Science.gov

Sample records for b-box protein involved

  1. The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesis.

    PubMed

    Wei, Chuang-Qi; Chien, Chih-Wei; Ai, Lian-Feng; Zhao, Jun; Zhang, Zhenzhen; Li, Kathy H; Burlingame, Alma L; Sun, Yu; Wang, Zhi-Yong

    2016-09-20

    Plant growth is controlled by integration of hormonal and light-signaling pathways. BZS1 is a B-box zinc finger protein previously characterized as a negative regulator in the brassinosteroid (BR)-signaling pathway and a positive regulator in the light-signaling pathway. However, the mechanisms by which BZS1/BBX20 integrates light and hormonal pathways are not fully understood. Here, using a quantitative proteomic workflow, we identified several BZS1-associated proteins, including light-signaling components COP1 and HY5. Direct interactions of BZS1 with COP1 and HY5 were verified by yeast two-hybrid and co-immunoprecipitation assays. Overexpression of BZS1 causes a dwarf phenotype that is suppressed by the hy5 mutation, while overexpression of BZS1 fused with the SRDX transcription repressor domain (BZS1-SRDX) causes a long-hypocotyl phenotype similar to hy5, indicating that BZS1's function requires HY5. BZS1 positively regulates HY5 expression, whereas HY5 negatively regulates BZS1 protein level, forming a feedback loop that potentially contributes to signaling dynamics. In contrast to BR, strigolactone (SL) increases BZS1 level, whereas the SL responses of hypocotyl elongation, chlorophyll and HY5 accumulation are diminished in the BZS1-SRDX seedlings, indicating that BZS1 is involved in these SL responses. These results demonstrate that BZS1 interacts with HY5 and plays a central role in integrating light and multiple hormone signals for photomorphogenesis in Arabidopsis.

  2. The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesis.

    PubMed

    Wei, Chuang-Qi; Chien, Chih-Wei; Ai, Lian-Feng; Zhao, Jun; Zhang, Zhenzhen; Li, Kathy H; Burlingame, Alma L; Sun, Yu; Wang, Zhi-Yong

    2016-09-20

    Plant growth is controlled by integration of hormonal and light-signaling pathways. BZS1 is a B-box zinc finger protein previously characterized as a negative regulator in the brassinosteroid (BR)-signaling pathway and a positive regulator in the light-signaling pathway. However, the mechanisms by which BZS1/BBX20 integrates light and hormonal pathways are not fully understood. Here, using a quantitative proteomic workflow, we identified several BZS1-associated proteins, including light-signaling components COP1 and HY5. Direct interactions of BZS1 with COP1 and HY5 were verified by yeast two-hybrid and co-immunoprecipitation assays. Overexpression of BZS1 causes a dwarf phenotype that is suppressed by the hy5 mutation, while overexpression of BZS1 fused with the SRDX transcription repressor domain (BZS1-SRDX) causes a long-hypocotyl phenotype similar to hy5, indicating that BZS1's function requires HY5. BZS1 positively regulates HY5 expression, whereas HY5 negatively regulates BZS1 protein level, forming a feedback loop that potentially contributes to signaling dynamics. In contrast to BR, strigolactone (SL) increases BZS1 level, whereas the SL responses of hypocotyl elongation, chlorophyll and HY5 accumulation are diminished in the BZS1-SRDX seedlings, indicating that BZS1 is involved in these SL responses. These results demonstrate that BZS1 interacts with HY5 and plays a central role in integrating light and multiple hormone signals for photomorphogenesis in Arabidopsis. PMID:27523280

  3. BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation.

    PubMed

    Xu, Dongqing; Jiang, Yan; Li, Jigang; Lin, Fang; Holm, Magnus; Deng, Xing Wang

    2016-07-01

    BBX21 (also known as SALT TOLERANCE HOMOLOG 2), a B-box (BBX)-containing protein, has been previously identified as a positive regulator of light signaling; however, the precise role of BBX21 in regulating seedling photomorphogenesis remains largely unclear. In this study, we report that CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) interacts with BBX21 in vivo and is able to ubiquitinate BBX21 in vitro. Thus, BBX21 is targeted for 26S proteasome-mediated degradation in dark-grown Arabidopsis seedlings in a COP1-dependent manner. Moreover, we show that BBX21 binds to the T/G-box in the ELONGATED HYPOCOTYL 5 (HY5) promoter and directly activates HY5 expression in the light. Transgenic seedlings overexpressing BBX21 exhibit dramatically shortened hypocotyls in the light, and this phenotype is dependent on a functional HY5. Taken together, our data suggest a molecular base underlying BBX21-mediated seedling photomorphogenesis, indicating that BBX21 is a pivotal component involved in the COP1-HY5 regulatory hub. PMID:27325768

  4. Formation of functional CENP-B boxes at diverse locations in repeat units of centromeric DNA in New World monkeys

    PubMed Central

    Kugou, Kazuto; Hirai, Hirohisa; Masumoto, Hiroshi; Koga, Akihiko

    2016-01-01

    Centromere protein B, which is involved in centromere formation, binds to centromeric repetitive DNA by recognizing a nucleotide motif called the CENP-B box. Humans have large numbers of CENP-B boxes in the centromeric repetitive DNA of their autosomes and X chromosome. The current understanding is that these CENP-B boxes are located at identical positions in the repeat units of centromeric DNA. Great apes also have CENP-B boxes in locations that are identical to humans. The purpose of the present study was to examine the location of CENP-B box in New World monkeys. We recently identified CENP-B box in one species of New World monkeys (marmosets). In this study, we found functional CENP-B boxes in CENP-A-assembled repeat units of centromeric DNA in 2 additional New World monkeys (squirrel monkeys and tamarins) by immunostaining and ChIP-qPCR analyses. The locations of the 3 CENP-B boxes in the repeat units differed from one another. The repeat unit size of centromeric DNA of New World monkeys (340–350 bp) is approximately twice that of humans and great apes (171 bp). This might be, associated with higher-order repeat structures of centromeric DNA, a factor for the observed variation in the CENP-B box location in New World monkeys. PMID:27292628

  5. Formation of functional CENP-B boxes at diverse locations in repeat units of centromeric DNA in New World monkeys.

    PubMed

    Kugou, Kazuto; Hirai, Hirohisa; Masumoto, Hiroshi; Koga, Akihiko

    2016-06-13

    Centromere protein B, which is involved in centromere formation, binds to centromeric repetitive DNA by recognizing a nucleotide motif called the CENP-B box. Humans have large numbers of CENP-B boxes in the centromeric repetitive DNA of their autosomes and X chromosome. The current understanding is that these CENP-B boxes are located at identical positions in the repeat units of centromeric DNA. Great apes also have CENP-B boxes in locations that are identical to humans. The purpose of the present study was to examine the location of CENP-B box in New World monkeys. We recently identified CENP-B box in one species of New World monkeys (marmosets). In this study, we found functional CENP-B boxes in CENP-A-assembled repeat units of centromeric DNA in 2 additional New World monkeys (squirrel monkeys and tamarins) by immunostaining and ChIP-qPCR analyses. The locations of the 3 CENP-B boxes in the repeat units differed from one another. The repeat unit size of centromeric DNA of New World monkeys (340-350 bp) is approximately twice that of humans and great apes (171 bp). This might be, associated with higher-order repeat structures of centromeric DNA, a factor for the observed variation in the CENP-B box location in New World monkeys.

  6. Novel topology of a zinc-binding domain from a protein involved in regulating early Xenopus development.

    PubMed Central

    Borden, K L; Lally, J M; Martin, S R; O'Reilly, N J; Etkin, L D; Freemont, P S

    1995-01-01

    Xenopus nuclear factor XNF7, a maternally expressed protein, functions in patterning of the embryo. XNF7 contains a number of defined protein domains implicated in the regulation of some developmental processes. Among these is a tripartite motif comprising a zinc-binding RING finger and B-box domain next to a predicted alpha-helical coiled-coil domain. Interestingly, this motif is found in a variety of protein including several proto-oncoproteins. Here we describe the solution structure of the XNF7 B-box zinc-binding domain determined at physiological pH by 1H NMR methods. The B-box structure represents the first three-dimensional structure of this new motif and comprises a monomer have two beta-strands, two helical turns and three extended loop regions packed in a novel topology. The r.m.s. deviation for the best 18 structures is 1.15 A for backbone atoms and 1.94 A for all atoms. Structure calculations and biochemical data shows one zinc atom ligated in a Cys2-His2 tetrahedral arrangement. We have used mutant peptides to determine the metal ligation scheme which surprisingly shows that not all of the seven conserved cysteines/histidines in the B-box motif are involved in metal ligation. The B-box structure is not similar in tertiary fold to any other known zinc-binding motif. Images PMID:8846787

  7. Genomic Organization, Phylogenetic and Expression Analysis of the B-BOX Gene Family in Tomato

    PubMed Central

    Chu, Zhuannan; Wang, Xin; Li, Ying; Yu, Huiyang; Li, Jinhua; Lu, Yongen; Li, Hanxia; Ouyang, Bo

    2016-01-01

    The B-BOX (BBX) proteins encode a class of zinc-finger transcription factors possessing one or two B-BOX domains and in some cases an additional CCT (CO, CO-like and TOC1) motif, which play important roles in regulating plant growth, development and stress response. Nevertheless, no systematic study of BBX genes has undertaken in tomato (Solanum lycopersicum). Here we present the results of a genome-wide analysis of the 29 BBX genes in this important vegetable species. Their structures, conserved domains, phylogenetic relationships, subcellular localizations, and promoter cis-regulatory elements were analyzed; their tissue expression profiles and expression patterns under various hormones and stress treatments were also investigated in detail. Tomato BBX genes can be divided into five subfamilies, and twelve of them were found to be segmentally duplicated. Real-time quantitative PCR analysis showed that most BBX genes exhibited different temporal and spatial expression patterns. The expression of most BBX genes can be induced by drought, polyethylene glycol-6000 or heat stress. Some BBX genes were induced strongly by phytohormones such as abscisic acid, gibberellic acid, or ethephon. The majority of tomato BBX proteins was predicted to be located in nuclei, and the transient expression assay using Arabidopsis mesophyll protoplasts demonstrated that all the seven BBX members tested (SlBBX5, 7, 15, 17, 20, 22, and 24) were localized in nucleus. Our analysis of tomato BBX genes on the genome scale would provide valuable information for future functional characterization of specific genes in this family. PMID:27807440

  8. Mechanism of B-box 2 domain-mediated higher-order assembly of the retroviral restriction factor TRIM5α

    PubMed Central

    Wagner, Jonathan M; Roganowicz, Marcin D; Skorupka, Katarzyna; Alam, Steven L; Christensen, Devin; Doss, Ginna; Wan, Yueping; Frank, Gabriel A; Ganser-Pornillos, Barbie K; Sundquist, Wesley I; Pornillos, Owen

    2016-01-01

    Restriction factors and pattern recognition receptors are important components of intrinsic cellular defenses against viral infection. Mammalian TRIM5α proteins are restriction factors and receptors that target the capsid cores of retroviruses and activate ubiquitin-dependent antiviral responses upon capsid recognition. Here, we report crystallographic and functional studies of the TRIM5α B-box 2 domain, which mediates higher-order assembly of TRIM5 proteins. The B-box can form both dimers and trimers, and the trimers can link multiple TRIM5α proteins into a hexagonal net that matches the lattice arrangement of capsid subunits and enables avid capsid binding. Two modes of conformational flexibility allow TRIM5α to accommodate the variable curvature of retroviral capsids. B-box mediated interactions also modulate TRIM5α’s E3 ubiquitin ligase activity, by stereochemically restricting how the N-terminal RING domain can dimerize. Overall, these studies define important molecular details of cellular recognition of retroviruses, and how recognition links to downstream processes to disable the virus. DOI: http://dx.doi.org/10.7554/eLife.16309.001 PMID:27253059

  9. Autophagy and proteins involved in vesicular trafficking.

    PubMed

    Amaya, Celina; Fader, Claudio Marcelo; Colombo, María Isabel

    2015-11-14

    Autophagy is an intracellular degradation system that, as a basic mechanism it delivers cytoplasmic components to the lysosomes in order to maintain adequate energy levels and cellular homeostasis. This complex cellular process is activated by low cellular nutrient levels and other stress situations such as low ATP levels, the accumulation of damaged proteins or organelles, or pathogen invasion. Autophagy as a multistep process involves vesicular transport events leading to tethering and fusion of autophagic vesicles with several intracellular compartments. This review summarizes our current understanding of the autophagic pathway with emphasis in the trafficking machinery (i.e. Rabs GTPases and SNAP receptors (SNAREs)) involved in specific steps of the pathway.

  10. Extracellular matrix proteins involved in pseudoislets formation.

    PubMed

    Maillard, Elisa; Sencier, Marie-Christine; Langlois, A; Bietiger, William; Krafft, Mp; Pinget, Michel; Sigrist, Séverine

    2009-01-01

    Extracellular matrix proteins are known to mediate, through integrins, cell adhesion and are involved in a number of cellular processes, including insulin expression and secretion in pancreatic islets. We investigated whether expression of some extracellular matrix proteins were implied in islets-like structure formation, named pseudoislets. For this purpose, we cultured the β-cell line, RINm5F, during 1, 3, 5 and 7 days of culture on treated or untreated culture plate to form adherent cells or pseudoislets and analysed insulin, collagen IV, fibronectin, laminin 5 and β1-integrin expression. We observed that insulin expression and secretion were increased during pseudoislets formation. Moreover, we showed by immunohistochemistry an aggregation of insulin secreting cells in the centre of the pseudoislets. Peripheral β-cells of pseudoislets did not express insulin after 7 days of culture. RT-PCR and immunohistochemistry studies showed a transient expression of type IV collagen in pseudoislets for the first 3 days of culture. Study of fibronectin expression indicated that adherent cells expressed more fibronectin than pseudoislets. In contrast, laminin 5 was more expressed in pseudoislets than in adherent cells. Finally, expression of β1-integrin was increased in pseudoislets as compared to adherent cells. In conclusion, laminin 5 and collagen IV might be implicated in pseudoislets formation whereas fibronectin might be involved in cell adhesion. These data suggested that extracellular matrix proteins may enhance the function of pseudoislets.

  11. Van der Waals Interactions Involving Proteins

    NASA Technical Reports Server (NTRS)

    Roth, Charles M.; Neal, Brian L.; Lenhoff, Abraham M.

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models. with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth.

  12. CENP-B box and pJalpha sequence distribution in human alpha satellite higher-order repeats (HOR).

    PubMed

    Rosandić, Marija; Paar, Vladimir; Basar, Ivan; Gluncić, Matko; Pavin, Nenad; Pilas, Ivan

    2006-01-01

    Using our Key String Algorithm (KSA) to analyze Build 35.1 assembly we determined consensus alpha satellite higher-order repeats (HOR) and consensus distributions of CENP-B box and pJalpha motif in human chromosomes 1, 4, 5, 7, 8, 10, 11, 17, 19, and X. We determined new suprachromosomal family (SF) assignments: SF5 for 13mer (2211 bp), SF5 for 13mer (2214 bp), SF2 for 11mer (1869 bp), SF1 for 18mer (3058 bp), SF3 for 12mer (2047 bp), SF3 for 14mer (2379 bp), and SF5 for 17mer (2896 bp) in chromosomes 4, 5, 8, 10, 11, 17, and 19, respectively. In chromosome 5 we identified SF5 13mer without any CENP-B box and pJalpha motif, highly homologous (96%) to 13mer in chromosome 19. Additionally, in chromosome 19 we identified new SF5 17mer with one CENP-B box and pJalpha motif, aligned to 13mer by deleting four monomers. In chromosome 11 we identified SF3 12mer, homologous to 12mer in chromosome X. In chromosome 10 we identified new SF1 18mer with eight CENP-B boxes in every other monomer (except one). In chromosome 4 we identified new SF5 13mer with CENP-B box in three consecutive monomers. We found four exceptions to the rule that CENP-B box belongs to type B and pJalpha motif to type A monomers. PMID:17115329

  13. Oligouridylate Binding Protein 1b Plays an Integral Role in Plant Heat Stress Tolerance.

    PubMed

    Nguyen, Cam Chau; Nakaminami, Kentaro; Matsui, Akihiro; Kobayashi, Shuhei; Kurihara, Yukio; Toyooka, Kiminori; Tanaka, Maho; Seki, Motoaki

    2016-01-01

    Stress granules (SGs), which are formed in the plant cytoplasm under stress conditions, are transient dynamic sites (particles) for mRNA storage. SGs are actively involved in protecting mRNAs from degradation. Oligouridylate binding protein 1b (UBP1b) is a component of SGs. The formation of microscopically visible cytoplasmic foci, referred to as UBP1b SG, was induced by heat treatment in UBP1b-overexpressing Arabidopsis plants (UBP1b-ox). A detailed understanding of the function of UBP1b, however, is still not clear. UBP1b-ox plants displayed increased heat tolerance, relative to control plants, while ubp1b mutants were more sensitive to heat stress than control plants. Microarray analysis identified 117 genes whose expression was heat-inducible and higher in the UBP1b-ox plants. RNA decay analysis was performed using cordycepin, a transcriptional inhibitor. In order to determine if those genes serve as targets of UBP1b, the rate of RNA degradation of a DnaJ heat shock protein and a stress-associated protein (AtSAP3) in UBP1b-ox plants was slower than in control plants; indicating that the mRNAs of these genes were protected within the UBP1b SG granule. Collectively, these data demonstrate that UBP1b plays an integral role in heat stress tolerance in plants. PMID:27379136

  14. Oligouridylate Binding Protein 1b Plays an Integral Role in Plant Heat Stress Tolerance

    PubMed Central

    Nguyen, Cam Chau; Nakaminami, Kentaro; Matsui, Akihiro; Kobayashi, Shuhei; Kurihara, Yukio; Toyooka, Kiminori; Tanaka, Maho; Seki, Motoaki

    2016-01-01

    Stress granules (SGs), which are formed in the plant cytoplasm under stress conditions, are transient dynamic sites (particles) for mRNA storage. SGs are actively involved in protecting mRNAs from degradation. Oligouridylate binding protein 1b (UBP1b) is a component of SGs. The formation of microscopically visible cytoplasmic foci, referred to as UBP1b SG, was induced by heat treatment in UBP1b-overexpressing Arabidopsis plants (UBP1b-ox). A detailed understanding of the function of UBP1b, however, is still not clear. UBP1b-ox plants displayed increased heat tolerance, relative to control plants, while ubp1b mutants were more sensitive to heat stress than control plants. Microarray analysis identified 117 genes whose expression was heat-inducible and higher in the UBP1b-ox plants. RNA decay analysis was performed using cordycepin, a transcriptional inhibitor. In order to determine if those genes serve as targets of UBP1b, the rate of RNA degradation of a DnaJ heat shock protein and a stress-associated protein (AtSAP3) in UBP1b-ox plants was slower than in control plants; indicating that the mRNAs of these genes were protected within the UBP1b SG granule. Collectively, these data demonstrate that UBP1b plays an integral role in heat stress tolerance in plants. PMID:27379136

  15. Heat capacity and entropy changes in processes involving proteins.

    PubMed Central

    Sturtevant, J M

    1977-01-01

    Six possible sources of the large heat capacity and entropy changes frequently observed for processes involving proteins are identified. Of these the conformational, hydrophobic, and vibrational effects seem likely to be of greatest importance. A method is proposed for estimating the magnitudes of the hydrophobic and vibrational contributions. Application of this method to several protein processes appears to achieve significant clarification of previously confusing and apparently contradictory data. PMID:196283

  16. Identification of Inhibitors of Biological Interactions Involving Intrinsically Disordered Proteins

    PubMed Central

    Marasco, Daniela; Scognamiglio, Pasqualina Liana

    2015-01-01

    Protein–protein interactions involving disordered partners have unique features and represent prominent targets in drug discovery processes. Intrinsically Disordered Proteins (IDPs) are involved in cellular regulation, signaling and control: they bind to multiple partners and these high-specificity/low-affinity interactions play crucial roles in many human diseases. Disordered regions, terminal tails and flexible linkers are particularly abundant in DNA-binding proteins and play crucial roles in the affinity and specificity of DNA recognizing processes. Protein complexes involving IDPs are short-lived and typically involve short amino acid stretches bearing few “hot spots”, thus the identification of molecules able to modulate them can produce important lead compounds: in this scenario peptides and/or peptidomimetics, deriving from structure-based, combinatorial or protein dissection approaches, can play a key role as hit compounds. Here, we propose a panoramic review of the structural features of IDPs and how they regulate molecular recognition mechanisms focusing attention on recently reported drug-design strategies in the field of IDPs. PMID:25849651

  17. Comparative genomics and evolution of proteins involved in RNA metabolism

    PubMed Central

    Anantharaman, Vivek; Koonin, Eugene V.; Aravind, L.

    2002-01-01

    RNA metabolism, broadly defined as the compendium of all processes that involve RNA, including transcription, processing and modification of transcripts, translation, RNA degradation and its regulation, is the central and most evolutionarily conserved part of cell physiology. A comprehensive, genome-wide census of all enzymatic and non-enzymatic protein domains involved in RNA metabolism was conducted by using sequence profile analysis and structural comparisons. Proteins related to RNA metabolism comprise from 3 to 11% of the complete protein repertoire in bacteria, archaea and eukaryotes, with the greatest fraction seen in parasitic bacteria with small genomes. Approximately one-half of protein domains involved in RNA metabolism are present in most, if not all, species from all three primary kingdoms and are traceable to the last universal common ancestor (LUCA). The principal features of LUCA’s RNA metabolism system were reconstructed by parsimony-based evolutionary analysis of all relevant groups of orthologous proteins. This reconstruction shows that LUCA possessed not only the basal translation system, but also the principal forms of RNA modification, such as methylation, pseudouridylation and thiouridylation, as well as simple mechanisms for polyadenylation and RNA degradation. Some of these ancient domains form paralogous groups whose evolution can be traced back in time beyond LUCA, towards low-specificity proteins, which probably functioned as cofactors for ribozymes within the RNA world framework. The main lineage-specific innovations of RNA metabolism systems were identified. The most notable phase of innovation in RNA metabolism coincides with the advent of eukaryotes and was brought about by the merge of the archaeal and bacterial systems via mitochondrial endosymbiosis, but also involved emergence of several new, eukaryote-specific RNA-binding domains. Subsequent, vast expansions of these domains mark the origin of alternative splicing in animals

  18. Protein Phosphatases Involved in Regulating Mitosis: Facts and Hypotheses

    PubMed Central

    Kim, Hyun-Soo; Fernandes, Gary; Lee, Chang-Woo

    2016-01-01

    Almost all eukaryotic proteins are subject to post-translational modifications during mitosis and cell cycle, and in particular, reversible phosphorylation being a key event. The recent use of high-throughput experimental analyses has revealed that more than 70% of all eukaryotic proteins are regulated by phosphorylation; however, the mechanism of dephosphorylation, counteracting phosphorylation, is relatively unknown. Recent discoveries have shown that many of the protein phosphatases are involved in the temporal and spatial control of mitotic events, such as mitotic entry, mitotic spindle assembly, chromosome architecture changes and cohesion, and mitotic exit. This implies that certain phosphatases are tightly regulated for timely dephosphorylation of key mitotic phosphoproteins and are essential for control of various mitotic processes. This review describes the physiological and pathological roles of mitotic phosphatases, as well as the versatile role of various protein phosphatases in several mitotic events. PMID:27669825

  19. Protein Phosphatases Involved in Regulating Mitosis: Facts and Hypotheses.

    PubMed

    Kim, Hyun-Soo; Fernandes, Gary; Lee, Chang-Woo

    2016-09-01

    Almost all eukaryotic proteins are subject to post-translational modifications during mitosis and cell cycle, and in particular, reversible phosphorylation being a key event. The recent use of high-throughput experimental analyses has revealed that more than 70% of all eukaryotic proteins are regulated by phosphorylation; however, the mechanism of dephosphorylation, counteracting phosphorylation, is relatively unknown. Recent discoveries have shown that many of the protein phosphatases are involved in the temporal and spatial control of mitotic events, such as mitotic entry, mitotic spindle assembly, chromosome architecture changes and cohesion, and mitotic exit. This implies that certain phosphatases are tightly regulated for timely dephosphorylation of key mitotic phosphoproteins and are essential for control of various mitotic processes. This review describes the physiological and pathological roles of mitotic phosphatases, as well as the versatile role of various protein phosphatases in several mitotic events. PMID:27669825

  20. Identifying Unstable Regions of Proteins Involved in Misfolding Diseases

    NASA Astrophysics Data System (ADS)

    Guest, Will; Cashman, Neil; Plotkin, Steven

    2009-05-01

    Protein misfolding is a necessary step in the pathogenesis of many diseases, including Creutzfeldt-Jakob disease (CJD) and familial amyotrophic lateral sclerosis (fALS). Identifying unstable structural elements in their causative proteins elucidates the early events of misfolding and presents targets for inhibition of the disease process. An algorithm was developed to calculate the Gibbs free energy of unfolding for all sequence-contiguous regions of a protein using three methods to parameterize energy changes: a modified G=o model, changes in solvent-accessible surface area, and all-atoms molecular dynamics. The entropic effects of disulfide bonds and post-translational modifications are treated analytically. It incorporates a novel method for finding local dielectric constants inside a protein to accurately handle charge effects. We have predicted the unstable parts of prion protein and superoxide dismutase 1, the proteins involved in CJD and fALS respectively, and have used these regions as epitopes to prepare antibodies that are specific to the misfolded conformation and show promise as therapeutic agents.

  1. [Proteins of human milk involved in immunological processes].

    PubMed

    Lis, Jolanta; Orczyk-Pawiłowicz, Magdalena; Kątnik-Prastowska, Iwona

    2013-05-31

    Human milk contains a lot of components (i.e. proteins, carbohydrates, lipids, inorganic elements) which provide basic nutrients for infants during the first period of their lives. Qualitative composition of milk components of healthy mothers is similar, but their levels change during lactation stages. Colostrum is the fluid secreted during the first days postpartum by mammary epithelial cells. Colostrum is replaced by transitional milk during 5-15 days postpartum and from 15 days postpartum mature milk is produced. Human milk, apart from nutritional components, is a source of biologically active molecules, i.e. immunoglobulins, growth factors, cytokines, acute phase proteins, antiviral and antibacterial proteins. Such components of human milk are responsible for specific biological activities of human milk. This secretion plays an important role in growth and development of newborns. Bioactive molecules present in the milk support the immature immune system of the newborn and also protect against the development of infection. In this article we describe the pathways involved in the production and secretion of human milk, the state of knowledge on the proteome of human milk, and the contents of components of milk during lactation. Moreover, some growth factors and proteins involved in innate and specific immunity, intercellular communication, immunomodulation, and inflammatory processes have been characterized.

  2. Molecular signaling involving intrinsically disordered proteins in prostate cancer

    PubMed Central

    Russo, Anna; Manna, Sara La; Novellino, Ettore; Malfitano, Anna Maria; Marasco, Daniela

    2016-01-01

    Investigations on cellular protein interaction networks (PINs) reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs) compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa) is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role. PMID:27212129

  3. Bap, a Staphylococcus aureus Surface Protein Involved in Biofilm Formation

    PubMed Central

    Cucarella, Carme; Solano, Cristina; Valle, Jaione; Amorena, Beatriz; Lasa, Íñigo; Penadés, José R.

    2001-01-01

    Identification of new genes involved in biofilm formation is needed to understand the molecular basis of strain variation and the pathogenic mechanisms implicated in chronic staphylococcal infections. A biofilm-producing Staphylococcus aureus isolate was used to generate biofilm-negative transposon (Tn917) insertion mutants. Two mutants were found with a significant decrease in attachment to inert surfaces (early adherence), intercellular adhesion, and biofilm formation. The transposon was inserted at the same locus in both mutants. This locus (bap [for biofilm associated protein]) encodes a novel cell wall associated protein of 2,276 amino acids (Bap), which shows global organizational similarities to surface proteins of gram-negative (Pseudomonas aeruginosa and Salmonella enterica serovar Typhi) and gram-positive (Enteroccocus faecalis) microorganisms. Bap's core region represents 52% of the protein and consists of 13 successive nearly identical repeats, each containing 86 amino acids. bap was present in a small fraction of bovine mastitis isolates (5% of the 350 S. aureus isolates tested), but it was absent from the 75 clinical human S. aureus isolates analyzed. All staphylococcal isolates harboring bap were highly adherent and strong biofilm producers. In a mouse infection model bap was involved in pathogenesis, causing a persistent infection. PMID:11292810

  4. Analysis of proteins involved in biodegradation of crop biomass

    NASA Technical Reports Server (NTRS)

    Crawford, Kamau; Trotman, Audrey

    1998-01-01

    The biodegradation of crop biomass for re-use in crop production is part of the bioregenerative life support concept proposed by the National Aeronautics and Space Administration (NASA) for long duration, manned space exploration. The current research was conducted in the laboratory to evaluate the use of electrophoretic analysis as a means of rapidly assaying for constitutive and induced proteins associated with the bacterial degradation of crop residue. The proteins involved in crop biomass biodegradation are either constitutive or induced. As a result, effluent and cultures were examined to investigate the potential of using electrophoretic techniques as a means of monitoring the biodegradation process. Protein concentration for optimum banding patterns was determined using the Bio-Rad Protein Assay kit. Four bacterial soil isolates were obtained from the G.W. Carver research Farm at Tuskegee University and used in the decomposition of components of plant biomass. The culture, WDSt3A was inoculated into 500 mL of either Tryptic Soy Broth or Nutrient Broth. Incubation, with shaking of each flask was for 96 hours at 30 C. The cultures consistently gave unique banding patterns under denaturing protein electrophoresis conditions, The associated extracellular enzymes also yielded characteristic banding patterns over a 14-day period, when native electrophoresis techniques were used to examine effluent from batch culture bioreactors. The current study evaluated sample preparation and staining protocols to determine the ease of use, reproducibility and reliability, as well as the potential for automation.

  5. Translocator Protein 2 Is Involved in Cholesterol Redistribution during Erythropoiesis*

    PubMed Central

    Fan, Jinjiang; Rone, Malena B.; Papadopoulos, Vassilios

    2009-01-01

    Translocator protein (TSPO) is an 18-kDa cholesterol- and drug-binding protein conserved from bacteria to humans. While surveying for Tspo-like genes, we identified its paralogous gene, Tspo2, encoding an evolutionarily conserved family of proteins that arose by gene duplications before the divergence of avians and mammals. Comparative analysis of Tspo1 and Tspo2 functions suggested that Tspo2 has become subfunctionalized, typical of duplicated genes, characterized by the loss of diagnostic drug ligand-binding but retention of cholesterol-binding properties, hematopoietic tissue- and erythroid cell-specific distribution, and subcellular endoplasmic reticulum and nuclear membrane localization. Expression of Tspo2 in erythroblasts is strongly correlated with the down-regulation of the enzymes involved in cholesterol biosynthesis. Overexpression of TSPO2 in erythroid cells resulted in the redistribution of intracellular free cholesterol, an essential step in nucleus expulsion during erythrocyte maturation. Taken together, these data identify the TSPO2 family of proteins as mediators of cholesterol redistribution-dependent erythroblast maturation during mammalian erythropoiesis. PMID:19729679

  6. Myelin basic protein domains involved in the interaction with actin.

    PubMed

    Roth, G A; Gonzalez, M D; Monferran, C G; De Santis, M L; Cumar, F A

    1993-11-01

    A fluorescence assay was used to measure the interaction of myelin basic protein (MBP) with monomeric actin labeled with a fluorescent compound (IAEDANS). The complex actin-IAEDANS increase the fluorescence in presence of MBP. The enhancement of the fluorescence has a sigmoidal dependence on the concentration of MBP and the fluorescence maximum is reached at a MBP:actin molar ratio of 1:20. The fluorescence maximum in absence of Ca2+ and ATP is 4 times lower than that in their presence although it is reached at the same MBP:actin molar ratio. Similar behavior is observed when synapsin replaces MBP, while acetylated MBP and bovine serum albumin fail to induce any fluorescence change. To define possible interacting domains on MBP involved in the actin-MBP interaction, experiments were performed using MBP-derived peptides obtained under controlled proteolysis of the whole molecule. The fluorescence changes induced by the different peptides depend on their location in the native protein and can not be explained simply by a difference in the net charge of the peptides. The results suggest that two sites are involved in the interaction. A Ca2+/ATP-dependent site located in the amino-terminal region (peptide 1-44) and a Ca2+/ATP-independent one near the carboxyl terminus of the MBP molecule. The actin-MBP interaction was also observed using immunoblot and ELISA techniques.

  7. Structural Insights into Protein-Protein Interactions Involved in Bacterial Cell Wall Biogenesis

    PubMed Central

    Laddomada, Federica; Miyachiro, Mayara M.; Dessen, Andréa

    2016-01-01

    The bacterial cell wall is essential for survival, and proteins that participate in its biosynthesis have been the targets of antibiotic development efforts for decades. The biosynthesis of its main component, the peptidoglycan, involves the coordinated action of proteins that are involved in multi-member complexes which are essential for cell division (the “divisome”) and/or cell wall elongation (the “elongasome”), in the case of rod-shaped cells. Our knowledge regarding these interactions has greatly benefitted from the visualization of different aspects of the bacterial cell wall and its cytoskeleton by cryoelectron microscopy and tomography, as well as genetic and biochemical screens that have complemented information from high resolution crystal structures of protein complexes involved in divisome or elongasome formation. This review summarizes structural and functional aspects of protein complexes involved in the cytoplasmic and membrane-related steps of peptidoglycan biosynthesis, with a particular focus on protein-protein interactions whereby disruption could lead to the development of novel antibacterial strategies. PMID:27136593

  8. Life under tension: Computational studies of proteins involved in mechanotransduction

    NASA Astrophysics Data System (ADS)

    Sotomayor, Marcos Manuel

    cadherins. Simulations also revealed how calcium ions control cadherin's shape and the availability of key residues involved in cell-cell adhesion, suggesting a conceptual framework for interpreting mutations in cadherin calcium binding motifs causing hereditary deafness. Overall, simulations provided a unique nanoscopic view of the dynamics and function of some of the proteins involved in mechanotransduction.

  9. Adenanthin targets proteins involved in the regulation of disulphide bonds.

    PubMed

    Muchowicz, Angelika; Firczuk, Małgorzata; Chlebowska, Justyna; Nowis, Dominika; Stachura, Joanna; Barankiewicz, Joanna; Trzeciecka, Anna; Kłossowski, Szymon; Ostaszewski, Ryszard; Zagożdżon, Radosław; Pu, Jian-Xin; Sun, Han-Dong; Golab, Jakub

    2014-05-15

    Adenanthin has been recently shown to inhibit the enzymatic activities of peroxiredoxins (Prdx) I and II through its functional α,β-unsaturated ketone group serving as a Michael acceptor. A similar group is found in SK053, a compound recently developed by our group to target the thioredoxin-thioredoxin reductase (Trx-TrxR) system. This work provides evidence that next to Prdx I and II adenanthin targets additional proteins including thioredoxin-thioredoxin reductase system as well as protein disulfide isomerase (PDI) that contain a characteristic structural motif, referred to as a thioredoxin fold. Adenanthin inhibits the activity of Trx-TR system and PDI in vitro in the insulin reduction assay and decreases the activity of Trx in cultured cells. Moreover, we identified Trx-1 as an adenanthin binding protein in cells incubated with biotinylated adenanthin as an affinity probe. The results of our studies indicate that adenanthin is a mechanism-selective, rather than an enzyme-specific inhibitor of enzymes containing readily accessible, nucleophilic cysteines. This observation might be of importance in considering potential therapeutic applications of adenanthin to include a range of diseases, where aberrant activity of Prdx, Trx-TrxR and PDI is involved in their pathogenesis. PMID:24630929

  10. Arabinogalactan proteins are involved in root hair development in barley

    PubMed Central

    Marzec, Marek; Szarejko, Iwona; Melzer, Michael

    2015-01-01

    The arabinogalactan proteins (AGPs) are involved in a range of plant processes, including cell differentiation and expansion. Here, barley root hair mutants and their wild-type parent cultivars were used, as a model system, to reveal the role of AGPs in root hair development. The treatment of roots with different concentrations of βGlcY (a reagent which binds to all classes of AGPs) inhibited or totally suppressed the development of root hairs in all of the cultivars. Three groups of AGP (recognized by the monoclonal antibodies LM2, LM14, and MAC207) were diversely localized in trichoblasts and atrichoblasts of root hair-producing plants. The relevant epitopes were present in wild-type trichoblast cell walls and cytoplasm, whereas in wild-type atrichoblasts and in all epidermal cells of a root hairless mutant, they were only present in the cytoplasm. In all of cultivars the higher expression of LM2, LM14, and MAC207 was observed in trichoblasts at an early stage of development. Additionally, the LM2 epitope was detected on the surface of primordia and root hair tubes in plants able to generate root hairs. The major conclusion was that the AGPs recognized by LM2, LM14, and MAC207 are involved in the differentiation of barley root epidermal cells, thereby implying a requirement for these AGPs for root hair development in barley. PMID:25465033

  11. Arabinogalactan proteins are involved in root hair development in barley.

    PubMed

    Marzec, Marek; Szarejko, Iwona; Melzer, Michael

    2015-03-01

    The arabinogalactan proteins (AGPs) are involved in a range of plant processes, including cell differentiation and expansion. Here, barley root hair mutants and their wild-type parent cultivars were used, as a model system, to reveal the role of AGPs in root hair development. The treatment of roots with different concentrations of βGlcY (a reagent which binds to all classes of AGPs) inhibited or totally suppressed the development of root hairs in all of the cultivars. Three groups of AGP (recognized by the monoclonal antibodies LM2, LM14, and MAC207) were diversely localized in trichoblasts and atrichoblasts of root hair-producing plants. The relevant epitopes were present in wild-type trichoblast cell walls and cytoplasm, whereas in wild-type atrichoblasts and in all epidermal cells of a root hairless mutant, they were only present in the cytoplasm. In all of cultivars the higher expression of LM2, LM14, and MAC207 was observed in trichoblasts at an early stage of development. Additionally, the LM2 epitope was detected on the surface of primordia and root hair tubes in plants able to generate root hairs. The major conclusion was that the AGPs recognized by LM2, LM14, and MAC207 are involved in the differentiation of barley root epidermal cells, thereby implying a requirement for these AGPs for root hair development in barley. PMID:25465033

  12. Interplay between circadian rhythm, time of the day and osmotic stress constraints in the regulation of the expression of a Solanum Double B-box gene

    PubMed Central

    Kiełbowicz-Matuk, Agnieszka; Rey, Pascal; Rorat, Tadeusz

    2014-01-01

    Background and Aims Double B-box zinc finger (DBB) proteins are recently identified plant transcription regulators that participate in the response to sodium chloride-induced stress in arabidopsis plants. Little is known regarding their subcellular localization and expression patterns, particularly in relation to other osmotic constraints and the day/night cycle. This study investigated natural variations in the amount of a Solanum DBB protein, SsBBX24, during plant development, and also under various environmental constraints leading to cell dehydration in relation to the circadian clock and the time of day. Methods SsBBX24 transcript and protein abundance in various organs of phytotron-grown Solanum tuberosum and S. sogarandinum plants were investigated at different time points of the day and under various osmotic constraints. The intracellular location of SsBBX24 was determined by western blot analysis of subcellular fractions. Key Results Western blot analysis of SsBBX24 protein revealed that it was located in the nucleus at the beginning of the light period and in the cytosol at the end, suggesting movement (‘trafficking’) during the light phase. SsBBX24 gene expression exhibited circadian cycling under control conditions, with the highest and lowest abundances of both transcript and protein occurring 8 and 18 h after dawn, respectively. Exposing Solanum plants to low temperature, salinity and polyethylene glycol (PEG), but not to drought, disturbed the circadian regulation of SsBBX24 gene expression at the protein level. SsBBX24 transcript and protein accumulated in Solanum plants in response to salt and PEG treatments, but not in response to low temperature or water deficit. Most interestingly, the time of the day modulated the magnitude of SsBBX24 expression in response to high salt concentration. Conclusions The interplay between circadian rhythm and osmotic constraints in the regulation of the expression of a Solanum DBB transcriptional regulator is

  13. Channel-interacting PDZ protein, 'CIPP', interacts with proteins involved in cytoskeletal dynamics.

    PubMed

    Alpi, Emanuele; Landi, Elena; Barilari, Manuela; Serresi, Michela; Salvadori, Piero; Bachi, Angela; Dente, Luciana

    2009-04-15

    Neuronal CIPP (channel-interacting PDZ protein) is a multivalent PDZ protein that interacts with specific channels and receptors highly expressed in the brain. It is composed of four PDZ domains that behave as a scaffold to clusterize functionally connected proteins. In the present study, we selected a set of potential CIPP interactors that are involved directly or indirectly in mechanisms of cytoskeletal remodelling and membrane protrusion formation. For some of these, we first proved the direct binding to specific CIPP PDZ domains considered as autonomous elements, and then confirmed the interaction with the whole protein. In particular, the small G-protein effector IRSp53 (insulin receptor tyrosine kinase substrate protein p53) specifically interacts with the second PDZ domain of CIPP and, when co-transfected in cultured mammalian cells with a tagged full-length CIPP, it induces a marked reorganization of CIPP cytoplasmic localization. Large punctate structures are generated as a consequence of CIPP binding to the IRSp53 C-terminus. Analysis of the puncta nature, using various endocytic markers, revealed that they are not related to cytoplasmic vesicles, but rather represent multi-protein assemblies, where CIPP can tether other potential interactors.

  14. Identification of a plastid protein involved in vesicle fusion and/or membrane protein translocation.

    PubMed Central

    Hugueney, P; Bouvier, F; Badillo, A; d'Harlingue, A; Kuntz, M; Camara, B

    1995-01-01

    Structural evidence has accumulated suggesting that fusion and/or translocation factors are involved in plastid membrane biogenesis. To test this hypothesis, we have developed an in vitro system in which the extent of fusion and/or translocation is monitored by the conversion of the xanthophyll epoxide (antheraxanthin) into the red ketocarotenoid (capsanthin). Only chromoplast membrane vesicles from red pepper fruits (Capsicum annuum) contain the required enzyme. Vesicles prepared from the mutant yellow cultivar are devoid of this enzyme and accumulate antheraxanthin. The fusion and/or translocation activity is characterized by complementation due to the synthesis of capsanthin and the parallel decrease of antheraxanthin when the two types of vesicles are incubated together in the presence of plastid stroma. We show that the extent of conversion is dependent upon an ATP-requiring protein that is sensitive to N-ethylmaleimide. Further purification and immunological analysis have revealed that the active factor, designated plastid fusion and/or translocation factor (Pftf), resides in a protein of 72 kDa. cDNA cloning revealed that mature Pftf has significant homology to yeast and animal (NSF) or bacterial (Ftsh) proteins involved in vesicle fusion or membrane protein translocation. Images Fig. 1 Fig. 3 Fig. 4 PMID:7777561

  15. Protein modifications involved in neurotransmitter and gasotransmitter signaling

    PubMed Central

    Sen, Nilkantha; Snyder, Solomon H.

    2010-01-01

    Covalent modifications of intracellular proteins, such as phosphorylation, are generally thought to occur as secondary or tertiary responses to neurotransmitters, following the intermediation of membrane receptors and second messengers such as cyclic AMP. By contrast, the gasotransmitter nitric oxide directly S-nitrosylates cysteine residues in diverse intracellular proteins. Recently, hydrogen sulfide has been acknowledged as a gaso-transmitter, which analogously sulfhydrates cysteine residues in proteins. Cysteine residues are also modified by palmitoylation in response to neurotransmitter signaling, possibly in reciprocity with S-nitrosylation. Neurotransmission also elicits sumoylation and acetylation of lysine residues within diverse proteins. This review addresses how these recently appreciated protein modifications impact our thinking about ways in which neurotransmission regulates intracellular protein disposition. PMID:20843563

  16. DUF581 Is Plant Specific FCS-Like Zinc Finger Involved in Protein-Protein Interaction

    PubMed Central

    K, Muhammed Jamsheer; Laxmi, Ashverya

    2014-01-01

    Zinc fingers are a ubiquitous class of protein domain with considerable variation in structure and function. Zf-FCS is a highly diverged group of C2-C2 zinc finger which is present in animals, prokaryotes and viruses, but not in plants. In this study we identified that a plant specific domain of unknown function, DUF581 is a zf-FCS type zinc finger. Based on HMM-HMM comparison and signature motif similarity we named this domain as FCS-Like Zinc finger (FLZ) domain. A genome wide survey identified that FLZ domain containing genes are bryophytic in origin and this gene family is expanded in spermatophytes. Expression analysis of selected FLZ gene family members of A. thaliana identified an overlapping expression pattern suggesting a possible redundancy in their function. Unlike the zf-FCS domain, the FLZ domain found to be highly conserved in sequence and structure. Using a combination of bioinformatic and protein-protein interaction tools, we identified that FLZ domain is involved in protein-protein interaction. PMID:24901469

  17. DUF581 is plant specific FCS-like zinc finger involved in protein-protein interaction.

    PubMed

    K, Muhammed Jamsheer; Laxmi, Ashverya

    2014-01-01

    Zinc fingers are a ubiquitous class of protein domain with considerable variation in structure and function. Zf-FCS is a highly diverged group of C2-C2 zinc finger which is present in animals, prokaryotes and viruses, but not in plants. In this study we identified that a plant specific domain of unknown function, DUF581 is a zf-FCS type zinc finger. Based on HMM-HMM comparison and signature motif similarity we named this domain as FCS-Like Zinc finger (FLZ) domain. A genome wide survey identified that FLZ domain containing genes are bryophytic in origin and this gene family is expanded in spermatophytes. Expression analysis of selected FLZ gene family members of A. thaliana identified an overlapping expression pattern suggesting a possible redundancy in their function. Unlike the zf-FCS domain, the FLZ domain found to be highly conserved in sequence and structure. Using a combination of bioinformatic and protein-protein interaction tools, we identified that FLZ domain is involved in protein-protein interaction.

  18. Bap: a family of surface proteins involved in biofilm formation.

    PubMed

    Lasa, Iñigo; Penadés, José R

    2006-03-01

    A group of surface proteins sharing several structural and functional features is emerging as an important element in the biofilm formation process of diverse bacterial species. The first member of this group of proteins was identified in a Staphylococcus aureus mastitis isolate and was named Bap (biofilm-associated protein). As common structural features, Bap-related proteins: (i) are present on the bacterial surface; (ii) show a high molecular weight; (iii) contain a core domain of tandem repeats; (iv) confer upon bacteria the capacity to form a biofilm; (v) play a relevant role in bacterial infectious processes; and (vi) can occasionally be contained in mobile elements. This review summarizes recent studies that have identified and assigned roles to Bap-related proteins in biofilm biology and virulence.

  19. Tubulin-G protein interactions involve microtubule polymerization domains

    SciTech Connect

    Nan Wang; Rasenick, M.M. )

    1991-11-12

    It has been suggested that elements of the cytoskeleton contribute to the signal transduction process and that they do so in association with one or more members of the signal-transducing G protein family. Relatively high-affinity binding between dimeric tubulin and the {alpha} subunits of G{sub s} and G{sub i1} has also been reported. Tubulin molecules, which exist in solution as {alpha}{beta} dimers, have binding domains for microtubule-associated proteins as well as for other tubulin dimers. This study represents an attempt to ascertain whether the association between G proteins and tubulin occurs at one of these sites. Removal of the binding site for MAP2 and tau from tubulin by subtilisin proteolysis did not influence the association of tubulin with G protein, as demonstrated in overlay studies with ({sup 125}I)tubulin. However, ring structures formed from subtilisin-treated tubulin were incapable of effecting such inhibition. Stable G protein-tubulin complexes were formed, and these were separated from free tubulin by Octyl-Sepharose chromatography. Using this methodology, it was demonstrated that assembled microtubules bound G protein quite weakly compared with tubulin dimers. The {alpha} subunit of G{sub i1} and, to a lesser extent, that of G{sub o} were demonstrated to inhibit microtubule polymerization. In aggregate, these data suggest that dimeric tubulin binds to the {alpha} subunits of G protein at the sites where it binds to other tubulin dimers during microtubule polymerization. Interaction with signal-transducing G proteins, thus, might represent a role for tubulin dimers which is independent of microtubule formation.

  20. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity

    PubMed Central

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Piña-Medina, Ana Gabriela; Camacho-Arroyo, Ignacio

    2015-01-01

    In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone. PMID:26635640

  1. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity.

    PubMed

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Piña-Medina, Ana Gabriela; Camacho-Arroyo, Ignacio

    2015-01-01

    In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone. PMID:26635640

  2. A protein export pathway involving Escherichia coli porins.

    PubMed

    Prehna, Gerd; Zhang, Guijin; Gong, Xiandi; Duszyk, Marek; Okon, Mark; McIntosh, Lawrence P; Weiner, Joel H; Strynadka, Natalie C J

    2012-07-01

    Escherichia coli export the protein YebF into the extracellular medium by a two-step process. However, as no general outer membrane protein secretion system common to all E. coli strains has been reported, the mechanism of export has remained unclear. Herein, we identify the outer membrane proteins OmpF, OmpC, and OmpX as central to the YebF export mechanism using both genetic and planar lipid bilayer experiments. The nuclear magnetic resonance structural ensemble of YebF reveals a cystatin-like fold consisting of a structured core and an extended dynamic surface in a state of conformational exchange. This surface, conserved throughout YebF orthologs of Enterobacteriaceae, may facilitate the porin-mediated transport of YebF as amino acid substitutions of dynamic residues reduced secretion to the extracellular medium. Our results demonstrate that OmpF and OmpC not only operate to import ions and protein toxins but may also contribute to the export of the YebF protein family.

  3. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms

    PubMed Central

    Travaglini-Allocatelli, Carlo

    2013-01-01

    Cytochromes c (Cyt c) are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt) in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i) heme translocation and delivery, (ii) apoCyt thioreductive pathway, and (iii) apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria. PMID:24455431

  4. Photoregulated gene expression may involve ubiquitous DNA binding proteins.

    PubMed Central

    Schindler, U; Cashmore, A R

    1990-01-01

    Several promoter elements have previously been shown to influence the expression of the cab-E gene in Nicotiana plumbaginifolia. Here we demonstrate, by electrophoretic mobility shift and methylation interference assays, that a complex pattern of protein-DNA interactions characterizes this promoter. Among the multiple proteins identified, we focused on five different factors which either occupied important regulatory elements and/or were present in relatively large amounts in nuclear extracts. All of these proteins were distinguished on the basis of their recognition sequence and other biochemical parameters. One, GBF, interacted with a single sequence within the cab-E promoter homologous to the G-box found in many photoregulated and other plant promoters. A second factor, GA-1, bound to the GATA element which is located between the CAAT and TATA boxes of the cab-E and all other LHCII Type I CAB promoters. GA-1 also interacted in vitro with the I-boxes of the Arabidopsis rbcS-1A promoter and the as-2 site of the CaMV 35S promoter. Two other factors, GC-1 and AT-1, bound to multiple recognition sites localized within the GC-rich and AT-rich elements, respectively. GT-1, a protein which interacts with promoters of other light-regulated genes, bound to seven distinct sites distributed throughout the cab-E promoter. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig.5 Fig.6 Fig.7 PMID:2209551

  5. Interactions of Dnd proteins involved in bacterial DNA phosphorothioate modification

    PubMed Central

    Xiong, Wei; Zhao, Gong; Yu, Hao; He, Xinyi

    2015-01-01

    DNA phosphorothioation (PT) is the first discovered physiological DNA backbone modification, in which a non-bridging oxygen atom of the phosphodiester bond is replaced with a sulfur atom in Rp (rectus for plane) configuration. PT modification is governed by a highly conserved gene cluster dndA/iscS-dndBCDE that is widespread across bacterial and archaeal species. However, little is known about how these proteins coordinately react with each other to perform oxygen–sulfur swap. We here demonstrated that IscS, DndC, DndD and DndE form a protein complex of which the molecular ratio for four proteins in the complex is approximate 1:1:1:1. DndB here displayed little or weak affinity to the complex and the constructs harboring dndACDE can confer the host in vivo PT modification. Using co-purification and pull down strategy, we demonstrated that the four proteins assemble into a pipeline in collinear to its gene organization, namely, IscS binding to DndC, DndC binding to DndD, and DndD binding to DndE. Moreover, weak interactions between DndE and IscS, DndE and DndC were also identified. PMID:26539172

  6. Quantitative characterization of protein-protein complexes involved in base excision DNA repair.

    PubMed

    Moor, Nina A; Vasil'eva, Inna A; Anarbaev, Rashid O; Antson, Alfred A; Lavrik, Olga I

    2015-07-13

    Base Excision Repair (BER) efficiently corrects the most common types of DNA damage in mammalian cells. Step-by-step coordination of BER is facilitated by multiple interactions between enzymes and accessory proteins involved. Here we characterize quantitatively a number of complexes formed by DNA polymerase β (Polβ), apurinic/apyrimidinic endonuclease 1 (APE1), poly(ADP-ribose) polymerase 1 (PARP1), X-ray repair cross-complementing protein 1 (XRCC1) and tyrosyl-DNA phosphodiesterase 1 (TDP1), using fluorescence- and light scattering-based techniques. Direct physical interactions between the APE1-Polβ, APE1-TDP1, APE1-PARP1 and Polβ-TDP1 pairs have been detected and characterized for the first time. The combined results provide strong evidence that the most stable complex is formed between XRCC1 and Polβ. Model DNA intermediates of BER are shown to induce significant rearrangement of the Polβ complexes with XRCC1 and PARP1, while having no detectable influence on the protein-protein binding affinities. The strength of APE1 interaction with Polβ, XRCC1 and PARP1 is revealed to be modulated by BER intermediates to different extents, depending on the type of DNA damage. The affinity of APE1 for Polβ is higher in the complex with abasic site-containing DNA than after the APE1-catalyzed incision. Our findings advance understanding of the molecular mechanisms underlying coordination and regulation of the BER process.

  7. The Involvement of Transport Proteins in Transcriptional and Metabolic Regulation

    PubMed Central

    Västermark, Åke; Saier, Milton H.

    2014-01-01

    Transport proteins have sometimes gained secondary regulatory functions that influence gene expression and metabolism. These functions allow communication with the external world via mechanistically distinctive signal transduction pathways. In this brief review we focus on three transport systems in Escherichia coli that control and coordinate carbon, exogenous hexose-phosphate and phosphorous metabolism. The transport proteins that play central roles in these processes are (1) the phosphoenolpyruvate (PEP)-dependent phosphotransferase system, PTS, (2) the glucose-6-phosphate receptor, UhpC, and (3) the phosphate-specific transporter, PstSABC, respectively. While the PTS participates in multiple complex regulatory processes, three of which are discussed here, UhpC and the Pst transporters exemplify differing strategies. PMID:24513656

  8. Are odorant-binding proteins involved in odorant discrimination?

    PubMed

    Steinbrecht, R A

    1996-12-01

    Pheromone-sensitive sensilla trichodea of nine moth species belonging to six families and three superfamilies of Lepidoptera were immunolabelled with an antiserum against the pheromone-binding protein of Antheraea polyphemus. Strong immunolabelling of the sensillum lymph was observed in all long sensilla trichodea of A. polyphemus, A. pernyi (Saturniidae), Bombyx mori (Bombycidae) and Manduca sexta (Sphingidae). Very weak labelling was found with all sensilla trichodea of Dendrolimus kikuchii (Lasiocampidae) and Lymantria dispar (Lymantriidae). In three noctuid species, some long sensilla trichodea were labelled strongly, some only weakly and some were not labelled at all. The fraction of long sensilla trichodea that were strongly labelled was large in Helicoverpa armigera, but small in Spodoptera littoralis and Autographa gamma. The observed cross-reactivity was not correlated with taxonomic relatedness of the species but rather with chemical relatedness of the pheromones used by these species, as a high labelling density was consistently observed in sensilla tuned to pheromones with an alcyl chain of 16 carbon atoms. The highly divergent specificity of pheromone-receptor cells in Noctuidae appears to be mirrored by a similar diversity of the pheromone-binding proteins in the sensilla trichodea. These data support the notion that pheromone-binding proteins participate in odorant discrimination.

  9. Are odorant-binding proteins involved in odorant discrimination?

    PubMed

    Steinbrecht, R A

    1996-12-01

    Pheromone-sensitive sensilla trichodea of nine moth species belonging to six families and three superfamilies of Lepidoptera were immunolabelled with an antiserum against the pheromone-binding protein of Antheraea polyphemus. Strong immunolabelling of the sensillum lymph was observed in all long sensilla trichodea of A. polyphemus, A. pernyi (Saturniidae), Bombyx mori (Bombycidae) and Manduca sexta (Sphingidae). Very weak labelling was found with all sensilla trichodea of Dendrolimus kikuchii (Lasiocampidae) and Lymantria dispar (Lymantriidae). In three noctuid species, some long sensilla trichodea were labelled strongly, some only weakly and some were not labelled at all. The fraction of long sensilla trichodea that were strongly labelled was large in Helicoverpa armigera, but small in Spodoptera littoralis and Autographa gamma. The observed cross-reactivity was not correlated with taxonomic relatedness of the species but rather with chemical relatedness of the pheromones used by these species, as a high labelling density was consistently observed in sensilla tuned to pheromones with an alcyl chain of 16 carbon atoms. The highly divergent specificity of pheromone-receptor cells in Noctuidae appears to be mirrored by a similar diversity of the pheromone-binding proteins in the sensilla trichodea. These data support the notion that pheromone-binding proteins participate in odorant discrimination. PMID:8985600

  10. Apolipoprotein A-IV: a protein intimately involved in metabolism

    PubMed Central

    Wang, Fei; Kohan, Alison B.; Lo, Chun-Min; Liu, Min; Howles, Philip; Tso, Patrick

    2015-01-01

    The purpose of this review is to summarize our current understanding of the physiological roles of apoA-IV in metabolism, and to underscore the potential for apoA-IV to be a focus for new therapies aimed at the treatment of diabetes and obesity-related disorders. ApoA-IV is primarily synthesized by the small intestine, attached to chylomicrons by enterocytes, and secreted into intestinal lymph during fat absorption. In circulation, apoA-IV is associated with HDL and chylomicron remnants, but a large portion is lipoprotein free. Due to its anti-oxidative and anti-inflammatory properties, and because it can mediate reverse-cholesterol transport, proposed functions of circulating apoA-IV have been related to protection from cardiovascular disease. This review, however, focuses primarily on several properties of apoA-IV that impact other metabolic functions related to food intake, obesity, and diabetes. In addition to participating in triglyceride absorption, apoA-IV can act as an acute satiation factor through both peripheral and central routes of action. It also modulates glucose homeostasis through incretin-like effects on insulin secretion, and by moderating hepatic glucose production. While apoA-IV receptors remain to be conclusively identified, the latter modes of action suggest that this protein holds therapeutic promise for treating metabolic disease. PMID:25640749

  11. Cell-surface Attachment of Bacterial Multienzyme Complexes Involves Highly Dynamic Protein-Protein Anchors*

    PubMed Central

    Cameron, Kate; Najmudin, Shabir; Alves, Victor D.; Bayer, Edward A.; Smith, Steven P.; Bule, Pedro; Waller, Helen; Ferreira, Luís M. A.; Gilbert, Harry J.; Fontes, Carlos M. G. A.

    2015-01-01

    Protein-protein interactions play a pivotal role in the assembly of the cellulosome, one of nature's most intricate nanomachines dedicated to the depolymerization of complex carbohydrates. The integration of cellulosomal components usually occurs through the binding of type I dockerin modules located at the C terminus of the enzymes to cohesin modules located in the primary scaffoldin subunit. Cellulosomes are typically recruited to the cell surface via type II cohesin-dockerin interactions established between primary and cell-surface anchoring scaffoldin subunits. In contrast with type II interactions, type I dockerins usually display a dual binding mode that may allow increased conformational flexibility during cellulosome assembly. Acetivibrio cellulolyticus produces a highly complex cellulosome comprising an unusual adaptor scaffoldin, ScaB, which mediates the interaction between the primary scaffoldin, ScaA, through type II cohesin-dockerin interactions and the anchoring scaffoldin, ScaC, via type I cohesin-dockerin interactions. Here, we report the crystal structure of the type I ScaB dockerin in complex with a type I ScaC cohesin in two distinct orientations. The data show that the ScaB dockerin displays structural symmetry, reflected by the presence of two essentially identical binding surfaces. The complex interface is more extensive than those observed in other type I complexes, which results in an ultra-high affinity interaction (Ka ∼1012 m). A subset of ScaB dockerin residues was also identified as modulating the specificity of type I cohesin-dockerin interactions in A. cellulolyticus. This report reveals that recruitment of cellulosomes onto the cell surface may involve dockerins presenting a dual binding mode to incorporate additional flexibility into the quaternary structure of highly populated multienzyme complexes. PMID:25855788

  12. SNARE proteins synaptobrevin, SNAP-25, and syntaxin are involved in rapid and slow endocytosis at synapses.

    PubMed

    Xu, Jianhua; Luo, Fujun; Zhang, Zhen; Xue, Lei; Wu, Xin-Sheng; Chiang, Hsueh-Cheng; Shin, Wonchul; Wu, Ling-Gang

    2013-05-30

    Rapid endocytosis, which takes only a few seconds, is widely observed in secretory cells. Although it is more efficient in recycling vesicles than in slow clathrin-mediated endocytosis, its underlying mechanism, thought to be clathrin independent, is largely unclear. Here, we report that cleavage of three SNARE proteins essential for exocytosis, including synaptobrevin, SNAP-25, and syntaxin, inhibited rapid endocytosis at the calyx of Held nerve terminal, suggesting the involvement of the three SNARE proteins in rapid endocytosis. These SNARE proteins were also involved in slow endocytosis. In addition, SNAP-25 and syntaxin facilitated vesicle mobilization to the readily releasable pool, most likely via their roles in endocytosis and/or exocytosis. We conclude that both rapid and slow endocytosis share the involvement of SNARE proteins. The dual role of three SNARE proteins in exo- and endocytosis suggests that SNARE proteins may be molecular substrates contributing to the exocytosis-endocytosis coupling, which maintains exocytosis in secretory cells.

  13. Involvement of Iron-Containing Proteins in Genome Integrity in Arabidopsis Thaliana.

    PubMed

    Zhang, Caiguo

    2015-01-01

    The Arabidopsis genome encodes numerous iron-containing proteins such as iron-sulfur (Fe-S) cluster proteins and hemoproteins. These proteins generally utilize iron as a cofactor, and they perform critical roles in photosynthesis, genome stability, electron transfer, and oxidation-reduction reactions. Plants have evolved sophisticated mechanisms to maintain iron homeostasis for the assembly of functional iron-containing proteins, thereby ensuring genome stability, cell development, and plant growth. Over the past few years, our understanding of iron-containing proteins and their functions involved in genome stability has expanded enormously. In this review, I provide the current perspectives on iron homeostasis in Arabidopsis, followed by a summary of iron-containing protein functions involved in genome stability maintenance and a discussion of their possible molecular mechanisms. PMID:27330736

  14. Involvement of Iron-Containing Proteins in Genome Integrity in Arabidopsis Thaliana

    PubMed Central

    Zhang, Caiguo

    2015-01-01

    The Arabidopsis genome encodes numerous iron-containing proteins such as iron-sulfur (Fe-S) cluster proteins and hemoproteins. These proteins generally utilize iron as a cofactor, and they perform critical roles in photosynthesis, genome stability, electron transfer, and oxidation-reduction reactions. Plants have evolved sophisticated mechanisms to maintain iron homeostasis for the assembly of functional iron-containing proteins, thereby ensuring genome stability, cell development, and plant growth. Over the past few years, our understanding of iron-containing proteins and their functions involved in genome stability has expanded enormously. In this review, I provide the current perspectives on iron homeostasis in Arabidopsis, followed by a summary of iron-containing protein functions involved in genome stability maintenance and a discussion of their possible molecular mechanisms. PMID:27330736

  15. Proteomic analysis of chicory root identifies proteins typically involved in cold acclimation.

    PubMed

    Degand, Hervé; Faber, Anne-Marie; Dauchot, Nicolas; Mingeot, Dominique; Watillon, Bernard; Cutsem, Pierre Van; Morsomme, Pierre; Boutry, Marc

    2009-05-01

    Chicory (Cichorium intybus) roots contain high amounts of inulin, a fructose polymer used as a storage carbohydrate by the plant and as a human dietary and prebiotic compound. We performed 2-D electrophoretic analysis of proteins from root material before the first freezing period. The proteins were digested with trypsin and the peptides analyzed by MS (MALDI-TOF/TOF). From the 881 protein spots analyzed, 714 proteins corresponded to a database accession, 619 of which were classified into functional categories. Besides expected proteins (e.g. related to metabolism, energy, protein synthesis, or cell structure), other well-represented categories were proteins related to folding and stability (49 spots), proteolysis (49 spots), and the stress response (67 spots). The importance of abiotic stress response was confirmed by the observation that 7 of the 21 most intense protein spots are known to be involved in cold acclimation. These results suggest a major effect of the low temperature period that preceded root harvesting.

  16. GUN1 Controls Accumulation of the Plastid Ribosomal Protein S1 at the Protein Level and Interacts with Proteins Involved in Plastid Protein Homeostasis.

    PubMed

    Tadini, Luca; Pesaresi, Paolo; Kleine, Tatjana; Rossi, Fabio; Guljamow, Arthur; Sommer, Frederik; Mühlhaus, Timo; Schroda, Michael; Masiero, Simona; Pribil, Mathias; Rothbart, Maxi; Hedtke, Boris; Grimm, Bernhard; Leister, Dario

    2016-03-01

    Developmental or metabolic changes in chloroplasts can have profound effects on the rest of the plant cell. Such intracellular responses are associated with signals that originate in chloroplasts and convey information on their physiological status to the nucleus, which leads to large-scale changes in gene expression (retrograde signaling). A screen designed to identify components of retrograde signaling resulted in the discovery of the so-called genomes uncoupled (gun) mutants. Genetic evidence suggests that the chloroplast protein GUN1 integrates signals derived from perturbations in plastid redox state, plastid gene expression, and tetrapyrrole biosynthesis (TPB) in Arabidopsis (Arabidopsis thaliana) seedlings, exerting biogenic control of chloroplast functions. However, the molecular mechanism by which GUN1 integrates retrograde signaling in the chloroplast is unclear. Here we show that GUN1 also operates in adult plants, contributing to operational control of chloroplasts. The gun1 mutation genetically interacts with mutations of genes for the chloroplast ribosomal proteins S1 (PRPS1) and L11. Analysis of gun1 prps1 lines indicates that GUN1 controls PRPS1 accumulation at the protein level. The GUN1 protein physically interacts with proteins involved in chloroplast protein homeostasis based on coimmunoprecipitation experiments. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments suggest that GUN1 might transiently interact with several TPB enzymes, including Mg-chelatase subunit D (CHLD) and two other TPB enzymes known to activate retrograde signaling. Moreover, the association of PRPS1 and CHLD with protein complexes is modulated by GUN1. These findings allow us to speculate that retrograde signaling might involve GUN1-dependent formation of protein complexes. PMID:26823545

  17. The crystal structure of the thiocyanate-forming protein from Thlaspi arvense, a kelch protein involved in glucosinolate breakdown.

    PubMed

    Gumz, Frauke; Krausze, Joern; Eisenschmidt, Daniela; Backenköhler, Anita; Barleben, Leif; Brandt, Wolfgang; Wittstock, Ute

    2015-09-01

    Kelch repeat-containing proteins are involved in diverse cellular processes, but only a small subset of plant kelch proteins has been functionally characterized. Thiocyanate-forming protein (TFP) from field-penny cress, Thlaspi arvense (Brassicaceae), is a representative of specifier proteins, a group of kelch proteins involved in plant specialized metabolism. As components of the glucosinolate-myrosinase system of the Brassicaceae, specifier proteins determine the profile of bioactive products formed when plant tissue is disrupted and glucosinolates are hydrolyzed by myrosinases. Here, we describe the crystal structure of TaTFP at a resolution of 1.4 Å. TaTFP crystallized as homodimer. Each monomer forms a six-blade β-propeller with a wide "top" and a narrower "bottom" opening with distinct strand-connecting loops protruding far beyond the lower propeller surface. Molecular modeling and mutational analysis identified residues for glucosinolate aglucone and Fe(2+) cofactor binding within these loops. As the first experimentally determined structure of a plant kelch protein, the crystal structure of TaTFP not only enables more detailed mechanistic studies on glucosinolate breakdown product formation, but also provides a new basis for research on the diverse roles and mechanisms of other kelch proteins in plants. PMID:26260516

  18. Secretomics identifies Fusarium graminearum proteins involved in the interaction with barley and wheat.

    PubMed

    Yang, Fen; Jensen, Jens D; Svensson, Birte; Jørgensen, Hans J L; Collinge, David B; Finnie, Christine

    2012-06-01

    Fusarium graminearum is a phytopathogenic fungus primarily infecting small grain cereals, including barley and wheat. Secreted enzymes play important roles in the pathogenicity of many fungi. In order to access the secretome of F. graminearum, the fungus was grown in liquid culture with barley or wheat flour as the sole nutrient source to mimic the host-pathogen interaction. A gel-based proteomics approach was employed to identify the proteins secreted into the culture medium. Sixty-nine unique fungal proteins were identified in 154 protein spots, including enzymes involved in the degradation of cell walls, starch and proteins. Of these proteins, 35% had not been identified in previous in planta or in vitro studies, 70% were predicted to contain signal peptides and a further 16% may be secreted in a nonclassical manner. Proteins identified in the 72 spots showing differential appearance between wheat and barley flour medium were mainly involved in fungal cell wall remodelling and the degradation of plant cell walls, starch and proteins. The in planta expression of corresponding F. graminearum genes was confirmed by quantitative reverse transcriptase-polymerase chain reaction in barley and wheat spikelets harvested at 2-6 days after inoculation. In addition, a clear difference in the accumulation of fungal biomass and the extent of fungal-induced proteolysis of plant β-amylase was observed in barley and wheat. The present study considerably expands the current database of F. graminearum secreted proteins which may be involved in Fusarium head blight.

  19. The presequence pathway is involved in protein sorting to the mitochondrial outer membrane.

    PubMed

    Wenz, Lena-Sophie; Opaliński, Lukasz; Schuler, Max-Hinderk; Ellenrieder, Lars; Ieva, Raffaele; Böttinger, Lena; Qiu, Jian; van der Laan, Martin; Wiedemann, Nils; Guiard, Bernard; Pfanner, Nikolaus; Becker, Thomas

    2014-06-01

    The mitochondrial outer membrane contains integral α-helical and β-barrel proteins that are imported from the cytosol. The machineries importing β-barrel proteins have been identified, however, different views exist on the import of α-helical proteins. It has been reported that the biogenesis of Om45, the most abundant signal-anchored protein, does not depend on proteinaceous components, but involves direct insertion into the outer membrane. We show that import of Om45 occurs via the translocase of the outer membrane and the presequence translocase of the inner membrane. Assembly of Om45 in the outer membrane involves the MIM machinery. Om45 thus follows a new mitochondrial biogenesis pathway that uses elements of the presequence import pathway to direct a protein to the outer membrane.

  20. Neuron membrane trafficking and protein kinases involved in autism and ADHD.

    PubMed

    Kitagishi, Yasuko; Minami, Akari; Nakanishi, Atsuko; Ogura, Yasunori; Matsuda, Satoru

    2015-01-01

    A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1) are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD) is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT). AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  1. Self protein-protein interactions are involved in TPPP/p25 mediated microtubule bundling

    PubMed Central

    DeBonis, Salvatore; Neumann, Emmanuelle; Skoufias, Dimitrios A.

    2015-01-01

    TPPP/p25 is a microtubule-associated protein, detected in protein inclusions associated with various neurodegenerative diseases. Deletion analysis data show that TPPP/p25 has two microtubule binding sites, both located in intrinsically disordered domains, one at the N-terminal and the other in the C-terminal domain. In copolymerization assays the full-length protein exhibits microtubule stimulation and bundling activity. In contrast, at the same ratio relative to tubulin, truncated forms of TPPP/p25 exhibit either lower or no microtubule stimulation and no bundling activity, suggesting a cooperative phenomenon which is enhanced by the presence of the two binding sites. The binding characteristics of the N- and C-terminally truncated proteins to taxol-stabilized microtubules are similar to the full-length protein. However, the C-terminally truncated TPPP/p25 shows a lower Bmax for microtubule binding, suggesting that it may bind to a site of tubulin that is masked in microtubules. Bimolecular fluorescent complementation assays in cells expressing combinations of various TPPP/p25 fragments, but not that of the central folded domain, resulted in the generation of a fluorescence signal colocalized with perinuclear microtubule bundles insensitive to microtubule inhibitors. The data suggest that the central folded domain of TPPP/p25 following binding to microtubules can drive s homotypic protein-protein interactions leading to bundled microtubules. PMID:26289831

  2. Binding of Y-box proteins to RNA: involvement of different protein domains.

    PubMed Central

    Ladomery, M; Sommerville, J

    1994-01-01

    Eukaryotic Y-box proteins are reported to interact with a wide variety of nucleic acid structures to act as transcription factors and mRNA masking proteins. The modular structure of Y-box proteins includes a highly conserved N-terminal cold-shock domain (CSD, equivalent to the bacterial cold-shock proteins) plus four basic C-terminal domains containing arginine clusters and aromatic residues. In addition, the basic domains are separated by acidic regions which contain several potential sites for serine/threonine phosphorylation. The interaction of Y-box proteins, isolated from Xenopus oocytes (FRGY2 type), with RNA molecules has been studied by UV crosslinking and protein fragmentation. We have identified two distinct binding activities. The CSD interacts preferentially with the polypurines poly(A,G) and poly(G) but not poly(A), this activity being sensitive to 5 mM MgCl2 but not to 5 mM spermidine. In the presence of 1 mM MgCl2 or 1 mM spermidine, the basic domains interact preferentially with poly(C,U), this activity being sensitive to 0.5 M NaCl. Binding of the basic domains is also sensitive to low concentrations of heparin. The basic domains can be crosslinked individually to labelled RNA. These results are discussed with reference to the various specificities noted in the binding of Y-box proteins to RNA and DNA. Images PMID:7530842

  3. Quantitative proteomic analysis of mice corneal tissues reveals angiogenesis-related proteins involved in corneal neovascularization.

    PubMed

    Shen, Minqian; Tao, Yimin; Feng, Yifan; Liu, Xing; Yuan, Fei; Zhou, Hu

    2016-07-01

    Corneal neovascularization (CNV) was induced in Balb/c mice by alkali burns in the central area of the cornea with a diameter of 2.5mm. After fourteen days, the cornea from one eye was collected for histological staining for CNV examination, while the cornea from the other eye of the same mouse was harvested for proteomic analysis. The label-free quantitative proteomic approach was applied to analyze five normal corneal tissues (normal group mice n=5) and five corresponding neovascularized corneal tissues (model group mice n=5). A total of 2124 proteins were identified, and 1682 proteins were quantified from these corneal tissues. Among these quantified proteins, 290 proteins were significantly changed between normal and alkali burned corneal tissues. Of these significantly changed proteins, 35 were reported or predicted as angiogenesis-related proteins. Then, these 35 proteins were analyzed using Ingenuity Pathway Analysis Software, resulting in 26 proteins enriched and connected to each other in the protein-protein interaction network, such as Lcn-2, αB-crystallin and Serpinf1 (PEDF). These three significantly changed proteins were selected for further Western blotting validation. Consistent with the quantitative proteomic results, Western blotting showed that Lcn-2 and αB-crystallin were significantly up-regulated in CNV model, while PEDF was down-regulated. This study provided increased understanding of angiogenesis-related proteins involved in corneal vascular development, which will be useful in the ophthalmic clinic of specifically target angiogenesis.

  4. Protein-Protein and Peptide-Protein Interactions of NudE-Like 1 (Ndel1): A Protein Involved in Schizophrenia.

    PubMed

    Hayashi, M A F; Felicori, L F; Fresqui, M A C; Yonamine, C M

    2015-01-01

    Schizophrenia (SCZ) is a devastating chronic mental disease determined by genetic and environmental factors, which susceptibility may involve an impaired neural migration during the neurodevelopmental process. Several candidate risk genes potentially associated with SCZ were related to the formation of protein complexes that ultimately mediate alterations in the neuroplasticity. The most studied SCZ risk gene is the Disrupted-in-Schizophrenia 1 (DISC1) gene, which functions seem to depend on the binding with cytoskeleton proteins, as the Nuclear-distribution gene E homolog like-1 (Ndel1) protein among others. Interestingly, Ndel1 is the only binding partner of DISC1 proteins with oligopeptidase activity, besides playing roles in multiple processes, including cytoskeletal organization, cell signaling, neuron migration, and neurite outgrowth. It is still not clear if the protein-protein interaction between Ndel1 and DISC1 is enough to explain all cellular functions attributed to these proteins, but there are several lines of evidence suggesting the importance of the catalytic activity of Ndel1 for the neurite outgrowth and neuron migration during embryogenesis. Recent works of the group have demonstrated the modulation of Ndel1 activity by DISC1, which is hypothetically impaired in SCZ patients. In fact, more recently, we also showed a lower Ndel1 activity in the plasma of SCZ patients compared to control health subjects, but the physiopathological significance of this feature is still unknown. Here we discuss Ndel1 ligands involved in protein-protein complex formations related to neurodevelopmental diseases, as (1) lissencephaly or Miller-Dieker Syndrome (MDS), which is characterized by the typical craniofacial features and abnormal smooth cerebral surface, and as (2) SCZ, since they both seem to be determined by defects in neuronal migration. Although impaired lissencephaly protein Lis1 complex formation with Ndel1 is the leading cause of lissencephaly, this

  5. Protein-Protein and Peptide-Protein Interactions of NudE-Like 1 (Ndel1): A Protein Involved in Schizophrenia.

    PubMed

    Hayashi, M A F; Felicori, L F; Fresqui, M A C; Yonamine, C M

    2015-01-01

    Schizophrenia (SCZ) is a devastating chronic mental disease determined by genetic and environmental factors, which susceptibility may involve an impaired neural migration during the neurodevelopmental process. Several candidate risk genes potentially associated with SCZ were related to the formation of protein complexes that ultimately mediate alterations in the neuroplasticity. The most studied SCZ risk gene is the Disrupted-in-Schizophrenia 1 (DISC1) gene, which functions seem to depend on the binding with cytoskeleton proteins, as the Nuclear-distribution gene E homolog like-1 (Ndel1) protein among others. Interestingly, Ndel1 is the only binding partner of DISC1 proteins with oligopeptidase activity, besides playing roles in multiple processes, including cytoskeletal organization, cell signaling, neuron migration, and neurite outgrowth. It is still not clear if the protein-protein interaction between Ndel1 and DISC1 is enough to explain all cellular functions attributed to these proteins, but there are several lines of evidence suggesting the importance of the catalytic activity of Ndel1 for the neurite outgrowth and neuron migration during embryogenesis. Recent works of the group have demonstrated the modulation of Ndel1 activity by DISC1, which is hypothetically impaired in SCZ patients. In fact, more recently, we also showed a lower Ndel1 activity in the plasma of SCZ patients compared to control health subjects, but the physiopathological significance of this feature is still unknown. Here we discuss Ndel1 ligands involved in protein-protein complex formations related to neurodevelopmental diseases, as (1) lissencephaly or Miller-Dieker Syndrome (MDS), which is characterized by the typical craniofacial features and abnormal smooth cerebral surface, and as (2) SCZ, since they both seem to be determined by defects in neuronal migration. Although impaired lissencephaly protein Lis1 complex formation with Ndel1 is the leading cause of lissencephaly, this

  6. Identification of a novel LEA protein involved in freezing tolerance in wheat.

    PubMed

    Sasaki, Kentaro; Christov, Nikolai Kirilov; Tsuda, Sakae; Imai, Ryozo

    2014-01-01

    Late embryogenesis abundant (LEA) proteins are a family of hyper-hydrophilic proteins that accumulate in response to cellular dehydration. Originally identified as plant proteins associated with seed desiccation tolerance, LEA proteins have been identified in a wide range of organisms such as invertebrates and microorganisms. LEA proteins are thought to protect proteins and biomembranes under water-deficit conditions. Here, we characterized WCI16, a wheat (Triticum aestivum) protein that belongs to a class of plant proteins of unknown function, and provide evidence that WCI16 shares common features with LEA proteins. WCI16 was induced during cold acclimation in winter wheat. Based on its amino acid sequence, WCI16 is highly hydrophilic, like LEA proteins, despite having no significant sequence similarity to any of the known classes of LEA proteins. Recombinant WCI16 protein was soluble after boiling, and (1)H-nuclear magnetic resonance (NMR) spectroscopy revealed that the structure of WCI16 is random and has no hydrophobic regions. WCI16 exhibited in vitro cryoprotection of the freeze-labile enzyme l-lactate dehydrogenase as well as double-stranded DNA binding activity, suggesting that WCI16 may protect both proteins and DNA during environmental stresses. The biological relevance of these activities was supported by the subcellular localization of a green fluorescent protein (GFP)-fused WCI16 protein in the nucleus and cytoplasm. Heterologous expression of WCI16 in Arabidopsis (Arabidopsis thaliana) plants conferred enhanced freezing tolerance. Taken together, our results indicate that WCI16 represents a novel class of LEA proteins and is involved in freezing tolerance.

  7. Protein kinase C is involved in the regulation of several calreticulin posttranslational modifications.

    PubMed

    Cristina Castañeda-Patlán, M; Razo-Paredes, Roberto; Carrisoza-Gaytán, Rolando; González-Mariscal, Lorenza; Robles-Flores, Martha

    2010-01-01

    Calreticulin (CRT) is a highly versatile lectin-like chaperone that affects many cellular functions both inside and outside the endoplasmic reticulum lumen. We previously reported that calreticulin interacts with several protein kinase C isozymes both in vitro and in vivo. The aim of this study was to elucidate the molecular determinants involved in the association between these proteins and the biochemical significance of their interaction. Using full-length or CRT-domain constructs expressed as GST-fusion proteins, we found that protein kinase C binds to the CRT N domain in overlay and pull-down assays. Phosphorylation experiments showed that only this CRT domain is phosphorylated by the kinase. Lectin blot analysis demonstrated that CRT is modified by N-glycosylation, but this modification did not affect its interaction with protein kinase C. We also demonstrated that although both domains of protein kinase C theta can bind to CRT, it is the catalytic one that binds with higher affinity to CRT. Immunofluorescence studies showed that CRT and PKC co-localize mainly at the ER (estimated in 35%). Activation of protein kinase C induced caused transient changes in CRT localization, and unexpectedly, also induced changes in posttranslational modifications found in the protein: CRT N-glycosylation is abolished, whereas tyrosine phosphorylation and O-linked beta-N-acetylglucosamine modification are increased. Together, these findings suggest that protein kinase C is involved in the regulation of CRT function. PMID:19800981

  8. Exocyst Sec10 is Involved in Basolateral Protein Translation and Translocation in the Endoplasmic Reticulum

    PubMed Central

    Choi, Soo Young; Fogelgren, Ben; Zuo, Xiaofeng; Huang, Liwei; McKenna, Sarah; Lingappa, Vishwanath R.; Lipschutz, Joshua H.

    2013-01-01

    Background Protein translation and translocation at the rough endoplasmic reticulum (RER) are the first steps in the secretory pathway. The translocon through which newly-made proteins are translocated into or across the RER membrane, consists of three main subunits, Sec61α, β, and γ. Sec61β facilitates translocation, and we and others showed that the highly-conserved eight protein exocyst complex interacts with Sec61β. We also showed that the exocyst was involved in basolateral, and not apical, protein synthesis and delivery. Recently, however, exocyst involvement in apical protein delivery was reported. Furthermore, we showed that the exocyst was necessary for formation of primary cilia, organelles found on the apical surface. Methods GST pulldown was performed on lysate of renal tubule cells to investigate biochemical interactions. Cell-free assays consisting of cell-free extracts from rabbit reticulocytes, pancreatic ER microsomal membranes, transcripts of cDNA from apical and basolateral proteins, ATP/GTP, amino acids, and 35S-methionine for protein detection, were used to investigate the role of the exocyst in synthesis of polarized proteins. P32-orthophosphate and immunoprecipitation with antibody against Sec61β was used to investigate the Sec61β phosphorylation in exocyst Sec10-overexpressing cells. Results Sec10 biochemically interacts with Sec61β using GST pulldown. Using cell-free assays, there is enhanced recruitment to ER membranes following exocyst depletion and basolateral VSVG protein translation, compared to apical HA protein translation. Finally, Sec10 overexpression increases Sec61β phosphorylation. Conclusion These data confirm that the exocyst is preferentially involved in basolateral protein translation and translocation, and may well act through the phosphorylation of Sec61β. PMID:23037926

  9. Autophagy-linked FYVE protein (Alfy) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS).

    PubMed

    Han, Huihui; Wei, Wanyi; Duan, Weisong; Guo, Yansu; Li, Yi; Wang, Jie; Bi, Yue; Li, Chunyan

    2015-03-01

    Autophagy-linked FYVE (Alfy) is a protein implicated in the selective degradation of aggregated proteins. In our present study, we found that Alfy was recruited into the aggregated G93A-SOD1 in transgenic mice with amyotrophic lateral sclerosis (ALS). We demonstrated that Alfy overexpression could decrease the expression of mutant proteins via the autophagosome-lysosome pathway, and thereby, the toxicity of mutant proteins was reduced. The clearance of the mutant proteins in NSC34 cells was significantly inhibited in an Alfy knockdown cellular model. We therefore deduced that Alfy translocalization likely is involved in the pathogenesis of ALS. Alfy may be developed into a useful target for ALS therapy.

  10. Cloning of two sea urchin DNA-binding proteins involved in mitochondrial DNA replication and transcription.

    PubMed

    Loguercio Polosa, Paola; Megli, Fiammetta; Di Ponzio, Barbara; Gadaleta, Maria Nicola; Cantatore, Palmiro; Roberti, Marina

    2002-03-01

    The cloning of the cDNA for two mitochondrial proteins involved in sea urchin mtDNA replication and transcription is reported here. The cDNA for the mitochondrial D-loop binding protein (mtDBP) from the sea urchin Strongylocentrotus purpuratus has been cloned by a polymerase chain reaction-based approach. The protein displays a very high similarity with the Paracentrotus lividus homologue as it contains also the two leucine zipper-like domains which are thought to be involved in intramolecular interactions needed to expose the two DNA binding domains in the correct position for contacting DNA. The cDNA for the mitochondrial single-stranded DNA-binding protein (mtSSB) from P. lividus has been also cloned by a similar approach. The precursor protein is 146 amino acids long with a presequence of 16 residues. The deduced amino acid sequence shows the highest homology with the Xenopus laevis protein and the lowest with the Drosophila mtSSB. The computer modeling of the tertiary structure of P. lividus mtSSB shows a structure very similar to that experimentally determined for human mtSSB, with the conservation of the main residues involved in protein tetramerization and in DNA binding.

  11. Proteomic Analysis of Differentially Expressed Proteins Involved in Peel Senescence in Harvested Mandarin Fruit.

    PubMed

    Li, Taotao; Zhang, Jingying; Zhu, Hong; Qu, Hongxia; You, Shulin; Duan, Xuewu; Jiang, Yueming

    2016-01-01

    Mandarin (Citrus reticulata), a non-climacteric fruit, is an economically important fruit worldwide. The mechanism underlying senescence of non-climacteric fruit is poorly understood. In this study, a gel-based proteomic study followed by LC-ESI-MS/MS analysis was carried out to investigate the proteomic changes involved in peel senescence in harvested mandarin "Shatangju" fruit stored for 18 days. Over the course of the storage period, the fruit gradually senesced, accompanied by a decreased respiration rate and increased chlorophyll degradation and disruption of membrane integrity. Sixty-three proteins spots that showed significant differences in abundance were identified. The up-regulated proteins were mainly associated with cell wall degradation, lipid degradation, protein degradation, senescence-related transcription factors, and transcription-related proteins. In contrast, most proteins associated with ATP synthesis and scavenging of reactive oxygen species were significantly down-regulated during peel senescence. Three thioredoxin proteins and three Ca(2+) signaling-related proteins were significantly up-regulated during peel senescence. It is suggested that mandarin peel senescence is associated with energy supply efficiency, decreased antioxidant capability, and increased protein and lipid degradation. In addition, activation of Ca(2+) signaling and transcription factors might be involved in cell wall degradation and primary or secondary metabolism. PMID:27303420

  12. Proteomic Analysis of Differentially Expressed Proteins Involved in Peel Senescence in Harvested Mandarin Fruit

    PubMed Central

    Li, Taotao; Zhang, Jingying; Zhu, Hong; Qu, Hongxia; You, Shulin; Duan, Xuewu; Jiang, Yueming

    2016-01-01

    Mandarin (Citrus reticulata), a non-climacteric fruit, is an economically important fruit worldwide. The mechanism underlying senescence of non-climacteric fruit is poorly understood. In this study, a gel-based proteomic study followed by LC-ESI-MS/MS analysis was carried out to investigate the proteomic changes involved in peel senescence in harvested mandarin “Shatangju” fruit stored for 18 days. Over the course of the storage period, the fruit gradually senesced, accompanied by a decreased respiration rate and increased chlorophyll degradation and disruption of membrane integrity. Sixty-three proteins spots that showed significant differences in abundance were identified. The up-regulated proteins were mainly associated with cell wall degradation, lipid degradation, protein degradation, senescence-related transcription factors, and transcription-related proteins. In contrast, most proteins associated with ATP synthesis and scavenging of reactive oxygen species were significantly down-regulated during peel senescence. Three thioredoxin proteins and three Ca2+ signaling-related proteins were significantly up-regulated during peel senescence. It is suggested that mandarin peel senescence is associated with energy supply efficiency, decreased antioxidant capability, and increased protein and lipid degradation. In addition, activation of Ca2+ signaling and transcription factors might be involved in cell wall degradation and primary or secondary metabolism. PMID:27303420

  13. Proteins involved in motility and sperm-egg interaction evolve more rapidly in mouse spermatozoa.

    PubMed

    Vicens, Alberto; Lüke, Lena; Roldan, Eduardo R S

    2014-01-01

    Proteomic studies of spermatozoa have identified a large catalog of integral sperm proteins. Rapid evolution of these proteins may underlie adaptive changes of sperm traits involved in different events leading to fertilization, although the selective forces underlying such rapid evolution are not well understood. A variety of selective forces may differentially affect several steps ending in fertilization, thus resulting in a compartmentalized adaptation of sperm proteins. Here we analyzed the evolution of genes associated to various events in the sperm's life, from sperm formation to sperm-egg interaction. Evolutionary analyses were performed on gene sequences from 17 mouse strains whose genomes have been sequenced. Four of these are derived from wild Mus musculus, M. domesticus, M. castaneus and M. spretus. We found a higher proportion of genes exhibiting a signature of positive selection among those related to sperm motility and sperm-egg interaction. Furthermore, sperm proteins involved in sperm-egg interaction exhibited accelerated evolution in comparison to those involved in other events. Thus, we identified a large set of candidate proteins for future comparative analyses of genotype-phenotype associations in spermatozoa of species subjected to different sexual selection pressures. Adaptive evolution of proteins involved in motility could be driven by sperm competition, since this selective force is known to increase the proportion of motile sperm and their swimming velocity. On the other hand, sperm proteins involved in gamete interaction could be coevolving with their egg partners through episodes of sexual selection or sexual conflict resulting in species-specific sperm-egg interactions and barriers preventing interspecies fertilization.

  14. Elucidating Protein Involvement in the Stabilization of the Biogenic Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ballottin, Daniela; Fulaz, Stephanie; Souza, Michele L.; Corio, Paola; Rodrigues, Alexandre G.; Souza, Ana O.; Gaspari, Priscyla M.; Gomes, Alexandre F.; Gozzo, Fábio; Tasic, Ljubica

    2016-06-01

    Silver nanoparticles (AgNPs) have been broadly used as antibacterial and antiviral agents. Further, interests for green AgNP synthesis have increased in recent years and several results for AgNP biological synthesis have been reported using bacteria, fungi and plant extracts. The understanding of the role and nature of fungal proteins, their interaction with AgNPs and the subsequent stabilization of nanosilver is yet to be deeply investigated. Therefore, in an attempt to better understand biogenic AgNP stabilization with the extracellular fungal proteins and to describe these supramolecular interactions between proteins and silver nanoparticles, AgNPs, produced extracellularly by Aspergillus tubingensis—isolated as an endophytic fungus from Rizophora mangle—were characterized in order to study their physical characteristics, identify the involved proteins, and shed light into the interactions among protein-NPs by several techniques. AgNPs of around 35 nm in diameter as measured by TEM and a positive zeta potential of +8.48 mV were obtained. These AgNPs exhibited a surface plasmon resonance (SPR) band at 440 nm, indicating the nanoparticles formation, and another band at 280 nm, attributed to the electronic excitations in tryptophan, tyrosine, and/or phenylalanine residues in fungal proteins. Fungal proteins were covalently bounded to the AgNPs, mainly through S-Ag bonds due to cysteine residues (HS-) and with few N-Ag bonds from H2N- groups, as verified by Raman spectroscopy. Observed supramolecular interactions also occur by electrostatic and other protein-protein interactions. Furthermore, proteins that remain free on AgNP surface may perform hydrogen bonds with other proteins or water increasing thus the capping layer around the AgNPs and consequently expanding the hydrodynamic diameter of the particles (~264 nm, measured by DLS). FTIR results enabled us to state that proteins adsorbed to the AgNPs did not suffer relevant secondary structure alteration upon

  15. Elucidating Protein Involvement in the Stabilization of the Biogenic Silver Nanoparticles.

    PubMed

    Ballottin, Daniela; Fulaz, Stephanie; Souza, Michele L; Corio, Paola; Rodrigues, Alexandre G; Souza, Ana O; Gaspari, Priscyla M; Gomes, Alexandre F; Gozzo, Fábio; Tasic, Ljubica

    2016-12-01

    Silver nanoparticles (AgNPs) have been broadly used as antibacterial and antiviral agents. Further, interests for green AgNP synthesis have increased in recent years and several results for AgNP biological synthesis have been reported using bacteria, fungi and plant extracts. The understanding of the role and nature of fungal proteins, their interaction with AgNPs and the subsequent stabilization of nanosilver is yet to be deeply investigated. Therefore, in an attempt to better understand biogenic AgNP stabilization with the extracellular fungal proteins and to describe these supramolecular interactions between proteins and silver nanoparticles, AgNPs, produced extracellularly by Aspergillus tubingensis-isolated as an endophytic fungus from Rizophora mangle-were characterized in order to study their physical characteristics, identify the involved proteins, and shed light into the interactions among protein-NPs by several techniques. AgNPs of around 35 nm in diameter as measured by TEM and a positive zeta potential of +8.48 mV were obtained. These AgNPs exhibited a surface plasmon resonance (SPR) band at 440 nm, indicating the nanoparticles formation, and another band at 280 nm, attributed to the electronic excitations in tryptophan, tyrosine, and/or phenylalanine residues in fungal proteins. Fungal proteins were covalently bounded to the AgNPs, mainly through S-Ag bonds due to cysteine residues (HS-) and with few N-Ag bonds from H2N- groups, as verified by Raman spectroscopy. Observed supramolecular interactions also occur by electrostatic and other protein-protein interactions. Furthermore, proteins that remain free on AgNP surface may perform hydrogen bonds with other proteins or water increasing thus the capping layer around the AgNPs and consequently expanding the hydrodynamic diameter of the particles (~264 nm, measured by DLS). FTIR results enabled us to state that proteins adsorbed to the AgNPs did not suffer relevant secondary structure alteration upon

  16. Elucidating Protein Involvement in the Stabilization of the Biogenic Silver Nanoparticles.

    PubMed

    Ballottin, Daniela; Fulaz, Stephanie; Souza, Michele L; Corio, Paola; Rodrigues, Alexandre G; Souza, Ana O; Gaspari, Priscyla M; Gomes, Alexandre F; Gozzo, Fábio; Tasic, Ljubica

    2016-12-01

    Silver nanoparticles (AgNPs) have been broadly used as antibacterial and antiviral agents. Further, interests for green AgNP synthesis have increased in recent years and several results for AgNP biological synthesis have been reported using bacteria, fungi and plant extracts. The understanding of the role and nature of fungal proteins, their interaction with AgNPs and the subsequent stabilization of nanosilver is yet to be deeply investigated. Therefore, in an attempt to better understand biogenic AgNP stabilization with the extracellular fungal proteins and to describe these supramolecular interactions between proteins and silver nanoparticles, AgNPs, produced extracellularly by Aspergillus tubingensis-isolated as an endophytic fungus from Rizophora mangle-were characterized in order to study their physical characteristics, identify the involved proteins, and shed light into the interactions among protein-NPs by several techniques. AgNPs of around 35 nm in diameter as measured by TEM and a positive zeta potential of +8.48 mV were obtained. These AgNPs exhibited a surface plasmon resonance (SPR) band at 440 nm, indicating the nanoparticles formation, and another band at 280 nm, attributed to the electronic excitations in tryptophan, tyrosine, and/or phenylalanine residues in fungal proteins. Fungal proteins were covalently bounded to the AgNPs, mainly through S-Ag bonds due to cysteine residues (HS-) and with few N-Ag bonds from H2N- groups, as verified by Raman spectroscopy. Observed supramolecular interactions also occur by electrostatic and other protein-protein interactions. Furthermore, proteins that remain free on AgNP surface may perform hydrogen bonds with other proteins or water increasing thus the capping layer around the AgNPs and consequently expanding the hydrodynamic diameter of the particles (~264 nm, measured by DLS). FTIR results enabled us to state that proteins adsorbed to the AgNPs did not suffer relevant secondary structure alteration upon

  17. Monte Carlo Modeling of Spectral Diffusion Employing Multiwell Protein Energy Landscapes: Application to Pigment-Protein Complexes Involved in Photosynthesis.

    PubMed

    Najafi, Mehdi; Zazubovich, Valter

    2015-06-25

    We are reporting development and initial applications of the light-induced and thermally induced spectral diffusion modeling software, covering nonphotochemical spectral hole burning (NPHB), hole recovery, and single-molecule spectroscopy and involving random generation of the multiwell protein energy landscapes. The model includes tunneling and activated barrier-hopping in both ground and excited states of a protein-chromophore system. Evolution of such a system is predicted by solving the system of rate equations. Using the barrier parameters from the range typical for the energy landscapes of the pigment-protein complexes involved in photosynthesis, we (a) show that realistic cooling of the sample must result in proteins quite far from thermodynamic equilibrium, (b) demonstrate hole evolution in the cases of burning, fixed-temperature recovery and thermocycling that mostly agrees with the experiment and modeling based on the NPHB master equation, and (c) explore the effects of different protein energy landscapes on the antihole shape. Introducing the multiwell energy landscapes and starting the hole burning experiments in realistic nonequilibrium conditions are not sufficient to explain all experimental observations even qualitatively. Therefore, for instance, one is required to invoke the modified NPHB mechanism where a complex interplay of several small conformational changes is poising the energy landscape of the pigment-protein system for downhill tunneling.

  18. Structural Interface Forms and Their Involvement in Stabilization of Multidomain Proteins or Protein Complexes

    PubMed Central

    Dygut, Jacek; Kalinowska, Barbara; Banach, Mateusz; Piwowar, Monika; Konieczny, Leszek; Roterman, Irena

    2016-01-01

    The presented analysis concerns the inter-domain and inter-protein interface in protein complexes. We propose extending the traditional understanding of the protein domain as a function of local compactness with an additional criterion which refers to the presence of a well-defined hydrophobic core. Interface areas in selected homodimers vary with respect to their contribution to share as well as individual (domain-specific) hydrophobic cores. The basic definition of a protein domain, i.e., a structural unit characterized by tighter packing than its immediate environment, is extended in order to acknowledge the role of a structured hydrophobic core, which includes the interface area. The hydrophobic properties of interfaces vary depending on the status of interacting domains—In this context we can distinguish: (1) Shared hydrophobic cores (spanning the whole dimer); (2) Individual hydrophobic cores present in each monomer irrespective of whether the dimer contains a shared core. Analysis of interfaces in dystrophin and utrophin indicates the presence of an additional quasi-domain with a prominent hydrophobic core, consisting of fragments contributed by both monomers. In addition, we have also attempted to determine the relationship between the type of interface (as categorized above) and the biological function of each complex. This analysis is entirely based on the fuzzy oil drop model. PMID:27763556

  19. Hydrophobic effect in protein folding and other noncovalent processes involving proteins.

    PubMed Central

    Spolar, R S; Ha, J H; Record, M T

    1989-01-01

    Large negative standard heat capacity changes (delta CP degree much less than 0) are the hallmark of processes that remove nonpolar surface from water, including the transfer of nonpolar solutes from water to a nonaqueous phase and the folding, aggregation/association, and ligand-binding reactions of proteins [Sturtevant, J. M. (1977) Proc. Natl. Acad. Sci. USA 74, 2236-2240]. More recently, Baldwin [Baldwin, R. L. (1986) Proc. Natl. Acad. Sci. USA 83, 8069-8072] proposed that the delta CP degree of protein folding could be used to quantify the contribution of the burial of nonpolar surface (the hydrophobic effect) to the stability of a globular protein. We demonstrate that identical correlations between the delta CP degree and the change in water-accessible nonpolar surface area (delta Anp) are obtained for both the transfer of nonpolar solutes from water to the pure liquid phase and the folding of small globular proteins: delta CP degree/delta Anp = -(0.28 +/- 0.05) (where delta Anp is expressed in A2 and delta CP degree is expressed in cal.mol-1.K-1; 1 cal = 4.184 J). The fact that these correlations are identical validates the proposals by both Sturtevant and Baldwin that the hydrophobic effect is in general the dominant contributor to delta CP degree and provides a straightforward means of estimating the contribution of the hydrophobic driving force (delta Ghyd degree) to the standard free energy change of a noncovalent process characterized by a large negative delta CP degree in the physiological temperature range: delta Ghyd degree congruent to (80 +/- 10)delta CP degree. PMID:2813394

  20. The TSG101 protein binds to connexins and is involved in connexin degradation

    SciTech Connect

    Auth, Tanja Schlueter, Sharazad; Urschel, Stephanie; Kussmann, Petra; Sonntag, Stephan; Hoeher, Thorsten; Kreuzberg, Maria M.; Dobrowolski, Radoslaw; Willecke, Klaus

    2009-04-01

    Gap junctions mediate electrical and metabolic communication between cells in almost all tissues and are proposed to play important roles in cellular growth control, differentiation and embryonic development. Gap junctional communication and channel assembly were suggested to be regulated by interaction of connexins with different proteins including kinases and phosphatases. Here, we identified the tumor susceptibility gene 101 (TSG101) protein to bind to the carboxyterminal tail of connexin45 in a yeast two-hybrid protein interaction screen. Glutathione S-transferase pull down experiments and immunoprecipitation revealed that not only connexin45 but also connexin30.2, -36, and -43 carboxyterminal regions were associated with TSG101 protein in pull down analyses and that connexin31, -43 and -45 co-precipitate with endogenous TSG101 protein in lysates from HM1 embryonic stem cells. TSG101 has been shown to be involved in cell cycle control, transcriptional regulation and turnover of endocytosed proteins. Thus, we decided to study the functional role of this interaction. SiRNA mediated knock down of TSG101 in HM1 embryonic stem cells led to increased levels of connexin43 and -45, prolonged half life of these connexins and increased transfer of microinjected Lucifer yellow. Our results suggest that TSG101 is involved in the degradation of connexins via interaction with connexin proteins.

  1. Comparative proteomic analysis reveals proteins putatively involved in toxin biosynthesis in the marine dinoflagellate Alexandrium catenella.

    PubMed

    Wang, Da-Zhi; Gao, Yue; Lin, Lin; Hong, Hua-Sheng

    2013-01-22

    Alexandrium is a neurotoxin-producing dinoflagellate genus resulting in paralytic shellfish poisonings around the world. However, little is known about the toxin biosynthesis mechanism in Alexandrium. This study compared protein profiles of A. catenella collected at different toxin biosynthesis stages (non-toxin synthesis, initial toxin synthesis and toxin synthesizing) coupled with the cell cycle, and identified differentially expressed proteins using 2-DE and MALDI-TOF-TOF mass spectrometry. The results showed that toxin biosynthesis of A. catenella occurred within a defined time frame in the G1 phase of the cell cycle. Proteomic analysis indicated that 102 protein spots altered significantly in abundance (P < 0.05), and 53 proteins were identified using database searching. These proteins were involved in a variety of biological processes, i.e., protein modification and biosynthesis, metabolism, cell division, oxidative stress, transport, signal transduction, and translation. Among them, nine proteins with known functions in paralytic shellfish toxin-producing cyanobacteria, i.e., methionine S-adenosyltransferase, chloroplast ferredoxin-NADP+ reductase, S-adenosylhomocysteinase, adenosylhomocysteinase, ornithine carbamoyltransferase, inorganic pyrophosphatase, sulfotransferase (similar to), alcohol dehydrogenase and arginine deiminase, varied significantly at different toxin biosynthesis stages and formed an interaction network, indicating that they might be involved in toxin biosynthesis in A. catenella. This study is the first step in the dissection of the behavior of the A. catenella proteome during different toxin biosynthesis stages and provides new insights into toxin biosynthesis in dinoflagellates.

  2. Olive seed protein bodies store degrading enzymes involved in mobilization of oil bodies

    PubMed Central

    Rodríguez-García, María Isabel

    2014-01-01

    The major seed storage reserves in oilseeds are accumulated in protein bodies and oil bodies, and serve as an energy, carbon, and nitrogen source during germination. Here, the spatio-temporal relationships between protein bodies and several key enzymes (phospholipase A, lipase, and lipoxygenase) involved in storage lipid mobilization in cotyledon cells was analysed during in vitro seed germination. Enzyme activities were assayed in-gel and their cellular localization were determined using microscopy techniques. At seed maturity, phospholipase A and triacylglycerol lipase activities were found exclusively in protein bodies. However, after seed imbibition, these activities were shifted to the cytoplasm and the surface of the oil bodies. The activity of neutral lipases was detected by using α-naphthyl palmitate and it was associated mainly with protein bodies during the whole course of germination. This pattern of distribution was highly similar to the localization of neutral lipids, which progressively appeared in protein bodies. Lipoxygenase activity was found in both the protein bodies and on the surface of the oil bodies during the initial phase of seed germination. The association of lipoxygenase with oil bodies was temporally correlated with the appearance of phospholipase A and lipase activities on the surface of oil bodies. It is concluded that protein bodies not only serve as simple storage structures, but are also dynamic and multifunctional organelles directly involved in storage lipid mobilization during olive seed germination. PMID:24170742

  3. Comparative Proteomic Analysis Reveals Proteins Putatively Involved in Toxin Biosynthesis in the Marine Dinoflagellate Alexandrium catenella

    PubMed Central

    Wang, Da-Zhi; Gao, Yue; Lin, Lin; Hong, Hua-Sheng

    2013-01-01

    Alexandrium is a neurotoxin-producing dinoflagellate genus resulting in paralytic shellfish poisonings around the world. However, little is known about the toxin biosynthesis mechanism in Alexandrium. This study compared protein profiles of A. catenella collected at different toxin biosynthesis stages (non-toxin synthesis, initial toxin synthesis and toxin synthesizing) coupled with the cell cycle, and identified differentially expressed proteins using 2-DE and MALDI-TOF-TOF mass spectrometry. The results showed that toxin biosynthesis of A. catenella occurred within a defined time frame in the G1 phase of the cell cycle. Proteomic analysis indicated that 102 protein spots altered significantly in abundance (P < 0.05), and 53 proteins were identified using database searching. These proteins were involved in a variety of biological processes, i.e., protein modification and biosynthesis, metabolism, cell division, oxidative stress, transport, signal transduction, and translation. Among them, nine proteins with known functions in paralytic shellfish toxin-producing cyanobacteria, i.e., methionine S-adenosyltransferase, chloroplast ferredoxin-NADP+ reductase, S-adenosylhomocysteinase, adenosylhomocysteinase, ornithine carbamoyltransferase, inorganic pyrophosphatase, sulfotransferase (similar to), alcohol dehydrogenase and arginine deiminase, varied significantly at different toxin biosynthesis stages and formed an interaction network, indicating that they might be involved in toxin biosynthesis in A. catenella. This study is the first step in the dissection of the behavior of the A. catenella proteome during different toxin biosynthesis stages and provides new insights into toxin biosynthesis in dinoflagellates. PMID:23340676

  4. Vesicular trafficking in characean green algae and the possible involvement of a VAMP72-family protein.

    PubMed

    Hoepflinger, Marion; Hametner, Christina; Ueda, Takashi; Foissner, Ilse

    2014-01-01

    The RAB5 GTPase ARA6 (AtARA6) of Arabidopsis thaliana is known to be involved in endosomal trafficking by targeting vesicles to the plasma membrane. During this process AtARA6 is working in close relationship with the SNARE protein VAMP727 (vesicle associated membrane protein 727). Recently, ARA6 of the characean green algae Chara australis (CaARA6) was shown to have properties similar to AtARA6, pointing to similar trafficking pathways. In order to gain further insight into the vesicle trafficking machinery of characeae, C. australis was analyzed for homologous proteins of the VAMP72-family. A CaVAMP72 protein was detected and classified by protein sequence alignment and phylogenetic analyses.

  5. Vesicular trafficking in characean green algae and the possible involvement of a VAMP72-family protein.

    PubMed

    Hoepflinger, Marion C; Hametner, Christina; Ueda, Takashi; Foissner, Ilse

    2014-01-01

    The RAB5 GTPase ARA6 of Arabidopsis thaliana is known to be involved in endosomal trafficking by targeting vesicles to the plasma membrane. During this process AtARA6 is working in close relationship with the SNARE protein VAMP727 (vesicle associated membrane protein 727). Recently, ARA6 of the characean green algae Chara australis (CaARA6) was shown to have properties similar to AtARA6, pointing to similar trafficking pathways. In order to gain further insight into the vesicle trafficking machinery of Characeae, C. australis was analyzed for homologous proteins of the VAMP72-family. A CaVAMP72 protein was detected and classified by protein sequence alignment and phylogenetic analyses.

  6. Vesicular trafficking in characean green algae and the possible involvement of a VAMP72-family protein.

    PubMed

    Hoepflinger, Marion; Hametner, Christina; Ueda, Takashi; Foissner, Ilse

    2014-01-01

    The RAB5 GTPase ARA6 (AtARA6) of Arabidopsis thaliana is known to be involved in endosomal trafficking by targeting vesicles to the plasma membrane. During this process AtARA6 is working in close relationship with the SNARE protein VAMP727 (vesicle associated membrane protein 727). Recently, ARA6 of the characean green algae Chara australis (CaARA6) was shown to have properties similar to AtARA6, pointing to similar trafficking pathways. In order to gain further insight into the vesicle trafficking machinery of characeae, C. australis was analyzed for homologous proteins of the VAMP72-family. A CaVAMP72 protein was detected and classified by protein sequence alignment and phylogenetic analyses. PMID:24614164

  7. Vesicular trafficking in characean green algae and the possible involvement of a VAMP72-family protein.

    PubMed

    Hoepflinger, Marion C; Hametner, Christina; Ueda, Takashi; Foissner, Ilse

    2014-01-01

    The RAB5 GTPase ARA6 of Arabidopsis thaliana is known to be involved in endosomal trafficking by targeting vesicles to the plasma membrane. During this process AtARA6 is working in close relationship with the SNARE protein VAMP727 (vesicle associated membrane protein 727). Recently, ARA6 of the characean green algae Chara australis (CaARA6) was shown to have properties similar to AtARA6, pointing to similar trafficking pathways. In order to gain further insight into the vesicle trafficking machinery of Characeae, C. australis was analyzed for homologous proteins of the VAMP72-family. A CaVAMP72 protein was detected and classified by protein sequence alignment and phylogenetic analyses. PMID:25764429

  8. A cellulose synthase-like protein involved in hyphal tip growth and morphological differentiation in streptomyces.

    PubMed

    Xu, Hongbin; Chater, Keith F; Deng, Zixin; Tao, Meifeng

    2008-07-01

    Cellulose synthase and cellulose synthase-like proteins, responsible for synthesizing beta-glucan-containing polysaccharides, play a fundamental role in cellular architectures, such as plant cell and tissue morphogenesis, bacterial biofilm formation, and fruiting-body development. However, the roles of the proteins involved in the developmental process are not well understood. Here, we report that a cellulose synthase-like protein (CslA(Sc)) in Streptomyces has a function in hyphal tip growth and morphological differentiation. The cslA(Sc) replacement mutant showed pleiotropic defects, including the severe delay of aerial-hyphal formation and altered cell wall morphology. Calcofluor white fluorescence analysis demonstrated that polysaccharide synthesis at hyphal tips was dependent on CslA(Sc). cslA(Sc) was constitutively transcribed, and an enhanced green fluorescent protein-CslA(Sc) fusion protein was mostly located at the hyphal tips. An extract enriched in morphogenetic chaplin proteins promoted formation of aerial hyphae by the mutant. Furthermore, a two-hybrid experiment indicated that the glycosyltransferase domain of CslA(Sc) interacted with the tropomyosin-like polarity-determining DivIVA protein, suggesting that the tip-located DivIVA governed tip recruitment of the CslA(Sc) membrane protein. These results imply that the cellulose synthase-like protein couples extracellular and cytoskeletal components functioning in tip growth and cell development. PMID:18487344

  9. A Cellulose Synthase-Like Protein Involved in Hyphal Tip Growth and Morphological Differentiation in Streptomyces▿

    PubMed Central

    Xu, Hongbin; Chater, Keith F.; Deng, Zixin; Tao, Meifeng

    2008-01-01

    Cellulose synthase and cellulose synthase-like proteins, responsible for synthesizing β-glucan-containing polysaccharides, play a fundamental role in cellular architectures, such as plant cell and tissue morphogenesis, bacterial biofilm formation, and fruiting-body development. However, the roles of the proteins involved in the developmental process are not well understood. Here, we report that a cellulose synthase-like protein (CslASc) in Streptomyces has a function in hyphal tip growth and morphological differentiation. The cslASc replacement mutant showed pleiotropic defects, including the severe delay of aerial-hyphal formation and altered cell wall morphology. Calcofluor white fluorescence analysis demonstrated that polysaccharide synthesis at hyphal tips was dependent on CslASc. cslASc was constitutively transcribed, and an enhanced green fluorescent protein-CslASc fusion protein was mostly located at the hyphal tips. An extract enriched in morphogenetic chaplin proteins promoted formation of aerial hyphae by the mutant. Furthermore, a two-hybrid experiment indicated that the glycosyltransferase domain of CslASc interacted with the tropomyosin-like polarity-determining DivIVA protein, suggesting that the tip-located DivIVA governed tip recruitment of the CslASc membrane protein. These results imply that the cellulose synthase-like protein couples extracellular and cytoskeletal components functioning in tip growth and cell development. PMID:18487344

  10. The promoter of filamentation (POF1) protein from Saccharomyces cerevisiae is an ATPase involved in the protein quality control process

    PubMed Central

    2011-01-01

    Background The gene YCL047C, which has been renamed promoter of filamentation gene (POF1), has recently been described as a cell component involved in yeast filamentous growth. The objective of this work is to understand the molecular and biological function of this gene. Results Here, we report that the protein encoded by the POF1 gene, Pof1p, is an ATPase that may be part of the Saccharomyces cerevisiae protein quality control pathway. According to the results, Δpof1 cells showed increased sensitivity to hydrogen peroxide, tert-butyl hydroperoxide, heat shock and protein unfolding agents, such as dithiothreitol and tunicamycin. Besides, the overexpression of POF1 suppressed the sensitivity of Δpct1, a strain that lacks a gene that encodes a phosphocholine cytidylyltransferase, to heat shock. In vitro analysis showed, however, that the purified Pof1p enzyme had no cytidylyltransferase activity but does have ATPase activity, with catalytic efficiency comparable to other ATPases involved in endoplasmic reticulum-associated degradation of proteins (ERAD). Supporting these findings, co-immunoprecipitation experiments showed a physical interaction between Pof1p and Ubc7p (an ubiquitin conjugating enzyme) in vivo. Conclusions Taken together, the results strongly suggest that the biological function of Pof1p is related to the regulation of protein degradation. PMID:22204397

  11. Fusions involving protein kinase C and membrane-associated proteins in benign fibrous histiocytoma.

    PubMed

    Płaszczyca, Anna; Nilsson, Jenny; Magnusson, Linda; Brosjö, Otte; Larsson, Olle; Vult von Steyern, Fredrik; Domanski, Henryk A; Lilljebjörn, Henrik; Fioretos, Thoas; Tayebwa, Johnbosco; Mandahl, Nils; Nord, Karolin H; Mertens, Fredrik

    2014-08-01

    Benign fibrous histiocytoma (BFH) is a mesenchymal tumor that most often occurs in the skin (so-called dermatofibroma), but may also appear in soft tissues (so-called deep BFH) and in the skeleton (so-called non-ossifying fibroma). The origin of BFH is unknown, and it has been questioned whether it is a true neoplasm. Chromosome banding, fluorescence in situ hybridization, single nucleotide polymorphism arrays, RNA sequencing, RT-PCR and quantitative real-time PCR were used to search for recurrent somatic mutations in a series of BFH. BFHs were found to harbor recurrent fusions of genes encoding membrane-associated proteins (podoplanin, CD63 and LAMTOR1) with genes encoding protein kinase C (PKC) isoforms PRKCB and PRKCD. PKCs are serine-threonine kinases that through their many phosphorylation targets are implicated in a variety of cellular processes, as well as tumor development. When inactive, the amino-terminal, regulatory domain of PKCs suppresses the activity of their catalytic domain. Upon activation, which requires several steps, they typically translocate to cell membranes, where they interact with different signaling pathways. The detected PDPN-PRKCB, CD63-PRKCD and LAMTOR1-PRKCD gene fusions are all predicted to result in chimeric proteins consisting of the membrane-binding part of PDPN, CD63 or LAMTOR1 and the entire catalytic domain of the PKC. This novel pathogenetic mechanism should result in constitutive kinase activity at an ectopic location. The results show that BFH indeed is a true neoplasm, and that distorted PKC activity is essential for tumorigenesis. The findings also provide means to differentiate BFH from other skin and soft tissue tumors. This article is part of a Directed Issue entitled: Rare cancers.

  12. Expression of proteins involved in host plant defense against greenbug infestation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greenbug, Schizaphis graminum (Rondani), has been recognized as a major pest of small grains, including sorghum and wheat. To understand the molecular mechanisms involved in host plant defense against greenbug aphids, a proteomic analysis of greenbug-induced proteins in the seedlings of sorghum...

  13. Spermidine-Induced Improvement of Reconsolidation of Memory Involves Calcium-Dependent Protein Kinase in Rats

    ERIC Educational Resources Information Center

    Girardi, Bruna Amanda; Ribeiro, Daniela Aymone; Signor, Cristiane; Muller, Michele; Gais, Mayara Ana; Mello, Carlos Fernando; Rubin, Maribel Antonello

    2016-01-01

    In this study, we determined whether the calcium-dependent protein kinase (PKC) signaling pathway is involved in the improvement of fear memory reconsolidation induced by the intrahippocampal administration of spermidine in rats. Male Wistar rats were trained in a fear conditioning apparatus using a 0.4-mA footshock as an unconditioned stimulus.…

  14. Pdsg1 and Pdsg2, novel proteins involved in developmental genome remodelling in Paramecium.

    PubMed

    Arambasic, Miroslav; Sandoval, Pamela Y; Hoehener, Cristina; Singh, Aditi; Swart, Estienne C; Nowacki, Mariusz

    2014-01-01

    The epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity. In ciliates, such as Paramecium these RNAs participate in the programming of large-scale genome reorganization during development, distinguishing germline-limited DNA, which is excised, from somatic-destined DNA. Only a handful of proteins playing roles in this process have been identified so far, including typical RNAi-derived factors such as Dicer-like and Piwi proteins. Here we report and characterize two novel proteins, Pdsg1 and Pdsg2 (Paramecium protein involved in Development of the Somatic Genome 1 and 2), involved in Paramecium genome reorganization. We show that these proteins are necessary for the excision of germline-limited DNA during development and the survival of sexual progeny. Knockdown of PDSG1 and PDSG2 genes affects the populations of small RNAs known to be involved in the programming of DNA elimination (scanRNAs and iesRNAs) and chromatin modification patterns during development. Our results suggest an association between RNA-mediated trans-generational epigenetic signal and chromatin modifications in the process of Paramecium genome reorganization. PMID:25397898

  15. Pdsg1 and Pdsg2, novel proteins involved in developmental genome remodelling in Paramecium.

    PubMed

    Arambasic, Miroslav; Sandoval, Pamela Y; Hoehener, Cristina; Singh, Aditi; Swart, Estienne C; Nowacki, Mariusz

    2014-01-01

    The epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity. In ciliates, such as Paramecium these RNAs participate in the programming of large-scale genome reorganization during development, distinguishing germline-limited DNA, which is excised, from somatic-destined DNA. Only a handful of proteins playing roles in this process have been identified so far, including typical RNAi-derived factors such as Dicer-like and Piwi proteins. Here we report and characterize two novel proteins, Pdsg1 and Pdsg2 (Paramecium protein involved in Development of the Somatic Genome 1 and 2), involved in Paramecium genome reorganization. We show that these proteins are necessary for the excision of germline-limited DNA during development and the survival of sexual progeny. Knockdown of PDSG1 and PDSG2 genes affects the populations of small RNAs known to be involved in the programming of DNA elimination (scanRNAs and iesRNAs) and chromatin modification patterns during development. Our results suggest an association between RNA-mediated trans-generational epigenetic signal and chromatin modifications in the process of Paramecium genome reorganization.

  16. Pdsg1 and Pdsg2, Novel Proteins Involved in Developmental Genome Remodelling in Paramecium

    PubMed Central

    Hoehener, Cristina; Singh, Aditi; Swart, Estienne C.; Nowacki, Mariusz

    2014-01-01

    The epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity. In ciliates, such as Paramecium these RNAs participate in the programming of large-scale genome reorganization during development, distinguishing germline-limited DNA, which is excised, from somatic-destined DNA. Only a handful of proteins playing roles in this process have been identified so far, including typical RNAi-derived factors such as Dicer-like and Piwi proteins. Here we report and characterize two novel proteins, Pdsg1 and Pdsg2 (Paramecium protein involved in Development of the Somatic Genome 1 and 2), involved in Paramecium genome reorganization. We show that these proteins are necessary for the excision of germline-limited DNA during development and the survival of sexual progeny. Knockdown of PDSG1 and PDSG2 genes affects the populations of small RNAs known to be involved in the programming of DNA elimination (scanRNAs and iesRNAs) and chromatin modification patterns during development. Our results suggest an association between RNA-mediated trans-generational epigenetic signal and chromatin modifications in the process of Paramecium genome reorganization. PMID:25397898

  17. EXPERIMENT-GUIDED MOLECULAR MODELING OF PROTEIN-PROTEIN COMPLEXES INVOLVING GPCRS

    PubMed Central

    Kufareva, Irina; Handel, Tracy M.

    2015-01-01

    Summary Experimental structure determination for G protein coupled receptors (GPCRs) and especially their complexes with protein and peptide ligands is at its infancy. In the absence of complex structures, molecular modeling and docking play a large role not only by providing a proper 3D context for interpretation of biochemical and biophysical data, but also by prospectively guiding experiments. Experimentally confirmed restraints may help improve the accuracy and information content of the computational models. Here we present a hybrid molecular modeling protocol that integrates heterogeneous experimental data with force field-based calculations in the stochastic global optimization of the conformations and relative orientations of binding partners. Some experimental data, such as pharmacophore-like chemical fields or disulfide-trapping restraints, can be seamlessly incorporated in the protocol, while other types of data are more useful at the stage of solution filtering. The protocol was successfully applied to modeling and design of a stable construct that resulted in crystallization of the first complex between a chemokine and its receptor. Examples from this work are used to illustrate the steps of the protocol. The utility of different types of experimental data for modeling and docking is discussed and caveats associated with data misinterpretation are highlighted. PMID:26260608

  18. Protein-protein interactions involving voltage-gated sodium channels: Post-translational regulation, intracellular trafficking and functional expression.

    PubMed

    Shao, Dongmin; Okuse, Kenji; Djamgoz, Mustafa B A

    2009-07-01

    Voltage-gated sodium channels (VGSCs), classically known to play a central role in excitability and signalling in nerves and muscles, have also been found to be expressed in a range of 'non-excitable' cells, including lymphocytes, fibroblasts and endothelia. VGSC abnormalities are associated with various diseases including epilepsy, long-QT syndrome 3, Brugada syndrome, sudden infant death syndrome and, more recently, various human cancers. Given their pivotal role in a wide range of physiological and pathophysiological processes, regulation of functional VGSC expression has been the subject of intense study. An emerging theme is post-translational regulation and macro-molecular complexing by protein-protein interactions and intracellular trafficking, leading to changes in functional VGSC expression in plasma membrane. This partially involves endoplasmic reticulum associated degradation and ubiquitin-proteasome system. Several proteins have been shown to associate with VGSCs. Here, we review the interactions involving VGSCs and the following proteins: p11, ankyrin, syntrophin, beta-subunit of VGSC, papin, ERM and Nedd4 proteins. Protein kinases A and C, as well as Ca(2+)-calmodulin dependent kinase II that have also been shown to regulate intracellular trafficking of VGSCs by changing the balance of externalization vs. internalization, and an effort is made to separate these effects from the short-term phosphorylation of mature proteins in plasma membrane. Two further modulatory mechanisms are reciprocal interactions with the cytoskeleton and, late-stage, activity-dependent regulation. Thus, the review gives an updated account of the range of post-translational molecular mechanisms regulating functional VGSC expression. However, many details of VGSC subtype-specific regulation and pathophysiological aspects remain unknown and these are highlighted throughout for completeness. PMID:19401147

  19. Systematic phenotypic screen of Arabidopsis peroxisomal mutants identifies proteins involved in β-oxidation.

    PubMed

    Cassin-Ross, Gaëlle; Hu, Jianping

    2014-11-01

    Peroxisomes are highly dynamic and multifunctional organelles essential to development. Plant peroxisomes accommodate a multitude of metabolic reactions, many of which are related to the β-oxidation of fatty acids or fatty acid-related metabolites. Recently, several dozens of novel peroxisomal proteins have been identified from Arabidopsis (Arabidopsis thaliana) through in silico and experimental proteomic analyses followed by in vivo protein targeting validations. To determine the functions of these proteins, we interrogated their transfer DNA insertion mutants with a series of physiological, cytological, and biochemical assays to reveal peroxisomal deficiencies. Sugar dependence and 2,4-dichlorophenoxybutyric acid and 12-oxo-phytodienoic acid response assays uncovered statistically significant phenotypes in β-oxidation-related processes in mutants for 20 of 27 genes tested. Additional investigations uncovered a subset of these mutants with abnormal seed germination, accumulation of oil bodies, and delayed degradation of long-chain fatty acids during early seedling development. Mutants for seven genes exhibited deficiencies in multiple assays, strongly suggesting the involvement of their gene products in peroxisomal β-oxidation and initial seedling growth. Proteins identified included isoforms of enzymes related to β-oxidation, such as acyl-CoA thioesterase2, acyl-activating enzyme isoform1, and acyl-activating enzyme isoform5, and proteins with functions previously unknown to be associated with β-oxidation, such as Indigoidine synthase A, Senescence-associated protein/B12D-related protein1, Betaine aldehyde dehydrogenase, and Unknown protein5. This multipronged phenotypic screen allowed us to reveal β-oxidation proteins that have not been discovered by single assay-based mutant screens and enabled the functional dissection of different isoforms of multigene families involved in β-oxidation. PMID:25253886

  20. Systematic phenotypic screen of Arabidopsis peroxisomal mutants identifies proteins involved in β-oxidation.

    PubMed

    Cassin-Ross, Gaëlle; Hu, Jianping

    2014-11-01

    Peroxisomes are highly dynamic and multifunctional organelles essential to development. Plant peroxisomes accommodate a multitude of metabolic reactions, many of which are related to the β-oxidation of fatty acids or fatty acid-related metabolites. Recently, several dozens of novel peroxisomal proteins have been identified from Arabidopsis (Arabidopsis thaliana) through in silico and experimental proteomic analyses followed by in vivo protein targeting validations. To determine the functions of these proteins, we interrogated their transfer DNA insertion mutants with a series of physiological, cytological, and biochemical assays to reveal peroxisomal deficiencies. Sugar dependence and 2,4-dichlorophenoxybutyric acid and 12-oxo-phytodienoic acid response assays uncovered statistically significant phenotypes in β-oxidation-related processes in mutants for 20 of 27 genes tested. Additional investigations uncovered a subset of these mutants with abnormal seed germination, accumulation of oil bodies, and delayed degradation of long-chain fatty acids during early seedling development. Mutants for seven genes exhibited deficiencies in multiple assays, strongly suggesting the involvement of their gene products in peroxisomal β-oxidation and initial seedling growth. Proteins identified included isoforms of enzymes related to β-oxidation, such as acyl-CoA thioesterase2, acyl-activating enzyme isoform1, and acyl-activating enzyme isoform5, and proteins with functions previously unknown to be associated with β-oxidation, such as Indigoidine synthase A, Senescence-associated protein/B12D-related protein1, Betaine aldehyde dehydrogenase, and Unknown protein5. This multipronged phenotypic screen allowed us to reveal β-oxidation proteins that have not been discovered by single assay-based mutant screens and enabled the functional dissection of different isoforms of multigene families involved in β-oxidation.

  1. Hsp90 is involved in the regulation of cytosolic precursor protein abundance in tomato.

    PubMed

    Tillmann, Bodo; Röth, Sascha; Bublak, Daniela; Sommer, Manuel; Stelzer, Ernst H K; Scharf, Klaus-Dieter; Schleiff, Enrico

    2015-02-01

    Cytosolic chaperones are involved in the regulation of cellular protein homeostasis in general. Members of the families of heat stress proteins 70 (Hsp70) and 90 (Hsp90) assist the transport of preproteins to organelles such as chloroplasts or mitochondria. In addition, Hsp70 was described to be involved in the degradation of chloroplast preproteins that accumulate in the cytosol. Because a similar function has not been established for Hsp90, we analyzed the influences of Hsp90 and Hsp70 on the protein abundance in the cellular context using an in vivo system based on mesophyll protoplasts. We observed a differential behavior of preproteins with respect to the cytosolic chaperone-dependent regulation. Some preproteins such as pOE33 show a high dependence on Hsp90, whereas the abundance of preproteins such as pSSU is more strongly dependent on Hsp70. The E3 ligase, C-terminus of Hsp70-interacting protein (Chip), appears to have a more general role in the control of cytosolic protein abundance. We discuss why the different reaction modes are comparable with the cytosolic unfolded protein response. PMID:25619681

  2. Differential impact of REM sleep deprivation on cytoskeletal proteins of brain regions involved in sleep regulation.

    PubMed

    Rodríguez-Vázquez, Jennifer; Camacho-Arroyo, Ignacio; Velázquez-Moctezuma, Javier

    2012-01-01

    Rapid eye movement (REM) sleep is involved in memory consolidation, which implies synaptic plasticity. This process requires protein synthesis and the reorganization of the neural cytoskeleton. REM sleep deprivation (REMSD) has an impact on some neuronal proteins involved in synaptic plasticity, such as glutamate receptors and postsynaptic density protein 95, but its effects on cytoskeletal proteins is unknown. In this study, the effects of REMSD on the content of the cytoskeletal proteins MAP2 and TAU were analyzed. Adult female rats were submitted to selective REMSD by using the multiple platform technique. After 24, 48 or 72 h of REMSD, rats were decapitated and the following brain areas were dissected: pons, preoptic area, hippocampus and frontal cortex. Protein extraction and Western blot were performed. Results showed an increase in TAU content in the pons, preoptic area and hippocampus after 24 h of REMSD, while in the frontal cortex a significant increase in TAU content was observed after 72 h of REMSD. A TAU content decrease was observed in the hippocampus after 48 h of REMSD. Interestingly, a marked increase in TAU content was observed after 72 h of REMSD. MAP2 content only increased in the preoptic area at 24 h, and in the frontal cortex after 24 and 72 h of REMSD, without significant changes in the pons and hippocampus. These results support the idea that REM sleep plays an important role in the organization of neural cytoskeleton, and that this effect is tissue-specific.

  3. Staphylococcal Major Autolysin (Atl) Is Involved in Excretion of Cytoplasmic Proteins*

    PubMed Central

    Pasztor, Linda; Ziebandt, Anne-Kathrin; Nega, Mulugeta; Schlag, Martin; Haase, Sabine; Franz-Wachtel, Mirita; Madlung, Johannes; Nordheim, Alfred; Heinrichs, David E.; Götz, Friedrich

    2010-01-01

    Many microorganisms excrete typical cytoplasmic proteins into the culture supernatant. As none of the classical secretion systems appears to be involved, this type of secretion was referred to as “nonclassical protein secretion.” Here, we demonstrate that in Staphylococcus aureus the major autolysin plays a crucial role in release of cytoplasmic proteins. Comparative secretome analysis revealed that in the wild type S. aureus strain, 22 typical cytoplasmic proteins were excreted into the culture supernatant, although in the atl mutant they were significantly decreased. The presence or absence of prophages had little influence on the secretome pattern. In the atl mutant, secondary peptidoglycan hydrolases were increased in the secretome; the corresponding genes were transcriptionally up-regulated suggesting a compensatory mechanism for the atl mutation. Using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a cytoplasmic indicator enzyme, we showed that all clinical isolates tested excreted this protein. In the wall teichoic acid-deficient tagO mutant with its increased autolysis activity, GAPDH was excreted in even higher amounts than in the WT, confirming the importance of autolysis in excretion of cytoplasmic proteins. To answer the question of how discriminatory the excretion of cytoplasmic proteins is, we performed a two-dimensional PAGE of cytoplasmic proteins isolated from WT. Surprisingly, the most abundant proteins in the cytoplasm were not found in the secretome of the WT, suggesting that there exists a selection mechanism in the excretion of cytoplasmic proteins. As the major autolysin binds at the septum site, we assume that the proteins are preferentially released at and during septum formation. PMID:20847047

  4. Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation

    PubMed Central

    Blondel, Marc; Soubigou, Flavie; Evrard, Justine; Nguyen, Phu hai; Hasin, Naushaba; Chédin, Stéphane; Gillet, Reynald; Contesse, Marie-Astrid; Friocourt, Gaëlle; Stahl, Guillaume; Jones, Gary W.; Voisset, Cécile

    2016-01-01

    6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI+] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de novo formation of [PSI+]. PFAR and the yeast heat-shock protein Hsp104 partially compensate each other for [PSI+] propagation. Our data also provide insight into new functions for the ribosome in basal thermotolerance and heat-shocked protein refolding. PFAR is thus an evolutionarily conserved cell component implicated in the prion life cycle, and we propose that it could be a potential therapeutic target for human protein misfolding diseases. PMID:27633137

  5. Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation.

    PubMed

    Blondel, Marc; Soubigou, Flavie; Evrard, Justine; Nguyen, Phu Hai; Hasin, Naushaba; Chédin, Stéphane; Gillet, Reynald; Contesse, Marie-Astrid; Friocourt, Gaëlle; Stahl, Guillaume; Jones, Gary W; Voisset, Cécile

    2016-01-01

    6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI(+)] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de novo formation of [PSI(+)]. PFAR and the yeast heat-shock protein Hsp104 partially compensate each other for [PSI(+)] propagation. Our data also provide insight into new functions for the ribosome in basal thermotolerance and heat-shocked protein refolding. PFAR is thus an evolutionarily conserved cell component implicated in the prion life cycle, and we propose that it could be a potential therapeutic target for human protein misfolding diseases. PMID:27633137

  6. Translationally Controlled Tumor Protein, a Dual Functional Protein Involved in the Immune Response of the Silkworm, Bombyx mori

    PubMed Central

    Hua, Xiaoting; Song, Liang; Xia, Qingyou

    2013-01-01

    Insect gut immunity is the first line of defense against oral infection. Although a few immune-related molecules in insect intestine has been identified by genomics or proteomics approach with comparison to well-studied tissues, such as hemolymph or fat body, our knowledge about the molecular mechanism underlying the gut immunity which would involve a variety of unidentified molecules is still limited. To uncover additional molecules that might take part in pathogen recognition, signal transduction or immune regulation in insect intestine, a T7 phage display cDNA library of the silkworm midgut is constructed. By use of different ligands for biopanning, Translationally Controlled Tumor Protein (TCTP) has been selected. BmTCTP is produced in intestinal epithelial cells and released into the gut lumen. The protein level of BmTCTP increases at the early time points during oral microbial infection and declines afterwards. In vitro binding assay confirms its activity as a multi-ligand binding molecule and it can further function as an opsonin that promotes the phagocytosis of microorganisms. Moreover, it can induce the production of anti-microbial peptide via a signaling pathway in which ERK is required and a dynamic tyrosine phosphorylation of certain cytoplasmic membrane protein. Taken together, our results characterize BmTCTP as a dual-functional protein involved in both the cellular and the humoral immune response of the silkworm, Bombyx mori. PMID:23894441

  7. Cathepsin L is involved in proteolytic processing of the Hendra virus fusion protein.

    PubMed

    Pager, Cara Theresia; Dutch, Rebecca Ellis

    2005-10-01

    Proteolytic processing of paramyxovirus fusion (F) proteins is essential for the generation of a mature and fusogenic form of the F protein. Although many paramyxovirus F proteins are proteolytically processed by the cellular protease furin at a multibasic cleavage motif, cleavage of the newly emerged Hendra virus F protein occurs by a previously unidentified cellular protease following a single lysine at residue 109. We demonstrate here that the cellular protease cathepsin L is involved in converting the Hendra virus precursor F protein (F(0)) to the active F(1) + F(2) disulfide-linked heterodimer. To initially identify the class of protease involved in Hendra virus F protein cleavage, Vero cells transfected with pCAGGS-Hendra F or pCAGGS-SV5 F (known to be proteolytically processed by furin) were metabolically labeled and chased in the absence or presence of serine, cysteine, aspartyl, and metalloprotease inhibitors. Nonspecific and specific protease inhibitors known to decrease cathepsin activity inhibited proteolytic processing of Hendra virus F but had no effect on simian virus 5 F processing. We next designed shRNA oligonucleotides to cathepsin L which dramatically reduced cathepsin L protein expression and enzyme activity. Cathepsin L shRNA-expressing Vero cells transfected with pCAGGS-Hendra F demonstrated a nondetectable amount of cleavage of the Hendra virus F protein and significantly decreased membrane fusion activity. Additionally, we found that purified human cathepsin L processed immunopurified Hendra virus F(0) into F(1) and F(2) fragments. These studies introduce a novel mechanism for primary proteolytic processing of viral glycoproteins and also suggest a previously unreported biological role for cathepsin L.

  8. Evidence against the involvement of ionically bound cell wall proteins in pea epicotyl growth

    NASA Technical Reports Server (NTRS)

    Melan, M. A.; Cosgrove, D. J.

    1988-01-01

    Ionically bound cell wall proteins were extracted from 7 day old etiolated pea (Pisum sativum L. cv Alaska) epicotyls with 3 molar LiCl. Polyclonal antiserum was raised in rabbits against the cell wall proteins. Growth assays showed that treatment of growing region segments (5-7 millimeters) of peas with either dialyzed serum, serum globulin fraction, affinity purified immunoglobulin, or papain-cleaved antibody fragments had no effect on growth. Immunofluorescence microscopy confirmed antibody binding to cell walls and penetration of the antibodies into the tissues. Western blot analysis, immunoassay results, and affinity chromatography utilizing Sepharose-bound antibodies confirmed recognition of the protein preparation by the antibodies. Experiments employing in vitro extension as a screening measure indicated no effect upon extension by antibodies, by 50 millimolar LiCl perfusion of the apoplast or by 3 molar LiCl extraction. Addition of cell wall protein to protease pretreated segments did not restore extension nor did addition of cell wall protein to untreated segments increase extension. It is concluded that, although evidence suggests that protein is responsible for the process of extension, the class(es) of proteins which are extracted from pea cell walls with 3 molar LiCl are probably not involved in this process.

  9. Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein.

    PubMed Central

    Wahlberg, J M; Bron, R; Wilschut, J; Garoff, H

    1992-01-01

    Infection of cells with enveloped viruses is accomplished through membrane fusion. The binding and fusion processes are mediated by the spike proteins in the envelope of the virus particle and usually involve a series of conformational changes in these proteins. We have studied the low-pH-mediated fusion process of the alphavirus Semliki Forest virus (SFV). The spike protein of SFV is composed of three copies of the protein heterodimer E2E1. This structure is resistant to solubilization in mild detergents such as Nonidet P-40 (NP40). We have recently shown that the spike structure is reorganized during virus entry into acidic endosomes (J. M. Wahlberg and H. Garoff, J. Cell Biol. 116:339-348, 1992). The original NP40-resistant heterodimer is dissociated, and the E1 subunits form new NP40-resistant protein oligomers. Here, we show that the new oligomer is represented by an E1 trimer. From studies that use an in vitro assay for fusion of SFV with liposomes, we show that the E1 trimer is efficiently expressed during virus-mediated membrane fusion. Time course studies show that both E1 trimer formation and fusion are fast processes, occurring in seconds. It was also possible to inhibit virus binding and fusion with a monoclonal antibody directed toward the trimeric E1. These results give support for a model in which the E1 trimeric structure is involved in the SFV-mediated fusion reaction. Images PMID:1433520

  10. KNQ1, a Kluyveromyces lactis gene encoding a transmembrane protein, may be involved in iron homeostasis.

    PubMed

    Marchi, Emmanuela; Lodi, Tiziana; Donnini, Claudia

    2007-08-01

    The original purpose of the experiments described in this article was to identify, in the biotechnologically important yeast Kluyveromyces lactis, gene(s) that are potentially involved in oxidative protein folding within the endoplasmic reticulum (ER), which often represents a bottleneck for heterologous protein production. Because treatment with the membrane-permeable reducing agent dithiothreitol inhibits disulfide bond formation and mimics the reducing effect that the normal transit of folding proteins has in the ER environment, the strategy was to search for genes that conferred higher levels of resistance to dithiothreitol when present in multiple copies. We identified a gene (KNQ1) encoding a drug efflux permease for several toxic compounds that in multiple copies conferred increased dithiothreitol resistance. However, the KNQ1 product is not involved in the excretion of dithiothreitol or in recombinant protein secretion. We generated a knq1 null mutant, and showed that both overexpression and deletion of the KNQ1 gene resulted in increased resistance to dithiothreitol. KNQ1 amplification and deletion resulted in enhanced transcription of iron transport genes, suggesting, for the membrane-associated protein Knq1p, a new, unexpected role in iron homeostasis on which dithiothreitol tolerance may depend.

  11. Protein Kinase C-{delta} mediates down-regulation of heterogeneous nuclear ribonucleoprotein K protein: involvement in apoptosis induction

    SciTech Connect

    Gao, Feng-Hou; Wu, Ying-Li; Zhao, Meng; Chen, Guo-Qiang

    2009-11-15

    We reported previously that NSC606985, a camptothecin analogue, induces apoptosis of acute myeloid leukemia (AML) cells through proteolytic activation of protein kinase C delta ({Delta}PKC-{delta}). By subcellular proteome analysis, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was identified as being significantly down-regulated in NSC606985-treated leukemic NB4 cells. HnRNP K, a docking protein for DNA, RNA, and transcriptional or translational molecules, is implicated in a host of processes involving the regulation of gene expression. However, the molecular mechanisms of hnRNP K reduction and its roles during apoptosis are still not understood. In the present study, we found that, following the appearance of the {Delta}PKC-{delta}, hnRNP K protein was significantly down-regulated in NSC606985, doxorubicin, arsenic trioxide and ultraviolet-induced apoptosis. We further provided evidence that {Delta}PKC-{delta} mediated the down-regulation of hnRNP K protein during apoptosis: PKC-{delta} inhibitor could rescue the reduction of hnRNP K; hnRNP K failed to be decreased in PKC-{delta}-deficient apoptotic KG1a cells; conditional induction of {Delta}PKC-{delta} in U937T cells directly down-regulated hnRNP K protein. Moreover, the proteasome inhibitor also inhibited the down-regulation of hnRNP K protein by apoptosis inducer and the conditional expression of {Delta}PKC-{delta}. More intriguingly, the suppression of hnRNP K with siRNA transfection significantly induced apoptosis. To our knowledge, this is the first demonstration that proteolytically activated PKC-{delta} down-regulates hnRNP K protein in a proteasome-dependent manner, which plays an important role in apoptosis induction.

  12. SEORious business: structural proteins in sieve tubes and their involvement in sieve element occlusion.

    PubMed

    Knoblauch, Michael; Froelich, Daniel R; Pickard, William F; Peters, Winfried S

    2014-04-01

    The phloem provides a network of sieve tubes for long-distance translocation of photosynthates. For over a century, structural proteins in sieve tubes have presented a conundrum since they presumably increase the hydraulic resistance of the tubes while no potential function other than sieve tube or wound sealing in the case of injury has been suggested. Here we summarize and critically evaluate current speculations regarding the roles of these proteins. Our understanding suffers from the suggestive power of images; what looks like a sieve tube plug on micrographs may not actually impede translocation very much. Recent reports of an involvement of SEOR (sieve element occlusion-related) proteins, a class of P-proteins, in the sealing of injured sieve tubes are inconclusive; various lines of evidence suggest that, in neither intact nor injured plants, are SEORs determinative of translocation stoppage. Similarly, the popular notion that P-proteins serve in the defence against phloem sap-feeding insects is unsupported by empirical facts; it is conceivable that in functional sieve tubes, aphids actually could benefit from inducing a plug. The idea that rising cytosolic Ca(2+) generally triggers sieve tube blockage by P-proteins appears widely accepted, despite lacking experimental support. Even in forisomes, P-protein assemblages restricted to one single plant family and the only Ca(2+)-responsive P-proteins known, the available evidence does not unequivocally suggest that plug formation is the cause rather than a consequence of translocation stoppage. We conclude that the physiological roles of structural P-proteins remain elusive, and that in vivo studies of their dynamics in continuous sieve tube networks combined with flow velocity measurements will be required to (hopefully) resolve this scientific roadblock. PMID:24591057

  13. SEORious business: structural proteins in sieve tubes and their involvement in sieve element occlusion.

    PubMed

    Knoblauch, Michael; Froelich, Daniel R; Pickard, William F; Peters, Winfried S

    2014-04-01

    The phloem provides a network of sieve tubes for long-distance translocation of photosynthates. For over a century, structural proteins in sieve tubes have presented a conundrum since they presumably increase the hydraulic resistance of the tubes while no potential function other than sieve tube or wound sealing in the case of injury has been suggested. Here we summarize and critically evaluate current speculations regarding the roles of these proteins. Our understanding suffers from the suggestive power of images; what looks like a sieve tube plug on micrographs may not actually impede translocation very much. Recent reports of an involvement of SEOR (sieve element occlusion-related) proteins, a class of P-proteins, in the sealing of injured sieve tubes are inconclusive; various lines of evidence suggest that, in neither intact nor injured plants, are SEORs determinative of translocation stoppage. Similarly, the popular notion that P-proteins serve in the defence against phloem sap-feeding insects is unsupported by empirical facts; it is conceivable that in functional sieve tubes, aphids actually could benefit from inducing a plug. The idea that rising cytosolic Ca(2+) generally triggers sieve tube blockage by P-proteins appears widely accepted, despite lacking experimental support. Even in forisomes, P-protein assemblages restricted to one single plant family and the only Ca(2+)-responsive P-proteins known, the available evidence does not unequivocally suggest that plug formation is the cause rather than a consequence of translocation stoppage. We conclude that the physiological roles of structural P-proteins remain elusive, and that in vivo studies of their dynamics in continuous sieve tube networks combined with flow velocity measurements will be required to (hopefully) resolve this scientific roadblock.

  14. Gemin5: A Multitasking RNA-Binding Protein Involved in Translation Control.

    PubMed

    Piñeiro, David; Fernandez-Chamorro, Javier; Francisco-Velilla, Rosario; Martinez-Salas, Encarna

    2015-01-01

    Gemin5 is a RNA-binding protein (RBP) that was first identified as a peripheral component of the survival of motor neurons (SMN) complex. This predominantly cytoplasmic protein recognises the small nuclear RNAs (snRNAs) through its WD repeat domains, allowing assembly of the SMN complex into small nuclear ribonucleoproteins (snRNPs). Additionally, the amino-terminal end of the protein has been reported to possess cap-binding capacity and to interact with the eukaryotic initiation factor 4E (eIF4E). Gemin5 was also shown to downregulate translation, to be a substrate of the picornavirus L protease and to interact with viral internal ribosome entry site (IRES) elements via a bipartite non-canonical RNA-binding site located at its carboxy-terminal end. These features link Gemin5 with translation control events. Thus, beyond its role in snRNPs biogenesis, Gemin5 appears to be a multitasking protein cooperating in various RNA-guided processes. In this review, we will summarise current knowledge of Gemin5 functions. We will discuss the involvement of the protein on translation control and propose a model to explain how the proteolysis fragments of this RBP in picornavirus-infected cells could modulate protein synthesis.

  15. Fission yeast pkl1 is a kinesin-related protein involved in mitotic spindle function.

    PubMed Central

    Pidoux, A L; LeDizet, M; Cande, W Z

    1996-01-01

    We have used anti-peptide antibodies raised against highly conserved regions of the kinesin motor domain to identify kinesin-related proteins in the fission yeast Schizosaccharomyces pombe. Here we report the identification of a new kinesin-related protein, which we have named pkl1. Sequence homology and domain organization place pkl1 in the Kar3/ncd subfamily of kinesin-related proteins. Bacterially expressed pkl1 fusion proteins display microtubule-stimulated ATPase activity, nucleotide-sensitive binding, and bundling of microtubules. Immunofluorescence studies with affinity-purified antibodies indicate that the pkl1 protein localizes to the nucleus and the mitotic spindle. Pkl1 null mutants are viable but have increased sensitivity to microtubule-disrupting drugs. Disruption of pkl1+ suppresses mutations in another kinesin-related protein, cut7, which is known to act in the spindle. Overexpression of pkl1 to very high levels causes a similar phenotype to that seen in cut7 mutants: V-shaped and star-shaped microtubule structures are observed, which we interpret to be spindles with unseparated spindle poles. These observations suggest that pkl1 and cut7 provide opposing forces in the spindle. We propose that pkl1 functions as a microtubule-dependent motor that is involved in microtubule organization in the mitotic spindle. Images PMID:8898367

  16. Gemin5: A Multitasking RNA-Binding Protein Involved in Translation Control

    PubMed Central

    Piñeiro, David; Fernandez-Chamorro, Javier; Francisco-Velilla, Rosario; Martinez-Salas, Encarna

    2015-01-01

    Gemin5 is a RNA-binding protein (RBP) that was first identified as a peripheral component of the survival of motor neurons (SMN) complex. This predominantly cytoplasmic protein recognises the small nuclear RNAs (snRNAs) through its WD repeat domains, allowing assembly of the SMN complex into small nuclear ribonucleoproteins (snRNPs). Additionally, the amino-terminal end of the protein has been reported to possess cap-binding capacity and to interact with the eukaryotic initiation factor 4E (eIF4E). Gemin5 was also shown to downregulate translation, to be a substrate of the picornavirus L protease and to interact with viral internal ribosome entry site (IRES) elements via a bipartite non-canonical RNA-binding site located at its carboxy-terminal end. These features link Gemin5 with translation control events. Thus, beyond its role in snRNPs biogenesis, Gemin5 appears to be a multitasking protein cooperating in various RNA-guided processes. In this review, we will summarise current knowledge of Gemin5 functions. We will discuss the involvement of the protein on translation control and propose a model to explain how the proteolysis fragments of this RBP in picornavirus-infected cells could modulate protein synthesis. PMID:25898402

  17. Gemin5: A Multitasking RNA-Binding Protein Involved in Translation Control.

    PubMed

    Piñeiro, David; Fernandez-Chamorro, Javier; Francisco-Velilla, Rosario; Martinez-Salas, Encarna

    2015-01-01

    Gemin5 is a RNA-binding protein (RBP) that was first identified as a peripheral component of the survival of motor neurons (SMN) complex. This predominantly cytoplasmic protein recognises the small nuclear RNAs (snRNAs) through its WD repeat domains, allowing assembly of the SMN complex into small nuclear ribonucleoproteins (snRNPs). Additionally, the amino-terminal end of the protein has been reported to possess cap-binding capacity and to interact with the eukaryotic initiation factor 4E (eIF4E). Gemin5 was also shown to downregulate translation, to be a substrate of the picornavirus L protease and to interact with viral internal ribosome entry site (IRES) elements via a bipartite non-canonical RNA-binding site located at its carboxy-terminal end. These features link Gemin5 with translation control events. Thus, beyond its role in snRNPs biogenesis, Gemin5 appears to be a multitasking protein cooperating in various RNA-guided processes. In this review, we will summarise current knowledge of Gemin5 functions. We will discuss the involvement of the protein on translation control and propose a model to explain how the proteolysis fragments of this RBP in picornavirus-infected cells could modulate protein synthesis. PMID:25898402

  18. Hyperhomocysteinemia and bleomycin hydrolase modulate the expression of mouse brain proteins involved in neurodegeneration.

    PubMed

    Suszyńska-Zajczyk, Joanna; Luczak, Magdalena; Marczak, Lukasz; Jakubowski, Hieronim

    2014-01-01

    Homocysteine (Hcy) is a risk factor for Alzheimer's disease (AD). Bleomycin hydrolase (BLMH) participates in Hcy metabolism and is also linked to AD. The inactivation of the Blmh gene in mice causes accumulation of Hcy-thiolactone in the brain and increases susceptibility to Hcy-thiolactone-induced seizures. To gain insight into brain-related Blmh function, we used two-dimensional IEF/SDS-PAGE gel electrophoresis and MALDI-TOF/TOF mass spectrometry to examine brain proteomes of Blmh-/- mice and their Blmh+/+ littermates fed with a hyperhomocysteinemic high-Met or a control diet. We found that: (1) proteins involved in brain-specific function (Ncald, Nrgn, Stmn1, Stmn2), antioxidant defenses (Aop1), cell cycle (RhoGDI1, Ran), and cytoskeleton assembly (Tbcb, CapZa2) were differentially expressed in brains of Blmh-null mice; (2) hyperhomocysteinemia amplified effects of the Blmh-/- genotype on brain protein expression; (3) proteins involved in brain-specific function (Pebp1), antioxidant defenses (Sod1, Prdx2, DJ-1), energy metabolism (Atp5d, Ak1, Pgam-B), and iron metabolism (Fth) showed differential expression in Blmh-null brains only in hyperhomocysteinemic animals; (4) most proteins regulated by the Blmh-/- genotype were also regulated by high-Met diet, albeit in the opposite direction; and (5) the differentially expressed proteins play important roles in neural development, learning, plasticity, and aging and are linked to neurodegenerative diseases, including AD. Taken together, our findings suggest that Blmh interacts with diverse cellular processes from energy metabolism and anti-oxidative defenses to cell cycle, cytoskeleton dynamics, and synaptic plasticity essential for normal brain homeostasis and that modulation of these interactions by hyperhomocysteinemia underlies the involvement of Hcy in AD.

  19. Pseudomonas fluorescens: iron-responsive proteins and their involvement in host infection.

    PubMed

    Sun, Yuan-yuan; Sun, Li

    2015-04-17

    For pathogenic bacteria, the ability to acquire iron is vital to survival in the host. In consequence, many genes involved in iron acquisition are associated with bacterial virulence. Pseudomonas fluorescens is a bacterial pathogen to a variety of farmed fish. However, the global regulatory function of iron in pathogenic P. fluorescens is essentially unknown. In this study, in order to identify proteins affected by iron condition at the expression level, we performed proteomic analysis to compare the global protein profiles of P. fluorescens strain TSS, a fish pathogen, cultured under iron-replete and iron-deplete conditions. Twenty-two differentially expressed proteins were identified, most of which were confirmed to be regulated by iron at the mRNA level. To investigate their potential involvement in virulence, the genes encoding four of the 22 proteins, i.e. HemO (heme oxygenase), PspB (serine protease), Sod (superoxide dismutase), and TfeR (TonB-dependent outermembrane ferric enterobactin receptor), were knocked out, and the pathogenicity of the mutants was examined in a model of turbot (Scophthalmus maximus). The results showed that compared to the wild type, the hemO, pspB, and tfeR knockouts were significantly impaired in the ability to survive in host serum, to invade host tissues, and to cause host mortality. Immunization of turbot with recombinant TfeR (rTfeR) and PspB induced production of specific serum antibodies and significant protections against lethal TSS challenge. Further analysis showed that rTfeR antibodies recognized and bound to TSS, and that treatment of TSS with rTfeR antibodies significantly impaired the infectivity of TSS to fish cells. Taken together, these results indicate for the first time that in pathogenic P. fluorescens, iron affects the expression of a large number of proteins including those that are involved in host infection.

  20. The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana

    PubMed Central

    Raczynska, Katarzyna Dorota; Stepien, Agata; Kierzkowski, Daniel; Kalak, Malgorzata; Bajczyk, Mateusz; McNicol, Jim; Simpson, Craig G.; Szweykowska-Kulinska, Zofia; Brown, John W. S.; Jarmolowski, Artur

    2014-01-01

    How alternative splicing (AS) is regulated in plants has not yet been elucidated. Previously, we have shown that the nuclear cap-binding protein complex (AtCBC) is involved in AS in Arabidopsis thaliana. Here we show that both subunits of AtCBC (AtCBP20 and AtCBP80) interact with SERRATE (AtSE), a protein involved in the microRNA biogenesis pathway. Moreover, using a high-resolution reverse transcriptase-polymerase chain reaction AS system we have found that AtSE influences AS in a similar way to the cap-binding complex (CBC), preferentially affecting selection of 5′ splice site of first introns. The AtSE protein acts in cooperation with AtCBC: many changes observed in the mutant lacking the correct SERRATE activity were common to those observed in the cbp mutants. Interestingly, significant changes in AS of some genes were also observed in other mutants of plant microRNA biogenesis pathway, hyl1-2 and dcl1-7, but a majority of them did not correspond to the changes observed in the se-1 mutant. Thus, the role of SERRATE in AS regulation is distinct from that of HYL1 and DCL1, and is similar to the regulation of AS in which CBC is involved. PMID:24137006

  1. A new ATP-binding cassette protein is involved in intracellular haem trafficking in Leishmania.

    PubMed

    Campos-Salinas, Jenny; Cabello-Donayre, María; García-Hernández, Raquel; Pérez-Victoria, Ignacio; Castanys, Santiago; Gamarro, Francisco; Pérez-Victoria, José M

    2011-03-01

    The characterization of LABCG5, a new intracellular ATP-binding cassette protein in Leishmania donovani, is described. Unlike other ABCG half-transporters, LABCG5 is not involved in either drug resistance or phospholipid efflux. However, we provide evidence suggesting that this protein is involved in intracellular haem trafficking. Thus, downregulation of LABCG5 function produced upon overexpression of an inactive version of the protein caused a dramatic growth arrest unless a haemin supplement was added or the mutated gene was eliminated. Supplementation with haemoglobin, an upstream metabolite normally sufficient to meet parasite haem requirements, was unable to rescue the growth defect phenotype. Haemoglobin endocytosis was not hampered in dominant-negative parasites and neither was haem uptake, a process that we show here to be dependent on a specific transporter. In contrast, LABCG5 function was required for the correct intracellular trafficking of haemoglobin-bound porphyrins to the mitochondria, not affecting the routing of free haem. Finally, LABCG5 binds haem through hydrophobic and electrostatic interactions. Altogether, these data suggest that LABCG5 is involved in the salvage of the haem released after the breakdown of internalized haemoglobin. As Leishmania is auxotrophic for haem, the pharmacological targeting of this route could represent a novel approach to control fatal visceral leishmaniasis. PMID:21255121

  2. Immunocytochemical identification of proteins involved in dopamine release from the somatodendritic compartment of nigral dopaminergic neurons

    PubMed Central

    Witkovsky, Paul; Patel, Jyoti C.; Lee, Christian R.; Rice, Margaret E.

    2010-01-01

    We examined the somatodendritic compartment of nigral dopaminergic neurons by immunocytochemistry and confocal microscopy, with the aim of identifying proteins that participate in dopamine packaging and release. Nigral dopaminergic neurons were identified by location, cellular features and tyrosine hydroxylase immunoreactivity. Immunoreactive puncta of vesicular monoamine transporter type 2 and proton ATPase, both involved in the packaging of dopamine for release, were located primarily in dopaminergic cell bodies, but were absent in distal dopaminergic dendrites. Many presynaptic proteins associated with transmitter release at fast synapses were absent in nigral dopaminergic neurons, including synaptotagmin 1, syntaxin1, synaptic vesicle proteins 2a and 2b, synaptophysin and synaptobrevin 1 (VAMP 1). On the other hand, syntaxin 3, synaptobrevin 2 (VAMP 2) and SNAP-25-immunoreactivities were found in dopaminergic somata and dendrites Our data imply that the storage and exocytosis of dopamine from the somatodendritic compartment of nigral dopaminergic neurons is mechanistically distinct from transmitter release at axon terminals utilizing amino acid neurotransmitters. PMID:19682556

  3. Interactions of cellular proteins involved in the transcriptional regulation of the human immunodeficiency virus.

    PubMed Central

    Garcia, J A; Wu, F K; Mitsuyasu, R; Gaynor, R B

    1987-01-01

    The human immunodeficiency virus (HIV) is a human retrovirus which is the etiologic agent of the acquired immunodeficiency syndrome. To study the cellular factors involved in the transcriptional regulation of this virus, we performed DNase I footprinting of the viral LTR using partially purified HeLa cell extracts. Five regions of the viral LTR appear critical for DNA binding of cellular proteins. These include the negative regulatory, enhancer, SP1, TATA and untranslated regions. Deletion mutagenesis of these binding domains has significant effects on the basal level of transcription and the ability to be induced by the viral tat protein. Mutations of either the negative regulatory or untranslated regions affect factor binding to the enhancer region. In addition, oligonucleotides complementary to several of the binding domains specifically compete for factor binding. These results suggest that interactions between several distinct cellular proteins are required for HIV transcriptional regulation. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 6. PMID:3428273

  4. Interactions of cellular proteins involved in the transcriptional regulation of the human immunodeficiency virus.

    PubMed

    Garcia, J A; Wu, F K; Mitsuyasu, R; Gaynor, R B

    1987-12-01

    The human immunodeficiency virus (HIV) is a human retrovirus which is the etiologic agent of the acquired immunodeficiency syndrome. To study the cellular factors involved in the transcriptional regulation of this virus, we performed DNase I footprinting of the viral LTR using partially purified HeLa cell extracts. Five regions of the viral LTR appear critical for DNA binding of cellular proteins. These include the negative regulatory, enhancer, SP1, TATA and untranslated regions. Deletion mutagenesis of these binding domains has significant effects on the basal level of transcription and the ability to be induced by the viral tat protein. Mutations of either the negative regulatory or untranslated regions affect factor binding to the enhancer region. In addition, oligonucleotides complementary to several of the binding domains specifically compete for factor binding. These results suggest that interactions between several distinct cellular proteins are required for HIV transcriptional regulation.

  5. Involvement of Fis protein in replication of the Escherichia coli chromosome.

    PubMed Central

    Filutowicz, M; Ross, W; Wild, J; Gourse, R L

    1992-01-01

    We report evidence indicating that Fis protein plays a role in initiation of replication at oriC in vivo. At high temperatures, fis null mutants form filamentous cells, show aberrant nucleoid segregation, and are unable to form single colonies. DNA synthesis is inhibited in these fis mutant strains following upshift to 44 degrees C. The pattern of DNA synthesis inhibition upon temperature upshift and the requirement for RNA synthesis, but not protein synthesis, for resumed DNA synthesis upon downshift to 32 degrees C indicate that synthesis is affected in the initiation phase. fis mutations act synergistically with gyrB alleles known to affect initiation. oriC-dependent plasmids are poorly established and maintained in fis mutant strains. Finally, purified Fis protein interacts in vitro with sites in oriC. These interactions could be involved in mediating the effect of Fis on DNA synthesis in vivo. Images PMID:1309527

  6. Involvement of regucalcin as a suppressor protein in human carcinogenesis: insight into the gene therapy.

    PubMed

    Yamaguchi, Masayoshi

    2015-08-01

    Regucalcin, which its gene is located on the X chromosome, plays a multifunctional role as a suppressor protein in cell signal transduction in various types of cells and tissues. The suppression of regucalcin gene expression has been shown to involve in carcinogenesis. Regucalcin gene expression was uniquely downregulated in carcinogenesis of rat liver in vivo, although the expression of other many genes was upregulated, indicating that endogenous regucalcin plays a suppressive role in the development of hepatocarcinogenesis. Overexpression of endogenous regucalcin was found to suppress proliferation of rat cloned hepatoma cells in vitro. Moreover, the regucalcin gene and its protein levels were demonstrated specifically to downregulate in human hepatocellular carcinoma by analysis with multiple gene expression profiles and proteomics. Regucalcin gene expression was also found to suppress in human tumor tissues including kidney, lung, brain, breast and prostate, suggesting that repressed regucalcin gene expression leads to the development of carcinogenesis in various tissues. Regucalcin may play a role as a suppressor protein in carcinogenesis. Overexpression of endogenous regucalcin is suggested to reveal preventive and therapeutic effects on carcinogenesis. Delivery of the regucalcin gene may be a novel useful tool in the gene therapy of carcinogenesis. This review will discuss regarding to an involvement of regucalcin as a suppressor protein in human carcinogenesis in insight into the gene therapy.

  7. NAP-1, Nucleosome assembly protein 1, a histone chaperone involved in Drosophila telomeres.

    PubMed

    López-Panadès, Elisenda; Casacuberta, Elena

    2016-03-01

    Telomere elongation is a function that all eukaryote cells must accomplish in order to guarantee, first, the stability of the end of the chromosomes and second, to protect the genetic information from the inevitable terminal erosion. The targeted transposition of the telomere transposons HeT-A, TART and TAHRE perform this function in Drosophila, while the telomerase mechanism elongates the telomeres in most eukaryotes. In order to integrate telomere maintenance together with cell cycle and metabolism, different components of the cell interact, regulate, and control the proteins involved in telomere elongation. Different partners of the telomerase mechanism have already been described, but in contrast, very few proteins have been related with assisting the telomere transposons of Drosophila. Here, we describe for the first time, the implication of NAP-1 (Nucleosome assembly protein 1), a histone chaperone that has been involved in nuclear transport, transcription regulation, and chromatin remodeling, in telomere biology. We find that Nap-1 and HeT-A Gag, one of the major components of the Drosophila telomeres, are part of the same protein complex. We also demonstrate that their close interaction is necessary to guarantee telomere stability in dividing cells. We further show that NAP-1 regulates the transcription of the HeT-A retrotransposon, pointing to a positive regulatory role of NAP-1 in telomere expression. All these results facilitate the understanding of the transposon telomere maintenance mechanism, as well as the integration of telomere biology with the rest of the cell metabolism.

  8. CUP-1 Is a Novel Protein Involved in Dietary Cholesterol Uptake in Caenorhabditis elegans

    PubMed Central

    Valdes, Victor J.; Athie, Alejandro; Salinas, Laura S.; Navarro, Rosa E.; Vaca, Luis

    2012-01-01

    Sterols transport and distribution are essential processes in all multicellular organisms. Survival of the nematode Caenorhabditis elegans depends on dietary absorption of sterols present in the environment. However the general mechanisms associated to sterol uptake in nematodes are poorly understood. In the present work we provide evidence showing that a previously uncharacterized transmembrane protein, designated Cholesterol Uptake Protein-1 (CUP-1), is involved in dietary cholesterol uptake in C. elegans. Animals lacking CUP-1 showed hypersensitivity to cholesterol limitation and were unable to uptake cholesterol. A CUP-1-GFP fusion protein colocalized with cholesterol-rich vesicles, endosomes and lysosomes as well as the plasma membrane. Additionally, by FRET imaging, a direct interaction was found between the cholesterol analog DHE and the transmembrane “cholesterol recognition/interaction amino acid consensus” (CRAC) motif present in C. elegans CUP-1. In-silico analysis identified two mammalian homologues of CUP-1. Most interestingly, CRAC motifs are conserved in mammalian CUP-1 homologous. Our results suggest a role of CUP-1 in cholesterol uptake in C. elegans and open up the possibility for the existence of a new class of proteins involved in sterol absorption in mammals. PMID:22479487

  9. Possible involvement of the novel CPI-17 protein in protein kinase C signal transduction of rabbit arterial smooth muscle

    PubMed Central

    Li, L; Eto, M; Lee, M R; Morita, F; Yazawa, M; Kitazawa, T

    1998-01-01

    CPI-17 has recently been identified as a novel protein in vascular smooth muscle. In vitro, its phosphorylation and thiophosphorylation by protein kinase C (PKC) specifically inhibits the type 1 class of protein phosphatases, including myosin light chain (MLC) phosphatase. Both of the phosphorylated CPI-17 states dose-dependently potentiated submaximal contractions at constant [Ca2+] in β-escin-permeabilized and Triton X-100-demembranated arterial smooth muscle, but produced no effect in intact and less intensely permeabilized (α-toxin) tissue. Thiophosphorylated CPI-17 (tp-CPI) induced large contractions even under Ca2+-free conditions and decreased Ca2+ EC50 by more than an order of magnitude. Unphosphorylated CPI-17 produced minimal but significant effects. tp-CPI substantially increased the steady-state MLC phosphorylation to Ca2+ ratios in β-escin preparations. tp-CPI affected the kinetics of contraction and relaxation and of MLC phosphorylation and dephosphorylation in such a manner that indicates its major physiological effect is to inhibit MLC phosphatase. Results from use of specific inhibitors in concurrence with tp-CPI repudiate the involvement of general G proteins, rho A or PKC itself in the Ca2+ sensitization by tp-CPI. Our results indicate that phosphorylation of CPI-17 by PKC stimulates binding of CPI-17 to and subsequent inhibition of MLC phosphatase. This implies that CPI-17 accounts largely for the heretofore unknown signalling pathway between PKC and inhibited MLC phosphatase. PMID:9518739

  10. Protein phosphatase and kinase activities possibly involved in exocytosis regulation in Paramecium tetraurelia.

    PubMed Central

    Kissmehl, R; Treptau, T; Hofer, H W; Plattner, H

    1996-01-01

    In Paramecium tetraurelia cells synchronous exocytosis induced by aminoethyldextran (AED) is accompanied by an equally rapid dephosphorylation of a 63 kDa phosphoprotein (PP63) within 80 ms. In vivo, rephosphorylation occurs within a few seconds after AED triggering. In homogenates (P)P63 can be solubilized in all three phosphorylation states (phosphorylated, dephosphorylated and rephosphorylated) and thus tested in vitro. By using chelators of different divalent cations, de- and rephosphorylation of PP63 and P63 respectively can be achieved by an endogenous protein phosphatase/kinase system. Dephosphorylation occurs in the presence of EDTA, whereas in the presence of EGTA this was concealed by phosphorylation by endogenous kinase(s), thus indicating that phosphorylation of P63 is calcium-independent. Results obtained with protein phosphatase inhibitors (okadaic acid, calyculin A) allowed us to exclude a protein serine/threonine phosphatase of type I (with selective sensitivity in Paramecium). Protein phosphatase 2C is also less likely to be a candidate because of its requirement for high Mg2+ concentrations. According to previous evidence a protein serine/threonine phosphatase of type 2B (calcineurin; CaN) is possibly involved. We have now found that bovine brain CaN dephosphorylates PP63 in vitro. Taking into account the specific requirements of this phosphatase in vitro, with p-nitrophenyl phosphate as a substrate, we have isolated a cytosolic phosphatase of similar characteristics by combined preparative gel electrophoresis and affinity-column chromatography. In Paramecium this phosphatase also dephosphorylates PP63 in vitro (after 32P labelling in vivo). Using various combinations of ion exchange, affinity and hydrophobic interaction chromatography we have also isolated three different protein kinases from the soluble fraction, i.e. a cAMP-dependent protein kinase (PKA), a cGMP-dependent protein kinase (PKG) and a casein kinase. Among the kinases tested, PKA

  11. A histidine protein kinase is involved in polar organelle development in Caulobacter crescentus.

    PubMed Central

    Wang, S P; Sharma, P L; Schoenlein, P V; Ely, B

    1993-01-01

    Mutations having pleiotropic effects on polar organelle development (pod) in Caulobacter crescentus have been identified and shown to occur in at least 13 genes scattered throughout the genome. Mutations at each locus affect a unique combination of polar traits, suggesting that complex interactions occur among these genes. The DNA sequence of one of these genes, pleC, indicates that it is homologous to members of the family of histidine protein kinase genes. Membes of this family include the senor components of the bacterial two-component regulatory systems. Furthermore, in vitro experiments demonstrated that the PleC protein was capable of autophosphorylation. These results suggest that the PleC protein (and perhaps the proteins encoded by the other pod genes as well) regulates the expression of genes involved in polar organelle development through the phosphorylation of key regulatory proteins. The use of a phosphorelay system cued to internal changes in the cell would provide a mechanism for coordinating major changes in gene expression with the completion of specific cell cycle events. Images PMID:8421698

  12. Identification of Glutathione S-Transferase Pi as a Protein Involved in Parkinson Disease Progression

    PubMed Central

    Shi, Min; Bradner, Joshua; Bammler, Theo K.; Eaton, David L.; Zhang, JianPeng; Ye, ZuCheng; Wilson, Angela M.; Montine, Thomas J.; Pan, Catherine; Zhang, Jing

    2009-01-01

    Parkinson disease (PD) typically affects the cortical regions during the later stages of disease, with neuronal loss, gliosis, and formation of diffuse cortical Lewy bodies in a significant portion of patients with dementia. To identify novel proteins involved in PD progression, we prepared synaptosomal fractions from the frontal cortices of pathologically verified PD patients at different stages along with age-matched controls. Protein expression profiles were compared using a robust quantitative proteomic technique. Approximately 100 proteins displayed significant differences in their relative abundances between PD patients at various stages and controls; three of these proteins were validated using independent techniques. One of the confirmed proteins, glutathione S-transferase Pi, was further investigated in cellular models of PD, demonstrating that its level was intimately associated with several critical cellular processes that are directly related to neurodegeneration in PD. These results have, for the first time, suggested that the levels of glutathione S-transferase Pi may play an important role in modulating the progression of PD. PMID:19498008

  13. A TAF4 coactivator function for E proteins that involves enhanced TFIID binding

    PubMed Central

    Chen, Wei-Yi; Zhang, Jinsong; Geng, Huimin; Du, Zhimei; Nakadai, Tomoyoshi; Roeder, Robert G.

    2013-01-01

    The multisubunit TFIID plays a direct role in transcription initiation by binding to core promoter elements and directing preinitiation complex assembly. Although TFIID may also function as a coactivator through direct interactions with promoter-bound activators, mechanistic aspects of this poorly defined function remain unclear. Here, biochemical studies show a direct TFIID–E-protein interaction that (1) is mediated through interaction of a novel E-protein activation domain (activation domain 3 [AD3]) with the TAF homology (TAFH) domain of TAF4, (2) is critical for activation of a natural target gene by an E protein, and (3) mechanistically acts by enhancing TFIID binding to the core promoter. Complementary assays establish a gene-specific role for the TAFH domain in TFIID recruitment and activation of a large subset of genes in vivo. These results firmly establish TAF4 as a bona fide E-protein coactivator as well as a mechanism involving facilitated TFIID binding through direct interaction with an E-protein activation domain. PMID:23873942

  14. Microtubule-severing proteins are involved in flagellar length control and mitosis in Trypanosomatids.

    PubMed

    Casanova, Magali; Crobu, Lucien; Blaineau, Christine; Bourgeois, Nathalie; Bastien, Patrick; Pagès, Michel

    2009-03-01

    Microtubules are key players in the biology of Trypanosomatid parasites, not only as classical components of the mitotic spindle, microtubule-organizing centres and flagellum but also as the essential constituent of the cytoskeleton. Their length dynamics are regulated by, among others, microtubule-severing proteins. Four and six genes encoding microtubule-severing proteins can be found bioinformatically in the Leishmania major and Trypanosoma brucei genome respectively. We investigated all these proteins in these organisms, which include the katanin, katanin-like, spastin and fidgetin, and looked at their subcellular localization as well as their putative function by examining 'loss-of-function' phenotypes. The katanin-like KAT60b was found implicated in flagellar length reduction, but not in its size increase, while the katanin p80 subunit appeared clearly involved in cytokinesis. Fidgetin and spastin homologues were both localized in the nucleus: the first as a discrete and variable number of dots during most of the cell cycle, redistributing to the spindle and midbody during mitosis; the second concentrated as < or = 5 perinucleolar punctuations, similar to the electron-dense plaques identified in T. brucei, which were assimilated to kinetochores. This first study of microtubule-severing proteins in 'divergent' eukaryotes gives further insight into the multiple functions of these proteins identified in the hitherto studied models. PMID:19183280

  15. New Proteins Involved in Sulfur Trafficking in the Cytoplasm of Allochromatium vinosum*

    PubMed Central

    Stockdreher, Yvonne; Sturm, Marga; Josten, Michaele; Sahl, Hans-Georg; Dobler, Nadine; Zigann, Renate; Dahl, Christiane

    2014-01-01

    The formation of periplasmic sulfur globules is an intermediate step during the oxidation of reduced sulfur compounds in various sulfur-oxidizing microorganisms. The mechanism of how this sulfur is activated and crosses the cytoplasmic membrane for further oxidation to sulfite by the dissimilatory reductase DsrAB is incompletely understood, but it has been well documented that the pathway involves sulfur trafficking mediated by sulfur-carrying proteins. So far sulfur transfer from DsrEFH to DsrC has been established. Persulfurated DsrC very probably serves as a direct substrate for DsrAB. Here, we introduce further important players in oxidative sulfur metabolism; the proteins Rhd_2599, TusA, and DsrE2 are strictly conserved in the Chromatiaceae, Chlorobiaceae, and Acidithiobacillaceae families of sulfur-oxidizing bacteria and are linked to genes encoding complexes involved in sulfur oxidation (Dsr or Hdr) in the latter two. Here we show via relative quantitative real-time PCR and microarray analysis an increase of mRNA levels under sulfur-oxidizing conditions for rhd_2599, tusA, and dsrE2 in Allochromatium vinosum. Transcriptomic patterns for the three genes match those of major genes for the sulfur-oxidizing machinery rather than those involved in biosynthesis of sulfur-containing biomolecules. TusA appears to be one of the major proteins in A. vinosum. A rhd_2599-tusA-dsrE2-deficient mutant strain, although not viable in liquid culture, was clearly sulfur oxidation negative upon growth on solid media containing sulfide. Rhd_2599, TusA, and DsrE2 bind sulfur atoms via conserved cysteine residues, and experimental evidence is provided for the transfer of sulfur between these proteins as well as to DsrEFH and DsrC. PMID:24648525

  16. A GTPase distinct from Ran is involved in nuclear protein import

    PubMed Central

    1996-01-01

    Signal-dependent transport of proteins into the nucleus is a multi-step process mediated by nuclear pore complexes and cytosolic transport factors. One of the cytosolic factors, Ran, is the only GTPase that has a characterized role in the nuclear import pathway. We have used a mutant form of Ran with altered nucleotide binding specificity to investigate whether any other GTPases are involved in nuclear protein import. D125N Ran (XTP-Ran) binds specifically to xanthosine triphosphate (XTP) and has a greatly reduced affinity for GTP, so it is no longer sensitive to inhibition by nonhydrolyzable analogues of GTP such as guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S). using in vitro transport assays, we have found that nuclear import supported by XTP-Ran is nevertheless inhibited by the addition of non-hydrolyzable GTP analogues. This in conjunction with the properties of the inhibitory effect indicates that at least one additional GTPase is involved in the import process. Initial characterization suggests that the inhibited GTPase plays a direct role in protein import and could be a component of the nuclear pore complex. PMID:8655588

  17. Interferon-inducible GTPase: a novel viral response protein involved in rabies virus infection.

    PubMed

    Li, Ling; Wang, Hualei; Jin, Hongli; Cao, Zengguo; Feng, Na; Zhao, Yongkun; Zheng, Xuexing; Wang, Jianzhong; Li, Qian; Zhao, Guoxing; Yan, Feihu; Wang, Lina; Wang, Tiecheng; Gao, Yuwei; Tu, Changchun; Yang, Songtao; Xia, Xianzhu

    2016-05-01

    Rabies virus infection is a major public health concern because of its wide host-interference spectrum and nearly 100 % lethality. However, the interactions between host and virus remain unclear. To decipher the authentic response in the central nervous system after rabies virus infection, a dynamic analysis of brain proteome alteration was performed. In this study, 104 significantly differentially expressed proteins were identified, and intermediate filament, interferon-inducible GTPases, and leucine-rich repeat-containing protein 16C were the three outstanding groups among these proteins. Interferon-inducible GTPases were prominent because of their strong upregulation. Moreover, quantitative real-time PCR showed distinct upregulation of interferon-inducible GTPases at the level of transcription. Several studies have shown that interferon-inducible GTPases are involved in many biological processes, such as viral infection, endoplasmic reticulum stress response, and autophagy. These findings indicate that interferon-inducible GTPases are likely to be a potential target involved in rabies pathogenesis or the antiviral process.

  18. Interferon-inducible GTPase: a novel viral response protein involved in rabies virus infection.

    PubMed

    Li, Ling; Wang, Hualei; Jin, Hongli; Cao, Zengguo; Feng, Na; Zhao, Yongkun; Zheng, Xuexing; Wang, Jianzhong; Li, Qian; Zhao, Guoxing; Yan, Feihu; Wang, Lina; Wang, Tiecheng; Gao, Yuwei; Tu, Changchun; Yang, Songtao; Xia, Xianzhu

    2016-05-01

    Rabies virus infection is a major public health concern because of its wide host-interference spectrum and nearly 100 % lethality. However, the interactions between host and virus remain unclear. To decipher the authentic response in the central nervous system after rabies virus infection, a dynamic analysis of brain proteome alteration was performed. In this study, 104 significantly differentially expressed proteins were identified, and intermediate filament, interferon-inducible GTPases, and leucine-rich repeat-containing protein 16C were the three outstanding groups among these proteins. Interferon-inducible GTPases were prominent because of their strong upregulation. Moreover, quantitative real-time PCR showed distinct upregulation of interferon-inducible GTPases at the level of transcription. Several studies have shown that interferon-inducible GTPases are involved in many biological processes, such as viral infection, endoplasmic reticulum stress response, and autophagy. These findings indicate that interferon-inducible GTPases are likely to be a potential target involved in rabies pathogenesis or the antiviral process. PMID:26906695

  19. Homeodomain Protein Scr Regulates the Transcription of Genes Involved in Juvenile Hormone Biosynthesis in the Silkworm.

    PubMed

    Meng, Meng; Liu, Chun; Peng, Jian; Qian, Wenliang; Qian, Heying; Tian, Ling; Li, Jiarui; Dai, Dandan; Xu, Anying; Li, Sheng; Xia, Qingyou; Cheng, Daojun

    2015-11-02

    The silkworm Dominant trimolting (Moltinism, M³) mutant undergoes three larval molts and exhibits precocious metamorphosis. In this study, we found that compared with the wild-type (WT) that undergoes four larval molts, both the juvenile hormone (JH) concentration and the expression of the JH-responsive gene Krüppel homolog 1 (Kr-h1) began to be greater in the second instar of the M³ mutant. A positional cloning analysis revealed that only the homeodomain transcription factor gene Sex combs reduced (Scr) is located in the genomic region that is tightly linked to the M³ locus. The expression level of the Scr gene in the brain-corpora cardiaca-corpora allata (Br-CC-CA) complex, which controls the synthesis of JH, was very low in the final larval instar of both the M³ and WT larvae, and exhibited a positive correlation with JH titer changes. Importantly, luciferase reporter analysis and electrophoretic mobility shift assay (EMSA) demonstrated that the Scr protein could promote the transcription of genes involved in JH biosynthesis by directly binding to the cis-regulatory elements (CREs) of homeodomain protein on their promoters. These results conclude that the homeodomain protein Scr is transcriptionally involved in the regulation of JH biosynthesis in the silkworm.

  20. Antisperm antibodies: invaluable tools toward the identification of sperm proteins involved in fertilization.

    PubMed

    Vazquez-Levin, Mónica H; Marín-Briggiler, Clara I; Veaute, Carolina

    2014-08-01

    The identification of sperm proteins involved in fertilization has been the subject of numerous investigations. Much interest has been dedicated to naturally occurring antisperm antibodies (ASA) and their impact in fertility. Their presence in men and women has been associated with 2-50% of infertility cases. ASA may impair pre- and post-fertilization steps. Experimental models have been developed using sperm proteins as immunogens to evaluate their involvement in sperm function. Our team has pursued investigations to assess ASA presence in biological fluids from patients consulting for infertility and their effect on fertilization. We found ASA in follicular fluids with ability of inducing the acrosome reaction and blocking sperm-zona pellucida interaction and used them to identify sperm entities involved in these events. We generated and utilized antibodies against proacrosin/acrosin to characterize the sperm protease system. We implemented an ELISA to detect proacrosin/acrosin antibodies in human sera and evaluated their impact upon fertility by developing in vitro assays and a gene immunization model. This review presents a summary of ASA history, etiology, current approaches for detection and effects upon fertility. ASA (naturally occurring, generated by animal immunization and/or of commercial origin) are invaluable tools to understand the molecular basis of fertilization, better diagnose/treat immunoinfertility and develop immunocontraceptive methods.

  1. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network

    PubMed Central

    Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet

  2. Assessment of cholesteryl ester transfer protein inhibitors for interaction with proteins involved in the immune response to infection.

    PubMed

    Clark, Ronald W; Cunningham, David; Cong, Yang; Subashi, Timothy A; Tkalcevic, George T; Lloyd, David B; Boyd, James G; Chrunyk, Boris A; Karam, George A; Qiu, Xiayang; Wang, Ing-Kae; Francone, Omar L

    2010-05-01

    The CETP inhibitor, torcetrapib, was prematurely terminated from phase 3 clinical trials due to an increase in cardiovascular and noncardiovascular mortality. Because nearly half of the latter deaths involved patients with infection, we have tested torcetrapib and other CETPIs to see if they interfere with lipopolysaccharide binding protein (LBP) or bactericidal/permeability increasing protein (BPI). No effect of these potent CETPIs on LPS binding to either protein was detected. Purified CETP itself bound weakly to LPS with a Kd >or= 25 microM compared with 0.8 and 0.5 nM for LBP and BPI, respectively, and this binding was not blocked by torcetrapib. In whole blood, LPS induced tumor necrosis factor-alpha normally in the presence of torcetrapib. Furthermore, LPS had no effect on CETP activity. We conclude that the sepsis-related mortality of the ILLUMINATE trial was unlikely due to a direct effect of torcetrapib on LBP or BPI function, nor to inhibition of an interaction of CETP with LPS. Instead, we speculate that the negative outcome seen for patients with infections might be related to the changes in plasma lipoprotein composition and metabolism, or alternatively to the known off-target effects of torcetrapib, such as aldosterone elevation, which may have aggravated the effects of sepsis. PMID:19965592

  3. The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair.

    PubMed

    Domingues, Mariane Noronha; De Souza, Tiago Antonio; Cernadas, Raúl Andrés; de Oliveira, Maria Luiza Peixoto; Docena, Cássia; Farah, Chuck Shaker; Benedetti, Celso Eduardo

    2010-09-01

    Xanthomonas axonopodis pv. citri utilizes the type III effector protein PthA to modulate host transcription to promote citrus canker. PthA proteins belong to the AvrBs3/PthA family and carry a domain comprising tandem repeats of 34 amino acids that mediates protein-protein and protein-DNA interactions. We show here that variants of PthAs from a single bacterial strain localize to the nucleus of plant cells and form homo- and heterodimers through the association of their repeat regions. We hypothesize that the PthA variants might also interact with distinct host targets. Here, in addition to the interaction with alpha-importin, known to mediate the nuclear import of AvrBs3, we describe new interactions of PthAs with citrus proteins involved in protein folding and K63-linked ubiquitination. PthAs 2 and 3 preferentially interact with a citrus cyclophilin (Cyp) and with TDX, a tetratricopeptide domain-containing thioredoxin. In addition, PthAs 2 and 3, but not 1 and 4, interact with the ubiquitin-conjugating enzyme complex formed by Ubc13 and ubiquitin-conjugating enzyme variant (Uev), required for K63-linked ubiquitination and DNA repair. We show that Cyp, TDX and Uev interact with each other, and that Cyp and Uev localize to the nucleus of plant cells. Furthermore, the citrus Ubc13 and Uev proteins complement the DNA repair phenotype of the yeast Deltaubc13 and Deltamms2/uev1a mutants, strongly indicating that they are also involved in K63-linked ubiquitination and DNA repair. Notably, PthA 2 affects the growth of yeast cells in the presence of a DNA damage agent, suggesting that it inhibits K63-linked ubiquitination required for DNA repair.

  4. The Arabidopsis PLAT Domain Protein1 Is Critically Involved in Abiotic Stress Tolerance

    PubMed Central

    Eom, Seung Hee; Großkinsky, Dominik K.; Böhm, Hannah; Janschek, Ursula; Rim, Yeonggil; Ali, Walid Wahid; Kim, Soo Young; Roitsch, Thomas

    2014-01-01

    Despite the completion of the Arabidopsis genome sequence, for only a relatively low percentage of the encoded proteins experimental evidence concerning their function is available. Plant proteins that harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and belong to the PLAT-plant-stress protein family are ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood. Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a combination of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress tolerance. Strikingly, PLAT1 promoted growth under non-stressed conditions. Abiotic stress treatments induced PLAT1 expression and caused expansion of its expression domain. The ABF/ABRE transcription factors, which are positive mediators of abscisic acid signalling, activate PLAT1 promoter activity in transactivation assays and directly bind to the ABRE elements located in this promoter in electrophoretic mobility shift assays. This suggests that PLAT1 represents a novel downstream target of the abscisic acid signalling pathway. Thus, we showed that PLAT1 critically functions as positive regulator of abiotic stress tolerance, but also is involved in regulating plant growth, and thereby assigned a function to this previously uncharacterised PLAT domain protein. The functional data obtained for PLAT1 support that PLAT-plant-stress proteins in general could be promising targets for improving abiotic stress tolerance without yield penalty. PMID:25396746

  5. Proteins Involved in Platelet Signaling Are Differentially Regulated in Acute Coronary Syndrome: A Proteomic Study

    PubMed Central

    Fernández Parguiña, Andrés; Grigorian-Shamajian, Lilian; Agra, Rosa M.; Teijeira-Fernández, Elvis; Rosa, Isaac; Alonso, Jana; Viñuela-Roldán, Juan E.; Seoane, Ana; González-Juanatey, José Ramón; García, Ángel

    2010-01-01

    Background Platelets play a fundamental role in pathological events underlying acute coronary syndrome (ACS). Because platelets do not have a nucleus, proteomics constitutes an optimal approach to follow platelet molecular events associated with the onset of the acute episode. Methodology/Principal Findings We performed the first high-resolution two-dimensional gel electrophoresis-based proteome analysis of circulating platelets from patients with non-ST segment elevation ACS (NSTE-ACS). Proteins were identified by mass spectrometry and validations were by western blotting. Forty protein features (corresponding to 22 unique genes) were found to be differentially regulated between NSTE-ACS patients and matched controls with chronic ischemic cardiopathy. The number of differences decreased at day 5 (28) and 6 months after the acute event (5). Interestingly, a systems biology approach demonstrated that 16 of the 22 differentially regulated proteins identified are interconnected as part of a common network related to cell assembly and organization and cell morphology, processes very related to platelet activation. Indeed, 14 of those proteins are either signaling or cytoskeletal, and nine of them are known to participate in platelet activation by αIIbβ3 and/or GPVI receptors. Several of the proteins identified participate in platelet activation through post-translational modifications, as shown here for ILK, Src and Talin. Interestingly, the platelet-secreted glycoprotein SPARC was down-regulated in NSTE-ACS patients compared to stable controls, which is consistent with a secretion process from activated platelets. Conclusions/Significance The present study provides novel information on platelet proteome changes associated with platelet activation in NSTE-ACS, highlighting the presence of proteins involved in platelet signaling. This investigation paves the way for future studies in the search for novel platelet-related biomarkers and drug targets in ACS. PMID

  6. Tyrosine phosphorylation and protein degradation control the transcriptional activity of WRKY involved in benzylisoquinoline alkaloid biosynthesis.

    PubMed

    Yamada, Yasuyuki; Sato, Fumihiko

    2016-01-01

    Benzylisoquinoline alkaloids (BIQ) are among the most structurally diverse and pharmaceutically valuable secondary metabolites. A plant-specific WRKY-type transcription factor, CjWRKY1, was isolated from Coptis japonica and identified as a transcriptional activator of BIQ biosynthesis. However, the expression of CjWRKY1 gene alone was not sufficient for the activation of genes encoding biosynthetic enzymes. Here, we report the importance of post-translational regulation of CjWRKY1 in BIQ biosynthesis. First, we detected the differential accumulation of CjWRKY1 protein in two cell lines with similar CjWRKY1 gene expression but different levels of accumulated alkaloids. Further investigation of the WRKY protein identified the phosphorylation of the WRKYGQK core domain at Y115. The CjWRKY(Y115E) phosphorylation-mimic mutant showed loss of nuclear localization, DNA-binding activity, and transactivation activity compared to wild-type CjWRKY1. Rapid degradation of the CjWRKY1 protein was also confirmed following treatment with inhibitors of the 26S proteasome and protease inhibitors. The existence of two independent degradation pathways as well as protein phosphorylation suggests the fine-tuning of CjWRKY1 activities is involved in the regulation of biosynthesis of BIQs. PMID:27552928

  7. An Arabidopsis WDR protein coordinates cellular networks involved in light, stress response and hormone signals.

    PubMed

    Chuang, Huey-Wen; Feng, Ji-Huan; Feng, Yung-Lin; Wei, Miam-Ju

    2015-12-01

    The WD-40 repeat (WDR) protein acts as a scaffold for protein interactions in various cellular events. An Arabidopsis WDR protein exhibited sequence similarity with human WDR26, a scaffolding protein implicated in H2O2-induced cell death in neural cells. The AtWDR26 transcript was induced by auxin, abscisic acid (ABA), ethylene (ET), osmostic stress and salinity. The expression of AtWDR26 was regulated by light, and seed germination of the AtWDR26 overexpression (OE) and seedling growth of the T-DNA knock-out (KO) exhibited altered sensitivity to light. Root growth of the OE seedlings increased tolerance to ZnSO4 and NaCl stresses and were hypersensitive to inhibition of osmotic stress. Seedlings of OE and KO altered sensitivities to multiple hormones. Transcriptome analysis of the transgenic plants overexpressing AtWDR26 showed that genes involved in the chloroplast-related metabolism constituted the largest group of the up-regulated genes. AtWDR26 overexpression up-regulated a large number of genes related to defense cellular events including biotic and abiotic stress response. Furthermore, several members of genes functioning in the regulation of Zn homeostasis, and hormone synthesis and perception of auxin and JA were strongly up-regulated in the transgenic plants. Our data provide physiological and transcriptional evidence for AtWDR26 role in hormone, light and abiotic stress cellular events.

  8. Identification of proteins involved in desiccation tolerance in the red seaweed Pyropia orbicularis (Rhodophyta, Bangiales).

    PubMed

    López-Cristoffanini, Camilo; Zapata, Javier; Gaillard, Fanny; Potin, Philippe; Correa, Juan A; Contreras-Porcia, Loretto

    2015-12-01

    Extreme reduction in cellular water content leads to desiccation, which, if persistent, affects the physiology of organisms, mainly through oxidative stress. Some organisms are highly tolerant to desiccation, including resurrection plants and certain intertidal seaweeds. One such species is Pyropia orbicularis, a rhodophycean that colonizes upper intertidal zones along the Chilean coast. Despite long, daily periods of air exposure due to tides, this alga is highly tolerant to desiccation. The present study examined the proteome of P. orbicularis by 2DE and LC-MS/MS analyses to determine the proteins associated with desiccation tolerance (DT). The results showed that, under natural conditions, there were significant changes in the protein profile during low tide as compared to naturally hydrated plants at high tide. These changes were mainly in newly appeared proteins spots such as chaperones, monodehydroascorbate reductase, and manganese superoxide dismutase, among others. Previously undescribed proteins under desiccation conditions included phycobiliproteins, glyoxalase I, and phosphomannomutase. These changes evidenced that several physiological responses involved in DT are activated during low tide, including decreased photosynthetic activity, increased antioxidant capacity, and the preservation of cell physiology by regulating water content, cell wall structure, and cell volume. Similar responses have been observed in resurrection plants and bryophytes exposed to desiccation. Therefore, the coordinated activation of different desiccation tolerance pathways in P. orbicularis could explain the successful biological performance of this seaweed in the upper intertidal rocky zones.

  9. Water-soluble chlorophyll protein is involved in herbivore resistance activation during greening of Arabidopsis thaliana.

    PubMed

    Boex-Fontvieille, Edouard; Rustgi, Sachin; von Wettstein, Diter; Reinbothe, Steffen; Reinbothe, Christiane

    2015-06-01

    Water-soluble chlorophyll proteins (WSCPs) constitute a small family of unusual chlorophyll (Chl)-binding proteins that possess a Kunitz-type protease inhibitor domain. In Arabidopsis thaliana, a WSCP has been identified, named AtWSCP, that forms complexes with Chl and the Chl precursor chlorophyllide (Chlide) in vitro. AtWSCP exhibits a quite unexpected expression pattern for a Chl binding protein and accumulated to high levels in the apical hook of etiolated plants. AtWSCP expression was negatively light-regulated. Transgenic expression of AtWSCP fused to green fluorescent protein (GFP) revealed that AtWSCP is localized to cell walls/apoplastic spaces. Biochemical assays identified AtWSCP as interacting with RD21 (responsive to desiccation 21), a granulin domain-containing cysteine protease implicated in stress responses and defense. Reconstitution experiments showed tight interactions between RD21 and WSCP that were relieved upon Chlide binding. Laboratory feeding experiments with two herbivorous isopod crustaceans, Porcellio scaber (woodlouse) and Armadillidium vulgare (pillbug), identified the apical hook as Achilles' heel of etiolated plants and that this was protected by RD21 during greening. Because Chlide is formed in the apical hook during seedling emergence from the soil, our data suggest an unprecedented mechanism of herbivore resistance activation that is triggered by light and involves AtWSCP. PMID:26016527

  10. Water-soluble chlorophyll protein is involved in herbivore resistance activation during greening of Arabidopsis thaliana

    PubMed Central

    Boex-Fontvieille, Edouard; Rustgi, Sachin; von Wettstein, Diter; Reinbothe, Steffen; Reinbothe, Christiane

    2015-01-01

    Water-soluble chlorophyll proteins (WSCPs) constitute a small family of unusual chlorophyll (Chl)-binding proteins that possess a Kunitz-type protease inhibitor domain. In Arabidopsis thaliana, a WSCP has been identified, named AtWSCP, that forms complexes with Chl and the Chl precursor chlorophyllide (Chlide) in vitro. AtWSCP exhibits a quite unexpected expression pattern for a Chl binding protein and accumulated to high levels in the apical hook of etiolated plants. AtWSCP expression was negatively light-regulated. Transgenic expression of AtWSCP fused to green fluorescent protein (GFP) revealed that AtWSCP is localized to cell walls/apoplastic spaces. Biochemical assays identified AtWSCP as interacting with RD21 (RESPONSIVE TO DESICCATION 21), a granulin domain-containing cysteine protease implicated in stress responses and defense. Reconstitution experiments showed tight interactions between RD21 and WSCP that were relieved upon Chlide binding. Laboratory feeding experiments with two herbivorous isopod crustaceans, Porcellio scaber (woodlouse) and Armadillidium vulgare (pillbug), identified the apical hook as Achilles’ heel of etiolated plants and that this was protected by RD21 during greening. Because Chlide is formed in the apical hook during seedling emergence from the soil, our data suggest an unprecedented mechanism of herbivore resistance activation that is triggered by light and involves AtWSCP. PMID:26016527

  11. Tyrosine phosphorylation and protein degradation control the transcriptional activity of WRKY involved in benzylisoquinoline alkaloid biosynthesis

    PubMed Central

    Yamada, Yasuyuki; Sato, Fumihiko

    2016-01-01

    Benzylisoquinoline alkaloids (BIQ) are among the most structurally diverse and pharmaceutically valuable secondary metabolites. A plant-specific WRKY-type transcription factor, CjWRKY1, was isolated from Coptis japonica and identified as a transcriptional activator of BIQ biosynthesis. However, the expression of CjWRKY1 gene alone was not sufficient for the activation of genes encoding biosynthetic enzymes. Here, we report the importance of post-translational regulation of CjWRKY1 in BIQ biosynthesis. First, we detected the differential accumulation of CjWRKY1 protein in two cell lines with similar CjWRKY1 gene expression but different levels of accumulated alkaloids. Further investigation of the WRKY protein identified the phosphorylation of the WRKYGQK core domain at Y115. The CjWRKYY115E phosphorylation-mimic mutant showed loss of nuclear localization, DNA-binding activity, and transactivation activity compared to wild-type CjWRKY1. Rapid degradation of the CjWRKY1 protein was also confirmed following treatment with inhibitors of the 26S proteasome and protease inhibitors. The existence of two independent degradation pathways as well as protein phosphorylation suggests the fine-tuning of CjWRKY1 activities is involved in the regulation of biosynthesis of BIQs. PMID:27552928

  12. CDC27 protein is involved in radiation response in squamous cell cervix carcinoma.

    PubMed

    Rajkumar, T; Gopal, G; Selvaluxmi, G; Rajalekshmy, K R

    2005-10-01

    In the present study, an attempt was made to identify genes involved in radiation response in cervix carcinoma. Differential display technique was used to study the expression profiles of tumour biopsy samples obtained from patients, responding and not responding to treatment. The samples were obtained prior to radiotherapy and subsequent to treatment with Tele-radiation at 10 Gray (Gy). One of the differentially expressed cDNAs, when sequenced was identified to be CDC27. Immuno-histochemical analysis of pre- and post-treated tumour samples from fifteen patients showed the downregulation of expression of CDC27 protein in seven patients. Down-regulation was associated with poorer response to radiotherapy. Cervical cancer cell lines SiHa and C33A were irradiated and their nuclei were stained for expression of CDC27 and analyzed using fluorescent-activated cell sorting (FACS). Down-regulation of CDC27 protein in the irradiated SiHa cell line was associated with greater survival fraction, compared to the irradiated C33A cell line, which had only slight fall in the level of CDC27 protein. This is the first study to suggest a role for CDC27 in radiation response. However, a larger cohort is needed to further confirm the value of CDC27 protein as a predictive marker, for radiation response in cervix cancer.

  13. Analysis of nitrated proteins in Saccharomyces cerevisiae involved in mating signal transduction.

    PubMed

    Kang, Jeong Won; Lee, Na Young; Cho, Kyung-Cho; Lee, Min Young; Choi, Do-Young; Park, Sang-Hyun; Kim, Kwang Pyo

    2015-01-01

    Protein tyrosine nitration (PTN) is a PTM that regulates signal transduction and inflammatory responses, and is related to neurodegenerative and cardiovascular diseases. The cellular function of PTN remains unclear because the low stoichiometry of PTN limits the identification and quantification of nitrated peptides. Effective enrichment is an important aspect of PTN analysis. In this study, we analyzed the in vivo nitroproteome elicited by mating signal transduction in Saccharomyces cerevisiae using a novel chemical enrichment method followed by LC-MS/MS. Nitroproteome profiling successfully identified changes in the nitration states of 14 proteins during mating signal transduction in S. cerevisiae, making this the first reported in vivo nitroproteome in yeast. We investigated the biological functions of these nitroproteins and their relationships to mating signal transduction in S. cerevisiae using a protein-protein interaction network. Our results suggest that PTN and denitration may be involved in nonreactive nitrogen species-mediated signal transduction and can provide clues for understanding the functional roles of PTN in vivo.

  14. Identification of proteins involved in desiccation tolerance in the red seaweed Pyropia orbicularis (Rhodophyta, Bangiales).

    PubMed

    López-Cristoffanini, Camilo; Zapata, Javier; Gaillard, Fanny; Potin, Philippe; Correa, Juan A; Contreras-Porcia, Loretto

    2015-12-01

    Extreme reduction in cellular water content leads to desiccation, which, if persistent, affects the physiology of organisms, mainly through oxidative stress. Some organisms are highly tolerant to desiccation, including resurrection plants and certain intertidal seaweeds. One such species is Pyropia orbicularis, a rhodophycean that colonizes upper intertidal zones along the Chilean coast. Despite long, daily periods of air exposure due to tides, this alga is highly tolerant to desiccation. The present study examined the proteome of P. orbicularis by 2DE and LC-MS/MS analyses to determine the proteins associated with desiccation tolerance (DT). The results showed that, under natural conditions, there were significant changes in the protein profile during low tide as compared to naturally hydrated plants at high tide. These changes were mainly in newly appeared proteins spots such as chaperones, monodehydroascorbate reductase, and manganese superoxide dismutase, among others. Previously undescribed proteins under desiccation conditions included phycobiliproteins, glyoxalase I, and phosphomannomutase. These changes evidenced that several physiological responses involved in DT are activated during low tide, including decreased photosynthetic activity, increased antioxidant capacity, and the preservation of cell physiology by regulating water content, cell wall structure, and cell volume. Similar responses have been observed in resurrection plants and bryophytes exposed to desiccation. Therefore, the coordinated activation of different desiccation tolerance pathways in P. orbicularis could explain the successful biological performance of this seaweed in the upper intertidal rocky zones. PMID:26154304

  15. Centlein, a novel microtubule-associated protein stabilizing microtubules and involved in neurite formation.

    PubMed

    Jing, Zhenli; Yin, Huilong; Wang, Pan; Gao, Juntao; Yuan, Li

    2016-04-01

    We have previously reported that the centriolar protein centlein functions as a molecular link between C-Nap1 and Cep68 to maintain centrosome cohesion [1]. In this study, we identified centlein as a novel microtubule-associated protein (MAP), directly binding to purified microtubules (MTs) via its longest coiled-coil domain. Overexpression of centlein caused profound nocodazole- and cold-resistant MT bundles, which also relied on its MT-binding domain. siRNA-mediated centlein depletion resulted in a significant reduction in tubulin acetylation level and overall fluorescence intensity of cytoplasmic MT acetylation. Centlein was further characterized in neurons. We found that centlein overexpression inhibited neurite formation in retinoic acid (RA)-induced SH-SY5Y and N2a cells. Taken together, we propose that centlein is involved in MT stability and neuritogenesis in vivo. PMID:26915804

  16. Proteins involved in flor yeast carbon metabolism under biofilm formation conditions.

    PubMed

    Moreno-García, Jaime; García-Martínez, Teresa; Moreno, Juan; Mauricio, Juan Carlos

    2015-04-01

    A lack of sugars during the production of biologically aged wines after fermentation of grape must causes flor yeasts to metabolize other carbon molecules formed during fermentation (ethanol and glycerol, mainly). In this work, a proteome analysis involving OFFGEL fractionation prior to LC/MS detection was used to elucidate the carbon metabolism of a flor yeast strain under biofilm formation conditions (BFC). The results were compared with those obtained under non-biofilm formation conditions (NBFC). Proteins associated to processes such as non-fermentable carbon uptake, the glyoxylate and TCA cycles, cellular respiration and inositol metabolism were detected at higher concentrations under BFC than under the reference conditions (NBFC). This study constitutes the first attempt at identifying the flor yeast proteins responsible for the peculiar sensory profile of biologically aged wines. A better metabolic knowledge of flor yeasts might facilitate the development of effective strategies for improved production of these special wines.

  17. Proteins involved in flor yeast carbon metabolism under biofilm formation conditions.

    PubMed

    Moreno-García, Jaime; García-Martínez, Teresa; Moreno, Juan; Mauricio, Juan Carlos

    2015-04-01

    A lack of sugars during the production of biologically aged wines after fermentation of grape must causes flor yeasts to metabolize other carbon molecules formed during fermentation (ethanol and glycerol, mainly). In this work, a proteome analysis involving OFFGEL fractionation prior to LC/MS detection was used to elucidate the carbon metabolism of a flor yeast strain under biofilm formation conditions (BFC). The results were compared with those obtained under non-biofilm formation conditions (NBFC). Proteins associated to processes such as non-fermentable carbon uptake, the glyoxylate and TCA cycles, cellular respiration and inositol metabolism were detected at higher concentrations under BFC than under the reference conditions (NBFC). This study constitutes the first attempt at identifying the flor yeast proteins responsible for the peculiar sensory profile of biologically aged wines. A better metabolic knowledge of flor yeasts might facilitate the development of effective strategies for improved production of these special wines. PMID:25475262

  18. Involvement of Protein Kinase C-δ in Vascular Permeability in Acute Lung Injury.

    PubMed

    Ahn, Jong J; Jung, Jong P; Park, Soon E; Lee, Minhyun; Kwon, Byungsuk; Cho, Hong R

    2015-08-01

    Pulmonary edema is a major cause of mortality due to acute lung injury (ALI). The involvement of protein kinase C-δ (PKC-δ) in ALI has been a controversial topic. Here we investigated PKC-δ function in ALI using PKC-δ knockout (KO) mice and PKC inhibitors. Our results indicated that although the ability to produce proinflammatory mediators in response to LPS injury in PKC-δ KO mice was similar to that of control mice, they showed enhanced recruitment of neutrophils to the lung and more severe pulmonary edema. PKC-δ inhibition promoted barrier dysfunction in an endothelial cell layer in vitro, and administration of a PKC-δ-specific inhibitor significantly increased steady state vascular permeability. A neutrophil transmigration assay indicated that the PKC-δ inhibition increased neutrophil transmigration through an endothelial monolayer. This suggests that PKC-δ inhibition induces structural changes in endothelial cells, allowing extravasation of proteins and neutrophils.

  19. Involvement of Protein Kinase CK2 in Angiogenesis and Retinal Neovascularization

    PubMed Central

    Ljubimov, Alexander V.; Caballero, Sergio; Aoki, Annette M.; Pinna, Lorenzo A.; Grant, Maria B.; Castellon, Raquel

    2010-01-01

    Purpose The purpose of the study was to characterize signaling intermediates involved in angiogenic responses of retinal endothelial cells (RECs) to the extracellular matrix and growth factors, by using specific inhibitors. Methods Tubelike structure formation and the development of secondary sprouts on a basement membrane (BM) matrix, cell proliferation, and cell migration were studied in cultures of bovine and human RECs. Specific inhibitors were tested for inhibition of retinal neovascularization in a mouse model of oxygen-induced retinopathy (OIR). Results In initial experiments, the broad-spectrum protein kinase inhibitors, H7 and H89, stabilized REC tubes on BM matrix and inhibited secondary sprouting, cell migration, and cell proliferation. Among more specific kinase inhibitors tested, only inhibitors of protein kinase CK2 (formerly, casein kinase II), such as emodin and DRB, were able to duplicate the effects of H7 and H89. Actinomycin D caused only minor changes in angiogenic assays, suggesting that CK2’s effects on REC did not involve its known impact on transcription. The extent of retinal neovascularization in a mouse OIR model was reduced >70% (versus untreated or vehicle-treated groups) after treatment with emodin (6 days at 60 mg/kg per day) and by approximately 60% after treatment at the same dose with TBB, the most specific CK2 inhibitor known. In the treated retinas, the main vascular tree had minimal changes, but the neovascular tufts were greatly reduced in number or absent. Conclusions This is the first demonstration of the involvement of ubiquitous protein kinase CK2 in angiogenesis. Naturally derived CK2 inhibitors may be useful for treatment of proliferative retinopathies. PMID:15557471

  20. A Novel E2F-like Protein Involved in Transcriptional Activation of Cyst Wall Protein Genes in Giardia lamblia*

    PubMed Central

    Su, Li-Hsin; Pan, Yu-Jiao; Huang, Yu-Chang; Cho, Chao-Cheng; Chen, Chia-Wei; Huang, Shao-Wei; Chuang, Sheng-Fung; Sun, Chin-Hung

    2011-01-01

    Giardia lamblia differentiates into resistant walled cysts for survival outside the host and transmission. During encystation, synthesis of cyst wall proteins is coordinately induced. The E2F family of transcription factors in higher eukaryotes is involved in cell cycle progression and cell differentiation. We asked whether Giardia has E2F-like genes and whether they influence gene expression during Giardia encystation. Blast searches of the Giardia genome database identified one gene (e2f1) encoding a putative E2F protein with two putative DNA-binding domains. We found that the e2f1 gene expression levels increased significantly during encystation. Epitope-tagged E2F1 was found to localize to nuclei. Recombinant E2F1 specifically bound to the thymidine kinase and cwp1–3 gene promoters. E2F1 contains several key residues for DNA binding, and mutation analysis revealed that its binding sequence is similar to those of the known E2F family proteins. The E2F1-binding sequences were positive cis-acting elements of the thymidine kinase and cwp1 promoters. We also found that E2F1 transactivated the thymidine kinase and cwp1 promoters through its binding sequences in vivo. Interestingly, E2F1 overexpression resulted in a significant increase of the levels of CWP1 protein, cwp1–3 gene mRNA, and cyst formation. We also found E2F1 can interact with Myb2, a transcription factor that coordinate up-regulates the cwp1–3 genes during encystation. Our results suggest that E2F family has been conserved during evolution and that E2F1 is an important transcription factor in regulation of the Giardia cwp genes, which are key to Giardia differentiation into cysts. PMID:21835923

  1. Human skeletal muscle and erythrocyte proteins involved in acid-base homeostasis: adaptations to chronic hypoxia.

    PubMed

    Juel, C; Lundby, C; Sander, M; Calbet, J A L; Hall, G van

    2003-04-15

    Chronic hypoxia is accompanied by changes in blood and skeletal muscle acid-base control. We hypothesized that the underlying mechanisms include altered protein expression of transport systems and the enzymes involved in lactate, HCO3- and H+ fluxes in skeletal muscle and erythrocytes. Immunoblotting was used to quantify densities of the transport systems and enzymes. Muscle and erythrocyte samples were obtained from eight Danish lowlanders at sea level and after 2 and 8 weeks at 4100 m (Bolivia). For comparison, samples were obtained from eight Bolivian natives. In muscle membranes there were no changes in fibre-type distribution, lactate dehydrogenase isoforms, Na+,K+-pump subunits or in the lactate-H+ co-transporters MCT1 and MCT4. The Na+-H+ exchanger protein NHE1 was elevated by 39 % in natives compared to lowlanders. The Na+-HCO3- co-transporter density in muscle was elevated by 47-69 % after 2 and 8 weeks at altitude. The membrane-bound carbonic anhydrase (CA) IV in muscle increased in the lowlanders by 39 %, whereas CA XIV decreased by 23-47 %. Levels of cytosolic CA II and III in muscle and CA I and II in erythrocytes were unchanged. The erythrocyte lactate-H+ co-transporter MCT1 increased by 230-405 % in lowlanders and was 324 % higher in natives. The erythrocyte inorganic anion exchanger (Cl--HCO3- exchanger AE1) was increased by 149-228 %. In conclusion, chronic hypoxia induces dramatic changes in erythrocyte proteins, but only moderate changes in muscle proteins involved in acid-base control. Together, these changes suggest a hypoxia-induced increase in the capacity for lactate, HCO3- and H+ fluxes from muscle to blood and from blood to erythrocytes. PMID:12611920

  2. The SNARE proteins SNAP25 and synaptobrevin are involved in endocytosis at hippocampal synapses.

    PubMed

    Zhang, Zhen; Wang, Dongsheng; Sun, Tao; Xu, Jianhua; Chiang, Hsueh-Cheng; Shin, Wonchul; Wu, Ling-Gang

    2013-05-22

    SNAP25, an essential component of the soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor (SNARE) complex that mediates exocytosis, is not considered to play a role in endocytosis, which couples to exocytosis by retrieving a similar amount of exocytosed vesicles. By knocking down SNAP25 and imaging slow endocytosis at a conventional synapse, the rat cultured hippocampal synapse, we found that SNAP25 is involved in slow, clathrin-dependent endocytosis. With similar techniques, we found that not only SNAP25, but also synaptobrevin is involved in slow endocytosis. These results provide the first evidence showing the dual role of SNAP25 and synaptobrevin in both exocytosis and slow endocytosis at conventional synapses. Such a dual role may contribute to mediate the coupling between exocytosis and clathrin-dependent endocytosis at conventional synapses, a mechanism critical for the maintenance of synaptic transmission and the normal structure of nerve terminals.

  3. Mouse neuron navigator 1, a novel microtubule-associated protein involved in neuronal migration.

    PubMed

    Martínez-López, María José; Alcántara, Soledad; Mascaró, Cristina; Pérez-Brangulí, Francesc; Ruiz-Lozano, Pilar; Maes, Tamara; Soriano, Eduardo; Buesa, Carlos

    2005-04-01

    The development of the nervous system (NS) requires the coordinated migration of multiple waves of neurons and subsequent processes of neurite maturation, both involving selective guidance mechanisms. In Caenorhabditis elegans, unc-53 codes for a new multidomain protein involved in the directional migration of a subset of cells. We describe here the first functional characterization of the mouse homologue, mouse Neuron navigator 1 (mNAV1), whose expression is largely restricted to the NS during development. EGFP-mNAV1 associates with microtubules (MTs) plus ends present in the growth cone through a new microtubule-binding (MTB) domain. Moreover, its overexpression in transfected cells leads to MT bundling. The abolition of mNAV1 causes loss of directionality in the leading processes of pontine-migrating cells, providing evidence for a role of mNAV1 in mediating Netrin-1-induced directional migration. PMID:15797708

  4. Characterization of a Novel Endoplasmic Reticulum Protein Involved in Tubercidin Resistance in Leishmania major

    PubMed Central

    Aoki, Juliana Ide; Coelho, Adriano Cappellazzo; Muxel, Sandra Marcia; Zampieri, Ricardo Andrade; Sanchez, Eduardo Milton Ramos; Nerland, Audun Helge; Floeter-Winter, Lucile Maria; Cotrim, Paulo Cesar

    2016-01-01

    Background Tubercidin (TUB) is a toxic adenosine analog with potential antiparasitic activity against Leishmania, with mechanism of action and resistance that are not completely understood. For understanding the mechanisms of action and identifying the potential metabolic pathways affected by this drug, we employed in this study an overexpression/selection approach using TUB for the identification of potential targets, as well as, drug resistance genes in L. major. Although, TUB is toxic to the mammalian host, these findings can provide evidences for a rational drug design based on purine pathway against leishmaniasis. Methodology/Principal findings After transfection of a cosmid genomic library into L. major Friedlin (LmjF) parasites and application of the overexpression/selection method, we identified two cosmids (cosTUB1 and cosTU2) containing two different loci capable of conferring significant levels of TUB resistance. In the cosTUB1 contained a gene encoding NUPM1-like protein, which has been previously described as associated with TUB resistance in L. amazonensis. In the cosTUB2 we identified and characterized a gene encoding a 63 kDa protein that we denoted as tubercidin-resistance protein (TRP). Functional analysis revealed that the transfectants were less susceptible to TUB than LmjF parasites or those transfected with the control vector. In addition, the trp mRNA and protein levels in cosTUB2 transfectants were higher than LmjF. TRP immunolocalization revealed that it was co-localized to the endoplasmic reticulum (ER), a cellular compartment with many functions. In silico predictions indicated that TRP contains only a hypothetical transmembrane domain. Thus, it is likely that TRP is a lumen protein involved in multidrug efflux transport that may be involved in the purine metabolic pathway. Conclusions/Significance This study demonstrated for the first time that TRP is associated with TUB resistance in Leishmania. The next challenge is to determine how

  5. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses.

    PubMed

    Zeng, Houqing; Xu, Luqin; Singh, Amarjeet; Wang, Huizhong; Du, Liqun; Poovaiah, B W

    2015-01-01

    Transient changes in intracellular Ca(2+) concentration have been well recognized to act as cell signals coupling various environmental stimuli to appropriate physiological responses with accuracy and specificity in plants. Calmodulin (CaM) and calmodulin-like proteins (CMLs) are major Ca(2+) sensors, playing critical roles in interpreting encrypted Ca(2+) signals. Ca(2+)-loaded CaM/CMLs interact and regulate a broad spectrum of target proteins such as channels/pumps/antiporters for various ions, transcription factors, protein kinases, protein phosphatases, metabolic enzymes, and proteins with unknown biochemical functions. Many of the target proteins of CaM/CMLs directly or indirectly regulate plant responses to environmental stresses. Basic information about stimulus-induced Ca(2+) signal and overview of Ca(2+) signal perception and transduction are briefly discussed in the beginning of this review. How CaM/CMLs are involved in regulating plant responses to abiotic stresses are emphasized in this review. Exciting progress has been made in the past several years, such as the elucidation of Ca(2+)/CaM-mediated regulation of AtSR1/CAMTA3 and plant responses to chilling and freezing stresses, Ca(2+)/CaM-mediated regulation of CAT3, MAPK8 and MKP1 in homeostasis control of reactive oxygen species signals, discovery of CaM7 as a DNA-binding transcription factor regulating plant response to light signals. However, many key questions in Ca(2+)/CaM-mediated signaling warrant further investigation. Ca(2+)/CaM-mediated regulation of most of the known target proteins is presumed based on their interaction. The downstream targets of CMLs are mostly unknown, and how specificity of Ca(2+) signaling could be realized through the actions of CaM/CMLs and their target proteins is largely unknown. Future breakthroughs in Ca(2+)/CaM-mediated signaling will not only improve our understanding of how plants respond to environmental stresses, but also provide the knowledge base to

  6. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses

    PubMed Central

    Zeng, Houqing; Xu, Luqin; Singh, Amarjeet; Wang, Huizhong; Du, Liqun; Poovaiah, B. W.

    2015-01-01

    Transient changes in intracellular Ca2+ concentration have been well recognized to act as cell signals coupling various environmental stimuli to appropriate physiological responses with accuracy and specificity in plants. Calmodulin (CaM) and calmodulin-like proteins (CMLs) are major Ca2+ sensors, playing critical roles in interpreting encrypted Ca2+ signals. Ca2+-loaded CaM/CMLs interact and regulate a broad spectrum of target proteins such as channels/pumps/antiporters for various ions, transcription factors, protein kinases, protein phosphatases, metabolic enzymes, and proteins with unknown biochemical functions. Many of the target proteins of CaM/CMLs directly or indirectly regulate plant responses to environmental stresses. Basic information about stimulus-induced Ca2+ signal and overview of Ca2+ signal perception and transduction are briefly discussed in the beginning of this review. How CaM/CMLs are involved in regulating plant responses to abiotic stresses are emphasized in this review. Exciting progress has been made in the past several years, such as the elucidation of Ca2+/CaM-mediated regulation of AtSR1/CAMTA3 and plant responses to chilling and freezing stresses, Ca2+/CaM-mediated regulation of CAT3, MAPK8 and MKP1 in homeostasis control of reactive oxygen species signals, discovery of CaM7 as a DNA-binding transcription factor regulating plant response to light signals. However, many key questions in Ca2+/CaM-mediated signaling warrant further investigation. Ca2+/CaM-mediated regulation of most of the known target proteins is presumed based on their interaction. The downstream targets of CMLs are mostly unknown, and how specificity of Ca2+ signaling could be realized through the actions of CaM/CMLs and their target proteins is largely unknown. Future breakthroughs in Ca2+/CaM-mediated signaling will not only improve our understanding of how plants respond to environmental stresses, but also provide the knowledge base to improve stress-tolerance of

  7. Genomics and structure/function studies of Rhabdoviridae proteins involved in replication and transcription.

    PubMed

    Assenberg, R; Delmas, O; Morin, B; Graham, S C; De Lamballerie, X; Laubert, C; Coutard, B; Grimes, J M; Neyts, J; Owens, R J; Brandt, B W; Gorbalenya, A; Tucker, P; Stuart, D I; Canard, B; Bourhy, H

    2010-08-01

    Some mammalian rhabdoviruses may infect humans, and also infect invertebrates, dogs, and bats, which may act as vectors transmitting viruses among different host species. The VIZIER programme, an EU-funded FP6 program, has characterized viruses that belong to the Vesiculovirus, Ephemerovirus and Lyssavirus genera of the Rhabdoviridae family to perform ground-breaking research on the identification of potential new drug targets against these RNA viruses through comprehensive structural characterization of the replicative machinery. The contribution of VIZIER programme was of several orders. First, it contributed substantially to research aimed at understanding the origin, evolution and diversity of rhabdoviruses. This diversity was then used to obtain further structural information on the proteins involved in replication. Two strategies were used to produce recombinant proteins by expression of both full length or domain constructs in either E. coli or insect cells, using the baculovirus system. In both cases, parallel cloning and expression screening at small-scale of multiple constructs based on different viruses including the addition of fusion tags, was key to the rapid generation of expression data. As a result, some progress has been made in the VIZIER programme towards dissecting the multi-functional L protein into components suitable for structural and functional studies. However, the phosphoprotein polymerase co-factor and the structural matrix protein, which play a number of roles during viral replication and drives viral assembly, have both proved much more amenable to structural biology. Applying the multi-construct/multi-virus approach central to protein production processes in VIZIER has yielded new structural information which may ultimately be exploitable in the derivation of novel ways of intervening in viral replication.

  8. Identification of a novel thylakoid protein gene involved in cold acclimation in cyanobacteria.

    PubMed

    Li, Weizhi; Gao, Hong; Yin, Chuntao; Xu, Xudong

    2012-09-01

    In cyanobacteria, genes involved in cold acclimation can be upregulated in response to cold stress with or without light. By inactivating 17 such genes in Synechocystis sp. PCC 6803, slr0815 (ccr2) was identified to be a novel gene required for survival at 15 °C. It was upregulated by cold stress in the light. Upon exposure to low temperature, a ccr2-null mutant showed greatly reduced photosynthetic and respiratory activities within 12 h relative to the wild-type. At 48 h, the photosystem (PS)II-mediated electron transport in the mutant was reduced to less than one-third of the wild-type level, and the duration of electron transfer from the Q(B) binding site of PSII to PSI was increased to about eight times the wild-type level, whereas the PSI-mediated electron transport remained unchanged. Using an antibody against GFP, a Ccr2-GFP fusion protein was localized to the thylakoid membrane rather than the cytoplasmic and outer membranes. Homologues to Ccr2 can be found in most cyanobacteria, algae and higher plants with sequenced genomes. Ccr2 is probably representative of a group of novel thylakoid proteins involved in acclimation to cold or other stresses.

  9. Lithostathine and pancreatitis-associated protein are involved in the very early stages of Alzheimer's disease.

    PubMed

    Duplan, L; Michel, B; Boucraut, J; Barthellémy, S; Desplat-Jego, S; Marin, V; Gambarelli, D; Bernard, D; Berthézène, P; Alescio-Lautier, B; Verdier, J M

    2001-01-01

    According to one of the theories formulated to explain the etiology of Alzheimer's disease (AD), amylosis may reflect a specific inflammatory response. Two inflammatory proteins, lithostathine and PAP, were evidenced by immunohistochemistry in senile plaques and neurofibrillary tangles of patients with AD. In addition, lithostathine and PAP were significantly increased in the cerebrospinal fluid of patients with AD when compared to patients with multiple sclerosis, another inflammatory disease, and to normal control subjects. However, no correlation was observed with age of occurrence. Furthermore, lithostathine and PAP were increased even at the very early stages of AD, and their level remained elevated during the course of the AD unlike TNFalpha whose level, very high at very early stages, regularly decreased. Finally, if part of lithostathine and PAP are synthesized in the brain, a large part comes from serum by passage over the blood-brain barrier. These results indicate (i) the existence of an acute phase response followed by a chronic inflammation in AD, and (ii) that lithostathine and PAP are involved even at the first pre-clinical biochemical events of AD. In addition, because lithostathine undergoes an autolytic cleavage leading to its precipitation and the formation of fibrils, we believe that it may be involved in amyloidosis and tangles by allowing heterogeneous precipitation of other proteins.

  10. Identification and Characterization of Anaplasma phagocytophilum Proteins Involved in Infection of the Tick Vector, Ixodes scapularis.

    PubMed

    Villar, Margarita; Ayllón, Nieves; Kocan, Katherine M; Bonzón-Kulichenko, Elena; Alberdi, Pilar; Blouin, Edmour F; Weisheit, Sabine; Mateos-Hernández, Lourdes; Cabezas-Cruz, Alejandro; Bell-Sakyi, Lesley; Vancová, Marie; Bílý, Tomáš; Meyer, Damien F; Sterba, Jan; Contreras, Marinela; Rudenko, Nataliia; Grubhoffer, Libor; Vázquez, Jesús; de la Fuente, José

    2015-01-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen transmitted by Ixodes scapularis that causes human granulocytic anaplasmosis. Here, a high throughput quantitative proteomics approach was used to characterize A. phagocytophilum proteome during rickettsial multiplication and identify proteins involved in infection of the tick vector, I. scapularis. The first step in this research was focused on tick cells infected with A. phagocytophilum and sampled at two time points containing 10-15% and 65-71% infected cells, respectively to identify key bacterial proteins over-represented in high percentage infected cells. The second step was focused on adult female tick guts and salivary glands infected with A. phagocytophilum to compare in vitro results with those occurring during bacterial infection in vivo. The results showed differences in the proteome of A. phagocytophilum in infected ticks with higher impact on protein synthesis and processing than on bacterial replication in tick salivary glands. These results correlated well with the developmental cycle of A. phagocytophilum, in which cells convert from an intracellular reticulated, replicative form to the nondividing infectious dense-core form. The analysis of A. phagocytophilum differentially represented proteins identified stress response (GroEL, HSP70) and surface (MSP4) proteins that were over-represented in high percentage infected tick cells and salivary glands when compared to low percentage infected cells and guts, respectively. The results demonstrated that MSP4, GroEL and HSP70 interact and bind to tick cells, thus playing a role in rickettsia-tick interactions. The most important finding of these studies is the increase in the level of certain bacterial stress response and surface proteins in A. phagocytophilum-infected tick cells and salivary glands with functional implication in tick-pathogen interactions. These results gave a new dimension to the role of these stress response and surface

  11. Identification and Characterization of Anaplasma phagocytophilum Proteins Involved in Infection of the Tick Vector, Ixodes scapularis

    PubMed Central

    Kocan, Katherine M.; Bonzón-Kulichenko, Elena; Alberdi, Pilar; Blouin, Edmour F.; Weisheit, Sabine; Mateos-Hernández, Lourdes; Cabezas-Cruz, Alejandro; Bell-Sakyi, Lesley; Vancová, Marie; Bílý, Tomáš; Meyer, Damien F.; Sterba, Jan; Contreras, Marinela; Rudenko, Nataliia; Grubhoffer, Libor; Vázquez, Jesús; de la Fuente, José

    2015-01-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen transmitted by Ixodes scapularis that causes human granulocytic anaplasmosis. Here, a high throughput quantitative proteomics approach was used to characterize A. phagocytophilum proteome during rickettsial multiplication and identify proteins involved in infection of the tick vector, I. scapularis. The first step in this research was focused on tick cells infected with A. phagocytophilum and sampled at two time points containing 10–15% and 65–71% infected cells, respectively to identify key bacterial proteins over-represented in high percentage infected cells. The second step was focused on adult female tick guts and salivary glands infected with A. phagocytophilum to compare in vitro results with those occurring during bacterial infection in vivo. The results showed differences in the proteome of A. phagocytophilum in infected ticks with higher impact on protein synthesis and processing than on bacterial replication in tick salivary glands. These results correlated well with the developmental cycle of A. phagocytophilum, in which cells convert from an intracellular reticulated, replicative form to the nondividing infectious dense-core form. The analysis of A. phagocytophilum differentially represented proteins identified stress response (GroEL, HSP70) and surface (MSP4) proteins that were over-represented in high percentage infected tick cells and salivary glands when compared to low percentage infected cells and guts, respectively. The results demonstrated that MSP4, GroEL and HSP70 interact and bind to tick cells, thus playing a role in rickettsia-tick interactions. The most important finding of these studies is the increase in the level of certain bacterial stress response and surface proteins in A. phagocytophilum-infected tick cells and salivary glands with functional implication in tick-pathogen interactions. These results gave a new dimension to the role of these stress response and surface

  12. Protein Kinase C (PkcA) of Aspergillus nidulans Is Involved in Penicillin Production

    PubMed Central

    Herrmann, Martina; Spröte, Petra; Brakhage, Axel A.

    2006-01-01

    The biosynthesis of the β-lactam antibiotic penicillin in the filamentous fungus Aspergillus nidulans is catalyzed by three enzymes that are encoded by the acvA, ipnA, and aatA genes. A variety of cis-acting DNA elements and regulatory factors form a complex regulatory network controlling these β-lactam biosynthesis genes. Regulators involved include the CCAAT-binding complex AnCF and AnBH1. AnBH1 acts as a repressor of the penicillin biosynthesis gene aatA. Until now, however, little information has been available on the signal transduction cascades leading to the transcription factors. Here we show that inhibition of protein kinase C (Pkc) activity in A. nidulans led to cytoplasmic localization of an AnBH1-enhanced green fluorescent protein (EGFP) fusion protein. Computer analysis of the genome and screening of an A. nidulans gene library revealed that the fungus possesses two putative Pkc-encoding genes, which we designated pkcA and pkcB. Only PkcA showed all the characteristic features of fungal Pkc's. Production of pkcA antisense RNA in A. nidulans led to reduced growth and conidiation in Aspergillus minimal medium, while in fermentation medium it led to enhanced expression of an aatAp-lacZ gene fusion, reduced pencillin production, and predominantly cytoplasmic localization of AnBH1. These data agree with the finding that inhibition of Pkc activity prevented nuclear localization of AnBH1-EGFP. As a result, repression of aatA expression was relieved. The involvement of Pkc in penicillin biosynthesis is also interesting in light of the fact that in the yeast Saccharomyces cerevisiae, Pkc plays a major role in maintaining cell integrity. PMID:16598003

  13. Protein kinase C (PkcA) of Aspergillus nidulans is involved in penicillin production.

    PubMed

    Herrmann, Martina; Spröte, Petra; Brakhage, Axel A

    2006-04-01

    The biosynthesis of the beta-lactam antibiotic penicillin in the filamentous fungus Aspergillus nidulans is catalyzed by three enzymes that are encoded by the acvA, ipnA, and aatA genes. A variety of cis-acting DNA elements and regulatory factors form a complex regulatory network controlling these beta-lactam biosynthesis genes. Regulators involved include the CCAAT-binding complex AnCF and AnBH1. AnBH1 acts as a repressor of the penicillin biosynthesis gene aatA. Until now, however, little information has been available on the signal transduction cascades leading to the transcription factors. Here we show that inhibition of protein kinase C (Pkc) activity in A. nidulans led to cytoplasmic localization of an AnBH1-enhanced green fluorescent protein (EGFP) fusion protein. Computer analysis of the genome and screening of an A. nidulans gene library revealed that the fungus possesses two putative Pkc-encoding genes, which we designated pkcA and pkcB. Only PkcA showed all the characteristic features of fungal Pkc's. Production of pkcA antisense RNA in A. nidulans led to reduced growth and conidiation in Aspergillus minimal medium, while in fermentation medium it led to enhanced expression of an aatAp-lacZ gene fusion, reduced pencillin production, and predominantly cytoplasmic localization of AnBH1. These data agree with the finding that inhibition of Pkc activity prevented nuclear localization of AnBH1-EGFP. As a result, repression of aatA expression was relieved. The involvement of Pkc in penicillin biosynthesis is also interesting in light of the fact that in the yeast Saccharomyces cerevisiae, Pkc plays a major role in maintaining cell integrity.

  14. SNF1-related protein kinases type 2 are involved in plant responses to cadmium stress.

    PubMed

    Kulik, Anna; Anielska-Mazur, Anna; Bucholc, Maria; Koen, Emmanuel; Szymanska, Katarzyna; Zmienko, Agnieszka; Krzywinska, Ewa; Wawer, Izabela; McLoughlin, Fionn; Ruszkowski, Dariusz; Figlerowicz, Marek; Testerink, Christa; Sklodowska, Aleksandra; Wendehenne, David; Dobrowolska, Grazyna

    2012-10-01

    Cadmium ions are notorious environmental pollutants. To adapt to cadmium-induced deleterious effects plants have developed sophisticated defense mechanisms. However, the signaling pathways underlying the plant response to cadmium are still elusive. Our data demonstrate that SnRK2s (for SNF1-related protein kinase2) are transiently activated during cadmium exposure and are involved in the regulation of plant response to this stress. Analysis of tobacco (Nicotiana tabacum) Osmotic Stress-Activated Protein Kinase activity in tobacco Bright Yellow 2 cells indicates that reactive oxygen species (ROS) and nitric oxide, produced mainly via an l-arginine-dependent process, contribute to the kinase activation in response to cadmium. SnRK2.4 is the closest homolog of tobacco Osmotic Stress-Activated Protein Kinase in Arabidopsis (Arabidopsis thaliana). Comparative analysis of seedling growth of snrk2.4 knockout mutants versus wild-type Arabidopsis suggests that SnRK2.4 is involved in the inhibition of root growth triggered by cadmium; the mutants were more tolerant to the stress. Measurements of the level of three major species of phytochelatins (PCs) in roots of plants exposed to Cd(2+) showed a similar (PC2, PC4) or lower (PC3) concentration in snrk2.4 mutants in comparison to wild-type plants. These results indicate that the enhanced tolerance of the mutants does not result from a difference in the PCs level. Additionally, we have analyzed ROS accumulation in roots subjected to Cd(2+) treatment. Our data show significantly lower Cd(2+)-induced ROS accumulation in the mutants' roots. Concluding, the obtained results indicate that SnRK2s play a role in the regulation of plant tolerance to cadmium, most probably by controlling ROS accumulation triggered by cadmium ions.

  15. Unconventional N-H…N Hydrogen Bonds Involving Proline Backbone Nitrogen in Protein Structures.

    PubMed

    Deepak, R N V Krishna; Sankararamakrishnan, Ramasubbu

    2016-05-10

    Contrary to DNA double-helical structures, hydrogen bonds (H-bonds) involving nitrogen as the acceptor are not common in protein structures. We systematically searched N-H…N H-bonds in two different sets of protein structures. Data set I consists of neutron diffraction and ultrahigh-resolution x-ray structures (0.9 Å resolution or better) and the hydrogen atom positions in these structures were determined experimentally. Data set II contains structures determined using x-ray diffraction (resolution ≤ 1.8 Å) and the positions of hydrogen atoms were generated using a computational method. We identified 114 and 14,347 potential N-H…N H-bonds from these two data sets, respectively, and 56-66% of these were of the Ni+1-Hi+1…Ni type, with Ni being the proline backbone nitrogen. To further understand the nature of such unusual contacts, we performed quantum chemical calculations on the model compound N-acetyl-L-proline-N-methylamide (Ace-Pro-NMe) with coordinates taken from the experimentally determined structures. A potential energy profile generated by varying the ψ dihedral angle in Ace-Pro-NMe indicates that the conformation with the N-H…N H-bond is the most stable. An analysis of H-bond-forming proline residues reveals that more than 30% of the proline carbonyl groups are also involved in n → π(∗) interactions with the carbonyl carbon of the preceding residue. Natural bond orbital analyses demonstrate that the strength of N-H…N H-bonds is less than half of that observed for a conventional H-bond. This study clearly establishes the H-bonding capability of proline nitrogen and its prevalence in protein structures. We found many proteins with multiple instances of H-bond-forming prolines. With more than 15% of all proline residues participating in N-H…N H-bonds, we suggest a new, to our knowledge, structural role for proline in providing stability to loops and capping regions of secondary structures in proteins. PMID:27166805

  16. Unconventional N-H…N Hydrogen Bonds Involving Proline Backbone Nitrogen in Protein Structures.

    PubMed

    Deepak, R N V Krishna; Sankararamakrishnan, Ramasubbu

    2016-05-10

    Contrary to DNA double-helical structures, hydrogen bonds (H-bonds) involving nitrogen as the acceptor are not common in protein structures. We systematically searched N-H…N H-bonds in two different sets of protein structures. Data set I consists of neutron diffraction and ultrahigh-resolution x-ray structures (0.9 Å resolution or better) and the hydrogen atom positions in these structures were determined experimentally. Data set II contains structures determined using x-ray diffraction (resolution ≤ 1.8 Å) and the positions of hydrogen atoms were generated using a computational method. We identified 114 and 14,347 potential N-H…N H-bonds from these two data sets, respectively, and 56-66% of these were of the Ni+1-Hi+1…Ni type, with Ni being the proline backbone nitrogen. To further understand the nature of such unusual contacts, we performed quantum chemical calculations on the model compound N-acetyl-L-proline-N-methylamide (Ace-Pro-NMe) with coordinates taken from the experimentally determined structures. A potential energy profile generated by varying the ψ dihedral angle in Ace-Pro-NMe indicates that the conformation with the N-H…N H-bond is the most stable. An analysis of H-bond-forming proline residues reveals that more than 30% of the proline carbonyl groups are also involved in n → π(∗) interactions with the carbonyl carbon of the preceding residue. Natural bond orbital analyses demonstrate that the strength of N-H…N H-bonds is less than half of that observed for a conventional H-bond. This study clearly establishes the H-bonding capability of proline nitrogen and its prevalence in protein structures. We found many proteins with multiple instances of H-bond-forming prolines. With more than 15% of all proline residues participating in N-H…N H-bonds, we suggest a new, to our knowledge, structural role for proline in providing stability to loops and capping regions of secondary structures in proteins.

  17. Bioinformatic analysis of functional proteins involved in obesity associated with diabetes.

    PubMed

    Rao, Allam Appa; Tayaru, N Manga; Thota, Hanuman; Changalasetty, Suresh Babu; Thota, Lalitha Saroja; Gedela, Srinubabu

    2008-03-01

    The twin epidemic of diabetes and obesity pose daunting challenges worldwide. The dramatic rise in obesity-associated diabetes resulted in an alarming increase in the incidence and prevalence of obesity an important complication of diabetes. Differences among individuals in their susceptibility to both these conditions probably reflect their genetic constitutions. The dramatic improvements in genomic and bioinformatic resources are accelerating the pace of gene discovery. It is tempting to speculate the key susceptible genes/proteins that bridges diabetes mellitus and obesity. In this regard, we evaluated the role of several genes/proteins that are believed to be involved in the evolution of obesity associated diabetes by employing multiple sequence alignment using ClustalW tool and constructed a phylogram tree using functional protein sequences extracted from NCBI. Phylogram was constructed using Neighbor-Joining Algorithm a bioinformatic tool. Our bioinformatic analysis reports resistin gene as ominous link with obesity associated diabetes. This bioinformatic study will be useful for future studies towards therapeutic inventions of obesity associated type 2 diabetes. PMID:23675069

  18. Five RecA-like proteins of Schizosaccharomyces pombe are involved in meiotic recombination.

    PubMed Central

    Grishchuk, A L; Kohli, J

    2003-01-01

    The genome of Schizosaccharomyces pombe contains five genes that code for proteins with sequence similarity to the Escherichia coli recombination protein RecA: rad51+, rhp55+, rhp57+, rlp1+, and dmc1+. We analyzed the effect of deletion of each of these genes on meiotic recombination and viability of spores. Meiotic recombination levels were different from wild type in all recA-related mutants in several genetic intervals, suggesting that all five RecA homologs of S. pombe are required for normal levels of meiotic recombination. Spore viability was reduced in rad51, rhp55, and rhp57 mutants, but not in rlp1 and dmc1. It is argued that reduction of crossover is not the only cause for the observed reduction of spore viability. Analysis of double and triple mutants revealed that Rad51 and Dmc1 play major and partially overlapping roles in meiotic recombination, while Rhp55, Rhp57, and Rlp1 play accessory roles. Remarkably, deletion of Rlp1 decreases the frequency of intergenic recombination (crossovers), but increases intragenic recombination (gene conversion). On the basis of our results, we present a model for the involvement of five RecA-like proteins of S. pombe in meiotic recombination and discuss their respective roles. PMID:14668362

  19. NELF is a nuclear protein involved in hypothalamic GnRH neuronal migration.

    PubMed

    Xu, Ning; Bhagavath, Balasubramanian; Kim, Hyung-Goo; Halvorson, Lisa; Podolsky, Robert S; Chorich, Lynn P; Prasad, Puttur; Xiong, Wen-Cheng; Cameron, Richard S; Layman, Lawrence C

    2010-05-01

    Nasal embryonic LHRH factor (NELF) has been hypothesized to participate in the migration of GnRH and olfactory neurons into the forebrain, a prerequisite for normal hypothalamic-pituitary-gonadal function in puberty and reproduction. However, the biological functions of NELF, which has no homology to any human protein, remain largely elusive. Although mRNA expression did not differ, NELF protein expression was greater in migratory than postmigratory GnRH neurons. Pituitary Nelf mRNA expression was also observed and increased 3-fold after exogenous GnRH administration. Contrary to a previous report, NELF displayed predominant nuclear localization in GnRH neurons, confirmed by mutagenesis of a putative nuclear localization signal resulting in impaired nuclear expression. NELF knockdown impaired GnRH neuronal migration of NLT cells in vitro. These findings and the identification of two putative zinc fingers suggest that NELF could be a transcription factor. Collectively, our findings implicate NELF as a nuclear protein involved in the developmental function of the reproductive axis.

  20. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    SciTech Connect

    Tee, Thiam-Tsui; Cheah, Yew-Hoong; Meenakshii, Nallappan; Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  1. Plasmodium falciparum proteins involved in cytoadherence of infected erythrocytes to chemokine CX3CL1

    PubMed Central

    Hermand, Patricia; Cicéron, Liliane; Pionneau, Cédric; Vaquero, Catherine; Combadière, Christophe; Deterre, Philippe

    2016-01-01

    Malaria caused by Plasmodium falciparum is associated with cytoadherence of infected red blood cells (iRBC) to endothelial cells. Numerous host molecules have been involved in cytoadherence, including the adhesive chemokine CX3CL1. Most of the identified parasite ligands are from the multigenic and hypervariable Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family which makes them poor targets for the development of a broadly protective vaccine. Using proteomics, we have identified two 25-kDa parasite proteins with adhesive properties for CX3CL1, called CBP for CX3CL1 Binding Proteins. CBPs are coded by single-copy genes with little polymorphic variation and no homology with other P. falciparum gene products. Specific antibodies raised against epitopes from the predicted extracellular domains of each CBP efficiently stain the surface of RBC infected with trophozoites or schizonts, which is a strong indication of CBP expression at the surface of iRBC. These anti-CBP antibodies partially neutralize iRBC adherence to CX3CL1. This adherence is similarly inhibited in the presence of peptides from the CBP extracellular domains, while irrelevant peptides had no such effect. CBP1 and CBP2 are new P. falciparum ligands for the human chemokine CX3CL1. The identification of this non-polymorphic P. falciparum factors provides a new avenue for innovative vaccination approaches. PMID:27653778

  2. Looking for prosocial genes: ITRAQ analysis of proteins involved in MDMA-induced sociability in mice.

    PubMed

    Kuteykin-Teplyakov, Konstantin; Maldonado, Rafael

    2014-11-01

    Social behavior plays a fundamental role in life of many animal species, allowing the interaction between individuals and sharing of experiences, needs, and goals across them. In humans, some neuropsychiatric diseases, including anxiety, posttraumatic stress disorder and autism spectrum disorders, are often characterized by impaired sociability. Here we report that N-Methyl-3,4-methylenedioxyamphetamine (MDMA, "Ecstasy") at low dose (3mg/kg) has differential effects on mouse social behavior. In some animals, MDMA promotes sociability without hyperlocomotion, whereas in other mice it elevates locomotor activity without affecting sociability. Both WAY-100635, a selective antagonist of 5-HT1A receptor, and L-368899, a selective oxytocin receptor antagonist, abolish prosocial effects of MDMA. Differential quantitative analysis of brain proteome by isobaric tag for relative and absolute quantification technology (iTRAQ) revealed 21 specific proteins that were highly correlated with sociability, and allowed to distinguish between entactogenic prosocial and hyperlocomotor effects of MDMA on proteome level. Our data suggest particular relevance of neurotransmission mediated by GABA B receptor, as well as proteins involved in energy maintenance for MDMA-induced sociability. Functional association network for differentially expressed proteins in cerebral cortex, hippocampus and amygdala were identified. These results provide new information for understanding the neurobiological substrate of sociability and may help to discover new therapeutic approaches to modulate social behavior in patients suffering from social fear and low sociability.

  3. Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins involved in mitosis

    PubMed Central

    Banko, Max R.; Allen, Jasmina J.; Schaffer, Bethany E.; Wilker, Erik W.; Tsou, Peiling; White, Jamie L.; Villén, Judit; Wang, Beatrice; Kim, Sara R.; Sakamoto, Kei; Gygi, Steven P.; Cantley, Lewis C.; Yaffe, Michael B.; Shokat, Kevan M.; Brunet, Anne

    2011-01-01

    SUMMARY The energy-sensing AMP-activated protein kinase (AMPK) is activated by low nutrient levels. Functions of AMPK, other than its role in cellular metabolism, are just beginning to emerge. Here we use a chemical genetics screen to identify direct substrates of AMPK in human cells. We find that AMPK phosphorylates 28 previously unidentified substrates, several of which are involved in mitosis and cytokinesis. We identify the residues phosphorylated by AMPK in vivo in several substrates, including protein phosphatase 1 regulatory subunit 12C (PPP1R12C) and p21 -activated protein kinase (PAK2). AMPK-induced phosphorylation is necessary for PPP1R12C interaction with 14-3-3 and phosphorylation of myosin regulatory light chain. Both AMPK activity and PPP1R12C phosphorylation are increased in mitotic cells and are important for mitosis completion. These findings suggest that AMPK coordinates nutrient status with mitosis completion, which may be critical for the organism’s response to low nutrients during development, or in adult stem and cancer cells. PMID:22137581

  4. Abrogation of TNF-mediated cytotoxicity by space flight involves protein kinase C

    NASA Technical Reports Server (NTRS)

    Woods, K. M.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Experiments conducted on STS-50 indicated that space flight significantly inhibited tumor necrosis factor (TNF)-mediated killing of LM929 cells compared to ground controls. In ground-based studies, activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA) also inhibited TNF-mediated killing of LM929 cells. Therefore, we used PKC inhibitors to determine if the inhibitory effects of spaceflight on TNF-mediated cytotoxicity involved the activation of PKC. In experiments conducted onboard space shuttle mission STS-54, we saw that in the presence of the protein kinase C inhibitors H7 and H8, TNF-mediated cytotoxicity was restored to levels of those observed in the ground controls. Subsequent experiments done during the STS-57 mission tested the dose response of two protein kinase inhibitors, H7 and HA1004. We again saw that killing was restored in a dose-dependent manner, with inhibitor concentrations known to inhibit PKC being most effective. These data suggest that space flight ameliorates the action of TNF by affecting PKC in target cells.

  5. A VAMP-associated protein, PVA31 is involved in leaf senescence in Arabidopsis

    PubMed Central

    Ichikawa, Mie; Nakai, Yusuke; Arima, Keita; Nishiyama, Sayo; Hirano, Tomoko; Sato, Masa H

    2015-01-01

    VAMP-associated proteins (VAPs) are highly conserved among eukaryotes. Here, we report a functional analysis of one of the VAPs, PVA31, and demonstrate its novel function on leaf senescence in Arabidopsis. The expression of PVA31 is highly induced in senescence leaves, and localizes to the plasma membrane as well as the ARA7-positive endosomes. Yeast two-hybrid analysis demonstrates that PVA31 is interacted with the plasma membrane localized-VAMP proteins, VAMP721/722/724 but not with the endosome-localized VAMPs, VAMP711 and VAMP727, indicating that PVA31 is associated with VAMP721/722/724 on the plasma membrane. Strong constitutive expression of PVA31 under the control of the Cauliflower mosaic virus 35S promoter induces the typical symptom of leaf senescence earlier than WT in normal growth and an artificially induced senescence conditions. In addition, the marker genes for the SA-mediated signaling pathways, PR-1, is promptly expressed with elicitor application. These data indicate that PVA31-overexpressing plants exhibit the early senescence phenotype in their leaves, and suggest that PVA31 is involved in the SA-mediated programmed cell death process during leaf senescence and PR-protein secretion during pathogen infection in Arabidopsis. PMID:25897470

  6. A VAMP-associated protein, PVA31 is involved in leaf senescence in Arabidopsis.

    PubMed

    Ichikawa, Mie; Nakai, Yusuke; Arima, Keita; Nishiyama, Sayo; Hirano, Tomoko; Sato, Masa H

    2015-01-01

    VAMP-associated proteins (VAPs) are highly conserved among eukaryotes. Here, we report a functional analysis of one of the VAPs, PVA31, and demonstrate its novel function on leaf senescence in Arabidopsis. The expression of PVA31 is highly induced in senescence leaves, and localizes to the plasma membrane as well as the ARA7-positive endosomes. Yeast two-hybrid analysis demonstrates that PVA31 is interacted with the plasma membrane localized-VAMP proteins, VAMP721/722/724 but not with the endosome-localized VAMPs, VAMP711 and VAMP727, indicating that PVA31 is associated with VAMP721/722/724 on the plasma membrane. Strong constitutive expression of PVA31 under the control of the Cauliflower mosaic virus 35S promoter induces the typical symptom of leaf senescence earlier than WT in normal growth and an artificially induced senescence conditions. In addition, the marker genes for the SA-mediated signaling pathways, PR-1, is promptly expressed with elicitor application. These data indicate that PVA31-overexpressing plants exhibit the early senescence phenotype in their leaves, and suggest that PVA31 is involved in the SA-mediated programmed cell death process during leaf senescence and PR-protein secretion during pathogen infection in Arabidopsis.

  7. Interatomic Coulombic Decay Effects in Theoretical DNA Recombination Systems Involving Protein Interaction Sites

    NASA Astrophysics Data System (ADS)

    Vargas, E. L.; Rivas, D. A.; Duot, A. C.; Hovey, R. T.; Andrianarijaona, V. M.

    2015-03-01

    DNA replication is the basis for all biological reproduction. A strand of DNA will ``unzip'' and bind with a complimentary strand, creating two identical strands. In this study, we are considering how this process is affected by Interatomic Coulombic Decay (ICD), specifically how ICD affects the individual coding proteins' ability to hold together. ICD mainly deals with how the electron returns to its original state after excitation and how this affects its immediate atomic environment, sometimes affecting the connectivity between interaction sites on proteins involved in the DNA coding process. Biological heredity is fundamentally controlled by DNA and its replication therefore it affects every living thing. The small nature of the proteins (within the range of nanometers) makes it a good candidate for research of this scale. Understanding how ICD affects DNA molecules can give us invaluable insight into the human genetic code and the processes behind cell mutations that can lead to cancer. Authors wish to give special thanks to Pacific Union College Student Senate in Angwin, California, for their financial support.

  8. Abrogation of TNF-mediated cytotoxicity by space flight involves protein kinase C.

    PubMed

    Woods, K M; Chapes, S K

    1994-03-01

    Experiments conducted on STS-50 indicated that space flight significantly inhibited tumor necrosis factor (TNF)-mediated killing of LM929 cells compared to ground controls. In ground-based studies, activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA) also inhibited TNF-mediated killing of LM929 cells. Therefore, we used PKC inhibitors to determine if the inhibitory effects of spaceflight on TNF-mediated cytotoxicity involved the activation of PKC. In experiments conducted onboard space shuttle mission STS-54, we saw that in the presence of the protein kinase C inhibitors H7 and H8, TNF-mediated cytotoxicity was restored to levels of those observed in the ground controls. Subsequent experiments done during the STS-57 mission tested the dose response of two protein kinase inhibitors, H7 and HA1004. We again saw that killing was restored in a dose-dependent manner, with inhibitor concentrations known to inhibit PKC being most effective. These data suggest that space flight ameliorates the action of TNF by affecting PKC in target cells.

  9. Tau pathology involves protein phosphatase 2A in Parkinsonism-dementia of Guam

    PubMed Central

    Arif, Mohammad; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Garruto, Ralph M.; Iqbal, Khalid

    2014-01-01

    Parkinsonism-dementia (PD) of Guam is a neurodegenerative disease with parkinsonism and early-onset Alzheimer-like dementia associated with neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein, tau. β-N-methylamino-l-alanine (BMAA) has been suspected of being involved in the etiology of PD, but the mechanism by which BMAA leads to tau hyperphosphorylation is not known. We found a decrease in protein phosphatase 2A (PP2A) activity associated with an increase in inhibitory phosphorylation of its catalytic subunit PP2Ac at Tyr307 and abnormal hyperphosphorylation of tau in brains of patients who had Guam PD. To test the possible involvement of BMAA in the etiopathogenesis of PD, we studied the effect of this environmental neurotoxin on PP2A activity and tau hyperphosphorylation in mouse primary neuronal cultures and metabolically active rat brain slices. BMAA treatment significantly decreased PP2A activity, with a concomitant increase in tau kinase activity resulting in elevated tau hyperphosphorylation at PP2A favorable sites. Moreover, we found an increase in the phosphorylation of PP2Ac at Tyr307 in BMAA-treated rat brains. Pretreatment with metabotropic glutamate receptor 5 (mGluR5) and Src antagonists blocked the BMAA-induced inhibition of PP2A and the abnormal hyperphosphorylation of tau, indicating the involvement of an Src-dependent PP2A pathway. Coimmunoprecipitation experiments showed that BMAA treatment dissociated PP2Ac from mGluR5, making it available for phosphorylation at Tyr307. These findings suggest a scenario in which BMAA can lead to tau pathology by inhibiting PP2A through the activation of mGluR5, the consequent release of PP2Ac from the mGluR5–PP2A complex, and its phosphorylation at Tyr307 by Src. PMID:24395787

  10. Tau pathology involves protein phosphatase 2A in parkinsonism-dementia of Guam.

    PubMed

    Arif, Mohammad; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Garruto, Ralph M; Iqbal, Khalid

    2014-01-21

    Parkinsonism-dementia (PD) of Guam is a neurodegenerative disease with parkinsonism and early-onset Alzheimer-like dementia associated with neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein, tau. β-N-methylamino-l-alanine (BMAA) has been suspected of being involved in the etiology of PD, but the mechanism by which BMAA leads to tau hyperphosphorylation is not known. We found a decrease in protein phosphatase 2A (PP2A) activity associated with an increase in inhibitory phosphorylation of its catalytic subunit PP2Ac at Tyr(307) and abnormal hyperphosphorylation of tau in brains of patients who had Guam PD. To test the possible involvement of BMAA in the etiopathogenesis of PD, we studied the effect of this environmental neurotoxin on PP2A activity and tau hyperphosphorylation in mouse primary neuronal cultures and metabolically active rat brain slices. BMAA treatment significantly decreased PP2A activity, with a concomitant increase in tau kinase activity resulting in elevated tau hyperphosphorylation at PP2A favorable sites. Moreover, we found an increase in the phosphorylation of PP2Ac at Tyr(307) in BMAA-treated rat brains. Pretreatment with metabotropic glutamate receptor 5 (mGluR5) and Src antagonists blocked the BMAA-induced inhibition of PP2A and the abnormal hyperphosphorylation of tau, indicating the involvement of an Src-dependent PP2A pathway. Coimmunoprecipitation experiments showed that BMAA treatment dissociated PP2Ac from mGluR5, making it available for phosphorylation at Tyr(307). These findings suggest a scenario in which BMAA can lead to tau pathology by inhibiting PP2A through the activation of mGluR5, the consequent release of PP2Ac from the mGluR5-PP2A complex, and its phosphorylation at Tyr(307) by Src.

  11. Tau pathology involves protein phosphatase 2A in parkinsonism-dementia of Guam.

    PubMed

    Arif, Mohammad; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Garruto, Ralph M; Iqbal, Khalid

    2014-01-21

    Parkinsonism-dementia (PD) of Guam is a neurodegenerative disease with parkinsonism and early-onset Alzheimer-like dementia associated with neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein, tau. β-N-methylamino-l-alanine (BMAA) has been suspected of being involved in the etiology of PD, but the mechanism by which BMAA leads to tau hyperphosphorylation is not known. We found a decrease in protein phosphatase 2A (PP2A) activity associated with an increase in inhibitory phosphorylation of its catalytic subunit PP2Ac at Tyr(307) and abnormal hyperphosphorylation of tau in brains of patients who had Guam PD. To test the possible involvement of BMAA in the etiopathogenesis of PD, we studied the effect of this environmental neurotoxin on PP2A activity and tau hyperphosphorylation in mouse primary neuronal cultures and metabolically active rat brain slices. BMAA treatment significantly decreased PP2A activity, with a concomitant increase in tau kinase activity resulting in elevated tau hyperphosphorylation at PP2A favorable sites. Moreover, we found an increase in the phosphorylation of PP2Ac at Tyr(307) in BMAA-treated rat brains. Pretreatment with metabotropic glutamate receptor 5 (mGluR5) and Src antagonists blocked the BMAA-induced inhibition of PP2A and the abnormal hyperphosphorylation of tau, indicating the involvement of an Src-dependent PP2A pathway. Coimmunoprecipitation experiments showed that BMAA treatment dissociated PP2Ac from mGluR5, making it available for phosphorylation at Tyr(307). These findings suggest a scenario in which BMAA can lead to tau pathology by inhibiting PP2A through the activation of mGluR5, the consequent release of PP2Ac from the mGluR5-PP2A complex, and its phosphorylation at Tyr(307) by Src. PMID:24395787

  12. Involvement of calcium/calmodulin-dependent protein kinase II in methamphetamine-induced neural damage.

    PubMed

    Chen, Xufeng; Xing, Jingjing; Jiang, Lei; Qian, Wenyi; Wang, Yixin; Sun, Hao; Wang, Yu; Xiao, Hang; Wang, Jun; Zhang, Jinsong

    2016-11-01

    Methamphetamine (METH), an illicit drug, is widely abused in many parts of the world. Mounting evidence shows that METH exposure contributes to neurotoxicity, particularly for the monoaminergic neurons. However, to date, only a few studies have tried to unravel the mechanisms involved in METH-induced non-monoaminergic neural damage. Therefore, in the present study, we tried to explore the mechanisms for METH-induced neural damage in cortical neurons. Our results showed that METH significantly increased intracellular [Ca(2) (+) ]i in Ca(2) (+) -containing solution rather than Ca(2) (+) -free solution. Moreover, METH also upregulated calmodulin (CaM) expression and activated CaM-dependent protein kinase II (CaMKII). Significantly, METH-induced neural damage can be partially retarded by CaM antagonist W7 as well as CaMKII blocker KN93. In addition, L-type Ca(2) (+) channel was also proved to be involved in METH-induced cell damage, as nifedipine, the L-type Ca(2) (+) channel-specific inhibitor, markedly attenuated METH-induced neural damage. Collectively, our results suggest that Ca(2) (+) -CaM-CaMKII is involved in METH-mediated neurotoxicity, and it might suggest a potential target for the development of therapeutic strategies for METH abuse. Copyright © 2016 John Wiley & Sons, Ltd.

  13. p53 response to arsenic exposure in epithelial cells: protein kinase B/Akt involvement.

    PubMed

    Sandoval, Marisol; Morales, Moisés; Tapia, Rocío; del Carmen Alarcón, Luz; Sordo, Montserrat; Ostrosky-Wegman, Patricia; Ortega, Arturo; López-Bayghen, Esther

    2007-09-01

    Inorganic arsenic is a major environmental contaminant associated with an increased risk of human skin cancer. Arsenic modulates cellular signaling pathways that affect diverse processes such as cell proliferation, differentiation, and apoptosis, including genotoxic damage. The p53 protein plays a central role in mediating stress and DNA damage responses, leading to either growth arrest or apoptosis. Several signal transduction pathways activated under a plethora of stressing conditions increase p53 protein levels. To further understand the molecular mechanisms involved in the arsenic mode of action, we explored the effects of this metalloid on the activation of the phosphatidyl inositol 3-kinase (PI3K)/Ca2+/diacylglicerol dependent protein kinase/protein kinase B (PKB) signaling cascade and its repercussion in p53 activation in two epithelial cell types: primary normal human keratinocytes cultures (NHK) and the carcinoma-derived C33-A cell line. Although in both cell systems arsenic leads to an increase in p53 and its binding to DNA, the final outcome is different. In NHK, arsenic triggers a sustained activation of the PI3K/PKB/glycogen synthase kinase-3 beta pathway, driving the cell into a cell-differentiated stage in which the proliferation signals are turned down. In sharp contrast, in C33-A cells, arsenic leads to a transient increase in p53 followed by a drastic reduction in its nuclear levels and an increase in cell proliferation. These findings favor the notion that p53-stage and transcriptional abilities are important to understand modifications in the proliferation-differentiation balance, an equilibrium that is severely impaired by arsenic.

  14. Triskelion Structure of the Gli521 Protein, Involved in the Gliding Mechanism of Mycoplasma mobile▿

    PubMed Central

    Nonaka, Takahiro; Adan-Kubo, Jun; Miyata, Makoto

    2010-01-01

    Mycoplasma mobile binds to solid surfaces and glides smoothly and continuously by a unique mechanism. A huge protein, Gli521 (521 kDa), is involved in the gliding machinery, and it is localized in the cell neck, the base of the membrane protrusion. This protein is thought to have the role of force transmission. In this study, the Gli521 protein was purified from M. mobile cells, and its molecular shape was studied. Gel filtration analysis showed that the isolated Gli521 protein forms mainly a monomer in Tween 80-containing buffer and oligomers in Triton X-100-containing buffer. Rotary shadowing electron microscopy showed that the Gli521 monomer consisted of three parts: an oval, a rod, and a hook. The oval was 15 nm long by 11 nm wide, and the filamentous part composed of the rod and the hook was 106 nm long and 3 nm in diameter. The Gli521 molecules form a trimer, producing a “triskelion” reminiscent of eukaryotic clathrin, through association at the hook end. Image averaging of the central part of the triskelion suggested that there are stable and rigid structures. The binding site of a previously isolated monoclonal antibody on Gli521 images showed that the hook end and oval correspond to the C- and N-terminal regions, respectively. Partial digestion of Gli521 showed that the molecule could be divided into three domains, which we assigned to the oval, rod, and hook of the molecular image. The Gli521 molecule's role in the gliding mechanism is discussed. PMID:19915029

  15. Effects of Radiation and Dietary Iron on Expression of Genes and Proteins Involved in Drug Metabolism

    NASA Technical Reports Server (NTRS)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    Liver function, especially the rate of metabolic enzyme activities, determines the concentration of circulating drugs and the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Dietary factors and exposure to radiation are aspects of spaceflight that are potential oxidative stressors and both can be modeled in ground experiments. In this experiment, we examined the effects of high dietary iron and low dose gamma radiation (individually and combined) on the gene expression of enzymes involved in drug metabolism, redox homeostasis, and DNA repair. METHODS All procedures were approved by the JSC Animal Care and Use Committee. Male Sprague-Dawley rats were divided into 4 groups (n=8); control, high Fe diet (650 mg iron/kg), radiation (fractionated 3 Gy exposure from a Cs- 137 source) and combined high Fe diet + radiation exposure. Animals were euthanized 24h after the last treatment of radiation; livers were removed immediately and flash -frozen in liquid nitrogen. Expression of genes thought to be involved in redox homeostasis, drug metabolism and DNA damage repair was measured by RT-qPCR. Where possible, protein expression of the same genes was measured by western blotting. All data are expressed as % change in expression normalized to reference gene expression; comparisons were then made of each treatment group to the sham exposed/ normal diet control group. Data was considered significant at p< 0

  16. TEC protein tyrosine kinase is involved in the Erk signaling pathway induced by HGF

    SciTech Connect

    Li, Feifei; Jiang, Yinan; Zheng, Qiping; Yang, Xiaoming; Wang, Siying

    2011-01-07

    Research highlights: {yields} TEC is rapidly tyrosine-phosphorylated and activated by HGF-stimulation in vivo or after partial hepatectomy in mice. {yields} TEC enhances the activity of Elk and serum response element (SRE) in HGF signaling pathway in hepatocyte. {yields} TEC promotes hepatocyte proliferation through the Erk-MAPK pathway. -- Abstract: Background/aims: TEC, a member of the TEC family of non-receptor type protein tyrosine kinases, has recently been suggested to play a role in hepatocyte proliferation and liver regeneration. This study aims to investigate the putative mechanisms of TEC kinase regulation of hepatocyte differentiation, i.e. to explore which signaling pathway TEC is involved in, and how TEC is activated in hepatocyte after hepatectomy and hepatocyte growth factor (HGF) stimulation. Methods: We performed immunoprecipitation (IP) and immunoblotting (IB) to examine TEC tyrosine phosphorylation after partial hepatectomy in mice and HGF stimulation in WB F-344 hepatic cells. The TEC kinase activity was determined by in vitro kinase assay. Reporter gene assay, antisense oligonucleotide and TEC dominant negative mutant (TEC{sup KM}) were used to examine the possible signaling pathways in which TEC is involved. The cell proliferation rate was evaluated by {sup 3}H-TdR incorporation. Results: TEC phosphorylation and kinase activity were increased in 1 h after hepatectomy or HGF treatment. TEC enhanced the activity of Elk and serum response element (SRE). Inhibition of MEK1 suppressed TEC phosphorylation. Blocking TEC activity dramatically decreased the activation of Erk. Reduced TEC kinase activity also suppressed the proliferation of WB F-344 cells. These results suggest TEC is involved in the Ras-MAPK pathway and acts between MEK1 and Erk. Conclusions: TEC promotes hepatocyte proliferation and regeneration and is involved in HGF-induced Erk signaling pathway.

  17. NMR studies of conformational states of proteins involved in biosynthesis of iron-sulfur clusters

    NASA Astrophysics Data System (ADS)

    Dai, Ziqi

    Iron-sulfur (Fe-S) clusters are the most ancient and ubiquitous cofactors that exist throughout evolution. The most important biosynthetic system of the cluster in both prokaryotes and eukaryotes is the ISC system. Defects in this system can be lethal and have been associated with a number of human diseases. Previous works show that a number of proteins are involved in the [Fe-S] biosynthetic processes and the structural flexibility may play an important role. For example, it was shown that apo-IscU, the scaffold protein, from Escherichia coli populates two functionally important conformational states, one dynamically disordered (D-state) and the other more structured (S-state) (Kim et al., 2009; Kim et al., 2012c). To further investigate the characteristics and transition of the conformational states of proteins involved in this system, I performed extensive NMR studies. Here, I present the findings based on my studies of two important players of the ISC system, IscU and HscB. In this research, I find that a peptidyl-prolyl cis/trans isomerization might account for the slow step in the S-D interconversion of IscU. More specifically, P14 and P101 are trans in the S-state, but become cis in the D-state. In addition, I discover that IscU is very responsive to pH changes, and I postulate that this response is correlated to conserved histidine residues, H10 and H105. Moreover, my thermodynamic analyses reveal that the S-D equilibrium of IscU is also very sensitive to change in temperature, pressure, and amino acid sequence compared to other proteins. In the study, I also discovered a novel state of IscU, the unfolded U-state. I suspect that this state may serve as an intermediate of interconversion between IscU S-/D-states. Finally, I extended the effort to HscB, and find that it may possess more conformational flexibility than expected earlier. I postulate that this flexibility may be the cause of the line-broadening observed during interaction of HscB with Isc

  18. The collagen-binding protein of Streptococcus mutans is involved in haemorrhagic stroke

    PubMed Central

    Nakano, Kazuhiko; Hokamura, Kazuya; Taniguchi, Naho; Wada, Koichiro; Kudo, Chiho; Nomura, Ryota; Kojima, Ayuchi; Naka, Shuhei; Muranaka, Yoshinori; Thura, Min; Nakajima, Atsushi; Masuda, Katsuhiko; Nakagawa, Ichiro; Speziale, Pietro; Shimada, Nobumitsu; Amano, Atsuo; Kamisaki, Yoshinori; Tanaka, Tokutaro; Umemura, Kazuo; Ooshima, Takashi

    2011-01-01

    Although several risk factors for stroke have been identified, one-third remain unexplained. Here we show that infection with Streptococcus mutans expressing collagen-binding protein (CBP) is a potential risk factor for haemorrhagic stroke. Infection with serotype k S. mutans, but not a standard strain, aggravates cerebral haemorrhage in mice. Serotype k S. mutans accumulates in the damaged, but not the contralateral hemisphere, indicating an interaction of bacteria with injured blood vessels. The most important factor for high-virulence is expression of CBP, which is a common property of most serotype k strains. The detection frequency of CBP-expressing S. mutans in haemorrhagic stroke patients is significantly higher than in control subjects. Strains isolated from haemorrhagic stroke patients aggravate haemorrhage in a mouse model, indicating that they are haemorrhagic stroke-associated. Administration of recombinant CBP causes aggravation of haemorrhage. Our data suggest that CBP of S. mutans is directly involved in haemorrhagic stroke. PMID:21952219

  19. Mitochondrial acyl carrier protein is involved in lipoic acid synthesis in Saccharomyces cerevisiae.

    PubMed

    Brody, S; Oh, C; Hoja, U; Schweizer, E

    1997-05-19

    The yeast gene, ACP1, encoding the mitochondrial acyl carrier protein, was deleted by gene replacement. The resulting acp1-deficient mutants had only 5-10% of the wild-type lipoic acid content remaining, and exhibited a respiratory-deficient phenotype. Upon meiosis, the lipoate deficiency co-segregated with the acp1 deletion. The role of ACP1 in long-chain fatty acid synthesis was studied in fast and fas2 null mutants completely lacking cytoplasmic fatty acid synthase. When grown on odd-chain (13:0 and 15:0) fatty acids, these cells showed less than 1% of C-16 and C-18 acids in their total lipids. Mitochondrial ACP is therefore suggested to be involved with the biosynthesis of octanoate, a precursor to lipoic acid. PMID:9187370

  20. Cellular COPII Proteins Are Involved in Production of the Vesicles That Form the Poliovirus Replication Complex

    PubMed Central

    Rust, René C.; Landmann, Lukas; Gosert, Rainer; Tang, Bor Luen; Hong, Wanjin; Hauri, Hans-Peter; Egger, Denise; Bienz, Kurt

    2001-01-01

    Poliovirus (PV) replicates its genome in association with membranous vesicles in the cytoplasm of infected cells. To elucidate the origin and mode of formation of PV vesicles, immunofluorescence labeling with antibodies against the viral vesicle marker proteins 2B and 2BC, as well as cellular markers of the endoplasmic reticulum (ER), anterograde transport vesicles, and the Golgi complex, was performed in BT7-H cells. Optical sections obtained by confocal laser scanning microscopy were subjected to a deconvolution process to enhance resolution and signal-to-noise ratio and to allow for a three-dimensional representation of labeled membrane structures. The mode of formation of the PV vesicles was, on morphological grounds, similar to the formation of anterograde membrane traffic vesicles in uninfected cells. ER-resident membrane markers were excluded from both types of vesicles, and the COPII components Sec13 and Sec31 were both found to be colocalized on the vesicular surface, indicating the presence of a functional COPII coat. PV vesicle formation during early time points of infection did not involve the Golgi complex. The expression of PV protein 2BC or the entire P2 and P3 genomic region led to the production of vesicles carrying a COPII coat and showing the same mode of formation as vesicles produced after PV infection. These results indicate that PV vesicles are formed at the ER by the cellular COPII budding mechanism and thus are homologous to the vesicles of the anterograde membrane transport pathway. PMID:11559814

  1. The Ku70 DNA-repair protein is involved in centromere function in a grasshopper species.

    PubMed

    Cabrero, Josefa; Bakkali, Mohammed; Navarro-Domínguez, Beatriz; Ruíz-Ruano, Francisco J; Martín-Blázquez, Rubén; López-León, María Dolores; Camacho, Juan Pedro M

    2013-06-25

    The Ku70 protein is involved in numerous cell functions, the nonhomologous end joining (NHEJ) DNA repair pathway being the best known. Here, we report a novel function for this protein in the grasshopper Eyprepocnemis plorans. We observed the presence of large Ku70 foci on the centromeres of meiotic and mitotic chromosomes during the cell cycle stages showing the highest centromeric activity (i.e., metaphase and anaphase). The fact that colchicine treatment prevented centromeric location of Ku70, suggests a microtubule-dependent centromeric function for Ku70. Likewise, the absence of Ku70 at metaphase-anaphase centromeres from three males whose Ku70 gene had been knocked down using interference RNA, and the dramatic increase in the frequency of polyploid spermatids observed in these males, suggest that the centromeric presence of Ku70 is required for normal cytokinesis in this species. The centromeric function of Ku70 was not observed in 14 other grasshopper and locust species, or in the mouse, thus suggesting that it is an autapomorphy in E. plorans. PMID:23797468

  2. Hepatitis C virus nonstructural protein 5B is involved in virus morphogenesis.

    PubMed

    Gouklani, Hamed; Bull, Rowena A; Beyer, Claudia; Coulibaly, Fasséli; Gowans, Eric J; Drummer, Heidi E; Netter, Hans J; White, Peter A; Haqshenas, Gholamreza

    2012-05-01

    The p7 protein of hepatitis C virus (HCV) is a viroporin that is dispensable for viral genome replication but plays a critical role in virus morphogenesis. In this study, we generated a JFH1-based intergenotypic chimeric genome that encoded a heterologous genotype 1b (GT1b) p7. The parental intergenotypic chimeric genome was nonviable in human hepatoma cells, and infectious chimeric virions were produced only when cells transfected with the chimeric genomes were passaged several times. Sequence analysis of the entire polyprotein-coding region of the recovered chimeric virus revealed one predominant amino acid substitution in nonstructural protein 2 (NS2), T23N, and one in NS5B, K151R. Forward genetic analysis demonstrated that each of these mutations per se restored the infectivity of the parental chimeric genome, suggesting that interactions between p7, NS2, and NS5B were required for virion assembly/maturation. p7 and NS5B colocalized in cellular compartments, and the NS5B mutation did not affect the colocalization pattern. The NS5B K151R mutation neither increased viral RNA replication in human hepatoma cells nor altered the polymerase activity of NS5B in an in vitro assay. In conclusion, this study suggests that HCV NS5B is involved in virus morphogenesis.

  3. Charged MVB protein 5 is involved in T-cell receptor signaling.

    PubMed

    Wi, Sae Mi; Min, Yoon; Lee, Ki-Young

    2016-01-29

    Charged multivesicular body protein 5 (CHMP5) has a key role in multivesicular body biogenesis and a critical role in the downregulation of signaling pathways through receptor degradation. However, the role of CHMP5 in T-cell receptor (TCR)-mediated signaling has not been previously investigated. In this study, we utilized a short hairpin RNA-based RNA interference approach to investigate the functional role of CHMP5. Upon TCR stimulation, CHMP5-knockdown (CHMP5(KD)) Jurkat T cells exhibited activation of TCR downstream signaling molecules, such as PKCθ and IKKαβ, and resulted in the activation of nuclear factor-κB and the marked upregulation of TCR-induced gene expression. Moreover, we found that activator protein-1 and nuclear factor of activated T-cells transcriptional factors were markedly activated in CHMP5(KD) Jurkat cells in response to TCR stimulation, which led to a significant increase in interleukin-2 secretion. Biochemical studies revealed that CHMP5 endogenously forms high-molecular-weight complexes, including TCR molecules, and specifically interacts with TCRβ. Interestingly, flow cytometry analysis also revealed that CHMP5(KD) Jurkat T cells exhibit upregulation of TCR expression on the cell surface compared with control Jurkat T cells. Taken together, these findings demonstrated that CHMP5 might be involved in the homeostatic regulation of TCR on the cell surface, presumably through TCR recycling or degradation. Thus CHMP5 is implicated in TCR-mediated signaling.

  4. Involvement of zinc in cell-free protein synthesizing systems from rat liver

    SciTech Connect

    Hicks, S.E.; Wallwork, J.C.

    1986-03-05

    There are conflicting reports in the literature concerning the role of zinc in protein synthesis. This study presents evidence for the direct involvement of zinc in the translation of polypeptide chains in rats. Cell-free systems for incorporation of amino acids into acid-insoluble proteins were prepared from livers of three populations of rats: (1) rats fed ad libitum a diet containing 25 ppm zinc; (2) rats fed a diet containing less than 1 ppm zinc and (3) rats pair-fed a diet containing 25 ppm zinc. The diets contained 20% egg white and were enriched with biotin. Distilled deionized drinking water was given. The animals were maintained on the regimen for 45 days with precautions to limit zinc contamination. Group 2 showed typical signs of zinc deficiency, including decreased bone zinc. In vitro systems containing liver polysomes and a pH5 precipitate enzyme fraction indicated that the synthetic ability of systems isolated from zinc-deficient rats was considerably depressed, resulting in incorporation of amino acids 15 to 30% less than systems from pair-fed rats and 30 to 50% less than ad libitum-fed control animals. The results of crossover experiments performed by mixing polysome and enzyme fractions from the different groups indicated that the defect is due primarily to the pH precipitate enzyme fraction and not the polysomes.

  5. Trichoderma mitogen-activated protein kinase signaling is involved in induction of plant systemic resistance.

    PubMed

    Viterbo, Ada; Harel, Michal; Horwitz, Benjamin A; Chet, Ilan; Mukherjee, Prasun K

    2005-10-01

    The role of a mitogen-activated protein kinase (MAPK) TmkA in inducing systemic resistance in cucumber against the bacterial pathogen Pseudomonas syringae pv. lacrymans was investigated by using tmkA loss-of-function mutants of Trichoderma virens. In an assay where Trichoderma spores were germinated in proximity to cucumber roots, the mutants were able to colonize the plant roots as effectively as the wild-type strain but failed to induce full systemic resistance against the leaf pathogen. Interactions with the plant roots enhanced the level of tmkA transcript in T. virens and its homologue in Trichoderma asperellum. At the protein level, we could detect the activation of two forms reacting to the phospho-p44/42 MAPK antibody. Biocontrol experiments demonstrated that the tmkA mutants retain their biocontrol potential against Rhizoctonia solani in soil but are not effective against Sclerotium rolfsii in reducing disease incidence. Our results show that, unlike in many plant-pathogen interactions, Trichoderma TmkA MAPK is not involved in limited root colonization. Trichoderma, however, needs MAPK signaling in order to induce full systemic resistance in the plant.

  6. Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis.

    PubMed

    Muramatsu, Takashi

    2002-09-01

    Midkine (MK) and pleiotrophin (PTN) are low molecular weight proteins with closely related structures. They are mainly composed of two domains held by disulfide bridges, and there are three antiparallel beta-sheets in each domain. MK and PTN promote the growth, survival, and migration of various cells, and play roles in neurogenesis and epithelial mesenchymal interactions during organogenesis. A chondroitin sulfate proteoglycan, protein-tyrosine phosphatase zeta (PTPzeta), is a receptor for MK and PTN. The downstream signaling system includes ERK and PI3 kinase. MK binds to the chondroitin sulfate portion of PTPzeta with high affinity. Among the various chondroitin sulfate structures, the E unit, which has 4,6-disulfated N-acetylgalactosamine, provides the strongest binding site. The expression of MK and PTN is increased in various human tumors, making them promising as tumor markers and as targets for tumor therapy. MK and PTN expression also increases upon ischemic injury. MK enhances the migration of inflammatory cells, and is involved in neointima formation and renal injury following ischemia. MK is also interesting from the viewpoints of the treatment of neurodegenerative diseases, increasing the efficiency of in vitro development, and the prevention of HIV infection.

  7. Simiate is an Actin binding protein involved in filopodia dynamics and arborization of neurons

    PubMed Central

    Derlig, Kristin; Ehrhardt, Toni; Gießl, Andreas; Brandstätter, Johann H.; Enz, Ralf; Dahlhaus, Regina

    2014-01-01

    The Actin cytoskeleton constitutes the functional base for a multitude of cellular processes extending from motility and migration to cell mechanics and morphogenesis. The latter is particularly important to neuronal cells since the accurate functioning of the brain crucially depends on the correct arborization of neurons, a process that requires the formation of several dozens to hundreds of dendritic branches. Recently, a model was proposed where different transcription factors are detailed to distinct facets and phases of dendritogenesis and exert their function by acting on the Actin cytoskeleton, however, the proteins involved as well as the underlying molecular mechanisms are largely unknown. Here, we demonstrate that Simiate, a protein previously indicated to activate transcription, directly associates with both, G- and F-Actin and in doing so, affects Actin polymerization and Actin turnover in living cells. Imaging studies illustrate that Simiate particularly influences filopodia dynamics and specifically increases the branching of proximal, but not distal dendrites of developing neurons. The data suggests that Simiate functions as a direct molecular link between transcription regulation on one side, and dendritogenesis on the other, wherein Simiate serves to coordinate the development of proximal and distal dendrites by acting on the Actin cytoskeleton of filopodia and on transcription regulation, hence supporting the novel model. PMID:24782708

  8. Association of RNF43 with cell cycle proteins involved in p53 pathway

    PubMed Central

    Xie, Haiyang; Xing, Chunyang; Cao, Guoqiang; Wei, Bajin; Xu, Xiao; Song, Penghong; Chen, Leiming; Chen, Hai; Yin, Shengyong; Zhou, Lin; Zheng, Shusen

    2015-01-01

    Our previous study has demonstrated that RNF43 could regulate the cell cycle in a p53-dependent manner in HCC. In this study, we aimed to access whether RNF43 could interact with cell cycle proteins involved in p53 pathway, including pRB, Cyclin D1 and MDM2. Totally, 123 paired HCC tissues and corresponding noncancerous tissues from HCC patients were included, and the expression of Cyclin D1, pRB and MDM2 was analyzed using tissue microarray. Our results showed the expression level of RNF43 in HCC was positively correlated with that of MDM2, Cyclin D1 and pRB-S780. There was no significant correlation between the expression of RNF43 and pRB-S807/S811. Indicating that RNF43 effected cell cycling by regulating the expression of pRB, Cyclin D1 and MDM2 proteins, and pRB-S780 but not pRB-S807/S811, was participated in RNF43 regulated cell cycling. PMID:26823834

  9. Receptor-mediated endocytosis of proteoglycans by human fibroblasts involves recognition of the protein core.

    PubMed Central

    Glössl, J; Schubert-Prinz, R; Gregory, J D; Damle, S P; von Figura, K; Kresse, H

    1983-01-01

    Endocytosis by cultured human skin fibroblasts of 35SO4(2-)-labelled or [3H]leucine-labelled proteoglycans from fibroblast secretions and of 125I-proteodermatan sulphate from pig skin was quantitatively investigated. The following results were obtained. (1) Core proteins prepared by digestion with chondroitin ABC lyase were at least as efficiently endocytosed as native proteoglycans. Pig skin proteodermatan sulphate was a competitive inhibitor of endocytosis of 35SO4(2-)-labelled proteoglycans. (2) Proteoglycans produced in the presence of tunicamycin and native proteoglycans degraded with endoglycosaminidase H were internalized at a normal rate. Several monosaccharides that can be bound by mammalian lectins were unable to influence the internalization of proteoglycans. Treatment of proteoglycans with neuraminidase, however, resulted in an increased clearance rate. (3) Reductive methylation or acetoacetylation of lysine residues was accompanied by a parallel decrease in the rate of proteoglycan endocytosis. Reversal of acetoacetylation normalized the uptake properties. Endocytosis of native proteoglycans was also reduced in the presence of poly-L-lysine, and this reduction in endocytosis was observed as well with proteoglycans synthesized in the presence of the lysine analogue S-2-aminoethylcysteine. These results suggest that the recognition marker required for receptor-mediated endocytosis of proteodermatan sulphate resides in its protein moiety and involves lysine residues. Images Fig. 2. PMID:6316923

  10. Small G proteins in peroxisome biogenesis: the potential involvement of ADP-ribosylation factor 6

    PubMed Central

    2009-01-01

    Background Peroxisomes execute diverse and vital functions in virtually every eukaryote. New peroxisomes form by budding from pre-existing organelles or de novo by vesiculation of the ER. It has been suggested that ADP-ribosylation factors and COPI coatomer complexes are involved in these processes. Results Here we show that all viable Saccharomyces cerevisiae strains deficient in one of the small GTPases which have an important role in the regulation of vesicular transport contain functional peroxisomes, and that the number of these organelles in oleate-grown cells is significantly upregulated in the arf1 and arf3 null strains compared to the wild-type strain. In addition, we provide evidence that a portion of endogenous Arf6, the mammalian orthologue of yeast Arf3, is associated with the cytoplasmic face of rat liver peroxisomes. Despite this, ablation of Arf6 did neither influence the regulation of peroxisome abundance nor affect the localization of peroxisomal proteins in cultured fetal hepatocytes. However, co-overexpression of wild-type, GTP hydrolysis-defective or (dominant-negative) GTP binding-defective forms of Arf1 and Arf6 caused mislocalization of newly-synthesized peroxisomal proteins and resulted in an alteration of peroxisome morphology. Conclusion These observations suggest that Arf6 is a key player in mammalian peroxisome biogenesis. In addition, they also lend strong support to and extend the concept that specific Arf isoform pairs may act in tandem to regulate exclusive trafficking pathways. PMID:19686593

  11. Quantitative characterization of protein–protein complexes involved in base excision DNA repair

    PubMed Central

    Moor, Nina A.; Vasil'eva, Inna A.; Anarbaev, Rashid O.; Antson, Alfred A.; Lavrik, Olga I.

    2015-01-01

    Base Excision Repair (BER) efficiently corrects the most common types of DNA damage in mammalian cells. Step-by-step coordination of BER is facilitated by multiple interactions between enzymes and accessory proteins involved. Here we characterize quantitatively a number of complexes formed by DNA polymerase β (Polβ), apurinic/apyrimidinic endonuclease 1 (APE1), poly(ADP-ribose) polymerase 1 (PARP1), X-ray repair cross-complementing protein 1 (XRCC1) and tyrosyl-DNA phosphodiesterase 1 (TDP1), using fluorescence- and light scattering-based techniques. Direct physical interactions between the APE1-Polβ, APE1-TDP1, APE1-PARP1 and Polβ-TDP1 pairs have been detected and characterized for the first time. The combined results provide strong evidence that the most stable complex is formed between XRCC1 and Polβ. Model DNA intermediates of BER are shown to induce significant rearrangement of the Polβ complexes with XRCC1 and PARP1, while having no detectable influence on the protein–protein binding affinities. The strength of APE1 interaction with Polβ, XRCC1 and PARP1 is revealed to be modulated by BER intermediates to different extents, depending on the type of DNA damage. The affinity of APE1 for Polβ is higher in the complex with abasic site-containing DNA than after the APE1-catalyzed incision. Our findings advance understanding of the molecular mechanisms underlying coordination and regulation of the BER process. PMID:26013813

  12. Involvement of Arabidopsis RACK1 in Protein Translation and Its Regulation by Abscisic Acid

    SciTech Connect

    Guo, Jianjun; Wang, Shucai; Valerius, Oliver; Hall, Hardy; Zeng, Qingning; Li, Jian-Feng; Weston, David; Ellis, Brian; Chen, Jay

    2011-01-01

    Earlier studies have shown that RACK1 functions as a negative regulator of ABA responses in Arabidopsis, but the molecular mechanism of the action of RACK1 in these processes remains elusive. Global gene expression profiling revealed that approximately 40% of the genes affected by ABA treatment were affected in a similar manner by the rack1 mutation, supporting the view that RACK1 is an important regulator of ABA responses. On the other hand, co-expression analysis revealed that >80% of the genes co-expressed with RACK1 encode ribosome proteins, implying a close relationship between RACK1 s function and the ribosome complex. These results implied that the regulatory role for RACK1 in ABA responses may be partially due to its putative function in protein translation, which is one of the major cellular processes that mammalian and yeast RACK1 is involved in. Consistently, all three Arabidopsis RACK1 homologous genes, namely RACK1A, RACK1B and RACK1C, complemented the growth defects of the S. cerevisiae cpc2/rack1 mutant. In addition, RACK1 physically interacts with Arabidopsis Eukaryotic Initiation Factor 6 (eIF6), whose mammalian homologue is a key regulator of 80S ribosome assembly. Moreover, rack1 mutants displayed hypersensitivity to anisomycin, an inhibitor of protein translation, and displayed characteristics of impaired 80S functional ribosome assembly and 60S ribosomal subunit biogenesis in a ribosome profiling assay. Gene expression analysis revealed that ABA inhibits the expression of both RACK1 and eIF6. Taken together, these results suggest that RACK1 may be required for normal production of 60S and 80S ribosomes and that its action in these processes may be regulated by ABA.

  13. Proteins involved in formation of the outermost layer of Bacillus subtilis spores.

    PubMed

    Imamura, Daisuke; Kuwana, Ritsuko; Takamatsu, Hiromu; Watabe, Kazuhito

    2011-08-01

    To investigate the outermost structure of the Bacillus subtilis spore, we analyzed the accessibility of antibodies to proteins on spores of B. subtilis. Anti-green fluorescent protein (GFP) antibodies efficiently accessed GFP fused to CgeA or CotZ, which were previously assigned to the outermost layer termed the spore crust. However, anti-GFP antibodies did not bind to spores of strains expressing GFP fused to 14 outer coat, inner coat, or cortex proteins. Anti-CgeA antibodies bound to spores of wild-type and CgeA-GFP strains but not cgeA mutant spores. These results suggest that the spore crust covers the spore coat and is the externally exposed, outermost layer of the B. subtilis spore. We found that CotZ was essential for the spore crust to surround the spore but not for spore coat formation, indicating that CotZ plays a critical role in spore crust formation. In addition, we found that CotY-GFP was exposed on the surface of the spore, suggesting that CotY is an additional component of the spore crust. Moreover, the localization of CotY-GFP around the spore depended on CotZ, and CotY and CotZ depended on each other for spore assembly. Furthermore, a disruption of cotW affected the assembly of CotV-GFP, and a disruption of cotX affected the assembly of both CotV-GFP and CgeA-GFP. These results suggest that cgeA and genes in the cotVWXYZ cluster are involved in spore crust formation.

  14. Daphnia response to predation threat involves heat-shock proteins and the actin and tubulin cytoskeleton.

    PubMed

    Pijanowska, Joanna; Kloc, Malgorzata

    2004-02-01

    Of all the environmental pressures that all organisms across all kingdoms must face, one of the greatest is the risk of predation. The unpredictability of predation events from the perspective of a single individual is one of the major components of a changing, unstable environment (Gliwicz and Pijanowska, 1989; Lampert, 1987). The panoply of antipredator defenses among terrestrial and aquatic organisms involves a variety of morphological, behavioral, and life-history adaptations that even if they are not life-saving, may enable organisms to complete reproduction before predation occurs. Most of these phenotypic changes are directly induced by cues associated with the biotic agent, in the case of aquatic organisms, the chemical compounds (kairomones) released by a predator into the water. Herein we show that exposure of Daphnia to invertebrate and vertebrate kairomones results in changes in motion, behavior, and life history and at the molecular level involves changes in heat-shock proteins (HSPs) level and the actin and tubulin cytoskeleton. In addition, some of these effects are transgenerational, i.e., they are passed on from the mother to her offspring. PMID:14994270

  15. A small RNA controls a protein regulator involved in antibiotic resistance in Staphylococcus aureus

    PubMed Central

    Eyraud, Alex; Tattevin, Pierre; Chabelskaya, Svetlana; Felden, Brice

    2014-01-01

    The emergence of Staphylococcus aureus strains that are resistant to glycopeptides has led to alarming scenarios where serious staphylococcal infections cannot be treated. The bacterium expresses many small regulatory RNAs (sRNAs) that have unknown biological functions for the most part. Here we show that an S. aureus sRNA, SprX (alias RsaOR), shapes bacterial resistance to glycopeptides, the invaluable treatments for Methicillin-resistant staphylococcal infections. Modifying SprX expression levels influences Vancomycin and Teicoplanin glycopeptide resistance. Comparative proteomic studies have identified that SprX specifically downregulates stage V sporulation protein G, SpoVG. SpoVG is produced from the yabJ-spoVG operon and contributes to S. aureus glycopeptide resistance. SprX negatively regulates SpoVG expression by direct antisense pairings at the internal translation initiation signals of the second operon gene, without modifying bicistronic mRNA expression levels or affecting YabJ translation. The SprX and yabJ-spoVG mRNA domains involved in the interaction have been identified, highlighting the importance of a CU-rich loop of SprX in the control of SpoVG expression. We have shown that SpoVG might not be the unique SprX target involved in the glycopeptide resistance and demonstrated that the regulation of glycopeptide sensitivity involves the CU-rich domain of SprX. Here we report the case of a sRNA influencing antibiotic resistance of a major human pathogen. PMID:24557948

  16. The effects of (-)-epicatechin on endothelial cells involve the G protein-coupled estrogen receptor (GPER).

    PubMed

    Moreno-Ulloa, Aldo; Mendez-Luna, David; Beltran-Partida, Ernesto; Castillo, Carmen; Guevara, Gustavo; Ramirez-Sanchez, Israel; Correa-Basurto, José; Ceballos, Guillermo; Villarreal, Francisco

    2015-10-01

    We have provided evidence that the stimulatory effects of (-)-epicatechin ((-)-EPI) on endothelial cell nitric oxide (NO) production may involve the participation of a cell-surface receptor. Thus far, such entity(ies) has not been fully elucidated. The G protein-coupled estrogen receptor (GPER) is a cell-surface receptor that has been linked to protective effects on the cardiovascular system and activation of intracellular signaling pathways (including NO production) similar to those reported with (-)-EPI. In bovine coronary artery endothelial cells (BCAEC) by the use of confocal imaging, we evidence the presence of GPER at the cell-surface and on F-actin filaments. Using in silico studies we document the favorable binding mode between (-)-EPI and GPER. Such binding is comparable to that of the GPER agonist, G1. By the use of selective blockers, we demonstrate that the activation of ERK 1/2 and CaMKII by (-)-EPI is dependent on the GPER/c-SRC/EGFR axis mimicking those effects noted with G1. We also evidence by the use of siRNA the role that GPER has on mediating ERK1/2 activation by (-)-EPI. GPER appears to be coupled to a non Gαi/o or Gαs, protein subtype. To extrapolate our findings to an ex vivo model, we employed phenylephrine pre-contracted aortic rings evidencing that (-)-EPI can mediate vasodilation through GPER activation. In conclusion, we provide evidence that suggests the GPER as a potential mediator of (-)-EPI effects and highlights the important role that GPER may have on cardiovascular system protection.

  17. Involvement of protein phosphatases in the destabilization of methamphetamine-associated contextual memory.

    PubMed

    Yu, Yang-Jung; Huang, Chien-Hsuan; Chang, Chih-Hua; Gean, Po-Wu

    2016-09-01

    Destabilization refers to a memory that becomes unstable when reactivated and is susceptible to disruption by amnestic agents. Here we delineated the cellular mechanism underlying the destabilization of drug memory. Mice were conditioned with methamphetamine (MeAM) for 3 d, and drug memory was assessed with a conditioned place preference (CPP) protocol. Anisomycin (ANI) was administered 60 min after the CPP retrieval to disrupt reconsolidation. We found that destabilization of MeAM CPP after the application of ANI was blocked by the N-methyl-d-aspartate receptor (NMDAR) antagonist MK-801 and the NR2B antagonist ifenprodil (IFN) but not by the NR2A antagonist NVP-AAM077 (NVP). In addition, decrease in the phosphorylation of GluR1 at Serine845 (p-GluR1-Ser845), decrease in spine density, and a reduction in the AMPAR/NMDAR ratio in the basolateral amygdala (BLA) were reversed after the MK-801 treatment. The effect of ANI on destabilization was prevented by the protein phosphatase 2B (calcineurin, CaN) inhibitors cyclosporine A (CsA) and FK-506 and the protein phosphatase 1 (PP1) inhibitors calyculin A (CA) and okadaic acid (OA). These results suggest that memory destabilization involves the activation of NR2B-containing NMDARs, which in turn allows the influx of Ca(2+) Increased intracellular Ca(2+) stimulates CaN, leading to the dephosphorylation and inactivation of inhibitor 1 and the activation of PP1. PP1 then dephosphorylates p-GluR1-Ser845 to elicit AMPA receptor (AMPAR) endocytosis and destabilization of the drug memory. PMID:27531839

  18. Signatures of nitrogen limitation in the elemental composition of the proteins involved in the metabolic apparatus.

    PubMed

    Acquisti, Claudia; Kumar, Sudhir; Elser, James J

    2009-07-22

    Nitrogen (N) is a fundamental component of nucleotides and amino acids and is often a limiting nutrient in natural ecosystems. Thus, study of the N content of biomolecules may establish important connections between ecology and genomics. However, while significant differences in the elemental composition of whole organisms are well documented, how the flux of nutrients in the cell has shaped the evolution of different cellular processes remains poorly understood. By examining the elemental composition of major functional classes of proteins in four multicellular eukaryotic model organisms, we find that the catabolic machinery shows substantially lower N content than the anabolic machinery and the rest of the proteome. This pattern suggests that ecological selection for N conservation specifically targets cellular components that are highly expressed in response to nutrient limitation. We propose that the RNA component of the anabolic machineries is the mechanistic force driving the elemental imbalance we found, and that RNA functions as an intracellular nutrient reservoir that is degraded and recycled during starvation periods. A comparison of the elemental composition of the anabolic and catabolic machineries in species that have experienced different levels of N limitation in their evolutionary history (animals versus plants) suggests that selection for N conservation has preferentially targeted the catabolic machineries of plants, resulting in a lower N content of the proteins involved in their catabolic processes. These findings link the composition of major cellular components to the environmental factors that trigger the activation of those components, suggesting that resource availability has constrained the atomic composition and the molecular architecture of the biotic processes that enable cells to respond to reduced nutrient availability.

  19. Heat shock protein 90 is involved in IL-17-mediated skin inflammation following thermal stimulation.

    PubMed

    Kim, Bo-Kyung; Park, Minhwa; Kim, Ji-Yon; Lee, Kyung-Ho; Woo, So-Youn

    2016-08-01

    The pathogenesis of inflammatory skin diseases involves interactions between immune cells and keratinocytes, including the T helper 17 (Th17)-mediated immune response. Several chemokines [chemokine (C-X-C motif) ligand (CXCL)1, CXCL5 and CXCL8] and antimicrobial peptides [β-defensin 1 (BD1), LL-37, S100A8 and S100A9] were transcriptionally upregulated in the keratinocyte cell line HaCaT upon stimulation with interleukin (IL)-17. Balneotherapy, the treatment of disease by bathing, is an alternative therapy that has frequently been used for the treatment of inflammatory skin diseases. Immersion in pools of thermal mineral water is often considered to have chemical, thermal, mechanical and immunomodulatory benefits. We examined the effect of thermal treatment on IL-17-mediated inflammation in a model of skin disease. As Act1 is required for IL-17 signaling and is a client protein of heat shock protein 90 (HSP90), we evaluated the effect of HSP90 inhibition on IL-17-mediated cytokine and antimicrobial peptide expression in keratinocytes following heat treatment. We found that after thermal stimulation, Act1 binding to HSP90α was significantly increased in the presence of IL-17 (100 ng/ml) and 17-N-allylamino-17-demethoxygeldanamycin (17-AAG, 1 µM). Antimicrobial peptide and chemokine expression generally increased after heat treatment; Act1 knockdown and 17‑AAG reversed this effect. These observations demonstrate the possible immunomodulatory effect of heat on keratinocytes during the progression of IL-17-mediated inflammatory skin diseases. PMID:27279135

  20. Development of Novel In Vivo Chemical Probes to Address CNS Protein Kinase Involvement in Synaptic Dysfunction

    PubMed Central

    Watterson, D. Martin; Grum-Tokars, Valerie L.; Roy, Saktimayee M.; Schavocky, James P.; Bradaric, Brinda Desai; Bachstetter, Adam D.; Xing, Bin; Dimayuga, Edgardo; Saeed, Faisal; Zhang, Hong; Staniszewski, Agnieszka; Pelletier, Jeffrey C.; Minasov, George; Anderson, Wayne F.; Arancio, Ottavio; Van Eldik, Linda J.

    2013-01-01

    Serine-threonine protein kinases are critical to CNS function, yet there is a dearth of highly selective, CNS-active kinase inhibitors for in vivo investigations. Further, prevailing assumptions raise concerns about whether single kinase inhibitors can show in vivo efficacy for CNS pathologies, and debates over viable approaches to the development of safe and efficacious kinase inhibitors are unsettled. It is critical, therefore, that these scientific challenges be addressed in order to test hypotheses about protein kinases in neuropathology progression and the potential for in vivo modulation of their catalytic activity. Identification of molecular targets whose in vivo modulation can attenuate synaptic dysfunction would provide a foundation for future disease-modifying therapeutic development as well as insight into cellular mechanisms. Clinical and preclinical studies suggest a critical link between synaptic dysfunction in neurodegenerative disorders and the activation of p38αMAPK mediated signaling cascades. Activation in both neurons and glia also offers the unusual potential to generate enhanced responses through targeting a single kinase in two distinct cell types involved in pathology progression. However, target validation has been limited by lack of highly selective inhibitors amenable to in vivo use in the CNS. Therefore, we employed high-resolution co-crystallography and pharmacoinformatics to design and develop a novel synthetic, active site targeted, CNS-active, p38αMAPK inhibitor (MW108). Selectivity was demonstrated by large-scale kinome screens, functional GPCR agonist and antagonist analyses of off-target potential, and evaluation of cellular target engagement. In vitro and in vivo assays demonstrated that MW108 ameliorates beta-amyloid induced synaptic and cognitive dysfunction. A serendipitous discovery during co-crystallographic analyses revised prevailing models about active site targeting of inhibitors, providing insights that will

  1. Involvement of decreased neuroglobin protein level in cognitive dysfunction induced by 1-bromopropane in rats.

    PubMed

    Guo, Ying; Yuan, Hua; Jiang, Lulu; Yang, Junlin; Zeng, Tao; Xie, Keqin; Zhang, Cuili; Zhao, Xiulan

    2015-03-10

    1-Bromopropane (1-BP) is used as a substitute for ozone-depleting solvents (ODS) in industrial applications. 1-BP could display central nervous system (CNS) neurotoxicity manifested by cognitive dysfunction. Neuroglobin (Ngb) is an endogenous neuroprotectant and is predominantly expressed in the nervous system. The present study aimed to investigate Ngb involvement in CNS neurotoxicity induced by 1-BP in rats. Male Wistar rats were randomly divided into 5 groups (n=14) and treated with 0, 100, 200, 400 and 800 mg/kg bw 1-BP, respectively, by gavage for consecutive 12 days. Rats displayed cognitive dysfunction dose-dependently through Morris water maze (MWM) test. Significant neuron loss in layer 5 of the prelimbic cortex (PL) was observed. Moreover, 1-BP decreased Ngb protein level in cerebral cortex and Ngb decrease was significantly positively correlated with cognitive dysfunction. Glutathione (GSH) content, GSH/oxidized glutathione (GSSG) ratio and glutamate cysteine ligase (GCL) activity decreased in cerebral cortex, coupled with the increase in GSSG content. GSH and GSH/GSSG ratio decrease were significantly positively correlated with cortical Ngb decrease. Additionally, levels of N-epsilon-hexanoyl-lysine (HEL) and 4-hydroxy-2-nonenal (4-HNE) modified proteins in cerebral cortex of 1-BP-treated rats increased significantly. In conclusion, it was suggested that 1-BP resulted in decreased endogenous neuroprotectant Ngb in cerebral cortex, which might play an important role in CNS neurotoxicity induced by 1-BP and that 1-BP-induced oxidative stress in cerebral cortex might partly be responsible for Ngb decrease.

  2. The effects of (-)-epicatechin on endothelial cells involve the G protein-coupled estrogen receptor (GPER).

    PubMed

    Moreno-Ulloa, Aldo; Mendez-Luna, David; Beltran-Partida, Ernesto; Castillo, Carmen; Guevara, Gustavo; Ramirez-Sanchez, Israel; Correa-Basurto, José; Ceballos, Guillermo; Villarreal, Francisco

    2015-10-01

    We have provided evidence that the stimulatory effects of (-)-epicatechin ((-)-EPI) on endothelial cell nitric oxide (NO) production may involve the participation of a cell-surface receptor. Thus far, such entity(ies) has not been fully elucidated. The G protein-coupled estrogen receptor (GPER) is a cell-surface receptor that has been linked to protective effects on the cardiovascular system and activation of intracellular signaling pathways (including NO production) similar to those reported with (-)-EPI. In bovine coronary artery endothelial cells (BCAEC) by the use of confocal imaging, we evidence the presence of GPER at the cell-surface and on F-actin filaments. Using in silico studies we document the favorable binding mode between (-)-EPI and GPER. Such binding is comparable to that of the GPER agonist, G1. By the use of selective blockers, we demonstrate that the activation of ERK 1/2 and CaMKII by (-)-EPI is dependent on the GPER/c-SRC/EGFR axis mimicking those effects noted with G1. We also evidence by the use of siRNA the role that GPER has on mediating ERK1/2 activation by (-)-EPI. GPER appears to be coupled to a non Gαi/o or Gαs, protein subtype. To extrapolate our findings to an ex vivo model, we employed phenylephrine pre-contracted aortic rings evidencing that (-)-EPI can mediate vasodilation through GPER activation. In conclusion, we provide evidence that suggests the GPER as a potential mediator of (-)-EPI effects and highlights the important role that GPER may have on cardiovascular system protection. PMID:26303816

  3. cDNA Library Screening Identifies Protein Interactors Potentially Involved in Non-Telomeric Roles of Arabidopsis Telomerase.

    PubMed

    Dokládal, Ladislav; Honys, David; Rana, Rajiv; Lee, Lan-Ying; Gelvin, Stanton B; Sýkorová, Eva

    2015-01-01

    Telomerase-reverse transcriptase (TERT) plays an essential catalytic role in maintaining telomeres. However, in animal systems telomerase plays additional non-telomeric functional roles. We previously screened an Arabidopsis cDNA library for proteins that interact with the C-terminal extension (CTE) TERT domain and identified a nuclear-localized protein that contains an RNA recognition motif (RRM). This RRM-protein forms homodimers in both plants and yeast. Mutation of the gene encoding the RRM-protein had no detectable effect on plant growth and development, nor did it affect telomerase activity or telomere length in vivo, suggesting a non-telomeric role for TERT/RRM-protein complexes. The gene encoding the RRM-protein is highly expressed in leaf and reproductive tissues. We further screened an Arabidopsis cDNA library for proteins that interact with the RRM-protein and identified five interactors. These proteins are involved in numerous non-telomere-associated cellular activities. In plants, the RRM-protein, both alone and in a complex with its interactors, localizes to nuclear speckles. Transcriptional analyses in wild-type and rrm mutant plants, as well as transcriptional co-analyses, suggest that TERT, the RRM-protein, and the RRM-protein interactors may play important roles in non-telomeric cellular functions. PMID:26617625

  4. DYW-type PPR proteins in a heterolobosean protist: plant RNA editing factors involved in an ancient horizontal gene transfer?

    PubMed

    Knoop, Volker; Rüdinger, Mareike

    2010-10-22

    A particular type of pentatricopeptide repeat (PPR) proteins with variable length of the 35 aa PPR motifs and conserved carboxyterminal extensions, named the PLS proteins, was so far exclusively identified in land plants. Several PLS proteins with such domain extensions (E, E+, DYW) were shown to be involved in plant organellar RNA editing but their evolutionary origin had remained enigmatic. We here report the first case of DYW-type PLS proteins outside of the plant kingdom in the protist Naegleria gruberi and hypothesize on horizontal gene transfer in very early land plant evolution.

  5. Calmodulin and Ca2+/calmodulin-binding proteins are involved in Tetrahymena thermophila phagocytosis.

    PubMed

    Gonda, K; Komatsu, M; Numata, O

    2000-08-01

    The ciliated protist, Tetrahymena thermophila, possesses one oral apparatus for phagocytosis, one of the most important cell functions, in the anterior cell cortex. The apparatus comprises four membrane structures which consist of ciliated and unciliated basal bodies, a cytostome where food is collected by oral ciliary motility, and a cytopharynx where food vacuoles are formed. The food vacuole is thought to be transported into the cytoplasm by a deep fiber which connects with the oral apparatus. Although a large number of studies have been done on the structure of the oral apparatus, the molecular mechanisms of phagocytosis in Tetrahymena thermophila are not well understood. In this study, using indirect immunofluorescence, we demonstrated that the deep fiber consisted of actin, CaM, and Ca2+/CaM-binding proteins, p85 and EF-1alpha, which are closely involved in cytokinesis. Moreover, we showed that CaM, p85, and EF-1alpha are colocalized in the cytostome and the cytopharynx of the oral apparatus. Next, we examined whether Ca2+/CaM signal regulates Tetrahymena thermophila phagocytosis, using Ca2+/CaM inhibitors chlorpromazine, trifluoperazine, N-(6-aminohexyl)-1-naphthalenesulfonamide, and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide HCI. In Tetrahymena, it is known that Ca2+/CaM signal is closely involved in ciliary motility and cytokinesis. The results showed that one of the inhibitors, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide HCl, inhibited the food vacuole formation rather than the ciliary motility, while the other three inhibitors effectively prevented the ciliary motility. Considering the colocalization of CaM, p85, and EF-1alpha to the cytopharynx, these results suggest that the Ca2+/CaM signal plays a pivotal role in Tetrahymena thermophila food vacuole formation.

  6. Activation dependent expression of MMPs in peripheral blood mononuclear cells involves protein kinase A.

    PubMed

    Saja, K; Chatterjee, Urmimala; Chatterjee, B P; Sudhakaran, P R

    2007-02-01

    Monocyte/Macrophages are integral cellular components of inflammation. Matrix metalloproteinases (MMPs) produced by these cells play a crucial role in every aspect of inflammation. Results of the investigations on activation dependent upregulation of MMPs in human peripheral blood mononuclear cells in culture using different lectins as an in vitro model system to mimic inflammatory monocytes are presented. Under normal physiological conditions the monocytes produced only very low amount of MMPs in an indomethacin insensitive PG/cAMP independent manner. Zymographic analysis and ELISA showed that treatment of monocyte with lectins like concanavalin A (ConA), wheat germ agglutinin (WGA) and Artocarpus lakoocha agglutinin (ALA) caused upregulation of MMPs and the maximum effect was produced by ALA. ALA significantly upregulated MMP-9 in a concentration and time dependent manner. Immunoblot analysis and RT-PCR confirmed ALA mediated upregulation of MMP-9 production. Inhibition of ALA effect by indomethacin and reversal of the indomethacin effect by Bt(2)cAMP indicated involvement of cAMP dependent signaling pathway. Further support for the prostaglandin mediated effect was obtained by the upregulation of cyclooxygenase by ALA. H-89, an inhibitor of protein kinase A (PKA), inhibited the expression of MMP-9 indicating that ALA mediated upregulation of MMP-9 is mediated through PKA pathway. Increase in MMP production and increase in cyclooxygenase activity and inhibition of the effect of ALA on MMP production by indomethacin suggested that the ALA activated monocytes in culture can be used as an in vitro model system to study the intracellular signaling process involved in the mediation of inflammatory response.

  7. Involvement of Cyclic Guanosine Monophosphate-Dependent Protein Kinase I in Renal Antifibrotic Effects of Serelaxin

    PubMed Central

    Wetzl, Veronika; Schinner, Elisabeth; Kees, Frieder; Hofmann, Franz; Faerber, Lothar; Schlossmann, Jens

    2016-01-01

    Introduction: Kidney fibrosis has shown to be ameliorated through the involvement of cyclic guanosine monophosphate (cGMP) and its dependent protein kinase I (cGKI). Serelaxin, the recombinant form of human relaxin-II, increases cGMP levels and has shown beneficial effects on kidney function in acute heart failure patients. Antifibrotic properties of serelaxin are supposed to be mediated via relaxin family peptide receptor 1 and subsequently enhanced nitric oxide/cGMP to inhibit transforming growth factor-β (TGF-β) signaling. This study examines the involvement of cGKI in the antifibrotic signaling of serelaxin. Methods and Results: Kidney fibrosis was induced by unilateral ureteral obstruction in wildtype (WT) and cGKI knock-out (KO) mice. After 7 days, renal antifibrotic effects of serelaxin were assessed. Serelaxin treatment for 7 days significantly increased cGMP in the kidney of WT and cGKI-KO. In WT, renal fibrosis was reduced through decreased accumulation of collagen1A1, total collagen, and fibronectin. The profibrotic connective tissue growth factor as well as myofibroblast differentiation were reduced and matrix metalloproteinases-2 and -9 were positively modulated after treatment. Moreover, Smad2 as well as extracellular signal-regulated kinase 1 (ERK1) phosphorylation were decreased, whereas phosphodiesterase (PDE) 5a phosphorylation was increased. However, these effects were not observed in cGKI-KO. Conclusion: Antifibrotic renal effects of serelaxin are mediated via cGMP/cGKI to inhibit Smad2- and ERK1-dependent TGF-β signaling and increased PDE5a phosphorylation. PMID:27462268

  8. A mammalian germ cell-specific RNA-binding protein interacts with ubiquitously expressed proteins involved in splice site selection

    NASA Astrophysics Data System (ADS)

    Elliott, David J.; Bourgeois, Cyril F.; Klink, Albrecht; Stévenin, James; Cooke, Howard J.

    2000-05-01

    RNA-binding motif (RBM) genes are found on all mammalian Y chromosomes and are implicated in spermatogenesis. Within human germ cells, RBM protein shows a similar nuclear distribution to components of the pre-mRNA splicing machinery. To address the function of RBM, we have used protein-protein interaction assays to test for possible physical interactions between these proteins. We find that RBM protein directly interacts with members of the SR family of splicing factors and, in addition, strongly interacts with itself. We have mapped the protein domains responsible for mediating these interactions and expressed the mouse RBM interaction region as a bacterial fusion protein. This fusion protein can pull-down several functionally active SR protein species from cell extracts. Depletion and add-back experiments indicate that these SR proteins are the only splicing factors bound by RBM which are required for the splicing of a panel of pre-mRNAs. Our results suggest that RBM protein is an evolutionarily conserved mammalian splicing regulator which operates as a germ cell-specific cofactor for more ubiquitously expressed pre-mRNA splicing activators.

  9. The Mammalian Proteins MMS19, MIP18, and ANT2 Are Involved in Cytoplasmic Iron-Sulfur Cluster Protein Assembly*

    PubMed Central

    van Wietmarschen, Niek; Moradian, Annie; Morin, Gregg B.; Lansdorp, Peter M.; Uringa, Evert-Jan

    2012-01-01

    Iron-sulfur (Fe-S) clusters are essential cofactors of proteins with a wide range of biological functions. A dedicated cytosolic Fe-S cluster assembly (CIA) system is required to assemble Fe-S clusters into cytosolic and nuclear proteins. Here, we show that the mammalian nucleotide excision repair protein homolog MMS19 can simultaneously bind probable cytosolic iron-sulfur protein assembly protein CIAO1 and Fe-S proteins, confirming that MMS19 is a central protein of the CIA machinery that brings Fe-S cluster donor proteins and the receiving apoproteins into proximity. In addition, we show that mitotic spindle-associated MMXD complex subunit MIP18 also interacts with both CIAO1 and Fe-S proteins. Specifically, it binds the Fe-S cluster coordinating regions in Fe-S proteins. Furthermore, we show that ADP/ATP translocase 2 (ANT2) interacts with Fe-S apoproteins and MMS19 in the CIA complex but not with the individual proteins. Together, these results elucidate the composition and interactions within the late CIA complex. PMID:23150669

  10. Heterochromatin Protein 1 Is Involved in Control of Telomere Elongation in Drosophila melanogaster

    PubMed Central

    Savitsky, Mikhail; Kravchuk, Oksana; Melnikova, Larisa; Georgiev, Pavel

    2002-01-01

    Telomeres of Drosophila melanogaster contain arrays of the retrotransposon-like elements HeT-A and TART. Their transposition to broken chromosome ends has been implicated in chromosome healing and telomere elongation. We have developed a genetic system which enables the determination of the frequency of telomere elongation events and their mechanism. The frequency differs among lines with different genotypes, suggesting that several genes are in control. Here we show that the Su(var)2-5 gene encoding heterochromatin protein 1 (HP1) is involved in regulation of telomere length. Different Su(var)2-5 mutations in the heterozygous state increase the frequency of HeT-A and TART attachment to the broken chromosome end by more than a hundred times. The attachment occurs through either HeT-A/TART transposition or recombination with other telomeres. Terminal DNA elongation by gene conversion is greatly enhanced by Su(var)2-5 mutations only if the template for DNA synthesis is on the same chromosome but not on the homologous chromosome. The Drosophila lines bearing the Su(var)2-5 mutations maintain extremely long telomeres consisting of HeT-A and TART for many generations. Thus, HP1 plays an important role in the control of telomere elongation in D. melanogaster. PMID:11940677

  11. Shrinkage activates a nonselective conductance: involvement of a Walker-motif protein and PKC.

    PubMed

    Nelson, D J; Tien, X Y; Xie, W; Brasitus, T A; Kaetzel, M A; Dedman, J R

    1996-01-01

    The ability of all cells to maintain their volume during an osmotic challenge is dependent on the regulated movement of salt and water across the plasma membrane. We demonstrate the phosphorylation-dependent gating of a nonselective conductance in Caco-2 cells during cellular shrinkage. Intracellular application of exogenous purified rat brain protein kinase C (PKC) resulted in the activation of a current similar to that activated during shrinkage with a Na(+)-to-Cl- permeability ratio of approximately 1.7:1. To prevent possible PKC- and/or shrinkage-dependent activation of cystic fibrosis transmembrane regulator (CFTR), which is expressed at high levels in Caco-2 cells, a functional anti-peptide antibody, anti-CFTR505-511, was introduced into the cells via the patch pipette. Anti-CFTR505-511, which is directed against the Walker motif in the first nucleotide binding fold of CFTR, prevented the PKC/shrink-age current activation. The peptide CFTR505-511 also induced current inhibition, suggesting the possible involvement of a regulatory element in close proximity to the channel that shares sequence homology with the first nucleotide binding fold of CFTR and whose binding to the channel is required for channel gating. PMID:8772443

  12. Direct Involvement of Retinoblastoma Family Proteins in DNA Repair by Non-homologous End-Joining

    PubMed Central

    Cook, Rebecca; Zoumpoulidou, Georgia; Luczynski, Maciej T.; Rieger, Simone; Moquet, Jayne; Spanswick, Victoria J.; Hartley, John A.; Rothkamm, Kai; Huang, Paul H.; Mittnacht, Sibylle

    2015-01-01

    Summary Deficiencies in DNA double-strand break (DSB) repair lead to genetic instability, a recognized cause of cancer initiation and evolution. We report that the retinoblastoma tumor suppressor protein (RB1) is required for DNA DSB repair by canonical non-homologous end-joining (cNHEJ). Support of cNHEJ involves a mechanism independent of RB1’s cell-cycle function and depends on its amino terminal domain with which it binds to NHEJ components XRCC5 and XRCC6. Cells with engineered loss of RB family function as well as cancer-derived cells with mutational RB1 loss show substantially reduced levels of cNHEJ. RB1 variants disabled for the interaction with XRCC5 and XRCC6, including a cancer-associated variant, are unable to support cNHEJ despite being able to confer cell-cycle control. Our data identify RB1 loss as a candidate driver of structural genomic instability and a causative factor for cancer somatic heterogeneity and evolution. PMID:25818292

  13. Are G-protein-coupled receptors involved in mediating larval settlement and metamorphosis of coral planulae?

    PubMed

    Tran, Cawa; Hadfield, Michael G

    2012-04-01

    Larvae of the scleractinian coral Pocillopora damicornis are induced to settle and metamorphose by the presence of marine bacterial biofilms, and the larvae of Montipora capitata respond to a combination of filamentous and crustose coralline algae. The primary goal of this study was to better understand metamorphosis of cnidarian larvae by determining what types of receptors and signal-transduction pathways are involved during stimulation of metamorphosis of P. damicornis and M. capitata. Evidence from studies on larvae of hydrozoans suggests that G-protein-coupled receptors (GPCRs) are good candidates. Settlement experiments were conducted in which competent larvae were exposed to neuropharmacological agents that affect GPCRs and their associated signal-transduction pathways, AC/cAMP and PI/DAG/PKC. On the basis of the results of these experiments, we conclude that GPCRs and these pathways do not mediate settlement and metamorphosis in either coral species. Two compounds that had an effect on both species, forskolin and phorbol-12-myristate-13-acetate (TPA), may be acting on other cellular processes not related to GPCRs. This study strengthens our understanding of the underlying physiological mechanisms that regulate metamorphosis in coral larvae. PMID:22589403

  14. Nicotine-induced plasticity in the retinocollicular pathway: Evidence for involvement of amyloid precursor protein.

    PubMed

    Gonçalves, R G J; Vasques, J F; Trindade, P; Serfaty, C A; Campello-Costa, P; Faria-Melibeu, A C

    2016-01-28

    During early postnatal development retinocollicular projections undergo activity-dependent synaptic refinement that results in the formation of precise topographical maps in the visual layers of the superior colliculus (SC). Amyloid Precursor Protein (APP) is a widely expressed transmembrane glycoprotein involved in the regulation of several aspects of neural development, such as neurite outgrowth, synapse formation and plasticity. Stimulation of cholinergic system has been found to alter the expression and processing of APP in different cell lines. Herein, we investigated the effect of nicotine on the development of retinocollicular pathway and on APP metabolism in the SC of pigmented rats. Animals were submitted to intracranial Elvax implants loaded with nicotine or phosphate-buffered saline (vehicle) at postnatal day (PND) 7. The ipsilateral retinocollicular pathway of control and experimental groups was anterogradely labeled either 1 or 3 weeks after surgery (PND 14 or PND 28). Local nicotine exposure produces a transitory sprouting of uncrossed retinal axons outside their main terminal zones. Nicotine also increases APP content and its soluble neurotrophic fragment sAPPα. Furthermore, nicotine treatment upregulates nicotinic acetylcholine receptor α7 and β2 subunits. Taken together, these data indicate that nicotine disrupts the ordering and topographic mapping of axons in the retinocollicular pathway and facilitates APP processing through the nonamyloidogenic pathway, suggesting that sAPPα may act as a trophic agent that mediates nicotine-induced morphological plasticity.

  15. The Fragile X Protein binds mRNAs involved in cancer progression and modulates metastasis formation

    PubMed Central

    Lucá, Rossella; Averna, Michele; Zalfa, Francesca; Vecchi, Manuela; Bianchi, Fabrizio; Fata, Giorgio La; Del Nonno, Franca; Nardacci, Roberta; Bianchi, Marco; Nuciforo, Paolo; Munck, Sebastian; Parrella, Paola; Moura, Rute; Signori, Emanuela; Alston, Robert; Kuchnio, Anna; Farace, Maria Giulia; Fazio, Vito Michele; Piacentini, Mauro; De Strooper, Bart; Achsel, Tilmann; Neri, Giovanni; Neven, Patrick; Evans, D Gareth; Carmeliet, Peter; Mazzone, Massimiliano; Bagni, Claudia

    2013-01-01

    The role of the fragile X mental retardation protein (FMRP) is well established in brain, where its absence leads to the fragile X syndrome (FXS). FMRP is almost ubiquitously expressed, suggesting that, in addition to its effects in brain, it may have fundamental roles in other organs. There is evidence that FMRP expression can be linked to cancer. FMR1 mRNA, encoding FMRP, is overexpressed in hepatocellular carcinoma cells. A decreased risk of cancer has been reported in patients with FXS while a patient-case with FXS showed an unusual decrease of tumour brain invasiveness. However, a role for FMRP in regulating cancer biology, if any, remains unknown. We show here that FMRP and FMR1 mRNA levels correlate with prognostic indicators of aggressive breast cancer, lung metastases probability and triple negative breast cancer (TNBC). We establish that FMRP overexpression in murine breast primary tumours enhances lung metastasis while its reduction has the opposite effect regulating cell spreading and invasion. FMRP binds mRNAs involved in epithelial mesenchymal transition (EMT) and invasion including E-cadherin and Vimentin mRNAs, hallmarks of EMT and cancer progression. PMID:24092663

  16. The fragile X protein binds mRNAs involved in cancer progression and modulates metastasis formation.

    PubMed

    Lucá, Rossella; Averna, Michele; Zalfa, Francesca; Vecchi, Manuela; Bianchi, Fabrizio; La Fata, Giorgio; Del Nonno, Franca; Nardacci, Roberta; Bianchi, Marco; Nuciforo, Paolo; Munck, Sebastian; Parrella, Paola; Moura, Rute; Signori, Emanuela; Alston, Robert; Kuchnio, Anna; Farace, Maria Giulia; Fazio, Vito Michele; Piacentini, Mauro; De Strooper, Bart; Achsel, Tilmann; Neri, Giovanni; Neven, Patrick; Evans, D Gareth; Carmeliet, Peter; Mazzone, Massimiliano; Bagni, Claudia

    2013-10-01

    The role of the fragile X mental retardation protein (FMRP) is well established in brain, where its absence leads to the fragile X syndrome (FXS). FMRP is almost ubiquitously expressed, suggesting that, in addition to its effects in brain, it may have fundamental roles in other organs. There is evidence that FMRP expression can be linked to cancer. FMR1 mRNA, encoding FMRP, is overexpressed in hepatocellular carcinoma cells. A decreased risk of cancer has been reported in patients with FXS while a patient-case with FXS showed an unusual decrease of tumour brain invasiveness. However, a role for FMRP in regulating cancer biology, if any, remains unknown. We show here that FMRP and FMR1 mRNA levels correlate with prognostic indicators of aggressive breast cancer, lung metastases probability and triple negative breast cancer (TNBC). We establish that FMRP overexpression in murine breast primary tumours enhances lung metastasis while its reduction has the opposite effect regulating cell spreading and invasion. FMRP binds mRNAs involved in epithelial mesenchymal transition (EMT) and invasion including E-cadherin and Vimentin mRNAs, hallmarks of EMT and cancer progression. PMID:24092663

  17. The involvement of heat-shock proteins in the pathogenesis of autoimmune arthritis: a critical appraisal

    PubMed Central

    Huang, Min-Nung; Yu, Hua; Moudgil, Kamal D.

    2012-01-01

    Objectives To review the literature on the role of heat-shock proteins (HSPs) in the pathogenesis of autoimmune arthritis in animal models ans patients with rheumatoid arthritis (RA). Methods The published literature in Medline (PubMed), including our published work on the cell-mediated as well as humoral immune response to various HSPs was reviewed. Studies in both the pre-clinical animal models of arthritis as well as RA were examined critically and the data presented. Results In experimental arthritis, disease induction by different arthritogenic stimuli, including an adjuvant, led to immune response to mycobacterial HSP65 (BHSP65). However, attempts to induce arthritis by a purified HSP have not met with success. There are several reports of a significant immune response to HSP65 in RA patients. But, the issue of cause and effect is difficult to address. Nevertheless, several studies in animal models and a couple of clinical trials in RA patients have shown the beneficial effect of HSPs against autoimmune arthritis. Conclusions There is a clear association between immune response to HSPs, particularly HSP65, and the initiation and propagation of autoimmune arthritis in experimental models. The correlation is relatively less convincing in RA patients. In both cases, the ability of HSPs to modulate arthritis offers support, albeit an indirect one, for the involvement of these antigens in the disease process. PMID:19969325

  18. bHLH proteins involved in Drosophila neurogenesis are mutually regulated at the level of stability

    PubMed Central

    Kiparaki, Marianthi; Zarifi, Ioanna; Delidakis, Christos

    2015-01-01

    Proneural bHLH activators are expressed in all neuroectodermal regions prefiguring events of central and peripheral neurogenesis. Drosophila Sc is a prototypical proneural activator that heterodimerizes with the E-protein Daughterless (Da) and is antagonized by, among others, the E(spl) repressors. We determined parameters that regulate Sc stability in Drosophila S2 cells. We found that Sc is a very labile phosphoprotein and its turnover takes place via at least three proteasome-dependent mechanisms. (i) When Sc is in excess of Da, its degradation is promoted via its transactivation domain (TAD). (ii) In a DNA-bound Da/Sc heterodimer, Sc degradation is promoted via an SPTSS phosphorylation motif and the AD1 TAD of Da; Da is spared in the process. (iii) When E(spl)m7 is expressed, it complexes with Sc or Da/Sc and promotes their degradation in a manner that requires the corepressor Groucho and the Sc SPTSS motif. Da/Sc reciprocally promotes E(spl)m7 degradation. Since E(spl)m7 is a direct target of Notch, the mutual destabilization of Sc and E(spl) may contribute in part to the highly conserved anti-neural activity of Notch. Sc variants lacking the SPTSS motif are dramatically stabilized and are hyperactive in transgenic flies. Our results propose a novel mechanism of regulation of neurogenesis, involving the stability of key players in the process. PMID:25694512

  19. Lincomycin Biosynthesis Involves a Tyrosine Hydroxylating Heme Protein of an Unusual Enzyme Family

    PubMed Central

    Novotna, Jitka; Olsovska, Jana; Novak, Petr; Mojzes, Peter; Chaloupkova, Radka; Kamenik, Zdenek; Spizek, Jaroslav; Kutejova, Eva; Mareckova, Marketa; Tichy, Pavel; Damborsky, Jiri; Janata, Jiri

    2013-01-01

    The gene lmbB2 of the lincomycin biosynthetic gene cluster of Streptomyces lincolnensis ATCC 25466 was shown to code for an unusual tyrosine hydroxylating enzyme involved in the biosynthetic pathway of this clinically important antibiotic. LmbB2 was expressed in Escherichia coli, purified near to homogeneity and shown to convert tyrosine to 3,4-dihydroxyphenylalanine (DOPA). In contrast to the well-known tyrosine hydroxylases (EC 1.14.16.2) and tyrosinases (EC 1.14.18.1), LmbB2 was identified as a heme protein. Mass spectrometry and Soret band-excited Raman spectroscopy of LmbB2 showed that LmbB2 contains heme b as prosthetic group. The CO-reduced differential absorption spectra of LmbB2 showed that the coordination of Fe was different from that of cytochrome P450 enzymes. LmbB2 exhibits sequence similarity to Orf13 of the anthramycin biosynthetic gene cluster, which has recently been classified as a heme peroxidase. Tyrosine hydroxylating activity of LmbB2 yielding DOPA in the presence of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) was also observed. Reaction mechanism of this unique heme peroxidases family is discussed. Also, tyrosine hydroxylation was confirmed as the first step of the amino acid branch of the lincomycin biosynthesis. PMID:24324587

  20. Involvement of inhibitory PAS domain protein in neuronal cell death in Parkinson’s disease

    PubMed Central

    Torii, S; Kasai, S; Suzuki, A; Todoroki, Y; Yokozawa, K; Yasumoto, K-I; Seike, N; Kiyonari, H; Mukumoto, Y; Kakita, A; Sogawa, K

    2015-01-01

    Inhibitory PAS domain protein (IPAS), a repressor of hypoxia-inducible factor-dependent transcription under hypoxia, was found to exert pro-apoptotic activity in oxidative stress-induced cell death. However, physiological and pathological processes associated with this activity are not known. Here we show that IPAS is a key molecule involved in neuronal cell death in Parkinson’s disease (PD). IPAS was ubiquitinated by Parkin for proteasomal degradation following carbonyl cyanide m-chlorophenyl hydrazone treatment. Phosphorylation of IPAS at Thr12 by PTEN-induced putative kinase 1 (PINK1) was required for ubiquitination to occur. Activation of the PINK1–Parkin pathway attenuated IPAS-dependent apoptosis. IPAS was markedly induced in the midbrain following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration, and IPAS-deficient mice showed resistance to MPTP-induced degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). A significant increase in IPAS expression was found in SNpc neurons in patients with sporadic PD. These results indicate a mechanism of neurodegeneration in PD. PMID:27551449

  1. Using co-expression analysis and stress-based screens to uncover Arabidopsis peroxisomal proteins involved in drought response

    DOE PAGESBeta

    Li, Jiying; Hu, Jianping; Bassham, Diane

    2015-09-14

    Peroxisomes are essential organelles that house a wide array of metabolic reactions important for plant growth and development. However, our knowledge regarding the role of peroxisomal proteins in various biological processes, including plant stress response, is still incomplete. Recent proteomic studies of plant peroxisomes significantly increased the number of known peroxisomal proteins and greatly facilitated the study of peroxisomes at the systems level. The objectives of this study were to determine whether genes that encode peroxisomal proteins with related functions are co-expressed in Arabidopsis and identify peroxisomal proteins involved in stress response using in silico analysis and mutant screens. Usingmore » microarray data from online databases, we performed hierarchical clustering analysis to generate a comprehensive view of transcript level changes for Arabidopsis peroxisomal genes during development and under abiotic and biotic stress conditions. Many genes involved in the same metabolic pathways exhibited co-expression, some genes known to be involved in stress response are regulated by the corresponding stress conditions, and function of some peroxisomal proteins could be predicted based on their coexpression pattern. Since drought caused expression changes to the highest number of genes that encode peroxisomal proteins, we subjected a subset of Arabidopsis peroxisomal mutants to a drought stress assay. Mutants of the LON2 protease and the photorespiratory enzyme hydroxypyruvate reductase 1 (HPR1) showed enhanced susceptibility to drought, suggesting the involvement of peroxisomal quality control and photorespiration in drought resistance. Lastly, our study provided a global view of how genes that encode peroxisomal proteins respond to developmental and environmental cues and began to reveal additional peroxisomal proteins involved in stress response, thus opening up new avenues to investigate the role of peroxisomes in plant adaptation to

  2. Using co-expression analysis and stress-based screens to uncover Arabidopsis peroxisomal proteins involved in drought response

    SciTech Connect

    Li, Jiying; Hu, Jianping; Bassham, Diane

    2015-09-14

    Peroxisomes are essential organelles that house a wide array of metabolic reactions important for plant growth and development. However, our knowledge regarding the role of peroxisomal proteins in various biological processes, including plant stress response, is still incomplete. Recent proteomic studies of plant peroxisomes significantly increased the number of known peroxisomal proteins and greatly facilitated the study of peroxisomes at the systems level. The objectives of this study were to determine whether genes that encode peroxisomal proteins with related functions are co-expressed in Arabidopsis and identify peroxisomal proteins involved in stress response using in silico analysis and mutant screens. Using microarray data from online databases, we performed hierarchical clustering analysis to generate a comprehensive view of transcript level changes for Arabidopsis peroxisomal genes during development and under abiotic and biotic stress conditions. Many genes involved in the same metabolic pathways exhibited co-expression, some genes known to be involved in stress response are regulated by the corresponding stress conditions, and function of some peroxisomal proteins could be predicted based on their coexpression pattern. Since drought caused expression changes to the highest number of genes that encode peroxisomal proteins, we subjected a subset of Arabidopsis peroxisomal mutants to a drought stress assay. Mutants of the LON2 protease and the photorespiratory enzyme hydroxypyruvate reductase 1 (HPR1) showed enhanced susceptibility to drought, suggesting the involvement of peroxisomal quality control and photorespiration in drought resistance. Lastly, our study provided a global view of how genes that encode peroxisomal proteins respond to developmental and environmental cues and began to reveal additional peroxisomal proteins involved in stress response, thus opening up new avenues to investigate the role of peroxisomes in plant adaptation to

  3. Overproduction, purification, and ATPase activity of the Escherichia coli RuvB protein involved in DNA repair.

    PubMed Central

    Iwasaki, H; Shiba, T; Makino, K; Nakata, A; Shinagawa, H

    1989-01-01

    The ruvA and ruvB genes of Escherichia coli constitute an operon which belongs to the SOS regulon. Genetic evidence suggests that the products of the ruv operon are involved in DNA repair and recombination. To begin biochemical characterization of these proteins, we developed a plasmid system that overproduced RuvB protein to 20% of total cell protein. Starting from the overproducing system, we purified RuvB protein. The purified RuvB protein behaved like a monomer in gel filtration chromatography and had an apparent relative molecular mass of 38 kilodaltons in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which agrees with the value predicted from the DNA sequence. The amino acid sequence of the amino-terminal region of the purified protein was analyzed, and the sequence agreed with the one deduced from the DNA sequence. Since the deduced sequence of RuvB protein contained the consensus sequence for ATP-binding proteins, we examined the ATP-binding and ATPase activities of the purified RuvB protein. RuvB protein had a stronger affinity to ADP than to ATP and weak ATPase activity. The results suggest that the weak ATPase activity of RuvB protein is at least partly due to end product inhibition by ADP. Images PMID:2529252

  4. Plastid ribosomal protein S5 is involved in photosynthesis, plant development, and cold stress tolerance in Arabidopsis

    PubMed Central

    Zhang, Junxiang; Yuan, Hui; Yang, Yong; Fish, Tara; Lyi, Sangbom M.; Thannhauser, Theodore W; Zhang, Lugang; Li, Li

    2016-01-01

    Plastid ribosomal proteins are essential components of protein synthesis machinery and have diverse roles in plant growth and development. Mutations in plastid ribosomal proteins lead to a range of developmental phenotypes in plants. However, how they regulate these processes is not fully understood, and the functions of some individual plastid ribosomal proteins remain unknown. To identify genes responsible for chloroplast development, we isolated and characterized a mutant that exhibited pale yellow inner leaves with a reduced growth rate in Arabidopsis. The mutant (rps5) contained a missense mutation of plastid ribosomal protein S5 (RPS5), which caused a dramatically reduced abundance of chloroplast 16S rRNA and seriously impaired 16S rRNA processing to affect ribosome function and plastid translation. Comparative proteomic analysis revealed that the rps5 mutation suppressed the expression of a large number of core components involved in photosystems I and II as well as many plastid ribosomal proteins. Unexpectedly, a number of proteins associated with cold stress responses were greatly decreased in rps5, and overexpression of the plastid RPS5 improved plant cold stress tolerance. Our results indicate that RPS5 is an important constituent of the plastid 30S subunit and affects proteins involved in photosynthesis and cold stress responses to mediate plant growth and development. PMID:27006483

  5. A Proteomic Approach for the Identification of Up-Regulated Proteins Involved in the Metabolic Process of the Leiomyoma

    PubMed Central

    Ura, Blendi; Scrimin, Federica; Arrigoni, Giorgio; Franchin, Cinzia; Monasta, Lorenzo; Ricci, Giuseppe

    2016-01-01

    Uterine leiomyoma is the most common benign smooth muscle cell tumor of the uterus. Proteomics is a powerful tool for the analysis of complex mixtures of proteins. In our study, we focused on proteins that were upregulated in the leiomyoma compared to the myometrium. Paired samples of eight leiomyomas and adjacent myometrium were obtained and submitted to two-dimensional gel electrophoresis (2-DE) and mass spectrometry for protein identification and to Western blotting for 2-DE data validation. The comparison between the patterns revealed 24 significantly upregulated (p < 0.05) protein spots, 12 of which were found to be associated with the metabolic processes of the leiomyoma and not with the normal myometrium. The overexpression of seven proteins involved in the metabolic processes of the leiomyoma was further validated by Western blotting and 2D Western blotting. Four of these proteins have never been associated with the leiomyoma before. The 2-DE approach coupled with mass spectrometry, which is among the methods of choice for comparative proteomic studies, identified a number of proteins overexpressed in the leiomyoma and involved in several biological processes, including metabolic processes. A better understanding of the mechanism underlying the overexpression of these proteins may be important for therapeutic purposes. PMID:27070597

  6. Mobilization of T-DNA from Agrobacterium to plant cells involves a protein that binds single-stranded DNA.

    PubMed Central

    Gietl, C; Koukolíková-Nicola, Z; Hohn, B

    1987-01-01

    Crude protein extracts of induced and uninduced octopine wild-type strain of Agrobacterium tumefaciens, as well as several mutants of the virulence loci virA, -B, -G, -C, -D, and -E, were probed with single- and double-stranded synthetic oligodeoxynucleotides of different sequence and length in an electrophoretic retardation assay. Four complexes involving sequence-nonspecific, single-stranded-DNA-binding proteins were recognized. One inducible complex is determined by the virE locus, two Ti-plasmid-dependent complexes are constitutively expressed, and a fourth one is controlled by chromosomal genes. The protein-DNA complexes were characterized by sucrose density gradient centrifugation and by determination of the length of single-stranded DNA required for their formation. It is hypothesized that the single-stranded-DNA-binding proteins are involved in the production of T-DNA intermediates or have a carrier or protective function during T-DNA transfer. Images PMID:3480525

  7. Proteomic profile of carbonylated proteins in rat liver: exercise attenuated oxidative stress may be involved in fatty liver improvement.

    PubMed

    Hu, Xiaofei; Duan, Zhigui; Hu, Hui; Li, Guolin; Yan, Siyu; Wu, Jinfeng; Wang, Jun; Yin, Dazhong; Xie, Qingji

    2013-05-01

    To screen target proteins of oxidative stress which mediate the effects of exercise on preventing nonalcoholic fatty liver disease (NAFLD), the methods for selecting carbonylated proteins were modified, and carbonylated proteins were profiled. The results showed that treadmill training reduced oxidative stress and the levels of intrahepatic triglyceride (IHTG). The changes in IHTG showed a significant positive correlation with oxidative stress as indicated by malondialdehyde level. Further results from proteomics illustrated that 17 functional proteins were susceptible to oxidative modification, and exercise protected three proteins from carbonylation. The latter three proteins may serve as both direct target proteins of oxidative stress and mediators contributing to the beneficial effects of exercise. In particular, a long-chain specific acyl-CoA dehydrogenase (ACADL) which was a key enzyme in lipid metabolism was not carbonylated and with higher activities in exercise group. These findings indicate that this modified technique is practical and powerful in selecting carbonylated proteins. Long-term treadmill training is effective in ameliorating oxidative stress and preventing the accumulation of IHTG. Among the 17 target proteins of oxidative modification, three proteins contribute to the beneficial effects of exercise. Preventing ACADL from carbonylation may be involved in the physiological mechanism of exercise-induced NAFLD improvement.

  8. In vivo versus in vitro protein abundance analysis of Shigella dysenteriae type 1 reveals changes in the expression of proteins involved in virulence, stress and energy metabolism

    PubMed Central

    2011-01-01

    Background Shigella dysenteriae serotype 1 (SD1) causes the most severe form of epidemic bacillary dysentery. Quantitative proteome profiling of Shigella dysenteriae serotype 1 (SD1) in vitro (derived from LB cell cultures) and in vivo (derived from gnotobiotic piglets) was performed by 2D-LC-MS/MS and APEX, a label-free computationally modified spectral counting methodology. Results Overall, 1761 proteins were quantitated at a 5% FDR (false discovery rate), including 1480 and 1505 from in vitro and in vivo samples, respectively. Identification of 350 cytoplasmic membrane and outer membrane (OM) proteins (38% of in silico predicted SD1 membrane proteome) contributed to the most extensive survey of the Shigella membrane proteome reported so far. Differential protein abundance analysis using statistical tests revealed that SD1 cells switched to an anaerobic energy metabolism under in vivo conditions, resulting in an increase in fermentative, propanoate, butanoate and nitrate metabolism. Abundance increases of transcription activators FNR and Nar supported the notion of a switch from aerobic to anaerobic respiration in the host gut environment. High in vivo abundances of proteins involved in acid resistance (GadB, AdiA) and mixed acid fermentation (PflA/PflB) indicated bacterial survival responses to acid stress, while increased abundance of oxidative stress proteins (YfiD/YfiF/SodB) implied that defense mechanisms against oxygen radicals were mobilized. Proteins involved in peptidoglycan turnover (MurB) were increased, while β-barrel OM proteins (OmpA), OM lipoproteins (NlpD), chaperones involved in OM protein folding pathways (YraP, NlpB) and lipopolysaccharide biosynthesis (Imp) were decreased, suggesting unexpected modulations of the outer membrane/peptidoglycan layers in vivo. Several virulence proteins of the Mxi-Spa type III secretion system and invasion plasmid antigens (Ipa proteins) required for invasion of colonic epithelial cells, and release of bacteria

  9. Protein kinase Cδ but not PKCα is involved in insulin-induced glucose metabolism in hepatocytes.

    PubMed

    Brutman-Barazani, Tamar; Horovitz-Fried, Miriam; Aga-Mizrachi, Shlomit; Brand, Chagit; Brodie, Chaya; Rosa, Jagoda; Sampson, Sanford R

    2012-06-01

    The liver is a major insulin-responsive tissue responsible for glucose regulation. One important mechanism in this phenomenon is insulin-induced glycogen synthesis. Studies in our laboratory have shown that protein kinase Cs delta (PKCδ) and alpha (α) have important roles in insulin-induced glucose transport in skeletal muscle, and that their expression and activity are regulated by insulin. Their importance in glucose regulation in liver cells is unclear. In this study we investigated the possibility that these isoforms are involved in the mediation of insulin-induced glycogen synthesis in hepatocytes. Studies were done on rat hepatocytes in primary culture and on the AML-12 (alpha mouse liver) cell line. Insulin increased activity and tyrosine phosphorylation of PKCδ within 5 min. In contrast, activity and tyrosine phosphorylation of PKCα were not increased by insulin. PKCδ was constitutively associated with IR, and this was increased by insulin stimulation. Suppression of PKCδ expression by transfection with RNAi, or overexpression of kinase dead (dominant negative) PKCδ reduced both the insulin-induced activation of PKB/Akt and the phosphorylation of glycogen synthase kinase 3 (GSK3) and reduced significantly insulin-induced glucose uptake. In addition, treatment of primary rat hepatocytes with rottlerin abrogated insulin-induced increase in glycogen synthesis. Neither overexpression nor inhibition of PKCα appeared to alter activation of PKB, phosphorylation of GSK3 or glucose uptake in response to insulin. We conclude that PKCδ, but not PKCα, plays an essential role in insulin-induced glucose uptake and glycogenesis in hepatocytes.

  10. Characterisation of a mobile protein-binding epitope in the translocation domain of colicin E9.

    PubMed

    Macdonald, Colin J; Tozawa, Kaeko; Collins, Emily S; Penfold, Christopher N; James, Richard; Kleanthous, Colin; Clayden, Nigel J; Moore, Geoffrey R

    2004-09-01

    The 61 kDa colicin E9 protein toxin enters the cytoplasm of susceptible cells by interacting with outer membrane and periplasmic helper proteins, and kills them by hydrolysing their DNA. The membrane translocation function is located in the N-terminal domain of the colicin, with a key signal sequence being a pentapeptide region that governs the interaction with the helper protein TolB (the TolB box). Previous NMR studies (Collins et al., 2002 J. Mol. Biol. 318, 787-804) have shown that the N-terminal 83 residues of colicin E9, which includes the TolB box, is largely unstructured and highly flexible. In order to further define the properties of this region we have studied a fusion protein containing residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight-residue linking sequence. 53 of the expected 58 backbone NH resonances for the first 61 residues and all of the expected 7 backbone NH resonances of the linking sequence were assigned with 3D (1)H-(13)C-(15)N NMR experiments, and the backbone dynamics of these regions investigated through measurement of (1)H-(15)N relaxation properties. Reduced spectral density mapping, extended Lipari-Szabo modelling, and fitting backbone R(2) relaxation rates to a polymer dynamics model identifies three clusters of interacting residues, each containing a tryptophan. Each of these clusters is perturbed by TolB binding to the intact colicin, showing that the significant region for TolB binding extends beyond the recognized five amino acids of the TolB box and demonstrating that the binding epitope for TolB involves a considerable degree of order within an otherwise disordered and flexible domain. Abbreviations : Im9, the immunity protein for colicin E9; E9 DNase, the endonuclease domain of colicin E9; HSQC, heteronuclear single quantum coherence; ppm, parts per million; DSS, 2,2-(dimethylsilyl)propanesulfonic acid; TSP, sodium 3-trimethylsilypropionate; T(1 - 61)-DNase fusion protein, residues 1-61 of

  11. Tau deficiency leads to the upregulation of BAF-57, a protein involved in neuron-specific gene repression.

    PubMed

    de Barreda, Elena Gómez; Dawson, Hana N; Vitek, Michel P; Avila, Jesús

    2010-06-01

    Although tau is mainly located in the cell cytoplasm, mostly bound to tubulin, it may also be found in the nucleus of neurons. Hence, we tested whether tau might play a role in regulating the expression of certain genes by comparing gene expression in mice containing or lacking the tau protein. Our results identified a significant difference in the expression of the smarce1 gene, which codes for the BAF-57 protein, a protein involved in the repression of neuron specific genes. These data suggest a role for tau in neuron maturation.

  12. Ligand-induced association of surface immunoglobulin with the detergent insoluble cytoskeleton may involve an 89K protein

    SciTech Connect

    Gupta, S.K.; Woda, B.

    1986-03-01

    Membrane immunoglobulin of B-lymphocytes is thought to play an important role in antigen recognition and cellular activation. Binding of cross-linking ligands to surface immunoglobulin (SIg) on intact cells converts it to a detergent insoluble state, and this conversion is associated with the transmission of a mitogenic signal. Insolubilized membrane proteins may be solubilized by incubating the detergent insoluble cytoskeletons in buffers which convert F-actin to G-actin ((Buffer 1), 0.34M sucrose, 0.5mM ATP, 0.5mM Dithiothrietol and lmM EDTA). Immunoprecipitation of SIg from the detergent soluble fraction of /sup 35/S-methionine labeled non ligand treated rat B-cells results in the co-isolation of an 89K protein and a 44K protein, presumably actin. The 89K protein is not associated with the fraction of endogenous detergent insoluble SIg. On treatment of rat B cells with cross-linking ligand (anti-Ig) the 89K protein becomes detergent insoluble along with most of the SIg and co-isolates with SIg on immunoprecipitation of the detergent insoluble, buffer l solubilized fraction. The migration of the SIg-associated 89K protein from the detergent soluble fraction to the detergent insoluble fraction after ligand treatment, suggests that this protein might be involved in linking SIg to the underlying cytoskeleton and could be involved in the transmission of a mitogenic signal.

  13. Proteomic analysis of differentially expressed proteins involved in ethylene-induced chilling tolerance in harvested banana fruit

    PubMed Central

    Li, Taotao; Yun, Ze; Zhang, Dandan; Yang, Chengwei; Zhu, Hong; Jiang, Yueming; Duan, Xuewu

    2015-01-01

    To better understand the mechanism involved in ethylene-induced chilling tolerance in harvested banana fruit, a gel-based proteomic study followed by MALDI-TOF-TOF MS was carried out. Banana fruit were treated with 500 ppm ethylene for 12 h and then stored at 6°C. During cold storage, the chilling tolerance was assessed and the proteins from the peel were extracted for proteomic analysis. It was observed that ethylene pretreatment significantly induced the chilling tolerance in harvested banana fruit, manifesting as increases in maximal chlorophyll fluorescence (Fv/Fm) and decreased electrolyte leakage. Sixty-four proteins spots with significant differences in abundance were identified, most of which were induced by ethylene pretreatment during cold storage. The up-regulated proteins induced by ethylene pretreatment were mainly related to energy metabolism, stress response and defense, methionine salvage cycle and protein metabolism. These proteins were involved in ATP synthesis, ROS scavenging, protective compounds synthesis, protein refolding and degradation, and polyamine biosynthesis. It is suggested that these up-regulated proteins might play a role in the ethylene-induced chilling tolerance in harvested banana fruit. PMID:26528309

  14. Amino acid residues in the laminin G domains of protein S involved in tissue factor pathway inhibitor interaction.

    PubMed

    Somajo, Sofia; Ahnström, Josefin; Fernandez-Recio, Juan; Gierula, Magdalena; Villoutreix, Bruno O; Dahlbäck, Björn

    2015-05-01

    Protein S functions as a cofactor for tissue factor pathway inhibitor (TFPI) and activated protein C (APC). The sex hormone binding globulin (SHBG)-like region of protein S, consisting of two laminin G-like domains (LG1 and LG2), contains the binding site for C4b-binding protein (C4BP) and TFPI. Furthermore, the LG-domains are essential for the TFPI-cofactor function and for expression of full APC-cofactor function. The aim of the current study was to localise functionally important interaction sites in the protein S LG-domains using amino acid substitutions. Four protein S variants were created in which clusters of surface-exposed amino acid residues within the LG-domains were substituted. All variants bound normally to C4BP and were fully functional as cofactors for APC in plasma and in pure component assays. Two variants, SHBG2 (E612A, I614A, F265A, V393A, H453A), involving residues from both LG-domains, and SHBG3 (K317A, I330A, V336A, D365A) where residues in LG1 were substituted, showed 50-60 % reduction in enhancement of TFPI in FXa inhibition assays. For SHBG3 the decreased TFPI cofactor function was confirmed in plasma based thrombin generation assays. Both SHBG variants bound to TFPI with decreased affinity in surface plasmon resonance experiments. The TFPI Kunitz 3 domain is known to contain the interaction site for protein S. Using in silico analysis and protein docking exercises, preliminary models of the protein S SHBG/TFPI Kunitz domain 3 complex were created. Based on a combination of experimental and in silico data we propose a binding site for TFPI on protein S, involving both LG-domains.

  15. Cybip, a starfish cyclin B-binding protein, is involved in meiotic M-phase exit.

    PubMed

    Offner, Nicolas; Derancourt, Jean; Lozano, Jean Claude; Schatt, Philippe; Picard, André; Peaucellier, Gérard

    2003-01-01

    We designed a screen to identify starfish oocyte proteins able to bind monomeric cyclin B by affinity chromatography on a cyclin B splice variant displaying low affinity for cdc2. We identified a 15kDa protein previously described as a cdk-binding protein [Biochim. Biophys. Acta Mol. Cell Res. 1589 (2002) 219-231]. Cybip is encoded by a single polymorphic gene and the native protein is matured by cleaving a signal peptide. We firmly establish the fact that it is a true cyclin B-binding protein, since the recombinant protein binds recombinant cyclin B in absence of any cdk. Finally, we show that the microinjection of GST-cybip, and of anti-cybip antibody, in maturing starfish oocytes, inhibits H1 kinase and MPF inactivation, and first polar body emission.

  16. Biochemical localization of a protein involved in Gluconacetobacter hansenii cellulose synthesis

    SciTech Connect

    Iyer, Prashanti R; Catchmark, Jeffrey M; Brown, Nicole Robitaille; Tien, Ming

    2011-02-08

    Using subcellular fractionation and Western blot methods, we have shown that AcsD, one of the proteins encoded by the Acetobacter cellulose synthase (acs) operon, is localized in the periplasmic region of the cell. AcsD protein was heterologously expressed in Escherichia coli and purified using histidine tag affinity methods. The purified protein was used to obtain rabbit polyclonal antibodies. The purity of the subcellular fractions was assessed by marker enzyme assays.

  17. Sequences of the vesicular stomatitis virus matrix protein involved in binding to nucleocapsids.

    PubMed

    Kaptur, P E; Rhodes, R B; Lyles, D S

    1991-03-01

    The purpose of these experiments was to study the physical structure of the nucleocapsid-M protein complex of vesicular stomatitis virus by analysis of nucleocapsid binding by wild-type and mutant M proteins and by limited proteolysis. We used the temperature-sensitive M protein mutant tsO23 and six temperature-stable revertants of tsO23 to test the effect of sequence changes on M protein binding to the nucleocapsid as a function of NaCl concentration. The results showed that M proteins from wild-type, mutant, and three of the revertant viruses had similar NaCl titration curves, while the curve for M proteins from the other three revertants differed significantly. The altered NaCl dependence of M protein was correlated with a single amino acid substitution from Phe to Leu at position 111 compared with the original temperature-sensitive mutant and was not correlated with a substitution of Gly to Glu at position 21 in tsO23 and the revertants. To determine whether protease cleavage sites in the M protein were protected by interaction with the nucleocapsid, nucleocapsid-M protein complexes were subjected to limited proteolysis with trypsin, chymotrypsin, or Staphylococcus aureus V8 protease. The initial trypsin and chymotrypsin cleavage sites, located after amino acids 19 and 20, respectively, were as accessible to proteases when M protein was bound to the nucleocapsid as when it was purified, indicating that this region of the protein does not interact directly with the nucleocapsid. Furthermore, trypsin or chymotrypsin treatment released the M protein fragments from the nucleocapsid, presumably due to conformational changes following proteolysis. V8 protease cleaved the M protein at position 34 or 50, producing two distinct fragments. The M protein fragment produced by V8 protease cleavage at position 34 remained associated with the nucleocapsid, while the fragment produced by cleavage at position 50 was released from the nucleocapsid. These results suggest that the

  18. Proteomic study identifies proteins involved in brassinosteroid regulation of rice growth.

    PubMed

    Wang, Fengru; Bai, Ming-Yi; Deng, Zhiping; Oses-Prieto, Juan A; Burlingame, Alma L; Lu, Tiegang; Chong, Kang; Wang, Zhi-Yong

    2010-12-01

    Brassinosteroids (BRs) are essential hormones for growth and development of plant. In rice, BRs regulate multiple developmental processes and affect many important traits such as height, leaf angle, fertility and seed filling. We identified brassinosteroid-regulated proteins in rice using proteomic approaches and performed functional analysis of some BR-regulated proteins by overexpression experiments. Using two-dimensional difference gel electrophoresis (2-D DIGE) followed by protein identification by mass spectrometry, we compared proteomic differences in the shoots and roots of the BR-insensitive mutant d61-4 and BR-deficient mutant brd1-3. We identified a large number of proteins differentially expressed in the mutants compared with wild type control. These include a glycine-rich RNA-binding protein (OsGRP1) and a DREPP2 protein, which showed reduced levels in the BR mutants. Overexpression of these two proteins partially suppressed the dwarf phenotype of the Arabidopsis BR-insensitive mutant bri1-5. In contrast to the reduced protein level, the RNA level of OsGRP1 was not significantly affected in the BR mutants or by BR treatment, suggesting BR regulation of OsGRP1 at the posttranslational level. This study identifies many BR-regulated proteins and demonstrates that OsGRP1 functions downstream in the BR signal transduction pathway to promote cell expansion.

  19. Protein mobilization in germinating mung bean seeds involves vacuolar sorting receptors and multivesicular bodies.

    PubMed

    Wang, Junqi; Li, Yubing; Lo, Sze Wan; Hillmer, Stefan; Sun, Samuel S M; Robinson, David G; Jiang, Liwen

    2007-04-01

    Plants accumulate and store proteins in protein storage vacuoles (PSVs) during seed development and maturation. Upon seed germination, these storage proteins are mobilized to provide nutrients for seedling growth. However, little is known about the molecular mechanisms of protein degradation during seed germination. Here we test the hypothesis that vacuolar sorting receptor (VSR) proteins play a role in mediating protein degradation in germinating seeds. We demonstrate that both VSR proteins and hydrolytic enzymes are synthesized de novo during mung bean (Vigna radiata) seed germination. Immunogold electron microscopy with VSR antibodies demonstrate that VSRs mainly locate to the peripheral membrane of multivesicular bodies (MVBs), presumably as recycling receptors in day 1 germinating seeds, but become internalized to the MVB lumen, presumably for degradation at day 3 germination. Chemical cross-linking and immunoprecipitation with VSR antibodies have identified the cysteine protease aleurain as a specific VSR-interacting protein in germinating seeds. Further confocal immunofluorescence and immunogold electron microscopy studies demonstrate that VSR and aleurain colocalize to MVBs as well as PSVs in germinating seeds. Thus, MVBs in germinating seeds exercise dual functions: as a storage compartment for proteases that are physically separated from PSVs in the mature seed and as an intermediate compartment for VSR-mediated delivery of proteases from the Golgi apparatus to the PSV for protein degradation during seed germination.

  20. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions.

    PubMed

    Moreno-García, Jaime; García-Martínez, Teresa; Millán, M Carmen; Mauricio, Juan Carlos; Moreno, Juan

    2015-10-01

    A proteomic and exometabolomic study was conducted on Saccharomyces cerevisiae flor yeast strain growing under biofilm formation condition (BFC) with ethanol and glycerol as carbon sources and results were compared with those obtained under no biofilm formation condition (NBFC) containing glucose as carbon source. By using modern techniques, OFFGEL fractionator and LTQ-Orbitrap for proteome and SBSE-TD-GC-MS for metabolite analysis, we quantified 84 proteins including 33 directly involved in the metabolism of glycerol, ethanol and 17 aroma compounds. Contents in acetaldehyde, acetic acid, decanoic acid, 1,1-diethoxyethane, benzaldehyde and 2-phenethyl acetate, changed above their odor thresholds under BFC, and those of decanoic acid, ethyl octanoate, ethyl decanoate and isoamyl acetate under NBFC. Of the twenty proteins involved in the metabolism of ethanol, acetaldehyde, acetoin, 2,3-butanediol, 1,1-diethoxyethane, benzaldehyde, organic acids and ethyl esters, only Adh2p, Ald4p, Cys4p, Fas3p, Met2p and Plb1p were detected under BFC and as many Acs2p, Ald3p, Cem1p, Ilv2p, Ilv6p and Pox1p, only under NBFC. Of the eight proteins involved in glycerol metabolism, Gut2p was detected only under BFC while Pgs1p and Rhr2p were under NBFC. Finally, of the five proteins involved in the metabolism of higher alcohols, Thi3p was present under BFC, and Aro8p and Bat2p were under NBFC.

  1. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions.

    PubMed

    Moreno-García, Jaime; García-Martínez, Teresa; Millán, M Carmen; Mauricio, Juan Carlos; Moreno, Juan

    2015-10-01

    A proteomic and exometabolomic study was conducted on Saccharomyces cerevisiae flor yeast strain growing under biofilm formation condition (BFC) with ethanol and glycerol as carbon sources and results were compared with those obtained under no biofilm formation condition (NBFC) containing glucose as carbon source. By using modern techniques, OFFGEL fractionator and LTQ-Orbitrap for proteome and SBSE-TD-GC-MS for metabolite analysis, we quantified 84 proteins including 33 directly involved in the metabolism of glycerol, ethanol and 17 aroma compounds. Contents in acetaldehyde, acetic acid, decanoic acid, 1,1-diethoxyethane, benzaldehyde and 2-phenethyl acetate, changed above their odor thresholds under BFC, and those of decanoic acid, ethyl octanoate, ethyl decanoate and isoamyl acetate under NBFC. Of the twenty proteins involved in the metabolism of ethanol, acetaldehyde, acetoin, 2,3-butanediol, 1,1-diethoxyethane, benzaldehyde, organic acids and ethyl esters, only Adh2p, Ald4p, Cys4p, Fas3p, Met2p and Plb1p were detected under BFC and as many Acs2p, Ald3p, Cem1p, Ilv2p, Ilv6p and Pox1p, only under NBFC. Of the eight proteins involved in glycerol metabolism, Gut2p was detected only under BFC while Pgs1p and Rhr2p were under NBFC. Finally, of the five proteins involved in the metabolism of higher alcohols, Thi3p was present under BFC, and Aro8p and Bat2p were under NBFC. PMID:26187821

  2. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins Involved in a Posttranscriptional Iron Regulatory Mechanism

    PubMed Central

    Figueroa-Angulo, Elisa E.; Calla-Choque, Jaeson S.; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-01-01

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis. PMID:26703754

  3. Involvement of heat shock protein 47 in Schistosoma japonicum-induced hepatic fibrosis in mice.

    PubMed

    Huang, Jia-Quan; Tao, Ran; Li, Lan; Ma, Ke; Xu, Lei; Ai, Guo; Fan, Xiang-Xue; Jiao, Yun-Tao; Ning, Qin

    2014-01-01

    Chronic infection with the blood fluke Schistosoma japonicum is associated with both liver cirrhosis and liver cancer. Previously, heat shock protein 47, a collagen-specific molecular chaperone, was shown to play a critical role in the maturation of procollagen. However, less is known about the role of heat shock protein 47 in S. japonicum-induced hepatic fibrosis. We therefore investigated the expression of heat shock protein 47 in S. japonicum-induced liver fibrosis and attempted to determine whether inhibition of heat shock protein 47 could have beneficial effects on fibrosis in vitro and in vivo. In this study, we found that the expression of heat shock protein 47 was significantly increased in patients with Schistosoma-induced fibrosis, as well as in rodent models. Immunohistochemistry revealed heat shock protein 47-positive cells were found in the periphery of egg granulomas. Administration of heat shock protein 47-targeted short hairpin (sh)RNA remarkably reduced heat shock protein 47 expression and collagen deposition in NIH3T3 cells and liver tissue of S. japonicum-infected mice. Life-table analysis revealed a dose-dependent prolongation of survival rates with the treatment of heat shock protein 47-shRNA in murine fibrosis models. Moreover, serum alanine aminotransferase and aspartate transaminase activity, splenomegaly, spleen weight index and portal hypertension were also measured, which showed improvement with the anti-fibrosis treatment. The fibrosis-related parameters assessed were expressions of Col1a1, Col3a1, TGF-β1, CTGF, IL-13, IL-17, MMP-9, TIMP-1 and PAI-1 in the liver. This study demonstrated that heat shock protein 47-targeted shRNA directly reduced collagen production of mouse liver fibrosis associated with S. japonicum. We conclude that heat shock protein 47 plays an essential role in S. japonicum-induced hepatic fibrosis in mice and may be a potential target for ameliorating the hepatic fibrosis caused by this parasite. PMID:24295791

  4. Involvement of Protein Kinase D1 in Signal Transduction from the Protein Kinase C Pathway to the Tyrosine Kinase Pathway in Response to Gonadotropin-releasing Hormone*

    PubMed Central

    Higa-Nakamine, Sayomi; Maeda, Noriko; Toku, Seikichi; Yamamoto, Hideyuki

    2015-01-01

    The receptor for gonadotropin-releasing hormone (GnRH) belongs to the G protein-coupled receptors (GPCRs), and its stimulation activates extracellular signal-regulated protein kinase (ERK). We found that the transactivation of ErbB4 was involved in GnRH-induced ERK activation in immortalized GnRH neurons (GT1–7 cells). We found also that GnRH induced the cleavage of ErbB4. In the present study, we examined signal transduction for the activation of ERK and the cleavage of ErbB4 after GnRH treatment. Both ERK activation and ErbB4 cleavage were completely inhibited by YM-254890, an inhibitor of Gq/11 proteins. Down-regulation of protein kinase C (PKC) markedly decreased both ERK activation and ErbB4 cleavage. Experiments with two types of PKC inhibitors, Gö 6976 and bisindolylmaleimide I, indicated that novel PKC isoforms but not conventional PKC isoforms were involved in ERK activation and ErbB4 cleavage. Our experiments indicated that the novel PKC isoforms activated protein kinase D (PKD) after GnRH treatment. Knockdown and inhibitor experiments suggested that PKD1 stimulated the phosphorylation of Pyk2 by constitutively activated Src and Fyn for ERK activation. Taken together, it is highly possible that PKD1 plays a critical role in signal transduction from the PKC pathway to the tyrosine kinase pathway. Activation of the tyrosine kinase pathway may be involved in the progression of cancer. PMID:26338704

  5. Identification of candidate effector proteins potentially involved in Fusarium graminearum-wheat interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogen-derived small secreted cysteine-rich proteins (SSCPs) are known to be a common source of fungal effectors that trigger resistance or susceptibility in specific host plants. This group of proteins has not been well studied in Fusarium graminearum, the primary cause of Fusarium head blight (...

  6. Quantitative analysis of regions of adenovirus E1A products involved in interactions with cellular proteins.

    PubMed

    Barbeau, D; Marcellus, R C; Bacchetti, S; Bayley, S T; Branton, P E

    1992-01-01

    Human adenovirus E1A proteins and oncogene products of several other DNA tumour viruses derive much of their oncogenic potential from interactions with cellular polypeptides. E1A proteins form complexes with p105Rb and a related p107 polypeptide, and with at least three other proteins (p60cycA, p130, and p300); all may be required for cell transformation. Using a series of E1A deletion mutants, we have carried out a quantitative analysis of the binding patterns of cellular proteins to E1A products. Binding of most of the proteins was affected at least partially by mutations within the amino terminal 25 residues, amino acids 36-69 within conserved region 1 (CR1), and residues 121-138 in conserved region 2 (CR2). However, the specific binding characteristics of each protein varied considerably. p300 was the only species for which binding was totally eliminated by deletions at the amino terminus. Removal of regions within CR1 eliminated binding of all species except p107 and p60cycA. Deletion of portions of CR2 reduced or eliminated binding of all proteins except p300. Thus, whereas cellular polypeptides generally were found to interact with the same three regions of E1A proteins, specific interactions varied considerably. PMID:1297336

  7. Quantitative Proteomic Analysis of Differentially Expressed Protein Profiles Involved in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Kuo, Kung-Kai; Kuo, Chao-Jen; Chiu, Chiang-Yen; Liang, Shih-Shin; Huang, Chun-Hao; Chi, Shu-Wen; Tsai, Kun-Bow; Chen, Chiao-Yun; Hsi, Edward; Cheng, Kuang-Hung; Chiou, Shyh-Horng

    2016-01-01

    Objectives The aim of this study was to identify differentially expressed proteins among various stages of pancreatic ductal adenocarcinoma (PDAC) by shotgun proteomics using nano-liquid chromatography coupled tandem mass spectrometry and stable isotope dimethyl labeling. Methods Differentially expressed proteins were identified and compared based on the mass spectral differences of their isotope-labeled peptide fragments generated from protease digestion. Results Our quantitative proteomic analysis of the differentially expressed proteins with stable isotope (deuterium/hydrogen ratio, ≥2) identified a total of 353 proteins, with at least 5 protein biomarker proteins that were significantly differentially expressed between cancer and normal mice by at least a 2-fold alteration. These 5 protein biomarker candidates include α-enolase, α-catenin, 14-3-3 β, VDAC1, and calmodulin with high confidence levels. The expression levels were also found to be in agreement with those examined by Western blot and histochemical staining. Conclusions The systematic decrease or increase of these identified marker proteins may potentially reflect the morphological aberrations and diseased stages of pancreas carcinoma throughout progressive developments leading to PDAC. The results would form a firm foundation for future work concerning validation and clinical translation of some identified biomarkers into targeted diagnosis and therapy for various stages of PDAC. PMID:26262590

  8. Classical Swine Fever Virus p7 protein is a viroporin involved in virulence in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The non-structural protein p7 of Classical Swine Fever Virus (CSFV) is a hydrophobic polypeptide with an apparent molecular mass of 7 kDa. The protein contains two hydrophobic stretches of amino acids interrupted by a short charged segment that are predicted to form transmembrane helices and a cytos...

  9. Heat Shock Cognate Protein 70 Is Involved in Rotavirus Cell Entry

    PubMed Central

    Guerrero, Carlos A.; Bouyssounade, Daniela; Zárate, Selene; Iša, Pavel; López, Tomás; Espinosa, Rafaela; Romero, Pedro; Méndez, Ernesto; López, Susana; Arias, Carlos F.

    2002-01-01

    In this work, we have identified the heat shock cognate protein (hsc70) as a receptor candidate for rotaviruses. hsc70 was shown to be present on the surface of MA104 cells, and antibodies to this protein blocked rotavirus infectivity, while not affecting the infectivity of reovirus and poliovirus. Preincubation of the hsc70 protein with the viruses also inhibited their infectivity. Triple-layered particles (mature virions), but not double-layered particles, bound hsc70 in a solid-phase assay, and this interaction was blocked by monoclonal antibodies to the virus surface proteins VP4 and VP7. Rotaviruses were shown to interact with hsc70 at a postattachment step, since antibodies to hsc70 and the protein itself did not inhibit the virus attachment to cells. We propose that the functional rotavirus receptor is a complex of several cell surface molecules that include, among others, hsc70. PMID:11907249

  10. Mapping the H(+) (V)-ATPase interactome: identification of proteins involved in trafficking, folding, assembly and phosphorylation.

    PubMed

    Merkulova, Maria; Păunescu, Teodor G; Azroyan, Anie; Marshansky, Vladimir; Breton, Sylvie; Brown, Dennis

    2015-01-01

    V-ATPases (H(+) ATPases) are multisubunit, ATP-dependent proton pumps that regulate pH homeostasis in virtually all eukaryotes. They are involved in key cell biological processes including vesicle trafficking, endosomal pH sensing, membrane fusion and intracellular signaling. They also have critical systemic roles in renal acid excretion and blood pH balance, male fertility, bone remodeling, synaptic transmission, olfaction and hearing. Furthermore, V-ATPase dysfunction either results in or aggravates various other diseases, but little is known about the complex protein interactions that regulate these varied V-ATPase functions. Therefore, we performed a proteomic analysis to identify V-ATPase associated proteins and construct a V-ATPase interactome. Our analysis using kidney tissue revealed V-ATPase-associated protein clusters involved in protein quality control, complex assembly and intracellular trafficking. ARHGEF7, DMXL1, EZR, NCOA7, OXR1, RPS6KA3, SNX27 and 9 subunits of the chaperonin containing TCP1 complex (CCT) were found to interact with V-ATPase for the first time in this study. Knockdown of two interacting proteins, DMXL1 and WDR7, inhibited V-ATPase-mediated intracellular vesicle acidification in a kidney cell line, providing validation for the utility of our interactome as a screen for functionally important novel V-ATPase-regulating proteins. Our data, therefore, provide new insights and directions for the analysis of V-ATPase cell biology and (patho)physiology. PMID:26442671

  11. STAT3 and its phosphorylation are involved in HIV-1 Tat-induced transactivation of glial fibrillary acidic protein.

    PubMed

    Fan, Yan; Timani, Khalid Amine; He, Johnny J

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) Tat protein is a major pathogenic factor in HIV-associated neurological diseases; it exhibits direct neurotoxicity and indirect astrocyte-mediated neurotoxicity. We have shown that Tat alone is capable of activating glial fibrillary acidic protein (GFAP) expression and inducing astrocytosis involving sequential activation of early growth response protein 1 (Egr-1) and p300. In this study, we determined the roles of signal transducer and activator of transcription 3 (STAT3) in Tat-induced GFAP transactivation. STAT3 expression and phosphorylation led to significant increases in GFAP transcription and protein expression. Tat expression was associated with increased STAT3 expression and phosphorylation in Tat-expressing astrocytes and HIV-infected astrocytes. GFAP, Egr-1 and p300 transcription and protein expression all showed positive response to STAT3 and its phosphorylation. Importantly, knockdown of STAT3 resulted in significant decreases in Tat-induced GFAP and Egr-1 transcription and protein expression. Taken together, these findings show that STAT3 is involved in and acts upstream of Egr1 and p300 in the Tat-induced GFAP transactivation cascade and suggest important roles of STAT3 in controlling astrocyte proliferation and activation in the HIV-infected central nervous system.

  12. Proteomic identification of differentially expressed and phosphorylated proteins in epidermis involved in larval-pupal metamorphosis of Helicoverpa armigera

    PubMed Central

    2009-01-01

    Background Metamorphosis is an important process in the life cycle of holometabolous insects and is regulated by insect hormones. During metamorphosis, the epidermis goes through a significant transformation at the biochemical and molecular levels. Results To identify proteins and phosphoproteins involved in this process, we separated and compared epidermal protein profiles between feeding larvae and metamorphically committed larvae using two-dimensional gel electrophoresis and Pro-Q Diamond Phosphoprotein Staining. Sixty-one spots showing differential expression and/or phosphorylation were analyzed by mass spectrometry and eighteen proteins were proved related to larval-pupal transformation. Eight of them were further examined at the mRNA level by Reverse Transcription Polymerase Chain Reaction (RT-PCR) and two of them were examined at the protein level by Western blot. Calponin was highly expressed in the metamorphic epidermis and phosphorylated by protein kinase C. Conclusion Our results suggest that the expression and phosphorylation of these proteins may play important roles in coordinating the biochemical processes involved in larval-pupal metamorphosis. PMID:20003373

  13. Mapping the H+ (V)-ATPase interactome: identification of proteins involved in trafficking, folding, assembly and phosphorylation

    PubMed Central

    Merkulova, Maria; Păunescu, Teodor G.; Azroyan, Anie; Marshansky, Vladimir; Breton, Sylvie; Brown, Dennis

    2015-01-01

    V-ATPases (H+ ATPases) are multisubunit, ATP-dependent proton pumps that regulate pH homeostasis in virtually all eukaryotes. They are involved in key cell biological processes including vesicle trafficking, endosomal pH sensing, membrane fusion and intracellular signaling. They also have critical systemic roles in renal acid excretion and blood pH balance, male fertility, bone remodeling, synaptic transmission, olfaction and hearing. Furthermore, V-ATPase dysfunction either results in or aggravates various other diseases, but little is known about the complex protein interactions that regulate these varied V-ATPase functions. Therefore, we performed a proteomic analysis to identify V-ATPase associated proteins and construct a V-ATPase interactome. Our analysis using kidney tissue revealed V-ATPase-associated protein clusters involved in protein quality control, complex assembly and intracellular trafficking. ARHGEF7, DMXL1, EZR, NCOA7, OXR1, RPS6KA3, SNX27 and 9 subunits of the chaperonin containing TCP1 complex (CCT) were found to interact with V-ATPase for the first time in this study. Knockdown of two interacting proteins, DMXL1 and WDR7, inhibited V-ATPase-mediated intracellular vesicle acidification in a kidney cell line, providing validation for the utility of our interactome as a screen for functionally important novel V-ATPase-regulating proteins. Our data, therefore, provide new insights and directions for the analysis of V-ATPase cell biology and (patho)physiology. PMID:26442671

  14. Functional dissection of protein domains involved in the immunomodulatory properties of PE_PGRS33 of Mycobacterium tuberculosis.

    PubMed

    Zumbo, Antonella; Palucci, Ivana; Cascioferro, Alessandro; Sali, Michela; Ventura, Marcello; D'Alfonso, Pamela; Iantomasi, Raffaella; Di Sante, Gabriele; Ria, Francesco; Sanguinetti, Maurizio; Fadda, Giovanni; Manganelli, Riccardo; Delogu, Giovanni

    2013-12-01

    PE_PGRSs are a large family of proteins identified in Mycobacterium tuberculosis complex and in few other pathogenic mycobacteria. The PE domain of PE_PGRS33 mediates localization of the protein on the mycobacterial cell surface, where the PGRS domain is available to interact with host components. In this study, PE_PGRS33 and its functional deletion mutants were expressed in M. smegmatis, and in vitro and in vivo assays were used to dissect the protein domains involved in the immunomodulatory properties of the protein. We demonstrate that PE_PGRS33-mediated secretion of TNF-α by macrophages occurs by extracellular interaction with TLR2. Our results also show that while the PGRS domain of the protein is required for triggering TNF-α secretion, mutation in the PE domain affects the pro-inflammatory properties of the protein. These results indicate that PE_PGRS33 is a protein with immunomodulatory activity and that protein stability and localization on the mycobacterial surface can affect these properties.

  15. KHARON Is an Essential Cytoskeletal Protein Involved in the Trafficking of Flagellar Membrane Proteins and Cell Division in African Trypanosomes.

    PubMed

    Sanchez, Marco A; Tran, Khoa D; Valli, Jessica; Hobbs, Sam; Johnson, Errin; Gluenz, Eva; Landfear, Scott M

    2016-09-16

    African trypanosomes and related kinetoplastid parasites selectively traffic specific membrane proteins to the flagellar membrane, but the mechanisms for this trafficking are poorly understood. We show here that KHARON, a protein originally identified in Leishmania parasites, interacts with a putative trypanosome calcium channel and is required for its targeting to the flagellar membrane. KHARON is located at the base of the flagellar axoneme, where it likely mediates targeting of flagellar membrane proteins, but is also on the subpellicular microtubules and the mitotic spindle. Hence, KHARON is probably a multifunctional protein that associates with several components of the trypanosome cytoskeleton. RNA interference-mediated knockdown of KHARON mRNA results in failure of the calcium channel to enter the flagellar membrane, detachment of the flagellum from the cell body, and disruption of mitotic spindles. Furthermore, knockdown of KHARON mRNA induces a lethal failure of cytokinesis in both bloodstream (mammalian host) and procyclic (insect vector) life cycle stages, and KHARON is thus critical for parasite viability. PMID:27489106

  16. STP1, a gene involved in pre-tRNA processing, encodes a nuclear protein containing zinc finger motifs.

    PubMed Central

    Wang, S S; Stanford, D R; Silvers, C D; Hopper, A K

    1992-01-01

    STP1 is an unessential yeast gene involved in the removal of intervening sequences from some, but not all, families of intervening sequence-containing pre-tRNAs. Previously, we proposed that STP1 might encode a product that generates pre-tRNA conformations efficiently recognized by tRNA-splicing endonuclease. To test the predictions of this model, we have undertaken a molecular analysis of the STP1 gene and its products. The STP1 locus is located on chromosome IV close to at least two other genes involved in RNA splicing: PRP3 and SPP41. The STP1 open reading frame (ORF) could encode a peptide of 64,827 Da; however, inspection of putative transcriptional and translational regulatory signals and mapping of the 5' ends of mRNA provide evidence that translation of the STP1 ORF usually initiates at a second AUG to generate a protein of 58,081 Da. The STP1 ORF contains three putative zinc fingers. The first of these closely resembles both the DNA transcription factor consensus and the Xenopus laevis p43 RNA-binding protein consensus. The third motif more closely resembles the fingers found in spliceosomal proteins. Employing antisera to the endogenous STP1 protein and to STP1-LacZ fusion proteins, we show that the STP1 protein is localized to nuclei. The presence of zinc finger motifs and the nuclear location of the STP1 protein support the model that this gene product is involved directly in pre-tRNA splicing. Images PMID:1588961

  17. Neutrophil Extracellular Traps Contain Calprotectin, a Cytosolic Protein Complex Involved in Host Defense against Candida albicans

    PubMed Central

    Urban, Constantin F.; Ermert, David; Schmid, Monika; Abu-Abed, Ulrike; Goosmann, Christian; Nacken, Wolfgang; Brinkmann, Volker; Jungblut, Peter R.; Zychlinsky, Arturo

    2009-01-01

    Neutrophils are the first line of defense at the site of an infection. They encounter and kill microbes intracellularly upon phagocytosis or extracellularly by degranulation of antimicrobial proteins and the release of Neutrophil Extracellular Traps (NETs). NETs were shown to ensnare and kill microbes. However, their complete protein composition and the antimicrobial mechanism are not well understood. Using a proteomic approach, we identified 24 NET-associated proteins. Quantitative analysis of these proteins and high resolution electron microscopy showed that NETs consist of modified nucleosomes and a stringent selection of other proteins. In contrast to previous results, we found several NET proteins that are cytoplasmic in unstimulated neutrophils. We demonstrated that of those proteins, the antimicrobial heterodimer calprotectin is released in NETs as the major antifungal component. Absence of calprotectin in NETs resulted in complete loss of antifungal activity in vitro. Analysis of three different Candida albicans in vivo infection models indicated that NET formation is a hitherto unrecognized route of calprotectin release. By comparing wild-type and calprotectin-deficient animals we found that calprotectin is crucial for the clearance of infection. Taken together, the present investigations confirmed the antifungal activity of calprotectin in vitro and, moreover, demonstrated that it contributes to effective host defense against C. albicans in vivo. We showed for the first time that a proportion of calprotectin is bound to NETs in vitro and in vivo. PMID:19876394

  18. Surface proteins of C6/36 cells involved in dengue virus 4 binding and entry.

    PubMed

    Vega-Almeida, Tania Olivia; Salas-Benito, Mariana; De Nova-Ocampo, Mónica Ascensión; Del Angel, Rosa María; Salas-Benito, Juan Santiago

    2013-06-01

    Dengue virus (DENV) is the causative agent of the most important mosquito-borne viral disease, which is endemic to over 100 countries in tropical and subtropical areas of the world. It is transmitted to humans by Aedes mosquitoes. The first step in the viral infection of host cells is virion attachment to the plasma membrane, which is mediated by specific surface molecules. There are several molecules that participate in DENV infection of mosquitoes, but only a few have been identified. In this work, we co-purified 4 proteins from C6/36 cells using a recombinant DENV 4 E protein and identified them as 70 kDa Heat Shock and 70 kDa Heat Shock cognate proteins (HSP70/HSc70), Binding immunoglobulin protein (BiP), Thioredoxin/protein disulphide isomerase (PDI), and 44 kDa Endoplasmic reticulum resident protein (ERp44) via matrix-assisted laser desorption/ionisation time of flight (Maldi-ToF) analysis. Using immunofluorescence and flow cytometry assays, we observed re-localisation of HSP70/HSc70 and, to a lesser extent, BiP to the plasma membrane under stress conditions, such as during DENV infection. By performing binding and infection assays independently, we found that all 4 proteins participate in both processes, but to differing extents: HSP70/HSc70 is the most critical component, while ERp44 is less important. Viral infection was not inhibited when the cells were incubated with antibodies against all of the surface proteins after virus binding, which suggests that DENV entry to C6/36 cells is mediated by these proteins at the same step and not sequentially.

  19. Protein interactions of MADS box transcription factors involved in flowering in Lolium perenne.

    PubMed

    Ciannamea, Stefano; Kaufmann, Kerstin; Frau, Marta; Tonaco, Isabella A Nougalli; Petersen, Klaus; Nielsen, Klaus K; Angenent, Gerco C; Immink, Richard G H

    2006-01-01

    Regulation of flowering time is best understood in the dicot model species Arabidopsis thaliana. Molecular analyses revealed that genes belonging to the MADS box transcription factor family play pivotal regulatory roles in both the vernalization- and photoperiod-regulated flowering pathways. Here the analysis of three APETALA1 (AP1)-like MADS box proteins (LpMADS1-3) and a SHORT VEGETATIVE PHASE (SVP)-like MADS box protein (LpMADS10) from the monocot perennial grass species Lolium perenne is reported. Features of these MADS box proteins were studied by yeast two-hybrid assays. Protein-protein interactions among the Lolium proteins and with members of the Arabidopsis MADS box family have been studied. The expression pattern for LpMADS1 and the protein properties suggest that not the Arabidopsis AP1 gene, but the SUPPRESSOR OF CONSTANS1 (SOC1) gene, is the functional equivalent of LpMADS1. To obtain insight into the molecular mechanism underlying the regulation of LpMADS1 gene expression in vernalization-sensitive and -insensitive Lolium accessions, the upstream sequences of this gene from a winter and spring growth habit variety were compared with respect to MADS box protein binding. In both promoter elements, a putative MADS box transcription factor-binding site (CArG-box) is present; however, the putative spring promoter has a short deletion adjacent to this DNA motif. Experiments using yeast one-hybrid and gel retardation assays demonstrated that the promoter element is bound by an LpMADS1-LpMADS10 higher order protein complex and, furthermore, that this complex binds efficiently to the promoter element from the winter variety only. This strongly supports the model that LpMADS1 together with LpMADS10 controls the vernalization-dependent regulation of the LpMADS1 gene, which is part of the vernalization-induced flowering process in Lolium. PMID:17005923

  20. Brome mosaic virus capsid protein regulates accumulation of viral replication proteins by binding to the replicase assembly RNA element.

    PubMed

    Yi, Guanghui; Letteney, Ester; Kim, Chul-Hyun; Kao, C Cheng

    2009-04-01

    Viruses provide valuable insights into the regulation of molecular processes. Brome mosaic virus (BMV) is one of the simplest entities with four viral proteins and three genomic RNAs. Here we report that the BMV capsid protein (CP), which functions in RNA encapsidation and virus trafficking, also represses viral RNA replication in a concentration-dependent manner by inhibiting the accumulation of the RNA replication proteins. Expression of the replication protein 2a in trans can partially rescue BMV RNA accumulation. A mutation in the CP can decrease the repression of translation. Translation repression by the CP requires a hairpin RNA motif named the B Box that contains seven loop nucleotides (nt) within the 5' untranslated regions (UTR) of BMV RNA1 and RNA2. Purified CP can bind directly to the B Box RNA with a K (d) of 450 nM. The secondary structure of the B Box RNA was determined to contain a highly flexible 7-nt loop using NMR spectroscopy, native gel analysis, and thermal denaturation studies. The B Box is also recognized by the BMV 1a protein to assemble the BMV replicase, suggesting that the BMV CP can act to regulate several viral infection processes.

  1. Isolation and partial characterization of proteins involved in maternal transfer of selenium in the western fence lizard (Sceloporus occidentalis).

    PubMed

    Unrine, Jason M; Jackson, Brian P; Hopkins, William A; Romanek, Christopher

    2006-07-01

    Selenium from dietary exposure is efficiently transferred from mother to offspring in oviparous vertebrates, where it can cause severe teratogenic effects. We isolated and partially characterized proteins involved in maternal transfer of selenium in the oviparous lizard Sceloporus occidentalis using size-exclusion chromatography, inductively coupled plasma-mass spectrometry, and polyacrylamide gel electrophoresis. Selenium from dietary selenomethionine exposure was incorporated into at least three egg proteins. One of these proteins was lipovitellin. The other two proteins may be part of a previously unknown mechanism of maternal transfer of Se that is independent of vitellogenesis or albumin secretion. Our results suggest at least three pathways for maternal transfer of Se in vertebrates that may vary in importance depending on the species. PMID:16833149

  2. Structural Insights into the MMACHC-MMADHC Protein Complex Involved in Vitamin B12 Trafficking*

    PubMed Central

    Froese, D. Sean; Kopec, Jolanta; Fitzpatrick, Fiona; Schuller, Marion; McCorvie, Thomas J.; Chalk, Rod; Plessl, Tanja; Fettelschoss, Victoria; Fowler, Brian; Baumgartner, Matthias R.; Yue, Wyatt W.

    2015-01-01

    Conversion of vitamin B12 (cobalamin, Cbl) into the cofactor forms methyl-Cbl (MeCbl) and adenosyl-Cbl (AdoCbl) is required for the function of two crucial enzymes, mitochondrial methylmalonyl-CoA mutase and cytosolic methionine synthase, respectively. The intracellular proteins MMACHC and MMADHC play important roles in processing and targeting the Cbl cofactor to its destination enzymes, and recent evidence suggests that they may interact while performing these essential trafficking functions. To better understand the molecular basis of this interaction, we have mapped the crucial protein regions required, indicate that Cbl is likely processed by MMACHC prior to interaction with MMADHC, and identify patient mutations on both proteins that interfere with complex formation, via different mechanisms. We further report the crystal structure of the MMADHC C-terminal region at 2.2 Å resolution, revealing a modified nitroreductase fold with surprising homology to MMACHC despite their poor sequence conservation. Because MMADHC demonstrates no known enzymatic activity, we propose it as the first protein known to repurpose the nitroreductase fold solely for protein-protein interaction. Using small angle x-ray scattering, we reveal the MMACHC-MMADHC complex as a 1:1 heterodimer and provide a structural model of this interaction, where the interaction region overlaps with the MMACHC-Cbl binding site. Together, our findings provide novel structural evidence and mechanistic insight into an essential biological process, whereby an intracellular “trafficking chaperone” highly specific for a trace element cofactor functions via protein-protein interaction, which is disrupted by inherited disease mutations. PMID:26483544

  3. Protein kinase C is involved in regulation of Ca2+ channels in plasmalemma of Nitella syncarpa.

    PubMed

    Zherelova, O M

    1989-01-01

    Ca2+ current recordings have been made on Nitella syncarpa cells using the intracellular perfusion and the voltage-clamp technique. TPA (12-O-tetradecanoylphorbol-13-acetate), a substance capable of activating protein kinase C from plasmalemma of Nitella cells, modulates voltage-dependent Ca2+ channels. Polymixin B, inhibitor of protein kinase C, blocks the Nitella plasmalemma Ca2+ channels; the rate of channel blockage depends on the concentration and exposure time of the substance. PMID:2536617

  4. The Shwachman-Bodian-Diamond Syndrome Protein Family Is Involved in RNA Metabolism

    SciTech Connect

    Savchenko, A; Krogan, Nevan; Cort, John R.; Evdokimova, Elena; Lew, Jocelyne M.; Yee, Adelinda; Sanchez-Pulido, Luis; Andrade, Miguel; Bochkarev, Alexey; Watson, James D.; Kennedy, Michael A.; Greenblatt, Jack; Hughes, Timothy; Arrowsmith, Cheryl H.; Rommens, Johanna M.; Edwards, Aled M.

    2005-05-13

    A combination of structural, biochemical, and genetic studies in model organisms was used to infer a cellular role for the human protein (SBDS) responsible for Shwachman-Bodian-Diamond syndrome. The crystal structure of the SBDS homologue in Archaeoglobus fulgidus, AF0491, revealed a three domain protein. The N-terminal domain, which harbors the majority of disease-linked mutations, has a novel three-dimensional fold.

  5. Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein is PAM involved in the capacitative calcium entry?

    PubMed

    Kozieł, Katarzyna; Lebiedzinska, Magdalena; Szabadkai, Gyorgy; Onopiuk, Marta; Brutkowski, Wojciech; Wierzbicka, Katarzyna; Wilczyński, Grzegorz; Pinton, Paolo; Duszyński, Jerzy; Zabłocki, Krzysztof; Wieckowski, Mariusz R

    2009-12-01

    A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca(2+) entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca(2+) entry, and their formation and rebuilding have an important regulatory role in cellular Ca(2+) homeostasis.

  6. The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin.

    PubMed

    Küberl, Andreas; Polen, Tino; Bott, Michael

    2016-04-26

    The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation. PMID:27078093

  7. The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin

    PubMed Central

    Küberl, Andreas; Polen, Tino; Bott, Michael

    2016-01-01

    The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation. PMID:27078093

  8. Immunological identification of candidate proteins involved in regulating active shape changes of outer hair cells.

    PubMed

    Knipper, M; Zimmermann, U; Köpschall, I; Rohbock, K; Jüngling, S; Zenner, H P

    1995-06-01

    By employing immunological methods, it has been demonstrated that myosin, myosin light chain (MLC) and myosin light chain kinase (MLCK) proteins in outer hair cells (OHC) are immunologically different from isoforms in platelets, smooth muscle and heart muscle, and are probably more related to isoforms found in red blood cells (RBC). Moreover, proteins related to band 3 protein (b3p) and protein 4.1 (p 4.1), ankyrin as well as fodrin and spectrin, but not glycophorin, have been identified in isolated OHCs. Both OHCs and RBC differ from other motile non-muscle cells in their lack of smooth muscle isoforms of actin, their common high levels of spectrin-, ankyrin- and band 3-like proteins, as well as the expression of the 80 kDa protein 4.1 isoform. The data support the notion that motility of OHC may be based upon regulation of the b3p/p 4.1/ankyrin complex, and thus may be reminiscent to the active shape changes in RBC.

  9. The type III protein translocation system of enteropathogenic Escherichia coli involves EspA-EspB protein interactions.

    PubMed

    Hartland, E L; Daniell, S J; Delahay, R M; Neves, B C; Wallis, T; Shaw, R K; Hale, C; Knutton, S; Frankel, G

    2000-03-01

    Enteropathogenic Escherichia coli (EPEC), like many bacterial pathogens, use a type III secretion system to deliver effector proteins across the bacterial cell wall. In EPEC, four proteins, EspA, EspB, EspD and Tir are known to be exported by a type III secretion system and to be essential for 'attaching and effacing' (A/E) lesion formation, the hallmark of EPEC pathogenicity. EspA was recently shown to be a structural protein and a major component of a large, transiently expressed, filamentous surface organelle which forms a direct link between the bacterium and the host cell. In contrast, EspB is translocated into the host cell where it is localized to both membrane and cytosolic cell fractions. EspA and EspB are required for translocation of Tir to the host cell membrane suggesting that they may both be components of the translocation apparatus. In this study, we show that EspB co-immunoprecipitates with the EspA filaments and that, during EPEC infection of HEp-2 cells, EspB localizes closely with EspA. Using a number of binding assays, we also show that EspB can bind and be copurified with EspA. Nevertheless, binding of EspA filaments to the host cell membranes occurred even in the absence of EspB. These results suggest that following initial attachment of the EspA filaments to the target cells, EspB is delivered into the host cell membrane and that the interaction between EspA and EspB may be important for protein translocation.

  10. Maternal protein restriction compromises myocardial contractility in the young adult rat by changing proteins involved in calcium handling.

    PubMed

    de Belchior, Aucelia C S; Freire, David D; da Costa, Carlos P; Vassallo, Dalton V; Padilha, Alessandra S; Dos Santos, Leonardo

    2016-02-01

    Maternal protein restriction (MPR) during pregnancy is associated with increased cardiovascular risk in the offspring in adulthood. In this study we evaluated the cardiac function of young male rats born from mothers subjected to MPR during pregnancy, focusing on the myocardial mechanics and calcium-handling proteins. After weaning, rats received normal diet until 3 mo old, when the following parameters were assessed: arterial and left ventricular hemodynamics and in vitro cardiac contractility in isolated papillary muscles. The body weight was lower and arterial pressure higher in the MPR group compared with young adult offspring of female rats that received standard diet (controls); and left ventricle time derivatives increased in the MPR group. The force developed by the cardiac muscle was similar; but time to peak and relaxation time were longer, and the derivatives of force were depressed in the MPR. In addition, MPR group exhibited decreased post-pause potentiation of force, suggesting reduced reuptake function of the sarcoplasmic reticulum. Corroborating, the myocardial content of SERCA-2a and phosphorylated PLB-Ser16/total PLB ratio was decreased and sodium-calcium exchanger was increased in the MPR group. The contraction dependent on transsarcolemmal influx of calcium was higher in MPR if compared with the control group. In summary, young rats born from mothers subjected to protein restriction during pregnancy exhibit changes in the myocardial mechanics with altered expression of calcium-handling proteins, reinforcing the hypothesis that maternal malnutrition is related to increased cardiovascular risk in the offspring, not only for hypertension, but also cardiac dysfunction.

  11. Whole Cell Formaldehyde Cross-Linking Simplifies Purification of Mitochondrial Nucleoids and Associated Proteins Involved in Mitochondrial Gene Expression

    PubMed Central

    Rajala, Nina; Hensen, Fenna; Wessels, Hans J. C. T.; Ives, Daniel; Gloerich, Jolein; Spelbrink, Johannes N.

    2015-01-01

    Mitochondrial DNA/protein complexes (nucleoids) appear as discrete entities inside the mitochondrial network when observed by live-cell imaging and immunofluorescence. This somewhat trivial observation in recent years has spurred research towards isolation of these complexes and the identification of nucleoid-associated proteins. Here we show that whole cell formaldehyde crosslinking combined with affinity purification and tandem mass-spectrometry provides a simple and reproducible method to identify potential nucleoid associated proteins. The method avoids spurious mitochondrial isolation and subsequent multifarious nucleoid enrichment protocols and can be implemented to allow for label-free quantification (LFQ) by mass-spectrometry. Using expression of a Flag-tagged Twinkle helicase and appropriate controls we show that this method identifies many previously identified nucleoid associated proteins. Using LFQ to compare HEK293 cells with and without mtDNA, but both expressing Twinkle-FLAG, identifies many proteins that are reduced or absent in the absence of mtDNA. This set not only includes established mtDNA maintenance proteins but also many proteins involved in mitochondrial RNA metabolism and translation and therefore represents what can be considered an mtDNA gene expression proteome. Our data provides a very valuable resource for both basic mitochondrial researchers as well as clinical geneticists working to identify novel disease genes on the basis of exome sequence data. PMID:25695250

  12. The Involvement of Microbially Derived Extracellular Proteins in Nanoparticle Formation and Aggregation

    NASA Astrophysics Data System (ADS)

    Pearce, C. I.; Moreau, J. W.

    2007-12-01

    While humans are newcomers to the field of nanoscience, microbes have been synthesizing functional nanoscale structures for billions of years. Bacteria have evolved the capability to produce proteins that can unite cellular processes with inorganic substrates, transfer electrons, template biomineralization, and facilitate adhesion. Biominerals are commonly nano-composite materials in which biomolecules such as proteins and/or polysaccharides act as a template to direct nanoparticle nucleation and growth. Understanding the capability of microbes to form nanoparticles and influence their reactive transport properties offers potential for bioremediation and materials synthesis applications. The identification of biomolecules and functional groups associated with biogenic nanoparticle formation in both environmental and laboratory systems is the objective of our research. Two such systems in which protein-nanoparticle interactions were studied are discussed. First, the biogenic reduction of selenium oxyanions to Se0 was studied in pure cultures of Veillonella atypica, Bacillus selenitireducens and Geobacter sulfurreducens. Biogenic Se0 nanostructures were observed as spherical, fibrillar, granular or amorphous aggregates, both in the cytoplasm or periplasmic space and extracellularly. These nanoparticles formed as protein-nanoparticle complexes that could be separated from the cells on the basis of density. A protein of ~39 kDa associated with biogenic nano-Se0 was recovered via polyacrylamide gel electrophoresis for characterization by MALDI-TOF mass spectrometry. Initial results suggest that this protein plays an integral, structural role in Se0 nanosphere formation. Second, the nanoparticulate products of bacterial sulfate reduction in a biofilm growing in minewater were investigated with multiple high- spatial resolution microanalyses. Biogenic zinc-sulfide nanoparticles exhibited evidence for rapid, highly efficient aggregation to form orders-of-magnitude larger

  13. Proteins interacting with mitochondrial ATP-dependent Lon protease (MAP1) in Magnaporthe oryzae are involved in rice blast disease.

    PubMed

    Cui, Xiao; Wei, Yi; Wang, Yu-Han; Li, Jian; Wong, Fuk-Ling; Zheng, Ya-Jie; Yan, Hai; Liu, Shao-Shuai; Liu, Jin-Liang; Jia, Bao-Lei; Zhang, Shi-Hong

    2015-10-01

    The ATP-dependent Lon protease is involved in many physiological processes. In bacteria, Lon regulates pathogenesis and, in yeast, Lon protects mitochondia from oxidative damage. However, little is known about Lon in fungal phytopathogens. MAP1, a homologue of Lon in Magnaporthe oryzae, was recently identified to be important for stress resistance and pathogenesis. Here, we focus on a novel pathogenic pathway mediated by MAP1. Based on an interaction system between rice and a tandem affinity purification (TAP)-tagged MAP1 complementation strain, we identified 23 novel fungal proteins from infected leaves using a TAP approach with mass spectrometry, and confirmed that 14 of these proteins physically interact with MAP1 in vivo. Among these 14 proteins, 11 candidates, presumably localized to the mitochondria, were biochemically determined to be substrates of MAP1 hydrolysis. Deletion mutants were created and functionally analysed to further confirm the involvement of these proteins in pathogenesis. The results indicated that all mutants showed reduced conidiation and sensitivity to hydrogen peroxide. Appressorial formations were not affected, although conidia from certain mutants were morphologically altered. In addition, virulence was reduced in four mutants, enhanced (with lesions forming earlier) in two mutants and remained unchanged in one mutant. Together with the known virulence-related proteins alternative oxidase and enoyl-CoA hydratase, we propose that most of the Lon-interacting proteins are involved in the pathogenic regulation pathway mediated by MAP1 in M. oryzae. Perturbation of this pathway may represent an effective approach for the inhibition of rice blast disease. PMID:25605006

  14. Proteins interacting with mitochondrial ATP-dependent Lon protease (MAP1) in Magnaporthe oryzae are involved in rice blast disease.

    PubMed

    Cui, Xiao; Wei, Yi; Wang, Yu-Han; Li, Jian; Wong, Fuk-Ling; Zheng, Ya-Jie; Yan, Hai; Liu, Shao-Shuai; Liu, Jin-Liang; Jia, Bao-Lei; Zhang, Shi-Hong

    2015-10-01

    The ATP-dependent Lon protease is involved in many physiological processes. In bacteria, Lon regulates pathogenesis and, in yeast, Lon protects mitochondia from oxidative damage. However, little is known about Lon in fungal phytopathogens. MAP1, a homologue of Lon in Magnaporthe oryzae, was recently identified to be important for stress resistance and pathogenesis. Here, we focus on a novel pathogenic pathway mediated by MAP1. Based on an interaction system between rice and a tandem affinity purification (TAP)-tagged MAP1 complementation strain, we identified 23 novel fungal proteins from infected leaves using a TAP approach with mass spectrometry, and confirmed that 14 of these proteins physically interact with MAP1 in vivo. Among these 14 proteins, 11 candidates, presumably localized to the mitochondria, were biochemically determined to be substrates of MAP1 hydrolysis. Deletion mutants were created and functionally analysed to further confirm the involvement of these proteins in pathogenesis. The results indicated that all mutants showed reduced conidiation and sensitivity to hydrogen peroxide. Appressorial formations were not affected, although conidia from certain mutants were morphologically altered. In addition, virulence was reduced in four mutants, enhanced (with lesions forming earlier) in two mutants and remained unchanged in one mutant. Together with the known virulence-related proteins alternative oxidase and enoyl-CoA hydratase, we propose that most of the Lon-interacting proteins are involved in the pathogenic regulation pathway mediated by MAP1 in M. oryzae. Perturbation of this pathway may represent an effective approach for the inhibition of rice blast disease.

  15. HCF243 Encodes a Chloroplast-Localized Protein Involved in the D1 Protein Stability of the Arabidopsis Photosystem II Complex1[W][OA

    PubMed Central

    Zhang, Dongyuan; Zhou, Gongke; Liu, Bingbing; Kong, Yingzhen; Chen, Na; Qiu, Qiang; Yin, Hongju; An, Jiaxing; Zhang, Fang; Chen, Fan

    2011-01-01

    Numerous auxiliary nuclear factors have been identified to be involved in the dynamics of the photosystem II (PSII) complex. In this study, we characterized the high chlorophyll fluorescence243 (hcf243) mutant of Arabidopsis (Arabidopsis thaliana), which shows higher chlorophyll fluorescence and is severely deficient in the accumulation of PSII supercomplexes compared with the wild type. The amount of core subunits was greatly decreased, while the outer antenna subunits and other subunits were hardly affected in hcf243. In vivo protein-labeling experiments indicated that the synthesis rate of both D1 and D2 proteins decreased severely in hcf243, whereas no change was found in the rate of other plastid-encoded proteins. Furthermore, the degradation rate of the PSII core subunit D1 protein is higher in hcf243 than in the wild type, and the assembly of PSII is retarded significantly in the hcf243 mutant. HCF243, a nuclear gene, encodes a chloroplast protein that interacts with the D1 protein. HCF243 homologs were identified in angiosperms with one or two copies but were not found in lower plants and prokaryotes. These results suggest that HCF243, which arose after the origin of the higher plants, may act as a cofactor to maintain the stability of D1 protein and to promote the subsequent assembly of the PSII complex. PMID:21862668

  16. Myxococcus xanthus Pph2 Is a Manganese-dependent Protein Phosphatase Involved in Energy Metabolism*

    PubMed Central

    García-Hernández, Raquel; Moraleda-Muñoz, Aurelio; Castañeda-García, Alfredo; Pérez, Juana; Muñoz-Dorado, José

    2009-01-01

    The multicellular behavior of the myxobacterium Myxococcus xanthus requires the participation of an elevated number of signal-transduction mechanisms to coordinate the cell movements and the sequential changes in gene expression patterns that lead to the morphogenetic and differentiation events. These signal-transduction mechanisms are mainly based on two-component systems and on the reversible phosphorylation of protein targets mediated by eukaryotic-like protein kinases and phosphatases. Among all these factors, protein phosphatases are the elements that remain less characterized. Hence, we have studied in this work the physiological role and biochemical activity of the protein phosphatase of the family PPP (phosphoprotein phosphatases) designated as Pph2, which is forming part of the same operon as the two-component system phoPR1. We have demonstrated that this operon is induced upon starvation in response to the depletion of the cell energy levels. The increase in the expression of the operon contributes to an efficient use of the scarce energy resources available for developing cells to ensure the completion of the life cycle. In fact, a Δpph2 mutant is defective in aggregation, sporulation yield, morphology of the myxospores, and germination efficiency. The yeast two-hybrid technology has shown that Pph2 interacts with the gene products of MXAN_1875 and 5630, which encode a hypothetical protein and a glutamine synthetase, respectively. Because Pph2 exhibits Ser/Thr, and to some extent Tyr, Mn2+-dependent protein phosphatase activity, it is expected that this function is accomplished by dephosphorylation of the specific protein substrates. PMID:19706604

  17. Microaggregate-associated protein involved in invasion of epithelial cells by Mycobacterium avium subsp. hominissuis

    PubMed Central

    Babrak, Lmar; Danelishvili, Lia; Rose, Sasha J; Bermudez, Luiz E

    2015-01-01

    The environmental opportunistic pathogen Mycobacterium avium subsp hominissuis (MAH), a member of the nontuberculous mycobacteria (NTM) cluster, causes respiratory as well as disseminated disease in patients such as those with chronic respiratory illnesses or AIDS. Currently, there is no effective method to prevent NTM respiratory infections. The formation of mycobacterial microaggregates comprises of phenotypic changes that lead to efficient adherence and invasion of the respiratory mucosa in vitro and in vivo. Microaggregate adhesion to the respiratory epithelium is mediated in part through the mycobacterial protein, MAV_3013 (MBP-1). Through DNA microarray analysis, the small hypothetical gene MAV_0831 (Microaggregate Invasion Protein-1, MIP-1) was identified as being upregulated during microaggregate formation. When MIP-1 was overexpressed in poorly-invasive Mycobacterium smegmatis, it provided the bacterium the ability to bind and enter epithelial cells. In addition, incubating microaggregates with recombinant MIP-1 protein enhanced the ability of microaggregates to invade HEp-2 cells, and exposure to anti-MIP-1 immune serum reduced the invasion of the host epithelium. Through protein-protein interaction assays, MIP-1 was found to bind to the host protein filamin A, a cytoskeletal actin-binding protein integral to the modulation of host cell shape and migration. As visualized by immunofluorescence, filamin A was able to co-localize with microaggregates and to a lesser extent planktonic bacteria. Invasion of HEp-2 cells by microaggregates and planktonic bacteria was also inhibited by the addition of anti-filamin A antibody suggesting that filamin A plays an important role during infection. In addition, at earlier time points binding and invasion assay results suggest that MBP-1 participates significantly during the first interactions with the host cell while MIP-1 becomes important once the bacteria adhere to the host epithelium. In summary, we have unveiled

  18. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects

    PubMed Central

    Varland, Sylvia; Osberg, Camilla; Arnesen, Thomas

    2015-01-01

    The vast majority of eukaryotic proteins are N-terminally modified by one or more processing enzymes. Enzymes acting on the very first amino acid of a polypeptide include different peptidases, transferases, and ligases. Methionine aminopeptidases excise the initiator methionine leaving the nascent polypeptide with a newly exposed amino acid that may be further modified. N-terminal acetyl-, methyl-, myristoyl-, and palmitoyltransferases may attach an acetyl, methyl, myristoyl, or palmitoyl group, respectively, to the α-amino group of the target protein N-terminus. With the action of ubiquitin ligases, one or several ubiquitin molecules are transferred, and hence, constitute the N-terminal modification. Modifications at protein N-termini represent an important contribution to proteomic diversity and complexity, and are essential for protein regulation and cellular signaling. Consequently, dysregulation of the N-terminal modifying enzymes is implicated in human diseases. We here review the different protein N-terminal modifications occurring co- or post-translationally with emphasis on the responsible enzymes and their substrate specificities. PMID:25914051

  19. Membrane recognition by vesicular stomatitis virus involves enthalpy-driven protein-lipid interactions.

    PubMed

    Carneiro, Fabiana A; Bianconi, M Lucia; Weissmüller, Gilberto; Stauffer, Fausto; Da Poian, Andrea T

    2002-04-01

    Vesicular stomatitis virus (VSV) infection depends on the fusion of viral and cellular membranes, which is mediated by virus spike glycoprotein G at the acidic environment of the endosomal compartment. VSV G protein does not contain a hydrophobic amino acid sequence similar to the fusion peptides found among other viral glycoproteins, suggesting that membrane recognition occurs through an alternative mechanism. Here we studied the interaction between VSV G protein and liposomes of different phospholipid composition by force spectroscopy, isothermal titration calorimetry (ITC), and fluorescence spectroscopy. Force spectroscopy experiments revealed the requirement for negatively charged phospholipids for VSV binding to membranes, suggesting that this interaction is electrostatic in nature. In addition, ITC experiments showed that VSV binding to liposomes is an enthalpically driven process. Fluorescence data also showed the lack of VSV interaction with the vesicles as well as inhibition of VSV-induced membrane fusion at high ionic strength. Intrinsic fluorescence measurements showed that the extent of G protein conformational changes depends on the presence of phosphatidylserine (PS) on the target membrane. Although the increase in PS content did not change the binding profile, the rate of the fusion reaction was remarkably increased when the PS content was increased from 25 to 75%. On the basis of these data, we suggest that G protein binding to the target membrane essentially depends on electrostatic interactions, probably between positive charges on the protein surface and negatively charged phospholipids in the cellular membrane. In addition, the fusion is exothermic, indicating no entropic constraints to this process.

  20. Involvement of RNA binding proteins AUF1 in mammary gland differentiation

    SciTech Connect

    Nagaoka, Kentaro . E-mail: akenaga@mail.ecc.u-tokyo.ac.jp; Tanaka, Tetsuya; Imakawa, Kazuhiko; Sakai, Senkiti

    2007-08-01

    The expression of many genes, such as {beta}-casein, c-myc, and cyclin D1, is altered by lactogenic hormone stimulation during mammary epithelial cell differentiation. Here, we demonstrate that post-transcriptional regulation plays an important role to establish gene expression required to initiate milk production as well as transcriptional control. AUF1 protein, a member of the AU-rich element (ARE)-binding protein family, plays a role in ARE-mRNA turnover by regulating mRNA stability and/or translational control. Cytoplasmic localization of AUF1 protein is critically linked to function. We show that as the mammary gland differentiates, AUF1 protein moves from the cytoplasm to the nucleus. Moreover, in mammary gland epithelial cells (HC11), stimulation by lactogenic hormone decreased cytoplasmic and increased nuclear AUF1 levels. Direct binding of AUF1 protein was observed on c-myc mRNA, but not {beta}-casein or cyclin D1 mRNA. AUF1 downregulation in HC11 cells increased the expression of {beta}-casein mRNA and decreased the expression of c-myc mRNA by lactogenic hormone. Conversely, overexpression of AUF1 inhibited these effects of lactogenic hormone stimulation in HC11 cells. These results suggest that AUF1 participates in mammary gland differentiation processes under the control of lactogenic hormone signals.

  1. Involvement of protein degradation by the ubiquitin proteasome system in opiate addictive behaviors.

    PubMed

    Massaly, Nicolas; Dahan, Lionel; Baudonnat, Mathieu; Hovnanian, Caroline; Rekik, Khaoula; Solinas, Marcello; David, Vincent; Pech, Stéphane; Zajac, Jean-Marie; Roullet, Pascal; Mouledous, Lionel; Frances, Bernard

    2013-03-01

    Plastic changes in the nucleus accumbens (NAcc), a structure occupying a key position in the neural circuitry related to motivation, are among the critical cellular processes responsible for drug addiction. During the last decade, it has been shown that memory formation and related neuronal plasticity may rely not only on protein synthesis but also on protein degradation by the ubiquitin proteasome system (UPS). In this study, we assess the role of protein degradation in the NAcc in opiate-related behaviors. For this purpose, we coupled behavioral experiments to intra-accumbens injections of lactacystin, an inhibitor of the UPS. We show that protein degradation in the NAcc is mandatory for a full range of animal models of opiate addiction including morphine locomotor sensitization, morphine conditioned place preference, intra-ventral tegmental area morphine self-administration and intra-venous heroin self-administration but not for discrimination learning rewarded by highly palatable food. This study provides the first evidence of a specific role of protein degradation by the UPS in addiction.

  2. Membrane Recognition by Vesicular Stomatitis Virus Involves Enthalpy-Driven Protein-Lipid Interactions

    PubMed Central

    Carneiro, Fabiana A.; Bianconi, M. Lucia; Weissmüller, Gilberto; Stauffer, Fausto; Da Poian, Andrea T.

    2002-01-01

    Vesicular stomatitis virus (VSV) infection depends on the fusion of viral and cellular membranes, which is mediated by virus spike glycoprotein G at the acidic environment of the endosomal compartment. VSV G protein does not contain a hydrophobic amino acid sequence similar to the fusion peptides found among other viral glycoproteins, suggesting that membrane recognition occurs through an alternative mechanism. Here we studied the interaction between VSV G protein and liposomes of different phospholipid composition by force spectroscopy, isothermal titration calorimetry (ITC), and fluorescence spectroscopy. Force spectroscopy experiments revealed the requirement for negatively charged phospholipids for VSV binding to membranes, suggesting that this interaction is electrostatic in nature. In addition, ITC experiments showed that VSV binding to liposomes is an enthalpically driven process. Fluorescence data also showed the lack of VSV interaction with the vesicles as well as inhibition of VSV-induced membrane fusion at high ionic strength. Intrinsic fluorescence measurements showed that the extent of G protein conformational changes depends on the presence of phosphatidylserine (PS) on the target membrane. Although the increase in PS content did not change the binding profile, the rate of the fusion reaction was remarkably increased when the PS content was increased from 25 to 75%. On the basis of these data, we suggest that G protein binding to the target membrane essentially depends on electrostatic interactions, probably between positive charges on the protein surface and negatively charged phospholipids in the cellular membrane. In addition, the fusion is exothermic, indicating no entropic constraints to this process. PMID:11907215

  3. The presence of disulfide bonds reveals an evolutionarily conserved mechanism involved in mitochondrial protein translocase assembly

    PubMed Central

    Wrobel, Lidia; Sokol, Anna M.; Chojnacka, Magdalena; Chacinska, Agnieszka

    2016-01-01

    Disulfide bond formation is crucial for the biogenesis and structure of many proteins that are localized in the intermembrane space of mitochondria. The importance of disulfide bond formation within mitochondrial proteins was extended beyond soluble intermembrane space proteins. Tim22, a membrane protein and core component of the mitochondrial translocase TIM22, forms an intramolecular disulfide bond in yeast. Tim22 belongs to the Tim17/Tim22/Tim23 family of protein translocases. Here, we present evidence of the high evolutionary conservation of disulfide bond formation in Tim17 and Tim22 among fungi and metazoa. Topological models are proposed that include the location of disulfide bonds relative to the predicted transmembrane regions. Yeast and human Tim22 variants that are not oxidized do not properly integrate into the membrane complex. Moreover, the lack of Tim17 oxidation disrupts the TIM23 translocase complex. This underlines the importance of disulfide bond formation for mature translocase assembly through membrane stabilization of weak transmembrane domains. PMID:27265872

  4. DNA-directed in vitro synthesis of proteins involved in bacterial transcription and translation.

    PubMed Central

    Zarucki-Schulz, T; Jerez, C; Goldberg, G; Kung, H F; Huang, K H; Brot, N; Weissbach, H

    1979-01-01

    The in vitro synthesis of elongation factor (EF)-Tu (tufB), the beta beta' subunits of RNA polymerase, ribosomal proteins L10 and L12 directed by DNA from the transducing phage lambda rifd 18, EF-Tu (tufA), EF-G, and the alpha subunit of RNA polymerase directed by DNA from the transducing phage lambda fus3 has been investigated in a crude and a partially defined protein-synthesizing system. Proteins L10 and L12 are synthesized in the partially defined system almost as well as in the crude system. However, the synthesis of EF-Tu, EF-G, and the alpha and beta beta' subunits of RNA polymerase is far less efficient in the partially defined system. An active fraction that stimulates the synthesis of these latter proteins has been obtained by fractionation of a high-speed supernatant on DEAE-cellulose. Because previous studies showed that this fraction (1 M DEAE salt eluate) contains a protein, called L factor, that stimulates beta-galactosidase synthesis in vitro, L factor was tested for activity. Although L factor stimulates the synthesis of the beta beta' subunits, it has little or no effect on the in vitro synthesis of the other products studied. In the present experiments, the ratio of L12/L10 and of EF-Tu (tufA)/EF-G formed is 4-6. These values are consistent with in vivo results. Images PMID:160561

  5. Involvement of 14-3-3 Proteins in Regulating Tumor Progression of Hepatocellular Carcinoma.

    PubMed

    Wu, Yi-Ju; Jan, Yee-Jee; Ko, Bor-Sheng; Liang, Shu-Man; Liou, Jun-Yang

    2015-01-01

    There are seven mammalian isoforms of the 14-3-3 protein, which regulate multiple cellular functions via interactions with phosphorylated partners. Increased expression of 14-3-3 proteins contributes to tumor progression of various malignancies. Several isoforms of 14-3-3 are overexpressed and associate with higher metastatic risks and poorer survival rates of hepatocellular carcinoma (HCC). 14-3-3β and 14-3-3ζ regulate HCC cell proliferation, tumor growth and chemosensitivity via modulating mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK) and p38 signal pathways. Moreover, 14-3-3ε suppresses E-cadherin and induces focal adhesion kinase (FAK) expression, thereby enhancing epithelial-mesenchymal transition (EMT) and HCC cell migration. 14-3-3ζ forms complexes with αB-crystallin, which induces EMT and is the cause of sorafenib resistance in HCC. Finally, a recent study has indicated that 14-3-3σ induces heat shock protein 70 (HSP70) expression, which increases HCC cell migration. These results suggest that selective 14-3-3 isoforms contribute to cell proliferation, EMT and cell migration of HCC by regulating distinct targets and signal pathways. Targeting 14-3-3 proteins together with specific downstream effectors therefore has potential to be therapeutic and prognostic factors of HCC. In this article, we will overview 14-3-3's regulation of its downstream factors and contributions to HCC EMT, cell migration and proliferation. PMID:26083935

  6. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate.

    PubMed

    Salmeen, Annette; Andersen, Jannik N; Myers, Michael P; Meng, Tzu-Ching; Hinks, John A; Tonks, Nicholas K; Barford, David

    2003-06-12

    The second messenger hydrogen peroxide is required for optimal activation of numerous signal transduction pathways, particularly those mediated by protein tyrosine kinases. One mechanism by which hydrogen peroxide regulates cellular processes is the transient inhibition of protein tyrosine phosphatases through the reversible oxidization of their catalytic cysteine, which suppresses protein dephosphorylation. Here we describe a structural analysis of the redox-dependent regulation of protein tyrosine phosphatase 1B (PTP1B), which is reversibly inhibited by oxidation after cells are stimulated with insulin and epidermal growth factor. The sulphenic acid intermediate produced in response to PTP1B oxidation is rapidly converted into a previously unknown sulphenyl-amide species, in which the sulphur atom of the catalytic cysteine is covalently linked to the main chain nitrogen of an adjacent residue. Oxidation of PTP1B to the sulphenyl-amide form is accompanied by large conformational changes in the catalytic site that inhibit substrate binding. We propose that this unusual protein modification both protects the active-site cysteine residue of PTP1B from irreversible oxidation to sulphonic acid and permits redox regulation of the enzyme by promoting its reversible reduction by thiols.

  7. Complement regulatory protein genes in channel catfish and their involvement in disease defense response.

    PubMed

    Jiang, Chen; Zhang, Jiaren; Yao, Jun; Liu, Shikai; Li, Yun; Song, Lin; Li, Chao; Wang, Xiaozhu; Liu, Zhanjiang

    2015-11-01

    Complement system is one of the most important defense systems of innate immunity, which plays a crucial role in disease defense responses in channel catfish. However, inappropriate and excessive complement activation could lead to potential damage to the host cells. Therefore the complement system is controlled by a set of complement regulatory proteins to allow normal defensive functions, but prevent hazardous complement activation to host tissues. In this study, we identified nine complement regulatory protein genes from the channel catfish genome. Phylogenetic and syntenic analyses were conducted to determine their orthology relationships, supporting their correct annotation and potential functional inferences. The expression profiles of the complement regulatory protein genes were determined in channel catfish healthy tissues and after infection with the two main bacterial pathogens, Edwardsiella ictaluri and Flavobacterium columnare. The vast majority of complement regulatory protein genes were significantly regulated after bacterial infections, but interestingly were generally up-regulated after E. ictaluri infection while mostly down-regulated after F. columnare infection, suggesting a pathogen-specific pattern of regulation. Collectively, these findings suggested that complement regulatory protein genes may play complex roles in the host immune responses to bacterial pathogens in channel catfish.

  8. Evolution of an ancient protein function involved in organized multicellularity in animals

    PubMed Central

    Anderson, Douglas P; Whitney, Dustin S; Hanson-Smith, Victor; Woznica, Arielle; Campodonico-Burnett, William; Volkman, Brian F; King, Nicole; Thornton, Joseph W; Prehoda, Kenneth E

    2016-01-01

    To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which – the evolution of GKPID’s capacity to bind the cortical marker protein – can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals. DOI: http://dx.doi.org/10.7554/eLife.10147.001 PMID:26740169

  9. Identification of proteins involved in inhibition of spheroid formation under microgravity.

    PubMed

    Riwaldt, Stefan; Pietsch, Jessica; Sickmann, Albert; Bauer, Johann; Braun, Markus; Segerer, Juergen; Schwarzwälder, Achim; Aleshcheva, Ganna; Corydon, Thomas J; Infanger, Manfred; Grimm, Daniela

    2015-09-01

    Many types of cells transit in vitro from a two- to a three-dimensional growth, when they are exposed to microgravity. The underlying mechanisms are not yet understood. Hence, we investigated the impact of microgravity on protein content and growth behavior. For this purpose, the human thyroid cancer cells FTC-133 were seeded either in recently developed cell containers that can endure enhanced physical forces and perform media changes and cell harvesting automatically or in T-25 culture flasks. All cells were cultured for five days at 1g. Afterwards, a part of the cell containers were flown to the International Space Station, while another part was kept on the ground. T-25 flasks were mounted on and next to a Random Positioning Machine. The cells were cultured for 12 days under the various conditions, before they were fixed with RNAlater. All fixed cultures showed monolayers, but three-dimensional aggregates were not detected. In a subsequent protein analysis, 180 proteins were identified by mass spectrometry. These proteins did not indicate significant differences between cells exposed to microgravity and their 1g controls. However, they suggest that an enhanced production of proteins related to the extracellular matrix could detain the cells from spheroid formation, while profilin-1 is phosphorylated.

  10. TGD4 involved in endoplasmic reticulum-to-chloroplast lipid trafficking is a phosphatidic acid binding protein

    SciTech Connect

    Wang Z.; Xu C.; Benning, C.

    2012-05-01

    The synthesis of galactoglycerolipids, which are prevalent in photosynthetic membranes, involves enzymes at the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Genetic analysis of trigalactosyldiacylglycerol (TGD) proteins in Arabidopsis has demonstrated their role in polar lipid transfer from the ER to the chloroplast. The TGD1, 2, and 3 proteins resemble components of a bacterial-type ATP-binding cassette (ABC) transporter, with TGD1 representing the permease, TGD2 the substrate binding protein, and TGD3 the ATPase. However, the function of the TGD4 protein in this process is less clear and its location in plant cells remains to be firmly determined. The predicted C-terminal {beta}-barrel structure of TGD4 is weakly similar to proteins of the outer cell membrane of Gram-negative bacteria. Here, we show that, like TGD2, the TGD4 protein when fused to DsRED specifically binds phosphatidic acid (PtdOH). As previously shown for tgd1 mutants, tgd4 mutants have elevated PtdOH content, probably in extraplastidic membranes. Using highly purified and specific antibodies to probe different cell fractions, we demonstrated that the TGD4 protein was present in the outer envelope membrane of chloroplasts, where it appeared to be deeply buried within the membrane except for the N-terminus, which was found to be exposed to the cytosol. It is proposed that TGD4 is either directly involved in the transfer of polar lipids, possibly PtdOH, from the ER to the outer chloroplast envelope membrane or in the transfer of PtdOH through the outer envelope membrane.

  11. Exogenous hepatitis B virus envelope proteins induce endoplasmic reticulum stress: involvement of cannabinoid axis in liver cancer cells

    PubMed Central

    Montalbano, Roberta; Honrath, Birgit; Wissniowski, Thaddeus Till; Elxnat, Moritz; Roth, Silvia; Ocker, Matthias; Quint, Karl; Churin, Yuri; Roederfeld, Martin; Schroeder, Dirk; Glebe, Dieter; Roeb, Elke; Fazio, Pietro Di

    2016-01-01

    HBV represents the most common chronic viral infection and major cause of hepatocellular carcinoma (HCC), although its exact role in liver tumorigenesis is unclear. Massive storage of the small (SHBs), middle (MHBs) and large surface (LHBs) HBV envelope proteins leads to cell stress and sustained inflammatory responses. Cannabinoid (CB) system is involved in the pathogenesis of liver diseases, stimulating acute and chronic inflammation, liver damage and fibrogenesis; it triggers endoplasmic reticulum (ER) stress response. The aim of our work was to investigate the activation of ER stress pathway after ectopic HBV envelope proteins expression, in liver cancer cells, and the role exerted by CB receptors. PCR, immunofluorescence and western blotting showed that exogenous LHBs and MHBs induce a clear ER stress response in Huh-7 cells expressing CB1 receptor. Up-regulation of the chaperone BiP/GRP78 (Binding Immunoglobulin Protein/Glucose-Regulated Protein 78) and of the transcription factor CHOP/GADD153 (C/EBP Homologous Protein/Growth Arrest and DNA Damage inducible gene 153), phosphorylation of PERK (PKR-like ER Kinase) and eIF2α (Eukaryotic Initiation Factor 2α) and splicing of XBP1 (X-box binding protein 1) was observed. CB1−/− HepG2 cells did not show any ER stress activation. Inhibition of CB1 receptor counteracted BiP expression in transfected Huh-7 and in HBV+ PLC/PRF/5 cells; whereas no effect was observed in HBV− HLF cells. These results suggest that HBV envelope proteins are able to induce the ER stress pathway. CB1 expression is directly correlated with ER stress function. Further investigations are needed to clarify the involvement of cannabinoid in HCC progression after HBV infection. PMID:26967385

  12. A membrane-anchored protein kinase involved in Brassica self-incompatibility signaling.

    PubMed

    Murase, Kohji; Shiba, Hiroshi; Iwano, Megumi; Che, Fang-Sik; Watanabe, Masao; Isogai, Akira; Takayama, Seiji

    2004-03-01

    Self-incompatibility (SI) response in Brassica is initiated by haplotype-specific interactions between the pollen-borne ligand S locus protein 11/SCR and its stigmatic S receptor kinase, SRK. This binding induces autophosphorylation of SRK, which is then thought to trigger a signaling cascade that leads to self-pollen rejection. A recessive mutation of the modifier (m) gene eliminates the SI response in stigma. Positional cloning of M has revealed that it encodes a membrane-anchored cytoplasmic serine/threonine protein kinase, designated M locus protein kinase (MLPK). Transient expression of MLPK restores the ability of mm papilla cells to reject self-pollen, suggesting that MLPK is a positive mediator of Brassica SI signaling.

  13. Group 3 LEA Protein, ZmLEA3, Is Involved in Protection from Low Temperature Stress.

    PubMed

    Liu, Yang; Liang, Jianan; Sun, Liping; Yang, Xinghong; Li, Dequan

    2016-01-01

    Late embryogenesis abundant (LEA) proteins are a family of small highly hydrophilic proteins that accumulate at the onset of seed desiccation and in response to adverse conditions such as drought, salinity, low temperature, or water deficit. In previous studies, we demonstrated that ZmLEA3 could enhance the transgenic tobacco tolerance to osmotic and oxidative stresses. Here, we demonstrated that the transcription of ZmLEA3 in the maize stems could be significantly induced by low temperature and osmotic stresses and by treatment with abscisic acid (ABA) and H2O2. Further study indicated that ZmLEA3 is a single copy gene in the maize genome. The ZmLEA3 protein could protect lactate dehydrogenase (LDH) activity at low temperatures. The overexpression of ZmLEA3 conferred tolerance to low-temperature stress to transgenic tobacco, yeast (GS115) and E. coli (BL21). PMID:27471509

  14. Group 3 LEA Protein, ZmLEA3, Is Involved in Protection from Low Temperature Stress

    PubMed Central

    Liu, Yang; Liang, Jianan; Sun, Liping; Yang, Xinghong; Li, Dequan

    2016-01-01

    Late embryogenesis abundant (LEA) proteins are a family of small highly hydrophilic proteins that accumulate at the onset of seed desiccation and in response to adverse conditions such as drought, salinity, low temperature, or water deficit. In previous studies, we demonstrated that ZmLEA3 could enhance the transgenic tobacco tolerance to osmotic and oxidative stresses. Here, we demonstrated that the transcription of ZmLEA3 in the maize stems could be significantly induced by low temperature and osmotic stresses and by treatment with abscisic acid (ABA) and H2O2. Further study indicated that ZmLEA3 is a single copy gene in the maize genome. The ZmLEA3 protein could protect lactate dehydrogenase (LDH) activity at low temperatures. The overexpression of ZmLEA3 conferred tolerance to low-temperature stress to transgenic tobacco, yeast (GS115) and E. coli (BL21). PMID:27471509

  15. A rubber particle protein specific for Hevea latex lectin binding involved in latex coagulation.

    PubMed

    Wititsuwannakul, Rapepun; Rukseree, Kamonchanok; Kanokwiroon, Kamonwan; Wititsuwannakul, Dhirayos

    2008-03-01

    In the first of this three paper series, an in vitro latex coagulation was shown to arise from aggregation of rubber particles (RP) and lutoid membranes. RP aggregation was shown to be induced by a specific Hevea latex lectin-like protein (HLL) present on the lutoid membrane. In this second paper, a binding protein (BP) ligand counterpart for HLL was identified. This RP-HLLBP, having a specific interaction, with HLL was isolated from RP and characterized. The protein was extracted from the small RP in the presence of a surfactant (0.2% Triton-X-100) and further purified to homogeneity. Purification steps included acetone precipitation, heat-treatment, and column chromatography. The presence of RP-HLLBP was monitored by its ability to compete with erythrocytes in the hemagglutination inhibition (HI) assay. The purified RP-HLLBP had an HI titre of 1.37 microgml(-1), a pI value of 5.4, optimum activity at pH 5-8 and was thermostable up to 60 degrees C. On SDS-PAGE a single glycoprotein with M(r) of 24 kDa was detected while on native PAGE the major Mr was about 120 kDa. The purified RP-HLLBP was shown to inhibit latex coagulation. Chitinase, but no other glycosidase tested, abolished its HI action and inhibited HLL-induced RP aggregation in a competitive dose dependent manner. This indicated the presence of, and role for, N-acetylglucosamine residues in the binding recognition. The Hevea latex lectin-like protein can thus be referred to as a Hevea latex lectin. Based on protein identification by peptide mass fingerprinting, the RP-HLLBP was confirmed to be the small rubber particle protein (SRPP). This work has unambiguously determined the role of an intrinsic RP glycoprotein (RP-HLLBP or SRPP) as a key component in formation of the rubber latex coagulum. PMID:18226821

  16. Microsecond Molecular Dynamics Simulations of Intrinsically Disordered Proteins Involved in the Oxidative Stress Response

    PubMed Central

    Cino, Elio A.; Wong-ekkabut, Jirasak; Karttunen, Mikko; Choy, Wing-Yiu

    2011-01-01

    Intrinsically disordered proteins (IDPs) are abundant in cells and have central roles in protein-protein interaction networks. Interactions between the IDP Prothymosin alpha (ProTα) and the Neh2 domain of Nuclear factor erythroid 2-related factor 2 (Nrf2), with a common binding partner, Kelch-like ECH-associated protein 1(Keap1), are essential for regulating cellular response to oxidative stress. Misregulation of this pathway can lead to neurodegenerative diseases, premature aging and cancer. In order to understand the mechanisms these two disordered proteins employ to bind to Keap1, we performed extensive 0.5–1.0 microsecond atomistic molecular dynamics (MD) simulations and isothermal titration calorimetry experiments to investigate the structure/dynamics of free-state ProTα and Neh2 and their thermodynamics of bindings. The results show that in their free states, both ProTα and Neh2 have propensities to form bound-state-like β-turn structures but to different extents. We also found that, for both proteins, residues outside the Keap1-binding motifs may play important roles in stabilizing the bound-state-like structures. Based on our findings, we propose that the binding of disordered ProTα and Neh2 to Keap1 occurs synergistically via preformed structural elements (PSEs) and coupled folding and binding, with a heavy bias towards PSEs, particularly for Neh2. Our results provide insights into the molecular mechanisms Neh2 and ProTα bind to Keap1, information that is useful for developing therapeutics to enhance the oxidative stress response. PMID:22125611

  17. Protein farnesyltransferase in plants: molecular characterization and involvement in cell cycle control.

    PubMed Central

    Qian, D; Zhou, D; Ju, R; Cramer, C L; Yang, Z

    1996-01-01

    Farnesylation is required for membrane targeting, protein-protein interactions, and the biological activity of key regulatory proteins, such as Ras small GTPases and protein kinases in a wide range of eukaryotes. In this report, we describe the molecular identification of a plant protein farnesyltransferase (FTase) and evidence for its role in the control of the cell cycle in plants. A pea gene encoding a homolog of the FTase beta subunit was previously cloned using a polymerase chain reaction-based strategy. A similar approach was used to clone a pea gene encoding a homolog of the FTase alpha subunit. The biochemical function of the pea FTase homologs was demonstrated by the reconstitution of FTase enzyme activity using FTase fusion proteins coexpressed in Escherichia coll. RNA gel blot analyses showed that levels of FTase mRNAs are generally higher in tissues, such as those of nodules, that are active in cell division. The relationship of FTase to cell division was further analyzed during the growth of suspension-cultured tobacco BY-2 cells. A biphasic fluctuation of FTase enzyme activity preceded corresponding changes in mitotic activity at the early log phase of cell growth. Moreover, manumycin, a specific inhibitor of FTase, was effective in inhibiting mitosis and growth in these cells. Using synchronized BY-2 cells, manumycin completely blocked mitosis when added at the early S phase but not when added at the G2 phase. These data suggest that FTase is required for the plant cell cycle, perhaps by modulating the progression through the S phase and the transition from G1 to the S phase. PMID:8989889

  18. Proteomic Analysis Reveals Different Involvement of Embryo and Endosperm Proteins during Aging of Yliangyou 2 Hybrid Rice Seeds

    PubMed Central

    Zhang, Ying-Xue; Xu, Heng-Heng; Liu, Shu-Jun; Li, Ni; Wang, Wei-Qing; Møller, Ian M.; Song, Song-Quan

    2016-01-01

    Seed aging is a process that results in a delayed germination, a decreased germination percentage, and finally a total loss of seed viability. However, the mechanism of seed aging is poorly understood. In the present study, Yliangyou 2 hybrid rice (Oryza sativa L.) seeds were artificially aged at 100% relative humidity and 40°C, and the effect of artificial aging on germination, germination time course and the change in protein profiles of embryo and endosperm was studied to understand the molecular mechanism behind seed aging. With an increasing duration of artificial aging, the germination percentage and germination rate of hybrid rice seeds decreased. By comparing the protein profiles from the seeds aged for 0, 10 and 25 days, a total of 91 and 100 protein spots were found to show a significant change of more than 2-fold (P < 0.05) in abundance, and 71 and 79 protein spots were identified, in embryos and endosperms, respectively. The great majority of these proteins increased in abundance in embryos (95%) and decreased in abundance in endosperms (99%). In embryos, most of the identified proteins were associated with energy (30%), with cell defense and rescue (28%), and with storage protein (18%). In endosperms, most of the identified proteins were involved in metabolism (37%), in energy (27%), and in protein synthesis and destination (11%). The most marked change was the increased abundance of many glycolytic enzymes together with the two fermentation enzymes pyruvate decarboxylase and alcohol dehydrogenase in the embryos during aging. We hypothesize that the decreased viability of hybrid rice seeds during artificial aging is caused by the development of hypoxic conditions in the embryos followed by ethanol accumulation. PMID:27708655

  19. The Identification and Functional Characterization of WxL Proteins from Enterococcus faecium Reveal Surface Proteins Involved in Extracellular Matrix Interactions

    PubMed Central

    Galloway-Peña, Jessica R.; Liang, Xiaowen; Singh, Kavindra V.; Yadav, Puja; Chang, Chungyu; La Rosa, Sabina Leanti; Shelburne, Samuel; Ton-That, Hung; Höök, Magnus

    2014-01-01

    The WxL domain recently has been identified as a novel cell wall binding domain found in numerous predicted proteins within multiple Gram-positive bacterial species. However, little is known about the function of proteins containing this novel domain. Here, we identify and characterize 6 Enterococcus faecium proteins containing the WxL domain which, by reverse transcription-PCR (RT-PCR) and genomic analyses, are located in three similarly organized operons, deemed WxL loci A, B, and C. Western blotting, electron microscopy, and enzyme-linked immunosorbent assays (ELISAs) determined that genes of WxL loci A and C encode antigenic, cell surface proteins exposed at higher levels in clinical isolates than in commensal isolates. Secondary structural analyses of locus A recombinant WxL domain-containing proteins found they are rich in β-sheet structure and disordered segments. Using Biacore analyses, we discovered that recombinant WxL proteins from locus A bind human extracellular matrix proteins, specifically type I collagen and fibronectin. Proteins encoded by locus A also were found to bind to each other, suggesting a novel cell surface complex. Furthermore, bile salt survival assays and animal models using a mutant from which all three WxL loci were deleted revealed the involvement of WxL operons in bile salt stress and endocarditis pathogenesis. In summary, these studies extend our understanding of proteins containing the WxL domain and their potential impact on colonization and virulence in E. faecium and possibly other Gram-positive bacterial species. PMID:25512313

  20. CyDiv, a Conserved and Novel Filamentous Cyanobacterial Cell Division Protein Involved in Septum Localization

    PubMed Central

    Mandakovic, Dinka; Trigo, Carla; Andrade, Derly; Riquelme, Brenda; Gómez-Lillo, Gabriela; Soto-Liebe, Katia; Díez, Beatriz; Vásquez, Mónica

    2016-01-01

    Cell division in bacteria has been studied mostly in Escherichia coli and Bacillus subtilis, model organisms for Gram-negative and Gram-positive bacteria, respectively. However, cell division in filamentous cyanobacteria is poorly understood. Here, we identified a novel protein, named CyDiv (Cyanobacterial Division), encoded by the all2320 gene in Anabaena sp. PCC 7120. We show that CyDiv plays a key role during cell division. CyDiv has been previously described only as an exclusive and conserved hypothetical protein in filamentous cyanobacteria. Using polyclonal antibodies against CyDiv, we showed that it localizes at different positions depending on cell division timing: poles, septum, in both daughter cells, but also in only one of the daughter cells. The partial deletion of CyDiv gene generates partial defects in cell division, including severe membrane instability and anomalous septum localization during late division. The inability to complete knock out CyDiv strains suggests that it is an essential gene. In silico structural protein analyses and our experimental results suggest that CyDiv is an FtsB/DivIC-like protein, and could therefore, be part of an essential late divisome complex in Anabaena sp. PCC 7120. PMID:26903973

  1. Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress

    PubMed Central

    Nicolas, Emilien; Parisot, Pascaline; Pinto-Monteiro, Celina; de Walque, Roxane; De Vleeschouwer, Christophe; Lafontaine, Denis L. J.

    2016-01-01

    The nucleolus is a potent disease biomarker and a target in cancer therapy. Ribosome biogenesis is initiated in the nucleolus where most ribosomal (r-) proteins assemble onto precursor rRNAs. Here we systematically investigate how depletion of each of the 80 human r-proteins affects nucleolar structure, pre-rRNA processing, mature rRNA accumulation and p53 steady-state level. We developed an image-processing programme for qualitative and quantitative discrimination of normal from altered nucleolar morphology. Remarkably, we find that uL5 (formerly RPL11) and uL18 (RPL5) are the strongest contributors to nucleolar integrity. Together with the 5S rRNA, they form the late-assembling central protuberance on mature 60S subunits, and act as an Hdm2 trap and p53 stabilizer. Other major contributors to p53 homeostasis are also strictly late-assembling large subunit r-proteins essential to nucleolar structure. The identification of the r-proteins that specifically contribute to maintaining nucleolar structure and p53 steady-state level provides insights into fundamental aspects of cell and cancer biology. PMID:27265389

  2. CyDiv, a Conserved and Novel Filamentous Cyanobacterial Cell Division Protein Involved in Septum Localization.

    PubMed

    Mandakovic, Dinka; Trigo, Carla; Andrade, Derly; Riquelme, Brenda; Gómez-Lillo, Gabriela; Soto-Liebe, Katia; Díez, Beatriz; Vásquez, Mónica

    2016-01-01

    Cell division in bacteria has been studied mostly in Escherichia coli and Bacillus subtilis, model organisms for Gram-negative and Gram-positive bacteria, respectively. However, cell division in filamentous cyanobacteria is poorly understood. Here, we identified a novel protein, named CyDiv (Cyanobacterial Division), encoded by the all2320 gene in Anabaena sp. PCC 7120. We show that CyDiv plays a key role during cell division. CyDiv has been previously described only as an exclusive and conserved hypothetical protein in filamentous cyanobacteria. Using polyclonal antibodies against CyDiv, we showed that it localizes at different positions depending on cell division timing: poles, septum, in both daughter cells, but also in only one of the daughter cells. The partial deletion of CyDiv gene generates partial defects in cell division, including severe membrane instability and anomalous septum localization during late division. The inability to complete knock out CyDiv strains suggests that it is an essential gene. In silico structural protein analyses and our experimental results suggest that CyDiv is an FtsB/DivIC-like protein, and could therefore, be part of an essential late divisome complex in Anabaena sp. PCC 7120. PMID:26903973

  3. CyDiv, a Conserved and Novel Filamentous Cyanobacterial Cell Division Protein Involved in Septum Localization.

    PubMed

    Mandakovic, Dinka; Trigo, Carla; Andrade, Derly; Riquelme, Brenda; Gómez-Lillo, Gabriela; Soto-Liebe, Katia; Díez, Beatriz; Vásquez, Mónica

    2016-01-01

    Cell division in bacteria has been studied mostly in Escherichia coli and Bacillus subtilis, model organisms for Gram-negative and Gram-positive bacteria, respectively. However, cell division in filamentous cyanobacteria is poorly understood. Here, we identified a novel protein, named CyDiv (Cyanobacterial Division), encoded by the all2320 gene in Anabaena sp. PCC 7120. We show that CyDiv plays a key role during cell division. CyDiv has been previously described only as an exclusive and conserved hypothetical protein in filamentous cyanobacteria. Using polyclonal antibodies against CyDiv, we showed that it localizes at different positions depending on cell division timing: poles, septum, in both daughter cells, but also in only one of the daughter cells. The partial deletion of CyDiv gene generates partial defects in cell division, including severe membrane instability and anomalous septum localization during late division. The inability to complete knock out CyDiv strains suggests that it is an essential gene. In silico structural protein analyses and our experimental results suggest that CyDiv is an FtsB/DivIC-like protein, and could therefore, be part of an essential late divisome complex in Anabaena sp. PCC 7120.

  4. Transcriptional Coactivator and Chromatin Protein PC4 Is Involved in Hippocampal Neurogenesis and Spatial Memory Extinction.

    PubMed

    Swaminathan, Amrutha; Delage, Hélène; Chatterjee, Snehajyoti; Belgarbi-Dutron, Laurence; Cassel, Raphaelle; Martinez, Nicole; Cosquer, Brigitte; Kumari, Sujata; Mongelard, Fabien; Lannes, Béatrice; Cassel, Jean-Christophe; Boutillier, Anne-Laurence; Bouvet, Philippe; Kundu, Tapas K

    2016-09-23

    Although the elaborate combination of histone and non-histone protein complexes defines chromatin organization and hence regulates numerous nuclear processes, the role of chromatin organizing proteins remains unexplored at the organismal level. The highly abundant, multifunctional, chromatin-associated protein and transcriptional coactivator positive coactivator 4 (PC4/Sub1) is absolutely critical for life, because its absence leads to embryonic lethality. Here, we report results obtained with conditional PC4 knock-out (PC4(f/f) Nestin-Cre) mice where PC4 is knocked out specifically in the brain. Compared with the control (PC4(+/+) Nestin-Cre) mice, PC4(f/f) Nestin-Cre mice are smaller with decreased nocturnal activity but are fertile and show no motor dysfunction. Neurons in different areas of the brains of these mice show sensitivity to hypoxia/anoxia, and decreased adult neurogenesis was observed in the dentate gyrus. Interestingly, PC4(f/f) Nestin-Cre mice exhibit a severe deficit in spatial memory extinction, whereas acquisition and long term retention were unaffected. Gene expression analysis of the dorsal hippocampus of PC4(f/f) Nestin-Cre mice revealed dysregulated expression of several neural function-associated genes, and PC4 was consistently found to localize on the promoters of these genes, indicating that PC4 regulates their expression. These observations indicate that non-histone chromatin-associated proteins like PC4 play a significant role in neuronal plasticity.

  5. Nitric oxide and zinc-mediated protein assemblies involved in mu opioid receptor signaling.

    PubMed

    Rodríguez-Muñoz, María; Garzón, Javier

    2013-12-01

    Opioids are among the most effective analgesics in controlling the perception of intense pain, although their continuous use decreases their potency due to the development of tolerance. The glutamate N-methyl-D-aspartate (NMDA) receptor system is currently considered to be the most relevant functional antagonist of morphine analgesia. In the postsynapse of different brain regions the C terminus of the mu-opioid receptor (MOR) associates with NR1 subunits of NMDARs, as well as with a series of signaling proteins, such as neural nitric oxide synthase (nNOS)/nitric oxide (NO), protein kinase C (PKC), calcium and calmodulin-dependent kinase II (CaMKII) and the mitogen-activated protein kinases (MAPKs). NO is implicated in redox signaling and PKC falls under the regulation of zinc metabolism, suggesting that these signaling elements might participate in the regulation of MOR activity by the NMDAR. In this review, we discuss the influence of redox signaling in the mechanisms whose plasticity triggers opioid tolerance. Thus, the MOR C terminus assembles a series of signaling proteins around the homodimeric histidine triad nucleotide-binding protein 1 (HINT1). The NMDAR NR1 subunit and the regulator of G protein signaling RGSZ2 bind HINT1 in a zinc-independent manner, with RGSZ2 associating with nNOS and regulating MOR-induced production of NO. This NO acts on the RGSZ2 zinc finger, providing the zinc ions that are required for PKC/Raf-1 cysteine-rich domains to simultaneously bind to the histidines present in the HINT1 homodimer. The MOR-induced activation of phospholipase β (PLCβ) regulates PKC, which increases the reactive oxygen species (ROS) by acting on NOX/NADPH, consolidating the long-term PKC activation required to regulate the Raf-1/MAPK cascade and enhancing NMDAR function. Thus, RGSZ2 serves as a Redox Zinc Switch that converts NO signals into Zinc signals, thereby modulating Redox Sensor Proteins like PKCγ and Raf-1. Accordingly, redox-dependent and

  6. Cell specific post-translational processing of pikachurin, a protein involved in retinal synaptogenesis.

    PubMed

    Han, Jianzhong; Townes-Anderson, Ellen

    2012-01-01

    Pikachurin is a recently identified, highly conserved, extracellular matrix-like protein. Murine pikachurin has 1,017 amino acids (~110 kDa), can bind to α-dystroglycan, and has been found to localize mainly in the synaptic cleft of photoreceptor ribbon synapses. Its knockout selectively disrupts synaptogenesis between photoreceptor and bipolar cells. To further characterize this synaptic protein, we used an antibody raised against the N-terminal of murine pikachurin on Western blots of mammalian and amphibian retinas and found, unexpectedly, that a low weight ~60-kDa band was the predominant signal for endogenous pikachurin. This band was predicted to be an N-terminal product of post-translational cleavage of pikachurin. A similar sized protein was also detected in human Y79 retinoblastoma cells, a cell line with characteristics of photoreceptor cells. In Y79 cells, endogenous pikachurin immunofluorescence was found on the cell surface of living cells. The expression of the N-fragment was not significantly affected by dystroglycan overexpression in spite of the biochemical evidence for pikachurin-α-dystroglycan binding. The presence of a corresponding endogenous C-fragment was not determined because of the lack of a suitable antibody. However, a protein of ~65 kDa was detected in Y79 cells expressing recombinant pikachurin with a C-terminal tag. In contrast, in QBI-HEK 293A cells, whose endogenous pikachurin protein level is negligible, recombinant pikachurin did not appear to be cleaved. Instead pikachurin was found either intact or as dimers. Finally, whole and N- and C-fragments of recombinant pikachurin were present in the conditioned media of Y79 cells indicating the secretion of pikachurin. The site of cleavage, however, was not conclusively determined. Our data suggest the existence of post-translational cleavage of pikachurin protein as well as the extracellular localization of cleaved protein specifically by retinal cells. The functions of the

  7. Phylogenetic distributions and histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes.

    PubMed

    Hug, Laura A; Stechmann, Alexandra; Roger, Andrew J

    2010-02-01

    Protists that live in low oxygen conditions often oxidize pyruvate to acetate via anaerobic ATP-generating pathways. Key enzymes that commonly occur in these pathways are pyruvate:ferredoxin oxidoreductase (PFO) and [FeFe]-hydrogenase (H(2)ase) as well as the associated [FeFe]-H(2)ase maturase proteins HydE, HydF, and HydG. Determining the origins of these proteins in eukaryotes is of key importance to understanding the origins of anaerobic energy metabolism in microbial eukaryotes. We conducted a comprehensive search for genes encoding these proteins in available whole genomes and expressed sequence tag data from diverse eukaryotes. Our analyses of the presence/absence of eukaryotic PFO, [FeFe]-H(2)ase, and H(2)ase maturase sequences across eukaryotic diversity reveal orthologs of these proteins encoded in the genomes of a variety of protists previously not known to contain them. Our phylogenetic analyses revealed: 1) extensive lateral gene transfers of both PFO and [FeFe]-H(2)ase in eubacteria, 2) decreased support for the monophyly of eukaryote PFO domains, and 3) that eukaryotic [FeFe]-H(2)ases are not monophyletic. Although there are few eukaryote [FeFe]-H(2)ase maturase orthologs characterized, phylogenies of these proteins do recover eukaryote monophyly, although a consistent eubacterial sister group for eukaryotic homologs could not be determined. An exhaustive search for these five genes in diverse genomes from two representative eubacterial groups, the Clostridiales and the alpha-proteobacteria, shows that although these enzymes are nearly universally present within the former group, they are very rare in the latter. No alpha-proteobacterial genome sequenced to date encodes all five proteins. Molecular phylogenies and the extremely restricted distribution of PFO, [FeFe]-H(2)ases, and their associated maturases within the alpha-proteobacteria do not support a mitochondrial origin for these enzymes in eukaryotes. However, the unexpected prevalence of PFO

  8. The response to unfolded protein is involved in osmotolerance of Pichia pastoris

    PubMed Central

    2010-01-01

    Background The effect of osmolarity on cellular physiology has been subject of investigation in many different species. High osmolarity is of importance for biotechnological production processes, where high cell densities and product titers are aspired. Several studies indicated that increased osmolarity of the growth medium can have a beneficial effect on recombinant protein production in different host organisms. Thus, the effect of osmolarity on the cellular physiology of Pichia pastoris, a prominent host for recombinant protein production, was studied in carbon limited chemostat cultures at different osmolarities. Transcriptome and proteome analyses were applied to assess differences upon growth at different osmolarities in both, a wild type strain and an antibody fragment expressing strain. While our main intention was to analyze the effect of different osmolarities on P. pastoris in general, this was complemented by studying it in context with recombinant protein production. Results In contrast to the model yeast Saccharomyces cerevisiae, the main osmolyte in P. pastoris was arabitol rather than glycerol, demonstrating differences in osmotic stress response as well as energy metabolism. 2D Fluorescence Difference Gel electrophoresis and microarray analysis were applied and demonstrated that processes such as protein folding, ribosome biogenesis and cell wall organization were affected by increased osmolarity. These data indicated that upon increased osmolarity less adaptations on both the transcript and protein level occurred in a P. pastoris strain, secreting the Fab fragment, compared with the wild type strain. No transcriptional activation of the high osmolarity glycerol (HOG) pathway was observed at steady state conditions. Furthermore, no change of the specific productivity of recombinant Fab was observed at increased osmolarity. Conclusion These data point out that the physiological response to increased osmolarity is different to S. cerevisiae

  9. Analysis of proteins involved in the production of MAA׳s in two Cyanobacteria Synechocystis PCC 6803 and Anabaena cylindrica

    PubMed Central

    Rahman, Md Akhlaqur; Sinha, Sukrat; Sachan, Shephali; Kumar, Gaurav; Singh, Shailendra Kumar; Sundaram, Shanthy

    2014-01-01

    Mycosporine- like amino acids (MAAs) are small (<400Da), colourless, water soluble compounds composed of cyclohexenone or cyclohexinimine chromophere conjugated with the nitrogen substituent of amino acid or its amino alcohol. These compounds are known for their UV- absorbing role in various organisms and seem to have evolutionary significance. The biosynthesis of MAAs is presumed to occur via the first part of shikimate pathway. In the present work two cyanobacteria Synechocystis PCC 6803 and Anabaena cylindrica were tested for their ability to synthesize MAAs and protein involved in the production of MAAs. It was found that protein sequence 3-phosphoshikimate 1-carboxyvinyltransferase is involved in producing mycosporine glycine in Synechocystis PCC 6803 and 3-dehydroquinate synthase is involved for producing shinorine in Anabaena cylindrica. Phylogenetic and bioinformatic analysis of Mycosporine like amino acid producing protein sequence of both cyanobacterial species Synechocystis PCC 6803 and Anabaena cylindrica provide a useful framework to understand the relationship of the different forms and how they have evolved from a common ancestor. These products seem to be conserved but the residues are prone to variation which might be due the fact that different cyanobacteria show different physiological process in response of Ultraviolet stress. PMID:25187686

  10. Proteomic analysis of ACTN4-interacting proteins reveals it's a putative involvement in mRNA metabolism

    SciTech Connect

    Khotin, Mikhail; Turoverova, Lidia; Aksenova, Vasilisa; Borutinskaite, Veronika Viktorija; Vener, Alexander; Bajenova, Olga; Pinaev, George P.; Tentler, Dmitri

    2010-06-25

    Alpha-actinin 4 (ACTN4) is an actin-binding protein. In the cytoplasm, ACTN4 participates in structural organisation of the cytoskeleton via cross-linking of actin filaments. Nuclear localisation of ACTN4 has also been reported, but no clear role in the nucleus has been established. In this report, we describe the identification of proteins associated with ACTN4 in the nucleus. A combination of two-dimensional gel electrophoresis (2D-GE) and MALDI-TOF mass-spectrometry revealed a large number of ACTN4-bound proteins that are involved in various aspects of mRNA processing and transport. The association of ACTN4 with different ribonucleoproteins suggests that a major function of nuclear ACTN4 may be regulation of mRNA metabolism and signaling.

  11. Isolation and DNA-binding characteristics of a protein involved in transcription activation of two divergently transcribed, essential yeast genes.

    PubMed Central

    Halfter, H; Müller, U; Winnacker, E L; Gallwitz, D

    1989-01-01

    We have identified a protein, BAF1, which has two oppositely oriented, partially overlapping binding sites within a symmetrical sequence located midway between and upstream of the divergently transcribed YPT1 and TUB2 genes of the yeast Saccharomyces cerevisiae. The 120 kd BAF1 protein was purified to near homogeneity and used to delineate the two binding sites and to identify apparent protein contact sites by the missing contact technique, methylation interference and by site-directed mutagenesis. The BAF1-recognition sequence contains a conserved TCN7ACG element recently identified at autonomously replicating sequences (ARS) and in the 5' and 3' flanking region of other yeast genes. The symmetrical sequence of the YPT1/TUB2 intergene region seems not to be involved in DNA replication but activates transcription in an orientation-independent fashion. Images PMID:2684633

  12. Are Cellulosome Scaffolding Protein CipC and CBM3-Containing Protein HycP, Involved in Adherence of Clostridium cellulolyticum to Cellulose?

    PubMed Central

    Ferdinand, Pierre-Henri; Borne, Romain; Trotter, Valentine; Pagès, Sandrine; Tardif, Chantal; Fierobe, Henri-Pierre; Perret, Stéphanie

    2013-01-01

    Clostridium cellulolyticum, a mesophilic anaerobic bacterium, produces highly active enzymatic complexes called cellulosomes. This strain was already shown to bind to cellulose, however the molecular mechanism(s) involved is not known. In this context we focused on the gene named hycP, encoding a 250-kDa protein of unknown function, containing a Family-3 Carbohydrate Binding Module (CBM3) along with 23 hyaline repeat modules (HYR modules). In the microbial kingdom the gene hycP is only found in C. cellulolyticum and the very close strain recently sequenced Clostridium sp BNL1100. Its presence in C. cellulolyticum guided us to analyze its function and its putative role in adhesion of the cells to cellulose. The CBM3 of HycP was shown to bind to crystalline cellulose and was assigned to the CBM3b subfamily. No hydrolytic activity on cellulose was found with a mini-protein displaying representative domains of HycP. A C. cellulolyticum inactivated hycP mutant strain was constructed, and we found that HycP is neither involved in binding of the cells to cellulose nor that the protein has an obvious role in cell growth on cellulose. We also characterized the role of the cellulosome scaffolding protein CipC in adhesion of C. cellulolyticum to cellulose, since cellulosome scaffolding protein has been proposed to mediate binding of other cellulolytic bacteria to cellulose. A second mutant was constructed, where cipC was inactivated. We unexpectedly found that CipC is only partly involved in binding of C. cellulolyticum to cellulose. Other mechanisms for cellulose adhesion may therefore exist in C. cellulolyticum. In addition, no cellulosomal protuberances were observed at the cellular surface of C. cellulolyticum, what is in contrast to reports from several other cellulosomes producing strains. These findings may suggest that C. cellulolyticum has no dedicated molecular mechanism to aggregate the cellulosomes at the cellular surface. PMID:23935995

  13. A plasma membrane protein is involved in cell contact-mediated regulation of tissue-specific genes in adult hepatocytes

    PubMed Central

    1991-01-01

    We have identified the liver-regulating protein (LRP), a cell surface protein involved in the maintenance of hepatocyte differentiation when cocultured with rat liver epithelial cells (RLEC). LRP was defined by immunoreactivity to a monoclonal antibody (mAb L8) prepared from RLEC. mAb L8 specifically detected two polypeptides of 85 and 73 kD in immunoprecipitation of both hepatocyte- and RLEC-iodinated plasma membranes. The involvement of these polypeptides, which are integral membrane proteins, in cell interaction-mediated regulation of hepatocytes was assessed by evaluating the perturbing effects of the antibody on cocultures with RLEC. Several parameters characteristic of differentiated hepatocytes were studied, such as liver-specific and house-keeping gene expression, cytoskeletal organization and deposition of extracellular matrix (ECM). An early cytoskeletal disturbance was evidenced and a marked alteration of hepatocyte functional capacity was observed in the presence of the antibody, together with a loss of ECM deposition. By contrast, cell-cell aggregation or cell adhesion to various extracellular matrix components were not affected. These findings suggest that LRP is distinct from an extracellular matrix receptor. The fact that early addition of mAb L8 during cell contact establishment was necessary to be effective may indicate that LRP is a novel plasma membrane protein that plays an early pivotal role in the coordinated metabolic changes which lead to the differentiated phenotype of mature hepatocytes. PMID:1918151

  14. The human WBSCR22 protein is involved in the biogenesis of the 40S ribosomal subunits in mammalian cells.

    PubMed

    Õunap, Kadri; Käsper, Ly; Kurg, Ants; Kurg, Reet

    2013-01-01

    The human WBSCR22 protein was previously shown to be up-regulated in invasive breast cancer and its ectopic expression enhances tumor cell survival in the vasculature. In the current study, we show that the WBSCR22 protein is important for cell growth. Knock-down of WBSCR22 with siRNA results in slower growth of WBSCR22-depleted cells. Treatment with siWBSCR22 causes defects in the processing of pre-rRNAs and reduces the level of free 40S ribosomal subunit, suggesting that WBSCR22 is involved in ribosome small subunit biosynthesis. The human WBSCR22 partially complements the growth of WBSCR22 yeast homologue, bud23 deletion mutant suggesting that the human WBSCR22 is a functional homologue of yeast Bud23. WBSCR22 is localized throughout the cell nucleus and is not stably associated with ribosomal subunits within the cell nucleus. We also show that the WBSCR22 protein level is decreased in lymphoblastoid cell lines derived from William-Beuren Syndrome (WBS) patients compared to healthy controls. Our data suggest that the WBSCR22 protein is a ribosome biogenesis factor involved in the biosynthesis of 40S ribosomal particles in mammalian cells.

  15. PPR protein PDM1/SEL1 is involved in RNA editing and splicing of plastid genes in Arabidopsis thaliana.

    PubMed

    Zhang, Hong-Dao; Cui, Yong-Lan; Huang, Chao; Yin, Qian-Qian; Qin, Xue-Mei; Xu, Te; He, Xiao-Fang; Zhang, Yi; Li, Zi-Ran; Yang, Zhong-Nan

    2015-12-01

    After transcription, most chloroplast precursor RNAs undergo further post-transcriptional processing including cleavage, editing, and splicing. Previous investigation has shown that the cleavage of the rpoA transcript and most editing sites, including accD-1, are defective in the knockout mutant of PDM1/SEL1, a PLS-type PPR protein, and that PDM1 is associated with the rpoA transcript. In this work, we found that the splicing of group II introns in trnK and ndhA is also affected in pdm1. Co-immunoprecipitation mass spectrometry experiments were performed to identify proteins that are associated with PDM1. We obtained 126 non-redundant proteins, of which MORF9 was reported to be involved in RNA editing in chloroplast. Yeast two-hybrid assays showed that PDM1 interacts directly with MORF9, MORF2, and MORF8. RNA immunoprecipitation showed that PDM1 associates with the transcripts of trnK and ndhA, as well as accD-1, suggesting that PDM1 is involved in RNA editing and splicing. Therefore, PDM1 is an important protein for post-transcriptional regulation in chloroplast.

  16. The involvement of a PPR protein of the P subfamily in partial RNA editing of an Arabidopsis mitochondrial transcript.

    PubMed

    Doniwa, Yoko; Ueda, Minoru; Ueta, Masami; Wada, Akira; Kadowaki, Koh-ichi; Tsutsumi, Nobuhiro

    2010-04-01

    C-to-U RNA editing (i.e., alteration of a C in the genomic sequence to U in the transcript) has been confirmed widely in angiosperm organellar genomes. During the C-to-U RNA editing event, incomplete edited transcripts have been observed at many sites in the steady-state mRNA population (partial editing). Here, by using coexpression analysis and the surveillance of whole editing status on the mitochondrial genome, we have revealed that a pentatricopeptide repeat (PPR) protein classified into the P subfamily (PPR596) has site-specific influence on the efficiency of C-to-U RNA editing events at partial editing sites on the Arabidopsis thaliana mitochondrial genome. Previous works have revealed that PPR proteins classified into the PLS subfamily containing the E or E and DYW motif are involved in RNA editing as trans-factors; they are believed to recruit deaminase at editing sites. In contrast with the mutant analyses of PLS-subfamily PPR proteins, the editing efficiency at rps3eU1344SS was revealed to be significantly increased in ppr596 mutants. Our study implies P-subfamily PPR protein is involved in the control of the degree of partial editing.

  17. PKD1 Protein Is Involved in Reactive Oxygen Species-mediated Mitochondrial Depolarization in Cooperation with Protein Kinase Cδ (PKCδ)*

    PubMed Central

    Zhang, Thianzhou; Sell, Philip; Braun, Ursula; Leitges, Michael

    2015-01-01

    In this study, we used gene targeting in mice to identify the in vivo functions of PKD1. In addition to phenotypically characterizing the resulting knock-out animals, we also used mouse embryonic fibroblasts to investigate the associated signaling pathways in detail. This study is the first to use genetic deletion to reveal that PKD1 is a key regulator involved in determining the threshold of mitochondrial depolarization that leads to the production of reactive oxygen species. In addition, we also provide clear evidence that PKCδ is upstream of PKD1 in this process and acts as the activating kinase of PKD1. Therefore, our in vivo data indicate that PKD1 functions not only in the context of aging but also during nutrient deprivation, which occurs during specific phases of tumor growth. PMID:25759386

  18. Mammalian antimicrobial proteins and peptides: overview on the RNase A superfamily members involved in innate host defence.

    PubMed

    Boix, Ester; Nogués, M Victòria

    2007-05-01

    The review starts with a general outlook of the main mechanisms of action of antimicrobial proteins and peptides, with the final aim of understanding the biological function of antimicrobial RNases, and identifying the key events that account for their selective properties. Although most antibacterial proteins and peptides do display a wide-range spectrum of action, with a cytotoxic activity against bacteria, fungi, eukaryotic parasites and viruses, we have only focused on their bactericidal activity. We start with a detailed description of the main distinctive structural features of the bacteria target and on the polypeptides, which act as selective host defence weapons.Following, we include an overview of all the current available information on the mammalian RNases which display an antimicrobial activity. There is a wealth of information on the structural, catalytic mechanism and evolutionary relationships of the RNase A superfamily. The bovine pancreatic RNase A (RNase A), the reference member of the mammalian RNase family, has been the main research object of several Nobel laureates in the 60s, 70s and 80s. A potential antimicrobial function was only recently suggested for several members of this family. In fact, the recent evolutionary studies indicate that this protein family may have started off with a host defence function. Antimicrobial RNases constitute an interesting example of proteins involved in the mammalian innate immune defence system. Besides, there is wealth of available information on the mechanism of action of short antimicrobial peptides, but little is known on larger polypeptides, that is, on proteins. Therefore, the identification of the mechanisms of action of antimicrobial RNases would contribute to the understanding of the proteins involved in the innate immunity.

  19. Root Secreted Metabolites and Proteins Are Involved in the Early Events of Plant-Plant Recognition Prior to Competition

    PubMed Central

    Badri, Dayakar V.; De-la-Peña, Clelia; Lei, Zhentian; Manter, Daniel K.; Chaparro, Jacqueline M.; Guimarães, Rejane L.; Sumner, Lloyd W.; Vivanco, Jorge M.

    2012-01-01

    The mechanism whereby organisms interact and differentiate between others has been at the forefront of scientific inquiry, particularly in humans and certain animals. It is widely accepted that plants also interact, but the degree of this interaction has been constricted to competition for space, nutrients, water and light. Here, we analyzed the root secreted metabolites and proteins involved in early plant neighbor recognition by using Arabidopsis thaliana Col-0 ecotype (Col) as our focal plant co-cultured in vitro with different neighbors [A. thaliana Ler ecotype (Ler) or Capsella rubella (Cap)]. Principal component and cluster analyses revealed that both root secreted secondary metabolites and proteins clustered separately between the plants grown individually (Col-0, Ler and Cap grown alone) and the plants co-cultured with two homozygous individuals (Col-Col, Ler-Ler and Cap-Cap) or with different individuals (Col-Ler and Col-Cap). In particularly, we observed that a greater number of defense- and stress- related proteins were secreted when our control plant, Col, was grown alone as compared to when it was co-cultured with another homozygous individual (Col-Col) or with a different individual (Col-Ler and Col-Cap). However, the total amount of defense proteins in the exudates of the co-cultures was higher than in the plant alone. The opposite pattern of expression was identified for stress-related proteins. These data suggest that plants can sense and respond to the presence of different plant neighbors and that the level of relatedness is perceived upon initial interaction. Furthermore, the role of secondary metabolites and defense- and stress-related proteins widely involved in plant-microbe associations and abiotic responses warrants reassessment for plant-plant interactions. PMID:23056382

  20. Tick receptor for outer surface protein A from Ixodes ricinus - the first intrinsically disordered protein involved in vector-microbe recognition.

    PubMed

    Urbanowicz, Anna; Lewandowski, Dominik; Szpotkowski, Kamil; Figlerowicz, Marek

    2016-01-01

    The tick receptor for outer surface protein A (TROSPA) is the only identified factor involved in tick gut colonization by various Borrelia species. TROSPA is localized in the gut epithelium and can recognize and bind the outer surface bacterial protein OspA via an unknown mechanism. Based on earlier reports and our latest observations, we considered that TROSPA would be the first identified intrinsically disordered protein (IDP) involved in the interaction between a vector and a pathogenic microbe. To verify this hypothesis, we performed structural studies of a TROSPA mutant from Ixodes ricinus using both computational and experimental approaches. Irrespective of the method used, we observed that the secondary structure content of the TROSPA polypeptide chain is low. In addition, the collected SAXS data indicated that this protein is highly extended and exists in solution as a set of numerous conformers. These features are all commonly considered hallmarks of IDPs. Taking advantage of our SAXS data, we created structural models of TROSPA and proposed a putative mechanism for the TROSPA-OspA interaction. The disordered nature of TROSPA may explain the ability of a wide spectrum of Borrelia species to colonize the tick gut.

  1. Tick receptor for outer surface protein A from Ixodes ricinus — the first intrinsically disordered protein involved in vector-microbe recognition

    NASA Astrophysics Data System (ADS)

    Urbanowicz, Anna; Lewandowski, Dominik; Szpotkowski, Kamil; Figlerowicz, Marek

    2016-04-01

    The tick receptor for outer surface protein A (TROSPA) is the only identified factor involved in tick gut colonization by various Borrelia species. TROSPA is localized in the gut epithelium and can recognize and bind the outer surface bacterial protein OspA via an unknown mechanism. Based on earlier reports and our latest observations, we considered that TROSPA would be the first identified intrinsically disordered protein (IDP) involved in the interaction between a vector and a pathogenic microbe. To verify this hypothesis, we performed structural studies of a TROSPA mutant from Ixodes ricinus using both computational and experimental approaches. Irrespective of the method used, we observed that the secondary structure content of the TROSPA polypeptide chain is low. In addition, the collected SAXS data indicated that this protein is highly extended and exists in solution as a set of numerous conformers. These features are all commonly considered hallmarks of IDPs. Taking advantage of our SAXS data, we created structural models of TROSPA and proposed a putative mechanism for the TROSPA-OspA interaction. The disordered nature of TROSPA may explain the ability of a wide spectrum of Borrelia species to colonize the tick gut.

  2. Tick receptor for outer surface protein A from Ixodes ricinus — the first intrinsically disordered protein involved in vector-microbe recognition

    PubMed Central

    Urbanowicz, Anna; Lewandowski, Dominik; Szpotkowski, Kamil; Figlerowicz, Marek

    2016-01-01

    The tick receptor for outer surface protein A (TROSPA) is the only identified factor involved in tick gut colonization by various Borrelia species. TROSPA is localized in the gut epithelium and can recognize and bind the outer surface bacterial protein OspA via an unknown mechanism. Based on earlier reports and our latest observations, we considered that TROSPA would be the first identified intrinsically disordered protein (IDP) involved in the interaction between a vector and a pathogenic microbe. To verify this hypothesis, we performed structural studies of a TROSPA mutant from Ixodes ricinus using both computational and experimental approaches. Irrespective of the method used, we observed that the secondary structure content of the TROSPA polypeptide chain is low. In addition, the collected SAXS data indicated that this protein is highly extended and exists in solution as a set of numerous conformers. These features are all commonly considered hallmarks of IDPs. Taking advantage of our SAXS data, we created structural models of TROSPA and proposed a putative mechanism for the TROSPA-OspA interaction. The disordered nature of TROSPA may explain the ability of a wide spectrum of Borrelia species to colonize the tick gut. PMID:27112540

  3. Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy.

    PubMed

    Abeliovich, Hagai; Zarei, Mostafa; Rigbolt, Kristoffer T G; Youle, Richard J; Dengjel, Joern

    2013-01-01

    Mitophagy, the autophagic degradation of mitochondria, is an important housekeeping function in eukaryotic cells, and defects in mitophagy correlate with ageing phenomena and with several neurodegenerative disorders. A central mechanistic question regarding mitophagy is whether mitochondria are consumed en masse, or whether an active process segregates defective molecules from functional ones within the mitochondrial network, thus allowing a more efficient culling mechanism. Here we combine a proteomic study with a molecular genetics and cell biology approach to determine whether such a segregation process occurs in yeast mitochondria. We find that different mitochondrial matrix proteins undergo mitophagic degradation at distinctly different rates, supporting the active segregation hypothesis. These differential degradation rates depend on mitochondrial dynamics, suggesting a mechanism coupling weak physical segregation with mitochondrial dynamics to achieve a distillation-like effect. In agreement, the rates of mitophagic degradation strongly correlate with the degree of physical segregation of specific matrix proteins. PMID:24240771

  4. The planar cell polarity protein Vangl2 is involved in postsynaptic compartmentalization.

    PubMed

    Nagaoka, Tadahiro; Kishi, Masashi

    2016-01-26

    The excitatory postsynaptic region of the vertebrate hippocampus is usually compartmentalized into the postsynaptic density (PSD) and N-cadherin-rich domain, which is important for synaptic adhesion. However, the molecular mechanisms underlying the compartment formation are unknown. In the present report, we show that the planar cell polarity (PCP) protein Van Gogh-like 2 (Vangl2) plays a role in this regionalization. In cultured rat hippocampal neurons that were subjected to Vangl2 expression silencing, the formed clusters of PSD-95, one of the major scaffolding proteins in PSD, tended to overlap with those of N-cadherin. Further, in the dendrites of these neurons, the immunofluorescence of PSD-95 was to some extent diffused, without a significant change in the total signal. Because Vangl2 physically interacts with both PSD-95 and N-cadherin in vivo, these results suggest that a PCP-related direct molecular mechanism underlies the horizontal polarization of the postsynaptic regions. PMID:26683906

  5. Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy

    NASA Astrophysics Data System (ADS)

    Abeliovich, Hagai; Zarei, Mostafa; Rigbolt, Kristoffer T. G.; Youle, Richard J.; Dengjel, Joern

    2013-11-01

    Mitophagy, the autophagic degradation of mitochondria, is an important housekeeping function in eukaryotic cells, and defects in mitophagy correlate with ageing phenomena and with several neurodegenerative disorders. A central mechanistic question regarding mitophagy is whether mitochondria are consumed en masse, or whether an active process segregates defective molecules from functional ones within the mitochondrial network, thus allowing a more efficient culling mechanism. Here we combine a proteomic study with a molecular genetics and cell biology approach to determine whether such a segregation process occurs in yeast mitochondria. We find that different mitochondrial matrix proteins undergo mitophagic degradation at distinctly different rates, supporting the active segregation hypothesis. These differential degradation rates depend on mitochondrial dynamics, suggesting a mechanism coupling weak physical segregation with mitochondrial dynamics to achieve a distillation-like effect. In agreement, the rates of mitophagic degradation strongly correlate with the degree of physical segregation of specific matrix proteins.

  6. The Ski Protein is Involved in the Transformation Pathway of Aurora Kinase A.

    PubMed

    Rivas, Solange; Armisén, Ricardo; Rojas, Diego A; Maldonado, Edio; Huerta, Hernán; Tapia, Julio C; Espinoza, Jaime; Colombo, Alicia; Michea, Luis; Hayman, Michael J; Marcelain, Katherine

    2016-02-01

    Oncogenic kinase Aurora A (AURKA) has been found to be overexpresed in several tumors including colorectal, breast, and hematological cancers. Overexpression of AURKA induces centrosome amplification and aneuploidy and it is related with cancer progression and poor prognosis. Here we show that AURKA phosphorylates in vitro the transcripcional co-repressor Ski on aminoacids Ser326 and Ser383. Phosphorylations on these aminoacids decreased Ski protein half-life. Reduced levels of Ski resulted in centrosomes amplification and multipolar spindles formation, same as AURKA overexpressing cells. Importantly, overexpression of Ski wild type, but not S326D and S383D mutants inhibited centrosome amplification and cellular transformation induced by AURKA. Altogether, these results suggest that the Ski protein is a target in the transformation pathway mediated by the AURKA oncogene.

  7. A red herring in vascular calcification: 'nanobacteria' are protein-mineral complexes involved in biomineralization.

    PubMed

    Schlieper, Georg; Krüger, Thilo; Heiss, Alexander; Jahnen-Dechent, Willi

    2011-11-01

    Biomineralization at pathological extraosseous sites (i.e. vasculature and soft tissues) is associated with increased morbidity and mortality. So-called 'nanobacteria' have been described as pathogenic agents causing many diseases including calcification. Initially, their appearance, and having a content consisting of nucleic acids plus proteins and properties of growing structures, suggested that they were living organisms. However, it could be demonstrated that the so-called nanobacteria were in fact mineralizing nanoparticles that contain mineral and non-mineral compounds, that these particles bind to charged molecules and that supersaturation enables in vitro growth of these nanoparticles. Recent data indicate that nanoparticles consisting of protein-mineral complexes can be seen both in vitro and in vivo as precursors of matrix calcification. PMID:21965584

  8. The Ski Protein is Involved in the Transformation Pathway of Aurora Kinase A.

    PubMed

    Rivas, Solange; Armisén, Ricardo; Rojas, Diego A; Maldonado, Edio; Huerta, Hernán; Tapia, Julio C; Espinoza, Jaime; Colombo, Alicia; Michea, Luis; Hayman, Michael J; Marcelain, Katherine

    2016-02-01

    Oncogenic kinase Aurora A (AURKA) has been found to be overexpresed in several tumors including colorectal, breast, and hematological cancers. Overexpression of AURKA induces centrosome amplification and aneuploidy and it is related with cancer progression and poor prognosis. Here we show that AURKA phosphorylates in vitro the transcripcional co-repressor Ski on aminoacids Ser326 and Ser383. Phosphorylations on these aminoacids decreased Ski protein half-life. Reduced levels of Ski resulted in centrosomes amplification and multipolar spindles formation, same as AURKA overexpressing cells. Importantly, overexpression of Ski wild type, but not S326D and S383D mutants inhibited centrosome amplification and cellular transformation induced by AURKA. Altogether, these results suggest that the Ski protein is a target in the transformation pathway mediated by the AURKA oncogene. PMID:26138431

  9. Interaction of the amyloid precursor protein-like protein 1 (APLP1) E2 domain with heparan sulfate involves two distinct binding modes

    SciTech Connect

    Dahms, Sven O.; Mayer, Magnus C.; Roeser, Dirk; Multhaup, Gerd; Than, Manuel E.

    2015-03-01

    Two X-ray structures of APLP1 E2 with and without a heparin dodecasaccharide are presented, revealing two distinct binding modes of the protein to heparan sulfate. The data provide a mechanistic explanation of how APP-like proteins bind to heparan sulfates and how they specifically recognize nonreducing structures of heparan sulfates. Beyond the pathology of Alzheimer’s disease, the members of the amyloid precursor protein (APP) family are essential for neuronal development and cell homeostasis in mammals. APP and its paralogues APP-like protein 1 (APLP1) and APP-like protein 2 (APLP2) contain the highly conserved heparan sulfate (HS) binding domain E2, which effects various (patho)physiological functions. Here, two crystal structures of the E2 domain of APLP1 are presented in the apo form and in complex with a heparin dodecasaccharide at 2.5 Å resolution. The apo structure of APLP1 E2 revealed an unfolded and hence flexible N-terminal helix αA. The (APLP1 E2){sub 2}–(heparin){sub 2} complex structure revealed two distinct binding modes, with APLP1 E2 explicitly recognizing the heparin terminus but also interacting with a continuous heparin chain. The latter only requires a certain register of the sugar moieties that fits to a positively charged surface patch and contributes to the general heparin-binding capability of APP-family proteins. Terminal binding of APLP1 E2 to heparin specifically involves a structure of the nonreducing end that is very similar to heparanase-processed HS chains. These data reveal a conserved mechanism for the binding of APP-family proteins to HS and imply a specific regulatory role of HS modifications in the biology of APP and APP-like proteins.

  10. Involvement of a gelsolin-related protein in spermatogenesis of the earthworm Lumbricus terrestris.

    PubMed

    Krüger, Evelyn; Hinssen, Horst; D'Haese, Jochen

    2008-04-01

    A gelsolin-related protein was isolated from seminal vesicles of the annelid Lumbricus terrestris. Compared with the isoforms of the gelsolin-related protein previously found in the muscle of the annelid body wall, the isolated protein was assigned to the first isoform (EWAM-P1) because of its electrophoretic mobility, chromatographic elution behaviour, immunological cross-reactivity and identical nucleotide sequence of segments obtained by reverse transcription/polymerase chain reaction. Immunofluorescence studies with smear preparations of developing male germ cells revealed characteristic changes of the local distribution of actin and EWAM-P1 during spermatogenesis. These changes were correlated with the developmental transport processes and structural alterations. F-actin, as revealed by rhodamine-phalloidin staining, formed a toroid-shaped structure in cytoplasmic bridges connecting the germ cells to a central cytophore during the developmental stages. An actin antibody reacting with both G- and F-actin demonstrated that actin was concentrated at the proximal and distal parts of the spermatocytes. EWAM-P1 was also localized in these regions, with intense staining in the distal part of spermatocytes and young spermatids in which the Golgi complex and proacrosome resided. The anti-actin antibody further stained the periphery of the nucleus. This staining gradually reduced during sperm maturation and covered about half of the length of the nucleus in elongated spermatids. Co-localization of EWAM with actin implied a functional significance of this gelsolin-related protein for the rearrangement of the actin cytoskeleton during earthworm spermiogenesis. PMID:18197420

  11. VP24 Is a Chitin-Binding Protein Involved in White Spot Syndrome Virus Infection

    PubMed Central

    Li, Zaipeng; Han, Yali; Xu, Limei

    2015-01-01

    ABSTRACT Oral ingestion is the major route of infection for the white spot syndrome virus (WSSV). However, the mechanism by which virus particles in the digestive tract invade host cells is unknown. In the present study, we demonstrate that WSSV virions can bind to chitin through one of the major envelope proteins (VP24). Mutagenesis analysis indicated that amino acids (aa) 186 to 200 in the C terminus of VP24 were required for chitin binding. Moreover, the P-VP24186–200 peptide derived from the VP24 chitin binding region significantly inhibited the VP24-chitin interaction and the WSSV-chitin interaction, implying that VP24 participates in WSSV binding to chitin. Oral inoculation experiments showed that P-VP24186–200 treatment reduced the number of virus particles remaining in the digestive tract during the early stage of infection and greatly hindered WSSV proliferation in shrimp. These data indicate that binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection and provide new ideas for preventing WSSV infection in shrimp farms. IMPORTANCE In this study, we show that WSSV can bind to chitin through the envelope protein VP24. The chitin-binding domain of VP24 maps to amino acids 186 to 200 in the C terminus. Binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection. These findings not only extend our knowledge of WSSV infection but also provide new insights into strategies to prevent WSSV infection in shrimp farms. PMID:26512091

  12. The involvement of proline-rich protein Mus musculus predicted gene 4736 in ocular surface functions

    PubMed Central

    Qi, Xia; Ren, Sheng-Wei; Zhang, Feng; Wang, Yi-Qiang

    2016-01-01

    AIM To research the two homologous predicted proline-rich protein genes, Mus musculus predicted gene 4736 (MP4) and proline-rich protein BstNI subfamily 1 (Prb1) which were significantly upregulated in cultured corneal organs when encountering fungal pathogen preparations. This study was to confirm the expression and potential functions of these two genes in ocular surface. METHODS A Pseudomonas aeruginosa keratitis model was established in Balb/c mice. One day post infection, mRNA level of MP4 was measured using real-time polymerase chain reaction (PCR), and MP4 protein detected by immunohistochemistry (IHC) or Western blot using a customized polyclonal anti-MP4 antibody preparation. Lacrimal glands from normal mice were also subjected to IHC staining for MP4. An online bioinformatics program, BioGPS, was utilized to screen public data to determine other potential locations of MP4. RESULTS One day after keratitis induction, MP4 was upregulated in the corneas at both mRNA level as measured using real-time PCR and protein levels as measured using Western blot and IHC. BioGPS analysis of public data suggested that the MP4 gene was most abundantly expressed in the lacrimal glands, and IHC revealed that normal murine lacrimal glands were positive for MP4 staining. CONCLUSION MP4 and Prb1 are closely related with the physiology and pathological processes of the ocular surface. Considering the significance of ocular surface abnormalities like dry eye, we propose that MP4 and Prb1 contribute to homeostasis of ocular surface, and deserve more extensive functional and disease correlation studies. PMID:27588265

  13. On the Involvement of Single-Bond Rotation in the Primary Photochemistry of Photoactive Yellow Protein

    PubMed Central

    Stahl, Andreas D.; Hospes, Marijke; Singhal, Kushagra; van Stokkum, Ivo; van Grondelle, Rienk; Groot, Marie Louise; Hellingwerf, Klaas J.

    2011-01-01

    Prior experimental observations, as well as theoretical considerations, have led to the proposal that C4-C7 single-bond rotation may play an important role in the primary photochemistry of photoactive yellow protein (PYP). We therefore synthesized an analog of this protein's 4-hydroxy-cinnamic acid chromophore, (5-hydroxy indan-(1E)-ylidene)acetic acid, in which rotation across the C4-C7 single bond has been locked with an ethane bridge, and we reconstituted the apo form of the wild-type protein and its R52A derivative with this chromophore analog. In PYP reconstituted with the rotation-locked chromophore, 1), absorption spectra of ground and intermediate states are slightly blue-shifted; 2), the quantum yield of photochemistry is ∼60% reduced; 3), the excited-state dynamics of the chromophore are accelerated; and 4), dynamics of the thermal recovery reaction of the protein are accelerated. A significant finding was that the yield of the transient ground-state intermediate in the early phase of the photocycle was considerably higher in the rotation-locked samples than in the corresponding samples reconstituted with p-coumaric acid. In contrast to theoretical predictions, the initial photocycle dynamics of PYP were observed to be not affected by the charge of the amino acid residue at position 52, which was varied by 1), varying the pH of the sample between 5 and 10; and 2), site-directed mutagenesis to construct R52A. These results imply that C4-C7 single-bond rotation in PYP is not an alternative to C7=C8 double-bond rotation, in case the nearby positive charge of R52 is absent, but rather facilitates, presumably with a compensatory movement, the physiological Z/E isomerization of the blue-light-absorbing chromophore. PMID:21889456

  14. Toxicity of extracellular proteins from Diplodia seriata and Neofusicoccum parvum involved in grapevine Botryosphaeria dieback.

    PubMed

    Bénard-Gellon, M; Farine, S; Goddard, M L; Schmitt, M; Stempien, E; Pensec, F; Laloue, H; Mazet-Kieffer, F; Fontaine, F; Larignon, P; Chong, J; Tarnus, C; Bertsch, C

    2015-03-01

    Botryosphaeria dieback, esca and Eutypa dieback are three economic major grapevine trunk diseases that cause severe yield reduction in vineyards worldwide. The frequency of disease symptoms has increased considerably over the past decade, and no efficient treatment is currently available to control these diseases. The different fungi associated with grapevine trunk diseases mainly induce necrotic wood and characteristic foliar symptoms. In this context, fungi virulence factors and host invasion are not well understood. We hypothesise that extracellular proteins produced by Diplodia seriata and Neofusicoccum parvum, two causal agents associated with Botryosphaeria dieback, are virulence factors responsible for the pathogenicity. In our previous work, we demonstrated that the total extracellular compounds produced by N. parvum induced more necrosis on Chardonnay calli and triggered a different defence gene expression pattern than those produced by D. seriata. Furthermore, this aggressiveness was not clearly correlated with the production of mellein, a characteristic phytotoxin of Botryosphaeriaceae, in our in vitro calli model. To characterise other potential virulence factors and to understand the mechanisms of host invasion by the fungus, we evaluated the profile, quantity and the impact of extracellular proteins produced by these fungi on Vitis vinifera calli necrosis and defence gene expression. Our results reveal that, under the same conditions, N. parvum produces more extracellular proteins and in higher concentrations than D. seriata. With Vitis vinifera cv. Chardonnay cells, we showed that equivalent concentrations of proteins secreted by N. parvum were more aggressive than those of D. seriata in producing necrosis and that they clearly induced more grapevine defence genes. PMID:25323623

  15. A Soluble Carotenoid Protein Involved in Phycobilisome-Related Energy Dissipation in Cyanobacteria

    PubMed Central

    Wilson, Adjélé; Ajlani, Ghada; Verbavatz, Jean-Marc; Vass, Imre; Kerfeld, Cheryl A.; Kirilovsky, Diana

    2006-01-01

    Photosynthetic organisms have developed multiple protective mechanisms to survive under high-light conditions. In plants, one of these mechanisms is the thermal dissipation of excitation energy in the membrane-bound chlorophyll antenna of photosystem II. The question of whether or not cyanobacteria, the progenitor of the chloroplast, have an equivalent photoprotective mechanism has long been unanswered. Recently, however, evidence was presented for the possible existence of a mechanism dissipating excess absorbed energy in the phycobilisome, the extramembrane antenna of cyanobacteria. Here, we demonstrate that this photoprotective mechanism, characterized by blue light–induced fluorescence quenching, is indeed phycobilisome-related and that a soluble carotenoid binding protein, ORANGE CAROTENOID PROTEIN (OCP), encoded by the slr1963 gene in Synechocystis PCC 6803, plays an essential role in this process. Blue light is unable to quench fluorescence in the absence of phycobilisomes or OCP. The fluorescence quenching is not ΔpH-dependent, and it can be induced in the absence of the reaction center II or the chlorophyll antenna, CP43 and CP47. Our data suggest that OCP, which strongly interacts with the thylakoids, acts as both the photoreceptor and the mediator of the reduction of the amount of energy transferred from the phycobilisomes to the photosystems. These are novel roles for a soluble carotenoid protein. PMID:16531492

  16. Cuticular protein LmTwdl1 is involved in molt development of the migratory locust.

    PubMed

    Song, Tian-Qi; Yang, Mei-Ling; Wang, Yan-Li; Liu, Qing; Wang, Hui-Min; Zhang, Jie; Li, Tao

    2016-08-01

    The cuticle, an essential structure for insects, is produced from cuticular proteins and chitin via a series of biochemical reactions. Tweedle genes are important members of the cuticular protein family and have four conserved motifs binding to chitin. Tweedle family genes have been found to play a profound effect on cuticle development. Here, we report that the cuticular protein gene LmTwdl1 of Locusta migratoria belongs to the Tweedle family. In situ hybridization showed that LmTwdl1 is localized to epidermal cells of the cuticle. The expression patterns of LmTwdl1 showed low expression in the cuticle during the early and middle stages of the fifth-instar nymphs; in contrast, its expression rapidly increased in the late stages of fifth-instar nymphs. We performed RNA interference to examine the function of LmTwdl1 in locusts. Silencing of LmTwdl1 resulted in high mortality during the molting process before the next stage. Also, the epicuticle of nymphs failed to molt, tended to be thinner and the arrangement of chitin in the procuticle appeared to be disordered compare to the control group. These results demonstrate that LmTwdl1 plays a critical role in molting, which contributes to a better understanding of the distinct functions of the Tweedle family in locusts. PMID:27430427

  17. Cep78 is a new centriolar protein involved in Plk4-induced centriole overduplication.

    PubMed

    Brunk, Kathrin; Zhu, Mei; Bärenz, Felix; Kratz, Anne-Sophie; Haselmann-Weiss, Uta; Antony, Claude; Hoffmann, Ingrid

    2016-07-15

    Centrioles are core components of centrosomes, the major microtubule-organizing centers of animal cells, and act as basal bodies for cilia formation. Control of centriole number is therefore crucial for genome stability and embryogenesis. Centriole duplication requires the serine/threonine protein kinase Plk4. Here, we identify Cep78 as a human centrosomal protein and a new interaction partner of Plk4. Cep78 is mainly a centriolar protein that localizes to the centriolar wall. Furthermore, we find that Plk4 binds to Cep78 through its N-terminal domain but that Cep78 is not an in vitro Plk4 substrate. Cep78 colocalizes with Plk4 at centrioles and is required for Plk4-induced centriole overduplication. Interestingly, upon depletion of Cep78, newly synthesized Plk4 is not localized to centrosomes. Our results suggest that the interaction between Cep78 and the N-terminal catalytic domain of Plk4 is a new and important element in the centrosome overduplication process.

  18. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses

    PubMed Central

    Ben Amor, Besma; Wirth, Sonia; Merchan, Francisco; Laporte, Philippe; d’Aubenton-Carafa, Yves; Hirsch, Judith; Maizel, Alexis; Mallory, Allison; Lucas, Antoine; Deragon, Jean Marc; Vaucheret, Herve; Thermes, Claude; Crespi, Martin

    2009-01-01

    Long non-protein coding RNAs (npcRNA) represent an emerging class of riboregulators, which either act directly in this long form or are processed to shorter miRNA and siRNA. Genome-wide bioinformatic analysis of full-length cDNA databases identified 76 Arabidopsis npcRNAs. Fourteen npcRNAs were antisense to protein-coding mRNAs, suggesting cis-regulatory roles. Numerous 24-nt siRNA matched to five different npcRNAs, suggesting that these npcRNAs are precursors of this type of siRNA. Expression analyses of the 76 npcRNAs identified a novel npcRNA that accumulates in a dcl1 mutant but does not appear to produce trans-acting siRNA or miRNA. Additionally, another npcRNA was the precursor of miR869 and shown to be up-regulated in dcl4 but not in dcl1 mutants, indicative of a young miRNA gene. Abiotic stress altered the accumulation of 22 npcRNAs among the 76, a fraction significantly higher than that observed for the RNA binding protein-coding fraction of the transcriptome. Overexpression analyses in Arabidopsis identified two npcRNAs as regulators of root growth during salt stress and leaf morphology, respectively. Hence, together with small RNAs, long npcRNAs encompass a sensitive component of the transcriptome that have diverse roles during growth and differentiation. PMID:18997003

  19. The Membrane Proteins Involved in Virulence of Cronobacter sakazakii Virulent G362 and Attenuated L3101 Isolates

    PubMed Central

    Ye, YingWang; Gao, Jina; Jiao, Rui; Li, Hui; Wu, Qingping; Zhang, Jumei; Zhong, Xian

    2015-01-01

    Cronobacter sakazakii is an opportunistic foodborne pathogen and the virulence differences were previously documented. However, information about membranous proteins involved in virulence differences was not available. In this study, virulent characterization such as biofilm formation and flagella motility between virulent C. sakazakii isolate G362 and attenuated L3101 were determined. Then, two-dimensional gel electrophoresis (2-DE) technology was used to preliminarily reveal differential expression of membranous proteins between G362 and L3101. On the mass spectrometry (MS) analysis and MASCOT research results, fourteen proteins with differential expression were successfully identified. At the threshold of twofold changes, five out of eight membranous proteins were up-regulated in G362. Using RT-PCR, the expression abundance of the protein (enzV, ompX, lptE, pstB, and OsmY) genes at mRNA levels was consistent with the results by 2-DE method. The findings presented here provided novel information and valuable knowledge for revealing pathogenic mechanism of C. sakazakii. PMID:26617581

  20. The expression of proteins involved in digestion and detoxification are regulated in Helicoverpa armigera to cope up with chlorpyrifos insecticide.

    PubMed

    Dawkar, Vishal V; Chikate, Yojana R; More, Tushar H; Gupta, Vidya S; Giri, Ashok P

    2016-02-01

    Helicoverpa armigera is a key pest in many vital crops, which is mainly controlled by chemical strategies. To manage this pest is becoming challenging due to its ability and evolution of resistance against insecticides. Further, its subsequent spread on nonhost plant is remarkable in recent times. Hence, decoding resistance mechanism against phytochemicals and synthetic insecticides is a major challenge. The present work describes that the digestion, defense and immunity related enzymes are associated with chlorpyrifos resistance in H. armigera. Proteomic analysis of H. armigera gut tissue upon feeding on chlorpyrifos containing diet (CH) and artificial diet (AD) using nano-liquid chromatography-mass spectrometry identified upregulated 23-proteins in CH fed larvae. Database searches combined with gene ontology analysis revealed that the identified gut proteins engrossed in digestion, proteins crucial for immunity, adaptive responses to stress, and detoxification. Biochemical and quantitative real-time polymerase chain reaction analysis of candidate proteins indicated that insects were struggling to get nutrients and energy in presence of CH, while at the same time endeavoring to metabolize chlorpyrifos. Moreover, we proposed a potential processing pathway of chlorpyrifos in H. armigera gut by examining the metabolites using gas chromatography-mass spectrometry. H. armigera exhibit a range of intriguing behavioral, morphological adaptations and resistance to insecticides by regulating expression of proteins involved in digestion and detoxification mechanisms to cope up with chlorpyrifos. In these contexts, as gut is a rich repository of biological information; profound analysis of gut tissues can give clues of detoxification and resistance mechanism in insects.

  1. Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells.

    PubMed

    Gidda, Satinder K; Watt, Samantha; Collins-Silva, Jillian; Kilaru, Aruna; Arondel, Vincent; Yurchenko, Olga; Horn, Patrick J; James, Christopher N; Shintani, David; Ohlrogge, John B; Chapman, Kent D; Mullen, Robert T; Dyer, John M

    2013-11-01

    While lipid droplets have traditionally been considered as inert sites for the storage of triacylglycerols and sterol esters, they are now recognized as dynamic and functionally diverse organelles involved in energy homeostasis, lipid signaling, and stress responses. Unlike most other organelles, lipid droplets are delineated by a half-unit membrane whose protein constituents are poorly understood, except in the specialized case of oleosins, which are associated with seed lipid droplets. Recently, we identified a new class of lipid-droplet associated proteins called LDAPs that localize specifically to the lipid droplet surface within plant cells and share extensive sequence similarity with the small rubber particle proteins (SRPPs) found in rubber-accumulating plants. Here, we provide additional evidence for a role of LDAPs in lipid accumulation in oil-rich fruit tissues, and further explore the functional relationships between LDAPs and SRPPs. In addition, we propose that the larger LDAP/SRPP protein family plays important roles in the compartmentalization of lipophilic compounds, including triacylglycerols and polyisoprenoids, into lipid droplets within plant cells. Potential roles in lipid droplet biogenesis and function of these proteins also are discussed. PMID:24305619

  2. Two endoplasmic reticulum proteins (calnexin and calreticulin) are involved in innate immunity in Chinese mitten crab (Eriocheir sinensis)

    PubMed Central

    Huang, Ying; Hui, Kaimin; Jin, Min; Yin, Shaowu; Wang, Wen; Ren, Qian

    2016-01-01

    Calnexin (Cnx) and calreticulin (Crt), which are important chaperones in the endoplasmic reticulum (ER), participate in the folding and quality control of client proteins. Cnx and Crt identified from Chinese mitten crab (Eriocheir sinensis) are designated as EsCnx and EsCrt, respectively. EsCnx and EsCrt are expressed in the hemocyte, hepatopancrea, gill, and intestine at the mRNA and protein level. Immunofluorescence analysis indicated that EsCnx and EsCRT are located in the ER. Moreover, the mRNA and protein expression levels of EsCnx and EsCrt were altered by challenge with lipopolysaccharides (LPS), peptidoglycans (PGN), Staphyloccocus aureus, and Vibrio parahaemolyticus. Recombinant EsCnx and EsCrt (rEsCnx and rEsCrt, respectively) proteins can bind to various Gram-positive and Gram-negative bacteria, as well as to different polysaccharides (LPS and PGN). rEsCnx and rEsCrt assisted in the clearance of V. parahaemolyticus in vivo, and the clearance efficiency was impaired after silencing of EsCnx and EsCrt. Our results suggest that the two ER proteins are involved in anti-bacterial immunity in E. sinensis. PMID:27279413

  3. Two endoplasmic reticulum proteins (calnexin and calreticulin) are involved in innate immunity in Chinese mitten crab (Eriocheir sinensis).

    PubMed

    Huang, Ying; Hui, Kaimin; Jin, Min; Yin, Shaowu; Wang, Wen; Ren, Qian

    2016-01-01

    Calnexin (Cnx) and calreticulin (Crt), which are important chaperones in the endoplasmic reticulum (ER), participate in the folding and quality control of client proteins. Cnx and Crt identified from Chinese mitten crab (Eriocheir sinensis) are designated as EsCnx and EsCrt, respectively. EsCnx and EsCrt are expressed in the hemocyte, hepatopancrea, gill, and intestine at the mRNA and protein level. Immunofluorescence analysis indicated that EsCnx and EsCRT are located in the ER. Moreover, the mRNA and protein expression levels of EsCnx and EsCrt were altered by challenge with lipopolysaccharides (LPS), peptidoglycans (PGN), Staphyloccocus aureus, and Vibrio parahaemolyticus. Recombinant EsCnx and EsCrt (rEsCnx and rEsCrt, respectively) proteins can bind to various Gram-positive and Gram-negative bacteria, as well as to different polysaccharides (LPS and PGN). rEsCnx and rEsCrt assisted in the clearance of V. parahaemolyticus in vivo, and the clearance efficiency was impaired after silencing of EsCnx and EsCrt. Our results suggest that the two ER proteins are involved in anti-bacterial immunity in E. sinensis. PMID:27279413

  4. Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells.

    PubMed

    Gidda, Satinder K; Watt, Samantha; Collins-Silva, Jillian; Kilaru, Aruna; Arondel, Vincent; Yurchenko, Olga; Horn, Patrick J; James, Christopher N; Shintani, David; Ohlrogge, John B; Chapman, Kent D; Mullen, Robert T; Dyer, John M

    2013-11-01

    While lipid droplets have traditionally been considered as inert sites for the storage of triacylglycerols and sterol esters, they are now recognized as dynamic and functionally diverse organelles involved in energy homeostasis, lipid signaling, and stress responses. Unlike most other organelles, lipid droplets are delineated by a half-unit membrane whose protein constituents are poorly understood, except in the specialized case of oleosins, which are associated with seed lipid droplets. Recently, we identified a new class of lipid-droplet associated proteins called LDAPs that localize specifically to the lipid droplet surface within plant cells and share extensive sequence similarity with the small rubber particle proteins (SRPPs) found in rubber-accumulating plants. Here, we provide additional evidence for a role of LDAPs in lipid accumulation in oil-rich fruit tissues, and further explore the functional relationships between LDAPs and SRPPs. In addition, we propose that the larger LDAP/SRPP protein family plays important roles in the compartmentalization of lipophilic compounds, including triacylglycerols and polyisoprenoids, into lipid droplets within plant cells. Potential roles in lipid droplet biogenesis and function of these proteins also are discussed.

  5. Identification of a novel centrosomal protein Crp{sup F46} involved in cell cycle progression and mitosis

    SciTech Connect

    Wei Yi; Shen Enzhi; Zhao Na; Liu Qian; Fan Jinling; Marc, Jan; Wang Yongchao; Sun Le; Liang Qianjin

    2008-05-01

    A novel centrosome-related protein Crp{sup F46} was detected using a serum F46 from a patient suffering from progressive systemic sclerosis. We identified the protein by immunoprecipitation and Western blotting followed by tandem mass spectrometry sequencing. The protein Crp{sup F46} has an apparent molecular mass of {approx} 60 kDa, is highly homologous to a 527 amino acid sequence of the C-terminal portion of the protein Golgin-245, and appears to be a splice variant of Golgin-245. Immunofluorescence microscopy of synchronized HeLa cells labeled with an anti-Crp{sup F46} monoclonal antibody revealed that Crp{sup F46} localized exclusively to the centrosome during interphase, although it dispersed throughout the cytoplasm at the onset of mitosis. Domain analysis using Crp{sup F46} fragments in GFP-expression vectors transformed into HeLa cells revealed that centrosomal targeting is conferred by a C-terminal coiled-coil domain. Antisense Crp{sup F46} knockdown inhibited cell growth and proliferation and the cell cycle typically stalled at S phase. The knockdown also resulted in the formation of poly-centrosomal and multinucleate cells, which finally became apoptotic. These results suggest that Crp{sup F46} is a novel centrosome-related protein that associates with the centrosome in a cell cycle-dependent manner and is involved in the progression of the cell cycle and M phase mechanism.

  6. Natural variation in Pristionchus pacificus insect pheromone attraction involves the protein kinase EGL-4

    PubMed Central

    Hong, Ray L.; Witte, Hanh; Sommer, Ralf J.

    2008-01-01

    The geographical mosaic theory of coevolution predicts that different local species interactions will shape population traits, but little is known about the molecular factors involved in mediating the specificity of these interactions. Pristionchus nematodes associate with different scarab beetles around the world, with Pristionchus pacificus isolated primarily from the oriental beetle in Japan. In particular, the constituent populations of P. pacificus represent a rare opportunity to study multiple specialized interactions and the mechanisms that influence population traits at the genetic level. We identified a component of the cGMP signaling pathway to be involved in the natural variation for sensing the insect pheromone ETDA, using targeted introgression lines, exogenous cGMP treatment, and a null egl-4 allele. Our data strongly implicate egl-4 as one of several loci involved in behavioral variation in P. pacificus populations. That EGL-4 homologs have been independently implicated for behavioral variations in other invertebrate models suggests that EGL-4 may act as a modulator for interspecies behavioral repertoires across large phylogenetic distances. PMID:18509055

  7. Elucidation of the involvement of p14, a sperm protein during maturation, capacitation and acrosome reaction of caprine spermatozoa.

    PubMed

    Nandi, Pinki; Ghosh, Swatilekha; Jana, Kuladip; Sen, Parimal C

    2012-01-01

    Mammalian sperm capacitation is an essential prerequisite to fertilization. Although progress is being made in understanding the physiology and biochemistry of capacitation, little has been yet explored about the potential role(s) of individual sperm cell protein during this process. Therefore elucidation of the role of different sperm proteins in the process of capacitation might be of great importance to understand the process of fertilization. The present work describes the partial characterization of a 14-kDa protein (p14) detected in goat spermatozoa using an antibody directed against the purified protein. Confocal microscopic analysis reveals that the protein is present in both the intracellular and extracellular regions of the acrosomal and postacrosomal portion of caudal sperm head. Though subcellular localization shows that p14 is mainly cytosolic, however it is also seen to be present in peripheral plasma membrane and soluble part of acrosome. Immuno-localization experiment shows change in the distribution pattern of this protein upon induction of capacitation in sperm cells. Increased immunolabeling in the anterior head region of live spermatozoa is also observed when these cells are incubated under capacitating conditions, whereas most sperm cells challenged with the calcium ionophore A23187 to acrosome react, lose their labeling almost completely. Intracellular distribution of p14 also changes significantly during acrosome reaction. Interestingly, on the other hand the antibody raised against this 14-kDa sperm protein enhances the forward motility of caprine sperm cells. Rose-Bengal staining method shows that this anti-p14 antibody also decreases the number of acrosome reacted cells if incubated with capacitated sperm cells before induction of acrosome reaction. All these results taken together clearly indicate that p14 is intimately involved and plays a critical role in the acrosomal membrane fusion event.

  8. Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions.

    PubMed

    Kamal, Abu Hena Mostafa; Komatsu, Setsuko

    2016-02-01

    To know the molecular systems basically flooding conditions in soybean, biophoton emission measurements and proteomic analyses were carried out for flooding-stressed roots under light and dark conditions. Photon emission was analyzed using a photon counter. Gel-free quantitative proteomics were performed to identify significant changes proteins using the nano LC-MS along with SIEVE software. Biophoton emissions were significantly increased in both light and dark conditions after flooding stress, but gradually decreased with continued flooding exposure compared to the control plants. Among the 120 significantly identified proteins in the roots of soybean plants, 73 and 19 proteins were decreased and increased in the light condition, respectively, and 4 and 24 proteins were increased and decreased, respectively, in the dark condition. The proteins were mainly functionally grouped into cell organization, protein degradation/synthesis, and glycolysis. The highly abundant lactate/malate dehydrogenase proteins were decreased in flooding-stressed roots exposed to light, whereas the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme was increased in both light and dark conditions. Notably, however, specific enzyme assays revealed that the activities of these enzymes and biophoton emission were sharply increased after 3 days of flooding stress. This finding suggests that the source of biophoton emission in roots might involve the chemical excitation of electron or proton through enzymatic or non-enzymatic oxidation and reduction reactions. Moreover, the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme may play important roles in responses in flooding stress of soybean under the light condition and as a contributing factor to biophoton emission.

  9. New Cell Surface Protein Involved in Biofilm Formation by Streptococcus parasanguinis ▿

    PubMed Central

    Liang, Xiaobo; Chen, Yi-Ywan M.; Ruiz, Teresa; Wu, Hui

    2011-01-01

    Dental biofilm formation is critical for maintaining the healthy microbial ecology of the oral cavity. Streptococci are predominant bacterial species in the oral cavity and play important roles in the initiation of plaque formation. In this study, we identified a new cell surface protein, BapA1, from Streptococcus parasanguinis FW213 and determined that BapA1 is critical for biofilm formation. Sequence analysis revealed that BapA1 possesses a typical cell wall-sorting signal for cell surface-anchored proteins from Gram-positive bacteria. No functional orthologue was reported in other streptococci. BapA1 possesses nine putative pilin isopeptide linker domains which are crucial for pilus assembly in a number of Gram-positive bacteria. Deletion of the 3′ portion of bapA1 generated a mutant that lacks surface-anchored BapA1 and abolishes formation of short fibrils on the cell surface. The mutant failed to form biofilms and exhibited reduced adherence to an in vitro tooth model. The BapA1 deficiency also inhibited bacterial autoaggregation. The N-terminal muramidase-released-protein-like domain mediated BapA1-BapA1 interactions, suggesting that BapA1-mediated cell-cell interactions are important for bacterial autoaggregation and biofilm formation. Furthermore, the BapA1-mediated bacterial adhesion and biofilm formation are independent of a fimbria-associated serine-rich repeat adhesin, Fap1, demonstrating that BapA1 is a new streptococcal adhesin. PMID:21576336

  10. Flavonoids as Therapeutic Compounds Targeting Key Proteins Involved in Alzheimer’s Disease

    PubMed Central

    2013-01-01

    Alzheimer’s disease is characterized by pathological aggregation of protein tau and amyloid-β peptides, both of which are considered to be toxic to neurons. Naturally occurring dietary flavonoids have received considerable attention as alternative candidates for Alzheimer’s therapy taking into account their antiamyloidogenic, antioxidative, and anti-inflammatory properties. Experimental evidence supports the hypothesis that certain flavonoids may protect against Alzheimer’s disease in part by interfering with the generation and assembly of amyloid-β peptides into neurotoxic oligomeric aggregates and also by reducing tau aggregation. Several mechanisms have been proposed for the ability of flavonoids to prevent the onset or to slow the progression of the disease. Some mechanisms include their interaction with important signaling pathways in the brain like the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways that regulate prosurvival transcription factors and gene expression. Other processes include the disruption of amyloid-β aggregation and alterations in amyloid precursor protein processing through the inhibition of β-secretase and/or activation of α-secretase, and inhibiting cyclin-dependent kinase-5 and glycogen synthase kinase-3β activation, preventing abnormal tau phosphorylation. The interaction of flavonoids with different signaling pathways put forward their therapeutic potential to prevent the onset and progression of Alzheimer’s disease and to promote cognitive performance. Nevertheless, further studies are needed to give additional insight into the specific mechanisms by which flavonoids exert their potential neuroprotective actions in the brain of Alzheimer’s disease patients. PMID:24328060

  11. Involvement of impaired desmosome-related proteins in hypertrophic scar intraepidermal blister formation.

    PubMed

    Tan, Jianglin; He, Weifeng; Luo, Gaoxing; Wu, Jun

    2015-11-01

    Hypertrophic scar is one of the unique fibrotic diseases in human. Intraepidermal blister is a common clinical symptom following the hypertrophic scar formation. However, little is known about the reason of blister creation. In this study, we selected three patients with hypertrophic scar as manifested by raised, erythematous, pruritic, blister and thickened appearance undergoing scar resection. The first scar sample was 6 months after burn from the neck of a 3 years old male patient with 10 score by Vancouver Scar Scale (VSS). The second scar sample was 12 months after burn from the dorsal foot of a 16 years old female patient with 13 score by VSS. The third one was 9 months after burn from the elbow of a 34 years old male patients with 13 score by VSS. In order to understand the molecular mechanism of blister formation, we screened the different protein expression between hypertrophic scar and normal skin tissue by means of isobaric tags for relative and absolute quantitation (iTRAQ) labeling technology and high throughput 2D LC-MS/MS. There were 48 proteins found to be downregulated in hypertrophic scar. Among the downregulated ones, plakophilin1 (PKP1), plakophilin3 (PKP3) and desmoplakin (DSP) were the desmosome-related proteins which were validated by immunohistochemistry and western blotting assay. Transmission electron microscopy further showed the considerably reduced size and intensity of hemidesmosome and desmosome in hypertrophic scar tissue, compared to control normal skin. Our data indicted for the first time that downregulation of DSP, PKP1 and PKP3 in hypertrophic scar might be responsible for intraepidermal blister formation.

  12. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis

    PubMed Central

    Manjunatha, Ujjini H.; Boshoff, Helena; Dowd, Cynthia S.; Zhang, Liang; Albert, Thomas J.; Norton, Jason E.; Daniels, Lacy; Dick, Thomas; Pang, Siew Siew; Barry, Clifton E.

    2006-01-01

    PA-824 is a promising new compound for the treatment of tuberculosis that is currently undergoing human trials. Like its progenitors metronidazole and CGI-17341, PA-824 is a prodrug of the nitroimidazole class, requiring bioreductive activation of an aromatic nitro group to exert an antitubercular effect. We have confirmed that resistance to PA-824 (a nitroimidazo-oxazine) and CGI-17341 (a nitroimidazo-oxazole) is most commonly mediated by loss of a specific glucose-6-phosphate dehydrogenase (FGD1) or its deazaflavin cofactor F420, which together provide electrons for the reductive activation of this class of molecules. Although FGD1 and F420 are necessary for sensitivity to these compounds, they are not sufficient and require additional accessory proteins that directly interact with the nitroimidazole. To understand more proximal events in the reductive activation of PA-824, we examined mutants that were wild-type for both FGD1 and F420 and found that, although these mutants had acquired high-level resistance to PA-824 (and another nitroimidazo-oxazine), they retained sensitivity to CGI-17341 (and a related nitroimidazo-oxazole). Microarray-based comparative genome sequencing of these mutants identified lesions in Rv3547, a conserved hypothetical protein with no known function. Complementation with intact Rv3547 fully restored sensitivity to nitroimidazo-oxazines and restored the ability of Mtb to metabolize PA-824. These results suggest that the sensitivity of Mtb to PA-824 and related compounds is mediated by a protein that is highly specific for subtle structural variations in these bicyclic nitroimidazoles. PMID:16387854

  13. Construction of protein interaction network involved in lung adenocarcinomas using a novel algorithm

    PubMed Central

    Chen, Juan; Yang, Hai-Tao; Li, Zhu; Xu, Ning; Yu, Bo; Xu, Jun-Ping; Zhao, Pei-Ge; Wang, Yan; Zhang, Xiu-Juan; Lin, Dian-Jie

    2016-01-01

    Studies that only assess differentially-expressed (DE) genes do not contain the information required to investigate the mechanisms of diseases. A complete knowledge of all the direct and indirect interactions between proteins may act as a significant benchmark in the process of forming a comprehensive description of cellular mechanisms and functions. The results of protein interaction network studies are often inconsistent and are based on various methods. In the present study, a combined network was constructed using selected gene pairs, following the conversion and combination of the scores of gene pairs that were obtained across multiple approaches by a novel algorithm. Samples from patients with and without lung adenocarcinoma were compared, and the RankProd package was used to identify DE genes. The empirical Bayesian (EB) meta-analysis approach, the search tool for the retrieval of interacting genes/proteins database (STRING), the weighted gene coexpression network analysis (WGCNA) package and the differentially-coexpressed genes and links package (DCGL) were used for network construction. A combined network was also constructed with a novel rank-based algorithm using a combined score. The topological features of the 5 networks were analyzed and compared. A total of 941 DE genes were screened. The topological analysis indicated that the gene interaction network constructed using the WGCNA method was more likely to produce a small-world property, which has a small average shortest path length and a large clustering coefficient, whereas the combined network was confirmed to be a scale-free network. Gene pairs that were identified using the novel combined method were mostly enriched in the cell cycle and p53 signaling pathway. The present study provided a novel perspective to the network-based analysis. Each method has advantages and disadvantages. Compared with single methods, the combined algorithm used in the present study may provide a novel method to

  14. Antofine-induced connexin43 gap junction disassembly in rat astrocytes involves protein kinase Cβ.

    PubMed

    Huang, Yu-Fang; Liao, Chih-Kai; Lin, Jau-Chen; Jow, Guey-Mei; Wang, Hwai-Shi; Wu, Jiahn-Chun

    2013-03-01

    Antofine, a phenanthroindolizidine alkaloid derived from Cryptocaryachinensis and Ficusseptica in the Asclepiadaceae milkweed family, is cytotoxic for various cancer cell lines. In this study, we demonstrated that treatment of rat primary astrocytes with antofine induced dose-dependent inhibition of gap junction intercellular communication (GJIC), as assessed by scrape-loading 6-carboxyfluorescein dye transfer. Levels of Cx43 protein were also decreased in a dose- and time-dependent manner following antofine treatment. Double-labeling immunofluorescence microscopy showed that antofine (10ng/ml) induced endocytosis of surface gap junctions into the cytoplasm, where Cx43 was co-localized with the early endosome marker EEA1. Inhibition of lysosomes or proteasomes by co-treatment with antofine and their respective specific inhibitors, NH4Cl or MG132, partially inhibited the antofine-induced decrease in Cx43 protein levels, but did not inhibit the antofine-induced inhibition of GJIC. After 30min of treatment, antofine induced a rapid increase in the intracellular Ca(2+) concentration and activation of protein kinase C (PKC)α/βII, which was maintained for at least 6h. Co-treatment of astrocytes with antofine and the intracellular Ca(2+) chelator BAPTA-AM prevented downregulation of Cx43 and inhibition of GJIC. Moreover, co-treatment with antofine and a specific PKCβ inhibitor prevented endocytosis of gap junctions, downregulation of Cx43, and inhibition of GJIC. Taken together, these findings indicate that antofine induces Cx43 gap junction disassembly by the PKCβ signaling pathway. Inhibition of GJIC by antofine may undermine the neuroprotective effect of astrocytes in CNS. PMID:23403203

  15. N epsilon,N epsilon-dimethyl-lysine cytochrome c as an NMR probe for lysine involvement in protein-protein complex formation.

    PubMed Central

    Moore, G R; Cox, M C; Crowe, D; Osborne, M J; Rosell, F I; Bujons, J; Barker, P D; Mauk, M R; Mauk, A G

    1998-01-01

    The reductively dimethylated derivatives of horse and yeast iso-1-ferricytochromes c have been prepared and characterized for use as NMR probes of the complexes formed by cytochrome c with bovine liver cytochrome b5 and yeast cytochrome c peroxidase. The electrostatic properties and structures of the derivatized cytochromes are not significantly perturbed by the modifications; neither are the electrostatics of protein-protein complex formation or rates of interprotein electron transfer. Two-dimensional 1H-13C NMR spectroscopy of the complexes formed by the derivatized cytochromes with cytochrome b5 and cytochrome c peroxidase has been used to investigate the number and identity of lysine residues of cytochrome c that are involved in interprotein interactions of cytochrome c. The NMR data are incompatible with simple static models proposed previously for the complexes formed by these proteins, but are consistent with the presence of multiple, interconverting complexes of comparable stability, consistent with studies employing Brownian dynamics to model the complexes. The NMR characteristics of the Nepsilon,Nepsilon-dimethyl-lysine groups, their chemical shift dispersion, oxidation state and temperature dependences and the possibility of chemical exchange phenomena are discussed with relevance to the utility of Nepsilon, Nepsilon-dimethyl-lysine's being a generally useful derivative for characterizing protein-protein complexes. PMID:9601073

  16. Involvement of a 43-kilodalton outer membrane protein in beta-lactam resistance of Shigella dysenteriae.

    PubMed Central

    Kar, A K; Ghosh, A S; Chauhan, K; Ahamed, J; Basu, J; Chakrabarti, P; Kundu, M

    1997-01-01

    A beta-lactam-sensitive strain (C152) of Shigella dysenteriae showed two major outer membrane proteins (OMPs) with M(r)s of 43,000 and 38,000, while the clinical isolate M2 lacked the 43,000-Mr OMP, which acted as a channel for beta-lactam antibiotics. Permeability of beta-lactams across the outer membrane (OM) of M2 was lower than that across the OM of C152. Mutants deficient in the 43-kDa OMP could be selected in vitro from strain C152 in the presence of cefoxitin. All beta-lactam-resistant strains were sensitive to imipenem. PMID:9333070

  17. Involvement of an Skp-Like Protein, PGN_0300, in the Type IX Secretion System of Porphyromonas gingivalis

    PubMed Central

    Taguchi, Yuko; Sato, Keiko; Yukitake, Hideharu; Inoue, Tetsuyoshi; Nakayama, Masaaki; Naito, Mariko; Kondo, Yoshio; Kano, Konami; Hoshino, Tomonori; Nakayama, Koji; Takashiba, Shogo

    2015-01-01

    The oral Gram-negative anaerobic bacterium Porphyromonas gingivalis is an important pathogen involved in chronic periodontitis. Among its virulence factors, the major extracellular proteinases, Arg-gingipain and Lys-gingipain, are of interest given their abilities to degrade host proteins and process other virulence factors. Gingipains possess C-terminal domains (CTDs) and are translocated to the cell surface or into the extracellular milieu by the type IX secretion system (T9SS). Gingipains contribute to the colonial pigmentation of the bacterium on blood agar. In this study, Omp17, the PGN_0300 gene product, was found in the outer membrane fraction. A mutant lacking Omp17 did not show pigmentation on blood agar and showed reduced proteolytic activity of the gingipains. CTD-containing proteins were released from bacterial cells without cleavage of the CTDs in the omp17 mutant. Although synthesis of the anionic polysaccharide (A-LPS) was not affected in the omp17 mutant, the processing of and A-LPS modification of CTD-containing proteins was defective. PorU, a C-terminal signal peptidase that cleaves the CTDs of other CTD-containing proteins, was not detected in any membrane fraction of the omp17 mutant, suggesting that the defective maturation of CTD-containing proteins by impairment of Omp17 is partly due to loss of function of PorU. In the mouse subcutaneous infection experiment, the omp17 mutant was less virulent than the wild type. These results suggested that Omp17 is involved in P. gingivalis virulence. PMID:26502912

  18. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    NASA Technical Reports Server (NTRS)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  19. Short-term regulation of NHE3 by EGF and protein kinase C but not protein kinase A involves vesicle trafficking in epithelial cells and fibroblasts.

    PubMed

    Donowitz, M; Janecki, A; Akhter, S; Cavet, M E; Sanchez, F; Lamprecht, G; Zizak, M; Kwon, W L; Khurana, S; Yun, C H; Tse, C M

    2000-01-01

    NHE3 is an intestinal epithelial isoform Na+/H+ exchanger that is present in the brush border of small intestinal, colonic, and gallbladder Na(+)-absorbing epithelial cells. NHE3 is acutely up- and downregulated in response to some G protein-linked receptors, tyrosine kinase receptors, and protein kinases when studied in intact ileum, when stably expressed in PS120 fibroblasts, and in the few studies reported in the human colon cancer cell line Caco-2. In most cases this is due to changes in Vmax of NHE3, although in response to cAMP and squalamine there are also changes in the K'(H+)i of the exchanger. The mechanism of the Vmax regulation as shown by cell surface biotinylation and confocal microscopy in Caco-2 cells and biotinylation in PS120 cells involves changes in the amount of NHE3 on the plasma membrane. In addition, in some cases there are also changes in turnover number of the exchanger. In some cases, the change in amount of NHE3 in the plasma membrane is associated with a change in the amount of plasma membrane. A combination of biochemical studies and transport/inhibitor studies in intact ileum and Caco-2 cells demonstrated that the increase in brush border Na+/H+ exchange caused by acute exposure to EGF was mediated by PI 3-kinase. PI 3-kinase was also involved in FGF stimulation of NHE3 expressed in fibroblasts. Thus, NHE3 is another example of a transport protein that is acutely regulated in part by changing the amount of the transporter on the plasma membrane by a process that appears to involve vesicle trafficking and also to involve changes in turnover number. PMID:11193592

  20. Effect of stabilizing additives on the structure and hydration of proteins: a study involving monoclinic lysozyme.

    PubMed

    Saraswathi, N T; Sankaranarayanan, R; Vijayan, M

    2002-07-01

    In pursuance of a long-range programme on the hydration, mobility and action of proteins, the structural basis of the stabilizing effect of sugars and polyols is being investigated. With two crystallographically independent molecules with slightly different packing environments in the crystal, monoclinic lysozyme constitutes an ideal system for exploring the problem. The differences in the structure and hydration of the two molecules provide a framework for examining the changes caused by stabilizing additives. Monoclinic crystals were grown under native conditions and also in the presence of 10% sucrose, 15% trehalose, 10% trehalose, 10% sorbitol and 5% glycerol. The crystal structures were refined at resolutions ranging from 1.8 to 2.1 A. The average B values, and hence the mobility of the structure, are lower in the presence of additives than in the native crystals. However, a comparison of the structures indicates that the effect of the additives on the structure and the hydration shell around the protein molecule is considerably less than that caused by differences in packing. It is also less than that caused by the replacement of NaNO(3) by NaCl as the precipitant in the crystallization experiments. This result is not in conformity with the commonly held belief that additives exert their stabilizing effect through the reorganization of the hydration shell, at least as far as the ordered water molecules are concerned.

  1. FAM170B, a novel acrosomal protein involved in fertilization in mice.

    PubMed

    Li, Yuchi; Lin, Shouren; Luo, Manling; Guo, Huan; Chen, Jianbo; Ma, Qian; Gu, Yanli; Jiang, Zhimao; Gui, Yaoting

    2015-10-01

    The acrosome is a specialized organelle that covers the anterior region of the sperm nucleus, and plays an essential role in mammalian fertilization. Although acrosome biogenesis is an important aspect of spermiogenesis, the molecular mechanism that regulates this event remains unknown. In the present study, we identified a novel gene, Fam170b (family with sequence similarity 170, member B), exclusively expressed in mouse testes. Fam170b expression first started at postnatal week 3, and increased in an age-dependent manner until plateauing in adulthood. Immunofluorescence staining revealed its enrichment in round spermatids, and redistribution to a perinuclear spot adjacent to the Golgi and the acrosome of elongating spermatids and spermatozoa; this localization was shared between mouse and human spermatozoa. Anti-FAM170B antibody was remarkably found to inhibit murine in vitro fertilization, specifically blocking the acrosome reaction. We further determined that FAM170B interacts with GOPC (Golgi-associated PDZ and coiled-coil motif containing protein) during acrosome formation, as verified by immunofluorescence and co-immunoprecipitation assays. Thus, we document the expression and function for the endogenous acrosomal protein FAM170B during spermiogenesis and fertilization.

  2. Proteins involved in the degradation of cytoplasmic mRNA in the major eukaryotic model systems.

    PubMed

    Siwaszek, Aleksandra; Ukleja, Marta; Dziembowski, Andrzej

    2014-01-01

    The process of mRNA decay and surveillance is considered to be one of the main posttranscriptional gene expression regulation platforms in eukaryotes. The degradation of stable, protein-coding transcripts is normally initiated by removal of the poly(A) tail followed by 5'-cap hydrolysis and degradation of the remaining mRNA body by Xrn1. Alternatively, the exosome complex degrades mRNA in the 3'>5'direction. The newly discovered uridinylation-dependent pathway, which is present in many different organisms, also seems to play a role in bulk mRNA degradation. Simultaneously, to avoid the synthesis of incorrect proteins, special cellular machinery is responsible for the removal of faulty transcripts via nonsense-mediated, no-go, non-stop or non-functional 18S rRNA decay. This review is focused on the major eukaryotic cytoplasmic mRNA degradation pathways showing many similarities and pointing out main differences between the main model-species: yeast, Drosophila, plants and mammals.

  3. The Involvement of hybrid cluster protein 4, HCP4, in Anaerobic Metabolism in Chlamydomonas reinhardtii

    PubMed Central

    Olson, Adam C.; Carter, Clay J.

    2016-01-01

    The unicellular green algae Chlamydomonas reinhardtii has long been studied for its unique fermentation pathways and has been evaluated as a candidate organism for biofuel production. Fermentation in C. reinhardtii is facilitated by a network of three predominant pathways producing four major byproducts: formate, ethanol, acetate and hydrogen. Previous microarray studies identified many genes as being highly up-regulated during anaerobiosis. For example, hybrid cluster protein 4 (HCP4) was found to be one of the most highly up-regulated genes under anoxic conditions. Hybrid cluster proteins have long been studied for their unique spectroscopic properties, yet their biological functions remain largely unclear. To probe its role during anaerobiosis, HCP4 was silenced using artificial microRNAs (ami-hcp4) followed by extensive phenotypic analyses of cells grown under anoxic conditions. Both the expression of key fermentative enzymes and their respective metabolites were significantly altered in ami-hcp4, with nitrogen uptake from the media also being significantly different than wild-type cells. The results strongly suggest a role for HCP4 in regulating key fermentative and nitrogen utilization pathways. PMID:26930496

  4. The Involvement of hybrid cluster protein 4, HCP4, in Anaerobic Metabolism in Chlamydomonas reinhardtii.

    PubMed

    Olson, Adam C; Carter, Clay J

    2016-01-01

    The unicellular green algae Chlamydomonas reinhardtii has long been studied for its unique fermentation pathways and has been evaluated as a candidate organism for biofuel production. Fermentation in C. reinhardtii is facilitated by a network of three predominant pathways producing four major byproducts: formate, ethanol, acetate and hydrogen. Previous microarray studies identified many genes as being highly up-regulated during anaerobiosis. For example, hybrid cluster protein 4 (HCP4) was found to be one of the most highly up-regulated genes under anoxic conditions. Hybrid cluster proteins have long been studied for their unique spectroscopic properties, yet their biological functions remain largely unclear. To probe its role during anaerobiosis, HCP4 was silenced using artificial microRNAs (ami-hcp4) followed by extensive phenotypic analyses of cells grown under anoxic conditions. Both the expression of key fermentative enzymes and their respective metabolites were significantly altered in ami-hcp4, with nitrogen uptake from the media also being significantly different than wild-type cells. The results strongly suggest a role for HCP4 in regulating key fermentative and nitrogen utilization pathways.

  5. The Involvement of hybrid cluster protein 4, HCP4, in Anaerobic Metabolism in Chlamydomonas reinhardtii.

    PubMed

    Olson, Adam C; Carter, Clay J

    2016-01-01

    The unicellular green algae Chlamydomonas reinhardtii has long been studied for its unique fermentation pathways and has been evaluated as a candidate organism for biofuel production. Fermentation in C. reinhardtii is facilitated by a network of three predominant pathways producing four major byproducts: formate, ethanol, acetate and hydrogen. Previous microarray studies identified many genes as being highly up-regulated during anaerobiosis. For example, hybrid cluster protein 4 (HCP4) was found to be one of the most highly up-regulated genes under anoxic conditions. Hybrid cluster proteins have long been studied for their unique spectroscopic properties, yet their biological functions remain largely unclear. To probe its role during anaerobiosis, HCP4 was silenced using artificial microRNAs (ami-hcp4) followed by extensive phenotypic analyses of cells grown under anoxic conditions. Both the expression of key fermentative enzymes and their respective metabolites were significantly altered in ami-hcp4, with nitrogen uptake from the media also being significantly different than wild-type cells. The results strongly suggest a role for HCP4 in regulating key fermentative and nitrogen utilization pathways. PMID:26930496

  6. Functional Characterization of Bacterial Oligosaccharyltransferases Involved in O-Linked Protein Glycosylation▿

    PubMed Central

    Faridmoayer, Amirreza; Fentabil, Messele A.; Mills, Dominic C.; Klassen, John S.; Feldman, Mario F.

    2007-01-01

    Protein glycosylation is an important posttranslational modification that occurs in all domains of life. Pilins, the structural components of type IV pili, are O glycosylated in Neisseria meningitidis, Neisseria gonorrhoeae, and some strains of Pseudomonas aeruginosa. In this work, we characterized the P. aeruginosa 1244 and N. meningitidis MC58 O glycosylation systems in Escherichia coli. In both cases, sugars are transferred en bloc by an oligosaccharyltransferase (OTase) named PglL in N. meningitidis and PilO in P. aeruginosa. We show that, like PilO, PglL has relaxed glycan specificity. Both OTases are sufficient for glycosylation, but they require translocation of the undecaprenol-pyrophosphate-linked oligosaccharide substrates into the periplasm for activity. Whereas PilO activity is restricted to short oligosaccharides, PglL is able to transfer diverse oligo- and polysaccharides. This functional characterization supports the concept that despite their low sequence similarity, PilO and PglL belong to a new family of “O-OTases” that transfer oligosaccharides from lipid carriers to hydroxylated amino acids in proteins. To date, such activity has not been identified for eukaryotes. To our knowledge, this is the first report describing recombinant O glycoproteins synthesized in E. coli. PMID:17890310

  7. Retinoid regulated macrophage cholesterol efflux involves the steroidogenic acute regulatory protein

    PubMed Central

    Manna, Pulak R.

    2016-01-01

    Elimination of excess cholesteryl esters from macrophage-derived foam cells is known to be a key process in limiting plaque stability and progression of atherosclerotic lesions. We have recently demonstrated that regulation of retinoid mediated cholesterol efflux is influenced by liver X receptor (LXR) signaling in mouse macrophages (Manna, P.R. et al., 2015, Biochem. Biophys. Res. Commun., 464:312-317). The data presented in this article evaluate the importance of the steroidogenic acute regulatory protein (StAR) in retinoid mediated macrophage cholesterol efflux. Overexpression of StAR in mouse RAW 264.7 macrophages increased the effects of both all-trans retinoic acid (atRA) and 9-cis RA on cholesterol efflux, suggesting StAR enhances the efficacy of retinoic acid receptor (RAR) and/or retinoid X receptor (RXR) ligands. Additional data revealed that atRA enhances (Bu)2cAMP induced StAR and ATP-binding cassette transporter A1 protein levels. Treatment of macrophages transfected with an LXRE reporter plasmid (pLXREx3-Luc) was found to induce the effects of RAR and RXR analogs on LXR activity. PMID:27081671

  8. A conserved protein interaction network involving the yeast MAP kinases Fus3 and Kss1.

    PubMed

    Kusari, Anasua B; Molina, Douglas M; Sabbagh, Walid; Lau, Chang S; Bardwell, Lee

    2004-01-19

    The Saccharomyces cerevisiae mitogen-activated protein kinases (MAPKs) Fus3 and Kss1 bind to multiple regulators and substrates. We show that mutations in a conserved docking site in these MAPKs (the CD/7m region) disrupt binding to an important subset of their binding partners, including the Ste7 MAPK kinase, the Ste5 adaptor/scaffold protein, and the Dig1 and Dig2 transcriptional repressors. Supporting the possibility that Ste5 and Ste7 bind to the same region of the MAPKs, they partially competed for Fus3 binding. In vivo, some of the MAPK mutants displayed reduced Ste7-dependent phosphorylation, and all of them exhibited multiple defects in mating and pheromone response. The Kss1 mutants were also defective in Kss1-imposed repression of Ste12. We conclude that MAPKs contain a structurally and functionally conserved docking site that mediates an overall positively acting network of interactions with cognate docking sites on their regulators and substrates. Key features of this interaction network appear to have been conserved from yeast to humans. PMID:14734536

  9. Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription.

    PubMed

    Rauen, Thomas; Frye, Bjoern C; Wang, Jialin; Raffetseder, Ute; Alidousty, Christina; En-Nia, Abdelaziz; Floege, Jürgen; Mertens, Peter R

    2016-09-16

    Hypoxia-dependent gene regulation is largely orchestrated by hypoxia-inducible factors (HIFs), which associate with defined nucleotide sequences of hypoxia-responsive elements (HREs). Comparison of the regulatory HRE within the 3' enhancer of the human erythropoietin (EPO) gene with known binding motifs for cold shock protein Y-box (YB) protein-1 yielded strong similarities within the Y-box element and 3' adjacent sequences. DNA binding assays confirmed YB-1 binding to both, single- and double-stranded HRE templates. Under hypoxia, we observed nuclear shuttling of YB-1 and co-immunoprecipitation assays demonstrated that YB-1 and HIF-1α physically interact with each other. Cellular YB-1 depletion using siRNA significantly induced hypoxia-dependent EPO production at both, promoter and mRNA level. Vice versa, overexpressed YB-1 significantly reduced EPO-HRE-dependent gene transcription, whereas this effect was minor under normoxia. HIF-1α overexpression induced hypoxia-dependent gene transcription through the same element and accordingly, co-expression with YB-1 reduced HIF-1α-mediated EPO induction under hypoxic conditions. Taken together, we identified YB-1 as a novel binding factor for HREs that participates in fine-tuning of the hypoxia transcriptome. PMID:27524241

  10. A Dynamic Analysis of Secretory Granules Containing Proteins Involved In Learning

    NASA Astrophysics Data System (ADS)

    Prahl, Louis; Simon, Alex; Jacobs, Conor; Fulwiler, Audrey; Hilken, Lindsay; Scalettar, Bethe; Lochner, Janis

    2010-10-01

    Formation and encoding of long-term memories requires a series of structural changes at synapses, or sites of neuronal communication, in the hippocampus; these changes are mediated by neuromodulatory proteins and serve to strengthen synapses to improve communication. Two prominent neuromodulators, tissue plasminogen activator (tPA) and brain-derived neurotrophic factor (BDNF), are copackaged into secretory granules (SGs) in the body of nerve cells and are transported to distal synapses by motor proteins. At synapses, particularly presynaptic sites, the fate of tPA and BDNF is largely unknown. Motivated by this, and by recent data implicating presynaptic BDNF in early phases of learning, we used fluorescence microscopy to elucidate dynamic properties of presynaptic tPA and BDNF. We find that presynaptic SGs containing tPA and/or BDNF undergo Brownian and anomalous diffusive motion that, in 75% of cases, is so slow that it typically would be classified as immobility. These results suggest that tPA and BDNF are retained at presynaptic sites to facilitate their corelease and role in learning.

  11. A hybrid two-component system protein from Azospirillum brasilense Sp7 was involved in chemotaxis.

    PubMed

    Cui, Yanhua; Tu, Ran; Wu, Lixian; Hong, Yuanyuan; Chen, Sanfeng

    2011-09-20

    We here report the sequence and functional analysis of org35 of Azospirillum brasilense Sp7, which was originally identified to be able to interact with NifA in yeast-two-hybrid system. The org35 encodes a hybrid two-component system protein, including N-terminal PAS domains, a histidine kinase (HPK) domain and a response regulator (RR) domain in C-terminal. To determine the function of the Org35, a deletion-insertion mutant in PAS domain [named Sp7353] and a complemental strain Sp7353C were constructed. The mutant had reduced chemotaxis ability compared to that of wild-type, and the complemental strain was similar to the wild-type strain. These data suggested that the A. brasilense org35 played a key role in chemotaxis. Variants containing different domains of the org35 were expressed, and the functions of these domains were studied in vitro. Phosphorylation assays in vitro demonstrated that the HPK domain of Org35 possessed the autokinase activity and that the phosphorylated HPK was able to transfer phosphate groups to the RR domain. The result indicated Org35 was a phosphorylation-communicating protein.

  12. Titration of the bacteriorhodopsin Schiff base involves titration of an additional protein residue.

    PubMed

    Zadok, Uri; Asato, Alfred E; Sheves, Mordechai

    2005-06-14

    The retinal protein protonated Schiff base linkage plays a key role in the function of bacteriorhodopsin (bR) as a light-driven proton pump. In the unphotolyzed pigment, the Schiff base (SB) is titrated with a pK(a) of approximately 13, but following light absorption, it experiences a decrease in the pK(a) and undergoes several alterations, including a deprotonation process. We have studied the SB titration using retinal analogues which have intrinsically lower pK(a)'s which allow for SB titrations over a much lower pH range. We found that above pH 9 the channel for the SB titration is perturbed, and the titration rate is considerably reduced. On the basis of studies with several mutants, it is suggested that the protonation state of residue Glu204 is responsible for the channel perturbation. We suggest that above pH 12 a channel for the SB titration is restored probably due to titration of an additional protein residue. The observations may imply that during the bR photocycle and M photointermediate formation the rate of Schiff base protonation from the bulk is decreased. This rate decrease may be due to the deprotonation process of the "proton-releasing complex" which includes Glu204. In contrast, during the lifetime of the O intermediate, the protonated SB is exposed to the bulk. Possible implications for the switch mechanism, and the directionality of the proton movement, are discussed.

  13. Identification of a nuclear protein, LRRC42, involved in lung carcinogenesis.

    PubMed

    Fujitomo, Takashi; Daigo, Yataro; Matsuda, Koichi; Ueda, Koji; Nakamura, Yusuke

    2014-07-01

    On the basis of the gene expression profiles of 120 lung cancer cases using a cDNA microarray containing 27,648 genes or expressed sequence tags (ESTs), we identified LRRC42 (Leucine-rich repeat containing 42) to be significantly upregulated in the majority of lung cancers. Northern blot analysis demonstrated that LRRC42 was expressed only in testis among normal tissues examined. Knockdown of LRRC42 expression by siRNA against LRRC42 significantly suppressed the growth of lung cancer cells. On the other hand, stable induction of LRRC42 expression significantly promoted cell growth. LRRC42, which was found to localize in the nucleus of mammalian cells, is likely to interact with and stabilize GATAD2B (GATA zinc finger domain-containing 2B) and MBD3 (Methyl-CpG-binding domain protein 3) proteins that could contribute to lung cancer cell proliferation partly through the regulation of p21Waf1/Cip1. Our findings suggest that LRRC42 overexpression as well as its interaction with LRRC42-GATAD2B might play essential roles in lung carcinogenesis, and be a promising molecular target for lung cancer therapy. PMID:24806090

  14. A dynamin-like protein involved in bacterial cell membrane surveillance under environmental stress.

    PubMed

    Sawant, Prachi; Eissenberger, Kristina; Karier, Laurence; Mascher, Thorsten; Bramkamp, Marc

    2016-09-01

    In ever-changing natural environments, bacteria are continuously challenged with numerous biotic and abiotic stresses. Accordingly, they have evolved both specific and more general mechanisms to counteract stress-induced damage and ensure survival. In the soil habitat of Bacillus subtilis, peptide antibiotics and bacteriophages are among the primary stressors that affect the integrity of the cytoplasmic membrane. Dynamin-like proteins (DLPs) play a major role in eukaryotic membrane re-modelling processes, including antiviral activities, but the function of the corresponding bacterial homologues was so far poorly understood. Here, we report on the protective function of a bacterial DLP, DynA from B. subtilis. We provide evidence that DynA plays an important role in a membrane surveillance system that counteracts membrane pore formation provoked by antibiotics and phages. In unstressed cells, DynA is a highly dynamic membrane-associated protein. Upon membrane damage, DynA localizes into large and static assemblies, where DynA acts locally to counteract stress-induced pores, presumably by inducing lipid bilayer fusion and sealing membrane gaps. Thus, lack of DynA increases the sensitivity to antibiotic exposure and phage infection. Taken together, our work suggests that DynA, and potentially other bacterial DLPs, contribute to the innate immunity of bacteria against membrane stress.

  15. Glycosylphosphatidylinositol is involved in the membrane attachment of proteins in granules of chromaffin cells.

    PubMed Central

    Fouchier, F; Bastiani, P; Baltz, T; Aunis, D; Rougon, G

    1988-01-01

    Incubation at 37 degrees C or treatment of granule membranes of chromaffin cells with Staphylococcus aureus phosphatidylinositol-specific phospholipase C converted from an amphiphilic to a hydrophilic form two proteins with molecular masses of 82 and 68 kDa respectively. Their release is time- and enzyme-concentration-dependent. We showed that they were immunoreactive with an anti-(cross-reacting determinant) antibody known to be revealed only after removal of a diacylglycerol anchor. Furthermore, the action of HNO2 suggests the presence of a non-acetylated glucosamine residue in the determinant. This is one of the first reports suggesting that a glycosylphosphatidylinositol anchor might exist in membranes other than the plasma membrane. We showed that the 68 kDa protein is probably not the subunit of dopamine (3,4-dihydroxyphenethylamine) beta-hydroxylase, an enzyme present in granules in both soluble and membrane-associated forms. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 6. PMID:2851974

  16. Transcriptomic analysis reveals numerous diverse protein kinases and transcription factors involved in desiccation tolerance in the resurrection plant Myrothamnus flabellifolia

    PubMed Central

    Ma, Chao; Wang, Hong; Macnish, Andrew J; Estrada-Melo, Alejandro C; Lin, Jing; Chang, Youhong; Reid, Michael S; Jiang, Cai-Zhong

    2015-01-01

    The woody resurrection plant Myrothamnus flabellifolia has remarkable tolerance to desiccation. Pyro-sequencing technology permitted us to analyze the transcriptome of M. flabellifolia during both dehydration and rehydration. We identified a total of 8287 and 8542 differentially transcribed genes during dehydration and rehydration treatments respectively. Approximately 295 transcription factors (TFs) and 484 protein kinases (PKs) were up- or down-regulated in response to desiccation stress. Among these, the transcript levels of 53 TFs and 91 PKs increased rapidly and peaked early during dehydration. These regulators transduce signal cascades of molecular pathways, including the up-regulation of ABA-dependent and independent drought stress pathways and the activation of protective mechanisms for coping with oxidative damage. Antioxidant systems are up-regulated, and the photosynthetic system is modified to reduce ROS generation. Secondary metabolism may participate in the desiccation tolerance of M. flabellifolia as indicated by increases in transcript abundance of genes involved in isopentenyl diphosphate biosynthesis. Up-regulation of genes encoding late embryogenesis abundant proteins and sucrose phosphate synthase is also associated with increased tolerance to desiccation. During rehydration, the transcriptome is also enriched in transcripts of genes encoding TFs and PKs, as well as genes involved in photosynthesis, and protein synthesis. The data reported here contribute comprehensive insights into the molecular mechanisms of desiccation tolerance in M. flabellifolia. PMID:26504577

  17. Genome-Wide Identification and 3D Modeling of Proteins involved in DNA Damage Recognition and Repair (Final Report)

    SciTech Connect

    Ruben A. Abagyan, PhD

    2004-04-15

    OAK-B135 DNA Damage Recognition and Repair (DDR and R) proteins play a critical role in cellular responses to low-dose radiation and are associated with cancer. the authors have performed a systematic, genome-wide computational analysis of genomic data for human genes involved in the DDR and R process. The significant achievements of this project include: (1) Construction of the computational pipeline for searching DDR and R genes, building and validation of 3D models of proteins involved in DDR and R; (2) Functional and structural annotation of the 3D models and generation of comprehensive lists of suggested knock-out mutations; (3) Important improvement of macromolecular docking technology and its application to predict the DNA-Protein complex conformation; (4) Development of a new algorithm for improved analysis of high-density oligonucleotide arrays for gene expression profiling; (5) Construction and maintenance of the DNA Damage Recognition and Repair Database; and (6) Producing 14 research papers (10 published and 4 in preparation).

  18. Genome-Wide Identification and 3D Modeling of Proteins involved in DNA Damage Recognition and Repair (Final Report)

    SciTech Connect

    Abagyan, Ruben; An, Jianghong

    2005-08-12

    DNA Damage Recognition and Repair (DDR&R) proteins play a critical role in cellular responses to low-dose radiation and are associated with cancer. We have performed a systematic, genome-wide computational analysis of genomic data for human genes involved in the DDR&R process. The significant achievements of this project include: 1) Construction of the computational pipeline for searching DDR&R genes, building and validation of 3D models of proteins involved in DDR&R; 2) Functional and structural annotation of the 3D models and generation of comprehensive lists of suggested knock-out mutations; and the development of a method to predict the effects of mutations. Large scale testing of technology to identify novel small binding pockets in protein structures leading to new DDRR inhibitor strategies 3) Improvements of macromolecular docking technology (see the CAPRI 1-3 and 4-5 results) 4) Development of a new algorithm for improved analysis of high-density oligonucleotide arrays for gene expression profiling; 5) Construction and maintenance of the DNA Damage Recognition and Repair Database; 6) Producing 15 research papers (12 published and 3 in preparation).

  19. Reverse genetic screening identifies five E-class PPR proteins involved in RNA editing in mitochondria of Arabidopsis thaliana.

    PubMed

    Takenaka, Mizuki; Verbitskiy, Daniil; Zehrmann, Anja; Brennicke, Axel

    2010-08-27

    RNA editing in flowering plant mitochondria post-transcriptionally alters several hundred nucleotides from C to U, mostly in mRNAs. Several factors required for specific RNA-editing events in plant mitochondria and plastids have been identified, all of them PPR proteins of the PLS subclass with a C-terminal E-domain and about half also with an additional DYW domain. Based on this information, we here probe the connection between E-PPR proteins and RNA editing in plant mitochondria. We initiated a reverse genetics screen of T-DNA insertion lines in Arabidopsis thaliana and investigated 58 of the 150 E-PPR-coding genes for a function in RNA editing. Six genes were identified to be involved in mitochondrial RNA editing at specific sites. Homozygous mutants of the five genes MEF18-MEF22 display no gross disturbance in their growth or development patterns, suggesting that the editing sites affected are not crucial at least in the greenhouse. These results show that a considerable percentage of the E-PPR proteins are involved in the functional processing of site-specific RNA editing in plant mitochondria.

  20. C11orf83, a Mitochondrial Cardiolipin-Binding Protein Involved in bc1 Complex Assembly and Supercomplex Stabilization

    PubMed Central

    Foti, Michelangelo; Raemy, Etienne; Vaz, Frédéric Maxime; Martinou, Jean-Claude; Bairoch, Amos

    2015-01-01

    Mammalian mitochondria may contain up to 1,500 different proteins, and many of them have neither been confidently identified nor characterized. In this study, we demonstrated that C11orf83, which was lacking experimental characterization, is a mitochondrial inner membrane protein facing the intermembrane space. This protein is specifically associated with the bc1 complex of the electron transport chain and involved in the early stages of its assembly by stabilizing the bc1 core complex. C11orf83 displays some overlapping functions with Cbp4p, a yeast bc1 complex assembly factor. Therefore, we suggest that C11orf83, now called UQCC3, is the functional human equivalent of Cbp4p. In addition, C11orf83 depletion in HeLa cells caused abnormal crista morphology, higher sensitivity to apoptosis, a decreased ATP level due to impaired respiration and subtle, but significant, changes in cardiolipin composition. We showed that C11orf83 binds to cardiolipin by its α-helices 2 and 3 and is involved in the stabilization of bc1 complex-containing supercomplexes, especially the III2/IV supercomplex. We also demonstrated that the OMA1 metalloprotease cleaves C11orf83 in response to mitochondrial depolarization, suggesting a role in the selection of cells with damaged mitochondria for their subsequent elimination by apoptosis, as previously described for OPA1. PMID:25605331

  1. Detailed search for protein kinase(s) involved in plasma membrane H+-ATPase activity regulation of yeast cells.

    PubMed

    Pereira, Renata R; Castanheira, Diogo; Teixeira, Janaina A; Bouillet, Leoneide E M; Ribeiro, Erica M C; Trópia, Maria M J; Alvarez, Florencia; Correa, Lygia F M; Mota, Bruno E F; Conceição, Luis Eduardo F R; Castro, Ieso M; Brandão, Rogelio L

    2015-03-01

    This study displays a screening using yeast strains deficient in protein kinases known to exist in Saccharomyces cerevisiae. From 95 viable single mutants, 20 mutants appear to be affected in the glucose-induced extracellular acidification. The mutants that are unaffected in calcium signaling were tested for their sensitivity to hygromycin B. Furthermore, we verified whether the remaining mutants produced enzymes that are appropriately incorporated at plasma membrane. Finally, we measure the kinetic properties of the enzyme in purified plasma membranes from glucose-starved as well as glucose-fermenting cells. We confirmed the kinase Ptk2 involvement in H(+)-ATPase regulation (increase of affinity for ATP). However, the identification of the kinase(s) responsible for phosphorylation that leads to an increase in Vmax appears to be more complex. Complementary experiments were performed to check how those protein kinases could be related to the control of the plasma membrane H(+)-ATPase and/or the potential membrane. In summary, our results did not permit us to identify the protein kinase(s) involved in regulating the catalytic efficiency of the plasma membrane H(+)-ATPase. Therefore, our results indicate that the current regulatory model based on the phosphorylation of two different sites located in the C-terminus tail of the enzyme could be inappropriate.

  2. Transcriptomic analysis reveals numerous diverse protein kinases and transcription factors involved in desiccation tolerance in the resurrection plant Myrothamnus flabellifolia.

    PubMed

    Ma, Chao; Wang, Hong; Macnish, Andrew J; Estrada-Melo, Alejandro C; Lin, Jing; Chang, Youhong; Reid, Michael S; Jiang, Cai-Zhong

    2015-01-01

    The woody resurrection plant Myrothamnus flabellifolia has remarkable tolerance to desiccation. Pyro-sequencing technology permitted us to analyze the transcriptome of M. flabellifolia during both dehydration and rehydration. We identified a total of 8287 and 8542 differentially transcribed genes during dehydration and rehydration treatments respectively. Approximately 295 transcription factors (TFs) and 484 protein kinases (PKs) were up- or down-regulated in response to desiccation stress. Among these, the transcript levels of 53 TFs and 91 PKs increased rapidly and peaked early during dehydration. These regulators transduce signal cascades of molecular pathways, including the up-regulation of ABA-dependent and independent drought stress pathways and the activation of protective mechanisms for coping with oxidative damage. Antioxidant systems are up-regulated, and the photosynthetic system is modified to reduce ROS generation. Secondary metabolism may participate in the desiccation tolerance of M. flabellifolia as indicated by increases in transcript abundance of genes involved in isopentenyl diphosphate biosynthesis. Up-regulation of genes encoding late embryogenesis abundant proteins and sucrose phosphate synthase is also associated with increased tolerance to desiccation. During rehydration, the transcriptome is also enriched in transcripts of genes encoding TFs and PKs, as well as genes involved in photosynthesis, and protein synthesis. The data reported here contribute comprehensive insights into the molecular mechanisms of desiccation tolerance in M. flabellifolia. PMID:26504577

  3. DSK1, a novel kinesin-related protein from the diatom Cylindrotheca fusiformis that is involved in anaphase spindle elongation

    PubMed Central

    1996-01-01

    We have identified an 80-kD protein that is involved in mitotic spindle elongation in the diatom Cylindrotheca fusiformis. DSK1 (Diatom Spindle Kinesin 1) was isolated using a peptide antibody raised against a conserved region in the motor domain of the kinesin superfamily. By sequence homology, DSK1 belongs to the central motor family of kinesin- related proteins. Immunoblots using an antibody raised against a non- conserved region of DSK1 show that DSK1 is greatly enriched in mitotic spindle preparations. Anti-DSK1 stains in diatom central spindle with a bias toward the midzone, and staining is retained in the spindle midzone during spindle elongation in vitro. Furthermore, preincubation with anti-DSK1 blocks function in an in vitro spindle elongation assay. This inhibition of spindle elongation can be rescued by preincubating concurrently with the fusion protein against which anti-DSK1 was raised. We conclude that DSK1 is involved in spindle elongation and is likely to be responsible for pushing hal-spindles apart in the spindle midzone. PMID:8636234

  4. Heat Stress Response in Pea Involves Interaction of Mitochondrial Nucleoside Diphosphate Kinase with a Novel 86-Kilodalton Protein1

    PubMed Central

    Escobar Galvis, Martha L.; Marttila, Salla; Håkansson, Gunilla; Forsberg, Jens; Knorpp, Carina

    2001-01-01

    In this work we have further characterized the first mitochondrial nucleoside diphosphate kinase (mtNDPK) isolated from plants. The mitochondrial isoform was found to be especially abundant in reproductive and young tissues. Expression of the pea (Pisum sativum L. cv Oregon sugarpod) mtNDPK was not affected by different stress conditions. However, the pea mtNDPK was found to interact with a novel 86-kD protein, which is de novo synthesized in pea leaves upon exposure to heat. Thus, we have evidence for the involvement of mtNDPK in mitochondrial heat response in pea in vivo. Studies on oligomerization revealed that mtNDPK was found in complexes of various sizes, corresponding to the sizes of e.g. hexamers, tetramers, and dimers, indicating flexibility in oligomerization. This flexibility, also found for other NDPK isoforms, has been correlated with the ability of this enzyme to interact with other proteins. We believe that the mtNDPK is involved in heat stress response in pea, possibly as a modulator of the 86-kD protein. PMID:11351071

  5. The IgE-dependent pathway in allergic transfusion reactions: involvement of donor blood allergens other than plasma proteins.

    PubMed

    Matsuyama, Nobuki; Yasui, Kazuta; Amakishi, Etsuko; Hayashi, Tomoya; Kuroishi, Ayumu; Ishii, Hiroyuki; Matsukura, Harumichi; Tani, Yoshihiko; Furuta, Rika A; Hirayama, Fumiya

    2015-07-01

    On transfusion, several plasma proteins can cause anaphylaxis in patients deficient in the corresponding plasma proteins. However, little is known about other allergens, which are encountered much more infrequently. Although it has been speculated that an allergen-independent pathway underlying allergic transfusion reactions (ATRs) is elicited by biological response modifiers accumulated in blood components during storage, the exact mechanisms remain unresolved. Furthermore, it is difficult even to determine whether ATRs are induced via allergen-dependent or allergen-independent pathways. To distinguish these two pathways in ATR cases, we established a basophil activation test, in which the basophil-activating ability of supernatants of residual transfused blood of ATR cases to whole blood basophils was assessed in the presence or absence of dasatinib, an inhibitor of IgE-mediated basophil activation. Three of 37 supernatants from the platelet concentrates with ATRs activated panel blood basophils in the absence, but not in the presence, of dasatinib. The basophil activation was inhibited by treatment of anti-fish collagen I MoAb in one case, suggesting that the involvement of fish allergens may have been present in donor plasma. We concluded that unknown non-plasma proteins, some of which had epitopes similar to fish antigens, in blood component may be involved in ATRs via an allergen/IgE-dependent pathway. PMID:25840771

  6. A PerR-like protein involved in response to oxidative stress in the extreme bacterium Deinococcus radiodurans.

    PubMed

    Liu, Chengzhi; Wang, Liangyan; Li, Tao; Lin, Lin; Dai, Shang; Tian, Bing; Hua, Yuejin

    2014-07-18

    Response and defense systems against reactive oxygen species (ROS) contribute to the remarkable resistance of Deinococcus radiodurans to oxidative stress induced by oxidants or radiation. However, mechanisms involved in ROS response and defense systems of D. radiodurans are not well understood. Fur family proteins are important in ROS response. Only a single Fur homolog is predicted by sequence similarity in the current D. radiodurans genome database. Our bioinformatics analysis demonstrated an additional guanine nucleotide in the genome of D. radiodurans that is not in the database, leading to the discovery of another Fur homolog DrPerR. Gene disruption mutant of DrPerR showed enhanced resistance to hydrogen peroxide (H2O2) and increased catalase activity in cell extracts. Real-time PCR results indicated that DrPerR functions as a repressor of the catalase gene katE. Meanwhile, derepression of dps (DNA-binding proteins from starved cells) gene under H2O2 stress by DrPerR point to its regulatory role in metal ions hemostasis. Thus, DrPerR might function as a Fur homolog protein which is involved in ROS response and defense. These results help clarify the complicated regulatory network that responds to ROS stress in D. radiodurans.

  7. Involvement of various organs in the initial plasma clearance of differently glycosylated rat liver secretory proteins.

    PubMed

    Gross, V; Heinrich, P C; vom Berg, D; Steube, K; Andus, T; Tran-Thi, T A; Decker, K; Gerok, W

    1988-05-01

    The initial plasma clearance and organ distribution of alpha 1-acid glycoprotein and alpha 2-macroglobulin carrying different types of oligosaccharide, side chains was studied in rats. The differently glycosylated proteins were synthesized by rat hepatocytes in culture in the presence of tunicamycin (unglycosylated form), swainsonine (hybrid type), or 1-deoxymannojirimycin (high-mannose type). Deglycosylated glycoproteins (Asn-GlcNAc) were obtained by endoglucosaminidase H treatment of high-mannose-type glycoproteins. Ten minutes after intravenous injection 3% of complex type, 26% of hybrid type, 84% of high-mannose type. 64% of unglycosylated and 80% of deglycosylated alpha 1-acid glycoprotein disappeared from the plasma. The respective values for alpha 2-macroglobulin were 26%, 42%, 59% and 67%. When the clearance of total hepatic secretory proteins was examined, major differences between glycosylated and unglycosylated (glyco)proteins were found, particularly in the case of low-molecular-mass polypeptides. Whereas complex-type alpha 1-acid glycoprotein and alpha 2-macroglobulin showed no accumulation in various organs, hybrid-type alpha 1-acid glycoprotein and alpha 2-macroglobulin were present in spleen and liver. High-mannose-type alpha 1-acid glycoprotein and alpha 2-macroglobulin also accumulated mainly in spleen and liver. Spleen had the highest specific activity; liver, due to its larger organ mass, represented the major organ for the uptake of high-mannose-type glycoproteins. Competition experiments with mannan and GlcNAc-bovine-serum-albumin showed a mannose/GlcNAc receptor-mediated removal. Whereas unglycosylated alpha 1-acid glycoprotein was taken up by the kidney, unglycosylated alpha 2-macroglobulin was found in the spleen. Deglycosylated glycoproteins (Asn-GlcNAc) were removed from the plasma via two different mechanisms: firstly, clearance by the kidney similar to the unglycosylated glycoproteins; secondly, clearance by a mannose/GlcNAc receptor

  8. Combined inhibition of heat shock proteins 90 and 70 leads to simultaneous degradation of the oncogenic signaling proteins involved in muscle invasive bladder cancer

    PubMed Central

    Cavanaugh, Alice; Juengst, Brendon; Sheridan, Kathleen; Danella, John F.; Williams, Heinric

    2015-01-01

    Heat shock protein 90 (HSP90) plays a critical role in the survival of cancer cells including muscle invasive bladder cancer (MIBC). The addiction of tumor cells to HSP90 has promoted the development of numerous HSP90 inhibitors and their use in clinical trials. This study evaluated the role of inhibiting HSP90 using STA9090 (STA) alone or in combination with the HSP70 inhibitor VER155008 (VER) in several human MIBC cell lines. While both STA and VER inhibited MIBC cell growth and migration and promoted apoptosis, combination therapy was more effective. Therefore, the signaling pathways involved in MIBC were systematically interrogated following STA and/or VER treatments. STA and not VER reduced the expression of proteins in the p53/Rb, PI3K and SWI/SWF pathways. Interestingly, STA was not as effective as VER or combination therapy in degrading proteins involved in the histone modification pathway such as KDM6A (demethylase) and EP300 (acetyltransferase) as predicted by The Cancer Genome Atlas (TCGA) data. This data suggests that dual HSP90 and HSP70 inhibition can simultaneously disrupt the key signaling pathways in MIBC. PMID:26556859

  9. Retinoblastoma-binding Protein 4-regulated Classical Nuclear Transport Is Involved in Cellular Senescence.

    PubMed

    Tsujii, Akira; Miyamoto, Yoichi; Moriyama, Tetsuji; Tsuchiya, Yuko; Obuse, Chikashi; Mizuguchi, Kenji; Oka, Masahiro; Yoneda, Yoshihiro

    2015-12-01

    Nucleocytoplasmic trafficking is a fundamental cellular process in eukaryotic cells. Here, we demonstrated that retinoblastoma-binding protein 4 (RBBP4) functions as a novel regulatory factor to increase the efficiency of importin α/β-mediated nuclear import. RBBP4 accelerates the release of importin β1 from importin α via competitive binding to the importin β-binding domain of importin α in the presence of RanGTP. Therefore, it facilitates importin α/β-mediated nuclear import. We showed that the importin α/β pathway is down-regulated in replicative senescent cells, concomitant with a decrease in RBBP4 level. Knockdown of RBBP4 caused both suppression of nuclear transport and induction of cellular senescence. This is the first report to identify a factor that competes with importin β1 to bind to importin α, and it demonstrates that the loss of this factor can trigger cellular senescence.

  10. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density.

    PubMed

    Simonet, W S; Lacey, D L; Dunstan, C R; Kelley, M; Chang, M S; Lüthy, R; Nguyen, H Q; Wooden, S; Bennett, L; Boone, T; Shimamoto, G; DeRose, M; Elliott, R; Colombero, A; Tan, H L; Trail, G; Sullivan, J; Davy, E; Bucay, N; Renshaw-Gegg, L; Hughes, T M; Hill, D; Pattison, W; Campbell, P; Sander, S; Van, G; Tarpley, J; Derby, P; Lee, R; Boyle, W J

    1997-04-18

    A novel secreted glycoprotein that regulates bone resorption has been identified. The protein, termed Osteoprotegerin (OPG), is a novel member of the TNF receptor superfamily. In vivo, hepatic expression of OPG in transgenic mice results in a profound yet nonlethal osteopetrosis, coincident with a decrease in later stages of osteoclast differentiation. These same effects are observed upon administration of recombinant OPG into normal mice. In vitro, osteoclast differentiation from precursor cells is blocked in a dose-dependent manner by recombinant OPG. Furthermore, OPG blocks ovariectomy-associated bone loss in rats. These data show that OPG can act as a soluble factor in the regulation of bone mass and imply a utility for OPG in the treatment of osteoporosis associated with increased osteoclast activity. PMID:9108485

  11. The transmembrane protein, Tincar, is involved in the development of the compound eye in Drosophila melanogaster.

    PubMed

    Hirota, Yuki; Sawamoto, Kazunobu; Takahashi, Kuniaki; Ueda, Ryu; Okano, Hideyuki

    2005-02-01

    We previously cloned and characterized the Drosophila gene, tincar (tinc), which encodes a novel protein with eight putative transmembrane domains. Here, we have studied the expression pattern and functions of tinc during developmental processes. tinc mRNA is expressed in the central and peripheral nervous systems, and midgut during embryogenesis. In the third-instar larval eye disc, tinc mRNA is strongly expressed in all the differentiating ommatidial cells within and in the vicinity of the morphogenetic furrow. Loss-of-function analysis using the RNA-interference method revealed severe defects of eye morphogenesis during the late developmental stages. Our results suggested that tinc may have an indispensable role in the normal differentiation of ommatidial cells. PMID:15654626

  12. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density.

    PubMed

    Simonet, W S; Lacey, D L; Dunstan, C R; Kelley, M; Chang, M S; Lüthy, R; Nguyen, H Q; Wooden, S; Bennett, L; Boone, T; Shimamoto, G; DeRose, M; Elliott, R; Colombero, A; Tan, H L; Trail, G; Sullivan, J; Davy, E; Bucay, N; Renshaw-Gegg, L; Hughes, T M; Hill, D; Pattison, W; Campbell, P; Sander, S; Van, G; Tarpley, J; Derby, P; Lee, R; Boyle, W J

    1997-04-18

    A novel secreted glycoprotein that regulates bone resorption has been identified. The protein, termed Osteoprotegerin (OPG), is a novel member of the TNF receptor superfamily. In vivo, hepatic expression of OPG in transgenic mice results in a profound yet nonlethal osteopetrosis, coincident with a decrease in later stages of osteoclast differentiation. These same effects are observed upon administration of recombinant OPG into normal mice. In vitro, osteoclast differentiation from precursor cells is blocked in a dose-dependent manner by recombinant OPG. Furthermore, OPG blocks ovariectomy-associated bone loss in rats. These data show that OPG can act as a soluble factor in the regulation of bone mass and imply a utility for OPG in the treatment of osteoporosis associated with increased osteoclast activity.

  13. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation.

    PubMed

    Casenghi, Martina; Meraldi, Patrick; Weinhart, Ulrike; Duncan, Peter I; Körner, Roman; Nigg, Erich A

    2003-07-01

    In animal cells, most microtubules are nucleated at centrosomes. At the onset of mitosis, centrosomes undergo a structural reorganization, termed maturation, which leads to increased microtubule nucleation activity. Centrosome maturation is regulated by several kinases, including Polo-like kinase 1 (Plk1). Here, we identify a centrosomal Plk1 substrate, termed Nlp (ninein-like protein), whose properties suggest an important role in microtubule organization. Nlp interacts with two components of the gamma-tubulin ring complex and stimulates microtubule nucleation. Plk1 phosphorylates Nlp and disrupts both its centrosome association and its gamma-tubulin interaction. Overexpression of an Nlp mutant lacking Plk1 phosphorylation sites severely disturbs mitotic spindle formation. We propose that Nlp plays an important role in microtubule organization during interphase, and that the activation of Plk1 at the onset of mitosis triggers the displacement of Nlp from the centrosome, allowing the establishment of a mitotic scaffold with enhanced microtubule nucleation activity.

  14. Polaris, a protein involved in left-right axis patterning, localizes to basal bodies and cilia.

    PubMed

    Taulman, P D; Haycraft, C J; Balkovetz, D F; Yoder, B K

    2001-03-01

    Mutations in Tg737 cause a wide spectrum of phenotypes, including random left-right axis specification, polycystic kidney disease, liver and pancreatic defects, hydrocephalus, and skeletal patterning abnormalities. To further assess the biological function of Tg737 and its role in the mutant pathology, we identified the cell population expressing Tg737 and determined the subcellular localization of its protein product called Polaris. Tg737 expression is associated with cells possessing either motile or immotile cilia and sperm. Similarly, Polaris concentrated just below the apical membrane in the region of the basal bodies and within the cilia or flagellar axoneme. The data suggest that Polaris functions in a ciliogenic pathway or in cilia maintenance, a role supported by the loss of cilia on the ependymal cell layer in ventricles of Tg737(orpk) brains and by the lack of node cilia in Tg737(Delta2-3betaGal) mutants. PMID:11251073

  15. Las1 Is an Essential Nuclear Protein Involved in Cell Morphogenesis and Cell Surface Growth

    PubMed Central

    Doseff, A. I.; Arndt, K. T.

    1995-01-01

    Saccharomyces cerevisiae mutations that cause a requirement for SSD1-v for viability were isolated, yielding one new gene, LAS1, and three previously identified genes, SIT4, BCK1/SLK1, and SMP3. Three of these genes, LAS1, SIT4, and BCK1/SLK1, encode proteins that have roles in bud formation or morphogenesis. LAS1 is essential and loss of LAS1 function causes the cells to arrest as 80% unbudded cells and 20% large budded cells that accumulate many vesicles at the mother-daughter neck. Overexpression of LAS1 results in extra cell surface projections in the mother cell, alterations in actin and SPA2 localization, and the accumulation of electron-dense structures along the periphery of both the mother cell and the bud. The nuclear localization of LAS1 suggests a role of LAS1 for regulating bud formation and morphogenesis via the expression of components that function directly in these processes. PMID:8582632

  16. Nonreceptor protein tyrosine kinase involvement in signal transduction and immunodeficiency disease.

    PubMed

    Saouaf, S J; Burkhardt, A L; Bolen, J B

    1995-09-01

    The nonreceptor protein tyrosine kinases (PTKs) have been grouped into 10 different enzyme families based on predicted amino acid sequences. As the number of enzymes belonging to the nonreceptor class of PTK is increasing, one challenge is to determine how these various classes of PTKs interact within the cell to promote signal transduction. Herein, the activation of four classes of nonreceptor PTKs is discussed in relation to their interactions with each other as well as with other signaling molecules during the process of lymphocyte surface antigen receptor-mediated activation. Recent findings of nonreceptor PTK loss-of-function mutations in different immunodeficiency diseases has revealed the important contribution of this group of enzymes to lymphocyte development. PMID:7554458

  17. Mitochondrial calcium uniporter protein MCU is involved in oxidative stress-induced cell death.

    PubMed

    Liao, Yajin; Hao, Yumin; Chen, Hong; He, Qing; Yuan, Zengqiang; Cheng, Jinbo

    2015-06-01

    Mitochondrial calcium uniporter (MCU) is a conserved Ca(2+) transporter at mitochondrial in eukaryotic cells. However, the role of MCU protein in oxidative stress-induced cell death remains unclear. Here, we showed that ectopically expressed MCU is mitochondrial localized in both HeLa and primary cerebellar granule neurons (CGNs). Knockdown of endogenous MCU decreases mitochondrial Ca(2+) uptake following histamine stimulation and attenuates cell death induced by oxidative stress in both HeLa cells and CGNs. We also found MCU interacts with VDAC1 and mediates VDAC1 overexpression-induced cell death in CGNs. This finding demonstrates that MCU-VDAC1 complex regulates mitochondrial Ca(2+) uptake and oxidative stress-induced apoptosis, which might represent therapeutic targets for oxidative stress related diseases.

  18. SNX27, a protein involved in down syndrome, regulates GPR17 trafficking and oligodendrocyte differentiation.

    PubMed

    Meraviglia, Veronica; Ulivi, Alessandro Francesco; Boccazzi, Marta; Valenza, Fabiola; Fratangeli, Alessandra; Passafaro, Maria; Lecca, Davide; Stagni, Fiorenza; Giacomini, Andrea; Bartesaghi, Renata; Abbracchio, Maria P; Ceruti, Stefania; Rosa, Patrizia

    2016-08-01

    The G protein-coupled receptor 17 (GPR17) plays crucial roles in myelination. It is highly expressed during transition of oligodendrocyte progenitor cells to immature oligodendrocytes, but, after this stage, it must be down-regulated to allow generation of mature myelinating cells. After endocytosis, GPR17 is sorted into lysosomes for degradation or recycled to the plasma membrane. Balance between degradation and recycling is important for modulation of receptor levels at the cell surface and thus for the silencing/activation of GPR17-signaling pathways that, in turn, affect oligodendrocyte differentiation. The molecular mechanisms at the basis of these processes are still partially unknown and their characterization will allow a better understanding of myelination and provide cues to interpret the consequences of GPR17 dysfunction in diseases. Here, we demonstrate that the endocytic trafficking of GPR17 is mediated by the interaction of a type I PDZ-binding motif located at the C-terminus of the receptor and SNX27, a recently identified protein of the endosome-associated retromer complex and whose functions in oligodendrocytes have never been studied. SNX27 knock-down significantly reduces GPR17 plasma membrane recycling in differentiating oligodendrocytes while accelerating cells' terminal maturation. Interestingly, trisomy-linked down-regulation of SNX27 expression in the brain of Ts65Dn mice, a model of Down syndrome, correlates with a decrease in GPR17(+) cells and an increase in mature oligodendrocytes, which, however, fail in reaching full maturation, eventually leading to hypomyelination. Our data demonstrate that SNX27 modulates GPR17 plasma membrane recycling and stability, and that disruption of the SNX27/GPR17 interaction might contribute to pathological oligodendrocyte differentiation defects. GLIA 2016. GLIA 2016;64:1437-1460.

  19. SNX27, a protein involved in down syndrome, regulates GPR17 trafficking and oligodendrocyte differentiation.

    PubMed

    Meraviglia, Veronica; Ulivi, Alessandro Francesco; Boccazzi, Marta; Valenza, Fabiola; Fratangeli, Alessandra; Passafaro, Maria; Lecca, Davide; Stagni, Fiorenza; Giacomini, Andrea; Bartesaghi, Renata; Abbracchio, Maria P; Ceruti, Stefania; Rosa, Patrizia

    2016-08-01

    The G protein-coupled receptor 17 (GPR17) plays crucial roles in myelination. It is highly expressed during transition of oligodendrocyte progenitor cells to immature oligodendrocytes, but, after this stage, it must be down-regulated to allow generation of mature myelinating cells. After endocytosis, GPR17 is sorted into lysosomes for degradation or recycled to the plasma membrane. Balance between degradation and recycling is important for modulation of receptor levels at the cell surface and thus for the silencing/activation of GPR17-signaling pathways that, in turn, affect oligodendrocyte differentiation. The molecular mechanisms at the basis of these processes are still partially unknown and their characterization will allow a better understanding of myelination and provide cues to interpret the consequences of GPR17 dysfunction in diseases. Here, we demonstrate that the endocytic trafficking of GPR17 is mediated by the interaction of a type I PDZ-binding motif located at the C-terminus of the receptor and SNX27, a recently identified protein of the endosome-associated retromer complex and whose functions in oligodendrocytes have never been studied. SNX27 knock-down significantly reduces GPR17 plasma membrane recycling in differentiating oligodendrocytes while accelerating cells' terminal maturation. Interestingly, trisomy-linked down-regulation of SNX27 expression in the brain of Ts65Dn mice, a model of Down syndrome, correlates with a decrease in GPR17(+) cells and an increase in mature oligodendrocytes, which, however, fail in reaching full maturation, eventually leading to hypomyelination. Our data demonstrate that SNX27 modulates GPR17 plasma membrane recycling and stability, and that disruption of the SNX27/GPR17 interaction might contribute to pathological oligodendrocyte differentiation defects. GLIA 2016. GLIA 2016;64:1437-1460. PMID:27270750

  20. Mitochondrial remodeling following fission inhibition by 15d-PGJ2 involves molecular changes in mitochondrial fusion protein OPA1

    SciTech Connect

    Kar, Rekha; Mishra, Nandita; Singha, Prajjal K.; Venkatachalam, Manjeri A.; Saikumar, Pothana

    2010-09-03

    Research highlights: {yields} Chemical inhibition of fission protein Drp1 leads to mitochondrial fusion. {yields} Increased fusion stimulates molecular changes in mitochondrial fusion protein OPA1. {yields} Proteolysis of larger isoforms, new synthesis and ubiquitination of OPA1 occur. {yields} Loss of mitochondrial tubular rigidity and disorganization of cristae. {yields} Generation of large swollen dysfunctional mitochondria. -- Abstract: We showed earlier that 15 deoxy {Delta}{sup 12,14} prostaglandin J2 (15d-PGJ2) inactivates Drp1 and induces mitochondrial fusion . However, prolonged incubation of cells with 15d-PGJ2 resulted in remodeling of fused mitochondria into large swollen mitochondria with irregular cristae structure. While initial fusion of mitochondria by 15d-PGJ2 required the presence of both outer (Mfn1 and Mfn2) and inner (OPA1) mitochondrial membrane fusion proteins, later mitochondrial changes involved increased degradation of the fusion protein OPA1 and ubiquitination of newly synthesized OPA1 along with decreased expression of Mfn1 and Mfn2, which likely contributed to the loss of tubular rigidity, disorganization of cristae, and formation of large swollen degenerated dysfunctional mitochondria. Similar to inhibition of Drp1 by 15d-PGJ2, decreased expression of fission protein Drp1 by siRNA also resulted in the loss of fusion proteins. Prevention of 15d-PGJ2 induced mitochondrial elongation by thiol antioxidants prevented not only loss of OPA1 isoforms but also its ubiquitination. These findings provide novel insights into unforeseen complexity of molecular events that modulate mitochondrial plasticity.

  1. Involvement of the Iron Regulatory Protein from Eisenia andrei Earthworms in the Regulation of Cellular Iron Homeostasis

    PubMed Central

    Procházková, Petra; Škanta, František; Roubalová, Radka; Šilerová, Marcela; Dvořák, Jiří; Bilej, Martin

    2014-01-01

    Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs) that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs) of the 5′- or 3′-untranslated regions (UTR) of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP). The earthworm IRE site in 5′-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant. PMID:25279857

  2. Shr of group A streptococcus is a new type of composite NEAT protein involved in sequestering haem from methaemoglobin.

    PubMed

    Ouattara, Mahamoudou; Cunha, Elizabeth Bentley; Li, Xueru; Huang, Ya-Shu; Dixon, Dabney; Eichenbaum, Zehava

    2010-11-01

    A growing body of evidence suggests that surface or secreted proteins with NEAr Transporter (NEAT) domains play a central role in haem acquisition and trafficking across the cell envelope of Gram-positive bacteria. Group A streptococcus (GAS), a β-haemolytic human pathogen, expresses a NEAT protein, Shr, which binds several haemoproteins and extracellular matrix (ECM) components. Shr is a complex, membrane-anchored protein, with a unique N-terminal domain (NTD) and two NEAT domains separated by a central leucine-rich repeat region. In this study we have carried out an analysis of the functional domains in Shr. We show that Shr obtains haem in solution and furthermore reduces the haem iron; this is the first report of haem reduction by a NEAT protein. More specifically, we demonstrate that both of the constituent NEAT domains of Shr are responsible for binding haem, although they are missing a critical tyrosine residue found in the ligand-binding pocket of other haem-binding NEAT domains. Further investigations show that a previously undescribed region within the Shr NTD interacts with methaemoglobin. Shr NEAT domains, however, do not contribute significantly to the binding of methaemoglobin but mediate binding to the ECM components fibronectin and laminin. A protein fragment containing the NTD plus the first NEAT domain was found to be sufficient to sequester haem directly from methaemoglobin. Correlating these in vitro findings to in vivo biological function, mutants analysis establishes the role of Shr in GAS growth with methaemoglobin as a sole source of iron, and indicates that at least one NEAT domain is necessary for the utilization of methaemoglobin. We suggest that Shr is the prototype of a new group of NEAT composite proteins involved in haem uptake found in pyogenic streptococci and Clostridium novyi.

  3. Alterations in left ventricular function during intermittent hypoxia: Possible involvement of O-GlcNAc protein and MAPK signaling.

    PubMed

    Guo, Xueling; Shang, Jin; Deng, Yan; Yuan, Xiao; Zhu, Die; Liu, Huiguo

    2015-07-01

    Obstructive sleep apnea, characterized by recurrent episodes of hypoxia [intermittent hypoxia (IH)], has been identified as a risk factor for cardiovascular diseases. The O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) of proteins has important regulatory implications on the pathophysiology of cardiovascular disorders. In this study, we examined the role of O-GlcNAcylation in cardiac architecture and left ventricular function following IH. Rats were randomly assigned to a normoxia and IH group (2 min 21% O2; 2 min 6-8% O2). Left ventricular function, myocardial morphology and the levels of signaling molecules were then measured. IH induced a significant increase in blood pressure, associated with a gradually abnormal myocardial architecture. The rats exposed to 2 or 3 weeks of IH presented with augmented left ventricular systolic and diastolic function, which declined at week 4. Consistently, the O-GlcNAc protein and O-GlcNAcase (OGA) levels in the left ventricular tissues steadily increased following IH, reaching peak levels at week 3. The O-GlcNAc transferase (OGT), extracellular signal-regulated kinase 1/2 (ERK1/2) and the p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation levels were affected in an opposite manner. The phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII) remained unaltered. In parallel, compared with exposure to normoxia, 4 weeks of IH augmented the O-GlcNAc protein, OGT, phosphorylated ERK1/2 and p38 MAPK levels, accompanied by a decrease in OGA levels and an increase in the levels of myocardial nuclear factor-κB (NF-κB), inflammatory cytokines, caspase-3 and cardiomyocyte apoptosis. Taken together, our suggest a possible involvement of O-GlcNAc protein and MAPK signaling in the alterations of left ventricular function and cardiac injury following IH.

  4. Quantification of the main digestive processes in ruminants: the equations involved in the renewed energy and protein feed evaluation systems.

    PubMed

    Sauvant, D; Nozière, P

    2016-05-01

    The evolution of feeding systems for ruminants towards evaluation of diets in terms of multiple responses requires the updating of the calculation of nutrient supply to the animals to make it more accurate on aggregated units (feed unit, or UF, for energy and protein digestible in the intestine, or PDI, for metabolizable protein) and to allow prediction of absorbed nutrients. The present update of the French system is based on the building and interpretation through meta-analysis of large databases on digestion and nutrition of ruminants. Equations involved in the calculation of UF and PDI have been updated, allowing: (1) prediction of the out flow rate of particles and liquid depending on the level of intake and the proportion of concentrate, and the use of this in the calculation of ruminal digestion of protein and starch from in situ data; (2) the system to take into account the effects of the main factors of digestive interactions (level of intake, proportion of concentrate, rumen protein balance) on organic matter digestibility, energy losses in methane and in urine; (3) more accurate calculation of the energy available in the rumen and the efficiency of its use for the microbial protein synthesis. In this renewed model UF and PDI values of feedstuffs vary depending on diet composition, and intake level. Consequently, standard feed table values can be considered as being only indicative. It is thus possible to predict the nutrient supply on a wider range of diets more accurately and in particular to better integrate energy×protein interactions occurring in the gut.

  5. The GIP gamma-tubulin complex-associated proteins are involved in nuclear architecture in Arabidopsis thaliana

    PubMed Central

    Batzenschlager, Morgane; Masoud, Kinda; Janski, Natacha; Houlné, Guy; Herzog, Etienne; Evrard, Jean-Luc; Baumberger, Nicolas; Erhardt, Mathieu; Nominé, Yves; Kieffer, Bruno; Schmit, Anne-Catherine; Chabouté, Marie-Edith

    2013-01-01

    During interphase, the microtubular cytoskeleton of cycling plant cells is organized in both cortical and perinuclear arrays. Perinuclear microtubules (MTs) are nucleated from γ-Tubulin Complexes (γ-TuCs) located at the surface of the nucleus. The molecular mechanisms of γ-TuC association to the nuclear envelope (NE) are currently unknown. The γ-TuC Protein 3 (GCP3)-Interacting Protein 1 (GIP1) is the smallest γ-TuC component identified so far. AtGIP1 and its homologous protein AtGIP2 participate in the localization of active γ-TuCs at interphasic and mitotic MT nucleation sites. Arabidopsis gip1gip2 mutants are impaired in establishing a fully functional mitotic spindle and exhibit severe developmental defects. In this study, gip1gip2 knock down mutants were further characterized at the cellular level. In addition to defects in both the localization of γ-TuC core proteins and MT fiber robustness, gip1gip2 mutants exhibited a severe alteration of the nuclear shape associated with an abnormal distribution of the nuclear pore complexes. Simultaneously, they showed a misorganization of the inner nuclear membrane protein AtSUN1. Furthermore, AtGIP1 was identified as an interacting partner of AtTSA1 which was detected, like the AtGIP proteins, at the NE. These results provide the first evidence for the involvement of a γ-TuC component in both nuclear shaping and NE organization. Functional hypotheses are discussed in order to propose a model for a GIP-dependent nucleo-cytoplasmic continuum. PMID:24348487

  6. Quantification of the main digestive processes in ruminants: the equations involved in the renewed energy and protein feed evaluation systems.

    PubMed

    Sauvant, D; Nozière, P

    2016-05-01

    The evolution of feeding systems for ruminants towards evaluation of diets in terms of multiple responses requires the updating of the calculation of nutrient supply to the animals to make it more accurate on aggregated units (feed unit, or UF, for energy and protein digestible in the intestine, or PDI, for metabolizable protein) and to allow prediction of absorbed nutrients. The present update of the French system is based on the building and interpretation through meta-analysis of large databases on digestion and nutrition of ruminants. Equations involved in the calculation of UF and PDI have been updated, allowing: (1) prediction of the out flow rate of particles and liquid depending on the level of intake and the proportion of concentrate, and the use of this in the calculation of ruminal digestion of protein and starch from in situ data; (2) the system to take into account the effects of the main factors of digestive interactions (level of intake, proportion of concentrate, rumen protein balance) on organic matter digestibility, energy losses in methane and in urine; (3) more accurate calculation of the energy available in the rumen and the efficiency of its use for the microbial protein synthesis. In this renewed model UF and PDI values of feedstuffs vary depending on diet composition, and intake level. Consequently, standard feed table values can be considered as being only indicative. It is thus possible to predict the nutrient supply on a wider range of diets more accurately and in particular to better integrate energy×protein interactions occurring in the gut. PMID:26696120

  7. Shr of Group A Streptococcus is a new type of composite NEAT protein involved in sequestering heme from methemoglobin

    PubMed Central

    Ouattara, Mahamoudou; Cunha, Elizabeth Bentley; Li, Xueru; Huang, Ya-Shu; Dixon, Dabney; Eichenbaum, Zehava

    2010-01-01

    SUMMARY A growing body of evidence suggests that surface or secreted proteins with NEAr Transporter (NEAT) domains play a central role in heme acquisition and trafficking across the cell envelope of Gram-positive bacteria. Group A Streptococcus (GAS), a β-hemolytic human pathogen, expresses a NEAT protein, Shr, which binds several hemoproteins and extracellular matrix (ECM) components. Shr is a complex, membrane-anchored protein, with a unique N-terminal domain (NTD) and two NEAT domains separated by a central leucine-rich repeat region. In this study we have carried out an analysis of the functional domains in Shr. We show that Shr obtains heme in solution and furthermore reduces the heme iron; this is the first report of heme reduction by a NEAT protein. More specifically, we demonstrate that both of the constituent NEAT domains of Shr are responsible for binding heme, although they are missing a critical tyrosine residue found in the ligand-binding pocket of other heme-binding NEAT domains. Further investigations show that a previously undescribed region within the Shr NTD interacts with methemoglobin. Shr NEAT domains, however, do not contribute significantly to the binding of methemoglobin but mediate binding to the ECM components fibronectin and laminin. A protein fragment containing the NTD plus the first NEAT domain was found to be sufficient to sequester heme directly from methemoglobin. Correlating these in vitro findings to in vivo biological function, mutants analysis establishes the role of Shr in GAS growth with methemoglobin as a sole source of iron, and indicates that at least one NEAT domain is necessary for the utilization of methemoglobin. We suggest that Shr is the prototype of a new group of NEAT composite proteins involved in heme uptake found in pyogenic streptococci and Clostridium novyi. PMID:20807204

  8. Zinc Protoporphyrin Suppresses β-Catenin Protein Expression in Human Cancer Cells: The Potential Involvement of Lysosome-Mediated Degradation

    PubMed Central

    Wang, Shuai; Hannafon, Bethany N.; Lind, Stuart E.; Ding, Wei-Qun

    2015-01-01

    Zinc protoporphyrin (ZnPP) has been found to have anticancer activity both in vitro and in vivo. We have recently demonstrated that ZnPP diminishes β-catenin protein expression in cancer cells. The present study examined the cellular mechanisms that mediate ZnPP’s suppression of β-catenin expression. We demonstrate that ZnPP induces a rapid degradation of the β-catenin protein in cancer cells, which is accompanied by a significant inhibition of proteasome activity, suggesting that proteasome degradation does not directly account for the suppression. The possibility that ZnPP induces β-catenin exportation was rejected by the observation that there was no detectable β-catenin protein in the conditioned medium after ZnPP treatment of cancer cells. Further experimentation demonstrated that ZnPP induces lysosome membrane permeabilization, which was reversed by pretreatment with a protein transportation inhibitor cocktail containing Brefeldin A (BFA) and Monensin. More significantly, pretreatment of cancer cells with BFA and Monensin attenuated the ZnPP-induced suppression of β-catenin expression in a concentration- and time-dependent manner, indicating that the lysosome protein degradation pathway is likely involved in the ZnPP-induced suppression of β-catenin expression. Whether there is cross-talk between the ubiquitin-proteasome system and the lysosome pathway that may account for ZnPP-induced β-catenin protein degradation is currently unknown. These findings provide a novel mechanism of ZnPP’s anticancer action and reveal a potential new strategy for targeting the β-catenin Wnt signaling pathway for cancer therapy. PMID:26000787

  9. Inhibition of Human Immunodeficiency Virus Type 1 by Triciribine Involves the Accessory Protein Nef ▿

    PubMed Central

    Ptak, Roger G.; Gentry, Brian G.; Hartman, Tracy L.; Watson, Karen M.; Osterling, M. Clayton; Buckheit, Robert W.; Townsend, Leroy B.; Drach, John C.

    2010-01-01

    Triciribine (TCN) is a tricyclic nucleoside that inhibits human immunodeficiency virus type 1 (HIV-1) replication by a unique mechanism not involving the inhibition of enzymes directly involved in viral replication. This activity requires the phosphorylation of TCN to its 5′ monophosphate by intracellular adenosine kinase. New testing with a panel of HIV and simian immunodeficiency virus isolates, including low-passage-number clinical isolates and selected subgroups of HIV-1, multidrug resistant HIV-1, and HIV-2, has demonstrated that TCN has broad antiretroviral activity. It was active in cell lines chronically infected with HIV-1 in which the provirus was integrated into chromosomal DNA, thereby indicating that TCN inhibits a late process in virus replication. The selection of TCN-resistant HIV-1 isolates resulted in up to a 750-fold increase in the level of resistance to the drug. DNA sequence analysis of highly resistant isolate HIV-1H10 found five point mutations in the HIV-1 gene nef, resulting in five different amino acid changes. DNA sequencing of the other TCN-resistant isolates identified at least one and up to three of the same mutations observed in isolate HIV-1H10. Transfer of the mutations from TCN-resistant isolate HIV-1H10 to wild-type virus and subsequent viral growth experiments with increasing concentrations of TCN demonstrated resistance to the drug. We conclude that TCN is a late-phase inhibitor of HIV-1 replication and that mutations in nef are necessary and sufficient for TCN resistance. PMID:20086149

  10. Nuclear translocation of IQGAP1 protein upon exposure to puromycin aminonucleoside in cultured human podocytes: ERK pathway involvement.

    PubMed

    Rigothier, Claire; Saleem, Moin Ahson; Bourget, Chantal; Mathieson, Peter William; Combe, Christian; Welsh, Gavin Iain

    2016-10-01

    IQGAP1, a protein that links the actin cytoskeleton to slit diaphragm proteins, is involved in podocyte motility and permeability. Its regulation in glomerular disease is not known. We have exposed human podocytes to puromycin aminonucleoside (PAN), an inducer of nephrotic syndrome in rats, and studied the effects on IQGAP1 biology and function. In human podocytes exposed to PAN, a nuclear translocation of IQGAP1 was observed by immunocytolocalization and confirmed by Western blot after selective nuclear/cytoplasmic extraction. In contrast to IQGAP1, IQGAP2 expression remained cytoplasmic. IQGAP1 nuclear translocation was associated with a significant decrease in its interaction with nephrin and podocalyxin. Activation of the ERK pathway was observed in PAN treated podocytes with a preponderant nuclear localization of the phosphorylated form of ERK (P-ERK). The interaction between IQGAP1 and P-ERK increased upon podocyte exposure to PAN. Inhibitors of ERK pathway activation blocked IQGAP1 nuclear translocation (p<0.02). Chromatin interaction protein assays demonstrated an interaction of IQGAP1 with chromatin and with Histone H3, which increased in response to PAN. In summary, PAN induces the ERK dependent translocation of IQGAP1 into the nuclei in human podocytes which leads to the interaction of IQGAP1 with chromatin and Histone H3, and decreased interactions between IQGAP1 and slit-diaphragm proteins. Therefore, IQGAP1 may have a role in podocyte gene regulation in glomerular disease.

  11. Structure of astrotactin-2: a conserved vertebrate-specific and perforin-like membrane protein involved in neuronal development

    PubMed Central

    Ni, Tao; Harlos, Karl; Gilbert, Robert

    2016-01-01

    The vertebrate-specific proteins astrotactin-1 and 2 (ASTN-1 and ASTN-2) are integral membrane perforin-like proteins known to play critical roles in neurodevelopment, while ASTN-2 has been linked to the planar cell polarity pathway in hair cells. Genetic variations associated with them are linked to a variety of neurodevelopmental disorders and other neurological pathologies, including an advanced onset of Alzheimer's disease. Here we present the structure of the majority endosomal region of ASTN-2, showing it to consist of a unique combination of polypeptide folds: a perforin-like domain, a minimal epidermal growth factor-like module, a unique form of fibronectin type III domain and an annexin-like domain. The perforin-like domain differs from that of other members of the membrane attack complex-perforin (MACPF) protein family in ways that suggest ASTN-2 does not form pores. Structural and biophysical data show that ASTN-2 (but not ASTN-1) binds inositol triphosphates, suggesting a mechanism for membrane recognition or secondary messenger regulation of its activity. The annexin-like domain is closest in fold to repeat three of human annexin V and similarly binds calcium, and yet shares no sequence homology with it. Overall, our structure provides the first atomic-resolution description of a MACPF protein involved in development, while highlighting distinctive features of ASTN-2 responsible for its activity. PMID:27249642

  12. A heat shock protein 90 β isoform involved in immune response to bacteria challenge and heat shock from Miichthys miiuy.

    PubMed

    Wei, Tao; Gao, Yunhang; Wang, Rixin; Xu, Tianjun

    2013-08-01

    Heat shock protein 90 (HSP90) is highly conserved molecular chaperone that plays a critical role in cellular stress response. In this study, we reported the identification and functional analysis of a heat shock protein 90 gene from miiuy croaker (designated Mimi-HSP90). Mimi-HSP90 contained five conserved HSP90 protein family signatures and shared 89.6%-99.5% similarity with other known HSP90 β isoform. Homology analysis and structure comparison further indicated that Mimi-HSP90 should be β isoform member of the HSP90 family. The molecular evolutionary analysis showed that HSP90 was under an overall strong purifying select pressure among fish species. Mimi-HSP90 gene was constitutively expressed in ten examined tissues, and the expression level of liver was higher than in other tissues. The expression level of Mimi-HSP90 gene under bacterial infection and heat shock were analyzed by real-time quantitative RT-PCR, resulted in significant changes in liver, spleen, and kidney tissues. The purified recombinant pET-HSP90 protein was used to produce the polyclonal antibody in mice. The specificity of the antibody was determined by Western blot analysis. All results suggested that Mimi-HSP90 was involved in thermal stress and immune response in miiuy croaker. PMID:23684810

  13. Nuclear substructure reorganization during late stageerythropoiesis is selective and does not involve caspase cleavage ofmajor nuclear substructural proteins

    SciTech Connect

    Krauss, Sharon Wald; Lo, Annie J.; Short, Sarah A.; Koury, MarkJ.; Mohandas, Narla; Chasis, Joel Anne

    2005-04-06

    Enucleation, a rare feature of mammalian differentiation, occurs in three cell types: erythroblasts, lens epithelium and keratinocytes. Previous investigations suggest that caspase activation functions in lens epithelial and keratinocyte enucleation, as well as in early erythropoiesis encompassing BFU-E differentiation to proerythroblast. To determine whether caspase activation contributes to later erythropoiesis and whether nuclear substructures other than chromatin reorganize, we analyzed distributions of nuclear subcompartment proteins and assayed for caspase-induced cleavage of subcompartmental target proteins in mouse erythroblasts. We found that patterns of lamin B in the filamentous network interacting with both the nuclear envelope and DNA, nuclear matrix protein NuMA, and splicing factors Sm and SC35 persisted during nuclear condensation, consistent with effective transcription of genes expressed late in differentiation. Thus nuclear reorganization prior to enucleation is selective, allowing maintenance of critical transcriptional processes independent of extensive chromosomal reorganization. Consistent with these data, we found no evidence for caspase-induced cleavage of major nuclear subcompartment proteins during late erythropoiesis, in contrast to what has been observed in early erythropoiesis and in lens epithelial and keratinocyte differentiation. These findings imply that nuclear condensation and extrusion during terminal erythroid differentiation involve novel mechanisms that do not entail major activation of apoptotic machinery.

  14. Development of polyclonal antibodies for detection of aflatoxigenic molds involving culture filtrate and chimeric proteins expressed in Escherichia coli.

    PubMed

    Shapira, R; Paster, N; Menasherov, M; Eyal, O; Mett, A; Meiron, T; Kuttin, E; Salomon, R

    1997-03-01

    Polyclonal antibodies (PAb) were raised against an aflatoxigenic strain of Aspergillus parasiticus by using two different sources for antibody elicitation: (i) filtrate of a culture on which the fungus had been grown (ii) and two chimeric proteins, expressed in Escherichia coli as separate products, of the genes ver-1 and apa-2, which are involved in aflatoxin biosynthesis. The gene products were amplified by PCR, and each was cloned into the E. coli expression vector pGEX2T. Upon induction, the bacteria overexpressed 38- and 33-kDa chimeric proteins corresponding to the N-terminal domains of the genes ver-1 and apa-2, respectively. The chimeric proteins were isolated and affinity purified for use as antigens. The specificity of the raised antibodies was examined by enzyme-linked immunosorbent assay (ELISA). The PAbs raised against the culture filtrate reacted with all the species of Aspergillus and Penicillium tested but not with Fusarium species or corn gain. However, the PAbs elicited against the chimeric proteins were highly specific, showing significantly higher ELISA absorbance values (A405) against A. parasiticus and A. flavus than against the other fungi tested and the corn grain. The approach of utilizing gene products associated with aflatoxin biosynthesis for antibody production therefore appears to be feasible. Such a multiantibody system combined with the PCR technique, could provide a useful tool for the rapid, sensitive, and accurate detection of aflatoxin producers present in grains and foods. PMID:9055416

  15. Arabidopsis thaliana expresses two functional isoforms of Arvp, a protein involved in the regulation of cellular lipid homeostasis.

    PubMed

    Forés, Oriol; Arró, Montserrat; Pahissa, Albert; Ferrero, Sergi; Germann, Melody; Stukey, Joseph; McDonough, Virginia; Nickels, Joseph T; Campos, Narciso; Ferrer, Albert

    2006-07-01

    Arv1p is involved in the regulation of cellular lipid homeostasis in the yeast Saccharomyces cerevisiae. Here, we report the characterization of the two Arabidopsis thaliana ARV genes and the encoded proteins, AtArv1p and AtArv2p. The functional identity of AtArv1p and AtArv2p was demonstrated by complementation of the thermosensitive phenotype of the arv1Delta yeast mutant strain YJN1756. Both A. thaliana proteins contain the bipartite Arv1 homology domain (AHD), which consists of an NH(2)-terminal cysteine-rich subdomain with a putative zinc-binding motif followed by a C-terminal subdomain of 33 amino acids. Removal of the cysteine-rich subdomain has no effect on Arvp activity, whereas the presence of the C-terminal subdomain of the AHD is critical for Arvp function. Localization experiments of AtArv1p and AtArv2p tagged with green fluorescent protein (GFP) and expressed in onion epidermal cells demonstrated that both proteins are exclusively targeted to the endoplasmic reticulum. Analysis of beta-glucuronidase (GUS) activity in transgenic A. thaliana plants carrying chimeric ARV1::GUS and ARV2::GUS genes showed that ARV gene promoters direct largely overlapping patterns of expression that are restricted to tissues in which cells are actively dividing or expanding. The results of this study support the notion that plants, yeast and mammals share common molecular mechanisms regulating intracellular lipid homeostasis.

  16. High Mobility Group Box1 Protein Is Involved in Endoplasmic Reticulum Stress Induced by Clostridium difficile Toxin A

    PubMed Central

    Liu, Ji; Ma, Yi; Sun, Chun-Li

    2016-01-01

    High Mobility Group Box1 (HMGB1), a damage-associated inflammatory factor, plays an important role in the pathogenesis of numerous chronic inflammatory and autoimmune diseases. In this study, the role of the HMGB1 in TcdA-induced ER stress was identified. Clostridium difficile toxin A is one of the major virulence factors of C. difficile infection (CDI) and has been proved to induce apoptotic cell death through ER stress. Our results showed that HMGB1 might play an important role in the TcdA-induced ER stress and unfolded protein response. HMGB1 activated molecular markers and induced the C/EBP homologous protein upregulation (CHOP). This study may provide the essential information for better understanding of the molecular mechanisms involved in CDI. PMID:27579314

  17. High Mobility Group Box1 Protein Is Involved in Endoplasmic Reticulum Stress Induced by Clostridium difficile Toxin A.

    PubMed

    Liu, Ji; Ma, Yi; Sun, Chun-Li; Li, Shan; Wang, Ju-Fang

    2016-01-01

    High Mobility Group Box1 (HMGB1), a damage-associated inflammatory factor, plays an important role in the pathogenesis of numerous chronic inflammatory and autoimmune diseases. In this study, the role of the HMGB1 in TcdA-induced ER stress was identified. Clostridium difficile toxin A is one of the major virulence factors of C. difficile infection (CDI) and has been proved to induce apoptotic cell death through ER stress. Our results showed that HMGB1 might play an important role in the TcdA-induced ER stress and unfolded protein response. HMGB1 activated molecular markers and induced the C/EBP homologous protein upregulation (CHOP). This study may provide the essential information for better understanding of the molecular mechanisms involved in CDI. PMID:27579314

  18. Primary photoprocesses involved in the sensory protein for the photophobic response of Blepharisma japonicum.

    PubMed

    Brazard, Johanna; Ley, Christian; Lacombat, Fabien; Plaza, Pascal; Martin, Monique M; Checcucci, Giovanni; Lenci, Francesco

    2008-11-27

    We present new femtosecond transient-absorption and picosecond fluorescence experiments performed on OBIP, the oxyblepharismin-binding protein believed to trigger the photophobic response of the ciliate Blepharisma japonicum. The formerly identified heterogeneity of the sample is confirmed and rationalized in terms of two independent populations, called rOBIP and nrOBIP. The rOBIP population undergoes a fast photocycle restoring the initial ground state in less than 500 ps. Intermolecular electron transfer followed by electron recombination is identified as the excited-state decay route. The experimental results support the coexistence of the oxyblepharismin (OxyBP) radical cation signature with a stimulated-emission signal at all times of the evolution of the transient-absorption spectra. This observation is interpreted by an equilibrium being reached between the locally excited state and a charge-transfer state on the ground of a theory developed by Mataga and co-workers to explain the fluorescence quenching of aromatic hydrogen-bonded donor-acceptor pairs in nonpolar solvents. OxyBP is supposed to bind to an as yet unknown electron acceptor by a hydrogen-bond (HB) and the coordinate along which forward and backward electron transfer proceed is assumed to be the shift of the HB proton. The observed kinetic isotope effect supports this interpretation. Protein relaxation is finally proposed to accompany the whole process and give rise to the highly multiexponential observed dynamics. As previously reported, the fast photocycle of rOBIP can be interpreted as an efficient sunscreen mechanism that protects Blepharisma japonicum from continuous irradiation. The nrOBIP population, the transient-absorption of which strongly reminds that of free OxyBP in solution, might be proposed to actually trigger the photophobic response of the organism through excited-state deprotonation of the chromophore occurring in the nanosecond regime. Additional femtosecond transient

  19. Scavenger receptors on sinusoidal liver endothelial cells are involved in the uptake of aldehyde-modified proteins.

    PubMed

    Duryee, Michael J; Freeman, Thomas L; Willis, Monte S; Hunter, Carlos D; Hamilton, Bartlett C; Suzuki, Hiroshi; Tuma, Dean J; Klassen, Lynell W; Thiele, Geoffrey M

    2005-11-01

    Scavenger receptors on sinusoidal liver endothelial cells (SECs) eliminate potentially harmful modified proteins circulating through the liver. It was shown recently that aldehyde-modified proteins bind to scavenger receptors and are associated with the development/progression of alcoholic liver diseases. For these studies, rat livers were perfused in situ with 125I-formaldehyde-bovine serum albumin (f-Alb) or 125I-malondialdehyde-acetaldehyde-bovine serum albumin (MAA-Alb) in the presence of known scavenger receptor ligands as inhibitors. Reverse transcription-polymerase chain reaction (RT-PCR) analysis and scavenger receptor Type A (SRA) knock-out mice were used to assess the role of these receptors in mediating immune responses. The degradation of 125I-f-Alb or 125I-MAA-Alb in whole livers and isolated SECs can be inhibited by known scavenger receptor ligands, including f-Alb, maleylated bovine albumin, and fucoidan. 125I-f-Alb could not be completely inhibited by MAA-Alb. In contrast, 125I-MAA-Alb was only partially inhibited with advanced glycosylated endproduct albumin. RT-PCR data show the presence of a number of scavenger receptors on SECs that may be responsible for the binding of MAA-modified proteins. SRA seems to be one of these receptors involved in the effects mediated by MAA-modified proteins. In a study using SRA knockout mice, it was shown that a decreased antibody response to MAA-Alb resulted. By RT-PCR, CD36, LOX-1, and SR-AI are the scavenger receptors most likely involved in the degradation of MAA-Alb.

  20. A PerR-like protein involved in response to oxidative stress in the extreme bacterium Deinococcus radiodurans

    SciTech Connect

    Liu, Chengzhi; Wang, Liangyan; Li, Tao; Lin, Lin; Dai, Shang; Tian, Bing Hua, Yuejin

    2014-07-18

    Highlights: • We report a novel PerR-like protein of Fur family in D. radiodurans that is not annotated in the current database. • drperR responses to H{sub 2}O{sub 2} and functions as a negative regulator of katE and dps. • We provided implications on how to utilize sequenced genome data and the importance of genome data mining. • This study adds knowledge to complicated regulatory network that responds to ROS stress in D. radiodurans. - Abstract: Response and defense systems against reactive oxygen species (ROS) contribute to the remarkable resistance of Deinococcus radiodurans to oxidative stress induced by oxidants or radiation. However, mechanisms involved in ROS response and defense systems of D. radiodurans are not well understood. Fur family proteins are important in ROS response. Only a single Fur homolog is predicted by sequence similarity in the current D. radiodurans genome database. Our bioinformatics analysis demonstrated an additional guanine nucleotide in the genome of D. radiodurans that is not in the database, leading to the discovery of another Fur homolog DrPerR. Gene disruption mutant of DrPerR showed enhanced resistance to hydrogen peroxide (H{sub 2}O{sub 2}) and increased catalase activity in cell extracts. Real-time PCR results indicated that DrPerR functions as a repressor of the catalase gene katE. Meanwhile, derepression of dps (DNA-binding proteins from starved cells) gene under H{sub 2}O{sub 2} stress by DrPerR point to its regulatory role in metal ions hemostasis. Thus, DrPerR might function as a Fur homolog protein which is involved in ROS response and defense. These results help clarify the complicated regulatory network that responds to ROS stress in D. radiodurans.

  1. Anaerobic degradation of p-ethylphenol by "Aromatoleum aromaticum" strain EbN1: pathway, regulation, and involved proteins.

    PubMed

    Wöhlbrand, Lars; Wilkes, Heinz; Halder, Thomas; Rabus, Ralf

    2008-08-01

    The denitrifying "Aromatoleum aromaticum" strain EbN1 was demonstrated to utilize p-ethylphenol under anoxic conditions and was suggested to employ a degradation pathway which is reminiscent of known anaerobic ethylbenzene degradation in the same bacterium: initial hydroxylation of p-ethylphenol to 1-(4-hydroxyphenyl)-ethanol followed by dehydrogenation to p-hydroxyacetophenone. Possibly, subsequent carboxylation and thiolytic cleavage yield p-hydroxybenzoyl-coenzyme A (CoA), which is channeled into the central benzoyl-CoA pathway. Substrate-specific formation of three of the four proposed intermediates was confirmed by gas chromatographic-mass spectrometric analysis and also by applying deuterated p-ethylphenol. Proteins suggested to be involved in this degradation pathway are encoded in a single large operon-like structure ( approximately 15 kb). Among them are a p-cresol methylhydroxylase-like protein (PchCF), two predicted alcohol dehydrogenases (ChnA and EbA309), a biotin-dependent carboxylase (XccABC), and a thiolase (TioL). Proteomic analysis (two-dimensional difference gel electrophoresis) revealed their specific and coordinated upregulation in cells adapted to anaerobic growth with p-ethylphenol and p-hydroxyacetophenone (e.g., PchF up to 29-fold). Coregulated proteins of currently unknown function (e.g., EbA329) are possibly involved in p-ethylphenol- and p-hydroxyacetophenone-specific solvent stress responses and related to other aromatic solvent-induced proteins of strain EbN1. PMID:18539747

  2. A Novel Trypanosoma cruzi Protein Associated to the Flagellar Pocket of Replicative Stages and Involved in Parasite Growth.

    PubMed

    Durante, Ignacio M; Cámara, María de Los Milagros; Buscaglia, Carlos A

    2015-01-01

    The flagellar pocket constitutes an active and strategic site in the body of trypanosomatids (i.e. parasitic protozoa that cause important human and/or livestock diseases), which participates in several important processes such as cell polarity, morphogenesis and replication. Most importantly, the flagellar pocket is the unique site of surface protein export and nutrient uptake in trypanosomatids, and thus constitutes a key portal for the interaction with the host. In this work, we identified and characterized a novel Trypanosoma cruzi protein, termed TCLP 1, that accumulates at the flagellar pocket area of parasite replicative forms, as revealed by biochemical, immuno-cytochemistry and electron microscopy techniques. Different in silico analyses revealed that TCLP 1 is the founding member of a family of chimeric molecules restricted to trypanosomatids bearing, in addition to eukaryotic ubiquitin-like and protein-protein interacting domains, a motif displaying significant structural homology to bacterial multi-cargo chaperones involved in the secretion of virulence factors. Using the fidelity of an homologous expression system we confirmed TCLP 1 sub-cellular distribution and showed that TCLP 1-over-expressing parasites display impaired survival and accelerated progression to late stationary phase under starvation conditions. The reduced endocytic capacity of TCLP 1-over-expressors likely underlies (at least in part) this growth phenotype. TCLP 1 is involved in the uptake of extracellular macromolecules required for nutrition and hence in T. cruzi growth. Due to the bacterial origin, sub-cellular distribution and putative function(s), we propose TCLP 1 and related orthologs in trypanosomatids as appealing therapeutic targets for intervention against these health-threatening parasites. PMID:26086767

  3. Scavenger receptors on sinusoidal liver endothelial cells are involved in the uptake of aldehyde-modified proteins.

    PubMed

    Duryee, Michael J; Freeman, Thomas L; Willis, Monte S; Hunter, Carlos D; Hamilton, Bartlett C; Suzuki, Hiroshi; Tuma, Dean J; Klassen, Lynell W; Thiele, Geoffrey M

    2005-11-01

    Scavenger receptors on sinusoidal liver endothelial cells (SECs) eliminate potentially harmful modified proteins circulating through the liver. It was shown recently that aldehyde-modified proteins bind to scavenger receptors and are associated with the development/progression of alcoholic liver diseases. For these studies, rat livers were perfused in situ with 125I-formaldehyde-bovine serum albumin (f-Alb) or 125I-malondialdehyde-acetaldehyde-bovine serum albumin (MAA-Alb) in the presence of known scavenger receptor ligands as inhibitors. Reverse transcription-polymerase chain reaction (RT-PCR) analysis and scavenger receptor Type A (SRA) knock-out mice were used to assess the role of these receptors in mediating immune responses. The degradation of 125I-f-Alb or 125I-MAA-Alb in whole livers and isolated SECs can be inhibited by known scavenger receptor ligands, including f-Alb, maleylated bovine albumin, and fucoidan. 125I-f-Alb could not be completely inhibited by MAA-Alb. In contrast, 125I-MAA-Alb was only partially inhibited with advanced glycosylated endproduct albumin. RT-PCR data show the presence of a number of scavenger receptors on SECs that may be responsible for the binding of MAA-modified proteins. SRA seems to be one of these receptors involved in the effects mediated by MAA-modified proteins. In a study using SRA knockout mice, it was shown that a decreased antibody response to MAA-Alb resulted. By RT-PCR, CD36, LOX-1, and SR-AI are the scavenger receptors most likely involved in the degradation of MAA-Alb. PMID:16105988

  4. A Novel Trypanosoma cruzi Protein Associated to the Flagellar Pocket of Replicative Stages and Involved in Parasite Growth.

    PubMed

    Durante, Ignacio M; Cámara, María de Los Milagros; Buscaglia, Carlos A

    2015-01-01

    The flagellar pocket constitutes an active and strategic site in the body of trypanosomatids (i.e. parasitic protozoa that cause important human and/or livestock diseases), which participates in several important processes such as cell polarity, morphogenesis and replication. Most importantly, the flagellar pocket is the unique site of surface protein export and nutrient uptake in trypanosomatids, and thus constitutes a key portal for the interaction with the host. In this work, we identified and characterized a novel Trypanosoma cruzi protein, termed TCLP 1, that accumulates at the flagellar pocket area of parasite replicative forms, as revealed by biochemical, immuno-cytochemistry and electron microscopy techniques. Different in silico analyses revealed that TCLP 1 is the founding member of a family of chimeric molecules restricted to trypanosomatids bearing, in addition to eukaryotic ubiquitin-like and protein-protein interacting domains, a motif displaying significant structural homology to bacterial multi-cargo chaperones involved in the secretion of virulence factors. Using the fidelity of an homologous expression system we confirmed TCLP 1 sub-cellular distribution and showed that TCLP 1-over-expressing parasites display impaired survival and accelerated progression to late stationary phase under starvation conditions. The reduced endocytic capacity of TCLP 1-over-expressors likely underlies (at least in part) this growth phenotype. TCLP 1 is involved in the uptake of extracellular macromolecules required for nutrition and hence in T. cruzi growth. Due to the bacterial origin, sub-cellular distribution and putative function(s), we propose TCLP 1 and related orthologs in trypanosomatids as appealing therapeutic targets for intervention against these health-threatening parasites.

  5. A Novel Trypanosoma cruzi Protein Associated to the Flagellar Pocket of Replicative Stages and Involved in Parasite Growth

    PubMed Central

    Durante, Ignacio M.; Cámara, María de los Milagros; Buscaglia, Carlos A.

    2015-01-01

    The flagellar pocket constitutes an active and strategic site in the body of trypanosomatids (i.e. parasitic protozoa that cause important human and/or livestock diseases), which participates in several important processes such as cell polarity, morphogenesis and replication. Most importantly, the flagellar pocket is the unique site of surface protein export and nutrient uptake in trypanosomatids, and thus constitutes a key portal for the interaction with the host. In this work, we identified and characterized a novel Trypanosoma cruzi protein, termed TCLP 1, that accumulates at the flagellar pocket area of parasite replicative forms, as revealed by biochemical, immuno-cytochemistry and electron microscopy techniques. Different in silico analyses revealed that TCLP 1 is the founding member of a family of chimeric molecules restricted to trypanosomatids bearing, in addition to eukaryotic ubiquitin-like and protein-protein interacting domains, a motif displaying significant structural homology to bacterial multi-cargo chaperones involved in the secretion of virulence factors. Using the fidelity of an homologous expression system we confirmed TCLP 1 sub-cellular distribution and showed that TCLP 1-over-expressing parasites display impaired survival and accelerated progression to late stationary phase under starvation conditions. The reduced endocytic capacity of TCLP 1-over-expressors likely underlies (at least in part) this growth phenotype. TCLP 1 is involved in the uptake of extracellular macromolecules required for nutrition and hence in T. cruzi growth. Due to the bacterial origin, sub-cellular distribution and putative function(s), we propose TCLP 1 and related orthologs in trypanosomatids as appealing therapeutic targets for intervention against these health-threatening parasites. PMID:26086767

  6. Arabidopsis ATG8-INTERACTING PROTEIN1 Is Involved in Autophagy-Dependent Vesicular Trafficking of Plastid Proteins to the Vacuole[W][OPEN

    PubMed Central

    Michaeli, Simon; Honig, Arik; Levanony, Hanna; Peled-Zehavi, Hadas; Galili, Gad

    2014-01-01

    Selective autophagy has been extensively studied in various organisms, but knowledge regarding its functions in plants, particularly in organelle turnover, is limited. We have recently discovered ATG8-INTERACTING PROTEIN1 (ATI1) from Arabidopsis thaliana and showed that following carbon starvation it is localized on endoplasmic reticulum (ER)-associated bodies that are subsequently transported to the vacuole. Here, we show that following carbon starvation ATI1 is also located on bodies associating with plastids, which are distinct from the ER ATI bodies and are detected mainly in senescing cells that exhibit plastid degradation. Additionally, these plastid-localized bodies contain a stroma protein marker as cargo and were observed budding and detaching from plastids. ATI1 interacts with plastid-localized proteins and was further shown to be required for the turnover of one of them, as a representative. ATI1 on the plastid bodies also interacts with ATG8f, which apparently leads to the targeting of the plastid bodies to the vacuole by a process that requires functional autophagy. Finally, we show that ATI1 is involved in Arabidopsis salt stress tolerance. Taken together, our results implicate ATI1 in autophagic plastid-to-vacuole trafficking through its ability to interact with both plastid proteins and ATG8 of the core autophagy machinery. PMID:25281689

  7. Methods for calculating the entropy and free energy and their application to problems involving protein flexibility and ligand binding.

    PubMed

    Meirovitch, Hagai; Cheluvaraja, Srinath; White, Ronald P

    2009-06-01

    The Helmholtz free energy, F and the entropy, S are related thermodynamic quantities with a special importance in structural biology. We describe the difficulties in calculating these quantities and review recent methodological developments. Because protein flexibility is essential for function and ligand binding, we discuss the related problems involved in the definition, simulation, and free energy calculation of microstates (such as the alpha-helical region of a peptide). While the review is broad, a special emphasize is given to methods for calculating the absolute F (S), where our HSMC(D) method is described in some detail. PMID:19519453

  8. Phage phi 29 regulatory protein p4 stabilizes the binding of the RNA polymerase to the late promoter in a process involving direct protein-protein contacts.

    PubMed

    Nuez, B; Rojo, F; Salas, M

    1992-12-01

    Transcription from the late promoter, PA3, of Bacillus subtilis phage phi 29 is activated by the viral regulatory protein p4. A kinetic analysis of the activation process has revealed that the role of protein p4 is to stabilize the binding of RNA polymerase to the promoter as a closed complex without significantly affecting further steps of the initiation process. Electrophoretic band-shift assays performed with a DNA fragment spanning only the protein p4 binding site showed that RNA polymerase could efficiently retard the complex formed by protein p4 bound to the DNA. Similarly, when a DNA fragment containing only the RNA polymerase-binding region of PA3 was used, p4 greatly stimulated the binding of RNA polymerase to the DNA. These results strongly suggest that p4 and RNA polymerase contact each other at the PA3 promoter. In the light of current knowledge of the p4 activation mechanism, we propose that direct contacts between the two proteins participate in the activation process.

  9. The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport.

    PubMed

    Wysocki, R; Bobrowicz, P; Ułaszewski, S

    1997-11-28

    The cluster of three genes, ACR1, ACR2, and ACR3, previously was shown to confer arsenical resistance in Saccharomyces cerevisiae. The overexpression of ACR3 induced high level arsenite resistance. The presence of ACR3 together with ACR2 on a multicopy plasmid was conducive to increased arsenate resistance. The function of ACR3 gene has now been investigated. Amino acid sequence analysis of Acr3p showed that this hypothetical protein has hydrophobic character with 10 putative transmembrane spans and is probably located in yeast plasma membrane. We constructed the acr3 null mutation. The resulting disruptants were 5-fold more sensitive to arsenate and arsenite than wild-type cells. The acr3 disruptants showed wild-type sensitivity to antimony, tellurite, cadmium, and phenylarsine oxide. The mechanism of arsenical resistance was assayed by transport experiments using radioactive arsenite. We did not observe any significant differences in the accumulation of 76AsO33- in wild-type cells, acr1 and acr3 disruptants. However, the high dosage of ACR3 gene resulted in loss of arsenite uptake. These results suggest that arsenite resistance in yeast is mediated by an arsenite transporter (Acr3p).

  10. A novel Drosophila Girdin-like protein is involved in Akt pathway control of cell size

    SciTech Connect

    Puseenam, Aekkachai; Yoshioka, Yasuhide; Nagai, Rika; Hashimoto, Reina; Suyari, Osamu; Itoh, Masanobu; Enomoto, Atsushi; Takahashi, Masahide; Yamaguchi, Masamitsu

    2009-11-15

    The Akt signaling pathway is well known to regulate cell proliferation and growth. Girdin, a novel substrate of Akt, plays a crucial role in organization of the actin cytoskeleton and cell motility under the control of Akt. We here identified a novel Girdin-like protein in Drosophila (dGirdin), which has two isoforms, dGirdin PA and dGirdin PB. dGirdin shows high homology with human Girdin in the N-terminal and coiled-coil domains, while diverging at the C-terminal domain. On establishment of transgenic fly lines, featuring knockdown or overexpression of dGirdin in vivo, overexpression in the wing disc cells induced ectopic apoptosis, implying a role in directing apoptosis. Knockdown of dGirdin in the Drosophila wing imaginal disc cells resulted in reduction of cell size. Furthermore, this was enhanced by half reduction of the Akt gene dose, suggesting that Akt positively regulates dGirdin. In the wing disc, cells in which dGirdin was knocked down exhibited disruption of actin filaments. From these in vivo analyses, we conclude that dGirdin is required for actin organization and regulation of appropriate cell size under control of the Akt signaling pathway.

  11. Heat shock protein 27 is involved in PCV2 infection in PK-15 cells.

    PubMed

    Liu, Jie; Zhang, Lili; Zhu, Xuejiao; Bai, Juan; Wang, Liming; Wang, Xianwei; Jiang, Ping

    2014-08-30

    Porcine circovirus type 2 (PCV2) has been identified as the etiologic agent which causing postweaning multisystemic wasting syndrome in swine farms in the world. Some quantitative proteomic studies showed that many proteins significantly changed in PCV2-infected cells. To explore the role of cellular chaperones during PCV2 infection, cytoprotective chaperone Hsp27 was analyzed in PCV2-infected PK-15 cells in this study. The results showed that Hsp27 could up-regulate and accumulate in phosphorylated forms in the nuclear zone during PCV2 replication. Suppression of Hsp27 phosphorylation with specific chemical inhibitors or downregulation of all forms of Hsp27 via RNA interference significantly reduced the virus replication. Meanwhile, over-expression of Hsp27 enhanced PCV2 genome replication and virion production. It indicated that Hsp27 was required for PCV2 production in PK-15 cells culture. It should be helpful for understanding the mechanism of replication and pathogenesis of PCV2 and development of novel antiviral therapies in the future.

  12. Estrogen effects on human airway smooth muscle involve cAMP and protein kinase A.

    PubMed

    Townsend, Elizabeth A; Sathish, Venkatachalem; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S

    2012-11-15

    Clinically observed differences in airway reactivity and asthma exacerbations in women at different life stages suggest a role for sex steroids in modulating airway function although their targets and mechanisms of action are still being explored. We have previously shown that clinically relevant concentrations of exogenous estrogen acutely decrease intracellular calcium ([Ca(2+)](i)) in human airway smooth muscle (ASM), thereby facilitating bronchodilation. In this study, we hypothesized that estrogens modulate cyclic nucleotide regulation, resulting in decreased [Ca(2+)](i) in human ASM. In Fura-2-loaded human ASM cells, 1 nM 17β-estradiol (E(2)) potentiated the inhibitory effect of the β-adrenoceptor (β-AR) agonist isoproterenol (ISO; 100 nM) on histamine-mediated Ca(2+) entry. Inhibition of protein kinase A (PKA) activity (KT5720; 100 nM) attenuated E(2) effects on [Ca(2+)](i). Acute treatment with E(2) increased cAMP levels in ASM cells comparable to that of ISO (100 pM). In acetylcholine-contracted airways from female guinea pigs or female humans, E(2) potentiated ISO-induced relaxation. These novel data suggest that, in human ASM, physiologically relevant concentrations of estrogens act via estrogen receptors (ERs) and the cAMP pathway to nongenomically reduce [Ca(2+)](i), thus promoting bronchodilation. Activation of ERs may be a novel adjunct therapeutic avenue in reactive airway diseases in combination with established cAMP-activating therapies such as β(2)-agonists.

  13. Hybrid Sterility in Rice (Oryza sativa L.) Involves the Tetratricopeptide Repeat Domain Containing Protein.

    PubMed

    Yu, Yang; Zhao, Zhigang; Shi, Yanrong; Tian, Hua; Liu, Linglong; Bian, Xiaofeng; Xu, Yang; Zheng, Xiaoming; Gan, Lu; Shen, Yumin; Wang, Chaolong; Yu, Xiaowen; Wang, Chunming; Zhang, Xin; Guo, Xiuping; Wang, Jiulin; Ikehashi, Hiroshi; Jiang, Ling; Wan, Jianmin

    2016-07-01

    Intersubspecific hybrid sterility is a common form of reproductive isolation in rice (Oryza sativa L.), which significantly hampers the utilization of heterosis between indica and japonica varieties. Here, we elucidated the mechanism of S7, which specially causes Aus-japonica/indica hybrid female sterility, through cytological and genetic analysis, map-based cloning, and transformation experiments. Abnormal positioning of polar nuclei and smaller embryo sac were observed in F1 compared with male and female parents. Female gametes carrying S7(cp) and S7(i) were aborted in S7(ai)/S7(cp) and S7(ai)/S7(i), respectively, whereas they were normal in both N22 and Dular possessing a neutral allele, S7(n) S7 was fine mapped to a 139-kb region in the centromere region on chromosome 7, where the recombination was remarkably suppressed due to aggregation of retrotransposons. Among 16 putative open reading frames (ORFs) localized in the mapping region, ORF3 encoding a tetratricopeptide repeat domain containing protein was highly expressed in the pistil. Transformation experiments demonstrated that ORF3 is the candidate gene: downregulated expression of ORF3 restored spikelet fertility and eliminated absolutely preferential transmission of S7(ai) in heterozygote S7(ai)/S7(cp); sterility occurred in the transformants Cpslo17-S7(ai) Our results may provide implications for overcoming hybrid embryo sac sterility in intersubspecific hybrid rice and utilization of hybrid heterosis for cultivated rice improvement. PMID:27182946

  14. G-protein-coupled inward rectifier potassium channels involved in corticostriatal presynaptic modulation.

    PubMed

    Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime

    2015-09-01

    Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels.

  15. Vap (Vascular Associated Protein): a novel factor involved in erythropoiesis and angiogenesis.

    PubMed

    Kawahara, Atsuo; Endo, Sumie; Dawid, Igor B

    2012-05-01

    Both endothelial and erythroid cells are generated in the intermediate cell mass (ICM) during zebrafish embryogenesis, but the nature of the genes that contribute to the processes of erythrocyte maturation and blood vessel network formation is not fully understood. From our in situ-based screening, we have identified a novel factor, Vap (Vascular Associated Protein) that is predominantly expressed in the ICM, and subsequently enriched in endothelial cells. Vap expression in the ICM was drastically suppressed in the cloche mutant that has defects in both vasculogenesis and hematopoiesis, whereas Vap expression was not affected in the vlad tepes/gata1 mutant. Knockdown of Vap using anti-sense morpholinos (VAP-MO) not only resulted in decreased numbers of erythrocytes but also in the strong suppression of hemoglobin production. Further, we found that Vap knockdown caused the disorganization of the intersegmental vessels (ISVs), which show irregular branching. We propose that Vap plays an important role in the maturation of endothelial and erythroid cells in zebrafish.

  16. Hybrid Sterility in Rice (Oryza sativa L.) Involves the Tetratricopeptide Repeat Domain Containing Protein.

    PubMed

    Yu, Yang; Zhao, Zhigang; Shi, Yanrong; Tian, Hua; Liu, Linglong; Bian, Xiaofeng; Xu, Yang; Zheng, Xiaoming; Gan, Lu; Shen, Yumin; Wang, Chaolong; Yu, Xiaowen; Wang, Chunming; Zhang, Xin; Guo, Xiuping; Wang, Jiulin; Ikehashi, Hiroshi; Jiang, Ling; Wan, Jianmin

    2016-07-01

    Intersubspecific hybrid sterility is a common form of reproductive isolation in rice (Oryza sativa L.), which significantly hampers the util