγt + CD8 + T cells in lupus-prone mice. In conclusion, B cells blocked the differentiation from thymic CD8 + ISP and induced the differentiation of a novel immature CD4 - CD8 + CD3 lo RORγt + T cells into mature RORγt + CD8 + T cells by secreting IgG antibody in lupus-prone mice.

  14. Dietary Restriction and Fasting Arrest B and T Cell Development and Increase Mature B and T Cell Numbers in Bone Marrow

    PubMed Central

    Shushimita, Shushimita; de Bruijn, Marjolein J. W.; de Bruin, Ron W. F.; IJzermans, Jan N. M.; Hendriks, Rudi W.; Dor, Frank J. M. F.

    2014-01-01

    Dietary restriction (DR) delays ageing and extends life span. Both long- and short-term DR, as well as short-term fasting provide robust protection against many “neuronal and surgery related damaging phenomena” such as Parkinson’s disease and ischemia-reperfusion injury. The exact mechanism behind this phenomenon has not yet been elucidated. Its anti-inflammatory actions prompted us to thoroughly investigate the consequences of DR and fasting on B and T cell compartments in primary and secondary lymphoid organs of male C57Bl/6 mice. In BM we found that DR and fasting cause a decrease in the total B cell population and arrest early B cell development, while increasing the number of recirculating mature B cells. In the fasting group, a significant reduction in peripheral B cell counts was observed in both spleen and mesenteric lymph nodes (mLN). Thymopoiesis was arrested significantly at double negative DN2 stage due to fasting, whereas DR resulted in a partial arrest of thymocyte development at the DN4 stage. Mature CD3+ T cell populations were increased in BM and decreased in both spleen and mLN. Thus, DR arrests B cell development in the BM but increases the number of recirculating mature B cells. DR also arrests maturation of T cells in thymus, resulting in depletion of mature T cells from spleen and mLN while recruiting them to the BM. The functional relevance in relation to protection against organ damage needs to be determined. PMID:24504160

  15. Establishment of a novel feline leukemia virus (FeLV)-negative B-cell cell line from a cat with B-cell lymphoma.

    PubMed

    Mochizuki, Hiroyuki; Takahashi, Masashi; Nishigaki, Kazuo; Ide, Tetsuya; Goto-Koshino, Yuko; Watanabe, Shinya; Sato, Hirofumi; Sato, Masahiko; Kotera, Yukiko; Fujino, Yasuhito; Ohno, Koichi; Uchida, Kazuyuki; Tsujimoto, Hajime

    2011-04-15

    We established a novel feline B-cell line, MS4, from the neoplastic pleural effusion of a cat with cutaneous B-cell lymphoma. Immunophenotype staining of the MS4 cells was positive for CD20, CD79α, and IgA and negative for CD3, CD4, CD5, CD8α, CD18, CD21, CD22, IgM, IgG, Ig light chain, and MHC class II. PCR analysis for immunoglobulin heavy chain gene rearrangements revealed a monoclonal rearrangement, whereas no clonal rearrangement of the T-cell receptor γ gene was detected. Southern blotting with an exogenous feline leukemia virus (FeLV) U3 probe revealed no integration of exogenous FeLV provirus. The MS4 cell line is the first FeLV-negative feline B-cell lymphoma cell line, and may be used to investigate the pathogenesis of spontaneously occurring feline lymphoma and the development of new therapies. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. B7-H3 Negatively Modulates CTL-Mediated Cancer Immunity.

    PubMed

    Yonesaka, Kimio; Haratani, Koji; Takamura, Shiki; Sakai, Hitomi; Kato, Ryoji; Takegawa, Naoki; Takahama, Takayuki; Tanaka, Kaoru; Hayashi, Hidetoshi; Takeda, Masayuki; Kato, Sigeki; Maenishi, Osamu; Sakai, Kazuko; Chiba, Yasutaka; Okabe, Takafumi; Kudo, Keita; Hasegawa, Yoshikazu; Kaneda, Hiroyasu; Yamato, Michiko; Hirotani, Kenji; Miyazawa, Masaaki; Nishio, Kazuto; Nakagawa, Kazuhiko

    2018-06-01

    Purpose: Anti-programmed-death-1 (PD-1) immunotherapy improves survival in non-small cell lung cancer (NSCLC), but some cases are refractory to treatment, thereby requiring alternative strategies. B7-H3, an immune-checkpoint molecule, is expressed in various malignancies. To our knowledge, this study is the first to evaluate B7-H3 expression in NSCLCs treated with anti-PD-1 therapy and the therapeutic potential of a combination of anti-PD-1 therapy and B7-H3 targeting. Experimental Design: B7-H3 expression was evaluated immunohistochemically in patients with NSCLC ( n = 82), and its relationship with responsiveness to anti-PD-1 therapy and CD8 + tumor-infiltrating lymphocytes (TILs) was analyzed. The antitumor efficacy of dual anti-B7-H3 and anti-programmed death ligand-1 (PD-L1) antibody therapy was evaluated using a syngeneic murine cancer model. T-cell numbers and functions were analyzed by flow cytometry. Results: B7-H3 expression was evident in 74% of NSCLCs and was correlated critically with nonresponsiveness to anti-PD-1 immunotherapy. A small number of CD8 + TILs was observed as a subpopulation with PD-L1 tumor proportion score less than 50%, whereas CD8 + TILs were still abundant in tumors not expressing B7-H3. Anti-B7-H3 blockade showed antitumor efficacy accompanied with an increased number of CD8 + TILs and recovery of effector function. CD8 + T-cell depletion negated antitumor efficacy induced by B7-H3 blockade, indicating that improved antitumor immunity is mediated by CD8 + T cells. Compared with a single blocking antibody, dual blockade of B7-H3 and PD-L1 enhanced the antitumor reaction. Conclusions: B7-H3 expressed on tumor cells potentially circumvents CD8 + -T-cell-mediated immune surveillance. Anti-B7-H3 immunotherapy combined with anti-PD-1/PD-L1 antibody therapy is a promising approach for B7-H3-expressing NSCLCs. Clin Cancer Res; 24(11); 2653-64. ©2018 AACR . ©2018 American Association for Cancer Research.

  17. Inactivated Tianjin strain, a novel genotype of Sendai virus, induces apoptosis in HeLa, NCI-H446 and Hep3B cells.

    PubMed

    Chen, Jun; Han, Han; Wang, Bin; Shi, Liying

    2016-07-01

    The Sendai virus strain Tianjin is a novel genotype of the Sendai virus. In previous studies, ultraviolet-inactivated Sendai virus strain Tianjin (UV-Tianjin) demonstrated antitumor effects on human breast cancer cells. The aim of the present study was to investigate the in vitro antitumor effects of UV-Tianjin on the human cervical carcinoma HeLa, human small cell lung cancer NCI-H446 and human hepatocellular carcinoma Hep 3B cell lines, and the possible underlying mechanisms of these antitumor effects. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay revealed that UV-Tianjin treatment inhibited the proliferation of HeLa, NCI-H446 and Hep 3B cells in a dose- and time-dependent manner. Hoechst and Annexin V-fluorescein isothiocyanate/propidium iodide double staining indicated that UV-Tianjin induced dose-dependent apoptosis in all three cell lines with the most significant effect observed in the HeLa cell line. In the HeLa cell line, UV-Tianjin-induced apoptosis was further confirmed by the disruption of the mitochondria membrane potential and the activation of caspases, as demonstrated by fluorescent cationic dye and colorimetric assays, respectively. In addition, western blot analysis revealed that UV-Tianjin treatment resulted in significant upregulation of cytochrome c , apoptosis protease activating factor-1, Fas, Fas ligand and Fas-associated protein with death domain, and activated caspase-9, -8 and -3 in HeLa cells. Based on these results, it is hypothesized that UV-Tianjin exhibits anticancer activity in HeLa, NCI-H446 and Hep 3B cell lines via the induction of apoptosis. In conclusion, the results of the present study indicate that in the HeLa cell line, intrinsic and extrinsic apoptotic pathways may be involved in UV-Tianjin-induced apoptosis.

  18. Antioxidant and anticancer activity of Artemisia princeps var. orientalis extract in HepG2 and Hep3B hepatocellular carcinoma cells

    PubMed Central

    Choi, Eun-Jeong

    2013-01-01

    Objective The aim of the present study was to investigate antioxidant and the anticancerigen activity of a methanol extract from Artemisia princeps var. orientalis (APME), a well-known traditional herbal medicine in Asia, in hepatocellular cancer cells. Methods To evaluate the antioxidant activity of APME, reactive oxygen species (ROS) and the antioxidant enzymes, superoxide dismutase (SOD) and catalase were investigated in HepG2 cells exposed to APME (5, 100, and 200 µg/mL) for 72 h. Then, to evaluate the anticancer activity of APME, we investigated the proliferation and apoptosis induction of HepG2 and Hep3B cells exposed to APME (1-200 µg/mL) for 24, 48, and 72 h. Results APME dose-dependently reduced the generation of ROS in the presence of H2O2 compared with control cells. Furthermore, it increased catalase and SOD activity. Moreover, APME inhibited cell proliferation in a dose- and time-dependent manner, but at concentrations lower than 100 µg/mL, the inhibition was less dose-dependent than time-dependent. HepG2 and Hep3B cells exposed to 5, 100, and 200 µg/mL APME for 72 h underwent cell cycle arrest and apoptosis. Exposure to APME resulted in a significant increase in the number of cells in G1 phase and a decrease in the G2/M phase cell population. In addition, APME induced P53 expression of HepG2 cells in a dose-dependent manner, and played a role in the downregulation of Bcl-2 and upregulation of Bax in both HepG2 and Hep3B cells. Conclusions These results indicate the potential role of APME as an antioxidant and anticancerigen agent in hepatocarcinoma cell lines. PMID:24255577

  19. Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Young-Ok; Wang, Lei; Poyil, Pratheeshkumar

    Cadmium has been widely used in industry and is known to be carcinogenic to humans. Although it is widely accepted that chronic exposure to cadmium increases the incidence of cancer, the mechanisms underlying cadmium-induced carcinogenesis are unclear. The main aim of this study was to investigate the role of reactive oxygen species (ROS) in cadmium-induced carcinogenesis and the signal transduction pathways involved. Chronic exposure of human bronchial epithelial BEAS-2B cells to cadmium induced cell transformation, as evidenced by anchorage-independent growth in soft agar and clonogenic assays. Chronic cadmium treatment also increased the potential of these cells to invade and migrate.more » Injection of cadmium-stimulated cells into nude mice resulted in the formation of tumors. In contrast, the cadmium-mediated increases in colony formation, cell invasion and migration were prevented by transfection with catalase, superoxide dismutase-1 (SOD1), or SOD2. In particular, chronic cadmium exposure led to activation of signaling cascades involving PI3K, AKT, GSK-3β, and β-catenin and transfection with each of the above antioxidant enzymes markedly inhibited cadmium-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the cadmium-mediated increase in total and active β-catenin proteins and colony formation. Moreover, there was a marked induction of AKT, GSK-3β, β-catenin, and carcinogenic markers in tumor tissues formed in mice after injection with cadmium-stimulated cells. Collectively, our findings suggest a direct involvement of ROS in cadmium-induced carcinogenesis and implicate a role of AKT/GSK-3β/β-catenin signaling in this process. -- Highlights: ► Chronic exposure to cadmium induces carcinogenic properties in BEAS-2B cells. ► ROS involved in cadmium-induced tumorigenicity of BEAS-2B cells. ► Cadmium activates ROS-dependent AKT/GSK-3β/β-catenin-mediated signaling. ► ROS

  20. Molecular integration of HoxB4 and STAT3 for self-renewal of hematopoietic stem cells: a model of molecular convergence for stemness.

    PubMed

    Hong, Sung-Hyun; Yang, Seung-Jip; Kim, Tae-Min; Shim, Jae-Seung; Lee, Ho-Sun; Lee, Ga-Young; Park, Bo-Bae; Nam, Suk Woo; Ryoo, Zae Young; Oh, Il-Hoan

    2014-05-01

    The upregulation of HoxB4 promotes self-renewal of hematopoietic stem cells (HSCs) without overriding the normal stem cell pool size. A similar enhancement of HSC self-renewal occurs when signal transducer and activator of transcription 3 (STAT3) is activated in HSCs. In this study, to gain insight into the functional organization of individual transcription factors (TFs) that have similar effects on HSCs, we investigated the molecular interplay between HoxB4 and STAT3 in the regulation of HSC self-renewal. We found that while STAT3-C or HoxB4 similarly enhanced the in vitro self-renewal and in vivo repopulating activities of HSCs, simultaneous transduction of both TFs did not have additive effects, indicating their functional redundancy in HSCs. In addition, activation of STAT3 did not cause changes in the expression levels of HoxB4. In contrast, the inhibition of STAT3 activity in HoxB4-overexpressing hematopoietic cells significantly abrogated the enhancing effects of HoxB4, and the upregulation of HoxB4 caused a ligand-independent Tyr-phosphorylation of STAT3. Microarray analysis revealed a significant overlap of the transcriptomes regulated by STAT3 and HoxB4 in undifferentiated hematopoietic cells. Moreover, a gene set enrichment analysis showed significant overlap in the candidate TFs that can recapitulate the transcriptional changes induced by HoxB4 or STAT3. Interestingly, among these common TFs were the pluripotency-related genes Oct-4 and Nanog. These results indicate that tissue-specific TFs regulating HSC self-renewal are functionally organized to play an equivalent role in transcription and provide insights into the functional convergence of multiple entries of TFs toward a conserved transcription program for the stem cell state. © 2014 AlphaMed Press.

  1. BAG3 protects against hyperthermic stress by modulating NF-κB and ERK activities in human retinoblastoma cells.

    PubMed

    Yunoki, Tatsuya; Tabuchi, Yoshiaki; Hayashi, Atsushi; Kondo, Takashi

    2015-03-01

    BCL2-associated athanogene 3 (BAG3), a co-chaperone of HSP70, is a cytoprotective and anti-apoptotic protein that acts against various stresses, including heat stress. Here, we examined the effect of BAG3 on the sensitivity of human retinoblastoma cells to hyperthermia (HT). We examined the effects of BAG3 knockdown on the sensitivity of Y79 and WERI-Rb-1cells to HT (44 °C, 1 h) by evaluating apoptosis and cell proliferation using western blotting, real-time quantitative PCR (qPCR), flow cytometry, and a WST-8 assay kit. Furthermore, we examined the effects of activating nuclear factor-kappa B (NF-κB) and extracellular signal-regulated kinase (ERK) using western blotting and real time qPCR. HT induced considerable apoptosis along with the activation of caspase-3 and chromatin condensation. The sensitivity of Y79 and WERI-Rb-1 cells to HT was significantly enhanced by BAG3 knockdown. Compared to HT alone, the combination of BAG3 knockdown and HT reduced phosphorylation of the inhibitors of kappa B α (IκBα) and p65, a subunit of NF-κB, and degraded IκB kinase γ (IKKγ) during the recovery period after HT. Furthermore, BAG3 knockdown increased the HT-induced phosphorylation of ERK after HT treatment, and the ERK inhibitor U0126 significantly improved the viability of the cells treated with a combination of BAG3 knockdown and HT. The silencing of BAG3 seems to enhance the effects of HT, at least in part, by maintaining HT-induced inactivity of NF-κB and the phosphorylation of ERK. These findings indicate that BAG3 may be a potential molecular target for modifying the outcomes of HT in retinoblastoma.

  2. EphrinB3 restricts endogenous neural stem cell migration after traumatic brain injury.

    PubMed

    Dixon, Kirsty J; Mier, Jose; Gajavelli, Shyam; Turbic, Alisa; Bullock, Ross; Turnley, Ann M; Liebl, Daniel J

    2016-11-01

    Traumatic brain injury (TBI) leads to a series of pathological events that can have profound influences on motor, sensory and cognitive functions. Conversely, TBI can also stimulate neural stem/progenitor cell proliferation leading to increased numbers of neuroblasts migrating outside their restrictive neurogenic zone to areas of damage in support of tissue integrity. Unfortunately, the factors that regulate migration are poorly understood. Here, we examine whether ephrinB3 functions to restrict neuroblasts from migrating outside the subventricular zone (SVZ) and rostral migratory stream (RMS). We have previously shown that ephrinB3 is expressed in tissues surrounding these regions, including the overlying corpus callosum (CC), and is reduced after controlled cortical impact (CCI) injury. Our current study takes advantage of ephrinB3 knockout mice to examine the influences of ephrinB3 on neuroblast migration into CC and cortex tissues after CCI injury. Both injury and/or ephrinB3 deficiency led to increased neuroblast numbers and enhanced migration outside the SVZ/RMS zones. Application of soluble ephrinB3-Fc molecules reduced neuroblast migration into the CC after injury and limited neuroblast chain migration in cultured SVZ explants. Our findings suggest that ephrinB3 expression in tissues surrounding neurogenic regions functions to restrict neuroblast migration outside the RMS by limiting chain migration. Copyright © 2016 Michael Boutros, German Cancer Research Center, Heidelberg, Germany. Published by Elsevier B.V. All rights reserved.

  3. B cell-intrinsic TLR7 signaling is required for optimal B cell responses during chronic viral infection

    PubMed Central

    Clingan, Jonathan M.; Matloubian, Mehrdad

    2013-01-01

    The importance for activation of innate immunity by pattern recognition receptors in forming an effective adaptive immune response is well known. Toll-like receptors (TLRs) have been demonstrated to be critical for antibody responses to a variety of immunizations. In particular, recent evidence suggests that B cell-intrinsic TLR signaling is required for optimal responses to virus-like antigens, but mechanisms by which TLR signaling impacts antibody responses during infection in vivo is unclear. In the present study, we demonstrate that deficiency of TLR7 in B cells alone is sufficient to significantly impact antibody responses in mice during chronic viral infection. This effect was independent of T follicular helper cells, and resulted in a loss of plasma cells generated later, but not early, in the response. The defect in plasma cell formation appeared to be secondary to a qualitative effect of TLR signaling on the germinal center (GC) B cell response. GC B cells in TLR7-deficient mice proliferated to a lesser extent and had a greater proportion of cells with phenotypic characteristics of light zone, relative to dark zone GC B cells. These results suggest that B cell-intrinsic TLR signaling in vivo likely affects plasma cell output by altered selection of antigen-specific B cells in the germinal center. PMID:23761632

  4. Immunohistochemical expression of DNA methyltransferases 1, 3a, and 3b in actinic cheilitis and lip squamous cell carcinomas.

    PubMed

    Daniel, Filipe I; Alves, Soraia R; Vieira, Daniella S C; Biz, Michelle T; Daniel, Inah W B S; Modolo, Filipe

    2016-11-01

    Epigenetic modifications, including DNA methylation of tumor suppressor genes carried out by DNA methyltransferases (DNMTs), are important events in carcinogenesis. Although there are studies concerning to its expression in several cancer types, DNMTs expression pattern is not known in photoinduced lip carcinogenesis. The aim of this study was to investigate the immunoexpression of DNMTs 1, 3a, and 3b in lip precancerous lesion (actinic cheilitis) and cancer. Thirty cases of actinic cheilitis (AC), thirty cases of lip squamous cell carcinoma (LSCC), and twenty cases of non-neoplastic tissue (NNT) were selected for immunohistochemical investigation of DNMTs 1, 3a, and 3b. Nuclear DNMT 1 immunoreactivity was significantly higher in the LSCC group (68.6%) compared with NNT (47%), and nuclear DNMT 3b was higher in LSCC (70.9%) than in NNT (37.9%) and in AC (44%). Only DNMT 3a showed both higher nuclear and cytoplasmic expression in AC (35.9% and 35.5%, respectively) than in NNT (4.4% and 16.1%, respectively) and LSCC (8.8% and 13.2%, respectively) (P < 0.05). The results suggested that DNMT 3a could play a key role in the methylation process of initial steps of UV carcinogenesis present in AC while DNMT 3b could be responsible for de novo methylation in already established lip cancer. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. IL-17B activated mesenchymal stem cells enhance proliferation and migration of gastric cancer cells.

    PubMed

    Bie, Qingli; Zhang, Bin; Sun, Caixia; Ji, Xiaoyun; Barnie, Prince Amoah; Qi, Chen; Peng, Jingjing; Zhang, Danyi; Zheng, Dong; Su, Zhaoliang; Wang, Shengjun; Xu, Huaxi

    2017-03-21

    Mesenchymal stem cells are important cells in tumor microenvironment. We have previously demonstrated that IL-17B/IL-17RB signal promoted progression of gastric cancer. In this study, we further explored the effect of IL-17B on mesenchymal stem cells in tumor microenvironment and its impact on the tumor progression. The results showed that IL-17B induced the expression of stemness-related genes Nanog, Sox2, and Oct4 in mesenchymal stem cells and enhanced its tumor-promoting effect. The supernatant from cultured mesenchymal stem cells after treating with exogenous rIL-17B promoted the proliferation and migration of MGC-803, therefor suggesting that rIL-17B might promote mesenchymal stem cells to produce soluble factors. In addition, rIL-17B also activated the NF-κΒ, STAT3, β-catenin pathway in mesenchymal stem cells. Our data revealed a new mechanism that IL-17B enhanced the progression of gastric cancer by activating mesenchymal stem cells.

  6. Naphtho[2,1-b:3,4-b']dithiophene-based bulk heterojunction solar cells: how molecular structure influences nanoscale morphology and photovoltaic properties.

    PubMed

    Kim, Yu Jin; Cheon, Ye Rim; Back, Jang Yeol; Kim, Yun-Hi; Chung, Dae Sung; Park, Chan Eon

    2014-11-10

    Organic bulk heterojunction photovoltaic devices based on a series of three naphtho[2,1-b:3,4-b']dithiophene (NDT) derivatives blended with phenyl-C71-butyric acid methyl ester were studied. These three derivatives, which have NDT units with various thiophene-chain lengths, were employed as the donor polymers. The influence of their molecular structures on the correlation between their solar-cell performances and their degree of crystallization was assessed. The grazing-incidence angle X-ray diffraction and atomic force microscopy results showed that the three derivatives exhibit three distinct nanoscale morphologies. We correlated these morphologies with the device physics by determining the J-V characteristics and the hole and electron mobilities of the devices. On the basis of our results, we propose new rules for the design of future generations of NDT-based polymers for use in bulk heterojunction solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Progression of an orbital T-cell rich B-cell lymphoma to a B-cell lymphoma in a dog.

    PubMed

    Aquino, S M; Hamor, R E; Valli, V E; Kitchell, B E; Tunev, S S; Bailey, K L; Ehrhart, E J

    2000-09-01

    An 11-year-old Shetland Sheepdog was presented for exophthalmos caused by a locally extensive, poorly defined mass located behind the right eye. The primary orbital mass was identified by light microscopy and immunohistochemistry as a T-cell rich B-cell lymphoma (TCRBCL) composed predominantly of BLA.36-positive large neoplastic lymphoid cells admixed with fewer CD3- and CD79a-positive small lymphocytes. The dog was treated for lymphoma, but 6 months after presentation it was euthanatized for suspected hepatic and gastrointestinal metastasis. Gross findings revealed an enlarged liver with multiple well-demarcated, randomly distributed 0.1-1.5-cm white nodules, five firm white submucosal jejunal nodules, and ileocecal, mediastinal, and hilar lymphadenopathy. Metastatic liver lesions consisted of sheets of monomorphic large neoplastic lymphoid cells that effaced and expanded portal and centrilobular zones. These cells were morphologically similar to the large neoplastic cells of the original orbital tumor and were CD3-negative and variably BLA.36-positive, consistent with B-cell lineage. Similar cells comprised the jejunal nodules and effaced the lymph nodes. The progression of TCRBCL to a diffuse B-cell lymphoma in this case is consistent with reported human cases and has not been previously reported in the dog.

  8. Oct4 suppresses IR‑induced premature senescence in breast cancer cells through STAT3- and NF‑κB-mediated IL‑24 production.

    PubMed

    Kim, Jeong-Yub; Kim, Jeong-Chul; Lee, Ji-Yun; Park, Myung-Jin

    2018-07-01

    Breast cancer stem cells (BCSCs) are a small subpopulation of breast cancer cells that have been proposed to be a primary cause of failure of therapies, including ionizing radiation (IR). Their embryonic stem-like signature is associated with poor clinical outcome. In the present study, the function of octamer-binding transcription factor 4 (Oct4), an embryonic stem cell factor, in the resistance of BCSCs to IR was investigated. Mammosphere cells exhibited increased expression of stemness-associated genes, including Oct4 and sex‑determining region Y‑box 2 (Sox2), and were more resistant to IR compared with serum-cultured monolayer cells. IR‑resistant MCF7 cells also exhibited significantly increased expression of Oct4. To investigate the possible involvement of Oct4 in IR resistance of breast cancer cells, cells were transfected with Oct4. Ectopic expression of Oct4 increased the clonogenic survival of MCF7 cells following IR, which was reversed by treatment with small interfering RNA (siRNA) targeting Oct4. Oct4 expression decreased phosphorylated histone H2AX (γ-H2AX) focus formation and suppressed IR‑induced premature senescence in these cells. Mammosphere, IR‑resistant and Oct4‑overexpressing MCF7 cells exhibited enhanced phosphorylation of signal transducer and activation of transcription 3 (STAT3) (Tyr705) and inhibitor of nuclear factor κB (NF‑κB), and blockade of these pathways with siRNA against STAT3 and/or specific inhibitors of STAT3 and NF‑κB significantly increased IR‑induced senescence. Secretome analysis revealed that Oct4 upregulated interleukin 24 (IL‑24) expression through STAT3 and NF‑κB signaling, and siRNA against IL‑24 increased IR‑induced senescence, whereas recombinant human IL‑24 suppressed it. The results of the present study indicated that Oct4 confers IR resistance on breast cancer cells by suppressing IR‑induced premature senescence through STAT3- and NF‑κB-mediated IL‑24 production.

  9. T suppressor cells are required for the maintenance of the antigen-induced B-cell unresponsive state in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benveniste, E.; Stevens, R.H.

    1983-04-01

    Tetanus toxoid immunization of humans generates circulating B cells which secrete IgG anti-tetanus toxoid antibodies (IgG-Tet) when stimulated in vitro with T cells and pokeweed mitogen (PWM). A unique property of these cells is the inhibition of maturation into antibody-secreting plasma cells following a 1-hr in vitro pulse with tetanus toxoid. Studies were undertaken to determine if different T-cell subsets could modulate the in vitro generated B-cell unresponsive state. The addition of OKT4+/OKT8- cells to antigen-treated B cells resulted in a partial reversal of the antigen-induced inhibition of IgG-Tet synthesis. The addition of OKT4-/OKT8+ cells to the treated B cellsmore » caused a suppression of IgG-Tet synthesis comparable to that seen in cultures containing unfractionated T cells. These results indicate that (1) the B-cell unresponsive state generated by antigen treatment is not absolute, (2) the degree of B-cell unresponsiveness results from a balance of suppressor and helper signals, and (3) T-suppressor cells need to be present to induce and maintain the B-cell unresponsive state.« less

  10. Endogenous antigen tunes the responsiveness of naive B cells but not T cells

    PubMed Central

    Zikherman, Julie; Parameswaran, Ramya; Weiss, Arthur

    2012-01-01

    In humans up to 75% of newly generated B cells and about 30% of mature B cells exhibit some degree of autoreactivity1. Yet, how B cells establish and maintain tolerance in the face of autoantigen exposure during and after development is not certain. Studies of model BCR transgenic systems have highlighted the critical role played by functional unresponsiveness or ‘anergy’2,3. Unlike T cells, evidence suggests that receptor editing and anergy, rather than deletion, account for much of B cell tolerance4,5. However, it remains unclear whether the mature diverse B cell repertoire of mice contains anergic autoreactive B cells, and if so, whether antigen was encountered during or after their development. By taking advantage of a reporter mouse in which B cell antigen receptor (BCR) signaling rapidly and robustly induces GFP expression under the control of the Nur77 regulatory region, antigen-dependent and – independent BCR signaling events in vivo during B cell maturation were visualized. Here we show that B cells encounter antigen during development in the spleen, and that this antigen exposure in turn tunes the responsiveness of BCR signaling in B cells at least partly by down-modulating expression of surface IgM but not IgD BCRs, and by modifying basal calcium levels. By contrast, no analogous process occurs in naive mature T cells. Our data demonstrate not only that autoreactive B cells persist in the mature repertoire, but that functional unresponsiveness or ‘anergy’ exists in the mature B cell repertoire along a continuum, a fact that has long been suspected, but never yet shown. These results have important implications for understanding how tolerance in T and B cells is differently imposed, and how these processes might go awry in disease. PMID:22902503

  11. Identification of B Cells as a Major Site for Cyprinid Herpesvirus 3 Latency

    PubMed Central

    Reed, Aimee N.; Izume, Satoko; Dolan, Brian P.; LaPatra, Scott; Kent, Michael; Dong, Jing

    2014-01-01

    ABSTRACT Cyprinid herpesvirus 3 (CyHV-3), commonly known as koi herpesvirus (KHV), is a member of the Alloherpesviridae, and is a recently discovered emerging herpesvirus that is highly pathogenic for koi and common carp. Our previous study demonstrated that CyHV-3 becomes latent in peripheral white blood cells (WBC). In this study, CyHV-3 latency was further investigated in IgM+ WBC. The presence of the CyHV-3 genome in IgM+ WBC was about 20-fold greater than in IgM− WBC. To determine whether CyHV-3 expressed genes during latency, transcription from all eight open reading frames (ORFs) in the terminal repeat was investigated in IgM+ WBC from koi with latent CyHV-3 infection. Only a spliced ORF6 transcript was found to be abundantly expressed in IgM+ WBC from CyHV-3 latently infected koi. The spliced ORF6 transcript was also detected in vitro during productive infection as early as 1 day postinfection. The ORF6 transcript from in vitro infection begins at −127 bp upstream of the ATG codon and ends +188 bp downstream of the stop codon, +20 bp downstream of the polyadenylation signal. The hypothetical protein of ORF6 contains a consensus sequence with homology to a conserved domain of EBNA-3B and ICP4 from Epstein-Barr virus and herpes simplex virus 1, respectively, both members of the Herpesviridae. This is the first report of latent CyHV-3 in B cells and identification of gene transcription during latency for a member of the Alloherpesviridae. IMPORTANCE This is the first demonstration that a member of the Alloherpesviridae, cyprinid herpesvirus 3 (CyHV-3), establishes a latent infection in the B cells of its host, Cyprinus carpio. In addition, this is the first report of identification of gene transcription during latency for a member of Herpesvirales outside Herpesviridae. This is also the first report that the hypothetical protein of latent transcript of CyHV-3 contains a consensus sequence with homology to a conserved domain of EBNA-3B from Epstein

  12. Identification of B cells as a major site for cyprinid herpesvirus 3 latency.

    PubMed

    Reed, Aimee N; Izume, Satoko; Dolan, Brian P; LaPatra, Scott; Kent, Michael; Dong, Jing; Jin, Ling

    2014-08-01

    Cyprinid herpesvirus 3 (CyHV-3), commonly known as koi herpesvirus (KHV), is a member of the Alloherpesviridae, and is a recently discovered emerging herpesvirus that is highly pathogenic for koi and common carp. Our previous study demonstrated that CyHV-3 becomes latent in peripheral white blood cells (WBC). In this study, CyHV-3 latency was further investigated in IgM(+) WBC. The presence of the CyHV-3 genome in IgM(+) WBC was about 20-fold greater than in IgM(-) WBC. To determine whether CyHV-3 expressed genes during latency, transcription from all eight open reading frames (ORFs) in the terminal repeat was investigated in IgM(+) WBC from koi with latent CyHV-3 infection. Only a spliced ORF6 transcript was found to be abundantly expressed in IgM(+) WBC from CyHV-3 latently infected koi. The spliced ORF6 transcript was also detected in vitro during productive infection as early as 1 day postinfection. The ORF6 transcript from in vitro infection begins at -127 bp upstream of the ATG codon and ends +188 bp downstream of the stop codon, +20 bp downstream of the polyadenylation signal. The hypothetical protein of ORF6 contains a consensus sequence with homology to a conserved domain of EBNA-3B and ICP4 from Epstein-Barr virus and herpes simplex virus 1, respectively, both members of the Herpesviridae. This is the first report of latent CyHV-3 in B cells and identification of gene transcription during latency for a member of the Alloherpesviridae. This is the first demonstration that a member of the Alloherpesviridae, cyprinid herpesvirus 3 (CyHV-3), establishes a latent infection in the B cells of its host, Cyprinus carpio. In addition, this is the first report of identification of gene transcription during latency for a member of Herpesvirales outside Herpesviridae. This is also the first report that the hypothetical protein of latent transcript of CyHV-3 contains a consensus sequence with homology to a conserved domain of EBNA-3B from Epstein-Barr virus and ICP4

  13. Preliminary study on decreasing the expression of FOXP3 with miR-155 to inhibit diffuse large B-cell lymphoma

    PubMed Central

    Zhang, Jincheng; Wei, Bin; Hu, Huixian; Liu, Fanrong; Tu, Yan; Zhao, Minzhe; Wu, Dongmei

    2017-01-01

    The aim of the present study was to analyze the association between the transcription factor forkhead box P3 (FOXP3) and diffuse large B-cell lymphoma (DLBCL), and investigate the effect of microRNA-155 (miR-155) on the generation and development of FOXP3 in DLBCL. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) technique was used to determine the expression of FOXP3 in the human DLBCL cell lines Ly1, Ly8 and Ly10, and in normal B cells. An immunohistochemical method was used to determine FOXP3 expression in 60 DLBCL tumor and adjacent tissues, and a retrospective analysis of FOXP3 expression in tumor tissues and clinical data was performed. The lentiviral transfection technique was used to silence the miR-155 gene in mouse A20 cells to analyze the influence of miR-155 on FOXP3 in DLBCL. The A20 cell line with a silenced miR-155 gene was used to perform a tumorigenicity assay in BALB/c mice, and to compare the tumorigenicity rate and the tumor growth rate. The results identified that the expression of the transcription factor FOXP3 in the human DLBCL cell lines was increased compared with normal B cells; FOXP3 in human DLBCL tumor issues was increased compared with the tumor-adjacent tissue, and the increased expression of FOXP3 was identified as an indicator of poor prognosis of patients with DLBCL in the middle and late period; FOXP3 level decreased subsequent to silencing miR-155 in A20 cells; A20 cells with the low-expression miR-155 gene were used to determine the tumorigenicity in BALB/c mice and it was identified that the tumorigenicity of the low-expression miR-155 gene group was decreased compared with the untransfected group. Therefore, miR-155 may be a regulatory factor of FOXP3, and miR-155 may be associated with the metastasis and prognosis of patients with DLBCL. PMID:28789399

  14. Vorinostat and Combination Chemotherapy With Rituximab in Treating Patients With HIV-Related Diffuse Large B-Cell Non-Hodgkin Lymphoma or Other Aggressive B-Cell Lymphomas

    ClinicalTrials.gov

    2018-06-07

    AIDS-Related Plasmablastic Lymphoma; AIDS-Related Primary Effusion Lymphoma; CD20 Positive; HIV Infection; Plasmablastic Lymphoma; Primary Effusion Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Stage I Diffuse Large B-Cell Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage II Diffuse Large B-Cell Lymphoma; Stage II Grade 3 Contiguous Follicular Lymphoma; Stage II Grade 3 Non-Contiguous Follicular Lymphoma; Stage III Diffuse Large B-Cell Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage IV Diffuse Large B-Cell Lymphoma; Stage IV Grade 3 Follicular Lymphoma

  15. Regulation of normal B-cell differentiation and malignant B-cell survival by OCT2

    PubMed Central

    Hodson, Daniel J.; Shaffer, Arthur L.; Xiao, Wenming; Wright, George W.; Schmitz, Roland; Phelan, James D.; Yang, Yandan; Webster, Daniel E.; Rui, Lixin; Kohlhammer, Holger; Nakagawa, Masao; Waldmann, Thomas A.; Staudt, Louis M.

    2016-01-01

    The requirement for the B-cell transcription factor OCT2 (octamer-binding protein 2, encoded by Pou2f2) in germinal center B cells has proved controversial. Here, we report that germinal center B cells are formed normally after depletion of OCT2 in a conditional knockout mouse, but their proliferation is reduced and in vivo differentiation to antibody-secreting plasma cells is blocked. This finding led us to examine the role of OCT2 in germinal center-derived lymphomas. shRNA knockdown showed that almost all diffuse large B-cell lymphoma (DLBCL) cell lines are addicted to the expression of OCT2 and its coactivator OCA-B. Genome-wide chromatin immunoprecipitation (ChIP) analysis and gene-expression profiling revealed the broad transcriptional program regulated by OCT2 that includes the expression of STAT3, IL-10, ELL2, XBP1, MYC, TERT, and ADA. Importantly, genetic alteration of OCT2 is not a requirement for cellular addiction in DLBCL. However, we detected amplifications of the POU2F2 locus in DLBCL tumor biopsies and a recurrent mutation of threonine 223 in the DNA-binding domain of OCT2. This neomorphic mutation subtly alters the DNA-binding preference of OCT2, leading to the transactivation of noncanonical target genes including HIF1a and FCRL3. Finally, by introducing mutations designed to disrupt the OCT2–OCA-B interface, we reveal a requirement for this protein–protein interface that ultimately might be exploited therapeutically. Our findings, combined with the predominantly B-cell–restricted expression of OCT2 and the absence of a systemic phenotype in our knockout mice, suggest that an OCT2-targeted therapeutic strategy would be efficacious in both major subtypes of DLBCL while avoiding systemic toxicity. PMID:26993806

  16. Critical stoichiometric ratio of CD4(+)  CD25(+)  FoxP3(+) regulatory T cells and CD4(+)  CD25(-) responder T cells influence immunosuppression in patients with B-cell acute lymphoblastic leukaemia.

    PubMed

    Bhattacharya, Kaushik; Chandra, Sarmila; Mandal, Chitra

    2014-05-01

    Regulatory T (Treg) cells act to suppress activation of the immune system and thereby maintain immunological homeostasis and tolerance to self-antigens. The frequency and suppressing activity of Treg cells in general are high in different malignancies. We wanted to identify the role and regulation of CD4(+)  CD25(+)  FoxP3(+) Treg cells in B-cell acute lymphoblastic leukaemia (B-ALL). We have included patients at diagnosis (n = 54), patients in clinical remission (n = 32) and normal healthy individuals (n = 35). These diagnosed patients demonstrated a lower number of CD4(+)  CD25(+) cells co-expressing a higher level of FoxP3, interleukin-10, transforming growth factor-β and CD152/CTLA-4 than the normal population. Treg cells from patients showed a higher suppressive capability on CD4(+)  CD25(-) responder T (Tresp) cells than normal. The frequency and immunosuppressive potential of CD4(+)  CD25(+)  FoxP3(+) Treg cells became high with the progression of malignancy in B-ALL. Relative distribution of Tresp and Treg cells was only ~5 : 1 in B-ALL but ~35 : 1 in normal healthy individuals, further confirming the elevated immunosuppression in patients. A co-culture study at these definite ex vivo ratios, indicated that Treg cells from B-ALL patients exhibited higher immunosuppression than Treg cells from normal healthy individuals. After chemotherapy using the MCP841 protocol, the frequency of CD4(+)  CD25(+) cells was gradually enhanced with the reduction of FoxP3, interleukin-10 positivity corresponded with disease presentation, indicating reduced immunosuppression. Taken together, our study indicated that the CD4(+)  CD25(+)  FoxP3(+) Treg cells played an important role in immunosuppression, resulting in a positive disease-correlation in these patients. To the best of our knowledge, this is the first detailed report on the frequency, regulation and functionality of Treg cells in B-ALL. © 2013 John Wiley & Sons Ltd.

  17. Identification of two immortalized cell lines, ECV304 and bEnd3, for in vitro permeability studies of blood-brain barrier

    PubMed Central

    Mei, Shenghui; Jin, Hong; Zhu, Bin; Tian, Yue; Huo, Jiping; Cui, Xu; Guo, Anchen; Zhao, Zhigang

    2017-01-01

    To identify suitable cell lines for a mimetic system of in vivo blood-brain barrier (BBB) for drug permeability assessment, we characterized two immortalized cell lines, ECV304 and bEnd3 in the respect of the tightness, tight junction proteins, P-glycoprotein (P-gp) function and discriminative brain penetration. The ECV304 monoculture achieved higher transendothelial electrical resistance (TEER) and lower permeability to Lucifer yellow than bEnd3. However, co-culture with rat glioma C6 cells impaired the integrity of ECV304 and bEnd3 cell layers perhaps due to the heterogeneity among C6 cells in inducing BBB characteristics. The immunostaining of ZO-1 delivered distinct bands along cell borders on both cell lines while those of occludin and claudin-5 were diffused and weak. P-gp functionality was only proved in bEnd3 by Rhodamine 123 (R123) uptake assay. A permeability test of reference compounds displayed a similar rank order (digoxin < R123 < quinidine, verapamil < propranolol) in ECV304 and bEnd3 cells. In comparison with bEnd3, ECV304 developed tighter barrier for the passage of reference compounds and higher discrimination between transcellular and paracellular transport. However, the monoculture models of ECV304 and bEnd3 fail to achieve the sufficient tightness of in vitro BBB permeability models with high TEER and evident immunostaining of tight junction proteins. Further strategies to enhance the paracellular tightness of both cell lines to mimic in vivo BBB tight barrier deserve to be conducted. PMID:29059256

  18. Identification of two immortalized cell lines, ECV304 and bEnd3, for in vitro permeability studies of blood-brain barrier.

    PubMed

    Yang, Shu; Mei, Shenghui; Jin, Hong; Zhu, Bin; Tian, Yue; Huo, Jiping; Cui, Xu; Guo, Anchen; Zhao, Zhigang

    2017-01-01

    To identify suitable cell lines for a mimetic system of in vivo blood-brain barrier (BBB) for drug permeability assessment, we characterized two immortalized cell lines, ECV304 and bEnd3 in the respect of the tightness, tight junction proteins, P-glycoprotein (P-gp) function and discriminative brain penetration. The ECV304 monoculture achieved higher transendothelial electrical resistance (TEER) and lower permeability to Lucifer yellow than bEnd3. However, co-culture with rat glioma C6 cells impaired the integrity of ECV304 and bEnd3 cell layers perhaps due to the heterogeneity among C6 cells in inducing BBB characteristics. The immunostaining of ZO-1 delivered distinct bands along cell borders on both cell lines while those of occludin and claudin-5 were diffused and weak. P-gp functionality was only proved in bEnd3 by Rhodamine 123 (R123) uptake assay. A permeability test of reference compounds displayed a similar rank order (digoxin < R123 < quinidine, verapamil < propranolol) in ECV304 and bEnd3 cells. In comparison with bEnd3, ECV304 developed tighter barrier for the passage of reference compounds and higher discrimination between transcellular and paracellular transport. However, the monoculture models of ECV304 and bEnd3 fail to achieve the sufficient tightness of in vitro BBB permeability models with high TEER and evident immunostaining of tight junction proteins. Further strategies to enhance the paracellular tightness of both cell lines to mimic in vivo BBB tight barrier deserve to be conducted.

  19. The inhibition of PI3K and NFκB promoted curcumin-induced cell cycle arrest at G2/M via altering polyamine metabolism in Bcl-2 overexpressing MCF-7 breast cancer cells.

    PubMed

    Berrak, Özge; Akkoç, Yunus; Arısan, Elif Damla; Çoker-Gürkan, Ajda; Obakan-Yerlikaya, Pınar; Palavan-Ünsal, Narçin

    2016-02-01

    Bcl-2 protein has been contributed with number of genes which are involved in oncogenesis. Among the many targets of Bcl-2, NFκB have potential role in induction of cell cycle arrest. Curcumin has potential therapeutic effects against breast cancer through multiple signaling pathways. In this study, we investigated the role of curcumin in induction of cell cycle arrest via regulating of NFκB and polyamine biosynthesis in wt and Bcl-2+ MCF-7 cells. To examine the effect of curcumin on cell cycle regulatory proteins, PI3K/Akt, NFκB pathways and polyamine catabolism, we performed immunoblotting assay. In addition, cell cycle analysis was performed by flow cytometry. The results indicated that curcumin induced cell cycle arrest at G2/M phase by downregulation of cyclin B1 and Cdc2 and inhibited colony formation in MCF-7wt cells. However, Bcl-2 overexpression prevented the inhibition of cell cycle associated proteins after curcumin treatment. The combination of LY294002, PI3K inhibitor, and curcumin induced cell cycle arrest by decreasing CDK4, CDK2 and cyclin E2 in Bcl-2+ MCF-7 cells. Moreover, LY294002 further inhibited the phosphorylation of Akt in Bcl-2+ MCF-7 cells. Curcumin could suppress the nuclear transport of NFκB through decreasing the interaction of P-IκB-NFκB. The combination of wedelolactone, NFκB inhibitor, and curcumin acted different on SSAT expression in wt MCF-7 and Bcl-2+ MCF-7 cells. NFκB inhibition increased the SSAT after curcumin treatment in Bcl-2 overexpressed MCF-7 cells. Inhibition of NFκB activity as well as suppression of ROS generation with NAC resulted in the partial relief of cells from G2/M checkpoint after curcumin treatment in wt MCF-7 cells. In conclusion, the potential role of curcumin in induction of cell cycle arrest is related with NFκB-regulated polyamine biosynthesis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Inhibition of PTP1B disrupts cell–cell adhesion and induces anoikis in breast epithelial cells

    PubMed Central

    Hilmarsdottir, Bylgja; Briem, Eirikur; Halldorsson, Skarphedinn; Kricker, Jennifer; Ingthorsson, Sævar; Gustafsdottir, Sigrun; Mælandsmo, Gunhild M; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell–cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype. PMID:28492548

  1. Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells.

    PubMed

    Frölich, Daniela; Giesecke, Claudia; Mei, Henrik E; Reiter, Karin; Daridon, Capucine; Lipsky, Peter E; Dörner, Thomas

    2010-09-01

    Rechallenge with T cell-dependent Ags induces memory B cells to re-enter germinal centers (GCs) and undergo further expansion and differentiation into plasma cells (PCs) and secondary memory B cells. It is currently not known whether the expanded population of memory B cells and PCs generated in secondary GCs are clonally related, nor has the extent of proliferation and somatic hypermutation of their precursors been delineated. In this study, after secondary tetanus toxoid (TT) immunization, TT-specific PCs increased 17- to 80-fold on days 6-7, whereas TT-specific memory B cells peaked (delayed) on day 14 with a 2- to 22-fold increase. Molecular analyses of V(H)DJ(H) rearrangements of individual cells revealed no major differences of gene usage and CDR3 length between TT-specific PCs and memory B cells, and both contained extensive evidence of somatic hypermutation with a pattern consistent with GC reactions. This analysis identified clonally related TT-specific memory B cells and PCs. Within clusters of clonally related cells, sequences shared a number of mutations but also could contain additional base pair changes. The data indicate that although following secondary immunization PCs can derive from memory B cells without further somatic hypermutation, in some circumstances, likely within GC reactions, asymmetric mutation can occur. These results suggest that after the fate decision to differentiate into secondary memory B cells or PCs, some committed precursors continue to proliferate and mutate their V(H) genes.

  2. B cells and B cell products-helping to restore cellular immunity?

    PubMed

    Cascalho, Marilia; Platt, Jeffrey L

    2006-01-01

    T cells that provide vital protection against tumors, viruses and intracellular bacteria are thought to develop independently of B cells. However, recent discoveries suggest that development of T cells depends on B cells. One way B cells promote T cell development is by providing diverse peptides that may promote positive selection of thymocytes. Diverse peptides and B cells help in diversification of the T cell receptor repertoire and may decrease cross-reactivity in the mature T cell compartment. These new insights may provide the basis for the design of novel therapeutics.

  3. Mouse Cytotoxic T Cell-derived Granzyme B Activates the Mitochondrial Cell Death Pathway in a Bim-dependent Fashion*

    PubMed Central

    Catalán, Elena; Jaime-Sánchez, Paula; Aguiló, Nacho; Simon, Markus M.; Froelich, Christopher J.; Pardo, Julián

    2015-01-01

    Cytotoxic T cells (Tc) use perforin and granzyme B (gzmB) to kill virus-infected cells and cancer cells. Recent evidence suggests that human gzmB primarily induces apoptosis via the intrinsic mitochondrial pathway by either cleaving Bid or activating Bim leading to the activation of Bak/Bax and subsequent generation of active caspase-3. In contrast, mouse gzmB is thought to predominantly induce apoptosis by directly processing pro-caspase-3. However, in certain mouse cell types gzmB-mediated apoptosis mainly occurs via the mitochondrial pathway. To investigate whether Bim is involved under the latter conditions, we have now employed ex vivo virus-immune mouse Tc that selectively kill by using perforin and gzmB (gzmB+Tc) as effector cells and wild type as well as Bim- or Bak/Bax-deficient spontaneously (3T9) or virus-(SV40) transformed mouse embryonic fibroblast cells as targets. We show that gzmB+Tc-mediated apoptosis (phosphatidylserine translocation, mitochondrial depolarization, cytochrome c release, and caspase-3 activation) was severely reduced in 3T9 cells lacking either Bim or both Bak and Bax. This outcome was related to the ability of Tc cells to induce the degradation of Mcl-1 and Bcl-XL, the anti-apoptotic counterparts of Bim. In contrast, gzmB+Tc-mediated apoptosis was not affected in SV40-transformed mouse embryonic fibroblast cells lacking Bak/Bax. The data provide evidence that Bim participates in mouse gzmB+Tc-mediated apoptosis of certain targets by activating the mitochondrial pathway and suggest that the mode of cell death depends on the target cell. Our results suggest that the various molecular events leading to transformation and/or immortalization of cells have an impact on their relative resistance to the multiple gzmB+Tc-induced death pathways. PMID:25605735

  4. Why do human B cells secrete granzyme B? Insights into a novel B-cell differentiation pathway.

    PubMed

    Hagn, Magdalena; Jahrsdörfer, Bernd

    2012-11-01

    B cells are generally believed to operate as producers of high affinity antibodies to defend the body against microorganisms, whereas cellular cytotoxicity is considered as an exclusive prerogative of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). In conflict with this dogma, recent studies have demonstrated that the combination of interleukin-21 (IL-21) and B-cell receptor (BCR) stimulation enables B cells to produce and secrete the active form of the cytotoxic serine protease granzyme B (GrB). Although the production of GrB by B cells is not accompanied by that of perforin as in the case of many other GrB-secreting cells, recent findings suggest GrB secretion by B cells may play a significant role in early antiviral immune responses, in the regulation of autoimmune responses, and in cancer immunosurveillance. Here, we discuss in detail how GrB-secreting B cells may influence a variety of immune processes. A better understanding of the role that GrB-secreting B cells are playing in the immune system may allow for the development and improvement of novel immunotherapeutic approaches against infectious, autoimmune and malignant diseases.

  5. Nogo-B regulates migration and contraction of airway smooth muscle cells by decreasing ARPC 2/3 and increasing MYL-9 expression.

    PubMed

    Xu, Wujian; Hong, Weijun; Shao, Yan; Ning, Yunye; Cai, Zailong; Li, Qiang

    2011-01-21

    Abnormal proliferation, apoptosis, migration and contraction of airway smooth muscle (ASM) cells in airway remodeling in asthma are basically excessive repair responses to a network of inflammatory mediators such as PDGF, but the mechanisms of such responses remain unclear. Nogo-B, a member of the reticulum family 4(RTN4), is known to play a key role in arteriogenesis and tissue repair. Further studies are needed to elucidate the role of Nogo-B in airway smooth muscle abnormalities. A mouse model of chronic asthma was established by repeated OVA inhalation and subjected to Nogo-B expression analysis using immunohistochemistry and Western Blotting. Then, primary human bronchial smooth muscle cells (HBSMCs) were cultured in vitro and a siRNA interference was performed to knockdown the expression of Nogo-B in the cells. The effects of Nogo-B inhibition on PDGF-induced HBSMCs proliferation, migration and contraction were evaluated. Finally, a proteomic analysis was conducted to unveil the underlying mechanisms responsible for the function of Nogo-B. Total Nogo-B expression was approximately 3.08-fold lower in chronic asthmatic mice compared to naïve mice, which was obvious in the smooth muscle layer of the airways. Interference of Nogo-B expression by siRNA resulted nearly 96% reduction in mRNA in cultured HBSMCs. In addition, knockdown of Nogo-B using specific siRNA significantly decreased PDGF-induced migration of HBSMCs by 2.3-fold, and increased the cellular contraction by 16% compared to negative controls, but had limited effects on PDGF-induced proliferation. Furthermore, using proteomic analysis, we demonstrate that the expression of actin related protein 2/3 complex subunit 5 (ARPC 2/3) decreased and, myosin regulatory light chain 9 isoform a (MYL-9) increased after Nogo-B knockdown. These data define a novel role for Nogo-B in airway remodeling in chronic asthma. Endogenous Nogo-B, which may exert its effects through ARPC 2/3 and MYL-9, is necessary for the

  6. In Vivo Genome-Wide Expression Study on Human Circulating B Cells Suggests a Novel ESR1 and MAPK3 Network for Postmenopausal Osteoporosis

    PubMed Central

    Xiao, Peng; Chen, Yuan; Jiang, Hui; Liu, Yao-Zhong; Pan, Feng; Yang, Tie-Lin; Tang, Zi-Hui; Larsen, Jennifer A; Lappe, Joan M; Recker, Robert R; Deng, Hong-Wen

    2008-01-01

    Introduction Osteoporosis is characterized by low BMD. Studies have shown that B cells may participate in osteoclastogenesis through expression of osteoclast-related factors, such as RANKL, transforming growth factor β (TGFB), and osteoprotegerin (OPG). However, the in vivo significance of B cells in human bone metabolism and osteoporosis is still largely unknown, particularly at the systematic gene expression level. Materials and Methods In this study, Affymetrix HG-U133A GeneChip arrays were used to identify genes differentially expressed in B cells between 10 low and 10 high BMD postmenopausal women. Significance of differential expression was tested by t-test and adjusted for multiple testing with the Benjamini and Hochberg (BH) procedure (adjusted p ≤ 0.05). Results Twenty-nine genes were downregulated in the low versus high BMD group. These genes were further analyzed using Ingenuity Pathways Analysis (Ingenuity Systems). A network involving estrogen receptor 1 (ESR1) and mitogen activated protein kinase 3 (MAPK3) was identified. Real-time RT-PCR confirmed differential expression of eight genes, including ESR1, MAPK3, methyl CpG binding protein 2 (MECP2), proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1), Scr-like-adaptor (SLA), serine/threonine kinase 11 (STK11), WNK lysine-deficient protein kinase 1 (WNK1), and zinc finger protein 446 (ZNF446). Conclusions This is the first in vivo genome-wide expression study on human B cells in relation to osteoporosis. Our results highlight the significance of B cells in the etiology of osteoporosis and suggest a novel mechanism for postmenopausal osteoporosis (i.e., that downregulation of ESR1 and MAPK3 in B cells regulates secretion of factors, leading to increased osteoclastogenesis or decreased osteoblastogenesis). PMID:18433299

  7. Efficacy for lung metastasis induced by the allogeneic bEnd3 vaccine in mice.

    PubMed

    Zhao, Jun; Lu, Jing; Zhou, Lurong; Zhao, Jimin; Dong, Ziming

    2018-05-04

    The mouse brain microvascular endothelial cell line bEnd.3 was used to develop a vaccine and its anti-tumor effect on lung metastases was observed in immunized mice. Mouse bEnd.3 cells cultured in-vitro and then fixed with glutaraldehyde was used to immunize mice; mice were challenged with the metastatic cancer cell line U14, and changes in metastatic cancer tissues were observed through hematoxylin and eosin staining. Carboxyfluorescein succinimidyl amino ester (CSFE) and propidium iodide (PI) were used to detect cytotoxic activity of spleen T lymphocytes; the ratio of CD3 + and CD8 + T-cell sub-sets was determined by flow cytometry. Enzyme-linked immunosorbent assay (ELISA), immunocytochemistry and immunoblot were used to examine the specific response of the antisera of immunized mice. The number of metastatic nodules in bEnd.3 and human umbilical vein endothelial cell (HUVEC) vaccine groups was less than NIH3T3 vaccine group and phosphate buffered saline (PBS) control group. The bEnd.3-induced and HUVEC-induced cytotoxic T-lymphocytes (CTLs) showed significant lytic activity against bEnd.3 and HUVEC target cells, while the antisera of mice in bEnd.3 and HUVEC vaccine groups showed specific immune responses to membrane proteins and inhibited target cell proliferation in-vitro. Immunoblot results showed specific bands at 180KD and 220KD in bEnd.3 and at 130 kD and 220 kD in HUVEC lysates. Allogeneic bEnd.3 vaccine induced an active and specific immune response to tumor vascular endothelial cells that resulted in production of antibodies against the proliferation antigens VEGF-R II, integrin, Endog etc. Immunization with this vaccine inhibited lung metastasis of cervical cancer U14 cells and prolonged the survival of these mice.

  8. Oncogenic Ras induces inflammatory cytokine production by up-regulating the squamous cell carcinoma antigens SerpinB3/B4

    PubMed Central

    Pan, Ji-An; Sun, Yu; Shi, Chanjuan; Li, Jinyu; Powers, R. Scott; Crawford, Howard C.; Zong, Wei-Xing

    2014-01-01

    Mounting evidence indicates that oncogenic Ras can modulate cell autonomous inflammatory cytokine production, although the underlying mechanism remains unclear. Here we show that squamous cell carcinoma antigens 1 and 2 (SCCA1/2), members of the Serpin family of serine/cysteine protease inhibitors, are transcriptionally up-regulated by oncogenic Ras via MAPK and the ETS family transcription factor PEA3. Increased SCCA expression leads to inhibition of protein turnover, unfolded protein response, activation of NF-κB, and is essential for Ras-mediated cytokine production and tumor growth. Analysis of human colorectal and pancreatic tumor samples reveals a positive correlation between Ras mutation, enhanced SCCA expression, and IL-6 expression. These results indicate that SCCA is a Ras-responsive factor that has a role in Ras-associated cytokine production and tumorigenesis. PMID:24759783

  9. Dual phosphorylation of Btk by Akt/protein kinase b provides docking for 14-3-3ζ, regulates shuttling, and attenuates both tonic and induced signaling in B cells.

    PubMed

    Mohammad, Dara K; Nore, Beston F; Hussain, Alamdar; Gustafsson, Manuela O; Mohamed, Abdalla J; Smith, C I Edvard

    2013-08-01

    Bruton's tyrosine kinase (Btk) is crucial for B-lymphocyte activation and development. Mutations in the Btk gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Using tandem mass spectrometry, 14-3-3ζ was identified as a new binding partner and negative regulator of Btk in both B-cell lines and primary B lymphocytes. The activated serine/threonine kinase Akt/protein kinase B (PKB) phosphorylated Btk on two sites prior to 14-3-3ζ binding. The interaction sites were mapped to phosphoserine pS51 in the pleckstrin homology domain and phosphothreonine pT495 in the kinase domain. The double-alanine, S51A/T495A, replacement mutant failed to bind 14-3-3ζ, while phosphomimetic aspartate substitutions, S51D/T495D, caused enhanced interaction. The phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY294002 abrogated S51/T495 phosphorylation and binding. A newly characterized 14-3-3 inhibitor, BV02, reduced binding, as did the Btk inhibitor PCI-32765 (ibrutinib). Interestingly, in the presence of BV02, phosphorylation of Btk, phospholipase Cγ2, and NF-κB increased strongly, suggesting that 14-3-3 also regulates B-cell receptor (BCR)-mediated tonic signaling. Furthermore, downregulation of 14-3-3ζ elevated nuclear translocation of Btk. The loss-of-function mutant S51A/T495A showed reduced tyrosine phosphorylation and ubiquitination. Conversely, the gain-of-function mutant S51D/T495D exhibited intense tyrosine phosphorylation, associated with Btk ubiquitination and degradation, likely contributing to the termination of BCR signaling. Collectively, this suggests that Btk could become an important new candidate for the general study of 14-3-3-mediated regulation.

  10. Dual Phosphorylation of Btk by Akt/Protein Kinase B Provides Docking for 14-3-3ζ, Regulates Shuttling, and Attenuates both Tonic and Induced Signaling in B Cells

    PubMed Central

    Nore, Beston F.; Hussain, Alamdar; Gustafsson, Manuela O.; Mohamed, Abdalla J.

    2013-01-01

    Bruton's tyrosine kinase (Btk) is crucial for B-lymphocyte activation and development. Mutations in the Btk gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Using tandem mass spectrometry, 14-3-3ζ was identified as a new binding partner and negative regulator of Btk in both B-cell lines and primary B lymphocytes. The activated serine/threonine kinase Akt/protein kinase B (PKB) phosphorylated Btk on two sites prior to 14-3-3ζ binding. The interaction sites were mapped to phosphoserine pS51 in the pleckstrin homology domain and phosphothreonine pT495 in the kinase domain. The double-alanine, S51A/T495A, replacement mutant failed to bind 14-3-3ζ, while phosphomimetic aspartate substitutions, S51D/T495D, caused enhanced interaction. The phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY294002 abrogated S51/T495 phosphorylation and binding. A newly characterized 14-3-3 inhibitor, BV02, reduced binding, as did the Btk inhibitor PCI-32765 (ibrutinib). Interestingly, in the presence of BV02, phosphorylation of Btk, phospholipase Cγ2, and NF-κB increased strongly, suggesting that 14-3-3 also regulates B-cell receptor (BCR)-mediated tonic signaling. Furthermore, downregulation of 14-3-3ζ elevated nuclear translocation of Btk. The loss-of-function mutant S51A/T495A showed reduced tyrosine phosphorylation and ubiquitination. Conversely, the gain-of-function mutant S51D/T495D exhibited intense tyrosine phosphorylation, associated with Btk ubiquitination and degradation, likely contributing to the termination of BCR signaling. Collectively, this suggests that Btk could become an important new candidate for the general study of 14-3-3-mediated regulation. PMID:23754751

  11. Circulating CD21low B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells

    PubMed Central

    Rakhmanov, Mirzokhid; Keller, Baerbel; Gutenberger, Sylvia; Foerster, Christian; Hoenig, Manfred; Driessen, Gertjan; van der Burg, Mirjam; van Dongen, Jacques J.; Wiech, Elisabeth; Visentini, Marcella; Quinti, Isabella; Prasse, Antje; Voelxen, Nadine; Salzer, Ulrich; Goldacker, Sigune; Fisch, Paul; Eibel, Hermann; Schwarz, Klaus; Peter, Hans-Hartmut; Warnatz, Klaus

    2009-01-01

    The homeostasis of circulating B cell subsets in the peripheral blood of healthy adults is well regulated, but in disease it can be severely disturbed. Thus, a subgroup of patients with common variable immunodeficiency (CVID) presents with an extraordinary expansion of an unusual B cell population characterized by the low expression of CD21. CD21low B cells are polyclonal, unmutated IgM+IgD+ B cells but carry a highly distinct gene expression profile which differs from conventional naïve B cells. Interestingly, while clearly not representing a memory population, they do share several features with the recently defined memory-like tissue, Fc receptor-like 4 positive B cell population in the tonsils of healthy donors. CD21low B cells show signs of previous activation and proliferation in vivo, while exhibiting defective calcium signaling and poor proliferation in response to B cell receptor stimulation. CD21low B cells express decreased amounts of homeostatic but increased levels of inflammatory chemokine receptors. This might explain their preferential homing to peripheral tissues like the bronchoalveolar space of CVID or the synovium of rheumatoid arthritis patients. Therefore, as a result of the close resemblance to the gene expression profile, phenotype, function and preferential tissue homing of murine B1 B cells, we suggest that CD21low B cells represent a human innate-like B cell population. PMID:19666505

  12. Antioxidant and anticancer activity of Artemisia princeps var. orientalis extract in HepG2 and Hep3B hepatocellular carcinoma cells.

    PubMed

    Choi, Eun-Jeong; Kim, Gun-Hee

    2013-10-01

    The aim of the present study was to investigate antioxidant and the anticancerigen activity of a methanol extract from Artemisia princeps var. orientalis (APME), a well-known traditional herbal medicine in Asia, in hepatocellular cancer cells. To evaluate the antioxidant activity of APME, reactive oxygen species (ROS) and the antioxidant enzymes, superoxide dismutase (SOD) and catalase were investigated in HepG2 cells exposed to APME (5, 100, and 200 µg/mL) for 72 h. Then, to evaluate the anticancer activity of APME, we investigated the proliferation and apoptosis induction of HepG2 and Hep3B cells exposed to APME (1-200 µg/mL) for 24, 48, and 72 h. APME dose-dependently reduced the generation of ROS in the presence of H2O2 compared with control cells. Furthermore, it increased catalase and SOD activity. Moreover, APME inhibited cell proliferation in a dose- and time-dependent manner, but at concentrations lower than 100 µg/mL, the inhibition was less dose-dependent than time-dependent. HepG2 and Hep3B cells exposed to 5, 100, and 200 µg/mL APME for 72 h underwent cell cycle arrest and apoptosis. Exposure to APME resulted in a significant increase in the number of cells in G1 phase and a decrease in the G2/M phase cell population. In addition, APME induced P53 expression of HepG2 cells in a dose-dependent manner, and played a role in the downregulation of Bcl-2 and upregulation of Bax in both HepG2 and Hep3B cells. These results indicate the potential role of APME as an antioxidant and anticancerigen agent in hepatocarcinoma cell lines.

  13. The inhibitory effect of alendronate, a nitrogen-containing bisphosphonate on the PI3K-Akt-NFkappaB pathway in osteosarcoma cells.

    PubMed

    Inoue, Ryosuke; Matsuki, Nori-aki; Jing, Gao; Kanematsu, Takashi; Abe, Kihachiro; Hirata, Masato

    2005-11-01

    1 Bisphosphonates are inhibitors of tumor cell growth as well as of bone resorption by inducing cell apoptosis. However, little is known regarding the mechanisms by which the drug induces cell apoptosis. The aim of the present study was to determine the effect of alendronate, one of the nitrogen-containing bisphosphonates on the phoshoinositide 3-kinase (PI3K)-Akt-NFkappaB pathway, the major cell survival pathway. 2 The PI3K-Akt-NFkappaB pathway was activated in the osteosarcoma cell line MG-63 treated with tumor necrosis factor-alpha or insulin. Saos-2 was also used in some experiments. This was assessed by the production of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), increased PI3K activity, phosphorylation of Akt at serine 473 and threonine 308, increase in activity of the inhibitor of nuclear factor kappaB (IkappaB) kinase (IKK) and finally phosphorylation of IkappaB and its subsequent degradation. 3 Pretreatment with alendronate at 100 microM for 24 h prior to the stimulation with tumor necrosis factor-alpha or insulin partially inhibited the IkappaB phosphorylation and degradation. These events were more clearly observed in the presence of inhibitors of proteasomes, which are responsible for the degradation of IkappaB. The drug also partially inhibited the activity of IKK, but almost fully inhibited the phosphorylation of Akt and the production of PtdIns(3,4,5)P(3). 4 The inhibitory effect of alendronate on IkappaB phosphorylation and degradation was not attenuated by the exogenous addition of geranylgeraniol to replenish the cytosolic isoprenyl lipid substrate. 5 The present findings demonstrate that alendronate inhibited the PI3K-Akt-NFkappaB cell survival pathway at the point of PI3K activation, thus indicating the presence of new targets of alendronate.

  14. Surface receptor Toso controls B cell-mediated regulation of T cell immunity.

    PubMed

    Yu, Jinbo; Duong, Vu Huy Hoang; Westphal, Katrin; Westphal, Andreas; Suwandi, Abdulhadi; Grassl, Guntram A; Brand, Korbinian; Chan, Andrew C; Föger, Niko; Lee, Kyeong-Hee

    2018-05-01

    The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.

  15. Ibrutinib (ImbruvicaTM) potently inhibits ErbB receptor phosphorylation and cell viability of ErbB2-positive breast cancer cells.

    PubMed

    Grabinski, Nicole; Ewald, Florian

    2014-12-01

    Ibrutinib (formerly PCI-32765) is a specific, irreversible, and potent inhibitor of Burton's tyrosine kinase (BTK) developed for the treatment of several forms of blood cancer. It is now an FDA-approved drug marketed under the name Imbruvica(TM) (Pharmacyclics, Inc.) and successfully used as an orally administered second-line drug in the treatment of mantle cell lymphoma. Since BTK is predominantly expressed in hematopoietic cells, the sensitivity of solid tumor cells to Ibrutinib has not been analyzed. In this study, we determined the effect of Ibrutinib on breast cancer cells. We demonstrate that Ibrutinib efficiently reduces the phosphorylation of the receptor tyrosine kinases ErbB1, ErbB2 and ErbB3, thereby suppressing AKT and MAPK signaling in ErbB2-positive (ErbB2+) breast cancer cell lines. Treatment with Ibrutinib significantly reduced the viability of ErbB2+ cell lines with IC50 values at nanomolar concentrations, suggesting therapeutic potential of Ibrutinib in breast cancer. Combined treatment with Ibrutinib and the dual PI3K/mTOR inhibitor BEZ235 synergistically reduces cell viability of ErbB2+ breast cancer cells. Combination indices below 0.25 at 50% inhibition of cell viability were determined by the Chou-Talalay method. Therefore, the combination of Ibrutinib and canonical PI3K pathway inhibitors could be a new and effective approach in the treatment of breast cancer with activated ErbB receptors. Ibrutinib could thus become a valuable component of targeted therapy in aggressive ErbB2+ breast cancer.

  16. Inhibition of STAT-3 Results in Radiosensitization of Human Squamous Cell Carcinoma

    PubMed Central

    Bonner, James A.; Trummell, Hoa Q.; Willey, Christopher D.; Plants, Brian A.; Raisch, Kevin P.

    2009-01-01

    Background Signal Transducer and Activator of Transcription – 3 (STAT-3) is a downstream component of the Epidermal Growth Factor Receptor (EGFr) signaling process that may facilitate the resistance of tumor cells to conventional cancer treatments. Studies were performed to determine if inhibition of this downstream protein may produce radiosensitization. Methods/Results A431 cells (human squamous cell carcinoma cells with EGFr overexpression) were found to be sensitized to radiation after treatment with STAT-3 small interfering RNA (siRNA). Therefore, a short hairpin RNA (shRNA) against STAT-3 was designed and cloned into a pBABE vector system modified for shRNA expression. Following transfection, clone 2.1 was selected for further study as it showed a dramatic reduction of STAT-3 protein (and mRNA) when compared to A431 parental cells or a negative control shRNA cell line (transfected with STAT-3 shRNA with 2 base pairs mutated). A431 2.1 showed doubling times of 25-31 h as compared to 18-24 h for the parental cell line. The A431 shRNA knockdown STAT-3 cells A431 were more sensitive to radiation than A431 parental or negative STAT-3 control cells. Conclusion A431 cells stably transfected with shRNA against STAT-3 resulted in enhanced radiosensitivity. Further work will be necessary to determine whether inhibition of STAT-3 phosphorylation is a necessary step for the radiosensitization that is induced by inhibition of EGFr. PMID:19616333

  17. B cell-mediated maintenance of CD169+ cells is critical for liver regeneration.

    PubMed

    Behnke, Kristina; Zhuang, Yuan; Xu, Haifeng C; Sundaram, Balamurugan; Reich, Maria; Shinde, Prashant V; Huang, Jun; Modares, Nastaran Fazel; Tumanov, Alexei V; Polz, Robin; Scheller, Jürgen; Ware, Carl F; Pfeffer, Klaus; Keitel, Verena; Häussinger, Dieter; Pandyra, Aleksandra A; Lang, Karl S; Lang, Philipp A

    2018-05-09

    The liver has an extraordinary capacity to regenerate via activation of key molecular pathways. However, central regulators controlling liver regeneration remain insufficiently studied. Here we show that B cell-deficient animals failed to induce sufficient liver regeneration after partial hepatectomy (PHx). Consistently, adoptive transfer of B cells could rescue defective liver regeneration. B cell mediated lymphotoxin beta production promoted recovery from PHx. Absence of B cells coincided with loss of splenic CD169 + macrophages. Moreover, depletion of CD169 + cells resulted in defective liver regeneration and decreased survival, which was associated with reduced hepatocyte proliferation. Mechanistically, CD169 + cells contributed to liver regeneration by inducing hepatic IL-6 production and STAT3 activation. Accordingly, treatment of CD169 + cell depleted animals with IL-6/Il-6R rescued liver regeneration and severe pathology following PHx. In conclusion, we identified CD169 + cells to be a central trigger for liver regeneration, by inducing key signaling pathways important for liver regeneration. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  18. The coordinated effects of Apatinib and Tripterine on the proliferation, invasiveness and apoptosis of human hepatoma Hep3B cells.

    PubMed

    Li, Huihui; Fan, Yichang; Yang, Fan; Zhao, Lei; Cao, Bangwei

    2018-07-01

    As a novel vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase inhibitor, Apatinib has exhibited antitumor effects in a variety of solid tumors. Extracts of Chinese herbal medicines have emerged as a promising alternative option to increase the sensitivity of patients to chemotherapeutics while alleviating side effects. The present study aimed to investigate the effects of Apatinib and the traditional Chinese herb Tripterine on the proliferation, invasion and apoptosis of human hepatoma Hep3B cells. The expression of VEGFR-2 in Hep3B cells was detected by western blotting and immunofluorescence assays. Hep3B cells were then divided into four different groups: Control group, Apatinib group, Tripterine group and Apatinib plus Tripterine group. The proliferation, invasion and apoptosis of these four groups of Hep3B cells were assessed by MTS, wound healing and Transwell assays, and flow cytometry, respectively. Finally, the levels of the proliferation-associated proteins phosphorylated protein kinase B (p-Akt) and phosphorylated extracellular signal-regulated kinase (p-ERK) and the apoptosis-associated proteins cleaved Caspase-3 and B-cell lymphoma-associated X protein (Bax) were detected by western blotting. The proliferation, migration and invasion of Hep3B cells were significantly inhibited by Apatinib and Tripterine, compared with the control group (P<0.01). The inhibitory effect of the combination group was markedly stronger than that of the Apatinib and Tripterine groups. The downregulation of p-Akt and p-ERK induced by Apatinib and Tripterine was further inhibited in the combination group (P<0.05), and the expression levels of Caspase-3 and Bax were also significantly increased in the combination group (P<0.05). The combination of Apatinib and Tripterine significantly inhibited the proliferation, migration and invasion ability and promoted the apoptosis of Hep3B cells by downregulating the expression of p-Akt and p-ERK, and upregulating the

  19. Impact of cladribine therapy on changes in circulating dendritic cell subsets, T cells and B cells in patients with multiple sclerosis.

    PubMed

    Mitosek-Szewczyk, Krystyna; Tabarkiewicz, Jacek; Wilczynska, Barbara; Lobejko, Katarzyna; Berbecki, Jerzy; Nastaj, Marcin; Dworzanska, Ewa; Kolodziejczyk, Beata; Stelmasiak, Zbigniew; Rolinski, Jacek

    2013-09-15

    Cladribine causes sustained reduction in peripheral T and B cell populations while sparing other immune cells. We determined two populations of dendritic cells (DCs): namely CD1c(+)/CD19(-) (myeloid DCs) and CD303(+)/CD123(+) (plasmacytoid DCs), CD19(+) B lymphocytes, CD3(+) T lymphocytes and CD4(+) or CD8(+) subpopulations in patients with multiple sclerosis after cladribine therapy. We examined 50 patients with secondary progressive multiple sclerosis (SP MS) according to McDonalds et al.'s criteria, 2001 [15]. Blood samples were collected before the initiation of cladribine therapy and after 1st, 2nd, 3th, 4th and 5th courses of treatment. DC subsets, T and B cells were analyzed by flow cytometry. During cladribine treatment the myeloid DCs CD1c(+)/CD19(-) did not change (p=0.73175), and the plasmacytoid DCs CD303(+)/CD123(+) significantly increased (p=0.00034) which resulted in significant changes in the ratio of myeloid DCs to plasmacytoid DCs (p=0.00273). During therapy, B lymphocyte CD19(+) significantly decreased (p=0.00005) and significant changes in CD4(+) cells (p=0.00191), changes in CD8(+) cells (p=0.05760) and significant changes in CD3(+) (p=0.01822) were found. We noticed significant trend to increase the CD303(+) circulating the dendritic cells. This population produces large amounts of IFN-alfa. We found significant and rapid decrease in B cells and CD4(+) Th cells. Our results suggest two possible ways of beneficial cladribine influence on immune system in MS. Induction of IFN-alfa producing cells and their predominance over BDCA-1(+) DCs, which are associated with cytotoxic response. Additionally, cladribine could influence two populations of lymphocytes: B cells and Th lymphocytes responsible for induction of immune response against myelin antigens. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Activation of NF-kappa B Signaling Promotes Growth of Prostate Cancer Cells in Bone

    PubMed Central

    Jin, Renjie; Sterling, Julie A.; Edwards, James R.; DeGraff, David J.; Lee, Changki; Park, Serk In; Matusik, Robert J.

    2013-01-01

    Patients with advanced prostate cancer almost invariably develop osseous metastasis. Although many studies indicate that the activation of NF-κB signaling appears to be correlated with advanced cancer and promotes tumor metastasis by influencing tumor cell migration and angiogenesis, the influence of altered NF-κB signaling in prostate cancer cells within boney metastatic lesions is not clearly understood. While C4-2B and PC3 prostate cancer cells grow well in the bone, LNCaP cells are difficult to grow in murine bone following intraskeletal injection. Our studies show that when compared to LNCaP, NF-κB activity is significantly higher in C4-2B and PC3, and that the activation of NF-κB signaling in prostate cancer cells resulted in the increased expression of the osteoclast inducing genes PTHrP and RANKL. Further, conditioned medium derived from NF-κB activated LNCaP cells induce osteoclast differentiation. In addition, inactivation of NF-κB signaling in prostate cancer cells inhibited tumor formation in the bone, both in the osteolytic PC3 and osteoblastic/osteoclastic mixed C4-2B cells; while the activation of NF-κB signaling in LNCaP cells promoted tumor establishment and proliferation in the bone. The activation of NF-κB in LNCaP cells resulted in the formation of an osteoblastic/osteoclastic mixed tumor with increased osteoclasts surrounding the new formed bone, similar to metastases commonly seen in patients with prostate cancer. These results indicate that osteoclastic reaction is required even in the osteoblastic cancer cells and the activation of NF-κB signaling in prostate cancer cells increases osteoclastogenesis by up-regulating osteoclastogenic genes, thereby contributing to bone metastatic formation. PMID:23577181

  1. miR-125b targets DNMT3b and mediates p53 DNA methylation involving in the vascular smooth muscle cells proliferation induced by homocysteine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, ChengJian; Zhang, HuiPing; Zhao, Li

    MicroRNAs (miRNAs) are short non-coding RNA and play crucial roles in a wide array of biological processes, including cell proliferation, differentiation and apoptosis. Our previous studies found that homocysteine(Hcy) can stimulate the proliferation of vascular smooth muscle cells (VSMCs), however, the underlying mechanisms were not fully elucidated. Here, we found proliferation of VSMCs induced by Hcy was of correspondence to the miR-125b expression reduced both in vitro and in the ApoE knockout mice, the hypermethylation of p53, its decreased expression, and DNA (cytosine-5)-methyltransferase 3b (DNMT3b) up-regulated. And, we found DNMT3b is a target of miR-125b, which was verified by themore » Dual-Luciferase reporter assay and western blotting. Besides, the siRNA interference for DNMT3b significantly decreased the methylation level of p53, which unveiled the causative role of DNMT3b in p53 hypermethylation. miR-125b transfection further confirmed its regulative roles on p53 gene methylation status and the VSMCs proliferation. Our data suggested that a miR-125b-DNMT3b-p53 signal pathway may exist in the VSMCs proliferation induced by Hcy.« less

  2. Hapalindole H Induces Apoptosis as an Inhibitor of NF-ĸB and Affects the Intrinsic Mitochondrial Pathway in PC-3 Androgen-insensitive Prostate Cancer Cells.

    PubMed

    Acuña, Ulyana Muñoz; Mo, Shunyan; Zi, Jiachen; Orjala, Jimmy; DE Blanco, Esperanza J Carcache

    2018-06-01

    Prostate cancer presents the highest incidence rates among all cancers in men. Hapalindole H (Hap H), isolated from Fischerella muscicola (UTEX strain number LB1829) as part of our natural product anticancer drug discovery program, was found to be significantly active against prostate cancer cells. In this study, Hap H was tested for nuclear factor-kappa B (NF-ĸB) inhibition and selective cytotoxic activity against different cancer cell lines. The apoptotic effect was assessed on PC-3 prostate cancer cells by fluorescence-activated cell sorting analysis. The underlying mechanism that induced apoptosis was studied and the effect of Hap H on mitochondria was evaluated and characterized using western blot and flow cytometric analysis. Hap H was identified as a potent NF-ĸB inhibitor (0.76 μM) with selective cytotoxicity against the PC-3 prostate cancer cell line (0.02 μM). The apoptotic effect was studied on PC-3 cells. The results showed that treatment of PC-3 cells with Hap H reduced the formation of NAD(P)H, suggesting that the function of the outer mitochondrial membrane was negatively affected. Thus, the mitochondrial transmembrane potential was assessed in Hap H treated cells. The results showed that the outer mitochondrial membrane was disrupted as an increased amount of JC-1 monomers were detected in treated cells (78.3%) when compared to untreated cells (10.1%), also suggesting that a large number of treated cells went into an apoptotic state. Hap H was found to have potent NF-ĸB p65-inhibitory activity and induced apoptosis through the intrinsic mitochondrial pathway in hormone-independent PC-3 prostate cancer cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Effects of JS-K, a novel anti-cancer nitric oxide prodrug, on gene expression in human hepatoma Hep3B cells.

    PubMed

    Dong, Ray; Wang, Xueqian; Wang, Huan; Liu, Zhengyun; Liu, Jie; Saavedra, Joseph E

    2017-04-01

    JS-K is a novel anticancer nitric oxide (NO) prodrug effective against a variety of cancer cells, including the inhibition of AM-1 hepatoma cell growth in rats. To further evaluate anticancer effects of JS-K, human hepatoma Hep3B cells were treated with JS-K and the compound control JS-43-126 at various concentrations (0-100μM) for 24h, and cytotoxicity was determined by the MTS assay. The compound control JS-43-126 was not cytotoxic to Hep3B cells at concentrations up to 100μM, while the LC 50 for JS-K was about 10μM. To examine the molecular mechanisms of antitumor effects of JS-K, Hep3B cells were treated with 1-10μM of JS-K for 24h, and then subjected to gene expression analysis via real time RT-PCR and protein immunostain via confocal images. JS-K is a GST-α targeting NO prodrug, and decreased immunostaining for GST-α was associated with JS-K treatment. JS-K activated apoptosis pathways in Hep3B cells, including induction of caspase-3, caspase-9, Bax, TNF-α, and IL-1β, and immunostaining for caspase-3 was intensified. The expressions of thrombospondin-1 (TSP-1) and the tissue inhibitors of metalloproteinase-1 (TIMP-1) were increased by JS-K at both transcript and protein levels. JS-K treatment also increased the expression of differentiation-related genes CD14 and CD11b, and depressed the expression of c-myc in Hep3B cells. Thus, multiple molecular events appear to be associated with anticancer effects of JS-K in human hepatoma Hep3B cells, including activation of genes related to apoptosis and induction of genes involved in antiangiogenesis and tumor cell migration. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. T cell-dependent antibody production by Ly-1 B cells.

    PubMed

    Taki, S; Schmitt, M; Tarlinton, D; Förster, I; Rajewsky, K

    1992-05-04

    Through the use of a SCID transfer system, we have demonstrated that under certain conditions, the production of Ig by Ly-1 B cells can be modulated by T cells. This modulation can take the form of enhanced isotype production or isotype-switch induction and to some extent appears to be dependent on the activation state of the T cells. Furthermore we have shown that Ly-1 B cells can mount an idiotypically restricted T cell-dependent immune response to the antigen PC-KLH. This result suggests that the previous failure to observe T cell-dependent responses by Ly-1 B cells has been due to these B cells being "blind" to the antigens used and is not due to some inherent property of these B cells. When one considers the previous reports of the substantial contribution of Ly-1 B cells to the natural serum immunoglobulin levels and the ability of T cells to affect Ig production by Ly-1 B cells documented in this report, it is clear that the interaction of T cells with the Ly-1 B-cell population is important in determining the "natural" serum Ig repertoire of the mouse.

  5. Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas

    PubMed Central

    Kong, Sinyi; Yang, Yi; Xu, Yuanming; Wang, Yajun; Zhang, Yusi; Melo-Cardenas, Johanna; Xu, Xiangping; Gao, Beixue; Thorp, Edward B.; Zhang, Donna D.; Zhang, Bin; Song, Jianxun; Zhang, Kezhong; Zhang, Jianning; Zhang, Jinping; Li, Huabin; Fang, Deyu

    2016-01-01

    Humoral immunity involves multiple checkpoints during B-cell development, maturation, and activation. The cell death receptor CD95/Fas-mediated apoptosis plays a critical role in eliminating the unwanted activation of B cells by self-reactive antigens and in maintaining B-cell homeostasis through activation-induced B-cell death (AICD). The molecular mechanisms controlling AICD remain largely undefined. Herein, we show that the E3 ubiquitin ligase Hrd1 protected B cells from activation-induced cell death by degrading the death receptor Fas. Hrd1-null B cells exhibited high Fas expression during activation and rapidly underwent Fas-mediated apoptosis, which could be largely inhibited by FasL neutralization. Fas mutation in Hrd1 KO mice abrogated the increase in B-cell AICD. We identified Hrd1 as the first E3 ubiquitin ligase of the death receptor Fas and Hrd1-mediated Fas destruction as a molecular mechanism in regulating B-cell immunity. PMID:27573825

  6. Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas.

    PubMed

    Kong, Sinyi; Yang, Yi; Xu, Yuanming; Wang, Yajun; Zhang, Yusi; Melo-Cardenas, Johanna; Xu, Xiangping; Gao, Beixue; Thorp, Edward B; Zhang, Donna D; Zhang, Bin; Song, Jianxun; Zhang, Kezhong; Zhang, Jianning; Zhang, Jinping; Li, Huabin; Fang, Deyu

    2016-09-13

    Humoral immunity involves multiple checkpoints during B-cell development, maturation, and activation. The cell death receptor CD95/Fas-mediated apoptosis plays a critical role in eliminating the unwanted activation of B cells by self-reactive antigens and in maintaining B-cell homeostasis through activation-induced B-cell death (AICD). The molecular mechanisms controlling AICD remain largely undefined. Herein, we show that the E3 ubiquitin ligase Hrd1 protected B cells from activation-induced cell death by degrading the death receptor Fas. Hrd1-null B cells exhibited high Fas expression during activation and rapidly underwent Fas-mediated apoptosis, which could be largely inhibited by FasL neutralization. Fas mutation in Hrd1 KO mice abrogated the increase in B-cell AICD. We identified Hrd1 as the first E3 ubiquitin ligase of the death receptor Fas and Hrd1-mediated Fas destruction as a molecular mechanism in regulating B-cell immunity.

  7. Upregulation of RhoB via c-Jun N-terminal kinase signaling induces apoptosis of the human gastric carcinoma NUGC-3 cells treated with NSC12618.

    PubMed

    Kim, Bo-Kyung; Kim, Hwan Mook; Chung, Kyung-Sook; Kim, Dong-Myung; Park, Song-Kyu; Song, Alexander; Won, Kyoung-Jae; Lee, Kiho; Oh, Yu-Kyoung; Lee, Kyeong; Song, Kyung-Bin; Simon, Julian A; Han, Gyoonhee; Won, Misun

    2011-03-01

    RhoB expression is reduced in most invasive tumors, with loss of RhoB expression correlating significantly with tumor stage. Here, we demonstrate that upregulation of RhoB by the potent anticancer agent NSC126188 induces apoptosis of NUGC-3 human gastric carcinoma cells. The crucial role of RhoB in NSC126188-induced apoptosis is indicated by the rescue of NUGC-3 cells from apoptosis by knockdown of RhoB. In the presence of NSC126188, c-Jun N-terminal kinase (JNK) signaling was activated, and the JNK inhibitor SP600125 reduced RhoB expression and suppressed the apoptosis of NUGC-3 cells. Knockdowns of mitogen-activated protein kinase kinase (MKK) 4/7, JNK1/2 and c-Jun downregulated RhoB expression and rescued cells from apoptotic death in the presence of NSC126188. The JNK inhibitor SP600125 suppressed transcriptional activation of RhoB in the presence of NSC126188, as indicated by a reporter assay that used luciferase under the RhoB promoter. The ability of NSC126188 to increase luciferase activity through both the p300-binding site and the inverted CCAAT sequence (iCCAAT box) suggests that JNK signaling to upregulate RhoB expression is mediated through both the p300-binding site and the iCCAAT box. However, the JNK inhibitor SP600125 did not inhibit the upregulation of RhoB by farnesyltransferase inhibitor (FTI)-277. The p300-binding site did not affect activation of the RhoB promoter by FTI-277 in NUGC-3 cells, suggesting that the transcriptional activation of RhoB by NSC126188 occurs by a different mechanism than that reported for FTIs. Our data indicate that NSC126188 increases RhoB expression via JNK-mediated signaling through a p300-binding site and iCCAAT box resulting in apoptosis of NUGC-3 cells.

  8. Phase 1 study of the PI3Kδ inhibitor INCB040093 ± JAK1 inhibitor itacitinib in relapsed/refractory B-cell lymphoma.

    PubMed

    Phillips, Tycel J; Forero-Torres, Andres; Sher, Taimur; Diefenbach, Catherine S; Johnston, Patrick; Talpaz, Moshe; Pulini, Jennifer; Zhou, Li; Scherle, Peggy; Chen, Xuejun; Barr, Paul M

    2018-04-25

    Because both phosphatidylinositol 3-kinase δ (PI3Kδ) and Janus kinase (JAK)-signal transducer and activator of transcription pathways contribute to tumor cell proliferation and survival in B-cell malignancies, their simultaneous inhibition may provide synergistic treatment efficacy. This phase 1 dose-escalation/expansion study assessed the safety, efficacy, pharmacokinetics, and pharmacodynamics of INCB040093, a selective PI3Kδ inhibitor, as monotherapy or combined with itacitinib (formerly INCB039110), a selective JAK1 inhibitor, in adult patients with relapsed or refractory (R/R) B-cell lymphomas. Final results are reported. Overall, 114 patients were treated (monotherapy, n=49; combination therapy, n=72 [7 patients crossed-over from monotherapy to combination]). INCB040093 100 mg twice daily (monotherapy) and INCB040093 100 mg twice daily + itacitinib 300 mg once daily (combination) were the recommended phase 2 doses. One dose-limiting toxicity (gastrointestinal bleed secondary to gastric diffuse large B-cell lymphoma [DLBCL] regression) occurred with monotherapy. The most common serious adverse events with monotherapy were pneumonia (n=5) and pyrexia (n=4), and with combination Pneumocystis jiroveci pneumonia (n=5), pneumonia (unrelated to Pneumocystis jiroveci ; n=5), and pyrexia (n=4). Grade ≥3 transaminase elevations were less common with combination. INCB040093 was active across the B-cell lymphomas; 63% of patients (5/8) with follicular lymphoma responded to monotherapy. Adding itacitinib provided promising activity in select subtypes, with responses of 67% (14/21) in classic Hodgkin lymphoma (vs 29% [5/17] with monotherapy) and 31% (4/13) in non-germinal center B-cell-like DLBCL. INCB040093 with/without itacitinib was tolerated and active in this study, and is a promising treatment strategy for patients with select R/R B-cell lymphomas. ClinicalTrials.gov: #NCT01905813. Copyright © 2018 American Society of Hematology.

  9. Distinctions Among Circulating Antibody Secreting Cell Populations, Including B-1 Cells, in Human Adult Peripheral Blood1

    PubMed Central

    Quách, Tâm D.; Rodríguez-Zhurbenko, Nely; Hopkins, Thomas J.; Guo, Xiaoti; Vázquez, Ana María Hernández; Li, Wentian; Rothstein, Thomas L.

    2015-01-01

    Human antibody secreting cell (ASC) populations in circulation are not well studied. In addition to B-1 (CD20+CD27+CD38lo/intCD43+) cell and the conventional plasmablast (CD20-CD27hiCD38hi) cell populations, here we identified a novel B cell population termed 20+38hi B cells (CD20+CD27hiCD38hi) that spontaneously secretes antibody. At steady state, 20+38hi B cells are distinct from plasmablasts on the basis of CD20 expression, amount of antibody production, frequency of mutation, and diversity of B cell receptor repertoire. However, cytokine treatment of 20+38hi B cells induces loss of CD20 and acquisition of CD138, suggesting that 20+38hi B cells are precursors to plasmablasts, or pre-plasmablasts. We then evaluated similarities and differences between CD20+CD27+CD38lo/intCD43+ B-1 cells, CD20+CD27hiCD38hi 20+38hi B cells, CD20-CD27hiCD38hi plasmablasts, and CD20+CD27+CD38lo/intCD43- memory B cells. We found that B-1 cells differ from 20+38hi B cells and plasmablasts in numbers of ways, including antigen expression, morphological appearance, transcriptional profiling, antibody skewing, antibody repertoire, and secretory response to stimulation. In terms of gene expression, B-1 cells align more closely with memory B cells than with 20+38hi B cells or plasmablasts, but differ in that memory B cells do not express antibody secretion related genes. We found that, B-1 cell antibodies utilize Vh4-34, which is often associated with autoreactivity, 3 to 6-fold more often than other B cell populations. Along with selective production of IgM anti-PC, this data suggests that human B-1 cells might be preferentially selected for autoreactivity/natural-specificity. In sum, our results indicate that human healthy adult peripheral blood at steady state consists of 3 distinct ASC populations. PMID:26740107

  10. Chimeric Vaccine Stimulation of Human Dendritic Cell Indoleamine 2, 3-Dioxygenase Occurs via the Non-Canonical NF-κB Pathway

    PubMed Central

    Kim, Nan-Sun; Mbongue, Jacques C.; Nicholas, Dequina A.; Esebanmen, Grace E.; Unternaehrer, Juli J.; Firek, Anthony F.; Langridge, William H. R.

    2016-01-01

    A chimeric protein vaccine composed of the cholera toxin B subunit fused to proinsulin (CTB-INS) was shown to suppress type 1 diabetes onset in NOD mice and upregulate biosynthesis of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1) in human dendritic cells (DCs). Here we demonstrate siRNA inhibition of the NF-κB-inducing kinase (NIK) suppresses vaccine-induced IDO1 biosynthesis as well as IKKα phosphorylation. Chromatin immunoprecipitation (ChIP) analysis of CTB-INS inoculated DCs showed that RelB bound to NF-κB consensus sequences in the IDO1 promoter, suggesting vaccine stimulation of the non-canonical NF-κB pathway activates IDO1 expression in vivo. The addition of Tumor Necrosis Factor Associated Factors (TRAF) TRAF 2, 3 and TRAF6 blocking peptides to vaccine inoculated DCs was shown to inhibit IDO1 biosynthesis. This experimental outcome suggests vaccine activation of the TNFR super-family receptor pathway leads to upregulation of IDO1 biosynthesis in CTB-INS inoculated dendritic cells. Together, our experimental data suggest the CTB-INS vaccine uses a TNFR-dependent signaling pathway of the non-canonical NF-κB signaling pathway resulting in suppression of dendritic cell mediated type 1 diabetes autoimmunity. PMID:26881431

  11. Activation-induced cytidine deaminase (AID) expression in human B-cell precursors is essential for central B-cell tolerance

    PubMed Central

    Cantaert, Tineke; Schickel, Jean-Nicolas; Bannock, Jason M.; Ng, Yen-Shing; Massad, Christopher; Oe, Tyler; Wu, Renee; Lavoie, Aubert; Walter, Jolan E.; Notarangelo, Luigi D.; Al-Herz, Waleed; Kilic, Sara Sebnem; Ochs, Hans D.; Nonoyama, Shigeaki; Durandy, Anne; Meffre, Eric

    2015-01-01

    SUMMARY Activation-induced cytidine deaminase (AID), the enzyme mediating class switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin genes, is essential for the removal of developing autoreactive B cells. How AID mediates central B-cell tolerance remains unknown. We report that AID enzymes were produced in a discrete population of immature B cells that expressed recombination-activating gene 2 (RAG2), suggesting that they undergo secondary recombination to edit autoreactive antibodies. However, most AID+ immature B cells lacked anti-apoptotic MCL-1 and were deleted by apoptosis. AID inhibition using lentiviral-encoded short hairpin (sh)RNA in B cells developing in humanized mice resulted in a failure to remove autoreactive clones. Hence, B-cell intrinsic AID expression mediates central B-cell tolerance potentially through its RAG-coupled genotoxic activity in self-reactive immature B cells. PMID:26546282

  12. gp49B-mediated negative regulation of antibody production by memory and marginal zone B cells.

    PubMed

    Fukao, Saori; Haniuda, Kei; Nojima, Takuya; Takai, Toshiyuki; Kitamura, Daisuke

    2014-07-15

    The rapid Ab responses observed after primary and secondary immunizations are mainly derived from marginal zone (MZ) and memory B cells, respectively, but it is largely unknown how these responses are negatively regulated. Several inhibitory receptors have been identified and their roles have been studied, but mainly on follicular B cells and much less so on MZ B, and never on memory B cells. gp49B is an Ig superfamily member that contains two ITIMs in its cytoplasmic tail, and it has been shown to negatively regulate mast cell, macrophage, and NK cell responses. In this study, we demonstrate that gp49B is preferentially expressed on memory and MZ B cells. We show that gp49B(-/-) mice produce more IgM after a primary immunization and more IgM and IgG1 after a secondary immunization than gp49B(+/+) mice in T cell-dependent immune responses. Memory and MZ B cells from gp49B(-/-) mice also produce more Abs upon in vitro stimulation with CD40 than those from gp49B(+/+) mice. The in vitro IgM production by MZ B cells from gp49B(+/+), but not gp49B(-/-), mice is suppressed by interaction with a putative gp49B ligand, the integrin αvβ3 heterodimer. In addition, gp49B(-/-) mice exhibited exaggerated IgE production in the memory recall response. These results suggest that plasma cell development from memory and MZ B cells, as well as subsequent Ab production, are suppressed via gp49B. In memory B cells, this suppression also prevents excessive IgE production, thus curtailing allergic diseases. Copyright © 2014 by The American Association of Immunologists, Inc.

  13. Neuregulin Facilitates Nerve Regeneration by Speeding Schwann Cell Migration via ErbB2/3-Dependent FAK Pathway

    PubMed Central

    Chang, Hung-Ming; Shyu, Ming-Kwang; Tseng, Guo-Fang; Liu, Chiung-Hui; Chang, Hung-Shuo; Lan, Chyn-Tair; Hsu, Wen-Ming; Liao, Wen-Chieh

    2013-01-01

    Background Adequate migration of Schwann cells (Sc) is crucial for axon-guidance in the regenerative process after peripheral nerve injury (PNI). Considering neuregulin-erbB-FAK signaling is an essential pathway participating in the regulation of Sc migration during development, the present study is aimed to examine whether neuregulin would exert its beneficial effects on adult following PNI and further determine the potential changes of downstream pathway engaged in neuro-regeneration by both in vitro and in vivo approaches. Methodology and Principal Findings Cultured RSC96 cells treated with neuregulin were processed for erbB2/3 immunofluorescence and FAK immunoblotings. The potential effects of neuregulin on Sc were assessed by cell adherence, spreading, and migration assays. In order to evaluate the functional significance of neuregulin on neuro-regeneration, the in vivo model of PNI was performed by chronic end-to-side neurorrhaphy (ESN). In vitro studies indicated that after neuregulin incubation, erbB2/3 were not only expressed in cell membranes, but also distributed throughout the cytoplasm and nucleus of RSC96 cells. Activation of erbB2/3 was positively correlated with FAK phosphorylation. Neuregulin also increases Sc adherence, spreading, and migration by 127.2±5.0%, 336.8±3.0%, and 80.0±5.7%, respectively. As for in vivo study, neuregulin significantly accelerates the speed of Sc migration and increases Sc expression in the distal stump of injured nerves. Retrograde labeling and compound muscle action potential recordings (CMAP) also showed that neuregulin successfully facilitates nerve regeneration by eliciting noticeably larger CMAP and promoting quick re-innervation of target muscles. Conclusions As neuregulin successfully improves axo-glial interaction by speeding Sc migration via the erbB2/3-FAK pathway, therapeutic use of neuregulin may thus serve as a promising strategy to facilitate the progress of nerve regeneration after PNI. PMID:23301073

  14. Ultraviolet B Radiation Stimulates the Interaction between Nuclear Factor of Activated T Cells 5 (NFAT5) and Nuclear Factor-Kappa B (NF-κB) in Human Lens Epithelial Cells.

    PubMed

    Chung, Inyoung; Hah, Young-Sool; Ju, SunMi; Kim, Ji-Hye; Yoo, Woong-Sun; Cho, Hee-Young; Yoo, Ji-Myong; Seo, Seong-Wook; Choi, Wan-Sung; Kim, Seong-Jae

    2017-07-01

    Nuclear factor-kappa B (NF-κB) has been proposed as a therapeutic target for the treatment of cataracts. The authors investigated the relationship between nuclear factor of activated T cells 5 (NFAT5) and NF-κB in ultraviolet B (UVB)-irradiated human lens epithelial (HLE) cells. Human lens epithelial B-3 (HLE-B3) cells were exposed to UVB light at a dose of 10 mJ/cm 2 and then incubated for 24 h. Cell viability was assessed by using the Cell Counting Kit-8 (CCK-8) assay. Gene expression level of NFAT5 was determined using real-time quantitative polymerase chain reaction (qPCR). Protein expression levels of NFAT5, NF-κB p65, and α-smooth muscle actin (α-SMA) and the association of NFAT5 with the NF-κB p65 subunit were measured by Western blot analysis and a co-immunoprecipitation assay, respectively. The cellular distribution of NFAT5 and NF-κB p65 was examined by triple immunofluorescence staining. At 24 h after UVB exposure, cell viability significantly decreased in a dose-dependent manner, and UVB light (15 and 20 mJ/cm 2 ) significantly increased the ROS generation. UVB irradiation increased NFAT5 mRNA and protein levels and increased phosphorylation of NF-κB in HLE-B3 cells. α-SMA protein levels were increased in the irradiated cells. In addition, NFAT5 and NF-κB translocated from the cytoplasm to the nucleus, and binding between the p65 subunit and NFAT5 was increased. Exposure to UVB radiation induces nuclear translocation and stimulates binding between NFAT5 and NF-κB proteins in HLE-B3 cells. These interactions may form part of the biochemical mechanism of cataractogenesis in UVB-irradiated HLECs.

  15. Black Raspberry-Derived Anthocyanins Demethylate Tumor Suppressor Genes Through the Inhibition of DNMT1 and DNMT3B in Colon Cancer Cells

    PubMed Central

    Wang, Li-Shu; Kuo, Chieh-Ti; Cho, Seung-Ju; Seguin, Claire; Siddiqui, Jibran; Stoner, Kristen; Weng, Yu-I; Huang, Tim H.-M.; Tichelaar, Jay; Yearsley, Martha; Stoner, Gary D.; Huang, Yi-Wen

    2013-01-01

    We previously reported that oral administration of black raspberry powder decreased promoter methylation of tumor suppressor genes in tumors from patients with colorectal cancer. The anthocyanins (ACs) in black raspberries are responsible, at least in part, for their cancer-inhibitory effects. In the present study, we asked if ACs are responsible for the demethylation effects observed in colorectal cancers. Three days of treatment of ACs at 0.5, 5, and 25 μg/ml suppressed activity and protein expression of DNMT1 and DNMT3B in HCT116, Caco2 and SW480 cells. Promoters of CDKN2A, and SFRP2, SFRP5, and WIF1, upstream of Wnt pathway, were demethylated by ACs. mRNA expression of some of these genes was increased. mRNA expression of β-catenin and c-Myc, downstream of Wnt pathway, and cell proliferation were decreased; apoptosis was increased. ACs were taken up into HCT116 cells and were differentially localized with DNMT1 and DNMT3B in the same cells visualized using confocal laser scanning microscopy. Although it was reported that DNMT3B is regulated by c-Myc in mouse lymphoma, DNMT3B did not bind with c-Myc in HCT116 cells. In conclusion, our results suggest that ACs are responsible, at least in part, for the demethylation effects of whole black raspberries in colorectal cancers. PMID:23368921

  16. B4GALT3 up-regulation by miR-27a contributes to the oncogenic activity in human cervical cancer cells.

    PubMed

    Sun, Yanrui; Yang, Xi; Liu, Min; Tang, Hua

    2016-06-01

    β-1,4-Galactosyltransferase III (B4GALT3) is an enzyme responsible for the generation of poly-N-acetyllactosamine and is involved in tumorigenesis. However, B4GALT3-dysregulation and its role in cervical cancer cells are unknown. Herein, we found that B4GALT3 was upregulated in cervical cancer tissues compared to adjacent non-tumor tissues. B4GALT3-overexpression promoted, whereas B4GALT3-knockdown suppressed the cellular migration, invasion and EMT of HeLa and C33A cervical cancer cells. To explore the mechanism of dysregulation, B4GALT3 was predicted to be a target of miR-27a. EGFP and pGL3-promoter reporter assay showed miR-27a binds to B4GALT3 3'UTR region but enhanced its expression. RT-qPCR showed miR-27a was also upregulated and presented positive correlation with B4GALT3-expression in cervical cancer tissues. miR-27a-overexpression promoted, but blocking-miR-27a repressed these malignancies in HeLa and C33A cells. Furthermore, shR-B4GALT3 counteracted the promotion of malignancies induced by miR-27a, suggesting miR-27a upregulates B4GALT3 to enhance tumorigenic activities. In addition, we found that B4GALT3 significantly enhances β1-integrin stability, thus mediating promotion of B4GALT3 on malignancy in cervical cancer cells. Altogether, our findings evidenced that B4GALT3 upregulated by miR-27a contributes to the tumorigenic activities by β1-integrin pathway and might provide potential biomarkers for cervical cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Hydrogen Sulfide Epigenetically Attenuates Homocysteine-Induced Mitochondrial Toxicity Mediated Through NMDA Receptor in Mouse Brain Endothelial (bEnd3) Cells.

    PubMed

    Kamat, Pradip K; Kalani, Anuradha; Tyagi, Suresh C; Tyagi, Neetu

    2015-02-01

    Previously we have shown that homocysteine (Hcy) caused oxidative stress and altered mitochondrial function. Hydrogen sulfide (H2S) has potent anti-inflammatory, anti-oxidative, and anti-apoptotic effects. Therefore, in the present study we examined whether H2S ameliorates Hcy-induced mitochondrial toxicity which led to endothelial dysfunction in part, by epigenetic alterations in mouse brain endothelial cells (bEnd3). The bEnd3 cells were exposed to 100 μM Hcy treatment in the presence or absence of 30 μM NaHS (donor of H2S) for 24 h. Hcy-activate NMDA receptor and induced mitochondrial toxicity by increased levels of Ca(2+), NADPH-oxidase-4 (NOX-4) expression, mitochondrial dehydrogenase activity and decreased the level of nitrate, superoxide dismutase (SOD-2) expression, mitochondria membrane potentials, ATP production. To confirm the role of epigenetic, 5'-azacitidine (an epigenetic modulator) treatment was given to the cells. Pretreatment with NaHS (30 μM) attenuated the Hcy-induced increased expression of DNMT1, DNMT3a, Ca(2+), and decreased expression of DNMT3b in bEND3 cells. Furthermore, NaHS treatment also mitigated mitochondrial oxidative stress (NOX4, ROS, and NO) and restored ATP that indicates its protective effects against mitochondrial toxicity. Additional, NaHS significantly alleviated Hcy-induced LC3-I/II, CSE, Atg3/7, and low p62 expression which confirm its effect on mitophagy. Likewise, NaHS also restored level of eNOS, CD31, VE-cadherin and ET-1 and maintains endothelial function in Hcy treated cells. Molecular inhibition of NMDA receptor by using small interfering RNA showed protective effect whereas inhibition of H2S production by propargylglycine (PG) (inhibitor of enzyme CSE) showed mitotoxic effect. Taken together, results demonstrate that, administration of H2S protected the cells from HHcy-induced mitochondrial toxicity and endothelial dysfunction. © 2014 Wiley Periodicals, Inc.

  18. KIR3DL2 binds to HLA-B27 dimers and free heavy chains more strongly than other HLA class I and promotes the expansion of T cells in ankylosing spondylitis

    PubMed Central

    Wong-Baeza, Isabel; Ridley, Anna; Shaw, Jackie; Hatano, Hiroko; Rysnik, Oliwia; McHugh, Kirsty; Piper, Christopher; Brackenbridge, Simon; Fernandes, Ricardo; Chan, Anthoni; Bowness, Paul; Kollnberger, Simon

    2013-01-01

    1Abstract The Human Leukocyte Antigen HLA-B27(B27) is strongly associated with the spondyloarthritides. B27 can be expressed at the cell surface of antigen presenting cells (APC) as both classical β2m-associated B27 and as B27 free heavy chain forms (FHC) including disulphide-bonded heavy chain homodimers (termed B272). B27 FHC forms but not classical B27 bind to KIR3DL2. HLA-A3 which is not associated with spondyloarthritis (SpA) is also a ligand for KIR3DL2. Here we show that B272 and B27 FHC bind more strongly to KIR3DL2 than other HLA-class I, including HLA-A3. B272 tetramers bound KIR3DL2 transfected cells more strongly than HLA-A3. KIR3DL2Fc bound to HLA-B27-transfected cells more strongly than to cells transfected with other HLA-class I. KIR3DL2Fc pulled down multimeric, dimeric and monomeric free heavy chains from HLA-B27 expressing cell lines. Binding to B272 and B27 FHC stimulated greater KIR3DL2 phosphorylation than HLA-A3. B272 and B27 FHC stimulated KIR3DL2CD3ε–transduced T cell IL-2 production to a greater extent than control HLA-class I. KIR3DL2 binding to B27 inhibited NK IFNγ secretion and promoted greater survival of KIR3DL2+CD4 T and NK cells than binding to other HLA-class I. KIR3DL2+ T cells from B27+SpA patients proliferated more in response to antigen presented by syngeneic APC than the same T cell subset from healthy and disease controls. Our results suggest that expansion of KIR3DL2-expressing leukocytes observed in B27+ SpA may be explained by the stronger interaction of KIR3DL2 with B27 FHC. PMID:23440420

  19. Emodin induces apoptosis of lung cancer cells through ER stress and the TRIB3/NF-κB pathway.

    PubMed

    Su, Jin; Yan, Yan; Qu, Jingkun; Xue, Xuewen; Liu, Zi; Cai, Hui

    2017-03-01

    Emodin is a phytochemical with potent anticancer activities against various human malignant cancer types, including lung cancer; however, the molecular mechanisms underlying the effects of emodin remain unclear. In the present study, the A549 and H1299 human non-small lung cancer cell lines were treated with emodin and the induced molecular effects were investigated. Changes in cell viability were evaluated by MTT assay, Hoechst staining was used to indicate the apoptotic cells, and western blotting was utilized to assess endoplasmic reticulum (ER) stress and signaling changes. RNA interference was also employed to further examine the role of tribbles homolog 3 (TRIB3) in the emodin-induced apoptosis of lung cancer cells. Emodin was found to reduce the viability of lung cancer cells and induce apoptosis in a concentration-dependent manner. Emodin-induced apoptosis was impaired by inhibition of ER stress using 4-phenylbutyrate (4-PBA). ER stress and TRIB3/nuclear factor-κB signaling was activated in emodin-treated lung cancer cells. Emodin-induced apoptosis was reduced by TRIB3 knockdown in A549 cells, whereas ER stress was not reduced. In vivo assays verified the significance of these results, revealing that emodin inhibited lung cancer growth and that the inhibitory effects were reduced by inhibition of ER stress with 4-PBA. In conclusion, the results suggest that TRIB3 signaling is associated with emodin-induced ER stress-mediated apoptosis in lung cancer cells.

  20. Compound 49b Prevents Diabetes-Induced Apoptosis through Increased IGFBP-3 Levels

    PubMed Central

    Zhang, Qiuhua; Guy, Kimberly; Pagadala, Jayaprakash; Jiang, Youde; Walker, Robert J; Liu, Luhong; Soderland, Carl; Kern, Timothy S; Ferry, Robert; He, Hui; Yates, C. Ryan; Miller, Duane D; Steinle, Jena J

    2012-01-01

    Purpose. To determine whether Compound 49b, a novel PKA-activating drug, can prevent diabetic-like changes in the rat retina through increased insulin-like growth factor binding protein-3 (IGFBP-3) levels. Methods. For the cell culture studies, we used both human retinal endothelial cells (REC) and retinal Müller cells in either 5 mM (normal) or 25 mM (high) glucose. Cells were treated with 50 nM Compound 49b alone of following treatment with protein kinase A (PKA) siRNA or IGFBP-3 siRNA. Western blotting and ELISA analyses were done to verify PKA and IGFBP-3 knockdown, as well as to measure apoptotic markers. For animal studies, we used streptozotocin-treated rats after 2 and 8 months of diabetes. Some rats were treated topically with 1 mM Compound 49b. Analyses were done for retinal thickness, cell numbers in the ganglion cell layer, pericyte ghosts, and numbers of degenerate capillaries, as well as electroretinogram and heart morphology. Results. Compound 49b requires active PKA and IGFBP-3 to prevent apoptosis of REC. Compound 49b significantly reduced the numbers of degenerate capillaries and pericyte ghosts, while preventing the decreased retinal thickness and loss of cells in the ganglion cell layer. Compound 49b maintained a normal electroretinogram, with no changes in blood pressure, intraocular pressure, or heart morphological changes. Conclusions. Topical Compound 49b is able to prevent diabetic-like changes in the rat retina, without producing systemic changes. Compound 49b is able to prevent REC apoptosis through increasing IGFBP-3 levels, which are reduced in response to hyperglycemia. PMID:22467575

  1. Genetic loss of SH2B3 in acute lymphoblastic leukemia.

    PubMed

    Perez-Garcia, Arianne; Ambesi-Impiombato, Alberto; Hadler, Michael; Rigo, Isaura; LeDuc, Charles A; Kelly, Kara; Jalas, Chaim; Paietta, Elisabeth; Racevskis, Janis; Rowe, Jacob M; Tallman, Martin S; Paganin, Maddalena; Basso, Giuseppe; Tong, Wei; Chung, Wendy K; Ferrando, Adolfo A

    2013-10-03

    The SH2B adaptor protein 3 (SH2B3) gene encodes a negative regulator of cytokine signaling with a critical role in the homeostasis of hematopoietic stem cells and lymphoid progenitors. Here, we report the identification of germline homozygous SH2B3 mutations in 2 siblings affected with developmental delay and autoimmunity, one in whom B-precursor acute lymphoblastic leukemia (ALL) developed. Mechanistically, loss of SH2B3 increases Janus kinase-signal transducer and activator of transcription signaling, promotes lymphoid cell proliferation, and accelerates leukemia development in a mouse model of NOTCH1-induced ALL. Moreover, extended mutation analysis showed homozygous somatic mutations in SH2B3 in 2 of 167 ALLs analyzed. Overall, these results demonstrate a Knudson tumor suppressor role for SH2B3 in the pathogenesis of ALL and highlight a possible link between genetic predisposition factors in the pathogenesis of autoimmunity and leukemogenesis.

  2. B-cell activating factor detected on both naïve and memory B cells in bullous pemphigoid.

    PubMed

    Qian, Hua; Kusuhara, Masahiro; Li, Xiaoguang; Tsuruta, Daisuke; Tsuchisaka, Atsunari; Ishii, Norito; Koga, Hiroshi; Hayakawa, Taihei; Ohara, Koji; Karashima, Tadashi; Ohyama, Bungo; Ohata, Chika; Furumura, Minao; Hashimoto, Takashi

    2014-08-01

    B-cell activating factor (BAFF), an important immune regulatory cytokine, is involved in development of autoimmune diseases. Although BAFF is expressed in various cells, including dendritic cells (DCs) and monocytes, BAFF expression on B cells has not been well documented. In the present study, BAFF molecules on DCs and naïve and memory B cells in autoimmune bullous diseases, including pemphigus vulgaris, pemphigus foliaceus and bullous pemphigoid (BP), were analysed by flow cytometry. Compared with healthy controls (HC), BAFF expression on naïve and memory B cells increased significantly in BP. No difference in BAFF receptor expression in naïve and memory B cells was shown among all study groups. Furthermore, BAFF expression in both naïve and memory B cells of BP, but not HC, was detected by confocal microscopic analysis. These results implied that BAFF expressed by B cells may play a pathogenic role in autoimmune bullous diseases, particularly BP. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Polymyxin B Nephrotoxicity: From Organ to Cell Damage

    PubMed Central

    Pessoa, Edson Andrade

    2016-01-01

    Polymyxins have a long history of dose-limiting toxicity, but the underlying mechanism of polymyxin B-induced nephrotoxicity is unclear. This study investigated the link between the nephrotoxic effects of polymyxin B on renal metabolic functions and mitochondrial morphology in rats and on the structural integrity of LLC-PK1 cells. Fifteen Wistar rats were divided into two groups: Saline group, rats received 3 mL/kg of 0.9% NaCl intraperitoneally (i.p.) once a day for 5 days; Polymyxin B group, rats received 4 mg/kg/day of polymyxin B i.p. once a day for 5 days. Renal function, renal hemodynamics, oxidative stress, mitochondrial injury and histological characteristics were assessed. Cell membrane damage was evaluated via lactate dehydrogenase and nitric oxide levels, cell viability, and apoptosis in cells exposed to 12.5 μM, 75 μM and 375 μM polymyxin B. Polymyxin B was immunolocated using Lissamine rhodamine-polymyxin B in LLC-PK1 cells. Polymyxin B administration in rats reduced creatinine clearance and increased renal vascular resistance and oxidative damage. Mitochondrial damage was confirmed by electron microscopy and cytosolic localization of cytochrome c. Histological analysis revealed tubular dilatation and necrosis in the renal cortex. The reduction in cell viability and the increase in apoptosis, lactate dehydrogenase levels and nitric oxide levels confirmed the cytotoxicity of polymyxin B. The incubation of LLC-PK1 cells resulted in mitochondrial localization of polymyxin B. This study demonstrates that polymyxin B nephrotoxicity is characterized by mitochondrial dysfunction and free radical generation in both LLC-PK1 cells and rat kidneys. These data also provide support for clinical studies on the side effects of polymyxin B. PMID:27532263

  4. Deregulation of miR-193b affects the growth of colon cancer cells via transforming growth factor-β and regulation of the SMAD3 pathway

    PubMed Central

    Wu, Kaiming; Zhao, Zhenxian; Ma, Jun; Chen, Jianhui; Peng, Jianjun; Yang, Shibin; He, Yulong

    2017-01-01

    MicroRNA-193b (miRNA-193b) is often differentially expressed and is an important regulator of gene expression in colon cancer. The aim of the present study was to determine whether miRNA-193b affects cell growth in colon cancer and to investigate the potential underlying mechanisms. Patients with colorectal cancer (CRC; n=20) and healthy volunteers (n=10) were enrolled from the Department of Gastrointestinal Surgery Center, First Affiliated Hospital of Sun Yat-Sen University (Guangzhou, China). Western blot analysis was used to evaluate the protein expression of SMAD3 and transforming growth factor-β (TGF-β) in the patient samples. It was determined that miRNA-193b expression was markedly elevated in the CRC tissue samples. Furthermore, silencing of miRNA-193bin SW620 CRC cells by specific inhibitors significantly reduced the cell proliferation and induced apoptosis. In addition, the downregulation of miRNA-193b significantly activated the protein expression of SMAD3 and TGF-β, and promoted caspase-3 activity in SW620 cells. The results of the present study suggested that the deregulation of miRNA-193b may affect cell growth in colon cancer via the TGF-β and SMAD3 signaling pathways. PMID:28454433

  5. A phosphodiesterase 4B-dependent interplay between tumor cells and the microenvironment regulates angiogenesis in B-cell lymphoma

    PubMed Central

    Suhasini, Avvaru N.; Lin, An-Ping; Bhatnagar, Harshita; Kim, Sang-Woo; Moritz, August W.; Aguiar, Ricardo C. T.

    2015-01-01

    Angiogenesis associates with poor outcome in diffuse large B-cell lymphoma (DLBCL), but the contribution of the lymphoma cells to this process remains unclear. Addressing this knowledge gap may uncover unsuspecting proangiogenic signaling nodes and highlight alternative antiangiogenic therapies. Here we identify the second messenger cyclic-AMP (cAMP) and the enzyme that terminates its activity, phosphodiesterase 4B (PDE4B), as regulators of B-cell lymphoma angiogenesis. We first show that cAMP, in a PDE4B-dependent manner, suppresses PI3K/AKT signals to down-modulate VEGF secretion and vessel formation in vitro. Next, we create a novel mouse model that combines the lymphomagenic Myc transgene with germline deletion of Pde4b. We show that lymphomas developing in a Pde4b-null background display significantly lower microvessel density in association with lower VEGF levels and PI3K/AKT activity. We recapitulate these observations by treating lymphoma-bearing mice with the FDA-approved PDE4 inhibitor Roflumilast. Lastly, we show that primary human DLBCLs with high PDE4B expression display significantly higher microvessel density. Here, we defined an unsuspected signaling circuitry in which the cAMP generated in lymphoma cells downmodulates PI3K/AKT and VEGF secretion to negatively influence vessel development in the microenvironment. These data identify PDE4 as an actionable antiangiogenic target in DLBCL. PMID:26503641

  6. Generation of B-cell chronic lymphocytic leukemia (B-CLL)-reactive T-cell lines and clones from HLA class I-matched donors using modified B-CLL cells as stimulators: implications for adoptive immunotherapy.

    PubMed

    Hoogendoorn, M; Wolbers, J Olde; Smit, W M; Schaafsma, M R; Barge, R M Y; Willemze, R; Falkenburg, J H F

    2004-07-01

    Allogeneic stem cell transplantation following reduced-intensity conditioning is being evaluated in patients with advanced B-cell chronic lymphocytic leukemia (B-CLL). The curative potential of this procedure is mediated by donor-derived alloreactive T cells, resulting in a graft-versus-leukemia effect. However, B-CLL may escape T-cell-mediated immune reactivity since these cells lack expression of costimulatory molecules. We examined the most optimal method to transform B-CLL cells into efficient antigen-presenting cells (APC) using activating cytokines, by triggering toll-like receptors (TLRs) using microbial pathogens and by CD40 stimulation with CD40L-transfected fibroblasts. CD40 activation in the presence of IL-4 induced strongest upregulation of costimulatory and adhesion molecules on B-CLL cells and induced the production of high amounts of IL-12 by the leukemic cells. In contrast to primary B-CLL cells as stimulator cells, these malignant APCs were capable of inducing the generation of B-CLL-reactive CD8(+) CTL lines and clones from HLA class I-matched donors. These CTL lines and clones recognized and killed primary B-CLL as well as patient-derived lymphoblasts, but not donor cells. These results show the feasibility of ex vivo generation of B-CLL-reactive CD8(+) CTLs. This opens new perspectives for adoptive immunotherapy, following allogeneic stem cell transplantation in patients with advanced B-CLL.

  7. miR-125b-1-3p inhibits trophoblast cell invasion by targeting sphingosine-1-phosphate receptor 1 in preeclampsia.

    PubMed

    Li, Qinghua; Pan, Zhifang; Wang, Xuejian; Gao, Zhiqin; Ren, Chune; Yang, Weiwei

    2014-10-10

    Preeclampsia (PE) is the leading cause of maternal and perinatal mortality and morbidity. Understanding the molecular mechanisms underlying placentation facilitates the development of better intervention of this disease. MicroRNAs are strongly implicated in the pathogenesis of this syndrome. In current study, we found that miR-125b-1-3p was elevated in placentas derived from preeclampsia patients. Transfection of miR-125b-1-3p mimics significantly inhibited the invasiveness of human trophoblast cells, whereas miR-125b-1-3p inhibitor enhanced trophoblast cell invasion. Luciferase assays identified that S1PR1 was a novel direct target of miR-125b-1-3p in the placenta. Overexpression of S1PR1 could reverse the inhibitory effect of miR-125b-1-3p on the invasion of trophoblast cells. These findings suggested that abnormal expression of miR-125b-1-3p might contribute to the pathogenesis of preeclampsia. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. First Test Results of the bERLinPro 2-cell Booster Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrill, Andrew; Anders, W.; Frahm, A.

    2015-09-01

    The bERLinPro Energy Recovery Linac (ERL) is currently being built at Helmholtz-Zentrum Berlin in order to study the physics of operating a high-current, a 100 mA, 50 MeV ERL utilizing all SRF cavity technology. This machine will utilize three unique SRF cryomodules for the photoinjector, booster and linac cryomodules respectively. The focus of this paper will be on the cavities contained within the booster cryomodule. Here there will be three 2-cell SRF cavities, based on the original design by Cornell University, but optimized to meet the needs of the project. All of the cavity fabrication, processing and testing was carriedmore » out at Jefferson Laboratory, where 4 cavities were produced, and the 3 cavities with the best RF performance were fitted with helium vessels for installation in the cryomodule. This paper will report on the test results of the cavities as measured in the vertical testing dewar at JLab after fabrication and again after outfitting with the helium vessels.« less

  9. KIR3DL2 binds to HLA-B27 dimers and free H chains more strongly than other HLA class I and promotes the expansion of T cells in ankylosing spondylitis.

    PubMed

    Wong-Baeza, Isabel; Ridley, Anna; Shaw, Jackie; Hatano, Hiroko; Rysnik, Oliwia; McHugh, Kirsty; Piper, Christopher; Brackenbridge, Simon; Fernandes, Ricardo; Chan, Anthoni; Bowness, Paul; Kollnberger, Simon

    2013-04-01

    The human leukocyte Ag HLA-B27 (B27) is strongly associated with the spondyloarthritides. B27 can be expressed at the cell surface of APC as both classical β2-microglobulin-associated B27 and B27 free H chain forms (FHC), including disulfide-bonded H chain homodimers (termed B27(2)). B27 FHC forms, but not classical B27, bind to KIR3DL2. HLA-A3, which is not associated with spondyloarthritis (SpA), is also a ligand for KIR3DL2. In this study, we show that B27(2) and B27 FHC bind more strongly to KIR3DL2 than other HLA-class I, including HLA-A3. B27(2) tetramers bound KIR3DL2-transfected cells more strongly than HLA-A3. KIR3DL2Fc bound to HLA-B27-transfected cells more strongly than to cells transfected with other HLA-class I. KIR3DL2Fc pulled down multimeric, dimeric, and monomeric FHC from HLA-B27-expressing cell lines. Binding to B27(2) and B27 FHC stimulated greater KIR3DL2 phosphorylation than HLA-A3. B27(2) and B27 FHC stimulated KIR3DL2CD3ε-transduced T cell IL-2 production to a greater extent than control HLA-class I. KIR3DL2 binding to B27 inhibited NK IFN-γ secretion and promoted greater survival of KIR3DL2(+) CD4 T and NK cells than binding to other HLA-class I. KIR3DL2(+) T cells from B27(+) SpA patients proliferated more in response to Ag presented by syngeneic APC than the same T cell subset from healthy and disease controls. Our results suggest that expansion of KIR3DL2-expressing leukocytes observed in B27(+) SpA may be explained by the stronger interaction of KIR3DL2 with B27 FHC.

  10. Basal Immunoglobulin Signaling Actively Maintains Developmental Stage in Immature B Cells

    PubMed Central

    Tze, Lina E; Schram, Brian R; Lam, Kong-Peng; Hogquist, Kristin A; Hippen, Keli L; Liu, Jiabin; Shinton, Susan A; Otipoby, Kevin L; Rodine, Peter R; Vegoe, Amanda L; Kraus, Manfred; Hardy, Richard R; Schlissel, Mark S; Rajewsky, Klaus

    2005-01-01

    In developing B lymphocytes, a successful V(D)J heavy chain (HC) immunoglobulin (Ig) rearrangement establishes HC allelic exclusion and signals pro-B cells to advance in development to the pre-B stage. A subsequent functional light chain (LC) rearrangement then results in the surface expression of IgM at the immature B cell stage. Here we show that interruption of basal IgM signaling in immature B cells, either by the inducible deletion of surface Ig via Cre-mediated excision or by incubating cells with the tyrosine kinase inhibitor herbimycin A or the phosphatidylinositol 3-kinase inhibitor wortmannin, led to a striking “back-differentiation” of cells to an earlier stage in B cell development, characterized by the expression of pro-B cell genes. Cells undergoing this reversal in development also showed evidence of new LC gene rearrangements, suggesting an important role for basal Ig signaling in the maintenance of LC allelic exclusion. These studies identify a previously unappreciated level of plasticity in the B cell developmental program, and have important implications for our understanding of central tolerance mechanisms. PMID:15752064

  11. A Gammaherpesvirus Bcl-2 Ortholog Blocks B Cell Receptor-Mediated Apoptosis and Promotes the Survival of Developing B Cells In Vivo

    PubMed Central

    Coleman, Carrie B.; McGraw, Jennifer E.; Feldman, Emily R.; Roth, Alexa N.; Keyes, Lisa R.; Grau, Katrina R.; Cochran, Stephanie L.; Waldschmidt, Thomas J.; Liang, Chengyu; Forrest, J. Craig; Tibbetts, Scott A.

    2014-01-01

    Gammaherpesviruses such as Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV, HHV-8) establish lifelong latency in their hosts and are associated with the development of several types of malignancies, including a subset of B cell lymphomas. These viruses are thought to co-opt the process of B cell differentiation to latently infect a fraction of circulating memory B cells, resulting in the establishment of a stable latency setpoint. However, little is known about how this infected memory B cell compartment is maintained throughout the life of the host. We have previously demonstrated that immature and transitional B cells are long-term latency reservoirs for murine gammaherpesvirus 68 (MHV68), suggesting that infection of developing B cells contributes to the maintenance of lifelong latency. During hematopoiesis, immature and transitional B cells are subject to B cell receptor (BCR)-mediated negative selection, which results in the clonal deletion of autoreactive B cells. Interestingly, numerous gammaherpesviruses encode homologs of the anti-apoptotic protein Bcl-2, suggesting that virus inhibition of apoptosis could subvert clonal deletion. To test this, we quantified latency establishment in mice inoculated with MHV68 vBcl-2 mutants. vBcl-2 mutant viruses displayed a marked decrease in the frequency of immature and transitional B cells harboring viral genome, but this attenuation could be rescued by increased host Bcl-2 expression. Conversely, vBcl-2 mutant virus latency in early B cells and mature B cells, which are not targets of negative selection, was remarkably similar to wild-type virus. Finally, in vivo depletion of developing B cells during chronic infection resulted in decreased mature B cell latency, demonstrating a key role for developing B cells in the maintenance of lifelong latency. Collectively, these findings support a model in which gammaherpesvirus latency in circulating mature B cells is sustained in part through the

  12. DNA damage responsive miR-33b-3p promoted lung cancer cells survival and cisplatin resistance by targeting p21WAF1/CIP1.

    PubMed

    Xu, Shun; Huang, Haijiao; Chen, Yu-Ning; Deng, Yun-Ting; Zhang, Bing; Xiong, Xing-Dong; Yuan, Yuan; Zhu, Yanmei; Huang, Haiyong; Xie, Luoyijun; Liu, Xinguang

    2016-11-01

    Cisplatin is the most potent and widespread used chemotherapy drug for lung cancer treatment. However, the development of resistance to cisplatin is a major obstacle in clinical therapy. The principal mechanism of cisplatin is the induction of DNA damage, thus the capability of DNA damage response (DDR) is a key factor that influences the cisplatin sensitivity of cancer cells. Recent advances have demonstrated that miRNAs (microRNAs) exerted critical roles in DNA damage response; nonetheless, the association between DNA damage responsive miRNAs and cisplatin resistance and its underlying molecular mechanism still require further investigation. The present study has attempted to identify differentially expressed miRNAs in cisplatin induced DNA damage response in lung cancer cells, and probe into the effects of the misexpressed miRNAs on cisplatin sensitivity. Deep sequencing showed that miR-33b-3p was dramatically down-regulated in cisplatin-induced DNA damage response in A549 cells; and ectopic expression of miR-33b-3p endowed the lung cancer cells with enhanced survival and decreased γH2A.X expression level under cisplatin treatment. Consistently, silencing of miR-33b-3p in the cisplatin-resistant A549/DDP cells evidently sensitized the cells to cisplatin. Furthermore, we identified CDKN1A (p21) as a functional target of miR-33b-3p, a critical regulator of G1/S checkpoint, which potentially mediated the protection effects of miR-33b-3p against cisplatin. In aggregate, our results suggested that miR-33b-3p modulated the cisplatin sensitivity of cancer cells might probably through impairing the DNA damage response. And the knowledge of the drug resistance conferred by miR-33b-3p has great clinical implications for improving the efficacy of chemotherapies for treating lung cancers.

  13. Epigallocatechin gallate (EGCG), influences a murine WEHI-3 leukemia model in vivo through enhancing phagocytosis of macrophages and populations of T- and B-cells.

    PubMed

    Huang, An-Cheng; Cheng, Hsiu-Yueh; Lin, Tsu-Shun; Chen, Wen-Hsein; Lin, Ju-Hwa; Lin, Jen-Jyh; Lu, Chi-Cheng; Chiang, Jo-Hua; Hsu, Shu-Chun; Wu, Ping-Ping; Huang, Yi-Ping; Chung, Jing-Gung

    2013-01-01

    Epigallocatechin gallate (EGCG) is the major polyphenol in green tea, and has been reported to have anticancer effects on many types of cancer cells. However, there is no report to show its effects on the immune response in a murine leukemia mouse model. Thus, in the present study, we investigated the effects of EGCG on the immune responses of murine WEHI-3 leukemia cells in vivo. WEHI-3 cells were intraperitoneally injected into normal BALB/c mice to establish leukemic BALB/c mice, which were then oral-treated with or without EGCG at 5, 20 and 40 mg/kg for two weeks. The results indicated that EGCG did not change the weight of the animals, nor the liver or spleen when compared to vehicle (olive oil) -treated groups. Furthermore, EGCG increased the percentage of cluster of differentiation 3 (CD3) (T-cell), cluster of differentiation 19 (CD19) (B-cell) and Macrophage-3 antigen (Mac-3) (macrophage) but reduced the percentage of CD11b (monocyte) cell surface markers in EGCG-treated groups as compared with the untreated leukemia group. EGCG promoted the phagocytosis of macrophages from 5 mg/kg treatment and promoted natural killer cell activity at 40 mg/kg, increased T-cell proliferation at 40 mg/kg but promoted B-cell proliferation at all three doses. Based on these observations, it appears that EGCG might exhibit an immune response in the murine WEHI-3 cell line-induced leukemia in vivo.

  14. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers

    PubMed Central

    Lee-Chang, Catalina; Bodogai, Monica; Moritoh, Kanako; Chen, Xin; Wersto, Robert; Sen, Ranjan; Young, Howard A.; Croft, Michael; Ferrucci, Luigi; Biragyn, Arya

    2016-01-01

    B-cell dysregulation in aging is thought to mostly occur in conventional B2 cells without affecting innate B1 cells. Elderly humans and mice also accumulate 4-1BBL+ MHC class-IHi CD86Hi B cells of unknown origin. Here we report that these cells, termed 4BL cells, are activated murine and possibly human B1a cells. The activation is mediated by aging human monocytes and murine peritoneal macrophages. The 4BL cells induce expression of 4-1BBL and IFNγR1 on B1a cells resulting in subsequent up regulation of membrane TNFα (mTNFα) and CD86. As a result, B1a cells induce expression of granzyme B in CD8+T cells by targeting TNFR2 via mTNFα while providing co-stimulation with CD86. Thus, for the first time, these results indicate that aging affects the function of B1a cells. Upon aging, these cells lose their tumor-supporting activity and become inducers of potentially antitumor and autoimmune CD8+T cells. PMID:26983789

  15. 3,3'-Diindolylmethane inhibits VEGF expression through the HIF-1α and NF-κB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions.

    PubMed

    Park, Hongzoo; Lee, Dae-Sung; Yim, Mi-Jin; Choi, Yung Hyun; Park, Saegwang; Seo, Su-Kil; Choi, Jung Sik; Jang, Won Hee; Yea, Sung Su; Park, Won Sun; Lee, Chang-Min; Jung, Won-Kyo; Choi, Il-Whan

    2015-07-01

    Oxidative stress in the retinal pigment epithelium (RPE) can lead to the pathological causes of age-related macular degeneration (AMD). Hypoxia induces oxidative damage in retinal pigment epithelial cells (RPE cells). In this study, we investigated the capacity of 3,3'-diindolylmethane (DIM) to reduce the expression of vascular endothelial growth factor (VEGF) under hypoxic conditions, as well as the molecular mechanisms involved. Human RPE cells (ARPE-19 cells) were treated with cobalt chloride (CoCl2, 200 µM) and/or DIM (10 and 20 µM). The production of VEGF was measured by enzyme-linked immunosorbent assay. The translocation of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-κB (NF-κB) was determined by western blot analysis. The binding activity of HIF-1α and NF-κB was analyzed by electrophoretic mobility shift assay. The phosphorylation levels of mitogen-activated protein kinases (MAPKs) were measured by western blot analysis. The levels of mitochondrial reactive oxygen species (ROS) were detected by fluorescence microplate assay. The results revealed that DIM significantly attenuated the CoCl2-induced expression of VEGF in the ARPE-19 cells. The CoCl2-induced translocation and activation of HIF-1α and NF-κB were also attenuated by treatment with DIM. In addition, DIM inhibited the CoCl2-induced activation of p38 MAPK in the ARPE-19 cells. Pre-treatment with YCG063, a mitochondrial ROS inhibitor, led to the downregulation of the CoCl2-induced production of VEGF by suppressing HIF-1α and NF-κB activity. Taken together, the findings of our study demonstrate that DIM inhibits the CoCl2-induced production of VEGF by suppressing mitochondrial ROS production, thus attenuating the activation of HIF-1α and p38 MAPK/NF-κB.

  16. BAG3 increases the invasiveness of uterine corpus carcinoma cells by suppressing miR-29b and enhancing MMP2 expression.

    PubMed

    Habata, Shutaro; Iwasaki, Masahiro; Sugio, Asuka; Suzuki, Miwa; Tamate, Masato; Satohisa, Seiro; Tanaka, Ryoichi; Saito, Tsuyoshi

    2015-05-01

    Approximately 30% of uterine corpus carcinomas are diagnosed at an advanced stage and have a poor prognosis. Our previous study indicated that BCL2-associated athanogene 3 (BAG3) enhances matrix metalloproteinase-2 (MMP2) expression and binds to MMP2 to positively regulate the process of cell invasion in ovarian cancer cells. Recently, altered miRNA expression patterns were observed in several groups of patients with endometrial cancers. One of the altered miRNAs, miR-29b, reportedly reduces tumor invasiveness by suppressing MMP2 expression. Our aim in the present study was to examine the relationships among BAG3, miR-29b and MMP2 in endometrioid adenocarcinoma cells. We found that BAG3 suppresses miR-29b expression and enhances MMP2 expression, which in turn increases cell motility and invasiveness. Moreover, restoration of miR-29b through BAG3 knockdown reduced MMP2 expression, as well as cell motility and invasiveness. Collectively, our findings indicate that BAG3 enhances MMP2 expression by suppressing miR-29b, thereby increasing the metastatic potential of endometrioid adenocarcinomas.

  17. Enhancement of B-cell receptor signaling by a point mutation of adaptor protein 3BP2 identified in human inherited disease cherubism.

    PubMed

    Ogi, Kazuhiro; Nakashima, Kenji; Chihara, Kazuyasu; Takeuchi, Kenji; Horiguchi, Tomoko; Fujieda, Shigeharu; Sada, Kiyonao

    2011-09-01

    Tyrosine phosphorylation of adaptor protein c-Abl-Src homology 3 (SH3) domain-binding protein-2 (3BP2, also referred to SH3BP2) positively regulates the B-cell antigen receptor (BCR)-mediated signal transduction, leading to the activation of nuclear factor of activated T cells (NFAT). Here we showed the effect of the proline to arginine substitution of 3BP2 in which is the most common mutation in patients with cherubism (P418R) on B-cell receptor signaling. Comparing to the wild type, overexpression of the mutant form of 3BP2 (3BP2-P416R, corresponding to P418R in human protein) enhanced BCR-mediated activation of NFAT. 3BP2-P416R increased the signaling complex formation with Syk, phospholipase C-γ2 (PLC-γ2), and Vav1. In contrast, 3BP2-P416R could not change the association with the negative regulator 14-3-3. Loss of the association mutant that was incapable to associate with 14-3-3 could not mimic BCR-mediated NFAT activation in Syk-deficient cells. Moreover, BCR-mediated phosphorylation of extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was not affected by P416R mutation. These results showed that P416R mutation of 3BP2 causes the gain of function in B cells by increasing the interaction with specific signaling molecules. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  18. Betacellulin-Induced Beta Cell Proliferation and Regeneration Is Mediated by Activation of ErbB-1 and ErbB-2 Receptors

    PubMed Central

    Oh, Yoon Sin; Shin, Seungjin; Lee, Youn-Jung; Kim, Eung Hwi; Jun, Hee-Sook

    2011-01-01

    Background Betacellulin (BTC), a member of the epidermal growth factor family, is known to play an important role in regulating growth and differentiation of pancreatic beta cells. Growth-promoting actions of BTC are mediated by epidermal growth factor receptors (ErbBs), namely ErbB-1, ErbB-2, ErbB-3 and ErbB-4; however, the exact mechanism for beta cell proliferation has not been elucidated. Therefore, we investigated which ErbBs are involved and some molecular mechanisms by which BTC regulates beta cell proliferation. Methodology/Principal Findings The expression of ErbB-1, ErbB-2, ErbB-3, and ErbB-4 mRNA was detected by RT-PCR in both a beta cell line (MIN-6 cells) and C57BL/6 mouse islets. Immunoprecipitation and western blotting analysis showed that BTC treatment of MIN-6 cells induced phosphorylation of only ErbB-1 and ErbB-2 among the four EGF receptors. BTC treatment resulted in DNA synthetic activity, cell cycle progression, and bromodeoxyuridine (BrdU)-positive staining. The proliferative effect was blocked by treatment with AG1478 or AG825, specific tyrosine kinase inhibitors of ErbB-1 and ErbB-2, respectively. BTC treatment increased mRNA and protein levels of insulin receptor substrate-2 (IRS-2), and this was blocked by the ErbB-1 and ErbB-2 inhibitors. Inhibition of IRS-2 by siRNA blocked cell cycle progression induced by BTC treatment. Streptozotocin-induced diabetic mice injected with a recombinant adenovirus expressing BTC and treated with AG1478 or AG825 showed reduced islet size, reduced numbers of BrdU-positive cells in the islets, and did not attain BTC-mediated remission of diabetes. Conclusions/Significance These results suggest that BTC exerts proliferative activity on beta cells through the activation of ErbB-1 and ErbB-2 receptors, which may increase IRS-2 expression, contributing to the regeneration of beta cells. PMID:21897861

  19. Vitamin C and Vitamin E Protected B95-8 and Balb/c-3T3 Cells from Apoptosis Induced by Intermittent 50Hz ELF-EMF Radiation

    PubMed Central

    DING, Zhen; LI, Jintao; LI, Fan; MEPHRYAR, Mohammadreza Mohammadzad; WU, Shuicai; ZHANG, Chen; ZENG, Yi

    2017-01-01

    Background: The extremely low-frequency electromagnetic field (ELF-EMF), mainly emitted by electric transmission lines and household electronic appliances, is becoming a worldwide health risk. It is imperative to investigate the biological impacts of ELF-EMF and to identify products that are resistant to the radiation from 50 Hz ELF-EMF. In this study, we investigated the biological impacts of apoptosis caused by 50 Hz Power line ELF-EMF and the protective effects of Vit C and Vit E. Methods: We conducted this study in Beijing, China in 2013. B95-8 and Balb/c-3T3 cells were divided into a sham group, an expo group and 3 expo groups in which the cells were preincubated with various concentrations of Vit C and Vit E. Then, all of the cells were exposed to 50 Hz Power line ELF-EMF and examined for apoptosis. The cells were collected for apoptosis detection after exposure. Results: The percent of cells that undergoing apoptosis and preincubated with various concentrations of Vit C and Vit E were significantly lower than in the Expo group. Conclusion: Vit C and Vit E exert significant protective effects from 50 Hz ELF-EMF radiation. The optimal protective concentrations of Vit C and Vit E are 10 μmol/L and 25 μmol/L, respectively. The protective effect of vitamins was more apparent for Balb/c-3T3 cells than B95-8 cells. PMID:28451526

  20. PRL-3 siRNA Inhibits the Metastasis of B16-BL6 Mouse Melanoma Cells In Vitro and In Vivo

    PubMed Central

    Qian, Feng; Li, Yu-Pei; Sheng, Xia; Zhang, Zi-Chao; Song, Ran; Dong, Wei; Cao, Shao-Xian; Hua, Zi-Chun; Xu, Qiang

    2007-01-01

    Phosphatase of regenerating liver-3 (PRL-3) has been proposed to promote the invasion of tumor cells to metastasis sites. However, the effect of PRL-3 on spontaneous metastasis has not been clearly demonstrated, and whether PRL-3 could become a new therapeutic target in malignant tumor is still unknown. In this study, we used PRL-3 siRNA as a molecular medicine to specifically reduce the expression of PRL-3 in B16-BL6 cells, a highly metastatic melanoma cell line. In vitro, PRL-3 siRNA significantly inhibited cell adhesion and migration, but had no effect on cell proliferation. In the spontaneous metastatic tumor model in vivo, PRL-3 siRNA treatment remarkably inhibited the proliferation of primary tumor, prevented tumor cells from invading the draining lymph nodes, and prolonged the life span of mice. Therefore, our results indicate that PRL-3 plays a critical role in promoting the whole process of spontaneous metastasis and tumor growth initiation, and that inhibiting PRL-3 will improve malignant tumor therapy. PMID:17592549

  1. PRL-3 siRNA inhibits the metastasis of B16-BL6 mouse melanoma cells in vitro and in vivo.

    PubMed

    Qian, Feng; Li, Yu-Pei; Sheng, Xia; Zhang, Zi-Chao; Song, Ran; Dong, Wei; Cao, Shao-Xian; Hua, Zi-Chun; Xu, Qiang

    2007-01-01

    Phosphatase of regenerating liver-3 (PRL-3) has been proposed to promote the invasion of tumor cells to metastasis sites. However, the effect of PRL-3 on spontaneous metastasis has not been clearly demonstrated, and whether PRL-3 could become a new therapeutic target in malignant tumor is still unknown. In this study, we used PRL-3 siRNA as a molecular medicine to specifically reduce the expression of PRL-3 in B16-BL6 cells, a highly metastatic melanoma cell line. In vitro, PRL-3 siRNA significantly inhibited cell adhesion and migration, but had no effect on cell proliferation. In the spontaneous metastatic tumor model in vivo, PRL-3 siRNA treatment remarkably inhibited the proliferation of primary tumor, prevented tumor cells from invading the draining lymph nodes, and prolonged the life span of mice. Therefore, our results indicate that PRL-3 plays a critical role in promoting the whole process of spontaneous metastasis and tumor growth initiation, and that inhibiting PRL-3 will improve malignant tumor therapy.

  2. Activation of human B cells by phosphorothioate oligodeoxynucleotides.

    PubMed Central

    Liang, H; Nishioka, Y; Reich, C F; Pisetsky, D S; Lipsky, P E

    1996-01-01

    To investigate the potential of DNA to elicit immune responses in man, we examined the capacity of a variety of oligodeoxynucleotides (ODNs) to stimulate highly purified T cell-depleted human peripheral blood B cells. Among 47 ODNs of various sequences tested, 12 phosphorothioate oligodeoxynucleotides (sODNs) induced marked B cell proliferation and Ig production. IL-2 augmented both proliferation and production of IgM, IgG, and IgA, as well as IgM anti-DNA antibodies, but was not necessary for B cell stimulation. Similarly, T cells enhanced stimulation, but were not necessary for B cell activation. After stimulation with the active sODNs, more than 95% of B cells expressed CD25 and CD86. In addition, B cells stimulated with sODNs expressed all six of the major immunoglobulin VH gene families. These results indicate that the human B cell response to sODN is polyclonal. Active sODN coupled to Sepharose beads stimulated B cells as effectively as the free sODN, suggesting that stimulation resulted from engagement of surface receptors. These data indicate that sODNs can directly induce polyclonal activation of human B cells in a T cell-independent manner by engaging as yet unknown B cell surface receptors. PMID:8787674

  3. Cryptotanshinone induces cell cycle arrest and apoptosis through the JAK2/STAT3 and PI3K/Akt/NFκB pathways in cholangiocarcinoma cells.

    PubMed

    Ke, Fayong; Wang, Zheng; Song, Xiaoling; Ma, Qiang; Hu, Yunping; Jiang, Lin; Zhang, Yijian; Liu, Yingbin; Zhang, Yong; Gong, Wei

    2017-01-01

    Cholangiocarcinoma (CCA) is the most common biliary tract malignancy in the world with high resistance to current chemotherapies and extremely poor prognosis. The main objective of this study was to investigate the inhibitory effects of cryptotanshinone (CTS), a natural compound isolated from Salvia miltiorrhiza Bunge , on CCA both in vitro and in vivo and to explore the underlying mechanisms of CTS-induced apoptosis and cell cycle arrest. The anti-tumor activity of CTS on HCCC-9810 and RBE cells was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and colony forming assays. Cell cycle changes were detected by flow cytometric analysis. Apoptosis was detected by annexin V/propidium iodide double staining and Hoechst 33342 staining assays. The efficacy of CTS in vivo was evaluated using a HCCC-9810 xenograft model in athymic nude mice. The expression of key proteins involved in cell apoptosis and signaling pathway in vitro was analyzed by Western blot analysis. CTS induced potent growth inhibition, S-phase arrest, apoptosis, and colony-forming inhibition in HCCC-9810 and RBE cells in a dose-dependent manner. Intraperitoneal injection of CTS (0, 10, or 25 mg/kg) for 4 weeks significantly inhibited the growth of HCCC-9810 xenografts in athymic nude mice. CTS treatment induced S-phase arrest with a decrease of cyclin A1 and an increase of cyclin D1 protein level. Bcl-2 expression was downregulated remarkably, while Bax expression was increased after apoptosis occurred. Additionally, the activation of JAK2/STAT3 and PI3K/Akt/NFκB was significantly inhibited in CTS-treated CCA cells. CTS induced CCA cell apoptosis by suppressing both the JAK2/STAT3 and PI3K/Akt/NFκB signaling pathways and altering the expression of Bcl-2/Bax family, which was regulated by these two signaling pathways. CTS may serve as a potential therapeutic agent for CCA.

  4. CD21 -/low B cells: A Snapshot of a Unique B Cell Subset in Health and Disease.

    PubMed

    Thorarinsdottir, K; Camponeschi, A; Gjertsson, I; Mårtensson, I-L

    2015-09-01

    B cells represent one of the cellular components of the immune system that protects the individual from invading pathogens. In response to the invader, these cells differentiate into plasma cells and produce large amounts of antibodies that bind to and eliminate the pathogen. A hallmark of autoimmune diseases is the production of autoantibodies i.e. antibodies that recognize self. Those that are considered pathogenic can damage tissues and organs, either by direct binding or when deposited as immune complexes. For decades, B cells have been considered to play a major role in autoimmune diseases by antibody production. However, as pathogenic autoantibodies appear to derive mainly from T cell dependent responses, T cells have been the focus for many years. The successful treatment of patients with autoimmune diseases with either B cell depletion therapy (rituximab) or inhibition of B cell survival (belimumab), suggested that not only the autoantibodies but also other B cell features are important. This has caused a surge of interest in B cells and their biology resulting in the identification of various subsets e.g. regulatory B cells, several memory B cell subsets etc. Also, in other conditions such as chronic viral infections and primary immunodeficiency, several B cell subsets with unique characteristics have been identified. In this review, we will discuss one of these subsets, a subset that is expanded in conditions characterized by chronic immune stimulation. This B cell subset lacks, or expresses low, surface levels of the complement receptor 2 (CD21) and has therefore been termed CD21(-/low) B cells. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  5. FADD and the NF-κB family member Bcl-3 regulate complementary pathways to control T-cell survival and proliferation

    PubMed Central

    Rangelova, Svetla; Kirschnek, Susanne; Strasser, Andreas; Häcker, Georg

    2008-01-01

    Fas-associated protein with death domain/mediator of receptor induced toxicity (FADD/MORT1) was first described as a transducer of death receptor signalling but was later recognized also to be important for proliferation of T cells. B-cell lymphoma 3 (Bcl-3) is a relatively little understood member of the nuclear factor (NF)-κB family of transcription factors. We recently found that Bcl-3 is up-regulated in T cells from mice where FADD function is blocked by a dominant negative transgene (FADD-DN). To understand the importance of this, we generated FADD-DN/bcl-3−/− mice. Here, we report that T cells from these mice show massive cell death and severely reduced proliferation in response to T-cell receptor (TCR) stimulation in vitro. Transgenic co-expression of Bcl-2 (FADD-DN/bcl-3−/−/vav-bcl-2 mice) rescued the survival but not the proliferation of T cells. FADD-DN/bcl-3−/− mice had normal thymocyte numbers but reduced numbers of peripheral T cells despite an increase in cycling T cells in vivo. However, activation of the classical NF-κB and extracellular regulated kinase (ERK) pathways and expression of interleukin (IL)-2 mRNA upon stimulation were normal in T cells from FADD-DN/bcl-3−/− mice. These data suggest that FADD and Bcl-3 regulate separate pathways that both contribute to survival and proliferation in mouse T cells. PMID:18557791

  6. The regulation of Jmjd3 upon the expression of NF-κB downstream inflammatory genes in LPS activated vascular endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shaoqing; Graduate School of Medicine, Nanchang University, Nanchang; Chen, Xia

    Inflammatory mediators and adhesion molecules have been implicated in a variety of diseases including atherosclerosis. As both the mediator-releasing and targeted cells, vascular endothelial cells play key role in pathological processes. NF-κB signaling regulates a cluster of inflammatory factors in LPS-activated vascular endothelial cells but the underlying mechanisms remain largely unknown. Here, we investigated the epigenetic regulation of LPS upon the expression of inflammatory mediators and adhesion molecules. We found that LPS treatment promoted jmjd3 expression, enhanced Jmjd3 nuclear accumulation in human vascular endothelial cells. In addition, LPS enhanced the demethylation of H3K27me3, a specific substrate of Jmjd3. LPS treatmentmore » recruited Jmjd3 and NF-κB to the promoter region of target genes, suggesting Jmjd3 synergizes with NF-κB to activate the expression of target genes. We further found that Jmjd3 attenuated the methylation status in promoter region of target genes, culminating in target gene expression. Our findings unveil epigenetic regulations of LPS upon NF-κB pathway and identify Jmjd3 as a critical modulator of NF-κB pathway and potential therapeutic target for NF-κB related diseases including atherosclerosis.« less

  7. Genistein Promotes Proliferation of Human Cervical Cancer Cells Through Estrogen Receptor-Mediated PI3K/Akt-NF-κB Pathway

    PubMed Central

    Chen, Hai-Hong; Chen, Shu-Ping; Zheng, Qiu-Ling; Nie, Shao-Ping; Li, Wen-Juan; Hu, Xiao-Juan; Xie, Ming-Yong

    2018-01-01

    Phytoestrogens are polyphenol compounds which have similar structure to 17β-estradiol (E2), a kind of main estrogen in women. Thus, phytoestrogens may affect the reproductive and endocrine systems, leading to the development of estrogen-related cancers. The effect of genistein (Gen), one of the most studied phytoestrogens, on human cervical cancer cells (HeLa) was investigated in this study. It was found that Gen at concentrations of 0.001, 0.01, 0.1 and 1 µmol·L-1 promoted the proliferation of HeLa cells in a dose-dependent manner. Gen increased the portion of HeLa cells in S phase and decreased the portion of the cells in G1 phase. Besides, apoptosis rate of the cells was significantly lower when treated with Gen compared with the control group. It was also found that the expression of ERα, Akt or nuclear NF-κB p65 protein was activated by Gen. The correlation between these three proteins may be as following: ERα was the upstream, followed by Akt, and then nuclear NF-κB p65 protein. In addition, the downstream genes of activated nuclear NF-κB p65 were found to be associated with cell cycle and apoptosis of cancer cells. Our results suggested that Gen may stimulate cell proliferation partially through the estrogen receptor-mediated PI3K/Akt-NF-κB pathway and the further activation of the downstream genes of nuclear NF-κB p65. PMID:29344275

  8. Phyllanthus Suppresses Prostate Cancer Cell, PC-3, Proliferation and Induces Apoptosis through Multiple Signalling Pathways (MAPKs, PI3K/Akt, NFκB, and Hypoxia).

    PubMed

    Tang, Yin-Quan; Jaganath, Indubala; Manikam, Rishya; Sekaran, Shamala Devi

    2013-01-01

    Phyllanthus is a traditional medicinal plant that has been found to have antihepatitis, antibacterial, and anticancer properties. The present studies were to investigate the in vitro molecular mechanisms of anticancer effects of Phyllanthus (P. amarus, P. niruri, P. urinaria, and P. watsonii) plant extracts in human prostate adenocarcinoma. The cancer ten-pathway reporter array was performed and revealed that the expression of six pathway reporters were significantly decreased (Wnt, NFκB, Myc/Max, hypoxia, MAPK/ERK, and MAPK/JNK) in PC-3 cells after treatment with Phyllanthus extracts. Western blot was conducted and identified several signalling molecules that were affected in the signalling pathways including pan-Ras, c-Raf, RSK, Elk1, c-Jun, JNK1/2, p38 MAPK, c-myc, DSH, β-catenin, Akt, HIF-1α, GSK3β, NFκB p50 and p52, Bcl-2, Bax, and VEGF, in treated PC-3 cells. A proteomics-based approach, 2D gel electrophoresis, was performed, and mass spectrometry (MS/MS) results revealed that there were 72 differentially expressed proteins identified in treated PC-3 cells and were involved in tumour cell adhesion, apoptosis, glycogenesis and glycolysis, metastasis, angiogenesis, and protein synthesis and energy metabolism. Overall, these findings suggest that Phyllanthus can interfere with multiple signalling cascades involved in tumorigenesis and be used as a potential therapeutic candidate for treatment of cancer.

  9. Chemotherapy-Refractory Diffuse Large B-Cell Lymphoma and Indolent B-Cell Malignancies Can Be Effectively Treated With Autologous T Cells Expressing an Anti-CD19 Chimeric Antigen Receptor

    PubMed Central

    Kochenderfer, James N.; Dudley, Mark E.; Kassim, Sadik H.; Somerville, Robert P.T.; Carpenter, Robert O.; Stetler-Stevenson, Maryalice; Yang, James C.; Phan, Giao Q.; Hughes, Marybeth S.; Sherry, Richard M.; Raffeld, Mark; Feldman, Steven; Lu, Lily; Li, Yong F.; Ngo, Lien T.; Goy, Andre; Feldman, Tatyana; Spaner, David E.; Wang, Michael L.; Chen, Clara C.; Kranick, Sarah M.; Nath, Avindra; Nathan, Debbie-Ann N.; Morton, Kathleen E.; Toomey, Mary Ann; Rosenberg, Steven A.

    2015-01-01

    Purpose T cells can be genetically modified to express an anti-CD19 chimeric antigen receptor (CAR). We assessed the safety and efficacy of administering autologous anti-CD19 CAR T cells to patients with advanced CD19+ B-cell malignancies. Patients and Methods We treated 15 patients with advanced B-cell malignancies. Nine patients had diffuse large B-cell lymphoma (DLBCL), two had indolent lymphomas, and four had chronic lymphocytic leukemia. Patients received a conditioning chemotherapy regimen of cyclophosphamide and fludarabine followed by a single infusion of anti-CD19 CAR T cells. Results Of 15 patients, eight achieved complete remissions (CRs), four achieved partial remissions, one had stable lymphoma, and two were not evaluable for response. CRs were obtained by four of seven evaluable patients with chemotherapy-refractory DLBCL; three of these four CRs are ongoing, with durations ranging from 9 to 22 months. Acute toxicities including fever, hypotension, delirium, and other neurologic toxicities occurred in some patients after infusion of anti-CD19 CAR T cells; these toxicities resolved within 3 weeks after cell infusion. One patient died suddenly as a result of an unknown cause 16 days after cell infusion. CAR T cells were detected in the blood of patients at peak levels, ranging from nine to 777 CAR-positive T cells/μL. Conclusion This is the first report to our knowledge of successful treatment of DLBCL with anti-CD19 CAR T cells. These results demonstrate the feasibility and effectiveness of treating chemotherapy-refractory B-cell malignancies with anti-CD19 CAR T cells. The numerous remissions obtained provide strong support for further development of this approach. PMID:25154820

  10. Dexmedetomidine Protects PC12 Cells from Lidocaine-Induced Cytotoxicity Through Downregulation of COL3A1 Mediated by miR-let-7b.

    PubMed

    Wang, Qiong; She, Yingjun; Bi, Xiaobao; Zhao, Baisong; Ruan, Xiangcai; Tan, Yonghong

    2017-07-01

    Safety concerns of some local anesthetics, such as lidocaine, have been raised in recent years due to potential neurological impairment. Dexmedetomidine may protect humans from neurotoxicity, and miR-let-7b is activated by nerve injury; however, the roles of miR-let-7b and its target gene in lidocaine-induced cytotoxicity are not well known. Through bioinformatics and a luciferase reporter assay, COL3A1 was suggested as a direct target gene of miR-let-7b. Here, we confirmed by measuring mRNA and protein levels that miR-let-7b was downregulated and COL3A1 was upregulated in lidocaine-treated cells, an observation that was reversed by dexmedetomidine. Similar to miR-let-7b mimics or knockdown of COL3A1, dexmedetomidine treatment reduced the expression of COL3A1, suppressed cell apoptosis and cell migration/invasion ability, and induced cell cycle progression and cell proliferation in PC12 cells, effects that were reversed by the miR-let-7b inhibitor. Meanwhile, proteins involved in cell apoptosis, such as Bcl2 and caspase 3, were impacted as well. Taken together, dexmedetomidine may protect PC12 cells from lidocaine-induced cytotoxicity through miR-let-7b and COL3A1, while also increasing Bcl2 and inhibiting caspase 3. Therefore, miR-let-7b and COL3A1 might play critical roles in neuronal injury, and they are potential therapeutic targets.

  11. Naringin attenuates the cytotoxicity of hepatotoxin microcystin-LR by the curious mechanisms to OATP1B1- and OATP1B3-expressing cells.

    PubMed

    Takumi, Shota; Ikema, Satoshi; Hanyu, Tamami; Shima, Yusuke; Kurimoto, Takashi; Shiozaki, Kazuhiro; Sugiyama, Yasumasa; Park, Ho-Dong; Ando, Seiichi; Furukawa, Tatsuhiko; Komatsu, Masaharu

    2015-03-01

    Microcystin-LR, which is an inhibitor of serine/threonine protein phosphatase (PP)1 and PP2A, induces liver injury by its selective uptake system into the hepatocyte. It is also thought that microcystin-LR induces reactive oxygen species (ROS). We tried to establish the chemical prevention of microcystin-LR poisoning. We investigated the effect of grapefruit flavanone glycoside naringin on cytotoxicity of microcystin-LR using human hepatocyte uptake transporter OATP1B3-expressing HEK293-OATP1B3 cells. We found cytotoxicity of microcystin-LR was attenuated by naringin in a dose dependent manner. The inhibition magnitude of total cellular serine/threonine protein phosphatase activity induced by microcystin-LR was suppressed by naringin. In addition, uptake of microcystin-LR into HEK293-OATP1B3 cells was inhibited by naringin. Furthermore, microcystin-LR induced phosphorylation of p53 was inhibited by naringin. Regardless of the difference in the exposure pattern of pre-processing and post-processing of naringin, the toxicity of microcystin-LR was comparable. These results suggested that naringin is promising remedy as well as preventive medicine for liver damage with microcystin-LR. In addition, involvement of ROS production after exposure to the sublethal concentrations of microcystin-LR in the onset of cytotoxicity was negligible. Therefore, inhibition of microcystin-LR uptake and the pathway other than ROS production would be involved in the effect of naringin on the attenuation of microcystin-LR toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. HCV NS5A protein containing potential ligands for both Src homology 2 and 3 domains enhances autophosphorylation of Src family kinase Fyn in B cells.

    PubMed

    Nakashima, Kenji; Takeuchi, Kenji; Chihara, Kazuyasu; Horiguchi, Tomoko; Sun, Xuedong; Deng, Lin; Shoji, Ikuo; Hotta, Hak; Sada, Kiyonao

    2012-01-01

    Hepatitis C virus (HCV) infects B lymphocytes and induces mixed cryoglobulinemia and B cell non-Hodgkin's lymphoma. The molecular mechanism for the pathogenesis of HCV infection-mediated B cell disorders remains obscure. To identify the possible role for HCV nonstructural 5A (NS5A) protein in B cells, we generated the stable B cell lines expressing Myc-His tagged NS5A. Immunoprecipitation study in the presence or absence of pervanadate (PV) implied that NS5A was tyrosine phosphorylated by pervanadate (PV) treatment of the cells. Therefore we examined pull-down assay by using glutathione S-transferase (GST)-fusion proteins of various Src homology 2 (SH2) domains, which associates with phosphotyrosine within a specific amino acid sequence. The results showed that NS5A specifically bound to SH2 domain of Fyn from PV-treated B cells in addition to Src homology 3 (SH3) domain. Substitution of Arg(176) to Lys in the SH2 domain of Fyn abrogated this interaction. Deletion mutational analysis demonstrated that N-terminal region of NS5A was not required for the interaction with the SH2 domain of Fyn. Tyr(334) was identified as a tyrosine phosphorylation site in NS5A. Far-western analysis revealed that SH2 domain of Fyn directly bound to NS5A. Fyn and NS5A were colocalized in the lipid raft. These results suggest that NS5A directly binds to the SH2 domain of Fyn in a tyrosine phosphorylation-dependent manner. Lastly, we showed that the expression of NS5A in B cells increased phosphorylation of activation loop tyrosine in the kinase domain of Fyn. NS5A containing ligand for both SH2 and SH3 domains enhances an aberrant autophosphorylation and kinase activity of Fyn in B cells.

  13. Quantitative analysis by next generation sequencing of hematopoietic stem and progenitor cells (LSK) and of splenic B cells transcriptomes from wild-type and Usp3-knockout mice.

    PubMed

    Lancini, Cesare; Gargiulo, Gaetano; van den Berk, Paul C M; Citterio, Elisabetta

    2016-03-01

    The data described here provide genome-wide expression profiles of murine primitive hematopoietic stem and progenitor cells (LSK) and of B cell populations, obtained by high throughput sequencing. Cells are derived from wild-type mice and from mice deficient for the ubiquitin-specific protease 3 (USP3; Usp3Δ/Δ). Modification of histone proteins by ubiquitin plays a crucial role in the cellular response to DNA damage (DDR) (Jackson and Durocher, 2013) [1]. USP3 is a histone H2A deubiquitinating enzyme (DUB) that regulates ubiquitin-dependent DDR in response to DNA double-strand breaks (Nicassio et al., 2007; Doil et al., 2008) [2], [3]. Deletion of USP3 in mice increases the incidence of spontaneous tumors and affects hematopoiesis [4]. In particular, Usp3-knockout mice show progressive loss of B and T cells and decreased functional potential of hematopoietic stem cells (HSCs) during aging. USP3-deficient cells, including HSCs, display enhanced histone ubiquitination, accumulate spontaneous DNA damage and are hypersensitive to ionizing radiation (Lancini et al., 2014) [4]. To address whether USP3 loss leads to deregulation of specific molecular pathways relevant to HSC homeostasis and/or B cell development, we have employed the RNA-sequencing technology and investigated transcriptional differences between wild-type and Usp3Δ/Δ LSK, naïve B cells or in vitro activated B cells. The data relate to the research article "Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells" (Lancini et al., 2014) [4]. The RNA-sequencing and analysis data sets have been deposited in NCBI׳s Gene Expression Omnibus (Edgar et al., 2002) [5] and are accessible through GEO Series accession number GSE58495 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58495). With this article, we present validation of the RNA-seq data set through quantitative real-time PCR and comparative analysis.

  14. Affinity of antigen encounter and other early B-cell signals determine B-cell fate

    PubMed Central

    Benson, Micah J; Erickson, Loren D; Gleeson, Michael W; Noelle, Randolph J

    2010-01-01

    Three possible effector fates await the naïve follicular B cell following antigen stimulation in thymus-dependent reactions. Short-lived plasma cells produce an initial burst of germline-encoded protective antibodies, and long-lived plasma cells and memory B cells arise from the germinal center and function to enhance and sustain the humoral immune response. The inherent B-cell receptor affinity of naïve follicular B cells and the contribution of other early B-cell signals pre-determines the pattern of transcription factor expression and the differentiation path taken by these cells. High initial B-cell receptor affinity shunts naïve follicular B-cell clones towards the short-lived plasma cell fate, whereas modest-affinity clones are skewed towards a plasma cell fate and low-affinity clones are recruited into the germinal center and are selected for both long-lived plasma cells and memory B cell pathways. In the germinal center reaction, increased levels of the transcription factor interferon regulatory factor-4 drive the molecular program that dictates differentiation into the long-lived plasma cell phenotype but has no impact on the memory B cell compartment. We hypothesize that graded interferon regulatory factor-4 levels driven by signals to B cells, including B-cell receptor signal strength, are responsible for this branch point in the B-cell terminal differentiation pathway. PMID:17433651

  15. Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma.

    PubMed

    Oelsner, Sarah; Friede, Miriam E; Zhang, Congcong; Wagner, Juliane; Badura, Susanne; Bader, Peter; Ullrich, Evelyn; Ottmann, Oliver G; Klingemann, Hans; Tonn, Torsten; Wels, Winfried S

    2017-02-01

    Natural killer (NK) cells can rapidly respond to transformed and stressed cells and represent an important effector cell type for adoptive immunotherapy. In addition to donor-derived primary NK cells, continuously expanding cytotoxic cell lines such as NK-92 are being developed for clinical applications. To enhance their therapeutic utility for the treatment of B-cell malignancies, we engineered NK-92 cells by lentiviral gene transfer to express chimeric antigen receptors (CARs) that target CD19 and contain human CD3ζ (CAR 63.z), composite CD28-CD3ζ or CD137-CD3ζ signaling domains (CARs 63.28.z and 63.137.z). Exposure of CD19-positive targets to CAR NK-92 cells resulted in formation of conjugates between NK and cancer cells, NK-cell degranulation and selective cytotoxicity toward established B-cell leukemia and lymphoma cells. Likewise, the CAR NK cells displayed targeted cell killing of primary pre-B-ALL blasts that were resistant to parental NK-92. Although all three CAR NK-92 cell variants were functionally active, NK-92/63.137.z cells were less effective than NK-92/63.z and NK-92/63.28.z in cell killing and cytokine production, pointing to differential effects of the costimulatory CD28 and CD137 domains. In a Raji B-cell lymphoma model in NOD-SCID IL2R γ null mice, treatment with NK-92/63.z cells, but not parental NK-92 cells, inhibited disease progression, indicating that selective cytotoxicity was retained in vivo. Our data demonstrate that it is feasible to generate CAR-engineered NK-92 cells with potent and selective antitumor activity. These cells may become clinically useful as a continuously expandable off-the-shelf cell therapeutic agent. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. Switched memory B cells maintain specific memory independently of serum antibodies: the hepatitis B example.

    PubMed

    Rosado, M Manuela; Scarsella, Marco; Pandolfi, Elisabetta; Cascioli, Simona; Giorda, Ezio; Chionne, Paola; Madonne, Elisabetta; Gesualdo, Francesco; Romano, Mariateresa; Ausiello, Clara M; Rapicetta, Maria; Zanetti, Alessandro R; Tozzi, Alberto; Carsetti, Rita

    2011-06-01

    The immunogenicity of a vaccine is conventionally measured through the level of serum Abs early after immunization, but to ensure protection specific Abs should be maintained long after primary vaccination. For hepatitis B, protective levels often decline over time, but breakthrough infections do not seem to occur. The aim of this study was to demonstrate whether, after hepatitis B vaccination, B-cell memory persists even when serum Abs decline. We compared the frequency of anti-hepatitis-specific memory B cells that remain in the blood of 99 children five years after priming with Infanrix -hexa (GlaxoSmithKline) (n=34) or with Hexavac (Sanofi Pasteur MSD) (n=65). These two vaccines differ in their ability to generate protective levels of IgG. Children with serum Abs under the protective level, <10 mIU/mL, received a booster dose of hepatitis B vaccine, and memory B cells and serum Abs were measured 2 wk later. We found that specific memory B cells had a similar frequency in all children independently of primary vaccine. Booster injection resulted in the increase of memory B cell frequencies (from 11.3 in 10(6) cells to 28.2 in 10(6) cells, p<0.01) and serum Abs (geometric mean concentration, GMC from 2.9 to 284 mIU/mL), demonstrating that circulating memory B cells effectively respond to Ag challenge even when specific Abs fall under the protective threshold. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. VHL-regulated miR-204 Suppresses Tumor Growth through Inhibition of LC3B-mediated Autophagy in Renal Clear Cell Carcinoma

    PubMed Central

    Mikhaylova, Olga; Stratton, Yiwen; Hall, Daniel; Kellner, Emily; Ehmer, Birgit; Drew, Angela F.; Gallo, Catherine A.; Plas, David R.; Biesiada, Jacek; Meller, Jarek; Czyzyk-Krzeska, Maria F.

    2012-01-01

    Summary The von Hippel-Lindau tumor-suppressor gene (VHL) is lost in most clear cell renal cell carcinomas (ccRCC). Here, using human ccRCC specimens, VHL-deficient cells, and xenograft models, we show that miR-204 is a VHL-regulated tumor suppressor acting by inhibiting macroautophagy, with MAP1LC3B (LC3B) as a direct and functional target. Importantly, higher tumor grade of human ccRCC was correlated with a concomitant decrease in miR-204 and increase in LC3B levels, indicating that LC3B-mediated macroautophagy is necessary for RCC progression. VHL, in addition to inducing endogenous miR-204, triggered the expression of LC3C, an HIF-regulated LC3B paralog, that suppressed tumor growth. These data reveal a function of VHL as a tumor suppressing regulator of autophagic programs. PMID:22516261

  18. B cells as accessory cells in a Con A response of a T cell clone.

    PubMed

    Takeuchi, M; Kakiuchi, T; Taira, S; Nariuchi, H

    1987-12-01

    Accessory cell (AC) function of B cells was examined in Con A response of a cloned T cell line, 22-9D, which is Thy 1+,L3T4+,Lyt2-,H-2KbDb+ and I-Ab-.22-9D cells produced IL 2 in the presence of Con A without participation of AC. For the initiation of a proliferative response to Con A, the addition of spleen cells or spleen adherent cells was required. B cells as AC were unable to induce the proliferative response. In the presence of culture supernatant of spleen cells stimulated with Con A (CAS), 22-9D cells showed proliferative response to Con A with B cell AC. The response was inhibited by a relevant monoclonal anti-I-A antibody. Although irradiated spleen cells as AC induced IL 2 receptor expression of 22-9D cells in the presence of Con A, B cells were shown to require the addition of unknown factor(s) in CAS, which was suggested to be different from IL 1, IL 2, IL 3, or IFN-gamma, for the induction of the receptor expression on 22-9D cells.

  19. lH-Pyrazolo[3,4-b]quinolin-3-amine derivatives inhibit growth of colon cancer cells via apoptosis and sub G1 cell cycle arrest.

    PubMed

    Karthikeyan, Chandrabose; Amawi, Haneen; Viana, Arabela Guedes; Sanglard, Leticia; Hussein, Noor; Saddler, Maria; Ashby, Charles R; Moorthy, N S Hari Narayana; Trivedi, Piyush; Tiwari, Amit K

    2018-07-15

    A series of lH-pyrazolo[3,4-b]quinolin-3-amine derivatives were synthesized and evaluated for anticancer efficacy in a panel of ten cancer cell lines, including breast (MDAMB-231 and MCF-7), colon (HCT-116, HCT-15, HT-29 and LOVO), prostate (DU-145 and PC3), brain (LN-229), ovarian (A2780), and human embryonic kidney (HEK293) cells, a non-cancerous cell line. Among the eight derivatives screened, compound QTZ05 had the most potent and selective antitumor efficacy in the four colon cancer cell lines, with IC 50 values ranging from 2.3 to 10.2 µM. Furthermore, QTZ05 inhibited colony formation in HCT-116 cells in a concentration-dependent manner. Cell cycle analysis data indicated that QTZ05 caused an arrest in the sub G1 cell cycle in HCT-116 cells. QTZ05 induced apoptosis in HCT-116 cells in a concentration-dependent manner that was characterized by chromatin condensation and increase in the fluorescence of fluorochrome-conjugated Annexin V. The findings from our study suggest that QTZ05 may be a valuable prototype for the development of chemotherapeutics targeting apoptotic pathways in colorectal cancer cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Efficacy and Safety of Tabalumab, an Anti-B-Cell-Activating Factor Monoclonal Antibody, in a Heterogeneous Rheumatoid Arthritis Population: Results From a Randomized, Placebo-Controlled, Phase 3 Trial (FLEX-O).

    PubMed

    Genovese, Mark C; Silverman, Gregg J; Emery, Paul; Gupta, Ramesh C; Gill, Anne; Veenhuizen, Melissa; Xie, Li; Komocsar, Wendy J; Berclaz, Pierre-Yves; Lee, Chin

    2015-08-01

    The efficacy and safety of 2 different dosing regimens of tabalumab, a monoclonal antibody that neutralizes membrane-bound and soluble B-cell-activating factor (BAFF), were evaluated in patients with rheumatoid arthritis. In this phase 3, multicenter, randomized study, 1004 patients (intention-to-treat population) received subcutaneous 120 mg tabalumab every 4 weeks (120/Q4W), 90 mg tabalumab every 2 weeks (90/Q2W), or placebo over 24 weeks. At baseline, a loading dose double the planned dose (ie, 240 mg, 180 mg, or placebo) was administered. Efficacy analyses were based on a prespecified subset of patients with 5 or more of 68 tender and 5 or more of 66 swollen joints at baseline (efficacy population, n = 849). The primary efficacy end point was ACR20 (20% improvement in American College of Rheumatology criteria) response at week 24. At week 24, there were no differences in ACR20 response rates (120/Q4W = 34.4%, 90/Q2W = 33.5%, placebo = 31.5%) or any other measures of efficacy across the treatment groups. Discontinuations due to adverse events (AE) were 3.4%, 2.7%, and 4.0%; incidence of treatment-emergent AEs were 64.1%, 58.2%, and 58.8%, with 23.2%, 25.9%, and 22.0% treatment-emergent infections; and incidence rates of serious AEs were 3.7%, 2.2%, and 2.8% with 1.1%, 0.3%, and 0.7% serious infections in the 120/Q4W, 90/Q2W, and placebo groups, respectively. Three deaths were reported (120/Q4W, n = 2; 90/Q2W, n = 1). Each tabalumab group had significant decreases versus placebo in CD3-CD20 B cells (P ≤ 0.05) and in serum immunoglobulins (P ≤ 0.001). Although tabalumab administration resulted in biologic activity, as demonstrated by changes in B cells and immunoglobulins, targeting BAFF-dependent pathways alone is not sufficient to significantly reduce rheumatoid arthritis disease activity.

  1. Modulation of human Th17 cell responses through complement receptor 3 (CD11 b/CD18) ligation on monocyte-derived dendritic cells.

    PubMed

    Nowatzky, Johannes; Manches, Olivier; Khan, Shaukat Ali; Godefroy, Emmanuelle; Bhardwaj, Nina

    2018-06-13

    Apoptotic cell receptors contribute to the induction of tolerance by modulating dendritic cell function following the uptake of apoptotic cells or microparticles. Dendritic cells that have bound or ingested apoptotic cells produce only low amounts of pro-inflammatory cytokines and fail to prime effector T cell responses. Specifically, ligation of the apoptotic cell receptor CR3 (CD11 b/CD18) on human monocyte-derived dendritic cells (moDC) down-modates proinflammatory cytokine secretion, but the consequences for human Th17 cell homeostasis and effector responses remain unknown. Here, we aimed to establish whether CD11b-ligated moDC modulate Th17 cell effector reponses to assess their potential for future use in moDC-based suppressive immunotherapy. We generated a bead-based surrogate system to target CD11b on monocyte-derived human dendritic cells and examined the effects of CD11b ligation on Th17-skewing cytokine secretion, priming, expansion and functional plasticity in DC/T cell co-culture systems at the poly- and monoclonal level. We show that Th17 cell expansion within the human memory CD4 + T cell compartment was efficiently constricted by targeting the CD11b receptor on moDC. This tolerogenic capacity was primarily dependent on cytokine skewing. Furthermore, ligation of CD11b on healthy homozygous carriers of the rs11143679 (ITGAM) variant - a strong genetic susceptibility marker for human systemic lupus erythematosus - also down-modulated the secretion of Th17-skewing cytokines. Overall, our findings underline the potential of targeted CD11b ligation on human dendritic cells for the engineering of suppressive immunotherapy for Th17-related autoimmune disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Repression of the expression of PPP3CC by ZEB1 confers activation of NF-κB and contributes to invasion and growth in glioma cells.

    PubMed

    Wang, Hongquan; Zhao, Shuli; Chen, Bo; Fu, Chuhua; Dang, Yanwei; Fang, Peihai; Wang, Jun; Wang, Ning; Liu, Lijun

    2018-02-01

    Gliomas are highly malignant brain tumors. Aberrant activation of NF-κB plays a crucial role in tumor progression. ELISA assay was used to detect NF-κB activity in glimoas cells with different treatments. PPP3CC expression was evaluated by qRT-PCR and western blot assay. Kaplan-Meier analysis estimated the overall survival rates according to the protein level of PPP3CC. Transwell and MTS assay were performed to determine cell invasion and growth. Chromatin immunoprecipitation combined with luciferase reporter assays illustrated the transcriptional regulation of PPP3CC. We showed that PPP3CC decrease was responsible for constitutive activation of NF-κB in gliomas. Restored PPP3CC expression inhibited activation of NF-κB. PPP3CC was frequently decreased in gliomas and that repression of the expression of PPP3CC correlated glioma progression. The ectopic expression of PPP3CC inhibited the invasive potential of glioma cells, and inhibited glioma cells proliferation in vitro and growth in vivo. Additionally, the expression of Zinc finger E-box-binding homeobox 1(ZEB1) was increased in gliomas and was negatively correlated with clinical outcomes of glioma patients. ZEB1 inversely correlated with the expression of PPP3CC. ZEB1 was also confirmed to physically bind to the PPP3CC promoter. ZEB1 knockdown resulted in an increase in the expression of PPP3CC and elevation of PPP3CC promoter activity in glioma cells. These findings indicated that the down-regulation of PPP3CC by ZEB1 resulted in activation of NF-κB is a critical oncogenic event in gliomas. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Expression of hepatitis B virus 1.3-fold genome plasmid in an SV40 T-antigen-immortalized mouse hepatic cell line

    PubMed Central

    Song, Xiu-Guang; Bian, Peng-Fei; Yu, Shu-Li; Zhao, Xiu-Hua; Xu, Wei; Bu, Xue-Hui; Li, Xia; Ma, Li-Xian

    2013-01-01

    AIM: To investigate the expression of the hepatitis B virus (HBV) 1.3-fold genome plasmid (pHBV1.3) in an immortalized mouse hepatic cell line induced by SV40 T-antigen (SV40T) expression. METHODS: Mouse hepatic cells were isolated from mouse liver tissue fragments from 3-5 d old Kunming mice by the direct collagenase digestion method and cultured in vitro. The pRSV-T plasmid was transfected into mouse hepatic cells to establish an SV40LT-immortalized mouse hepatic cell line. The SV40LT-immortalized mouse hepatic cells were identified and transfected with the pHBV1.3 plasmid. The levels of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) in the supernatant were determined by an electrochemiluminescence immunoassay at 24, 48, 72 and 96 h after transfection. The expressions of HBsAg and hepatitis B c antigen (HBcAg) in the cells were investigated by indirect immunofluorescence analysis. The presence of HBV DNA replication intermediates in the transfected cells and viral particles in the supernatant of the transfected cell cultures was monitored using the Southern hybridization assay and transmission electronic microscopy, respectively. RESULTS: The pRSV-T plasmid was used to immortalize mouse hepatocytes and an SV40LT-immortalized mouse hepatic cell line was successfully established. SV40LT-immortalized mouse hepatic cells have the same morphology and growth characteristics as primary mouse hepatic cells can be subcultured and produce albumin and cytokeratin-18 in vitro. Immortalized mouse hepatic cells did not show the characteristics of tumor cells, as alpha-fetoprotein levels were comparable (0.58 ± 0.37 vs 0.61 ± 0.31, P = 0.37). SV40LT-immortalized mouse hepatic cells were then transfected with the pHBV1.3 plasmid, and it was found that the HBV genome replicated in SV40LT-immortalized mouse hepatic cells. The levels of HBsAg and HBeAg continuously increased in the supernatant after the transfection of pHBV1.3, and began to decrease 72 h

  4. Glycogen Synthase Kinase-3β, NF-κB Signaling, and Tumorigenesis of Human Osteosarcoma

    PubMed Central

    Tang, Qing-Lian; Xie, Xian-Biao; Wang, Jin; Chen, Qiong; Han, An-Jia; Zou, Chang-Ye; Yin, Jun-Qiang; Liu, Da-Wei; Liang, Yi; Zhao, Zhi-Qiang; Yong, Bi-Cheng; Zhang, Ru-Hua; Feng, Qi-Sheng; Deng, Wu-Guo; Zhu, Xiao-Feng; Zhou, Binhua P.; Zeng, Yi-Xin

    2012-01-01

    Background Glycogen synthase kinase-3β (GSK-3β), a serine/threonine protein kinase, may function as a tumor suppressor or an oncogene, depending on the tumor type. We sought to determine the biological function of GSK-3β in osteosarcoma, a rare pediatric cancer for which the identification of new therapeutic targets is urgent. Methods We used cell viability assays, colony formation assays, and apoptosis assays to analyze the effects of altered GSK-3β expression in U2OS, MG63, SAOS2, U2OS/MTX300, and ZOS osteosarcoma cell lines. Nude mice (n = 5–8 mice per group) were injected with U2OS/MTX300, and ZOS cells to assess the role of GSK-3β in osteosarcoma growth in vivo and to evaluate the effects of inhibitors and/or anticancer drugs on tumor growth. We used an antibody array, polymerase chain reaction, western blotting, and a luciferase reporter assay to establish the effect of GSK-3β inhibition on the nuclear factor-κB (NF-κB) pathway. Immunochemistry was performed on primary tumor specimens from osteosarcoma patients (n = 74) to determine the relationship of GSK-3β activity with overall survival. Results Osteosarcoma cells with low levels of inactive p-Ser9-GSK-3β formed colonies in vitro and tumors in vivo more readily than cells with higher levels and cells in which GSK-3β had been silenced formed fewer colonies and smaller tumors than parental cells. Silencing or pharmacological inhibition of GSK-3β resulted in apoptosis of osteosarcoma cells. Inhibition of GSK-3β resulted in inhibition of the NF-κB pathway and reduction of NF-κB-mediated transcription. Combination treatments with GSK-3β inhibitors, NF-κB inhibitors, and chemotherapy drugs increased the effectiveness of chemotherapy drugs in vitro and in vivo. Patients whose osteosarcoma specimens had hyperactive GSK-3β, and nuclear NF-κB had a shorter median overall survival time (49.2 months) compared with patients whose tumors had inactive GSK-3β and NF-κB (109.2 months). Conclusion GSK

  5. [Effect of NF-κB on the expression of interleukin-6 induced by lipopolysaccharides of Porphyromonas endodontalis in MC3T3-E1 cells].

    PubMed

    Yu, Ya-qiong; Guo, Jia-jie; Qiu, Li-hong; Lv, You; Jia, Ge; Guo, Yan

    2013-08-01

    To investigate the effect of NF-κB signaling on the expression of interleukin-6(IL-6) induced by lipopolysaccharides(LPS) extracted from Porphyromonas endodontalis(P.e) in MC3T3-El cells. MC3T3-E1 cells were pretreated with BAY-117082 for 1 h, and then were treated with 10 mg/L P.e-LPS for different times. The translocation of NF-κB was observed by immunofluorescence. The expression of IL-6 was detected by reverse transcription polymerse chain reaction (RT-PCR) and enzyme-linked immuno sorbent assay (ELISA). Statistical analysis was performed using multi-way ANOVA and Dunnett's t test with SPSS 13.0 software package. The staining of NF-κB was mostly in cytoplasm in untreated cells. Rapid translocation of NF-κB into nucleus was observed in the cells stimulated for 30 min and mostly relocalization of NF-κB from nucleus to cytoplasm was observed after 60 min. Pretreatment with 10 μmol/L BAY-117082 for 1h significantly inhibited P.e-LPS-induced translocation of NF-κB .The mRNA and proteins of IL-6 decreased significantly after pretreatment with 10 μmol/L BAY-117082 and the expression of IL-6 proteins was reduced from (774.983±6.585) ng/L to (377.384±14.620) ng/L (P<0.01). The group of treatment with BAY-117082 alone had no significant difference from the blank control group. P.e-LPS can induce translocation of NF-κB in mouse osteoblast MC3T3-El, and P.e-LPS may induce the expression of IL-6 in mouse osteoblast through the signaling of NF-κB.

  6. Identification of highly potent BTK and JAK3 dual inhibitors with improved activity for the treatment of B-cell lymphoma.

    PubMed

    Ge, Yang; Wang, Changyuan; Song, Shijie; Huang, Jiaxin; Liu, Zhihao; Li, Yongming; Meng, Qiang; Zhang, Jianbin; Yao, Jihong; Liu, Kexin; Ma, Xiaodong; Sun, Xiuli

    2018-01-01

    The BTK and JAK3 receptor tyrosine kinases are two validated and therapeutically amenable targets in the treatment of B-cell lymphomas. Here we report the identification of several classes of pyrimidine derivatives as potent BTK and JAK3 dual inhibitors. Among these molecules, approximately two thirds displayed strong inhibitory capacity at less than 10 nM concentration, and four compounds (7e, 7g, 7m and 7n) could significantly inhibit the phosphorylation of BTK and JAK3 enzymes at concentrations lower than 1 nM. Additionally, these pyrimidine derivatives also exhibited enhanced activity to block the proliferation of B-cell lymphoma cells compared with the representative BTK inhibitor ibrutinib. In particular, two structure-specific compounds 7b and 7e displayed stronger activity than reference agents in cell-based evaluation, with IC 50 values lower than 10 μM. Further biological studies, including flow cytometric analysis, and a xenograft model for in vivo evaluation, also indicated their efficacy and low toxicity in the treatment of B-cell lymphoma. These findings provide a new insight for the development of novel anti-B-cell lymphoma drugs with multi-target actions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. MicroRNA-20b-5p inhibits platelet-derived growth factor-induced proliferation of human fetal airway smooth muscle cells by targeting signal transducer and activator of transcription 3.

    PubMed

    Tang, Jin; Luo, Lingying

    2018-06-01

    Pediatric asthma is still a health threat to the pediatric population in recent years. The airway remodeling induced by abnormal airway smooth muscle (ASM) cell proliferation is an important cause of asthma. MicroRNAs (miRNAs) are important regulators of ASM cell proliferation. Numerous studies have reported that miR-20b-5p is a critical regulator for cell proliferation. However, whether miR-20b-5p is involved in regulating ASM cell proliferation remains unknown. In this study, we aimed to investigate the potential role of miR-20b-5p in regulating the proliferation of fetal ASM cell induced by platelet-derived growth factor (PDGF). Here, we showed that miR-20b-5p was significantly decreased in fetal ASM cells treated with PDGF. Biological experiments showed that the overexpression of miR-20b-5p inhibited the proliferation while miR-20b-5p inhibition markedly promoted the proliferation of fetal ASM cells. Bioinformatics analysis and luciferase reporter assay showed that miR-20b-5p directly targeted the 3'-UTR of signal transducer and activator of transcription 3 (STAT3). Further data showed that miR-20b-5p negatively regulated the expression of STAT3 in fetal ASM cells. Moreover, miR-20b-5p regulates the transcriptional activity of STAT3 in fetal ASM cells. Overexpression of STAT3 reversed the inhibitory effect of miR-20b-5p overexpression on fetal ASM cell proliferation while the knockdown of STAT3 abrogated the promoted effect of miR-20b-5p inhibition on fetal ASM cell proliferation. Overall, our results show that miR-20b-5p impedes PDGF-induced proliferation of fetal ASM cells through targeting STAT3. Our study suggests that miR-20b-5p may play an important role in airway remodeling during asthma and suggests that miR-20b-5p may serve as a potential therapeutic target for pediatric asthma. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. GosB Inhibits Triacylglycerol Synthesis and Promotes Cell Survival in Mouse Mammary Epithelial Cells.

    PubMed

    Xu, Gaoxiao; Duan, Saixing; Hou, Jianye; Wei, Zhongxin; Zhao, Guangwei

    2017-01-01

    It has been demonstrated that the activator protein related transcription factor Finkel-Biskis-Jinkins murine osteosarcoma B (GosB) is involved in preadipocyte differentiation and triacylglycerol synthesis. However, the role of GosB in regulating the synthesis of milk fatty acid in mouse mammary glands remains unclear. This research uncovered potentially new roles of GosB in suppressing milk fatty acid synthesis. Results revealed that GosB had the highest expression in lung tissue and showed a higher expression level during nonlactation than during lactation. GosB inhibited the expression of fatty acid synthase (FASN) , stearoyl-CoA desaturase (SCD) , fatty acid binding protein 4 (FABP4) , diacylglycerol acyltransferase 1 (DGAT1) , perilipin 2 (PLIN2) , perilipin 3 (PLIN3) , and C/EBPα in mouse mammary gland epithelial cells (MEC). In addition, GosB reduced cellular triglyceride content and the accumulation of lipid droplets; in particular, GosB enhanced saturated fatty acid concentration (C16:0 and C18:0). The PPAR γ agonist, rosiglitazone (ROSI), promoted apoptosis and inhibited cell proliferation. GosB increased the expression of Bcl-2 and protected MEC from ROSI-induced apoptosis. Furthermore, MECs were protected from apoptosis through the GosB regulation of intracellular calcium concentrations. These findings suggest that GosB may regulate mammary epithelial cells milk fat synthesis and apoptosis via PPAR γ in mouse mammary glands.

  9. SHIP-1 Deficiency in AID+ B Cells Leads to the Impaired Function of B10 Cells with Spontaneous Autoimmunity.

    PubMed

    Chen, Yingjia; Hu, Fanlei; Dong, Xuejiao; Zhao, Meng; Wang, Jing; Sun, Xiaolin; Kim, Tae Jin; Li, Zhanguo; Liu, Wanli

    2017-11-01

    Unlike conventional B cells, regulatory B cells exhibit immunosuppressive functions to downregulate inflammation via IL-10 production. However, the molecular mechanism regulating the production of IL-10 is not fully understood. In this study, we report the finding that activation-induced cytidine deaminase (AID) is highly upregulated in the IL-10-competent B cell (B10) cell from Innp5d fl/fl Aicda Cre/+ mice, whereas the 5' inositol phosphatase SHIP-1 is downregulated. Notably, SHIP-1 deficiency in AID + B cells leads to a reduction in cell count and impaired IL-10 production by B10 cells. Furthermore, the Innp5d fl/fl Aicda Cre/+ mouse model shows B cell-dependent autoimmune lupus-like phenotypes, such as elevated IgG serum Abs, formation of spontaneous germinal centers, production of anti-dsDNA and anti-nuclear Abs, and the obvious deposition of IgG immune complexes in the kidney with age. We observe that these lupus-like phenotypes can be reversed by the adoptive transfer of B10 cells from control Innp5d fl/fl mice, but not from the Innp5d fl/fl Aicda Cre/+ mice. This finding highlights the importance of defective B10 cells in Innp5d fl/fl Aicda Cre/+ mice. Whereas p-Akt is significantly upregulated, MAPK and AP-1 activation is impaired in B10 cells from Innp5d fl/fl Aicda Cre/+ mice, resulting in the reduced production of IL-10. These results show that SHIP-1 is required for the maintenance of B10 cells and production of IL-10, and collectively suggests that SHIP-1 could be a new potential therapeutic target for the treatment of autoimmune diseases. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. STC1 promotes cell apoptosis via NF-κB phospho-P65 Ser536 in cervical cancer cells

    PubMed Central

    Pan, Xi; Jiang, Binyuan; Liu, Jianhao; Ding, Juan; Li, Yuehui; Sun, Ruili; Peng, Li; Qin, Changfei; Fang, Shujuan; Li, Guancheng

    2017-01-01

    Stanniocalin-1 (STC1) is a secreted glycoprotein hormone and involved in various types of human malignancies. Our previous studies revealed that STC1 inhibited cell proliferation and invasion of cervical cancer cells through NF-κB P65 activation, but the mechanism is poorly understood. In our studies, we found overexpression of STC1 promoted cell apoptosis while silencing of STC1 promoted cell growth of cervical cancer. Phospho-protein profiling and Western blotting results showed the expression of NF-κB related phosphorylation sites including NF-κB P65 (Ser536), IκBα, IKKβ, PI3K, and AKT was altered in STC1-overexpressed cervical cancer cells. Moreover, PI3K inhibitor LY294002, AKT-shRNA and IκBα-shRNA could decrease the protein content of phospho-P65 (Ser536), phospho-IκBα, phospho-AKT and phospho-IKKβ while increasing the level of P65 compared to STC1 overexpression groups in cervical cancer cells. Also, PI3K inhibitor LY294002, AKT-shRNA and IκBα-shRNA elevated the percentage of apoptosis and suppressed the G1/S transition in those cells. Additionally, STC1 level was decreased in cervical cancer, especial in stage II and III. The results of immunohistochemistry for the cervical cancer microarray showed that a lower level of STC1, phospho-PI3K and P65 protein expression in tumor tissues than that in normal tissues, and a higher level of phospho-P65 protein expression in tumor tissues, which is consistent with the results of the Western blotting. These data demonstrated that STC1 can promote cell apoptosis via NF-κB phospho-P65 (Ser536) by PI3K/AKT, IκBα and IKK signaling in cervical cancer cells. Our results offer the first mechanism that explains the link between STC1 and cell apoptosis in cervical cancer. PMID:28545028

  11. STC1 promotes cell apoptosis via NF-κB phospho-P65 Ser536 in cervical cancer cells.

    PubMed

    Pan, Xi; Jiang, Binyuan; Liu, Jianhao; Ding, Juan; Li, Yuehui; Sun, Ruili; Peng, Li; Qin, Changfei; Fang, Shujuan; Li, Guancheng

    2017-07-11

    Stanniocalin-1 (STC1) is a secreted glycoprotein hormone and involved in various types of human malignancies. Our previous studies revealed that STC1 inhibited cell proliferation and invasion of cervical cancer cells through NF-κB P65 activation, but the mechanism is poorly understood. In our studies, we found overexpression of STC1 promoted cell apoptosis while silencing of STC1 promoted cell growth of cervical cancer. Phospho-protein profiling and Western blotting results showed the expression of NF-κB related phosphorylation sites including NF-κB P65 (Ser536), IκBα, IKKβ, PI3K, and AKT was altered in STC1-overexpressed cervical cancer cells. Moreover, PI3K inhibitor LY294002, AKT-shRNA and IκBα-shRNA could decrease the protein content of phospho-P65 (Ser536), phospho-IκBα, phospho-AKT and phospho-IKKβ while increasing the level of P65 compared to STC1 overexpression groups in cervical cancer cells. Also, PI3K inhibitor LY294002, AKT-shRNA and IκBα-shRNA elevated the percentage of apoptosis and suppressed the G1/S transition in those cells. Additionally, STC1 level was decreased in cervical cancer, especial in stage II and III. The results of immunohistochemistry for the cervical cancer microarray showed that a lower level of STC1, phospho-PI3K and P65 protein expression in tumor tissues than that in normal tissues, and a higher level of phospho-P65 protein expression in tumor tissues, which is consistent with the results of the Western blotting. These data demonstrated that STC1 can promote cell apoptosis via NF-κB phospho-P65 (Ser536) by PI3K/AKT, IκBα and IKK signaling in cervical cancer cells. Our results offer the first mechanism that explains the link between STC1 and cell apoptosis in cervical cancer.

  12. Chimeric antigen receptor-engineered cytokine-induced killer cells overcome treatment resistance of pre-B-cell acute lymphoblastic leukemia and enhance survival.

    PubMed

    Oelsner, Sarah; Wagner, Juliane; Friede, Miriam E; Pfirrmann, Verena; Genßler, Sabrina; Rettinger, Eva; Buchholz, Christian J; Pfeifer, Heike; Schubert, Ralf; Ottmann, Oliver G; Ullrich, Evelyn; Bader, Peter; Wels, Winfried S

    2016-10-15

    Pre-emptive cancer immunotherapy by donor lymphocyte infusion (DLI) using cytokine-induced killer (CIK) cells may be beneficial to prevent relapse with a reduced risk of causing graft-versus-host-disease. CIK cells are a heterogeneous effector cell population including T cells (CD3(+) CD56(-) ), natural killer (NK) cells (CD3(-) CD56(+) ) and natural killer T (T-NK) cells (CD3(+) CD56(+) ) that exhibit non-major histocompatibility complex (MHC)-restricted cytotoxicity and are generated by ex vivo expansion of peripheral blood mononuclear cells in the presence of interferon (IFN)-γ, anti-CD3 antibody, interleukin-2 (IL-2) and interleukin-15 (IL-15). To facilitate selective target-cell recognition and enhance specific cytotoxicity against B-cell acute lymphoblastic leukemia (B-ALL), we transduced CIK cells with a lentiviral vector encoding a chimeric antigen receptor (CAR) that carries a composite CD28-CD3ζ domain for signaling and a CD19-specific scFv antibody fragment for cell binding (CAR 63.28.z). In vitro analysis revealed high and specific cell killing activity of CD19-targeted CIK/63.28.z cells against otherwise CIK-resistant cancer cell lines and primary B-ALL blasts, which was dependent on CD19 expression and CAR signaling. In a xenograft model in immunodeficient mice, treatment with CIK/63.28.z cells in contrast to therapy with unmodified CIK cells resulted in complete and durable molecular remissions of established primary pre-B-ALL. Our results demonstrate potent antileukemic activity of CAR-engineered CIK cells in vitro and in vivo, and suggest this strategy as a promising approach for adoptive immunotherapy of refractory pre-B-ALL. © 2016 UICC.

  13. Understanding the reconstitution of the B-cell compartment in bone marrow and blood after treatment for B-cell precursor acute lymphoblastic leukaemia.

    PubMed

    Theunissen, Prisca M J; van den Branden, Anouk; Van Der Sluijs-Gelling, Alita; De Haas, Valerie; Beishuizen, Auke; van Dongen, Jacques J M; Van Der Velden, Vincent H J

    2017-07-01

    A better understanding of the reconstitution of the B-cell compartment during and after treatment in B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) will help to assess the immunological status and needs of post-treatment BCP-ALL patients. Using 8-colour flow cytometry and proliferation-assays, we studied the composition and proliferation of both the B-cell precursor (BCP) population in the bone marrow (BM) and mature B-cell population in peripheral blood (PB) during and after BCP-ALL therapy. We found a normal BCP differentiation pattern and a delayed formation of classical CD38 dim -naive mature B-cells, natural effector B-cells and memory B-cells in patients after chemotherapy. This B-cell differentiation/maturation pattern was strikingly similar to that during initial B-cell development in healthy infants. Tissue-resident plasma cells appeared to be partly protected from chemotherapy. Also, we found that the fast recovery of naive mature B-cell numbers after chemotherapy was the result of increased de novo BCP generation, rather than enhanced B-cell proliferation in BM or PB. These results indicate that post-treatment BCP-ALL patients will eventually re-establish a B-cell compartment with a composition and B-cell receptor repertoire similar to that in healthy children. Additionally, the formation of a new memory B-cell compartment suggests that revaccination might be beneficial after BCP-ALL therapy. © 2017 John Wiley & Sons Ltd.

  14. Restoring balance to B cells in ADA deficiency.

    PubMed

    Luning Prak, Eline T

    2012-06-01

    It is paradoxical that immunodeficiency disorders are associated with autoimmunity. Adenosine deaminase (ADA) deficiency, a cause of X-linked severe combined immunodeficiency (SCID), is a case in point. In this issue of the JCI, Sauer and colleagues investigate the B cell defects in ADA-deficient patients. They demonstrate that ADA patients receiving enzyme replacement therapy had B cell tolerance checkpoint defects. Remarkably, gene therapy with a retrovirus that expresses ADA resulted in the apparent correction of these defects, with normalization of peripheral B cell autoantibody frequencies. In vitro, agents that either block ADA or overexpress adenosine resulted in altered B cell receptor and TLR signaling. Collectively, these data implicate a B cell-intrinsic mechanism for alterations in B cell tolerance in the setting of partial ADA deficiency that is corrected by gene therapy.

  15. E3 Ubiquitin Ligase Cbl-b Prevents Tumor Metastasis by Maintaining the Epithelial Phenotype in Multiple Drug-Resistant Gastric and Breast Cancer Cells.

    PubMed

    Xu, Ling; Zhang, Ye; Qu, Xiujuan; Che, Xiaofang; Guo, Tianshu; Cai, Ying; Li, Aodi; Li, Danni; Li, Ce; Wen, Ti; Fan, Yibo; Hou, Kezuo; Ma, Yanju; Hu, Xuejun; Liu, Yunpeng

    2017-04-01

    Multiple drug resistance (MDR) and metastasis are two major factors that contribute to the failure of cancer treatment. However, the relationship between MDR and metastasis has not been characterized. Additionally, the role of the E3 ubiquitin ligase Cbl-b in metastasis of MDR gastric and breast cancer is not well known. In the present study, we found that MDR gastric and breast cancer cells possess a typical mesenchymal phenotype and enhanced cell migration capacity. Additionally, Cbl-b is poorly expressed in MDR gastric and breast cancer cells. In MDR gastric adenocarcinoma tissues, gastric cancer patients with low Cbl-b expression were more likely to have tumor invasion (P=.016) and lymph node metastasis (P=.007). Moreover, overexpression of Cbl-b reduced cell migration in MDR cell cultures both in vitro and in vivo. Cbl-b overexpression also prevented EMT by inducing ubiquitination and degradation of EGFR, leading to inhibition of the EGFR-ERK/Akt-miR-200c-ZEB1 axis. However, further overexpression of EGFR on a background of Cbl-b overexpression restored both the mesenchymal phenotype and cell migration capacity of MDR gastric and breast cancer cells. These results suggest that Cbl-b is an important factor for maintenance of the epithelial phenotype and inhibition of cell migration in MDR gastric and breast cancer cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Cell of origin associated classification of B-cell malignancies by gene signatures of the normal B-cell hierarchy.

    PubMed

    Johnsen, Hans Erik; Bergkvist, Kim Steve; Schmitz, Alexander; Kjeldsen, Malene Krag; Hansen, Steen Møller; Gaihede, Michael; Nørgaard, Martin Agge; Bæch, John; Grønholdt, Marie-Louise; Jensen, Frank Svendsen; Johansen, Preben; Bødker, Julie Støve; Bøgsted, Martin; Dybkær, Karen

    2014-06-01

    Recent findings have suggested biological classification of B-cell malignancies as exemplified by the "activated B-cell-like" (ABC), the "germinal-center B-cell-like" (GCB) and primary mediastinal B-cell lymphoma (PMBL) subtypes of diffuse large B-cell lymphoma and "recurrent translocation and cyclin D" (TC) classification of multiple myeloma. Biological classification of B-cell derived cancers may be refined by a direct and systematic strategy where identification and characterization of normal B-cell differentiation subsets are used to define the cancer cell of origin phenotype. Here we propose a strategy combining multiparametric flow cytometry, global gene expression profiling and biostatistical modeling to generate B-cell subset specific gene signatures from sorted normal human immature, naive, germinal centrocytes and centroblasts, post-germinal memory B-cells, plasmablasts and plasma cells from available lymphoid tissues including lymph nodes, tonsils, thymus, peripheral blood and bone marrow. This strategy will provide an accurate image of the stage of differentiation, which prospectively can be used to classify any B-cell malignancy and eventually purify tumor cells. This report briefly describes the current models of the normal B-cell subset differentiation in multiple tissues and the pathogenesis of malignancies originating from the normal germinal B-cell hierarchy.

  17. 8-Prenylkaempferol Suppresses Influenza A Virus-Induced RANTES Production in A549 Cells via Blocking PI3K-Mediated Transcriptional Activation of NF-κB and IRF3

    PubMed Central

    Chiou, Wen-Fei; Chen, Chen-Chih; Wei, Bai-Luh

    2011-01-01

    8-Prenylkaempferol (8-PK) is a prenylflavonoid isolated from Sophora flavescens, a Chinese herb with antiviral and anti-inflammatory properties. In this study, we investigated its effect on regulated activation, normal T cell expressed and secreted (RANTES) secretion by influenza A virus (H1N1)-infected A549 alveolar epithelial cells. Cell inoculation with H1N1 evoked a significant induction in RANTES accumulation accompanied with time-related increase in nuclear translocation of nuclear factor-κB (NF-κB) and interferon regulatory factor 3 (IRF-3), but showed no effect on c-Jun phosphorylation. 8-PK could significantly inhibit not only RANTES production but also NF-κB and IRF-3 nuclear translocation. We had proved that both NF-κB and IRF-3 participated in H1N1-induced RANTES production since NF-κB inhibitor pyrrolidinedithio carbamate (PDTC) and IRF-3 siRNA attenuated significantly RANTES accumulation. H1N1 inoculation also increased PI3K activity as well as Akt phosphorylation and such responsiveness were attenuated by 8-PK. In the presence of wortmannin, nuclear translocation of NF-κB and IRF3 as well as RANTES production by H1N1 infection were all reversed, demonstrating that PI3K-Akt pathway is essential for NF-κB- and IRF-3-mediated RANTES production in A549 cells. Furthermore, 8-PK but not wortmannin, prevented effectively H1N1-evoked IκB degradation. In conclusion, 8-PK might be an anti-inflammatory agent for suppressing influenza A virus-induced RANTES production acts by blocking PI3K-mediated transcriptional activation of NF-κB and IRF-3 and in part by interfering with IκB degradation which subsequently decreases NF-κB translocation. PMID:19592477

  18. Bioinformatics and immunologic investigation on B and T cell epitopes of Cur l 3, a major allergen of Curvularia lunata.

    PubMed

    Sharma, Vidhu; Singh, Bhanu P; Gaur, Shailendra N; Pasha, Santosh; Arora, Naveen

    2009-06-01

    The knowledge on epitopes of proteins can help in devising new therapeutic modalities for allergic disorders. In the present study, five B (P1-P5) and five T cell (P6-P10) epitopes were predicted in silico based on sequence homology model of Cur l 3, a major allergen of Curvularia lunata. Peptides (epitopes) were synthesized and assessed for biological activity by ELISA, competitive ELISA, lymphoproliferation and cytokine profiling using Curvularia allergic patients' sera. B cell peptides showed higher IgE binding by ELISA than T cell epitopes except P6. Peptides P1-P6 achieved EC(50) at 100 ng, whereas P7-P10 required 10 mug in inhibition assays. Peripheral blood mononuclear cells from Curvularia allergic patients (n = 20) showed higher lymphoproliferation for T cell epitopes than B cell epitopes except P6 confirming the properties of B and T cell prediction. The supernatant from these patients show highest interleukin-4 release on stimulation with P6 followed by B cell peptides. P4 and P6 together identified 35/37 of Curvularia positive patients by skin tests. In summary, experimental analysis confirmed in silico predicted epitopes containing important antigenic regions of Cur l 3. P6, a predicted T cell epitope, showed the presence of a cryptic B cell epitope. Peptides P4 and P6 have potential for clinical application. The approach used here is relevant and may be used to delineate epitopes of other proteins.

  19. The PI3K p110delta is required for down-regulation of RAG expression in immature B cells.

    PubMed

    Llorian, Miriam; Stamataki, Zania; Hill, Susan; Turner, Martin; Mårtensson, Inga-Lill

    2007-02-15

    At the immature B cell stage the BCR signals the down-regulation of the RAG genes and Ig L chain (LC) allelic and isotype exclusion. The signaling pathway that regulates these events is poorly characterized. We demonstrate that immature B cells from mice deficient in the PI3K catalytic subunit p110delta fail to suppress RAG expression and inappropriately recombine kappa and lambda LC loci. In addition, in the presence of the autoantigen, clonal deletion and receptor editing still takes place, demonstrating that these processes are independent of p110delta. These results demonstrate a role for p110delta in the regulation of RAG gene expression and thereby LC allelic/isotype exclusion.

  20. Effective Targeting of Multiple B-Cell Maturation Antigen-Expressing Hematological Malignances by Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor T Cells.

    PubMed

    Friedman, Kevin M; Garrett, Tracy E; Evans, John W; Horton, Holly M; Latimer, Howard J; Seidel, Stacie L; Horvath, Christopher J; Morgan, Richard A

    2018-05-01

    B-cell maturation antigen (BCMA) expression has been proposed as a marker for the identification of malignant plasma cells in patients with multiple myeloma (MM). Nearly all MM tumor cells express BCMA, while normal tissue expression is restricted to plasma cells and a subset of mature B cells. Consistent BCMA expression was confirmed on MM biopsies (29/29 BCMA+), and it was further demonstrated that BCMA is expressed in a substantial number of lymphoma samples, as well as primary chronic lymphocytic leukemia B cells. To target BCMA using redirected autologous T cells, lentiviral vectors (LVV) encoding chimeric antigen receptors (CARs) were constructed with four unique anti-BCMA single-chain variable fragments, fused to the CD137 (4-1BB) co-stimulatory and CD3ζ signaling domains. One LVV, BB2121, was studied in detail, and BB2121 CAR-transduced T cells (bb2121) exhibited a high frequency of CAR + T cells and robust in vitro activity against MM cell lines, lymphoma cell lines, and primary chronic lymphocytic leukemia peripheral blood. Based on receptor quantification, bb2121 recognized tumor cells expressing as little as 222 BCMA molecules per cell. The in vivo pharmacology of anti-BCMA CAR T cells was studied in NSG mouse models of human MM, Burkitt lymphoma, and mantle cell lymphoma, where mice received a single intravenous administration of vehicle, control vector-transduced T cells, or anti-BCMA CAR-transduced T cells. In all models, the vehicle and control CAR T cells failed to inhibit tumor growth. In contrast, treatment with bb2121 resulted in rapid and sustained elimination of the tumors and 100% survival in all treatment models. Together, these data support the further development of anti-BCMA CAR T cells as a potential treatment for not only MM but also some lymphomas.

  1. Chalepin: A Compound from Ruta angustifolia L. Pers Exhibits Cell Cycle Arrest at S phase, Suppresses Nuclear Factor-Kappa B (NF-κB) Pathway, Signal Transducer and Activation of Transcription 3 (STAT3) Phosphorylation and Extrinsic Apoptotic Pathway in Non-small Cell Lung Cancer Carcinoma (A549).

    PubMed

    Richardson, Jaime Stella Moses; Aminudin, Norhaniza; Abd Malek, Sri Nurestri

    2017-10-01

    Plants have been a major source of inspiration in developing novel drug compounds in the treatment of various diseases that afflict human beings worldwide. Ruta angustifolia L. Pers known locally as Garuda has been conventionally used for various medicinal purposes such as in the treatment of cancer. A dihydrofuranocoumarin named chalepin, which was isolated from the chloroform extract of the plant, was tested on its ability to inhibit molecular pathways of human lung carcinoma (A549) cells. Cell cycle analysis and caspase 8 activation were conducted using a flow cytometer, and protein expressions in molecular pathways were determined using Western blot technique. Cell cycle analysis showed that cell cycle was arrested at the S phase. Further studies using Western blotting technique showed that cell cycle-related proteins such as cyclins, cyclin-dependent kinases (CDKs), and inhibitors of CDKs correspond to a cell cycle arrest at the S phase. Chalepin also showed inhibition in the expression of inhibitors of apoptosis proteins. Nuclear factor-kappa B (NF-κB) pathway, signal transducer and activation of transcription 3 (STAT-3), cyclooxygenase-2, and c-myc were also downregulated upon treatment with chalepin. Chalepin was found to induce extrinsic apoptotic pathway. Death receptors 4 and 5 showed a dramatic upregulation at 24 h. Analysis of activation of caspase 8 with the flow cytometer showed an increase in activity in a dose- and time-dependent manner. Activation of caspase 8 induced cleavage of BH3-interacting domain death agonist, which initiated a mitochondrial-dependent or -independent apoptosis. Chalepin causes S phase cell cycle arrest, NF-κB pathway inhibition, and STAT-3 inhibition, induces extrinsic apoptotic pathway, and could be an excellent chemotherapeutic agent. This study reports the capacity of an isolated bioactive compound known as chalepin to suppress the nuclear factor kappa-light-chain-enhancer of activated B cells pathway, signal

  2. Aborted germinal center reactions and B cell memory by follicular T cells specific for a B cell receptor V region peptide.

    PubMed

    Heiser, Ryan A; Snyder, Christopher M; St Clair, James; Wysocki, Lawrence J

    2011-07-01

    A fundamental problem in immunoregulation is how CD4(+) T cells react to immunogenic peptides derived from the V region of the BCR that are created by somatic mechanisms, presented in MHC II, and amplified to abundance by B cell clonal expansion during immunity. BCR neo Ags open a potentially dangerous avenue of T cell help in violation of the principle of linked Ag recognition. To analyze this issue, we developed a murine adoptive transfer model using paired donor B cells and CD4 T cells specific for a BCR-derived peptide. BCR peptide-specific T cells aborted ongoing germinal center reactions and impeded the secondary immune response. Instead, they induced the B cells to differentiate into short-lived extrafollicular plasmablasts that secreted modest quantities of Ig. These results uncover an immunoregulatory process that restricts the memory pathway to B cells that communicate with CD4 T cells via exogenous foreign Ag.

  3. Matrix Metalloproteinase 3 Promotes Cellular Anti-Dengue Virus Response via Interaction with Transcription Factor NFκB in Cell Nucleus

    PubMed Central

    Zuo, Xiangyang; Pan, Wen; Feng, Tingting; Shi, Xiaohong; Dai, Jianfeng

    2014-01-01

    Dengue virus (DENV), the causative agent of human Dengue hemorrhagic fever, is a mosquito-borne virus of immense global health importance. Characterization of cellular factors promoting or inhibiting DENV infection is important for understanding the mechanism of DENV infection. In this report, MMP3 (stromelysin-1), a secretory endopeptidase that degrades extracellular matrices, has been shown promoting cellular antiviral response against DENV infection. Quantitative RT-PCR and Western Blot showed that the expression of MMP3 was upregulated in DENV-infected RAW264.7 cells. The intracellular viral loads were significantly higher in MMP3 silenced cells compared with controls. The expression level of selective anti-viral cytokines were decreased in MMP3 siRNA treated cells, and the transcription factor activity of NFκB was significantly impaired upon MMP3 silencing during DENV infection. Further, we found that MMP3 moved to cell nucleus upon DENV infection and colocalized with NFκB P65 in nucleus. Co-immunoprecipitation analysis suggested that MMP3 directly interacted with NFκB in nucleus during DENV infection and the C-terminal hemopexin-like domain of MMP3 was required for the interaction. This study suggested a novel role of MMP3 in nucleus during viral infection and provided new evidence for MMPs in immunomodulation. PMID:24416274

  4. Matrix metalloproteinase 3 promotes cellular anti-dengue virus response via interaction with transcription factor NFκB in cell nucleus.

    PubMed

    Zuo, Xiangyang; Pan, Wen; Feng, Tingting; Shi, Xiaohong; Dai, Jianfeng

    2014-01-01

    Dengue virus (DENV), the causative agent of human Dengue hemorrhagic fever, is a mosquito-borne virus of immense global health importance. Characterization of cellular factors promoting or inhibiting DENV infection is important for understanding the mechanism of DENV infection. In this report, MMP3 (stromelysin-1), a secretory endopeptidase that degrades extracellular matrices, has been shown promoting cellular antiviral response against DENV infection. Quantitative RT-PCR and Western Blot showed that the expression of MMP3 was upregulated in DENV-infected RAW264.7 cells. The intracellular viral loads were significantly higher in MMP3 silenced cells compared with controls. The expression level of selective anti-viral cytokines were decreased in MMP3 siRNA treated cells, and the transcription factor activity of NFκB was significantly impaired upon MMP3 silencing during DENV infection. Further, we found that MMP3 moved to cell nucleus upon DENV infection and colocalized with NFκB P65 in nucleus. Co-immunoprecipitation analysis suggested that MMP3 directly interacted with NFκB in nucleus during DENV infection and the C-terminal hemopexin-like domain of MMP3 was required for the interaction. This study suggested a novel role of MMP3 in nucleus during viral infection and provided new evidence for MMPs in immunomodulation.

  5. Immunomodulatory Effect of Mesenchymal Stem Cells on B Cells

    PubMed Central

    Franquesa, Marcella; Hoogduijn, M. J.; Bestard, O.; Grinyó, J. M.

    2012-01-01

    The research on T cell immunosuppression therapies has attracted most of the attention in clinical transplantation. However, B cells and humoral immune responses are increasingly acknowledged as crucial mediators of chronic allograft rejection. Indeed, humoral immune responses can lead to renal allograft rejection even in patients whose cell-mediated immune responses are well controlled. On the other hand, newly studied B cell subsets with regulatory effects have been linked to tolerance achievement in transplantation. Better understanding of the regulatory and effector B cell responses may therefore lead to new therapeutic approaches. Mesenchymal stem cells (MSC) are arising as a potent therapeutic tool in transplantation due to their regenerative and immunomodulatory properties. The research on MSCs has mainly focused on their effects on T cells and although data regarding the modulatory effects of MSCs on alloantigen-specific humoral response in humans is scarce, it has been demonstrated that MSCs significantly affect B cell functioning. In the present review we will analyze and discuss the results in this field. PMID:22833744

  6. Reciprocal activation between STAT3 and miR-181b regulates the proliferation of esophageal cancer stem-like cells via the CYLD pathway.

    PubMed

    Xu, Dan-Dan; Zhou, Peng-Jun; Wang, Ying; Zhang, Li; Fu, Wu-Yu; Ruan, Bi-Bo; Xu, Hai-Peng; Hu, Chao-Zhi; Tian, Lu; Qin, Jin-Hong; Wang, Sheng; Wang, Xiao; Li, Yi-Cheng; Liu, Qiu-Ying; Ren, Zhe; Zhang, Rong; Wang, Yi-Fei

    2016-05-17

    Recent studies have suggested that cancer cells contain subpopulations that can initiate tumor growth, self-renew, and maintain tumor cell growth. However, for esophageal cancer cells, the relationship between STAT3, microRNAs and cancer stem cells remains unclear. Serum-free culture was used to enrich esophageal cancer stem-like cells (ECSLC). Flow cytometry determined the proportion of ECSLC. qPCR were performed to examine expression level of stemness factors, mesenchymal markers, ATP-binding cassette (ABC) transporters, STAT3, miR-181b, CYLD. Western blot were performed to analyze the expression of STAT3, p-STAT3 and CYLD (cylindromatosis). BALB/c mice xenograft studies were conducted to evaluate the tumorigenicity of enriched ECSLC. Sphere formation assay and colony formation assays were employed to analyze the relationship between STAT3 and miR-181b. Luciferase assays were used to evaluate activity which CYLD is a target of miR-181b. Sphere formation cells (SFCs) with properties of ECSLC were enriched. Enriched SFCs in serum-free suspension culture exhibited cancer stem-like cell properties and increased single-positive CD44 + CD24-, stemness factor, mesenchymal marker expression ABC transporters and tumorigenicity in vivo compared with the parental cells. Additionally, we found that reciprocal activation between STAT3 and miR-181b regulated SFCs proliferation. Moreover, STAT3 directly activated miR-181b transcription in SFCs and miR-181b then potentiated p-STAT3 activity. Luciferase assays indicated that CYLD was a direct and functional target of miR-181b. The mutual regulation between STAT3 and miR-181b in SFCs was required for proliferation and apoptosis resistance. STAT3 and miR-181b control each other's expression in a positive feedback loop that regulates SFCs via CYLD pathway. These findings maybe is helpful for targeting ECSLC and providing approach for esophageal cancer treatments.

  7. PKK deficiency in B cells prevents lupus development in Sle lupus mice

    PubMed Central

    Oleksyn, D.; Zhao, J.; Vosoughi, A.; Zhao, JC.; Misra, R; Pentland, AP; Ryan, D.; Anolik, J.; Ritchlin, C.; Looney, J.; Anandarajah, AP.; Schwartz, G.; Calvi, LM; Georger, M; Mohan, C.; Sanz, I.; Chen, L

    2018-01-01

    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies that can result in damage to multiple organs. It is well documented that B cells play a critical role in the development of the disease. We previously showed that protein kinase C associated kinase (PKK) is required for B1 cell development as well as for the survival of recirculating mature B cells and B- lymphoma cells. Here, we investigated the role of PKK in lupus development in a lupus mouse model. We demonstrate that the conditional deletion of PKK in B cells prevents lupus development in Sle1Sle3 mice. The loss of PKK in Sle mice resulted in the amelioration of multiple classical lupus-associated phenotypes and histologic features of lupus nephritis, including marked reduction in the levels of serum autoantibodies, proteinuria, spleen size, peritoneal B-1 cell population and the number of activated CD4 T cells. In addition, the abundance of autoreactive plasma cells normally seen in Sle lupus mice was also significantly decreased in the PKK-deficient Sle mice. Sle B cells deficient in PKK display defective proliferation responses to BCR and LPS stimulation. Consistently, B cell receptor-mediated NF-κB activation, which is required for the survival of activated B cells, was impaired in the PKK-deficient B cells. Taken together, our work uncovers a critical role of PKK in lupus development and suggests that targeting the PKK-mediated pathway may represent a promising therapeutic strategy for lupus treatment. PMID:28274793

  8. Allergen-specific responses of CD19(+)CD5(+)Foxp3(+) regulatory B cells (Bregs) and CD4(+)Foxp3(+) regulatory T cell (Tregs) in immune tolerance of cow milk allergy of late eczematous reactions.

    PubMed

    Noh, Joonyong; Noh, Geunwoong; Kim, Hyuk Soon; Kim, A-Ram; Choi, Wahn Soo

    2012-01-01

    Foxp3-expressing cells among CD19(+)CD5(+) B cells were identified as regulatory B cells. Food allergy manifesting as late eczematous reactions is regarded as a non-IgE-mediated food allergy. The diagnosis for milk allergy manifesting as late eczematous reactions was made on the basis of the findings obtained from a double-blind placebo-controlled food challenge in patients with atopic dermatitis. Twelve patients with milk allergy and 12 patients who could tolerate milk were selected. On casein stimulation, the CD19(+)CD5(+)Foxp3(+) B cell (Breg) fraction in CD5(+) B cells decreased from 4.4±1.1% to 3.1±0.7% (P=0.047, n=12) in the milk allergy group and increased from 4.4±1.3% to 5.2±1.4% (P=0.001, n=10) in the milk-tolerant group. On the other hand, on allergen stimulation, the number of CD4(+)Foxp3(+) regulatory T cells (Tregs) in the milk allergy group and milk-tolerant group increased from 2.6±0.7% to 3.4±0.6% (P=0.014, n=9) and from 2.7±1.0% to 3.5±1.0% (P=0.038, n=10), respectively. In conclusion, allergen-specific responses of Bregs, rather than those of Tregs, seem to influence the immune responses (i.e., allergy or tolerance) to a food allergen. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. T-cell receptor signaling activates an ITK/NF-κB/GATA-3 axis in T-cell lymphomas facilitating resistance to chemotherapy

    PubMed Central

    Wang, Tianjiao; Lu, Ye; Polk, Avery; Chowdhury, Pinki; Zamalloa, Carlos Murga; Fujiwara, Hiroshi; Suemori, Koichiro; Beyersdorf, Niklas; Hristov, Alexandra C.; Lim, Megan S.; Bailey, Nathanael G.; Wilcox, Ryan A.

    2016-01-01

    Purpose T-cell lymphomas are a molecularly heterogeneous group of non-Hodgkin lymphomas (NHL) that account for a disproportionate number of NHL disease-related deaths due to their inherent and acquired resistance to standard multiagent chemotherapy regimens. Despite their molecular heterogeneity and frequent loss of various T-cell specific receptors, the T-cell antigen receptor is retained in the majority of these lymphomas. As T-cell receptor (TCR) engagement activates a number of signaling pathways and transcription factors that regulate T-cell growth and survival, we examined the TCR’s role in mediating resistance to chemotherapy. Experimental Design Genetic and pharmacologic strategies were utilized to determine the contribution of tyrosine kinases and transcription factors activated in conventional T cells following T-cell receptor (TCR) engagement in acquired chemotherapy resistance in primary T-cell lymphoma cells and patient-derived cell lines. Results Here we report that TCR signaling activates a signaling axis that includes ITK, NF-κB, and GATA-3, and promotes chemotherapy resistance. Conclusions These observations have significant therapeutic implications, as pharmacologic inhibition of ITK prevented activation of this signaling axis and overcame chemotherapy resistance. PMID:27780854

  10. The nanoscale spatial organization of B-cell receptors on immunoglobulin M- and G-expressing human B-cells.

    PubMed

    Lee, Jinmin; Sengupta, Prabuddha; Brzostowski, Joseph; Lippincott-Schwartz, Jennifer; Pierce, Susan K

    2017-02-15

    B-cell activation is initiated by the binding of antigen to the B-cell receptor (BCR). Here we used dSTORM superresolution imaging to characterize the nanoscale spatial organization of immunoglobulin M (IgM) and IgG BCRs on the surfaces of resting and antigen--activated human peripheral blood B-cells. We provide insights into both the fundamental process of antigen-driven BCR clustering and differences in the spatial organization of IgM and IgG BCRs that may contribute to the characteristic differences in the responses of naive and memory B-cells to antigen. We provide evidence that although both IgM and IgG BCRs reside in highly heterogeneous protein islands that vary in size and number of BCR single-molecule localizations, both resting and activated B-cells intrinsically maintain a high -frequency of single isolated BCR localizations, which likely represent BCR monomers. IgG BCRs are more clustered than IgM BCRs on resting cells and form larger protein islands after antigen activation. Small, dense BCR clusters likely formed via protein-protein interactions are present on the surface of resting cells, and antigen activation induces these to come together to form less dense, larger islands, a process likely governed, at least in part, by protein-lipid interactions. © 2017 Lee, Sengupta, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. A Phase I Clinical Trial of Systemically Delivered NEMO Binding Domain Peptide in Dogs with Spontaneous Activated B-Cell like Diffuse Large B-Cell Lymphoma

    PubMed Central

    Habineza Ndikuyeze, Georges; Gaurnier-Hausser, Anita; Patel, Reema; Baldwin, Albert S.; May, Michael J.; Flood, Patrick; Krick, Erika; Propert, Kathleen J.; Mason, Nicola J.

    2014-01-01

    Activated B-Cell (ABC) Diffuse Large B-Cell Lymphoma (DLBCL) is a common, aggressive and poorly chemoresponsive subtype of DLBCL, characterized by constitutive canonical NF-κB signaling. Inhibition of NF-κB signaling leads to apoptosis of ABC-DLBCL cell lines, suggesting targeted disruption of this pathway may have therapeutic relevance. The selective IKK inhibitor, NEMO Binding Domain (NBD) peptide effectively blocks constitutive NF-κB activity and induces apoptosis in ABC-DLBCL cells in vitro. Here we used a comparative approach to determine the safety and efficacy of systemic NBD peptide to inhibit constitutive NF-κB signaling in privately owned dogs with spontaneous newly diagnosed or relapsed ABC-like DLBCL. Malignant lymph nodes biopsies were taken before and twenty-four hours after peptide administration to determine biological effects. Intravenous administration of <2 mg/kg NBD peptide was safe and inhibited constitutive canonical NF-κB activity in 6/10 dogs. Reductions in mitotic index and Cyclin D expression also occurred in a subset of dogs 24 hours post peptide and in 3 dogs marked, therapeutically beneficial histopathological changes were identified. Mild, grade 1 toxicities were noted in 3 dogs at the time of peptide administration and one dog developed transient subclinical hepatopathy. Long term toxicities were not identified. Pharmacokinetic data suggested rapid uptake of peptide into tissues. No significant hematological or biochemical toxicities were identified. Overall the results from this phase I study indicate that systemic administration of NBD peptide is safe and effectively blocks constitutive NF-κB signaling and reduces malignant B cell proliferation in a subset of dogs with ABC-like DLBCL. These results have potential translational relevance for human ABC-DLBCL. PMID:24798348

  12. Potent inhibition of OKT3-induced T cell proliferation and suppression of CD147 cell surface expression in HeLa cells by scFv-M6-1B9.

    PubMed

    Intasai, Nutjeera; Tragoolpua, Khajornsak; Pingmuang, Prakitnavin; Khunkaewla, Panida; Moonsom, Seangdeun; Kasinrerk, Watchara; Lieber, André; Tayapiwatana, Chatchai

    2008-01-01

    CD147, a multifunctional type I transmembrane glycoprotein, has been implicated in various physiological and pathological processes. It is involved in signal transduction pathways and also plays a crucial role in the invasive and metastatic activity of malignant tumor cells. Diminished expression of this molecule has been shown to be beneficial in suppression of tumor progression. In a previous study, we generated and characterized a recombinant antibody fragment, scFv, which reacted specifically to CD147. In the present study, we further investigated the biological properties, function and the effect of generated scFv on CD147 expression. The in vitro study showed that soluble scFv-M6-1B9 produced from E. coli HB2151 bound to CD147 surface molecule and inhibited OKT3-induced T cell proliferation. Furthermore, soluble lysate of scFv-M6-1B9 from 293A cells, transduced with a scFv-M6-1B9 expressing adenovirus vector, recognized both recombinant and native CD147. These results indicate that scFv-M6-1B9 binds with high efficiency and specificity. Importantly, scFv-M6-1B9 intrabody reduced the expression of CD147 on the cell surface of HeLa cells suggesting that scFv-M6-1B9 is biologically active. In conclusion, our present study demonstrated that scFv-M6-1B9 has a great potential to target both the intracellular and the extracellular CD147. The generated scFv-M6-1B9 may be an effective agent to clarify the cellular function of CD147 and may aid in efforts to develop a novel treatment in various human carcinomas.

  13. Molecular evidence of Zn chelation of the procaspase activating compound B-PAC-1 in B cell lymphoma.

    PubMed

    Sarkar, Aloke; Balakrishnan, Kumudha; Chen, Jefferson; Patel, Viralkumar; Neelapu, Sattva S; McMurray, John S; Gandhi, Varsha

    2016-01-19

    The resistance of apoptosis in cancer cells is pivotal for their survival and is typically ruled by mutations or dysregulation of core apoptotic cascade. Mantle cell lymphoma (MCL) is a non-Hodgkin's B-cell malignancy expressing higher anti-apoptotic proteins providing survival advantage. B-PAC-1, a procaspase activating compound, induces apoptosis by sequestering Zn bound to procaspase-3, but the amino acids holding Zn in Caspase-3 is not known. Here we show that reintroduction of WT caspase-3 or 7 in Caspase3-7 double knock-out (DKO) mouse embryonic fibroblasts (MEF) promoted B-PAC-1 to induce apoptosis (27-43%), but not in DKO MEFs or MEFs expressing respective Casp3-7 catalytic mutants (12-13%). Using caspase-6 and -9 exosite analysis, we identified and mutated predicted Zn-ligands in caspase-3 (H108A, C148S and E272A) and overexpressed into DKO MEFs. Mutants carrying E272A abrogated Zn-reversal of apoptosis induced by B-PAC-1 via higher XIAP and smac expressions but not in H108A or C148S mutants. Co-immunoprecipitation analysis revealed stronger XIAP-caspase-3 interaction suggesting a novel mechanism of impulsive apoptosis resistance by disrupting predicted Zn-ligands in caspase-3. B-PAC-1 sponsored apoptosis in MCL cell lines (30-73%) via caspase-3 and PARP cleavages accompanied by loss of Mcl-1 and IAPs including XIAP while Zn substantially abrogated B-PAC-1-driven apoptosis (18-36%). In contrary, Zn is dispensable to inhibit staurosporin, bendamustine, ABT199 or MK206-induced apoptosis. Consistent to cell lines, B-PAC-1 stimulated cell death in primary B-lymphoma cells via caspase-3 cleavage with decline in both Mcl-1 and XIAP. This study underscores the first genetic evidence that B-PAC-1 driven apoptosis is mediated via Zn chelation.

  14. CD86 and beta2-adrenergic receptor signaling pathways, respectively, increase Oct-2 and OCA-B Expression and binding to the 3'-IgH enhancer in B cells.

    PubMed

    Podojil, Joseph R; Kin, Nicholas W; Sanders, Virginia M

    2004-05-28

    Stimulation of CD86 (formerly known as B7-2) and/or the beta2-adrenergic receptor on a CD40 ligand/interleukin-4-activated B cell increased the rate of mature IgG1 transcription. To identify the mechanism responsible for this effect, we determined whether CD86 and/or beta2-adrenergic receptor stimulation regulated transcription factor expression and binding to the 3'-IgH enhancer in vitro and in vivo. We showed that CD86 stimulation increased the nuclear localization of NF-kappaB1 (p50) and phosphorylated RelA (p65) and increased Oct-2 expression and binding to the 3'-IgH enhancer, in a protein kinase C-dependent manner. These effects were lost when CD86-deficient or NF-kappaB1-deficient B cells were used. CD86 stimulation also increased the level of IkappaB-alpha phosphorylation but in a protein kinase C-independent manner. Beta2-adrenergic receptor stimulation increased CREB phosphorylation, OCA-B expression, and OCA-B binding to the 3'-IgH enhancer in a protein kinase A-dependent manner, an effect lost when beta2-adrenergic receptor-deficient B cells were used. Also, the beta2-adrenergic receptor-induced increase in the level of mature IgG1 transcript was lost when OCA-B-deficient B cells were used. These data are the first to show that CD86 stimulation up-regulates the expression of the transcription factor Oct-2 in a protein kinase C- and NF-kappaB1-dependent manner, and that beta2-adrenergic receptor stimulation up-regulates the expression of the coactivator OCA-B in a protein kinase A-dependent manner to cooperate with Oct-2 binding to the 3'-IgH enhancer.

  15. Construction of a subgenomic CV-B3 replicon expressing emerald green fluorescent protein to assess viral replication of a cardiotropic enterovirus strain in cultured human cells.

    PubMed

    Wehbe, Michel; Huguenin, Antoine; Leveque, Nicolas; Semler, Bert L; Hamze, Monzer; Andreoletti, Laurent; Bouin, Alexis

    2016-04-01

    Coxsackieviruses B (CV-B) (Picornaviridae) are a common infectious cause of acute myocarditis in children and young adults, a disease, which is a precursor to 10-20% of chronic myocarditis and dilated cardiomyopathy (DCM) cases. The mechanisms involved in the disease progression from acute to chronic myocarditis phase and toward the DCM clinical stage are not fully understood but are influenced by both viral and host factors. Subgenomic replicons of CV-B can be used to assess viral replication mechanisms in human cardiac cells and evaluate the effects of potential antiviral drugs on viral replication activities. Our objectives were to generate a reporter replicon from a cardiotropic prototype CV-B3/28 strain and to characterize its replication properties into human cardiac primary cells. To obtain this replicon, a cDNA plasmid containing the full CV-B3/28 genome flanked by a hammerhead ribozyme sequence and an MluI restriction site was generated and used as a platform for the insertion of sequences encoding emerald green fluorescent protein (EmGFP) in place of those encoding VP3. In vitro transcribed RNA from this plasmid was transfected into HeLa cells and human primary cardiac cells and was able to produce EmGFP and VP1-containing polypeptides. Moreover, non-structural protein biological activity was assessed by the specific cleavage of eIF4G1 by viral 2A(pro). Viral RNA replication was indirectly demonstrated by inhibition assays, fluoxetine was added to cell culture and prevented the EmGFP synthesis. Our results indicated that the EmGFP CV-B3 replicon was able to replicate and translate as well as the CV-B3/28 prototype strain. Our EmGFP CV-B3 replicon will be a valuable tool to readily investigate CV-B3 replication activities in human target cell models. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Inhibition of Survivin and Aurora B Kinase Sensitizes Mesothelioma Cells by Enhancing Mitotic Arrests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kwang Woon; Mutter, Robert W.; Willey, Christopher D.

    2007-04-01

    Purpose: Survivin, a member of the inhibitor of apoptosis gene family, has also been shown to regulate mitosis. It binds Aurora B kinase and the inner centromere protein to form the chromosome passenger complex. Both Aurora B and survivin are overexpressed in many tumors. In this study, we examined whether irradiation affected survivin and Aurora B expression in mesothelioma cells, and how inhibition of these molecules affected radiosensitivity. Methods and Materials: ZM447439 and survivin antisense oligonucleotides were used to inhibit survivin and Aurora B kinase respectively. Western blot was performed to determine the expression of survivin, Aurora B, phosphorylated-histone H3more » (Ser 10), and caspase cleavage. Multinucleated cells were counted using flow cytometry, and cell survival after treatment was determined using clonogenic assay. Results: At 3-Gy irradiation an increase was observed in levels of survivin and Aurora B as well as the kinase activity of Aurora B, with an increase in G2/M phase. The radiation-induced upregulation of these molecules was effectively attenuated by antisense oligonucleotides against survivin and a small-molecule inhibitor of Aurora B, ZM447439. Dual inhibition of survivin and Aurora B synergistically radiosensitized mesothelioma cells with a dose enhancement ratio of 2.55. This treatment resulted in increased formation of multinucleated cells after irradiation but did not increase levels of cleaved caspase 3. Conclusion: Inhibition of survivin and Aurora B induces mitotic cell arrest in mesothelioma cells after irradiation. These two proteins may be potential therapeutic targets for the enhancement of radiotherapy in malignant pleural mesothelioma.« less

  17. Cyclophilin B attenuates the expression of TNF-α in lipopolysaccharide-stimulated macrophages through the induction of B cell lymphoma-3.

    PubMed

    Marcant, Adeline; Denys, Agnès; Melchior, Aurélie; Martinez, Pierre; Deligny, Audrey; Carpentier, Mathieu; Allain, Fabrice

    2012-08-15

    Extracellular cyclophilin A (CyPA) and CyPB have been well described as chemotactic factors for various leukocyte subsets, suggesting their contribution to inflammatory responses. Unlike CyPA, CyPB accumulates in extracellular matrixes, from which it is released by inflammatory proteases. Hence, we hypothesized that it could participate in tissue inflammation by regulating the activity of macrophages. In the current study, we confirmed that CyPB initiated in vitro migration of macrophages, but it did not induce production of proinflammatory cytokines. In contrast, pretreatment of macrophages with CyPB attenuated the expression of inflammatory mediators induced by LPS stimulation. The expression of TNF-α mRNA was strongly reduced after exposure to CyPB, but it was not accompanied by significant modification in LPS-induced activation of MAPK and NF-κB pathways. LPS activation of a reporter gene under the control of TNF-α gene promoter was also markedly decreased in cells treated with CyPB, suggesting a transcriptional mechanism of inhibition. Consistent with this hypothesis, we found that CyPB induced the expression of B cell lymphoma-3 (Bcl-3), which was accompanied by a decrease in the binding of NF-κB p65 to the TNF-α promoter. As expected, interfering with the expression of Bcl-3 restored cell responsiveness to LPS, thus confirming that CyPB acted by inhibiting initiation of TNF-α gene transcription. Finally, we found that CyPA was not efficient in attenuating the production of TNF-α from LPS-stimulated macrophages, which seemed to be due to a modest induction of Bcl-3 expression. Collectively, these findings suggest an unexpected role for CyPB in attenuation of the responses of proinflammatory macrophages.

  18. B-cell translocation gene 3 overexpression inhibits proliferation and invasion of colorectal cancer SW480 cells via Wnt/β-catenin signaling pathway.

    PubMed

    Mao, D; Qiao, L; Lu, H; Feng, Y

    2016-01-01

    Increasing evidences have shown that B-cell translocation gene 3 (BTG3) inhibits metastasis of multiple cancer cells. However, the role of BTG3 in colorectal cancer (CRC) and its possible mechanism have not yet been reported. In our study, we evaluated BTG3 expression in several CRC cell lines. Then, pcDNA3.1-BTG3 was transfected into SW480 cells. We found that BTG3 was upregulated in SW480 cells after overexpression plasmid transfection. BTG3 overexpression significantly inhibited cell growth and decreased PCNA (proliferating cell nuclear antigen) and Ki67 levels. BTG3 overexpression markedly downregulated Cyclin D1 and Cyclin E1 levels, whereas elevated p27. Overexpression of BTG3 arrested the cell cycle at G1 phase, which was abrogated by p27 silencing. Furthermore, migration, invasion and EMT of SW480 cells were significantly suppressed by BTG3 overexpression. Further investigations showed the inhibition of Wnt/β-catenin signaling pathway. We then used GSK3β specific inhibitor SB-216763 to activate the Wnt/β-catenin signaling pathway. We found that Wnt/β-catenin signaling pathway activation reversed the effect of BTG3 overexpression on cell proliferation, cell cycle progression, invasion and EMT. In conclusion, BTG3 overexpression inhibited cell growth, induced cell cycle arrest and suppressed the metastasis of SW480 cells via the Wnt/β-catenin signaling pathway. BTG3 may be considered as a therapeutic target in CRC treatment.

  19. Activation of the STAT3 Signaling Pathway Is Associated With Poor Survival in Diffuse Large B-Cell Lymphoma Treated With R-CHOP

    PubMed Central

    Huang, Xin; Meng, Bin; Iqbal, Javeed; Ding, B. Belinda; Perry, Anamarija M.; Cao, Wenfeng; Smith, Lynette M.; Bi, Chengfeng; Jiang, Chunsun; Greiner, Timothy C.; Weisenburger, Dennis D.; Rimsza, Lisa; Rosenwald, Andreas; Ott, German; Delabie, Jan; Campo, Elias; Braziel, Rita M.; Gascoyne, Randy D.; Cook, James R.; Tubbs, Raymond R.; Jaffe, Elaine S.; Armitage, James O.; Vose, Julie M.; Staudt, Louis M.; McKeithan, Timothy W.; Chan, Wing C.; Ye, B. Hilda; Fu, Kai

    2013-01-01

    Purpose We previously reported that constitutive STAT3 activation is a prominent feature of the activated B-cell subtype of diffuse large B-cell lymphomas (ABC-DLBCL). In this study, we investigated whether STAT3 activation can risk stratify patients with DLBCL. Patients and Methods By an immunohistochemical method, we investigated phosphotyrosine STAT3 (PY-STAT3) expression from 185 patients with DLBCL treated with R-CHOP (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone). Cell line-based siRNA experiments were also performed to generate an 11-gene, PY-STAT3 activation signature, which was used to study a previously published cohort of 222 patients with DLBCL. The STAT3 activation status determined by these two methods and by STAT3 mRNA levels were then correlated with survival. Results PY-STAT3 was detected in 37% of DLBCL and enriched in ABC-DLBCL cases (P = .03). PY-STAT3 positivity significantly correlated with poor overall survival (OS; P = .01) and event-free survival (EFS; P = .006). Similar observations were made for high levels of STAT3 mRNA. In multivariable analysis, PY-STAT3 status (P = .02), International Prognostic Index (P = .02), and BCL2 expression (P = .046) were independent prognosticators of OS in this cohort. Among the cell-of-origin subgroups, PY-STAT3 was associated with poor EFS among non–germinal center B-cell DLBCL cases only (P = .027). Similarly, the 11-gene STAT3 activation signature correlated with poor survival in the entire DLBCL cohort (OS, P < .001; EFS, P < .001) as well as the ABC-DLBCL subgroup (OS, P = .029; EFS, P = .025). Conclusion STAT3 activation correlated with poor survival in patients with DLBCL treated with R-CHOP, especially those with tumors of the ABC-DLBCL subtype. PMID:24220563

  20. Jolkinolide B induces apoptosis and inhibits tumor growth in mouse melanoma B16F10 cells by altering glycolysis.

    PubMed

    Gao, Caixia; Yan, Xinyan; Wang, Bo; Yu, Lina; Han, Jichun; Li, Defang; Zheng, Qiusheng

    2016-10-31

    Most cancer cells preferentially rely on glycolysis to produce the energy (adenosine triphosphate, ATP) for growth and proliferation. Emerging evidence demonstrates that the apoptosis in cancer cells could be closely associated with the inhibition of glycolysis. In this study, we have found that jolkinolide B (JB), a bioactive diterpenoid extracted from the root of Euphorbia fischeriana Steud, induced tumor cells apoptosis and decreased the production of ATP and lactic acid in mouse melanoma B16F10 cells. Furthermore, we found that JB downregulated the mRNA expression of glucose transporter genes (Glut1, Glut3 and Glut4) and glycolysis-related kinase genes (Hk2 and Ldha) in B16F10 cells. Moreover, treatment with JB upregulated the mRNA expression of pro-apoptosis genes (Bax), downregulated the mRNA expression of anti-apoptosis genes (Bcl-2, Caspase-3 and Caspase-9), decreased the potential of mitochondrial membrane and increased reactive oxygen species (ROS) levels in B16F10 cells. Finally, intragastric administration of JB suppressed tumor growth and induced tumor apoptosis in mouse xenograft model of murine melanoma B16F10 cells. Taken together, these results suggest that JB could induce apoptosis through the mitochondrial pathway and inhibit tumor growth. The inhibition of glycolysis could play a crucial role in the induction of apoptosis in JB-treated B16F10 cells.

  1. Jolkinolide B induces apoptosis and inhibits tumor growth in mouse melanoma B16F10 cells by altering glycolysis

    PubMed Central

    Gao, Caixia; Yan, Xinyan; Wang, Bo; Yu, Lina; Han, Jichun; Li, Defang; Zheng, Qiusheng

    2016-01-01

    Most cancer cells preferentially rely on glycolysis to produce the energy (adenosine triphosphate, ATP) for growth and proliferation. Emerging evidence demonstrates that the apoptosis in cancer cells could be closely associated with the inhibition of glycolysis. In this study, we have found that jolkinolide B (JB), a bioactive diterpenoid extracted from the root of Euphorbia fischeriana Steud, induced tumor cells apoptosis and decreased the production of ATP and lactic acid in mouse melanoma B16F10 cells. Furthermore, we found that JB downregulated the mRNA expression of glucose transporter genes (Glut1, Glut3 and Glut4) and glycolysis-related kinase genes (Hk2 and Ldha) in B16F10 cells. Moreover, treatment with JB upregulated the mRNA expression of pro-apoptosis genes (Bax), downregulated the mRNA expression of anti-apoptosis genes (Bcl-2, Caspase-3 and Caspase-9), decreased the potential of mitochondrial membrane and increased reactive oxygen species (ROS) levels in B16F10 cells. Finally, intragastric administration of JB suppressed tumor growth and induced tumor apoptosis in mouse xenograft model of murine melanoma B16F10 cells. Taken together, these results suggest that JB could induce apoptosis through the mitochondrial pathway and inhibit tumor growth. The inhibition of glycolysis could play a crucial role in the induction of apoptosis in JB-treated B16F10 cells. PMID:27796318

  2. AMR-Me inhibits PI3K/Akt signaling in hormone-dependent MCF-7 breast cancer cells and inactivates NF-κB in hormone-independent MDA-MB-231 cells.

    PubMed

    Rabi, Thangaiyan; Huwiler, Andrea; Zangemeister-Wittke, Uwe

    2014-07-01

    AMR-Me, a C-28 methylester derivative of triterpenoid compound Amooranin isolated from Amoora rohituka stem bark and the plant has been reported to possess multitude of medicinal properties. Our previous studies have shown that AMR-Me can induce apoptosis through mitochondrial apoptotic and MAPK signaling pathways by regulating the expression of apoptosis related genes in human breast cancer MCF-7 cells. However, the molecular mechanism of AMR-Me induced apoptotic cell death remains unclear. Our results showed that AMR-Me dose-dependently inhibited the proliferation of MCF-7 and MDA-MB-231 cells under serum-free conditions supplemented with 1 nM estrogen (E2) with an IC50 value of 0.15 µM, 0.45 µM, respectively. AMR-Me had minimal effects on human normal breast epithelial MCF-10A + ras and MCF-10A cells with IC50 value of 6 and 6.5 µM, respectively. AMR-Me downregulated PI3K p85, Akt1, and p-Akt in an ERα-independent manner in MCF-7 cells and no change in expression levels of PI3K p85 and Akt were observed in MDA-MB-231 cells treated under similar conditions. The PI3K inhibitor LY294002 suppressed Akt activation similar to AMR-Me and potentiated AMR-Me induced apoptosis in MCF-7 cells. EMSA revealed that AMR-Me inhibited nuclear factor-kappaB (NF-κB) DNA binding activity in MDA-MB-231 cells in a time-dependent manner and abrogated EGF induced NF-κB activation. From these studies we conclude that AMR-Me decreased ERα expression and effectively inhibited Akt phosphorylation in MCF-7 cells and inactivate constitutive nuclear NF-κB and its regulated proteins in MDA-MB-231 cells. Due to this multifactorial effect in hormone-dependent and independent breast cancer cells AMR-Me deserves attention for use in breast cancer prevention and therapy. © 2013 Wiley Periodicals, Inc.

  3. Inhibiting oncogenic signaling by sorafenib activates PUMA via GSK3β and NF-κB to suppress tumor cell growth.

    PubMed

    Dudgeon, C; Peng, R; Wang, P; Sebastiani, A; Yu, J; Zhang, L

    2012-11-15

    Aberrant Ras/Raf/MEK/ERK signaling is one of the most prevalent oncogenic alterations and confers survival advantage to tumor cells. Inhibition of this pathway can effectively suppress tumor cell growth. For example, sorafenib, a multi-kinase inhibitor targeting c-Raf and other oncogenic kinases, has been used clinically for treating advanced liver and kidney tumors, and also has shown efficacy against other malignancies. However, how inhibition of oncogenic signaling by sorafenib and other drugs suppresses tumor cell growth remains unclear. In this study, we found that sorafenib kills cancer cells by activating PUMA (p53-upregulated modulator of apoptosis), a p53 target and a BH3-only Bcl-2 family protein. Sorafenib treatment induces PUMA in a variety of cancer cells irrespective of their p53 status. Surprisingly, the induction of PUMA by sorafenib is mediated by IκB-independent activation of nuclear factor (NF)-κB, which directly binds to the PUMA promoter to activate its transcription. NF-κB activation by sorafenib requires glycogen synthase kinase 3β activation, subsequent to ERK inhibition. Deficiency in PUMA abrogates sorafenib-induced apoptosis and caspase activation, and renders sorafenib resistance in colony formation and xenograft tumor assays. Furthermore, the chemosensitization effect of sorafenib is dependent on PUMA, and involves concurrent PUMA induction through different pathways. BH3 mimetics potentiate the anti-cancer effects of sorafenib, and restore sorafenib sensitivity in resistant cells. Together, these results demonstrate a key role of PUMA-dependent apoptosis in therapeutic inhibition of Ras/Raf/MEK/ERK signaling. They provide a rationale for manipulating the apoptotic machinery to improve sensitivity and overcome resistance to the therapies that target oncogenic kinase signaling.

  4. ErbB activation signatures as potential biomarkers for anti-ErbB3 treatment in HNSCC.

    PubMed

    Alvarado, Diego; Ligon, Gwenda F; Lillquist, Jay S; Seibel, Scott B; Wallweber, Gerald; Neumeister, Veronique M; Rimm, David L; McMahon, Gerald; LaVallee, Theresa M

    2017-01-01

    Head and neck squamous cell carcinoma (HNSCC) accounts for 3-5% of all tumor types and remains an unmet medical need with only two targeted therapies approved to date. ErbB3 (HER3), the kinase-impaired member of the EGFR/ErbB family, has been implicated as a disease driver in a number of solid tumors, including a subset of HNSCC. Here we show that the molecular components required for ErbB3 activation, including its ligand neuregulin-1 (NRG1), are highly prevalent in HNSCC and that HER2, but not EGFR, is the major activating ErbB3 kinase partner. We demonstrate that cetuximab treatment primarily inhibits the ERK signaling pathway and KTN3379, an anti-ErbB3 monoclonal antibody, inhibits the AKT signaling pathway, and that dual ErbB receptor inhibition results in enhanced anti-tumor activity in HNSCC models. Surprisingly, we found that while NRG1 is required for ErbB3 activation, it was not sufficient to fully predict for KTN3379 activity. An evaluation of HNSCC patient samples demonstrated that NRG1 expression was significantly associated with expression of the EGFR ligands amphiregulin (AREG) and transforming growth factor α (TGFα). Furthermore, NRG1-positive HNSCC cell lines that secreted high levels of AREG and TGFα or contained high levels of EGFR homodimers (H11D) demonstrated a better response to KTN3379. Although ErbB3 and EGFR activation are uncoupled at the receptor level, their respective signaling pathways are linked through co-expression of their respective ligands. We propose that NRG1 expression and EGFR activation signatures may enrich for improved efficacy of anti-ErbB3 therapeutic mAb approaches when combined with EGFR-targeting therapies in HNSCC.

  5. PI3Kδ inhibitor idelalisib in combination with BTK inhibitor ONO/GS-4059 in diffuse large B cell lymphoma with acquired resistance to PI3Kδ and BTK inhibitors.

    PubMed

    Yahiaoui, Anella; Meadows, Sarah A; Sorensen, Rick A; Cui, Zhi-Hua; Keegan, Kathleen S; Brockett, Robert; Chen, Guang; Quéva, Christophe; Li, Li; Tannheimer, Stacey L

    2017-01-01

    Activated B-cell-like diffuse large B-cell lymphoma relies on B-cell receptor signaling to drive proliferation and survival. Downstream of the B-cell receptor, the key signaling kinases Bruton's tyrosine kinase and phosphoinositide 3-kinase δ offer opportunities for therapeutic intervention by agents such as ibrutinib, ONO/GS-4059, and idelalisib. Combination therapy with such targeted agents could provide enhanced efficacy due to complimentary mechanisms of action. In this study, we describe both the additive interaction of and resistance mechanisms to idelalisib and ONO/GS-4059 in a model of activated B-cell-like diffuse large B-cell lymphoma. Significant tumor regression was observed with a combination of PI3Kδ and Bruton's tyrosine kinase inhibitors in the mouse TMD8 xenograft. Acquired resistance to idelalisib in the TMD8 cell line occurred by loss of phosphatase and tensin homolog and phosphoinositide 3-kinase pathway upregulation, but not by mutation of PIK3CD. Sensitivity to idelalisib could be restored by combining idelalisib and ONO/GS-4059. Further evaluation of targeted inhibitors revealed that the combination of idelalisib and the phosphoinositide-dependent kinase-1 inhibitor GSK2334470 or the AKT inhibitor MK-2206 could partially overcome resistance. Characterization of acquired Bruton's tyrosine kinase inhibitor resistance revealed a novel tumor necrosis factor alpha induced protein 3 mutation (TNFAIP3 Q143*), which led to a loss of A20 protein, and increased p-IκBα. The combination of idelalisib and ONO/GS-4059 partially restored sensitivity in this resistant line. Additionally, a mutation in Bruton's tyrosine kinase at C481F was identified as a mechanism of resistance. The combination activity observed with idelalisib and ONO/GS-4059, taken together with the ability to overcome resistance, could lead to a new therapeutic option in activated B-cell-like diffuse large B-cell lymphoma. A clinical trial is currently underway to evaluate the

  6. Interaction of the B cell-specific transcriptional coactivator OCA-B and galectin-1 and a possible role in regulating BCR-mediated B cell proliferation.

    PubMed

    Yu, Xin; Siegel, Rachael; Roeder, Robert G

    2006-06-02

    OCA-B is a B cell-specific transcriptional coactivator for OCT factors during the activation of immunoglobulin genes. In addition, OCA-B is crucial for B cell activation and germinal center formation. However, the molecular mechanisms for OCA-B function in these processes are not clear. Our previous studies documented two OCA-B isoforms and suggested a novel mechanism for the function of the myristoylated, membrane-bound form of OCA-B/p35 as a signaling molecule. Here, we report the identification of galectin-1, and related galectins, as a novel OCA-B-interacting protein. The interaction of OCA-B and galectin-1 can be detected both in vivo and in vitro. The galectin-1 binding domain in OCA-B has been localized to the N terminus of OCA-B. In B cells lacking OCA-B expression, increased galectin-1 expression, secretion, and cell surface association are observed. Consistent with these observations, and a reported inhibitory interaction of galectin-1 with CD45, the phosphatase activity of CD45 is reduced modestly, but significantly, in OCA-B-deficient B cells. Finally, galectin-1 is shown to negatively regulate B cell proliferation and tyrosine phosphorylation upon BCR stimulation. Together, these results raise the possibility that OCA-B may regulate BCR signaling through an association with galectin-1.

  7. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers.

    PubMed

    Lee-Chang, Catalina; Bodogai, Monica; Moritoh, Kanako; Chen, Xin; Wersto, Robert; Sen, Ranjan; Young, Howard A; Croft, Michael; Ferrucci, Luigi; Biragyn, Arya

    2016-04-15

    B cell dysregulation in aging is thought to mostly occur in conventional B2 cells without affecting innate B1 cells. Elderly humans and mice also accumulate 4-1BBL(+)MHC class-I(Hi)CD86(Hi)B cells of unknown origin. In this article, we report that these cells, termed 4BL cells, are activated murine and possibly human B1a cells. The activation is mediated by aging human monocytes and murine peritoneal macrophages. They induce expression and activation of 4-1BBL and IFN-γR1 on B1a cells to subsequently upregulate membrane TNF-α and CD86. As a result, activated B1a/4BL cells induce expression of granzyme B in CD8(+)T cells by targeting TNFR2 via membrane TNF-α and providing costimulation with CD86. Thus, for the first time, to our knowledge, these results indicate that aging affects the function of B1a cells. Upon aging, these cells lose their tumor-supporting activity and become inducers of potentially antitumor and autoimmune CD8(+)T cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  8. Enterocin B3A-B3B produced by LAB collected from infant faeces: potential utilization in the food industry for Listeria monocytogenes biofilm management.

    PubMed

    Al-Seraih, Alaa; Belguesmia, Yanath; Baah, John; Szunerits, Sabine; Boukherroub, Rabah; Drider, Djamel

    2017-02-01

    Enterococcus faecalis B3A-B3B produces the bacteriocin B3A-B3B with activity against Listeria monocytogenes, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium perfringens, but apparently not against fungi or Gram-negative bacteria, except for Salmonella Newport. B3A-B3B enterocin has two different nucleotides but similar amino acid composition to the class IIb MR10A-MR10B enterocin. B3A-B3B consists of two peptides of predicted molecular mass of 5176.31 Da (B3A) and 5182.21 Da (B3B). Importantly, B3A-B3B impeded biofilm formation of the foodborne pathogen L. monocytogenes 162 grown on stainless steel. The antimicrobial treatment of stainless steel with nisin (1 or 16 mg ml -1 ) decreased the cell numbers by about 2 log CFU ml -1 , thereby impeding the biofilm formation by L. monocytogenes 162 or its nisin-resistant derivative strain L. monocytogenes 162R. Furthermore, the combination of nisin and B3A-B3B enterocin reduced the MIC required to inhibit this pathogen grown in planktonic or biofilm cultures.

  9. Collaboration between tumor-specific CD4+ T cells and B cells in anti-cancer immunity.

    PubMed

    Guy, Thomas V; Terry, Alexandra M; Bolton, Holly A; Hancock, David G; Zhu, Erhua; Brink, Robert; McGuire, Helen M; Shklovskaya, Elena; Fazekas de St. Groth, Barbara

    2016-05-24

    The role of B cells and antibodies in anti-tumor immunity is controversial, with both positive and negative effects reported in animal models and clinical studies. We developed a murine B16.F10 melanoma model to study the effects of collaboration between tumor-specific CD4+ T cells and B cells on tumor control. By incorporating T cell receptor transgenic T cells and B cell receptor isotype switching B cells, we were able to track the responses of tumor-reactive T and B cells and the development of anti-tumor antibodies in vivo. In the presence of tumor-specific B cells, the number of tumor-reactive CD4+ T cells was reduced in lymphoid tissues and the tumor itself, and this correlated with poor tumor control. B cells had little effect on the Th1 bias of the CD4+ T cell response, and the number of induced FoxP3+ regulatory cells (iTregs) generated from within the original naive CD4+ T cell inoculum was unrelated to the degree of B cell expansion. In response to CD4+ T cell help, B cells produced a range of isotype-switched anti-tumor antibodies, principally IgG1, IgG2a/c and IgG2b. In the absence of CD4+ T cells, B cells responded to agonistic anti-CD40 administration by switching to production of IgG2a/c and, to a lesser extent, IgG1, IgG3, IgA and IgE, which reduced the number of lung metastases after i.v. tumor inoculation but had no effect on the growth of subcutaneous tumors.

  10. BAG3 regulates total MAP1LC3B protein levels through a translational but not transcriptional mechanism.

    PubMed

    Rodríguez, Andrea E; López-Crisosto, Camila; Peña-Oyarzún, Daniel; Salas, Daniela; Parra, Valentina; Quiroga, Clara; Morawe, Tobias; Chiong, Mario; Behl, Christian; Lavandero, Sergio

    2016-01-01

    Autophagy is mainly regulated by post-translational and lipid modifications of ATG proteins. In some scenarios, the induction of autophagy is accompanied by increased levels of certain ATG mRNAs such as MAP1LC3B/LC3B, ATG5 or ATG12. However, little is known about the regulation of ATG protein synthesis at the translational level. The cochaperone of the HSP70 system BAG3 (BCL2-associated athanogene 3) has been associated to LC3B lipidation through an unknown mechanism. In the present work, we studied how BAG3 controls autophagy in HeLa and HEK293 cells. Our results showed that BAG3 regulates the basal amount of total cellular LC3B protein by controlling its mRNA translation. This effect was apparently specific to LC3B because other ATG protein levels were not affected. BAG3 knockdown did not affect LC3B lipidation induced by nutrient deprivation or proteasome inhibition. We concluded that BAG3 maintains the basal amount of LC3B protein by controlling the translation of its mRNA in HeLa and HEK293 cells.

  11. BAG3 regulates total MAP1LC3B protein levels through a translational but not transcriptional mechanism

    PubMed Central

    Rodríguez, Andrea E.; López-Crisosto, Camila; Peña-Oyarzún, Daniel; Salas, Daniela; Parra, Valentina; Quiroga, Clara; Morawe, Tobias; Chiong, Mario; Behl, Christian; Lavandero, Sergio

    2016-01-01

    ABSTRACT Autophagy is mainly regulated by post-translational and lipid modifications of ATG proteins. In some scenarios, the induction of autophagy is accompanied by increased levels of certain ATG mRNAs such as MAP1LC3B/LC3B, ATG5 or ATG12. However, little is known about the regulation of ATG protein synthesis at the translational level. The cochaperone of the HSP70 system BAG3 (BCL2-associated athanogene 3) has been associated to LC3B lipidation through an unknown mechanism. In the present work, we studied how BAG3 controls autophagy in HeLa and HEK293 cells. Our results showed that BAG3 regulates the basal amount of total cellular LC3B protein by controlling its mRNA translation. This effect was apparently specific to LC3B because other ATG protein levels were not affected. BAG3 knockdown did not affect LC3B lipidation induced by nutrient deprivation or proteasome inhibition. We concluded that BAG3 maintains the basal amount of LC3B protein by controlling the translation of its mRNA in HeLa and HEK293 cells. PMID:26654586

  12. Protein tyrosine phosphatase 1B (PTP1B) is required for cardiac lineage differentiation of mouse embryonic stem cells.

    PubMed

    Eshkiki, Zahra Shokati; Ghahremani, Mohammad Hossein; Shabani, Parisa; Firuzjaee, Sattar Gorgani; Sadeghi, Asie; Ghanbarian, Hossein; Meshkani, Reza

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) has been shown to regulate multiple cellular events such as differentiation, cell growth, and proliferation; however, the role of PTP1B in differentiation of embryonic stem (ES) cells into cardiomyocytes remains unexplored. In the present study, we investigated the effects of PTP1B inhibition on differentiation of ES cells into cardiomyocytes. PTP1B mRNA and protein levels were increased during the differentiation of ES cells into cardiomyocytes. Accordingly, a stable ES cell line expressing PTP1B shRNA was established. In vitro, the number and size of spontaneously beating embryoid bodies were significantly decreased in PTP1B-knockdown cells, compared with the control cells. Decreased expression of cardiac-specific markers Nkx2-5, MHC-α, cTnT, and CX43, as assessed by real-time PCR analysis, was further confirmed by immunocytochemistry of the markers. The results also showed that PTP1B inhibition induced apoptosis in both differentiated and undifferentiated ES cells, as presented by increasing the level of cleaved caspase-3, cytochrome C, and cleaved PARP. Further analyses revealed that PTP1B inhibition did not change proliferation and pluripotency of undifferentiated ES cells. Taken together, the data presented here suggest that PTP1B is essential for proper differentiation of ES cells into cardiomyocytes.

  13. Suppression of lipopolysaccharide-induced nuclear factor-kappaB activity by theaflavin-3,3'-digallate from black tea and other polyphenols through down-regulation of IkappaB kinase activity in macrophages.

    PubMed

    Pan, M H; Lin-Shiau, S Y; Ho, C T; Lin, J H; Lin, J K

    2000-02-15

    We investigated the inhibition of IkappaB kinase (IKK) activity in lipopolysaccharide (LPS)-activated murine macrophages (RAW 264.7 cell line) by various polyphenols including (-)-epigallocatechin-3-gallate, theaflavin, a mixture of theaflavin-3 gallate and theaflavin-3'-gallate, theaflavin-3,3'-digallate (TF-3), pyrocyanidin B-3, casuarinin, geraniin, and penta-O-galloyl-beta-D-glucose (5GG). TF-3 inhibited IKK activity in activated macrophages more strongly than did the other polyphenols. TF-3 strongly inhibited both IKK1 and IKK2 activity and prevented the degradation of IkappaBalpha and IkappaBbeta in activated macrophage cells. The results suggested that the inhibition of IKK activity by TF-3 could occur by a direct effect on IKKs or on upstream events in the signal transduction pathway. Furthermore, geraniin, 5GG, and TF-3 all blocked phosphorylation of IKB from the cytosolic fraction, inhibited nuclear factor-kappaB (NFkappaB) activity, and inhibited increases in inducible nitric oxide synthase levels in activated macrophages. These results suggest that TF-3 may exert its anti-inflammatory and cancer chemopreventive actions by suppressing the activation of NFkappaB through inhibition of IKK activity.

  14. Large anaplastic spinal B-cell lymphoma in a cat.

    PubMed

    Flatland, Bente; Fry, Michael M; Newman, Shelley J; Moore, Peter F; Smith, Joanne R; Thomas, William B; Casimir, Roslyn H

    2008-12-01

    A 5-year-old female spayed domestic shorthair cat was presented for evaluation of tetraparesis. The neurologic lesion was localized to the cervical spinal segment (C1-C6). A left axillary mass was identified, and the results of fine needle aspiration cytology indicated malignant round cell neoplasia of possible histiocytic origin. The cells were large, had marked anisocytosis and anisokaryosis, occasional bi- and multinucleation, and cytoplasmic vacuolation. Euthanasia was performed due to the poor prognosis associated with severe, progressive neurologic signs and a malignant neoplasm. Postmortem examination revealed spinal cord compression and an extradural mass at the C1-C2 spinal segment, with neoplastic cells in the adjacent vertebral bodies, surrounding skeletal muscle, left axillary lymph node, and bone marrow from the right femur. The initial histologic diagnosis was anaplastic sarcoma, but immunohistochemical results indicated the cells were CD20+ and CD45R+ and CD3-, compatible with a diagnosis of B-cell lymphoma. CD79a staining was nonspecific and uninterpretable. Weak to moderate CD18 positivity and E-cadherin positivity were also observed. Clonality of the B-cell population could not be demonstrated using PCR testing for antigen receptor gene rearrangement. To the authors' knowledge, this is the first reported case of a feline spinal anaplastic B-cell lymphoma exhibiting bi- and multinucleated cells. The prognostic significance of this cell morphology and immunophenotype is unknown.

  15. PD-L1, B7-H3, and PD-1 expression in immunocompetent vs. immunosuppressed patients with cutaneous squamous cell carcinoma.

    PubMed

    Varki, Vinod; Ioffe, Olga B; Bentzen, Soren M; Heath, Jon; Cellini, Ashley; Feliciano, Josephine; Zandberg, Dan P

    2018-05-01

    To characterize the expression of co-signaling molecules PD-L1, PD-1, and B7-H3 in cutaneous squamous cell carcinoma (cSCC) by immune status. We retrospectively analyzed 66 cases of cSCC treated with surgical resection from 2012 to 2015. Immunostained tumor sections were analyzed for percent of tumor cells expressing PD-L1 (Tum-PD-L1%), B7-H3 (Tum-B7-H3%), density of peri and intratumoral CD8 T cells (CD8 density), proportion of CD8 T cells expressing PD-1 (CD8-PD-1%) and of tumor-infiltrating immune cells (TII) expressing PD-L1 (TII-PD-L1%). Of 66 cases, 42 were immunocompetent, 24 immunosuppressed (13 organ transplant, 8 HIV+, 3 other). Defining positive expression at > 5%, 26% of tumors were positive for PD-L1, 85% for B7-H3, 80% had CD8 T cells that expressed PD-1 and 55% had TII that expressed PD-L1. Tum-B7-H3% was significantly higher (median 60 vs. 28%, p = 0.025) in immunocompetent vs. immunosuppressed patients, including when factoring in cause of immunosuppression. No significant difference in Tum-PD-L1%, TII-PD-L1%, CD8 density, or CD8-PD-1% was observed. Tumors from HIV+ patients lacked PD-L1 expression, and had lower B7-H3% (median 2.5 vs. 60%, p = 0.007), and higher CD8 density (median 75% vs. 40%, p = 0.04) compared to immunocompetent patients. Higher tumor grade (R s  = 0.34, p = 0.006) and LVI (R s  = 0.61, p < 0.001) were both associated with higher Tum-PD-L1%. cSCC showed expression of PD-L1 on tumor in 26% of cases, and high tumor B7-H3 expression (85%) and PD-1 expression on CD8 TILs (80%). Tumor B7-H3 expression was significantly higher in immunocompetent vs. immunosuppressed patients, largely driven by very low expression in HIV+ patients.

  16. IL-33 expands suppressive CD11b+ Gr-1int and regulatory T cells (Treg), including ST2L+ Foxp3+ cells, and mediates Treg-dependent promotion of cardiac allograft survival

    PubMed Central

    Turnquist, Hēth R.; Zhao, Zhenlin; Rosborough, Brian R.; Liu, Quan; Castellaneta, Antonino; Isse, Kumiko; Wang, Zhiliang; Lang, Megan; Stolz, Donna Beer; Zheng, Xin Xiao; Demetris, A. Jake; Liew, Foo Y.; Wood, Kathryn J.; Thomson, Angus W.

    2011-01-01

    IL-33 administration is associated with facilitation of Th type-2 (Th2) responses and cardioprotective properties in rodent models. However, in heart transplantation, the mechanism by which IL-33, signaling through ST2L, the membrane-bound form of ST2, promotes transplant survival is unclear. We report that IL-33 administration, while facilitating Th2 responses, also increases immunoregulatory myeloid cells and CD4+ Foxp3+ regulatory T cells (Treg) in mice. IL-33 expands functional myeloid-derived suppressor cells (MDSC), -CD11b+ cells that exhibit intermediate (int) levels of Gr-1 and potent T cell suppressive function. Furthermore, IL-33 administration causes a St2-dependent expansion of suppressive CD4+ Foxp3+ Treg, including a ST2L+ population. IL-33 monotherapy following fully allogeneic mouse heart transplantation resulted in significant graft prolongation, associated with increased Th2-type responses and decreased systemic CD8+ IFN-γ+ cells. Also, despite reducing overall CD3+ cell infiltration of the graft, IL-33 administration markedly increased intragraft Foxp3+ cells. Whereas control graft recipients displayed increases in systemic CD11b+ Gr-1hi cells, IL-33-treated recipients exhibited increased CD11b+ Gr-1int cells. Enhanced ST2 expression was observed in the myocardium and endothelium of rejecting allografts, however the therapeutic effect of IL-33 required recipient St2 expression and was dependent on Treg. These findings reveal a new immunoregulatory property of IL-33. Specifically, in addition to supporting Th2 responses, IL-33 facilitates regulatory cells, particularly functional CD4+ Foxp3+ Treg that underlie IL-33-mediated cardiac allograft survival. PMID:21949025

  17. Early activation of teleost B cells in response to rhabdovirus infection.

    PubMed

    Abós, Beatriz; Castro, Rosario; González Granja, Aitor; Havixbeck, Jeffrey J; Barreda, Daniel R; Tafalla, Carolina

    2015-02-01

    To date, the response of teleost B cells to specific pathogens has been only scarcely addressed. In this work, we have demonstrated that viral hemorrhagic septicemia virus (VHSV), a fish rhabdovirus, has the capacity to infect rainbow trout spleen IgM-positive (IgM(+)) cells, although the infection is not productive. Consequently, we have studied the effects of VHSV on IgM(+) cell functionality, comparing these effects to those elicited by a Toll-like receptor 3 (TLR3) ligand, poly(I·C). We found that poly(I·C) and VHSV significantly upregulated TLR3 and type I interferon (IFN) transcription in spleen and blood IgM(+) cells. Further effects included the upregulated transcription of the CK5B chemokine. The significant inhibition of some of these effects in the presence of bafilomycin A1 (BAF), an inhibitor of endosomal acidification, suggests the involvement of an intracellular TLR in these responses. In the case of VHSV, these transcriptional effects were dependent on viral entry into B cells and the initiation of viral transcription. VHSV also provoked the activation of NF-κB and the upregulation of major histocompatibility complex class II (MHC-II) cell surface expression on IgM(+) cells, which, along with the increased transcription of the costimulatory molecules CD80/86 and CD83, pointed to VHSV-induced IgM(+) cell activation toward an antigen-presenting profile. Finally, despite the moderate effects of VHSV on IgM(+) cell proliferation, a consistent effect on IgM(+) cell survival was detected. Innate immune responses to pathogens established through their recognition by pattern recognition receptors (PRRs) have been traditionally ascribed to innate cells. However, recent evidence in mammals has revealed that innate pathogen recognition by B lymphocytes is a crucial factor in shaping the type of immune response that is mounted. In teleosts, these immediate effects of viral encounter on B lymphocytes have not been addressed to date. In our study, we have

  18. ErbB2 and EGFR are downmodulated during the differentiation of 3T3-L1 preadipocytes.

    PubMed

    Pagano, Eleonora; Calvo, Juan Carlos

    2003-10-15

    The expression of receptors belonging to the epidermal growth factor receptor subfamily has been largely studied these last years in epithelial cells mainly as involved in cell proliferation and malignant progression. Although much work has focused on the role of these growth factor receptors in the differentiation of a variety of tissues, there is little information in regards to normal stromal cells. We investigated erbB2 expression in the murine fibroblast cell line Swiss 3T3L1, which naturally or hormonally induced undergoes adipocyte differentiation. We found that the Swiss 3T3-L1 fibroblasts express erbB2, in addition to EGFR, and in a quantity comparable to or even greater than the breast cancer cell line T47D. Proliferating cells increased erbB2 and EGFR levels when reaching confluence up to 4- and 10-fold, respectively. This expression showed a significant decrease when growth-arrested cells were stimulated to differentiate with dexamethasone and isobutyl-methylxanthine. Differentiated cells presented a decreased expression of both erbB2 and EGFR regardless of whether the cells were hormonally or spontaneously differentiated. EGF stimulation of serum-starved cells increased erbB2 tyrosine phosphorylation and retarded erbB2 migration in SDS-PAGE, suggesting receptor association and activation. Heregulin-alpha1 and -beta1, two EGF related factors, had no effect on erbB2 or EGFR phosphorylation. Although 3T3-L1 cells expressed heregulin, its specific receptors, erbB3 and erbB4, were not found. This is the first time in which erbB2 is reported to be expressed in an adipocytic cell line which does not depend on non EGF family growth factors (thyroid hormone, growth hormone, etc.) to accomplish adipose differentiation. Since erbB2 and EGFR expression were downmodulated as differentiation progressed it is conceivable that a mechanism of switching from a mitogenic to a differentiating signaling pathway may be involved, through regulation of the expression of these

  19. Alteration/Deficiency in Activation 3 (ADA3) Protein, a Cell Cycle Regulator, Associates with the Centromere through CENP-B and Regulates Chromosome Segregation.

    PubMed

    Mohibi, Shakur; Srivastava, Shashank; Wang-France, Jun; Mirza, Sameer; Zhao, Xiangshan; Band, Hamid; Band, Vimla

    2015-11-20

    ADA3 (alteration/deficiency in activation 3) is a conserved component of several transcriptional co-activator and histone acetyltransferase (HAT) complexes. Recently, we generated Ada3 knock-out mice and demonstrated that deletion of Ada3 leads to early embryonic lethality. The use of Ada3(FL/FL) mouse embryonic fibroblasts with deletion of Ada3 using adenovirus Cre showed a critical role of ADA3 in cell cycle progression through mitosis. Here, we demonstrate an association of ADA3 with the higher order repeat region of the α-satellite region on human X chromosome centromeres that is consistent with its role in mitosis. Given the role of centromere proteins (CENPs) in mitosis, we next analyzed whether ADA3 associates with the centromere through CENPs. Both an in vivo proximity ligation assay and immunofluorescence studies confirmed the association of ADA3 with CENP-B protein, a highly conserved centromeric protein that binds to the 17-bp DNA sequences on α-satellite DNA. Deletional analysis showed that ADA3 directly associates with CENP-B through its N terminus, and a CENP-B binding-deficient mutant of ADA3 was incompetent in cell proliferation rescue. Notably, knockdown of ADA3 decreased binding of CENP-B onto the centromeres, suggesting that ADA3 is required for the loading of CENP-B onto the centromeres. Finally, we show that deletion of Ada3 from Ada3(FL/FL) mouse embryonic fibroblasts exhibited various chromosome segregation defects. Taken together, we demonstrate a novel ADA3 interaction with CENP-B-centromere that may account for its previously known function in mitosis. This study, together with its known function in maintaining genomic stability and its mislocalization in cancers, suggests an important role of ADA3 in mitosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Electrophoretic purification of cells in space - Evaluation of results from STS-3

    NASA Technical Reports Server (NTRS)

    Sarnoff, B. E.; Kunze, M. E.; Todd, P.

    1983-01-01

    The procedure and results of Electrophoresis Equipment Verification Test, designed to examine electrophoretic behavior of animal cells is suspension more concentrated than possible on earth and flown on the Shuttle flight STS-3, were discussed. Ground-based laboratory values of electrophoretic mobilities of a mixture of human and rabbit aldehyde-fixed red blood cells (RBC) were compared with those recorded at 11 minute intervals on the Shuttle STS-3. RBC migration and separation observed through photographic records were not as expected. However, cell mobilities and migrating band profiles were consistent with the results of laboratory simulation experiments. It was concluded that zero G electrophoresis of very high concentrations (1 x 10 to the 9th) is possible and similar to electrophoresis of normal cell concentrations on earth.

  1. miR-29b and miR-198 overexpression in CD8+ T cells of renal cell carcinoma patients down-modulates JAK3 and MCL-1 leading to immune dysfunction.

    PubMed

    Gigante, Margherita; Pontrelli, Paola; Herr, Wolfgang; Gigante, Maddalena; D'Avenia, Morena; Zaza, Gianluigi; Cavalcanti, Elisabetta; Accetturo, Matteo; Lucarelli, Giuseppe; Carrieri, Giuseppe; Battaglia, Michele; Storkus, Walter J; Gesualdo, Loreto; Ranieri, Elena

    2016-04-11

    Mammalian microRNAs (miR) regulate the expression of genes relevant for the development of adaptive and innate immunity against cancer. Since T cell dysfunction has previously been reported in patients with renal cell carcinoma (RCC; clear cell type), we aimed to analyze these immune cells for genetic and protein differences when compared to normal donor T cells freshly after isolation and 35 days after in vitro stimulation (IVS) with HLA-matched RCC tumor cells. We investigated gene expression profiles of tumor-reactive CD8(+) T cells obtained from RCC patient and compared with their HLA-matched healthy sibling donors using a microarray approach. In addition, miRNAs analysis was performed in a validation cohort of peripheral blood CD8(+) T cells from 25 RCC patients compared to 15 healthy volunteers. We observed that CD8(+) T cells from RCC patients expressed reduced levels of anti-apoptotic and proliferation-associated gene products when compared with normal donor T cells both pre- and post-IVS. In particular, JAK3 and MCL-1 were down-regulated in patient CD8(+) T cells versus their normal counterparts, likely due to defective suppressor activity of miR-29b and miR-198 in RCC CD8(+) T cells. Indeed, specific inhibition of miR-29b or miR-198 in peripheral blood mononuclear cells (PBMCs) isolated from RCC patients, resulted in the up-regulation of JAK3 and MCL-1 proteins and significant improvement of cell survival in vitro. Our results suggest that miR-29b and miR-198 dysregulation in RCC patient CD8(+) T cells is associated with dysfunctional immunity and foreshadow the development of miR-targeted therapeutics to correct such T cell defects in vivo.

  2. Jolkinolide B induces apoptosis in MDA-MB-231 cells through inhibition of the PI3K/Akt signaling pathway.

    PubMed

    Lin, Yu; Cui, Hongxia; Xu, Huiyu; Yue, Liling; Xu, Hao; Jiang, Liyan; Liu, Jicheng

    2012-06-01

    The phosphoinositol-3-kinase (PI3K)/Akt signal transduction pathway is critically important for tumor cell growth, proliferation and apoptosis. Apoptosis activation has been reported to be a good target in cancer therapies. In this study, we have found that jolkinolide B (JB), a diterpenoid from the traditional Chinese medicinal herb Euphorbia fischeriana Steud, strongly inhibited the expression of the PI3K p85 subunit and the phosphorylation of Akt. Furthermore, we evaluated the effects of JB on the proliferation and apoptosis of MDA-MB-231 human breast cancer cells. Our results show significant induction of apoptosis in MDA-MB-231 cells incubated with JB. This effect was enhanced by combination with LY294002. In addition, treatment with JB could induce downregulation of the Bcl-2/Bax ratio, and subsequent promotion of mitochondrial release of cytochrome c and activation of caspase-3. Taken together, JB-induced apoptosis of MDA-MB-231 cells occurs through the mitochondrial pathway. Further, the PI3K/Akt signaling cascade plays a role in the induction of apoptosis in JB-treated cells. These observations suggest that JB may have therapeutic applications in the treatment of cancer.

  3. Functional role of human NK cell receptor 2B4 (CD244) isoforms.

    PubMed

    Mathew, Stephen O; Rao, Krithi K; Kim, Jong R; Bambard, Nowland D; Mathew, Porunelloor A

    2009-06-01

    2B4 (CD244), a member of the signaling lymphocyte-activation molecule (SLAM/CD150), is expressed on all NK cells, a subpopulation of T cells, monocytes and basophils. Human NK cells express two isoforms of 2B4, h2B4-A and h2B4-B that differ in a small portion of the extracellular domain. In the present investigation, we have studied the functions of h2B4-A and h2B4-B. Our study demonstrated that these two isoforms differ in their binding affinity for CD48, which results in differential cytotoxic activity as well as intracellular calcium release by NK cells upon target cell recognition. Analysis of the predicted 3-D structure of the two isoforms showed conformational differences that could account for their differences in binding affinity to CD48. h2B4-A was able to mediate natural cytotoxicity against CD48-expressing K562 target cells and induce intracellular calcium release, whereas h2B4-B showed no effects. NK-92MI, U937, THP-1, KU812, primary monocytes, basophils and NK cells showed expression of both h2B4-A and h2B4-B whereas YT and IL-2-activated NK cells did not show any h2B4-B expression. Stimulation of NK cells through 2B4 resulted in decreased mRNA levels of both h2B4-A and h2B4-B indicating that down-regulation of 2B4 isoforms may be an important factor in controlling NK cell activation during immune responses.

  4. [Effect of flavin adenine dinucleotide on ultraviolet B induced damage in cultured human corneal epithelial cells].

    PubMed

    Sakamoto, Asuka; Nakamura, Masatsugu

    2012-01-01

    This study evaluated the effects of flavin adenine dinucleotide (FAD) on ultraviolet B (UV-B)-induced damage in cultured human corneal epithelial (HCE-T) cells. The cultured HCE-T cells were treated with 0.003125-0.05% FAD before exposure to 80 mJ/cm2 UV-B. Cell viability was measured 24 h after UV-B irradiation using the MTS assay. Reactive oxygen species (ROS) were detected 30 min after UV-B irradiation using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester. Apoptosis was evaluated 4 h after UV-B irradiation in the caspase-3/7 activity assay. UV-B irradiation reduced cell viability and stimulated ROS production and caspase-3/7 activity in HCE-T cells. Pretreatment of UV-B irradiated HCE-T cells with FAD significantly attenuated cell viability reduction and inhibited the stimulation of both ROS production and caspase-3/7 activity due to UV-B exposure compared with those with vehicle (0% FAD). These results clarified that FAD inhibits ROS-mediated apoptosis by UV-B irradiation in HCE-T cells and suggest that FAD may be effective as a radical scavenger in UV-B-induced corneal damage.

  5. Expression of sialosyl-Tn in colony-forming unit-erythroid, erythroblasts, B cells, and a subset of CD4+ cells.

    PubMed

    Muroi, K; Suda, T; Nakamura, M; Okada, S; Nojiri, H; Amemiya, Y; Miura, Y; Hakomori, S

    1994-01-01

    The epitopes Tn and sialosyl-Tn are expressed on erythrocytes of individuals with a very rare blood group, who often suffer from "Tn syndrome." We surveyed expression of Tn and sialosyl-Tn in normal blood cells, malignant transformed cells, and progenitor stem cells from bone marrow (BM). An anti-Tn antibody, IE3, and an anti-sialosyl-Tn antibody, TKH2, were used in this study. TKH2 reacted with erythroblasts, B cells, and a subset of CD4+ cells; but not with erythrocytes. Erythroblastic cell lines (K562, HEL, and UT7/EPO) and B-cell lines (Daudi, Raji, and B-cell lines transformed by Epstein-Barr virus) showed reactivity to TKH2. Similar results from the reactivity of TKH2 with transformed cells from leukemia patients and lymphoma patients were obtained; TKH2 reacted with blasts from erythroleukemia (M6; for 4 of 4 cases) and with lymphocytes from B-cell chronic lymphocytic leukemia (3 of 3), B-cell lymphoma (5 of 5), and CD4+ adult T-cell leukemia (4 of 4), but did not react with blasts from acute myeloid leukemia (M0 to M5; 0 of 22) or acute lymphoid leukemia (B-lymphoid leukemia, 0 of 11; T-lymphoid leukemia, 0 of 2; undifferentiated leukemia, 0 of 1). IE3 did not react with all of the tested cells. CD2-CD19-TKH2+ normal BM cells (BMC) contained blasts and various maturation stages of erythroblasts. The TKH2+ cells produced a large number of colony-forming unit-erythroid (CFU-E) colonies, whereas they produced a small number of burst-forming unit-erythroid colonies and CFU-granulocyte-macrophage colonies. CD34+ normal BMC did not express Tn and sialosyl-Tn. These findings suggest that sialosyl-Tn expresses in CFU-E to erythroblasts.

  6. Glial cell activation, recruitment, and survival of B-lineage cells following MCMV brain infection.

    PubMed

    Lokensgard, James R; Mutnal, Manohar B; Prasad, Sujata; Sheng, Wen; Hu, Shuxian

    2016-05-20

    Chemokines produced by reactive glia drive migration of immune cells and previous studies from our laboratory have demonstrated that CD19(+) B cells infiltrate the brain. In this study, in vivo and in vitro experiments investigated the role of reactive glial cells in recruitment and survival of B-lineage cells in response to (murine cytomegalovirus) MCMV infection. Flow cytometric analysis was used to assess chemokine receptor expression on brain-infiltrating B cells. Real-time RT-PCR and ELISA were used to measure chemokine levels. Dual-immunohistochemical staining was used to co-localize chemokine production by reactive glia. Primary glial cell cultures and migration assays were used to examine chemokine-mediated recruitment. Astrocyte: B cell co-cultures were used to investigate survival and proliferation. The chemokine receptors CXCR3, CXCR5, CCR5, and CCR7 were detected on CD19(+) cells isolated from the brain during MCMV infection. In particular, CXCR3 was found to be elevated on an increasing number of cells over the time course of infection, and it was the primary chemokine receptor expressed at 60 days post infection Quite different expression kinetics were observed for CXCR5, CCR5, and CCR7, which were elevated on the highest number of cells early during infection and decreased by 14, 30, and 60 days post infection Correspondingly, elevated levels of CXCL9, CXCL10, and CXCL13, as well as CCL5, were found within the brains of infected animals, and only low levels of CCL3 and CCL19 were detected. Differential expression of CXCL9/CXCL10 and CXCL13 between microglia and astrocytes was apparent, and B cells moved towards supernatants from MCMV-infected microglia, but not astrocytes. Pretreatment with neutralizing Abs to CXCL9 and CXCL10 inhibited this migration. In contrast, neutralizing Abs to the ligand of CXCR5 (i.e., CXCL13) did not significantly block chemotaxis. Proliferation of brain-infiltrating B cells was detected at 7 days post infection and

  7. Myeloid-derived suppressor cells modulate B-cell responses.

    PubMed

    Lelis, Felipe J N; Jaufmann, Jennifer; Singh, Anurag; Fromm, Katja; Teschner, Annkathrin Chiara; Pöschel, Simone; Schäfer, Iris; Beer-Hammer, Sandra; Rieber, Nikolaus; Hartl, Dominik

    2017-08-01

    Myeloid-derived suppressor cells (MDSCs) are key regulators of adaptive immunity by suppressing T-cell functions. However, their potential action on or interaction with B cells remained poorly understood. Here we demonstrate that human polymorphonuclear MDSCs differentially modulate B-cell function by suppressing B-cell proliferation and antibody production. We further demonstrate that this MDSC-mediated effect is cell contact dependent and involves established mediators such as arginase-1, nitric oxide (NO), reactive oxygen species (ROS) as well as B-cell death. Collectively, our studies provide novel evidence that human MDSCs modulate B cells, which could have future implications for immunotherapy approaches. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  8. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerch, Thomas F.; Chapman, Michael S., E-mail: chapmami@ohsu.edu

    2012-02-05

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites ofmore » AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.« less

  9. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerch, Thomas F.; Chapman, Michael S.

    2012-05-24

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites ofmore » AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.« less

  10. Naive T-cell receptor transgenic T cells help memory B cells produce antibody

    PubMed Central

    Duffy, Darragh; Yang, Chun-Ping; Heath, Andrew; Garside, Paul; Bell, Eric B

    2006-01-01

    Injection of the same antigen following primary immunization induces a classic secondary response characterized by a large quantity of high-affinity antibody of an immunoglobulin G class produced more rapidly than in the initial response – the products of memory B cells are qualitatively distinct from that of the original naive B lymphocytes. Very little is known of the help provided by the CD4 T cells that stimulate memory B cells. Using antigen-specific T-cell receptor transgenic CD4 T cells (DO11.10) as a source of help, we found that naive transgenic T cells stimulated memory B cells almost as well (in terms of quantity and speed) as transgenic T cells that had been recently primed. There was a direct correlation between serum antibody levels and the number of naive transgenic T cells transferred. Using T cells from transgenic interleukin-2-deficient mice we showed that interleukin-2 was not required for a secondary response, although it was necessary for a primary response. The results suggested that the signals delivered by CD4 T cells and required by memory B cells for their activation were common to both antigen-primed and naive CD4 T cells. PMID:17067314

  11. The NF-κB regulator Bcl-3 and the BH3-only proteins Bim and Puma control the death of activated T cells

    PubMed Central

    Bauer, Anette; Villunger, Andreas; Labi, Verena; Fischer, Silke F.; Strasser, Andreas; Wagner, Hermann; Schmid, Roland M.; Häcker, Georg

    2006-01-01

    Apoptosis of activated T cells is critical for the termination of immune responses. Here we show that adjuvant-stimulated dendritic cells secrete cytokines that prime activated T cells for survival and analyze the roles of the NF-κB regulator Bcl-3 and the proapoptotic Bcl-2 family members Bim and Puma. Bcl-3 overexpression increased survival, and activated bcl-3−/− T cells died abnormally rapidly. Cytokines from adjuvant-stimulated dendritic cells induced Bcl-3, but survival through cytokine priming was Bcl-3-independent. Apoptosis inhibition by Bcl-3 involved blockade of Bim activation, because Bim was overactivated in Bcl-3-deficient cells, and Bcl-3 failed to increase survival of bim−/− T cells. However, adjuvants increased survival also in Bim-deficient T cells. This Bim-independent death pathway is at least in part regulated by Puma, as shown by analysis of puma−/− and noxa−/− T cells. IL-1, IL-7, and IL-15 primed T cells for survival even in the absence of Bim or Puma. Our data define interrelations and a Bim-independent pathway to activated T cell death. PMID:16832056

  12. Activation of the NF-κB pathway by the STAT3 inhibitor JSI-124 in human glioblastoma cells

    PubMed Central

    McFarland, Braden C.; Gray, G. Kenneth; Nozell, Susan E.; Hong, Suk W.; Benveniste, Etty N.

    2013-01-01

    Glioblastoma tumors are characterized by their invasiveness and resistance to therapies. The transcription factor STAT3 was recently identified as a master transcriptional regulator in the mesenchymal subtype of GBM, which has generated an increased interest in targeting STAT3. We have evaluated more closely the mechanism of action of one particular STAT3 inhibitor, JSI-124 (cucurbitacin I). In this study, we confirmed that JSI-124 inhibits both constitutive and stimulus-induced JAK2 and STAT3 phosphorylation, and decreases cell proliferation while inducing apoptosis in cultured GBM cells. However, we discovered that prior to the inhibition of STAT3, JSI-124 activates the NF-κB pathway, via NF-κB p65 phosphorylation and nuclear translocation. In addition, JSI-124 treatment induces the expression of IL-6, IL-8 and SOCS3 mRNA, which leads to a corresponding increase in IL-6, IL-8 and SOCS3 protein expression. Moreover, the NF-κB driven SOCS3 expression acts as a negative regulator of STAT3, abrogating any subsequent STAT3 activation and provides a mechanism of STAT3 inhibition following JSI-124 treatment. Chromatin immunoprecipitation analysis confirms that NF-κB p65 in addition to other activating co-factors are found at the promoters of IL-6, IL-8 and SOCS3, following JSI-124 treatment. Using pharmacological inhibition of NF-κB and inducible knockdown of NF-κB p65, we found that JSI-124-induced expression of IL-6, IL-8 and SOCS3 was significantly inhibited, demonstrating an NF-κB dependent mechanism. Our data indicate that although JSI-124 may demonstrate potential anti-tumor effects through inhibition of STAT3, other off-target pro-inflammatory pathways are activated, emphasizing that more careful and thorough pre-clinical investigations must be implemented to prevent potential harmful effects. PMID:23386688

  13. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamminen, Jenni A.; Yin, Miao; Transplantation Laboratory, Haartman Institute, University of Helsinki

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cellsmore » in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.« less

  14. Early Generated B-1-Derived B Cells Have the Capacity To Progress To Become Mantle Cell Lymphoma-like Neoplasia in Aged Mice.

    PubMed

    Hayakawa, Kyoko; Formica, Anthony M; Nakao, Yuka; Ichikawa, Daiju; Shinton, Susan A; Brill-Dashoff, Joni; Smith, Mitchell R; Morse, Herbert C; Hardy, Richard R

    2018-06-13

    In mice, fetal/neonatal B-1 cell development generates murine CD5 + B cells (B1a) with autoreactivity. We analyzed B1a cells at the neonatal stage in a V H 11/D/J H knock-in mouse line (V H 11t) that generates an autoreactive antiphosphatidylcholine BCR. Our study revealed that antiphosphatidylcholine B1a cells develop in liver, mature in spleen, and distribute in intestine/colon, mesenteric lymph node (mLN), and body cavity as the outcome of B-1 cell development before B-2 cell development. Throughout life, self-renewing B-1 B1a cells circulate through intestine, mesenteric vessel, and blood. The body cavity-deposited B1a cells also remigrate. In old age, some B1a cells proceed to monoclonal B cell lymphocytosis. When neonatal B-1 B1a cells express an antithymocyte/Thy-1 autoreactivity (ATA) BCR transgene in the C.B17 mouse background, ATA B cells increase in PBL and strongly develop lymphomas in aging mice that feature splenomegaly and mLN hyperplasia with heightened expression of CD11b, IL-10, and activated Stat3. At the adult stage, ATA B cells were normally present in the mantle zone area, including in intestine. Furthermore, frequent association with mLN hyperplasia suggests the influence by intestinal microenvironment on lymphoma development. When cyclin D1 was overexpressed by the Eμ-cyclin D1 transgene, ATA B cells progressed to further diffused lymphoma in aged mice, including in various lymph nodes with accumulation of IgM hi IgD lo CD5 + CD23 - CD43 + cells, resembling aggressive human mantle cell lymphoma. Thus, our findings reveal that early generated B cells, as an outcome of B-1 cell development, can progress to become lymphocytosis, lymphoma, and mantle cell lymphoma-like neoplasia in aged mice. Copyright © 2018 by The American Association of Immunologists, Inc.

  15. MicroRNA-15b silencing inhibits IL-1β-induced extracellular matrix degradation by targeting SMAD3 in human nucleus pulposus cells.

    PubMed

    Kang, Liang; Yang, Cao; Yin, Huipeng; Zhao, Kangcheng; Liu, Wei; Hua, Wenbin; Wang, Kun; Song, Yu; Tu, Ji; Li, Shuai; Luo, Rongjin; Zhang, Yukun

    2017-04-01

    To determine the role of microRNA-15b (miR-15b) in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation in the nucleus pulposus (NP). MiR-15b was up-regulated in degenerative NP tissues and in IL-1β-stimulated NP cells, as compared to the levels in normal controls (normal tissue specimens from patients with idiopathic scoliosis). Bioinformatics and luciferase activity analyses showed that mothers against decapentaplegic homolog 3 (SMAD3), a key mediator of the transforming growth factor-β signaling pathway, was directly targeted by miR-15b. Functional analysis demonstrated that miR-15b overexpression aggravated IL-1β-induced ECM degradation in NP cells, while miR-15b inhibition had the opposite effects. Prevention of IL-1β-induced NP ECM degeneration by the miR-15b inhibitor was attenuated by small-interfering-RNA-mediated knockdown of SMAD3. In addition, activation of MAP kinase and nuclear factor-κB up-regulated miR-15b expression and down-regulated SMAD3 expression in IL-1β-stimulated NP cells. MiR-15b contributes to ECM degradation in intervertebral disc degeneration (IDD) via targeting of SMAD3, thus providing a novel therapeutic target for IDD treatment.

  16. Vernolide-A, a sesquiterpene lactone from Vernonia cinerea, induces apoptosis in B16F-10 melanoma cells by modulating p53 and caspase-3 gene expressions and regulating NF-κB-mediated bcl-2 activation.

    PubMed

    Pratheeshkumar, Poyil; Kuttan, Girija

    2011-07-01

    In this study, we investigated the effect of vernolide-A on the induction of apoptosis as well as its regulatory effect on the activation of transcription factors in B16F-10 melanoma cells. Treatment of B16F-10 cells with nontoxic concentrations of vernolide-A showed the presence of apoptotic bodies and induced DNA fragmentation in a dose-dependent manner. Cell-cycle analysis and TUNEL assays also confirmed the observation. The proapoptotic genes, p53, Bax, caspase-9, and caspase-3, were upregulated in vernolide-A-treated cells, whereas the antiapoptotic gene, Bcl-2, was downregulated. vernolide-A treatment also showed a downregulation of cyclin D1 expression and upregulated p21 and p27 gene expression in B16F-10 melanoma cells. The study also reveals that vernolide-A treatment could alter the production and expression of proinflammatory cytokines and could inhibit the activation and nuclear translocation of p65, p50, and c-Rel subunits of nuclear factor-κB and other transcription factors, such as c-fos, activated transcription factor-2, and cyclic adenosine monophosphate response-element-binding protein in B16F-10 melanoma cells. These results suggest that vernolide-A induces apoptosis via activation of p53-induced, caspase-3-mediated proapoptotic signaling and suppression of NF-κB-induced, bcl-2-mediated survival signaling.

  17. Granzyme B mediated function of Parvovirus B19-specific CD4+ T cells

    PubMed Central

    Kumar, Arun; Perdomo, Maria F; Kantele, Anu; Hedman, Lea; Hedman, Klaus; Franssila, Rauli

    2015-01-01

    A novel conception of CD4+ T cells with cytolytic potential (CD4+ CTL) is emerging. These cells appear to have a part in controlling malignancies and chronic infections. Human parvovirus B19 can cause a persistent infection, yet no data exist on the presence of B19-specific CD4+ CTLs. Such cells could have a role in the pathogenesis of some autoimmune disorders reported to be associated with B19. We explored the cytolytic potential of human parvovirus B19-specific T cells by stimulating peripheral blood mononuclear cell (PBMC) with recombinant B19-VP2 virus-like particles. The cytolytic potential was determined by enzyme immunoassay-based quantitation of granzyme B (GrB) and perforin from the tissue culture supernatants, by intracellular cytokine staining (ICS) and by detecting direct cytotoxicity. GrB and perforin responses with the B19 antigen were readily detectable in B19-seropositive individuals. T-cell depletion, HLA blocking and ICS experiments showed GrB and perforin to be secreted by CD4+ T cells. CD4+ T cells with strong GrB responses were found to exhibit direct cytotoxicity. As anticipated, ICS of B19-specific CD4+ T cells showed expected co-expression of GrB, perforin and interferon gamma (IFN-γ). Unexpectedly, also a strong co-expression of GrB and interleukin 17 (IL-17) was detected. These cells expressed natural killer (NK) cell surface marker CD56, together with the CD4 surface marker. To our knowledge, this is the first report on virus-specific CD4+ CTLs co-expressing CD56 antigen. Our results suggest a role for CD4+ CTL in B19 immunity. Such cells could function within both immune regulation and triggering of autoimmune phenomena such as systemic lupus erythematosus (SLE) or rheumatoid arthritis. PMID:26246896

  18. Rituximab-dose-dense chemotherapy with or without high-dose chemotherapy plus autologous stem-cell transplantation in high-risk diffuse large B-cell lymphoma (DLCL04): final results of a multicentre, open-label, randomised, controlled, phase 3 study.

    PubMed

    Chiappella, Annalisa; Martelli, Maurizio; Angelucci, Emanuele; Brusamolino, Ercole; Evangelista, Andrea; Carella, Angelo Michele; Stelitano, Caterina; Rossi, Giuseppe; Balzarotti, Monica; Merli, Francesco; Gaidano, Gianluca; Pavone, Vincenzo; Rigacci, Luigi; Zaja, Francesco; D'Arco, Alfonso; Cascavilla, Nicola; Russo, Eleonora; Castellino, Alessia; Gotti, Manuel; Congiu, Angela Giovanna; Cabras, Maria Giuseppina; Tucci, Alessandra; Agostinelli, Claudio; Ciccone, Giovannino; Pileri, Stefano A; Vitolo, Umberto

    2017-08-01

    to -3, plus intravenous melphalan 140 mg/m 2 on day -2) and autologous stem-cell transplantation (day 0); or R-MegaCHOP-14 for four cycles followed by R-MAD plus BEAM and autologous stem-cell transplantation. The primary endpoint was failure-free survival at 2 years in the intention-to-treat population. This study is registered with EudraCT (2005-002181-14; 2007-000275-42) and with ClinicalTrials.gov, number NCT00499018. Between Jan 10, 2006, and Sept 8, 2010, 399 patients were randomly assigned to receive transplantation (n=199) or no transplantation (n=200); 203 patients were assigned to receive R-CHOP-14 and 196 were assigned to receive R-MegaCHOP-14. With a median follow-up of 72 months (IQR 57-88), 2-year failure-free survival was 71% (95% CI 64-77) in the transplantation group versus 62% (95% CI 55-68) in the no transplantation group (hazard ratio [HR] 0·65 [95% CI 0·47-0·91]; stratified log-rank test p=0·012). No difference in 5-year overall survival was observed between these groups (78% [95% CI 71-83] versus 77% [71-83]; HR 0·98 [0·65-1·48]; stratified log-rank test p=0·91). Grade 3 or worse haematological adverse events were reported in 183 (92%) of 199 patients in the transplantation group versus 135 (68%) of 200 patients in the no transplantation group. Grade 3 or worse non-haematological adverse events were reported in 90 (45%) versus 31 (16%); the most common grade 3 or worse non-haematological adverse event was gastrointestinal (49 [25%] vs 19 [10%]). Treatment-related deaths occurred in 13 (3%) patients; eight in the transplantation group and five in the no transplantation group. Abbreviated rituximab-dose-dense chemotherapy plus R-MAD plus BEAM and autologous stem-cell transplantation reduced the risk of treatment failure compared with full course rituximab-dose-dense chemotherapy in young patients with diffuse large B-cell lymphoma at high risk. However, these results might not be clinically meaningful, since this improvement did not reflect

  19. NFκB pathway is down-regulated by 1α,25(OH)(2)-vitamin D(3) in endothelial cells transformed by Kaposi sarcoma-associated herpes virus G protein coupled receptor.

    PubMed

    Gonzalez-Pardo, Verónica; D'Elia, Noelia; Verstuyf, Annemieke; Boland, Ricardo; Russo de Boland, Ana

    2012-09-01

    We have previously demonstrated that 1α,25 dihydroxy-vitamin D(3) (1α,25(OH)(2)D(3)) has antiproliferative effects on the growth of endothelial cells transformed by the viral G protein-coupled receptor associated to Kaposi sarcoma (vGPCR). In this work, we have investigated whether 1α,25(OH)(2)D(3) exerts its growth inhibitory effects by inhibiting the Nuclear Factor κ B (NFκB) pathway which is highly activated by vGPCR. Cell proliferation studies demonstrated that 1α,25(OH)(2)D(3), similarly to bortezomib, a proteosome inhibitor that suppresses the activation of NFκB, reduced the proliferation of endothelial cells transformed by vGPCR (SVEC-vGPCR). The activity of NFκB in these cells decreased by 70% upon 1α,25(OH)(2)D(3) treatment. Furthermore, time and dose response studies showed that the hormone significantly decreased NFκB and increased IκBα mRNA and protein levels in SVEC-vGPCR cells, whereas in SVEC only IκBα increased significantly. Moreover, NFκB translocation to the nucleus was inhibited and occurred by a mechanism independent of NFκB association with vitamin D(3) receptor (VDR). 1α,25(OH)(2)D(3)-induced increase in IκBα required de novo protein synthesis, and was independent of MAPK and PI3K/Akt pathways. Altogether, these results suggest that down-regulation of the NFκB pathway is part of the mechanism involved in the antiproliferative effects of 1α,25(OH)(2)D(3) on endothelial cells transformed by vGPCR. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. CD22 Promotes B-1b Cell Responses to T Cell-Independent Type 2 Antigens.

    PubMed

    Haas, Karen M; Johnson, Kristen L; Phipps, James P; Do, Cardinal

    2018-03-01

    CD22 (Siglec-2) is a critical regulator of B cell activation and survival. CD22 -/- mice generate significantly impaired Ab responses to T cell-independent type 2 (TI-2) Ags, including haptenated Ficoll and pneumococcal polysaccharides, Ags that elicit poor T cell help and activate BCR signaling via multivalent epitope crosslinking. This has been proposed to be due to impaired marginal zone (MZ) B cell development/maintenance in CD22 -/- mice. However, mice expressing a mutant form of CD22 unable to bind sialic acid ligands generated normal TI-2 Ab responses, despite significantly reduced MZ B cells. Moreover, mice treated with CD22 ligand-binding blocking mAbs, which deplete MZ B cells, had little effect on TI-2 Ab responses. We therefore investigated the effects of CD22 deficiency on B-1b cells, an innate-like B cell population that plays a key role in TI-2 Ab responses. B-1b cells from CD22 -/- mice had impaired BCR-induced proliferation and significantly increased intracellular Ca 2+ concentration responses following BCR crosslinking. Ag-specific B-1b cell expansion and plasmablast differentiation following TI-2 Ag immunization was significantly impaired in CD22 -/- mice, consistent with reduced TI-2 Ab responses. We generated CD22 -/- mice with reduced CD19 levels (CD22 -/- CD19 +/- ) to test the hypothesis that augmented B-1b cell BCR signaling in CD22 -/- mice contributes to impaired TI-2 Ab responses. BCR-induced proliferation and intracellular Ca 2+ concentration responses were normalized in CD22 -/- CD19 +/- B-1b cells. Consistent with this, TI-2 Ag-specific B-1b cell expansion, plasmablast differentiation, survival, and Ab responses were rescued in CD22 -/- CD19 +/- mice. Thus, CD22 plays a critical role in regulating TI-2 Ab responses through regulating B-1b cell signaling thresholds. Copyright © 2018 by The American Association of Immunologists, Inc.

  1. Adenoviral modification of mouse brain derived endothelial cells, bEnd3, to induce apoptosis by vascular endothelial growth factor.

    PubMed

    Mitsuuchi, Y; Powell, D R; Gallo, J M

    2006-02-09

    A second generation genetically-engineered cell-based drug delivery system, referred to as apoptotic-induced drug delivery (AIDD), was developed using endothelial cells (ECs) that undergo apoptosis upon binding of vascular endothelial growth factor (VEGF) to a Flk-1:Fas fusion protein (FF). This new AIDD was redesigned using mouse brain derived ECs, bEnd3 cells, and an adenovirus vector in order to enhance and control the expression of FF. The FF was tagged with a HA epitope (FFHA) and designed to be coexpressed with green fluorescence protein (GFP) by the regulation of cytomegalovirus promoters in the adenovirus vector. bEnd3 cells showed favorable coexpression of FFHA and GFP consistent with the multiplicity of infection of the adenovirus. Immunofluorescence analysis demonstrated that FFHA was localized at the plasma membrane, whereas GFP was predominantly located in the cytoplasm of ECs. Cell death was induced by VEGF, but not by platelet derived growth factor or fibroblast growth factor in a dose-dependent manner (range 2-20 ng/ml), and revealed caspase-dependent apoptotic profiles. The FFHA expressing bEnd3 cells underwent apoptosis when cocultured with a glioma cell (SF188V+) line able to overexpress VEGF. The combined data indicated that the FFHA adenovirus system can induce apoptotic signaling in ECs in response to VEGF, and thus, is an instrumental modification to the development of AIDD.

  2. Anergy and suppression in B-cell responses.

    PubMed

    Elliott, J I

    1992-12-01

    Two main ideas have been put forward to explain the unexpectedly low anti-hapten antibody titres which can result from pre-priming a mouse with carrier before hapten-carrier immunization. The first involves the interaction of a network of idiotype-specific suppressor T cells, the second instead arguing for the role of intrinsic B-cell anergy. This paper proposes that the data available can equally be interpreted as reflecting the suboptimal interaction between T and B cells at differing stages of maturity, provided that memory B cells can be divided into two subsets. Further, it is suggested that these considerations must be taken into account in the analysis of B-cell anergy in receptor transgenic mice.

  3. Bacterially activated B-cells drive T cell differentiation towards Tr1 through PD-1/PD-L1 expression.

    PubMed

    Said, Sawsan Sudqi; Barut, Guliz Tuba; Mansur, Nesteren; Korkmaz, Asli; Sayi-Yazgan, Ayca

    2018-04-01

    Regulatory B cells (Bregs) play a crucial role in immunological tolerance primarily through the production of IL-10 in many diseases including autoimmune disorders, allergy, infectious diseases, and cancer. To date, various Breg subsets with overlapping phenotypes have been identified. However, the roles of Bregs in Helicobacter infection are largely unknown. In the present study, we investigate the phenotype and function of Helicobacter -stimulated B cells. Our results demonstrate that Helicobacter felis -stimulated IL-10- producing B cells (Hf stim - IL-10 + B) are composed of B10 and Transitional 2 Marginal Zone Precursor (T2-MZP) cells with expression of CD9, Tim-1, and programmed death 1 (PD-1). On the other hand, Helicobacter felis -stimulated IL-10- nonproducing B (Hf stim - IL-10 - B) cells are mainly marginal zone (MZ) B cells that express PD-L1 and secrete TGF-β, IL-6, and TNF-α, and IgM and IgG2b. Furthermore, we show that both Hf stim - IL-10 + B cells and Hf stim - IL-10 - B cells induce CD49b + LAG-3 + Tr1 cells. Here, we describe a novel mechanism for PD-1/PD-L1- driven B cell-dependent Tr1 cell differentiation. Finally, we explore the capability of Hf stim - IL-10 - B cells to induce Th17 cell differentiation, which we find to be dependent on TGF-β. Taken together, the current study demonstrates that Hf stim - B cells induce Tr1 cells through the PD-1/PD-L1 axis and Th17 cells by secreting TGF-β. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. SerpinB1 Promotes Pancreatic β Cell Proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Ouaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas

    2016-01-01

    Compensatory β-cell growth in response to insulin resistance is a common feature in diabetes. We recently reported that liver-derived factors participate in this compensatory response in the liver insulin receptor knockout (LIRKO) mouse, a model of significant islet hyperplasia. Here we show that serpinB1 is a liver-derived secretory protein that controls β-cell proliferation. SerpinB1 is abundant in the hepatocyte secretome and sera derived from LIRKO mice. SerpinB1 and small molecule compounds that partially mimic serpinB1 activity enhanced proliferation of zebrafish, mouse and human β-cells. We report that serpinB1-induced β-cell replication requires protease inhibition activity and mice lacking serpinB1 exhibit attenuatedmore » β-cell replication in response to insulin resistance. Finally, SerpinB1-treatment of islets modulated signaling proteins in growth and survival pathways such as MAPK, PKA and GSK3. Together, these data implicate SerpinB1 as a protein that can potentially be harnessed to enhance functional β-cell mass in patients with diabetes.« less

  5. A Nampt inhibitor FK866 mimics vitamin B3 deficiency by causing senescence of human fibroblastic Hs68 cells via attenuation of NAD(+)-SIRT1 signaling.

    PubMed

    Song, Tuzz-Ying; Yeh, Shu-Lan; Hu, Miao-Lin; Chen, Mei-Yau; Yang, Nae-Cherng

    2015-12-01

    Vitamin B3 (niacin) deficiency can cause pellagra with symptoms of dermatitis, diarrhea and dementia. However, it is unclear whether the vitamin B3 deficiency causes human aging. FK866 (a Nampt inhibitor) can reduce intracellular NAD(+) level and induce senescence of human Hs68 cells. However, the mechanisms underlying FK866-induced senescence of Hs68 cells are unclear. In this study, we used FK866 to mimic the effects of vitamin B3 deficiency to reduce the NAD(+) level and investigated the mechanisms of FK866-induced senescence of Hs68 cells. We hypothesized that FK866 induced the senescence of Hs68 cells via an attenuation of NAD(+)-silent information regulator T1 (SIRT1) signaling. We found that FK866 induced cell senescence and diminished cellular NAD(+) levels and SIRT1 activity (detected by acetylation of p53), and these effects were dramatically antagonized by co-treatment with nicotinic acid, nicotinamide, or NAD(+). In contrast, the protein expression of SIRT1, AMP-activated protein kinase, mammalian target of rapamycin, and nicotinamide phosphoribosyltransferase (Nampt) was not affected by FK866. In addition, the role of GSH in the FK866-induced cells senescence may be limited, as N-acetylcysteine did not antagonize FK866-induced cell senescence. These results suggest that FK866 induces cell senescence via attenuation of NAD(+)-SIRT1 signaling. The effects of vitamin B3 deficiency on human aging warrant further investigation.

  6. The BAFF receptor TACI controls IL-10 production by regulatory B cells and CLL B cells.

    PubMed

    Saulep-Easton, D; Vincent, F B; Quah, P S; Wei, A; Ting, S B; Croce, C M; Tam, C; Mackay, F

    2016-01-01

    Interleukin (IL)-10-producing B cells (B10 cells) have emerged as important regulatory elements with immunosuppressive roles. Chronic lymphocytic leukemia (CLL) B cells also secrete IL-10 and share features of B10 cells, suggesting a possible contribution of CLL B cells to immunosuppression in CLL patients. Factors controlling the emergence of B10 cells are not known. B-cell-activating factor of the tumor necrosis factor (TNF) family (BAFF) is critical for B-cell maturation and survival, and is implicated in the development and progression of CLL. We sought to investigate the role of BAFF in the emergence of IL-10-producing regulatory B cells in healthy donors and CLL patients. Here, we report that BAFF signaling promotes IL-10 production by CLL B cells in a mouse model of CLL and in CLL patients. Moreover, BAFF-mediated IL-10 production by normal and CLL B cells is mediated via its receptor transmembrane activator and cyclophilin ligand interactor. Our work uncovered a major targetable pathway important for the generation of regulatory B cells that is detrimental to immunity in CLL.

  7. Targets of B-cell antigen receptor signaling: the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase-3 signaling pathway and the Rap1 GTPase.

    PubMed

    Gold, M R; Ingham, R J; McLeod, S J; Christian, S L; Scheid, M P; Duronio, V; Santos, L; Matsuuchi, L

    2000-08-01

    In this review, we discuss the role of phosphatidylinositol 3-kinase (PI3K) and Rap 1 in B-cell receptor (BCR) signaling. PI3K produces lipids that recruit pleckstrin homology domain-containing proteins to the plasma membrane. Akt is a kinase that the BCR activates in this manner. Akt phosphorylates several transcription factors as well as proteins that regulate apoptosis and protein synthesis. Akt also regulates glycogen synthase kinase-3, a kinase whose substrates include the nuclear factor of activated T cells (NF-AT)cl and beta-catenin transcriptional activators. In addition to Akt, PI3K-derived lipids also regulate the activity and localization of other targets of BCR signaling. Thus, a key event in BCR signaling is the recruitment of PI3K to the plasma membrane where its substrates are located. This is mediated by binding of the Src homology (SH) 2 domains in PI3K to phosphotyrosine-containing sequences on membrane-associated docking proteins. The docking proteins that the BCR uses to recruit PI3K include CD19, Cbl, Gab1, and perhaps Gab2. We have shown that Gab1 colocalizes PI3K with SH2 domain-containing inositol phosphatase (SHIP) and SHP2, two enzymes that regulate PI3K-dependent signaling. In contrast to PI3K, little is known about the Rap1 GTPase. We showed that the BCR activates Rap1 via phospholipase C-dependent production of diacylglycerol. Since Rap1 is thought to regulate cell adhesion and cell polarity, it may be involved in B-cell migration.

  8. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrasco-Garcia, Estefania; Saceda, Miguel; Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cellmore » lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.« less

  9. A novel IL-10-independent regulatory role for B cells in suppressing autoimmunity by maintenance of regulatory T cells via GITR ligand.

    PubMed

    Ray, Avijit; Basu, Sreemanti; Williams, Calvin B; Salzman, Nita H; Dittel, Bonnie N

    2012-04-01

    B cells are important for the regulation of autoimmune responses. In experimental autoimmune encephalomyelitis (EAE), B cells are required for spontaneous recovery in acute models. Production of IL-10 by regulatory B cells has been shown to modulate the severity EAE and other autoimmune diseases. Previously, we suggested that B cells regulated the number of CD4(+)Foxp3(+) T regulatory cells (Treg) in the CNS during EAE. Because Treg suppress autoimmune responses, we asked whether B cells control autoimmunity by maintenance of Treg numbers. B cell deficiency achieved either genetically (μMT) or by depletion with anti-CD20 resulted in a significant reduction in the number of peripheral but not thymic Treg. Adoptive transfer of WT B cells into μMT mice restored both Treg numbers and recovery from EAE. When we investigated the mechanism whereby B cells induce the proliferation of Treg and EAE recovery, we found that glucocorticoid-induced TNF ligand, but not IL-10, expression by B cells was required. Of clinical significance is the finding that anti-CD20 depletion of B cells accelerated spontaneous EAE and colitis. Our results demonstrate that B cells play a major role in immune tolerance required for the prevention of autoimmunity by maintenance of Treg via their expression of glucocorticoid-induced TNFR ligand.

  10. T-cell Receptor Signaling Activates an ITK/NF-κB/GATA-3 axis in T-cell Lymphomas Facilitating Resistance to Chemotherapy.

    PubMed

    Wang, Tianjiao; Lu, Ye; Polk, Avery; Chowdhury, Pinki; Zamalloa, Carlos Murga; Fujiwara, Hiroshi; Suemori, Koichiro; Beyersdorf, Niklas; Hristov, Alexandra C; Lim, Megan S; Bailey, Nathanael G; Wilcox, Ryan A

    2017-05-15

    Purpose: T-cell lymphomas are a molecularly heterogeneous group of non-Hodgkin lymphomas (NHL) that account for a disproportionate number of NHL disease-related deaths due to their inherent and acquired resistance to standard multiagent chemotherapy regimens. Despite their molecular heterogeneity and frequent loss of various T cell-specific receptors, the T-cell antigen receptor is retained in the majority of these lymphomas. As T-cell receptor (TCR) engagement activates a number of signaling pathways and transcription factors that regulate T-cell growth and survival, we examined the TCR's role in mediating resistance to chemotherapy. Experimental Design: Genetic and pharmacologic strategies were utilized to determine the contribution of tyrosine kinases and transcription factors activated in conventional T cells following TCR engagement in acquired chemotherapy resistance in primary T-cell lymphoma cells and patient-derived cell lines. Results: Here, we report that TCR signaling activates a signaling axis that includes ITK, NF-κB, and GATA-3 and promotes chemotherapy resistance. Conclusions: These observations have significant therapeutic implications, as pharmacologic inhibition of ITK prevented the activation of this signaling axis and overcame chemotherapy resistance. Clin Cancer Res; 23(10); 2506-15. ©2016 AACR . ©2016 American Association for Cancer Research.

  11. Analysis of epothilone B-induced cell death in normal ovarian cells.

    PubMed

    Rogalska, Aneta; Gajek, Arkadiusz; Marczak, Agnieszka

    2013-12-01

    We have investigated the mode of cell death induced by a new microtubule-stabilizing agent, epothilone B (EpoB, patupilone), and a clinically used medicine, paclitaxel (PTX), in normal ovarian cells. Using fluorescence microscopy, polyacrylamide gel electrophoresis preceding Western blot analysis, as well as spectrofluorimetric and colorimetric detection, we demonstrate that, compared to EpoB, PTX induced high time-dependent morphological and biochemical changes typical of apoptosis. Induction of apoptosis followed an early increase in p53 levels. Apoptosis reached its maximum at 24-48 h. At the same time, there was a significant increase in caspase-9 and -3 activity and PARP fragmentation, which suggests that an intrinsic path was involved. Apoptosis in MM14 cells was increased more by PTX than EpoB, and also induced more necrosis responsible for inflammation (1.4-fold) than EpoB. © 2013 International Federation for Cell Biology.

  12. IL-10 production by B cells expressing CD5 with the alternative exon 1B.

    PubMed

    Garaud, Soizic; Le Dantec, Christelle; de Mendoza, Agnès Revol; Mageed, Rizgar A; Youinou, Pierre; Renaudineau, Yves

    2009-09-01

    B lymphocytes are divided into two subpopulations, B1 and B2 cells based on expression of the T cell-associated protein CD5. Natural B1 cells are further divided into B1a cells that express CD5 on their membrane and B1b cells that do not but share most other biological characteristics of B1a cells. Recent studies from our laboratory have revealed, in humans, the existence of two alternative isoforms of the CD5 protein. A cell surface CD5 isoform which uses exon 1A (E1A) of the gene in B1a cells, and an intracellular isoform which uses exon 1B (E1B) mainly in human B1b cells. Indeed, the protein isoform encoded by transcripts containing E1B lack the leader peptide and is, thus, retained in the cytoplasm of B cells. The restriction of interleukin (IL)-10 to B1 lymphocytes in the mouse raises the possibility that the human CD5-E1B-expressing B cells produce IL-10. This prediction was confirmed in the CD5 negative Jok-1 B cells transfected with cDNA for either isoforms resulted in high level IL-10 production. Our data indicate that E1B-CD5-expressing B cells have the capacity to interfere with the immune response through their ability to produce high levels of IL-10.

  13. Aberrant antibody affinity selection in SHIP-deficient B cells.

    PubMed

    Leung, Wai-Hang; Tarasenko, Tatiana; Biesova, Zuzana; Kole, Hemanta; Walsh, Elizabeth R; Bolland, Silvia

    2013-02-01

    The strength of the Ag receptor signal influences development and negative selection of B cells, and it might also affect B-cell survival and selection in the GC. Here, we have used mice with B-cell-specific deletion of the 5'-inositol phosphatase SHIP as a model to study affinity selection in cells that are hyperresponsive to Ag and cytokine receptor stimulation. In the absence of SHIP, B cells have lower thresholds for Ag- and interferon (IFN)-induced activation, resulting in augmented negative selection in the BM and enhanced B-cell maturation in the periphery. Despite a tendency to spontaneously downregulate surface IgM expression, SHIP deficiency does not alter anergy induction in response to soluble hen-egg lysozyme Ag in the MDA4 transgenic model. SHIP-deficient B cells spontaneously produce isotype-switched antibodies; however, they are poor responders in immunization and infection models. While SHIP-deficient B cells form GCs and undergo mutation, they are not properly selected for high-affinity antibodies. These results illustrate the importance of negative regulation of B-cell responses, as lower thresholds for B-cell activation promote survival of low affinity and deleterious receptors to the detriment of optimal Ab affinity maturation. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Antiviral properties of prodelphinidin B-2 3'-O-gallate from green tea leaf.

    PubMed

    Cheng, Hua-Yew; Lin, Chun-Ching; Lin, Ta-Chen

    2002-07-01

    Prodelphinidin B-2 3-O-gallate, a proanthocyanidin gallate isolated from green tea leaf, was investigated for its anti-herpes simplex virus type 2 properties in vitro. Prodelphinidin B-2 3'-O-gallate exhibited antiviral activity with IC50 of 5.0 +/-1.0 microM and 1.6 +/-0.3 pM for XTT and plaque reduction (PRA) assays, respectively. Cytotoxicity assay had shown that prodelphinidin B-2 3'-O-gallate possessed cytotoxic effect toward Vero cell at concentration higher than its IC50. The 50% cytotoxic concentration for cell growth (CC50) was 33.3 +/- 3.7 microM. Thus, the selectivity index (SI) (ratio of IC50 to CC50) for XTT assay and PRA was 6.7 and 20.8, respectively. Prodelphinidin B-2 3'-O-gallate significantly reduced viral infectivity at concentrations 10 microM or more. Result of time-of-addition studies suggested that prodelphinidin B-2 3'-O-gallate affected the late stage of HSV-2 infection. In addition, it was also shown to inhibit the virus from attaching and penetrating into the cell. Thus, prodelphinidin B-2 3'-O-gallate was concluded to possess antiviral activity with mechanism of inhibiting viral attachment and penetration, and disturbing the late stage of viral infection.

  15. STAT3 activation is associated with cerebrospinal fluid interleukin-10 (IL-10) in primary central nervous system diffuse large B cell lymphoma.

    PubMed

    Mizowaki, Takashi; Sasayama, Takashi; Tanaka, Kazuhiro; Mizukawa, Katsu; Takata, Kumi; Nakamizo, Satoshi; Tanaka, Hirotomo; Nagashima, Hiroaki; Nishihara, Masamitsu; Hirose, Takanori; Itoh, Tomoo; Kohmura, Eiji

    2015-09-01

    Signal transducers and activators of transcription 3 (STAT3) are activated by various cytokines and oncogenes; however, the activity and pathogenesis of STAT3 in diffuse large B cell lymphoma of the central nervous system have not been thoroughly elucidated. We investigated the phosphorylation levels of STAT3 in 40 specimens of primary central nervous system diffuse large B-cell lymphoma (PCNS DLBCL) and analyzed the association between phsopho-STAT3 (pSTAT3) expression and cerebrospinal fluid (CSF) concentration of interleukin-10 (IL-10) or IL-6. Immunohistochemistry and Western blot analysis revealed that most of the specimens in PCNS DLBCL expressed pSTST3 protein, and a strong phosphorylation levels of STAT3 was statistically associated with high CSF IL-10 levels, but not with CSF IL-6 levels. Next, we demonstrated that recombinant IL-10 and CSF containing IL-10 induced the phosphorylation of STAT3 in PCNS DLBCL cells. Furthermore, molecular subtype classified by Hans' algorithm was correlated with pSTAT3 expression levels and CSF IL-10 levels. These results suggest that the STAT3 activity is correlated with CSF IL-10 level, which is a useful marker for STAT3 activity in PCNS DLBCLs.

  16. Cordycepin (3'-deoxyadenosine) inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosine A3 receptor followed by glycogen synthase kinase-3beta activation and cyclin D1 suppression.

    PubMed

    Yoshikawa, Noriko; Yamada, Shizuo; Takeuchi, Chihiro; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru; Nakamura, Kazuki

    2008-06-01

    Cordyceps sinensis, a parasitic fungus on the larvae of Lepidoptera, has been used as a traditional Chinese medicine. We previously reported that the growth of B16-BL6 mouse melanoma (B16-BL6) cells was inhibited by cordycepin (3'-deoxyadenosine), an active ingredient of C. sinensis, and its effect was antagonized by MRS1191, a selective adenosine A3 receptor antagonist. In this study, the radioligand binding assay using [125I]-AB-MECA (a selective adenosine A3 receptor agonist) has shown that B16-BL6 cells express adenosine A3 receptors and that cordycepin binds to these receptors. We also confirmed the involvement of adenosine A3 receptors in the action of cordycepin using MRS1523 and MRS1220, specific adenosine A3 receptor antagonists. Next, indirubin, a glycogen synthase kinase-3beta (GSK-3beta) inhibitor, antagonized the growth suppression induced by cordycepin. Furthermore, the level of cyclin D1 protein in B16-BL6 cells was decreased by cordycepin using Western blot analysis. In conclusion, this study demonstrated that cordycepin inhibits the proliferation of B16-BL6 cells by stimulating adenosine A3 receptors followed by the Wnt signaling pathway, including GSK-3beta activation and cyclin D1 inhibition.

  17. Circulating TFH cells, serological memory, and tissue compartmentalization shape human influenza-specific B cell immunity.

    PubMed

    Koutsakos, Marios; Wheatley, Adam K; Loh, Liyen; Clemens, E Bridie; Sant, Sneha; Nüssing, Simone; Fox, Annette; Chung, Amy W; Laurie, Karen L; Hurt, Aeron C; Rockman, Steve; Lappas, Martha; Loudovaris, Thomas; Mannering, Stuart I; Westall, Glen P; Elliot, Michael; Tangye, Stuart G; Wakim, Linda M; Kent, Stephen J; Nguyen, Thi H O; Kedzierska, Katherine

    2018-02-14

    Immunization with the inactivated influenza vaccine (IIV) remains the most effective strategy to combat seasonal influenza infections. IIV activates B cells and T follicular helper (T FH ) cells and thus engenders antibody-secreting cells and serum antibody titers. However, the cellular events preceding generation of protective immunity in humans are inadequately understood. We undertook an in-depth analysis of B cell and T cell immune responses to IIV in 35 healthy adults. Using recombinant hemagglutinin (rHA) probes to dissect the quantity, phenotype, and isotype of influenza-specific B cells against A/California09-H1N1, A/Switzerland-H3N2, and B/Phuket, we showed that vaccination induced a three-pronged B cell response comprising a transient CXCR5 - CXCR3 + antibody-secreting B cell population, CD21 hi CD27 + memory B cells, and CD21 lo CD27 + B cells. Activation of circulating T FH cells correlated with the development of both CD21 lo and CD21 hi memory B cells. However, preexisting antibodies could limit increases in serum antibody titers. IIV had no marked effect on CD8 + , mucosal-associated invariant T, γδ T, and natural killer cell activation. In addition, vaccine-induced B cells were not maintained in peripheral blood at 1 year after vaccination. We provide a dissection of rHA-specific B cells across seven human tissue compartments, showing that influenza-specific memory (CD21 hi CD27 + ) B cells primarily reside within secondary lymphoid tissues and the lungs. Our study suggests that a rational design of universal vaccines needs to consider circulating T FH cells, preexisting serological memory, and tissue compartmentalization for effective B cell immunity, as well as to improve targeting cellular T cell immunity. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Involvement of JNK and NF-κB pathways in lipopolysaccharide (LPS)-induced BAG3 expression in human monocytic cells.

    PubMed

    Wang, Hua-Qin; Meng, Xin; Liu, Bao-Qin; Li, Chao; Gao, Yan-Yan; Niu, Xiao-Fang; Li, Ning; Guan, Yifu; Du, Zhen-Xian

    2012-01-01

    Lipopolysaccharide (LPS) is an outer-membrane glycolipid component of Gram-negative bacteria known for its fervent ability to activate monocytic cells and for its potent proinflammatory capabilities. Bcl-2-associated athanogene 3 (BAG3) is a survival protein that has been shown to be stimulated during cell response to stressful conditions, such as exposure to high temperature, heavy metals, proteasome inhibition, and human immunodeficiency virus 1 (HIV-1) infection. In addition, BAG3 regulates replication of Varicella-Zoster Virus (VZV) and Herpes Simplex Virus (HSV) replication, suggesting that BAG3 could participate in the host response to infection. In the current study, we found that LPS increased the expression of BAG3 in a dose- and time-dependent manner. Actinomycin D completely blocked the LPS-induced BAG3 accumulation, as well as LPS activated the proximal promoter of BAG3 gene, supported that the induction by LPS occurred at the level of gene transcription. LPS-induced BAG3 expression was blocked by JNK or NF-κB inhibition, suggesting that JNK and NF-κB pathways participated in BAG3 induction by LPS. In addition, we also found that induction of BAG3 was implicated in monocytic cell adhesion to extracellular matrix induced by LPS. Overall, the data support that BAG3 is induced by LPS via JNK and NF-κB-dependent signals, and involved in monocytic cell-extracellular matrix interaction, suggesting that BAG3 may have a role in the host response to LPS stimulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Squamous Cell Carcinoma Antigen-encoding Genes SERPINB3/B4 as Potentially Useful Markers for the Stratification of HNSCC Tumours.

    PubMed

    Saidak, Zuzana; Morisse, Mony Chenda; Chatelain, Denis; Sauzay, Chloé; Houessinon, Aline; Guilain, Nelly; Soyez, Marion; Chauffert, Bruno; Dakpé, Stéphanie; Galmiche, Antoine

    2018-03-01

    The squamous cell carcinoma antigen (SCCA), encoded by the genes SERPINB3/B4, is a tumour marker produced by head and neck squamous cell carcinoma (HNSCC). We aimed to examine SERPINB3/B4 mRNA levels and its clinical significance in the therapeutic context. We retrieved mRNA expression levels, clinical, pathological and genomic data for 520 HNSCC from The Cancer Genome Atlas (TCGA). HNSCC tumours express high levels of SERPINB3/B4 mRNA. SERPINB3 expression differs depending on Human papillomavirus (HPV) infection status, primary tumour location, grade and differentiation, extension to lymph nodes and extracapsular spread. Interestingly, we observed an association between SERPINB3/B4 and the presence of tumour immune infiltrate as well as the expression of the immune checkpoint regulators PD-L1/PD-L2 that depended on HPV status. Our findings point to potential interest of SERPINB3/B4 for the stratification of HNSCC patients in the therapeutic context. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Analysis of gene expression and Ig transcription in PU.1/Spi-B-deficient progenitor B cell lines.

    PubMed

    Schweitzer, Brock L; DeKoter, Rodney P

    2004-01-01

    A number of presumptive target genes for the Ets-family transcription factor PU.1 have been identified in the B cell lineage. However, the precise function of PU.1 in B cells has not been studied because targeted null mutation of the PU.1 gene results in a block to lymphomyeloid development at an early developmental stage. In this study, we take advantage of recently developed PU.1(-/-)Spi-B(-/-) IL-7 and stromal cell-dependent progenitor B (pro-B) cell lines to analyze the function of PU.1 and Spi-B in B cell development. We show that contrary to previously published expectations, PU.1 and/or Spi-B are not required for Ig H chain (IgH) gene transcription in pro-B cells. In fact, PU.1(-/-)Spi-B(-/-) pro-B cells have increased levels of IgH transcription compared with wild-type pro-B cells. In addition, high levels of Igkappa transcription are induced after IL-7 withdrawal of wild-type or PU.1(-/-)Spi-B(-/-) pro-B cells. In contrast, we found that Iglambda transcription is reduced in PU.1(-/-)Spi-B(-/-) pro-B cells relative to wild-type pro-B cells after IL-7 withdrawal. These results suggest that Iglambda, but not IgH or Igkappa, transcription, is dependent on PU.1 and/or Spi-B. The PU.1(-/-)Spi-B(-/-) pro-B cells have other phenotypic changes relative to wild-type pro-B cells including increased proliferation, increased CD25 expression, decreased c-Kit expression, and decreased RAG-1 expression. Taken together, our observations suggest that reduction of PU.1 and/or Spi-B activity in pro-B cells promotes their differentiation to a stage intermediate between late pro-B cells and large pre-B cells.

  1. Repeated B cell depletion in treatment of refractory systemic lupus erythematosus

    PubMed Central

    Ng, K P; Leandro, M J; Edwards, J C; Ehrenstein, M R; Cambridge, G; Isenberg, D A

    2006-01-01

    Objectives To report the clinical outcome and safety profile of repeated B cell depletion in seven patients with refractory systemic lupus erythematosus (SLE). Methods Since June 2000, seven patients with refractory SLE had repeated cycles of B cell depletion (18 cycles in total, up to three cycles per patient) because of disease relapse. The clinical response (assessed by the British Isles Lupus Activity Guide (BILAG) activity index), duration of B cell depletion, and adverse events in these patients was reviewed. Results Four patients (Nos 1, 2, 3, 6) had three cycles of treatment and three (Nos 4, 5, 7) had two cycles. Four of the seven patients (Nos 1, 3, 5, 6) improved. The mean global BILAG scores dropped from 15 to 6 at 5–7 months. The median duration of clinical response and B cell depletion was 13 months and 6 months, respectively. After the third cycle, 2/4 patients (Nos 1 and 2) improved. The median duration of clinical benefit was 12 months. Most patients tolerate re‐treatment very well. Conclusion Re‐treatment with B cell depletion of patients with severe SLE is safe and may be effective for 6–12 months on average. PMID:16269424

  2. The Antitumor Mechanism of Paeonol on CXCL4/CXCR3-B Signals in Breast Cancer Through Induction of Tumor Cell Apoptosis.

    PubMed

    Saahene, Roland O; Wang, Jianjie; Wang, Mo-Lin; Agbo, Elvis; Pang, Dezhi

    2018-05-30

    Paeonol, a phenolic component from the root bark of Paeonia moutan, has been identified to possess antitumor effects. However, the effect of paeonol and the mechanism of CXCL4/CXCR3-B signals in paeonol-induced breast cancer cell remain unknown. After MDA-MB-231 cells were pretreated with paeonol or DMSO, the proliferation activity was detected by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), Hoechst, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and Annexin-V/propidium iodide staining flow cytometry. Western blot and immunohistochemistry of human breast cancer and noncancerous tissues were performed to determine the molecular alteration of CXCL4/CXCR3-B signals. Compared with the control, paeonol-treated breast cancer cells had low proliferation activity and high apoptotic index, indicating that paeonol induces breast cancer cell apoptosis. Western blot and immunohistochemistry showed that paeonol increased CXCR3-B signal, downregulated CXCL4, heme oxygenase (HO-1) with a corresponding increased BACH1, and decreased nuclear factor E2-related factor 2 (Nrf2). Thus, CXCL4/CXCR3-B may be involved in the mechanism of apoptosis induced by paeonol in breast cancer cells by regulating the expression of BACH1 and Nrf2 to downregulating HO-1 and promote apoptosis. Therefore, the authors suggest paeonol has a significant growth inhibitory effect on breast cancer cells, which may be related to the induction of apoptosis.

  3. B cell activation. III. B cell plasma membrane depolarization and hyper- Ia antigen expression induced by receptor immunoglobulin cross-linking are coupled

    PubMed Central

    1983-01-01

    We report investigation of the relationship between ligand-induced B cell plasma membrane depolarization and increased expression of membrane-associated, I-A subregion encoded (mI-A) antigens. Results demonstrate that equal frequencies of B cells are stimulated to undergo membrane depolarization and to increase mI-A expression in response to mitogen, anti-Ig, and thymus-independent (TI) or thymus-dependent (TD) antigens. Further, a cause-and-effect relationship between these two events is suggested by results that demonstrate that inhibition of anti- Fab--induced depolarization by valinomycin also inhibits the subsequent increase in mI-A antigen expression and "passive" (non-ligand-mediated) depolarization of murine B cells by K+ results in hyper-mI-A antigen expression. Based upon these results we hypothesize that antigen- mediated receptor cross-linking results in signal transduction via membrane depolarization, which is resultant in increased mI-A antigen synthesis and cell surface expression. This increase in mI-A antigen density may render the B cell more receptive to subsequent interaction with I-region-restricted helper T cells. PMID:6415207

  4. NFκB inhibitors induce cell death in glioblastomas.

    PubMed

    Zanotto-Filho, Alfeu; Braganhol, Elizandra; Schröder, Rafael; de Souza, Luís Henrique T; Dalmolin, Rodrigo J S; Pasquali, Matheus A Bittencourt; Gelain, Daniel Pens; Battastini, Ana Maria Oliveira; Moreira, José Cláudio Fonseca

    2011-02-01

    Identification of novel target pathways in glioblastoma (GBM) remains critical due to poor prognosis, inefficient therapies and recurrence associated with these tumors. In this work, we evaluated the role of nuclear-factor-kappa-B (NFκB) in the growth of GBM cells, and the potential of NFκB inhibitors as antiglioma agents. NFκB pathway was found overstimulated in GBM cell lines and in tumor specimens compared to normal astrocytes and healthy brain tissues, respectively. Treatment of a panel of established GBM cell lines (U138MG, U87, U373 and C6) with pharmacological NFκB inhibitors (BAY117082, parthenolide, MG132, curcumin and arsenic trioxide) and NFκB-p65 siRNA markedly decreased the viability of GBMs as compared to inhibitors of other signaling pathways such as MAPKs (ERK, JNK and p38), PKC, EGFR and PI3K/Akt. In addition, NFκB inhibitors presented a low toxicity to normal astrocytes, indicating selectivity to cancerous cells. In GBMs, mitochondrial dysfunction (membrane depolarization, bcl-xL downregulation and cytochrome c release) and arrest in the G2/M phase were observed at the early steps of NFκB inhibitors treatment. These events preceded sub-G1 detection, apoptotic body formation and caspase-3 activation. Also, NFκB was found overstimulated in cisplatin-resistant C6 cells, and treatment of GBMs with NFκB inhibitors overcame cisplatin resistance besides potentiating the effects of the chemotherapeutics, cisplatin and doxorubicin. These findings support NFκB as a potential target to cell death induction in GBMs, and that the NFκB inhibitors may be considered for in vivo testing on animal models and possibly on GBM therapy. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Daqing; Wang, Jing; Yang, Niandi

    Matrine has been demonstrated to attenuate allergic airway inflammation. Elevated suppressor of cytokine signaling 3 (SOCS3) was correlated with the severity of asthma. The aim of this study was to investigate the effect of matrine on SOCS3 expression in airway inflammation. In this study, we found that matrine significantly inhibited OVA-induced AHR, inflammatory cell infiltration, goblet cell differentiation, and mucous production in a dose-dependent manner in mice. Matrine also abrogated the level of interleukin (IL)-4 and IL-13, but enhanced interferon (IFN)-γ expression, both in BALF and in lung homogenates. Furthermore, matrine impeded TNF-α-induced the expression of IL-6 and adhesion moleculesmore » in airway epithelial cells (BEAS-2B and MLE-12). Additionally, we found that matrine inhibited SOCS3 expression, both in asthmatic mice and TNF-α-stimulated epithelial cells via suppression of the NF-κB signaling pathway by using pcDNA3.1-SOCS3 plasmid, SOCS3 siRNA, or nuclear factor kappa-B (NF-κB) inhibitor PDTC. Conclusions: Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice. - Highlights: • Matrine attenuates asthmatic symptoms and regulates Th1/Th2 balance in vivo. • Matrine suppresses inflammation responses in vitro. • Matrine decreases SOCS3 expression both in vivo and in vitro. • Matrine inhibits SOCS3 expression by suppressing NF-κB signaling.« less

  6. Efficient glycoengineering of GM3 on melanoma cell and monoclonal antibody-mediated selective killing of the glycoengineered cancer cell

    PubMed Central

    Wang, Qianli; Zhang, Junping; Guo, Zhongwu

    2007-01-01

    To verify the principal of a new immunotherapeutic strategy for cancer, a monoclonal antibody 2H3 against N-phenylacetyl GM3, an unnatural form of the tumor-associated antigen GM3, was prepared and employed to demonstrate that murine melanoma cell B16F0 could be effectively glycoengineered by N-phenylacetyl-d-mannosamine to express N-phenylacetyl GM3 and that 2H3 was highly cytotoxic to the glycoengineered B16F0 cell in the presence of complements. It was further demonstrated that B16F0 cell could be glycoengineered 4-5 times more effectively than 3T3 A31 cell, a normal murine embryo fibroblast cell, and that the antibody and complement mediated cytotoxicity was at least 200 times more potent to the glycoengineered B16F0 cell than to the N-phenylacetyl-d-mannosamine-treated 3T3 A31 cell. These results show the promise for developing useful melanoma immunotherapies based on vaccination against N-phenylacetyl GM3 followed by treatment with N-phenylacetyl-d-mannosamine. PMID:17892942

  7. Efficient glycoengineering of GM3 on melanoma cell and monoclonal antibody-mediated selective killing of the glycoengineered cancer cell.

    PubMed

    Wang, Qianli; Zhang, Junping; Guo, Zhongwu

    2007-12-15

    To verify the principal of a new immunotherapeutic strategy for cancer, a monoclonal antibody 2H3 against N-phenylacetyl GM3, an unnatural form of the tumor-associated antigen GM3, was prepared and employed to demonstrate that murine melanoma cell B16F0 could be effectively glycoengineered by N-phenylacetyl-d-mannosamine to express N-phenylacetyl GM3 and that 2H3 was highly cytotoxic to the glycoengineered B16F0 cell in the presence of complements. It was further demonstrated that B16F0 cell could be glycoengineered 4-5 times more effectively than 3T3 A31 cell, a normal murine embryo fibroblast cell, and that the antibody and complement mediated cytotoxicity was at least 200 times more potent to the glycoengineered B16F0 cell than to the N-phenylacetyl-d-mannosamine-treated 3T3 A31 cell. These results show the promise for developing useful melanoma immunotherapies based on vaccination against N-phenylacetyl GM3 followed by treatment with N-phenylacetyl-d-mannosamine.

  8. Strategic Therapeutic Targeting to Overcome Venetoclax Resistance in Aggressive B-cell Lymphomas.

    PubMed

    Pham, Lan V; Huang, Shengjian; Zhang, Hui; Zhang, Jun; Bell, Taylor; Zhou, Shouhao; Pogue, Elizabeth; Ding, Zhiyong; Lam, Laura; Westin, Jason; Davis, R Eric; Young, Ken H; Medeiros, L Jeffrey; Ford, Richard J; Nomie, Krystle; Zhang, Leo; Wang, Michael

    2018-04-17

    Purpose: B-cell lymphoma-2 (BCL-2), an antiapoptotic protein often dysregulated in B-cell lymphomas, promotes cell survival and provides protection from stress. A recent phase I first-in-human study of the BCL-2 inhibitor venetoclax in non-Hodgkin lymphoma showed an overall response rate of 44%. These promising clinical results prompted our examination of the biological effects and mechanism of action underlying venetoclax activity in aggressive B-cell lymphoma, including mantle cell lymphoma (MCL) and diffuse large B-cell lymphoma (DLBCL). Experimental Design: MCL and DLBCL cell lines, primary patient samples, and in vivo patient-derived xenograft (PDX) models were utilized to examine venetoclax efficacy. Furthermore, the mechanisms underlying venetoclax response and the development of venetoclax resistance were evaluated using proteomics analysis and Western blotting. Results: Potential biomarkers linked to venetoclax activity and targeted combination therapies that can augment venetoclax response were identified. We demonstrate that DLBCL and MCL cell lines, primary patient samples, and PDX mouse models expressing high BCL-2 levels are extremely sensitive to venetoclax treatment. Proteomics studies showed that venetoclax substantially alters the expression levels and phosphorylation status of key proteins involved in cellular processes, including the DNA damage response, cell metabolism, cell growth/survival, and apoptosis. Short- and long-term exposure to venetoclax inhibited PTEN expression, leading to enhanced AKT pathway activation and concomitant susceptibility to PI3K/AKT inhibition. Intrinsic venetoclax-resistant cells possess high AKT activation and are highly sensitive to PI3K/AKT inhibition. Conclusions: These findings demonstrate the on-target effect of venetoclax and offer potential mechanisms to overcome acquired and intrinsic venetoclax resistance through PI3K/AKT inhibition. Clin Cancer Res; 1-14. ©2018 AACR. ©2018 American Association for

  9. Lobatin B inhibits NPM/ALK and NF-κB attenuating anaplastic-large-cell-lymphomagenesis and lymphendothelial tumour intravasation.

    PubMed

    Kiss, Izabella; Unger, Christine; Huu, Chi Nguyen; Atanasov, Atanas Georgiev; Kramer, Nina; Chatruphonprasert, Waranya; Brenner, Stefan; McKinnon, Ruxandra; Peschel, Andrea; Vasas, Andrea; Lajter, Ildiko; Kain, Renate; Saiko, Philipp; Szekeres, Thomas; Kenner, Lukas; Hassler, Melanie R; Diaz, Rene; Frisch, Richard; Dirsch, Verena M; Jäger, Walter; de Martin, Rainer; Bochkov, Valery N; Passreiter, Claus M; Peter-Vörösmarty, Barbara; Mader, Robert M; Grusch, Michael; Dolznig, Helmut; Kopp, Brigitte; Zupko, Istvan; Hohmann, Judit; Krupitza, Georg

    2015-01-28

    An apolar extract of the traditional medicinal plant Neurolaena lobata inhibited the expression of the NPM/ALK chimera, which is causal for the majority of anaplastic large cell lymphomas (ALCLs). Therefore, an active principle of the extract, the furanoheliangolide sesquiterpene lactone lobatin B, was isolated and tested regarding the inhibition of ALCL expansion and tumour cell intravasation through the lymphendothelium. ALCL cell lines, HL-60 cells and PBMCs were treated with plant compounds and the ALK inhibitor TAE-684 to measure mitochondrial activity, proliferation and cell cycle progression and to correlate the results with protein- and mRNA-expression of selected gene products. Several endpoints indicative for cell death were analysed after lobatin B treatment. Tumour cell intravasation through lymphendothelial monolayers was measured and potential causal mechanisms were investigated analysing NF-κB- and cytochrome P450 activity, and 12(S)-HETE production. Lobatin B inhibited the expression of NPM/ALK, JunB and PDGF-Rβ, and attenuated proliferation of ALCL cells by arresting them in late M phase. Mitochondrial activity remained largely unaffected upon lobatin B treatment. Nevertheless, caspase 3 became activated in ALCL cells. Also HL-60 cell proliferation was attenuated whereas PBMCs of healthy donors were not affected by lobatin B. Additionally, tumour cell intravasation, which partly depends on NF-κB, was significantly suppressed by lobatin B most likely due to its NF-κB-inhibitory property. Lobatin B, which was isolated from a plant used in ethnomedicine, targets malignant cells by at least two properties: I) inhibition of NPM/ALK, thereby providing high specificity in combating this most prevalent fusion protein occurring in ALCL; II) inhibition of NF-κB, thereby not affecting normal cells with low constitutive NF-κB activity. This property also inhibits tumour cell intravasation into the lymphatic system and may provide an option to manage this

  10. Cutaneous double-hit B-cell lymphoma: an aggressive form of B-cell lymphoma with a propensity for cutaneous dissemination.

    PubMed

    Magro, Cynthia M; Wang, Xuan; Subramaniyam, Shivakumar; Darras, Natasha; Mathew, Susan

    2014-04-01

    Diffuse large cell B-cell lymphoma of the skin is most commonly represented by diffuse large cell variants of primary cutaneous follicle center cell lymphoma and the leg-type lymphoma. In a minority of cases, the infiltrates are an expression of stage 4 disease of established extracutaneous B-cell lymphoma. We describe 3 patients with an aggressive form of B-cell lymphoma secondarily involving the skin. Two of the patients were in the ninth decade of life, whereas 1 patient was 34 years of age. In the elderly patients, there was an antecedent and/or concurrent history of follicular lymphoma, whereas in the younger patient, the tumor was a de novo presentation of this aggressive form of lymphoma. The elderly patients succumbed to their disease within less than a year from the time of diagnosis, whereas 1 patient is alive but with persistent and progressive disease despite chemotherapeutic intervention. The infiltrates in all 3 cases were diffuse and composed of large malignant hematopoietic cells that exhibited a round nucleus with a finely dispersed chromatin. Phenotypically, the tumor cells were Bcl-2 and CD10 positive, whereas Bcl-6 and Mum-1 showed variable positivity. One case showed combined Mum-1 positivity along with an acute lymphoblastic lymphoma phenotype, including the absence of CD20 expression. In each case, there was a c-MYC and BCL2/IGH rearrangement diagnostic of double-hit lymphoma. In one case, there was an additional BCL6 rearrangement, defining what is in essence triple-hit lymphoma. In conclusion, double-hit lymphoma is an aggressive form of B-cell neoplasia resistant to standard chemotherapy regimens, which in many but not all cases represents tumor progression in the setting of a lower grade B-cell malignancy.

  11. Malaria-associated atypical memory B cells exhibit markedly reduced B cell receptor signaling and effector function

    PubMed Central

    Portugal, Silvia; Tipton, Christopher M; Sohn, Haewon; Kone, Younoussou; Wang, Jing; Li, Shanping; Skinner, Jeff; Virtaneva, Kimmo; Sturdevant, Daniel E; Porcella, Stephen F; Doumbo, Ogobara K; Doumbo, Safiatou; Kayentao, Kassoum; Ongoiba, Aissata; Traore, Boubacar; Sanz, Inaki; Pierce, Susan K; Crompton, Peter D

    2015-01-01

    Protective antibodies in Plasmodium falciparum malaria are only acquired after years of repeated infections. Chronic malaria exposure is associated with a large increase in atypical memory B cells (MBCs) that resemble B cells expanded in a variety of persistent viral infections. Understanding the function of atypical MBCs and their relationship to classical MBCs will be critical to developing effective vaccines for malaria and other chronic infections. We show that VH gene repertoires and somatic hypermutation rates of atypical and classical MBCs are indistinguishable indicating a common developmental history. Atypical MBCs express an array of inhibitory receptors and B cell receptor (BCR) signaling is stunted in atypical MBCs resulting in impaired B cell responses including proliferation, cytokine production and antibody secretion. Thus, in response to chronic malaria exposure, atypical MBCs appear to differentiate from classical MBCs becoming refractory to BCR-mediated activation and potentially interfering with the acquisition of malaria immunity. DOI: http://dx.doi.org/10.7554/eLife.07218.001 PMID:25955968

  12. Viewing a humorous film decreases IgE production by seminal B cells from patients with atopic eczema.

    PubMed

    Kimata, Hajime

    2009-02-01

    Sperms induced IgE production by seminal B cells from patients with atopic eczema via interaction of B cells with galectin-3 on sperms. We studied the effect of viewing a humorous film on IgE production by seminal B cells cultured with sperms. Twenty-four male patients with atopic eczema viewed a humorous film (Modern Times, featuring Charlie Chaplin). Just before and immediately after viewing, semen was collected, and seminal B cells and sperms were purified. Seminal B cells were cultured with sperms and IgE production was measured, while expression of galectin-3 on sperms was assessed. After viewing the humorous film, IgE production by B cells cultured with sperms was significantly decreased. Moreover, expression of galectin-3 on sperms was reduced. Viewing a humorous film reduced galectin-3 expression on sperms, which in turn decreased IgE production by seminal B cells cultured with sperms. These results indicate that viewing a humorous film may be helpful for the study and treatment of local IgE production and allergy in the reproductive tract.

  13. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6–producing B cells

    PubMed Central

    Shen, Ping; Brown, Sheila; Lampropoulou, Vicky; Roch, Toralf; Lawrie, Sarah; Fan, Boli; O’Connor, Richard A.; Anderton, Stephen M.; Bar-Or, Amit; Fillatreau, Simon; Gray, David

    2012-01-01

    B cells have paradoxical roles in autoimmunity, exerting both pathogenic and protective effects. Pathogenesis may be antibody independent, as B cell depletion therapy (BCDT) leads to amelioration of disease irrespective of autoantibody ablation. However, the mechanisms of pathogenesis are poorly understood. We demonstrate that BCDT alleviates central nervous system autoimmunity through ablation of IL-6–secreting pathogenic B cells. B cells from mice with experimental autoimmune encephalomyelitis (EAE) secreted elevated levels of IL-6 compared with B cells from naive controls, and mice with a B cell–specific IL-6 deficiency showed less severe disease than mice with wild-type B cells. Moreover, BCDT ameliorated EAE only in mice with IL-6–sufficient B cells. This mechanism of pathogenesis may also operate in multiple sclerosis (MS) because B cells from MS patients produced more IL-6 than B cells from healthy controls, and this abnormality was normalized with B cell reconstitution after Rituximab treatment. This suggests that BCDT improved disease progression, at least partly, by eliminating IL-6–producing B cells in MS patients. Taking these data together, we conclude that IL-6 secretion is a major mechanism of B cell–driven pathogenesis in T cell–mediated autoimmune disease such as EAE and MS. PMID:22547654

  14. OCA-B regulation of B-cell development and function.

    PubMed

    Teitell, Michael A

    2003-10-01

    The transcriptional co-activator OCA-B [for Oct co-activator from B cells, also known as OBF-1 (OCT-binding factor-1) and Bob1] is not required for B-cell genesis but does regulate subsequent B-cell development and function. OCA-B deficient mice show strain-specific, partial blocks at multiple stages of B-cell maturation and a complete disruption of germinal center formation in all strains, causing humoral immune deficiency and susceptibility to infection. OCA-B probably exerts its effects through the regulation of octamer-motif controlled gene expression. The OCA-B gene encodes two proteins of distinct molecular weight, designated p34 and p35. The p34 isoform localizes in the nucleus, whereas the p35 isoform is myristoylated and is bound to the cytoplasmic membrane. p35 can traffic to the nucleus and probably activates octamer-dependent transcription, although this OCA-B isoform might regulate B cells through membrane-related signal transduction.

  15. Decursinol angelate blocks transmigration and inflammatory activation of cancer cells through inhibition of PI3K, ERK and NF-kappaB activation.

    PubMed

    Kim, Won-Jung; Lee, Min-Young; Kim, Jung-Hee; Suk, Kyoungho; Lee, Won-Ha

    2010-10-01

    Inflammation is known to be closely associated with the development of cancer. Decursinol angelate (DA), a coumarin compound isolated from Angelica gigas and related compounds have been shown to possess potent anti-inflammatory activities. However, little is known about their effects on the inflammatory processes associated with cancer. In this study, the anti-inflammatory effect of DA was evaluated in cancer cell lines with respect to cellular invasion through the extracellular matrix (ECM) and the expression of pro-inflammatory mediators such as cytokine, cell adhesion molecules and matrix metalloproteinase (MMP)-9. DA inhibited the invasion of fibrosarcoma cell line, HT1080 and breast cancer cell line, MDA-MB-231 in the Matrigel invasion assay. DA-mediated suppression of cancer cell invasion was accomplished by suppression of PI3K activity known to be associated with cytoskeletal rearrangement related to cellular migration. DA also suppressed the adhesion of cancer cells to ECM mediated by down-regulation of beta(1)-integrin expression levels. Furthermore, DA inhibited the expression of pro-inflammatory cytokines and MMP-9 through suppression of PI3K, ERK and NF-kappaB activation. These results demonstrate that DA suppresses invasion and inflammatory activation of cancer cells through modulation of PI3K/AKT, ERK and NF-kappaB. These anti-inflammatory activities of DA may contribute to its anti-cancer activity. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Insulin-like growth factor-binding protein-3 inhibits IGF-1-induced proliferation of human hepatocellular carcinoma cells by controlling bFGF and PDGF autocrine/paracrine loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Yang; Han, Chen-chen; Li, Yifan

    Basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) produced by hepatocellular carcinoma (HCC) cells are responsible for the growth of HCC cells. Accumulating evidence shows that insulin-like growth factor-binding protein-3 (IGFBP-3) suppresses HCC cell proliferation in both IGF-dependent and independent manners. It's unknown, however, whether treatment with exogenous IGFBP-3 inhibits bFGF and PDGF production in HCC cells. The present study demonstrates that IGFBP-3 suppressed IGF-1-induced bFGF and PDGF expression while it does not affect their expression in the absence of IGF-1. To delineate the underlying mechanism, western-blot and RT-PCR assays confirmed that the transcription factor early growth responsemore » protein 1 (EGR1) is involved in IGFBP-3 regulation of bFGF and PDGF. IGFBP-3 inhibition of type 1 insulin-like growth factor receptor (IGF1R), ERK and AKT activation is IGF-1-dependent. Furthermore, transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1, bFGF and PDGF expression. In conclusion, these findings suggest that IGFBP-3 suppresses transcription of EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation. It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation, suggesting that IGFBP-3 could be a target for the treatment of HCC. - Highlights: • IGFBP-3 plays an inhibition role in IGF1-induced HCC cell growth. • IGFBP-3 inhibits bFGF and PDGF production in the IGF-dependent manner. • EGR1 is involved in IGFBP-3 regulation of bFGF and PDGF in HCC cells. • IGFBP-3 suppresses EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation.« less

  17. Overexpression of microRNA-125b inhibits human acute myeloid leukemia cells invasion, proliferation and promotes cells apoptosis by targeting NF-κB signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan; Tang, Ping; Chen, Yanli

    microRNA-125b has been reported to play an novel biological function in the progression and development of several kinds of leukemia. However, the detail role of miR-125b in acute myeloid leukemia (AML) is remains largely unknown. The present study aimed to investigate the biological role of miR-125b in AML and the potential molecular mechanism involved in this process. Our results showed that overexpression of miR-125b suppressed AML cells proliferation, invasion and promotes cells apoptosis in a dose-dependent manner, while the miR-NC did not show the same effect. In addition, miR-125b induced AML cells G2/M cell cycle arrest in vitro. Overexpression of miR-125bmore » resulted in a significant decrease of the expression of p-IκB-α and inhibition of IκB-α degradation, and the nuclear translocation of NF-κB subunit p65 was abrogated by miR-125b simutaneously. To further verify that miR-125b targeted NF-κB signaling pathway, the NF-κB-regulated downstream genes that were associated with cell cycle arrest and apoptosis was also determined. The results showed that, miR-125b also affect NF-κB-regulated genes expression involved in cell cycle arrest and apoptosis. In conclusion, the present work certificates that miR-125b can significantly inhibit human AML cells invasion, proliferation and promotes cells apoptosis by targeting the NF-κB signaling pathway, and thus it can be viewed as an promising therapeutic target for AML. - Highlights: • Overexpression of miR-125b suppressed AML cells proliferation, invasion and promotes cells apoptosis. • miR-125b induced AML cells G2/M cell cycle arrest in vitro. • miR-125b suppressed AML cells tumorigenicity and promoted cells apoptosis by targeting NF-κB pathway.« less

  18. Censoring of self-reactive B cells by follicular dendritic cell-displayed self-antigen

    PubMed Central

    Yau, Irene W.; Cato, Matthew H.; Jellusova, Julia; Hurtado de Mendoza, Tatiana; Brink, Robert; Rickert, Robert C.

    2013-01-01

    In the secondary lymphoid organs, intimate contact with follicular dendritic cells (FDCs) is required for B cell retention and antigen-driven selection during the germinal center response. However, selection of self-reactive B cells by antigen on FDCs has not been addressed. To this end, we generated a mouse model to conditionally express a membrane-bound self-antigen on FDCs, and monitor the fate of developing self-reactive B cells. Here, we show that self-antigen displayed on FDCs mediates effective elimination of self-reactive B cells at the transitional stage. Notwithstanding, some self-reactive B cells persist beyond this checkpoint, showing evidence of antigen experience and intact proximal BCR signaling, but they are short-lived and unable to elicit T cell help. These results implicate FDCs as an important component of peripheral B cell tolerance that prevent the emergence of naïve B cells capable of responding to sequestered self-antigens. PMID:23817432

  19. RECEPTOR FOR THE FOURTH COMPONENT OF COMPLEMENT ON HUMAN B LYMPHOCYTES AND CULTURED HUMAN LYMPHOBLASTOID CELLS

    PubMed Central

    Bokisch, Viktor A.; Sobel, Alain T.

    1974-01-01

    This report describes receptors for C4b on human peripheral B lymphocytes. The simultaneous presence of C3b and C4b receptors on the same lymphocytes was demonstrated by the formation of mixed rosettes consisting of the lymphocytes, EAC14 and EAC1423. Furthermore, reduction of the number of EAC1423 rosette-forming lymphocytes in a lymphocyte population by albumin gradient centrifugation concomitantly reduced EAC14 rosette-forming lymphocytes. Binding of EAC14 intermediates to receptors on human lymphocytes and erythrocytes could be inhibited by equal amounts of soluble C3b or C4b, suggesting the presence of a single receptor for both ligands on those cells. In contrast, the results of the rosette assay with Raji cells, cultured human lymphoblastoid cells, EAC14 and EAC1423 suggested that the receptors for C4b and C3b are distinct entities, since Raji cells formed rosettes with EAC1423, but not with EAC14. Moreover, this report demonstrates a cooperation of erythrocyte-bound C4b and C3b in the binding of EAC1423 to B lymphocytes. In contrast to KAF-treated C3b, KAF-treated C4b did not bind to B lymphocytes, indicating that these cells lack a receptor for C4d. PMID:4547573

  20. Strategies of NF-κB signaling modulation by ectromelia virus in BALB/3T3 murine fibroblasts.

    PubMed

    Struzik, Justyna; Szulc-Dąbrowska, Lidia; Winnicka, Anna; Niemiałtowski, Marek

    2015-10-01

    Nuclear factor κB (NF-κB) is a pleiotropic transcription factor that regulates the expression of immune response genes. NF-κB signaling can be disrupted by pathogens that prevent host immune response. In this work, we examined the influence of ectromelia (mousepox) virus (ECTV) on NF-κB signaling in murine BALB/3T3 fibroblasts. Activation of NF-κB via tumor necrosis factor (TNF) receptor 1 (TNFR1) in these cells induces proinflammatory cytokine secretion. We show that ECTV does not recruit NF-κB to viral factories or induce NF-κB nuclear translocation in BALB/3T3 cells. Additionally, ECTV counteracts TNF-α-induced p65 NF-κB nuclear translocation during the course of infection. Inhibition of TNF-α-induced p65 nuclear translocation was also observed in neighboring cells that underwent fusion with ECTV-infected cells. ECTV inhibits the key step of NF-κB activation, i.e. Ser32 phosphorylation and degradation of inhibitor κBα (IκBα) induced by TNF-α. We also observed that ECTV prevents TNF-α-induced Ser536 of p65 phosphorylation in BALB/3T3 cells. Studying TNFR1 signaling provides information about regulation of inflammatory response and cell survival. Unraveling poxviral immunomodulatory strategies may be helpful in drug target identification as well as in vaccine development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Piper betle leaf extracts induced human hepatocellular carcinoma Hep3B cell death via MAPKs regulating the p73 pathway in vitro and in vivo.

    PubMed

    Wu, Pei-Fang; Tseng, Hsien-Chun; Chyau, Charng-Cherng; Chen, Jing-Hsien; Chou, Fen-Pi

    2014-12-01

    Extracts of Piper betle leaf (PBLs) are rich in bioactive compounds with potential chemopreventive ability. In this study, Hep3B cells which are p53 null were used to investigate the anti-tumor effect of PBLs in the cell and in the xenograft model. The results revealed that PBLs (0.1 to 1 mg mL(-1)) induced a dose- and time-dependent increase of cell toxicity. The underlying mechanisms as evidenced by flow cytometry and western blot analysis showed that PBLs triggered ATM, cAbl, and p73 expressions and activated JNK and p38 pathways that subsequently led to cell cycle arrest and mitochondria-dependent apoptosis. PBLs also inhibited tumor growth in Hep3B-bearing mice via inducing the MAPK-p73 pathway. Our results demonstrated the in vitro and in vivo anti-tumor potential of PBLs, supporting their application as a novel chemopreventive agent for the treatment of human hepatocellular carcinoma (HCC) in the future via targeting the p73 pathway.

  2. Regulation of Mitochondria Function by TRAF3 in B Lymphocytes and B Cell Malignancies

    DTIC Science & Technology

    2015-10-01

    1, 2014. 2. Chair, Block Symposia of Innate Immune Responses in Monocytes/Macrophages, Dendritic Cells , and Myeloid Cells , the Annual Meeting of...Xie P. TRAF3-mediated regulation of innate immunity and inflammation. Research Forum, Department of Cell Biology and Neuroscience, Rutgers...TRAF3: a regulator of innate immunity and inflammation. Department of Cell & Molecular Physiology, University of Loyola, Chicago, IL. Aug. 27, 2014 9

  3. Cell-Autonomous Regulation of Dendritic Spine Density by PirB.

    PubMed

    Vidal, George S; Djurisic, Maja; Brown, Kiana; Sapp, Richard W; Shatz, Carla J

    2016-01-01

    Synapse density on cortical pyramidal neurons is modulated by experience. This process is highest during developmental critical periods, when mechanisms of synaptic plasticity are fully engaged. In mouse visual cortex, the critical period for ocular dominance (OD) plasticity coincides with the developmental pruning of synapses. At this time, mice lacking paired Ig-like receptor B (PirB) have excess numbers of dendritic spines on L5 neurons; these spines persist and are thought to underlie the juvenile-like OD plasticity observed in adulthood. Here we examine whether PirB is required specifically in excitatory neurons to exert its effect on dendritic spine and synapse density during the critical period. In mice with a conditional allele of PirB (PirB fl/fl ), PirB was deleted only from L2/3 cortical pyramidal neurons in vivo by timed in utero electroporation of Cre recombinase. Sparse mosaic expression of Cre produced neurons lacking PirB in a sea of wild-type neurons and glia. These neurons had significantly elevated dendritic spine density, as well as increased frequency of miniature EPSCs, suggesting that they receive a greater number of synaptic inputs relative to Cre - neighbors. The effect of cell-specific PirB deletion on dendritic spine density was not accompanied by changes in dendritic branching complexity or axonal bouton density. Together, results imply a neuron-specific, cell-autonomous action of PirB on synaptic density in L2/3 pyramidal cells of visual cortex. Moreover, they are consistent with the idea that PirB functions normally to corepress spine density and synaptic plasticity, thereby maintaining headroom for cells to encode ongoing experience-dependent structural change throughout life.

  4. Cathelin-related antimicrobial peptide differentially regulates T- and B-cell function

    PubMed Central

    Kin, Nicholas W.; Chen, Yao; Stefanov, Emily K.; Gallo, Richard L.; Kearney, John F.

    2011-01-01

    Mammalian antimicrobial peptides (AMPs) play an important role in host defense via direct antimicrobial activity as well as immune regulation. The mouse cathelin-related antimicrobial peptide (mCRAMP), produced from the mouse gene Camp, is the only mouse cathelicidin identified and the ortholog of the human gene encoding the peptide LL-37. This study tested the hypothesis that mouse B and T cells produce and respond to mCRAMP. We show that all mature mouse B-cell subsets, including follicular (FO), marginal zone (MZ), B1a, and B1b cells, as well as CD4+ and CD8+ T cells produce Camp mRNA and mCRAMP protein. Camp−/− B cells produced equivalent levels of IgM, IgG3, and IgG2c but less IgG1 and IgE, while Camp−/− CD4+ T cells cultured in Th2-inducing conditions produced more IL-4-expressing cells when compared with WT cells, effects that were reversed upon addition of mCRAMP. In vivo, Camp−/− mice immunized with TNP-OVA absorbed in alum produced an enhanced TNP-specific IgG1 response when compared with WT mice. ELISpot analysis revealed increased numbers of TNP-specific IgG1-secreting splenic B cells and FACS analysis revealed increased CD4+ T-cell IL-4 expression. Our results suggest that mCRAMP differentially regulates B- and T-cell function and implicate mCRAMP in the regulation of adaptive immune responses. PMID:21773974

  5. BAG3 Directly Interacts with Mutated alphaB-Crystallin to Suppress Its Aggregation and Toxicity

    PubMed Central

    Hishiya, Akinori; Salman, Mortada Najem; Carra, Serena; Kampinga, Harm H.; Takayama, Shinichi

    2011-01-01

    A homozygous disruption or genetic mutation of the bag3 gene causes progressive myofibrillar myopathy in mouse and human skeletal and cardiac muscle disorder while mutations in the small heat shock protein αB-crystallin gene (CRYAB) are reported to be responsible for myofibrillar myopathy. Here, we demonstrate that BAG3 directly binds to wild-type αB-crystallin and the αB-crystallin mutant R120G, via the intermediate domain of BAG3. Peptides that inhibit this interaction in an in vitro binding assay indicate that two conserved Ile-Pro-Val regions of BAG3 are involved in the interaction with αB-crystallin, which is similar to results showing BAG3 binding to HspB8 and HspB6. BAG3 overexpression increased αB-crystallin R120G solubility and inhibited its intracellular aggregation in HEK293 cells. BAG3 suppressed cell death induced by αB-crystallin R120G overexpression in differentiating C2C12 mouse myoblast cells. Our findings indicate a novel function for BAG3 in inhibiting protein aggregation caused by the genetic mutation of CRYAB responsible for human myofibrillar myopathy. PMID:21423662

  6. B-1 phagocytes: the myeloid face of B-1 cells.

    PubMed

    Popi, Ana Flavia

    2015-12-01

    The relationship between malignant B cells and macrophages has long been established. Furthermore, evolutionary studies have demonstrated that B cells from early vertebrates have both phagocytic and antibody production capabilities. In addition to their lymphoid nature, B-1 cells retain several myeloid characteristics. Various reports have demonstrated that B-1 cells can differentiate into phagocytes. However, descriptions of B-1 cells as a novel phagocyte cell member are rarely found in the literature. This review aims to present the available data regarding B-1 cell-derived phagocytes and also discusses how their existence might be relevant to hematopoiesis and immune responses. © 2015 New York Academy of Sciences.

  7. Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function.

    PubMed

    Lee, Young-Hee; Martin-Orozco, Natalia; Zheng, Peilin; Li, Jing; Zhang, Peng; Tan, Haidong; Park, Hyun Jung; Jeong, Mira; Chang, Seon Hee; Kim, Byung-Seok; Xiong, Wei; Zang, Wenjuan; Guo, Li; Liu, Yang; Dong, Zhong-Jun; Overwijk, Willem W; Hwu, Patrick; Yi, Qing; Kwak, Larry; Yang, Zhiying; Mak, Tak W; Li, Wei; Radvanyi, Laszlo G; Ni, Ling; Liu, Dongfang; Dong, Chen

    2017-08-01

    The interaction between tumor and the immune system is still poorly understood. Significant clinical responses have been achieved in cancer patients treated with antibodies against the CTLA4 and PD-1/PD-L1 checkpoints; however, only a small portion of patients responded to the therapies, indicating a need to explore additional co-inhibitory molecules for cancer treatment. B7-H3, a member of the B7 superfamily, was previously shown by us to inhibit T-cell activation and autoimmunity. In this study, we have analyzed the function of B7-H3 in tumor immunity. Expression of B7-H3 was found in multiple tumor lines, tumor-infiltrating dendritic cells, and macrophages. B7-H3-deficient mice or mice treated with an antagonistic antibody to B7-H3 showed reduced growth of multiple tumors, which depended on NK and CD8 + T cells. With a putative receptor expressed by cytotoxic lymphocytes, B7-H3 inhibited their activation, and its deficiency resulted in increased cytotoxic lymphocyte function in tumor-bearing mice. Combining blockades of B7-H3 and PD-1 resulted in further enhanced therapeutic control of late-stage tumors. Taken together, our results indicate that the B7-H3 checkpoint may serve as a novel target for immunotherapy against cancer.

  8. Type I interferon (IFN-alpha/beta) rescues B-lymphocytes from apoptosis via PI3Kdelta/Akt, Rho-A, NFkappaB and Bcl-2/Bcl(XL).

    PubMed

    Badr, Gamal; Saad, Heba; Waly, Hanan; Hassan, Khadega; Abdel-Tawab, Hanem; Alhazza, Ibrahim M; Ahmed, Emad A

    2010-01-01

    Although IFN-alpha was reported to promote the survival of peripheral B-lymphocytes via the PI3-kinase-Akt pathway, the triggered signalling pathways involved in the protection of B cell from apoptosis need to be clarified. Using flow cytometry and western blot analysis, we have found that type 1 IFNs (IFN-alpha/beta) protect human B cells in culture from spontaneous apoptosis and from apoptosis mediated by anti-CD95 agonist, in a dose- and time-dependant manner. IFN-alpha/beta-mediated anti-apoptotic effect on human B cells was totally abrogated by blockade of IFNR1 chain. Our data indicate that PI3Kdelta, Rho-A, NFkappaB and Bcl-2/Bcl(XL) are active downstream of IFN receptors and are the major effectors of IFN-alpha/beta-rescued B cells from apoptosis. Furthermore, immunohistochemical results show marked reduction in numbers of CD20 positive B cell in both spleen and Peyer's patches from mice treated with anti-IFNR1 blocking antibody compared with control group. Moreover, ultrastructural observations of these organs show an obvious increase in apoptotic cells from mice treated with anti-IFNR1 blocking antibody. Our results provide more details about the triggered signalling pathways and the phosphorylation cascade which are involved in the protection of B cell from apoptosis after treatment with IFN-alpha/beta. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Human T Cell Leukemia Virus Type I Tax-Induced IκB-ζ Modulates Tax-Dependent and Tax-Independent Gene Expression in T Cells1

    PubMed Central

    Kimura, Ryuichiro; Senba, Masachika; Cutler, Samuel J; Ralph, Stephen J; Xiao, Gutian; Mori, Naoki

    2013-01-01

    Human T cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T cell leukemia (ATL) and various inflammatory disorders including HTLV-I-associated myelopathy/tropical spastic paraparesis. HTLV-I oncoprotein Tax is known to cause permanent activation of many cellular transcription factors including nuclear factor-κB (NF-κB), cyclic adenosine 3′,5′-monophosphate response element-binding protein, and activator protein 1 (AP-1). Here, we show that NF-κB-binding cofactor inhibitor of NF-κB-ζ (IκB-ζ) is constitutively expressed in HTLV-I-infected T cell lines and ATL cells, and Tax transactivates the IκB-ζ gene, mainly through NF-κB. Microarray analysis of IκB-ζ-expressing uninfected T cells demonstrated that IκB-ζ induced the expression of NF-κB. and interferon-regulatory genes such as B cell CLL/lymphoma 3 (Bcl3), guanylate-binding protein 1, and signal transducer and activator of transcription 1. The transcriptional activation domain, nuclear localization signal, and NF-κB-binding domain of IκB-ζ were required for Bcl3 induction, and IκB-ζ synergistically enhanced Tax-induced Bcl3 transactivation in an NF-κB-dependent manner. Interestingly, IκB-ζ inhibited Tax-induced NF-κB, AP-1 activation, and HTLV-I transcription. Furthermore, IκB-ζ interacted with Tax in vitro and this interaction was also observed in an HTLV-I-transformed T cell line. These results suggest that IκB-ζ modulates Tax-dependent and Tax-independent gene transcription in T cells. The function of IκB-ζ may be of significance in ATL genesis and pathogenesis of HTLV-I-associated diseases. PMID:24027435

  10. B Cells and B Cell Blasts Withstand Cryopreservation While Retaining Their Functionality for Producing Antibody.

    PubMed

    Fecher, Philipp; Caspell, Richard; Naeem, Villian; Karulin, Alexey Y; Kuerten, Stefanie; Lehmann, Paul V

    2018-05-31

    In individuals who have once developed humoral immunity to an infectious/foreign antigen, the antibodies present in their body can mediate instant protection when the antigen re-enters. Such antigen-specific antibodies can be readily detected in the serum. Long term humoral immunity is, however, also critically dependent on the ability of memory B cells to engage in a secondary antibody response upon re-exposure to the antigen. Antibody molecules in the body are short lived, having a half-life of weeks, while memory B cells have a life span of decades. Therefore, the presence of serum antibodies is not always a reliable indicator of B cell memory and comprehensive monitoring of humoral immunity requires that both serum antibodies and memory B cells be assessed. The prevailing view is that resting memory B cells and B cell blasts in peripheral blood mononuclear cells (PBMC) cannot be cryopreserved without losing their antibody secreting function, and regulated high throughput immune monitoring of B cell immunity is therefore confined to-and largely limited by-the need to test freshly isolated PBMC. Using optimized protocols for freezing and thawing of PBMC, and four color ImmunoSpot ® analysis for the simultaneous detection of all immunoglobulin classes/subclasses we show here that both resting memory B cells and B cell blasts retain their ability to secrete antibody after thawing, and thus demonstrate the feasibility of B cell immune monitoring using cryopreserved PBMC.

  11. CRISP-3, a protein with homology to plant defense proteins, is expressed in mouse B cells under the control of Oct2.

    PubMed

    Pfisterer, P; König, H; Hess, J; Lipowsky, G; Haendler, B; Schleuning, W D; Wirth, T

    1996-11-01

    The Oct2 transcription factor is expressed throughout the B-lymphoid lineage and plays an essential role during the terminal phase of B-cell differentiation. Several genes specifically expressed in B lymphocytes have been identified that contain a functional octamer motif in their regulatory elements. However, expression of only a single gene, the murine CD36 gene, has been shown to date to be dependent on Oct2. Here, we present the identification and characterization of a further gene, coding for cysteine-rich secreted protein 3 (CRISP-3), whose expression in B cells is regulated by Oct2. We show that CRISP-3 is expressed in the B-lymphoid lineage specifically at the pre-B-cell stage. By using different experimental strategies, including nuclear run-on experiments, we demonstrate that this gene is transcriptionally activated by Oct2. Furthermore, analysis of CRISP-3 expression in primary B cells derived from either wild-type or Oct2-deficient mice demonstrates the dependence on Oct2. Two variant octamer motifs were identified in the upstream promoter region of the crisp-3 gene, and Oct2 interacts with both of them in vitro. Cotransfection experiments with expression vectors for Oct1 and Oct2 together with a reporter driven by the crisp-3 promoter showed that transcriptional activation of this promoter can only be achieved with Oct2. The C-terminal transactivation domain of Oct2 is required for this activation. Finally, introducing specific mutations in the two variant octamer motifs revealed that both of them are important for full transcriptional activation by Oct2.

  12. IL-35-producing B cells in gastric cancer patients.

    PubMed

    Wang, Ke; Liu, Jianming; Li, Jiansheng

    2018-05-01

    A significant characteristic of advanced gastric cancer (GC) is immune suppression, which can promote the progression of GC. Interleukin 35 (IL-35) is an immune-suppressing cytokine, and it is generally recognized that this cytokine is secreted by regulatory T (Treg) cells. Recently, studies have found that IL-35 can also be produced by B cells in mice. However, scientific studies reporting that IL-35 is secreted by B cells in humans, specifically in cancer patients, are very rare.Blood samples were collected from 30 healthy controls (HCs) and 50 untreated GC patients, and IL-35-producing B cells in the peripheral blood were investigated. Moreover, Treg cells (CD4CD25CD127), myeloid-derived suppressor cells (MDSCs) (CD14HLA-DR) and other lymphocyte subsets (CD3, CD4, CD8 T cells, activated and memory CD4 T cells, activated CD8 T cells, CD14 monocytes, and IL-10-producing B cells) were also examined.IL-35-producing B cells were significantly upregulated in patients with advanced GC. Furthermore, the frequency of IL-35-producing B cells was positively correlated with the frequencies of Treg cells (CD4CD25CD127), MDSCs (CD14HLA-DR), IL-10-producing B cells, and CD14 monocytes in these GC patients.In summary, the frequency of IL-35-producing B cells is significantly elevated in advanced GC; this outcome implies that this group of B cells may participate in GC progression.

  13. Nicotine promotes cervical carcinoma cell line HeLa migration and invasion by activating PI3k/Akt/NF-κB pathway in vitro.

    PubMed

    Wang, Chengze; Gu, Weiting; Zhang, Yunpeng; Ji, Yawen; Wen, Yong; Xu, Xin

    2017-07-05

    Cigarette smoking is one of highly risk factors of cervical cancer. Recently nicotine has been reported to increase proliferation and invasion in some smoking related cancers, like non-small cell lung cancer and esophageal squamous cell cancer. However, the effects and mechanisms of nicotine stimulation on cervical cancer cells are not clear. Here, we investigated the effects and mechanisms of nicotine stimulation on HeLa cells in vitro. In our study, we found that nicotine could accelerate HeLa cells migration and invasion, activate PI3K/Akt and NF-κB pathways and increase the expression of Vimentin in vitro. Moreover, we demonstrated that the specific PI3K inhibitor LY294002 could reverse nicotine-induced cell migration and invasion, NF-κB activation and up-regulation of Vimentin. Inhibition of NF-κB by Pyrrolidine dithiocarbamate (PDTC) also antagonized nicotine-induced cell migration, invasion and up-regulation of Vimentin. Simply put, these findings suggest that nicotine promotes cervical carcinoma cell line HeLa migration and invasion by activating PI3k/Akt/NF-κB pathway in vitro. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt.

    PubMed

    Bai, Dong; Ueno, Lynn; Vogt, Peter K

    2009-12-15

    The serine/threonine kinase Akt (cellular homolog of murine thymoma virus akt8 oncogene), also known as PKB (protein kinase B), is activated by lipid products of phosphatidylinositol 3-kinase (PI3K). Akt phosphorylates numerous protein targets that control cell survival, proliferation and motility. Previous studies suggest that Akt regulates transcriptional activity of the nuclear factor-kappaB (NFkappaB) by inducing phosphorylation and subsequent degradation of inhibitor of kappaB (IkappaB). We show here that NFkappaB-driven transcription increases in chicken embryonic fibroblasts (CEF) transformed by myristylated Akt (myrAkt). Accordingly, both a dominant negative mutant of Akt and Akt inhibitors repress NFkappaB-dependent transcription. The degradation of the IkappaB protein is strongly enhanced in Akt-transformed cells, and the loss of NFkappaB activity by introduction of a super-repressor of NFkappaB, IkappaBSR, interferes with PI3K- and Akt-induced oncogenic transformation of CEF. The phosphorylation of the p65 subunit of NFkappaB at serine 534 is also upregulated in Akt-transformed cells. Our data suggest that the stimulation of NFkappaB by Akt is dependent on the phosphorylation of p65 at S534, mediated by IKK (IkappaB kinase) alpha and beta. Akt phosphorylates IKKalpha on T23, and this phosphorylation event is a prerequisite for the phosphorylation of p65 at S534 by IKKalpha and beta. Our results demonstrate two separate functions of the IKK complex in NFkappaB activation in cells with constitutive Akt activity: the phosphorylation and consequent degradation of IkappaB and the phosphorylation of p65. The data further support the conclusion that NFkappaB activity is essential for PI3K- and Akt-induced oncogenic transformation. Copyright (c) 2009 UICC.

  15. CD79B limits response of diffuse large B cell lymphoma to ibrutinib.

    PubMed

    Kim, Joo Hyun; Kim, Won Seog; Ryu, Kyungju; Kim, Seok Jin; Park, Chaehwa

    2016-01-01

    Blockage of B cell receptor signaling with ibrutinib presents a promising clinical approach for treatment of B-cell malignancies. However, many patients show primary resistance to the drug or develop secondary resistance. In the current study, cDNA microarray and Western blot analyses revealed CD79B upregulation in the activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL) that display differential resistance to ibrutinib. CD79B overexpression was sufficient to induce resistance to ibrutinib and enhanced AKT and MAPK activation, indicative of an alternative mechanism underlying resistance. Conversely, depletion of CD79B sensitized primary refractory cells to ibrutinib and led to reduced phosphorylation of AKT or MAPK. Combination of the AKT inhibitor or the MAPK inhibitor with ibrutinib resulted in circumvention of both primary and acquired resistance in ABC-DLBCL. Our data collectively indicate that CD79B overexpression leading to activation of AKT/MAPK is a potential mechanism underlying primary ibrutinib resistance in ABC-DLBCL, and support its utility as an effective biomarker to predict therapeutic response to ibrutinib.

  16. Mule Regulates the Intestinal Stem Cell Niche via the Wnt Pathway and Targets EphB3 for Proteasomal and Lysosomal Degradation.

    PubMed

    Dominguez-Brauer, Carmen; Hao, Zhenyue; Elia, Andrew J; Fortin, Jérôme M; Nechanitzky, Robert; Brauer, Patrick M; Sheng, Yi; Mana, Miyeko D; Chio, Iok In Christine; Haight, Jillian; Pollett, Aaron; Cairns, Robert; Tworzyanski, Leanne; Inoue, Satoshi; Reardon, Colin; Marques, Ana; Silvester, Jennifer; Cox, Maureen A; Wakeham, Andrew; Yilmaz, Omer H; Sabatini, David M; van Es, Johan H; Clevers, Hans; Sato, Toshiro; Mak, Tak W

    2016-08-04

    The E3 ubiquitin ligase Mule is often overexpressed in human colorectal cancers, but its role in gut tumorigenesis is unknown. Here, we show in vivo that Mule controls murine intestinal stem and progenitor cell proliferation by modulating Wnt signaling via c-Myc. Mule also regulates protein levels of the receptor tyrosine kinase EphB3 by targeting it for proteasomal and lysosomal degradation. In the intestine, EphB/ephrinB interactions position cells along the crypt-villus axis and compartmentalize incipient colorectal tumors. Our study thus unveils an important new avenue by which Mule acts as an intestinal tumor suppressor by regulation of the intestinal stem cell niche. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Cell-Specific Activity-Dependent Fractionation of Layer 2/3→5B Excitatory Signaling in Mouse Auditory Cortex

    PubMed Central

    Joshi, Ankur; Middleton, Jason W.; Anderson, Charles T.; Borges, Katharine; Suter, Benjamin A.; Shepherd, Gordon M. G.

    2015-01-01

    Auditory cortex (AC) layer 5B (L5B) contains both corticocollicular neurons, a type of pyramidal-tract neuron projecting to the inferior colliculus, and corticocallosal neurons, a type of intratelencephalic neuron projecting to contralateral AC. Although it is known that these neuronal types have distinct roles in auditory processing and different response properties to sound, the synaptic and intrinsic mechanisms shaping their input–output functions remain less understood. Here, we recorded in brain slices of mouse AC from retrogradely labeled corticocollicular and neighboring corticocallosal neurons in L5B. Corticocollicular neurons had, on average, lower input resistance, greater hyperpolarization-activated current (Ih), depolarized resting membrane potential, faster action potentials, initial spike doublets, and less spike-frequency adaptation. In paired recordings between single L2/3 and labeled L5B neurons, the probabilities of connection, amplitude, latency, rise time, and decay time constant of the unitary EPSC were not different for L2/3→corticocollicular and L2/3→corticocallosal connections. However, short trains of unitary EPSCs showed no synaptic depression in L2/3→corticocollicular connections, but substantial depression in L2/3→corticocallosal connections. Synaptic potentials in L2/3→corticocollicular connections decayed faster and showed less temporal summation, consistent with increased Ih in corticocollicular neurons, whereas synaptic potentials in L2/3→corticocallosal connections showed more temporal summation. Extracellular L2/3 stimulation at two different rates resulted in spiking in L5B neurons; for corticocallosal neurons the spike rate was frequency dependent, but for corticocollicular neurons it was not. Together, these findings identify cell-specific intrinsic and synaptic mechanisms that divide intracortical synaptic excitation from L2/3 to L5B into two functionally distinct pathways with different input–output functions

  18. The genomic landscape of mantle cell lymphoma is related to the epigenetically determined chromatin state of normal B cells

    PubMed Central

    Zhang, Jenny; Jima, Dereje; Moffitt, Andrea B.; Liu, Qingquan; Czader, Magdalena; Hsi, Eric D.; Fedoriw, Yuri; Dunphy, Cherie H.; Richards, Kristy L.; Gill, Javed I.; Sun, Zhen; Love, Cassandra; Scotland, Paula; Lock, Eric; Levy, Shawn; Hsu, David S.; Dunson, David; Dave, Sandeep S.

    2014-01-01

    In this study, we define the genetic landscape of mantle cell lymphoma (MCL) through exome sequencing of 56 cases of MCL. We identified recurrent mutations in ATM, CCND1, MLL2, and TP53. We further identified a number of novel genes recurrently mutated in patients with MCL including RB1, WHSC1, POT1, and SMARCA4. We noted that MCLs have a distinct mutational profile compared with lymphomas from other B-cell stages. The ENCODE project has defined the chromatin structure of many cell types. However, a similar characterization of primary human mature B cells has been lacking. We defined, for the first time, the chromatin structure of primary human naïve, germinal center, and memory B cells through chromatin immunoprecipitation and sequencing for H3K4me1, H3K4me3, H3Ac, H3K36me3, H3K27me3, and PolII. We found that somatic mutations that occur more frequently in either MCLs or Burkitt lymphomas were associated with open chromatin in their respective B cells of origin, naïve B cells, and germinal center B cells. Our work thus elucidates the landscape of gene-coding mutations in MCL and the critical interplay between epigenetic alterations associated with B-cell differentiation and the acquisition of somatic mutations in cancer. PMID:24682267

  19. HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats

    PubMed Central

    Marroquin Belaunzaran, Osiris; Kleber, Sascha; Schauer, Stefan; Hausmann, Martin; Nicholls, Flora; Van den Broek, Maries; Payeli, Sravan; Ciurea, Adrian; Milling, Simon; Stenner, Frank; Shaw, Jackie; Kollnberger, Simon; Bowness, Paul; Petrausch, Ulf; Renner, Christoph

    2015-01-01

    Objectives HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA). HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272) and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS) patients and HLA-B27 transgenic rats. We characterized a novel B272–specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders. Methods The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry. Results HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM). HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules. Conclusion HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders. PMID:26125554

  20. Altered Memory Circulating T Follicular Helper-B Cell Interaction in Early Acute HIV Infection

    PubMed Central

    Muir, Roshell; Metcalf, Talibah; Tardif, Virginie; Takata, Hiroshi; Phanuphak, Nittaya; Kroon, Eugene; Colby, Donn J.; Trichavaroj, Rapee; Valcour, Victor; Robb, Merlin L.; Michael, Nelson L.; Ananworanich, Jintanat; Trautmann, Lydie; Haddad, Elias K.

    2016-01-01

    The RV254 cohort of HIV-infected very early acute (4thG stage 1 and 2) (stage 1/2) and late acute (4thG stage 3) (stage 3) individuals was used to study T helper- B cell responses in acute HIV infection and the impact of early antiretroviral treatment (ART) on T and B cell function. To investigate this, the function of circulating T follicular helper cells (cTfh) from this cohort was examined, and cTfh and memory B cell populations were phenotyped. Impaired cTfh cell function was observed in individuals treated in stage 3 when compared to stage 1/2. The cTfh/B cell cocultures showed lower B cell survival and IgG secretion at stage 3 compared to stage 1/2. This coincided with lower IL-10 and increased RANTES and TNF-α suggesting a role for inflammation in altering cTfh and B cell responses. Elevated plasma viral load in stage 3 was found to correlate with decreased cTfh-mediated B cell IgG production indicating a role for increased viremia in cTfh impairment and dysfunctional humoral response. Phenotypic perturbations were also evident in the mature B cell compartment, most notably a decrease in resting memory B cells in stage 3 compared to stage 1/2, coinciding with higher viremia. Our coculture assay also suggested that intrinsic memory B cell defects could contribute to the impaired response despite at a lower level. Overall, cTfh-mediated B cell responses are significantly altered in stage 3 compared to stage 1/2, coinciding with increased inflammation and a reduction in memory B cells. These data suggest that early ART for acutely HIV infected individuals could prevent immune dysregulation while preserving cTfh function and B cell memory. PMID:27463374

  1. Antitumor Activity of Portulaca Oleracea L. Polysaccharide on HeLa Cells Through Inducing TLR4/NF-κB Signaling.

    PubMed

    Zhao, Rui; Zhang, Tao; Ma, Baoling; Li, Xing

    2017-01-01

    Abstarct We have previously shown that Portulaca oleracea L. polysaccharide (POL-P3b) possesses the ability to inhibit cervical cancer cell growth in vitro and in vivo. In this study, we explored how toll-like receptor 4 (TLR4) signaling correlated with the antitumor mechanism of POL-P3b. Western blotting was utilized to detect the expression of TLR4 and the downstream signaling pathway. The level of inflammatory mediator was quantified using enzyme-linked immunosorbent assay (ELISA) kits. The effects of POL-P3b on the proliferation and apoptosis in HeLa cells were determined by WST-8 assay and Hoechst 33342/propidium iodide (PI) assay. Our results demonstrated that lipopolysaccharide (LPS) binding to TLR4 on tumor cells could enhance HeLa cell proliferation and increase the expression of TLR4 and the downstream molecules. Treating HeLa cells with POL-P3b could decrease the proliferation of HeLa cells, and upregulate Bax level and downregulate Bcl-2 level in a concentration-dependent manner. In addition, POL-P3b inhibited the protein expression levels of TLR4, MyD88, TRAF6, Activator Protein-1 (AP-1) and nuclear factor-κB (NF-κB) subunit P65 in HeLa cells. Furthermore, POL-P3b also reduced the production of cytokine/chemokine. Taken together, the present work suggested the antitumor mechanism of POL-P3b by downregulating TLR4 downstream signaling pathway and inducing cell apoptosis. Our results may provide direct evidence to suggest that POL-P3b should be considered as a potent nutrient supplement for oncotherapy.

  2. B7-H3 in tumors: friend or foe for tumor immunity?

    PubMed

    Li, Gen; Quan, Yanchun; Che, Fengyuan; Wang, Lijuan

    2018-02-01

    B7-H3 is a type I transmembrane co-stimulatory molecule of the B7 family. B7-H3 mRNA is widely distributed in most tissues; however, B7-H3 protein is not constitutively expressed. Few molecules have been shown to mediate the regulation of B7-H3 expression, and their regulatory mechanisms remain unexplored. Recently, TREM-like transcript 2 (TLT-2) has been identified as a potential receptor of B7-H3. However, TLT-2 may not be the only receptor of B7-H3, as B7-H3 has many contradictory roles. As a co-stimulatory molecule, B7-H3 increases the proliferation of both CD4+ and CD8+ T-cells and enhances cytotoxic T-cell activity. However, greatly increased T-cell proliferation and IL-2 levels have been observed in the absence of B7-H3. Thus far, it has been shown that various tumors test positive for B7-H3 expression and that B7-H3 levels correlate with tumor growth, invasion, metastasis, malignant stage, and recurrence rate. Furthermore, transfection of cells with a B7-H3 plasmid and treatment with monoclonal antibodies to block B7-H3 are the main immunotherapeutic strategies for cancer treatment. Several groups have generated anti-B7-H3 antibodies and observed tumor growth suppression in vitro and in vivo. Therefore, it is likely that B7-H3 plays an important role in cancer diagnosis and treatment, aside from its role as a co-stimulatory molecule.

  3. Ubiquitylation of an internalized NK cell receptor by Triad3A disrupts sustained NF-κB signaling1

    PubMed Central

    Shahjahan Miah, S. M.; Purdy, Amanda K.; Rodin, Nicholas B.; MacFarlane, Alexander W.; Oshinsky, Jennifer; Alvarez-Arias, Diana A.; Campbell, Kerry S.

    2011-01-01

    KIR2DL4 (2DL4, CD158d) is a unique killer cell Ig-like receptor (KIR) expressed on human NK cells, which stimulates cytokine production, but mechanisms regulating its expression and function are poorly understood. By yeast two-hybrid screening, we identified the E3 ubiquitin ligase, Triad3A, as an interaction partner for the 2DL4 cytoplasmic domain. The protein interaction was confirmed in vivo, and Triad3A expression induced polyubiquitylation and degradation of 2DL4. Overexpression of Triad3A selectively abrogated cytokine-producing function of 2DL4, while Triad3A shRNA reversed ubiquitylation and restored cytokine production. Expression of Triad3A in an NK cell line did not affect receptor surface expression, internalization, or early signaling, but significantly reduced receptor turnover and suppressed sustained NF-κB activation. 2DL4 endocytosis was found to be vital to stimulate cytokine production, and Triad3A expression diminished localization of internalized receptor in early endosomes. Our results reveal a critical role for endocytosed 2DL4 receptor to generate sustained NF-κB signaling and drive cytokine production. We conclude that Triad3A is a key negative regulator of sustained 2DL4-mediated NF-κB signaling from internalized 2DL4, which functions by promoting ubiquitylation and degradation of endocytosed receptor from early endosomes. “This is an author-produced version of a manuscript accepted for publication in The Journal of Immunology (The JI). The American Association of Immunologists, Inc. (AAI), publisher of The JI, holds the copyright to this manuscript. This version of the manuscript has not yet been copyedited or subjected to editorial proofreading by The JI; hence, it may differ from the final version published in The JI (online and in print). AAI (The JI) is not liable for errors or omissions in this author-produced version of the manuscript or in any version derived from it by the U.S. National Institutes of Health or any other third

  4. miR-320a regulates cell proliferation and apoptosis in multiple myeloma by targeting pre-B-cell leukemia transcription factor 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yinghao; Department of Hematology, Affiliated Hospital of Guizhou Medical University, The Hematopoietic Stem Cell Transplant Center of Guizhou Province, Blood Diseases Diagnosis and Treatment Center of Guizhou Province, Guiyang, 550004, Guizhou Province; Wu, Depei, E-mail: wudepei@medmail.com.cn

    2016-05-13

    Aberrant expression of microRNAs (miRNAs) is implicated in cancer development and progression. While miR-320a is reported to be deregulated in many malignancy types, its biological role in multiple myeloma (MM) remains unclear. Here, we observed reduced expression of miR-320a in MM samples and cell lines. Ectopic expression of miR-320a dramatically suppressed cell viability and clonogenicity and induced apoptosis in vitro. Mechanistic investigation led to the identification of Pre-B-cellleukemia transcription factor 3 (PBX3) as a novel and direct downstream target of miR-320a. Interestingly, reintroduction of PBX3 abrogated miR-320a-induced MM cell growth inhibition and apoptosis. In a mouse xenograft model, miR-320a overexpression inhibitedmore » tumorigenicity and promoted apoptosis. Our findings collectively indicate that miR-320a inhibits cell proliferation and induces apoptosis in MM cells by directly targeting PBX3, supporting its utility as a novel and potential therapeutic agent for miRNA-based MM therapy. -- Highlights: •Expression of miR-320a in MM cell induces apoptosis in vitro. •miR-320a represses PBX3 via targeting specific sequences in the 3′UTR region. •Exogenous expression of PBX3 reverses the effects of miR-320a in inhibiting MM cell growth and promoting apoptosis. •Overexpression of miR-320a inhibits tumor growth and increases apoptosis in vivo.« less

  5. The lactoferricin B-derived peptide, LfB17-34, induces melanogenesis in B16F10 cells.

    PubMed

    Huang, Hsiu-Chin; Lin, Hsuan; Huang, Min-Chuan

    2017-03-01

    Lactoferricin B (LfcinB), a peptide of bovine lactoferrin (LfB), exhibits multiple biological functions, including antimicrobial, antiviral, antioxidant and immunomodulatory activities. However, the role of LfcinB-related peptides in melanogenesis remains unclear. In this study, a set of five LfcinB-related peptides was examined. We found that LfB17‑34, an 18-mer LfcinB-derived peptide, increased melanogenesis in B16F10 melanoma cells without significantly affecting cell viability. LfB17‑34 increased in vitro tyrosinase activity and melanin content in a dose-dependent manner. The results of RT-qPCR and western blot analyses showed that LfB17‑34 increased the mRNA and protein expression of tyrosinase and tyrosinase-related protein 1 (Trp1). Moreover, LfB17‑34 inhibited the phosphorylation of MAPK/Erk, but not p38 and Akt, and constitutively active MEK was able to reverse the LfB17-34-enhanced pigmentation, melanin content, and tyrosinase activity, suggesting a role of Erk signaling in the process of LfB17‑34-mediated pigmentation. Taken together, these results suggest that LfB17‑34 induces melanogenesis in B16F10 cells primarily through increased tyrosinase expression and activity and that LfB17‑34 could be further developed for the treatment of hypopigmentation disorders.

  6. The lactoferricin B-derived peptide, LfB17-34, induces melanogenesis in B16F10 cells

    PubMed Central

    Huang, Hsiu-Chin; Lin, Hsuan; Huang, Min-Chuan

    2017-01-01

    Lactoferricin B (LfcinB), a peptide of bovine lactoferrin (LfB), exhibits multiple biological functions, including antimicrobial, antiviral, antioxidant and immuno-modulatory activities. However, the role of LfcinB-related peptides in melanogenesis remains unclear. In this study, a set of five LfcinB-related peptides was examined. We found that LfB17-34, an 18-mer LfcinB-derived peptide, increased melanogenesis in B16F10 melanoma cells without significantly affecting cell viability. LfB17-34 increased in vitro tyrosinase activity and melanin content in a dose-dependent manner. The results of RT-qPCR and western blot analyses showed that LfB17-34 increased the mRNA and protein expression of tyrosinase and tyrosinase-related protein 1 (Trp1). Moreover, LfB17-34 inhibited the phosphorylation of MAPK/Erk, but not p38 and Akt, and constitutively active MEK was able to reverse the LfB17-34-enhanced pigmentation, melanin content, and tyrosinase activity, suggesting a role of Erk signaling in the process of LfB17-34-mediated pigmentation. Taken together, these results suggest that LfB17-34 induces melanogenesis in B16F10 cells primarily through increased tyrosinase expression and activity and that LfB17-34 could be further developed for the treatment of hypopigmentation disorders. PMID:28204812

  7. MreB Orientation Correlates with Cell Diameter in Escherichia coli.

    PubMed

    Ouzounov, Nikolay; Nguyen, Jeffrey P; Bratton, Benjamin P; Jacobowitz, David; Gitai, Zemer; Shaevitz, Joshua W

    2016-09-06

    Bacteria have remarkably robust cell shape control mechanisms. For example, cell diameter only varies by a few percent across a given population. The bacterial actin homolog, MreB, is necessary for establishment and maintenance of rod shape although the detailed properties of MreB that are important for shape control remained unknown. In this study, we perturb MreB in two ways: by treating cells with the polymerization-inhibiting drug A22 and by creating point mutants in mreB. These perturbations modify the steady-state diameter of cells over a wide range, from 790 ± 30 nm to 1700 ± 20 nm. To determine which properties of MreB are important for diameter control, we correlated structural characteristics of fluorescently tagged MreB polymers with cell diameter by simultaneously analyzing three-dimensional images of MreB and cell shape. Our results indicate that the helical pitch angle of MreB inversely correlates with the cell diameter of Escherichia coli. Other correlations between MreB and cell diameter are not found to be significant. These results demonstrate that the physical properties of MreB filaments are important for shape control and support a model in which MreB organizes the cell wall growth machinery to produce a chiral cell wall structure and dictate cell diameter. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells.

    PubMed

    Ceronie, Bryan; Jacobs, Benjamin M; Baker, David; Dubuisson, Nicolas; Mao, Zhifeng; Ammoscato, Francesca; Lock, Helen; Longhurst, Hilary J; Giovannoni, Gavin; Schmierer, Klaus

    2018-05-01

    The mechanism of action of oral cladribine, recently licensed for relapsing multiple sclerosis, is unknown. To determine whether cladribine depletes memory B cells consistent with our recent hypothesis that effective, disease-modifying treatments act by physical/functional depletion of memory B cells. A cross-sectional study examined 40 people with multiple sclerosis at the end of the first cycle of alemtuzumab or injectable cladribine. The relative proportions and absolute numbers of peripheral blood B lymphocyte subsets were measured using flow cytometry. Cell-subtype expression of genes involved in cladribine metabolism was examined from data in public repositories. Cladribine markedly depleted class-switched and unswitched memory B cells to levels comparable with alemtuzumab, but without the associated initial lymphopenia. CD3 + T cell depletion was modest. The mRNA expression of metabolism genes varied between lymphocyte subsets. A high ratio of deoxycytidine kinase to group I cytosolic 5' nucleotidase expression was present in B cells and was particularly high in mature, memory and notably germinal centre B cells, but not plasma cells. Selective B cell cytotoxicity coupled with slow repopulation kinetics results in long-term, memory B cell depletion by cladribine. These may offer a new target, possibly with potential biomarker activity, for future drug development.

  9. MicroRNA-196b Inhibits Cell Growth and Metastasis of Lung Cancer Cells by Targeting Runx2.

    PubMed

    Bai, Xiaoxue; Meng, Lin; Sun, Huijie; Li, Zhuo; Zhang, Xiufang; Hua, Shucheng

    2017-01-01

    Lung cancer is one of the most common causes of cancer related deaths worldwide. The role of several microRNAs (miRNAs) including miR-196b in different cancers has already been established. The study was aimed to explore the role of miR-196b in lung cancer and its possible underlying mechanism. Human lung cancer cell line A549 was transfected with miR-196b mimic, miR-196b inhibitor and corresponding controls. Then cell viability, migration, invasion, and apoptosis of A549 lung cancer cells either with overexpression or with suppression of miR-196b were estimated sequentially. Next, dual luciferase activity assay was performed to clarify whether Runx2 was a direct target of miR-196b. Finally, the expressions of main factors associated with epithelial mesenchymal transition (EMT), PI3K/AKT/GSK3β, Smad, and JNK pathways were detected by western blot. MiR-196b expression was significantly decreased in A549, H1650 and H1299 cell lines compared with in WI-38 and HEL-1 cell lines. Overexpression of miR-196b suppressed cell viability, migration, invasion, and induced apoptosis as well as inhibited TGF-β induced EMT process in A549 cells. In addition, Runx2 was a putative target of miR-196b, and Runx2 silence remarkably increased cell apoptosis and abolished the promotive effects of miR-196b suppression on cell viability, migration and invasion. Finally, miR-196b also mediated its action by inactivation of PI3K/AKT/GSK3β, Smad, and JNK pathways by down-regulation of Runx2. MiR-196b functions as a tumor suppressor that inhibited cell growth and metastasis of lung cancer cells by targeting Runx2. These findings provided further evidences for treatment of lung cancer. The Author(s). Published by S. Karger AG, Basel.

  10. The Human Membrane Cofactor CD46 Is a Receptor for Species B Adenovirus Serotype 3

    PubMed Central

    Sirena, Dominique; Lilienfeld, Benjamin; Eisenhut, Markus; Kälin, Stefan; Boucke, Karin; Beerli, Roger R.; Vogt, Lorenz; Ruedl, Christiane; Bachmann, Martin F.; Greber, Urs F.; Hemmi, Silvio

    2004-01-01

    Many human adenovirus (Ad) serotypes use the coxsackie B virus-Ad receptor (CAR). Recently, CD46 was suggested to be a receptor of species B Ad serotype 11 (Ad11), Ad14, Ad16, Ad21, Ad35, and Ad50. Using Sindbis virus-mediated cDNA library expression, we identify here the membrane cofactor protein CD46 as a surface receptor of species B Ad3. All four major CD46 transcripts and one minor CD46 transcript expressed in nucleated human cells were isolated. Rodent BHK cells stably expressing the BC1 form of CD46 bound radiolabeled Ad3 with a dissociation constant of 0.3 nM, identical to that of CD46-positive HeLa cells expressing twice as many Ad3 binding sites. Pull-down experiments with recombinant Ad3 fibers and a soluble form of the CD46 extracellular domain linked to the Fc portion of human immunoglobulin G (CD46ex-Fc) indicated direct interactions of the Ad3 fiber knob with CD46ex-Fc but not CARex-Fc (Fc-linked extracellular domain of CAR). Ad3 colocalized with cell surface CD46 in both rodent and human cells at the light and electron microscopy levels. Anti-CD46 antibodies and CD46ex-Fc inhibited Ad3 binding to CD46-expressing BHK cells more than 10-fold and to human cells 2-fold. In CD46-expressing BHK cells, wild-type Ad3 and a chimeric Ad consisting of the Ad5 capsid and the Ad3 fiber elicited dose-dependent cytopathic effects and transgene expression, albeit less efficiently than in human cells. Together, our results show that all of the major splice forms of CD46 are predominant and functional binding sites of Ad3 on CD46-expressing rodent and human cells but may not be the sole receptor of species B Ads on human cells. These results have implications for understanding viral pathogenesis and therapeutic gene delivery. PMID:15078926

  11. The human membrane cofactor CD46 is a receptor for species B adenovirus serotype 3.

    PubMed

    Sirena, Dominique; Lilienfeld, Benjamin; Eisenhut, Markus; Kälin, Stefan; Boucke, Karin; Beerli, Roger R; Vogt, Lorenz; Ruedl, Christiane; Bachmann, Martin F; Greber, Urs F; Hemmi, Silvio

    2004-05-01

    Many human adenovirus (Ad) serotypes use the coxsackie B virus-Ad receptor (CAR). Recently, CD46 was suggested to be a receptor of species B Ad serotype 11 (Ad11), Ad14, Ad16, Ad21, Ad35, and Ad50. Using Sindbis virus-mediated cDNA library expression, we identify here the membrane cofactor protein CD46 as a surface receptor of species B Ad3. All four major CD46 transcripts and one minor CD46 transcript expressed in nucleated human cells were isolated. Rodent BHK cells stably expressing the BC1 form of CD46 bound radiolabeled Ad3 with a dissociation constant of 0.3 nM, identical to that of CD46-positive HeLa cells expressing twice as many Ad3 binding sites. Pull-down experiments with recombinant Ad3 fibers and a soluble form of the CD46 extracellular domain linked to the Fc portion of human immunoglobulin G (CD46ex-Fc) indicated direct interactions of the Ad3 fiber knob with CD46ex-Fc but not CARex-Fc (Fc-linked extracellular domain of CAR). Ad3 colocalized with cell surface CD46 in both rodent and human cells at the light and electron microscopy levels. Anti-CD46 antibodies and CD46ex-Fc inhibited Ad3 binding to CD46-expressing BHK cells more than 10-fold and to human cells 2-fold. In CD46-expressing BHK cells, wild-type Ad3 and a chimeric Ad consisting of the Ad5 capsid and the Ad3 fiber elicited dose-dependent cytopathic effects and transgene expression, albeit less efficiently than in human cells. Together, our results show that all of the major splice forms of CD46 are predominant and functional binding sites of Ad3 on CD46-expressing rodent and human cells but may not be the sole receptor of species B Ads on human cells. These results have implications for understanding viral pathogenesis and therapeutic gene delivery.

  12. Targeting B Cells and Plasma Cells in Autoimmune Diseases

    PubMed Central

    Hofmann, Katharina; Clauder, Ann-Katrin; Manz, Rudolf Armin

    2018-01-01

    Success with B cell depletion using rituximab has proven the concept that B lineage cells represent a valid target for the treatment of autoimmune diseases, and has promoted the development of other B cell targeting agents. Present data confirm that B cell depletion is beneficial in various autoimmune disorders and also show that it can worsen the disease course in some patients. These findings suggest that B lineage cells not only produce pathogenic autoantibodies, but also significantly contribute to the regulation of inflammation. In this review, we will discuss the multiple pro- and anti-inflammatory roles of B lineage cells play in autoimmune diseases, in the context of recent findings using B lineage targeting therapies. PMID:29740441

  13. Inhibition of human mast cell growth and differentiation by interferon gamma-1b.

    PubMed

    Kirshenbaum, A S; Worobec, A S; Davis, T A; Goff, J P; Semere, T; Metcalfe, D D

    1998-03-01

    In an effort to identify cytokines that inhibit human mast cell growth, we cultured HMC-1 cells and recombinant human stem cell factor (rhSCF)-dependent human bone marrow-derived mast cells (HBMCs) in the presence of interferon gamma (IFNgamma)-1b and interferon alpha (IFNalpha)-2b. HMC-1 cell numbers decreased in the presence of 1000 U/mL IFNgamma-1b but were unaffected by 1000 U/mL of IFNalpha-2b. HBMCs were then cultured for 0 to 7 days with 100 ng/mL rhSCF and 10 ng/mL recombinant human IL-3 (rhIL-3), followed by culture in rhSCF and administration of either 1000 U/mL IFNalpha-2b or 1000 U/mL IFNgamma-1b. HBMCs appearing in cultures with rhSCF alone or in combination with IFNalpha-2b were virtually identical in number through 8 weeks of culture. In cultures supplemented with IFNgamma-1b, HBMCs significantly decreased in number and incidence of granular metachromasia by 4 to 5 weeks (p<0.001). Similar results were obtained when human marrow was cultured from day 0 with rhSCF and IFNgamma-1b. Mature rhSCF-dependent HBMCs were also cultured at 5 weeks with rhSCF alone or in combination with IFNgamma-1b. Compared with cells cultured in rhSCF, mature 5-week HBMC cultures treated with rhSCF plus IFNgamma-1b revealed a decrease in mast cells, and those mast cells that remained had fewer toluidine blue- and tryptase-positive granules after 5 to 8 weeks. FACS analysis of rhSCF plus IFNgamma-1b-treated mature HBMCs revealed increased c-kit and Fc(epsilon)RI expression. Mast cell releasibility was not increased. IFNgamma-lb was thus able to suppress mast cell growth from CD34+ cells, suggesting that this agent should be considered as a candidate cytokine for the treatment of disorders of mast cell proliferation.

  14. Using Antigen-Specific B Cells to Combine Antibody and T Cell-Based Cancer Immunotherapy.

    PubMed

    Wennhold, Kerstin; Thelen, Martin; Schlößer, Hans Anton; Haustein, Natalie; Reuter, Sabrina; Garcia-Marquez, Maria; Lechner, Axel; Kobold, Sebastian; Rataj, Felicitas; Utermöhlen, Olaf; Chakupurakal, Geothy; Theurich, Sebastian; Hallek, Michael; Abken, Hinrich; Shimabukuro-Vornhagen, Alexander; von Bergwelt-Baildon, Michael

    2017-09-01

    Cancer immunotherapy by therapeutic activation of T cells has demonstrated clinical potential. Approaches include checkpoint inhibitors and chimeric antigen receptor T cells. Here, we report the development of an alternative strategy for cellular immunotherapy that combines induction of a tumor-directed T-cell response and antibody secretion without the need for genetic engineering. CD40 ligand stimulation of murine tumor antigen-specific B cells, isolated by antigen-biotin tetramers, resulted in the development of an antigen-presenting phenotype and the induction of a tumor antigen-specific T-cell response. Differentiation of antigen-specific B cells into antibody-secreting plasma cells was achieved by stimulation with IL21, IL4, anti-CD40, and the specific antigen. Combined treatment of tumor-bearing mice with antigen-specific CD40-activated B cells and antigen-specific plasma cells induced a therapeutic antitumor immune response resulting in remission of established tumors. Human CEA or NY-ESO-1-specific B cells were detected in tumor-draining lymph nodes and were able to induce antigen-specific T-cell responses in vitro, indicating that this approach could be translated into clinical applications. Our results describe a technique for the exploitation of B-cell effector functions and provide the rationale for their use in combinatorial cancer immunotherapy. Cancer Immunol Res; 5(9); 730-43. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. LPS-induced NF-{kappa}B expression in THP-1Blue cells correlates with neopterin production and activity of indoleamine 2,3-dioxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroecksnadel, Sebastian; Jenny, Marcel; Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck

    2010-09-03

    Research highlights: {yields} LPS induces NF-{kappa}B, neopterin formation and tryptophan degradation in THP-1 cells. {yields} Close dose- and time-dependent correlations exist between these biochemical events. {yields} Data provides some evidence for a parallel induction of them upon TLR stimulation. {yields} Results can be of considerable relevance also in vivo. -- Abstract: Neopterin production is induced in human monocyte-derived macrophages and dendritic cells upon stimulation with Th1-type cytokine interferon-{gamma} (IFN-{gamma}). In parallel, IFN-{gamma} induces the tryptophan-(trp)-degrading enzyme indoleamine 2,3-dioxygenase (IDO) and triggers the formation of reactive oxygen species (ROS). Translocation of the signal transduction element nuclear factor-{kappa}B (NF-{kappa}B) is induced bymore » ROS and accelerates the pro-inflammatory response by activation of other pro-inflammatory pathways. Therefore, a close relationship between NF-{kappa}B expression, the production of neopterin and the degradation of trp can be assumed, although this has not been demonstrated so far. In the present in vitro study we compared the influence of lipopolysaccharide (LPS) on NF-{kappa}B activation, neopterin formation and the degradation of trp in THP-1Blue cells, which represent the human myelomonocytic cell line THP-1 stably transfected with an NF-{kappa}B inducible reporter system. In cells stimulated with LPS, a significant induction of NF-{kappa}B was observed, and this was paralleled by an increase of kynureunine (kyn) and neopterin concentrations and a decline of trp. The increase of the kyn to trp quotient indicates accelerated IDO activity. Higher LPS concentrations and longer incubation of cells were associated with higher activities of all three biochemical pathways and significant correlations existed between NF-{kappa}B activation, neopterin release and trp degradation (all p < 0.001). We conclude that there is a parallel induction of NF-{kappa}B, neopterin

  16. Memory B lymphocytes determine repertoire oligoclonality early after haematopoietic stem cell transplantation

    PubMed Central

    OMAZIC, B; LUNDKVIST, I; MATTSSON, J; PERMERT, J; NÄSMAN-BJÖRK, I

    2003-01-01

    The objective of this study was to investigate if oligoclonality of the Ig repertoire post-haematopoietic stem cell transplantation (HSCT) is restricted to memory B lymphocytes or if it is a general property among B lymphocytes. As a measure of B lymphocyte repertoire diversity, we have analysed size distribution of polymerase chain reaction (PCR) amplified Ig H complementarity determining region 3 (CDR3) in naive and memory B lymphocytes isolated from patients before HSCT and at 3, 6 and 12 months after HSCT as well as from healthy controls. We demonstrate a limited variation of the IgH CDR3 repertoire in the memory B lymphocyte population compared to the naive B cell population. This difference was significant at 3 and 6 months post-HSCT. Compared to healthy controls there is a significant restriction of the memory B lymphocyte repertoire at 3 months after HSCT, but not of the naive B lymphocyte repertoire. Twelve months after HSCT, the IgH CDR3 repertoire in both memory and naive B lymphocytes are as diverse as in healthy controls. Thus, our findings suggest a role for memory B cells in the restriction of the oligoclonal B cell repertoire observed early after HSCT, which may be of importance when considering reimmunization of transplanted patients. PMID:12974769

  17. Effect of rituximab on B cell phenotype and serum B cell-activating factor levels in patients with thrombotic thrombocytopenic purpura

    PubMed Central

    Becerra, E; Scully, M A; Leandro, M J; Heelas, E O; Westwood, J-P; De La Torre, I; Cambridge, G

    2015-01-01

    Autoantibodies inhibiting the activity of the metalloproteinase, ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13), underlie the pathogenesis of thrombotic thrombocytopenic purpura (TTP). Rituximab (RTX) combined with plasma-exchange (PEX) is an effective treatment in TTP. Patients can remain in remission for extended periods following PEX/RTX, and this is associated with continuing reduction in antibodies to ADAMTS13. Factors controlling B cell differentiation to autoantibody production, including stimulation through the B cell receptor and interactions with the B cell-activating factor (BAFF), may thus impact length of remission. In this cross-sectional study, we measured naive and memory B cell phenotypes [using CD19/immunoglobulin (Ig)D/CD27] following PEX/RTX treatment in TTP patients at B cell return (n = 6) and in 12 patients in remission 10–68 months post-RTX. We also investigated relationships among serum BAFF, soluble CD23 (sCD23– a surrogate measure of acquiring B memory (CD27+) phenotype) and BAFF receptor (BAFF-R) expression. At B cell return after PEX/RTX, naive B cells predominated and BAFF-R expression was reduced compared to healthy controls (P < 0·001). In the remission group, despite numbers of CD19+ B cells within normal limits in most patients, the percentage and absolute numbers of pre-switch and memory B cells remained low, with sCD23 levels at the lower end of the normal range. BAFF levels were correlated inversely with BAFF-R expression and time after therapy. In conclusion, the long-term effects of RTX therapy in patients with TTP included slow regeneration of memory B cell subsets and persistently reduced BAFF-R expression across all B cell subpopulations. This may reflect the delay in selection and differentiation of potentially autoreactive (ADAMTS13-specific) B cells, resulting in relatively long periods of low disease activity after therapy. PMID:25339550

  18. Expression of the Grb2-related protein of the lymphoid system in B cell subsets enhances B cell antigen receptor signaling through mitogen-activated protein kinase pathways.

    PubMed

    Yankee, Thomas M; Solow, Sasha A; Draves, Kevin D; Clark, Edward A

    2003-01-01

    Adapter proteins play a critical role in regulating signals triggered by Ag receptor cross-linking. These small molecules link receptor proximal events with downstream signaling pathways. In this study, we explore the expression and function of the Grb2-related protein of the lymphoid system (GrpL)/Grb2-related adaptor downstream of Shc adapter protein in human B cells. GrpL is expressed in naive B cells and is down-regulated following B cell Ag receptor ligation. By contrast, germinal center and memory B cells express little or no GrpL. Using human B cell lines, we detected constitutive interactions between GrpL and B cell linker protein, Src homology (SH)2 domain-containing leukocyte protein of 76 kDa, hemopoietic progenitor kinase 1, and c-Cbl. The N-terminal SH3 domain of GrpL binds c-Cbl while the C-terminal SH3 domain binds B cell linker protein and SH2 domain-containing leukocyte protein of 76 kDa. Exogenous expression of GrpL in a GrpL-negative B cell line leads to enhanced Ag receptor-induced extracellular signal-related kinase and p38 mitogen-activated protein kinase phosphorylation. Thus, GrpL expression in human B cell subsets appears to regulate Ag receptor-mediated signaling events.

  19. Expression of hepatitis B virus 1.3-fold genome plasmid in an SV40 T-antigen-immortalized mouse hepatic cell line.

    PubMed

    Song, Xiu-Guang; Bian, Peng-Fei; Yu, Shu-Li; Zhao, Xiu-Hua; Xu, Wei; Bu, Xue-Hui; Li, Xia; Ma, Li-Xian

    2013-11-28

    To investigate the expression of the hepatitis B virus (HBV) 1.3-fold genome plasmid (pHBV1.3) in an immortalized mouse hepatic cell line induced by SV40 T-antigen (SV40T) expression. Mouse hepatic cells were isolated from mouse liver tissue fragments from 3-5 d old Kunming mice by the direct collagenase digestion method and cultured in vitro. The pRSV-T plasmid was transfected into mouse hepatic cells to establish an SV40LT-immortalized mouse hepatic cell line. The SV40LT-immortalized mouse hepatic cells were identified and transfected with the pHBV1.3 plasmid. The levels of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) in the supernatant were determined by an electrochemiluminescence immunoassay at 24, 48, 72 and 96 h after transfection. The expressions of HBsAg and hepatitis B c antigen (HBcAg) in the cells were investigated by indirect immunofluorescence analysis. The presence of HBV DNA replication intermediates in the transfected cells and viral particles in the supernatant of the transfected cell cultures was monitored using the Southern hybridization assay and transmission electronic microscopy, respectively. The pRSV-T plasmid was used to immortalize mouse hepatocytes and an SV40LT-immortalized mouse hepatic cell line was successfully established. SV40LT-immortalized mouse hepatic cells have the same morphology and growth characteristics as primary mouse hepatic cells can be subcultured and produce albumin and cytokeratin-18 in vitro. Immortalized mouse hepatic cells did not show the characteristics of tumor cells, as alpha-fetoprotein levels were comparable (0.58 ± 0.37 vs 0.61 ± 0.31, P = 0.37). SV40LT-immortalized mouse hepatic cells were then transfected with the pHBV1.3 plasmid, and it was found that the HBV genome replicated in SV40LT-immortalized mouse hepatic cells. The levels of HBsAg and HBeAg continuously increased in the supernatant after the transfection of pHBV1.3, and began to decrease 72 h after transfection. The

  20. Immunohistochemical analysis of the novel marginal zone B-cell marker IRTA1 in malignant lymphoma.

    PubMed

    Ikeda, Jun-Ichiro; Kohara, Masaharu; Tsuruta, Yoko; Nojima, Satoshi; Tahara, Shinichiro; Ohshima, Kenji; Kurashige, Masako; Wada, Naoki; Morii, Eiichi

    2017-01-01

    Marginal zone lymphoma (MZL) is a low-grade B-cell lymphoma derived from marginal zone B cells. Because of a lack of specific immunohistochemical markers, MZL is mainly diagnosed based on the cytological appearance and growth pattern of the tumor. Marginal zone B cells were recently shown to selectively express immunoglobulin superfamily receptor translocation-associated 1 (IRTA1), but the antibody used in that study is not commercially available. We therefore investigated the IRTA1 expression in nonneoplastic lymphoid tissues and 261 malignant lymphomas, examining the ability of a commercially available antibody to accurately diagnose MZL. Among 37 MZLs, 23 of 25 extranodal MZLs of mucosa-associated lymphoid tissue (MALT lymphomas), 3 of 6 splenic MZLs and 3 of 6 nodal MZLs were positive for IRTA1. Among the 98 diffuse large B-cell lymphomas, 33 were positive for IRTA1, including 1 of 38 follicular lymphomas, and all precursor B-lymphoblastic (2/2) and T-lymphoblastic (7/7) leukemia/lymphomas. Other mature B-cell and T-cell lymphomas, and Hodgkin lymphoma were negative for IRTA1. In MALT lymphoma, positive cells were detected mainly in intraepithelial and subepithelial marginal zone B cells. In 1 case of grade 3 follicular lymphoma, IRTA1 was also expressed in the area of large cell transformation. When tumors were classified as germinal center B cell-like (GCB) or non-GCB using the algorithm of Hans, positive expression of IRTA1 was correlated significantly with non-GCB diffuse large B-cell lymphomas (P < .05). These results demonstrated the ability of the commercially available IRTA1 antibody to distinguish MALT lymphoma from other low-grade B-cell lymphomas. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Naive and effector B-cell subtypes are increased in chronic rhinosinusitis with polyps

    PubMed Central

    Miljkovic, Dijana; Psaltis, Alkis; Wormald, Peter-John

    2018-01-01

    Background: Recent studies demonstrated that B cells and their chemoattractants are elevated in the nasal mucosa of patients with chronic rhinosinusitis (CRS) with nasal polyposis (CRSwNP). However, the presence of naive B cells and of plasmablasts and memory B-cell subsets in the mucosa and periphery of the same patient with CRS is yet to be characterized. Objective: Here we sought to quantify naive, plasmablasts, and memory B cells in mucosal tissue and peripheral blood of patients with CRSwNP, patients with CRS without nasal polyps (CRSsNP), and control patients. Methods: Polyps, mucosa, and peripheral blood samples were prospectively collected from the patients with CRS and from the non-CRS controls. We used flow cytometry to distinguish among naive, plasmablast, and memory B cells in sinus tissue and peripheral blood. Results: A total of 45 patients were recruited for the study. The patients with CRSwNP had significantly increased mucosal B-cell numbers versus the controls (3.39 ± 4.05% versus 0.39 ± 1.05% of live cells; p < 0.01, Kruskal-Wallis test), which included naive B cells (0.61 ± 0.94 versus 0.11 ± 0.24% of live cells; p < 0.03, Kruskal-Wallis test), plasmablasts (0.06 ± 0.26 versus 0.00 ± 0.00% of live cells; p < 0.055, Kruskal-Wallis test), and memory B cells (0.62 ± 1.26 versus 0.05 ± 0.15% of live cells; p < 0.02, Kruskal-Wallis test). Conclusion: Our study identified increased frequencies of different B-cell subtypes in the mucosa of patients with CRSwNP but not in the peripheral blood. We also found that patients with CRSwNP had significantly increased B-cell subtypes compared with the patients with CRSsNP and the controls. These results implied a potential role for mucosal B cells in the ongoing inflammation in patients with CRSwNP. PMID:29336281

  2. Epistatic interactions between mutations of TACI (TNFRSF13B) and TCF3 result in a severe primary immunodeficiency disorder and systemic lupus erythematosus

    PubMed Central

    Ameratunga, Rohan; Koopmans, Wikke; Woon, See-Tarn; Leung, Euphemia; Lehnert, Klaus; Slade, Charlotte A; Tempany, Jessica C; Enders, Anselm; Steele, Richard; Browett, Peter; Hodgkin, Philip D; Bryant, Vanessa L

    2017-01-01

    Common variable immunodeficiency disorders (CVID) are a group of primary immunodeficiencies where monogenetic causes account for only a fraction of cases. On this evidence, CVID is potentially polygenic and epistatic although there are, as yet, no examples to support this hypothesis. We have identified a non-consanguineous family, who carry the C104R (c.310T>C) mutation of the Transmembrane Activator Calcium-modulator and cyclophilin ligand Interactor (TACI, TNFRSF13B) gene. Variants in TNFRSF13B/TACI are identified in up to 10% of CVID patients, and are associated with, but not solely causative of CVID. The proband is heterozygous for the TNFRSF13B/TACI C104R mutation and meets the Ameratunga et al. diagnostic criteria for CVID and the American College of Rheumatology criteria for systemic lupus erythematosus (SLE). Her son has type 1 diabetes, arthritis, reduced IgG levels and IgA deficiency, but has not inherited the TNFRSF13B/TACI mutation. Her brother, homozygous for the TNFRSF13B/TACI mutation, is in good health despite profound hypogammaglobulinemia and mild cytopenias. We hypothesised that a second unidentified mutation contributed to the symptomatic phenotype of the proband and her son. Whole-exome sequencing of the family revealed a de novo nonsense mutation (T168fsX191) in the Transcription Factor 3 (TCF3) gene encoding the E2A transcription factors, present only in the proband and her son. We demonstrate mutations of TNFRSF13B/TACI impair immunoglobulin isotype switching and antibody production predominantly via T-cell-independent signalling, while mutations of TCF3 impair both T-cell-dependent and -independent pathways of B-cell activation and differentiation. We conclude that epistatic interactions between mutations of the TNFRSF13B/TACI and TCF3 signalling networks lead to the severe CVID-like disorder and SLE in the proband. PMID:29114388

  3. A novel phenoxazine derivative suppresses surface IgM expression in DT40 B cell line

    PubMed Central

    Gao, Sanyang; Takano, Tomoko; Sada, Kiyonao; He, Jinsong; Noda, Chiseko; Hori-Tamura, Naoko; Tomoda, Akio; Yamamura, Hirohei

    2002-01-01

    2-amino-4, 4α-dihydro-4α, 7-dimethyl-3H-phenoxazine-3-one (Phx) has been demonstrated to be an actinomycin D-like phenoxazine, and to display anti-tumour activity. In this study, we report on the effect of Phx on B cell antigen receptor (BCR) and receptor-mediated signalling in DT40 B cells. Treatment of B cells with Phx for 12 h inhibited BCR-stimulated tyrosine phosphorylation of cellular proteins. B cells exposed to Phx exhibited down-regulation of surface IgM which is part of BCR. In contracts with actinomycin D, Phx rapidly reduced the expression of IgM without decreasing the expression of other signalling molecules. Analysis with confocal microscopy demonstrated that Phx treatment reduced IgM expression both at the cell surface and inside the cell. Treatment of B cells with Phx resulted in the reduction of IgM secretion. Since MG-132, a proteasomal inhibitor, restored IgM contents to the control levels, Phx has the specific effect of accelerating IgM degradation. These results suggest that Phx down-regulates the expression of IgM and inhibits BCR-mediated signalling and IgM secretion. Phx may be useful as an immunosuppressive agent for therapeutic purposes. PMID:12411404

  4. Primary Mediastinal Large B-Cell Lymphoma: Results of Intensive Chemotherapy Regimens (MACOP-B/VACOP-B) Plus Involved Field Radiotherapy on 53 Patients. A Single Institution Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzarotto, Renzo; Boso, Caterina; Vianello, Federica

    2007-07-01

    Purpose: The optimal therapy for primary mediastinal large B-cell lymphoma (PMLBCL) remains undefined. The superiority of intensive chemotherapy regimens (Methotrexate, Doxorubicin, Cyclophosphamide, Vincristine, Prednisone, Bleomycin [MACOP-B]/Etoposide, Doxorubicin, Cyclophosphamide, Vincristine, Prednisone, Bleomycin [VACOP-B]) over Cyclophosphamide, Doxorubicin, Vincristine, Prednisone (CHOP)-like chemotherapy is upheld by some authors. The role of radiotherapy is still debated. In the absence of randomized trials, we report clinical findings and treatment response in 53 consecutive patients treated with intensive chemotherapy and mediastinal involved-field radiation therapy (IFRT). Methods and Material: Fifty-three consecutive patients with PMLBCL were retrospectively analyzed. Planned treatment consisted of induction chemotherapy (I-CT; Prednisone, Methotrexate, Doxorubicin, Cyclophosphamide,more » Etoposide-Mechloroethamine, Vincristine, Procarbazine, Prednisone [ProMACE-MOPP] in the first 2 patients, MACOP-B in the next 11, and VACOP-B in the last 40) followed by IFRT. Planned treatment was concluded in 43 of 53 patients; in 10 patients, I-CT was not immediately followed by IFRT. Among these 10 patients, 6 received high-dose chemotherapy (HD-CT) followed by IFRT, 2 received HD-CT, and 2 received no further treatment. Results: After a median follow-up of 93.9 months (range, 6-195 months), 45 of 53 patients (84.9%) were alive without disease. Eight patients died: 7 of PMLBCL and 1 of toxicity during HD-CT. The 5-year disease-free survival (DFS) and overall survival rates were 93.42% and 86.6%, respectively. The response rates after I-CT were complete response (CR) in 20 (37.73%) and partial response (PR) in 30 (56.60%); 3 patients (5.66%) were considered nonresponders. Among patients in PR after chemotherapy, 92% obtained a CR after IFRT. Conclusions: Our report confirms the efficacy of intensive chemotherapy plus mediastinal IFRT. IFRT plays a pivotal role

  5. B7-H1 expression is associated with expansion of regulatory T cells in colorectal carcinoma

    PubMed Central

    Hua, Dong; Sun, Jing; Mao, Yong; Chen, Lu-Jun; Wu, Yu-Yu; Zhang, Xue-Guang

    2012-01-01

    AIM: To investigate the expression of B7-H1 in human colorectal carcinoma (CRC) to define its regulating effects on T cells in tumor microenvironment. METHODS: One hundred and two paraffin blocks and 33 fresh samples of CRC tissues were subject to this study. Immunohistochemistry was performed for B7-H1 and CD3 staining in CRC tissues. Ficoll-Hypaque density gradient centrifugation was used to isolate peripheral blood mononuclear cells of fresh CRC tissues; flow cytometry and immunofluorescence staining were used for detection of regulatory T cells. Data was analyzed with statistical software. RESULTS: Costimulatory molecule B7-H1 was found strongly expressed in CRC tissues, localized in tumor cell membrane and cytoplasm, while weak or none expression of B7-H1 was detected in pared normal colorectal tissues. Meanwhile, CD3 positive T cells were found congregated in CRC tumor nest and stroma. Statistic analysis showed that B7-H1 expression level was negatively correlated to the total T cell density in tumor nest (P < 0.0001) and tumor stroma (P = 0.0200) of 102 cases of CRC tissues. Among the total T cells, a variable amount of regulatory T cells with a clear Foxp3+ (forkhead box P3) staining could be detected in CRC tissues and patients’ blood. Interestingly, in the 33 samples (15 cases of B7-H1high CRC tissues and 18 cases of B7-H1low CRC tissues) of freshly isolated mononuclear cells from CRC tissues, the percentages of CD4+Foxp3+ and CD8+Foxp3+ regulatory T cells were found remarkably higher in B7-H1high CRC tissues than in B7-H1low CRC tissues (P = 0.0024, P = 0.0182), indicating that B7-H1 expression was involved in proliferation of regulatory T cell. No significant difference was found in CRC peripheral blood (P = 0.0863, P = 0.0678). PD-1 is the specific ligand for B7-H1 pathway transferring inhibitory signal to T cell, which is expressed by activated T cell. Our further analysis of PD-1 expression on T cells in CRC tissues showed that conventional T cells

  6. gamma-Glutamyl transpeptidase overexpression increases metastatic growth of B16 melanoma cells in the mouse liver.

    PubMed

    Obrador, Elena; Carretero, Julian; Ortega, Angel; Medina, Ignacio; Rodilla, Vicente; Pellicer, José A; Estrela, José M

    2002-01-01

    B16 melanoma (B16M) cells with high glutathione (GSH) content show rapid proliferation in vitro and high metastatic activity in the liver in vivo. gamma-Glutamyl transpeptidase (GGT)-mediated extracellular GSH cleavage and intracellular GSH synthesis were studied in vitro in B16M cells with high (F10) and low (F1) metastatic potential. GGT activity was modified by transfection with the human GGT gene (B16MF1/Tet-GGT cells) or by acivicin-induced inhibition. B16MF1/Tet-GGT and B16MF10 cells exhibited higher GSH content (35 +/- 6 and 40 +/- 5 nmol/10(6) cells, respectively) and GGT activity (89 +/- 9 and 37 +/- 7 mU/10(6) cells, respectively) as compared (P <.05) with B16MF1 cells (10 +/- 3 nmol GSH and 4 mU GGT/10(6) cells). Metastasis (number of foci/100 mm(3) of liver) increased in B16MF1 cells pretreated with GSH ester ( approximately 3-fold, P <.01), and decreased in B16MF1/Tet-GGT and B16MF10 cells pretreated with the GSH synthesis inhibitor L-buthionine (S,R)-sulphoximine ( approximately 5-fold and 2-fold, respectively, P <.01). Liver, kidney, brain, lung, and erythrocyte GSH content in B16MF1/Tet-GGT- or B16MF10-bearing mice decreased as compared with B16MF1- and non-tumor-bearing mice. Organic anion transporting polypeptide 1-independent sinusoidal GSH efflux from hepatocytes increased in B16MF1/Tet-GGT- or B16MF10-bearing mice ( approximately 2-fold, P <.01) as compared with non-tumor-bearing mice. Our results indicate that tumor GGT activity and an intertissue flow of GSH can regulate GSH content of melanoma cells and their metastatic growth in the liver.

  7. Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (-)-epigallocatechin gallate-treated cells.

    PubMed

    Watanabe, Tatsuro; Kuramochi, Hiromi; Takahashi, Atsushi; Imai, Kazue; Katsuta, Naoko; Nakayama, Tomonobu; Fujiki, Hirota; Suganuma, Masami

    2012-05-01

    To understand how nanomechanical stiffness affects metastatic potential, we studied the relationship between cell migration, a characteristic of metastasis, and cell stiffness using atomic force microscopy (AFM), which can measure stiffness (elasticity) of individual living cells. Migration and cell stiffness of three metastatic B16 melanoma variants (B16-F10, B16-BL6, and B16-F1 cells), and also effects of (-)-epigallocatechin gallate (EGCG), were studied using Transwell assay and AFM. Migration of B16-F10 and B16-BL6 cells was 3 and 2 times higher than that of B16-F1 cells in Transwell assay, and cell stiffness determined by AFM was also different among the three variants, although they have similar morphologies and the same growth rates: Means of Young's modulus were 350.8 ± 4.8 Pa for B16-F10 cells, 661.9 ± 16.5 Pa for B16-BL6 cells, and 727.2 ± 13.0 Pa for B16-F1 cells. AFM measurements revealed that highly motile B16-F10 cells have low cell stiffness, and low motile and metastatic B16-F1 cells have high cell stiffness: Nanomechanical stiffness is inversely correlated with migration potential. Treatment of highly motile B16-F10 cells with EGCG increased cell stiffness 2-fold and inhibited migration of the cells. Our study with AFM clearly demonstrates that cell stiffness is a reliable quantitative indicator of migration potential, and very likely metastatic potential, even in morphologically similar cells. And increased cell stiffness may be a key nanomechanical feature in inhibition of metastasis.

  8. Imprinting the Fate of Antigen-Reactive B Cells through the Affinity of the B Cell Receptor

    PubMed Central

    O'Connor, Brian P.; Vogel, Laura A.; Zhang, Weijun; Loo, William; Shnider, Danielle; Lind, Evan F.; Ratliff, Michelle; Noelle, Randolph J.; Erickson, Loren D.

    2010-01-01

    Long-lived plasma cells (PCs) and memory B cells (Bmem) constitute the cellular components of enduring humoral immunity, whereas short-lived PCs that rapidly produce Ig correspond to the host's need for immediate protection against pathogens. In this study we show that the innate affinity of the BCR for Ag imprints upon naive B cells their differentiation fate to become short-or long-lived PCs and Bmem. Using BCR transgenic mice with varying affinities for Ag, naive B cells with high affinity lose their capacity to form germinal centers (GCs), develop neither Bmem nor long-lived PCs, and are destined to a short-lived PC fate. Moderate affinity interactions result in hastened GC responses, and differentiation to long-lived PCs, but Bmem remain extinct. In contrast, lower affinity interactions show tempered GCs, producing Bmem and affinity-matured, long-lived PCs. Thus, a continuum of elementary to comprehensive humoral immune responses exists that is controlled by inherent BCR affinity. PMID:17114443

  9. Identification of transcription coactivator OCA-B-dependent genes involved in antigen-dependent B cell differentiation by cDNA array analyses.

    PubMed

    Kim, Unkyu; Siegel, Rachael; Ren, Xiaodi; Gunther, Cary S; Gaasterland, Terry; Roeder, Robert G

    2003-07-22

    The tissue-specific transcriptional coactivator OCA-B is required for antigen-dependent B cell differentiation events, including germinal center formation. However, the identity of OCA-B target genes involved in this process is unknown. This study has used large-scale cDNA arrays to monitor changes in gene expression patterns that accompany mature B cell differentiation. B cell receptor ligation alone induces many genes involved in B cell expansion, whereas B cell receptor and helper T cell costimulation induce genes associated with B cell effector function. OCA-B expression is induced by both B cell receptor ligation alone and helper T cell costimulation, suggesting that OCA-B is involved in B cell expansion as well as B cell function. Accordingly, several genes involved in cell proliferation and signaling, such as Lck, Kcnn4, Cdc37, cyclin D3, B4galt1, and Ms4a11, have been identified as OCA-B-dependent genes. Further studies on the roles played by these genes in B cells will contribute to an understanding of B cell differentiation.

  10. Unique structure of iC3b resolved at a resolution of 24 Å by 3D-electron microscopy.

    PubMed

    Alcorlo, Martin; Martínez-Barricarte, Ruben; Fernández, Francisco J; Rodríguez-Gallego, César; Round, Adam; Vega, M Cristina; Harris, Claire L; de Cordoba, Santiago Rodríguez; Llorca, Oscar

    2011-08-09

    Activation of C3, deposition of C3b on the target surface, and subsequent amplification by formation of a C3-cleaving enzyme (C3-convertase; C3bBb) triggers the effector functions of complement that result in inflammation and cell lysis. Concurrently, surface-bound C3b is proteolyzed to iC3b by factor I and appropriate cofactors. iC3b then interacts with the complement receptors (CR) of the Ig superfamily, CR2 (CD21), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) on leukocytes, down-modulating inflammation, enhancing B cell-mediated immunity, and targeting pathogens for clearance by phagocytosis. Using EM and small-angle X-ray scattering, we now present a medium-resolution structure of iC3b (24 Å). iC3b displays a unique conformation with structural features distinct from any other C3 fragment. The macroglobulin ring in iC3b is similar to that in C3b, whereas the TED (thioester-containing domain) domain and the remnants of the CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain have moved to locations more similar to where they were in native C3. A consequence of this large conformational change is the disruption of the factor B binding site, which renders iC3b unable to assemble a C3-convertase. This structural model also justifies the decreased interaction between iC3b and complement regulators and the recognition of iC3b by the CR of the Ig superfamily, CR2, CR3, and CR4. These data further illustrate the extraordinary conformational versatility of C3 to accommodate a great diversity of functional activities.

  11. Plant Hsp90 Proteins Interact with B-Cells and Stimulate Their Proliferation

    PubMed Central

    Corigliano, Mariana G.; Maglioco, Andrea; Laguía Becher, Melina; Goldman, Alejandra; Martín, Valentina; Angel, Sergio O.; Clemente, Marina

    2011-01-01

    Background The molecular chaperone heat shock protein 90 (Hsp90) plays an important role in folding stabilization and activation of client proteins. Besides, Hsp90 of mammals and mammalian pathogens displays immunostimulatory properties. Here, we investigated the role of plant-derived Hsp90s as B-cell mitogens by measuring their proliferative responses in vitro. Methodology Plant cytosolic Hsp90 isoforms from Arabidopsis thaliana (AtHsp81.2) and Nicotiana benthamiana (NbHsp90.3) were expressed in E. coli. Over-expression of recombinant plant Hsp90s (rpHsp90s) was confirmed by SDS-PAGE and western blot using and anti-AtHsp81.2 polyclonal anti-body. Both recombinant proteins were purified by Ni-NTA affinity chromatography and their identity confirmed by MALDI-TOF-TOF. Recombinant AtHsp81.2 and NbHsp90.3 proteins induced prominent proliferative responses in spleen cells form BALB/c mice. Polymyxin-B, a potent inhibitor of lipopolysaccharide (LPS), did not eliminate the rpHsp90-induced proliferation. In addition, in vitro incubation of spleen cells with rpHsp90 led to the expansion of CD19-bearing populations, suggesting a direct effect of these proteins on B lymphocytes. This effect was confirmed by immunofluorescence analysis, where a direct binding of rpHsp90 to B- but not to T-cells was observed in cells from BALB/c and C3H/HeN mice. Finally, we examined the involvement of Toll Like Receptor 4 (TLR4) molecules in the rpHsp90s induction of B-cell proliferation. Spleen cells from C3H/HeJ mice, which carry a point mutation in the cytoplasmic region of TLR4, responded poorly to prAtHsp90. However, the interaction between rpHsp90 and B-cells from C3H/HeJ mice was not altered, suggesting that the mutation on TLR4 would be affecting the signal cascade but not the rpHsp90-TLR4 receptor interaction. Conclusions Our results show for the first time that spleen cell proliferation can be stimulated by a non-pathogen-derived Hsp90. Furthermore, our data provide a new example of

  12. Antileukemic effect of zerumbone-loaded nanostructured lipid carrier in WEHI-3B cell-induced murine leukemia model

    PubMed Central

    Rahman, Heshu Sulaiman; Rasedee, Abdullah; How, Chee Wun; Zeenathul, Nazariah Allaudin; Chartrand, Max Stanley; Yeap, Swee Keong; Abdul, Ahmad Bustamam; Tan, Sheau Wei; Othman, Hemn Hassan; Ajdari, Zahra; Namvar, Farideh; Arulselvan, Palanisamy; Fakurazi, Sharida; Mehrbod, Parvaneh; Daneshvar, Nasibeh; Begum, Hasina

    2015-01-01

    Cancer nanotherapy is progressing rapidly with the introduction of many innovative drug delivery systems to replace conventional therapy. Although the antitumor activity of zerumbone (ZER) has been reported, there has been no information available on the effect of ZER-loaded nanostructured lipid carrier (NLC) (ZER-NLC) on murine leukemia cells. In this study, the in vitro and in vivo effects of ZER-NLC on murine leukemia induced with WEHI-3B cells were investigated. The results from 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, Hoechst 33342, Annexin V, cell cycle, and caspase activity assays showed that the growth of leukemia cells in vitro was inhibited by ZER-NLC. In addition, outcomes of histopathology, transmission electron microscopy, and Tdt-mediated dUTP nick-end labeling analyses revealed that the number of leukemia cells in the spleen of BALB/c leukemia mice significantly decreased after 4 weeks of oral treatment with various doses of ZER-NLC. Western blotting and reverse-transcription quantitative polymerase chain reaction assays confirmed the antileukemia effects of ZER-NLC. In conclusion, ZER-NLC was shown to induce a mitochondrial-dependent apoptotic pathway in murine leukemia. Loading of ZER in NLC did not compromise the anticancer effect of the compound, suggesting ZER-NLC as a promising and effective delivery system for treatment of cancers. PMID:25767386

  13. Antileukemic effect of zerumbone-loaded nanostructured lipid carrier in WEHI-3B cell-induced murine leukemia model.

    PubMed

    Rahman, Heshu Sulaiman; Rasedee, Abdullah; How, Chee Wun; Zeenathul, Nazariah Allaudin; Chartrand, Max Stanley; Yeap, Swee Keong; Abdul, Ahmad Bustamam; Tan, Sheau Wei; Othman, Hemn Hassan; Ajdari, Zahra; Namvar, Farideh; Arulselvan, Palanisamy; Fakurazi, Sharida; Mehrbod, Parvaneh; Daneshvar, Nasibeh; Begum, Hasina

    2015-01-01

    Cancer nanotherapy is progressing rapidly with the introduction of many innovative drug delivery systems to replace conventional therapy. Although the antitumor activity of zerumbone (ZER) has been reported, there has been no information available on the effect of ZER-loaded nanostructured lipid carrier (NLC) (ZER-NLC) on murine leukemia cells. In this study, the in vitro and in vivo effects of ZER-NLC on murine leukemia induced with WEHI-3B cells were investigated. The results from 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, Hoechst 33342, Annexin V, cell cycle, and caspase activity assays showed that the growth of leukemia cells in vitro was inhibited by ZER-NLC. In addition, outcomes of histopathology, transmission electron microscopy, and Tdt-mediated dUTP nick-end labeling analyses revealed that the number of leukemia cells in the spleen of BALB/c leukemia mice significantly decreased after 4 weeks of oral treatment with various doses of ZER-NLC. Western blotting and reverse-transcription quantitative polymerase chain reaction assays confirmed the antileukemia effects of ZER-NLC. In conclusion, ZER-NLC was shown to induce a mitochondrial-dependent apoptotic pathway in murine leukemia. Loading of ZER in NLC did not compromise the anticancer effect of the compound, suggesting ZER-NLC as a promising and effective delivery system for treatment of cancers.

  14. Rituximab does not reset defective early B cell tolerance checkpoints

    PubMed Central

    Chamberlain, Nicolas; Massad, Christopher; Oe, Tyler; Cantaert, Tineke; Herold, Kevan C.; Meffre, Eric

    2015-01-01

    Type 1 diabetes (T1D) patients show abnormalities in early B cell tolerance checkpoints, resulting in the accumulation of large numbers of autoreactive B cells in their blood. Treatment with rituximab, an anti-CD20 mAb that depletes B cells, has been shown to preserve β cell function in T1D patients and improve other autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. However, it remains largely unknown how anti–B cell therapy thwarts autoimmunity in these pathologies. Here, we analyzed the reactivity of Abs expressed by single, mature naive B cells from 4 patients with T1D before and 52 weeks after treatment to determine whether rituximab resets early B cell tolerance checkpoints. We found that anti–B cell therapy did not alter the frequencies of autoreactive and polyreactive B cells, which remained elevated in the blood of all patients after rituximab treatment. Moreover, the limited proliferative history of autoreactive B cells after treatment revealed that these clones were newly generated B cells and not self-reactive B cells that had escaped depletion and repopulated the periphery through homeostatic expansion. We conclude that anti–B cell therapy may provide a temporary dampening of autoimmune processes through B cell depletion. However, repletion with autoreactive B cells may explain the relapse that occurs in many autoimmune patients after anti–B cell therapy. PMID:26642366

  15. Exclusion of assembled MreB by anionic phospholipids at cell poles confers cell polarity for bidirectional growth.

    PubMed

    Kawazura, Takuma; Matsumoto, Kanon; Kojima, Koki; Kato, Fumiya; Kanai, Tomomi; Niki, Hironori; Shiomi, Daisuke

    2017-05-01

    Cell polarity determines the direction of cell growth in bacteria. MreB actin spatially regulates peptidoglycan synthesis to enable cells to elongate bidirectionally. MreB densely localizes in the cylindrical part of the rod cell and not in polar regions in Escherichia coli. When treated with A22, which inhibits MreB polymerization, rod-shaped cells became round and MreB was diffusely distributed throughout the cytoplasmic membrane. A22 removal resulted in restoration of the rod shape. Initially, diffuse MreB started to re-assemble, and MreB-free zones were subsequently observed in the cytoplasmic membrane. These MreB-free zones finally became cell poles, allowing the cells to elongate bidirectionally. When MreB was artificially located at the cell poles, an additional pole was created, indicating that artificial localization of MreB at the cell pole induced local peptidoglycan synthesis. It was found that the anionic phospholipids (aPLs), phosphatidylglycerol and cardiolipin, which were enriched in cell poles preferentially interact with monomeric MreB compared with assembled MreB in vitro. MreB tended to localize to cell poles in cells lacking both aPLs, resulting in production of Y-shaped cells. Their findings indicated that aPLs exclude assembled MreB from cell poles to establish cell polarity, thereby allowing cells to elongate in a particular direction. © 2017 John Wiley & Sons Ltd.

  16. MHC class II molecules control murine B cell responsiveness to lipopolysaccharide stimulation.

    PubMed

    Rodo, Joana; Gonçalves, Lígia A; Demengeot, Jocelyne; Coutinho, António; Penha-Gonçalves, Carlos

    2006-10-01

    LPS is a strong stimulator of the innate immune system and inducer of B lymphocyte activation. Two TLRs, TLR4 and RP105 (CD180), have been identified as mediators of LPS signaling in murine B cells, but little is known about genetic factors that are able to control LPS-induced cell activation. We performed a mouse genome-wide screen that aside from identifying a controlling locus mapping in the TLR4 region (logarithm of odds score, 2.77), also revealed that a locus closely linked to the MHC region (logarithm of odds score, 3.4) governed B cell responsiveness to LPS stimulation. Using purified B cells obtained from MHC congenic strains, we demonstrated that the MHC(b) haplotype is accountable for higher cell activation, cell proliferation, and IgM secretion, after LPS stimulation, when compared with the MHC(d) haplotype. Furthermore, B cells from MHC class II(-/-) mice displayed enhanced activation and proliferation in response to LPS. In addition, we showed that the MHC haplotype partially controls expression of RP105 (a LPS receptor molecule), following a pattern that resembles the LPS responsiveness phenotype. Together, our results strongly suggest that murine MHC class II molecules play a role in constraining the B cell response to LPS and that genetic variation at the MHC locus is an important component in controlling B cell responsiveness to LPS stimulation. This work raises the possibility that constraining of B cell responsiveness by MHC class II molecules may represent a functional interaction between adaptive and innate immune systems.

  17. Melanotic Translocation Renal Cell Carcinoma With a Novel ARID1B-TFE3 Gene Fusion.

    PubMed

    Antic, Tatjana; Taxy, Jerome B; Alikhan, Mir; Segal, Jeremy

    2017-11-01

    A 36-year-old male was found to have a 7.0 cm left upper pole renal mass on renal ultrasound. Following nephrectomy, the mass was grossly ill-demarcated, friable and red-brown, invading renal parenchyma, hilar fat and the renal vein. Microscopically, the tumor had a nested and papillary architecture. The cells demonstrated abundant clear and eosinophilic cytoplasm and focal intracytoplasmic melanin pigment. Nucleoli were prominent. By immunohistochemistry, the tumor was positive for TFE3; HMB-45 stained approximately 5% of tumor cells corresponding to the histologic melanin pigment, which was confirmed with Fontana-Masson stain with bleach. Immunostains for PAX8, CD10, MiTF, and CAIX were negative; keratins Cam 5.2 and AE1/AE3 were focally positive. Targeted next-generation sequencing revealed an ARID1B-TFE3 gene fusion. Melanotic Xp11 renal cell carcinoma is a rare, pigment containing translocation variant demonstrating overlapping features with melanoma and is usually associated with an SFPQ-TFE3 gene fusion. The patient is alive and without evidence of disease 7 years after his diagnosis. The combination of high grade histopathology, the presence of melanin, absent PAX8, keratin positivity, and relatively indolent clinical behavior with a unique translocation may warrant recognition as a distinct renal cell carcinoma translocation subtype.

  18. Antibodies against CD20 or B-Cell Receptor Induce Similar Transcription Patterns in Human Lymphoma Cell Lines

    PubMed Central

    Franke, Andreas; Niederfellner, Gerhard J.; Klein, Christian; Burtscher, Helmut

    2011-01-01

    Background CD20 is a cell surface protein exclusively expressed on B cells. It is a clinically validated target for Non-Hodgkin's lymphomas (NHL) and autoimmune diseases. The B cell receptor (BCR) plays an important role for development and proliferation of pre-B and B cells. Physical interaction of CD20 with BCR and components of the BCR signaling cascade has been reported but the consequences are not fully understood. Methodology In this study we employed antibodies against CD20 and against the BCR to trigger the respective signaling. These antibodies induced very similar expression patterns of up- and down-regulated genes in NHL cell lines indicating that CD20 may play a role in BCR signaling and vice versa. Two of the genes that were rapidly and transiently induced by both stimuli are CCL3 and CCL4. 4 hours after stimulation the concentration of these chemokines in culture medium reaches a maximum. Spleen tyrosine kinase Syk is a cytoplasmic tyrosine kinase and a key component of BCR signaling. Both siRNA mediated silencing of Syk and inhibition by selective small molecule inhibitors impaired CCL3/CCL4 protein induction after treatment with either anti-CD20 or anti-BCR antibodies. Conclusion Our results suggest that treatment with anti-CD20 antibodies triggers at least partially a BCR activation-like response in NHL cell lines. PMID:21364752

  19. Effect of Aflatoxin B1 on Growth of Bovine Mammary Epithelial Cells in 3D and Monolayer Culture System

    PubMed Central

    Forouharmehr, Ali; Harkinezhad, Taher; Qasemi-Panahi, Babak

    2013-01-01

    Purpose: Many studies have been showed transfer of aflatoxins, toxins produced by Aspergillus flvaus and Aspergillus parasiticus fungi, into milk. These toxins are transferred into the milk through digestive system by eating contaminated food. Due to the toxicity of these materials, it seems that it has side effects on the growth of mammary cells. Therefore, the present work aimed to investigate possible toxic effects of aflatoxin B1 (AFB1) on bovine mammary epithelial cells in monolayer and three-dimensional cultures. Methods: Specimens of the mammary tissue of bovine were sized out in size 2×2 cm in slaughterhouse. After disinfection and washing in sterile PBS, primary cell culture was performed by enzymatic digestion of tissue with collagenase. When proper numbers of cells were achieved in monolayer culture, cells were seeded in a 24-well culture plate for three-dimensional (3D) culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, the concentrations of 15, 25 and 35 µL of AFB1 were added to the culture in quadruplicate and incubated for 8 hours. Cellular cytotoxicity was examined using standard colorimetric assay and finally, any change in the morphology of the cells was studied by microscopic technique. Results: Microscopic investigations showed necrosis of the AFB1-exposed cells compared to the control cells. Also, bovine mammary epithelial cells were significantly affected by AFB1 in dose and time dependent manner in cell viability assays. Conclusion: According to the results, it seems that AFB1 can induce cytotoxicity and necrosis in bovine mammary epithelial cells. PMID:24312827

  20. Evaluation of organic anion-transporting polypeptide 1B1 and CYP3A4 activities in primary human hepatocytes and HepaRG cells cultured in a dynamic three-dimensional bioreactor system.

    PubMed

    Ulvestad, Maria; Darnell, Malin; Molden, Espen; Ellis, Ewa; Åsberg, Anders; Andersson, Tommy B

    2012-10-01

    The long-term stability of liver cell functions is a major challenge when studying hepatic drug transport, metabolism, and toxicity in vitro. The aim of the present study was to investigate organic anion-transporting polypeptide (OATP) 1B1 and CYP3A4 activities in fresh primary human hepatocytes and differentiated cryopreserved HepaRG cells when cultured in a three-dimensional (3D) bioreactor system. OATP1B1 activity was determined by loss from media experiments of [(3)H]estradiol-17β-D-glucuronide and atorvastatin acid (ATA) for up to 7 days in culture. ATA metabolite formation was determined at days 3 to 4 to evaluate CYP3A4 activity. Overall, the results showed that freshly isolated human hepatocytes inoculated in the bioreactor retained OATP1B1 activity for at least 7 days, whereas in HepaRG cells no OATP1B1 activity was observed beyond day 2. The activity data were in agreement with immunohistochemical stainings, which showed that OATP1B1 protein expression was preserved for at least 9 days in fresh human hepatocytes, whereas OATP1B1 was expressed markedly lower in HepaRG cells after 9 days in culture. Fresh human hepatocytes and HepaRG cells exhibited similar CYP3A4 activity in bioreactor culture, and immunohistochemical stainings supported these findings. Activity and mRNA expression of OATP1B1 and CYP3A4 in primary human hepatocytes compared with HepaRG cells in fresh suspensions were in agreement with data obtained in bioreactor culture. In conclusion, freshly isolated human hepatocytes cultured in a 3D bioreactor system preserve both OATP1B1 and CYP3A4 activities, allowing long-term in vitro studies on drug disposition and toxicity.

  1. Targeted Disruption of Pancreatic-Derived Factor (PANDER, FAM3B) Impairs Pancreatic β-Cell Function

    PubMed Central

    Robert-Cooperman, Claudia E.; Carnegie, Jason R.; Wilson, Camella G.; Yang, Jichun; Cook, Joshua R.; Wu, Jianmei; Young, Robert A.; Wolf, Bryan A.; Burkhardt, Brant R.

    2010-01-01

    OBJECTIVE Pancreatic-derived factor (PANDER, FAM3B) is a pancreatic islet-specific cytokine-like protein that is secreted from β-cells upon glucose stimulation. The biological function of PANDER is unknown, and to address this we generated and characterized a PANDER knockout mouse. RESEARCH DESIGN AND METHODS To generate the PANDER knockout mouse, the PANDER gene was disrupted and its expression was inhibited by homologous recombination via replacement of the first two exons, secretion signal peptide and transcriptional start site, with the neomycin gene. PANDER−/− mice were then phenotyped by a number of in vitro and in vivo tests to evaluate potential effects on glucose regulation, insulin sensitivity, and β-cell morphology and function. RESULTS Glucose tolerance tests demonstrated significantly higher blood glucose levels in PANDER−/− versus wild-type male mice. To identify the mechanism of the glucose intolerance, insulin sensitivity and pancreatic β-cell function were examined. Hyperinsulinemic-euglycemic clamps and insulin tolerance testing showed similar insulin sensitivity for both the PANDER−/− and wild-type mice. The in vivo insulin response following intraperitoneal glucose injection surprisingly produced significantly higher insulin levels in the PANDER−/− mice, whereas insulin release was blunted with arginine administration. Islet perifusion and calcium imaging studies showed abnormal responses of the PANDER−/− islets to glucose stimulation. In contrast, neither islet architecture nor insulin content was impacted by the loss of PANDER. Interestingly, the elevated insulin levels identified in vivo were attributed to decreased hepatic insulin clearance in the PANDER−/− islets. Taken together, these results demonstrated decreased pancreatic β-cell function in the PANDER−/− mouse. CONCLUSIONS These results support a potential role of PANDER in the pancreatic β-cell for regulation or facilitation of insulin secretion. PMID

  2. Identification of ERdj3 and OBF-1/BOB-1/OCA-B as direct targets of XBP-1 during plasma cell differentiation.

    PubMed

    Shen, Ying; Hendershot, Linda M

    2007-09-01

    Plasma cell differentiation is accompanied by a modified unfolded protein response (UPR), which involves activation of the Ire1 and activating transcription factor 6 branches, but not the PKR-like endoplasmic reticulum kinase branch. Ire1-mediated splicing of XBP-1 (XBP-1(S)) is required for terminal differentiation, although the direct targets of XBP-1(S) in this process have not been identified. We demonstrate that XBP-1(S) binds to the promoter of ERdj3 in plasmacytoma cells and in LPS-stimulated primary splenic B cells, which corresponds to increased expression of ERdj3 transcripts in both cases. When small hairpin RNA was used to decrease XBP-1 expression in plasmacytoma lines, ERdj3 transcripts were concomitantly reduced. The accumulation of Ig gamma H chain protein was also diminished, but unexpectedly this occurred at the transcriptional level as opposed to effects on H chain stability. The decrease in H chain transcripts correlated with a reduction in mRNA encoding the H chain transcription factor, OBF-1/BOB-1/OCA-B. Chromatin immunoprecipitation experiments revealed that XBP-1(S) binds to the OBF-1/BOB-1/OCA-B promoter in the plasmacytoma line and in primary B cells not only during plasma cell differentiation, but also in response to classical UPR activation. Gel shift assays suggest that XBP-1(S) binding occurs through a UPR element conserved in both murine and human OBF-1/BOB-1/OCA-B promoters as opposed to endoplasmic reticulum stress response elements. Our studies are the first to identify direct downstream targets of XBP-1(S) during either plasma cell differentiation or the UPR. In addition, our data further define the XBP-1(S)-binding sequence and provide yet another role for this protein as a master regulator of plasma cell differentiation.

  3. BvrR/BvrS-Controlled Outer Membrane Proteins Omp3a and Omp3b Are Not Essential for Brucella abortus Virulence▿

    PubMed Central

    Manterola, Lorea; Guzmán-Verri, Caterina; Chaves-Olarte, Esteban; Barquero-Calvo, Elías; de Miguel, María-Jesús; Moriyón, Ignacio; Grilló, María-Jesús; López-Goñi, Ignacio; Moreno, Edgardo

    2007-01-01

    The Brucella abortus two-component regulatory system BvrR/BvrS controls the expression of outer membrane proteins (Omp) Omp3a (Omp25) and Omp3b (Omp22). Disruption of bvrS or bvrR generates avirulent mutants with altered cell permeability, higher sensitivity to microbicidal peptides, and complement. Consequently, the role of Omp3a and Omp3b in virulence was examined. Similar to bvrS or bvrR mutants, omp3a and omp3b mutants displayed increased attachment to cells, indicating surface alterations. However, they showed unaltered permeability; normal expression of Omp10, Omp16, Omp19, Omp2b, and Omp1; native hapten polysaccharide; and lipopolysaccharide and were resistant to complement and polymyxin B at ranges similar to those of the wild-type (WT) counterpart. Likewise, omp3a and omp3b mutants were able to replicate in murine macrophages and in HeLa cells, were resistant to the killing action of human neutrophils, and persisted in mice, like the WT strain. Murine macrophages infected with the omp3a mutant generated slightly higher levels of tumor necrosis factor alpha than the WT, whereas the bvrS mutant induced lower levels of this cytokine. Since the absence of Omp3a or Omp3b does not result in attenuation, it can be concluded that BvrR/BvrS influences additional Brucella properties involved in virulence. Our results are discussed in the light of previous works suggesting that disruption of omp3a generates attenuated Brucella strains, and we speculate on the role of group 3 Omps. PMID:17664262

  4. CD5-expressing B-cell lymphomas/leukemias: relatively high frequency of CD5+ B-cell lymphomas with an overall poor prognosis in Nagasaki Japan.

    PubMed

    Kamihira, S; Hirakata, Y; Atogami, S; Sohda, H; Tsuruda, K; Yamada, Y; Tomonaga, M

    1996-06-01

    To characterize CD5+ B-cell neoplasms in Japan, where chronic lymphocytic leukemia (CLL) is rare and of different subtypes in comparison with Western countries, we collected 58 cases of CD5+ B-cell lymphomas/leukemias and analyzed their clinicopathologic features. According to the French-American-British (FAB) and standard histologic classification, the cases corresponded to small lymphocytic lymphoma (SLL, group I; n = 22, consisting of CLL, n = 10, CLL/PL, n = 3, and CLLmixed, n = 7); intermediate differentiated lymphoma/mantle cell lymphoma (IDL/MCL, group II, n = 18); and others with CD5-positive lymphomas (group III, n = 18). The CD5+ B-cell lymphomas showed morphologic and prognostic variability among the three groups. The clinical and immunophenotypic features were remarkably consistent in leukemic disease being seen in 73% of all cases, splenomegaly in 63%, and intense CD19, CD20, surface membrane immunogobulin M (SmIgM) or SmIgM and SmIgD, light-chain expression, and no CD10 expression. The median survival time of groups I, II, and III was 7.8, 3.3, and 0.8 years, respectively. These findings suggest that CD5 antigens may serve as valid markers for the prognosis and clinical features of B-cell lymphomas and that CD5+ B-cell lymphomas with an overall poor prognosis occurs at a relatively high frequency in Japan. This also suggests that a combination of immunophenotypic and morphologic features is of value for characterizing CD5+ B-cell neoplasms.

  5. Natural indoles, indole-3-carbinol and 3,3′-diindolymethane, inhibit T cell activation by staphylococcal enterotoxin B through epigenetic regulation involving HDAC expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busbee, Philip B.; Nagarkatti, Mitzi; Nagarkatti, Prakash S., E-mail: prakash@mailbox.sc.edu

    2014-01-01

    Staphylococcal enterotoxin B (SEB) is a potent exotoxin produced by the Staphylococcus aureus. This toxin is classified as a superantigen because of its ability to directly bind with MHC-II class molecules followed by activation of a large proportion of T cells bearing specific Vβ-T cell receptors. Commonly associated with classic food poisoning, SEB has also been shown to induce toxic shock syndrome, and is also considered to be a potential biological warfare agent because it is easily aerosolized. In the present study, we assessed the ability of indole-3-carbinol (I3C) and one of its byproducts, 3,3′-diindolylmethane (DIM), found in cruciferous vegetables,more » to counteract the effects of SEB-induced activation of T cells in mice. Both I3C and DIM were found to decrease the activation, proliferation, and cytokine production by SEB-activated Vβ8{sup +} T cells in vitro and in vivo. Interestingly, inhibitors of histone deacetylase class I (HDAC-I), but not class II (HDAC-II), showed significant decrease in SEB-induced T cell activation and cytokine production, thereby suggesting that epigenetic modulation plays a critical role in the regulation of SEB-induced inflammation. In addition, I3C and DIM caused a decrease in HDAC-I but not HDAC-II in SEB-activated T cells, thereby suggesting that I3C and DIM may inhibit SEB-mediated T cell activation by acting as HDAC-I inhibitors. These studies not only suggest for the first time that plant-derived indoles are potent suppressors of SEB-induced T cell activation and cytokine storm but also that they may mediate these effects by acting as HDAC inhibitors. - Highlights: • I3C and DIM reduce SEB-induced T cell activation and inflammatory cytokines. • Inhibiting class I HDACs reduces T cell activation and inflammatory cytokines. • Inhibiting class II HDACs increases T cell activation and inflammatory cytokines. • I3C and DIM selectively reduce mRNA expression of class I HDACs. • Novel use and mechanism to

  6. Antigen B from Echinococcus granulosus enters mammalian cells by endocytic pathways.

    PubMed

    da Silva, Edileuza Danieli; Cancela, Martin; Monteiro, Karina Mariante; Ferreira, Henrique Bunselmeyer; Zaha, Arnaldo

    2018-05-04

    Cystic hydatid disease is a zoonosis caused by the larval stage (hydatid) of Echinococcus granulosus (Cestoda, Taeniidae). The hydatid develops in the viscera of intermediate host as a unilocular structure filled by the hydatid fluid, which contains parasitic excretory/secretory products. The lipoprotein Antigen B (AgB) is the major component of E. granulosus metacestode hydatid fluid. Functionally, AgB has been implicated in immunomodulation and lipid transport. However, the mechanisms underlying AgB functions are not completely known. In this study, we investigated AgB interactions with different mammalian cell types and the pathways involved in its internalization. AgB uptake was observed in four different cell lines, NIH-3T3, A549, J774 and RH. Inhibition of caveolae/raft-mediated endocytosis causes about 50 and 69% decrease in AgB internalization by RH and A549 cells, respectively. Interestingly, AgB colocalized with the raft endocytic marker, but also showed a partial colocalization with the clathrin endocytic marker. Finally, AgB colocalized with an endolysosomal tracker, providing evidence for a possible AgB destination after endocytosis. The results indicate that caveolae/raft-mediated endocytosis is the main route to AgB internalization, and that a clathrin-mediated entry may also occur at a lower frequency. A possible fate for AgB after endocytosis seems to be the endolysosomal system. Cellular internalization and further access to subcellular compartments could be a requirement for AgB functions as a lipid carrier and/or immunomodulatory molecule, contributing to create a more permissive microenvironment to metacestode development and survival.

  7. Impaired Akt phosphorylation in B-cells of patients with common variable immunodeficiency.

    PubMed

    Yazdani, Reza; Ganjalikhani-Hakemi, Mazdak; Esmaeili, Mohammad; Abolhassani, Hassan; Vaeli, Shahram; Rezaei, Abbas; Sharifi, Zohre; Azizi, Gholamreza; Rezaei, Nima; Aghamohammadi, Asghar

    2017-02-01

    Common variable immunodeficiency (CVID) is a heterogeneous group of primary immunodeficiency characterized by recurrent infections. We evaluated whether defective PI3K/Akt/FoxO pathway could influence B-cell fate. Determination of B-cell subsets in CVD patients and healthy donors (HDs) were performed using flow cytometry. We evaluated mRNA and protein expression of PI3K, Akt and FoxO using real-time PCR and flow cytometry, respectively. Moreover, phosphorylated Akt (pAkt) expression in B-cells has been measured by flowcytometry. We identified a significant reduction in the percentage of marginal zone like B-cells, memory B-cells (total, switched and unswitched) and plasmablasts in patients, as these decreased B-cell subsets had a significant negative correlation with increased apoptosis in patients. Surprisingly, we identified decreased pAkt expression in B-cells of patients than HDs. We described for the first time impaired pAkt expression in B-cells of CVID patients that had a significant correlation with antibody response to the vaccine and worse clinical complications. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Cathepsin B Contributes to Autophagy-related 7 (Atg7)-induced Nod-like Receptor 3 (NLRP3)-dependent Proinflammatory Response and Aggravates Lipotoxicity in Rat Insulinoma Cell Line

    PubMed Central

    Li, Shali; Du, Leilei; Zhang, Lu; Hu, Yue; Xia, Wenchun; Wu, Jia; Zhu, Jing; Chen, Lingling; Zhu, Fengqi; Li, Chunxian; Yang, SiJun

    2013-01-01

    Impairment of glucose-stimulated insulin secretion caused by the lipotoxicity of palmitate was found in β-cells. Recent studies have indicated that defects in autophagy contribute to pathogenesis in type 2 diabetes. Here, we report that autophagy-related 7 (Atg7) induced excessive autophagic activation in INS-1(823/13) cells exposed to saturated fatty acids. Atg7-induced cathepsin B (CTSB) overexpression resulted in an unexpected significant increase in proinflammatory chemokine and cytokine production levels of IL-1β, monocyte chemotactic protein-1, IL-6, and TNF-α. Inhibition of receptor-interacting protein did not affect the inflammatory response, ruling out involvement of necrosis. CTSB siRNA suppressed the inflammatory response but did not affect apoptosis significantly, suggesting that CTSB was a molecular linker between autophagy and the proinflammatory response. Blocking caspase-3 suppressed apoptosis but did not affect the inflammatory response, suggesting that CTSB induced inflammatory effects independently of apoptosis. Silencing of Nod-like receptor 3 (NLRP3) completely abolished both IL-1β secretion and the down-regulation effects of Atg7-induced CTSB overexpression on glucose-stimulated insulin secretion impairment, thus identifying the NLRP3 inflammasome as an autophagy-responsive element in the pancreatic INS-1(823/13) cell line. Combined together, our results indicate that CTSB contributed to the Atg7-induced NLRP3-dependent proinflammatory response, resulting in aggravation of lipotoxicity, independently of apoptosis in the pancreatic INS-1(823/13) cell line. PMID:23986436

  9. Sensitization of B-cell chronic lymphocytic leukemia cells to recombinant immunotoxin by immunostimulatory phosphorothioate oligodeoxynucleotides.

    PubMed

    Decker, Thomas; Hipp, Susanne; Kreitman, Robert J; Pastan, Ira; Peschel, Christian; Licht, Thomas

    2002-02-15

    A recombinant anti-CD25 immunotoxin, LMB-2, has shown clinical efficacy in hairy cell leukemia and T-cell neoplasms. Its activity in B-cell chronic lymphocytic leukemia (B-CLL) is inferior but might be improved if B-CLL cells expressed higher numbers of CD25 binding sites. It was recently reported that DSP30, a phosphorothioate CpG-oligodeoxynucleotide (CpG-ODN) induces immunogenicity of B-CLL cells by up-regulation of CD25 and other antigens. The present study investigated the antitumor activity of LMB-2 in the presence of DSP30. To this end, B-CLL cells from peripheral blood of patients were isolated immunomagnetically to more than 98% purity. Incubation with DSP30 for 48 hours augmented CD25 expression in 14 of 15 B-CLL samples, as assessed by flow cytometry. DSP30 increased LMB-2 cytotoxicity dose dependently whereas a control ODN with no CpG motif did not. LMB-2 displayed no antitumor cell activity in the absence of CpG-ODN as determined colorimetrically with an (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. In contrast, B-CLL growth was inhibited in 12 of 13 samples with 50% inhibition concentrations (IC(50)) in the range of LMB-2 plasma levels achieved in clinical studies. Two samples were not evaluable because of spontaneous B-CLL cell death in the presence of DSP30. Control experiments with an immunotoxin that does not recognize hematopoietic cells, and an anti-CD22 immunotoxin, confirmed that sensitization to LMB-2 was specifically due to up-regulation of CD25. LMB-2 was much less toxic to normal B and T lymphocytes compared with B-CLL cells. In summary, immunostimulatory CpG-ODNs efficiently sensitize B-CLL cells to a recombinant immunotoxin by modulation of its target. This new treatment strategy deserves further attention.

  10. Immunotherapy for B-Cell Neoplasms using T Cells expressing Chimeric Antigen Receptors

    PubMed Central

    Boulassel, Mohamed-Rachid; Galal, Ahmed

    2012-01-01

    Immunotherapy with T cells expressing chimeric antigen receptors (CAR) is being evaluated as a potential treatment for B-cell neoplasms. In recent clinical trials it has shown promising results. As the number of potential candidate antigens expands, the choice of suitable target antigens becomes more challenging to design studies and to assess optimal efficacy of CAR. Careful evaluation of candidate target antigens is required to ensure that T cells expressing CAR will preferentially kill malignant cells with a minimal toxicity against normal tissues. B cells express specific surface antigens that can theoretically act as targets for CAR design. Although many of these antigens can stimulate effective cellular immune responses in vivo, their implementation in clinical settings remains a challenge. Only targeted B-cell antigens CD19 and CD20 have been tested in clinical trials. This article reviews exploitable B cell surface antigens for CAR design and examines obstacles that could interfere with the identification of potentially useful cellular targets. PMID:23269948

  11. Immunotoxicity of ochratoxin A and aflatoxin B1 in combination is associated with the nuclear factor kappa B signaling pathway in 3D4/21 cells.

    PubMed

    Hou, Lili; Gan, Fang; Zhou, Xuan; Zhou, Yajiao; Qian, Gang; Liu, Zixuan; Huang, Kehe

    2018-05-01

    The co-contamination of cereals, grains, crops, and animal feeds by mycotoxins is a universal problem. Humans and animals are exposed to several mycotoxins simultaneously as evidenced by extensive studies on this topic. Yet, most studies have addressed the effects of mycotoxins individually. Aflatoxin B1 and ochratoxin A can induce immunotoxicity. However, it remains unclear whether a combination of these mycotoxins aggravates immunotoxicity and the potential mechanism underlying this effect. In this study, we used the cell line 3D4/21, swine alveolus macrophages and innate immune cell. The results showed that the percentage of cell inhibition, annexin V/PI-positive rates, and the expression of pro-inflammatory cytokines (tumor necrosis factor alpha and interleukin-6) significantly increased and the release of lactate dehydrogenase and phagocytotic index were significantly decreased at different concentrations of aflatoxin B1 and ochratoxin A combination when compared with control. The combination of aflatoxin B1 and ochratoxin A significantly decreased the production of GSH and increased reactive oxygen species level. However, N-acetylcysteine suppressed the oxidative stress and alleviated the immunotoxicity induced by the combination. The combination of aflatoxin B1 and ochratoxin A markedly enhanced the degradation of IκBa, the phosphorylation of nuclear factor kappa B (p65), and the translocation of activated nuclear factor kappa B (NF-κB) into the nuclei as demonstrated by western blotting and confocal laser scanning microscopy. These effects could be reversed by BAY 11-7082, a specific inhibitor of NF-κB. Taken together, a combination of aflatoxin B1 and ochratoxin A could aggravate immunotoxicity by activating the NF-κB signaling pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. B cells are critical to T-cell-mediated antitumor immunity induced by a combined immune-stimulatory/conditionally cytotoxic therapy for glioblastoma.

    PubMed

    Candolfi, Marianela; Curtin, James F; Yagiz, Kader; Assi, Hikmat; Wibowo, Mia K; Alzadeh, Gabrielle E; Foulad, David; Muhammad, A K M G; Salehi, Sofia; Keech, Naomi; Puntel, Mariana; Liu, Chunyan; Sanderson, Nicholas R; Kroeger, Kurt M; Dunn, Robert; Martins, Gislaine; Lowenstein, Pedro R; Castro, Maria G

    2011-10-01

    We have demonstrated that modifying the tumor microenvironment through intratumoral administration of adenoviral vectors (Ad) encoding the conditional cytotoxic molecule, i.e., HSV1-TK and the immune-stimulatory cytokine, i.e., fms-like tyrosine kinase 3 ligand (Flt3L) leads to T-cell-dependent tumor regression in rodent models of glioblastoma. We investigated the role of B cells during immune-mediated glioblastoma multiforme regression. Although treatment with Ad-TK+Ad-Flt3L induced tumor regression in 60% of wild-type (WT) mice, it completely failed in B-cell-deficient Igh6(-/-) mice. Tumor-specific T-cell precursors were detected in Ad-TK+Ad-Flt3L-treated WT mice but not in Igh6(-/-) mice. The treatment also failed in WT mice depleted of total B cells or marginal zone B cells. Because we could not detect circulating antibodies against tumor cells and the treatment was equally efficient in WT mice and in mice with B-cell-specific deletion of Prdm 1 (encoding Blimp-1), in which B cells are present but unable to fully differentiate into antibody-secreting plasma cells, tumor regression in this model is not dependent on B cells' production of tumor antigen-specific immunoglobulins. Instead, B cells seem to play a role as antigen-presenting cells (APCs). Treatment with Ad-TK+Ad-Flt3L led to an increase in the number of B cells in the cervical lymph nodes, which stimulated the proliferation of syngeneic T cells and induced clonal expansion of antitumor T cells. Our data show that B cells act as APCs, playing a critical role in clonal expansion of tumor antigen-specific T cells and brain tumor regression.

  13. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells.

    PubMed

    Seda, Vaclav; Mraz, Marek

    2015-03-01

    The physiology of B cells is intimately connected with the function of their B-cell receptor (BCR). B-cell lymphomas frequently (dys)regulate BCR signalling and thus take advantage of this pre-existing pathway for B-cell proliferation and survival. This has recently been underscored by clinical trials demonstrating that small molecules (fosfamatinib, ibrutinib, idelalisib) inhibiting BCR-associated kinases (SYK, BTK, PI3K) have an encouraging clinical effect. Here we describe the current knowledge of the specific aspects of BCR signalling in diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, chronic lymphocytic leukaemia (CLL) and normal B cells. Multiple factors can contribute to BCR pathway (dys)regulation in these malignancies and the activation of 'chronic' or 'tonic' BCR signalling. In lymphoma B cells, the balance of initiation, amplitude and duration of BCR activation can be influenced by a specific immunoglobulin structure, the expression and mutations of adaptor molecules (like GAB1, BLNK, GRB2, CARD11), the activity of kinases (like LYN, SYK, PI3K) or phosphatases (like SHIP-1, SHP-1 and PTEN) and levels of microRNAs. We also discuss the crosstalk of BCR with other signalling pathways (NF-κB, adhesion through integrins, migration and chemokine signalling) to emphasise that the 'BCR inhibitors' target multiple pathways interconnected with BCR, which might explain some of their clinical activity. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Impact of calcium ion on cytotoxic effect of the boroxine derivative, K2[B3O3F4OH].

    PubMed

    Ivankovic, Sinisa; Stojkovic, Ranko; Maksimovic, Milka; Galic, Borivoj; Milos, Mladen

    2016-01-01

    The effect of Ca 2+ ions on the cytotoxic ability of boron heterocyclic compound dipotassium-trioxohydroxytetrafluorotriborate (K 2 [B 3 O 3 F 4 OH]), on in vitro tumor cells (mammary adenocarcinoma 4T1, melanoma B16F10 and squamous cell carcinoma SCCVII) and non-tumoral fibroblast cells (mouse dermal L929 and hamster lung V79) was examined. At small concentrations of Ca 2+ ions (0.42 mM), K 2 [B 3 O 3 F 4 OH] (3.85 mM) has a very strong cytotoxic effect on all cancer cells tested (89.1, 85.6 and 84.6%) and significantly less effect on normal cells (19.5 and 24.2%), respectively. Applying larger concentrations of Ca 2+ ions (9.42-72.42 mM), at the same concentration of K 2 [B 3 O 3 F 4 OH], no significant cytotoxic effect was detected on cancer cells and normal cells investigated. The selective ability of K 2 [B 3 O 3 F 4 OH], in the medium with a low concentration of Ca 2+ ions has a strong cytotoxic effect on cancer cells and very weak effect in normal cells, opens up the possibility of its application in antitumor therapy.

  15. Tolerance without clonal expansion: self-antigen-expressing B cells program self-reactive T cells for future deletion.

    PubMed

    Frommer, Friederike; Heinen, Tobias J A J; Wunderlich, F Thomas; Yogev, Nir; Buch, Thorsten; Roers, Axel; Bettelli, Estelle; Müller, Werner; Anderton, Stephen M; Waisman, Ari

    2008-10-15

    B cells have been shown in various animal models to induce immunological tolerance leading to reduced immune responses and protection from autoimmunity. We show that interaction of B cells with naive T cells results in T cell triggering accompanied by the expression of negative costimulatory molecules such as PD-1, CTLA-4, B and T lymphocyte attenuator, and CD5. Following interaction with B cells, T cells were not induced to proliferate, in a process that was dependent on their expression of PD-1 and CTLA-4, but not CD5. In contrast, the T cells became sensitive to Ag-induced cell death. Our results demonstrate that B cells participate in the homeostasis of the immune system by ablation of conventional self-reactive T cells.

  16. Preliminary results of 3D dose calculations with MCNP-4B code from a SPECT image.

    PubMed

    Rodríguez Gual, M; Lima, F F; Sospedra Alfonso, R; González González, J; Calderón Marín, C

    2004-01-01

    Interface software was developed to generate the input file to run Monte Carlo MCNP-4B code from medical image in Interfile format version 3.3. The software was tested using a spherical phantom of tomography slides with known cumulated activity distribution in Interfile format generated with IMAGAMMA medical image processing system. The 3D dose calculation obtained with Monte Carlo MCNP-4B code was compared with the voxel S factor method. The results show a relative error between both methods less than 1 %.

  17. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation

    PubMed Central

    Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice

    2017-01-01

    Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo. The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer. PMID:28123849

  18. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation.

    PubMed

    Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice

    2017-01-01

    Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo . The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer.

  19. The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells

    PubMed Central

    Sintes, Jordi; Polentarutti, Nadia; Walland, A. Cooper; Yeiser, John R.; Cunha, Cristina; Lacerda, João F.; Salvatori, Giovanni; Blander, J. Magarian

    2016-01-01

    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition receptor of the humoral innate immune system with ancestral antibody-like properties but unknown antibody-inducing function. In this study, we found binding of PTX3 to splenic marginal zone (MZ) B cells, an innate-like subset of antibody-producing lymphocytes strategically positioned at the interface between the circulation and the adaptive immune system. PTX3 was released by a subset of neutrophils that surrounded the splenic MZ and expressed an immune activation–related gene signature distinct from that of circulating neutrophils. Binding of PTX3 promoted homeostatic production of IgM and class-switched IgG antibodies to microbial capsular polysaccharides, which decreased in PTX3-deficient mice and humans. In addition, PTX3 increased IgM and IgG production after infection with blood-borne encapsulated bacteria or immunization with bacterial carbohydrates. This immunogenic effect stemmed from the activation of MZ B cells through a neutrophil-regulated pathway that elicited class switching and plasmablast expansion via a combination of T cell–independent and T cell–dependent signals. Thus, PTX3 may bridge the humoral arms of the innate and adaptive immune systems by serving as an endogenous adjuvant for MZ B cells. This property could be harnessed to develop more effective vaccines against encapsulated pathogens. PMID:27621420

  20. Non-random loss of chromosome 3 during transition of Helicobacter pylori-associated gastric MALT to B-cell MALT lymphoma revealed by fluorescence in situ hybridization.

    PubMed

    Banerjee, S K; Weston, A P; Persons, D L; Campbell, D R

    1997-12-16

    Acquired gastric mucosa-associated lymphoid tissue (MALT) accumulates as a result of long-standing Helicobacter pylori (H. pylori) infection and from this acquired MALT, low-grade B-cell MALT lymphoma may develop. Carcinogenesis is a multistep, multifactorial process involving the progressive accumulation of genetic changes. To determine whether numerical chromosomal alterations are involved in the transition of H. pylori-associated human gastric MALT to low-grade B-cell MALT lymphoma, frozen biopsy specimens prospectively obtained from H. pylori positive gastric MALT and gastric MALT lymphoma patients, as well as normal control patients (normal gastroscopy/gastric mucosal histology/H. pylori negative), were analyzed by fluorescence in situ hybridization (FISH). Fluorescent, directly labeled alpha-satellite DNA probes, specific for the centromeres of chromosomes 1, 3, 4, 11, 17 and Y were used in this study. The non-random loss of chromosome 3 was detected in two MALT patients and in all five MALT lymphoma patients. Trisomy 17 was detected in one MALT patient and one MALT lymphoma patient. Trisomy 1 was detected in a single MALT lymphoma patient as was trisomy 3. None of the MALT patients had trisomy 3 or trisomy 1. Monosomy 17 was noted in one MALT lymphoma patient. Clonal aneusomy was not observed in any patient for chromosomes Y, 4 or 11. These results suggest that the consistent loss of chromosome 3 may be an important genetic alteration in the transformation of H. pylori-associated gastric MALT into low-grade B-cell gastric MALT lymphoma.