Science.gov

Sample records for b-c bond cleavage

  1. Borane B-C Bond Cleavage by a Low-Coordinate Iron Hydride Complex and N-N Bond Cleavage by the Hydridoborate Product

    PubMed Central

    Yu, Ying; Brennessel, William W.; Holland, Patrick L.

    2008-01-01

    The iron(II) hydride dimers [LRFe(μ-H)2FeLR] (LMe = 2,4-bis(2,6-diisopropylphenylimino) pent-3-yl; LtBu = 2,2,6,6-tetramethyl-3,5-bis(2,6-diisopropylphenylimino)hept-4-yl) abstract hydrocarbyl groups from BR′3 (R′ = Et, Ph) to give LRFeR′ and LRFe(μ-H)2BR′2. Mechanistic studies with R = R′ = Me are consistent with a process in which the hyride dimer opens one Fe-H bond, and subsequent B-H bond formation is concerted with dissociation of an Fe-H unit. Cleavage of boron-carbon bonds is likely to proceed at least in part from transient quaternary borate anions. In a separate bond-breaking reaction, LMeFe(μ-H)2BEt2 reacts with N2H4 to eject H2 from the bridging hydrides and cleave the N-N bond in the diaminoborate complex LMeFe(μ-NH2)2BEt2. These novel bond-breaking reactions are facilitated by the low coordination number at the iron(II) center. PMID:18725998

  2. Substituent Directed Phototransformations of BN-Heterocycles: Elimination vs Isomerization via Selective B-C Bond Cleavage.

    PubMed

    Yang, Deng-Tao; Mellerup, Soren K; Peng, Jin-Bao; Wang, Xiang; Li, Quan-Song; Wang, Suning

    2016-09-14

    Electron-rich and -poor BN-heterocycles with benzyl-pyridyl backbones and two bulky aryls on the boron (Ar = tipp, BN-1, Ar = MesF, BN-2) have been found to display distinct molecular transformations upon irradiation by UV light. BN-1 undergoes an efficient photoelimination reaction forming a BN-phenanthrene with ΦPE = 0.25, whereas BN-2 undergoes a thermally reversible, stereoselective, and quantitative isomerization to a dark colored BN-1,3,5-cyclooctatriene (BN-1,3,5-COT, BN-2a). This unusual photoisomerization persists for other BN-heterocycles with electron-deficient aryls such as BN-3 with a benzyl-benzothiazolyl backbone and Mes(F) substituents or BN-4 with a benzyl-pyridyl backbone and two C6F5 groups on the boron. The photoisomerization of BN-4 goes beyond BN-1,3,5-COT (BN-4a), forming a new species (BN-1,3,6-COT, BN-4b) via C-F bond cleavage and [1,3]-F atom sigmatropic migration. Computational studies support that BN-4a is an intermediate in the formation of BN-4b. This work establishes that steric and electronic factors can effectively control the transformations of BN-heterocycles, allowing access to important and previously unknown BN-embedded species. PMID:27580241

  3. Simple Bond Cleavage

    SciTech Connect

    Gary S. Groenewold

    2005-08-01

    Simple bond cleavage is a class of fragmentation reactions in which a single bond is broken, without formation of new bonds between previously unconnected atoms. Because no bond making is involved, simple bond cleavages are endothermic, and activation energies are generally higher than for rearrangement eliminations. The rate of simple bond cleavage reactions is a strong function of the internal energy of the molecular ion, which reflects a loose transition state that resembles reaction products, and has a high density of accessible states. For this reason, simple bond cleavages tend to dominate fragmentation reactions for highly energized molecular ions. Simple bond cleavages have negligible reverse activation energy, and hence they are used as valuable probes of ion thermochemistry, since the energy dependence of the reactions can be related to the bond energy. In organic mass spectrometry, simple bond cleavages of odd electron ions can be either homolytic or heterolytic, depending on whether the fragmentation is driven by the radical site or the charge site. Simple bond cleavages of even electron ions tend to be heterolytic, producing even electron product ions and neutrals.

  4. 31 CFR 315.32 - Series A, B, C, D, F, G, J, and K bonds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false Series A, B, C, D, F, G, J, and K.... SAVINGS BONDS, SERIES A, B, C, D, E, F, G, H, J, AND K, AND U.S. SAVINGS NOTES Interest § 315.32 Series A, B, C, D, F, G, J, and K bonds. All bonds of these series have matured and no longer earn interest....

  5. 31 CFR 315.32 - Series A, B, C, D, F, G, J, and K bonds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Series A, B, C, D, F, G, J, and K.... SAVINGS BONDS, SERIES A, B, C, D, E, F, G, H, J, AND K, AND U.S. SAVINGS NOTES Interest § 315.32 Series A, B, C, D, F, G, J, and K bonds. All bonds of these series have matured and no longer earn interest....

  6. 31 CFR 315.32 - Series A, B, C, D, F, G, J, and K bonds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false Series A, B, C, D, F, G, J, and K.... SAVINGS BONDS, SERIES A, B, C, D, E, F, G, H, J, AND K, AND U.S. SAVINGS NOTES Interest § 315.32 Series A, B, C, D, F, G, J, and K bonds. All bonds of these series have matured and no longer earn interest....

  7. 31 CFR 315.32 - Series A, B, C, D, F, G, J, and K bonds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false Series A, B, C, D, F, G, J, and K.... SAVINGS BONDS, SERIES A, B, C, D, E, F, G, H, J, AND K, AND U.S. SAVINGS NOTES Interest § 315.32 Series A, B, C, D, F, G, J, and K bonds. All bonds of these series have matured and no longer earn interest....

  8. 31 CFR 315.32 - Series A, B, C, D, F, G, J, and K bonds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false Series A, B, C, D, F, G, J, and K.... SAVINGS BONDS, SERIES A, B, C, D, E, F, G, H, J, AND K, AND U.S. SAVINGS NOTES Interest § 315.32 Series A, B, C, D, F, G, J, and K bonds. All bonds of these series have matured and no longer earn interest....

  9. Intramolecular Aminocyanation of Alkenes via N–CN Bond Cleavage**

    PubMed Central

    Pan, Zhongda; Pound, Sarah M.; Rondla, Naveen R.; Douglas, Christopher J.

    2014-01-01

    A metal-free, Lewis acid-promoted intramolecular aminocyanation of alkenes was developed. B(C6F5)3 activates N-sulfonyl cyanamides, leading an formal cleavage of the N-CN bonds in conjunction with vicinal addition of sulfonamide and nitrile groups across an alkene. This method enables atom-economical access to indolines and tetrahydroquinolines in excellent yields, and provides a complementary strategy for regioselective alkene difunctionalizations with sulfonamide and nitrile groups. Labeling experiments with 13C suggest a fully intramolecular cyclization pattern due to lack of label scrambling in double crossover experiments. Catalysis with Lewis acid is realized and the reaction can be conducted under air. PMID:24719371

  10. Biotic and abiotic carbon to sulfur bond cleavage

    SciTech Connect

    Frost, J.W.

    1991-01-01

    Mechanisms for cleavage of RCH{sub 2}-S bonds catalyzed by Escherichia coli can best be categorized by whether an alcohol RCH{sub 2}OH or an aldehyde RCHO are the products of the degradation. A study of the chemical processes involved has been used to establish the best formulation of carbon to sulfur bond cleavage. 2 figs.

  11. Microbial cleavage of organic C-S bonds

    DOEpatents

    Kilbane, II, John J.

    1994-01-01

    A microbial process for selective cleavage of organic C--S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials, Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C--S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  12. Microbial cleavage of organic C-S bonds

    DOEpatents

    Kilbane, J.J. II.

    1994-10-25

    A microbial process is described for selective cleavage of organic C-S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials. Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C-S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  13. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    PubMed

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-01

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  14. Disulfide bond cleavage: a redox reaction without electron transfer.

    PubMed

    Hofbauer, Florian; Frank, Irmgard

    2010-05-01

    By using Car-Parrinello molecular dynamics (CPMD) simulations we have simulated a mechanically induced redox reaction. Previous single-molecule atomic force microscopy (AFM) experiments demonstrated that the reduction of disulfide bonds in proteins with the weak reducing agent dithiothreitol depends on a mechanical destabilization of the breaking bond. With reactive molecular dynamics simulations the single steps of the reaction mechanism can be elucidated and the motion of the electrons can be monitored. The simulations show that the redox reaction consists of the heterolytic cleavage of the S--S bond followed by a sequence of proton transfers. PMID:20349464

  15. Site-selective chemical cleavage of peptide bonds.

    PubMed

    Elashal, Hader E; Raj, Monika

    2016-05-01

    Site-selective cleavage of extremely unreactive peptide bonds is a very important chemical modification that provides invaluable information regarding protein sequence, and it acts as a modulator of protein structure and function for therapeutic applications. For controlled and selective cleavage, a daunting task, chemical reagents must selectively recognize or bind to one or more amino acid residues in the peptide chain and selectively cleave a peptide bond. Building on this principle, we have developed an approach that utilizes a chemical reagent to selectively modify the serine residue in a peptide chain and leads to the cleavage of a peptide backbone at the N-terminus of the serine residue. After cleavage, modified residues can be converted back to the original fragments. This method exhibits broad substrate scope and selectively cleaves various bioactive peptides with post-translational modifications (e.g. N-acetylation and -methylation) and mutations (d- and β-amino acids), which are a known cause of age related diseases.

  16. Stille coupling via C–N bond cleavage

    PubMed Central

    Wang, Dong-Yu; Kawahata, Masatoshi; Yang, Ze-Kun; Miyamoto, Kazunori; Komagawa, Shinsuke; Yamaguchi, Kentaro; Wang, Chao; Uchiyama, Masanobu

    2016-01-01

    Cross-coupling is a fundamental reaction in the synthesis of functional molecules, and has been widely applied, for example, to phenols, anilines, alcohols, amines and their derivatives. Here we report the Ni-catalysed Stille cross-coupling reaction of quaternary ammonium salts via C–N bond cleavage. Aryl/alkyl-trimethylammonium salts [Ar/R–NMe3]+ react smoothly with arylstannanes in 1:1 molar ratio in the presence of a catalytic amount of commercially available Ni(cod)2 and imidazole ligand together with 3.0 equivalents of CsF, affording the corresponding biaryl with broad functional group compatibility. The reaction pathway, including C–N bond cleavage step, is proposed based on the experimental and computational findings, as well as isolation and single-crystal X-ray diffraction analysis of Ni-containing intermediates. This reaction should be widely applicable for transformation of amines/quaternary ammonium salts into multi-aromatics. PMID:27686744

  17. Stille coupling via C-N bond cleavage

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Yu; Kawahata, Masatoshi; Yang, Ze-Kun; Miyamoto, Kazunori; Komagawa, Shinsuke; Yamaguchi, Kentaro; Wang, Chao; Uchiyama, Masanobu

    2016-09-01

    Cross-coupling is a fundamental reaction in the synthesis of functional molecules, and has been widely applied, for example, to phenols, anilines, alcohols, amines and their derivatives. Here we report the Ni-catalysed Stille cross-coupling reaction of quaternary ammonium salts via C-N bond cleavage. Aryl/alkyl-trimethylammonium salts [Ar/R-NMe3]+ react smoothly with arylstannanes in 1:1 molar ratio in the presence of a catalytic amount of commercially available Ni(cod)2 and imidazole ligand together with 3.0 equivalents of CsF, affording the corresponding biaryl with broad functional group compatibility. The reaction pathway, including C-N bond cleavage step, is proposed based on the experimental and computational findings, as well as isolation and single-crystal X-ray diffraction analysis of Ni-containing intermediates. This reaction should be widely applicable for transformation of amines/quaternary ammonium salts into multi-aromatics.

  18. Development and application of bond cleavage reactions in bioorthogonal chemistry.

    PubMed

    Li, Jie; Chen, Peng R

    2016-03-01

    Bioorthogonal chemical reactions are a thriving area of chemical research in recent years as an unprecedented technique to dissect native biological processes through chemistry-enabled strategies. However, current concepts of bioorthogonal chemistry have largely centered on 'bond formation' reactions between two mutually reactive bioorthogonal handles. Recently, in a reverse strategy, a collection of 'bond cleavage' reactions has emerged with excellent biocompatibility. These reactions have expanded our bioorthogonal chemistry repertoire, enabling an array of exciting new biological applications that range from the chemically controlled spatial and temporal activation of intracellular proteins and small-molecule drugs to the direct manipulation of intact cells under physiological conditions. Here we highlight the development and applications of these bioorthogonal cleavage reactions. Furthermore, we lay out challenges and propose future directions along this appealing avenue of research.

  19. Biotic and abiotic carbon to sulfur bond cleavage

    SciTech Connect

    Frost, J.W.

    1991-01-01

    Cleavage of aliphatic organosulfonate carbon to sulfur (C-S) bonds, a critical link in the global biogeochemical sulfur cycle, has been identified in Escherichia coli K-12. Enormous quantities of inorganic sulfate are continuously converted (Scheme I) into methanesulfonic acid 1 and acylated 3-(6-sulfo-{alpha}-D-quinovopyranosyl)-L-glycerol 2. Biocatalytic desulfurization (Scheme I) of 1 and 2, which share the structural feature of an aliphatic carbon bonded to a sulfonic acid sulfur, completes the cycle, Discovery of this desulfurization in E. coli provides an invaluable paradigm for study of a biotic process which, via the biogeochemical cycle, significantly influences the atmospheric concentration of sulfur-containing molecules.

  20. Cleavage of an amide bond by a ribozyme

    NASA Technical Reports Server (NTRS)

    Dai, X.; De Mesmaeker, A.; Joyce, G. F.; Miller, S. L. (Principal Investigator)

    1995-01-01

    A variant form of a group I ribozyme, optimized by in vitro evolution for its ability to catalyze magnesium-dependent phosphoester transfer reactions involving DNA substrates, also catalyzes the cleavage of an unactivated alkyl amide when that linkage is presented in the context of an oligodeoxynucleotide analog. Substrates containing an amide bond that joins either two DNA oligos, or a DNA oligo and a short peptide, are cleaved in a magnesium-dependent fashion to generate the expected products. The first-order rate constant, kcat, is 0.1 x 10(-5) min-1 to 1 x 10(-5) min-1 for the DNA-flanked substrates, which corresponds to a rate acceleration of more than 10(3) as compared with the uncatalyzed reaction.

  1. C-S bond cleavage by a polyketide synthase domain.

    PubMed

    Ma, Ming; Lohman, Jeremy R; Liu, Tao; Shen, Ben

    2015-08-18

    Leinamycin (LNM) is a sulfur-containing antitumor antibiotic featuring an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. The 1,3-dioxo-1,2-dithiolane moiety is essential for LNM's antitumor activity, by virtue of its ability to generate an episulfonium ion intermediate capable of alkylating DNA. We have previously cloned and sequenced the lnm gene cluster from Streptomyces atroolivaceus S-140. In vivo and in vitro characterizations of the LNM biosynthetic machinery have since established that: (i) the 18-membered macrolactam backbone is synthesized by LnmP, LnmQ, LnmJ, LnmI, and LnmG, (ii) the alkyl branch at C-3 of LNM is installed by LnmK, LnmL, LnmM, and LnmF, and (iii) leinamycin E1 (LNM E1), bearing a thiol moiety at C-3, is the nascent product of the LNM hybrid nonribosomal peptide synthetase (NRPS)-acyltransferase (AT)-less type I polyketide synthase (PKS). Sulfur incorporation at C-3 of LNM E1, however, has not been addressed. Here we report that: (i) the bioinformatics analysis reveals a pyridoxal phosphate (PLP)-dependent domain, we termed cysteine lyase (SH) domain (LnmJ-SH), within PKS module-8 of LnmJ; (ii) the LnmJ-SH domain catalyzes C-S bond cleavage by using l-cysteine and l-cysteine S-modified analogs as substrates through a PLP-dependent β-elimination reaction, establishing l-cysteine as the origin of sulfur at C-3 of LNM; and (iii) the LnmJ-SH domain, sharing no sequence homology with any other enzymes catalyzing C-S bond cleavage, represents a new family of PKS domains that expands the chemistry and enzymology of PKSs and might be exploited to incorporate sulfur into polyketide natural products by PKS engineering.

  2. C-S bond cleavage by a polyketide synthase domain

    PubMed Central

    Ma, Ming; Lohman, Jeremy R.; Liu, Tao; Shen, Ben

    2015-01-01

    Leinamycin (LNM) is a sulfur-containing antitumor antibiotic featuring an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. The 1,3-dioxo-1,2-dithiolane moiety is essential for LNM’s antitumor activity, by virtue of its ability to generate an episulfonium ion intermediate capable of alkylating DNA. We have previously cloned and sequenced the lnm gene cluster from Streptomyces atroolivaceus S-140. In vivo and in vitro characterizations of the LNM biosynthetic machinery have since established that: (i) the 18-membered macrolactam backbone is synthesized by LnmP, LnmQ, LnmJ, LnmI, and LnmG, (ii) the alkyl branch at C-3 of LNM is installed by LnmK, LnmL, LnmM, and LnmF, and (iii) leinamycin E1 (LNM E1), bearing a thiol moiety at C-3, is the nascent product of the LNM hybrid nonribosomal peptide synthetase (NRPS)-acyltransferase (AT)-less type I polyketide synthase (PKS). Sulfur incorporation at C-3 of LNM E1, however, has not been addressed. Here we report that: (i) the bioinformatics analysis reveals a pyridoxal phosphate (PLP)-dependent domain, we termed cysteine lyase (SH) domain (LnmJ-SH), within PKS module-8 of LnmJ; (ii) the LnmJ-SH domain catalyzes C-S bond cleavage by using l-cysteine and l-cysteine S-modified analogs as substrates through a PLP-dependent β-elimination reaction, establishing l-cysteine as the origin of sulfur at C-3 of LNM; and (iii) the LnmJ-SH domain, sharing no sequence homology with any other enzymes catalyzing C-S bond cleavage, represents a new family of PKS domains that expands the chemistry and enzymology of PKSs and might be exploited to incorporate sulfur into polyketide natural products by PKS engineering. PMID:26240335

  3. Facile P-C/C-H Bond-Cleavage Reactivity of Nickel Bis(diphosphine) Complexes.

    PubMed

    Zhang, Shaoguang; Li, Haixia; Appel, Aaron M; Hall, Michael B; Bullock, R Morris

    2016-07-01

    Unusual cleavage of P-C and C-H bonds of the P2 N2 ligand, in heteroleptic [Ni(P2 N2 )(diphosphine)](2+) complexes under mild conditions, results in the formation of an iminium formyl nickelate featuring a C,P,P-tridentate coordination mode. The structures of both the heteroleptic [Ni(P2 N2 )(diphosphine)](2+) complexes and the resulting iminium formyl nickelate have been characterized by NMR spectroscopy and single-crystal X-ray diffraction analysis. Density functional theory (DFT) calculations were employed to investigate the mechanism of the P-C/C-H bond cleavage, which involves C-H bond cleavage, hydride rotation, Ni-C/P-H bond formation, and P-C bond cleavage. PMID:27189413

  4. Ab initio dynamics trajectory study of the heterolytic cleavage of H2 by a Lewis acid [B(C6F5)3] and a Lewis base [P(tBu)3

    NASA Astrophysics Data System (ADS)

    Pu, Maoping; Privalov, Timofei

    2013-04-01

    Activation of H2 by a "frustrated Lewis pair" (FLP) composed of B(C6F5)3 and P(tBu)3 species has been explored with high level direct ab initio molecular dynamics (AIMD) simulations at finite temperature (T = 300 K) in gas phase. The initial geometrical conditions for the AIMD trajectory calculations, i.e., the near attack conformations of FLP + H2, were devised using the host-guest model in which suitable FLP conformations were obtained from the dynamics of the B(C6F5)3/P(tBu)3 pair in gas phase. AIMD trajectory calculations yielded microscopic insight into effects which originate from nuclear motion in the reacting complex, e.g., the alternating compression/elongation of the boron-phosphorous distance and the change of the pyramidality of boron in B(C6F5)3. The ensemble averaged trajectory analysis has been compared with the minimum energy path (MEP) description of the reaction. Similar to MEP, AIMD shows that an attack of the acid/base pair on the H-H bond gives rise to the polarization of the H2 molecule and as a consequence generates a large dipole moment of the reacting complex. The MEP and AIMD portrayals of the reaction are fundamentally different in terms of the magnitude of the motion of nuclei in B(C6F5)3 and P(tBu)3 during the H2 cleavage. In the AIMD trajectory simulations, geometries of B(C6F5)3 and P(tBu)3 appear as nearly "frozen" on the short time scale of the H2 cleavage. This is contrary to the MEP picture. Several of the concepts which arise from this work, e.g., separation of time scales of nuclear motion and the time-dependence of the donor-acceptor interactions in the reacting complex, are important for the understanding of chemical reactivity and catalysis.

  5. Iridium-catalyzed reductive carbon-carbon bond cleavage reaction on a curved pyridylcorannulene skeleton.

    PubMed

    Tashiro, Shohei; Yamada, Mihoko; Shionoya, Mitsuhiko

    2015-04-27

    The cleavage of CC bonds in π-conjugated systems is an important method for controlling their shape and coplanarity. An efficient way for the cleavage of an aromatic CC bond in a typical buckybowl corannulene skeleton is reported. The reaction of 2-pyridylcorannulene with a catalytic amount of IrCl3 ⋅n H2 O in ethylene glycol at 250 °C resulted in a structural transformation from the curved corannulene skeleton to a strain-free flat benzo[ghi]fluoranthene skeleton through a site-selective CC cleavage reaction. This cleavage reaction was found to be driven by both the coordination of the 2-pyridyl substituent to iridium and the relief of strain in the curved corannulene skeleton. This finding should facilitate the design of carbon nanomaterials based on CC bond cleavage reactions.

  6. Mass spectrometric and theoretical studies on dissociation of the Ssbnd S bond in the allicin: Homolytic cleavage vs heterolytic cleavage

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang

    2012-08-01

    On the basis of the tandem mass spectrometry (ESI-MS/MS) technique and DFT calculations, an experimental and theoretical investigation has been conducted into the gas-phase dissociation of the S1sbnd S1' bond in the allicin as well as that of the Ssbnd C (S1sbnd C2, S1'sbnd C2') bond. Meanwhile, the influence of protonation, alkali metal ion and electron transfer on the dissociation of the S1sbnd S1' bond has been taken into account. ESI-MS/MS experiments and DFT calculations show that in the neutral allicin, [allicin + Li]+ and [allicin + Na]+, the S1sbnd S1' bond favors homolytic cleavage, while in the allicin radical cation and protonated allicin, the S1sbnd S1' bond prefers heterolytic cleavage. In addition, alkali metal ions can strengthen the S1sbnd S1' bond in the allicin, while protonation or the loss of an electron will weaken the S1sbnd S1' bond.

  7. B-H, C-H, and B-C bond activation: the role of two adjacent agostic interactions.

    PubMed

    Cassen, Audrey; Gloaguen, Yann; Vendier, Laure; Duhayon, Carine; Poblador-Bahamonde, Amalia; Raynaud, Christophe; Clot, Eric; Alcaraz, Gilles; Sabo-Etienne, Sylviane

    2014-07-14

    Tuning the nature of the linker in a L~BHR phosphinoborane compound led to the isolation of a ruthenium complex stabilized by two adjacent, δ-C-H and ε-B(sp2)-H, agostic interactions. Such a unique coordination mode stabilizes a 14-electron "RuH2P2" fragment through connected σ-bonds of different polarity, and affords selective B-H, C-H, and B-C bond activation as illustrated by reactivity studies with H2 and boranes. PMID:24990456

  8. Conversion of levulinate into succinate through catalytic oxidative carbon-carbon bond cleavage with dioxygen.

    PubMed

    Liu, Junxia; Du, Zhongtian; Lu, Tianliang; Xu, Jie

    2013-12-01

    Grand Cleft Oxo: Levulinate, available from biomass, is oxidized into succinate through manganese(III)-catalyzed selective cleavage of CC bonds with molecular oxygen. In addition to levulinate, a wide range of aliphatic methyl ketones also undergo oxidative CC bond cleavage at the carbonyl group. This procedure offers a route to valuable dicarboxylic acids from biomass resources by nonfermentive approaches. PMID:23922234

  9. Protocols for the selective cleavage of carbon-sulfur bonds in coal

    SciTech Connect

    Bausch, M.

    1991-01-01

    Removal of the organic sulfur in coal constitutes one of the major challenges facing fossil fuel scientists today. A cost--effective of desulfurizing Illinois coal is non-existent at the present time. Research in our group aims to develop a simple protocol for sulfur removal by gaining understanding of how various additives can enhance the rates of C-S bond cleavage in Illinois coal and coal model compounds, relative to fragmentation of the coal macromolecule via C-C, C-O, and C-N bond cleavage. During this funding period, we plan to carry out examinations of: (a) the effects of various reaction conditions on radical-initiated and Lewis acid-catalyzed C-S bond cleavages; (b) the effects of caustic impregnation and subsequent alcoholic reflux on C-S bond cleavage strategies; (c) the reactions of coal model compounds with electron-deficient substrates; (d) examinations of photooxidative C-S bond cleavage reactions; (e) the effects of moderate (300--400{degrees}C) temperatures and pressures as well as ultrasonic radiation on (a) - (c). Also planned are differential scanning calorimetric (DSC) examinations of selected C-S bond cleavage protocols, including those on Illinois coals that possess varying amounts of organic and inorganic sulfur.

  10. Catalytic cleavage of ether C-O bonds by pincer iridium complexes.

    PubMed

    Haibach, Michael C; Lease, Nicholas; Goldman, Alan S

    2014-09-15

    The development of efficient catalytic methods to cleave the relatively unreactive C-O bonds of ethers remains an important challenge in catalysis. Building on our group's recent work, we report the dehydroaryloxylation of aryl alkyl ethers using pincer iridium catalysts. This method represents a rare fully atom-economical method for ether C-O bond cleavage. PMID:25060043

  11. Carbon-Carbon Bond Cleavage in Activation of the Prodrug Nabumetone

    PubMed Central

    Varfaj, Fatbardha; Zulkifli, Siti N. A.; Park, Hyoung-Goo; Challinor, Victoria L.; De Voss, James J.

    2014-01-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs. PMID:24584631

  12. Aerobic dehydrogenative α-diarylation of benzyl ketones with aromatics through carbon-carbon bond cleavage.

    PubMed

    More, Nagnath Yadav; Jeganmohan, Masilamani

    2014-02-01

    Substituted benzyl ketones reacted with aromatics in the presence of K2S2O8 in CF3COOH at room temperature, yielding α-diaryl benzyl ketones through a carbon-carbon bond cleavage. In the reaction, two new carbon-carbon bonds were formed and one carbon-carbon bond was cleaved. It is very interesting that two different nucleophiles such as benzyl ketones and aromatics were coupled together without metal, which is unusual in organic synthesis.

  13. Baeyer-Villiger C-C bond cleavage reaction in gilvocarcin and jadomycin biosynthesis

    PubMed Central

    Tibrewal, Nidhi; Pahari, Pallab; Wang, Guojun; Kharel, Madan K.; Morris, Caleb; Downey, Theresa; Hou, Yanpeng; Bugni, Tim S.; Rohr, Jürgen

    2012-01-01

    GilOII has been unambiguously identified as the key enzyme performing the crucial C-C bond cleavage reaction responsible for the unique rearrangement of a benz[a]anthracene skeleton to the benzo[d]naphthopyranone backbone typical for the gilvocarcin type natural anticancer antibiotics. Further investigations of this enzyme led to the isolation of a hydroxy-oxepinone intermediate which allowed important conclusions regarding the cleavage mechanism. PMID:23102024

  14. Photoinduced Cleavage of N–N Bonds of Aromatic Hydrazines and Hydrazides by Visible Light

    PubMed Central

    Zhu, Mingzhao

    2012-01-01

    A photocatalytic system involving [Ru(bpyrz)3](PF6)2·2H2O, visible light, and air has been developed for cleavage of the N–N bonds of hydrazines and hydrazides. This catalytic system is generally effective for N,N-disubstituted hydrazine and hydrazide derivatives, including arylhydrazides, N-alkyl-N-arylhydrazines, and N,N-diarylhydrazines. The utility of this cleavage reaction has been demonstrated by synthesizing a variety of secondary aromatic amines. PMID:23543799

  15. Cuprous Oxide Catalyzed Oxidative C-C Bond Cleavage for C-N Bond Formation: Synthesis of Cyclic Imides from Ketones and Amines.

    PubMed

    Wang, Min; Lu, Jianmin; Ma, Jiping; Zhang, Zhe; Wang, Feng

    2015-11-16

    Selective oxidative cleavage of a C-C bond offers a straightforward method to functionalize organic skeletons. Reported herein is the oxidative C-C bond cleavage of ketone for C-N bond formation over a cuprous oxide catalyst with molecular oxygen as the oxidant. A wide range of ketones and amines are converted into cyclic imides with moderate to excellent yields. In-depth studies show that both α-C-H and β-C-H bonds adjacent to the carbonyl groups are indispensable for the C-C bond cleavage. DFT calculations indicate the reaction is initiated with the oxidation of the α-C-H bond. Amines lower the activation energy of the C-C bond cleavage, and thus promote the reaction. New insight into the C-C bond cleavage mechanism is presented. PMID:26494312

  16. Bond cleavage, fragment modification and reassembly in enantioselective three-component reactions

    PubMed Central

    Zhang, Dan; Zhou, Jun; Xia, Fei; Kang, Zhenghui; Hu, Wenhao

    2015-01-01

    Chemical bond cleavage and reconstruction are common processes in traditional rearrangement reactions. In contrast, the process that involves bond cleavage, fragment modification and then reconstruction of the modified fragment provides an efficient way to build structurally diversified molecules. Here, we report a palladium(II)/chiral phosphoric acid catalysed three-component reaction of aryldiazoacetates, enamines and imines to afford α-amino-δ-oxo pentanoic acid derivatives in good yields with excellent diastereoselectivities and high enantioselectivities. The stereoselective reaction went through a unique process that involves cleavage of a C–N bond, modification of the resulting amino fragment and selective reassembly of the modified fragment. This innovative multi-component process represents a highly efficient way to build structurally diversified polyfunctional molecules in an atom and step economic fashion. A keto-iminium is proposed as a key intermediate and a chiral palladium/phosphate complex is proposed as an active catalyst. PMID:25586817

  17. A Germylene/Borane Lewis Pair and the Remarkable C=O Bond Cleavage Reaction toward Isocyanate and Ketone Molecules.

    PubMed

    Li, Jiancheng; Li, Bin; Liu, Rui; Jiang, Liuyin; Zhu, Hongping; Roesky, Herbert W; Dutta, Sayan; Koley, Debasis; Liu, Weiping; Ye, Qingsong

    2016-10-01

    A germylene/borane Lewis pair (2) was prepared from a 1,1-carboboration of amidinato phenylethynylgermylene (1) by B(C6 F5 )3 . Compound 2 reacted with iPrNCO and (4-MeOC6 H4 )C(O)Me, respectively, with cleavage of the C=O double bond. In the first instance, O and iPrNC insert separately into the Ge-B bond to yield a GeBC2 O-heterocycle (3) and a GeBC3 -heterocycle (4). In the second case (4-MeOC6 H4 )(Me)C inserts into the Ge-N bond of 2 while O is incorporated in the Ge-B bond to form a Ge-centered spiroheterocycle (5). The reaction of 2 with tBuNC to give 6, which has almost the same structure as 4, proved the formation of the isonitrile during transformation from 2 and iPrNCO to 3 and 4. The kinetic study of the reaction of 2 and iPrNCO gave evidence of proceeding through a GeBC3 O-heterocycle intermediate. In addition, a DFT study was performed to elucidate the reaction mechanism. PMID:27538519

  18. Copper-catalyzed aerobic radical C–C bond cleavage of N–H ketimines

    PubMed Central

    Tnay, Ya Lin; Ang, Gim Yean

    2015-01-01

    Summary We report herein studies on copper-catalyzed aerobic radical C–C bond cleavage of N–H ketimines. Treatment of N–H ketimines having an α-sp3 hybridized carbon under Cu-catalyzed aerobic reaction conditions resulted in a radical fragmentation with C–C bond cleavage to give the corresponding carbonitrile and carbon radical intermediate. This radical process has been applied for the construction of oxaspirocyclohexadienones as well as in the electrophilic cyanation of Grignard reagents with pivalonitrile as a CN source. PMID:26664613

  19. Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds

    SciTech Connect

    John J. Kilbane II

    2005-10-01

    The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been the focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.

  20. Electrophilic iodine(I) compounds induced semipinacol rearrangement via C-X bond cleavage.

    PubMed

    Tsuji, Nobuya; Kobayashi, Yusuke; Takemoto, Yoshiji

    2014-11-18

    Neutral electrophilic iodine(I) species proved to be efficient reagents for C-X bond cleavage of various cyclic and acyclic α-silyloxyhalides, and the induced desilylative semipinacol rearrangement provided the corresponding ketones in good yields. The reaction is operationally simple, and proceeds under mild conditions with good functional group compatibility. Mechanistic investigations, including computational studies, were also performed.

  1. Thermodynamic Strategies for C-O Bond Formation and Cleavage via Tandem Catalysis.

    PubMed

    Lohr, Tracy L; Li, Zhi; Marks, Tobin J

    2016-05-17

    To reduce global reliance on fossil fuels, new renewable sources of energy that can be used with the current infrastructure are required. Biomass represents a major source of renewable carbon based fuel; however, the high oxygen content (∼40%) limits its use as a conventional fuel. To utilize biomass as an energy source, not only with current infrastructure, but for maximum energy return, the oxygen content must be reduced. One method to achieve this is to develop selective catalytic methods to cleave C-O bonds commonly found in biomass (aliphatic and aromatic ethers and esters) for the eventual removal of oxygen in the form of volatile H2O or carboxylic acids. Once selective methods of C-O cleavage are understood and perfected, application to processing real biomass feedstocks such as lignin can be undertaken. This Laboratory previously reported that recyclable "green" lanthanide triflates are excellent catalysts for C-O bond-forming hydroalkoxylation reactions. Based on the virtues of microscopic reversibility, the same lanthanide triflate catalyst should catalyze the reverse C-O cleavage process, retrohydroalkoxylation, to yield an alcohol and an alkene. However, ether C-O bond-forming (retrohydroalkoxylation) to form an alcohol and alkene is endothermic. Guided by quantum chemical analysis, our strategy is to couple endothermic, in tandem, ether C-O bond cleavage with exothermic alkene hydrogenation, thereby leveraging the combined catalytic cycles thermodynamically to form an overall energetically favorable C-O cleavage reaction. This Account reviews recent developments on thermodynamically leveraged tandem catalysis for ether and more recently, ester C-O bond cleavage undertaken at Northwestern University. First, the fundamentals of lanthanide-catalyzed hydroelementation are reviewed, with particular focus on ether C-O bond formation (hydroalkoxylation). Next, the reverse C-O cleavage/retrohydroalkoxylation processes enabled by tandem catalysis are

  2. Thermodynamic Strategies for C-O Bond Formation and Cleavage via Tandem Catalysis.

    PubMed

    Lohr, Tracy L; Li, Zhi; Marks, Tobin J

    2016-05-17

    To reduce global reliance on fossil fuels, new renewable sources of energy that can be used with the current infrastructure are required. Biomass represents a major source of renewable carbon based fuel; however, the high oxygen content (∼40%) limits its use as a conventional fuel. To utilize biomass as an energy source, not only with current infrastructure, but for maximum energy return, the oxygen content must be reduced. One method to achieve this is to develop selective catalytic methods to cleave C-O bonds commonly found in biomass (aliphatic and aromatic ethers and esters) for the eventual removal of oxygen in the form of volatile H2O or carboxylic acids. Once selective methods of C-O cleavage are understood and perfected, application to processing real biomass feedstocks such as lignin can be undertaken. This Laboratory previously reported that recyclable "green" lanthanide triflates are excellent catalysts for C-O bond-forming hydroalkoxylation reactions. Based on the virtues of microscopic reversibility, the same lanthanide triflate catalyst should catalyze the reverse C-O cleavage process, retrohydroalkoxylation, to yield an alcohol and an alkene. However, ether C-O bond-forming (retrohydroalkoxylation) to form an alcohol and alkene is endothermic. Guided by quantum chemical analysis, our strategy is to couple endothermic, in tandem, ether C-O bond cleavage with exothermic alkene hydrogenation, thereby leveraging the combined catalytic cycles thermodynamically to form an overall energetically favorable C-O cleavage reaction. This Account reviews recent developments on thermodynamically leveraged tandem catalysis for ether and more recently, ester C-O bond cleavage undertaken at Northwestern University. First, the fundamentals of lanthanide-catalyzed hydroelementation are reviewed, with particular focus on ether C-O bond formation (hydroalkoxylation). Next, the reverse C-O cleavage/retrohydroalkoxylation processes enabled by tandem catalysis are

  3. Biotic and abiotic carbon to sulfur bond cleavage. Final report

    SciTech Connect

    Frost, J.W.

    1994-05-01

    The microbial desulfurization of organosulfur compounds occurs by unprecedented and largely unexplored biochemical processes. A study of such biotic desulfurizations can be expected to give rise to new and useful chemistry and enzymology. The potential value of understanding and harnessing these processes is seen in relation to the need for methods for the removal of organically bound sulfur from coal and the degradation of organic sulfur-containing pollutants. This research effort has been directed towards an examination of desulfurization ability in well characterized microorganisms, the isolation of bacteria with desulfurization ability from natural sources, the characterization and mechanistic evaluation of the observed biocatalytic processes, the development of biomimetic synthetic organic chemistry based on biotic desulfurization mechanisms and the design and preparation of improved coal model compounds for use in microbial selection processes. A systematic approach to studying biodesulfurizations was undertaken in which organosulfur compounds have been broken down into classes based on the oxidation state of the sulfur atom and the structure of the rest of the organic material. Microbes have been evaluated in terms of ability to degrade organosulfur compounds with sulfur in its sulfonic acid oxidation state. These compounds are likely intermediates in coal desulfurization and are present in the environment as persistent pollutants in the form of detergents. It is known that oxygen bonded to sulfur lowers the carbon-sulfur bond energy, providing a thermodynamic basis for starting with this class of compounds.

  4. Carbon-carbon bond cleavage and rearrangement of benzene by a trinuclear titanium hydride

    NASA Astrophysics Data System (ADS)

    Hu, Shaowei; Shima, Takanori; Hou, Zhaomin

    2014-08-01

    The cleavage of carbon-carbon (C-C) bonds by transition metals is of great interest, especially as this transformation can be used to produce fuels and other industrially important chemicals from natural resources such as petroleum and biomass. Carbon-carbon bonds are quite stable and are consequently unreactive under many reaction conditions. In the industrial naphtha hydrocracking process, the aromatic carbon skeleton of benzene can be transformed to methylcyclopentane and acyclic saturated hydrocarbons through C-C bond cleavage and rearrangement on the surfaces of solid catalysts. However, these chemical transformations usually require high temperatures and are fairly non-selective. Microorganisms can degrade aromatic compounds under ambient conditions, but the mechanistic details are not known and are difficult to mimic. Several transition metal complexes have been reported to cleave C-C bonds in a selective fashion in special circumstances, such as relief of ring strain, formation of an aromatic system, chelation-assisted cyclometallation and β-carbon elimination. However, the cleavage of benzene by a transition metal complex has not been reported. Here we report the C-C bond cleavage and rearrangement of benzene by a trinuclear titanium polyhydride complex. The benzene ring is transformed sequentially to a methylcyclopentenyl and a 2-methylpentenyl species through the cleavage of the aromatic carbon skeleton at the multi-titanium sites. Our results suggest that multinuclear titanium hydrides could serve as a unique platform for the activation of aromatic molecules, and may facilitate the design of new catalysts for the transformation of inactive aromatics.

  5. Achieving C-N bond cleavage in dinuclear metal cyanide complexes.

    PubMed

    Cavigliasso, Germán; Christian, Gemma J; Stranger, Robert; Yates, Brian F

    2011-07-28

    Cleavage of cyanide is more difficult to achieve compared to dinitrogen and carbon monoxide, even though these species contain triple bonds of greater strength. In this work, we have used computational methods to investigate thermodynamic and mechanistic aspects of the C-N bond cleavage process in [L(3)M-CN-M'L(3)] systems consisting of a central cyanide unit bound in an end-on fashion to two terminal metal tris-amide complexes. In these systems, [M] is a d(3) transition metal from the 3d, 4d, 5d, or 6d series and groups 4 through 7, and [L] is either [NH(2)], [NMe(2)], [N(i)PrPh], or [N(t)BuAr]. A comparison of various models for the experimentally relevant [L(3)Mo-CN-MoL(3)] system has shown that while the C-N cleavage step appears to be an energetically favourable process, a large barrier exists for the dissociation of [L(3)Mo-CN-MoL(3)]((-)) into [L(3)Mo-C]((-)) and [N-MoL(3)], which possibly explains why C-N bond scission is not observed experimentally. The general structural, bonding, and thermochemical trends across the transition metal series investigated, indicate that the systems exhibiting the greatest degree of C-N activation, and most favourable energetics for C-N cleavage, also possess the most favourable electronic properties, namely, a close match between the relevant π-like orbitals on the metal-based and cyanide fragments. The negative charge on the cyanide fragment leads to significant destabilization of the π* level which needs to be populated through back-donation from the metal centres in order for C-N bond scission to be achieved. Therefore, metal-based systems with high-lying d(π) orbitals are best suited to C-N cleavage. In terms of chemical periodicity, these systems can be identified as the heavier members within a group and the earlier members within a period. As a consequence, Mo complexes are not well suited to cleaving the C-N bond, whereas the Ta analogues are the most favourable systems and should, in principle, be capable of

  6. Reaction Pathways and Energetics of Etheric C–O Bond Cleavage Catalyzed by Lanthanide Triflates

    SciTech Connect

    Assary, Rajeev S.; Atesin, Abdurrahman C.; Li, Zhi; Curtiss, Larry A.; Marks, Tobin J.

    2013-09-06

    Efficient and selective cleavage of etheric C-O bonds is crucial for converting biomass into platform chemicals and liquid transportation fuels. In this contribution, computational methods at the DFT B3LYP level of theory are employed to understand the efficacy of lanthanide triflate catalysts (Ln(OTf)3, Ln = La, Ce, Sm, Gd, Yb, and Lu) in cleaving etheric C-O bonds. In agreement with experiment, the calculations indicate that the reaction pathway for C-O cleavage occurs via a C-H → O-H proton transfer in concert with weakening of the C-O bond of the coordinated ether substrate to ultimately yield a coordinated alkenol. The activation energy for this process falls as the lanthanide ionic radius decreases, reflecting enhanced metal ion electrophilicity. Details of the reaction mechanism for Yb(OTf)3-catalyzed ring opening are explored in depth, and for 1-methyl-d3-butyl phenyl ether, the computed primary kinetic isotope effect of 2.4 is in excellent agreement with experiment (2.7), confirming that etheric ring-opening pathway involves proton transfer from the methyl group alpha to the etheric oxygen atom, which is activated by the electrophilic lanthanide ion. Calculations of the catalytic pathway using eight different ether substrates indicate that the more rapid cleavage of acyclic versus cyclic ethers is largely due to entropic effects, with the former C-O bond scission processes increasing the degrees of freedom/particles as the transition state is approached.

  7. Novel Cβ-Cγ bond cleavages of tryptophan-containing peptide radical cations.

    PubMed

    Song, Tao; Hao, Qiang; Law, Chun-Hin; Siu, Chi-Kit; Chu, Ivan K

    2012-02-01

    In this study, we observed unprecedented cleavages of the C(β)-C(γ) bonds of tryptophan residue side chains in a series of hydrogen-deficient tryptophan-containing peptide radical cations (M(•+)) during low-energy collision-induced dissociation (CID). We used CID experiments and theoretical density functional theory (DFT) calculations to study the mechanism of this bond cleavage, which forms [M - 116](+) ions. The formation of an α-carbon radical intermediate at the tryptophan residue for the subsequent C(β)-C(γ) bond cleavage is analogous to that occurring at leucine residues, producing the same product ions; this hypothesis was supported by the identical product ion spectra of [LGGGH - 43](+) and [WGGGH - 116](+), obtained from the CID of [LGGGH](•+) and [WGGGH](•+), respectively. Elimination of the neutral 116-Da radical requires inevitable dehydrogenation of the indole nitrogen atom, leaving the radical centered formally on the indole nitrogen atom ([Ind](•)-2), in agreement with the CID data for [WGGGH](•+) and [W(1-CH3)GGGH](•+); replacing the tryptophan residue with a 1-methyltryptophan residue results in a change of the base peak from that arising from a neutral radical loss (116 Da) to that arising from a molecule loss (131 Da), both originating from C(β)-C(γ) bond cleavage. Hydrogen atom transfer or proton transfer to the γ-carbon atom of the tryptophan residue weakens the C(β)-C(γ) bond and, therefore, decreases the dissociation energy barrier dramatically. PMID:22135037

  8. Characterization and Modeling of the Collision Induced Dissociation Patterns of Deprotonated Glycosphingolipids: Cleavage of the Glycosidic Bond

    NASA Astrophysics Data System (ADS)

    Rožman, Marko

    2016-01-01

    Glycosphingolipid fragmentation behavior was investigated by combining results from analysis of a series of negative ion tandem mass spectra and molecular modeling. Fragmentation patterns extracted from 75 tandem mass spectra of mainly acidic glycosphingolipid species (gangliosides) suggest prominent cleavage of the glycosidic bonds with retention of the glycosidic oxygen atom by the species formed from the reducing end (B and Y ion formation). Dominant product ions arise from dissociation of sialic acids glycosidic bonds whereas product ions resulting from cleavage of other glycosidic bonds are less abundant. Potential energy surfaces and unimolecular reaction rates of several low-energy fragmentation pathways leading to cleavage of glycosidic bonds were estimated in order to explain observed dissociation patterns. Glycosidic bond cleavage in both neutral (unsubstituted glycosyl group) and acidic glycosphingolipids was the outcome of the charge-directed intramolecular nucleophilic substitution (SN2) mechanism. According to the suggested mechanism, the nucleophile in a form of carboxylate or oxyanion attacks the carbon at position one of the sugar ring, simultaneously breaking the glycosidic bond and yielding an epoxide. For gangliosides, unimolecular reaction rates suggest that dominant product ions related to the cleavage of sialic acid glycosidic bonds are formed via direct dissociation channels. On the other hand, low abundant product ions related to the dissociation of other glycosidic bonds are more likely to be the result of sequential dissociation. Although results from this study mainly contribute to the understanding of glycosphingolipid fragmentation chemistry, some mechanistic findings regarding cleavage of the glycosidic bond may be applicable to other glycoconjugates.

  9. Mercury Detoxification by Bacteria: Simulations of Transcription Activation and Mercury-Carbon Bond Cleavage

    SciTech Connect

    Guo, Hao-Bo; Parks, Jerry M; Johs, Alexander; Smith, Jeremy C

    2011-01-01

    In this chapter, we summarize recent work from our laboratory and provide new perspective on two important aspects of bacterial mercury resistance: the molecular mechanism of transcriptional regulation by MerR, and the enzymatic cleavage of the Hg-C bond in methylmercury by the organomercurial lyase, MerB. Molecular dynamics (MD) simulations of MerR reveal an opening-and-closing dynamics, which may be involved in initiating transcription of mercury resistance genes upon Hg(II) binding. Density functional theory (DFT) calculations on an active-site model of the enzyme reveal how MerB catalyzes the Hg-C bond cleavage using cysteine coordination and acid-base chemistry. These studies provide insight into the detailed mechanisms of microbial gene regulation and defense against mercury toxicity.

  10. Carbon–carbon bond cleavage for Cu-mediated aromatic trifluoromethylations and pentafluoroethylations

    PubMed Central

    Sugiishi, Tsuyuka; Aikawa, Kohsuke

    2015-01-01

    Summary This short review highlights the copper-mediated fluoroalkylation using perfluoroalkylated carboxylic acid derivatives. Carbon–carbon bond cleavage of perfluoroalkylated carboxylic acid derivatives takes place in fluoroalkylation reactions at high temperature (150–200 °C) or under basic conditions to generate fluoroalkyl anion sources for the formation of fluoroalkylcopper species. The fluoroalkylation reactions, which proceed through decarboxylation or tetrahedral intermediates, are useful protocols for the synthesis of fluoroalkylated aromatics. PMID:26734112

  11. Exploring Regioselective Bond Cleavage and Cross-Coupling Reactions using a Low-Valent Nickel Complex.

    PubMed

    Desnoyer, Addison N; Friese, Florian W; Chiu, Weiling; Drover, Marcus W; Patrick, Brian O; Love, Jennifer A

    2016-03-14

    Recently, esters have received much attention as transmetalation partners for cross-coupling reactions. Herein, we report a systematic study of the reactivity of a series of esters and thioesters with [{(dtbpe)Ni}2(μ-η(2):η(2)-C6H6)] (dtbpe=1,2-bis(di-tert-butyl)phosphinoethane), which is a source of (dtbpe)nickel(0). Trifluoromethylthioesters were found to form η(2)-carbonyl complexes. In contrast, acetylthioesters underwent rapid Cacyl-S bond cleavage followed by decarbonylation to generate methylnickel complexes. This decarbonylation could be pushed backwards by the addition of CO, allowing for regeneration of the thioester. Most of the thioester complexes were found to undergo stoichiometric cross-coupling with phenylboronic acid to yield sulfides. While ethyl trifluoroacetate was also found to form an η(2)-carbonyl complex, phenyl esters were found to predominantly undergo Caryl-O bond cleavage to yield arylnickel complexes. These could also undergo transmetalation to yield biaryls. Attempts to render the reactions catalytic were hindered by ligand scrambling to yield nickel bis(acetate) complexes, the formation of which was supported by independent syntheses. Finally, 2-naphthyl acetate was also found to undergo clean Caryl-O bond cleavage, and although stoichiometric cross-coupling with phenylboronic acid proceeded with good yield, catalytic turnover has so far proven elusive.

  12. D-β-aspartyl residue exhibiting uncommon high resistance to spontaneous peptide bond cleavage

    PubMed Central

    Aki, Kenzo; Okamura, Emiko

    2016-01-01

    Although L-amino acids were selected as main constituents of peptides and proteins during chemical evolution, D-aspartyl (Asp) residue is found in a variety of living tissues. In particular, D-β-Asp is thought to be stable than any other Asp isomers, and this could be a reason for gradual accumulation in abnormal proteins and peptides to modify their structures and functions. It is predicted that D-β-Asp shows high resistance to biomolecular reactions. For instance, less reactivity of D-β-Asp is expected to bond cleavage, although such information has not been provided yet. In this work, the spontaneous peptide bond cleavage was compared between Asp isomers, by applying real-time solution-state NMR to eye lens αΑ-crystallin 51–60 fragment, S51LFRTVLD58SG60 and αΒ-crystallin 61–67 analog, F61D62TGLSG67 consisting of L-α- and D-β-Asp 58 and 62, respectively. Kinetic analysis showed how tough the uncommon D-β-Asp residue was against the peptide bond cleavage as compared to natural L-α-Asp. Differences in pKa and conformation between L-α- and D-β-Asp side chains were plausible factors to determine reactivity of Asp isomers. The present study, for the first time, provides a rationale to explain less reactivity of D-β-Asp to allow abnormal accumulation. PMID:26876027

  13. D-β-aspartyl residue exhibiting uncommon high resistance to spontaneous peptide bond cleavage

    NASA Astrophysics Data System (ADS)

    Aki, Kenzo; Okamura, Emiko

    2016-02-01

    Although L-amino acids were selected as main constituents of peptides and proteins during chemical evolution, D-aspartyl (Asp) residue is found in a variety of living tissues. In particular, D-β-Asp is thought to be stable than any other Asp isomers, and this could be a reason for gradual accumulation in abnormal proteins and peptides to modify their structures and functions. It is predicted that D-β-Asp shows high resistance to biomolecular reactions. For instance, less reactivity of D-β-Asp is expected to bond cleavage, although such information has not been provided yet. In this work, the spontaneous peptide bond cleavage was compared between Asp isomers, by applying real-time solution-state NMR to eye lens αΑ-crystallin 51-60 fragment, S51LFRTVLD58SG60 and αΒ-crystallin 61-67 analog, F61D62TGLSG67 consisting of L-α- and D-β-Asp 58 and 62, respectively. Kinetic analysis showed how tough the uncommon D-β-Asp residue was against the peptide bond cleavage as compared to natural L-α-Asp. Differences in pKa and conformation between L-α- and D-β-Asp side chains were plausible factors to determine reactivity of Asp isomers. The present study, for the first time, provides a rationale to explain less reactivity of D-β-Asp to allow abnormal accumulation.

  14. Exploring Regioselective Bond Cleavage and Cross-Coupling Reactions using a Low-Valent Nickel Complex.

    PubMed

    Desnoyer, Addison N; Friese, Florian W; Chiu, Weiling; Drover, Marcus W; Patrick, Brian O; Love, Jennifer A

    2016-03-14

    Recently, esters have received much attention as transmetalation partners for cross-coupling reactions. Herein, we report a systematic study of the reactivity of a series of esters and thioesters with [{(dtbpe)Ni}2(μ-η(2):η(2)-C6H6)] (dtbpe=1,2-bis(di-tert-butyl)phosphinoethane), which is a source of (dtbpe)nickel(0). Trifluoromethylthioesters were found to form η(2)-carbonyl complexes. In contrast, acetylthioesters underwent rapid Cacyl-S bond cleavage followed by decarbonylation to generate methylnickel complexes. This decarbonylation could be pushed backwards by the addition of CO, allowing for regeneration of the thioester. Most of the thioester complexes were found to undergo stoichiometric cross-coupling with phenylboronic acid to yield sulfides. While ethyl trifluoroacetate was also found to form an η(2)-carbonyl complex, phenyl esters were found to predominantly undergo Caryl-O bond cleavage to yield arylnickel complexes. These could also undergo transmetalation to yield biaryls. Attempts to render the reactions catalytic were hindered by ligand scrambling to yield nickel bis(acetate) complexes, the formation of which was supported by independent syntheses. Finally, 2-naphthyl acetate was also found to undergo clean Caryl-O bond cleavage, and although stoichiometric cross-coupling with phenylboronic acid proceeded with good yield, catalytic turnover has so far proven elusive. PMID:26879766

  15. Biotic and abiotic carbon to sulfur bond cleavage. Technical report, July 1, 1991--September 30, 1991

    SciTech Connect

    Frost, J.W.

    1991-12-31

    Cleavage of aliphatic organosulfonate carbon to sulfur (C-S) bonds, a critical link in the global biogeochemical sulfur cycle, has been identified in Escherichia coli K-12. Enormous quantities of inorganic sulfate are continuously converted (Scheme I) into methanesulfonic acid 1 and acylated 3-(6-sulfo-{alpha}-D-quinovopyranosyl)-L-glycerol 2. Biocatalytic desulfurization (Scheme I) of 1 and 2, which share the structural feature of an aliphatic carbon bonded to a sulfonic acid sulfur, completes the cycle, Discovery of this desulfurization in E. coli provides an invaluable paradigm for study of a biotic process which, via the biogeochemical cycle, significantly influences the atmospheric concentration of sulfur-containing molecules.

  16. Selective cleavage of isoaspartyl peptide bonds by hydroxylamine after methyltransferase priming.

    PubMed

    Zhu, Jeff X; Aswad, Dana W

    2007-05-01

    Formation of atypical isoaspartyl (isoAsp) sites in peptides and proteins via the deamidation-linked isomerization of asparaginyl-Xaa bonds or direct isomerization of aspartyl-Xaa bonds is a major contributor to spontaneous protein damage under mild conditions. This nonenzymatic reaction reroutes the Asx-Xaa peptide bond through the beta-carbonyl of asparaginyl or aspartyl residues, thereby adding an extra carbon to the polypeptide backbone. Formation of isoAsp has been implicated in protein inactivation, aggregation, degradation, and autoimmunity. Knowing the location of isoAsp sites in proteins is important for understanding mechanisms of protein damage and for characterizing protein pharmaceuticals. Here we present a simple nonradioactive method for direct localization of isoAsp residues in peptides or proteins. Using three model peptides, we demonstrate that isoAsp linkages can be cleaved selectively and in high yield by a two-step process in which (i) the isoAsp linkage is converted into a succinimide on incubation with S-adenosyl-l-methionine and the commercially available enzyme, protein l-isoaspartyl-O-methyltransferase, and (ii) the succinimidyl bond is then cleaved by hydroxylamine under conditions that minimize cleavage of the traditional hydroxylamine-sensitive Asn-Gly and related peptide bonds. Location of the isoAsp linkage is then inferred by identifying the cleavage products by mass spectrometry or N-terminal sequencing.

  17. Entropic Origin of Cobalt-Carbon Bond Cleavage Catalysis in Adenosylcobalamin-Dependent Ethanolamine Ammonia-Lyase

    PubMed Central

    Wang, Miao; Warncke, Kurt

    2013-01-01

    Adenosylcobalamin-dependent enzymes accelerate the cleavage of the cobalt-carbon (Co-C) bond of the bound coenzyme by >1011-fold. The cleavage-generated 5′-deoxyadenosyl radical initiates the catalytic cycle by abstracting a hydrogen atom from substrate. Kinetic coupling of the Co-C bond cleavage and hydrogen atom transfer steps at ambient temperatures has interfered with past experimental attempts to directly address the factors that govern Co-C bond cleavage catalysis. Here, we use time-resolved, full-spectrum electron paramagnetic resonance spectroscopy, temperature-step reaction initiation, starting from the enzyme-coenzyme-substrate ternary complex, and 2H-labeled substrate, to study radical pair generation in ethanolamine ammonia-lyase from Salmonella typhimurium at 234-248 K in a dimethylsulfoxide/water cryosolvent system. The monoexponential kinetics of formation of the 2H- and 1H-substituted substrate radicals are the same, indicating that Co-C bond cleavage rate-limits radical pair formation. Analysis of the kinetics by using a linear, three-state model allows extraction of the microscopic rate constant for Co-C bond cleavage. Eyring analysis reveals that the activation enthalpy for Co-C bond cleavage is 32 ±1 kcal/mol, which is the same as for the cleavage reaction in solution. The origin of Co-C bond cleavage catalysis in the enzyme is, therefore, the large, favorable activation entropy of 61 ±6 cal/mol/K (relative to 7 ±1 cal/mol/K in solution). This represents a paradigm shift from traditional, enthalpy-based mechanisms that have been proposed for Co-C bond breaking in B12 enzymes. The catalysis is proposed to arise from an increase in protein configurational entropy along the reaction coordinate. PMID:24028405

  18. New chemical insights using weakly supported voltammetry: the reductive cleavage of Aryl-Br bonds is reversible.

    PubMed

    Wang, Yijun; Barnes, Edward O; Compton, Richard G

    2012-10-22

    Cyclic voltammetry carried out at a wide range of supporting electrolyte concentrations and compositions can elucidate additional kinetic and mechanistic details of the electrochemical reduction of aryl halides. The cleavage of the C-Br bond is reversible, driven by H abstraction and the second electron transfer. This is a new chemical insight, as the cleavage of such bonds has usually been regarded as irreversible.

  19. [Polycationic catalysts for phosphodiester bond cleavage on the basis of 1,4-diazabicyclo[2.2.2]octane].

    PubMed

    Burakova, E A; Kovalev, N A; Kuznetsova, I L; Zenkova, M A; Vlasov, V V; Sil'nikov, V N

    2007-01-01

    A number of tetracationic compounds capable of phosphodiester bond cleavage within a 21 -membered ribooligonucleotide were designed and synthesized. The artificial ribonucleases represent two residues of quaternized 1,4-diazabicyclo[2.2.2]octane bearing alkyl substituents of various lengths and connected with a rigid linker. The efficiency of cleavage of phosphodiester bonds in an RNA target depends on the linker structure and the length of alkyl substituent.

  20. Enantioselective epoxidation and carbon-carbon bond cleavage catalyzed by Coprinus cinereus peroxidase and myeloperoxidase.

    PubMed

    Tuynman, A; Spelberg, J L; Kooter, I M; Schoemaker, H E; Wever, R

    2000-02-01

    We demonstrate that myeloperoxidase (MPO) and Coprinus cinereus peroxidase (CiP) catalyze the enantioselective epoxidation of styrene and a number of substituted derivatives with a reasonable enantiomeric excess (up to 80%) and in a moderate yield. Three major differences with respect to the chloroperoxidase from Caldariomyces fumago (CPO) are observed in the reactivity of MPO and CiP toward styrene derivatives. First, in contrast to CPO, MPO and CiP produced the (S)-isomers of the epoxides in enantiomeric excess. Second, for MPO and CiP the H(2)O(2) had to be added very slowly (10 eq in 16 h) to prevent accumulation of catalytically inactive enzyme intermediates. Under these conditions, CPO hardly showed any epoxidizing activity; only with a high influx of H(2)O(2) (300 eq in 1.6 h) was epoxidation observed. Third, both MPO and CiP formed significant amounts of (substituted) benzaldehydes as side products as a consequence of C-alpha-C-beta bond cleavage of the styrene derivatives, whereas for CPO and cytochrome c peroxidase this activity is not observed. C-alpha-C-beta cleavage was the most prominent reaction catalyzed by CiP, whereas with MPO the relative amount of epoxide formed was higher. This is the first report of peroxidases catalyzing both epoxidation reactions and carbon-carbon bond cleavage. The results are discussed in terms of mechanisms involving ferryl oxygen transfer and electron transfer, respectively.

  1. Protocols for the selective cleavage of carbon-sulfur bonds in coal. Quarterly report, September 1, 1991--November 30, 1991

    SciTech Connect

    Bausch, M.

    1991-12-31

    Removal of the organic sulfur in coal constitutes one of the major challenges facing fossil fuel scientists today. A cost--effective of desulfurizing Illinois coal is non-existent at the present time. Research in our group aims to develop a simple protocol for sulfur removal by gaining understanding of how various additives can enhance the rates of C-S bond cleavage in Illinois coal and coal model compounds, relative to fragmentation of the coal macromolecule via C-C, C-O, and C-N bond cleavage. During this funding period, we plan to carry out examinations of: (a) the effects of various reaction conditions on radical-initiated and Lewis acid-catalyzed C-S bond cleavages; (b) the effects of caustic impregnation and subsequent alcoholic reflux on C-S bond cleavage strategies; (c) the reactions of coal model compounds with electron-deficient substrates; (d) examinations of photooxidative C-S bond cleavage reactions; (e) the effects of moderate (300--400{degrees}C) temperatures and pressures as well as ultrasonic radiation on (a) - (c). Also planned are differential scanning calorimetric (DSC) examinations of selected C-S bond cleavage protocols, including those on Illinois coals that possess varying amounts of organic and inorganic sulfur.

  2. Reactions involving the heterolytic cleavage of carbon-element σ-bonds by Grignard reagents

    NASA Astrophysics Data System (ADS)

    Polivin, Yurii N.; Karakhanov, Robert A.; Postnov, Victor N.

    1990-03-01

    The reactions involving the heterolysis of the C-O, C-C, C-N, C-S, C-Cl, etc. bonds by organomagnesium compounds are examined and the nature of this interesting phenomenon is analysed. On the basis of the analysis of the characteristic features of the cleavage under discussion, it is shown that the heterolysis of the carbon-element bond is, firstly, a general reaction for all classes of organic compounds (provided that two conditions are observed: the substrate molecule must fragment into two stable species — a carbonium ion and an anion — and the strength of the Lewis acid properties should be adequate for the occurrence of the above reaction) and, secondly, the heterolysis of the carbon-element bond is one of the independent pathways in the reactions of the Grignard reagents. The bibliography includes 158 references.

  3. Competition between covalent and noncovalent bond cleavages in dissociation of phosphopeptide-amine complexes.

    PubMed

    Laskin, Julia; Yang, Zhibo; Woods, Amina S

    2011-04-21

    Interactions between quaternary amino or guanidino groups with anions are ubiquitous in nature and have been extensively studied phenomenologically. However, little is known about the binding energies in non-covalent complexes containing these functional groups. Here, we present a first study focused on quantifying such interactions using complexes of phosphorylated A(3)pXA(3)-NH(2) (X = S, T, Y) peptides with decamethonium (DCM) or diaguanidinodecane (DGD) ligands as model systems. Time- and collision energy-resolved surface-induced dissociation (SID) of the singly charged complexes was examined using a specially configured Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS). Dissociation thresholds and activation energies were obtained from RRKM modeling of the experimental data that has been described and carefully characterized in our previous studies. For systems examined in this study, covalent bond cleavages resulting in phosphate abstraction by the cationic ligand are characterized by low dissociation thresholds and relatively tight transition states. In contrast, high dissociation barriers and large positive activation entropies were obtained for cleavages of non-covalent bonds. Dissociation parameters obtained from the modeling of the experimental data are in excellent agreement with the results of density functional theory (DFT) calculations. Comparison between the experimental data and theoretical calculations indicate that phosphate abstraction by the ligand is rather localized and mainly affected by the identity of the phosphorylated side chain. The hydrogen bonding in the peptide and ligand properties play a minor role in determining the energetics and dynamics of the phosphate abstraction channel.

  4. Competition between Covalent and Noncovalent Bond Cleavages in Dissociation of Phosphopeptide-Amine Complexes

    SciTech Connect

    Laskin, Julia; Yang, Zhibo; Woods, Amina S.

    2011-04-21

    Interactions between quaternary amino or guanidino groups with anions are ubiquitous in nature. Here, we present a first study focused on quantifying such interactions using complexes of phosphorylated A3pXA3-NH2 (X=S, T, Y) peptides with decamethonium (DCM) or diaguanidinodecane (DGD) ligands as model systems. Time- and collision energy-resolved surface-induced dissociation (SID) of the singly charged complexes was examined using a specially configured Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS). Dissociation thresholds and activation energies were obtained from RRKM modeling of the experimental data that has been described and carefully characterized in our previous studies. We demonstrate that covalent bond cleavages resulting in phosphate abstraction by the cationic ligand are characterized by low dissociation thresholds and relatively tight transition states. In contrast, high dissociation barriers and large positive activation entropies were obtained for cleavages of non-covalent bonds. Dissociation parameters obtained from the modeling of the experimental data are in excellent agreement with the results of density functional theory (DFT) calculations. Comparison between the experimental data and theoretical calculations indicate that phosphate abstraction by the ligand is rather localized and mainly affected by the identity of the phosphorylated side chain. The hydrogen bonding in the peptide and ligand properties play a minor role in determining the energetics and dynamics of the phosphate abstraction channel

  5. Fe-Catalyzed Aerobic Oxidative C-CN Bond Cleavage of Arylacetonitriles Leading to Various Esters.

    PubMed

    Kong, Weiguang; Li, Bingnan; Xu, Xuezhao; Song, Qiuling

    2016-09-16

    Fe-catalyzed aerobic oxidative esterifications of arylacetonitriles with alcohols, tri alkoxsilanes, silicate esters, or borate esters have been developed. The acyl groups which were in situ generated via chemoselective C(CO)-CN bond cleavage were directly used as electrophiles, leading to corresponding aryl esters in good to excellent yields under molecular oxygen when attacked by alcohols or alcohol surrogates. Dioxygen serves as both oxidant and reactant in this protocol. The reaction has a very broad substrate scope. Cheap starting materials as well as environmentally benign and inexpensive iron catalyst and ideal oxidant O2 feature this transformation and make it a practical and sustainable protocol to afford esters. PMID:27555329

  6. Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage.

    PubMed

    Ackermann, Lutz; Vicente, Rubén; Kapdi, Anant R

    2009-01-01

    The area of transition-metal-catalyzed direct arylation through cleavage of C-H bonds has undergone rapid development in recent years, and is becoming an increasingly viable alternative to traditional cross-coupling reactions with organometallic reagents. In particular, palladium and ruthenium catalysts have been described that enable the direct arylation of (hetero)arenes with challenging coupling partners--including electrophilic aryl chlorides and tosylates as well as simple arenes in cross-dehydrogenative arylations. Furthermore, less expensive copper, iron, and nickel complexes were recently shown to be effective for economically attractive direct arylations.

  7. Switching the Cleavage Sites in Palladium on Carbon-Catalyzed Carbon-Carbon Bond Disconnection.

    PubMed

    Hattori, Tomohiro; Takakura, Ryoya; Ichikawa, Tomohiro; Sawama, Yoshinari; Monguchi, Yasunari; Sajiki, Hironao

    2016-04-01

    We have demonstrated a palladium on carbon-catalyzed approach to regioselectively alter the cleavage sites of the C-C bonds of cinnamaldehyde derivatives by a slight change in the reaction conditions in isopropanol under an O2 atmosphere. Styrene derivatives could be selectively formed by the addition of Na2CO3 in association with the dissociation of carbon monoxide, while benzaldehyde derivatives were generated by the addition of CuCl and morpholine instead of Na2CO3. PMID:26944077

  8. Cleavage of C-O bonds in lignin model compounds catalyzed by methyldioxorhenium in homogeneous phase.

    PubMed

    Harms, Reentje G; Markovits, Iulius I E; Drees, Markus; Herrmann, H C Mult Wolfgang A; Cokoja, Mirza; Kühn, Fritz E

    2014-02-01

    Methyldioxorhenium (MDO)-catalyzed C-O bond cleavage of a variety of lignin β-O-4-model compounds yields phenolic and aldehydic compounds in homogeneous phase under mild reaction conditions. MDO is in situ generated by reduction of methyltrioxorhenium (MTO) and is remarkably stable under the applied reaction conditions allowing its reuse for least five times without significant activity loss. Based on the observed and isolated intermediates, 17 O- and 2 H-isotope labeling experiments, DFT calculations, and several spectroscopic studies, a reaction mechanism is proposed.

  9. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    SciTech Connect

    John J. Kilbane II

    2004-10-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will be to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the

  10. Aromatic thiol-mediated cleavage of N–O bonds enables chemical ubiquitylation of folded proteins

    PubMed Central

    Weller, Caroline E.; Dhall, Abhinav; Ding, Feizhi; Linares, Edlaine; Whedon, Samuel D.; Senger, Nicholas A.; Tyson, Elizabeth L.; Bagert, John D.; Li, Xiaosong; Augusto, Ohara; Chatterjee, Champak

    2016-01-01

    Access to protein substrates homogenously modified by ubiquitin (Ub) is critical for biophysical and biochemical investigations aimed at deconvoluting the myriad biological roles for Ub. Current chemical strategies for protein ubiquitylation, however, employ temporary ligation auxiliaries that are removed under harsh denaturing conditions and have limited applicability. We report an unprecedented aromatic thiol-mediated N–O bond cleavage and its application towards native chemical ubiquitylation with the ligation auxiliary 2-aminooxyethanethiol. Our interrogation of the reaction mechanism suggests a disulfide radical anion as the active species capable of cleaving the N–O bond. The successful semisynthesis of full-length histone H2B modified by the small ubiquitin-like modifier-3 (SUMO-3) protein further demonstrates the generalizability and compatibility of our strategy with folded proteins. PMID:27680493

  11. Aromatic thiol-mediated cleavage of N-O bonds enables chemical ubiquitylation of folded proteins

    NASA Astrophysics Data System (ADS)

    Weller, Caroline E.; Dhall, Abhinav; Ding, Feizhi; Linares, Edlaine; Whedon, Samuel D.; Senger, Nicholas A.; Tyson, Elizabeth L.; Bagert, John D.; Li, Xiaosong; Augusto, Ohara; Chatterjee, Champak

    2016-09-01

    Access to protein substrates homogenously modified by ubiquitin (Ub) is critical for biophysical and biochemical investigations aimed at deconvoluting the myriad biological roles for Ub. Current chemical strategies for protein ubiquitylation, however, employ temporary ligation auxiliaries that are removed under harsh denaturing conditions and have limited applicability. We report an unprecedented aromatic thiol-mediated N-O bond cleavage and its application towards native chemical ubiquitylation with the ligation auxiliary 2-aminooxyethanethiol. Our interrogation of the reaction mechanism suggests a disulfide radical anion as the active species capable of cleaving the N-O bond. The successful semisynthesis of full-length histone H2B modified by the small ubiquitin-like modifier-3 (SUMO-3) protein further demonstrates the generalizability and compatibility of our strategy with folded proteins.

  12. Rh-Catalyzed C–C Bond Cleavage by Transfer Hydroformylation

    PubMed Central

    Murphy, Stephen K.; Park, Jung-Woo; Cruz, Faben A.; Dong, Vy M.

    2015-01-01

    The dehydroformylation of aldehydes to generate olefins occurs during the biosynthesis of various sterols, including cholesterol in humans. Here, we implement a synthetic version that features the transfer of a formyl group and hydride from an aldehyde substrate to a strained olefin acceptor. A Rh(Xantphos)(benzoate) catalyst activates aldehyde C–H bonds with high chemoselectivity to trigger C–C bond cleavage and generate olefins at low loadings (0.3 to 2 mol%) and temperatures (22 to 80 °C). This mild protocol can be applied to various natural products and was used to achieve a three step synthesis of (+)-yohimbenone. A study of the mechanism reveals that the benzoate counterion acts as a proton-shuttle to enable transfer hydroformylation. PMID:25554782

  13. CO bond cleavage on supported nano-gold during low temperature oxidation.

    PubMed

    Carley, Albert F; Morgan, David J; Song, Nianxue; Roberts, M Wyn; Taylor, Stuart H; Bartley, Jonathan K; Willock, David J; Howard, Kara L; Hutchings, Graham J

    2011-02-21

    The oxidation of CO by Au/Fe(2)O(3) and Au/ZnO catalysts is compared in the very early stages of the reaction using a temporal analysis of products (TAP) reactor. For Au/Fe(2)O(3) pre-dosing the catalyst with (18)O labelled water gives an unexpected evolution order for the labelled CO(2) product with the C(18)O(2) emerging first, whereas no temporal differentiation is found for Au/ZnO. High pressure XPS experiments are then used to show that CO bond cleavage does occur for model catalysts consisting of Au particles deposited on iron oxide films but not when deposited on ZnO films. DFT calculations, show that this observation requires carbon monoxide to dissociate in such a way that cleavage of the CO bond occurs along with dynamically co-adsorbed oxygen so that the overall process of Au oxidation and CO dissociation is energetically favourable. Our results show that for Au/Fe(2)O(3) there is a pathway for CO oxidation that involves atomic C and O surface species which operates along side the bicarbonate mechanism that is widely discussed in the literature. However, this minor pathway is absent for Au/ZnO. PMID:21152570

  14. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    SciTech Connect

    John J. Kilbane III

    2003-12-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project will focus on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate amidase. The objective of the final phase of the project will be to develop derivative CN bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. The project is on schedule and no major difficulties have been encountered. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments have resulted in the isolation of promising cultures that may be capable of cleaving C-N bonds in aromatic amides, several amidase genes have been cloned and are currently undergoing directed evolution to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. Future research will address expression of these genes in Rhodococcus erythropolis. Enrichment culture experiments and directed evolution experiments continue to be a main focus of research activity and further work is required to obtain an appropriate amidase that will selectively cleave C-N bonds in aromatic substrates. Once an appropriate amidase gene is obtained it must be combined with genes encoding an enzyme capable of converting carbazole to 2'aminobiphenyl-2,3-diol: specifically carA genes. The carA genes from two sources have been cloned and are ready for construction of C-N bond cleavage pathway

  15. Protocols for the selective cleavage of carbon-sulfur bonds in coal. Technical report, December 1, 1992--February 28, 1993

    SciTech Connect

    Bausch, M.; Ho, K.K.

    1993-05-01

    Chemical reactions that result in carbon-sulfur bond cleavage are an essential aspect of any protocol designed to remove organic sulfur from coal. Planned in the second year of our project Protocols for the Selective Cleavage of Carbon-Sulfur Bonds in Coal are investigations of reactions in which organic sulfur-containing coal model compounds are subjected to different conditions of temperature, solvent mixtures and radiation. Other investigations that will result in analyses of the likelihood of C-S bond cleavages resulting from various oxidative processes will also be undertaken. Summarized in this quarterly report are results of our investigations of the following topics: (a) desulfurization of coal model sulfones; (b) desulfurization of coal model sulfides; (c) photooxidation of organic sulfides; and (d) photolytic desulfurization of coal.

  16. Tailoring Bond Cleavage in Gas-Phase Biomolecules by Low Energy Electrons

    NASA Astrophysics Data System (ADS)

    Ptasinska, Sylwia

    2014-10-01

    The high energy quanta of impinging radiation can generate a large number (about 5x104) of secondary electrons per 1 MeV of energy deposited. When ejected in condensed phase water, the kinetic energy distribution of these free or quasi-free electrons is peaked below 10 eV. Low energy electrons also dominate in the secondary emission from biomolecular targets exposed to different energies of primary radiation. Due to the complexity of the radiation-induced processes in the condensed-phase environment, mechanisms of secondary electrons induced damage in biomolecules (BM) still need to be investigated. However, based on results from theory and different experiments accumulated within the last decade, it is now possible to determine the fundamental mechanisms that are involved in many chemical reactions induced in isolated gas-phase biomolecules by low energy electrons. The central finding of earlier research was the discovery of the bond- and site- selectivity in the dissociative electron attachment (DEA) process to biomolecules. It has been demonstrated that by tuning the energy of the incoming electron we can gain control over the location of the bond cleavage. These studies showed the selectivity in single bond cleavage reactions leading to the formation of the dehydrogenated closed shell anion (BM-H)- or the complementary reaction leading to H-. The loss of a hydrogen atom or an anion is fast compared with ring cleavage and the excision of heavier fragments and, hence, this reaction can compete efficiently with autodetachment. Moreover, site selectivity has been also observed in the metastable anion formation via the DEA process. Such delayed fragmentation was studied recently for the dehydrogenated closed-shell anion conversion into NCO- upon DEA proceeded a few μ sec after electron attachment, indicating a rather slow unimolecular decomposition. Interestingly, site selectivity was observed in the prompt as well as the metastable NCO- formation in DEA. The

  17. Mechanism and Thermodynamics of Reductive Cleavage of Carbon-Halogen Bonds in the Polybrominated Aliphatic Electrophiles.

    PubMed

    Rosokha, Sergiy V; Lukacs, Emoke; Ritzert, Jeremy T; Wasilewski, Adam

    2016-03-17

    Quantum-mechanical computations revealed that, despite the presence of electron-withdrawing and/or π-acceptor substituents, the lowest unoccupied molecular orbitals (LUMO) of the polybromosubstituted aliphatic molecules R-Br (R-Br = C3Br2F6, CBr3NO2, CBr3CN, CBr3CONH2, CBr3CO2H, CHBr3, CFBr3, CBr4, CBr3COCBr3) are delocalized mostly over their bromine-containing fragments. The singly occupied molecular orbitals in the corresponding vertically excited anion radicals (R-Br(•-))* are characterized by essentially the same shapes and show nodes in the middle of the C-Br bonds. An injection of an electron into the antibonding LUMO results in the barrierless dissociation of the anion-radical species and the concerted reductive cleavages of C-Br bonds leading to the formation of the loosely bonded {R(•)···Br(-)} associates. The interaction energies between the fragments of these ion-radical pairs vary from ∼10 to 20 kcal mol(-1) in the gas phase and from 1 to 3 kcal mol(-1) in acetonitrile. In accord with the concerted mechanism of reductive cleavage, all R-Br molecules showed completely irreversible reduction waves in the voltammograms in the whole range of the scan rates employed (from 0.05 to 5 V s(-1)). Also, the transfer coefficients α, established from the width of these waves and dependence of reduction peak potentials Ep on the scan rates, were significantly lower than 0.5. The standard reduction potentials of the R-Br electrophiles, E(o)R-Br/R·+X(-), and the corresponding R(•) radicals, E(o)R(•)/R(-), were calculated in acetonitrile using the appropriate thermodynamic cycles. In agreement with these calculations, which indicated that the R(•) radicals resulting from the reductive cleavage of the R-Br molecules are stronger oxidants than their parents, the reduction peaks' currents in cyclic voltammograms were consistent with the two-electron transfer processes. PMID:26816138

  18. Phosphodiester and N-glycosidic bond cleavage in DNA induced by 4-15 eV electrons

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Cloutier, Pierre; Hunting, Darel J.; Wagner, J. Richard; Sanche, Léon

    2006-02-01

    Thin molecular films of the short single strand of DNA, GCAT, were bombarded under vacuum by electrons with energies between 4 and 15 eV. Ex vacuo analysis by high-pressure liquid chromatography of the samples exposed to the electron beam revealed the formation of a multitude of products. Among these, 12 fragments of GCAT were identified by comparison with reference compounds and their yields were measured as a function of electron energy. For all energies, scission of the backbone gave nonmodified fragments containing a terminal phosphate, with negligible amounts of fragments without the phosphate group. This indicates that phosphodiester bond cleavage by 4-15 eV electrons involves cleavage of the C-O bond rather than the P-O bond. The yield functions exhibit maxima at 6 and 10-12 eV, which are interpreted as due to the formation of transient anions leading to fragmentation. Below 15 eV, these resonances dominate bond dissociation processes. All four nonmodified bases are released from the tetramer, by cleavage of the N-glycosidic bond, which occurs principally via the formation of core-excited resonances located around 6 and 10 eV. The formation of the other nonmodified products leading to cleavage of the phosphodiester bond is suggested to occur principally via two different mechanisms: (1) the formation of a core-excited resonance on the phosphate unit followed by dissociation of the transient anion and (2) dissociation of the CO bond of the phosphate group formed by resonance electron transfer from the bases. In each case, phosphodiester bond cleavage leads chiefly to the formation of stable phosphate anions and sugar radicals with minimal amounts of alkoxyl anions and phosphoryl radicals.

  19. A mechanistic study of Trichoderma reesei Cel7B catalyzed glycosidic bond cleavage.

    PubMed

    Zhang, Yu; Yan, Shihai; Yao, Lishan

    2013-07-25

    An ONIOM study is performed to illustrate the mechanism of Trichoderma reesei Cel7B catalyzed p-nitrophenyl lactoside hydrolysis. In both the glycosylation and deglycosylation steps, the reaction proceeds in a concerted way, meaning the nucleophilic attack and the glycosidic bond cleavage occur simultaneously. The glycosylation step is rate limiting with a barrier of 18.9 kcal/mol, comparable to the experimental value derived from the kcat measured in this work. The function of four residues R108, Y146, Y170, and D172, which form a hydrogen-bond network involving the substrate, is studied by conservative mutations. The mutants, including R108K, Y146F, Y170F, and D172N, decrease the enzyme activity by about 150-8000-fold. Molecular dynamics simulations show that the mutations disrupt the hydrogen-bond network, cause the substrate to deviate from active binding and hinder either the proton transfer from E201 to O4(+1) or the nucleophilic attack from E196 to C1(-1). PMID:23822607

  20. Cleavage enhancement of specific chemical bonds in DNA by cisplatin radiosensitization.

    PubMed

    Xiao, Fangxing; Luo, Xinglan; Fu, Xianzhi; Zheng, Yi

    2013-05-01

    X-ray photoelectron spectroscopy (XPS) is harnessed as an in situ efficient characterization technique for monitoring chemical bond transformation in DNA and cisplatin-DNA complexes under synergic X-ray irradiation. By analyzing the variation of relative peak area of core elements of DNA as a function of irradiation time, we find that the most vulnerable scission sites in DNA are those containing phosphate and glycosidic bonds. Compared to DNA, the effective rate constants of the corresponding phosphodiester and glycosidic bond cleavages for cisplatin-DNA complexes are 1.8 and 1.9 folds larger. These damages and their enhancements are similar to those induced by low energy electrons (LEE). Consistently, the magnitude of the secondary electron distribution produced by the X-rays on the cisplatin-DNA complexes is considerably increased compared to that of pristine DNA. The data suggest that DNA radiosensization by cisplatin results not only from the sensitization of DNA to the action of LEE, but also from an increase the production of LEE at the site of binding of the cisplatin. The results provide new insights into the mechanisms of cisplatin-induced sensitization of DNA under X-ray irradiation, which could be helpful in the design of new cisplatin-based antitumor drugs.

  1. A mechanistic study of Trichoderma reesei Cel7B catalyzed glycosidic bond cleavage.

    PubMed

    Zhang, Yu; Yan, Shihai; Yao, Lishan

    2013-07-25

    An ONIOM study is performed to illustrate the mechanism of Trichoderma reesei Cel7B catalyzed p-nitrophenyl lactoside hydrolysis. In both the glycosylation and deglycosylation steps, the reaction proceeds in a concerted way, meaning the nucleophilic attack and the glycosidic bond cleavage occur simultaneously. The glycosylation step is rate limiting with a barrier of 18.9 kcal/mol, comparable to the experimental value derived from the kcat measured in this work. The function of four residues R108, Y146, Y170, and D172, which form a hydrogen-bond network involving the substrate, is studied by conservative mutations. The mutants, including R108K, Y146F, Y170F, and D172N, decrease the enzyme activity by about 150-8000-fold. Molecular dynamics simulations show that the mutations disrupt the hydrogen-bond network, cause the substrate to deviate from active binding and hinder either the proton transfer from E201 to O4(+1) or the nucleophilic attack from E196 to C1(-1).

  2. K2CO3-catalyzed synthesis of chromones and 4-quinolones through the cleavage of aromatic C-O bonds.

    PubMed

    Zhao, Jie; Zhao, Yufen; Fu, Hua

    2012-06-01

    Phenol-derived electrophiles are favorable substrates because phenols are naturally abundant or can be readily prepared from other aromatic compounds. However, the cleavage of aromatic C-O bonds is a great challenge because of their high energy. K(2)CO(3)-catalyzed intramolecular cyclization of 1-(2-alkoxyphenyl)-3-akylpropane-1,3-dione and 3-(alkylimino)-1-(2-methoxyphenyl)-2-methylpropan-1-one derivatives via the selective cleavage of aromatic C-O bonds is reported. The corresponding chromone and 4-quinolone derivatives were obtained in reasonable yields. PMID:22587645

  3. Understanding the transition states of phosphodiester bond cleavage: insights from heavy atom isotope effects.

    PubMed

    Cassano, Adam G; Anderson, Vernon E; Harris, Michael E

    2004-01-01

    The nucleotides of DNA and RNA are joined by phosphodiester linkages whose synthesis and hydrolysis are catalyzed by numerous essential enzymes. Two prominent mechanisms have been proposed for RNA and protein enzyme catalyzed cleavage of phosphodiester bonds in RNA: (a) intramolecular nucleophilic attack by the 2'-hydroxyl group adjacent to the reactive phosphate; and (b) intermolecular nucleophilic attack by hydroxide, or other oxyanion. The general features of these two mechanisms have been established by physical organic chemical analyses; however, a more detailed understanding of the transition states of these reactions is emerging from recent kinetic isotope effect (KIE) studies. The recent data show interesting differences between the chemical mechanisms and transition state structures of the inter- and intramolecular reactions, as well as provide information on the impact of metal ion, acid, and base catalysis on these mechanisms. Importantly, recent nonenzymatic model studies show that interactions with divalent metal ions, an important feature of many phosphodiesterase active sites, can influence both the mechanism and transition state structure of nonenzymatic phosphodiester cleavage. Such detailed investigations are important because they mimic catalytic strategies employed by both RNA and protein phosphodiesterases, and so set the stage for explorations of enzyme-catalyzed transition states. Application of KIE analyses for this class of enzymes is just beginning, and several important technical challenges remain to be overcome. Nonetheless, such studies hold great promise since they will provide novel insights into the role of metal ions and other active site interactions.

  4. Activation of A-H bonds (A = B, C, N, O, Si) by using monovalent phosphorus complexes [RP→M].

    PubMed

    Mathey, Francois; Duan, Zheng

    2016-02-01

    The available data on the activation of A-H sigma bonds by electrophilic terminal phosphinidene complexes are reviewed. Theoretical computations allow us to rationalize the experimental results. It appears that a successful insertion needs an initial interaction between the phosphinidene and the A-H bond, such as a donor-acceptor complex with a lone pair, a Coulombic interaction due to a negative charge on A or H, or a proximity effect.

  5. ATP-Dependent C–F Bond Cleavage Allows the Complete Degradation of 4-Fluoroaromatics without Oxygen

    PubMed Central

    Tiedt, Oliver; Mergelsberg, Mario; Boll, Kerstin; Müller, Michael; Adrian, Lorenz; Jehmlich, Nico; von Bergen, Martin

    2016-01-01

    ABSTRACT Complete biodegradation of the abundant and persistent fluoroaromatics requires enzymatic cleavage of an arylic C–F bond, probably the most stable single bond of a biodegradable organic molecule. While in aerobic microorganisms defluorination of fluoroaromatics is initiated by oxygenases, arylic C–F bond cleavage has never been observed in the absence of oxygen. Here, an oxygen-independent enzymatic aryl fluoride bond cleavage is described during the complete degradation of 4-fluorobenzoate or 4-fluorotoluene to CO2 and HF in the denitrifying Thauera aromatica: the ATP-dependent defluorination of 4-fluorobenzoyl-coenzyme A (4-F-BzCoA) to benzoyl-coenzyme A (BzCoA) and HF, catalyzed by class I BzCoA reductase (BCR). Adaptation to growth with the fluoroaromatics was accomplished by the downregulation of a promiscuous benzoate-CoA ligase and the concomitant upregulation of 4-F-BzCoA-defluorinating/dearomatizing BCR on the transcriptional level. We propose an unprecedented mechanism for reductive arylic C–F bond cleavage via a Birch reduction-like mechanism resulting in a formal nucleophilic aromatic substitution. In the proposed anionic 4-fluorodienoyl-CoA transition state, fluoride elimination to BzCoA is favored over protonation to a fluorinated cyclic dienoyl-CoA. PMID:27507824

  6. Carbon-carbon bond cleavage and formation reactions in drug metabolism and the role of metabolic enzymes.

    PubMed

    Bolleddula, Jayaprakasam; Chowdhury, Swapan K

    2015-01-01

    Elimination of xenobiotics from the human body is often facilitated by a transformation to highly water soluble and more ionizable molecules. In general, oxidation-reduction, hydrolysis, and conjugation reactions are common biotransformation reactions that are catalyzed by various metabolic enzymes including cytochrome P450s (CYPs), non-CYPs, and conjugative enzymes. Although carbon-carbon (C-C) bond formation and cleavage reactions are known to exist in plant secondary metabolism, these reactions are relatively rare in mammalian metabolism and are considered exceptions. However, various reactions such as demethylation, dealkylation, dearylation, reduction of alkyl chain, ring expansion, ring contraction, oxidative elimination of a nitrile through C-C bond cleavage, and dimerization, and glucuronidation through C-C bond formation have been reported for drug molecules. Carbon-carbon bond cleavage reactions for drug molecules are primarily catalyzed by CYP enzymes, dimerization is mediated by peroxidases, and C-glucuronidation is catalyzed by UGT1A9. This review provides an overview of C-C bond cleavage and formation reactions in drug metabolism and the metabolic enzymes associated with these reactions.

  7. Controllable synthesis of silver and silver sulfide nanocrystals via selective cleavage of chemical bonds.

    PubMed

    Tang, Aiwei; Wang, Yu; Ye, Haihang; Zhou, Chao; Yang, Chunhe; Li, Xu; Peng, Hongshang; Zhang, Fujun; Hou, Yanbing; Teng, Feng

    2013-09-01

    A one-step colloidal process has been adopted to prepare silver (Ag) and silver sulfide (Ag₂S) nanocrystals, thus avoiding presynthesis of an organometallic precursor and the injection of a toxic phosphine agent. During the reaction, a layered intermediate compound is first formed, which then acts as a precursor, decomposing into the nanocrystals. The composition of the as-obtained products can be controlled by selective cleavage of S-C bonds or Ag-S bonds. Pure Ag₂S nanocrystals can be obtained by directly heating silver acetate (Ag(OAc)) and n-dodecanethiol (DDT) at 200 ° C without any surfactant, and pure Ag nanocrystals can be synthesized successfully if the reaction temperature is reduced to 190 ° C and the amount of DDT is decreased to 1 ml in the presence of a non-coordinating organic solvent (1-octadecene, ODE). Otherwise, the mixture of Ag and Ag₂S is obtained by directly heating Ag(OAc) in DDT by increasing the reaction temperature or in a mixture of DDT and ODE at 200 ° C. The formation mechanism has been discussed in detail in terms of selective S-C and Ag-S bond dissociation due to the nucleophilic attack of DDT and the lower bonding energy of Ag-S. Interestingly, some products can easily self-assemble into two- or three-dimensional (2D or 3D) highly ordered superlattice structures on a copper grid without any additional steps. The excess DDT plays a key role in the superlattice structure due to the bundling and interdigitation of the thiolate molecules adsorbed on the as-obtained nanocrystals.

  8. Controllable synthesis of silver and silver sulfide nanocrystals via selective cleavage of chemical bonds

    NASA Astrophysics Data System (ADS)

    Tang, Aiwei; Wang, Yu; Ye, Haihang; Zhou, Chao; Yang, Chunhe; Li, Xu; Peng, Hongshang; Zhang, Fujun; Hou, Yanbing; Teng, Feng

    2013-09-01

    A one-step colloidal process has been adopted to prepare silver (Ag) and silver sulfide (Ag2S) nanocrystals, thus avoiding presynthesis of an organometallic precursor and the injection of a toxic phosphine agent. During the reaction, a layered intermediate compound is first formed, which then acts as a precursor, decomposing into the nanocrystals. The composition of the as-obtained products can be controlled by selective cleavage of S-C bonds or Ag-S bonds. Pure Ag2S nanocrystals can be obtained by directly heating silver acetate (Ag(OAc)) and n-dodecanethiol (DDT) at 200 ° C without any surfactant, and pure Ag nanocrystals can be synthesized successfully if the reaction temperature is reduced to 190 ° C and the amount of DDT is decreased to 1 ml in the presence of a non-coordinating organic solvent (1-octadecene, ODE). Otherwise, the mixture of Ag and Ag2S is obtained by directly heating Ag(OAc) in DDT by increasing the reaction temperature or in a mixture of DDT and ODE at 200 ° C. The formation mechanism has been discussed in detail in terms of selective S-C and Ag-S bond dissociation due to the nucleophilic attack of DDT and the lower bonding energy of Ag-S. Interestingly, some products can easily self-assemble into two- or three-dimensional (2D or 3D) highly ordered superlattice structures on a copper grid without any additional steps. The excess DDT plays a key role in the superlattice structure due to the bundling and interdigitation of the thiolate molecules adsorbed on the as-obtained nanocrystals.

  9. Photo-assisted cyanation of transition metal nitrates coupled with room temperature C-C bond cleavage of acetonitrile.

    PubMed

    Zou, Shihui; Li, Renhong; Kobayashi, Hisayoshi; Liu, Juanjuan; Fan, Jie

    2013-03-01

    It is a challenge to use acetonitrile as a cyanating agent because of the difficulty in cleaving its C-CN bond. Herein, we report a mild photo-assisted route to conduct the cyanation of transition metal nitrates using acetonitrile as the cyanating agent coupled with room-temperature C-C bond cleavage. DFT calculations and experimental observations suggest a radical-involved reaction mechanism, which excludes toxicity from free cyanide ions.

  10. An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis

    SciTech Connect

    Cicchillo, Robert M; Zhang, Houjin; Blodgett, Joshua A.V.; Whitteck, John T; Li, Gongyong; Nair, Satish K; van derDonk, Wilfred A; Metcalf, William W

    2010-01-12

    Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine residues. Synthetic phosphinothricin (glufosinate) is a component of two top-selling herbicides (Basta and Liberty), and is widely used with resistant transgenic crops including corn, cotton and canola. Recent genetic and biochemical studies showed that during phosphinothricin tripeptide biosynthesis 2-hydroxyethylphosphonate (HEP) is converted to hydroxymethylphosphonate (HMP). Here we report the in vitro reconstitution of this unprecedented C(sp{sup 3})-C(sp{sup 3}) bond cleavage reaction and X-ray crystal structures of the enzyme. The protein is a mononuclear non-haem iron(II)-dependent dioxygenase that converts HEP to HMP and formate. In contrast to most other members of this family, the oxidative consumption of HEP does not require additional cofactors or the input of exogenous electrons. The current study expands the scope of reactions catalysed by the 2-His-1-carboxylate mononuclear non-haem iron family of enzymes.

  11. Dihydrogen bond interactions as a result of H2 cleavage at Cu, Ag and Au centres.

    PubMed

    Grabowski, Sławomir J; Ruipérez, Fernando

    2016-05-14

    A quantum chemical study of H2 activation at fluorides of coinage metals, MF (M = Cu, Ag and Au), and its splitting was performed. The following reaction path was analyzed: FMH2→ FHHM → HMFH, where both the molecular complexes and the corresponding transition states have been characterized at the CCSD(T)/aug-cc-pVQZ//MP2/aug-cc-pVQZ level of theory. Further single-point CASSCF/CASPT2 calculations, including spin-orbit coupling effects, were also performed to analyze the role of non-dynamic correlation. The scalar relativistic effects are included via aug-cc-pVQZ-PP basis sets used for the metals. The dihydrogen-bonded copper (FHHCu) and silver (FHHAg) complexes are observed as a result of H2 cleavage, while the corresponding FHHAu gold complex is not found but the HAuHF arrangement is observed, instead. The energetic and geometrical parameters of the complexes have been analyzed and both the Quantum Theory of Atoms in Molecules approach and the Natural Bond Orbitals method were additionally applied to analyze the intermolecular interactions. PMID:27101741

  12. Cu(II)-catalyzed esterification reaction via aerobic oxidative cleavage of C(CO)-C(alkyl) bonds.

    PubMed

    Ma, Ran; He, Liang-Nian; Liu, An-Hua; Song, Qing-Wen

    2016-02-01

    A novel Cu(II)-catalyzed aerobic oxidative esterification of simple ketones for the synthesis of esters has been developed with wide functional group tolerance. This process is assumed to go through a tandem sequence consisting of α-oxygenation/esterification/nucleophilic addition/C-C bond cleavage and carbon dioxide is released as the only byproduct.

  13. Primary response of the sGC heme binding domain to the cleavage of the Fe-His bond

    PubMed Central

    Zhang, Huali; Lu, Ming; Zhang, Yuebin; Li, Zhengqiang

    2008-01-01

    Soluble guanylate cyclase (sGC) is an important heme sensor protein. Regulation of the status of heme in the heme binding domain (or HNOX domain) by various gaseous activators can increase the catalytic efficiency of the cyclase domain. Several studies have demonstrated that the full activation of sGC is directly related to the cleavage of the Fe-His bond of the HNOX domain. To expand the primary response of the sGC HNOX domain to the cleavage event, a structural model of the sGC HNOX domain was constructed using homology modeling and the Fe-His bond was released at 6 ns of a 10-ns molecular dynamics simulation. An instant increment of Cα-RMSD over L2 (Loop2, residues 124-130) was found after the cleavage of the Fe-His bond, which was consistent with the principle component analysis (PCA). The energy analysis results suggest that the motions of L2 are energetic. Based on the results, energetic conformational transformation of L2 is identified as the primary response of the sGC HNOX domain to the cleavage of the Fe-His bond. PMID:18478082

  14. Protocols for the selective cleavage of carbon-sulfur bonds in coal. Technical report, March 1, 1992--May 30, 1992

    SciTech Connect

    Bausch, M.

    1992-10-01

    Chemical reactions that result in carbon-sulfur bond cleavage are an essential aspect of any protocol designed to remove organic sulfur from coal. Unfortunately, several classes of reactions that lead to carbon-sulfur bond cleavage are not well understood. Planned in ``Protocols for the Selective Cleavage of Carbon-Sulfur Bonds in Coal`` are reactions in which organic sulfur-containing coal model compounds are subjected to different conditions of temperature, solvent mixtures and radiation. Summarized in this quarterly report are results of our investigations of the following topics: (a) the reactions of coal model compounds, namely, benzyl phenyl sulfide (BPS), diphenyl sulfide (hereafter referred to as phenylsulfide, PS) and dibenzothiophene (DBT) with various reagents (Lewis acid catalysts, radical initiators, electron acceptors) using different solvents and temperature in an attempt to maximize the degree of carbon-sulfur (C-S) bond cleavage; and (b) the results of photooxidation of coal model compounds under controlled conditions. Quantitative product analyses are presented in this report.

  15. Palladium-catalyzed oxidative arylalkylation of activated alkenes: dual C-H bond cleavage of an arene and acetonitrile.

    PubMed

    Wu, Tao; Mu, Xin; Liu, Guosheng

    2011-12-23

    Not one but two: The title reaction proceeds through the dual C-H bond cleavage of both aniline and acetonitrile. The reaction affords a variety of cyano-bearing indolinones in excellent yield. Mechanistic studies demonstrate that this reaction involves a fast arylation of the olefin and a rate-determining C-H activation of the acetonitrile.

  16. Catalytic C-O bond cleavage of 2-aryloxy-1-arylethanols and its application to the depolymerization of lignin-related polymers.

    PubMed

    Nichols, Jason M; Bishop, Lee M; Bergman, Robert G; Ellman, Jonathan A

    2010-09-15

    A ruthenium-catalyzed, redox neutral C-O bond cleavage of 2-aryloxy-1-arylethanols was developed that yields cleavage products in 62-98% isolated yield. This reaction is applicable to breaking the key ethereal bond found in lignin-related polymers. The bond transformation proceeds by a tandem dehydrogenation/reductive ether cleavage. Initial mechanistic investigations indicate that the ether cleavage is most likely an organometallic C-O activation. A catalytic depolymerization of a lignin-related polymer quantitatively yields the corresponding monomer with no added reagent. PMID:20731348

  17. Mechanistic Examination of Cβ–Cγ Bond Cleavages of Tryptophan Residues during Dissociations of Molecular Peptide Radical Cations

    SciTech Connect

    Song, Tao; Ma, Ching-Yung; Chu, Ivan K.; Siu, Chi-Kit; Laskin, Julia

    2013-02-14

    In this study, we used collision-induced dissociation (CID) to examine the gas-phase fragmentations of [GnW]•+ (n = 2-4) and [GXW]•+ (X = C, S, L, F, Y, Q) species. The Cβ–Cγ bond cleavage of a C-terminal decarboxylated tryptophan residue ([M - CO2]•+) can generate [M - CO2 - 116]+, [M - CO2 - 117]•+, and [1H-indole]•+ (m/z 117) species as possible product ions. Competition between the formation of [M - CO2 - 116]+ and [1H-indole]•+ systems implies the existence of a proton-bound dimer formed between the indole ring and peptide backbone. Formation of such a proton-bound dimer is facile via a protonation of the tryptophan γ-carbon atom as suggested by density functional theory (DFT) calculations. DFT calculations also suggested the initially formed ion 2--the decarboxylated species that is active against Cβ–Cγ bond cleavage -can efficiently isomerize to form a more-stable -radical isomer (ion 9) as supported by Rice-Ramsperger-Kassel-Marcus (RRKM) modeling. The Cβ–Cγ bond cleavage of a tryptophan residue also can occur directly from peptide radical cations containing a basic residue. CID of [WGnR]•+ (n = 1-3) radical cations consistently resulted in predominant formation of [M-116]+ product ions. It appears that the basic arginine residue tightly sequesters the proton and allows the charge-remote Cβ–Cγ bond cleavage to prevail over the charge-directed one. DFT calculations predicted the barrier for the former is 6.2 kcal mol -1 lower than that of the latter. Furthermore, the pathway involving a salt-bridge intermediate also was accessible during such a bond cleavage event.

  18. Tautomerization lowers the activation barriers for N-glycosidic bond cleavage of protonated uridine and 2'-deoxyuridine.

    PubMed

    Wu, R R; Rodgers, M T

    2016-09-21

    The gas-phase conformations of protonated uridine, [Urd+H](+), and its 2'-deoxy form, protonated 2'-deoxyuridine, [dUrd+H](+), have been examined in detail previously by infrared multiple photon dissociation action spectroscopy techniques. Both 2,4-dihydroxy tautomers and O4 protonated conformers of [Urd+H](+) and [dUrd+H](+) were found to coexist in the experiments with the 2,4-dihydroxy tautomers dominating the population. In the present study, the kinetic energy dependence of the collision-induced dissociation behavior of [Urd+H](+) and [dUrd+H](+) are examined using a guided ion beam tandem mass spectrometer to probe the mechanisms and energetics for activated dissociation of these protonated nucleosides. The primary dissociation pathways observed involve N-glycosidic bond cleavage leading to competitive elimination of protonated or neutral uracil. The potential energy surfaces (PESs) for these N-glycosidic bond cleavage pathways are mapped out via electronic structure calculations for the mixture of 2,4-dihydroxy tautomers and O4 protonated conformers of [Urd+H](+) and [dUrd+H](+) populated in the experiments. The calculated activation energies (AEs) and heats of reaction (ΔHrxns) for N-glycosidic bond cleavage at both the B3LYP and MP2(full) levels of theory are compared to the measured values. The agreement between experiment and theory indicates that B3LYP provides better estimates of the energetics of the species along the PESs for N-glycosidic bond cleavage than MP2, and that the 2,4-dihydroxy tautomers, which are stabilized by strong hydrogen-bonding interactions, predominantly influence the observed threshold dissociation behavior of [Urd+H](+) and [dUrd+H](+). PMID:27536972

  19. Effects of vitamins, coenzymes and amino acids on reactions of homolytic cleavage of the O-glycoside bond in carbohydrates.

    PubMed

    Shadyro, O I; Kisel, R M; Vysotskii, V V; Edimecheva, I P

    2006-09-15

    It has been established that vitamins B1, K3 and C, coenzyme Q0 and amino acids cysteine and histidine effectively inhibit reactions of homolytic cleavage of the O-glycoside bond, which are responsible for the destruction of di- and polysaccharides on gamma-irradiation or the action of other reactive radical initiators. This effect was shown to originate from either oxidation or reduction of the radicals of carbohydrates undergoing destruction.

  20. Estimation of peptide N-Cα bond cleavage efficiency during MALDI-ISD using a cyclic peptide.

    PubMed

    Asakawa, Daiki; Smargiasso, Nicolas; De Pauw, Edwin

    2016-05-01

    Matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) induces N-Cα bond cleavage via hydrogen transfer from the matrix to the peptide backbone, which produces a c'/z• fragment pair. Subsequently, the z• generates z' and [z + matrix] fragments via further radical reactions because of the low stability of the z•. In the present study, we investigated MALDI-ISD of a cyclic peptide. The N-Cα bond cleavage in the cyclic peptide by MALDI-ISD produced the hydrogen-abundant peptide radical [M + 2H](+) • with a radical site on the α-carbon atom, which then reacted with the matrix to give [M + 3H](+) and [M + H + matrix](+) . For 1,5-diaminonaphthalene (1,5-DAN) adducts with z fragments, post-source decay of [M + H + 1,5-DAN](+) generated from the cyclic peptide showed predominant loss of an amino acid with 1,5-DAN. Additionally, MALDI-ISD with Fourier transform-ion cyclotron resonance mass spectrometry allowed for the detection of both [M + 3H](+) and [M + H](+) with two (13) C atoms. These results strongly suggested that [M + 3H](+) and [M + H + 1,5-DAN](+) were formed by N-Cα bond cleavage with further radical reactions. As a consequence, the cleavage efficiency of the N-Cα bond during MALDI-ISD could be estimated by the ratio of the intensity of [M + H](+) and [M + 3H](+) in the Fourier transform-ion cyclotron resonance spectrum. Because the reduction efficiency of a matrix for the cyclic peptide cyclo(Arg-Gly-Asp-D-Phe-Val) was correlated to its tendency to cleave the N-Cα bond in linear peptides, the present method could allow the evaluation of the efficiency of N-Cα bond cleavage for MALDI matrix development. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27194516

  1. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons.

    PubMed

    Bythell, Benjamin J; Suhai, Sándor; Somogyi, Arpád; Paizs, Béla

    2009-10-01

    The mobile proton model (Dongre, A. R., Jones, J. L., Somogyi, A. and Wysocki, V. H. J. Am. Chem. Soc. 1996, 118 , 8365-8374) of peptide fragmentation states that the ionizing protons play a critical role in the gas-phase fragmentation of protonated peptides upon collision-induced dissociation (CID). The model distinguishes two classes of peptide ions, those with or without easily mobilizable protons. For the former class mild excitation leads to proton transfer reactions which populate amide nitrogen protonation sites. This enables facile amide bond cleavage and thus the formation of b and y sequence ions. In contrast, the latter class of peptide ions contains strongly basic functionalities which sequester the ionizing protons, thereby often hindering formation of sequence ions. Here we describe the proton-driven amide bond cleavages necessary to produce b and y ions from peptide ions lacking easily mobilizable protons. We show that this important class of peptide ions fragments by different means from those with easily mobilizable protons. We present three new amide bond cleavage mechanisms which involve salt-bridge, anhydride, and imine enol intermediates, respectively. All three new mechanisms are less energetically demanding than the classical oxazolone b(n)-y(m) pathway. These mechanisms offer an explanation for the formation of b and y ions from peptide ions with sequestered ionizing protons which are routinely fragmented in large-scale proteomics experiments.

  2. Cu-catalyzed esterification reaction via aerobic oxygenation and C-C bond cleavage: an approach to α-ketoesters.

    PubMed

    Zhang, Chun; Feng, Peng; Jiao, Ning

    2013-10-01

    The Cu-catalyzed novel aerobic oxidative esterification reaction of 1,3-diones for the synthesis of α-ketoesters has been developed. This method combines C-C σ-bond cleavage, dioxygen activation and oxidative C-H bond functionalization, as well as provides a practical, neutral, and mild synthetic approach to α-ketoesters which are important units in many biologically active compounds and useful precursors in a variety of functional group transformations. A plausible radical process is proposed on the basis of mechanistic studies.

  3. Pathways and kinetics of methane and ethane C-H bond cleavage on PdO(101).

    PubMed

    Antony, Abbin; Asthagiri, Aravind; Weaver, Jason F

    2013-09-14

    We used conventional density functional theory (DFT) and dispersion-corrected DFT (DFT-D3) calculations to investigate C-H bond activation pathways for methane and ethane σ-complexes adsorbed on the PdO(101) surface. The DFT-D3 calculations predict lower and more physically realistic values of the apparent C-H bond cleavage barriers, which are defined relative to the gas-phase energy level, while giving nearly the same energy differences between stationary states as predicted by conventional DFT for a given reaction pathway. For the stable CH4 η(2) complex on PdO(101), DFT-D3 predicts that the C-H bond cleavage barriers are 55.2 and 16.1 kJ∕mol relative to the initial molecularly adsorbed and gaseous states, respectively. We also predict that dehydrogenation of the resulting CH3 groups and conversion to CH3O species are significantly more energetically demanding than the initial C-H bond activation of CH4 on PdO(101). Using DFT-D3, we find that an η(2) and an η(1) ethane complex can undergo C-H bond cleavage on PdO(101) with intrinsic energy barriers that are similar to that of the methane complex, but with apparent barriers that are close to zero. We also investigated the dissociation kinetics of methane and ethane on PdO(101) using microkinetic models, with parameters derived from the DFT-D3 relaxed structures. We find that a so-called 3N - 2 model, in which two frustrated adsorbate motions are treated as free motions, predicts desorption pre-factors and alkane dissociation probabilities that agree well with estimates obtained from the literature. The microkinetic simulations demonstrate the importance of accurately describing entropic contributions in kinetic simulations of alkane dissociative chemisorption.

  4. Pathways and kinetics of methane and ethane C-H bond cleavage on PdO(101)

    NASA Astrophysics Data System (ADS)

    Antony, Abbin; Asthagiri, Aravind; Weaver, Jason F.

    2013-09-01

    We used conventional density functional theory (DFT) and dispersion-corrected DFT (DFT-D3) calculations to investigate C-H bond activation pathways for methane and ethane σ-complexes adsorbed on the PdO(101) surface. The DFT-D3 calculations predict lower and more physically realistic values of the apparent C-H bond cleavage barriers, which are defined relative to the gas-phase energy level, while giving nearly the same energy differences between stationary states as predicted by conventional DFT for a given reaction pathway. For the stable CH4 η2 complex on PdO(101), DFT-D3 predicts that the C-H bond cleavage barriers are 55.2 and 16.1 kJ/mol relative to the initial molecularly adsorbed and gaseous states, respectively. We also predict that dehydrogenation of the resulting CH3 groups and conversion to CH3O species are significantly more energetically demanding than the initial C-H bond activation of CH4 on PdO(101). Using DFT-D3, we find that an η2 and an η1 ethane complex can undergo C-H bond cleavage on PdO(101) with intrinsic energy barriers that are similar to that of the methane complex, but with apparent barriers that are close to zero. We also investigated the dissociation kinetics of methane and ethane on PdO(101) using microkinetic models, with parameters derived from the DFT-D3 relaxed structures. We find that a so-called 3N - 2 model, in which two frustrated adsorbate motions are treated as free motions, predicts desorption pre-factors and alkane dissociation probabilities that agree well with estimates obtained from the literature. The microkinetic simulations demonstrate the importance of accurately describing entropic contributions in kinetic simulations of alkane dissociative chemisorption.

  5. Pathways and kinetics of methane and ethane C-H bond cleavage on PdO(101).

    PubMed

    Antony, Abbin; Asthagiri, Aravind; Weaver, Jason F

    2013-09-14

    We used conventional density functional theory (DFT) and dispersion-corrected DFT (DFT-D3) calculations to investigate C-H bond activation pathways for methane and ethane σ-complexes adsorbed on the PdO(101) surface. The DFT-D3 calculations predict lower and more physically realistic values of the apparent C-H bond cleavage barriers, which are defined relative to the gas-phase energy level, while giving nearly the same energy differences between stationary states as predicted by conventional DFT for a given reaction pathway. For the stable CH4 η(2) complex on PdO(101), DFT-D3 predicts that the C-H bond cleavage barriers are 55.2 and 16.1 kJ∕mol relative to the initial molecularly adsorbed and gaseous states, respectively. We also predict that dehydrogenation of the resulting CH3 groups and conversion to CH3O species are significantly more energetically demanding than the initial C-H bond activation of CH4 on PdO(101). Using DFT-D3, we find that an η(2) and an η(1) ethane complex can undergo C-H bond cleavage on PdO(101) with intrinsic energy barriers that are similar to that of the methane complex, but with apparent barriers that are close to zero. We also investigated the dissociation kinetics of methane and ethane on PdO(101) using microkinetic models, with parameters derived from the DFT-D3 relaxed structures. We find that a so-called 3N - 2 model, in which two frustrated adsorbate motions are treated as free motions, predicts desorption pre-factors and alkane dissociation probabilities that agree well with estimates obtained from the literature. The microkinetic simulations demonstrate the importance of accurately describing entropic contributions in kinetic simulations of alkane dissociative chemisorption. PMID:24050357

  6. Carbon-carbon bond cleavage of 1,2-hydroxy ethers b7 vanadium(V) dipicolinate complexes

    SciTech Connect

    Hanson, Susan K; Gordon, John C; Thorn, David L; Scott, Brian L; Baker, R Tom

    2009-01-01

    The development of alternatives to current petroleum-based fuels and chemicals is becoming increasingly important due to concerns over climate change, growing world energy demand, and energy security issues. Using non-food derived biomass to produce renewable feedstocks for chemicals and fuels is a particularly attractive possibility. However, the majority of biomass is in the form of lignocellulose, which is often not fully utilized due to difficulties associated with breaking down both lignin and cellulose. Recently, a number of methods have been reported to transform cellulose directly into more valuable materials such as glucose, sorbitol, 5-(chloromethyl)furfural, and ethylene glycol. Less progress has been made with selective transformations of lignin, which is typically treated in paper and forest industries by kraft pulping (sodium hydroxide/sodium sulfide) or incineration. Our group has begun investigating aerobic oxidative C-C bond cleavage catalyzed by dipicolinate vanadium complexes, with the idea that a selective C-C cleavage reaction of this type could be used to produce valuable chemicals or intermediates from cellulose or lignin. Lignin is a randomized polymer containing methoxylated phenoxy propanol units. A number of different linkages occur naturally; one of the most prevalent is the {beta}-O-4 linkage shown in Figure 1, containing a C-C bond with 1,2-hydroxy ether substituents. While the oxidative C-C bond cleavage of 1,2-diols has been reported for a number of metals, including vanadium, iron, manganese, ruthenium, and polyoxometalate complexes, C-C bond cleavage of 1,2-hydroxy ethers is much less common. We report herein vanadium-mediated cleavage of C-C bonds between alcohol and ether functionalities in several lignin model complexes. In order to explore the scope and potential of vanadium complexes to effect oxidative C-C bond cleavage in 1,2-hydroxy ethers, we examined the reactivity of the lignin model complexes pinacol monomethyl ether (A

  7. Carbon kinetic isotope effects at natural abundances during iron-catalyzed photolytic cleavage of Csbnd C bonds in aqueous phase α,ω-dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Irei, Satoshi

    2016-09-01

    Carbon kinetic isotope effects (KIEs) at natural abundances during photolysis of Fe3+-oxalato, malonato, and succinato complexes in aqueous solution were studied to identify the Csbnd C bond cleaving mechanism of Fe3+-oxalato complexes under sunlight irradiation. Observed overall KIEs were 5.9‰, 11.5‰, and 8.4‰, respectively. This variation is inconsistent with secondary carbon KIEs for the Fesbnd O bond cleavage, but consistent with primary carbon KIEs for sequential cleavage of Fesbnd O and Csbnd C bonds. Position-specific probability of 13C content estimated KIEs of 5.9‰, 17.2‰, and 17‰ for 12Csbnd 13C bond cleavage, respectively, indicating the different KIEs for carboxyl-carboxyl and methyl-carboxyl cleavage.

  8. Electron Transfer Dissociation Reveals Changes in the Cleavage Frequencies of Backbone Bonds Distant to Amide-to-Ester Substitutions in Polypeptides

    NASA Astrophysics Data System (ADS)

    Hansen, Thomas A.; Jung, Hye R.; Kjeldsen, Frank

    2011-11-01

    Interrogation of electron transfer dissociation (ETD) mass spectra of peptide amide-to-ester backbone bond substituted analogues (depsipeptides) reveals substantial differences in the entire backbone cleavage frequencies. It is suggested that the point permutation of backbone bonds leads to changes in the predominant ion structures by removal/weakening of specific hydrogen bonding. ETD responds to these changes by redistributing the cleavage frequencies of the peptide backbone bonds. In comparison, no distinction between depsi-/peptide was observed using collision-activated dissociation, which is consistent with a general unfolding and elimination of structural information of these ions. These results should encourage further exploration of depsipeptides for gas-phase structural characterization.

  9. Solvent influence on cellulose 1,4-β-glycosidic bond cleavage: a molecular dynamics and metadynamics study.

    PubMed

    Loerbroks, Claudia; Boulanger, Eliot; Thiel, Walter

    2015-03-27

    We explore the influence of two solvents, namely water and the ionic liquid 1-ethyl-3-methylimidazolium acetate (EmimAc), on the conformations of two cellulose models (cellobiose and a chain of 40 glucose units) and the solvent impact on glycosidic bond cleavage by acid hydrolysis by using molecular dynamics and metadynamics simulations. We investigate the rotation around the glycosidic bond and ring puckering, as well as the anomeric effect and hydrogen bonds, in order to gauge the effect on the hydrolysis mechanism. We find that EmimAc eases hydrolysis through stronger solvent-cellulose interactions, which break structural and electronic barriers to hydrolysis. Our results indicate that hydrolysis in cellulose chains should start from the ends and not in the centre of the chain, which is less accessible to solvent. PMID:25689773

  10. Anion Effects in Oxidative Aliphatic Carbon-Carbon Bond Cleavage Reactions of Cu(II) Chlorodiketonate Complexes.

    PubMed

    Saraf, Sushma L; Miłaczewska, Anna; Borowski, Tomasz; James, Christopher D; Tierney, David L; Popova, Marina; Arif, Atta M; Berreau, Lisa M

    2016-07-18

    Aliphatic oxidative carbon-carbon bond cleavage reactions involving Cu(II) catalysts and O2 as the terminal oxidant are of significant current interest. However, little is currently known regarding how the nature of the Cu(II) catalyst, including the anions present, influence the reaction with O2. In previous work, we found that exposure of the Cu(II) chlorodiketonate complex [(6-Ph2TPA)Cu(PhC(O)CClC(O)Ph)]ClO4 (1) to O2 results in oxidative aliphatic carbon-carbon bond cleavage within the diketonate unit, leading to the formation of benzoic acid, benzoic anhydride, benzil, and 1,3-diphenylpropanedione as organic products. Kinetic studies of this reaction revealed a slow induction phase followed by a rapid decay of the absorption features of 1. Notably, the induction phase is not present when the reaction is performed in the presence of a catalytic amount of chloride anion. In the studies presented herein, a combination of spectroscopic (UV-vis, EPR) and density functional theory (DFT) methods have been used to examine the chloride and benzoate ion binding properties of 1 under anaerobic conditions. These studies provide evidence that each anion coordinates in an axial position of the Cu(II) center. DFT studies reveal that the presence of the anion in the Cu(II) coordination sphere decreases the barrier for O2 activation and the formation of a Cu(II)-peroxo species. Notably, the chloride anion more effectively lowers the barrier associated with O-O bond cleavage. Thus, the nature of the anion plays an important role in determining the rate of reaction of the diketonate complex with O2. The same type of anion effects were observed in the O2 reactivity of the simple Cu(II)-bipyridine complex [(bpy)Cu(PhC(O)C(Cl)C(O)Ph)ClO4] (3). PMID:27377103

  11. Protocols for the selective cleavage of carbon-sulfur bonds in coal. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Bausch, M.

    1992-08-01

    Planned in this project ``Protocols for the Selective Cleavage of Carbon-Sulfur Bonds in Coal`` are reactions in which organic free radicals and/or organic anions are allowed to react with physically cleaned Illinois coal and sulfur-containing coal model compounds. This quarterly report contains the results of photooxidation of coal model compounds, namely, benzyl phenyl sulfide, phenylsulfide, dibenzothiophene, benzothiophene and thiophene, in the presence of 9,10-dicyanoanthracene or anthracene. Quantitative product analysis for the matrix of reactions whereby the coal model compounds are subjected to various solvents and temperature changes is presented in this quarterly report. Further quantitative analyses of the products are being undertaken.

  12. Selective Oxidative Decarbonylative Cleavage of Unstrained C(sp(3))-C(sp(2)) Bond: Synthesis of Substituted Benzoxazinones.

    PubMed

    Verma, Ajay; Kumar, Sangit

    2016-09-01

    A transition metal (TM)-free practical synthesis of biologically relevant benzoxazinones has been established via a selective oxidative decarbonylative cleavage of an unstrained C(sp(3))-C(sp(2)) bond employing iodine, sodium bicarbonate, and (t)butyl hydroperoxide in DMSO at 95 °C. Control experiments and Density Functional Theory (DFT) calculations suggest that the reaction involves a [1,5]H shift and extrusion of CO gas as the key steps. The extrusion of CO has also been established using PMA-PdCl2. PMID:27549986

  13. Lanthanide-Catalyzed Reversible Alkynyl Exchange by Carbon-Carbon Single-Bond Cleavage Assisted by a Secondary Amino Group.

    PubMed

    Shao, Yinlin; Zhang, Fangjun; Zhang, Jie; Zhou, Xigeng

    2016-09-12

    Lanthanide-catalyzed alkynyl exchange through C-C single-bond cleavage assisted by a secondary amino group is reported. A lanthanide amido complex is proposed as a key intermediate, which undergoes unprecedented reversible β-alkynyl elimination followed by alkynyl exchange and imine reinsertion. The in situ homo- and cross-dimerization of the liberated alkyne can serve as an additional driving force to shift the metathesis equilibrium to completion. This reaction is formally complementary to conventional alkyne metathesis and allows the selective transformation of internal propargylamines into those bearing different substituents on the alkyne terminus in moderate to excellent yields under operationally simple reaction conditions. PMID:27510403

  14. Transition metal-catalyzed C-C bond formation via C-S bond cleavage: an overview.

    PubMed

    Modha, Sachin G; Mehta, Vaibhav P; Van der Eycken, Erik V

    2013-06-21

    Transition metal-catalyzed C-C bond formations have been well studied over the last four decades. An improved mechanistic understanding of such reactions has helped chemists to develop further improvements, modifications and even new reactions. In the area of transition metal-catalyzed cross-coupling reactions the C-S bond cleaving reactions have attracted a lot of attention in the last decade as they provide a good alternative to the use of organo-halide reagents in traditional cross-coupling reactions. The availability of a wide range of organo-sulfur species provides the opportunity for developing different transformations for the synthesis of interesting organic compounds. This tutorial review focuses on recent examples of the transition metal-catalyzed C-C bond forming reactions using organo-sulfur species.

  15. Hydrogen-bonding effects on the reactivity of [X-Fe(III)-O-Fe(IV)═O] (X = OH, F) complexes toward C-H bond cleavage.

    PubMed

    Xue, Genqiang; Geng, Caiyun; Ye, Shengfa; Fiedler, Adam T; Neese, Frank; Que, Lawrence

    2013-04-01

    Complexes 1-OH and 1-F are related complexes that share similar [X-Fe(III)-O-Fe(IV)═O](3+) core structures with a total spin S of ½, which arises from antiferromagnetic coupling of an S = 5/2 Fe(III)-X site and an S = 2 Fe(IV)═O site. EXAFS analysis shows that 1-F has a nearly linear Fe(III)-O-Fe(IV) core compared to that of 1-OH, which has an Fe-O-Fe angle of ~130° due to the presence of a hydrogen bond between the hydroxo and oxo groups. Both complexes are at least 1000-fold more reactive at C-H bond cleavage than 2, a related complex with a [OH-Fe(IV)-O-Fe(IV)═O](4+) core having individual S = 1 Fe(IV) units. Interestingly, 1-F is 10-fold more reactive than 1-OH. This raises an interesting question about what gives rise to the reactivity difference. DFT calculations comparing 1-OH and 1-F strongly suggest that the H-bond in 1-OH does not significantly change the electrophilicity of the reactive Fe(IV)═O unit and that the lower reactivity of 1-OH arises from the additional activation barrier required to break its H-bond in the course of H-atom transfer by the oxoiron(IV) moiety.

  16. Mechanisms of Selective Cleavage of C-O Bonds in Di-aryl Ethers in Aqueous Phase

    SciTech Connect

    He, Jiayue; Zhao, Chen; Mei, Donghai; Lercher, Johannes A.

    2014-01-02

    A novel route for cleaving the C-O aryl ether bonds of p-substituted H-, CH3-, and OH- diphenyl ethers has been explored over Ni/SiO2 catalysts at very mild conditions. The C-O bond of diphenyl ether is cleaved by parallel hydrogenolysis and hydrolysis (hydrogenolysis combined with HO* addition) on Ni. The rates as a function of H2 pressure from 0 to 10 MPa indicate that the rate-determining step is the C-O bond cleavage on Ni. H* atoms compete with the organic reactant for adsorption leading to a maximum in the rate with increasing H2 pressure. In contrast to diphenyl ether, hydrogenolysis is the exclusive route for cleaving an ether C-O bond of di-p-tolyl ether to form p-cresol and toluene. 4,4'-dihydroxydiphenyl ether undergoes sequential surface hydrogenolysis, first to phenol and HOC6H4O* (adsorbed), which is then cleaved to phenol (C6H5O* with added H*) and H2O (O* with two added H*) in a second step. Density function theory supports the operation of this pathway. Notably, addition of H* to HOC6H4O* is less favorable than a further hydrogenolytic C-O bond cleavage. The TOFs of three aryl ethers with Ni/SiO2 in water followed the order 4,4'-dihydroxydiphenyl ether (69 h-1) > diphenyl ether (26 h-1) > di-p-tolyl ether (1.3 h-1), in line with the increasing apparent activation energies, ranging from 93 kJ∙mol-1 (4,4'-dihydroxydiphenyl ether) < diphenyl ether (98 kJ∙mol-1) to di-p-tolyl ether (105 kJ∙mol-1). D.M. thanks the support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R

  17. The Mukaiyama aldol reaction of in situ generated nitrosocarbonyl compounds: selective C-N bond formation and N-O bond cleavage in one-pot for α-amination of ketones.

    PubMed

    Ramakrishna, Isai; Grandhi, Gowri Sankar; Sahoo, Harekrishna; Baidya, Mahiuddin

    2015-09-21

    A practical protocol for the α-amination of ketones (up to 99% yield) has been developed via the Mukaiyama aldol reaction of in situ generated nitrosocarbonyl compounds. The reaction with silyl enol ethers having a disilane (-SiMe2TMS) backbone proceeded not only with perfect N-selectivity but concomitant N-O bond cleavage was also accomplished. Such a cascade of C-N bond formation and N-O bond cleavage in a single step was heretofore unknown in the field of nitrosocarbonyl chemistry. A very high diastereoselectivity (dr = 19 : 1) was accomplished using (-)-menthol derived chiral nitrosocarbonyl compounds. PMID:26245149

  18. Structural Basis of Stereospecificity in the Bacterial Enzymatic Cleavage of β-Aryl Ether Bonds in Lignin.

    PubMed

    Helmich, Kate E; Pereira, Jose Henrique; Gall, Daniel L; Heins, Richard A; McAndrew, Ryan P; Bingman, Craig; Deng, Kai; Holland, Keefe C; Noguera, Daniel R; Simmons, Blake A; Sale, Kenneth L; Ralph, John; Donohue, Timothy J; Adams, Paul D; Phillips, George N

    2016-03-01

    Lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, we present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50-70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.

  19. Structural Basis of Stereospecificity in the Bacterial Enzymatic Cleavage of β-Aryl Ether Bonds in Lignin*

    PubMed Central

    Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.; Heins, Richard A.; McAndrew, Ryan P.; Bingman, Craig; Deng, Kai; Holland, Keefe C.; Noguera, Daniel R.; Simmons, Blake A.; Sale, Kenneth L.; Ralph, John; Donohue, Timothy J.; Adams, Paul D.; Phillips, George N.

    2016-01-01

    Lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, we present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin. PMID:26637355

  20. Structural basis of stereospecificity in the bacterial enzymatic cleavage of β-aryl ether bonds in lignin

    DOE PAGESBeta

    Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.; Heins, Richard A.; McAndrew, Ryan P.; Bingman, Craig; Deng, Kai; Holland, Keefe C.; Noguera, Daniel R.; Simmons, Blake A.; et al

    2015-12-04

    Here, lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, wemore » present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.« less

  1. Structural basis of stereospecificity in the bacterial enzymatic cleavage of β-aryl ether bonds in lignin

    SciTech Connect

    Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.; Heins, Richard A.; McAndrew, Ryan P.; Bingman, Craig; Deng, Kai; Holland, Keefe C.; Noguera, Daniel R.; Simmons, Blake A.; Sale, Kenneth L.; Ralph, John; Donohue, Timothy J.; Adams, Paul D.; Phillips, George N.

    2015-12-04

    Here, lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, we present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.

  2. Enzymatic Cleavage of Glycosidic Bonds: Strategies on How to Set Up and Control a QM/MM Metadynamics Simulation.

    PubMed

    Raich, L; Nin-Hill, A; Ardèvol, A; Rovira, C

    2016-01-01

    Carbohydrates play crucial roles in many biological processes, from cell-cell adhesion to chemical signaling. Their complexity and diversity, related to α/β anomeric configuration, ring substituents, and conformational variations, require a diverse set of enzymes for their processing. Among them, glycoside hydrolases (GHs) are responsible for the hydrolysis of one of the strongest bonds in nature: the glycosidic bond. These highly specialized biological catalysts select particular conformations their carbohydrate substrates to enhance catalysis. The evolution of this conformation during the reaction of glycosidic bond cleavage, known as the conformational catalytic itinerary, is of fundamental interest in glycobiology, with impact on inhibitor and drug design. Here we review some of the aspects and the main strategies one needs to take into account when simulating a reaction in a GH enzyme using QM/MM metadynamics. Several specific aspects are highlighted, from the importance of the distortion of the substrate at the Michaelis complex to the variable control during the metadynamics simulation or the analysis of the reaction mechanism and conformational itinerary. The increasing speed of computer power and methodological advances have added a vital tool to the study of GH mechanisms, as shown here and recent reviews. It is hoped that this chapter will serve as a first guide for those attempting to perform a metadynamics simulation of these relevant and fascinating enzymes. PMID:27498638

  3. Oxygen switch in visible-light photoredox catalysis: radical additions and cyclizations and unexpected C-C-bond cleavage reactions.

    PubMed

    Zhu, Shaoqun; Das, Arindam; Bui, Lan; Zhou, Hanjun; Curran, Dennis P; Rueping, Magnus

    2013-02-01

    Visible light photoredox catalyzed inter- and intramolecular C-H functionalization reactions of tertiary amines have been developed. Oxygen was found to act as chemical switch to trigger two different reaction pathways and to obtain two different types of products from the same starting material. In the absence of oxygen, the intermolecular addition of N,N-dimethyl-anilines to electron-deficient alkenes provided γ-amino nitriles in good to high yields. In the presence of oxygen, a radical addition/cyclization reaction occurred which resulted in the formation of tetrahydroquinoline derivatives in good yields under mild reaction conditions. The intramolecular version of the radical addition led to the unexpected formation of indole-3-carboxaldehyde derivatives. Mechanistic investigations of this reaction cascade uncovered a new photoredox catalyzed C-C bond cleavage reaction.

  4. Cα-C bond cleavage of the peptide backbone in MALDI in-source decay using salicylic acid derivative matrices.

    PubMed

    Asakawa, Daiki; Takayama, Mitsuo

    2011-07-01

    The use of 5-formylsalicylic acid (5-FSA) and 5-nitrosalicylic acid (5-NSA) as novel matrices for in-source decay (ISD) of peptides in matrix-assisted laser desorption/ionization (MALDI) is described. The use of 5-FSA and 5-NSA generated a- and x-series ions accompanied by oxidized peptides [M - 2 H + H](+). The preferential formation of a- and x-series ions was found to be dependent on the hydrogen-accepting ability of matrix. The hydrogen-accepting ability estimated from the ratio of signal intensity of oxidized product [M - 2 H + H](+) to that of non-oxidized protonated molecule [M + H](+) of peptide was of the order 5-NSA > 5-FSA > 5-aminosalicylic acid (5-ASA) ≒ 2,5-dihydroxyl benzoic acid (2,5-DHB) ≒ 0. The results suggest that the hydrogen transfer reaction from peptide to 5-FSA and 5-NSA occurs during the MALDI-ISD processes. The hydrogen abstraction from peptides results in the formation of oxidized peptides containing a radical site on the amide nitrogen with subsequent radical-induced cleavage at the Cα-C bond, leading to the formation of a- and x-series ions. The most significant feature of MALDI-ISD with 5-FSA and 5-NSA is the specific cleavage of the Cα-C bond of the peptide backbone without degradation of side-chain and post-translational modifications (PTM). The matrix provides a useful complementary method to conventional MALDI-ISD for amino acid sequencing and site localization of PTMs in peptides.

  5. Protocols for the selective cleavage of carbon-sulfur bonds in coal. Final technical report, September 1, 1992--December 31, 1993

    SciTech Connect

    Bausch, M.

    1993-12-31

    Results of research pertaining to chemical reactions that aim to selectively cleave C-S bonds in model compounds as well as Illinois coal are summarized. Chemical reactions that result in carbon-sulfur bond cleavage are an essential aspect of any protocol designed to remove organic sulfur from coal. In the second year of the project ``Protocols for the Selective Cleavage of Carbon-Sulfur Bonds in Coal`` investigations of reactions in which organic sulfur-containing coal model compounds are subjected to different conditions of temperature, solvent mixtures, reagents, and radiation have been completed. A series of reactions have been undertaken in which physically cleaned Illinois coal has been subjected to many of the same reaction conditions that were shown, via the use of model sulfides, to result in substantial C-S bond cleavage and or sulfur oxidation. Therefore, summarized in this final report are results of the investigations of the photooxidation reactions of coal model sulfones and sulfides; the photolytic desulfurization of coal; and various other topics, including a summary of endeavors aimed at initiating C-S bond cleavage reactions using oxidation/chlorination/desulfurization protocols, and various tellurium reagents.

  6. Protocols for the selective cleavage of carbon-sulfur bonds in coal. Interim final technical report, September 1, 1992--August 31, 1993

    SciTech Connect

    Bausch, M.

    1993-12-31

    This report presents results of research pertaining to chemical reactions that aim to selectively cleave C-S bonds in model compounds as well as Illinois coal. Chemical reactions that result in carbon-sulfur bond cleavage are an essential aspect of any protocol designed to remove organic sulfur from coal. In the second year of the project {open_quotes}Protocols for the Selective Cleavage of Carbon-Sulfur Bonds in Coal, the author has completed investigations of reactions in which organic sulfur-containing coal model compounds are subjected to different conditions of temperature, solvent mixtures, reagents, and radiation. He has also undertaken a series of reactions in which physically cleaned Illinois coal has been subjected to many of the same reaction conditions that were shown, via the use of model sulfides, to result in substantial C-S bond cleavage and or sulfur oxidation. Therefore, summarized in this interim final report are results of the investigations of the photooxidation reactions of coal model sulfones and sulfides; the photolytic desulfurization of coal; and various other topics, including a summary of the endeavors aimed at initiating C-S bond cleavage reactions using oxidation/chlorination/desulfurization protocols, and various tellurium reagents. Important experiments remain to be completed on this project; therefore, efforts in these areas will continue through the end of calendar year 1993.

  7. The Mechanism of N-N Double Bond Cleavage by an Iron(II) Hydride Complex.

    PubMed

    Bellows, Sarina M; Arnet, Nicholas A; Gurubasavaraj, Prabhuodeyara M; Brennessel, William W; Bill, Eckhard; Cundari, Thomas R; Holland, Patrick L

    2016-09-21

    The use of hydride species for substrate reductions avoids strong reductants, and may enable nitrogenase to reduce multiple bonds without unreasonably low redox potentials. In this work, we explore the N═N bond cleaving ability of a high-spin iron(II) hydride dimer with concomitant release of H2. Specifically, this diiron(II) complex reacts with azobenzene (PhN═NPh) to perform a four-electron reduction, where two electrons come from H2 reductive elimination and the other two come from iron oxidation. The rate law of the H2 releasing reaction indicates that diazene binding occurs prior to H2 elimination, and the negative entropy of activation and inverse kinetic isotope effect indicate that H-H bond formation is the rate-limiting step. Thus, substrate binding causes reductive elimination of H2 that formally reduces the metals, and the metals use the additional two electrons to cleave the N-N multiple bond. PMID:27598037

  8. Discovery of a novel enzyme, isonitrile hydratase, involved in nitrogen-carbon triple bond cleavage.

    PubMed

    Goda, M; Hashimoto, Y; Shimizu, S; Kobayashi, M

    2001-06-29

    Isonitrile containing an N triple bond C triple bond was degraded by microorganism sp. N19-2, which was isolated from soil through a 2-month acclimatization culture in the presence of this compound. The isonitrile-degrading microorganism was identified as Pseudomonas putida. The microbial degradation was found to proceed through an enzymatic reaction, the isonitrile being hydrated to the corresponding N-substituted formamide. The enzyme, named isonitrile hydratase, was purified and characterized. The native enzyme had a molecular mass of about 59 kDa and consisted of two identical subunits. The enzyme stoichiometrically catalyzed the hydration of cyclohexyl isocyanide (an isonitrile) to N-cyclohexylformamide, but no formation of other compounds was detected. The apparent K(m) value for cyclohexyl isocyanide was 16.2 mm. Although the enzyme acted on various isonitriles, no nitriles or amides were accepted as substrates.

  9. Vibrational state controlled bond cleavage in the photodissociation of isocyanic acid (HNCO)

    SciTech Connect

    Brown, S.S.; Berghout, H.L.; Crim, F.F.

    1995-06-01

    We report the bond selected photodissociation of isocyanic acid (HNCO). This molecule dissociates from its first excited singlet state, breaking either the N--H bond to form H+NCO ({ital X} {sup 2}{Pi}) or the C--N bond to form NH ({ital a} {sup 1}{Delta})+CO ({sup 1}{summation}{sup +}). The threshold for production of NH lies about 3900 cm{sup {minus}1} above that of NCO, and we detect both of these channels by laser induced fluorescence on either the NH or the NCO fragment. Dissociating the molecule out of a vibrationally excited state on its ground electronic surface containing four quanta of N--H stretch (4{nu}{sub 1}) enhances the efficiency of the NCO channel over the NH channel by a factor of at least 20. We reach this conclusion by comparing the results of such a vibrationally mediated photodissociation experiment to those from a conventional single photon dissociation at the same total energy (about 1000 cm{sup {minus}1} above the threshold for the NH channel). Our estimate of the branching ratio in the one photon dissociation at this energy is roughly {Phi}{sub NCO}/{Phi}{sub NH}{approx}20, and it grows to {Phi}{sub NCO}/{Phi}{sub NH}{ge}400 in the vibrationally mediated photodissociation.

  10. Ionic S(N)i-Si Nucleophilic Substitution in N-Methylaniline-Induced Si-Si Bond Cleavages of Si2Cl6.

    PubMed

    Zhang, Jie; Xie, Ju; Lee, Myong Euy; Zhang, Lin; Zuo, Yujing; Feng, Shengyu

    2016-03-24

    N-Methylaniline-induced Si-Si bond cleavage of Si2Cl6 has been theoretically studied. All calculations were performed by using DFT at the MPWB1K/6-311++G(3df,2p)//MPWB1K/6-31+G(d,p) levels. An ionic SN i-Si nucleophilic substitution mechanism, which is a newly found nucleophilic substitution in silicon-containing compounds, is proposed in the N-methylaniline-induced Si-Si bond cleavage in Si2Cl6. Unlike general S(N)i-Si nucleophilic substitutions that go through a pentacoordinated silicon transition state, ionic nucleophilic substitution goes through a tetracoordinated silicon transition state, in which the Si-Si bond is broken and siliconium ions are formed. Special cleavage of the Si-Si bond is presumably due to the good bonding strength between Si and N atoms, which leads to polarization of the Si-Si bond and eventually to heterolytic cleavage. Calculation results show that, in excess N-methylaniline, the final products of the reaction, including (NMePh)(3-n) SiHCl(n) (n=0-2) and (NMePh)(4-n) SiCl(n) (n=2-3), are the Si-Si cleavage products of Si2Cl6 and the corresponding amination products of the former. The ionic S(N)i-Si nucleophilic substitution mechanism can also be employed to describe the amination of chlorosilane by N-methylaniline. The suggested mechanisms are consistent with experimental data.

  11. Unexpected cyclization of tritylamines promoted by copper salt through C-H and C-N bond cleavages to produce acridine derivatives.

    PubMed

    Morioka, Ryosuke; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2014-09-26

    Herein, we demonstrate that tritylamines undergo an unprecedented copper-mediated cyclization involving the cleavages of two C-H bonds and one C-N bond to give 9-arylacridine derivatives. This kind of acridines is of interest due to their biological properties and their unique optical and electro- and photochemical properties. Some of obtained acridine derivatives exhibit intense fluorescence in the solid state. PMID:25196267

  12. Characterization of carbon-sulfur bond cleavage by axenic and mixed cultures of Rhodococcus rhodochrous IGTS8

    SciTech Connect

    Kayser, K.J.; Bielaga, B.A.; Jackowski, K.; Oduson, O.; Kilbane, J. II

    1992-12-31

    Growth assays reveal that Rhodococcus rhodochrous IGTS8 can utilize a wide range of organosulfur compounds as the sole source of sulfur. Compounds that are utilized include thiophenes, sulfides, disulfides, mercaptans, sulfoxides, and sulfones. None of the organosulfur compounds tested can serve as a carbon source. A convenient spectrophotometric assay (Gibbs assay) based on the chromogenic reaction of 2,6-dichloroquinone-4-chloroimide with aromatic hydroxyl groups was developed and used in conjunction with GC/MS analysis to examine the kinetics of carbon-sulfur bond cleavage by axenic and mixed cell cultures of Rhodococcus rhodochrous IGTS8. The desulfurization trait is expressed at uniform levels during the mid-exponential phase, reaches a maximum during idiophase, and then declines in stationary-phase cells. Desulfurization rates for dibenzothiophene (DBT) range from 8 to 15 {mu}M of DBT/10{sup 12} cells/hour. Mixtures of genetically marked Rhodococcus rhodochrous IGTS8 and an organisms incapable of cleaning carbon-sulfur bonds in relevant test compounds, Enterobacter cloacae, were prepared in ratios that varied over six orders of magnitude. Growth studies revealed that Enterobacter cloacae was able to gain access to sulfur liberated from organosulfur compounds by IGTS8; however, cell-to-cell contact was required. These data also indicate that the desulfurization activity of IGTS8 cells in mixed cultures may be as much as 200-fold higher than in axenic cultures.

  13. Copper-Promoted Tandem Reaction of Azobenzenes with Allyl Bromides via N═N Bond Cleavage for the Regioselective Synthesis of Quinolines.

    PubMed

    Yi, Xiangli; Xi, Chanjuan

    2015-12-01

    A copper-promoted tandem reaction of a variety of azobenzenes and allyl bromides via N═N bond cleavage to regioselectively construct quinoline derivatives has been developed. The azobenzenes act as not only construction units but also an oxidant for quinoline formation.

  14. A cascade of acid-promoted C-O bond cleavage and redox reactions: from oxa-bridged benzazepines to benzazepinones.

    PubMed

    Zhang, Yuewei; Yang, Fengzhi; Zheng, Lianyou; Dang, Qun; Bai, Xu

    2014-12-01

    A sequence of C-O bond cleavage and redox reactions in oxa-bridged azepines was realized under acid promoted conditions. This protocol provides an atom-economical and straightforward approach to access benzo[b]azepin-5(2H)-ones in high yields. The formal synthesis of tolvaptan was achieved by exploiting this new transformation.

  15. Substituent-controlled selective synthesis of N-acyl 2-aminothiazoles by intramolecular Zwitterion-mediated C-N bond cleavage.

    PubMed

    Wang, Yang; Zhao, Fei; Chi, Yue; Zhang, Wen-Xiong; Xi, Zhenfeng

    2014-11-21

    The cleavage of C-N bonds is an interesting and challenging subject in modern organic synthesis. We have achieved the first zwitterion-controlled C-N bond cleavage in the MCR reaction among lithium alkynethiolates, bulky carbodiimides, and acid chlorides to construct N-acyl 2-aminothiazoles. This is a simple, highly efficient, and general method for the preparation of N-acyl 2-aminothiazoles with a broad range of substituents. The selective synthesis of N-acyl 2-aminothiazoles significantly depends on the steric hindrance of carbodiimides. The result is in striking contrast with our previous convergent reaction giving 5-acyl-2-iminothiazolines via 1,5-acyl migration. It is indeed interesting that the slight change of the substituents on the carbodiimides can completely switch the product structure. Experimental and theoretical results demonstrate the reason why the C-N bond cleavage in the present system is prior to the acyl migration. The intramolecular hydrogen relay via unprecedented Hofmann-type elimination is essential for this totally new zwitterion-controlled C-N bond cleavage.

  16. Copper-Promoted Tandem Reaction of Azobenzenes with Allyl Bromides via N═N Bond Cleavage for the Regioselective Synthesis of Quinolines.

    PubMed

    Yi, Xiangli; Xi, Chanjuan

    2015-12-01

    A copper-promoted tandem reaction of a variety of azobenzenes and allyl bromides via N═N bond cleavage to regioselectively construct quinoline derivatives has been developed. The azobenzenes act as not only construction units but also an oxidant for quinoline formation. PMID:26580318

  17. Ring Opening Reactions through C-O Bond Cleavage Uniquely Adding Chemical Functionality to Boron Subphthalocyanine.

    PubMed

    Bonnier, Catherine; Bender, Timothy P

    2015-01-01

    We are reporting the unexpected reaction between bromo-boron subphthalocyanine (Br-BsubPc) and THF, 1,4-dioxane or γ-butyrolactone that results in the ring opening of the solvent and its addition into the BsubPc moiety. Under heating, the endocyclic C-O bond of the solvent is cleaved and the corresponding bromoalkoxy-BsubPc derivative is obtained. These novel alkoxy-BsubPc derivatives have remaining alkyl-bromides suitable for further functionalization. The alkoxy-BsubPcs maintain the characteristic strongly absorption in visible spectrum and their fluorescence quantum yields.

  18. Metal-catalyzed C-C bond cleavage in alkanes: effects of methyl substitution on transition-state structures and stability.

    PubMed

    Flaherty, David W; Hibbitts, David D; Iglesia, Enrique

    2014-07-01

    Methyl substituents at C-C bonds influence hydrogenolysis rates and selectivities of acyclic and cyclic C2-C8 alkanes on Ir, Rh, Ru, and Pt catalysts. C-C cleavage transition states form via equilibrated dehydrogenation steps that replace several C-H bonds with C-metal bonds, desorb H atoms (H*) from saturated surfaces, and form λ H2(g) molecules. Activation enthalpies (ΔH(‡)) and entropies (ΔS(‡)) and λ values for (3)C-(x)C cleavage are larger than for (2)C-(2)C or (2)C-(1)C bonds, irrespective of the composition of metal clusters or the cyclic/acyclic structure of the reactants. (3)C-(x)C bonds cleave through α,β,γ- or α,β,γ,δ-bound transition states, as indicated by the agreement between measured activation entropies and those estimated for such structures using statistical mechanics. In contrast, less substituted C-C bonds involve α,β-bound species with each C atom bound to several surface atoms. These α,β configurations weaken C-C bonds through back-donation to antibonding orbitals, but such configurations cannot form with (3)C atoms, which have one C-H bond and thus can form only one C-M bond. (3)C-(x)C cleavage involves attachment of other C atoms, which requires endothermic C-H activation and H* desorption steps that lead to larger ΔH(‡) values but also larger ΔS(‡) values (by forming more H2(g)) than for (2)C-(2)C and (2)C-(1)C bonds, irrespective of alkane size (C2-C8) or cyclic/acyclic structure. These data and their mechanistic interpretation indicate that low temperatures and high H2 pressures favor cleavage of less substituted C-C bonds and form more highly branched products from cyclic and acyclic alkanes. Such interpretations and catalytic consequences of substitution seem also relevant to C-X cleavage (X = S, N, O) in desulfurization, denitrogenation, and deoxygenation reactions.

  19. Amide bond cleavage initiated by coordination with transition metal ions and tuned by an auxiliary ligand.

    PubMed

    Yang, Yongpo; Lu, Chunxin; Wang, Hailong; Liu, Xiaoming

    2016-06-21

    The reaction of ligand , N,N-bis(pyridin-2-ylmethyl)acetamide, with five transition metal salts, FeCl3·6H2O, CuCl2·2H2O, Cu(ClO4)2·6H2O, ZnCl2 and K2PtCl4/KI, produced five metal complexes, [(μ-O)(FeClL')(FeCl3)] (), [CuLCl2] (), [CuBPA(ClO4)(CHCN)] ClO4 (), [ZnLCl2] () and [PtLI2] (), where = 1-(2,4,5-tri(pyridin-2-yl)-3-(pyridin-2-ylmethyl)imidazolidin-1-yl)ethanone which formed in situ, and BPA = bis(pyridin-2-ylmethyl)amine. The ligand and complexes were characterized by a variety of spectroscopic techniques including X-ray single crystal diffraction where applicable. Depending on the metal ion and auxiliary ligand of the complex, the acetyl group of the ligand could be either intact or cleaved. When ferric chloride hexahydrate was used, the deacetylation proceeded even further and a novel heterocyclic compound () was formed in situ. A possible mechanism was proposed for the formation of the heterocyclic compound found in complex . Our results indicate that to cleave effectively an amide bond, it is essential for a metal centre to bind to the amide bond and the metal centre is of sufficient Lewis acidity.

  20. Promotion of exocyclic bond cleavages in the decomposition of 1,3-disilacyclobutane in the presence of a metal filament.

    PubMed

    Badran, I; Shi, Y J

    2015-01-29

    The primary decomposition of 1,3-disilacyclobutane (DSCB) on a tungsten filament and its secondary gas-phase reactions in a hot-wire chemical vapor deposition (CVD) reactor have been studied using laser ionization mass spectrometry. Under the collision-free conditions, DSCB decomposes on the W filament to produce H2 molecules with an activation energy of 43.6 ± 4.1 kJ·mol(-1). With the help of the isotope labeling and chemical trapping methods, the mechanistic details in the secondary gas-phase reactions important in the hot-wire CVD reactor setup have been examined. The dominant pathway has been demonstrated to be the insertion of the cyclic 1,3-disilacyclobut-1-ylidene, generated by exocyclic Si-H bond rupture, into the Si-H bond in DSCB to form 1,1'-bis(1,3-disilacyclobutane) (174 amu). The successful trapping of 1,3-disilacyclobut-1-ylidene by both 1,3-butadiene and trimethylsilane provides compelling evidence for the existence of this cyclic silylene species in the hot-wire CVD reactor with DSCB. Other reactions operating in the reactor include the DSCB cycloreversion to form silene and the ring opening of DSCB via 1,2-H shift to produce silene/methylsilylene and 1-methylsilene/silylene. The introduction of an additional Si atom in the four-membered ring monosilacyclobutane molecule has caused two major changes in the reaction chemistry assumed by DSCB: (1) The endocyclic cycloreversion reactions that dominate in the decomposition of monosilacyclobutane molecules only play a much less important role in the dissociation of DSCB; and (2) the exocyclic bond cleavages are promoted in DSCB due to the ring stabilization caused by the introduction of one additional Si atom.

  1. Mass Spectrometry and Theoretical Studies on N-C Bond Cleavages in the N-Sulfonylamidino Thymine Derivatives

    NASA Astrophysics Data System (ADS)

    Kobetić, Renata; Kazazić, Snježana; Kovačević, Borislav; Glasovac, Zoran; Krstulović, Luka; Bajić, Miroslav; Žinić, Biserka

    2015-05-01

    The reactivity of new biologically active thymine derivatives substituted with 2-(arylsulfonamidino)ethyl group at N1 and N3 position was investigated in the gas phase using CID experiments (ESI-MS/MS) and by density functional theory (DFT) calculations. Both derivatives show similar chemistry in the negative mode with a retro-Michael addition (Path A-) being the most abundant reaction channel, which correlate well with the fluoride induced retro-Michael addition observed in solution. The difference in the fragmentation of N-3 substituted thymine 5 and N-1 substituted thymine 1 in the positive mode relates to the preferred cleavage of the sulfonyl group ( m/z 155, Path B) in N-3 isomer and the formation of the acryl sulfonamidine 3 ( m/z 309) via Path A in N-1 isomer. Mechanistic studies of the cleavage reaction conducted by DFT calculations give the trend of the calculated activation energies that agree well with the experimental observations. A mechanism of the retro-Michael reaction was interpreted as a McLafferty type of fragmentation, which includes Hβ proton shift to one of the neighboring oxygen atoms in a 1,5-fashion inducing N1(N3)-Cα bond scission. This mechanism was found to be kinetically favorable over other tested mechanisms. Significant difference in the observed fragmentation pattern of N-1 and N-3 isomers proves the ESI-MS/MS technique as an excellent method for tracking the fate of similar sulfonamidine drugs. Also, the observed N-1 and/or N-3 thymine alkylation with in situ formed reactive acryl sulfonamidine 3 as a Michael acceptor may open interesting possibilities for the preparation of other N-3 substituted pyrimidines.

  2. Intermediate in the O−O Bond Cleavage Reaction of an Extradiol Dioxygenase

    SciTech Connect

    Kovaleva, Elena G.; Lipscomb, John D.

    2009-02-16

    The reactive oxy intermediate of the catalytic cycle of extradiol aromatic ring-cleaving dioxygenases is formed by binding the catecholic substrate and O{sub 2} in adjacent ligand positions of the active site metal [usually Fe(II)]. This intermediate and the following Fe(II)-alkylperoxo intermediate resulting from oxygen attack on the substrate have been previously characterized in a crystal of homoprotocatechuate 2,3-dioxygenase (HPCD). Here a subsequent intermediate in which the O-O bond is broken to yield a gem diol species is structurally characterized. This new intermediate is stabilized in the crystal by using the alternative substrate, 4-sulfonylcatechol, and the Glu323Leu variant of HPCD, which alters the crystal packing.

  3. Terminal titanium-ligand multiple bonds. Cleavages of C=O and C=S double bonds with Ti imido complexes.

    PubMed

    Hsu, Shih-Hsien; Chang, Jr-Chiuan; Lai, Chun-Liang; Hu, Ching-Han; Lee, Hon Man; Lee, Gene-Hsiang; Peng, Shie-Ming; Huang, Jui-Hsien

    2004-10-18

    Treatment of (t-)BuN=TiCl(2)Py(3) with 2 equiv lithium ketiminate compound, Li[OCMeCHCMeN(Ar)] (where Ar = 2,6-diisopropylphenyl), in toluene at room temperature gave (t-)BuN=Ti[OCMeCHCMeN(Ar)](2) (1) in high yield. The reaction of 1 with phenyl isocyanate at room-temperature resulted in imido ligand exchange producing PhN=Ti[OCMeCHCMeN(Ar)](2) (2). Compound 1 decomposed at 90 degrees C to form a terminal titanium oxo compound O=Ti[OCMeCHCMeN(Ar)](2) (3) and (t-)BuNHCMeCHCMeNAr (4). Also, the compound 3 could be obtained by reacting 1 with CO(2) under mild condition. Similarly, while 1 reacts with an excess of carbon disulfide, a novel terminal titanium sulfido compound S=Ti[OCMeCHCMeN(Ar)](2) (5) was formed via a C=S bond breaking reaction. A novel titanium isocyanate compound Ti[OCMeCHCMeN(Ar)](2)(NCO)(OEt) (6) was formed on heating 1 with 1 equiv of urethane, H(2)NCOOEt. Compounds 1-6 have been characterized by (1)H and (13)C NMR spectroscopies. The molecular structures of 1, 3, 5, and 6 were determined by single-crystal X-ray diffraction. A theoretical calculation predicted that the cleavage of the C-S double bonds for carbon disulfide with the Ti=N bond of compound 1 was estimated at ca. 21.8 kcal.mol(-1) exothermic.

  4. Carbon-nitrogen bond construction and carbon-oxygen double bond cleavage on a molecular titanium oxonitride: a combined experimental and computational study.

    PubMed

    Carbó, Jorge J; García-López, Diego; González-Del Moral, Octavio; Martín, Avelino; Mena, Miguel; Santamaría, Cristina

    2015-10-01

    New carbon-nitrogen bonds were formed on addition of isocyanide and ketone reagents to the oxonitride species [{Ti(η(5)-C5Me5)(μ-O)}3(μ3-N)] (1). Reaction of 1 with XylNC (Xyl = 2,6-Me2C6H3) in a 1:3 molar ratio at room temperature leads to compound [{Ti(η(5)-C5Me5)(μ-O)}3(μ-XylNCCNXyl)(NCNXyl)] (2), after the addition of the nitrido group to one coordinated isocyanide and the carbon-carbon coupling of the other two isocyanide molecules have taken place. Thermolysis of 2 gives [{Ti(η(5)-C5Me5)(μ-O)}3(XylNCNXyl)(CN)] (3) where the heterocumulene [XylNCCNXyl] moiety and the carbodiimido [NCNXyl] fragment in 2 have undergone net transformations. Similarly, tert-butyl isocyanide (tBuNC) reacts with the starting material 1 under mild conditions to give the paramagnetic derivative [{Ti3(η(5)-C5Me5)3(μ-O)3(NCNtBu)}2(μ-CN)2] (4). However, compound 1 provides the oxo ketimide derivatives [{Ti3(η(5)-C5Me5)3(μ-O)4}(NCRPh)] [R = Ph (5), p-Me(C6H4) (6), o-Me(C6H4) (7)] upon reaction with benzophenone, p-methylbenzophenone, and o-methylbenzophenone, respectively. In these reactions, the carbon-oxygen double bond is completely ruptured, leading to the formation of a carbon-nitrogen and two metal-oxygen bonds. The molecular structures of complexes 2-4, 6, and 7 were determined by single-crystal X-ray diffraction analyses. Density functional theory calculations were performed on the incorporation of isocyanides and ketones to the model complex [{Ti(η(5)-C5H5)(μ-O)}3(μ3-N)] (1H). The mechanism involves the coordination of the substrates to one of the titanium metal centers, followed by an isomerization to place those substrates cis with respect to the apical nitrogen of 1H, where carbon-nitrogen bond formation occurs with a low-energy barrier. In the case of aryl isocyanides, the resulting complex incorporates additional isocyanide molecules leading to a carbon-carbon coupling. With ketones, the high oxophilicity of titanium promotes the unusual total cleavage of the

  5. Carbon-nitrogen bond construction and carbon-oxygen double bond cleavage on a molecular titanium oxonitride: a combined experimental and computational study.

    PubMed

    Carbó, Jorge J; García-López, Diego; González-Del Moral, Octavio; Martín, Avelino; Mena, Miguel; Santamaría, Cristina

    2015-10-01

    New carbon-nitrogen bonds were formed on addition of isocyanide and ketone reagents to the oxonitride species [{Ti(η(5)-C5Me5)(μ-O)}3(μ3-N)] (1). Reaction of 1 with XylNC (Xyl = 2,6-Me2C6H3) in a 1:3 molar ratio at room temperature leads to compound [{Ti(η(5)-C5Me5)(μ-O)}3(μ-XylNCCNXyl)(NCNXyl)] (2), after the addition of the nitrido group to one coordinated isocyanide and the carbon-carbon coupling of the other two isocyanide molecules have taken place. Thermolysis of 2 gives [{Ti(η(5)-C5Me5)(μ-O)}3(XylNCNXyl)(CN)] (3) where the heterocumulene [XylNCCNXyl] moiety and the carbodiimido [NCNXyl] fragment in 2 have undergone net transformations. Similarly, tert-butyl isocyanide (tBuNC) reacts with the starting material 1 under mild conditions to give the paramagnetic derivative [{Ti3(η(5)-C5Me5)3(μ-O)3(NCNtBu)}2(μ-CN)2] (4). However, compound 1 provides the oxo ketimide derivatives [{Ti3(η(5)-C5Me5)3(μ-O)4}(NCRPh)] [R = Ph (5), p-Me(C6H4) (6), o-Me(C6H4) (7)] upon reaction with benzophenone, p-methylbenzophenone, and o-methylbenzophenone, respectively. In these reactions, the carbon-oxygen double bond is completely ruptured, leading to the formation of a carbon-nitrogen and two metal-oxygen bonds. The molecular structures of complexes 2-4, 6, and 7 were determined by single-crystal X-ray diffraction analyses. Density functional theory calculations were performed on the incorporation of isocyanides and ketones to the model complex [{Ti(η(5)-C5H5)(μ-O)}3(μ3-N)] (1H). The mechanism involves the coordination of the substrates to one of the titanium metal centers, followed by an isomerization to place those substrates cis with respect to the apical nitrogen of 1H, where carbon-nitrogen bond formation occurs with a low-energy barrier. In the case of aryl isocyanides, the resulting complex incorporates additional isocyanide molecules leading to a carbon-carbon coupling. With ketones, the high oxophilicity of titanium promotes the unusual total cleavage of the

  6. Effects of Peptide Backbone Amide-to-Ester Bond Substitution on the Cleavage Frequency in Electron Capture Dissociation and Collision-Activated Dissociation

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Frank; Zubarev, Roman A.

    2011-08-01

    Probing the mechanism of electron capture dissociation on variously modified model peptide polycations has resulted in discovering many ways to prevent or reduce {{N}} - {{{C}}_α } bond fragmentation. Here we report on a rare finding of how to increase the backbone bond dissociation rate. In a number of model peptides, amide-to-ester backbone bond substitution increased the frequency of {{O}} - {{{C}}_α } bond cleavage (an analogue of {{N}} - {{{C}}_α } bonds in normal peptides) by several times, at the expense of reduced frequency of cleavages of the neighboring {{N}} - {{{C}}_α } bonds. In contrast, the ester linkage was only marginally broken in collisional dissociation. These results further highlight the complementarity of the reaction mechanisms in electron capture dissociation (ECD) and collision-activated dissociation (CAD). It is proposed that the effects of amide-to-ester bond substitution on fragmentation are mainly due to the differences in product ion stability (ECD, CAD) as well as proton affinity (CAD). This proposal is substantiated by calculations using density functional theory. The implications of these results in relation to the current understanding of the mechanisms of electron capture dissociation and electron transfer dissociation are discussed.

  7. Biosynthetic pathway toward carbohydrate-like moieties of alnumycins contains unusual steps for C-C bond formation and cleavage

    PubMed Central

    Oja, Terhi; Klika, Karel D.; Appassamy, Laura; Sinkkonen, Jari; Mäntsälä, Pekka; Niemi, Jarmo; Metsä-Ketelä, Mikko

    2012-01-01

    Carbohydrate moieties are important components of natural products, which are often imperative for the solubility and biological activity of the compounds. The aromatic polyketide alnumycin A contains an extraordinary sugar-like 4′-hydroxy-5′-hydroxymethyl-2′,7′-dioxane moiety attached via a carbon-carbon bond to the aglycone. Here we have extensively investigated the biosynthesis of the dioxane unit through 13C labeling studies, gene inactivation experiments and enzymatic synthesis. We show that AlnA and AlnB, members of the pseudouridine glycosidase and haloacid dehalogenase enzyme families, respectively, catalyze C-ribosylation conceivably through Michael-type addition of d-ribose-5-phosphate and dephosphorylation. The ribose moiety may be attached both in furanose (alnumycin C) and pyranose (alnumycin D) forms. The C1′-C2′ bond of alnumycin C is subsequently cleaved and the ribose unit is rearranged into an unprecedented dioxolane (cis-bicyclo[3.3.0]-2′,4′,6′-trioxaoctan-3′β-ol) structure present in alnumycin B. The reaction is catalyzed by Aln6, which belongs to a previously uncharacterized enzyme family. The conversion was accompanied with consumption of O2 and formation of H2O2, which allowed us to propose that the reaction may proceed via hydroxylation of C1′ followed by retro-aldol cleavage and acetal formation. Interestingly, no cofactors could be detected and the reaction was also conducted in the presence of metal chelating agents. The last step is the conversion of alnumycin B into the final end-product alnumycin A catalyzed by Aln4, an NADPH-dependent aldo-keto reductase. This characterization of the dioxane biosynthetic pathway sets the basis for the utilization of C-C bound ribose, dioxolane and dioxane moieties in the generation of improved biologically active compounds. PMID:22474343

  8. Isotope-Labeling Studies Support the Electrophilic Compound I Iron Active Species, FeO(3+), for the Carbon-Carbon Bond Cleavage Reaction of the Cholesterol Side-Chain Cleavage Enzyme, Cytochrome P450 11A1.

    PubMed

    Yoshimoto, Francis K; Jung, I-Ji; Goyal, Sandeep; Gonzalez, Eric; Guengerich, F Peter

    2016-09-21

    The enzyme cytochrome P450 11A1 cleaves the C20-C22 carbon-carbon bond of cholesterol to form pregnenolone, the first 21-carbon precursor of all steroid hormones. Various reaction mechanisms are possible for the carbon-carbon bond cleavage step of P450 11A1, and most current proposals involve the oxoferryl active species, Compound I (FeO(3+)). Compound I can either (i) abstract an O-H hydrogen atom or (ii) be attacked by a nucleophilic hydroxy group of its substrate, 20R,22R-dihydroxycholesterol. The mechanism of this carbon-carbon bond cleavage step was tested using (18)O-labeled molecular oxygen and purified P450 11A1. P450 11A1 was incubated with 20R,22R-dihydroxycholesterol in the presence of molecular oxygen ((18)O2), and coupled assays were used to trap the labile (18)O atoms in the enzymatic products (i.e., isocaproaldehyde and pregnenolone). The resulting products were derivatized and the (18)O content was analyzed by high-resolution mass spectrometry. P450 11A1 showed no incorporation of an (18)O atom into either of its carbon-carbon bond cleavage products, pregnenolone and isocaproaldehyde . The positive control experiments established retention of the carbonyl oxygens in the enzymatic products during the trapping and derivatization processes. These results reveal a mechanism involving an electrophilic Compound I species that reacts with nucleophilic hydroxy groups in the 20R,22R-dihydroxycholesterol intermediate of the P450 11A1 reaction to produce the key steroid pregnenolone.

  9. An ab initio Study of Decay Mechanism of Adenine: the Facile Path of the Amino NH Bond Cleavage

    NASA Astrophysics Data System (ADS)

    Conti, Irene; Garavelli, Marco; Orlandi, Giorgio

    2007-12-01

    A comprehensive study of the radiationless decay processes of the lowest excited singlet states in the isolated 9H-Adenine has been performed at the CASPT2//CASSCF level. The minimum energy paths of the La, Lb and nπ* singlet states along different skeletal distortions have been computed and the Conical Intersections (CIs) involving these states have been determined. The fast deactivation path of La along a skeletal deformation, which leads to a S0/La CI, as previously discussed, is confirmed. Moreover, low-lying CIs between S0 and πσ* singlet states have been characterized, where σ* is the antibonding orbital localized on a N-H bond of the amino (πσNH2*) or of the azine group (πσN9H*). We have found that the repulsive πσNH2* state associated with an amino N-H bond can be populated through a barrierless way. Therefore, the decay path shows a bifurcation leading to two possible ways of radiationless deactivation: on one hand a non-photochemical decay through the S0/La or S0/nπ* CIs and on the other hand a photochemical process via the possible access to the S0/πσNH2* CI that produces N-H cleavage. In this way, we can explain the H atom loss found upon UV excitation. We have considered also the decay of higher energy bright states. We have found that these states can decay also by converting to the repulsive πσN9H* state associated with the azine NH bond. This new channel suggests an increase of H-atom photoproduction yield by excitating Adenine with lower wavelength radiations. The study of the decay processes of an Adenine molecule in the double strand d(A)10ṡd(T)10 in water solvent is currently underway: Adenine is treated by the Quantum Mechanical (QM) approach and the remaining molecules are described at the Molecular Mechanics (MM) level. We use the COBRAMM program that is a tunable QM/MM approach to complex molecular architectures developed by our research group.

  10. Efficient synthesis of pyrrolo[1,2-a]quinoxalines catalyzed by a Brønsted acid through cleavage of C-C bonds.

    PubMed

    Xie, Caixia; Feng, Lei; Li, Wanli; Ma, Xiaojun; Ma, Xinkun; Liu, Yihan; Ma, Chen

    2016-09-28

    An efficient and convenient one-pot domino reaction for the direct synthesis of pyrrolo[1,2-a]quinoxalines has been developed. This approach utilizes an imine formation reaction, SEAr reaction and cleavage of C-C bonds catalyzed by a Brønsted acid. β-Diketones and β-keto esters are both well tolerated to give the corresponding products in moderate to excellent yields. PMID:27541576

  11. From polymer to monomer: cleavage and rearrangement of Si-O-Si bonds after oxidation yielded an ordered cyclic crystallized structure.

    PubMed

    Zuo, Yujing; Gou, Zhiming; Cao, Jinfeng; Yang, Zhou; Lu, Haifeng; Feng, Shengyu

    2015-07-27

    Polymerization reactions are very common in the chemical industry, however, the reaction in which monomers are obtained from polymers is rarely invesitgated. This work reveals for the first time that oxone can break the Si-O-Si bond and induce further rearrangement to yield an ordered cyclic structure. The oxidation of P1, which is obtained by reaction of 2,2'-1,2-ethanediylbis(oxy)bis(ethanethiol) (DBOET) with 1,3-divinyl-1,1,3,3-tetramethyldisiloxane (MM(Vi)), with oxone yielded cyclic crystallized sulfone-siloxane dimer (P1-ox) after unexpected cleavage and rearrangement of the Si-O-Si bond.

  12. Protocols for the selective cleavage of carbon-sulfur bonds in coal. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Bausch, M.

    1992-12-31

    Summarized in the final technical report for our project ``Protocols for the Selective Cleavage of Carbon-Sulfur Bonds in Coal`` are results of research pertaining to chemical reactions that aim to selectively cleave C-S bonds in model compounds as well as Illinois coal. Removal of the organic sulfur in coal constitutes one of the major challenges facing fossil fuel scientists today. A cost-effective means of desulfurizing Illinois coal is, at present, non-existent. Research in our group aims to develop a simple protocol for sulfur removal by gaining understanding of how various additives and reaction conditions, including solvents, bases, added reagents, catalysts, oxidizing agents, electron acceptors, temperature, pressure, and light energy, can enhance the rates of C-S bond cleavage in Illinois coal and coal model compounds. These experiments have been at the focus of our research effort for the past twelve months. Previous quarterly reports described research results in which simple aromatic and aliphatic sulfides were allowed to react with (a) Lewis Acids such as zinc chloride and tin chloride; (b) electron accepting substrates such as 9-fluorenone and benzoquinone; (c) strong bases such as NaOH and KOH; (d) radical initiators such as AIBN; (e) neat solvents at reflux temperatures and higher temperatures; (f) molecular oxygen in the presence of dyes or sensitizers such as anthracene. In this final report, we report on additional experiments involving the photooxidation of organic sulfides, as well as some experiments aimed at evaluating and comparing the reactivities of simple organic sulfones with their sulfidyl analogues. Also contained in this final report is a brief summary of the research described in the previous three quarterly reports for ``Protocols for the Selective Cleavage of Carbon-Sulfur Bonds in Coal.``

  13. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Quarterly report No. 13, October 1-December 31, 1981

    SciTech Connect

    Hirschon, A.S.; Zevely, J.; Mayo, F.R.

    1982-02-26

    Bituminous coal is assumed to consist mostly of aggregates of condensed aromatic and aliphatic rings which are connected and made soluble by crosslinks containing single bonds. The objective of this project is to determine the structure of bituminous coal with emphasis on the crosslinks and breakable single bonds. During this past quarter the following studies were conducted on Illinois No. 6 coal: extraction with benzylamine (BnH/sub 2/), ethanolamine, ethylenediamine (EDA), pyridine; saponification of some toluene-insoluble, pyridine-soluble (TIPS) fraction; cleavages by amines; oxidation with aqueous NaOCl of butylated and methylated pyridine-extracted coal; decarboxylation on black acids. The investigations dealt with two kinds of connecting links in coal, which are designated as ester and ether groups. The ester groups are cleaved by strongly basic amines (to give amides) at 25/sup 0/C and by alcoholic KOH at 100/sup 0/C (to give salts and alcohols or phenols). Both esters and ethers are cleaved by HI or ZnCL/sub 2/ in pyridine at or below 50/sup 0/C. The ethers are also cleaved by BnNH/sub 2/, EDA, and EDA/DMSO to nearly the same extent on several days heating at 100/sup 0/C. Although a cleavage of model ethers by amines were not established, the parallel easy reactions of HI and ZnCl/sub 2/ and the slow 100/sup 0/C reactions of amines on coal lead the authors to designate the non-ester cleavages as ether cleavages. (ATT)

  14. A Cobalt(I) Pincer Complex with an η(2) -C(aryl)-H Agostic Bond: Facile C-H Bond Cleavage through Deprotonation, Radical Abstraction, and Oxidative Addition.

    PubMed

    Murugesan, Sathiyamoorthy; Stöger, Berthold; Pittenauer, Ernst; Allmaier, Günter; Veiros, Luis F; Kirchner, Karl

    2016-02-24

    The synthesis and reactivity of a Co(I) pincer complex [Co(ϰ(3) P,CH,P-P(CH)P(NMe) -iPr)(CO)2](+) featuring an η(2)-C(aryl)-H agostic bond is described. This complex was obtained by protonation of the Co(I) complex [Co(PCP(NMe) -iPr)(CO)2]. The Co(III) hydride complex [Co(PCP(NMe) -iPr)(CNtBu)2(H)](+) was obtained upon protonation of [Co(PCP(NMe) -iPr)(CNtBu)2]. Three ways to cleave the agostic C-H bond are presented. First, owing to the acidity of the agostic proton, treatment with pyridine results in facile deprotonation (C-H bond cleavage) and reformation of [Co(PCP(NMe) -iPr)(CO)2]. Second, C-H bond cleavage is achieved upon exposure of [Co(ϰ(3)P,CH,P-P(CH)P(NMe) -iPr)(CO)2](+) to oxygen or TEMPO to yield the paramagnetic Co(II) PCP complex [Co(PCP(NMe) -iPr)(CO)2](+). Finally, replacement of one CO ligand in [Co(ϰ(3) P,CH,P-P(CH)P(NMe) -iPr)(CO)2](+) by CNtBu promotes the rapid oxidative addition of the agostic η(2) -C(aryl)-H bond to give two isomeric hydride complexes of the type [Co(PCP(NMe) -iPr)(CNtBu)(CO)(H)](+).

  15. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies

    SciTech Connect

    Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.; Garman, Elspeth F.; Owen, Robin L.; Snell, Edward H.; Bernhard, William A.

    2013-12-01

    Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage, to confirm a multi-track radiation-damage process and to develop a model of that process. Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.

  16. Photosensitized oxidation of aryl benzyl sulfoxides. Evidence for nucleophilic assistance to the C-s bond cleavage of aryl benzyl sulfoxide radical cations.

    PubMed

    Del Giacco, Tiziana; Lanzalunga, Osvaldo; Lapi, Andrea; Mazzonna, Marco; Mencarelli, Paolo

    2015-02-20

    The radical cations of a series of aryl benzyl sulfoxides (4-X-C6H4CH2SOC6H4Y(+•)) have been generated by photochemical oxidation of the parent sulfoxides sensitized by 3-cyano-N-methylquinolinium perchlorate (3-CN-NMQ(+)ClO4(-)). Steady-state photolysis experiments showed the prevailing formation of benzylic products deriving from the C-S fragmentation in the radical cations, together with sulfur-containing products. Formation of sulfoxide radical cations was unequivocally established by laser flash photolysis experiments showing the absorption bands of 3-CN-NMQ(•) (λmax = 390 nm) and of the radical cations (λmax = 500-620 nm). The decay rate constants of radical cations, determined by LFP experiments, decrease by increasing the electron-donating power of the arylsulfinyl Y substituent and to a smaller extent by increasing the electron-withdrawing power of the benzylic X substituent. A solvent nucleophilic assistance to the C-S bond cleavage has been suggested, supported by the comparison of substituent effects on the same process occurring in aryl tert-butyl sulfoxide radical cations. DFT calculations, performed to determine the bond dissociation free energy in the radical cations, the transition state energies associated with the unimolecular C-S bond cleavage, and the charge and spin delocalized on their structures, were also useful to endorse the nucleophilic assistance to the C-S scission.

  17. Heterolytic cleavage of hydrogen by an iron hydrogenase model: an Fe-H⋅⋅⋅H-N dihydrogen bond characterized by neutron diffraction.

    PubMed

    Liu, Tianbiao; Wang, Xiaoping; Hoffmann, Christina; DuBois, Daniel L; Bullock, R Morris

    2014-05-19

    Hydrogenase enzymes in nature use hydrogen as a fuel, but the heterolytic cleavage of H-H bonds cannot be readily observed in enzymes. Here we show that an iron complex with pendant amines in the diphosphine ligand cleaves hydrogen heterolytically. The product has a strong Fe-H⋅⋅⋅H-N dihydrogen bond. The structure was determined by single-crystal neutron diffraction, and has a remarkably short H⋅⋅⋅H distance of 1.489(10) Å between the protic N-H(δ+) and hydridic Fe-H(δ-) part. The structural data for [Cp(C5F4N)FeH(P(tBu)2N(tBu)2H)](+) provide a glimpse of how the H-H bond is oxidized or generated in hydrogenase enzymes. These results now provide a full picture for the first time, illustrating structures and reactivity of the dihydrogen complex and the product of the heterolytic cleavage of H2 in a functional model of the active site of the [FeFe] hydrogenase enzyme.

  18. Characterization of Protein Contributions to Cobalt-Carbon Bond Cleavage Catalysis in Adenosylcobalamin-Dependent Ethanolamine Ammonia-Lyase by using Photolysis in the Ternary Complex†

    PubMed Central

    Robertson, Wesley D.; Wang, Miao; Warncke, Kurt

    2011-01-01

    Protein contributions to the substrate-triggered cleavage of the cobalt-carbon (Co-C) bond and formation of the cob(II)alamin-5′-deoxyadenosyl radical pair in the adenosylcobalamin (AdoCbl)-dependent ethanolamine ammonia-lyase (EAL) from Salmonella typhimurium have been studied by using pulsed-laser photolysis of AdoCbl in the EAL-AdoCbl-substrate ternary complex, and time-resolved probing of the photoproduct dynamics by using ultraviolet-visible absorption spectroscopy on the 10−7 − 10−1 s time scale. Experiments were performed in a fluid dimethylsulfoxide/water cryosolvent system at 240 K, under conditions of kinetic competence for thermal cleavage of the Co-C bond in the ternary complex. The static ultraviolet-visible absorption spectra of holo-EAL and ternary complex are comparable, indicating that the binding of substrate does not labilize the cofactor cobalt-carbon (Co-C) bond by significantly distorting the equilibrium AdoCbl structure. Photolysis of AdoCbl in EAL at 240 K leads to cob(II)alamin-5′-deoxyadenosyl radical pair quantum yields of <0.01 at 10−6 s in both holo-EAL and ternary complex. Three photoproduct states are populated following a saturating laser pulse, and labeled, Pf, Ps, and Pc. The relative amplitudes and first-order recombination rate constants of Pf (0.4-0.6; 40-50 s−1), Ps, (0.3-0.4; 4 s−1) and Pc (0.1-0.2; 0) are comparable in holo-EAL and in the ternary complex. Time-resolved, full-spectrum electron paramagnetic resonance (EPR) spectroscopy shows that visible irradiation alters neither the kinetics of thermal cob(II)alamin-substrate radical pair formation, nor the equilibrium between ternary complex and cob(II)alamin-substrate radical pair, at 246 K. The results indicate that substrate binding to holo-EAL does not “switch” the protein to a new structural state, which promptly stabilizes the cob(II)alamin-5′-deoxyadenosyl radical pair photoproduct, either through an increased barrier to recombination, a

  19. Metal ion-promoted cleavage of nucleoside diphosphosugars: a model for reactions of phosphodiester bonds in carbohydrates.

    PubMed

    Dano, Meisa; Elmeranta, Marjukka; Hodgson, David R W; Jaakkola, Juho; Korhonen, Heidi; Mikkola, Satu

    2015-12-01

    Cleavage of five different nucleoside diphosphosugars has been studied in the presence of Cu(2+) and Zn(2+) complexes. The results show that metal ion catalysts promote the cleavage via intramolecular transesterification whenever a neighbouring HO group can adopt a cis-orientation with respect to the phosphate. The HO group attacks the phosphate and two monophosphate products are formed. If such a nucleophile is not available, Cu(2+) complexes are able to promote a nucleophilic attack of an external nucleophile, e.g. a water molecule or metal ion coordinated HO ligand, on phosphate. With the Zn(2+) complex, this was not observed.

  20. Metal ion-promoted cleavage of nucleoside diphosphosugars: a model for reactions of phosphodiester bonds in carbohydrates.

    PubMed

    Dano, Meisa; Elmeranta, Marjukka; Hodgson, David R W; Jaakkola, Juho; Korhonen, Heidi; Mikkola, Satu

    2015-12-01

    Cleavage of five different nucleoside diphosphosugars has been studied in the presence of Cu(2+) and Zn(2+) complexes. The results show that metal ion catalysts promote the cleavage via intramolecular transesterification whenever a neighbouring HO group can adopt a cis-orientation with respect to the phosphate. The HO group attacks the phosphate and two monophosphate products are formed. If such a nucleophile is not available, Cu(2+) complexes are able to promote a nucleophilic attack of an external nucleophile, e.g. a water molecule or metal ion coordinated HO ligand, on phosphate. With the Zn(2+) complex, this was not observed. PMID:26547748

  1. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air.

    PubMed

    Huang, Xiaoqiang; Li, Xinyao; Zou, Miancheng; Song, Song; Tang, Conghui; Yuan, Yizhi; Jiao, Ning

    2014-10-22

    The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed. Varieties of common ketones, even inactive aryl long-chain alkyl ketones, are selectively converted into esters. The reaction tolerates a wide range of alcohols, including primary and secondary alcohols, chiral alcohols with retention of the configuration, electron-deficient phenols, as well as various natural alcohols. The usage of inexpensive copper catalyst, broad substrate scope, and neutral and open air conditions make this protocol very practical. (18)O labeling experiments reveal that oxygenation occurs during this transformation. Preliminary mechanism studies indicate that two novel pathways are mainly involved in this process. PMID:25251943

  2. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    PubMed Central

    Ilg, Andrea; Bruno, Mark; Beyer, Peter; Al-Babili, Salim

    2014-01-01

    The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. PMID:25057464

  3. Facile Access to Fluoroaromatic Molecules by Transition-Metal-Free C-F Bond Cleavage of Polyfluoroarenes: An Efficient, Green, and Sustainable Protocol.

    PubMed

    Liu, Cuibo; Zhang, Bin

    2016-04-01

    The creation of new bonds via C-F bond cleavage of polyfluoroarenes has proven to be an important and powerful tool in synthetic chemistry. Using such a strategy, a myriad of valuable partially fluoroaromatic molecules and building blocks can be obtained. The transition-metal-free nucleophilic aromatic substitution (SN Ar) strategy has aroused the continuing interest of researchers due to its simple, mild, economical, and environmentally benign characteristics, which have been successfully applied to C-F bond functionalizations. In this account, we present a summary of the recent investigations of polyfluoroarenes involving SN Ar reactions and discuss some of our recent endeavors in the construction of partially fluoroaromatic molecules. Through this strategy, many new bonds including C-C, C-N, C-O, C-S, and C-H bonds can be created. Additionally, brief discussions on the transformation mechanisms are also provided. Finally, we discuss the existing limitations of the SN Ar reactions of polyfluoroarenes as well as our perspective on the future development of this chemistry.

  4. Alcohol-Induced C-N Bond Cleavage of Cyclometalated N-Heterocyclic Carbene Ligands with a Methylene-Linked Pendant Imidazolium Ring.

    PubMed

    Zhong, Wei; Fei, Zhaofu; Scopelliti, Rosario; Dyson, Paul J

    2016-08-16

    Reaction of the pentamethylcyclopentadienyl rhodium iodide dimer [Cp*RhI2 ]2 with 1,1'-diphenyl-3,3'-methylenediimidazolium diiodide in non-alcohol solvents, in the presence of base, led to the formation of bis-carbene complex [Cp*Rh(bis-NHC)I]I (bis-NHC=1,1'-diphenyl-4,4'-methylenediimidazoline-5,5'-diylidene). In contrast, when employing alcohols as the solvent in the same reaction, cleavage of a methylene C-N bond is observed, affording ether-functionalized (cyclometalated) carbene ligands coordinated to the metal center and the concomitant formation of complexes with a coordinated imidazole ligand. Studies employing other 1,1'-diimidazolium salts indicate that the cyclometalation step is a prerequisite for the activation/scission of the C-N bond and, based on additional experimental data, a SN 2 mechanism for the reaction is tentatively proposed. PMID:27412824

  5. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Annual report, October 1, 1980-September 30, 1981

    SciTech Connect

    Hirschon, A.S.; Zevely, J.; Mayo, F.R.

    1981-11-12

    The objective of this project is to determine the structure of bituminous coal by determining the proportions of the various kinds of connecting bonds and how they can best be broken. Results obtained during the past quarter are presented for the following tasks: (1) extractions and fractionations of coal products which covers pyridine extraction, fractionation of TIPS fractions, EDA extraction of Illinois No. 6 coal and swelling ratios of coal samples; (2) experiments on breakable single bonds which cover reactions of ethylenediamine and model ethers, reaction of pyridine-extracted coal with Me/sub 3/SiI, Baeyer-Villiger oxidations, reaction to diphenylmethane with 15% HNO/sub 3/, cleavage of TIPS with ZnI/sub 2/, and cleavage of black acids; and (3) oxygen oxidation No. 18. Some of the highlights of these studies are: (1) some model ethers are not cleaved by EDA under extraction conditions; (2) oxidation of diaryl ketones with m-chloroperbenzoic acid and saponification of the resulting esters in promising for identifying ketones, (3) treatment of a black acid with pyridine hydroiodide reduced the acid's molecular weight and increased its solubility in pyridine, but treatment with ZnI/sub 2/ was ineffective; (4) in comparison with 0.1 M K/sub 2/S/sub 2/O/sub 8/, 0.01 M persulfate is relatively ineffective in accelerating oxidation of BnNH/sub 2/-extracted coal in water suspension. 2 figures, 3 tables.

  6. A high-throughput screen for detection of compound-dependent phosphodiester bond cleavage at abasic sites.

    PubMed

    Rideout, Marc C; Liet, Benjamin; Gasparutto, Didier; Berthet, Nathalie

    2016-11-15

    We have employed a DNA molecular beacon with a real abasic site, namely a 2-deoxyribose, in a fluorescent high-throughput assay to identify artificial nucleases that cleave at abasic sites. We screened a 1280 compound chemical library and identified a compound that functions as an artificial nuclease. We validated a key structure-activity relationship necessary for abasic site cleavage using available analogs of the identified artificial nuclease. We also addressed the activity of the identified compound with dose titrations in the absence and presence of a source of non-specific DNA. Finally, we characterized the phosphodiester backbone cleavage at the abasic site using denaturing gel electrophoresis. This study provides a useful template for researchers seeking to rapidly identify new artificial nucleases. PMID:27594348

  7. A high-throughput screen for detection of compound-dependent phosphodiester bond cleavage at abasic sites.

    PubMed

    Rideout, Marc C; Liet, Benjamin; Gasparutto, Didier; Berthet, Nathalie

    2016-11-15

    We have employed a DNA molecular beacon with a real abasic site, namely a 2-deoxyribose, in a fluorescent high-throughput assay to identify artificial nucleases that cleave at abasic sites. We screened a 1280 compound chemical library and identified a compound that functions as an artificial nuclease. We validated a key structure-activity relationship necessary for abasic site cleavage using available analogs of the identified artificial nuclease. We also addressed the activity of the identified compound with dose titrations in the absence and presence of a source of non-specific DNA. Finally, we characterized the phosphodiester backbone cleavage at the abasic site using denaturing gel electrophoresis. This study provides a useful template for researchers seeking to rapidly identify new artificial nucleases.

  8. Resonance Raman spectroscopy reveals pH-dependent active site structural changes of lactoperoxidase compound 0 and its ferryl heme O-O bond cleavage products.

    PubMed

    Mak, Piotr J; Thammawichai, Warut; Wiedenhoeft, Dennis; Kincaid, James R

    2015-01-14

    The first step in the enzymatic cycle of mammalian peroxidases, including lactoperoxidase (LPO), is binding of hydrogen peroxide to the ferric resting state to form a ferric-hydroperoxo intermediate designated as Compound 0, the residual proton temporarily associating with the distal pocket His109 residue. Upon delivery of this "stored" proton to the hydroperoxo fragment, it rapidly undergoes O-O bond cleavage, thereby thwarting efforts to trap it using rapid mixing methods. Fortunately, as shown herein, both the peroxo and the hydroperoxo (Compound 0) forms of LPO can be trapped by cryoradiolysis, with acquisition of their resonance Raman (rR) spectra now permitting structural characterization of their key Fe-O-O fragments. Studies were conducted under both acidic and alkaline conditions, revealing pH-dependent differences in relative populations of these intermediates. Furthermore, upon annealing, the low pH samples convert to two forms of a ferryl heme O-O bond-cleavage product, whose ν(Fe═O) frequencies reflect substantially different Fe═O bond strengths. In the process of conducting these studies, rR structural characterization of the dioxygen adduct of LPO, commonly called Compound III, has also been completed, demonstrating a substantial difference in the strengths of the Fe-O linkage of the Fe-O-O fragment under acidic and alkaline conditions, an effect most reasonably attributed to a corresponding weakening of the trans-axial histidyl imidazole linkage at lower pH. Collectively, these new results provide important insight into the impact of pH on the disposition of the key Fe-O-O and Fe═O fragments of intermediates that arise in the enzymatic cycles of LPO, other mammalian peroxidases, and related proteins.

  9. DMSO/I2 mediated C-C bond cleavage of α-ketoaldehydes followed by C-O bond formation: a metal-free approach for one-pot esterification.

    PubMed

    Venkateswarlu, Vunnam; Aravinda Kumar, K A; Gupta, Sorav; Singh, Deepika; Vishwakarma, Ram A; Sawant, Sanghapal D

    2015-08-01

    A novel and efficient I2/DMSO mediated metal-free strategy is presented for the direct C-C bond cleavage of aryl-/heteroaryl- or aliphatic α-ketoaldehydes by C2-decarbonylation and C1-carbonyl oxidation to give the corresponding carboxylic acids followed by esterification in one pot, offering excellent yields in both the steps. Here, DMSO acts as the oxygen source/oxidant and this reaction works very well under both conventional heating and microwave irradiation. This is a very simple and convenient protocol.

  10. Rhodium-catalyzed cascade oxidative annulation leading to substituted naphtho[1,8-bc]pyrans by sequential cleavage of C(sp2)-H/C(sp3)-H and C(sp2)-H/O-H bonds.

    PubMed

    Tan, Xing; Liu, Bingxian; Li, Xiangyu; Li, Bin; Xu, Shansheng; Song, Haibin; Wang, Baiquan

    2012-10-01

    The cascade oxidative annulation reactions of benzoylacetonitrile with internal alkynes proceed efficiently in the presence of a rhodium catalyst and a copper oxidant to give substituted naphtho[1,8-bc]pyrans by sequential cleavage of C(sp(2))-H/C(sp(3))-H and C(sp(2))-H/O-H bonds. These cascade reactions are highly regioselective with unsymmetrical alkynes. Experiments reveal that the first-step reaction proceeds by sequential cleavage of C(sp(2))-H/C(sp(3))-H bonds and annulation with alkynes, leading to 1-naphthols as the intermediate products. Subsequently, 1-naphthols react with alkynes by cleavage of C(sp(2))-H/O-H bonds, affording the 1:2 coupling products. Moreover, some of the naphtho[1,8-bc]pyran products exhibit intense fluorescence in the solid state. PMID:22989331

  11. Iron-oxidation-state-dependent O-O bond cleavage of meta-chloroperbenzoic acid to form an iron(IV)-oxo complex

    PubMed Central

    Ray, Kallol; Lee, Sang Mok; Que, Lawrence

    2008-01-01

    The mechanism of formation of [FeIV(O)(N4Py)]2+ (2, N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) from the reaction of [FeII(N4Py)(CH3CN)]2+ (1) with m-chloroperbenzoic acid (mCPBA) in CH2Cl2 at −30 °C has been studied on the basis of the visible spectral changes observed and the reaction stoichiometry. It is shown that the conversion of 1 to 2 in 90% yield requires 1.5 equiv peracid and takes place in two successive one-electron steps via an [FeIII(N4Py)OH]2+(3) intermediate. The first oxidation step uses 0.5 equiv peracid and produces 0.5 equiv 3-chlorobenzoic acid, while the second step uses 1 equiv peracid and affords byproducts derived from chlorophenyl radical. We conclude that the FeII(N4Py) center promotes O-O bond heterolysis, while the FeIII(N4Py) center favors O-O bond homolysis, so the nature of O-O bond cleavage is dependent on the iron oxidation state. PMID:18443654

  12. Model studies of methyl CoM reductase: methane formation via CH3-S bond cleavage of Ni(I) tetraazacyclic complexes having intramolecular methyl sulfide pendants.

    PubMed

    Nishigaki, Jun-ichi; Matsumoto, Tsuyoshi; Tatsumi, Kazuyuki

    2012-05-01

    The Ni(I) tetraazacycles [Ni(dmmtc)](+) and [Ni(mtc)](+), which have methylthioethyl pendants, were synthesized as models of the reduced state of the active site of methyl coenzyme M reductase (MCR), and their structures and redox properties were elucidated (dmmtc, 1,8-dimethyl-4,11-bis{(2-methylthio)ethyl}-1,4,8,11-tetraaza-1,4,8,11-cyclotetradecane; mtc, 1,8-{bis(2-methylthio)ethyl}-1,4,8,11-tetraaza-1,4,8,11-cyclotetradecane). The intramolecular CH(3)-S bond of the thioether pendant of [Ni(I)(dmmtc)](OTf) was cleaved in THF at 75 °C in the presence of the bulky thiol DmpSH, which acts as a proton source, and methane was formed in 31% yield and a Ni(II) thiolate complex was concomitantly obtained (Dmp = 2,6-dimesityphenyl). The CH(3)-S bond cleavage of [Ni(I)(mtc)](+) also proceeded similarly, but under milder conditions probably due to the lower potential of the [Ni(I)(mtc)](+) complex. These results indicate that the robust CH(3)-S bond can be homolytically cleaved by the Ni(I) center when they are properly arranged, which highlights the significance of the F430 Ni environment in the active site of the MCR protein. PMID:22439643

  13. An efficient transformation of furano-hydroxychalcones to furanoflavones via base mediated intramolecular tandem O-arylation and C-O bond cleavage: a new approach for the synthesis of furanoflavones.

    PubMed

    Sharma, Rajni; Vishwakarma, Ram A; Bharate, Sandip B

    2015-11-14

    A new and efficient potassium carbonate mediated intramolecular tandem O-arylation followed by C-O bond cleavage of furano-hydroxychalcones is described. The treatment of furano-hydroxychalcones pongamol (1a) and ovalitenone (2a) with potassium carbonate in DMF led to the direct formation of the furanoflavones lanceolatin B (3ab) and pongaglabrone (4ab) in excellent yields. This is the first report on the cyclization of furano-hydroxychalcones via C-O bond cleavage (demethoxylation) to produce furanoflavonoids. PMID:26426474

  14. Peroxide-mediated selective cleavage of [60]fullerene skeleton bonds: towards the synthesis of open-cage fulleroid C55O5.

    PubMed

    Gan, Liangbing

    2015-02-01

    Replacement of a pentagon in [60]fullerene with five oxygen atoms yields the open-cage compound C55O5 with five carbonyl groups on the rim of the orifice. Our attempts to synthesize such a target molecule starting from C60 have led us to prepare the fullerene-mixed peroxides such as C60(OO-t-Bu)6 with all the peroxo addends surrounding the same pentagon. Further investigations of the peroxide chemistry have generated various open-cage fullerene derivatives, including the carbon monoxide encapsulated endohedral compound CO@C59O6. This Personal Account mainly discusses peroxide-based processes resulting in selective cleavage of the fullerene skeleton bonds.

  15. Sensitive near-infrared fluorescent probes for thiols based on Se-N bond cleavage: imaging in living cells and tissues.

    PubMed

    Wang, Rui; Chen, Lingxin; Liu, Ping; Zhang, Qin; Wang, Yunqing

    2012-09-01

    Cy-NiSe and Cy-TfSe were designed and synthesized as sensitive near-infrared (NIR) fluorescent probes for detecting thiols on the basis of Se-N bond cleavage both in cells and in tissues. Since a donor-excited photoinduced electron transfer (d-PET) process occurs between the modulator and the fluorophore, Cy-NiSe and Cy-TfSe have weak fluorescence. On titration with glutathione, the free dye exhibits significant fluorescence enhancement. The two probes are sensitive and selective for thiols over other relevant biological species. They can function rapidly at pH 7.4, and their emission lies in the NIR region. Confocal imaging confirms that Cy-NiSe and Cy-TfSe can be used for detecting thiols in living cells and tissues. PMID:22829328

  16. Differences in susceptibility between crystallins and non-lenticular proteins to copper and H2O2-mediated peptide bond cleavage.

    PubMed

    Carmichael, P L; Hipkiss, A R

    1991-01-01

    The relative susceptibilities of lenticular proteins (alpha, beta and gamma-crystallins) and a number of proteins of non-lenticular origin, to hydroxyl radical-mediated peptide bond cleavage were compared. The non-lenticular proteins (bovine serum albumin, ovalbumin, alcohol dehydrogenase, lysozyme, thyroglobulin, beta-amylase, haemoglobin and carbonic anhydrase) were readily cleaved into acid-soluble fragments following 5 hours treatment with copper ions and hydrogen peroxide. In contrast the crystallins were almost totally unaffected by similar treatment. When alpha-crystallin was pre-treated with acid or cleaved into large fragments with cyanogen bromide it became susceptible to hydroxyl radical attack, yet heating the protein did not diminish its resistance. It is suggested that the resistance of alpha-crystallin to the copper/peroxide-mediated fragmentation may be dependent on the conformation of the protein. PMID:1756988

  17. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Quarterly report No. 12, June 1-September 30, 1981

    SciTech Connect

    Hirschon, A.S.; Zevely, J.; Mayo, F.R.

    1981-11-12

    We assume that bituminous coal consists mostly of an aggregate of condensed aromatic and aliphatic rings, connected and made insoluble (but swellable) by crosslinks containing single bonds. The objective of this project is to determine the proportions of the various kinds of connecting links and how they can best be broken - in other words, to determine the structure of bituminous coal, with emphasis on the crosslinks and breakable single bonds. The program began with an investigation of the structure of the TIPS fraction of Illinois No. 6 coal, that is, the two-thirds of the 16% extracted by pyridine that is toluene-insoluble, pyridine-soluble, mostly through changes in molecular weight during cleavage reactions in pyridine solution. The most promising of these cleavage reactions are now being applied to the 84% of coal that is insoluble in pyridine and presents the main problem in coal liquefaction, following the progress of the reactions by formation of soluble material and swelling of the insoluble portion. We found that benzylamine (BnNH/sub 2/) would extract an additional 14% (of the original weight of coal) of material from pyridine-extracted coal, and later that an ethylenediamine/dimethyl sulfoxide (EDA/DMSO) mixture would dissolve another 21% of the original coal. The BnNH/sub 2/ extract is soluble in pyridine. Our best present guess is that the BnNH/sub 2/ extract cleaves most of the ester groups in coal and that EDA/DMSO cleaves the remaining ester and most of the ether groups.

  18. Cleavage of carbon-nitrogen bond in 1,3,5-tri-tert-butyl-1,3,5-triazacyclohexane by copper(I) bromide

    NASA Astrophysics Data System (ADS)

    Khatua, Suman; Majumdar, Amit

    2016-09-01

    Reactions of CuCl, CuCl2 and CuBr2 with 1,3,5-tri-tert-butyl-1,3,5-triazacyclohexane (tBu3tach) resulted in the formation of [(tBu3tach-H)+(CuCl2)] (1), [(tBu3tach)(CuCl2)] (2) and [(tBu3tach-H)+(CuBr2)] (3) respectively. Interestingly, CuBr was found to mediate the cleavage of the C-N bonds of tBu3tach in a vast range of solvents, namely, chloroform, dichloromethane, tetrahydrofuran, acetonitrile and methanol to yield [Cu4Br4(tBuNCH2)4] (4) and stands as an example of C-N bond cleavage of 1,3,5-triazacyclohexane rings by copper salts. Compounds 1 and 3 contains amidinium cations and are unstable in solution towards the release of copper. The release of copper from 3 in solution was confirmed by the isolation of the compound, [CuBr(MeCN)] (5). Formation of the amidinium cations [(tBu3tach-H)+] in 1 and 3 may be avoided by the use of PPh3 to yield [(tBu3tach)Cu(PPh3)](PF6) (6), while the coordinated N-tert-butylmethanimine (tBuNCH2) in 4 could be replaced by PPh3 to yield [Cu4Br4(PPh3)4] (7). Complexes 1-7 are characterized by a combination of single crystal X-ray structure determination and/or elemental analysis, NMR, IR, and UV-Vis spectroscopy, and Mass spectrometry.

  19. {{text{C}}_{α }} - {text{C}} Bond Cleavage of the Peptide Backbone in MALDI In-Source Decay Using Salicylic Acid Derivative Matrices

    NASA Astrophysics Data System (ADS)

    Asakawa, Daiki; Takayama, Mitsuo

    2011-07-01

    The use of 5-formylsalicylic acid (5-FSA) and 5-nitrosalicylic acid (5-NSA) as novel matrices for in-source decay (ISD) of peptides in matrix-assisted laser desorption/ionization (MALDI) is described. The use of 5-FSA and 5-NSA generated a- and x-series ions accompanied by oxidized peptides [M - 2 H + H]+. The preferential formation of a- and x-series ions was found to be dependent on the hydrogen-accepting ability of matrix. The hydrogen-accepting ability estimated from the ratio of signal intensity of oxidized product [M - 2 H + H]+ to that of non-oxidized protonated molecule [M + H]+ of peptide was of the order 5-NSA > 5-FSA > 5-aminosalicylic acid (5-ASA) ≒ 2,5-dihydroxyl benzoic acid (2,5-DHB) ≒ 0. The results suggest that the hydrogen transfer reaction from peptide to 5-FSA and 5-NSA occurs during the MALDI-ISD processes. The hydrogen abstraction from peptides results in the formation of oxidized peptides containing a radical site on the amide nitrogen with subsequent radical-induced cleavage at the {{{C}}_{α }} - {{C}} bond, leading to the formation of a- and x-series ions. The most significant feature of MALDI-ISD with 5-FSA and 5-NSA is the specific cleavage of the {{{C}}_{α }} - {{C}} bond of the peptide backbone without degradation of side-chain and post-translational modifications (PTM). The matrix provides a useful complementary method to conventional MALDI-ISD for amino acid sequencing and site localization of PTMs in peptides.

  20. Anandamide hydrolysis in FAAH reveals a dual strategy for efficient enzyme-assisted amide bond cleavage via nitrogen inversion.

    PubMed

    Palermo, Giulia; Campomanes, Pablo; Cavalli, Andrea; Rothlisberger, Ursula; De Vivo, Marco

    2015-01-22

    Herein, we combined classical molecular dynamics (MD) and quantum mechanical/molecular mechanics (QM/MM) simulations to unravel the whole catalytic cycle of fatty acid amide hydrolase (FAAH) in complex with anandamide, the main neurotransmitters involved in the control of pain. While microsecond MD simulations of FAAH in a realistic membrane/water environment provided a solid model for the reactant state of the enzymatic complex (Palermo et al. J. Chem. Theory Comput. 2013, 9, 1202-1213.), QM/MM simulations depict now a highly concerted two-step catalytic mechanism characterized by (1) acyl-enzyme formation after hydrolysis of the substrate amide bond and (2) deacylation reaction with restoration of the catalytic machinery. We found that a crucial event for anandamide hydrolysis is the inversion of the reactive nitrogen of the scissile amide bond, which occurs during the acylation rate-limiting step. We show that FAAH uses an exquisite catalytic strategy to induce amide bond distortion, reactive nitrogen inversion, and amide bond hydrolysis, promoting catalysis to completion. This new strategy is likely to be of general applicability to other amidases/peptidases that show similar catalytic site architectures, providing crucial insights for de novo enzyme design or drug discovery efforts.

  1. Effect of water on hydrolytic cleavage of non-terminal α-glycosidic bonds in cyclodextrins to generate monosaccharides and their derivatives in a dimethyl sulfoxide-water mixture.

    PubMed

    Kimura, Hiroshi; Hirayama, Masaki; Yoshida, Ken; Uosaki, Yasuhiro; Nakahara, Masaru

    2014-02-27

    Hydrolytic cleavage of the non-terminal α-1,4-glycosidic bonds in α-, β-, and γ-cyclodextrins and the anomeric-terminal one in d-maltose was investigated to examine how the cleavage rate for α-, β-, and γ-cyclodextrins is slower than that for d-maltose. Effects of water and temperature were studied by applying in situ (13)C NMR spectroscopy and using a dimethyl sulfoxide (DMSO)-water mixture over a wide range of water mole fraction, xw = 0.004-1, at temperatures of 120-180 °C. The cleavage rate constant for the non-anomeric glycosidic bond was smaller by a factor of 6-10 than that of the anomeric-terminal one. The glycosidic-bond cleavage is significantly accelerated through the keto-enol tautomerization of the anomeric-terminal d-glucose unit into the d-fructose one. The smaller the size of the cyclodextrin, the easier the bond cleavage due to the ring strain. The remarkable enhancement in the cleavage rate with decreasing water content was observed for the cyclodextrins and d-maltose as well as d-cellobiose. This shows the important effect of the solitary water whose hydrogen bonding to other water molecules is prohibited by the presence of the organic dipolar aprotic solvent, DMSO, and which has more naked partial charges and higher reactivity. A high 5-hydroxymethyl-2-furaldehyde (5-HMF) yield of 64% was attained in a non-catalytic conversion by tuning the water content to xw = 0.30, at which the undesired polymerization by-paths can be most effectively suppressed. This study provides a step toward designing a new optimal, earth-benign generation process of 5-HMF starting from biomass.

  2. DIET in the bulk: evidence for hot electron cleavage of SiH bonds in SiO 2 films

    NASA Astrophysics Data System (ADS)

    Jennison, D. R.; Sullivan, J. P.; Schultz, P. A.; Sears, M. P.; Stechel, E. B.

    1997-11-01

    The observed increase in leakage current through SiO 2 films after hot electron exposure is ascribed to dissociation induced by electronic transitions ("DIET") of bulk SiH bonds, producing mobile hydrogen. We use ab initio supercell bandstructure calculations at the local density functional level to locate features produced by hydrogen-containing defects in α-SiO 2. The edge of the SiH σ∗ resonance is found to be about 2.7 eV above the conduction band rise, in good agreement with the observed threshold for hot electron induced damage in amorphous SiO 2 films grown on Si substrates. The OH σ∗ resonance is almost 4 eV higher. Removing H from OH in the supercell does not affect the gap region (O - forms); however, removing H from SiH produces a mid-gap state, suggesting leakage current by hopping conductivity between Si dangling bonds. A Morse potential model is used to explore the dynamics of bond scission by short-lived (<1 fs) hot electron σ∗ capture. Supercell calculations on interstitial atomic hydrogen indicate the energy cost to break an embedded SiH bond is about 0.6 eV less than in the gas phase. The DIET yield is substantially increased by reducing both ground and electron-attached state binding by this amount. While uncertainty over the displaced equilibrium in the electron-attached excited state remains, the computed DIET cross-section for reasonable parameters is ≈10 -18 cm 2, and is in agreement with the semi-empirically derived value for trap creation. Comparisons are made to surface DIET processes involving SiH bonds.

  3. Silylations of Arenes with Hydrosilanes: From Transition-Metal-Catalyzed C¢X Bond Cleavage to Environmentally Benign Transition-Metal-Free C¢H Bond Activation.

    PubMed

    Xu, Zheng; Xu, Li-Wen

    2015-07-01

    The construction of carbon-silicon bonds is highlighted as an exciting achievement in the field of organosilicon chemistry and green chemistry. Recent developments in this area will enable the sustainable chemical conversion of silicon resources into synthetically useful compounds. Especially, the catalytic silylation through C¢H bond activation without directing groups and hydrogen acceptors is one of the most challenging topics in organic chemistry and green chemistry. These remarkable findings on catalytic silylation can pave the way to a more environmentally benign utilization of earth-abundant silicon-based resources in synthetic chemistry. PMID:26073645

  4. Development of a Simple Adjustable Zinc Acid/Base Hybrid Catalyst for C-C and C-O Bond-Forming and C-C Bond-Cleavage Reactions.

    PubMed

    Yamashita, Yasuhiro; Minami, Kodai; Saito, Yuki; Kobayashi, Shū

    2016-09-01

    A newly designed zinc Lewis acid/base hybrid catalyst was developed. By adjusting the Lewis acidity of the zinc center, aldol-type additions of 2-picolylamine Schiff base to aldehydes proceeded smoothly to afford syn-aldol adduct equivalents, trans-N,O-acetal adducts, in high yields with high selectivities. NMR experiments, including microchanneled cell for synthesis monitoring (MICCS) NMR analysis, revealed that anti-aldol adducts were formed at the initial stage of the reactions under kinetic control, but the final products were the trans-(syn)-N,O-acetal adducts that were produced through a retro-aldol process under thermodynamic control. In the whole reaction process, the zinc catalyst played three important roles: i) promotion of the aldol process (C-C bond formation), ii) cyclization process to the N,O-acetal product (C-O bond formation), and iii) retro-aldol process from the anti-aldol adduct to the syn-aldol adduct (C-C bond cleavage and C-C bond formation).

  5. Synthesis of Biaryls through Nickel-Catalyzed Suzuki-Miyaura Coupling of Amides by Carbon-Nitrogen Bond Cleavage.

    PubMed

    Shi, Shicheng; Meng, Guangrong; Szostak, Michal

    2016-06-01

    The first Ni-catalyzed Suzuki-Miyaura coupling of amides for the synthesis of widely occurring biaryl compounds through N-C amide bond activation is reported. The reaction tolerates a wide range of electron-withdrawing, electron-neutral, and electron-donating substituents on both coupling partners. The reaction constitutes the first example of the Ni-catalyzed generation of aryl electrophiles from bench-stable amides with potential applications for a broad range of organometallic reactions. PMID:27101428

  6. Rhodium-catalyzed annulative coupling of 3-phenylthiophenes with alkynes involving double C-H bond cleavages.

    PubMed

    Iitsuka, Tomonori; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2014-01-01

    Double CH bond activation took place efficiently upon treatment of 3-phenylthiophenes with alkynes in the presence of a rhodium catalyst and a copper salt oxidant to form the corresponding naphthothiophene derivatives. Dehydrogenative coupling with alkenes was also found to occur on the phenyl moiety rather than the thiophene ring. These reactions provide straightforward synthetic methods for π-conjugated molecules involving a thiophene unit from readily available, simple building blocks. PMID:24288235

  7. Density functional theory calculations on oxidative C-C bond cleavage and N-O bond formation of [Ru(II)(bpy)2(diamine)](2+) via reactive ruthenium imide intermediates.

    PubMed

    Guan, Xiangguo; Law, Siu-Man; Tse, Chun-Wai; Huang, Jie-Sheng; Che, Chi-Ming

    2014-11-10

    DFT calculations are performed on [Ru(II)(bpy)2(tmen)](2+) (M1, tmen = 2,3-dimethyl-2,3-butanediamine) and [Ru(II)(bpy)2(heda)](2+) (M2, head = 2,5-dimethyl-2,5-hexanediamine), and on the oxidation reactions of M1 to give the C-C bond cleavage product [Ru(II)(bpy)2(NH=CMe2)2](2+) (M3) and the N-O bond formation product [Ru(II)(bpy)2(ONCMe2CMe2NO)](2+) (M4). The calculated geometrical parameters and oxidation potentials are in good agreement with the experimental data. As revealed by the DFT calculations, [Ru(II)(bpy)2(tmen)](2+) (M1) can undergo oxidative deprotonation to generate Ru-bis(imide) [Ru(bpy)2(tmen-4 H)](+) (A) or Ru-imide/amide [Ru(bpy)2(tmen-3 H)](2+) (A') intermediates. Both A and A' are prone to C-C bond cleavage, with low reaction barriers (ΔG(≠)) of 6.8 and 2.9 kcal mol(-1) for their doublet spin states (2)A and (2)A', respectively. The calculated reaction barrier for the nucleophilic attack of water molecules on (2)A' is relatively high (14.2 kcal mol(-1)). These calculation results are in agreement with the formation of the Ru(II)-bis(imine) complex M3 from the electrochemical oxidation of M1 in aqueous solution. The oxidation of M1 with Ce(IV) in aqueous solution to afford the Ru(II)-dinitrosoalkane complex M4 is proposed to proceed by attack of the cerium oxidant on the ruthenium imide intermediate. The findings of ESI-MS experiments are consistent with the generation of a ruthenium imide intermediate in the course of the oxidation.

  8. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies

    PubMed Central

    Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.; Garman, Elspeth F.; Owen, Robin L.; Snell, Edward H.; Bernhard, William A.

    2013-01-01

    Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure. PMID:24311579

  9. Isolation of a Diborane(6) Dication: Formation and Cleavage of an Electron-Precise B(sp(3))-B(sp(3)) Bond.

    PubMed

    Kong, Lingbing; Lu, Wei; Li, Yongxin; Ganguly, Rakesh; Kinjo, Rei

    2016-07-13

    One-electron oxidation of organoboron L2PhB: 1 (L = oxazol-2-ylidene) afforded a dicationic diborane(6) species [L2PhB-BPhL2]·2X (X = OTf, BF4, AlCl4) 3, representing a new strategy to construct a B(sp(3))-B(sp(3)) covalent bond. Each boron atom in 3 is in the formal oxidation state +II, and tetracoordinate with a Ph group and two oxazol-2-ylidenes. The cyclic voltammetry of 3 shows irreversible reduction and oxidation. Indeed, two-electron reduction of 3 with potassium graphite (KC8) afforded 1, making a fully reversible 1 ↔ 3 redox system, whereas two-electron oxidation with AuCl produced a boronium [L2PhBCl]OTf 4. Moreover, the reactions of 3 with isonitrile derivatives RNC: under heating conditions gave a cyano-substituted boronium [L2PhBCN]BF4 5 and a 2-boranyl-indole derivative 6, depending on the substituent R. The proposed reaction mechanism involves a borinylium radical 1(•+) which is generated via a homolytic cleavage of the B-B bond of 3. PMID:27309118

  10. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies.

    PubMed

    Sutton, Kristin A; Black, Paul J; Mercer, Kermit R; Garman, Elspeth F; Owen, Robin L; Snell, Edward H; Bernhard, William A

    2013-12-01

    Electron paramagnetic resonance (EPR) and online UV-visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV-visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5-0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.

  11. Solvent dependent branching between C-I and C-Br bond cleavage following 266 nm excitation of CH{sub 2}BrI

    SciTech Connect

    Anderson, Christopher P.; Spears, Kenneth G.; Wilson, Kaitlynn R.; Sension, Roseanne J.

    2013-11-21

    It is well known that ultraviolet photoexcitation of halomethanes results in halogen-carbon bond cleavage. Each halogen-carbon bond has a dominant ultraviolet (UV) absorption that promotes an electron from a nonbonding halogen orbital (n{sub X}) to a carbon-halogen antibonding orbital (σ*{sub C-X}). UV absorption into specific transitions in the gas phase results primarily in selective cleavage of the corresponding carbon-halogen bond. In the present work, broadband ultrafast UV-visible transient absorption studies of CH{sub 2}BrI reveal a more complex photochemistry in solution. Transient absorption spectra are reported spanning the range from 275 nm to 750 nm and 300 fs to 3 ns following excitation of CH{sub 2}BrI at 266 nm in acetonitrile, 2-butanol, and cyclohexane. Channels involving formation of CH{sub 2}Br + I radical pairs, iso-CH{sub 2}Br-I, and iso-CH{sub 2}I-Br are identified. The solvent environment has a significant influence on the branching ratios, and on the formation and stability of iso-CH{sub 2}Br-I. Both iso-CH{sub 2}Br-I and iso-CH{sub 2}I-Br are observed in cyclohexane with a ratio of ∼2.8:1. In acetonitrile this ratio is 7:1 or larger. The observation of formation of iso-CH{sub 2}I-Br photoproduct as well as iso-CH{sub 2}Br-I following 266 nm excitation is a novel result that suggests complexity in the dissociation mechanism. We also report a solvent and concentration dependent lifetime of iso-CH{sub 2}Br-I. At low concentrations the lifetime is >4 ns in acetonitrile, 1.9 ns in 2-butanol and ∼1.4 ns in cyclohexane. These lifetimes decrease with higher initial concentrations of CH{sub 2}BrI. The concentration dependence highlights the role that intermolecular interactions can play in the quenching of unstable isomers of dihalomethanes.

  12. Electronic structure of the peroxy intermediate and its correlation to the native intermediate in the multicopper oxidases: insights into the reductive cleavage of the o-o bond.

    PubMed

    Yoon, Jungjoo; Solomon, Edward I

    2007-10-31

    The multicopper oxidases (MCOs) utilize a blue type 1 (T1) copper site and a trinuclear Cu cluster composed of a type 2 (T2) and a binuclear type 3 (T3) site that together catalyze the four-electron reduction of O2 to H2O. Reaction of the fully reduced enzyme with O2 proceeds via two sequential two-electron steps generating the peroxy intermediate (PI) and the native intermediate (NI). While a detailed description of the geometric and electronic structure of NI has been developed, this has been more elusive for PI largely due to the diamagnetic nature of its ground state. Density functional theory (DFT) calculations have been used to correlate to spectroscopic data to generate a description of the geometric and electronic structure of PI. A highly conserved carboxylate residue near the T2 site is found to play a critical role in stabilizing the PI structure, which induces oxidation of the T2 and one T3 Cu center and strong superexchange stabilization via the peroxide bridge, allowing irreversible binding of O2 at the trinuclear Cu site. Correlation of PI to NI is achieved using a two-dimensional potential energy surface generated to describe the catalytic two-electron reduction of the peroxide O-O bond by the MCOs. It is found that the reaction is thermodynamically driven by the relative stability of NI and the involvement of the simultaneous two-electron-transfer process. A low activation barrier (calculated approximately 5-6 kcal/mol and experimental approximately 3-5 kcal/mol) is produced by the triangular topology of the trinuclear Cu cluster site, as this symmetry provides good donor-acceptor frontier molecular orbital (FMO) overlap. Finally, the O-O bond cleavage in the trinuclear Cu cluster can be achieved via either a proton-assisted or a proton-unassisted process, allowing the MCOs to function over a wide range of pH. It is found that while the proton helps to stabilize the acceptor O22- sigma* orbital in the proton-assisted process for better donor

  13. A Tin(IV) Chloride Promoted Tandem C-O Bond Cleavage/Nazarov Cyclization/Nucleophilic Addition Reaction of 1,1-Disubstituted Allylic Ethers toward the Synthesis of Multisubstituted Indenes.

    PubMed

    Yang, Chao; Xu, Zheng-Liang; Shao, Hui; Mou, Xue-Qing; Wang, Jie; Wang, Shao-Hua

    2015-11-01

    A novel SnCl4-promoted tandem reaction toward multisubstituted indenes via a sequential C-O bond cleavage/Nazarov cyclization/nucleophilic addition reaction has been developed to afford a series of multisubstituted indenes with an all-carbon quaternary center in moderate to good yields. PMID:26465205

  14. Heterolytic Cleavage of Hydrogen by an Iron Hydrogenase Model: An Fe-H - - - H-N Dihydorgen Bond Characterized by Neutron Diffraction

    SciTech Connect

    Liu, Tianbiao L.; Wang, Xiaoping; Hoffmann, Christina; DuBois, Daniel L.; Bullock, R. Morris

    2014-05-19

    Use of hydrogen as a fuel by [FeFe]-hydrogenase enzymes in nature requires heterolytic cleavage of the H-H bond into a proton (H+) and hydride (H-), a reaction that is also a critical step in homogeneous catalysts for hydrogenation of C=O and C=N bonds. An understanding of the catalytic oxidation of H2 by hydrogenases provides insights into the design of synthetic catalysts that are sought as cost-effective alternatives to the use of the precious metal platinum in fuel cells. Crystallographic studies on the [FeFe]-hydrogenase enzyme were critical to understanding of its reactivity, but the key H-H cleavage step is not readily observed experimentally in natural hydrogenases. Synthetic biomimics have provided evidence for H2 cleavage leading to hydride transfer to the metal and proton transfer to an amine. Limitations on the precise location of hydrogen atoms by x-ray diffraction can be overcome by use of neutron diffraction, though its use is severely limited by the difficulty of obtaining suitable crystals and by the scarcity of neutron sources. Here we show that an iron complex with a pendant amine in the diphosphine ligand cleaves hydrogen heterolytically under mild conditions, leading to [CpC5F4NFeH(PtBu2NtBu2H)]+BArF4-, [PtBu2NtBu2 = 1,5-di(tert-butyl)-3,7-di(tert-butyl)-1,5-diaza-3,7-diphosphacyclooctane; ArF = 3,5-bis(trifluoromethyl)phenyl]. The Fe-H- - - H-N moiety has a strong dihydrogen bond, with a remarkably short H • • • H distance of 1.489(10) Å between the protic N-Hδ+ and hydridic Fe-Hδ-. The structural data for [CpC5F4NFeH(PtBu2NtBu2H)]+ provide a glimpse of how the H-H bond is oxidized or generated in hydrogenase enzymes, with the pendant amine playing a key role as a proton relay. The iron complex [CpC5F4NFeH(PtBu2NtBu2H)]+BArF4- is an electrocatalyst for oxidation of H2 (1 atm) at 22 °C, so the structural data are obtained on a complex that is a functional model for catalysis by [FeFe]-hydrogenase enzymes. This research was supported

  15. Synthesis of diorganoplatinum(IV) complexes by the Ssbnd S bond cleavage with platinum(II) complexes

    NASA Astrophysics Data System (ADS)

    Niroomand Hosseini, Fatemeh; Rashidi, Mehdi; Nabavizadeh, S. Masoud

    2016-12-01

    Reaction of [PtR2(NN)] (R = Me, p-MeC6H4 or p-MeOC6H4; NN = 2,2‧-bipyridine, 4,4‧-dimethyl-2,2‧-bipyridine, 1,10-phenanthroline or 2,9-dimethyl-1,10-phenanthroline) with MeSSMe gives the platinum(IV) complexes cis,trans-[PtR2(SMe)2(NN)]. They are characterized by NMR spectroscopy and elemental analysis. The geometries and the nature of the frontier molecular orbitals of Pt(IV) complexes containing Ptsbnd S bonds are studied by means of the density functional theory.

  16. Geometric and Electronic Structure of [{Cu(MeAN)}2(μ-η2:η2(O22−))]2+ with an Unusually Long O–O Bond: O–O Bond Weakening vs Activation for Reductive Cleavage

    PubMed Central

    Park, Ga Young; Qayyum, Munzarin F.; Woertink, Julia; Hodgson, Keith O.; Hedman, Britt; Narducci Sarjeant, Amy A.; Solomon, Edward I.; Karlin, Kenneth D.

    2012-01-01

    Certain side-on peroxo dicopper(II) species with particularly low υO–O (710–730 cm−1) have been found in equilibrium with their bis-μ-oxo dicopper(III) isomer. An issue is whether such side-on peroxo bridges are further activated for O–O cleavage. In a previous study (Liang, H.-C., et al., J. Am. Chem. Soc. 2002, 124, 4170–4171), we showed that oxygenation of the three-coordinate complex [CuI(MeAN)]+ (MeAN=N-methyl-N,N-bis[3-(dimethylamino)propyl]amine) leads to a low-temperature stable [{CuII(MeAN)}2(μ-η2:η2-O22−)]2+ peroxo species with low υO–O (721 cm−1), as characterized by UV-Vis absorption and resonance Raman (rR) spectroscopies. Here, this complex has been crystallized as its SbF6− salt and an X-ray structure indicates the presence of an unusually long O–O bond (1.540(5) Å) consistent with the low υO–O. EXAFS and rR spectroscopic and reactivity studies indicate the exclusive formation of [{CuII(MeAN)}2(μ-η2:η2-O22−)]2+ without any bis-μ-oxo-dicopper(III) isomer present. This is the first structure of a side-on peroxo dicopper(II) species with a significantly long and weak O–O bond. DFT calculations show that the weak O–O bond results from strong σ donation from the MeAN ligand to Cu that is compensated by a decrease in the extent of peroxo to Cu charge transfer. Importantly, the weak O–O bond does not reflect an increase in backbonding into the σ* orbital of the peroxide. Thus, although the O–O bond is unusually weak, this structure is not further activated for reductive cleavage to form a reactive bis-μ-oxo-dicopper(III) species. These results highlight the necessity of understanding electronic structure changes associated with spectral changes for correlations to reactivity. PMID:22571744

  17. Computer Simulations Reveal Substrate Specificity of Glycosidic Bond Cleavage in Native and Mutant Human Purine Nucleoside Phosphorylase.

    PubMed

    Isaksen, Geir Villy; Hopmann, Kathrin Helen; Åqvist, Johan; Brandsdal, Bjørn Olav

    2016-04-12

    Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of purine ribonucleosides and 2'-deoxyribonucleosides, yielding the purine base and (2'-deoxy)ribose 1-phosphate as products. While this enzyme has been extensively studied, several questions with respect to the catalytic mechanism have remained largely unanswered. The role of the phosphate and key amino acid residues in the catalytic reaction as well as the purine ring protonation state is elucidated using density functional theory calculations and extensive empirical valence bond (EVB) simulations. Free energy surfaces for adenosine, inosine, and guanosine are fitted to ab initio data and yield quantitative agreement with experimental data when the surfaces are used to model the corresponding enzymatic reactions. The cognate substrates 6-aminopurines (inosine and guanosine) interact with PNP through extensive hydrogen bonding, but the substrate specificity is found to be a direct result of the electrostatic preorganization energy along the reaction coordinate. Asn243 has previously been identified as a key residue providing substrate specificity. Mutation of Asn243 to Asp has dramatic effects on the substrate specificity, making 6-amino- and 6-oxopurines equally good as substrates. The principal effect of this particular mutation is the change in the electrostatic preorganization energy between the native enzyme and the Asn243Asp mutant, clearly favoring adenosine over inosine and guanosine. Thus, the EVB simulations show that this particular mutation affects the electrostatic preorganization of the active site, which in turn can explain the substrate specificity. PMID:26985580

  18. Carbon-fluorine bond cleavage in the preparation of Osmium(III) and Osmium(IV) fluorothiolate complexes. Fluorine by fluorine NMR-assignment and fluxional processes.

    PubMed

    Arroyo, Maribel; Bernès, Sylvain; Cerón, Margarita; Cortina, Verónica; Mendoza, Consuelo; Torrens, Hugo

    2007-06-11

    Reactions of OsO4 with HSR (R=C6F5, C6F4H-4,) in refluxing ethanol afford [Os(SC6F5)3(SC6F4(SC6F5)-2)] (1) and [Os(SC6F4H-4)3(SC6F3H-4-(SC6F4H-4)-2)] (2), which involve the rupture of C-F bonds. At room temperature, the compound [Os(SC6F5)3(PMe2Ph)2] or [Os(SC6F5)4(PMe2Ph)] reacts with KOH(aq) in acetone, giving rise to [ Os(SC6F5)(SC6F4(SC6F4O-2)-2)(PMe2Ph)2] (3), through a process involving the rupture of two C-F bonds, while the compound [Os(SC6F4H)4(PPh3)] reacts with KOH(aq) in acetone to afford [Os(SC6F4H-4)2(SC6F3H-4-O-2)(PPh3)] (4), which also implies a C-F bond cleavage. Single-crystal X-ray diffraction studies of 1, 2, and 4 indicate that these compounds include five-coordinated metal ions in essentially trigonal-bipyramidal geometries, whereas these studies on the paramagnetic compound 3 show a six-coordinated osmium center in a distorted octahedral geometry. 19F, 1H, 31P{1H}, and COSY 19F-19F NMR studies for the diamagnetic 1, 2, and 4 compounds, including variable-temperature 19F NMR experiments, showed that these molecules are fluxional. Some of the activation parameters for these dynamic processes have been determined.

  19. Role of aromatic structure in pathways of hydrogen transfer and bond cleavage in coal liquefaction: Theoretical studies

    SciTech Connect

    Franz, J.A.; Autrey, T.; Camaioni, D.M.; Watts, J.D.; Bartlett, R.J.

    1995-09-01

    The mechanisms by which strong carbon-carbon bonds between aromatic rings and side chains are cleaved under hydropyrolysis conditions remain a subject of wide interest to fuel science. Recently, the authors have studied in detail an alternate pathway for hydrogen atom transfer to {pi}-systems, radical hydrogen transfer (RHT). RHT is the direct, bimolecular transfer of hydrogen from the {beta}-position of an organic radical to the target {pi}-system. In the initial theoretical study, they examined the reaction ethyl radical + ethylene = ethylene + ethyl at the spin-projected UMP2/6-31G** level of theory. Recently, they have used a calibrated ROHF-MNDO-PM3 method to predict thermoneutral RHT barriers for hydrogen transfer between hydroaryl radicals and the corresponding arene. Because of the inherent limitations of semiempirical methods such as ROHF-MNDO-PM3, they have extended the initial work with the ethyl + ethylene study to examine this reaction at the ROHF-MBPT[2]-6-31G** and ROHF-CCSD[T]-6-31G** levels of ab initio theory. The primary objective was to determine how intrinsic RHT barriers change with conjugative stabilization of the radicals. The spin-restricted ROHF approach has been applied to study several RHT reactions, and they present completed ROHF results for the ethyl + ethylene system and preliminary results for the methallyl + butadiene system. The methallyl + butadiene system serves as a model for highly stabilized hydroaryl radicals: the methallyl radical exhibits a C-H bond strength of 46.5 kcal/mol compared to 9-hydroanthracenyl, 43.1 kcal/mol.

  20. Substrate-Triggered Activation of a Synthetic [Fe2(μ-O)2] Diamond Core for C–H Bond Cleavage

    PubMed Central

    Xue, Genqiang; Pokutsa, Alexander; Que, Lawrence

    2011-01-01

    An [FeIV2(μ-O)2] diamond core structure has been postulated for intermediate Q of soluble methane monooxygenase (sMMO-Q), the oxidant responsible for cleaving the strong C–H bond of methane and its hydroxylation. By extension, analogous species may be involved in the mechanisms of related diiron hydroxylases and desaturases. Due to the paucity of well-defined synthetic examples, there are few, if any, mechanistic studies on the oxidation of hydrocarbon substrates by complexes with high-valent [Fe2(μ-O)2] cores. We report here that water or alcohol substrates can activate synthetic [FeIIIFeIV(μ-O)2] complexes supported by tetradentate tris(pyridyl-2-methyl)amine ligands (1 and 2) by several orders of magnitude for C–H bond oxidation. On the basis of detailed kinetic studies, it is postulated that the activation results from Lewis base attack on the [FeIIIFeIV(μ-O)2] core, resulting in the formation of a more reactive species with a [X–FeIII–O–FeIV=O] ring-opened structure (1-X, 2-X, X = OH− or OR−). Treatment of 2 with methoxide at −80 °C forms the 2-methoxide adduct in high yield, which is characterized by an S = 1/2 EPR signal indicative of an antiferromagnetically coupled [S = 5/2 FeIII/S = 2 FeIV] pair. Even at this low temperature, the complex undergoes facile intramolecular C–H bond cleavage to generate formaldehyde, showing that the terminal high-spin FeIV=O unit is capable of oxidizing a C–H bond as strong as 96 kcal mol−1. This intramolecular oxidation of the methoxide ligand can in fact be competitive with intermolecular oxidation of triphenylmethane, which has a much weaker C–H bond (DC-H 81 kcal mol−1). The activation of the [FeIIIFeIV(μ-O)2] core is dramatically illustrated by the oxidation of 9,10-dihydroanthracene by 2-methoxide, which has a second order rate constant that is 3.6 x 107-fold larger than that for the parent diamond core complex 2. These observations provide strong support for the DFT-based notion that an

  1. Experimental and theoretical investigations of copper (I/II) complexes with triazine-pyrazole derivatives as ligands and their in situ C-N bond cleavage

    NASA Astrophysics Data System (ADS)

    Wang, Ji-Xiao; Wang, Che; Wang, Xuan; Wang, Xin-Yu; Xing, Yong-Heng; Sun, Qiao

    2015-05-01

    Two copper complexes, Cu(SCN)(Mpz∗T-(EtO)2) (1) (Mpz∗T-(EtO)2 = L3) and CuCl(H2O)(Mpz∗T-O2) (2) (Mpz∗T-O2 = L4) were synthesized by the reaction of 2,4,6-tri(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine (L1) or 2,4,6-tri(1H-pyrazol-1-yl)-1,3,5-triazine (L2) with CuCl2·2H2O in anhydrous ethanol and methanol, respectively. The complexes were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, single crystal X-ray diffraction and X-ray powder diffraction. The structural characterizations and quantum mechanical calculations of the two complexes were analyzed in detail. It was found that an in site reaction occurred during the synthesis process of complexes 1 and 2, likely due to catalytic property of copper ions which leads to the C-N bond cleavage to generate new organic species, namely, Mpz∗T-(EtO)2 (L3) and Mpz∗T-O2 (L4).

  2. C-O bond cleavage of dimethyl ether by transition metal ions: a systematic study on catalytic properties of metals and performance of DFT functionals.

    PubMed

    Liu, Cong; Peterson, Charles; Wilson, Angela K

    2013-06-20

    Studies were focused on late 3d and 4d transition metal ion (Fe, Co, Ni, Cu, Ru, Rh, Pd, and Ag) mediated activation of dimethyl ether, to investigate the intrinsic catalytic properties of metals on C-O bond cleavage. A set of density functional (DFT) methods (BLYP, B3LYP, M06, M06-L, B97-1, B97-D, TPSS, and PBE0) with aug-cc-pVTZ were utilized, and the results were calibrated with CCSD(T)/CBS. The utility of CCSD(T)/CBS calculations for these systems was validated by MRCI/aug-cc-pVTZ calculations. Calculations showed an interesting energetic trend as a function of metal; earlier transition metals tend to give smaller reaction barriers and more exergonic reactions than later metals. This applies to both 3d and 4d systems. For the performance of DFT functionals, PBE0 gave the lowest root mean squared deviations (RMSDs) in terms of both reaction energies and barriers for both 3d and 4d systems, compared to the other functionals. Our studies found that the percentage of Hartree-Fock (HF) exchange plays an important role in the accuracy of DFT methods for these systems, and 26% HF exchange for 3d systems and 34% HF exchange for 4d systems gave the lowest RMSDs.

  3. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.

    PubMed

    Hartmann, Tobias; Schrapers, Peer; Utesch, Tillmann; Nimtz, Manfred; Rippers, Yvonne; Dau, Holger; Mroginski, Maria Andrea; Haumann, Michael; Leimkühler, Silke

    2016-04-26

    Formate dehydrogenases (FDHs) are capable of performing the reversible oxidation of formate and are enzymes of great interest for fuel cell applications and for the production of reduced carbon compounds as energy sources from CO2. Metal-containing FDHs in general contain a highly conserved active site, comprising a molybdenum (or tungsten) center coordinated by two molybdopterin guanine dinucleotide molecules, a sulfido and a (seleno-)cysteine ligand, in addition to a histidine and arginine residue in the second coordination sphere. So far, the role of these amino acids in catalysis has not been studied in detail, because of the lack of suitable expression systems and the lability or oxygen sensitivity of the enzymes. Here, the roles of these active site residues is revealed using the Mo-containing FDH from Rhodobacter capsulatus. Our results show that the cysteine ligand at the Mo ion is displaced by the formate substrate during the reaction, the arginine has a direct role in substrate binding and stabilization, and the histidine elevates the pKa of the active site cysteine. We further found that in addition to reversible formate oxidation, the enzyme is further capable of reducing nitrate to nitrite. We propose a mechanistic scheme that combines both functionalities and provides important insights into the distinct mechanisms of C-H bond cleavage and oxygen atom transfer catalyzed by formate dehydrogenase. PMID:27054466

  4. Gallium(III)-Containing, Sandwich-Type Heteropolytungstates: Synthesis, Solution Characterization, and Hydrolytic Studies toward Phosphoester and Phosphoanhydride Bond Cleavage.

    PubMed

    Kandasamy, Balamurugan; Vanhaecht, Stef; Nkala, Fiona Marylyn; Beelen, Tessa; Bassil, Bassem S; Parac-Vogt, Tatjana N; Kortz, Ulrich

    2016-09-19

    The gallium(III)-containing heteropolytungstates [Ga4(H2O)10(β-XW9O33)2](6-) (X = As(III), 1; Sb(III), 2) were synthesized in aqueous acidic medium by reaction of Ga(3+) ions with the trilacunary, lone-pair-containing [XW9O33](9-). Polyanions 1 and 2 are isostructural and crystallized as the hydrated sodium salts Na6[Ga4(H2O)10(β-AsW9O33)2]·28H2O (Na-1) and Na6[Ga4(H2O)10(β-SbW9O33)2]·30H2O (Na-2) in the monoclinic space group P21/c, with unit cell parameters a = 16.0218(12) Å, b = 15.2044(10) Å, c = 20.0821(12) Å, and β = 95.82(0)°, as well as a = 16.0912(5) Å, b = 15.2178(5) Å, c = 20.1047(5) Å, and β = 96.2(0)°, respectively. The corresponding tellurium(IV) derivative [Ga4(H2O)10(β-TeW9O33)2](4-) (3) was also prepared, by direct reaction of sodium tungstate, tellurium(IV) oxide, and gallium nitrate. Polyanion 3 crystallized as the mixed rubidium/sodium salt Rb2Na2[Ga4(H2O)10(β-TeW9O33)2]·28H2O (RbNa-3) in the triclinic space group P1̅ with unit cell parameters a = 12.5629(15) Å, b = 13.2208(18) Å, c = 15.474(2) Å, α = 80.52(1)°, β = 84.37(1)°, and γ = 65.83(1)°. All polyanions 1-3 were characterized in the solid state by single-crystal XRD, FT-IR, TGA, and elemental analysis, and polyanion 2 was also characterized in solution by (183)W NMR and UV-vis spectroscopy. Polyanion 2 was used as a homogeneous catalyst toward adenosine triphosphate (ATP) and the DNA model substrate 4-nitrophenylphosphate, monitored by (1)H and (31)P NMR spectroscopy. The encapsulated gallium(III) centers in 2 promote the Lewis acidic synergistic activation of the hydrolysis of ATP and DNA model substrates at a higher rate in near-physiological conditions. A strong interaction of 2 with the P-O bond of ATP was evidenced by changes in chemical shift values and line broadening of the (31)P nucleus in ATP upon addition of the polyanion. PMID:27563715

  5. N-Cα Bond Cleavage of Zinc-Polyhistidine Complexes in Electron Transfer Dissociation Mediated by Zwitterion Formation: Experimental Evidence and Theoretical Analysis of the Utah-Washington Model.

    PubMed

    Asakawa, Daiki; Yamashita, Asuka; Kawai, Shikiho; Takeuchi, Takae; Wada, Yoshinao

    2016-02-11

    Electron capture dissociation (ECD) and electron transfer dissociation (ETD) of gas-phase ions are widely used for peptide/protein sequencing by mass spectrometry. To understand the general mechanism of ECD/ETD of peptides, we focused on the ETD fragmentation of metal-peptide complexes in the absence of remote protons. Since Zn(2+) strongly binds to neutral histidine residues in peptides, Zn(2+)-polyhistidine complexation does not generate any remote protons. However, in the absence of remote protons, electron transfer to the Zn(2+)-polyhistidine complex induced the N-Cα bond cleavage. The formation pathway for the ETD products was investigated by density functional theory calculations. The calculations showed that the charge-reduced zinc-peptide radical, [M + Zn](•+), can exist in the low-energy zwitterionic amide π* states, which underwent homolytic N-Cα bond dissociation. The homolytic cleavage resulted in the donation of an electron from the N-Cα bond to the nitrogen atom, producing an iminoenol c' anion. The counterpart z(•) radical contained a radical site on the α-carbon atom. The iminoenol c' anion then abstracted a proton to presumably form the more stable amide c' fragment. The current experimental and computational joint study strongly suggested that the N-Cα bond cleavage occurred through the aminoketyl radical-anion formation for Zn(2+)-polyhistidine complexes in ETD. PMID:26673038

  6. Copper-catalyzed domino synthesis of 2-imino-1H-imidazol-5(2H)-ones and quinoxalines involving C-C bond cleavage with a 1,3-dicarbonyl unit as a leaving group.

    PubMed

    Yang, Yan; Ni, Fan; Shu, Wen-Ming; Wu, An-Xin

    2014-09-01

    Although 2-imino-1H-imidazol-5(2H)-ones have important biological activities in metabolism, their synthesis has rarely been investigated. Quinoxalines as "privileged scaffolds" in medicinal chemistry have been extensively investigated, but the development of novel and efficient synthetic methods remains very attractive. Herein, we have developed two copper-catalyzed domino reactions for the synthesis of 2-imino-1H-imidazol-5(2H)-ones and quinoxalines involving CC bond-cleavage with a 1,3-dicarbonyl unit as a leaving group. The domino sequence for the synthesis of 2-imino-1H-imidazol-5(2H)-ones includes aza-Michael addition, intramolecular cyclization, CC bond-cleavage, 1,2-rearrangement, and aerobic dehydrogenation reaction, whereas the domino sequence for the synthesis of quinoxalines includes aza-Michael addition, intramolecular cyclization, elimination reaction, and CC bond-cleavage reaction. The two domino reactions have significant advantages including high efficiency, mild reaction conditions, and high tolerance of various functional groups. PMID:25079446

  7. Rapid carbon-carbon bond formation and cleavage revealed by carbon isotope exchange between the carboxyl carbon and inorganic carbon in hydrothermal fluids

    NASA Astrophysics Data System (ADS)

    Glein, C. R.; Cody, G. D.

    2013-12-01

    The carbon isotopic composition of organic compounds in water-rock systems (e.g., hydrothermal vents, sedimentary basins, and carbonaceous meteorites) is generally interpreted in terms of the isotopic composition of the sources of such molecules, and the kinetic isotope effects of metabolic or abiotic reactions that generate or transform such molecules. This hinges on the expectation that the carbon isotopic composition of many organic compounds is conserved under geochemical conditions. This expectation is reasonable in light of the strength of carbon-carbon bonds (ca. 81 kcal/mol); in general, environmental conditions conducive to carbon-carbon bond cleavage typically lead to transformations of organic molecules (decarboxylation is a notable example). Geochemically relevant reactions that involve isotopic exchange between carbon atoms in organic molecules and inorganic forms of carbon with no change in molecular structure appear to be rare. Notwithstanding such rarity, there have been preliminary reports of relatively rapid carbon isotope exchange between the carboxyl group in carboxylic acids and carbon dioxide in hot water [1,2]. We have performed laboratory hydrothermal experiments to gain insights into the mechanism of this surprising reaction, using phenylacetate as a model structure. By mass spectrometry, we confirm that the carboxyl carbon undergoes facile isotopic exchange with 13C-labeled bicarbonate at moderate temperatures (i.e., 230 C). Detailed kinetic analysis reveals that the reaction rate is proportional to the concentrations of both reactants. Further experiments demonstrate that the exchange reaction only occurs if the carbon atom adjacent to the carboxyl carbon is bonded to a hydrogen atom. As an example, no carbon isotope exchange was observed for benzoate in experiments lasting up to one month. The requirement of an alpha C-H bond suggests that enolization (i.e., deprotonation of the H) is a critical step in the mechanism of the exchange

  8. Formation of a dinuclear copper(II) complex through the cleavage of CN bond of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole

    SciTech Connect

    Shardin, Rosidah; Pui, Law Kung; Yamin, Bohari M.; Kassim, Mohammad B.

    2014-09-03

    A simple mononuclear octahedral copper(II) complex was attempted from the reaction of three moles of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole and one mole of copper(II) perchlorate hexahydrate in methanol. However, the product of the reaction was confirmed to be a dinuclear copper(II) complex with μ-(3-(pyridin-2-yl)-pyrazolato) and 3-(pyridin-2-yl)-1H-pyrazole ligands attached to each of the Cu(II) centre atom. The copper(II) ion assisted the cleavage of the C{sub benzoyl}N bond afforded a 3-(pyridin-2-yl)-1H-pyrazole molecule. Deprotonation of the 3-(pyridin-2-yl)-1H-pyrazole gave a 3-(pyridin-2-yl)-pyrazolato, which subsequently reacted with the Cu(II) ion to give the (3-(pyridin-2-yl)-pyrazolato)(3-(pyridin-2-yl)-1H-pyrazole)Cu(II) product moiety. The structure of the dinuclear complex was confirmed by x-ray crystallography. The complex crystallized in a monoclinic crystal system with P2(1)/n space group and cell dimensions of a = 12.2029(8) Å, b = 11.4010(7) Å, c = 14.4052(9) Å and β = 102.414(2)°. The compound was further characterized by mass spectrometry, CHN elemental analysis, infrared and UV-visible spectroscopy and the results concurred with the x-ray structure. The presence of d-d transition at 671 nm (ε = 116 dm{sup 3} mol{sup −1} cm{sup −1}) supports the presence of Cu(II) centres.

  9. Release of ribosome-bound 5S rRNA upon cleavage of the phosphodiester bond between nucleotides A54 and A55 in 5S rRNA.

    PubMed

    Holmberg, L; Nygård, O

    2000-11-01

    Reticulocyte lysates contain ribosome-bound and free populations of 5S RNA. The free population is sensitive to nuclease cleavage in the internal loop B, at the phosphodiester bond connecting nucleotides A54 and A55. Similar cleavage sites were detected in 5S rRNA in 60S subunits and 80S ribosomes. However, 5S rRNA in reticulocyte polysomes is insensitive to cleavage unless ribosomes are salt-washed. This suggests that a translational factor protects the backbone surrounding A54 from cleavage in polysomes. Upon nuclease treatment of mouse 60S subunits or reticulocyte lysates a small population of ribosomes released its 5S rRNA together with ribosomal protein L5. Furthermore, rRNA sequences from 5.8S, 28S and 18S rRNA were released. In 18S rRNA the sequences mainly originate from the 630 loop and stem (helix 18) in the 5' domain, whereas in 28S rRNA a majority of fragments is derived from helices 47 and 81 in domains III and V, respectively. We speculate that this type of rRNA-fragmentation may mimic a ribosome degradation pathway.

  10. Diversification of ortho-Fused Cycloocta-2,5-dien-1-one Cores and Eight- to Six-Ring Conversion by σ Bond C-C Cleavage.

    PubMed

    Eccleshare, Lee; Lozada-Rodríguez, Leticia; Cooper, Phillippa; Burroughs, Laurence; Ritchie, John; Lewis, William; Woodward, Simon

    2016-08-22

    Sequential treatment of 2-C6 H4 Br(CHO) with LiC≡CR(1) (R(1) =SiMe3 , tBu), nBuLi, CuBr⋅SMe2 and HC≡CCHClR(2) [R(2) =Ph, 4-CF3 Ph, 3-CNPh, 4-(MeO2 C)Ph] at -50 °C leads to formation of an intermediate carbanion (Z)-1,2-C6 H4 {CA (=O)C≡CB R(1) }{CH=CH(CH(-) )R(2) } (4). Low temperatures (-50 °C) favour attack at CB leading to kinetic formation of 6,8-bicycles containing non-classical C-carbanion enolates (5). Higher temperatures (-10 °C to ambient) and electron-deficient R(2) favour retro σ-bond C-C cleavage regenerating 4, which subsequently closes on CA providing 6,6-bicyclic alkoxides (6). Computational modelling (CBS-QB3) indicated that both pathways are viable and of similar energies. Reaction of 6 with H(+) gave 1,2-dihydronaphthalen-1-ols, or under dehydrating conditions, 2-aryl-1-alkynylnaphthlenes. Enolates 5 react in situ with: H2 O, D2 O, I2 , allylbromide, S2 Me2 , CO2 and lead to the expected C-E derivatives (E=H, D, I, allyl, SMe, CO2 H) in 49-64 % yield directly from intermediate 5. The parents (E=H; R(1) =SiMe3 , tBu; R(2) =Ph) are versatile starting materials for NaBH4 and Grignard C=O additions, desilylation (when R(1) =SiMe) and oxime formation. The latter allows formation of 6,9-bicyclics via Beckmann rearrangement. The 6,8-ring iodides are suitable Suzuki precursors for Pd-catalysed C-C coupling (81-87 %), whereas the carboxylic acids readily form amides under T3P® conditions (71-95 %). PMID:27452351

  11. The crystal structure of bacillus cereus phosphonoacetaldehyde hydrolase: insight into catalysis of phosphorus bond cleavage and catalytic diversification within the HAD enzyme superfamily.

    PubMed

    Morais, M C; Zhang, W; Baker, A S; Zhang, G; Dunaway-Mariano, D; Allen, K N

    2000-08-29

    activity resulting from Asp12Ala substitution. The similarity of backbone folds observed in phosphonatase and the 2-haloacid dehalogenase of the HAD enzyme superfamily indicated common ancestry. Superposition of the two structures revealed a conserved active-site scaffold having distinct catalytic stations. Analysis of the usage of polar amino acid residues at these stations by the dehalogenases, phosphonatases, phosphatases, and phosphomutases of the HAD superfamily suggests possible ways in which the active site of an ancient enzyme ancestor might have been diversified for catalysis of C-X, P-C, and P-O bond cleavage reactions. PMID:10956028

  12. Specific cleavage at peptide backbone Cα-C and CO-N bonds during matrix-assisted laser desorption/ionization in-source decay mass spectrometry with 5-nitrosalicylic acid as the matrix.

    PubMed

    Asakawa, Daiki; Takayama, Mitsuo

    2011-09-15

    The use of 5-nitrosalicylic acid (5-NSA) as a matrix for in-source decay (ISD) of peptides during matrix-assisted laser desorption/ionization (MALDI) is described herein. Mechanistically, the decay process is initiated by a hydrogen abstraction from a peptide backbone amide nitrogen by 5-NSA. Hydrogen abstraction results in formation of an oxidized peptide containing a radical amide nitrogen. Subsequently, the C(α)-C bond N-terminal to the peptide bond is cleaved to form an a·/x fragment pair. The C(α)-C bonds C-terminal to Gly residues were less susceptible to cleavage than were those of other residues. C(α)-C bonds N-terminal to Pro and Sar residues were not cleaved by the aforementioned mechanism; instead, after hydrogen abstraction from a Pro or Sar C(α)-H bond, the peptide bond N-terminal to the Pro was cleaved yielding b- and y-series ions. We also show that fragments produced by MALDI 5-NSA-induced ISD were formed independently of the ionization process.

  13. Rh(III)-Catalyzed Synthesis of N-Unprotected Indoles from Imidamides and Diazo Ketoesters via C-H Activation and C-C/C-N Bond Cleavage.

    PubMed

    Qi, Zisong; Yu, Songjie; Li, Xingwei

    2016-02-19

    The synthesis of N-unprotected indoles has been realized via Rh(III)-catalyzed C-H activation/annulation of imidamides with α-diazo β-ketoesters. The reaction occurs with the release of an amide coproduct, which originates from both the imidamide and the diazo as a result of C═N cleavage of the imidamide and C-C(acyl) cleavage of the diazo. A rhodacyclic intermediate has been isolated and a plausible mechanism has been proposed. PMID:26824751

  14. An elusive vinyl radical isolated as an appended unit in a five-coordinate Co(iii)-bis(iminobenzosemiquinone) complex formed via ligand-centered C-S bond cleavage.

    PubMed

    Sarkar, Prasenjit; Tiwari, Archana; Sarmah, Amrit; Bhandary, Subhrajyoti; Roy, Ram Kinkar; Mukherjee, Chandan

    2016-08-23

    Redox-active ligand H4Pra(edt(AP/AP)) experienced C-S bond cleavage during complexation reaction with Co(OAc)2·2H2O in the presence of Et3N in CH3OH in air. Thus, formed complex 1 was composed of two iminobenzosemiquinone radicals in its coordination sphere and an unprecedented stable tethered-vinyl radical. The complex has been characterized by mass, X-ray single crystal, X-band EPR, variable-temperature magnetic moment measurements and DFT based computational study.

  15. Aliphatic C-C Bond Cleavage of α-Hydroxy Ketones by Non-Heme Iron(II) Complexes: Mechanistic Insight into the Reaction Catalyzed by 2,4'-Dihydroxyacetophenone Dioxygenase.

    PubMed

    Rahaman, Rubina; Paria, Sayantan; Paine, Tapan Kanti

    2015-11-16

    2,4'-Dihydroxyacetophenone dioxygenase (DAD) is a bacterial non-heme enzyme that carries out oxygenative aliphatic C-C bond cleavage of 2,4'-dihydroxyacetophenone (an α-hydroxy ketone) with the incorporation of both the oxygen atoms of dioxygen into the cleavage products. The crystal structure of the iron enzyme DAD has recently been determined, but very little is known about the mechanism of the C-C bond cleavage reaction. With the objective of gaining insights into the mechanism of the reaction catalyzed by DAD, six new biomimetic iron(II)-α-hydroxy ketone complexes, [(Tp(Ph2))Fe(II)(PHAP)] (1), [(Tp(Ph2))Fe(II)(HCH)] (2), [(Tp(Ph2))Fe(II)(HBME)] (3), [(Tp(Ph2))Fe(II)(CHPE)] (4), [(6-Me3-TPA)Fe(II)(PHAP)](+) (5), and [(6-Me3-TPA)Fe(II)(HCH)](+) (6) (Tp(Ph2) = hydrotris(3,5-diphenylpyrazol-1-yl)borate, 6-Me3-TPA = tris(6-methyl-2-pyridylmethyl)amine, PHAP-H = 2-phenyl-2-hydroxyacetophenone, HCH-H = 2-hydroxycyclohexanone, HBME-H = 2-hydroxy-1,2-bis(4-methoxyphenyl)ethanone, and CHPE-H = 1-(4-chlorophenyl)-2-hydroxy-2-phenylethanone), have been isolated and characterized. The single-crystal X-ray structure of 2 shows a five-coordinate iron(II) complex with one tridentate facial ligand and a monoanionic bidentate α-hydroxy ketone, resulting in a distorted-square-pyramidal coordination geometry at the iron center. The iron(II) complexes react with dioxygen to oxidatively cleave the aliphatic C-C bonds of the coordinated α-hydroxy ketones to afford 2 equiv of carboxylic acids. Mechanistic studies reveal that the C-C bond cleavage reaction proceeds through an intradiol pathway. Additionally, the coordinated α-hydroxy ketones in all of the complexes, except in complex 4, undergo two-electron oxidation to form the corresponding 1,2-diketones. However, the yields of 1,2-diketones are higher with the iron complexes of the tripodal N4 ligand (6-Me3-TPA) in comparison to the facial N3 ligand (Tp(Ph2)). These results strongly support the natural selection of a facial N3

  16. Functional group migrations between boron and metal centres within transition metal-borane and -boryl complexes and cleavage of H-H, E-H and E-E' bonds.

    PubMed

    Owen, Gareth R

    2016-08-25

    This feature article examines some of the recent advances in the chemistry of Z-type transition metal-borane and X-type transition metal-boryl complexes. It focuses on the employment of these boron-based functionalities acting as stores and transfer agents for functional groups such as hydrides, alkyl groups and aryl groups which can either be abstracted or delivered to the metal centre. The review also explores the rather novel reactivity involving the cleavage of H-H, E-H and E-E' bonds (where E and E' are a range of groups) across the transition metal-boron bond in such complexes. It explores the early examples of the addition of H-H across transition metal-borane bonds and describes the new transformation in the context of other known modes of hydrogen activation including classic oxidative addition and heterolytic cleavage at transition metal centres as well as Frustrated Lewis Pair chemistry. Similar reactivity involving transition metal-boryl complexes are also described particularly those which undergo both boryl-to-borane and borane-to-borohydride transformations. The delivery of hydride to the metal centre in combination with the potential to regenerate the borohydride functional group via a recharging process is explored in the context of providing a new strategy for catalysis. Finally, a light-hearted look at the analogy of the 'stinging processes' involving Trofimenko type ligands is taken one step further to determine whether it is indeed in the nature of scorpionate ligands to repeatedly 'sting' just as the real life scorpions do. PMID:27489890

  17. Palladium-catalyzed Suzuki-Miyaura coupling of amides by carbon-nitrogen cleavage: general strategy for amide N-C bond activation.

    PubMed

    Meng, Guangrong; Szostak, Michal

    2016-06-15

    The first palladium-catalyzed Suzuki-Miyaura cross-coupling of amides with boronic acids for the synthesis of ketones by sterically-controlled N-C bond activation is reported. The transformation is characterized by operational simplicity using bench-stable, commercial reagents and catalysts, and a broad substrate scope, including substrates with electron-donating and withdrawing groups on both coupling partners, steric-hindrance, heterocycles, halides, esters and ketones. The scope and limitations are presented in the synthesis of >60 functionalized ketones. Mechanistic studies provide insight into the catalytic cycle of the cross-coupling, including the first experimental evidence for Pd insertion into the amide N-C bond. The synthetic utility is showcased by a gram-scale cross-coupling and cross-coupling at room temperature. Most importantly, this process provides a blueprint for the development of a plethora of metal catalyzed reactions of typically inert amide bonds via acyl-metal intermediates. A unified strategy for amide bond activation to enable metal insertion into N-C amide bond is outlined ().

  18. Palladium-catalyzed Suzuki-Miyaura coupling of amides by carbon-nitrogen cleavage: general strategy for amide N-C bond activation.

    PubMed

    Meng, Guangrong; Szostak, Michal

    2016-06-15

    The first palladium-catalyzed Suzuki-Miyaura cross-coupling of amides with boronic acids for the synthesis of ketones by sterically-controlled N-C bond activation is reported. The transformation is characterized by operational simplicity using bench-stable, commercial reagents and catalysts, and a broad substrate scope, including substrates with electron-donating and withdrawing groups on both coupling partners, steric-hindrance, heterocycles, halides, esters and ketones. The scope and limitations are presented in the synthesis of >60 functionalized ketones. Mechanistic studies provide insight into the catalytic cycle of the cross-coupling, including the first experimental evidence for Pd insertion into the amide N-C bond. The synthetic utility is showcased by a gram-scale cross-coupling and cross-coupling at room temperature. Most importantly, this process provides a blueprint for the development of a plethora of metal catalyzed reactions of typically inert amide bonds via acyl-metal intermediates. A unified strategy for amide bond activation to enable metal insertion into N-C amide bond is outlined (). PMID:26864384

  19. Palladium-catalyzed one-pot three- or four-component coupling of aryl iodides, alkynes, and amines through C-N bond cleavage: efficient synthesis of indole derivatives.

    PubMed

    Hao, Wei; Geng, Weizhi; Zhang, Wen-Xiong; Xi, Zhenfeng

    2014-02-24

    An efficient synthesis of N-substituted indole derivatives was realized by combining the Pd-catalyzed one-pot multicomponent coupling approach with cleavage of the C(sp(3))-N bonds. Three or four components of aryl iodides, alkynes, and amines were involved in this coupling process. The cyclopentadiene-phosphine ligand showed high efficiency. A variety of aryl iodides, including cyclic and acyclic tertiary amino aryl iodides, and substituted 1-bromo-2-iodobenzene derivatives could be used. Both symmetric and unsymmetric alkynes substituted with alkyl, aryl, or trimethylsilyl groups could be applied. Cyclic secondary amines such as piperidine, morpholine, 4-methylpiperidine, 1-methylpiperazine, 2-methylpiperidine, and acyclic amines including secondary and primary amines all showed good reactivity. Further application of the resulting indole derivatives was demonstrated by the synthesis of benzosilolo[2,3-b]indole.

  20. Reactions of a tungsten-germylyne complex with α,β-unsaturated ketones: complete cleavage of the W≡Ge bond and formation of two types of η3-germoxyallyl tungsten complexes.

    PubMed

    Fukuda, Tetsuya; Hashimoto, Hisako; Tobita, Hiromi

    2014-01-01

    Germylyne complex Cp*(CO)2W≡Ge{C(SiMe3)3} (1) reacted with two molecules of RC(O)CH═CH2 (R = Me, Et) to give η(3)-allyl complexes, in which an oxagermacyclopentene framework was bound to an η(3)-allyl ligand through an oxygen atom. In the reaction with α-Me-substituted MeC(O)C(Me)═CH2, 1 reacted with only one molecule of the substrate to give another type of η(3)-allyl complex, in which a five-membered oxagermacyclopentenyl ring was coordinated to the W center in an η(3) fashion. Both reactions resulted in unprecedented complete cleavage of a W≡Ge triple bond.

  1. Silicon–Carbon bond cleavage reactions of Ansa tungstenocene compounds: The [Me2Si] bridge as a site for metallocene functionalization

    PubMed Central

    Zachmanoglou, Cary E.; Lee, Hyosun; Jang, Seung Ho; Pang, Keliang; Parkin, Gerard

    2008-01-01

    [Me2Si(CpMe2)2]W(H)Cl is obtained via reaction of WCl6 with a mixture of [Me2Si(CpMe2)2]Li2 and NaBH4, from which the dichloride [Me2Si(CpMe2)2]WCl2 is obtained via treatment with CHCl3. [Me2Si(CpMe2)2]WCl2 provides a means to access other ansa tungstenocene compounds, such as [Me2Si(CpMe2)2]WH2, [Me2Si(CpMe2)2]WMe2, and [Me2Si(CpMe2)2]WCO. Of most interest, the reactions of [Me2Si(CpMe2)2]W(H)Cl with organolithium reagents do not yield simple ansa tungstenocene derivatives. Specifically, the reactions of [Me2Si(CpMe2)2]W(H)Cl with MeLi, BunLi, or PhLi result in the formation of mixed-ring tungstenocene compounds resulting from C–Si cleavage and functionalization of the ansa bridge, namely (CpMe2)(η5,κ1–C5H2Me2SiMe2CH2)WH, (CpMe2)[η5,κ1–C5H2Me2Si(Me)(Bun)CH2]WH, and (CpMe2)[η5,κ1–C5H2Me2SiMe2(C6H4)]WH, respectively. In contrast to the C–Si cleavage achieved by MeLi, BunLi, and PhLi, the ansa bridge of [Me2Si(CpMe2)2]W(H)Cl is inert to ButLi and the product obtained is the fulvene (“tuck-in”) complex [Me2Si(CpMe2)(η6–C5MeH2CH2)]WH derived from dehydrohalogenation. PMID:18635687

  2. Catalytic constructive deoxygenation of lignin-derived phenols: new C-C bond formation processes from imidazole-sulfonates and ether cleavage reactions.

    PubMed

    Leckie, Stuart M; Harkness, Gavin J; Clarke, Matthew L

    2014-10-01

    As part of a programme aimed at exploiting lignin as a chemical feedstock for less oxygenated fine chemicals, several catalytic C-C bond forming reactions utilising guaiacol imidazole sulfonate are demonstrated. These include the cross-coupling of a Grignard, a non-toxic cyanide source, a benzoxazole, and nitromethane. A modified Meyers reaction is used to accomplish a second constructive deoxygenation on a benzoxazole functionalised anisole. PMID:25130565

  3. Dihydrogen catalysis of the reversible formation and cleavage of C-H and N-H bonds of aminopyridinate ligands bound to (η(5) -C5 Me5 )Ir(III.).

    PubMed

    Zamorano, Ana; Rendón, Nuria; López-Serrano, Joaquín; Valpuesta, José E V; Álvarez, Eleuterio; Carmona, Ernesto

    2015-02-01

    This study focuses on a series of cationic complexes of iridium that contain aminopyridinate (Ap) ligands bound to an (η(5) -C5 Me5 )Ir(III) fragment. The new complexes have the chemical composition [Ir(Ap)(η(5) -C5 Me5 )](+) , exist in the form of two isomers (1(+) and 2(+) ) and were isolated as salts of the BArF (-) anion (BArF =B[3,5-(CF3 )2 C6 H3 ]4 ). Four Ap ligands that differ in the nature of their bulky aryl substituents at the amido nitrogen atom and pyridinic ring were employed. In the presence of H2 , the electrophilicity of the Ir(III) centre of these complexes allows for a reversible prototropic rearrangement that changes the nature and coordination mode of the aminopyridinate ligand between the well-known κ(2) -N,N'-bidentate binding in 1(+) and the unprecedented κ-N,η(3) -pseudo-allyl-coordination mode in isomers 2(+) through activation of a benzylic C-H bond and formal proton transfer to the amido nitrogen atom. Experimental and computational studies evidence that the overall rearrangement, which entails reversible formation and cleavage of H-H, C-H and N-H bonds, is catalysed by dihydrogen under homogeneous conditions. PMID:25504864

  4. Dihydrogen catalysis of the reversible formation and cleavage of C-H and N-H bonds of aminopyridinate ligands bound to (η(5) -C5 Me5 )Ir(III.).

    PubMed

    Zamorano, Ana; Rendón, Nuria; López-Serrano, Joaquín; Valpuesta, José E V; Álvarez, Eleuterio; Carmona, Ernesto

    2015-02-01

    This study focuses on a series of cationic complexes of iridium that contain aminopyridinate (Ap) ligands bound to an (η(5) -C5 Me5 )Ir(III) fragment. The new complexes have the chemical composition [Ir(Ap)(η(5) -C5 Me5 )](+) , exist in the form of two isomers (1(+) and 2(+) ) and were isolated as salts of the BArF (-) anion (BArF =B[3,5-(CF3 )2 C6 H3 ]4 ). Four Ap ligands that differ in the nature of their bulky aryl substituents at the amido nitrogen atom and pyridinic ring were employed. In the presence of H2 , the electrophilicity of the Ir(III) centre of these complexes allows for a reversible prototropic rearrangement that changes the nature and coordination mode of the aminopyridinate ligand between the well-known κ(2) -N,N'-bidentate binding in 1(+) and the unprecedented κ-N,η(3) -pseudo-allyl-coordination mode in isomers 2(+) through activation of a benzylic C-H bond and formal proton transfer to the amido nitrogen atom. Experimental and computational studies evidence that the overall rearrangement, which entails reversible formation and cleavage of H-H, C-H and N-H bonds, is catalysed by dihydrogen under homogeneous conditions.

  5. Selective and nonselective cleavages in positive and negative CID of the fragments generated from in-source decay of intact proteins in MALDI-MS.

    PubMed

    Takayama, Mitsuo; Sekiya, Sadanori; Iimuro, Ryunosuke; Iwamoto, Shinichi; Tanaka, Koichi

    2014-01-01

    Selective and nonselective cleavages in ion trap low-energy collision-induced dissociation (CID) experiments of the fragments generated from in-source decay (ISD) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of intact proteins are described in both positive and negative ion modes. The MALDI-ISD spectra of the proteins demonstrate common, discontinuous, abundant c- and z'-ions originating from cleavage at the N-Cα bond of Xxx-Asp/Asn and Gly-Xxx residues in both positive- and negative-ion modes. The positive ion CID of the c- and z'-ions resulted in product ions originating from selective cleavage at Asp-Xxx, Glu-Xxx and Cys-Xxx residues. Nonselective cleavage product ions rationalized by the mechanism of a "mobile proton" are also observed in positive ion CID spectra. Negative ion CID of the ISD fragments results in complex product ions accompanied by the loss of neutrals from b-, c-, and y-ions. The most characteristic feature of negative ion CID is selective cleavage of the peptide bonds of acidic residues, Xxx-Asp/Glu/Cys. A definite influence of α-helix on the CID product ions was not obtained. However, the results from positive ion and negative ion CID of the MALDI-ISD fragments that may have long α-helical domains suggest that acidic residues in helix-free regions tend to degrade more than those in helical regions.

  6. Selective and Nonselective Cleavages in Positive and Negative CID of the Fragments Generated from In-Source Decay of Intact Proteins in MALDI-MS

    NASA Astrophysics Data System (ADS)

    Takayama, Mitsuo; Sekiya, Sadanori; Iimuro, Ryunosuke; Iwamoto, Shinichi; Tanaka, Koichi

    2014-01-01

    Selective and nonselective cleavages in ion trap low-energy collision-induced dissociation (CID) experiments of the fragments generated from in-source decay (ISD) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of intact proteins are described in both positive and negative ion modes. The MALDI-ISD spectra of the proteins demonstrate common, discontinuous, abundant c- and z'-ions originating from cleavage at the N-Cα bond of Xxx-Asp/Asn and Gly-Xxx residues in both positive- and negative-ion modes. The positive ion CID of the c- and z'-ions resulted in product ions originating from selective cleavage at Asp-Xxx, Glu-Xxx and Cys-Xxx residues. Nonselective cleavage product ions rationalized by the mechanism of a "mobile proton" are also observed in positive ion CID spectra. Negative ion CID of the ISD fragments results in complex product ions accompanied by the loss of neutrals from b-, c-, and y-ions. The most characteristic feature of negative ion CID is selective cleavage of the peptide bonds of acidic residues, Xxx-Asp/Glu/Cys. A definite influence of α-helix on the CID product ions was not obtained. However, the results from positive ion and negative ion CID of the MALDI-ISD fragments that may have long α-helical domains suggest that acidic residues in helix-free regions tend to degrade more than those in helical regions.

  7. Activation of Homolytic Si-Zn and Si-Hg Bond Cleavage, Mediated by a Pt(0) Complex, via Novel Pt-Zn and Pt-Hg Compounds.

    PubMed

    Kratish, Yosi; Molev, Gregory; Kostenko, Arseni; Sheberla, Dennis; Tumanskii, Boris; Botoshansky, Mark; Shimada, Shigeru; Bravo-Zhivotovskii, Dmitry; Apeloig, Yitzhak

    2015-09-28

    The thermally stable [(tBuMe2 Si)2 M] (M=Zn, Hg) generate R3 Si(.) radicals in the presence of [(dmpe)Pt(PEt3 )2 ] at 60-80 °C. The reaction proceeds via hexacoordinate Pt complexes, (M=Zn (2 a and 2 b), M=Hg (3 a and 3 b)) which were isolated and characterized. Mild warming or photolysis of 2 or 3 lead to homolytic dissociation of the Pt-MSiR3 bond generating silyl radicals and novel unstable pentacoordinate platinum paramagnetic complexes (M=Zn (5), Hg (6)) whose structures were determined by EPR spectroscopy and DFT calculations. PMID:26288342

  8. Homolytic Cleavage of a B-B Bond by the Cooperative Catalysis of Two Lewis Bases: Computational Design and Experimental Verification.

    PubMed

    Wang, Guoqiang; Zhang, Honglin; Zhao, Jiyang; Li, Wei; Cao, Jia; Zhu, Chengjian; Li, Shuhua

    2016-05-10

    Density functional theory (DFT) investigations revealed that 4-cyanopyridine was capable of homolytically cleaving the B-B σ bond of diborane via the cooperative coordination to the two boron atoms of the diborane to generate pyridine boryl radicals. Our experimental verification provides supportive evidence for this new B-B activation mode. With this novel activation strategy, we have experimentally realized the catalytic reduction of azo-compounds to hydrazine derivatives, deoxygenation of sulfoxides to sulfides, and reduction of quinones with B2 (pin)2 at mild conditions.

  9. Activation of Homolytic Si-Zn and Si-Hg Bond Cleavage, Mediated by a Pt(0) Complex, via Novel Pt-Zn and Pt-Hg Compounds.

    PubMed

    Kratish, Yosi; Molev, Gregory; Kostenko, Arseni; Sheberla, Dennis; Tumanskii, Boris; Botoshansky, Mark; Shimada, Shigeru; Bravo-Zhivotovskii, Dmitry; Apeloig, Yitzhak

    2015-09-28

    The thermally stable [(tBuMe2 Si)2 M] (M=Zn, Hg) generate R3 Si(.) radicals in the presence of [(dmpe)Pt(PEt3 )2 ] at 60-80 °C. The reaction proceeds via hexacoordinate Pt complexes, (M=Zn (2 a and 2 b), M=Hg (3 a and 3 b)) which were isolated and characterized. Mild warming or photolysis of 2 or 3 lead to homolytic dissociation of the Pt-MSiR3 bond generating silyl radicals and novel unstable pentacoordinate platinum paramagnetic complexes (M=Zn (5), Hg (6)) whose structures were determined by EPR spectroscopy and DFT calculations.

  10. Cysteine-Selective Peptide Identification: Selenium-Based Chromophore for Selective S-Se Bond Cleavage with 266 nm Ultraviolet Photodissociation.

    PubMed

    Parker, W Ryan; Holden, Dustin D; Cotham, Victoria C; Xu, Hua; Brodbelt, Jennifer S

    2016-07-19

    The tremendous number of peptides identified in current bottom-up mass spectrometric workflows, although impressive for high-throughput proteomics, results in little selectivity for more targeted applications. We describe a strategy for cysteine-selective proteomics based on a tagging method that installs a S-Se bond in peptides that is cleavable upon 266 nm ultraviolet photodissociation (UVPD). The alkylating reagent, N-(phenylseleno)phthalimide (NPSP), reacts with free thiols in cysteine residues and attaches a chromogenic benzeneselenol (SePh) group. Upon irradiation of tagged peptides with 266 nm photons, the S-Se bond is selectively cleaved, releasing a benzeneselenol moiety corresponding to a neutral loss of 156 Da per cysteine. Herein we demonstrate a new MS/MS scan mode, UVPDnLossCID, which facilitates selective screening of cysteine-containing peptides. A "prescreening" event occurs by activation of the top N peptide ions by 266 nm UVPD. Peptides exhibiting a neutral loss corresponding to one or more SePh groups are reactivated and sequenced by CID. Because of the low frequency of cysteine in the proteome, unique cysteine-containing peptides may serve as surrogates for entire proteins. UVPDnLossCID does not generate as many peptide spectrum matches (PSMs) as conventional bottom-up methods; however, UVPDnLossCID provides far greater selectivity. PMID:27320857

  11. Structural insights into the role of iron-histidine bond cleavage in nitric oxide-induced activation of H-NOX gas sensor proteins.

    PubMed

    Herzik, Mark A; Jonnalagadda, Rohan; Kuriyan, John; Marletta, Michael A

    2014-10-01

    Heme-nitric oxide/oxygen (H-NOX) binding domains are a recently discovered family of heme-based gas sensor proteins that are conserved across eukaryotes and bacteria. Nitric oxide (NO) binding to the heme cofactor of H-NOX proteins has been implicated as a regulatory mechanism for processes ranging from vasodilation in mammals to communal behavior in bacteria. A key molecular event during NO-dependent activation of H-NOX proteins is rupture of the heme-histidine bond and formation of a five-coordinate nitrosyl complex. Although extensive biochemical studies have provided insight into the NO activation mechanism, precise molecular-level details have remained elusive. In the present study, high-resolution crystal structures of the H-NOX protein from Shewanella oneidensis in the unligated, intermediate six-coordinate and activated five-coordinate, NO-bound states are reported. From these structures, it is evident that several structural features in the heme pocket of the unligated protein function to maintain the heme distorted from planarity. NO-induced scission of the iron-histidine bond triggers structural rearrangements in the heme pocket that permit the heme to relax toward planarity, yielding the signaling-competent NO-bound conformation. Here, we also provide characterization of a nonheme metal coordination site occupied by zinc in an H-NOX protein.

  12. Incorporation of the fluoride induced Si-O bond cleavage and functionalized gold nanoparticle aggregation into one colorimetric probe for highly specific and sensitive detection of fluoride.

    PubMed

    Sun, Jie-Fang; Liu, Rui; Zhang, Zhong-Mian; Liu, Jing-Fu

    2014-04-11

    A highly selective and sensitive probe was developed for the field test of F(-) in environmental waters. The probe was fabricated by anchoring 4-mercaptopyridine (MPD) on AuNPs via Au-S interaction to form MPD-AuNPs, and further assembling 3-aminopropyltrimethoxysilane (APTMS) on the surface of MPD-AuNPs. The hydrolysis and cross-link of APTMS resulted in a thin monolayer of Si-O-Si protecting layer to encapsulated MPD-AuNPs. In the assay, F(-) reacted with Si-O bond and thus destroyed the outer protecting layer of the probe, and further triggered the aggregation of internal MPD-AuNPs by forming N-H-F hydrogen bond. The F(-) induced aggregation of functionalized AuNPs gave rise to significant solution color switch from red to blue, which facilitated visual assay of F(-) in the range of 1.0-7.0 μg mL(-1) by naked eyes. The probe is able to discriminate F(-) from a wide range of environmentally dominant ions, thus it can be applied to detect F(-) in drinkable water with satisfactory results that is agreed well with that of using ion chromatography.

  13. Structural insights into the role of iron–histidine bond cleavage in nitric oxide-induced activation of H-NOX gas sensor proteins

    PubMed Central

    Herzik, Mark A.; Jonnalagadda, Rohan; Kuriyan, John; Marletta, Michael A.

    2014-01-01

    Heme-nitric oxide/oxygen (H-NOX) binding domains are a recently discovered family of heme-based gas sensor proteins that are conserved across eukaryotes and bacteria. Nitric oxide (NO) binding to the heme cofactor of H-NOX proteins has been implicated as a regulatory mechanism for processes ranging from vasodilation in mammals to communal behavior in bacteria. A key molecular event during NO-dependent activation of H-NOX proteins is rupture of the heme–histidine bond and formation of a five-coordinate nitrosyl complex. Although extensive biochemical studies have provided insight into the NO activation mechanism, precise molecular-level details have remained elusive. In the present study, high-resolution crystal structures of the H-NOX protein from Shewanella oneidensis in the unligated, intermediate six-coordinate and activated five-coordinate, NO-bound states are reported. From these structures, it is evident that several structural features in the heme pocket of the unligated protein function to maintain the heme distorted from planarity. NO-induced scission of the iron–histidine bond triggers structural rearrangements in the heme pocket that permit the heme to relax toward planarity, yielding the signaling-competent NO-bound conformation. Here, we also provide characterization of a nonheme metal coordination site occupied by zinc in an H-NOX protein. PMID:25253889

  14. CO sub 2 ter dot minus radical induced cleavage of disulfide bonds in proteins. A gamma-ray and pulse radiolysis mechanistic investigation

    SciTech Connect

    Favaudon, V.; Tourbez, H.; Lhoste, J-M. ); Houee-Levin, C. )

    1990-12-01

    Disulfide bond reduction by the CO{sub 2}{sup {center dot}{minus}} radical was investigated in aponeocarzinostatin, aporiboflavin-binding protein, and bovine immunoglobulin. Protein-bound cysteine free thiols were formed under {gamma}-ray irradiation in the course of a pH-dependent and protein concentration dependent chain reaction. The chain efficiency increased upon acidification of the medium, with an apparent pK{sub a} around 5, and decreased abruptly below pH 3.6. It decreased also at neutral pH as cysteine accumulated. From pulse radiolysis analysis, CO{sub 2}{sup {center dot}{minus}} proved able to induce rapid one-electron oxidation of thiols and of tyrosine phenolic groups in addition to one-electron donation to exposed disulfide bonds. The bulk rate constant of CO{sub 2}{sup {center dot}{minus}} uptake by the native proteins was 5{minus} to 10-fold faster at pH 3 than at pH 8, and the protonated form of the disulfide radical anion, appeared to be the major protein radical species formed under acidic conditions. Formation of the disulfide radical cation, phenoxyl radical Tyr-O{sup {center dot}} disproportionation, and phenoxyl radical induced oxidation of preformed thiol groups should also be taken into consideration to explain the fate of the oxygen-centered phenoxyl radical.

  15. Bioinformatic and Biochemical Characterizations of C–S Bond Formation and Cleavage Enzymes in the Fungus Neurospora crassa Ergothioneine Biosynthetic Pathway

    PubMed Central

    2015-01-01

    Ergothioneine is a histidine thiol derivative. Its mycobacterial biosynthetic pathway has five steps (EgtA-E catalysis) with two novel reactions: a mononuclear nonheme iron enzyme (EgtB) catalyzed oxidative C–S bond formation and a PLP-mediated C–S lyase (EgtE) reaction. Our bioinformatic and biochemical analyses indicate that the fungus Neurospora crassa has a more concise ergothioneine biosynthetic pathway because its nonheme iron enzyme, Egt1, makes use of cysteine instead of γ-Glu-Cys as the substrate. Such a change of substrate preference eliminates the competition between ergothioneine and glutathione biosyntheses. In addition, we have identified the N. crassa C–S lyase (NCU11365) and reconstituted its activity in vitro, which makes the future ergothioneine production through metabolic engineering feasible. PMID:25275953

  16. Spontaneous formation in the dark, and visible light-induced cleavage, of a Ru-S bond in water: a thermodynamic and kinetic study.

    PubMed

    Bahreman, Azadeh; Limburg, Bart; Siegler, Maxime A; Bouwman, Elisabeth; Bonnet, Sylvestre

    2013-08-19

    In this work the thermal and photochemical reactivity of a series of ruthenium complexes [Ru(terpy)(N-N)(L)](X)2 (terpy = 2,2';6',2″-terpyridine, L = 2-(methylthio)ethanol (Hmte) or water, and X is Cl(-) or PF6(-)) with four different bidentate chelates N-N = bpy (2,2'-bipyridine), biq (2,2'-biquinoline), dcbpy (6,6'-dichloro-2,2'-bipyridine), or dmbpy (6,6'-dimethyl-2,2'-bipyridine), is described. For each chelate N-N the thermodynamic constant of the dark equilibrium between the aqua- and Hmte- complexes, the Hmte photosubstitution quantum yield, and the rate constants of the thermal interconversion between the aqua and Hmte complexes were measured at room temperature. By changing the steric hindrance and electronic properties of the spectator N-N ligand along the series bpy, biq, dcbpy, dmbpy the dark reactivity clearly shifts from a nonlabile equilibrium with N-N = bpy to a very labile thermal equilibrium with N-N = dmbpy. According to variable-temperature rate constant measurements in the dark near pH = 7 the activation enthalpies for the thermal substitution of H2O by Hmte are comparable for all ruthenium complexes, whereas the activation entropies are negative for bpy and biq, and positive for dcbpy and dmbpy complexes. These data are indicative of a change in the substitution mechanism, being interchange associative with nonhindered or poorly hindered chelates (bpy, biq), and interchange dissociative for more bulky ligands (dcbpy, dmbpy). For the most labile dmbpy system, the thermal equilibrium is too fast to allow significant modification of the composition of the mixture using light, and for the nonhindered bpy complex the photosubstitution of Hmte by H2O is possible but thermal binding of Hmte to the aqua complex does not occur at room temperature. By contrast, with N-N = biq or dcbpy the thermodynamic and kinetic parameters describing the formation and breakage of the Ru-S bond lie in a range where the bond forms spontaneously in the dark, but is

  17. Tactics for Probing Aryne Reactivity: Mechanistic Studies of Silicon-oxygen Bond Cleavage During the Trapping of (HDDA-generated) Benzynes by Silyl Ethers

    PubMed Central

    Hoye, Thomas R.; Baire, Beeraiah; Wang, Tao

    2014-01-01

    We report mechanistic aspects of the trapping of thermally (HDDA) generated benzyne derivatives by pendant silyl ether groups, which results in net insertion of the pair of benzyne Csp-hydribized carbon atoms into the silicon–oxygen sigma bond. Cross-over experiments using symmetrical, doubly labeled bis-silyl ether substrates established that the reaction is unimolecular in nature. Competition experiments involving either intramolecular or intermolecular dihydrogen transfer clock reactions (from within a TIPS isopropyl group or cyclooctane, respectively) vs. the silyl ether cyclization were used to gain additional insights. We evaluated effects of the steric bulk of the silyl ether trapping group and of the ring-size of the cyclic ether being formed (furan vs. pyran). These types of competition experiments allow the relative rates of various product-determining steps to be determined. This previously has only rarely been possible because aryne formation is typically rate-limiting, making it challenging to probe the kinetics of subsequent trapping reactions. Solvent effects (polarity of the medium) and computational studies were used to probe the question of stepwise vs. concerted pathways for the Si–O insertion. PMID:25419449

  18. Cleavage of peptide bonds bearing ionizable amino acids at P{sub 1} by serine proteases with hydrophobic S{sub 1} pocket

    SciTech Connect

    Qasim, Mohammad A.; Song, Jikui; Markley, John L.; Laskowski, Michael

    2010-10-01

    Research highlights: {yields} Large pK shifts in ionizable groups when buried in the protein interior. {yields} Substrate dependent shifts in pH optimum for serine proteases. {yields} Lys side chain is a stronger acid in serine protease S{sub 1} pocket than Asp side chain. -- Abstract: Enzymatic hydrolysis of the synthetic substrate succinyl-Ala-Ala-Pro-Xxx-pNA (where Xxx = Leu, Asp or Lys) catalyzed by bovine chymotrypsin (CHYM) or Streptomyces griseus protease B (SGPB) has been studied at different pH values in the pH range 3-11. The pH optima for substrates having Leu, Asp, and Lys have been found to be 7.5-8.0, 5.5-6.0, and {approx}10, respectively. At the normally reported pH optimum (pH 7-8) of CHYM and SGPB, the substrate with Leu at the reactive site is more than 25,000-fold more reactive than that with Asp. However, when fully protonated, Asp is nearly as good a substrate as Leu. The pK values of the side chains of Asp and Lys in the hydrophobic S{sub 1} pocket of CHYM and SGPB have been calculated from pH-dependent hydrolysis data and have been found to be about 9 for Asp and 7.4 and 9.7 for Lys for CHYM and SGPB, respectively. The results presented in this communication suggest a possible application of CHYM like enzymes in cleaving peptide bonds contributed by acidic amino acids between pH 5 and 6.

  19. Synthesis and reaction of monomeric germanium(II) and lead(II) dimethylamide and the synthesis of germanium(II) hydrazide by cleavage of one N-H bond of hydrazine.

    PubMed

    Jana, Anukul; Roesky, Herbert W; Schulzke, Carola; Samuel, Prinson P; Döring, Alexander

    2010-06-21

    The beta-diketiminate substituted germanium(II) and lead(II) dimethylamides, LGeNMe(2) (1) and LPbNMe(2) (2), [L = CH{(CMe)(2)(2,6-iPr(2)C(6)H(3)N)(2)}] have been synthesized by the reaction of LiNMe(2) with LGeCl and LPbCl respectively. Reaction of compound 1 with an equivalent amount of elemental sulfur leads to the germanium analogue of thioamide, LGe(S)NMe(2) (3). 2 reacts with 2-benzoyl pyridine (PhCOPy-2) to form the lead(II) alkoxide LPbOC(NMe(2))Ph(2-Py) (4) by nucleophilic addition of "NMe(2)" to the carbon oxygen double bond. The reaction of stable N-heterocyclic germylene L(1)Ge [L(1) = CH{(C=CH(2))(CMe)(2,6-iPr(2)C(6)H(3)N)(2)}] with hydrazine yields the germanium(II) substituted hydrazide LGeNHNH(2) (5) by cleavage of one N-H bond of hydrazine. Finally, attempts to isolate lead(II) hydride LPbH from the reaction of 2 with phenylsilane (PhSiH(3)) failed, and instead LPbN(2,6-iPr(2)C(6)H(3)){C(CH(3))CHC(CH(3))=N(2,6-iPr(2)C(6)H(3))} (6) was obtained in very low yield. We are able to prove this only by single crystal X-ray structural analysis. Compounds 1, 2, 3, 4, and 5 were characterized by microanalysis, electron impact (EI) mass spectrometry, and multinuclear NMR spectroscopy. Furthermore compounds 1, 2, 5, and 6 were characterized by single crystal X-ray structural analysis, with the result that they are exhibiting monomeric structures in the solid state with trigonal-pyramidal environment at the metal center and a stereochemically active lone pair.

  20. Temperature dependent structural variation from 2D supramolecular network to 3D interpenetrated metal–organic framework: In situ cleavage of S–S and C–S bonds

    SciTech Connect

    Ugale, Bharat; Singh, Divyendu; Nagaraja, C.M.

    2015-03-15

    Two new Zn(II)–organic compounds, [Zn(muco)(dbds){sub 2}(H{sub 2}O){sub 2}] (1) and [Zn(muco)(dbs)] (2) (where, muco=trans, trans-muconate dianion, dbds=4,4′-dipyridyldisulfide and dbs=4,4′-dipyridylsulfide) have been synthesized from same precursors but at two different temperatures. Both the compounds have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis, IR spectroscopy, thermal analysis and photoluminescence studies. Compound 1 prepared at room temperature possesses a molecular structure extended to 2D supramolecular network through (H–O…H) hydrogen-bonding interactions. Compound 2, obtained at high temperature (100 °C) shows a 3-fold interpenetrating 3D framework constituted by an in situ generated dbs linker by the cleavage of S–S and C–S bonds of dbds linker. Thus, the influence of reaction temperature on the formation of two structural phases has been demonstrated. Both 1 and 2 exhibit ligand based luminescence emission owing to n→π⁎ and π→π⁎ transitions and also high thermal stabilities. - Graphical abstract: The influence of temperature on the formation of two structural phases, a 2D supramolecular network and a 3D 3-fold interpenetrating framework has been demonstrated and their luminescence emission is measured. - Highlights: • Two new Zn(II)–organic compounds were synthesized by tuning reaction temperatures. • Temperature induced in situ generation of dbs linker has been observed. • The compounds exhibit high thermal stability and luminescence emission properties. • The effect of temperature on structure, dimension and topology has been presented.

  1. Protonation of a Peroxodiiron(III) Complex and Conversion to a Diiron(III/IV) Intermediate: Implications for Proton-assisted O-O Bond Cleavage in Nonheme Diiron Enzymes

    PubMed Central

    Cranswick, Matthew A.; Meier, Katlyn K.; Shan, Xiaopeng; Stubna, Audria; Kaizer, Jószef; Mehn, Mark P.; Münck, Eckard; Que, Lawrence

    2012-01-01

    Oxygenation of a diiron(II) complex,[FeII2(μ-OH)2(BnBQA)2(NCMe)2]2+ (2) (where BnBQA is N-benzyl-N,N-bis(2-quinolinylmethyl)amine) results in the formation of a metastable peroxodiferric intermediate (3). Treatment of 3 with strong acid affords its conjugate acid 4 in which the (μ-oxo)(μ-1,2-peroxo)diiron(III) core of 3 is protonated at the oxo bridge. The core structures of 3 and 4 are characterized in detail by UV-vis, Mössbauer, resonance Raman, and X-ray absorption spectroscopies. Complex 4 is shorter lived than 3 and decays to generate in 20–25% yield a diiron(III/IV) species (5) that can be identified by EPR and Mössbauer spectroscopy. This reaction sequence demonstrates for the first time that protonation of the oxo bridge of a (μ-oxo)(μ-1,2-peroxo)diiron(III) complex leads to the cleavage of the peroxo O–O bond and formation of a high-valent diiron complex, thereby mimicking the steps involved in the formation of intermediate X in the activation cycle of ribonucleotide reductase. PMID:22971084

  2. In-situ and theoretical studies for the dissociation of water on an active Ni/CeO₂ catalyst: Importance of strong metal-support interactions for the cleavage of O-H bonds

    DOE PAGESBeta

    Carrasco, Javier; Rodriguez, Jose A.; Lopez-Duran, David; Liu, Zongyuan; Duchon, Tomas; Evans, Jaime; Senanayake, Sanjaya D.; Crumlin, Ethan J.; Matolin, Vladimir; Ganduglia-Pirovano, M. Veronica

    2015-03-23

    Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Here, supported by experimental and density-functional theory results, we elucidate the effect of the support on O-H bond cleavage activity for nickel/ceria systems. Ambient-pressure O1s photoemission spectra at low Ni loadings on CeO₂(111) reveal a substantially larger amount of OH groups as compared to the bare support. Our computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO₂(111) compared with pyramidal Ni₄ particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of thismore » support effect is the ability of ceria to stabilize oxidized Ni²⁺ species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO₂ has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions.« less

  3. In-situ and theoretical studies for the dissociation of water on an active Ni/CeO₂ catalyst: Importance of strong metal-support interactions for the cleavage of O-H bonds

    SciTech Connect

    Carrasco, Javier; Rodriguez, Jose A.; Lopez-Duran, David; Liu, Zongyuan; Duchon, Tomas; Evans, Jaime; Senanayake, Sanjaya D.; Crumlin, Ethan J.; Matolin, Vladimir; Ganduglia-Pirovano, M. Veronica

    2015-03-23

    Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Here, supported by experimental and density-functional theory results, we elucidate the effect of the support on O-H bond cleavage activity for nickel/ceria systems. Ambient-pressure O1s photoemission spectra at low Ni loadings on CeO₂(111) reveal a substantially larger amount of OH groups as compared to the bare support. Our computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO₂(111) compared with pyramidal Ni₄ particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of this support effect is the ability of ceria to stabilize oxidized Ni²⁺ species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO₂ has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions.

  4. In situ and theoretical studies for the dissociation of water on an active Ni/CeO2 catalyst: importance of strong metal-support interactions for the cleavage of O-H bonds.

    PubMed

    Carrasco, Javier; López-Durán, David; Liu, Zongyuan; Duchoň, Tomáš; Evans, Jaime; Senanayake, Sanjaya D; Crumlin, Ethan J; Matolín, Vladimir; Rodríguez, José A; Ganduglia-Pirovano, M Verónica

    2015-03-23

    Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Supported by experimental and density-functional theory results, the effect of the support on OH bond cleavage activity is elucidated for nickel/ceria systems. Ambient-pressure O 1s photoemission spectra at low Ni loadings on CeO2 (111) reveal a substantially larger amount of OH groups as compared to the bare support. Computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO2 (111) compared with pyramidal Ni4 particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of this support effect is the ability of ceria to stabilize oxidized Ni(2+) species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO2 has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions.

  5. In situ and theoretical studies for the dissociation of water on an active Ni/CeO2 catalyst: importance of strong metal-support interactions for the cleavage of O-H bonds.

    PubMed

    Carrasco, Javier; López-Durán, David; Liu, Zongyuan; Duchoň, Tomáš; Evans, Jaime; Senanayake, Sanjaya D; Crumlin, Ethan J; Matolín, Vladimir; Rodríguez, José A; Ganduglia-Pirovano, M Verónica

    2015-03-23

    Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Supported by experimental and density-functional theory results, the effect of the support on OH bond cleavage activity is elucidated for nickel/ceria systems. Ambient-pressure O 1s photoemission spectra at low Ni loadings on CeO2 (111) reveal a substantially larger amount of OH groups as compared to the bare support. Computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO2 (111) compared with pyramidal Ni4 particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of this support effect is the ability of ceria to stabilize oxidized Ni(2+) species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO2 has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions. PMID:25651288

  6. Diastereoselective B(C6F5)3-Catalyzed Reductive Carbocyclization of Unsaturated Carbohydrates.

    PubMed

    Bender, Trandon A; Dabrowski, Jennifer A; Zhong, Hongyu; Gagné, Michel R

    2016-08-19

    A B(C6F5)3-catalyzed method for the selective conversion of unsaturated carbohydrates to cyclopentanes and cyclopropanes is disclosed. Catalyst activation of tertiary silanes generates the ion pair [(C6F5)3B-H][ROSi2] whose components synergistically activate C-O bonds for diastereoselective C-C bond formation. Sila-THF cations are invoked as key intermediates facilitating carbocyclizations. Complex chiral synthons are thereby obtained in a single pot.

  7. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  8. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  9. Cleavage of nucleic acids

    SciTech Connect

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  10. Total Synthesis of Fellutamide B and Deoxy-Fellutamides B, C, and D

    PubMed Central

    Giltrap, Andrew M.; Cergol, Katie M.; Pang, Angel; Britton, Warwick J.; Payne, Richard J.

    2013-01-01

    The total syntheses of the marine-derived lipopeptide natural product fellutamide B and deoxy-fellutamides B, C, and D are reported. These compounds were accessed through a novel solid-phase synthetic strategy using Weinreb amide-derived resin. As part of the synthesis, a new enantioselective route to (3R)-hydroxy lauric acid was developed utilizing a Brown allylation reaction followed by an oxidative cleavage-oxidation sequence as the key steps. The activity of these natural products, and natural product analogues was also assessed against Mycobacterium tuberculosis in vitro. PMID:23880930

  11. Tuning of the copper-thioether bond in tetradentate N₃S(thioether) ligands; O-O bond reductive cleavage via a [Cu(II)₂(μ-1,2-peroxo)]²⁺/[Cu(III)₂(μ-oxo)₂]²⁺ equilibrium.

    PubMed

    Kim, Sunghee; Ginsbach, Jake W; Billah, A Imtiaz; Siegler, Maxime A; Moore, Cathy D; Solomon, Edward I; Karlin, Kenneth D

    2014-06-01

    Current interest in copper/dioxygen reactivity includes the influence of thioether sulfur ligation, as it concerns the formation, structures, and properties of derived copper-dioxygen complexes. Here, we report on the chemistry of {L-Cu(I)}2-(O2) species L = (DMM)ESE, (DMM)ESP, and (DMM)ESDP, which are N3S(thioether)-based ligands varied in the nature of a substituent on the S atom, along with a related N3O(ether) (EOE) ligand. Cu(I) and Cu(II) complexes have been synthesized and crystallographically characterized. Copper(I) complexes are dimeric in the solid state, [{L-Cu(I)}2](B(C6F5)4)2, however are shown by diffusion-ordered NMR spectroscopy to be mononuclear in solution. Copper(II) complexes with a general formulation [L-Cu(II)(X)](n+) {X = ClO4(-), n = 1, or X = H2O, n = 2} exhibit distorted square pyramidal coordination geometries and progressively weaker axial thioether ligation across the series. Oxygenation (-130 °C) of {((DMM)ESE)Cu(I)}(+) results in the formation of a trans-μ-1,2-peroxodicopper(II) species [{((DMM)ESE)Cu(II)}2(μ-1,2-O2(2-))](2+) (1(P)). Weakening the Cu-S bond via a change to the thioether donor found in (DMM)ESP leads to the initial formation of [{((DMM)ESP)Cu(II)}2(μ-1,2-O2(2-))](2+) (2(P)) that subsequently isomerizes to a bis-μ-oxodicopper(III) complex, [{((DMM)ESP)Cu(III)}2(μ-O(2-))2](2+) (2(O)), with 2(P) and 2(O) in equilibrium (K(eq) = [2(O)]/[2(P)] = 2.6 at -130 °C). Formulations for these Cu/O2 adducts were confirmed by resonance Raman (rR) spectroscopy. This solution mixture is sensitive to the addition of methylsulfonate, which shifts the equilibrium toward the bis-μ-oxo isomer. Further weakening of the Cu-S bond in (DMM)ESDP or substitution with an ether donor in (DMM)EOE leads to only a bis-μ-oxo species (3(O) and 4(O), respectively). Reactivity studies indicate that the bis-μ-oxodicopper(III) species (2(O), 3(O)) and not the trans-peroxo isomers (1(P) and 2(P)) are responsible for the observed ligand

  12. Tuning of the Copper–Thioether Bond in Tetradentate N3S(thioether) Ligands; O–O Bond Reductive Cleavage via a [CuII2(μ-1,2-peroxo)]2+/[CuIII2(μ-oxo)2]2+ Equilibrium

    PubMed Central

    2015-01-01

    Current interest in copper/dioxygen reactivity includes the influence of thioether sulfur ligation, as it concerns the formation, structures, and properties of derived copper-dioxygen complexes. Here, we report on the chemistry of {L-CuI}2-(O2) species L = DMMESE, DMMESP, and DMMESDP, which are N3S(thioether)-based ligands varied in the nature of a substituent on the S atom, along with a related N3O(ether) (EOE) ligand. CuI and CuII complexes have been synthesized and crystallographically characterized. Copper(I) complexes are dimeric in the solid state, [{L-CuI}2](B(C6F5)4)2, however are shown by diffusion-ordered NMR spectroscopy to be mononuclear in solution. Copper(II) complexes with a general formulation [L-CuII(X)]n+ {X = ClO4–, n = 1, or X = H2O, n = 2} exhibit distorted square pyramidal coordination geometries and progressively weaker axial thioether ligation across the series. Oxygenation (−130 °C) of {(DMMESE)CuI}+ results in the formation of a trans-μ-1,2-peroxodicopper(II) species [{(DMMESE)CuII}2(μ-1,2-O22–)]2+ (1P). Weakening the Cu–S bond via a change to the thioether donor found in DMMESP leads to the initial formation of [{(DMMESP)CuII}2(μ-1,2-O22–)]2+ (2P) that subsequently isomerizes to a bis-μ-oxodicopper(III) complex, [{(DMMESP)CuIII}2(μ-O2–)2]2+ (2O), with 2P and 2O in equilibrium (Keq = [2O]/[2P] = 2.6 at −130 °C). Formulations for these Cu/O2 adducts were confirmed by resonance Raman (rR) spectroscopy. This solution mixture is sensitive to the addition of methylsulfonate, which shifts the equilibrium toward the bis-μ-oxo isomer. Further weakening of the Cu–S bond in DMMESDP or substitution with an ether donor in DMMEOE leads to only a bis-μ-oxo species (3O and 4O, respectively). Reactivity studies indicate that the bis-μ-oxodicopper(III) species (2O, 3O) and not the trans-peroxo isomers (1P and 2P) are responsible for the observed ligand sulfoxidation. Our findings concerning the existence of the 2P/2O equilibrium

  13. Utilization of Dioxygen by Carotenoid Cleavage Oxygenases.

    PubMed

    Sui, Xuewu; Golczak, Marcin; Zhang, Jianye; Kleinberg, Katie A; von Lintig, Johannes; Palczewski, Krzysztof; Kiser, Philip D

    2015-12-18

    Carotenoid cleavage oxygenases (CCOs) are non-heme, Fe(II)-dependent enzymes that participate in biologically important metabolic pathways involving carotenoids and apocarotenoids, including retinoids, stilbenes, and related compounds. CCOs typically catalyze the cleavage of non-aromatic double bonds by dioxygen (O2) to form aldehyde or ketone products. Expressed only in vertebrates, the RPE65 sub-group of CCOs catalyzes a non-canonical reaction consisting of concerted ester cleavage and trans-cis isomerization of all-trans-retinyl esters. It remains unclear whether the former group of CCOs functions as mono- or di-oxygenases. Additionally, a potential role for O2 in catalysis by the RPE65 group of CCOs has not been evaluated to date. Here, we investigated the pattern of oxygen incorporation into apocarotenoid products of Synechocystis apocarotenoid oxygenase. Reactions performed in the presence of (18)O-labeled water and (18)O2 revealed an unambiguous dioxygenase pattern of O2 incorporation into the reaction products. Substitution of Ala for Thr at position 136 of apocarotenoid oxygenase, a site predicted to govern the mono- versus dioxygenase tendency of CCOs, greatly reduced enzymatic activity without altering the dioxygenase labeling pattern. Reevaluation of the oxygen-labeling pattern of the resveratrol-cleaving CCO, NOV2, previously reported to be a monooxygenase, using a purified enzyme sample revealed that it too is a dioxygenase. We also demonstrated that bovine RPE65 is not dependent on O2 for its cleavage/isomerase activity. In conjunction with prior research, the results of this study resolve key issues regarding the utilization of O2 by CCOs and indicate that dioxygenase activity is a feature common among double bond-cleaving CCOs.

  14. Three competitive transition states at the glycosidic bond of sucrose in its acid-catalyzed hydrolysis.

    PubMed

    Yamabe, Shinichi; Guan, Wei; Sakaki, Shigeyoshi

    2013-03-15

    The acid-catalyzed hydrolysis of sucrose to glucose and fructose was investigated by DFT calculations. Protonations to three ether oxygen atoms of the sucrose molecule, A, B, and (C, D), were compared. Three (B, the fructosyl-ring oxygen protonation; C, protonation to the bridge oxygen of the glycosidic bond for the glucosyl-oxygen cleavage; and D, protonation to that for the fructosyl-oxygen cleavage) gave the fragmentation. Paths B, C, and D were examined by the use of the sucrose molecule and H3O(+)(H2O)13. The path B needs a large activation energy, indicating that it is unlikely. The fragmentation transition state (TS1) of path C needs almost the same activation energy as that of path D. The isomerization TS of Int(C) → Int(D), TS(C → D), was also obtained as a bypass route. The present calculations showed that the path via the fructosyl-oxygen cleavage (D) is slightly (not absolutely) more favorable than that via the glucosyl-oxygen cleavage (C). PMID:23373870

  15. 100-B/C Target Analyte List Development for Soil

    SciTech Connect

    R.W. Ovink

    2010-03-18

    This report documents the process used to identify source area target analytes in support of the 100-B/C remedial investigation/feasibility study addendum to DOE/RL-2008-46. This report also establishes the analyte exclusion criteria applicable for 100-B/C use and the analytical methods needed to analyze the target analytes.

  16. 32 CFR Appendixes B-C to Part 636 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false B Appendixes B-C to Part 636 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Appendixes B-C to Part...

  17. Efficient Synthesis of Diaryl Ketones by Nickel-Catalyzed Negishi Cross-Coupling of Amides by Carbon-Nitrogen Bond Cleavage at Room Temperature Accelerated by a Solvent Effect.

    PubMed

    Shi, Shicheng; Szostak, Michal

    2016-07-18

    The first Negishi cross-coupling of amides for the synthesis of versatile diaryl ketones by selective C-N bond activation under exceedingly mild conditions is reported. The cross-coupling was accomplished with bench-stable, inexpensive precatalyst [Ni(PPh3 )2 Cl2 ] that shows high functional-group tolerance and enables the synthesis of highly functionalized diaryl ketone motifs. The coupling occurred with excellent chemoselectivity favoring the ketone (cf. biaryl) products. Notably, this process represents the mildest conditions for amide N-C bond activation accomplished to date (room temperature, <10 min). Considering the versatile role of polyfunctional biaryl ketone linchpins in modern organic synthesis, availability, and excellent functional-group tolerance of organozinc reagents, this strategy provides a new platform for amide N-C bond/organozinc cross-coupling under mild conditions. PMID:27304392

  18. Drosophila topoisomerase II double-strand DNA cleavage: analysis of DNA sequence homology at the cleavage site.

    PubMed Central

    Sander, M; Hsieh, T S

    1985-01-01

    In order to study the sequence specificity of double-strand DNA cleavage by Drosophila topoisomerase II, we have mapped and sequenced 16 strong and 47 weak cleavage sites in the recombinant plasmid p pi 25.1. Analysis of the nucleotide and dinucleotide frequencies in the region near the site of phosphodiester bond breakage revealed a nonrandom distribution. The nucleotide frequencies observed would occur by chance with a probability less than 0.05. The consensus sequence we derived is 5'GT.A/TAY decrease ATT.AT..G 3', where a dot means no preferred nucleotide, Y is for pyrimidine, and the arrow shows the point of bond cleavage. On average, strong sites match the consensus better than weak sites. Images PMID:2987816

  19. Dinitrogen cleavage and functionalization by carbon monoxide promoted by a hafnium complex.

    PubMed

    Knobloch, Donald J; Lobkovsky, Emil; Chirik, Paul J

    2010-01-01

    Molecular nitrogen (N(2)) and carbon monoxide (CO) have the two strongest bonds in chemistry and present significant challenges in developing new transformations that exploit these two abundant feedstocks. At the core of this objective is the discovery of transition-metal compounds that promote the six-electron reductive cleavage of N(2) at ambient temperature and pressure and also promote new nitrogen-element bond formation. Here we show that an organometallic hafnium compound induces N(2) cleavage on the addition of CO, with a simultaneous assembly of new nitrogen-carbon and carbon-carbon bonds. Subsequent addition of a weak acid liberates oxamide, which demonstrates that an important agrochemical can be synthesized directly from N(2) and CO. These studies introduce an alternative paradigm for N(2) cleavage and functionalization in which the six-electron reductive cleavage is promoted by both the transition metal and the incoming ligand, CO, used for the new bond formations.

  20. Graphene quantums dots combined with endonuclease cleavage and bidentate chelation for highly sensitive electrochemiluminescent DNA biosensing.

    PubMed

    Lou, Jing; Liu, Shanshan; Tu, Wenwen; Dai, Zhihui

    2015-01-20

    A novel strategy for highly sensitive electrochemiluminescence (ECL) detection of DNA was proposed based on site-specific cleavage of BamHI endonuclease combined with the excellent ECL activity of graphene quantum dots (GQDs) and bidentate chelation of the dithiocarbamate DNA (DTC-DNA) probe assembly. The difference between photoluminescence and ECL spectral peaks suggested that a negligible defect existed on the GQDs surface for generation of an ECL signal. The formed DTC-DNA was directly attached to the gold surface by bidentate anchoring (S-Au-S bonds), which conferred a strong affinity between the ligands and the gold surface, increasing the robustness of DNA immobilization on the gold surface. BamHI endonuclease site-specifically recognized and cleaved the duplex symmetrical sequence, which made the double-stranded DNA fragments and GQDs break off from the electrode surface, inducing a decrease of the ECL signal. Using hepatitis C virus-1b genotype complementary DNA (HCV-1b cDNA) as a model, a novel signal-off ECL DNA biosensor was developed based on variation of the ECL intensity before and after digestion of the DNA hybrid. Electrochemical impedance spectroscopy confirmed the successful fabrication of the ECL DNA biosensor. This ECL biosensor for HCV-1b cDNA determination exhibited a linear range from 5 fM to 100 pM with a detection limit of 0.45 fM at a signal-to-noise ratio of 3 and showed satisfactory selectivity and good stability, which validated the feasibility of the designed strategy. The proposed strategy may be conveniently combined with other specific biological recognition events for expansion of the biosensing application, especially in clinical diagnoses. PMID:25523862

  1. Thermodynamic and kinetic study of cleavage of the N-O bond of N-oxides by a vanadium(III) complex: enhanced oxygen atom transfer reaction rates for adducts of nitrous oxide and mesityl nitrile oxide.

    PubMed

    Palluccio, Taryn D; Rybak-Akimova, Elena V; Majumdar, Subhojit; Cai, Xiaochen; Chui, Megan; Temprado, Manuel; Silvia, Jared S; Cozzolino, Anthony F; Tofan, Daniel; Velian, Alexandra; Cummins, Christopher C; Captain, Burjor; Hoff, Carl D

    2013-07-31

    Thermodynamic, kinetic, and computational studies are reported for oxygen atom transfer (OAT) to the complex V(N[t-Bu]Ar)3 (Ar = 3,5-C6H3Me2, 1) from compounds containing N-O bonds with a range of BDEs spanning nearly 100 kcal mol(-1): PhNO (108) > SIPr/MesCNO (75) > PyO (63) > IPr/N2O (62) > MesCNO (53) > N2O (40) > dbabhNO (10) (Mes = mesityl; SIPr = 1,3-bis(diisopropyl)phenylimidazolin-2-ylidene; Py = pyridine; IPr = 1,3-bis(diisopropyl)phenylimidazol-2-ylidene; dbabh = 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene). Stopped flow kinetic studies of the OAT reactions show a range of kinetic behavior influenced by both the mode and strength of coordination of the O donor and its ease of atom transfer. Four categories of kinetic behavior are observed depending upon the magnitudes of the rate constants involved: (I) dinuclear OAT following an overall third order rate law (N2O); (II) formation of stable oxidant-bound complexes followed by OAT in a separate step (PyO and PhNO); (III) transient formation and decay of metastable oxidant-bound intermediates on the same time scale as OAT (SIPr/MesCNO and IPr/N2O); (IV) steady-state kinetics in which no detectable intermediates are observed (dbabhNO and MesCNO). Thermochemical studies of OAT to 1 show that the V-O bond in O≡V(N[t-Bu]Ar)3 is strong (BDE = 154 ± 3 kcal mol(-1)) compared with all the N-O bonds cleaved. In contrast, measurement of the N-O bond in dbabhNO show it to be especially weak (BDE = 10 ± 3 kcal mol(-1)) and that dissociation of dbabhNO to anthracene, N2, and a (3)O atom is thermodynamically favorable at room temperature. Comparison of the OAT of adducts of N2O and MesCNO to the bulky complex 1 show a faster rate than in the case of free N2O or MesCNO despite increased steric hindrance of the adducts.

  2. Post Barnwell Class B/C Waste - Crisis Avoidance

    SciTech Connect

    Lewis, M.S.

    2008-07-01

    The Barnwell Waste Management Facility (BWMF) is scheduled to restrict access to waste generators outside of the Atlantic Compact (SC, CT, NJ) on July 1, 2008. South Carolina, authorized under the Low-Level Waste Policy Act of 1980 and Amendments Act of 1985, and in agreement with the other Atlantic Compact states, will only accept Class A, B, and C low-level radioactive waste (LLRW) generated within compact. For many years, the BWMF has been the only LLRW disposal facility to accept Class B and C waste from LLRW generators throughout the country, except those that have access to the Northwest Compact Site. Many Class B/C waste generators consider this to be a national crisis situation requiring interim or possible permanent storage, changes in operation, significant cost impacts, and/or elimination of services, especially in the health care and non-power generation industries. With proper in-house waste management practices and utilization of commercial processor services, a national crisis can be avoided, although some generators with specific waste forms or radionuclides will remain without options. In summary: It is unknown what the future will bring for commercial LLRW disposal. Could the anticipated post Barnwell Class B/C crisis be avoided by any of the following? - Barnwell Site remains open for the nation's commercial Class B/C waste; - Richland Site opens back up to the nation for commercial Class B/C waste; - Texas Site opens up to the nation for commercial Class B/C waste; - Federal Government intervenes by keeping a commercial Class B/C site open for the nation's commercial Class B/C waste; - Federal Government makes a DOE site available for commercial Class B/C waste; - Federal Government revisits the LLRW Policy Act of 1980 and Amendments Act of 1985. Without a future LLRW site capable of accepting Class B/C currently on the horizon, commercial LLRW generators are faced with waste volume elimination, reduction, or storage. With proper in-house waste

  3. Measurements of B(c)+ production and mass with the B(c)+ → J/ψπ+ decay.

    PubMed

    Aaij, R; Abellan Beteta, C; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderlini, L; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Kochebina, O; Komarov, V; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Maino, M; Malde, S; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Mazurov, A; McCarthy, J; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voss, H; Voss, C; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2012-12-01

    Measurements of B(c)(+) production and mass are performed with the decay mode B(c)(+)→J/ψπ(+) using 0.37 fb(-1) of data collected in pp collisions at √[s]=7 TeV by the LHCb experiment. The ratio of the production cross section times branching fraction between the B(c)(+)→J/ψπ(+) and the B(+)→J/ψK(+) decays is measured to be (0.68±0.10(stat)±0.03(syst)±0.05(lifetime))% for B(c)(+) and B(+) mesons with transverse momenta p(T)>4 GeV/c and pseudorapidities 2.5<η<4.5. The B(c)(+) mass is directly measured to be 6273.7±1.3(stat)±1.6(syst) MeV/c(2), and the measured mass difference with respect to the B(+) meson is M(B(c)(+))-M(B(+))=994.6±1.3(stat)±0.6(syst) MeV/c(2). PMID:23368183

  4. Measurements of B(c)+ production and mass with the B(c)+ → J/ψπ+ decay.

    PubMed

    Aaij, R; Abellan Beteta, C; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderlini, L; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Kochebina, O; Komarov, V; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Maino, M; Malde, S; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Mazurov, A; McCarthy, J; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voss, H; Voss, C; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2012-12-01

    Measurements of B(c)(+) production and mass are performed with the decay mode B(c)(+)→J/ψπ(+) using 0.37 fb(-1) of data collected in pp collisions at √[s]=7 TeV by the LHCb experiment. The ratio of the production cross section times branching fraction between the B(c)(+)→J/ψπ(+) and the B(+)→J/ψK(+) decays is measured to be (0.68±0.10(stat)±0.03(syst)±0.05(lifetime))% for B(c)(+) and B(+) mesons with transverse momenta p(T)>4 GeV/c and pseudorapidities 2.5<η<4.5. The B(c)(+) mass is directly measured to be 6273.7±1.3(stat)±1.6(syst) MeV/c(2), and the measured mass difference with respect to the B(+) meson is M(B(c)(+))-M(B(+))=994.6±1.3(stat)±0.6(syst) MeV/c(2).

  5. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  6. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  7. Rare radiative decays of the B c meson

    NASA Astrophysics Data System (ADS)

    Ju, Wan-Li; Wang, Tianhong; Jiang, Yue; Yuan, Han; Wang, Guo-Li

    2016-08-01

    In this paper, we study the rare radiative processes {B}c\\to {D}{sJ}(*)γ within the Standard Model, where {D}{sJ}(*) stands for the meson {D}s*, {D}s1(2460,2536) or {D}s2*(2573). During the investigations, we consider the contributions from the penguin, annihilation, color-suppressed and color-favored cascade diagrams. Our results show that: (1) the penguin and annihilation contributions are dominant in the branching fractions; (2) for the processes {B}c\\to {D}s*γ and {B}c\\to {D}s1(2460,2536)γ , the effects from the color-suppressed and color-favored cascade diagrams are un-negligible.

  8. Modeling the Active Sites in Metalloenzymes 5. The Heterolytic Bond Cleavage of H2 in the [NiFe] Hydrogenase of DesulfoWibrio gigas by a Nucleophilic Addition Mechanism

    SciTech Connect

    Niu, Shuqiang; Hall, Michael B.

    2001-11-19

    The H2 activation catalyzed by an Fe(II)-Ni(III) model of the [NiFe] hydrogenase of DesulfoVibrio gigas has been investigated by density functional theory (DFT/B3LYP) calculations on the neutral and anionic active site complexes, [(CO)(CN)2Fe(Mu-SH)2Ni(SH)(SH2)]0 and [(CO)(CN)2Fe(Mu-SH)2Ni(SH)2]-. The results suggest that the reaction proceeds by a nucleophilic addition mechanism that cleaves the H-H bond heterolytically. The terminal cysteine residue Cys530 in the [NiFe] hydrogenase active site of the D. gigas enzyme plays a crucial role in the catalytic process by accepting the proton. The active site is constructed to provide access by this cysteine residue, and this role explains the change in activity observed when this cysteine is replaced by a selenocysteine. Furthermore, the optimized geometry of the transition state in the model bears a striking resemblance to the geometry of the active site as determined by X-ray crystallography.

  9. Effects of extrinsic point defects in phosphorene: B, C, N, O, and F adatoms

    SciTech Connect

    Wang, Gaoxue E-mail: pandey@mtu.edu Pandey, Ravindra E-mail: pandey@mtu.edu; Karna, Shashi P. E-mail: pandey@mtu.edu

    2015-04-27

    Phosphorene is emerging as a promising 2D semiconducting material with a direct band gap and high carrier mobility. In this paper, we examine the role of the extrinsic point defects including surface adatoms in modifying the electronic properties of phosphorene using density functional theory. The surface adatoms considered are B, C, N, O, and F with a [He] core electronic configuration. Our calculations show that B and C, with electronegativity close to P, prefer to break the sp{sup 3} bonds of phosphorene and reside at the interstitial sites in the 2D lattice by forming sp{sup 2} like bonds with the native atoms. On the other hand, N, O, and F, which are more electronegative than P, prefer the surface sites by attracting the lone pairs of phosphorene. B, N, and F adsorption will also introduce local magnetic moment to the lattice. Moreover, B, C, N, and F adatoms will modify the band gap of phosphorene, yielding metallic transverse tunneling characters. Oxygen does not modify the band gap of phosphorene, and a diode like tunneling behavior is observed. Our results therefore offer a possible route to tailor the electronic and magnetic properties of phosphorene by the adatom functionalization and provide the physical insights of the environmental sensitivity of phosphorene, which will be helpful to experimentalists in evaluating the performance and aging effects of phosphorene-based electronic devices.

  10. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.

    PubMed

    Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G

    2016-02-23

    In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL. PMID:26820485

  11. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.

    PubMed

    Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G

    2016-02-23

    In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL.

  12. ARCHITECTURAL SECTIONS A, B, C, D, OF HOT PILOT PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL SECTIONS A, B, C, D, OF HOT PILOT PLANT (CPP-640). INL DRAWING NUMBER 200-0640-00-279-111681. ALTERNATE ID NUMBER 8952-CPP-640-A-5. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. 24. VIEW EAST SHOWING BASCULE GIRDERS 'A', 'B', 'C', AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. VIEW EAST SHOWING BASCULE GIRDERS 'A', 'B', 'C', AND 'D'; DRIVE GEAR 'D' WITH GUARD IS LOCATED IN THE LOWER CENTER OF THE PHOTOGRAPH. REFER TO GEARING DIAGRAMS - STRAUSS SHEET #15 FOR POWER TRAIN RELATIONSHIPS - Tomlinson Bridge, Spanning Quinnipiac River at Forbes Street (U.S. Route 1), New Haven, New Haven County, CT

  14. 25. VIEW WEST SHOWING BASCULE GIRDERS 'A', 'B', 'C', AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW WEST SHOWING BASCULE GIRDERS 'A', 'B', 'C', AND 'D'; DRIVE GEAR 'D' WITH GUARD IS LOCATED IN THE LOWER CENTER OF THE PHOTOGRAPH. REFER TO GEARING DIAGRAMS - STRAUSS SHEET #15 FOR POWER TRAIN RELATIONSHIPS. - Tomlinson Bridge, Spanning Quinnipiac River at Forbes Street (U.S. Route 1), New Haven, New Haven County, CT

  15. Copper Metal from Malachite Circa 4000 B.C.E.

    ERIC Educational Resources Information Center

    Yee, Gordon T.; Eddleton, Jeannine E.; Johnson, Cris E.

    2004-01-01

    The feasibility of the laboratory production of copper metal from a readily available, naturally occurring mineral malachite utilizing techniques that are consistent with the time period of around 4000 B.C.E. is presented. The starting materials are inexpensive and convenient and the procedure involves no hazardous reagents and produces no…

  16. Willingness of Medical Students for Hepatitis B & C Screening

    ERIC Educational Resources Information Center

    Ahmad, Iftikhar; Mahsud, Muhammad Amin Jan; Hussain, Javed; Khan, Muhammad Hussain; Khan, Habibullah; Noman, Nargis; Rabi, Fazle, Din, Siraj ud

    2010-01-01

    Background: Health care workers including medical students are vulnerable to hepatitis B & C virus infections. The objective of this study was to determine the level of willingness for screening among medical students. Methodology: This cross-sectional survey was carried out at Gomal Medical College, Dera Ismail Khan from 1st April 2010 to 15 June…

  17. Cp* as a removable protecting group: low valent Zn(I) compounds by reductive elimination, protolytic and oxidative cleavage of Zn-Cp*.

    PubMed

    Freitag, Kerstin; Banh, Hung; Ganesamoorthy, Chelladurai; Gemel, Christian; Seidel, Rüdiger W; Fischer, Roland A

    2013-08-01

    Zn-Cp* bond cleavage reactions leading to novel monovalent cationic zinc species are presented (Cp* = pentamethylcyclopentadienyl). The treatment of [Zn2Cp*2] with two equiv. of [H(Et2O)2][BAr4(F)] (BAr4(F) = B{C6H3(CF3)2}4) yields the triple-decker complex [Cp*3Zn4(Et2O)2][BAr4(F)] (1) via protolytic removal of a Cp* ligand as Cp*H, whereas the reaction with an equimolar amount of [FeCp2][BAr4(F)] (Cp = cyclopentadienyl) results in the formation of [Cp*Zn2(Et2O)3][BAr4(F)] (2) under oxidative cleavage of a Cp* ring giving decamethylfulvalene, (Cp*)2, and [FeCp2] as by-products. The molecular structures of compounds 1 and 2 are established by single-crystal X-ray diffraction studies. A new synthetic pathway for the formation of [Zn2Cp*2] based on the reductive elimination of Cp*H from in situ formed Cp*ZnH is presented.

  18. 4-Dimethylaminoazobenzenes: carcinogenicities and reductive cleavage by microsomal azo reductase.

    PubMed

    Lambooy, J P; Koffman, B M

    1985-01-01

    Twenty-four 4-dimethylaminoazobenzenes (DABs) in which systematic structural modifications have been made in the prime ring have been studied for substrate specificity for microsomal azo reductase. The DABs were also evaluated for carcinogenicity and it was found that there was no correlation between carcinogenicity and extent of azo bond cleavage by azo reductase. While any substituent in the prime ring reduces the rate of cleavage of the azo bond relative to the unsubstituted dye, there is a correlation between substituent size and susceptibility to the enzyme. Substituent size was also found to be a significant factor in the induction of hepatomas by the dyes. Preliminary studies have shown that there appears to be a positive correlation between microsomal riboflavin content and the activity of the azo reductase.

  19. Preparation of bulk superhard B-C-N nanocomposite compact

    DOEpatents

    Zhao, Yusheng; He, Duanwei

    2011-05-10

    Bulk, superhard, B--C--N nanocomposite compacts were prepared by ball milling a mixture of graphite and hexagonal boron nitride, encapsulating the ball-milled mixture at a pressure in a range of from about 15 GPa to about 25 GPa, and sintering the pressurized encapsulated ball-milled mixture at a temperature in a range of from about 1800-2500 K. The product bulk, superhard, nanocomposite compacts were well sintered compacts with nanocrystalline grains of at least one high-pressure phase of B--C--N surrounded by amorphous diamond-like carbon grain boundaries. The bulk compacts had a measured Vicker's hardness in a range of from about 41 GPa to about 68 GPa.

  20. Hydrogen cleavage by solid-phase frustrated Lewis pairs.

    PubMed

    Xing, Jun-Yi; Buffet, Jean-Charles; Rees, Nicholas H; Nørby, Peter; O'Hare, Dermot

    2016-08-18

    We report the direct synthesis of a solid-phase frustrated Lewis pair (s-FLP) by combining a silica-supported Lewis acid ([triple bond, length as m-dash]SiOB(C6F5)2, s-BCF) with a Lewis base (tri-tert-butylphosphine, (t)Bu3P) to give [[triple bond, length as m-dash]SiOB(C6F5)2][(t)Bu3P]. Reaction of this s-FLP with H2 under mild conditions led to heterolytic H-H bond cleavage and the formation of [[triple bond, length as m-dash]SiOB(H)(C6F5)2][(t)Bu3PH].

  1. Elongin B/C recruitment regulates substrate binding by CIS.

    PubMed

    Piessevaux, Julie; De Ceuninck, Leentje; Catteeuw, Dominiek; Peelman, Frank; Tavernier, Jan

    2008-08-01

    SOCS proteins play a major role in the regulation of cytokine signaling. They are recruited to activated receptors and can suppress signaling by different mechanisms including targeting of the receptor complex for proteasomal degradation. The activity of SOCS proteins is regulated at different levels including transcriptional control and posttranslational modification. We describe here a novel regulatory mechanism for CIS, one of the members of this protein family. A CIS mutant deficient in recruitment of the Elongin B/C complex completely failed to suppress STAT5 activation. This deficiency was not caused by altered turnover of CIS but by loss of cytokine receptor interaction. Intriguingly, no such effect was seen for binding to MyD88. The interaction between CIS and the Elongin B/C complex, which depends on the levels of uncomplexed Elongin B/C, was easily disrupted. This regulatory mechanism may be unique for CIS, as similar mutations in SOCS1, -2, -3, -6, and -7 had no functional impact. Our findings indicate that the SOCS box not only plays a role in the formation of E3 ligase complexes but, at least for CIS, can also regulate the binding modus of SOCS box-containing proteins. PMID:18508766

  2. Enhanced RNA cleavage within bulge-loops by an artificial ribonuclease

    PubMed Central

    Kuznetsova, Irina L.; Zenkova, Marina A.; Gross, Hans J.; Vlassov, Valentin V.

    2005-01-01

    Cleavage of phosphodiester bonds by small ribonuclease mimics within different bulge-loops of RNA was investigated. Bulge-loops of different size (1–7 nt) and sequence composition were formed in a 3′ terminal fragment of influenza virus M2 RNA (96 nt) by hybridization of complementary oligodeoxynucleotides. Small bulges (up to 4 nt) were readily formed upon oligonucleotide hybridization, whereas hybridization of the RNA to the oligonucleotides designed to produce larger bulges resulted in formation of several alternative structures. A synthetic ribonuclease mimic displaying Pyr–Pu cleavage specificity cleaved CpA motifs located within bulges faster than similar motifs within the rest of the RNA. In the presence of 10 mM MgCl2, 75% of the cleavage products resulted from the attack of this motif. Thus, selective RNA cleavage at a single target phosphodiester bond was achieved by using bulge forming oligonucleotides and a small ribonuclease A mimic. PMID:15731340

  3. N–O Cleavage reactions of heterobicycloalkene-fused 2-isoxazolines

    PubMed Central

    Nagireddy, Jaipal R; Tranmer, Geoffrey K; Carlson, Emily

    2014-01-01

    Summary Transition metal-mediated N–O bond cleavage reactions of heterobicycloalkene-fused 3-methyl-2-isoxazolines were investigated. Optimal cleavage conditions were found with Raney nickel/AlCl3 mediation in aqueous methanol. The reaction provided a diverse collection of novel heterobicycle-fused β-hydroxyketones with good to excellent yields (66–95%) and without the need for chromatographic purification. PMID:25246978

  4. Two-dimensional B-C-O alloys: a promising class of 2D materials for electronic devices.

    PubMed

    Zhou, Si; Zhao, Jijun

    2016-04-28

    Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp2 honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor forming alternate patterns into the chain- or ring-like structures embedded in the pristine graphene regions. These B-C-O hybrid sheets can be either metals or semiconductors depending on the B : O ratio. The semiconducting (B2O)nCm and (B6O3)nCm phases exist under the B- and O-rich conditions, and possess a tunable band gap of 1.0-3.8 eV and high carrier mobility, retaining ∼1000 cm2 V(-1) s(-1) even for half coverage of B and O atoms. These B-C-O alloys form a new class of 2D materials that are promising candidates for high-speed electronic devices.

  5. Regioselective Cleavage of Thioether Linkages in Microcystin Conjugates.

    PubMed

    Zemskov, Ivan; Kropp, Heike M; Wittmann, Valentin

    2016-07-25

    Microcystins are cyanobacterial toxins that can be found in fresh and coastal waters during algal blooms. Microcystin contamination of water can cause severe poisoning of animals and humans. Quantification of these toxins in biological samples is complicated because a major proportion of microcystins is covalently linked to proteins through thioether bonds formed through a Michael-type addition of cysteine residues of proteins to an N-methyldehydroalanine residue in the microcystins. We investigated chemical methods that can be used to cleave such thioether bonds by means of an elimination reaction that leaves the microcystin backbone intact for subsequent analysis. The known reagent O-mesitylenesulfonylhydroxylamine (MSH) led to regioselective thioether cleavage, but a large excess of reagent was needed, thus making purification challenging. An unexpected side reaction observed during the investigation of the base-induced elimination inspired us to develop a new thioether-cleavage methodology based on the addition of propargylamine as a nucleophile that can trap the elimination product. This methodology could be successfully applied to the quantitative cleavage of a microcystin-LF-glutathione conjugate. The alkyne moiety introduced by this procedure offers the possibility for further reactions with azides by using click chemistry, which might be useful for the derivatization or isolation of microcystins. PMID:27346324

  6. Surface Structures on Cleaved Silicon by Cleavage Luminescence Detection

    NASA Astrophysics Data System (ADS)

    Li, Dongguang

    This paper reports on further research into the structure and properties of the cleaved surfaces of silicon, using vacuum cleavage luminescence detection methods. Results show resistance partially recovers during the cleavage process through "crack healing". When the elasticity of the parts transmitting the applied stress temporarily absorbs the initial rupture stress, the crack stops and partially re-closes until the applied force "catches up" and reapplies stress. The high resistance created by the two Schottky barriers prevents resistance recovery from mere surfaces re-contact. Instead, resistance recovery from the atom-to-atom re-closure surface healing is more likely, as expected from a Three Bond Scission Model (TBS) silicon surface structure.

  7. Centralspindlin in Rappaport's cleavage signaling.

    PubMed

    Mishima, Masanori

    2016-05-01

    Cleavage furrow in animal cell cytokinesis is formed by cortical constriction driven by contraction of an actomyosin network activated by Rho GTPase. Although the role of the mitotic apparatus in furrow induction has been well established, there remain discussions about the detailed molecular mechanisms of the cleavage signaling. While experiments in large echinoderm embryos highlighted the role of astral microtubules, data in smaller cells indicate the role of central spindle. Centralspindlin is a constitutive heterotetramer of MKLP1 kinesin and the non-motor CYK4 subunit and plays crucial roles in formation of the central spindle and recruitment of the downstream cytokinesis factors including ECT2, the major activator of Rho during cytokinesis, to the site of division. Recent reports have revealed a role of this centralspindlin-ECT2 pathway in furrow induction both by the central spindle and by the astral microtubules. Here, a unified view of the stimulation of cortical contractility by this pathway is discussed. Cytokinesis, the division of the whole cytoplasm, is an essential process for cell proliferation and embryonic development. In animal cells, cytokinesis is executed using a contractile network of actin filaments driven by a myosin-II motor that constricts the cell cortex (cleavage furrow ingression) into a narrow channel between the two daughter cells, which is resolved by scission (abscission) [1-3]. The anaphase-specific organization of the mitotic apparatus (MA, spindle with chromosomes plus asters) positions the cleavage furrow and plays a major role in spatial coupling between mitosis and cytokinesis [4-6]. The nucleus and chromosomes are dispensable for furrow specification [7-10], although they contribute to persistent furrowing and robust completion in some cell types [11,12]. Likewise, centrosomes are not essential for cytokinesis, but they contribute to the general fidelity of cell division [10,13-15]. Here, classical models of cleavage furrow

  8. Machine Learning Energies of 2 Million Elpasolite (A B C2D6) Crystals

    NASA Astrophysics Data System (ADS)

    Faber, Felix A.; Lindmaa, Alexander; von Lilienfeld, O. Anatole; Armiento, Rickard

    2016-09-01

    Elpasolite is the predominant quaternary crystal structure (AlNaK2F6 prototype) reported in the Inorganic Crystal Structure Database. We develop a machine learning model to calculate density functional theory quality formation energies of all ˜2 ×106 pristine A B C2D6 elpasolite crystals that can be made up from main-group elements (up to bismuth). Our model's accuracy can be improved systematically, reaching a mean absolute error of 0.1 eV /atom for a training set consisting of 10 ×103 crystals. Important bonding trends are revealed: fluoride is best suited to fit the coordination of the D site, which lowers the formation energy whereas the opposite is found for carbon. The bonding contribution of the elements A and B is very small on average. Low formation energies result from A and B being late elements from group II, C being a late (group I) element, and D being fluoride. Out of 2 ×106 crystals, 90 unique structures are predicted to be on the convex hull—among which is NFAl2Ca6, with a peculiar stoichiometry and a negative atomic oxidation state for Al.

  9. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  10. Ligand substitution behavior of Ru6(mu6-C)(CO)17 with unsaturated diphosphines: facile capping of a polyhedral face and photochemically promoted P C bond cleavage in the cluster Ru6(mu6-C)(CO)14(mu3-bpcd)

    SciTech Connect

    Kandala, Srikanth; Hammons, Casey; Watson, William H.; Wang, Xiaoping; Richmond, Michael G.

    2010-01-01

    The ligand substitution chemistry of the hexaruthenium cluster Ru-6(mu(6)-C)(CO)(17) (1) with several unsaturated diphosphine ligands has been investigated. Thermolysis of 1 with (Z)-Ph2PCH=CHPPh2 (dppen) furnishes the new cluster compounds Ru-5(mu(5)-C)(CO)(12)(mu(3)-dppen) (2), Ru-6(mu(6)-C)(CO)(14)(mu(3)-dppen) (3), and Ru-6(mu(6)-C)(CO)(12)(mu(3)-dppen)(mu-dppen) (4). Clusters 2 and 3 are also obtained when a mixture of 1 and dppen is treated with the oxidative-decarbonylation reagent Me3NO. Thermolysis or Me3NO activation of 1 in the presence of 4,5-bis(diphenylphosphino)-4-cyclopenten- 1,3-dione (bpcd) yields Ru-6(mu(6)-C)(CO)(14)(mu(3)-bpcd) (4) as the sole observable product. Near-UV irradiation of 4 leads to P-C bond cleavage and the formation of phosphido-bridged cluster Ru-6(mu(6)-C)(CO)(13)[mu(3)-C=C(PPh2)C(O)CH2C(O)](mu-PPh2) (6) in essentially quantitative yield. The reaction between 1 and the ligand 3,4-bis(diphenylphosphino)-5-methoxy-2(5H)-furanone (bmf) leads to the formation of Ru-6(mu(6)-C)(CO)(14)(mu(3)-bmf) (7), which exists as a single diastereomer in solution as shown by H-1 and P-31 NMR spectroscopy. The molecular structures and the binding mode of the ancillary diphosphine ligand(s) in 2-7 have all been established by X-ray diffraction analyses. The solid-state structure of 7 reveals that the chiral bmf ligand caps one of the metallic faces stereospecifically with the 5-methoxy moiety oriented distal or trans relative to the Ru-6 polyhedral core. The new substitution products are discussed relative to the products obtained from 1 and the related diphosphine ligands dppm, dppe, dppf, and dppbz.

  11. Determination of the orientation of OH bond axes in layer silicates by infrared absorption

    USGS Publications Warehouse

    Serratosa, J.M.; Bradley, W.F.

    1958-01-01

    It is observed that, among the micas and related crystallizations, trioctahedral compositions exhibit an OH bond axis normal to the cleavage flake, with an infrared absorption frequency near 3700 cm.-1, but that dioctahedral compositions exhibit OH bond axes near the plane of the cleavage flake and of lesser absorption frequencies.

  12. Surface chain cleavage behavior of PBIA fiber induced by direct fluorination

    NASA Astrophysics Data System (ADS)

    Cheng, Zheng; Wu, Peng; Li, Baoyin; Chen, Teng; Liu, Yang; Ren, Mengmeng; Wang, Zaoming; Lai, Wenchuan; Wang, Xu; Liu, Xiangyang

    2016-10-01

    The surface chain cleavage behavior of PBIA fiber induced by direct fluorination was reported based on the analysis of physical and chemical changes on the fiber surface. The chain cleavage product was obtained to evaluate the chemical reaction during the fluorination process, and its impact on composites performance was also involved. DSC, FTIR spectra, UV-vis absorption spectra and H1NMR were utilized to analyze the chemical structure and composition of the chain cleavage product. The results show gaseous fluorine is most likely to attack the benzimidazole and amide bond in PBIA unit, which was also demonstrated by molecular simulation. Owing to the polar groups contained in chain cleavage products, the wettability of epoxy resin to fiber has been improved, leading to an 11.5% increase of adhesive strength of fiber-epoxy composite.

  13. Specificity of hammerhead ribozyme cleavage.

    PubMed Central

    Hertel, K J; Herschlag, D; Uhlenbeck, O C

    1996-01-01

    To be effective in gene inactivation, the hammerhead ribozyme must cleave a complementary RNA target without deleterious effects from cleaving non-target RNAs that contain mismatches and shorter stretches of complementarity. The specificity of hammerhead cleavage was evaluated using HH16, a well-characterized ribozyme designed to cleave a target of 17 residues. Under standard reaction conditions, HH16 is unable to discriminate between its full-length substrate and 3'-truncated substrates, even when six fewer base pairs are formed between HH16 and the substrate. This striking lack of specificity arises because all the substrates bind to the ribozyme with sufficient affinity so that cleavage occurs before their affinity differences are manifested. In contrast, HH16 does exhibit high specificity towards certain 3'-truncated versions of altered substrates that either also contain a single base mismatch or are shortened at the 5' end. In addition, the specificity of HH16 is improved in the presence of p7 nucleocapsid protein from human immunodeficiency virus (HIV)-1, which accelerates the association and dissociation of RNA helices. These results support the view that the hammerhead has an intrinsic ability to discriminate against incorrect bases, but emphasizes that the high specificity is only observed in a certain range of helix lengths. Images PMID:8670879

  14. Thermal expansion of Ti{sub 5}Si{sub 3} with Ge, B, C, N, or O additions

    SciTech Connect

    Williams, J. J.; Kramer, M. J.; Akinc, M.

    2000-08-01

    The crystallographic thermal expansion coefficients of Ti{sub 5}Si{sub 3} from 20 to 1000 degree sign C as a function of B, C, N, O, or Ge content were measured by high-temperature x-ray diffraction using synchrotron sources at Cornell University (Cornell High Energy Synchrotron Source; CHESS) and Argonne National Laboratory (Advanced Photon Source; APS). Whereas the ratio of the thermal expansion coefficients along the c and a axes was approximately 3 for pure Ti{sub 5}Si{sub 3}, this ratio decreased to about 2 when B, C, or N atoms were added. Additions of O and Ge were less efficient at reducing this thermal expansion anisotropy. The extent by which the thermal expansion was changed when B, C, N, or O atoms were added to Ti{sub 5}Si{sub 3} correlated with their expected effect on bonding in Ti{sub 5}Si{sub 3}. (c) 2000 Materials Research Society.

  15. Crispene A, B, C and D, Four New Clerodane Type Furanoid Diterpenes from Tinospora crispa (L.)

    PubMed Central

    Hossen, Farhad; Ahasan, Rubaida; Haque, Mohammad Rashedul; Begum, Bilkis; Hasan, Choudhury Mahmood

    2016-01-01

    Background: Tinospora crispa (L.) is used to alleviate the symptoms of diabetes mellitus in folk medicine. It is also used for hypertension and to treat malaria, remedy for diarrhea, and as vermifuge. Materials and Methods: Stems of T. crispa were collected, sun dried for several days followed by oven dried for 24 h at a considerably low temperature and then ground into coarse powder. The powdered stems were soaked in methanol at room temperature for 14 days with occasional shaking. The extract was collected by filtration, and the solvent was evaporated under reduced pressure in a rotary evaporator to obtain a solid residue which was then subjected to fractionation using the modified Kupchan partitioning method into n-hexane, CCl4, CHCl3 and aqueous soluble fractions. The n-hexane soluble fraction was chromatographed over sephadex (LH-20) and the column was eluted with n-hexane: CH2Cl2:MeOH (2:5:1) followed by CH2Cl2:MeOH (9:1) and MeOH (100%) in order to increase the polarities. The column fractions were then concentrated and subjected to thin layer chromatography screening and the fractions with a satisfactory resolution of compounds were rechromatographed over silica gel to isolate the pure compounds. Results: Four new furanoid diterpenes of clerodane types, Crispene A, B, C, and D (1–4), including one known furanoid diterpene glucoside, borapetoside E (5), were isolated from the stems of T. crispa. The structures of these compounds were elucidated by means of extensive spectroscopic analysis and by comparison of their spectral data with closely related compounds. Conclusion: We have reported four new furanoid diterpenes of clerodane types, including one known furanoid diterpene glucoside. This is the first report of any clerodane diterpene having olefinic bond between C-6 and C-7. SUMMARY Crispene A, B, C, and D, four new furanoid diterpenes of clerodane types from Tinospora crispaCrispene C, an unusual furanoid diterpene with olifinic bond between C-6 and C

  16. Two-dimensional B-C-O alloys: a promising class of 2D materials for electronic devices

    NASA Astrophysics Data System (ADS)

    Zhou, Si; Zhao, Jijun

    2016-04-01

    Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp2 honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor forming alternate patterns into the chain- or ring-like structures embedded in the pristine graphene regions. These B-C-O hybrid sheets can be either metals or semiconductors depending on the B : O ratio. The semiconducting (B2O)nCm and (B6O3)nCm phases exist under the B- and O-rich conditions, and possess a tunable band gap of 1.0-3.8 eV and high carrier mobility, retaining ~1000 cm2 V-1 s-1 even for half coverage of B and O atoms. These B-C-O alloys form a new class of 2D materials that are promising candidates for high-speed electronic devices.Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp2 honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor

  17. C-Terminally modified peptides via cleavage of the HMBA linker by O-, N- or S-nucleophiles.

    PubMed

    Hansen, J; Diness, F; Meldal, M

    2016-03-28

    A large variety of C-terminally modified peptides was obtained by nucleophilic cleavage of the ester bond in solid phase linked peptide esters of 4-hydroxymethyl benzamide (HMBA). The developed methods provided peptides, C-terminally functionalized as esters, amides and thioesters, with high purity directly from the resin in a single reaction step. A comprehensive screening of the reaction conditions and scope for nucleophilic cleavage of peptides from the HMBA linker was performed. PMID:26924021

  18. Aerobic Copper-Promoted Radical-Type Cleavage of Coordinated Cyanide Anion: Nitrogen Transfer to Aldehydes To Form Nitriles.

    PubMed

    Wu, Qian; Luo, Yi; Lei, Aiwen; You, Jingsong

    2016-03-01

    We have disclosed for the first time the copper-promoted C≡N triple bond cleavage of coordinated cyanide anion under a dioxygen atmosphere, which enables a nitrogen transfer to various aldehydes. Mechanistic study of this unprecedented transformation suggests that the single electron-transfer process could be involved in the overall course. This protocol provides a new cleavage pattern for the cyanide ion and would eventually lead to a more useful synthetic pathway to nitriles from aldehydes. PMID:26907853

  19. Cleavage oxygenases for the biosynthesis of trisporoids and other apocarotenoids in Phycomyces.

    PubMed

    Medina, Humberto R; Cerdá-Olmedo, Enrique; Al-Babili, Salim

    2011-10-01

    Mixed cultures of strains of opposite sex of the Mucorales produce trisporic acids and other compounds arising from cleavage of β-carotene, some of which act as signals in the mating process. The genome of Phycomyces blakesleeanus contains five sequences akin to those of verified carotenoid cleavage oxygenases. All five are transcribed, three of them have the sequence traits that are considered essential for activity, and we have discovered the reactions catalysed by the products of two of them, genes carS and acaA. The transcripts of carS became more abundant in the course of mating, and its expression in β-carotene-producing Escherichia coli cells led to the formation of β-apo-12'-carotenal, a C₂₅ cleavage product of β-carotene. Joint expression of both genes in the same in vivo system resulted in the production of β-apo-13-carotenone, a C₁₈ fragment. In vitro, AcaA cleaved β-apo-12'-carotenal into β-apo-13-carotenone and was active on other apocarotenoid substrates. According to these and other results, the first reactions in the apocarotenoid pathway of Phycomyces are the cleavage of β-carotene at its C11'-C12' double bond by CarS and the cleavage of the resulting C₂₅-fragment at its C13-14 double bond by AcaA. PMID:21854466

  20. Pistol ribozyme adopts a pseudoknot fold facilitating site-specific in-line cleavage.

    PubMed

    Ren, Aiming; Vušurović, Nikola; Gebetsberger, Jennifer; Gao, Pu; Juen, Michael; Kreutz, Christoph; Micura, Ronald; Patel, Dinshaw J

    2016-09-01

    The field of small self-cleaving nucleolytic ribozymes has been invigorated by the recent discovery of the twister, twister-sister, pistol and hatchet ribozymes. We report the crystal structure of a pistol ribozyme termed env25, which adopts a compact tertiary architecture stabilized by an embedded pseudoknot fold. The G-U cleavage site adopts a splayed-apart conformation with in-line alignment of the modeled 2'-O of G for attack on the adjacent to-be-cleaved P-O5' bond. Highly conserved residues G40 (N1 position) and A32 (N3 and 2'-OH positions) are aligned to act as a general base and a general acid, respectively, to accelerate cleavage chemistry, with their roles confirmed by cleavage assays on variants, and an increased pKa of 4.7 for A32. Our structure of the pistol ribozyme defined how the overall and local topologies dictate the in-line alignment at the G-U cleavage site, with cleavage assays on variants revealing key residues that participate in acid-base-catalyzed cleavage chemistry. PMID:27398999

  1. The role of the plasma membrane and a non-lysosomal compartment in the disulfide cleavage of endocytosed macromolecules

    SciTech Connect

    Feener, E.P.

    1990-01-01

    The cleavage of disulfide bonds in endocytosed macromolecules was investigated using new disulfide containing macromolecular conjugates. A conjugate, in which ({sup 125}I-tyr) was linked to the nondegradable macromolecular carrier poly D-lysine (PDL) through a disulfide spacer ({sup 125}I-tyr-SS-PDL), was used to monitor disulfide cleavage in adsorptive endocytosis in Chinese hamster ovary cells. Reductive cleavage of this probe released 3-thiopropionyl-{sup 125} {sup 125}I-tyramine, measurable as acid soluble radioactivity. In pulse experiments, reductive cleavage of {sup 125}I-tyr-SS-PDL differed in its kinetics from the proteolysis of {sup 125}I-labeled Poly L-lysine. Proteolytic degradation began after a 15 to 30 min lag, i.e. the time required for transport of poly(lysine) to heavy lysosomes, while reductive cleavage increased linearly between 0 and 15 min. In the first hour of chase, proteolytic and reductive cleavage amounted to 30% and 7% of the total cell bound radioactivity, respectively. The reductive cleavage observed during the first 30 min of chase was inhibited by 80-90% with cell impermeant sulfhydryl reagents (dithiobis-(2-nitrobenzoic acid) and p-chloromercuriphenyl-sulfonate), which indicated that cleavage occurred at the cell surface. In contrast, disulfide cleavage observed after 1 hr chase was not significantly inhibited by these reagents and, therefore, resulted from an intracellular process. Subcellular fractionation demonstrated that lysosomes could be excluded as a site of disulfide cleavage, but that a subcellular fraction characterized by a buoyant density of 1.03g/ml was associated with the cleavage of {sup 125}I-tyr-SS-PDL. Of the relevant structures which constitute this subcellular fraction, early endosomes and plasma membrane could be excluded as the reducing structures on the basis of kinetic considerations.

  2. Catalytic CO2 activation assisted by rhenium hydride/B(C6F5)3 frustrated Lewis pairs--metal hydrides functioning as FLP bases.

    PubMed

    Jiang, Yanfeng; Blacque, Olivier; Fox, Thomas; Berke, Heinz

    2013-05-22

    Reaction of 1 with B(C6F5)3 under 1 bar of CO2 led to the instantaneous formation of the frustrated Lewis pair (FLP)-type species [ReHBr(NO)(PR3)2(η(2)-O═C═O-B(C6F5)3)] (2, R = iPr a, Cy b) possessing two cis-phosphines and O(CO2)-coordinated B(C6F5)3 groups as verified by NMR spectroscopy and supported by DFT calculations. The attachment of B(C6F5)3 in 2a,b establishes cooperative CO2 activation via the Re-H/B(C6F5)3 Lewis pair, with the Re-H bond playing the role of a Lewis base. The Re(I) η(1)-formato dimer [{Re(μ-Br)(NO)(η(1)-OCH═O-B(C6F5)3)(PiPr3)2}2] (3a) was generated from 2a and represents the first example of a stable rhenium complex bearing two cis-aligned, sterically bulky PiPr3 ligands. Reaction of 3a with H2 cleaved the μ-Br bridges, producing the stable and fully characterized formato dihydrogen complex [ReBrH2(NO)(η(1)-OCH═O-B(C6F5)3)(PiPr3)2] (4a) bearing trans-phosphines. Stoichiometric CO2 reduction of 4a with Et3SiH led to heterolytic splitting of H2 along with formation of bis(triethylsilyl)acetal ((Et3SiO)2CH2, 7). Catalytic reduction of CO2 with Et3SiH was also accomplished with the catalysts 1a,b/B(C6F5)3, 3a, and 4a, showing turnover frequencies (TOFs) between 4 and 9 h(-1). The stoichiometric reaction of 4a with the sterically hindered base 2,2,6,6-tetramethylpiperidine (TMP) furnished H2 ligand deprotonation. Hydrogenations of CO2 using 1a,b/B(C6F5)3, 3a, and 4a as catalysts gave in the presence of TMP TOFs of up to 7.5 h(-1), producing [TMPH][formate] (11). The influence of various bases (R2NH, R = iPr, Cy, SiMe3, 2,4,6-tri-tert-butylpyridine, NEt3, PtBu3) was studied in greater detail, pointing to two crucial factors of the CO2 hydrogenations: the steric bulk and the basicity of the base.

  3. [Recent knowledge about intestinal absorption and cleavage of carotenoids].

    PubMed

    Borel, P; Drai, J; Faure, H; Fayol, V; Galabert, C; Laromiguière, M; Le Moël, G

    2005-01-01

    Our knowledge about intestinal absorption and cleavage of carotenoids has rapidly grown during the last years. New facts about carotenoid absorption have emerged while some controversies about cleavage are close to end. The knowledge of the absorption and conversion processes is indispensable to understand and interpret the perturbations that can occur in the metabolism of carotenoids and vitamin A. Recently, it has been shown that the absorption of certain carotenoids is not passive - as believed for a long time - but is a facilitated process that requires, at least for lutein, the class B-type 1 scavenger receptor (SR-B1). Various epidemiological and clinical studies have shown wide variations in carotenoid absorption from one subject to another, such differences are now explained by the structure of the concerned carotenoid, by the nature of the food that is absorbed with the carotenoid, by diverse exogenous factors like the intake of medicines or interfering components, by diet factors, by genetic factors, and by the nutritional status of the subject. Recently, the precise mechanism of beta-carotene cleavage by betabeta-carotene 15,15' monooxygenase (EC 1.14.99.36) - formerly called beta-carotene 15,15' dioxygenase (ex EC 1.13.11.21) - has been discovered, and a second enzyme which cleaves asymmetrically the beta-carotene molecule has been found. beta-carotene 15,15' monooxygenase only acts on the 15,15' bond, thus forming two molecules of retinal from one molecule of beta-carotene by central cleavage. Even though the betabeta-carotene 15,15' monooxygenase is much more active on the beta-carotene molecule, a study has shown that it can act on all carotenoids. Searchers now agree that other enzymes that can catalyse an eccentric cleavage of carotenoids probably exist, but under physiological conditions the betabeta-carotene 15,15' monooxygenase is by far the most active, and it is mainly effective in the small bowel mucosa and in the liver. However the

  4. 31 CFR 315.91 - Additional requirements; bond of indemnity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Additional requirements; bond of indemnity. 315.91 Section 315.91 Money and Finance: Treasury Regulations Relating to Money and Finance.... SAVINGS BONDS, SERIES A, B, C, D, E, F, G, H, J, AND K, AND U.S. SAVINGS NOTES Miscellaneous...

  5. Bond Issues.

    ERIC Educational Resources Information Center

    Pollack, Rachel H.

    2000-01-01

    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…

  6. Sticker Bonding.

    ERIC Educational Resources Information Center

    Frazier, Laura Corbin

    2000-01-01

    Introduces a science activity on the bonding of chemical compounds. Assigns students the role of either a cation or anion and asks them to write the ions they may bond with. Assesses students' understanding of charge, bonding, and other concepts. (YDS)

  7. Photochemical cleavage of leader peptides†‡

    PubMed Central

    Bindman, Noah; Merkx, Remco; Koehler, Robert; Herrman, Nicholas; van der Donk, Wilfred A.

    2011-01-01

    We report a photolabile linker compatible with Fmoc solid phase peptide synthesis and Cu(I)-catalyzed alkyne–azide cycloaddition that allows photochemical cleavage to afford a C-terminal peptide fragment with a native amino terminus. PMID:21046030

  8. 46 CFR 153.1104 - Draining of cargo hose: Categories A, B, C, and D.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Draining of cargo hose: Categories A, B, C, and D. 153... Draining of cargo hose: Categories A, B, C, and D. Before a cargo hose used in discharging an NLS from a ship's cargo tank is disconnected, the hose must be drained back to the transfer terminal unless...

  9. 46 CFR 153.1104 - Draining of cargo hose: Categories A, B, C, and D.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Draining of cargo hose: Categories A, B, C, and D. 153... Draining of cargo hose: Categories A, B, C, and D. Before a cargo hose used in discharging an NLS from a ship's cargo tank is disconnected, the hose must be drained back to the transfer terminal unless...

  10. 46 CFR 153.1104 - Draining of cargo hose: Categories A, B, C, and D.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Draining of cargo hose: Categories A, B, C, and D. 153... Draining of cargo hose: Categories A, B, C, and D. Before a cargo hose used in discharging an NLS from a ship's cargo tank is disconnected, the hose must be drained back to the transfer terminal unless...

  11. 46 CFR 153.1104 - Draining of cargo hose: Categories A, B, C, and D.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Draining of cargo hose: Categories A, B, C, and D. 153... Draining of cargo hose: Categories A, B, C, and D. Before a cargo hose used in discharging an NLS from a ship's cargo tank is disconnected, the hose must be drained back to the transfer terminal unless...

  12. 46 CFR 153.1104 - Draining of cargo hose: Categories A, B, C, and D.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Draining of cargo hose: Categories A, B, C, and D. 153... Draining of cargo hose: Categories A, B, C, and D. Before a cargo hose used in discharging an NLS from a ship's cargo tank is disconnected, the hose must be drained back to the transfer terminal unless...

  13. Undirected, Homogeneous C–H Bond Functionalization: Challenges and Opportunities

    PubMed Central

    2016-01-01

    The functionalization of C–H bonds has created new approaches to preparing organic molecules by enabling new strategic “disconnections” during the planning of a synthetic route. Such functionalizations also have created the ability to derivatize complex molecules by modifying one or more of the many C–H bonds. For these reasons, researchers are developing new types of functionalization reactions of C–H bonds and new applications of these processes. These C–H bond functionalization reactions can be divided into two general classes: those directed by coordination to an existing functional group prior to the cleavage of the C–H bond (directed) and those occurring without coordination prior to cleavage of the C–H bond (undirected). The undirected functionalizations of C–H bonds are much less common and more challenging to develop than the directed reactions. This outlook will focus on undirected C–H bond functionalization, as well as related reactions that occur by a noncovalent association of the catalyst prior to C–H bond cleavage. The inherent challenges of conducting undirected functionalizations of C–H bonds and the methods for undirected functionalization that are being developed will be presented, along with the factors that govern selectivity in these reactions. Finally, this outlook discusses future directions for research on undirected C–H functionalization, with an emphasis on the limitations that must be overcome if this type of methodology is to become widely used in academia and in industry. PMID:27294201

  14. Observations on size confinement effect in B-C-N nanoparticles embedded in mesoporous silica channels

    SciTech Connect

    Tripathi, Neeti; Yamashita, Masaru; Akai, Tomoko; Uchida, Takeyuki

    2014-07-07

    Fluorescent B-C-N/silica nanoparticles were synthesized by solution impregnation method. Effect of B-C-N particle size on the optical properties was investigated by varying the silica pore sizes. Formation of B-C-N nanoparticles within the mesoporous matrix is confirmed by x-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. Furthermore, a remarkable blue-shift in emission peak centres with decreasing pore size in conjugation with band gap modification, ascribed to the size confinement effect. A detailed analysis of experimental results by theoretically defined confinement models demonstrates that the B-C-N nanoparticles in the size range of 3–13 nm falls within the confinement regime. This work demonstrated the experimental evidence of the size confinement effect in smaller size B-C-N nanoparticles.

  15. Evidence for the exclusive decay B(c)+- --> J/psi pi+- and measurement of the mass of the B(c)+- meson.

    PubMed

    Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachocou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cijliak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cranshaw, J; Cruz, A; Cuevas, J; Culbertson, R; Cyr, D; Da Ronco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Devlin, T; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heijboer, A; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Kordas, K; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreps, M; Kreymer, A; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; LeCompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Mulhearn, M; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nicolas, L; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Papikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sill, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spezziga, M; Spinella, F; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Worm, S; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, Y; Yang, C; Yang, U K; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-03-01

    We report the first evidence for a fully reconstructed decay mode of the B(c)+- meson in the channel B(c)+- --> J/psi pi+-, with J/psi --> mu+ mu-. The analysis is based on an integrated luminosity of 360 pb(-1) in pp collisions at 1.96 TeV center of mass energy collected by the Collider Detector at Fermilab. We observe 14.6 +/- 4.6 signal events with a background of 7.1 +/- 0.9 events, and a fit to the J/psi pi+-mass spectrum yields a B(c)+- mass of 6285.7 +/- 5.3(stat) +/- 1.2(syst) MeV/c2. The probability of a peak of this magnitude occurring by random fluctuation in the search region is estimated as 0.012%.

  16. Evidence for the exclusive decay B(c)+- --> J/psi pi+- and measurement of the mass of the B(c)+- meson.

    PubMed

    Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachocou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cijliak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cranshaw, J; Cruz, A; Cuevas, J; Culbertson, R; Cyr, D; Da Ronco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Devlin, T; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heijboer, A; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Kordas, K; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreps, M; Kreymer, A; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; LeCompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Mulhearn, M; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nicolas, L; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Papikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sill, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spezziga, M; Spinella, F; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Worm, S; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, Y; Yang, C; Yang, U K; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-03-01

    We report the first evidence for a fully reconstructed decay mode of the B(c)+- meson in the channel B(c)+- --> J/psi pi+-, with J/psi --> mu+ mu-. The analysis is based on an integrated luminosity of 360 pb(-1) in pp collisions at 1.96 TeV center of mass energy collected by the Collider Detector at Fermilab. We observe 14.6 +/- 4.6 signal events with a background of 7.1 +/- 0.9 events, and a fit to the J/psi pi+-mass spectrum yields a B(c)+- mass of 6285.7 +/- 5.3(stat) +/- 1.2(syst) MeV/c2. The probability of a peak of this magnitude occurring by random fluctuation in the search region is estimated as 0.012%. PMID:16606171

  17. Study of the B+c → J/ΨD+s and B+c → J/ΨD*s+ decays with the ATLAS detector

    DOE PAGESBeta

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al

    2016-01-05

    The decays B+c → J/ΨD+s and B+c → J/ΨD*s+ are studied with the ATLAS detector at the LHC using a dataset corresponding to integrated luminosities of 4.9 and 20.6 fb–1 of pp collisions collected at centre-of-mass energies √s = 7 TeV and 8 TeV, respectively. Furthermore, signal candidates are identified through J/ψ → μ+μ- and D(*)+s → Φπ+(γ/π0) decays.

  18. Electrochemical Protein Cleavage in a Microfluidic Cell with Integrated Boron Doped Diamond Electrodes.

    PubMed

    van den Brink, Floris T G; Zhang, Tao; Ma, Liwei; Bomer, Johan; Odijk, Mathieu; Olthuis, Wouter; Permentier, Hjalmar P; Bischoff, Rainer; van den Berg, Albert

    2016-09-20

    Specific electrochemical cleavage of peptide bonds at the C-terminal side of tyrosine and tryptophan generates peptides amenable to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis for protein identification. To this end we developed a microfluidic electrochemical cell of 160 nL volume that combines a cell geometry optimized for a high electrochemical conversion efficiency (>95%) with an integrated boron doped diamond (BDD) working electrode offering a wide potential window in aqueous solution and reduced adsorption of peptides and proteins. Efficient cleavage of the proteins bovine insulin and chicken egg white lysozyme was observed at 4 out of 4 and 7 out of 9 of the predicted cleavage sites, respectively. Chicken egg white lysozyme was identified based on 5 electrochemically generated peptides using a proteomics database searching algorithm. These results show that electrochemical peptide bond cleavage in a microfluidic cell is a novel, fully instrumental approach toward protein analysis and eventually proteomics studies in conjunction with mass spectrometry. PMID:27563730

  19. Cleavage of resveratrol in fungi: characterization of the enzyme Rco1 from Ustilago maydis.

    PubMed

    Brefort, Thomas; Scherzinger, Daniel; Limón, M Carmen; Estrada, Alejandro F; Trautmann, Danika; Mengel, Carina; Avalos, Javier; Al-Babili, Salim

    2011-02-01

    Ustilago maydis, the causative agent of corn smut disease, contains two genes encoding members of the carotenoid cleavage oxygenase family, a group of enzymes that cleave double bonds in different substrates. One of them, Cco1, was formerly identified as a β-carotene cleaving enzyme. Here we elucidate the function of the protein encoded by the second gene, termed here as Ustilago maydis Resveratrol cleavage oxygenase 1 (Um Rco1). In vitro incubations of heterologously expressed and purified UM Rco1 with different carotenoid and stilbene substrates demonstrate that it cleaves the interphenyl Cα-Cβ double bond of the phytoalexin resveratrol and its derivative piceatannol. Um Rco1 exhibits a high degree of substrate specificity, as suggested by the lack of activity on carotenoids and the other resveratrol-related compounds tested. The activity of Um Rco1 was confirmed by incubation of U. maydis rco1 deletion and over-expression strains with resveratrol. Furthermore, treatment with resveratrol resulted in striking alterations of cell morphology. However, pathogenicity assays indicated that Um rco1 is largely dispensable for biotrophic development. Our work reveals Um Rco1 as the first eukaryotic resveratrol cleavage enzyme identified so far. Moreover, Um Rco1 represents a subfamily of fungal enzymes likely involved in the degradation of stilbene compounds, as suggested by the cleavage of resveratrol by homologs from Aspergillus fumigatus, Chaetomium globosum and Botryotinia fuckeliana.

  20. Matrix metalloproteinase-1 cleavage site recognition and binding in full-length human type III collagen.

    PubMed

    Williams, Kim E; Olsen, David R

    2009-07-01

    Matrix metalloproteinases (MMPs) are essential for normal collagen turnover, recovery from fibrosis, and vascular permeability. In fibrillar collagens, MMP-1, MMP-8, and MMP-13 cleave a specific glycine-isoleucine or glycine-leucine bond, despite the presence of this sequence in other parts of the protein. This cut site specificity has been hypothesized to arise from a unique, relaxed super-secondary structure in this area due to local hydroxyproline poor character. In this study we examined the mechanism of interaction and cleavage of human type III collagen by fibroblast MMP-1 by using a panel of recombinant human type III collagens (rhCIIIs) containing engineered sequences in the vicinity of the cleavage site. Native and recombinant type III collagens had similar biochemical and structural characteristics, as indicated by transmission electron microscopy, circular dichroism spectropolarimetry, melting temperature and hydroxyproline analysis. A single amino acid change at the I785 cleavage site to proline resulted in partial MMP-1 resistance, but cuts were found in novel sites in the original cleavage region. However, the replacement of five Y-position residues by proline in this region, regardless of I785 variation, conferred complete resistance to MMP-1, MMP-8, MMP-13, trypsin, and elastase. MMP-1 had a decreased specific activity towards and reduced cleavage rate of rhCIII I785P but a K(m) similar to wild-type. Despite the reductions in protease sensitivity, MMP-1 bound to all of the engineered rhCIIIs with comparable affinity, indicating that MMP-1 binding is not sufficient for cleavage. The relaxed tertiary structure in the MMP cleavage region may permit local collagen unwinding by MMP-1 that enables site-specific proteolysis.

  1. [([superscript t]Bu[subscript 2]PCH[subscript 2]SiMe[subscript 2])[subscript 2]N]Rh[superscript I]? Rapidly Reversible H-C(sp[superscript 3]) and H−C(sp[superscript 2]) Bond Cleavage by Rhodium(I)

    SciTech Connect

    Verat, Alexander Y.; Pink, Maren; Fan, Hongjun; Tomaszewski, John; Caulton, Kenneth G.

    2008-10-03

    The product of the reaction of (tBu{sub 2}PCH{sub 2}SiMe{sub 2}){sub 2}N{sup -} (MgCl{sup +} salt) with [RhCl(cyclooctene){sub 2}]{sub 2} is a Rh{sup III} complex where one {sup t}Bu methyl C-H bond has oxidatively added to Rh: (PNP*)RhH. This is in rapid exchange among all 9 x 4 C-H bonds of the four {sup t}Bu groups. (PNP*)RhH undergoes oxidative addition equilibrium with the C-H bonds of benzene at {approx}10{sup 3} s{sup -1} at 25 C and oxidatively adds the ring C-H of other arenes. (PNP*)RhH forms {eta}{sup 2}-olefin complexes with several olefins and dehydrogenates allylic C-H bonds to form (PNP)Rh(H){sub 2}.

  2. Cleavage kinetics and anchor linked intermediates in solid phase peptide amide synthesis.

    PubMed

    Dürr, H; Beck-Sickinger, A G; Schnorrenberg, G; Rapp, W; Jung, G

    1991-08-01

    Kinetics and cleavage conditions of peptide amide synthesis were studied using the anchor molecules 5-(4'-aminomethyl-3',5'-dimethoxyphenoxy)valeric acid (4-ADPV-OH) and 5-(2'-aminomethyl-3'-5'-dimethoxyphenoxy) valeric acid (2-ADPV-OH). Unexpectedly the anchor amide alanyl-4-ADPV-NH2 was isolated and characterized as an intermediate during the cleavage with trifluoroacetic acid (TFA) of alanyl-4-ADPV-alanyl-aminomethyl-polystyrene to yield the alanine amide. As a matter of fact the NH--CH alpha bond of the alanyl spacer has to be cleaved to form this intermediate. Using TFA-dichloromethane (1:9) alanyl-4-ADPV-NH2 was obtained as a cleavage product in 50% yield within 60 min, whereas the isomeric alanyl-2-ADPV-NH2 was formed more slowly under these mild conditions. At high TFA concentration no difference between the 2- and 4-ADPV anchor was observed in the rate of formation of the free alanine amide. The presence of tryptophan amide in the cleavage mixture resulted in an anchor alkylated tryptophan amide, which remains stable in acidic solution but disappears rapidly in the presence of the resin. A low TFA/high TFA cleavage procedure is recommended for peptide amid synthesis applying the ADPV anchor.

  3. Sequence-specific cleavage of dsRNA by Mini-III RNase

    PubMed Central

    Głów, Dawid; Pianka, Dariusz; Sulej, Agata A.; Kozłowski, Łukasz P.; Czarnecka, Justyna; Chojnowski, Grzegorz; Skowronek, Krzysztof J.; Bujnicki, Janusz M.

    2015-01-01

    Ribonucleases (RNases) play a critical role in RNA processing and degradation by hydrolyzing phosphodiester bonds (exo- or endonucleolytically). Many RNases that cut RNA internally exhibit substrate specificity, but their target sites are usually limited to one or a few specific nucleotides in single-stranded RNA and often in a context of a particular three-dimensional structure of the substrate. Thus far, no RNase counterparts of restriction enzymes have been identified which could cleave double-stranded RNA (dsRNA) in a sequence-specific manner. Here, we present evidence for a sequence-dependent cleavage of long dsRNA by RNase Mini-III from Bacillus subtilis (BsMiniIII). Analysis of the sites cleaved by this enzyme in limited digest of bacteriophage Φ6 dsRNA led to the identification of a consensus target sequence. We defined nucleotide residues within the preferred cleavage site that affected the efficiency of the cleavage and were essential for the discrimination of cleavable versus non-cleavable dsRNA sequences. We have also determined that the loop α5b-α6, a distinctive structural element in Mini-III RNases, is crucial for the specific cleavage, but not for dsRNA binding. Our results suggest that BsMiniIII may serve as a prototype of a sequence-specific dsRNase that could possibly be used for targeted cleavage of dsRNA. PMID:25634891

  4. Distinct mechanisms for DNA cleavage by myoglobin with a designed heme active center.

    PubMed

    Zhao, Yuan; Du, Ke-Jie; Gao, Shu-Qin; He, Bo; Wen, Ge-Bo; Tan, Xiangshi; Lin, Ying-Wu

    2016-03-01

    Heme proteins perform diverse biological functions, of which myoglobin (Mb) is a representative protein. In this study, the O2 carrier Mb was shown to cleave double stranded DNA upon aerobic dithiothreitol-induced reduction, which is fine-tuned by an additional distal histidine, His29 or His43, engineered in the heme active center. Spectroscopic (UV-vis and EPR) and inhibition studies suggested that free radicals including singlet oxygen and hydroxyl radical are responsible for efficient DNA cleavage via an oxidative cleavage mechanism. On the other hand, L29E Mb, with a distinct heme active center involving three water molecules in the met form, was found to exhibit an excellent DNA cleavage activity that was not depending on O2. Inhibition and ligation studies demonstrated for the first time that L29E Mb cleaves double stranded DNA into both the nicked circular and linear forms via a hydrolytic cleavage mechanism, which resembles native endonucleases. This study provides valuable insights into the distinct mechanisms for DNA cleavage by heme proteins, and lays down a base for creating artificial DNA endonucleases by rational design of heme proteins. Moreover, this study suggests that the diverse functions of heme proteins can be fine-tuned by rational design of the heme active center with a hydrogen-bonding network.

  5. Catalysts of DNA Strand Cleavage at Apurinic/Apyrimidinic Sites

    PubMed Central

    Minko, Irina G.; Jacobs, Aaron C.; de Leon, Arnie R.; Gruppi, Francesca; Donley, Nathan; Harris, Thomas M.; Rizzo, Carmelo J.; McCullough, Amanda K.; Lloyd, R. Stephen

    2016-01-01

    Apurinic/apyrimidinic (AP) sites are constantly formed in cellular DNA due to instability of the glycosidic bond, particularly at purines and various oxidized, alkylated, or otherwise damaged nucleobases. AP sites are also generated by DNA glycosylases that initiate DNA base excision repair. These lesions represent a significant block to DNA replication and are extremely mutagenic. Some DNA glycosylases possess AP lyase activities that nick the DNA strand at the deoxyribose moiety via a β- or β,δ-elimination reaction. Various amines can incise AP sites via a similar mechanism, but this non-enzymatic cleavage typically requires high reagent concentrations. Herein, we describe a new class of small molecules that function at low micromolar concentrations as both β- and β,δ-elimination catalysts at AP sites. Structure-activity relationships have established several characteristics that appear to be necessary for the formation of an iminium ion intermediate that self-catalyzes the elimination at the deoxyribose ring. PMID:27363485

  6. Catalysts of DNA Strand Cleavage at Apurinic/Apyrimidinic Sites.

    PubMed

    Minko, Irina G; Jacobs, Aaron C; de Leon, Arnie R; Gruppi, Francesca; Donley, Nathan; Harris, Thomas M; Rizzo, Carmelo J; McCullough, Amanda K; Lloyd, R Stephen

    2016-01-01

    Apurinic/apyrimidinic (AP) sites are constantly formed in cellular DNA due to instability of the glycosidic bond, particularly at purines and various oxidized, alkylated, or otherwise damaged nucleobases. AP sites are also generated by DNA glycosylases that initiate DNA base excision repair. These lesions represent a significant block to DNA replication and are extremely mutagenic. Some DNA glycosylases possess AP lyase activities that nick the DNA strand at the deoxyribose moiety via a β- or β,δ-elimination reaction. Various amines can incise AP sites via a similar mechanism, but this non-enzymatic cleavage typically requires high reagent concentrations. Herein, we describe a new class of small molecules that function at low micromolar concentrations as both β- and β,δ-elimination catalysts at AP sites. Structure-activity relationships have established several characteristics that appear to be necessary for the formation of an iminium ion intermediate that self-catalyzes the elimination at the deoxyribose ring. PMID:27363485

  7. Pyranosides with 2,3-trans carbamate groups: exocyclic or endocyclic cleavage reaction?

    PubMed

    Manabe, Shino; Ito, Yukishige

    2014-06-01

    Pyranosides with 2,3-trans carbamate groups exhibit high 1,2-cis selectivity in glycosylation reactions. Using glycosyl donors with N-benzyl 2,3-trans carbamate groups, an anti-Helicobacter pylori oligosaccharide was synthesized in an efficient manner. Moreover, pyranosides with 2,3-trans carbamate groups readily undergo anomerization from the β to the α configuration under mild acidic conditions via endocyclic cleavage. Acyclic cations generated during the endocyclic cleavage reaction were captured using reduction and intramolecular Friedel-Crafts reaction. By exploiting this anomerization, multiply aligned 1,2-trans glycosyl bonds can be transformed to 1,2-cis glycosyl bonds in a single operation. PMID:24914008

  8. Isomerization of the diphosphine ligand 3,4-bis(diphenylphosphino)-5-methoxy-2(5H)-furanone (bmf) at a triosmium cluster and P C bond cleavage in the unsaturated cluster 1,1-Os3(CO)9(bmf): Synthesis and X-ray diffraction structures of the isomeric Os3(CO)10(bmf) clusters and HOs3(CO)8( -C6H4)[ -PhPCC(Ph2P)CH(OMe)OC(O)

    SciTech Connect

    Kandala, Srikanth; Yang, Li; Campana, Charles F.; Nesterov, Vladimir; Richmond, Michael G.

    2010-07-01

    The labile cluster 1,2-Os3(CO)10(MeCN)2 (1) reacts with the chiral diphosphine ligand 3,4-bis(diphenylphosphino)-5-methoxy-2(5H)-furanone (bmf) to furnish 1,2-Os3(CO)10(bmf) (2a) in high yield. Heating cluster 2a over the temperature range 358 383 K under CO leads to isomerization of the bmf ligand and formation of the diphosphine-chelated cluster 1,1-Os3(CO)10(bmf) (2b) and an equilibrium mixture consisting of 2a and 2b in a 15:85 ratio. Extended thermolysis of an equilibrium mixture of Os3(CO)10(bmf) is accompanied by CO loss and ortho-metalation of an aryl ring to afford an inseparable mixture of three diastereomeric hydride clusters HOs3(CO)9(C29H23O3P2) (3a c). Thermolysis of HOs3(CO)9(C29H23O3P2) (3a c) in refluxing toluene leads to P C bond cleavage and formation of the benzyne-substituted clusters HOs3(CO)8( -C6H4)( -C23H19O3P2) (4a,b) as a 4:1 mixture of diastereomers. The unequivocal identity of the major benzyne-substituted cluster has been determined by X-ray diffraction analysis, where the activation of one of the phenyl groups situated to the furanone carbonyl group in the bmf ligand has been established. The isomerization and activation of the bmf ligand are contrasted with other Os3(CO)10(diphosphine) derivatives prepared by our groups.

  9. Does Cleavage Work at Work? Men, but Not Women, Falsely Believe Cleavage Sells a Weak Product

    ERIC Educational Resources Information Center

    Glick, Peter; Chrislock, Karyna; Petersik, Korinne; Vijay, Madhuri; Turek, Aleksandra

    2008-01-01

    We examined whether men, but not women, would be distracted by a female sales representative's exposed cleavage, leading to greater perceived efficacy for a weak, but not for a strong product. A community sample of 88 men and 97 women viewed a video of a female pharmaceutical sales representative who (a) had exposed cleavage or dressed modestly…

  10. Structural basis of cohesin cleavage by separase

    PubMed Central

    Lin, Zhonghui; Luo, Xuelian; Yu, Hongtao

    2016-01-01

    Accurate chromosome segregation requires timely dissolution of chromosome cohesion after chromosomes are properly attached to the mitotic spindle. Separase is absolutely essential for cohesion dissolution in organisms from yeast to man1,2. It cleaves the kleisin subunit of cohesin and opens the cohesin ring to allow chromosome segregation. Cohesin cleavage is spatiotemporally controlled by separase-associated regulatory proteins, including the inhibitory chaperone securin3–6, and by phosphorylation of both the enzyme and substrates7–12. Dysregulation of this process causes chromosome missegregation and aneuploidy, contributing to cancer and birth defects. Despite its essential functions, atomic structures of separase have not been determined. Here, we report crystal structures of the separase protease domain from Chaetomium thermophilum, alone or covalently bound to unphosphorylated and phosphorylated inhibitory peptides derived from a cohesin cleavage site. These structures reveal how separase recognizes cohesin and how cohesin phosphorylation by polo-like kinase 1 (Plk1) enhances cleavage. Consistent with a previous cellular study13, mutating two securin residues in a conserved motif that partially matches the separase cleavage consensus converts securin from a separase inhibitor to a substrate. Our study establishes atomic mechanisms of substrate cleavage by separase and suggests competitive inhibition by securin. PMID:27027290

  11. First observation of the decay B(c)+ → J/ψπ(+) π- π+.

    PubMed

    Aaij, R; Abellan Beteta, C; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Miglioranzi, S; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voss, H; Waldi, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2012-06-22

    The decay B(c)(+) → J/ψπ(+) π(-) π(+) is observed for the first time, using 0.8 fb(-1) of pp collisions at sqrt[s] = 7 TeV collected by the LHCb experiment. The ratio of branching fractions B(B(c)(+) → J/ψπ(+) π(-) π(+))/B(B(c)(+)→J/ψπ^{+}) is measured to be 2.41 ± 0.30 ± 0.33, where the first uncertainty is statistical and the second is systematic. The result is in agreement with theoretical predictions. PMID:23004586

  12. First observation of the decay B(c)+ → J/ψπ(+) π- π+.

    PubMed

    Aaij, R; Abellan Beteta, C; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Miglioranzi, S; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voss, H; Waldi, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2012-06-22

    The decay B(c)(+) → J/ψπ(+) π(-) π(+) is observed for the first time, using 0.8 fb(-1) of pp collisions at sqrt[s] = 7 TeV collected by the LHCb experiment. The ratio of branching fractions B(B(c)(+) → J/ψπ(+) π(-) π(+))/B(B(c)(+)→J/ψπ^{+}) is measured to be 2.41 ± 0.30 ± 0.33, where the first uncertainty is statistical and the second is systematic. The result is in agreement with theoretical predictions.

  13. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls.

    PubMed

    Bruno, Mark; Beyer, Peter; Al-Babili, Salim

    2015-04-15

    Down-regulation of the potato carotenoid cleavage dioxygenase 4 (StCCD4) transcript level led to tubers with altered morphology and sprouting activity, which also accumulated higher levels of violaxanthin and lutein leading to elevated carotenoid amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating Escherichia coli strains and by performing in vitro assays with heterologously expressed enzyme. StCCD4 catalyzed the cleavage of all-trans-β-carotene at the C9'-C10' double bond, leading to β-ionone and all-trans-β-apo-10'-carotenal, both in vivo and in vitro. The enzyme also cleaved β,β-cryptoxanthin, zeaxanthin and lutein either at the C9'-C10' or the C9-C10 double bond in vitro. In contrast, we did not observe any conversion of violaxanthin and only traces of activity with 9-cis-β-carotene, which led to 9-cis-β-apo-10'-carotenal. Our data indicate that all-trans-β-carotene is the likely substrate of StCCD4 in planta, and that this carotene may be precursor of an unknown compound involved in tuber development. PMID:25703194

  14. Dataset of cocoa aspartic protease cleavage sites.

    PubMed

    Janek, Katharina; Niewienda, Agathe; Wöstemeyer, Johannes; Voigt, Jürgen

    2016-09-01

    The data provide information in support of the research article, "The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors" (Janek et al., 2016) [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS) and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans. PMID:27508221

  15. The production of X(3940) and X(4160) in B c decays

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Hui; Zhang, Yi; Wang, Tian-hong; Jiang, Yue; Wang, Guo-Li

    2016-10-01

    Considering X(3940) and X(4160) as {η }c(3S) and {η }c(4S), we study the production of X(3940) and X(4160) in exclusive weak decays of the B c meson by the improved Bethe-Salpeter (BS) method. Using the relativistic BS equation and the Mandelstam formalism, we calculate the corresponding decay form factors. The predictions of the corresponding branching ratios are: {{Br}}({B}c+\\to X(3940){e}+{ν }e)=1.0× {10}-4 and {{Br}}({B}c+\\to X(4160) {e}+{ν }e)=2.4× {10}-5. This will provide a new way to observe X(3940) and X(4160) in the future, as well as to improve the knowledge of B c meson decay.

  16. Transition-Metal-Mediated Cleavage of Fluoro-Silanes under Mild Conditions.

    PubMed

    Kameo, Hajime; Kawamoto, Tatsuya; Sakaki, Shigeyoshi; Bourissou, Didier; Nakazawa, Hiroshi

    2016-02-12

    Si-F bond cleavage of fluoro-silanes was achieved by transition-metal complexes under mild and neutral conditions. The Iridium-hydride complex [Ir(H)(CO)(PPh3 )3 ] was found to readily break the Si-F bond of the diphosphine- difluorosilane {(o-Ph2 P)C6 H4 }2 Si(F)2 to afford a silyl complex [{[o-(iPh2 P)C6 H4 ]2 (F)Si}Ir(CO)(PPh3 )] and HF. Density functional theory calculations disclose a reaction mechanism in which a hypervalent silicon species with a dative Ir→Si interaction plays a crucial role. The Ir→Si interaction changes the character of the H on the Ir from hydridic to protic, and makes the F on Si more anionic, leading to the formation of H(δ+) ⋅⋅⋅F(δ-) interaction. Then the Si-F and Ir-H bonds are readily broken to afford the silyl complex and HF through σ-bond metathesis. Furthermore, the analogous rhodium complex [Rh(H)(CO)(PPh3 )3 ] was found to promote the cleavage of the Si-F bond of the triphosphine-monofluorosilane {(o-Ph2 P)C6 H4 }3 Si(F) even at ambient temperature. PMID:26836576

  17. B-C Bond in Diamond Single Crystal Synthesized with h-BN Additive at High Pressure and High Temperature

    NASA Astrophysics Data System (ADS)

    Yong, Li; Zhen-Xiang, Zhou; Xue-Mao, Guan; Shang-Sheng, Li; Ying, Wang; Xiao-Peng, Jia; Hong-An, Ma

    2016-02-01

    Not Available Supported by the National Natural Science Foundation of China under Grant No 51172089, the Natural Science Foundation of Guizhou Province Education Department under Grant No KY[2013]183, and the Natural Science Foundation of Guizhou Province Science and Technology Agency under Grant Nos LH[2015]7232 and LH[2015]7228.

  18. Genetic concepts in Greek literature from the eighth to the fourth century B.C.

    PubMed

    Bazopoulou-Kyrkanidou, E

    1992-03-01

    A review of the concepts of genetics found in epic, historical and dramatic ancient Greek writings from the eighth to the fourth centuries B.C., is presented. The derived data suggest that the development of genetical concepts and ideas started with the praise of the heroes' divine or noble origin in Homer's epic poems (eighth century B.C.). It continued in the tracing of the descent and vicissitudes of the families of the Greek gods and the common ancestry of the Greek tribes as described in Hesiod's genealogical poems (around 700 B.C.), in the statement of descent and dual parenthood of leaders and kings in the books of Herodotus and Xenophon (fifth and fourth centuries B.C.), and in the concern about the lineage of the tragic figures in Greek drama (fifth century B.C.). The genetical concepts expressed in these writings most probably reflected popular notions of that time. They must, therefore, have been the basis of the perceptions and theories on heredity and procreation expressed by the ancient physicians and philosophers in the fifth and fourth centuries B.C., which in turn influenced the development of genetics for many centuries. PMID:1551655

  19. Observation of the decay B(c)(+) → B(s)(0)π+.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-11-01

    The result of a search for the decay B(c)(+) → B(s)(0) π+ is presented, using the B(s)(0) → D(s)(-)π+ and B(s)(0) → J/ψ Ø channels. The analysis is based on a data sample of pp collisions collected with the LHCb detector, corresponding to an integrated luminosity of 1 fb(-1) taken at a center-of-mass energy of 7 TeV, and 2 fb(-1) taken at 8 TeV. The decay B(c)(+) → B(s)(0)π+ is observed with significance in excess of 5 standard deviations independently in both decay channels. The measured product of the ratio of cross sections and branching fraction is [σ(B(c)(+))/σ(B(s)(0))] × B(B(c)(+)→ B(s)(0)π+) = [2.37 ± 0.31 (stat)± 0.11 (syst)(-0.13)(+0.17)(τ(B)(c)(+)))] × 10(-3), in the pseudorapidity range 2<η(B)<5, where the first uncertainty is statistical, the second is systematic, and the third is due to the uncertainty on the B(c)(+) lifetime. This is the first observation of a B meson decaying to another B meson via the weak interaction. PMID:24237507

  20. Genetic concepts in Greek literature from the eighth to the fourth century B.C.

    PubMed

    Bazopoulou-Kyrkanidou, E

    1992-03-01

    A review of the concepts of genetics found in epic, historical and dramatic ancient Greek writings from the eighth to the fourth centuries B.C., is presented. The derived data suggest that the development of genetical concepts and ideas started with the praise of the heroes' divine or noble origin in Homer's epic poems (eighth century B.C.). It continued in the tracing of the descent and vicissitudes of the families of the Greek gods and the common ancestry of the Greek tribes as described in Hesiod's genealogical poems (around 700 B.C.), in the statement of descent and dual parenthood of leaders and kings in the books of Herodotus and Xenophon (fifth and fourth centuries B.C.), and in the concern about the lineage of the tragic figures in Greek drama (fifth century B.C.). The genetical concepts expressed in these writings most probably reflected popular notions of that time. They must, therefore, have been the basis of the perceptions and theories on heredity and procreation expressed by the ancient physicians and philosophers in the fifth and fourth centuries B.C., which in turn influenced the development of genetics for many centuries.

  1. Observation of the decay B(c)(+) → B(s)(0)π+.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-11-01

    The result of a search for the decay B(c)(+) → B(s)(0) π+ is presented, using the B(s)(0) → D(s)(-)π+ and B(s)(0) → J/ψ Ø channels. The analysis is based on a data sample of pp collisions collected with the LHCb detector, corresponding to an integrated luminosity of 1 fb(-1) taken at a center-of-mass energy of 7 TeV, and 2 fb(-1) taken at 8 TeV. The decay B(c)(+) → B(s)(0)π+ is observed with significance in excess of 5 standard deviations independently in both decay channels. The measured product of the ratio of cross sections and branching fraction is [σ(B(c)(+))/σ(B(s)(0))] × B(B(c)(+)→ B(s)(0)π+) = [2.37 ± 0.31 (stat)± 0.11 (syst)(-0.13)(+0.17)(τ(B)(c)(+)))] × 10(-3), in the pseudorapidity range 2<η(B)<5, where the first uncertainty is statistical, the second is systematic, and the third is due to the uncertainty on the B(c)(+) lifetime. This is the first observation of a B meson decaying to another B meson via the weak interaction.

  2. Cleavage of the thrombin receptor: identification of potential activators and inactivators.

    PubMed Central

    Parry, M A; Myles, T; Tschopp, J; Stone, S R

    1996-01-01

    The kinetic parameters were determined for the hydrolysis of a peptide based on the activation site of the thrombin receptor (residues 38-60) by thrombin and 12 other proteases. The kcat and Km values for the cleavage of this peptide (TR39-40) by thrombin were 107 s-1 and 1.3 microM; the kcat/Km of TR39-40 is among the highest observed for thrombin. A model is presented that reconciles the parameters for cleavage of the peptide with the concentration dependence of cellular responses to thrombin. Cleavage of TR39-40 was not specific for thrombin. The pancreatic proteases trypsin and chymotrypsin hydrolysed TR39-40 efficiently (kcat/Km > 10(6) M-1.s-1). Whereas trypsin cleaved TR39-40 at the thrombin activation site (Arg41-Ser42), chymotrypsin hydrolysed the peptide after Phe43. This chymotryptic cleavage would result in inactivation of the receptor. The efficient cleavage of TR39-40 by chymotrypsin (kcat/Km approximately 10(6) M-1.s-1) was predominantly due to a low Km value (2.8 microM). The proteases factor Xa, plasmin, plasma kallikrein, activated protein C and granzyme A also hydrolysed TR39-40 at the Arg41-Ser43 bond, but exhibited kcat/Km values that were at least 10(3)-fold lower than that observed with thrombin. Both tissue and urokinase plasminogen activators as well as granzyme B and neutrophil elastase were unable to cleave TR39-60 at appreciable rates. However, neutrophil cathepsin G hydrolysed the receptor peptide after Phe55. Like the chymotryptic cleavage, this cleavage would lead to inactivation of the receptor, but the cathepsin G reaction was markedly less efficient; the kcat/K(m) value was almost four orders of magnitude lower than that for thrombin. In addition to the above cleavage sites, a secondary site for thrombin and other arginine-specific proteases was identified at Arg46, but the cleavage at this site only occurred at very low rates and is unlikely to be significant in vivo. PMID:8947506

  3. Measurement of the ratio of branching fractions B({B}c+to J/{ψK}+)/B({B}c+to J/{ψπ}+)

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Batsukh, B.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, I.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chobanova, V.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Furfaro, E.; Färber, C.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hussain, N.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Koliiev, S.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valat, S.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vernet, M.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voneki, B.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhu, X.; Zhukov, V.; Zucchelli, S.

    2016-09-01

    The ratio of branching fractions {R}_{K/π}≡ B({B}c+to J/{ψK}+)/B({B}c+to J/{ψπ}+) is measured with pp collision data collected by the LHCb experiment at centre-of-mass energies of 7 TeV and 8 TeV, corresponding to an integrated luminosity of 3 fb-1. It is found to be R K/π = 0.079 ± 0.007 ± 0.003, where the first uncertainty is statistical and the second is systematic. This measurement is consistent with the previous LHCb result, while the uncertainties are significantly reduced. [Figure not available: see fulltext.

  4. Computational prediction of cleavage using proteasomal in vitro digestion and MHC I ligand data*

    PubMed Central

    Lu, Yu-feng; Sheng, Hao; Zhang, Yi; Li, Zhi-yang

    2013-01-01

    Proteasomes are responsible for the production of the majority of cytotoxic T lymphocyte (CTL) epitopes. Hence, it is important to identify correctly which peptides will be generated by proteasomes from an unknown protein. However, the pool of proteasome cleavage data used in the prediction algorithms, whether from major histocompatibility complex (MHC) I ligand or in vitro digestion data, is not identical to in vivo proteasomal digestion products. Therefore, the accuracy and reliability of these models still need to be improved. In this paper, three types of proteasomal cleavage data, constitutive proteasome (cCP), immunoproteasome (iCP) in vitro cleavage, and MHC I ligand data, were used for training cleave-site predictive methods based on the kernel-function stabilized matrix method (KSMM). The predictive accuracies of the KSMM+pair coefficients were 75.0%, 72.3%, and 83.1% for cCP, iCP, and MHC I ligand data, respectively, which were comparable to the results from support vector machine (SVM). The three proteasomal cleavage methods were combined in turn with MHC I-peptide binding predictions to model MHC I-peptide processing and the presentation pathway. These integrations markedly improved MHC I peptide identification, increasing area under the receiver operator characteristics (ROC) curve (AUC) values from 0.82 to 0.91. The results suggested that both MHC I ligand and proteasomal in vitro degradation data can give an exact simulation of in vivo processed digestion. The information extracted from cCP and iCP in vitro cleavage data demonstrated that both cCP and iCP are selective in their usage of peptide bonds for cleavage. PMID:24009202

  5. Cleavage oriented iron single crystal fracture toughness

    NASA Astrophysics Data System (ADS)

    Hribernik, Michael Louis

    Fundamental understanding of atomic level mechanisms controlling cleavage fracture in bcc metals, and the corresponding brittle to ductile transition (BDT) has been a long sought, 'grand challenge' of science. This is particularly true for the BDT in Fe, which is among vital elements that underpin our technological civilization. A key obstacle to developing an understanding of the BDT in Fe is the absence of a reliable database on the temperature dependence of toughness in Fe. In ferritic alloys, the micro-arrest toughness of ferrite, Kmu(T), is hypothesized to control macroscopic cleavage. As a surrogate for Kmu(T), special techniques were developed to measure the arrest toughness, Ka(T), for cleavage oriented, Fe single crystals. Further, the mechanisms controlling cleavage and the BDT should be reflected in the loading rate dependence of static-dynamic initiation toughness, K Ic and KId. Thus KIc/d(T) were also measured for K-rate from 10-1 to 104 MPa√m/s. These studies led to the following conclusions: (1) Ka is semi-brittle, increasing from an average of ≈ 3.5 MPa√m at -196°C to ≈ 9 MPa√m at 0°C. (2) The (100) Ka are similar in the [010] and [011] and orientations, but cleavage does not occur on (110) planes. (3) The Ka for unalloyed Fe is about 150°C lower than that for Fe-3wt%Si, suggesting that equivalent Ka may occur at equivalent lattice sigmay. (4) Higher K-rate shift K Ic/d(T) curves to higher T. (5) The shifts of the KIc/d(T) and Ka(T) curves can be understood and modeled based on dislocation dynamics concepts for the glide of screw dislocations with a stress (and T) controlled activation energy, Ea, with a maximum value of about ≈ 0.5 eV. (6) This Ea is consistent with a double kink nucleation mechanism. Etch pit, slip trace and ledge patterns on side, fracture and sectioned surfaces of the crystals were characterized to study dislocation activity associated with cleavage and the BDT. The results showed extensive dislocation activity on

  6. Mechanistic Insights into Ring Cleavage and Contraction of Benzene over a Titanium Hydride Cluster.

    PubMed

    Kang, Xiaohui; Luo, Gen; Luo, Lun; Hu, Shaowei; Luo, Yi; Hou, Zhaomin

    2016-09-14

    Carbon-carbon bond cleavage of benzene by transition metals is of great fundamental interest and practical importance, as this transformation is involved in the production of fuels and other important chemicals in the industrial hydrocracking of naphtha on solid catalysts. Although this transformation is thought to rely on cooperation of multiple metal sites, molecular-level information on the reaction mechanism has remained scarce to date. Here, we report the DFT studies of the ring cleavage and contraction of benzene by a molecular trinuclear titanium hydride cluster. Our studies suggest that the reaction is initiated by benzene coordination, followed by H2 release, C6H6 hydrometalation, repeated C-C and C-H bond cleavage and formation to give a MeC5H4 unit, and insertion of a Ti atom into the MeC5H4 unit with release of H2 to give a metallacycle product. The C-C bond cleavage and ring contraction of toluene can also occur in a similar fashion, though some details are different due to the presence of the methyl substituent. Obviously, the facile release of H2 from the metal hydride cluster to provide electrons and to alter the charge population at the metal centers, in combination with the flexible metal-hydride connections and dynamic redox behavior of the trimetallic framework, has enabled this unusual transformation to occur. This work has not only provided unprecedented insights into the activation and transformation of benzene over a multimetallic framework but it may also offer help in the design of new molecular catalysts for the activation and transformation of inactive aromatics. PMID:27549745

  7. New insight into the enhanced visible-light photocatalytic activities of B-, C- and B/C-doped anatase TiO2 by first-principles.

    PubMed

    Yu, Jiaguo; Zhou, Peng; Li, Qin

    2013-08-01

    The geometry structures, formation energies and electronic properties of the B-, C- and B/C-doped anatase TiO2 were investigated by the density functional theory (DFT) calculations of first-principles. The results indicated that the visible-light absorption and photocatalytic activities of the B-, C- and B/C-doped anatase TiO2 were not only influenced by the energy gaps (Eg) and the distributions of impurity states, but also affected by the locations of Fermi levels (EF) and the energies of the edges of band gaps (Ev for the top of valence bands and Ec for the bottom of conduction bands). However, the above four factors changed with the doped models of TiO2. The impurity states in the band gaps reduced the maximum energy gaps in the band gaps, which is responsible for the absorption of visible light. The Fermi levels at the bottom of conduction bands indicated the existence of Ti(3+) ions, which enhanced the separation rates of photogenerated electrons and holes. Further, the energies of the edges of band gaps, determining the dominant types of oxidants (O2(-), hole, ˙OH) in the photocatalytic degradation, were discussed. Moreover, the stability of the doped TiO2 depended on its growth conditions (O-rich or Ti-rich environment). The O-rich growth condition is beneficial to the substitutional B and C atoms to Ti atoms, while the Ti-rich growth condition is favorable to the other doped TiO2 including the most stable co-doped TiO2 with the interstitial B atom and the substitutional C atom to O atom. In addition, our results also showed that the B/C-doped TiO2 inherited the partial electronic properties of single-doped TiO2, but also exhibited many new electronic properties, implying that the electronic properties of co-doped systems are not a mechanical mixture of those of both single-doped systems.

  8. Virulence genes A, G, and D mediate the double-stranded border cleavage of T-DNA from the Agrobacterium Ti plasmid.

    PubMed

    Veluthambi, K; Jayaswal, R K; Gelvin, S B

    1987-04-01

    Agrobacterium tumefaciens transfers the T-DNA portion of its Ti plasmid to the nuclear genome of plant cells. Upon cocultivation of A. tumefaciens strain A348 with regenerating tobacco leaf protoplasts, restriction endonuclease fragments of the T-DNA were generated that are consistent with double-stranded cleavage of the T-DNA at the border sequences. The T-DNA border cleavage was also induced by acetosyringone, a compound that induces many of the virulence genes. T-DNA cleavage did not occur in Agrobacterium strains harboring Tn3-HoHo1 insertions in the virA, -D, or -G genes. Insertion mutations in virB, -C, or -E did not have any effect on the T-DNA cleavage. Complementation of the mutations in virA, -D, or -G with cosmids containing the respective wild-type genes restored the T-DNA cleavage. Since virA and -G are essential in regulating the expression of other vir genes in response to plant signal molecules, the virD gene product(s) appear to mediate double-stranded T-DNA border cleavage.

  9. Mechanism for Forming B,C,N,O Rings from NH3BH3 and CO2 via Reaction Discovery Computations.

    PubMed

    Li, Maxwell W; Pendleton, Ian M; Nett, Alex J; Zimmerman, Paul M

    2016-03-01

    This study employs computational reaction finding tools to probe the unique biphilic reactivity between ammonia-borane (AB) and CO2. The results show that sequential reactions involving multiple equivalents of AB and CO2 can lead to the formation of stable nonplanar B,C,N,O-heterocycles (Cy-BCN). Cy-BCN is shown to emerge through boron-oxygen bond formation, hydroboration, dative bond formation, and single- or double-hydrogen transfers. The most kinetically facile reactions (computed at the coupled cluster singles and doubles with perturbative triples (CCSD(T)) level of theory) result from polarized nitrogen-boron double bonds whereas thermodynamic stability results from formation of covalent boron-oxygen bonds. An important structure, HCOOBHNH2 (DHFAB), contains both of these features and is the key intermediate involved in generation of Cy-BCN. Crucially, it is shown that favorable boron-oxygen bond formation results in production of Cy-BCN species that are more stable than polyaminoboranes. These types of reaction intermediates could serve as building blocks in the formation of B,N-codoped graphene oxide (BCN). PMID:26844585

  10. Mechanisms of catalytic cleavage of benzyl phenyl ether in aqueous and apolar phases

    SciTech Connect

    He, Jiayue; Lu, Lu; Zhao, Chen; Mei, Donghai; Lercher, Johannes A.

    2014-03-01

    Catalytic pathways for the cleavage of ether bonds in benzyl phenyl ether (BPE) in liquid phase using Ni- and zeolite-based catalysts are explored. In the absence of catalysts, the C-O bond is selectively cleaved in water by hydrolysis, forming phenol and benzyl alcohol as intermediates, followed by alkylation. The hydronium ions catalyzing the reactions are provided by the dissociation of water at 523 K. Upon addition of HZSM-5, rates of hydrolysis and alkylation are markedly increased in relation to proton concentrations. In the presence of Ni/SiO2, the selective hydrogenolysis dominates for cleaving the Caliphatic-O bond. Catalyzed by the dual-functional Ni/HZSM-5, hydrogenolysis occurs as the major route rather than hydrolysis (minor route). In apolar undecane, the non-catalytic thermal pyrolysis route dominates. Hydrogenolysis of BPE appears to be the major reaction pathway in undecane in the presence of Ni/SiO2 or Ni/HZSM-5, almost completely suppressing radical reactions. Density functional theory (DFT) calculations strongly support the proposed C-O bond cleavage mechanisms on BPE in aqueous and apolar phases. These calculations show that BPE is initially protonated and subsequently hydrolyzed in the aqueous phase. Finally, DFT calculations suggest that the radical reactions in non-polar solvents lead to primary benzyl and phenoxy radicals in undecane, which leads to heavier condensation products as long as metals are absent for providing dissociated hydrogen.

  11. Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair

    PubMed Central

    Little, Christopher B.; Meeker, Clare T.; Golub, Suzanne B.; Lawlor, Kate E.; Farmer, Pamela J.; Smith, Susan M.; Fosang, Amanda J.

    2007-01-01

    Aggrecan loss from cartilage in arthritis is mediated by aggrecanases. Aggrecanases cleave aggrecan preferentially in the chondroitin sulfate–2 (CS-2) domain and secondarily at the E373↓374A bond in the interglobular domain (IGD). However, IGD cleavage may be more deleterious for cartilage biomechanics because it releases the entire CS-containing portion of aggrecan. Recent studies identifying aggrecanase-2 (ADAMTS-5) as the predominant aggrecanase in mouse cartilage have not distinguished aggrecanolysis in the IGD from aggrecanolysis in the CS-2 domain. We generated aggrecan knockin mice with a mutation that rendered only the IGD resistant to aggrecanases in order to assess the contribution of this specific cleavage to cartilage pathology. The knockin mice were viable and fertile. Aggrecanase cleavage in the aggrecan IGD was not detected in knockin mouse cartilage in situ nor following digestion with ADAMTS-5 or treatment of cartilage explant cultures with IL-1α. Blocking cleavage in the IGD not only diminished aggrecan loss and cartilage erosion in surgically induced osteoarthritis and a model of inflammatory arthritis, but appeared to stimulate cartilage repair following acute inflammation. We conclude that blocking aggrecanolysis in the aggrecan IGD alone protects against cartilage erosion and may potentiate cartilage repair. PMID:17510707

  12. Cleavage Specificity Analysis of Six Type II Transmembrane Serine Proteases (TTSPs) Using PICS with Proteome-Derived Peptide Libraries

    PubMed Central

    Béliveau, François; Leduc, Richard; Overall, Christopher M.

    2014-01-01

    Background Type II transmembrane serine proteases (TTSPs) are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors. Methodology/Principal Finding To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS). Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin) to simultaneously determine sequence preferences on the N-terminal non-prime (P) and C-terminal prime (P’) sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1′ position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived. Conclusions Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1′ positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity. PMID:25211023

  13. Copper-dependent inhibition and oxidative inactivation with affinity cleavage of yeast glutathione reductase.

    PubMed

    Murakami, Keiko; Tsubouchi, Ryoko; Fukayama, Minoru; Yoshino, Masataka

    2014-06-01

    Effects of copper on the activity and oxidative inactivation of yeast glutathione reductase were analyzed. Glutathione reductase from yeast was inhibited by cupric ion and more potently by cuprous ion. Copper ion inhibited the enzyme noncompetitively with respect to the substrate GSSG and NADPH. The Ki values of the enzyme for Cu(2+) and Cu(+) ion were determined to be 1 and 0.35 μM, respectively. Copper-dependent inactivation of glutathione reductase was also analyzed. Hydrogen peroxide and copper/ascorbate also caused an inactivation with the cleavage of peptide bond of the enzyme. The inactivation/fragmentation of the enzyme was prevented by addition of catalase, suggesting that hydroxyl radical produced through the cuprous ion-dependent reduction of oxygen is responsible for the inactivation/fragmentation of the enzyme. SDS-PAGE and TOF-MS analysis confirmed eight fragments, which were further determined to result from the cleavage of the Met17-Ser18, Asn20-Thr21, Glu251-Gly252, Ser420-Pro421, Pro421-Thr422 bonds of the enzyme by amino-terminal sequencing analysis. Based on the kinetic analysis and no protective effect of the substrates, GSSG and NADPH on the copper-mediated inactivation/fragmentation of the enzyme, copper binds to the sites apart from the substrate-sites, causing the peptide cleavage by hydroxyl radical. Copper-dependent oxidative inactivation/fragmentation of glutathione reductase can explain the prooxidant properties of copper under the in vivo conditions.

  14. Copper-dependent inhibition and oxidative inactivation with affinity cleavage of yeast glutathione reductase.

    PubMed

    Murakami, Keiko; Tsubouchi, Ryoko; Fukayama, Minoru; Yoshino, Masataka

    2014-06-01

    Effects of copper on the activity and oxidative inactivation of yeast glutathione reductase were analyzed. Glutathione reductase from yeast was inhibited by cupric ion and more potently by cuprous ion. Copper ion inhibited the enzyme noncompetitively with respect to the substrate GSSG and NADPH. The Ki values of the enzyme for Cu(2+) and Cu(+) ion were determined to be 1 and 0.35 μM, respectively. Copper-dependent inactivation of glutathione reductase was also analyzed. Hydrogen peroxide and copper/ascorbate also caused an inactivation with the cleavage of peptide bond of the enzyme. The inactivation/fragmentation of the enzyme was prevented by addition of catalase, suggesting that hydroxyl radical produced through the cuprous ion-dependent reduction of oxygen is responsible for the inactivation/fragmentation of the enzyme. SDS-PAGE and TOF-MS analysis confirmed eight fragments, which were further determined to result from the cleavage of the Met17-Ser18, Asn20-Thr21, Glu251-Gly252, Ser420-Pro421, Pro421-Thr422 bonds of the enzyme by amino-terminal sequencing analysis. Based on the kinetic analysis and no protective effect of the substrates, GSSG and NADPH on the copper-mediated inactivation/fragmentation of the enzyme, copper binds to the sites apart from the substrate-sites, causing the peptide cleavage by hydroxyl radical. Copper-dependent oxidative inactivation/fragmentation of glutathione reductase can explain the prooxidant properties of copper under the in vivo conditions. PMID:24671306

  15. Chronology for the Aegean Late Bronze Age 1700-1400 B.C.

    PubMed

    Manning, Sturt W; Ramsey, Christopher Bronk; Kutschera, Walter; Higham, Thomas; Kromer, Bernd; Steier, Peter; Wild, Eva M

    2006-04-28

    Radiocarbon (carbon-14) data from the Aegean Bronze Age 1700-1400 B.C. show that the Santorini (Thera) eruption must have occurred in the late 17th century B.C. By using carbon-14 dates from the surrounding region, cultural phases, and Bayesian statistical analysis, we established a chronology for the initial Aegean Late Bronze Age cultural phases (Late Minoan IA, IB, and II). This chronology contrasts with conventional archaeological dates and cultural synthesis: stretching out the Late Minoan IA, IB, and II phases by approximately 100 years and requiring reassessment of standard interpretations of associations between the Egyptian and Near Eastern historical dates and phases and those in the Aegean and Cyprus in the mid-second millennium B.C. PMID:16645092

  16. Study of B c → J/ ψ π, η c π decays with perturbative QCD approach

    NASA Astrophysics Data System (ADS)

    Sun, Junfeng; Du, Dongsheng; Yang, Yueling

    2009-03-01

    The B c → J/ ψ π, η c π decays are studied with the perturbative QCD approach. It is found that the form factors A_{0,1,2}^{Bcto J/{ψ}} and F0^{Bcto{η}c} for the B c → J/ ψ, η c transitions and the branching ratios are sensitive to the parameters ω, v, f J/ ψ and f_{{η}c} , where ω and v are the parameters of the charmonium wave functions for a Coulomb potential and the harmonic-oscillator potential, respectively, and f J/ ψ and f_{{η}c} are the decay constants of the J/ ψ and η c mesons, respectively. The large branching ratios and the clear signals of the final states make the B c → J/ ψ π, η c π decays the prospective channels for measurements at the hadron colliders.

  17. Distinguishing Bonds.

    PubMed

    Rahm, Martin; Hoffmann, Roald

    2016-03-23

    The energy change per electron in a chemical or physical transformation, ΔE/n, may be expressed as Δχ̅ + Δ(VNN + ω)/n, where Δχ̅ is the average electron binding energy, a generalized electronegativity, ΔVNN is the change in nuclear repulsions, and Δω is the change in multielectron interactions in the process considered. The last term can be obtained by the difference from experimental or theoretical estimates of the first terms. Previously obtained consequences of this energy partitioning are extended here to a different analysis of bonding in a great variety of diatomics, including more or less polar ones. Arguments are presented for associating the average change in electron binding energy with covalence, and the change in multielectron interactions with electron transfer, either to, out, or within a molecule. A new descriptor Q, essentially the scaled difference between the Δχ̅ and Δ(VNN + ω)/n terms, when plotted versus the bond energy, separates nicely a wide variety of bonding types, covalent, covalent but more correlated, polar and increasingly ionic, metallogenic, electrostatic, charge-shift bonds, and dispersion interactions. Also, Q itself shows a set of interesting relations with the correlation energy of a bond.

  18. Association between Interleukin-1B C-31T Polymorphism and Obesity in Japanese

    PubMed Central

    Suzuki, Koji; Inoue, Takashi; Yanagisawa, Atsumi; Kimura, Asami; Ito, Yoshinori; Hamajima, Nobuyuki

    2009-01-01

    Background Recent studies have revealed a close relationship between obesity and polymorphism in the inflammation gene. However, the association between interleukin-1beta (IL-1β) and obesity remains controversial. We therefore investigated the association between IL-1B C-31T polymorphism and obesity in Japanese. Methods The participants were 802 inhabitants (281 men and 521 women) of Japan, aged 39 to 88 years, who attended a health examination in 2003. Body height, weight, waist and hip circumferences, and body fat percentage were measured. The IL-1B C-31T polymorphism was genotyped by polymerase chain reaction with confronting 2-pair primers. The association between IL-1B C-31T genotypes and various indices of obesity was then investigated. The confounding factor-adjusted odds ratios (OR) and 95% confidence intervals (CI) for obesity were calculated for each IL-1B C-31T genotype by using unconditional logistic regression analysis. Results Among male carriers of the CT and TT genotypes, the ORs for high body fat percentage were 2.58 (95% CI, 1.17–6.34) and 2.81 (1.17–7.33), respectively, as compared to carriers of the CC genotype (P for trend = 0.037). Among women, carriers of the TT genotype had significantly higher ORs for high BMI (OR, 2.13; 95% CI, 1.25–3.67) and large waist circumference (2.49; 1.37–4.66), as compared to women with the CC genotype (P for trend = 0.005 and 0.004, respectively). Conclusions The IL-1B C-31T polymorphism is associated with obesity in Japanese. Men and women with the TT genotype of IL-1B C-31T had a higher risk for obesity than those with the CC genotype. PMID:19398847

  19. Copper.Lys-Gly-His-Lys mediated cleavage of tRNA(Phe): studies of reaction mechanism and cleavage specificity.

    PubMed

    Bradford, Seth; Kawarasaki, Yuta; Cowan, J A

    2009-06-01

    The reactivity of [Cu2+.Lys-Gly-His-Lys-NH2]2+ and [Cu2+.Lys-Gly-His-Lys]+ toward tRNA(Phe) has been evaluated. The amidated and carboxylate forms of the copper peptides display complex binding behavior with strong and weak sites evident (K(D1)(app) approximately 71 microM, K(D2)(app) approximately 211 microM for the amide form; and K(D1)(app) approximately 34 microM, K(D2)(app) approximately 240 microM for the carboxylate form), while Cu2+(aq) yielded K(D1)(app) approximately 81 microM and K(D2)(app) approximately 136 microM. The time-dependence of the reaction of [Cu2+.Lys-Gly-His-Lys]+ and [Cu2+.Lys-Gly-His-Lys-NH2]2+ with tRNA(Phe) yielded k(obs) approximately 0.075 h(-1) for both complexes. HPLC analysis of the reaction products demonstrated guanine as the sole base product. Mass spectrometric data shows a limited number of cleavage fragments with product peak masses consistent with chemistry occurring at a discrete site defined by the structurally contiguous D and TPsiC loops, and in a domain where high affinity magnesium centers have previously been observed to promote hydrolysis of the tRNA(Phe) backbone. This cleavage pattern is more selective than that previously observed by Long and coworkers for nickel complexes of a series of C-terminally amidated peptides (Gly-Gly-His, Lys-Gly-His, and Arg-Gly-His), and may reflect variations in structural recognition and a distinct reaction path by the nickel derivatives. The data emphasizes the optimal positioning of the metal-associated reactive oxygen species, relative to scissile bonds, as a major criterion for development of efficient catalytic nucleases or therapeutics. PMID:19386364

  20. Bulk superhard B-C-N nanocomposite compact and method for preparing thereof

    DOEpatents

    Zhao, Yusheng; He, Duanwei

    2004-07-06

    Bulk, superhard, B-C-N nanocomposite compact and method for preparing thereof. The bulk, superhard, nanocomposite compact is a well-sintered compact and includes nanocrystalline grains of at least one high-pressure phase of B-C-N surrounded by amorphous diamond-like carbon grain boundaries. The bulk compact has a Vicker's hardness of about 41-68 GPa. It is prepared by ball milling a mixture of graphite and hexagonal boron nitride, encapsulating the ball-milled mixture, and sintering the encapsulated ball-milled mixture at a pressure of about 5-25 GPa and at a temperature of about 1000-2500 K.

  1. On the Relative Merits of Non-Orthogonal and Orthogonal Valence Bond Methods Illustrated on the Hydrogen Molecule

    ERIC Educational Resources Information Center

    Angeli, Celestino; Cimiraglia, Renzo; Malrieu, Jean-Paul

    2008-01-01

    Valence bond (VB) is one of the cornerstone theories of quantum chemistry. Even if in practical applications the molecular orbital (MO) approach has obtained more attention, some basic chemical concepts (such as the nature of the chemical bond and the failure of the single determinant-based MO methods in describing the bond cleavage) are normally…

  2. Direct measurement of acylenzyme hydrolysis demonstrates rate-limiting deacylation in cleavage of physiological sequences by the processing protease Kex2.

    PubMed

    Rockwell, N C; Fuller, R S

    2001-03-27

    Saccharomyces cerevisiae Kex2 protease is the prototype for the family of eukaryotic proprotein convertases that includes furin, PC1/3, and PC2. These enzymes belong to the subtilase superfamily of serine proteases and are distinguished from degradative subtilisins by structural features and by their much more stringent substrate specificity. Pre-steady-state studies have shown that both Kex2 and furin exhibit an initial burst of 7-amino-4-methylcoumarin release in cleavage of peptidyl methylcoumarinamide substrates that are based on physiological cleavage sites. Thus, in cleavage of such substrates, formation of the acylenzyme intermediate is fast relative to some later step (deacylation or N-terminal product release). This behavior is significant, because Kex2 also exhibits burst kinetics in cleavage of peptide bonds. k(cat) for cleavage of a tetrapeptidyl methylcoumarinamide substrate based on the physiological yeast substrate pro-alpha-factor exhibits a weak solvent isotope effect, but neither this isotope effect nor temperature dependence studies with this substrate conclusively identify the rate-limiting step for Kex2 cleavage of this substrate. We therefore developed an assay to measure deacylation directly by pulse-chase incorporation of H(2)(18)O in a rapid-quenched-flow mixer followed by mass spectrometric quantitation. The results given by this assay rule out rate-limiting product release for cleavage of this substrate by Kex2. These experiments demonstrate that cleavage of the acylenzyme ester bond, as opposed to either the initial attack on the amide bond or product release, is rate-limiting for the action of Kex2 at physiological sequences. This work demonstrates a fundamental difference in the catalytic strategy of proprotein processing enzymes and degradative subtilisins. PMID:11297433

  3. Nonspecific cleavage of proteins using graphene oxide.

    PubMed

    Lee, Heeyoung; Tran, Minh-Hai; Jeong, Hae Kyung; Han, Jinwoo; Jang, Sei-Heon; Lee, ChangWoo

    2014-04-15

    In this article, we report the intrinsic catalytic activity of graphene oxide (GO) for the nonspecific cleavage of proteins. We used bovine serum albumin (BSA) and a recombinant esterase (rEstKp) from the cold-adapted bacterium Pseudomonas mandelii as test proteins. Cleavage of BSA and rEstKp was nonspecific regarding amino acid sequence, but it exhibited dependence on temperature, time, and the amount of GO. However, cleavage of the proteins did not result in complete hydrolysis into their constituent amino acids. GO also invoked hydrolysis of p-nitrophenyl esters at moderate temperatures lower than those required for peptide hydrolysis regardless of chain length of the fatty acyl esters. Based on the results, the functional groups of GO, including alcohols, phenols, and carboxylates, can be considered as crucial roles in the GO-mediated hydrolysis of peptides and esters via general acid-base catalysis. Our findings provide novel insights into the role of GO as a carbocatalyst with nonspecific endopeptidase activity in biochemical reactions. PMID:24508487

  4. KLEAT: CLEAVAGE SITE ANALYSIS OF TRANSCRIPTOMES*

    PubMed Central

    Birol, Inanç; Raymond, Anthony; Chiu, Readman; Nip, Ka Ming; Jackman, Shaun D; Kreitzman, Maayan; Docking, T Roderick; Ennis, Catherine A; Robertson, A Gordon; Karsan, Aly

    2015-01-01

    In eukaryotic cells, alternative cleavage of 3’ untranslated regions (UTRs) can affect transcript stability, transport and translation. For polyadenylated (poly(A)) transcripts, cleavage sites can be characterized with short-read sequencing using specialized library construction methods. However, for large-scale cohort studies as well as for clinical sequencing applications, it is desirable to characterize such events using RNA-seq data, as the latter are already widely applied to identify other relevant information, such as mutations, alternative splicing and chimeric transcripts. Here we describe KLEAT, an analysis tool that uses de novo assembly of RNA-seq data to characterize cleavage sites on 3’ UTRs. We demonstrate the performance of KLEAT on three cell line RNA-seq libraries constructed and sequenced by the ENCODE project, and assembled using Trans-ABySS. Validating the KLEAT predictions with matched ENCODE RNA-seq and RNA-PET libraries, we show that the tool has over 90% positive predictive value when there are at least three RNA-seq reads supporting a poly(A) tail and requiring at least three RNA-PET reads mapping within 100 nucleotides as validation. We also compare the performance of KLEAT with other popular RNA-seq analysis pipelines that reconstruct 3’ UTR ends, and show that it performs favourably, based on an ROC-like curve. PMID:25592595

  5. General access to taiwaniaquinoids based on a hypothetical abietane C7-C8 cleavage biogenetic pathway.

    PubMed

    Tapia, Rubén; Guardia, Juan J; Alvarez, Esteban; Haidöur, Ali; Ramos, Jose M; Alvarez-Manzaneda, Ramón; Chahboun, Rachid; Alvarez-Manzaneda, Enrique

    2012-01-01

    A new strategy for synthesizing taiwaniaquinoids, a group of terpenoids with an unusual rearranged 5(6→7) or 6-nor-5(6→7)abeo-abietane skeleton, which exhibit promising biological activities, is reported. The procedure, based on the cleavage of the C7-C8 double bond of abietane diterpenes, is the only one yet reported for synthesizing C(20) taiwaniaquinoids bearing a carbon function on the cyclopentane B ring; it is also applicable to the synthesis of the wide variety of existing taiwaniaquinoids. Utilizing this, (-)-taiwaniaquinone A, F, G, and H, (-)-taiwaniaquinol B, and (-)-dichroanone have been synthesized from (+)-abietic acid. The versatility of this strategy allows us to propose the abietane C7-C8 cleavage as a possible biosynthetic pathway to this type of rearranged diterpenes; this proposal seems to be supported by phytochemical evidence.

  6. VAMP/synaptobrevin cleavage by tetanus and botulinum neurotoxins is strongly enhanced by acidic liposomes.

    PubMed

    Caccin, Paola; Rossetto, Ornella; Rigoni, Michela; Johnson, Eric; Schiavo, Giampietro; Montecucco, Cesare

    2003-05-01

    Tetanus and botulinum neurotoxins (TeNT and BoNTs) block neuroexocytosis via specific cleavage and inactivation of SNARE proteins. Such activity is exerted by the N-terminal 50 kDa light chain (L) domain, which is a zinc-dependent endopeptidase. TeNT, BoNT/B, /D, /F and /G cleave vesicle associated membrane protein (VAMP), a protein of the neurotransmitter-containing small synaptic vesicles, at different single peptide bonds. Since the proteolytic activity of these metalloproteases is higher on native VAMP inserted in synaptic vesicles than on recombinant VAMP, we have investigated the influence of liposomes of different lipid composition on this activity. We found that the rate of VAMP cleavage with all neurotoxins tested here is strongly enhanced by negatively charged lipid mixtures. This effect is at least partially due to the binding of the metalloprotease to the lipid membranes, with electrostatic interactions playing an important role.

  7. Bonds Boom.

    ERIC Educational Resources Information Center

    Reynolds, Cathryn

    1989-01-01

    The combined effect of the "Serrano" decision and Proposition 13 left California school districts with aging, overcrowded facilities. Chico schools won a $18.5 million general obligation bond election for facilities construction. With $11 billion needed for new school construction, California will need to tap local sources. A sidebar outlines…

  8. Yankee bonds

    SciTech Connect

    Delaney, P. )

    1993-10-01

    Yankee and Euromarket bonds may soon find their way into the financing of power projects in Latin America. For developers seeking long-term commitments under build, own, operate, and transfer (BOOT) power projects in Latin America, the benefits are substantial.

  9. Cleavage crystallography of liquid metal embrittled aluminum alloys

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  10. Spatiotemporal analysis of RhoA/B/C activation in primary human endothelial cells

    PubMed Central

    Reinhard, Nathalie R.; van Helden, Suzanne F.; Anthony, Eloise C.; Yin, Taofei; Wu, Yi I.; Goedhart, Joachim; Gadella, Theodorus W. J.; Hordijk, Peter L.

    2016-01-01

    Endothelial cells line the vasculature and are important for the regulation of blood pressure, vascular permeability, clotting and transendothelial migration of leukocytes and tumor cells. A group of proteins that that control the endothelial barrier function are the RhoGTPases. This study focuses on three homologous (>88%) RhoGTPases: RhoA, RhoB, RhoC of which RhoB and RhoC have been poorly characterized. Using a RhoGTPase mRNA expression analysis we identified RhoC as the highest expressed in primary human endothelial cells. Based on an existing RhoA FRET sensor we developed new RhoB/C FRET sensors to characterize their spatiotemporal activation properties. We found all these RhoGTPase sensors to respond to physiologically relevant agonists (e.g. Thrombin), reaching transient, localized FRET ratio changes up to 200%. These RhoA/B/C FRET sensors show localized GEF and GAP activity and reveal spatial activation differences between RhoA/C and RhoB. Finally, we used these sensors to monitor GEF-specific differential activation of RhoA/B/C. In summary, this study adds high-contrast RhoB/C FRET sensors to the currently available FRET sensor toolkit and uncover new insights in endothelial and RhoGTPase cell biology. This allows us to study activation and signaling by these closely related RhoGTPases with high spatiotemporal resolution in primary human cells. PMID:27147504

  11. Spatiotemporal analysis of RhoA/B/C activation in primary human endothelial cells.

    PubMed

    Reinhard, Nathalie R; van Helden, Suzanne F; Anthony, Eloise C; Yin, Taofei; Wu, Yi I; Goedhart, Joachim; Gadella, Theodorus W J; Hordijk, Peter L

    2016-01-01

    Endothelial cells line the vasculature and are important for the regulation of blood pressure, vascular permeability, clotting and transendothelial migration of leukocytes and tumor cells. A group of proteins that that control the endothelial barrier function are the RhoGTPases. This study focuses on three homologous (>88%) RhoGTPases: RhoA, RhoB, RhoC of which RhoB and RhoC have been poorly characterized. Using a RhoGTPase mRNA expression analysis we identified RhoC as the highest expressed in primary human endothelial cells. Based on an existing RhoA FRET sensor we developed new RhoB/C FRET sensors to characterize their spatiotemporal activation properties. We found all these RhoGTPase sensors to respond to physiologically relevant agonists (e.g. Thrombin), reaching transient, localized FRET ratio changes up to 200%. These RhoA/B/C FRET sensors show localized GEF and GAP activity and reveal spatial activation differences between RhoA/C and RhoB. Finally, we used these sensors to monitor GEF-specific differential activation of RhoA/B/C. In summary, this study adds high-contrast RhoB/C FRET sensors to the currently available FRET sensor toolkit and uncover new insights in endothelial and RhoGTPase cell biology. This allows us to study activation and signaling by these closely related RhoGTPases with high spatiotemporal resolution in primary human cells. PMID:27147504

  12. The Comet Of 44 B.C. and Caesar's Funeral Games

    NASA Astrophysics Data System (ADS)

    Ramsey, John T.; Licht, A. Lewis

    1997-05-01

    Using insights from physics and classics, this book explores the social and cultural implications of the spectacular, daylight comet that was observed in 44 B.C. during the games that the future emperor Augustus gave in honor of the late Julius Caesar.

  13. Q1146+111B, C Double Quasar Pair - Illusion or Delusion

    NASA Astrophysics Data System (ADS)

    Phinney, E. S.; Blandford, R. D.

    1986-06-01

    The quasar pair Q1146+111B, C has been re-observed by Turner et al. who argue that it comprises two gravitationally lensed images of a single source. In this letter, the authors show that one is probably observing two distinct though neighbouring quasars.

  14. Instructional Media Production for Early Childhood Education: A. B. C. Jig-Saw Puzzle, a Model

    ERIC Educational Resources Information Center

    Yusuf, Mudashiru Olalere; Olanrewaju, Olatayo Solomon; Soetan, Aderonke K.

    2015-01-01

    In this paper, a. b. c. jig-saw puzzle was produced for early childhood education using local materials. This study was a production based type of research, to serve as a supplemental or total learning resource. Its production followed four phases of development referred to as information, design, production and evaluation. The storyboard cards,…

  15. The NLO QCD corrections to B c meson production in Z 0 decays

    NASA Astrophysics Data System (ADS)

    Qiao, Cong-Feng; Sun, Li-Ping; Zhu, Rui-Lin

    2011-08-01

    The decay width of Z 0 to B c meson is evaluated at the next-to-leading order (NLO) accuracy in strong interaction. Numerical calculation shows that the NLO correction to this process is remarkable. The quantum chromodynamics (QCD) renormalization scale dependence of the results is obviously depressed, and hence the uncertainties lying in the leading order calculation are reduced.

  16. Aurora B/C in Meiosis: Correct Me If I'm Right.

    PubMed

    Dumont, Julien

    2015-06-01

    In this issue of Developmental Cell, Yoshida et al. (2015) report that during meiosis I in mouse oocytes, the kinase Aurora B/C continuously destabilizes chromosome attachments to spindle microtubules, which potentially provides an explanation for the notably high error rate of chromosome segregation in mammalian oocytes.

  17. Ancient Skeletal Evidence for Leprosy in India (2000 B.C.)

    PubMed Central

    Robbins, Gwen; Tripathy, V. Mushrif; Misra, V. N.; Mohanty, R. K.; Shinde, V. S.; Gray, Kelsey M.; Schug, Malcolm D.

    2009-01-01

    Background Leprosy is a chronic infectious disease caused by Mycobacterium leprae that affects almost 250,000 people worldwide. The timing of first infection, geographic origin, and pattern of transmission of the disease are still under investigation. Comparative genomics research has suggested M. leprae evolved either in East Africa or South Asia during the Late Pleistocene before spreading to Europe and the rest of the World. The earliest widely accepted evidence for leprosy is in Asian texts dated to 600 B.C. Methodology/Principal Findings We report an analysis of pathological conditions in skeletal remains from the second millennium B.C. in India. A middle aged adult male skeleton demonstrates pathological changes in the rhinomaxillary region, degenerative joint disease, infectious involvement of the tibia (periostitis), and injury to the peripheral skeleton. The presence and patterning of lesions was subject to a process of differential diagnosis for leprosy including treponemal disease, leishmaniasis, tuberculosis, osteomyelitis, and non-specific infection. Conclusions/Significance Results indicate that lepromatous leprosy was present in India by 2000 B.C. This evidence represents the oldest documented skeletal evidence for the disease. Our results indicate that Vedic burial traditions in cases of leprosy were present in northwest India prior to the first millennium B.C. Our results also support translations of early Vedic scriptures as the first textual reference to leprosy. The presence of leprosy in skeletal material dated to the post-urban phase of the Indus Age suggests that if M. leprae evolved in Africa, the disease migrated to India before the Late Holocene, possibly during the third millennium B.C. at a time when there was substantial interaction among the Indus Civilization, Mesopotamia, and Egypt. This evidence should be impetus to look for additional skeletal and molecular evidence of leprosy in India and Africa to confirm the African origin of

  18. Hydrogen bonding constrains free radical reaction dynamics at serine and threonine residues in peptides.

    PubMed

    Thomas, Daniel A; Sohn, Chang Ho; Gao, Jinshan; Beauchamp, J L

    2014-09-18

    Free radical-initiated peptide sequencing (FRIPS) mass spectrometry derives advantage from the introduction of highly selective low-energy dissociation pathways in target peptides. An acetyl radical, formed at the peptide N-terminus via collisional activation and subsequent dissociation of a covalently attached radical precursor, abstracts a hydrogen atom from diverse sites on the peptide, yielding sequence information through backbone cleavage as well as side-chain loss. Unique free-radical-initiated dissociation pathways observed at serine and threonine residues lead to cleavage of the neighboring N-terminal Cα-C or N-Cα bond rather than the typical Cα-C bond cleavage observed with other amino acids. These reactions were investigated by FRIPS of model peptides of the form AARAAAXAA, where X is the amino acid of interest. In combination with density functional theory (DFT) calculations, the experiments indicate the strong influence of hydrogen bonding at serine or threonine on the observed free radical chemistry. Hydrogen bonding of the side-chain hydroxyl group with a backbone carbonyl oxygen aligns the singly occupied π orbital on the β-carbon and the N-Cα bond, leading to low-barrier β-cleavage of the N-Cα bond. Interaction with the N-terminal carbonyl favors a hydrogen-atom transfer process to yield stable c and z(•) ions, whereas C-terminal interaction leads to effective cleavage of the Cα-C bond through rapid loss of isocyanic acid. Dissociation of the Cα-C bond may also occur via water loss followed by β-cleavage from a nitrogen-centered radical. These competitive dissociation pathways from a single residue illustrate the sensitivity of gas-phase free radical chemistry to subtle factors such as hydrogen bonding that affect the potential energy surface for these low-barrier processes.

  19. Protection of the Furin Cleavage Site in Low-Toxicity Immunotoxins Based on Pseudomonas Exotoxin A

    PubMed Central

    Kaplan, Gilad; Lee, Fred; Onda, Masanori; Kolyvas, Emily; Bhardwaj, Gaurav; Baker, David; Pastan, Ira

    2016-01-01

    Recombinant immunotoxins (RITs) are fusions of an Fv-based targeting moiety and a toxin. Pseudomonas exotoxin A (PE) has been used to make several immunotoxins that have been evaluated in clinical trials. Immunogenicity of the bacterial toxin and off-target toxicity have limited the efficacy of these immunotoxins. To address these issues, we have previously made RITs in which the Fv is connected to domain III (PE24) by a furin cleavage site (FCS), thereby removing unneeded sequences of domain II. However, the PE24 containing RITs do not contain the naturally occurring disulfide bond around the furin cleavage sequence, because it was removed when domain II was deleted. This could potentially allow PE24 containing immunotoxins to be cleaved and inactivated before internalization by cell surface furin or other proteases in the blood stream or tumor microenvironment. Here, we describe five new RITs in which a disulfide bond is engineered to protect the FCS. The most active of these, SS1-Fab-DS3-PE24, shows a longer serum half-life than an RIT without the disulfide bond and has the same anti-tumor activity, despite being less cytotoxic in vitro. These results have significance for the production of de-immunized, low toxicity, PE24-based immunotoxins with a longer serum half-life. PMID:27463727

  20. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  1. Cleavage of rotavirus VP4 in vivo.

    PubMed

    Ludert, J E; Krishnaney, A A; Burns, J W; Vo, P T; Greenberg, H B

    1996-03-01

    The infectivity of rotavirus particles is dependent on proteolytic cleavage of the outer capsid protein, VP4, at a specific site. This cleavage event yields two fragments, identified as VP5* and VP8*. It has been hypothesized that the particle is more stable, but non-infectious, when VP4 is in the uncleaved state. Uncleaved VP4 and the resultant increased stability might be advantageous for the virus to resist environmental degradation until it infects a susceptible host. When VP4 is cleaved in the lumen of the host's gastrointestinal tract, the virus particle would become less stable but more infectious. To test this hypothesis, a series of experiments was undertaken to analyse the cleavage state of VP4 on virus shed by an infected host into the environment. Immunoblots of intestinal wash solutions derived from infant and adult BALB/c mice infected with a virulent cell culture-adapted variant of the EDIM virus (EW) or wild-type murine rotavirus EDIM-Cambridge were analysed. Virtually all of the VP4 in these samples was in the cleaved form. Moreover, cell culture titration of trypsin-treated and untreated intestinal contents from pups infected with EW indicated that excreted virus is fully activated prior to trypsin addition. It was also observed that trypsin-activated virus has no disadvantage in initiating infection in naive animals over virions containing an intact VP4. These studies indicate that VP4 is cleaved upon release from the intestinal cell and that virus shed into the environment does not have an intact VP4.

  2. 31 CFR 315.27 - Application for relief-nonreceipt of bond.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Application for relief-nonreceipt of bond. 315.27 Section 315.27 Money and Finance: Treasury Regulations Relating to Money and Finance.... SAVINGS BONDS, SERIES A, B, C, D, E, F, G, H, J, AND K, AND U.S. SAVINGS NOTES Relief for Loss,...

  3. 31 CFR 315.38 - Payment during lifetime of owner of beneficiary bond.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Payment during lifetime of owner of beneficiary bond. 315.38 Section 315.38 Money and Finance: Treasury Regulations Relating to Money and Finance.... SAVINGS BONDS, SERIES A, B, C, D, E, F, G, H, J, AND K, AND U.S. SAVINGS NOTES General Provisions...

  4. 31 CFR 315.26 - Application for relief-after receipt of bond.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Application for relief-after receipt of bond. 315.26 Section 315.26 Money and Finance: Treasury Regulations Relating to Money and Finance.... SAVINGS BONDS, SERIES A, B, C, D, E, F, G, H, J, AND K, AND U.S. SAVINGS NOTES Relief for Loss,...

  5. 31 CFR 315.28 - Recovery or receipt of bond before or after relief is granted.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... after relief is granted. 315.28 Section 315.28 Money and Finance: Treasury Regulations Relating to Money... REGULATIONS GOVERNING U.S. SAVINGS BONDS, SERIES A, B, C, D, E, F, G, H, J, AND K, AND U.S. SAVINGS NOTES Relief for Loss, Theft, Destruction, Mutilation, Defacement, or Nonreceipt of Bonds § 315.28 Recovery...

  6. 31 CFR 315.30 - Series E bonds and savings notes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... SAVINGS BONDS, SERIES A, B, C, D, E, F, G, H, J, AND K, AND U.S. SAVINGS NOTES Interest § 315.30 Series E... redemption value. All Series E bonds and savings notes have been extended and continue to earn interest until..., investment yields and redemption values is found in Department of the Treasury Circular No. 653,...

  7. Mechanochemistry: One Bond at a Time

    PubMed Central

    Liang, Jian; Fernández, Julio M.

    2009-01-01

    Single-molecule force clamp spectroscopy offers a novel platform for mechanically denaturing proteins by applying a constant force to a polyprotein. A powerful emerging application of the technique is that, by introducing a disulfide bond in each protein module, the chemical kinetics of disulfide bond cleavage under different stretching forces can be probed at the single-bond level. Even at forces much lower than that can rupture the chemical bond, the breaking of the S-S bond at the presence of various chemical reducing agents is significantly accelerated. Our previous work demonstrated that the rate of thiol/disulfide exchange reaction is force-dependent, and well described by an Arrhenius term of the form: r = A(exp((FΔxr-Ea)/kBT)[nucleophile]). From Arrhenius fits to the force dependency of the reduction rate we measured the bond elongation parameter, Δxr, along the reaction coordinate to the transition state of the SN2 reaction cleaved by different nucleophiles and enzymes, never before observed by any other technique. For S-S cleavage by various reducing agents, obtaining the Δxr value can help depicting the energy landscapes and elucidating the mechanisms of the reactions at the single-molecule level. Small nucleophiles, such as 1, 4-DL-dithiothreitol (DTT), tris(2-carboxyethyl)phosphine (TCEP) and L-cysteine, react with the S-S bond with monotonically increasing rates under the applied force; while thioredoxin enzymes exhibit both stretching-favored and —resistant reaction-rate regimes. These measurements demonstrate the power of single-molecule force clamp spectroscopy approach in providing unprecedented access to chemical reactions. PMID:19572737

  8. In-line alignment and Mg2+ coordination at the cleavage site of the env22 twister ribozyme

    PubMed Central

    Ren, Aiming; Košutić, Marija; Rajashankar, Kanagalaghatta R.; Frener, Marina; Santner, Tobias; Westhof, Eric; Micura, Ronald; Patel, Dinshaw J.

    2015-01-01

    Small self-cleaving nucleolytic ribozymes contain catalytic domains that accelerate site-specific cleavage/ligation of phosphodiester backbones. We report on the 2.9-Å crystal structure of the env22 twister ribozyme, which adopts a compact tertiary fold stabilized by co-helical stacking, double-pseudoknot formation and long-range pairing interactions. The U-A cleavage site adopts a splayed-apart conformation with the modeled 2′-O of U positioned for in-line attack on the adjacent to-be-cleaved P-O5′ bond. Both an invariant guanosine and a Mg2+ are directly coordinated to the non-bridging phosphate oxygens at the U-A cleavage step, with the former positioned to contribute to catalysis and the latter to structural integrity. The impact of key mutations on cleavage activity identified an invariant guanosine that contributes to catalysis. Our structure of the in-line aligned env22 twister ribozyme is compared with two recently-reported twister ribozymes structures, which adopt similar global folds, but differ in conformational features around the cleavage site. PMID:25410397

  9. N-Acylsaccharins: Stable Electrophilic Amide-Based Acyl Transfer Reagents in Pd-Catalyzed Suzuki-Miyaura Coupling via N-C Cleavage.

    PubMed

    Liu, Chengwei; Meng, Guangrong; Liu, Yongmei; Liu, Ruzhang; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2016-09-01

    The development of efficient catalytic methods for N-C bond cleavage in amides remains an important synthetic challenge. The first Pd-catalyzed Suzuki-Miyaura cross-coupling of N-acylsaccharins with boronic acids by selective N-C bond activation is reported. The reaction enables preparation of a variety of functionalized diaryl and alkyl-aryl ketones with broad functional group tolerance and in good to excellent yields. Of general interest, N-acylsaccharins serve as new, highly reactive, bench-stable, economical, amide-based, electrophilic acyl transfer reagents via acyl-metal intermediates. Mechanistic studies strongly support the amide N-C(O) bond twist as the enabling feature of N-acylsaccharins in the N-C bond cleavage. PMID:27513821

  10. Evidence for New Madrid earthquakes in A.D. 300 and 2350 B.C

    USGS Publications Warehouse

    Tuttle, M.P.; Schweig, E. S.; Campbell, J.; Thomas, P.M.; Sims, J.D.; Lafferty, R. H.

    2005-01-01

    Six episodes of earthquake-induced liquefaction are associated with soil horizons containing artifacts of the Late Archaic (3000-500 B.C.) and Early to Middle Woodland (500 B.C.-A.D. 400) cultural periods at the Burkett archaeological site in the northern part of the New Madrid seismic zone, where little information about prehistoric earthquakes has been available. Radiocarbon dating of organic material and analysis of artifacts are used to estimate the ages of the liquefaction features and times of the causative earthquakes. The most recent episode of liquefaction occurred after A.D. 1670, produced small sand dikes, and is probably related to the 1895 Charleston, Missouri earthquake. The preceding episode struck the area in A.D. 300 ?? 200 years and generated a sand blow that contains Late Woodland artifacts and buries an Early to Middle Woodland cultural horizon. Four older episodes of liquefaction occurred in 2350 B.C. ?? 200 years and may have been produced by a sequence of closely timed earthquakes. The four earlier episodes produced graben structures, sand dikes, and associated sand blows on which a cultural mound was constructed. The Burkett liquefaction features that formed about 2350 B.C. and A.D. 300 are relatively large and similar in age to other liquefaction features in northeastern Arkansas and southeastern Missouri, respectively. If the prehistoric features at the Burkett site and those of similar age elsewhere in the region are the result of the same earthquakes, then this suggests that they were similar in size to the three largest (M 7-8) 1811-1812 New Madrid earthquakes. A New Madrid-type earthquake in A.D. 300 ?? 200 years would support an average recurrence time of 500 years. Although this study extends the earthquake chronology back to 2500 B.C., it is uncertain that the record of New Madrid events is complete for the period between 2350 B.C. and A.D. 300. As demonstrated by this study, information about other prehistoric earthquakes may be

  11. Catalytic Carbocation Generation Enabled by the Mesolytic Cleavage of Alkoxyamine Radical Cations.

    PubMed

    Zhu, Qilei; Gentry, Emily C; Knowles, Robert R

    2016-08-16

    A new catalytic method is described to access carbocation intermediates via the mesolytic cleavage of alkoxyamine radical cations. In this process, electron transfer between an excited state oxidant and a TEMPO-derived alkoxyamine substrate gives rise to a radical cation with a remarkably weak C-O bond. Spontaneous scission results in the formation of the stable nitroxyl radical TEMPO(.) as well as a reactive carbocation intermediate that can be intercepted by a wide range of nucleophiles. Notably, this process occurs under neutral conditions and at comparatively mild potentials, enabling catalytic cation generation in the presence of both acid sensitive and easily oxidized nucleophilic partners. PMID:27403637

  12. Cleavage and formation of molecular dinitrogen in a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine.

    PubMed

    Miyazaki, Takamasa; Tanaka, Hiromasa; Tanabe, Yoshiaki; Yuki, Masahiro; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-10-20

    The N≡N bond of molecular dinitrogen bridging two molybdenum atoms in the pentamethylcyclopentadienyl molybdenum complexes that bear ferrocenyldiphosphine as an auxiliary ligand is homolytically cleaved under visible light irradiation at room temperature to afford two molar molybdenum nitride complexes. Conversely, the bridging molecular dinitrogen is reformed by the oxidation of the molybdenum nitride complex at room temperature. This result provides a successful example of the cleavage and formation of molecular dinitrogen induced by a pair of two different external stimuli using a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine under ambient conditions. PMID:25214300

  13. Oxidative cleavage of olefins by in situ-generated catalytic 3,4,5,6-tetramethyl-2-iodoxybenzoic acid/oxone.

    PubMed

    Moorthy, Jarugu Narasimha; Parida, Keshaba Nanda

    2014-12-01

    Oxidative cleavage of a variety of olefins to the corresponding ketones/carboxylic acids is shown to occur in a facile manner with 3,4,5,6-tetramethyl-2-iodobenzoic acid (TetMe-IA)/oxone. The simple methodology involves mere stirring of the olefin and catalytic amount (10 mol %) of TetMe-IA and oxone in acetonitrile-water mixture (1:1, v/v) at rt. The reaction mechanism involves initial dihydroxylation of the olefin with oxone, oxidative cleavage by the in situ-generated 3,4,5,6-tetramethyl-2-iodoxybenzoic acid (TetMe-IBX), and oxidation of the aldehyde functionality to the corresponding acid with oxone. Differences in the reactivities of electron-rich and electron-poor double bonds have been exploited to demonstrate chemoselective oxidative cleavage in substrates containing two double bonds.

  14. Study of the B_c^+ → J/ψ D_s^+ and B_c^+ → J/ψ D_s^{*+} decays with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Childers, J. T.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saimpert, M.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simoniello, R.; Sinervo, P.; Sinev, N. B.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2016-01-01

    The decays B_c^+ → J/ψ D_s^+ and B_c^+ → J/ψ D_s^{*+} are studied with the ATLAS detector at the LHC using a dataset corresponding to integrated luminosities of 4.9 and 20.6 fb^{-1} of pp collisions collected at centre-of-mass energies √{s} = 7 TeV and 8 TeV, respectively. Signal candidates are identified through J/ψ → μ ^+μ ^- and D_s^{(*)+}→ φ π ^+(γ /π ^0) decays. With a two-dimensional likelihood fit involving the B_c^+ reconstructed invariant mass and an angle between the μ ^+ and D_s^+ candidate momenta in the muon pair rest frame, the yields of B_c^+ → J/ψ D_s^+ and B_c^+ → J/ψ D_s^{*+}, and the transverse polarisation fraction in B_c^+ → J/ψ D_s^{*+} decay are measured. The transverse polarisation fraction is determined to be Γ _{± ± }(B_c^+ → J/ψ D_s^{*+})/Γ (B_c^+ → J/ψ D_s^{*+}) = 0.38 ± 0.23 ± 0.07, and the derived ratio of the branching fractions of the two modes is {B}_{B_c^+ → J/ψ D_s^{*+}}/{B}_{B_c^+ → J/ψ D_s^+} = 2.8 ^{+1.2}_{-0.8} ± 0.3, where the first error is statistical and the second is systematic. Finally, a sample of B_c^+→ J/ψ π ^+ decays is used to derive the ratios of branching fractions {B}_{B_c^+ → J/ψ D_s^+}/{B}_{B_c^+ → J/ψ π ^+} = 3.8 ± 1.1 ± 0.4 ± 0.2 and {B}_{B_c^+ → J/ψ D_s^{*+}}/{B}_{B_c^+ → J/ψ π ^+} = 10.4 ± 3.1 ± 1.5 ± 0.6, where the third error corresponds to the uncertainty of the branching fraction of D_s^+→ φ (K^+K^-)π ^+ decay. The available theoretical predictions are generally consistent with the measurement.

  15. Activity dependent CAM cleavage and neurotransmission

    PubMed Central

    Conant, Katherine; Allen, Megan; Lim, Seung T.

    2015-01-01

    Spatially localized proteolysis represents an elegant means by which neuronal activity dependent changes in synaptic structure, and thus experience dependent learning and memory, can be achieved. In vitro and in vivo studies suggest that matrix metalloproteinase and adamalysin activity is concentrated at the cell surface, and emerging evidence suggests that increased peri-synaptic expression, release and/or activation of these proteinases occurs with enhanced excitatory neurotransmission. Synaptically expressed cell adhesion molecules (CAMs) could therefore represent important targets for neuronal activity-dependent proteolysis. Several CAM subtypes are expressed at the synapse, and their cleavage can influence the efficacy of synaptic transmission through a variety of non-mutually exclusive mechanisms. In the following review, we discuss mechanisms that regulate neuronal activity-dependent synaptic CAM shedding, including those that may be calcium dependent. We also highlight CAM targets of activity-dependent proteolysis including neuroligin and intercellular adhesion molecule-5 (ICAM-5). We include discussion focused on potential consequences of synaptic CAM shedding, with an emphasis on interactions between soluble CAM cleavage products and specific pre- and post-synaptic receptors. PMID:26321910

  16. Chalcogen bond: a sister noncovalent bond to halogen bond.

    PubMed

    Wang, Weizhou; Ji, Baoming; Zhang, Yu

    2009-07-16

    A sister noncovalent bond to halogen bond, termed chalcogen bond, is defined in this article. By selecting the complexes H(2)CS...Cl(-), F(2)CS...Cl(-), OCS...Cl(-), and SCS...Cl(-) as models, the bond-length change, interaction energy, topological property of the electron charge density and its Laplacian, and the charge transfer of the chalcogen bond have been investigated in detail theoretically. It was found that the similar misshaped electron clouds of the chalcogen atom and the halogen atom result in the similar properties of the chalcogen bond and the halogen bond. Experimental results are in good agreement with the theoretical predictions.

  17. Time-dependent Ginzburg-Landau model for nonfrustrated linear A B C triblock terpolymers

    NASA Astrophysics Data System (ADS)

    Millett, Paul C.

    2015-08-01

    A time-dependent Ginzburg-Landau (TDGL) model is proposed to simulate the ordering of linear A B C triblock terpolymers. The model, in its current form, is applicable to nonfrustrated triblock systems, with the specific condition that χA C≫χA B≈χB C . Simulations are presented that demonstrate the model's ability to evolve a wide variety of morphologies throughout time, including tetragonal, core-shell hexagonal, three-phase lamellar, and beads-in-lamellar phases. The model also incorporates an interaction term to study templated substrates for directed self-assembly. The efficiency of the TDGL model enables large-scale simulations that allow investigation of self-assembly, and directed self-assembly, processes that may exhibit very small defect concentrations.

  18. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  19. Construction of the Tricyclic A-B-C Core of the Veratrum Alkaloids

    PubMed Central

    Taber, Douglass F.; Berry, James F.

    2014-01-01

    Organocatalyzed enantioselective allylation of 2-iodocyclohexenone followed by methylation and oxy-Cope rearrangement delivered enantiomerically-enriched 2-methyl 3-allyl cyclohexanone, that engaged in acid-catalyzed Robinson annulation to give the bicyclic enone. Subsequent elaboration of the pendant allyl group into an α-diazo β-keto ester set the stage for Rh-mediated cyclization to deliver the tricyclic A-B-C core of the Veratrum alkaloids. PMID:23859604

  20. PROCESS WATER BUILDING, TRA605. SECTIONS B, C AND D SHOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. SECTIONS B, C AND D SHOW RELATIONSHIP BETWEEN FLASH EVAPORATORS (ABOVE) AND SEAL AND SUMP TANKS (BELOW). BASEMENT FLOOR IS BELOW GRADE; FIRST FLOOR, ABOVE GRADE. SHIELDING TOLERANCES. BLAW-KNOX 3150-5-7, 8/1950. INL INDEX NO. 531-605-00-098-100012, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. On the study of the mechanical properties of Mo-B-C coatings

    NASA Astrophysics Data System (ADS)

    Zábranský, Lukáš; Buršíková, Vilma; Souček, Pavel; Vašina, Petr; Buršík, Jiří

    2016-08-01

    Mo2BC thin films show a favourable combination of high stiffness, hardness and elastic modulus together with moderate ductility. In this study we focused on the comparison of mechanical properties of Mo-B-C thin films with different structures (nanocrystalline or amorphous). The thin films were deposited on steel, hard metal and silicon substrates using DC magnetron sputtering. The mechanical properties of Mo-B-C films were studied using indentation techniques under both quasistatic and dynamic conditions using a wide range of loads from 50 μN up to 1 N. The results showed that even amorphous Mo-B-C thin films had high hardness of 19.5 ± 0.5 GPa and elastic modulus of 276 ± 5 GPa. Their hardness is comparable with the common amorphous diamond-like carbon coatings. Moreover, their fracture toughness is significantly higher. The results of mechanical tests were correlated with microstructure observations carried out using scanning and transmission electron microscopy. The images of the deformed area under the residual indentation imprints showed no cracking even after high loads or after indentation with sharp cube corner indenter. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  2. Mapping Homing Endonuclease Cleavage Sites Using In Vitro Generated Protein

    PubMed Central

    Belfort, Marlene

    2015-01-01

    Mapping the precise position of endonucleolytic cleavage sites is a fundamental experimental technique used to describe the function of a homing endonuclease. However, these proteins are often recalcitrant to cloning and over-expression in biological systems because of toxicity induced by spurious DNA cleavage events. In this chapter we outline the steps to successfully express a homing endonuclease in vitro and use this product in nucleotide-resolution cleavage assays. PMID:24510259

  3. Two Spin-State Reactivity in the Activation and Cleavage of CO2 by [ReO2](.).

    PubMed

    Canale, Valentino; Robinson, Robert; Zavras, Athanasios; Khairallah, George N; d'Alessandro, Nicola; Yates, Brian F; O'Hair, Richard A J

    2016-05-19

    The rhenium dioxide anion [ReO2](-) reacts with carbon dioxide in a linear ion trap mass spectrometer to produce [ReO3](-) corresponding to activation and cleavage of a C-O bond. Isotope labeling experiments using [Re(18)O2](-) reveal that (18)O/(16)O scrambling does not occur prior to cleavage of the C-O bond. Density functional theory calculations were performed to examine the mechanism for this oxygen atom abstraction reaction. Because the spins of the ground states are different for the reactant and product ions ((3)[ReO2](-) versus (1)[ReO3](-)), both reaction surfaces were examined in detail and multiple [O2Re-CO2](-) intermediates and transition structures were located and minimum energy crossing points were calculated. The computational results show that the intermediate [O2Re(η(2)-C,O-CO2)](-) species most likely initiates C-O bond activation and cleavage. The stronger binding affinity of CO2 within this species and the greater instabilities of other [O2Re-CO2)](-) intermediates are significant enough that oxygen atom exchange is avoided. PMID:27193088

  4. Transition Metals Catalyzed Element-Cyano Bonds Activations

    PubMed Central

    Wang, Rui; Falck, John R.

    2014-01-01

    Cyano group as a versatile functionalized intermediate has been explored for several decades, as it readily transfers to many useful functionalization groups such as amine, amide, acid, etc., which make it possess high popularization and use value in organic synthesis. Reactions involved with element-cyano bond cleavage can provide not only a new cyano group but also a freshly functionalized skeleton in one-pot, consequently making it of high importance. The highlights reviewed herein include H-CN, Si-CN, C-CN, B-CN, Sn-CN, Ge-CN, S-CN, Halo-CN, N-CN, and O-CN bonds cleavages and will summarize progress in such an important research area. This review article will focus on transition metal catalyzed reactions involving element-cyano bond activation. PMID:25558119

  5. Chymase Cleavage of Stem Cell Factor Yields a Bioactive, Soluble Product

    NASA Astrophysics Data System (ADS)

    Longley, B. Jack; Tyrrell, Lynda; Ma, Yongsheng; Williams, David A.; Halaban, Ruth; Langley, Keith; Lu, Hsieng S.; Schechter, Norman M.

    1997-08-01

    Stem cell factor (SCF) is produced by stromal cells as a membrane-bound molecule, which may be proteolytically cleaved at a site close to the membrane to produce a soluble bioactive form. The proteases producing this cleavage are unknown. In this study, we demonstrate that human mast cell chymase, a chymotrypsin-like protease, cleaves SCF at a novel site. Cleavage is at the peptide bond between Phe-158 and Met-159, which are encoded by exon 6 of the SCF gene. This cleavage results in a soluble bioactive product that is 7 amino acids shorter at the C terminus than previously identified soluble SCF. This research shows the identification of a physiologically relevant enzyme that specifically cleaves SCF. Because mast cells express the KIT protein, the receptor for SCF, and respond to SCF by proliferation and degranulation, this observation identifies a possible feedback loop in which chymase released from mast cell secretory granules may solubilize SCF bound to the membrane of surrounding stromal cells. The liberated soluble SCF may in turn stimulate mast cell proliferation and differentiated functions; this loop could contribute to abnormal accumulations of mast cells in the skin and hyperpigmentation at sites of chronic cutaneous inflammation.

  6. Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses.

    PubMed

    Eckhard, Ulrich; Huesgen, Pitter F; Schilling, Oliver; Bellac, Caroline L; Butler, Georgina S; Cox, Jennifer H; Dufour, Antoine; Goebeler, Verena; Kappelhoff, Reinhild; Keller, Ulrich Auf dem; Klein, Theo; Lange, Philipp F; Marino, Giada; Morrison, Charlotte J; Prudova, Anna; Rodriguez, David; Starr, Amanda E; Wang, Yili; Overall, Christopher M

    2016-01-01

    leucine locked in S1'. Similar negative cooperativity between P3 proline and the novel preference for asparagine in P1 cements our conclusion that non-prime side flexibility greatly impacts MMP binding affinity and cleavage efficiency. Thus, unexpected sequence cooperativity consequences were revealed by PICS that uniquely encompasses both the non-prime and prime sides flanking the proteomic-pinpointed scissile bond.

  7. Bonded Lubricants

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Another spinoff to the food processing industry involves a dry lubricant developed by General Magnaplate Corp. of Linden, N.J. Used in such spacecraft as Apollo, Skylab and Viking, the lubricant is a coating bonded to metal surfaces providing permanent lubrication and corrosion resistance. The coating lengthens equipment life and permits machinery to be operated at greater speed, thus increasing productivity and reducing costs. Bonded lubricants are used in scores of commercia1 applications. They have proved particularly valuable to food processing firms because, while increasing production efficiency, they also help meet the stringent USDA sanitation codes for food-handling equipment. For example, a cookie manufacturer plagued production interruptions because sticky batter was clogging the cookie molds had the brass molds coated to solve the problem. Similarly, a pasta producer faced USDA action on a sanitation violation because dough was clinging to an automatic ravioli-forming machine; use of the anti-stick coating on the steel forming plates solved the dual problem of sanitation deficiency and production line downtime.

  8. Chelation-assisted regioselective C-O bond clevage reactions

    SciTech Connect

    Sue-Min Yeh; yu-Huei Chen; Ruey-Min Chen

    1995-12-31

    Chelation demonstrates a unique role to direct the chemo- and regioselectivity on a variety of fascinating transformations. The strategy has been extensively employed in the regioselective intramolecular addition of an organometallic species to a coordinated double bond and in the activation of a neighboring C-H bond. In this paper, the authors present the recent progress on applications of the chelation-assisted C-O bond cleavage reactions in acetals. Thus, treatments of various acetonides of monosaccharide and inositol derivatives with the Grignard reagent afford regioselectively the corresponding products having only one free hydroxy group.

  9. Fully Borylated Methane and Ethane by Ruthenium-Mediated Cleavage and Coupling of CO.

    PubMed

    Batsanov, Andrei S; Cabeza, Javier A; Crestani, Marco G; Fructos, Manuel R; García-Álvarez, Pablo; Gille, Marie; Lin, Zhenyang; Marder, Todd B

    2016-04-01

    Many transition-metal complexes and some metal-free compounds are able to bind carbon monoxide, a molecule which has the strongest chemical bond in nature. However, very few of them have been shown to induce the cleavage of its C-O bond and even fewer are those that are able to transform CO into organic reagents with potential in organic synthesis. This work shows that bis(pinacolato)diboron, B2pin2, reacts with ruthenium carbonyl to give metallic complexes containing borylmethylidyne (CBpin) and diborylethyne (pinBC≡CBpin) ligands and also metal-free perborylated C1 and C2 products, such as C(Bpin)4 and C2 (Bpin)6, respectively, which have great potential as building blocks for Suzuki-Miyaura cross-coupling and other reactions. The use of (13)CO-enriched ruthenium carbonyl has demonstrated that the boron-bound carbon atoms of all of these reaction products arise from CO ligands.

  10. Calcium waves along the cleavage furrows in cleavage-stage Xenopus embryos and its inhibition by heparin

    PubMed Central

    1996-01-01

    Calcium signaling is known to be associated with cytokinesis; however, the detailed spatio-temporal pattern of calcium dynamics has remained unclear. We have studied changes of intracellular free calcium in cleavage-stage Xenopus embryos using fluorescent calcium indicator dyes, mainly Calcium Green-1. Cleavage formation was followed by calcium transients that localized to cleavage furrows and propagated along the furrows as calcium waves. The calcium transients at the cleavage furrows were observed at each cleavage furrow at least until blastula stage. The velocity of the calcium waves at the first cleavage furrow was approximately 3 microns/s, which was much slower than that associated with fertilization/egg activation. These calcium waves traveled only along the cleavage furrows and not in the direction orthogonal to the furrows. These observations imply that there exists an intracellular calcium-releasing activity specifically associated with cleavage furrows. The calcium waves occurred in the absence of extracellular calcium and were inhibited in embryos injected with heparin an inositol 1,4,5-trisphosphate (InsP3) receptor antagonist. These results suggest that InsP3 receptor-mediated calcium mobilization plays an essential role in calcium wave formation at the cleavage furrows. PMID:8858172

  11. Alkali Metal Control over N–N Cleavage in Iron Complexes

    PubMed Central

    2015-01-01

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber–Bosch process, there is still ambiguity about the number of Fe atoms involved during the N–N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe–N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N–N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N–N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2. PMID:25412468

  12. The oxygenase CAO-1 of Neurospora crassa is a resveratrol cleavage enzyme.

    PubMed

    Díaz-Sánchez, Violeta; Estrada, Alejandro F; Limón, M Carmen; Al-Babili, Salim; Avalos, Javier

    2013-09-01

    The genome of the ascomycete Neurospora crassa encodes CAO-1 and CAO-2, two members of the carotenoid cleavage oxygenase family that target double bonds in different substrates. Previous studies demonstrated the role of CAO-2 in cleaving the C40 carotene torulene, a key step in the synthesis of the C35 apocarotenoid pigment neurosporaxanthin. In this work, we investigated the activity of CAO-1, assuming that it may provide retinal, the chromophore of the NOP-1 rhodopsin, by cleaving β-carotene. For this purpose, we tested CAO-1 activity with carotenoid substrates that were, however, not converted. In contrast and consistent with its sequence similarity to family members that act on stilbenes, CAO-1 cleaved the interphenyl Cα-Cβ double bond of resveratrol and its derivative piceatannol. CAO-1 did not convert five other similar stilbenes, indicating a requirement for a minimal number of unmodified hydroxyl groups in the stilbene background. Confirming its biological function in converting stilbenes, adding resveratrol led to a pronounced increase in cao-1 mRNA levels, while light, a key regulator of carotenoid metabolism, did not alter them. Targeted Δcao-1 mutants were not impaired by the presence of resveratrol, a phytoalexin active against different fungi, which did not significantly affect the growth and development of wild-type Neurospora. However, under partial sorbose toxicity, the Δcao-1 colonies exhibited faster radial growth than control strains in the presence of resveratrol, suggesting a moderate toxic effect of resveratrol cleavage products.

  13. Alkali metal control over N-N cleavage in iron complexes.

    PubMed

    Grubel, Katarzyna; Brennessel, William W; Mercado, Brandon Q; Holland, Patrick L

    2014-12-01

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber-Bosch process, there is still ambiguity about the number of Fe atoms involved during the N-N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe-N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N-N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N-N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2. PMID:25412468

  14. Rapid, Reversible Heterolytic Cleavage of Bound H2

    SciTech Connect

    Hulley, Elliott B.; Welch, Kevin D.; Appel, Aaron M.; DuBois, Daniel L.; Bullock, R. Morris

    2013-07-26

    Heterolytic cleavage of the H-H bond of H2 into a proton and hydride is a fundamentally important step in reactions of hydrogenase enzymes, oxidation of hydrogen in fuel cells, and catalytic hydrogenation of organic compounds. Incorporation of a pendant amine as a proton acceptor has been shown to facilitate reactions of the [FeFe]-hydrogenase enzyme as well as synthetic catalysts for oxidation of H2. We report the facile, reversible heterolytic cleavage of H2 in a Mn complex bearing a pendant amine, leading to an Mn-H and N-H bond, with an estimated rate of >107 s-1 at 25 ºC. We thank the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, for support of the initial parts of this work. Current work is supported by the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  15. DNA Methylation Reduces Binding and Cleavage by Bleomycin

    PubMed Central

    2015-01-01

    In a recent study, we described the enhanced double-strand cleavage of hairpin DNAs by Fe·bleomycin (Fe·BLM) that accompanies increasingly strong binding of this antitumor agent and suggested that this effect may be relevant to the mechanism by which BLM mediates its antitumor effects. Because the DNA in tumor cells is known to be hypomethylated on cytidine relative to that in normal cells, it seemed of interest to study the possible effects of methylation status on BLM-induced double-strand DNA cleavage. Three hairpin DNAs found to bind strongly to bleomycin, and their methylated counterparts, were used to study the effect of methylation on bleomycin-induced DNA degradation. Under conditions of limited DNA cleavage, there was a significant overall decrease in the cleavage of methylated hairpin DNAs. Cytidine methylation was found to result in decreased BLM-induced cleavage at the site of methylation and to result in enhanced cleavage at adjacent nonmethylated sites. For two of the three hairpin DNAs studied, methylation was accompanied by a dramatic decrease in the binding affinity for Fe·BLM, suggesting the likelihood of diminished double-strand cleavage. The source of the persistent binding of BLM by the third hairpin DNA was identified. Also identified was the probable molecular mechanism for diminished binding and cleavage of the methylated DNAs by BLM. The possible implications of these findings for the antitumor selectivity of bleomycin are discussed. PMID:25187079

  16. A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments.

    PubMed

    Rodrigo, María J; Alquézar, Berta; Alós, Enriqueta; Medina, Víctor; Carmona, Lourdes; Bruno, Mark; Al-Babili, Salim; Zacarías, Lorenzo

    2013-11-01

    Citrus is the first tree crop in terms of fruit production. The colour of Citrus fruit is one of the main quality attributes, caused by the accumulation of carotenoids and their derivative C30 apocarotenoids, mainly β-citraurin (3-hydroxy-β-apo-8'-carotenal), which provide an attractive orange-reddish tint to the peel of oranges and Mandarins. Though carotenoid biosynthesis and its regulation have been extensively studied in Citrus fruits, little is known about the formation of C30 apocarotenoids. The aim of this study was to the identify carotenoid cleavage enzyme(s) [CCD(s)] involved in the peel-specific C30 apocarotenoids. In silico data mining revealed a new family of five CCD4-type genes in Citrus. One gene of this family, CCD4b1, was expressed in reproductive and vegetative tissues of different Citrus species in a pattern correlating with the accumulation of C30 apocarotenoids. Moreover, developmental processes and treatments which alter Citrus fruit peel pigmentation led to changes of β-citraurin content and CCD4b1 transcript levels. These results point to the involvement of CCD4b1 in β-citraurin formation and indicate that the accumulation of this compound is determined by the availability of the presumed precursors zeaxanthin and β-cryptoxanthin. Functional analysis of CCD4b1 by in vitro assays unequivocally demonstrated the asymmetric cleavage activity at the 7',8' double bond in zeaxanthin and β-cryptoxanthin, confirming its role in C30 apocarotenoid biosynthesis. Thus, a novel plant carotenoid cleavage activity targeting the 7',8' double bond of cyclic C40 carotenoids has been identified. These results suggest that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration.

  17. A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments

    PubMed Central

    Rodrigo, María J.; Alquézar, Berta; Al-Babili, Salim

    2013-01-01

    Citrus is the first tree crop in terms of fruit production. The colour of Citrus fruit is one of the main quality attributes, caused by the accumulation of carotenoids and their derivative C30 apocarotenoids, mainly β-citraurin (3-hydroxy-β-apo-8′-carotenal), which provide an attractive orange-reddish tint to the peel of oranges and mandarins. Though carotenoid biosynthesis and its regulation have been extensively studied in Citrus fruits, little is known about the formation of C30 apocarotenoids. The aim of this study was to the identify carotenoid cleavage enzyme(s) [CCD(s)] involved in the peel-specific C30 apocarotenoids. In silico data mining revealed a new family of five CCD4-type genes in Citrus. One gene of this family, CCD4b1, was expressed in reproductive and vegetative tissues of different Citrus species in a pattern correlating with the accumulation of C30 apocarotenoids. Moreover, developmental processes and treatments which alter Citrus fruit peel pigmentation led to changes of β-citraurin content and CCD4b1 transcript levels. These results point to the involvement of CCD4b1 in β-citraurin formation and indicate that the accumulation of this compound is determined by the availability of the presumed precursors zeaxanthin and β-cryptoxanthin. Functional analysis of CCD4b1 by in vitro assays unequivocally demonstrated the asymmetric cleavage activity at the 7′,8′ double bond in zeaxanthin and β-cryptoxanthin, confirming its role in C30 apocarotenoid biosynthesis. Thus, a novel plant carotenoid cleavage activity targeting the 7′,8′ double bond of cyclic C40 carotenoids has been identified. These results suggest that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration. PMID:24006419

  18. DNAzyme hybridization, cleavage, degradation, and sensing in undiluted human blood serum.

    PubMed

    Zhou, Wenhu; Chen, Qingyun; Huang, Po-Jung Jimmy; Ding, Jinsong; Liu, Juewen

    2015-04-01

    RNA-cleaving DNAzymes provide a unique platform for developing biosensors. However, a majority of the work has been performed in clean buffer solutions, while the activity of some important DNAzymes in biological sample matrices is still under debate. Two RNA-cleaving DNAzymes (17E and 10-23) are the most widely used. In this work, we carefully studied a few key aspects of the 17E DNAzyme in human blood serum, including hybridization, cleavage activity, and degradation kinetics. Since direct fluorescence monitoring is difficult due to the opacity of serum, denaturing and nondenaturing gel electrophoresis were combined for studying the interaction between serum proteins and DNAzymes. The 17E DNAzyme retains its activity in 90% human blood serum with a cleavage rate of 0.04 min(-1), which is similar to that in the PBS buffer (0.06 min(-1)) with a similar ionic strength. The activity in serum can be accelerated to 0.3 min(-1) with an additional 10 mM Ca(2+). As compared to 17E, the 10-23 DNAzyme produces negligible cleavage in serum. Degradation of both the substrate and the DNAzyme strand is very slow in serum, especially at room temperature. Degradation occurs mainly at the fluorophore label (linked to DNA via an amide bond) instead of the DNA phosphodiester bonds. Serum proteins can bind more tightly to the 17E DNAzyme complex than to the single-stranded substrate or enzyme. The 17E DNAzyme hybridizes extremely fast in serum. With this understanding, the detection of DNA using the 17E DNAzyme is demonstrated in serum.

  19. Is QSO 1146 + 111B,C due to lensing by a cosmic string?

    NASA Technical Reports Server (NTRS)

    Gott, J. R., III

    1986-01-01

    A newly discovered lens candidate, QSO 1146 + 111B,C, is discussed which appears to consist of two images of equal brightness of a quasar at redshift 1.01 separated by 2.6 arcmin. If this is produced by a cosmic string, its mass per unit length is about 4.0 x 10 to the 23rd g/cm or more. This value is large enough to be interesting for string-assisted galaxy formation and near the upper limits implied by the isotropy of the cosmic microwave background and constraints on gravitational radiation.

  20. OPS MCC level B/C formulation requirements: Area targets and space volumes processor

    NASA Technical Reports Server (NTRS)

    Bishop, M. J., Jr.

    1979-01-01

    The level B/C mathematical specifications for the area targets and space volume processor (ATSVP) as well as the characteristics of the system are provided. The mathematical equation necessary to determine whether the spacecraft lies within the area target or space volume is presented. A semianalytical technique for predicting the acquisition of signal (AOS) and loss of signal (LOS) time periods is discussed. A functional overview of the ATSVP which includes an outline of the process required to determine precise AOS and LOS times are given.

  1. The history of medical libraries from 2000 B.C. to 1900 A.D.

    PubMed

    Birchette, K P

    1973-07-01

    Tablets said to date back to 2000 b.c. represent the earliest medical writings so far discovered. The history of the medical library (defined as a place where a collection of medical writings is kept) is traced through ancient and medieval civilizations, and the dependence of advancement or decline on the attitude toward learning and knowledge is demonstrated.The change in structure of medical libraries that took place around the 1500s with the development of scientific societies is discussed. Medical libraries of Colonial America are described and the history is brought forward to the era of public library collections of medical material in the early 1900s.

  2. Identification of the diamond-like B-C phase by confocal Raman spectroscopy.

    PubMed

    Zinin, P V; Kudryashov, I; Konishi, N; Ming, L C; Solozhenko, V L; Sharma, S K

    2005-08-01

    The new diamond-like B-C phase was obtained from the graphite-like BC phase in a laser-heated diamond anvil cell at high temperature 2230+/-140 K and high pressure 45 GPa. Raman spectra of the new phase measured at ambient conditions revealed a peak at 1315 cm(-1), which was attributed to longitudinal-optical (LO) mode. The X-Y Raman mapping was used to investigate spatial distribution of the diamond-like phases and was shown to be a powerful tool in studying the sp(2)-to-sp(3) phase transformations occurring in the diamond cell under high temperature and high pressure.

  3. Soil arsenic contamination in the Cape Region, B.C.S., Mexico.

    PubMed

    Naranjo-Pulido, A; Romero-Schmidt, H; Mendez-Rodriguez, L; Acosta-Vargas, B; Ortega-Rubio, A

    2002-10-01

    We evaluated the content of arsenic in soils of an abandoned mining zone in the Cape Region, B.C.S. During June to August 1997, we were in the field sampling these soils. The concentration of arsenic was determined using the Chapman and Parket techniques. The results were statistically analyzed by ANOVA tests. Our results indicate that all the soils sampled in the region exceed the environmental limit (2 mg/K) established by Galvan and Corey (1987). According to the data found the more probable cause of this soil arsenic contamination is the rainy runoff.

  4. The History of Medical Libraries from 2000 B.C. to 1900 A.D

    PubMed Central

    Birchette, Kathleen P.

    1973-01-01

    Tablets said to date back to 2000 b.c. represent the earliest medical writings so far discovered. The history of the medical library (defined as a place where a collection of medical writings is kept) is traced through ancient and medieval civilizations, and the dependence of advancement or decline on the attitude toward learning and knowledge is demonstrated. The change in structure of medical libraries that took place around the 1500s with the development of scientific societies is discussed. Medical libraries of Colonial America are described and the history is brought forward to the era of public library collections of medical material in the early 1900s. PMID:4579768

  5. Walter Miles, Pop Warner, B. C. Graves, and the psychology of football.

    PubMed

    Baugh, Frank G; Benjamin, Ludy T

    2006-01-01

    In 1926-1927, a graduate student, B. C. Graves, working with Stanford University psychologist Walter Miles and legendary football coach Pop Warner, conducted an investigation of variations in signal calling as they affected the charging times of football players. The study was one of two that involved Miles and the ingenious multiple chronograph that he had invented to time the reactions of seven players simultaneously. These studies represented a brief digression in the career of Miles, who certainly was no sport psychologist. They tell of an interesting collaboration between scientist and coaches that produced one of the richest studies in sport psychology in the first half of the twentieth century.

  6. Cleavage factor Im (CFIm) as a regulator of alternative polyadenylation.

    PubMed

    Hardy, Jessica G; Norbury, Chris J

    2016-08-15

    Most mammalian protein coding genes are subject to alternative cleavage and polyadenylation (APA), which can generate distinct mRNA 3'UTRs with differing regulatory potential. Although this process has been intensely studied in recent years, it remains unclear how and to what extent cleavage site selection is regulated under different physiological conditions. The cleavage factor Im (CFIm) complex is a core component of the mammalian cleavage machinery, and the observation that its depletion causes transcriptome-wide changes in cleavage site use makes it a key candidate regulator of APA. This review aims to summarize current knowledge of the CFIm complex, and explores the evidence surrounding its potential contribution to regulation of APA. PMID:27528751

  7. Follow-on cable coupling lightning test. Volume 2: Appendixes A, B, C, and D

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following information from the follow-on cable coupling lightning test of the Space Shuttle Booster is presented: (1) resistance measurements (cover-to-cover and cover-to-floor plate); (2) resistance measurements (external bond strap-to-case); (3) resistance measurements (internal bond strap-to-case) and; (4) follow-on cable coupling lightning test data plots. The bulk of the document comprises the follow-on cable coupling lightning test data plots.

  8. Global analyses of endonucleolytic cleavage in mammals reveal expanded repertoires of cleavage-inducing small RNAs and their targets

    PubMed Central

    Cass, Ashley A.; Bahn, Jae Hoon; Lee, Jae-Hyung; Greer, Christopher; Lin, Xianzhi; Kim, Yong; Hsiao, Yun-Hua Esther; Xiao, Xinshu

    2016-01-01

    In mammals, small RNAs are important players in post-transcriptional gene regulation. While their roles in mRNA destabilization and translational repression are well appreciated, their involvement in endonucleolytic cleavage of target RNAs is poorly understood. Very few microRNAs are known to guide RNA cleavage. Endogenous small interfering RNAs are expected to induce target cleavage, but their target genes remain largely unknown. We report a systematic study of small RNA-mediated endonucleolytic cleavage in mouse through integrative analysis of small RNA and degradome sequencing data without imposing any bias toward known small RNAs. Hundreds of small cleavage-inducing RNAs and their cognate target genes were identified, significantly expanding the repertoire of known small RNA-guided cleavage events. Strikingly, both small RNAs and their target sites demonstrated significant overlap with retrotransposons, providing evidence for the long-standing speculation that retrotransposable elements in mRNAs are leveraged as signals for gene targeting. Furthermore, our analysis showed that the RNA cleavage pathway is also present in human cells but affecting a different repertoire of retrotransposons. These results show that small RNA-guided cleavage is more widespread than previously appreciated. Their impact on retrotransposons in non-coding regions shed light on important aspects of mammalian gene regulation. PMID:26975654

  9. Regulation of cytokine-inducible SH2-containing protein (CIS) by ubiquitination and Elongin B/C interaction.

    PubMed

    Jensik, Philip J; Arbogast, Lydia A

    2015-02-01

    Cytokine-inducible SH2-containing protein (CIS) inhibits prolactin receptor (PRLR) signaling and acts as part of an E3 ubiquitin ligase complex through interactions with Elongin B/C proteins. This study aimed to identify CIS lysine ubiquitination sites and determine roles of ubiquitination and Elongin B/C interactions on CIS protein stability and PRLR signaling inhibition. Site-directed mutations revealed that CIS can be ubiquitinated on all six lysine residues. Elongin B/C interaction box mutation had no influence on CIS ubiquitination. CIS stability was increased by mutation of lysine residues and further enhanced by co-mutation of Elongin B/C interaction domain. CIS inhibition of STAT5B phosphorylation and casein promoter activation was dependent on CIS interactions with Elongin B/C, but not on CIS ubiquitination. These data indicate CIS protein stability is regulated through multiple mechanisms, including ubiquitination and interaction with Elongin B/C proteins, whereas CIS functional inhibition of PRLR signaling is dependent on the Elongin B/C interaction.

  10. Early (300−100 B.C.) temple precinct in the Valley of Oaxaca, Mexico

    PubMed Central

    Redmond, Elsa M.; Spencer, Charles S.

    2013-01-01

    Archaeological investigations during the past two decades in Mexico’s Valley of Oaxaca have documented the appearance of key public buildings, such as the royal palace and multiroom temple, associated with the rise of an archaic state at ca. 300−100 B.C. A fuller picture is now emerging from the site of El Palenque, where recent excavations have defined a temple precinct on the east side of the site’s plaza. This precinct exhibits characteristics similar to those of the temple precincts of later Mesoamerican states described by Colonial period sources. The excavation data document a walled enclosure containing three multiroom temples, two special residences identified as priests’ residences, and an array of ritual features and activity areas. The temple precinct’s components are interpreted as comprising a hierarchy of temples staffed by a specialized priesthood. A series of radiocarbon dates indicate that the precinct’s differentiated components were all in use during the 300−100 B.C. period of archaic state emergence. The El Palenque temple precinct is the earliest temple precinct excavated thus far in the Valley of Oaxaca. PMID:23610387

  11. [Ebers Papyrus. The book of medical knowledge of the 16th century B.C. Egyptians].

    PubMed

    Hallmann-Mikołajczak, Aleksandra

    2004-01-01

    In 2nd century B.C. Clemens Alexanrinus was sure, that the Egyptians collected all their knowledge in 42 secret books. of which last six contained medical knowledge. Despite this and records of other ancient authors, for long time the opinion about the history of medicine was not changed. In traditional view the role of Hippocrates and the Greeks was emphasized. In 19th century egyptologist began finding Egyptian papyri, whose contents concerned medical matters. The first medical papyrus was published by Georg Ebers in 1875. The Ebers Papyrus is a scroll 20,23 meters in length and contains 108 columns of text. I is dated at the reign of Amenophis I (1536 B.C.). This papyrus was published and translated by different researches (the most valuable is German edition Grundriss de Medizin de alten ägypter, and based on this Paul Ghalioungui edition). In the opinion of Grundriss, chaotic arrangement of medical advices in papyrus suggest different originals from which they drew. The text of The Ebers Papyrus is ordered in series of prescriptions, which are grouped according to different diseases, illnesses and injuries. ALmost all of those groups have introduction by the formula: "Here begins.." used on 36 occasions. They are, however, often varied and disorganised. The owner of this papyrus was probably a physician - the text mentions about "physician secrets". Herodotus writes, that Egyptian physicians were specialized, which seems to be confirmed by The Ebers Papyrus.

  12. Early (300-100 B.C.) temple precinct in the Valley of Oaxaca, Mexico.

    PubMed

    Redmond, Elsa M; Spencer, Charles S

    2013-05-01

    Archaeological investigations during the past two decades in Mexico's Valley of Oaxaca have documented the appearance of key public buildings, such as the royal palace and multiroom temple, associated with the rise of an archaic state at ca. 300-100 B.C. A fuller picture is now emerging from the site of El Palenque, where recent excavations have defined a temple precinct on the east side of the site's plaza. This precinct exhibits characteristics similar to those of the temple precincts of later Mesoamerican states described by Colonial period sources. The excavation data document a walled enclosure containing three multiroom temples, two special residences identified as priests' residences, and an array of ritual features and activity areas. The temple precinct's components are interpreted as comprising a hierarchy of temples staffed by a specialized priesthood. A series of radiocarbon dates indicate that the precinct's differentiated components were all in use during the 300-100 B.C. period of archaic state emergence. The El Palenque temple precinct is the earliest temple precinct excavated thus far in the Valley of Oaxaca.

  13. Early (300-100 B.C.) temple precinct in the Valley of Oaxaca, Mexico.

    PubMed

    Redmond, Elsa M; Spencer, Charles S

    2013-05-01

    Archaeological investigations during the past two decades in Mexico's Valley of Oaxaca have documented the appearance of key public buildings, such as the royal palace and multiroom temple, associated with the rise of an archaic state at ca. 300-100 B.C. A fuller picture is now emerging from the site of El Palenque, where recent excavations have defined a temple precinct on the east side of the site's plaza. This precinct exhibits characteristics similar to those of the temple precincts of later Mesoamerican states described by Colonial period sources. The excavation data document a walled enclosure containing three multiroom temples, two special residences identified as priests' residences, and an array of ritual features and activity areas. The temple precinct's components are interpreted as comprising a hierarchy of temples staffed by a specialized priesthood. A series of radiocarbon dates indicate that the precinct's differentiated components were all in use during the 300-100 B.C. period of archaic state emergence. The El Palenque temple precinct is the earliest temple precinct excavated thus far in the Valley of Oaxaca. PMID:23610387

  14. Peptidase specificity from the substrate cleavage collection in the MEROPS database and a tool to measure cleavage site conservation

    PubMed Central

    Rawlings, Neil D.

    2016-01-01

    One peptidase can usually be distinguished from another biochemically by its action on proteins, peptides and synthetic substrates. Since 1996, the MEROPS database (http://merops.sanger.ac.uk) has accumulated a collection of cleavages in substrates that now amounts to 66,615 cleavages. The total number of peptidases for which at least one cleavage is known is 1700 out of a total of 2457 different peptidases. This paper describes how the cleavages are obtained from the scientific literature, how they are annotated and how cleavages in peptides and proteins are cross-referenced to entries in the UniProt protein sequence database. The specificity profiles of 556 peptidases are shown for which ten or more substrate cleavages are known. However, it has been proposed that at least 40 cleavages in disparate proteins are required for specificity analysis to be meaningful, and only 163 peptidases (6.6%) fulfil this criterion. Also described are the various displays shown on the website to aid with the understanding of peptidase specificity, which are derived from the substrate cleavage collection. These displays include a logo, distribution matrix, and tables to summarize which amino acids or groups of amino acids are acceptable (or not acceptable) in each substrate binding pocket. For each protein substrate, there is a display to show how it is processed and degraded. Also described are tools on the website to help with the assessment of the physiological relevance of cleavages in a substrate. These tools rely on the hypothesis that a cleavage site that is conserved in orthologues is likely to be physiologically relevant, and alignments of substrate protein sequences are made utilizing the UniRef50 database, in which in each entry sequences are 50% or more identical. Conservation in this case means substitutions are permitted only if the amino acid is known to occupy the same substrate binding pocket from at least one other substrate cleaved by the same peptidase. PMID

  15. Cleavage of tRNA with imidazole and spermine imidazole constructs: a new approach for probing RNA structure.

    PubMed Central

    Vlassov, V V; Zuber, G; Felden, B; Behr, J P; Giegé, R

    1995-01-01

    Hydrolysis of RNA in imidazole buffer and by spermine-imidazole conjugates has been investigated. The RNA models were yeast tRNA(Asp) and a transcript derived from the 3'-terminal sequence of tobacco mosaic virus RNA representing a minihelix capable of being enzymatically aminoacylated with histidine. Imidazole buffer and spermine-imidazole conjugates in the presence of free imidazole cleave phosphodiester bonds in the folded RNAs in a specific fashion. Imidazole buffer induces cleavages preferentially in single-stranded regions because nucleotides in these regions have more conformational freedom and can assume more easily the geometry needed for formation of the hydrolysis intermediate state. Spermine-imidazole constructs supplemented with free imidazole cleave tRNA(Asp) within single-stranded regions after pyrimidine residues with a marked preference for pyrimidine-A sequences. Hydrolysis patterns suggest a cleavage mechanism involving an attack by the imidazole residue of the electrostatically bound spermine-imidazole and by free imidazole at the most accessible single-stranded regions of the RNA. Cleavages in a viral RNA fragment recapitulating a tRNA-like domain were found in agreement with the model of this molecule that accounts for its functional properties, thus illustrating the potential of the imidazole-derived reagents as structural probes for solution mapping of RNAs. The cleavage reactions are simple to perform, provide information reflecting the state of the ribose-phosphate backbone of RNA and can be used for mapping single- and double-stranded regions in RNAs. Images PMID:7667092

  16. Measurement of the cleavage energy of graphite

    PubMed Central

    Wang, Wen; Dai, Shuyang; Li, Xide; Yang, Jiarui; Srolovitz, David J.; Zheng, Quanshui

    2015-01-01

    The basal plane cleavage energy (CE) of graphite is a key material parameter for understanding many of the unusual properties of graphite, graphene and carbon nanotubes. Nonetheless, a wide range of values for the CE has been reported and no consensus has yet emerged. Here we report the first direct, accurate experimental measurement of the CE of graphite using a novel method based on the self-retraction phenomenon in graphite. The measured value, 0.37±0.01 J m−2 for the incommensurate state of bicrystal graphite, is nearly invariant with respect to temperature (22 °C≤T≤198 °C) and bicrystal twist angle, and insensitive to impurities from the atmosphere. The CE for the ideal ABAB graphite stacking, 0.39±0.02 J m−2, is calculated based on a combination of the measured CE and a theoretical calculation. These experimental measurements are also ideal for use in evaluating the efficacy of competing theoretical approaches. PMID:26314373

  17. Quantification of DNA cleavage specificity in Hi-C experiments.

    PubMed

    Meluzzi, Dario; Arya, Gaurav

    2016-01-01

    Hi-C experiments produce large numbers of DNA sequence read pairs that are typically analyzed to deduce genomewide interactions between arbitrary loci. A key step in these experiments is the cleavage of cross-linked chromatin with a restriction endonuclease. Although this cleavage should happen specifically at the enzyme's recognition sequence, an unknown proportion of cleavage events may involve other sequences, owing to the enzyme's star activity or to random DNA breakage. A quantitative estimation of these non-specific cleavages may enable simulating realistic Hi-C read pairs for validation of downstream analyses, monitoring the reproducibility of experimental conditions and investigating biophysical properties that correlate with DNA cleavage patterns. Here we describe a computational method for analyzing Hi-C read pairs to estimate the fractions of cleavages at different possible targets. The method relies on expressing an observed local target distribution downstream of aligned reads as a linear combination of known conditional local target distributions. We validated this method using Hi-C read pairs obtained by computer simulation. Application of the method to experimental Hi-C datasets from murine cells revealed interesting similarities and differences in patterns of cleavage across the various experiments considered.

  18. Development of early composite cleavage in pelites from West Donegal

    NASA Astrophysics Data System (ADS)

    Meneilly, A. W.

    In the Portnoo-Rosbeg area of west Donegal the main penetrative cleavage, S2, generally dips to the south with F2 folds facing up to the north. In places the S2 cleavage is cut by a gently SW-dipping crenulation cleavage ( S3) verging and facing south on the long limbs of F2 folds. A series of structural domains have been mapped in which the relationship of S2 and S3 changes from cross-cutting at a large angle (Rosbeg domain) to the development of a composite S {2}/{3} cleavage (Portnoo domain). The relationship between the two phases and the composite cleavage was investigated by mapping out cleavages (megascopic scale), detailed mesoscopic field observations and on a microscopic scale using textural relationships to widespread post D2-pre D3 garnet porphyroblasts. In addition to demonstrating the composite nature of the cleavage, the examples of D2/ D3 interference and the rotation of, and drag patterns around, the garnet porphyroblasts allow discussion of the kinematics of D3. D3 appears to have involved either bulk pure shear or north-directed bulk simple shear, or any intermediate type of deformation history, and was promoted by southerly directed active slip parallel to S2.

  19. [On the classification of the cleavage patterns in amphibian embryos].

    PubMed

    Desnitskiĭ, A G

    2014-01-01

    This paper presents a brief survey and preliminary classification of embryonic cleavage patterns in the class Amphibia. We use published data on 41 anuran and 22 urodele species concerning the character of the third cleavage furrow (latitudinal or longitudinal) and the stage of transition from synchronous to asynchronous blastomere divisions in the animal hemisphere (4-8-celled stage, 8-16-celled stage or later). Based on this, four patterns of amphibian embryonic cleavage are recognized, and an attempt to elucidate the evolutionary relationships among these patterns is undertaken. The so-called "standard" cleavage pattern (the extensive series of synchronous blastomere divisions including latitudinal furrows of the third cleavage) with the typical model species Ambystoma mexicanum and Xenopus laevis seems to be derived and probably originated independently in the orders Anura and Caudata. The ancestral amphibian cleavage pattern seems to be represented by species with longitudinal furrows of the third cleavage and the loss ofsynchrony as early as the 8-celled stage (such as in primitive urodele species from the family Cryptobranchidae). PMID:25720261

  20. Heterolytic cleavage of peroxide by a diferrous compound generates metal-based intermediates identical to those observed with reactions utilizing oxygen-atom-donor molecules.

    PubMed

    Rowe, Gerard T; Rybak-Akimova, Elena V; Caradonna, John P

    2008-01-01

    Under cryogenic stopped-flow conditions, addition of 2-methyl-1-phenylprop-2-yl hydroperoxide (MPPH) to the diiron(II) compound, [Fe(2)(H(2)Hbamb)(2)(NMeIm)(2)] (1; NMeIm=N-methylimidazole; H(4)HBamb: 2,3-bis(2-hydroxybenzamido)dimethylbutane) results in heterolytic peroxide O-O bond cleavage, forming a high-valent species, 2. The UV/Vis spectrum of 2 and its kinetic behavior suggest parallel reactivity to that seen in the reaction of 1 with oxygen-atom-donor (OAD) molecules, which has been reported previously. Like the interaction with OAD molecules, the reaction of 1 with MPPH proceeds through a three step process, assigned to oxygen-atom transfer to the iron center to form a high-valent intermediate (2), ligand rearrangement of the metal complex, and, finally, decay to a diferric mu-oxo compound. Careful examination of the order of the reaction with MPPH reveals saturation behavior. This, coupled with the anomalous non-Arrhenius behavior of the first step of the reaction, indicates that there is a preequilibrium peroxide binding step prior to O-O bond cleavage. At higher temperatures, the addition of the base, proton sponge, results in a marked decrease in the rate of O-O bond cleavage to form 2; this is assigned as a peroxide deprotonation effect, indicating that the presence of protons is an important factor in the heterolytic cleavage of peroxide. This phenomenon has been observed in other iron-containing enzymes, the catalytic cycles of which include peroxide O-O bond cleavage. PMID:18680115

  1. A glucuronoyl esterase from Acremonium alcalophilum cleaves native lignin-carbohydrate ester bonds.

    PubMed

    Arnling Bååth, Jenny; Giummarella, Nicola; Klaubauf, Sylvia; Lawoko, Martin; Olsson, Lisbeth

    2016-08-01

    The Glucuronoyl esterases (GE) have been proposed to target lignin-carbohydrate (LC) ester bonds between lignin moieties and glucuronic acid side groups of xylan, but to date, no direct observations of enzymatic cleavage on native LC ester bonds have been demonstrated. In the present investigation, LCC fractions from spruce and birch were treated with a recombinantly produced GE originating from Acremonium alcalophilum (AaGE1). A combination of size exclusion chromatography and (31) P NMR analyses of phosphitylated LCC samples, before and after AaGE1 treatment provided the first evidence for cleavage of the LC ester linkages existing in wood. PMID:27397104

  2. Detection of nucleic acid sequences by invader-directed cleavage

    DOEpatents

    Brow, Mary Ann D.; Hall, Jeff Steven Grotelueschen; Lyamichev, Victor; Olive, David Michael; Prudent, James Robert

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The 5' nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based by charge.

  3. Specific oxidative cleavage of carotenoids by VP14 of maize

    SciTech Connect

    Schwartz, S.H.; Zeevaart, J.A.D.; Gage, D.A.; Tan, Bao Cai

    1997-06-20

    The plant growth regulator abscisic acid (ABA) is formed by the oxidative cleavage of an epoxy-carotenoid. The synthesis of other apocarotenoids, such as vitamin A in animals, may occur by a similar mechanism. In ABA biosynthesis, oxidative cleavage is the first committed reaction and is believed to be the key regulatory step. A new ABA-deficient mutant of maize has been identified and the corresponding gene, Vp14, has been cloned. The recombinant VP14 protein catalyzes the cleavage of 9-cis-epoxy-carotenoids to form C{sub 25} apo-aldehydes and xanthoxin, a precursor of ABA in higher plants.

  4. Chemical Bonds II

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1972-01-01

    The continuation of a paper discussing chemical bonding from a bond energy viewpoint, with a number of examples of single and multiple bonds. (Part I appeared in volume 1 number 3, pages 16-23, February 1972.) (AL)

  5. What Determines Bond Costs. Municipal Bonds Series.

    ERIC Educational Resources Information Center

    Young, Douglas; And Others

    Public officials in small towns who participate infrequently in the bond market need information about bond financing. This publication, one in a series of booklets published by the Western Rural Development Center using research gathered between 1967-77, discusses factors influencing the marketability and cost of bond financing for towns and…

  6. The finding of eggs of Diphyllobothrium in human coprolites (4,100-1,950 B.C.) from northern Chile.

    PubMed

    Ferreira, L F; de Araújo, A J; Confalonieri, U E; Nuñez, L

    1984-01-01

    Twenty six coprolites from an archaeological site in the province of Iquique, northern Chile, were examined for parasites. Coprolites were found in two excavation units, I and II (Tiliviche site), dated respectively at 5,900 B.C. to 4,110 B.C. and 4,110 B.C. to 1,950 B.C., and identified as of human origin. Only at the unit II coprolites containing helminth eggs identified as Diphyllobothrium pacificum were found. The presence of this tapeworm, a parasite of the American Sea Lion, in human coprolites, points to a diet which included marine fishes and provides information on the antiquity of infection by Diphyllobothrium pacificum. It is interesting to note that Baer (1969) suggests the presence of this tapeworm in pre-Columbian populations when diagnosing the first human cases in today's population in Peru. PMID:6399090

  7. Calculations of Cleavage Processes, Surface Structures and Electronic Structure of Silicon and Germanium.

    NASA Astrophysics Data System (ADS)

    Chen, Bo.

    The cleavage processes, surface and step structures, and electronic structure of Si and Ge (111)2 x 1 surfaces were studied. The ab initio quantum chemistry programs KGNMOL-89 and DMol were used to study the cleavage of silicon and germanium clusters in the diamond structure. It was found that the potential energy of stretching and shearing glide planes increases much faster than for shuffle planes. The cleavage process is discussed and it is shown how glide -plane cleavage can occur, with consequences for surface structure models. The Keating strain-energy method has been applied to estimate the energies of surface and step structures on Si(111)2 x 1. Two minimum strain-energy TBS (Three -Bond Scission) model structures were obtained. Since angular strains are involved which go beyond the applicability limits of the Keating formula, a correction factor is used, derived by comparing Keating-type calculations of particular surface models of Si(111) with the results of more extensive calculations. The use of a simple correction factor gives results that agree with a calculation for the Pandey ( pi-bonded chain) model and one for the TBS model. Using this factor, a model for a 3-substep structure of the (322) step on Si is found to be quite stable, while the 2-substep structures are moderately stable. The surface band structure of the TBS and Pandey models have been computed using an ab initio HF LCAO program CRYSTAL-92. In the case of the TBS model, the results showed valence band dispersion that could be compatible with experiments. For the Pandey model, the calculated valence band dispersion seemed large. The surface band gap for both TBS and Pandey models was greatly overestimated. The significance is discussed. The surface electron density of states was calculated for the TBS model and the valence band generally matched experimental results from STM (scanning tunneling microscopy). The electron charge density of various surface regions was calculated. The

  8. Rubber oxygenase and latex clearing protein cleave rubber to different products and use different cleavage mechanisms.

    PubMed

    Birke, Jakob; Jendrossek, Dieter

    2014-08-01

    Two types of enzyme for oxidative cleavage of poly(cis-1,4-isoprene) are known. One is rubber oxygenase (RoxA) that is secreted by Xanthomonas sp. strain 35Y and a few other Gram-negative rubber-degrading bacteria during growth on polyisoprene. RoxA was studied in the past, and the recently solved structure showed a structural relationship to bacterial cytochrome c peroxidases (J. Seidel et al., Proc. Natl. Acad. Sci. U. S. A. 110:13833-13838, 2013, http://dx.doi.org/10.1073/pnas.1305560110). The other enzyme is latex-clearing protein (Lcp) that is secreted by rubber-degrading actinomycetes, but Lcp has not yet been purified. Here, we expressed Lcp of Streptomyces sp. strain K30 in a ΔroxA background of Xanthomonas sp. strain 35Y and purified native (untagged) Lcp. The specific activities of Lcp and RoxA were 0.70 and 0.48 U/mg, respectively. Lcp differed from RoxA in the absence of heme groups and other characteristics. Notably, Lcp degraded polyisoprene via endo-type cleavage to tetra-C20 and higher oligo-isoprenoids with aldehyde and keto end groups, whereas RoxA used an exo-type cleavage mechanism to give the main end product 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD). RoxA was able to cleave isolated Lcp-derived oligo-isoprenoid molecules to ODTD. Inhibitor studies, spectroscopic investigations and metal analysis gave no indication for the presence of iron, other metals, or cofactors in Lcp. Our results suggest that Lcp could be a member of the growing group of cofactor-independent oxygenases and differs in the cleavage mechanism from heme-dependent RoxA. In conclusion, RoxA and Lcp represent two different answers to the same biochemical problem, the cleavage of polyisoprene, a polymer that has carbon-carbon double bonds as the only functional groups for enzymatic attack.

  9. Synthesis of new Diamond-like B-C Phases under High Pressure and Temperatures

    SciTech Connect

    Ming, L. C.; Zinin, P. V.; Sharma, S. K.

    2014-04-22

    A cubic BC3 (c-BC3) phase was synthesized by direct transformation from graphitic phases at a pressure of 39 GPa and temperature of 2200 K in a laser-heated diamond anvil cell (DAC). A combination of x-ray diffraction (XRD), electron diffraction (ED), transmission electron microscopy (TEM) imaging, and electron energy loss spectroscopy (EELS) measurements lead us to conclude that the obtained phase is hetero-nano-diamond, c-BC3. The EELS measurements show that the atoms inside the cubic structure are bonded by sp3 bonds.

  10. Santorini eruption radiocarbon dated to 1627-1600 B.C.

    PubMed

    Friedrich, Walter L; Kromer, Bernd; Friedrich, Michael; Heinemeier, Jan; Pfeiffer, Tom; Talamo, Sahra

    2006-04-28

    Precise and direct dating of the Minoan eruption of Santorini (Thera) in Greece, a global Bronze Age time marker, has been made possible by the unique find of an olive tree, buried alive in life position by the tephra (pumice and ashes) on Santorini. We applied so-called radiocarbon wiggle-matching to a carbon-14 sequence of tree-ring segments to constrain the eruption date to the range 1627-1600 B.C. with 95.4% probability. Our result is in the range of previous, less precise, and less direct results of several scientific dating methods, but it is a century earlier than the date derived from traditional Egyptian chronologies.

  11. Ammonia scrubbing at Cominco's sulphur gas handling plants in Trail, B. C

    SciTech Connect

    Brandsenn, W. )

    1988-01-01

    This report describes the ammonia scrubbing process in the sulphur gas handling plant of Cominco's zinc operations at Trail, B.C. This scrubbing process produces ammonium sulfate fertilizer and, if desired, pure liquid sulphur dioxide. Sulphur deficiency in agricultural soil is becoming a growing concern in many parts of the world. The use of modern fertilizers increases crop yields which removes sulphur from the soil faster than it can be replenished from the atmosphere. Deliberate addition of sulphur to fertilizers is therefore required in many countries. The Cominco process combines the removal of low strength SO{sub 2} from a stackgas, and produces an end product that is the basis of ammonium sulphate fertilizer. The process does not produce any waste products which create disposal problems.

  12. Publications on fish parasites and diseases, 330 B.C.-A.D

    USGS Publications Warehouse

    McGregor, E.A.

    1963-01-01

    These references were collected in 1924, but until now this collection has been available only in manuscript form. Because of the current increased interest in this field, this bibliography is being issued to make it more generally accessible. They include the earliest known references to fish parasites (330 B.C.) as well as a nearly complete collection up to 1924. In some instances only one or two works of a more prolific researcher are cited, therefore it is recommended that the student use the Index-Catalogue of Medical and Veterinary Zoology (U. S. Department of Agriculture) freely. For more current work consult the following, of which Dogiel et al.(1958), Hoffman and Sindermann (1962), Schaperclaus (1954), and Snieszko et aL(in press) have extensive bibliographies:

  13. Highly Selective Dissociation of a Peptide Bond Following Excitation of Core Electrons.

    PubMed

    Lin, Yi-Shiue; Tsai, Cheng-Cheng; Lin, Huei-Ru; Hsieh, Tsung-Lin; Chen, Jien-Lian; Hu, Wei-Ping; Ni, Chi-Kung; Liu, Chen-Lin

    2015-06-18

    The controlled breaking of a specific chemical bond with photons in complex molecules remains a major challenge in chemistry. In principle, using the K-edge absorption of a particular atomic element, one might excite selectively a specific atomic entity in a molecule. We report here highly selective dissociation of the peptide bonds in N-methylformamide and N-methylacetamide on tuning the X-ray wavelength to the K-edge absorption of the atoms connected to (or near) the peptide bond. The high selectivity (56-71%) of this cleavage arises from the large energy shift of X-ray absorption, a large overlap of the 1s orbital and the valence π* orbital that is highly localized on a peptide bond with antibonding character, and the relatively low bond energy of the peptide bonds. These characteristics indicate that the high selectivity on bond dissociation following core excitation could be a general feature for molecules containing peptide bonds.

  14. Nitrogen dioxide reaction with proteins: Evidence for peptide bond cleavage at lysine residues

    SciTech Connect

    Hood, D.B.

    1991-01-01

    Nitrogen dioxide (NO{sub 2}), an air pollutant produced by burning fossil fuels and a component of cigarette smoke, is thought to contribute to the pathogenesis of pulmonary diseases, such as emphysema. To gain information on the mechanism by which NO{sub 2} damages the lung, in vitro exposures of {alpha}{sub 1}-proteinase inhibitor ({alpha}{sub 1}-PI), elastin, bovine serum albumin (BSA), human serum albumin (HSA) and synthetic poly-L-lysine were performed. A genetic deficiency of {alpha}{sup 1}-PI predisposes humans to emphysema and NO{sub 2} has been hypothesized to damage {alpha}{sub 1}-PI, which would leave proteases such as human neutrophil elastase, (HNE) free to attack lung structural proteins. The ability of {alpha}{sub 1}-PI to inhibit HNE declined with exposure to 50% of the control value at molar ratios of NO{sub 2}:{alpha}{sub 1}-PI of 400:1 and greater. Exposure of {alpha}{sub 1}-PI to NO{sub 2} resulted in a 50% lose of immunoreactivity with either monoclonal or polyclonal antibodies in an enzyme-linked immunosorbent assay at molar ratios of NO{sub 2}:{alpha}{sub 1}-PI of essentially 100:1 and greater. The mechanisms of these effects were investigated via ultraviolet-visible spectroscopy and amino acid analysis. The remaining target molecules were labeled by reductive methylation of amino groups with {sup 3}H-HCHO prior to treatment with NO{sub 2} in aqueous solutions at physiological pH. Time course exposure of 5 mg {sup 3}H-insoluble bovine ligamentum nuchae elastin suspensions with up to 120 {mu}moles of NO{sub 2} resulted in 90% solubilization of the label. Amino acid analysis of the soluble and insoluble fractions from these exposures confirmed that 80% of the {sup 3}H-dimethyllysine residues were in the soluble fraction.

  15. Homolytic cleavage C-C bond in the electrooxidation of ethanol and bioethanol

    NASA Astrophysics Data System (ADS)

    Barroso, J.; Pierna, A. R.; Blanco, T. C.; Morallón, E.; Huerta, F.

    Nowadays, the studies are focused on the search of better electrocatalysts that promote the complete oxidation of ethanol/bioethanol to CO 2. To that end, amorphous bi-catalytic catalysts of composition Ni 59Nb 40Pt 1- xY x (Y = Cu, Ru, x = 0.4% at.) have been developed, obtained by mechanical alloying, resulting in higher current densities and an improvement in tolerance to adsorbed CO vs. Ni 59Nb 40Pt 1 catalyst. By using voltammetric techniques, the appearance of three oxidation peaks can be observed. The first peak could be associated with the electrooxidative process of ethanol/bioethanol to acetaldehyde, the second peak could be the oxidation of acetaldehyde to acetic acid, and the last peak might be the final oxidation to CO 2. Chrono-amperometric experiments show qualitative poisoning of catalytic surfaces. However, the in situ Fourier Transformed Infrared Spectroscopy, FTIR, is used for the quasi-quantitative determination with which can be observed the appearance and evolution of different vibrational bands of carbonyl and carboxylic groups of different species, as it moves towards anodic potential in the electrooxidative process.

  16. Synthesis of arylated perylene bisimides through C-H bond cleavage under ruthenium catalysis.

    PubMed

    Nakazono, Satomi; Easwaramoorthi, Shanmugam; Kim, Dongho; Shinokubo, Hiroshi; Osuka, Atsuhiro

    2009-12-01

    Treatment of perylene bisimide (PBI) with various arylboronates in the presence of a ruthenium catalyst provides tetraarylated PBIs at 2,5,8,11-positions in good yields with perfect regioselectivity. The electronic nature of the introduced aryl substituents has a significant impact on their optical and electronic properties. This protocol has been applied to the synthesis of a water-soluble emissive PBI derivative.

  17. Detection of nucleic acids by multiple sequential invasive cleavages

    SciTech Connect

    Hall, Jeff G; Lyamichev, Victor I; Mast, Andrea L; Brow, Mary Ann D

    2012-10-16

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  18. Detection of nucleic acids by multiple sequential invasive cleavages

    SciTech Connect

    Hall, J.G.; Lyamichev, V.I.; Mast, A.L.; Brow, M.A.D.

    1999-11-30

    The present invention relates to methods for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  19. Detection of nucleic acids by multiple sequential invasive cleavages

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann D.

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  20. Detection of nucleic acids by multiple sequential invasive cleavages 02

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann D.

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  1. Mechanisms for ribotoxin-induced ribosomal RNA cleavage

    SciTech Connect

    He, Kaiyu; Zhou, Hui-Ren; Pestka, James J.

    2012-11-15

    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥ 25 ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥ 10 ng/ml) and ribosome-inactivating protein ricin (≥ 300 ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. Highlights: ► Deoxynivalenol (DON) anisomycin, satratoxin G (SG) and ricin are ribotoxins. ► Ribotoxins induce 18s and 28s rRNA cleavage in the RAW 264.7 macrophage model. ► Ribotoxins induce rRNA cleavage via

  2. Bonded half planes containing an arbitrarily oriented crack

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Aksogan, O.

    1973-01-01

    The plane elastostatic problem for two bonded half planes containing an arbitrarily oriented crack in the neighborhood of the interface is considered. Using Mellin transforms, the problem is formulated as a system of singular integral equations. The equations are solved for various crack orientations, material combinations, and external loads. The numerical results given include the stress intensity factors, tHe strain energy release rates, and tHe probable cleavage angles giving the direction of crack propagation.

  3. Internal guide RNA interactions interfere with Cas9-mediated cleavage.

    PubMed

    Thyme, Summer B; Akhmetova, Laila; Montague, Tessa G; Valen, Eivind; Schier, Alexander F

    2016-01-01

    The CRISPR/Cas system uses guide RNAs (gRNAs) to direct sequence-specific DNA cleavage. Not every gRNA elicits cleavage and the mechanisms that govern gRNA activity have not been resolved. Low activity could result from either failure to form a functional Cas9-gRNA complex or inability to recognize targets in vivo. Here we show that both phenomena influence Cas9 activity by comparing mutagenesis rates in zebrafish embryos with in vitro cleavage assays. In vivo, our results suggest that genomic factors such as CTCF inhibit mutagenesis. Comparing near-identical gRNA sequences with different in vitro activities reveals that internal gRNA interactions reduce cleavage. Even though gRNAs containing these structures do not yield cleavage-competent complexes, they can compete with active gRNAs for binding to Cas9. These results reveal that both genomic context and internal gRNA interactions can interfere with Cas9-mediated cleavage and illuminate previously uncharacterized features of Cas9-gRNA complex formation. PMID:27282953

  4. Internal guide RNA interactions interfere with Cas9-mediated cleavage

    PubMed Central

    Thyme, Summer B.; Akhmetova, Laila; Montague, Tessa G.; Valen, Eivind; Schier, Alexander F.

    2016-01-01

    The CRISPR/Cas system uses guide RNAs (gRNAs) to direct sequence-specific DNA cleavage. Not every gRNA elicits cleavage and the mechanisms that govern gRNA activity have not been resolved. Low activity could result from either failure to form a functional Cas9–gRNA complex or inability to recognize targets in vivo. Here we show that both phenomena influence Cas9 activity by comparing mutagenesis rates in zebrafish embryos with in vitro cleavage assays. In vivo, our results suggest that genomic factors such as CTCF inhibit mutagenesis. Comparing near-identical gRNA sequences with different in vitro activities reveals that internal gRNA interactions reduce cleavage. Even though gRNAs containing these structures do not yield cleavage-competent complexes, they can compete with active gRNAs for binding to Cas9. These results reveal that both genomic context and internal gRNA interactions can interfere with Cas9-mediated cleavage and illuminate previously uncharacterized features of Cas9–gRNA complex formation. PMID:27282953

  5. Cleavage fracture in high strength low alloy weld metal

    SciTech Connect

    Bose, W.W.; Bowen, P.; Strangwood, M.

    1996-12-31

    The present investigation gives an evaluation of the effect of microstructure on the cleavage fracture process of High Strength Low Alloy (HSLA) multipass weld metals. With additions of alloying elements, such as Ti, Ni, Mo and Cr, the microstructure of C-Mn weld metal changes from the classical composition, i.e., allotriomorphic ferrite with acicular ferrite and Widmanstaetten ferrite, to bainite and low carbon martensite. Although the physical metallurgy of some HSLA weld metals has been studied before, more work is necessary to correlate the effect of the microstructure on the fracture behavior of such weld metals. In this work detailed microstructural analysis was carried out using optical and electron (SEM and TEM) microscopy. Single edge notched (SEN) bend testpieces were used to assess the cleavage fracture stress, {sigma}{sub F}. Inclusions beneath the notch surface were identified as the crack initiators of unstable cleavage fracture. From the size of such inclusions and the value of tensile stress predicted at the initiation site, the effective surface energy for cleavage was calculated using a modified Griffth energy balance for a penny shape crack. The results suggest that even though inclusions initiate cleavage fracture, the local microstructure may play an important role in the fracture process of these weld metals. The implications of these observations for a quantitative theory of the cleavage fracture of ferritic steels is discussed.

  6. Facile scission of isonitrile carbon–nitrogen triple bond using a diborane(4) reagent

    PubMed Central

    Asakawa, Hiroki; Lee, Ka-Ho; Lin, Zhenyang; Yamashita, Makoto

    2014-01-01

    Transition metal reagents and catalysts are generally effective to cleave all three bonds (one σ and two π) in a triple bond despite its high bonding energy. Recently, chemistry of single-bond cleavage by using main-group element compounds is rapidly being developed in the absence of transition metals. However, the cleavage of a triple bond using non-transition-metal compounds is less explored. Here we report that an unsymmetrical diborane(4) compound could react with carbon monoxide and tert-butyl isonitrile at room temperature. In the latter case, the carbon–nitrogen triple bond was completely cleaved in the absence of transition metal as confirmed by X-ray crystallographic analysis, 13C NMR spectroscopy with 13C labelling and DFT calculations. The DFT calculations also revealed the detailed reaction mechanism and indicated that the key for the carbon–nitrogen triple-bond cleavage could be attributed to the presence of nucleophilic nitrogen atom in one of the intermediates. PMID:24967910

  7. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis

    PubMed Central

    Frusciante, Sarah; Diretto, Gianfranco; Bruno, Mark; Ferrante, Paola; Pietrella, Marco; Prado-Cabrero, Alfonso; Rubio-Moraga, Angela; Beyer, Peter; Gomez-Gomez, Lourdes; Al-Babili, Salim; Giuliano, Giovanni

    2014-01-01

    Crocus sativus stigmas are the source of the saffron spice and accumulate the apocarotenoids crocetin, crocins, picrocrocin, and safranal, responsible for its color, taste, and aroma. Through deep transcriptome sequencing, we identified a novel dioxygenase, carotenoid cleavage dioxygenase 2 (CCD2), expressed early during stigma development and closely related to, but distinct from, the CCD1 dioxygenase family. CCD2 is the only identified member of a novel CCD clade, presents the structural features of a bona fide CCD, and is able to cleave zeaxanthin, the presumed precursor of saffron apocarotenoids, both in Escherichia coli and in maize endosperm. The cleavage products, identified through high-resolution mass spectrometry and comigration with authentic standards, are crocetin dialdehyde and crocetin, respectively. In vitro assays show that CCD2 cleaves sequentially the 7,8 and 7′,8′ double bonds adjacent to a 3-OH-β-ionone ring and that the conversion of zeaxanthin to crocetin dialdehyde proceeds via the C30 intermediate 3-OH-β-apo-8′-carotenal. In contrast, zeaxanthin cleavage dioxygenase (ZCD), an enzyme previously claimed to mediate crocetin formation, did not cleave zeaxanthin or 3-OH-β-apo-8′-carotenal in the test systems used. Sequence comparison and structure prediction suggest that ZCD is an N-truncated CCD4 form, lacking one blade of the β-propeller structure conserved in all CCDs. These results constitute strong evidence that CCD2 catalyzes the first dedicated step in crocin biosynthesis. Similar to CCD1, CCD2 has a cytoplasmic localization, suggesting that it may cleave carotenoids localized in the chromoplast outer envelope. PMID:25097262

  8. Palladium-Catalyzed Deaminative Phenanthridinone Synthesis from Aniline via C-H Bond Activation.

    PubMed

    Yedage, Subhash L; Bhanage, Bhalchandra M

    2016-05-20

    This work reports palladium-catalyzed phenanthridinone synthesis using the coupling of aniline and amide by formation of C-C and C-N bonds in a one-pot fashion via dual C-H bond activation. It involves simultaneous cleavage of four bonds and the formation of two new bonds. The present protocol is ligand-free, takes place under mild reaction conditions, and is environmentally benign as nitrogen gas and water are the only side products. This transformation demonstrates a broad range of aniline and amide substrates with different functional groups and has been scaled up to gram level. PMID:27088815

  9. Palladium-Catalyzed Deaminative Phenanthridinone Synthesis from Aniline via C-H Bond Activation.

    PubMed

    Yedage, Subhash L; Bhanage, Bhalchandra M

    2016-05-20

    This work reports palladium-catalyzed phenanthridinone synthesis using the coupling of aniline and amide by formation of C-C and C-N bonds in a one-pot fashion via dual C-H bond activation. It involves simultaneous cleavage of four bonds and the formation of two new bonds. The present protocol is ligand-free, takes place under mild reaction conditions, and is environmentally benign as nitrogen gas and water are the only side products. This transformation demonstrates a broad range of aniline and amide substrates with different functional groups and has been scaled up to gram level.

  10. On atom bond connectivity index of some molecular graphs

    NASA Astrophysics Data System (ADS)

    Mohammed, Mohanad A.; Atan, K. A.; Khalaf, A. M.; Said, M. R. Md.; Hasni, R.

    2016-06-01

    The atom-bond connectivity (ABC) index is one of the newly most studied degree based molecular structure descriptors, which have chemical applications. For a graph G, the ABC index can be defined as A B C (G )=Σuv ∈E (G )√{dv+du-2 /dv.du } , where du, the degree of the vertex u is the number of edges with u as an end vertex denotes the degree of a vertex u in G. In this paper, we establish the general formulas for the atom bond connectivity index of molecular graphs of alkenes and cycloalkenes.

  11. Using Multiple Bonding Strategies.

    PubMed

    Larson, Thomas D

    2015-01-01

    There are many ways to bond to tooth structure, some micro-mechanical some chemical, some a combination. Different dentin bonding materials have different bonding strengths to differently prepared surfaces, and because of differences in their nature, different areas of tooth structure present peculiar bonding challenges. This paper will review a variety of material types, elucidating their particular bonding strengths and commenting on improved bonding strategies to increase durability, strength, and favorable pulpal response. In this discussion, resin dentin bonding systems, glass ionomers, Gluma, resin cements, and newer combined products will br reviewed. PMID:26485903

  12. Using Multiple Bonding Strategies.

    PubMed

    Larson, Thomas D

    2015-01-01

    There are many ways to bond to tooth structure, some micro-mechanical some chemical, some a combination. Different dentin bonding materials have different bonding strengths to differently prepared surfaces, and because of differences in their nature, different areas of tooth structure present peculiar bonding challenges. This paper will review a variety of material types, elucidating their particular bonding strengths and commenting on improved bonding strategies to increase durability, strength, and favorable pulpal response. In this discussion, resin dentin bonding systems, glass ionomers, Gluma, resin cements, and newer combined products will br reviewed.

  13. Disulphide bond assignment in human tissue inhibitor of metalloproteinases (TIMP).

    PubMed Central

    Williamson, R A; Marston, F A; Angal, S; Koklitis, P; Panico, M; Morris, H R; Carne, A F; Smith, B J; Harris, T J; Freedman, R B

    1990-01-01

    Disulphide bonds in human recombinant tissue inhibitor of metalloproteinases (TIMP) were assigned by resolving proteolytic digests of TIMP on reverse-phase h.p.l.c. and sequencing those peaks judged to contain disulphide bonds by virtue of a change in retention time on reduction. This procedure allowed the direct assignment of Cys-145-Cys-166 and the isolation of two other peptides containing two disulphide bonds each. Further peptide cleavage in conjunction with fast-atom-bombardment m.s. analysis permitted the assignments Cys-1-Cys-70, Cys-3-Cys-99, Cys-13-Cys-124 and Cys-127-Cys-174 from these peptides. The sixth bond Cys-132-Cys-137 was assigned by inference, as the native protein has no detectable free thiol groups. Images Fig. 1. PMID:2163605

  14. Copper- and Vanadium-Catalyzed Oxidative Cleavage of Lignin using Dioxygen.

    PubMed

    Mottweiler, Jakob; Puche, Marta; Räuber, Christoph; Schmidt, Thomas; Concepción, Patricia; Corma, Avelino; Bolm, Carsten

    2015-06-22

    Transition-metal-containing hydrotalcites (HTc) and V(acac)3 /Cu(NO3 )2 ⋅3 H2 O (acac=acetylacetonate) mixtures were tested for their catalytic activity in the cleavage of the lignin model compound erythro-1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-l,3-propanediol (1) with molecular oxygen as oxidant. Both catalytic systems displayed high activity and good selectivity and afforded veratric acid as the main product. The catalyst behavior was studied by EPR spectroscopy, XRD, and Raman spectroscopy. After the catalysts were established for the model system, lignin depolymerization studies were performed with various organsolv and kraft lignin sources. The oxidative depolymerization and lignin bond cleavage were monitored by gel permeation chromatography (GPC), MALDI MS, and 2D-NMR (HSQC). Irrespective of the lignin pretreatment, both HTc-Cu-V and V(acac)3 /Cu(NO3 )2 ⋅3 H2 O were able to cleave the β-O-4 linkages and the resinol structures to form dimeric and trimeric products. PMID:26013592

  15. Identification and expression pattern of a new carotenoid cleavage dioxygenase gene member from Bixa orellana

    PubMed Central

    Rodríguez-Ávila, N. L.; Narváez-Zapata, J. A.; Ramírez-Benítez, J. E.; Aguilar-Espinosa, M. L.; Rivera-Madrid, R.

    2011-01-01

    Carotenoid cleavage dioxygenases (CCDs) are a class of enzymes involved in the biosynthesis of a broad diversity of secondary metabolites known as apocarotenoids. In plants, CCDs are part of a genetic family with members which cleave specific double bonds of carotenoid molecules. CCDs are involved in the production of diverse and important metabolites such as vitamin A and abscisic acid (ABA). Bixa orellana L. is the main source of the natural pigment annatto or bixin, an apocarotenoid accumulated in large quantities in its seeds. Bixin biosynthesis has been studied and the involvement of a CCD has been confirmed in vitro. However, the CCD genes involved in the biosynthesis of the wide variety of apocarotenoids found in this plant have not been well documented. In this study, a new CCD1 gene member (BoCCD1) was identified and its expression was charaterized in different plant tissues of B. orellana plantlets and adult plants. The BoCCD1 sequence showed high homology with plant CCD1s involved mainly in the cleavage of carotenoids in several sites to generate multiple apocarotenoid products. Here, the expression profiles of the BoCCD1 gene were analysed and discussed in relation to total carotenoids and other important apocarotenoids such as bixin. PMID:21813796

  16. Copper- and Vanadium-Catalyzed Oxidative Cleavage of Lignin using Dioxygen.

    PubMed

    Mottweiler, Jakob; Puche, Marta; Räuber, Christoph; Schmidt, Thomas; Concepción, Patricia; Corma, Avelino; Bolm, Carsten

    2015-06-22

    Transition-metal-containing hydrotalcites (HTc) and V(acac)3 /Cu(NO3 )2 ⋅3 H2 O (acac=acetylacetonate) mixtures were tested for their catalytic activity in the cleavage of the lignin model compound erythro-1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-l,3-propanediol (1) with molecular oxygen as oxidant. Both catalytic systems displayed high activity and good selectivity and afforded veratric acid as the main product. The catalyst behavior was studied by EPR spectroscopy, XRD, and Raman spectroscopy. After the catalysts were established for the model system, lignin depolymerization studies were performed with various organsolv and kraft lignin sources. The oxidative depolymerization and lignin bond cleavage were monitored by gel permeation chromatography (GPC), MALDI MS, and 2D-NMR (HSQC). Irrespective of the lignin pretreatment, both HTc-Cu-V and V(acac)3 /Cu(NO3 )2 ⋅3 H2 O were able to cleave the β-O-4 linkages and the resinol structures to form dimeric and trimeric products.

  17. Identification and expression pattern of a new carotenoid cleavage dioxygenase gene member from Bixa orellana.

    PubMed

    Rodríguez-Ávila, N L; Narváez-Zapata, J A; Ramírez-Benítez, J E; Aguilar-Espinosa, M L; Rivera-Madrid, R

    2011-11-01

    Carotenoid cleavage dioxygenases (CCDs) are a class of enzymes involved in the biosynthesis of a broad diversity of secondary metabolites known as apocarotenoids. In plants, CCDs are part of a genetic family with members which cleave specific double bonds of carotenoid molecules. CCDs are involved in the production of diverse and important metabolites such as vitamin A and abscisic acid (ABA). Bixa orellana L. is the main source of the natural pigment annatto or bixin, an apocarotenoid accumulated in large quantities in its seeds. Bixin biosynthesis has been studied and the involvement of a CCD has been confirmed in vitro. However, the CCD genes involved in the biosynthesis of the wide variety of apocarotenoids found in this plant have not been well documented. In this study, a new CCD1 gene member (BoCCD1) was identified and its expression was charaterized in different plant tissues of B. orellana plantlets and adult plants. The BoCCD1 sequence showed high homology with plant CCD1s involved mainly in the cleavage of carotenoids in several sites to generate multiple apocarotenoid products. Here, the expression profiles of the BoCCD1 gene were analysed and discussed in relation to total carotenoids and other important apocarotenoids such as bixin. PMID:21813796

  18. Targeted expression, purification, and cleavage of fusion proteins from inclusion bodies in Escherichia coli.

    PubMed

    Hwang, Peter M; Pan, Jonathan S; Sykes, Brian D

    2014-01-21

    Today, proteins are typically overexpressed using solubility-enhancing fusion tags that allow for affinity chromatographic purification and subsequent removal by site-specific protease cleavage. In this review, we present an alternative approach to protein production using fusion partners specifically designed to accumulate in insoluble inclusion bodies. The strategy is appropriate for the mass production of short peptides, intrinsically disordered proteins, and proteins that can be efficiently refolded in vitro. There are many fusion protein systems now available for insoluble expression: TrpLE, ketosteroid isomerase, PurF, and PagP, for example. The ideal fusion partner is effective at directing a wide variety of target proteins into inclusion bodies, accumulates in large quantities in a highly pure form, and is readily solubilized and purified in commonly used denaturants. Fusion partner removal under denaturing conditions is biochemically challenging, requiring harsh conditions (e.g., cyanogen bromide in 70% formic acid) that can result in unwanted protein modifications. Recent advances in metal ion-catalyzed peptide bond cleavage allow for more mild conditions, and some methods involving nickel or palladium will likely soon appear in more biological applications.

  19. Molecular basis of catalytic chamber-assisted unfolding and cleavage of human insulin by human insulin-degrading enzyme.

    PubMed

    Manolopoulou, Marika; Guo, Qing; Malito, Enrico; Schilling, Alexander B; Tang, Wei-Jen

    2009-05-22

    Insulin is a hormone vital for glucose homeostasis, and insulin-degrading enzyme (IDE) plays a key role in its clearance. IDE exhibits a remarkable specificity to degrade insulin without breaking the disulfide bonds that hold the insulin A and B chains together. Using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to obtain high mass accuracy, and electron capture dissociation (ECD) to selectively break the disulfide bonds in gas phase fragmentation, we determined the cleavage sites and composition of human insulin fragments generated by human IDE. Our time-dependent analysis of IDE-digested insulin fragments reveals that IDE is highly processive in its initial cleavage at the middle of both the insulin A and B chains. This ensures that IDE effectively splits insulin into inactive N- and C-terminal halves without breaking the disulfide bonds. To understand the molecular basis of the recognition and unfolding of insulin by IDE, we determined a 2.6-A resolution insulin-bound IDE structure. Our structure reveals that IDE forms an enclosed catalytic chamber that completely engulfs and intimately interacts with a partially unfolded insulin molecule. This structure also highlights how the unique size, shape, charge distribution, and exosite of the IDE catalytic chamber contribute to its high affinity ( approximately 100 nm) for insulin. In addition, this structure shows how IDE utilizes the interaction of its exosite with the N terminus of the insulin A chain as well as other properties of the catalytic chamber to guide the unfolding of insulin and allowing for the processive cleavages.

  20. Molecular Basis of Catalytic Chamber-assisted Unfolding and Cleavage of Human Insulin by Human Insulin-degrading Enzyme

    SciTech Connect

    Manolopoulou, Marika; Guo, Qing; Malito, Enrico; Schilling, Alexander B.; Tang, Wei-Jen

    2009-06-02

    Insulin is a hormone vital for glucose homeostasis, and insulin-degrading enzyme (IDE) plays a key role in its clearance. IDE exhibits a remarkable specificity to degrade insulin without breaking the disulfide bonds that hold the insulin A and B chains together. Using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to obtain high mass accuracy, and electron capture dissociation (ECD) to selectively break the disulfide bonds in gas phase fragmentation, we determined the cleavage sites and composition of human insulin fragments generated by human IDE. Our time-dependent analysis of IDE-digested insulin fragments reveals that IDE is highly processive in its initial cleavage at the middle of both the insulin A and B chains. This ensures that IDE effectively splits insulin into inactive N- and C-terminal halves without breaking the disulfide bonds. To understand the molecular basis of the recognition and unfolding of insulin by IDE, we determined a 2.6-A resolution insulin-bound IDE structure. Our structure reveals that IDE forms an enclosed catalytic chamber that completely engulfs and intimately interacts with a partially unfolded insulin molecule. This structure also highlights how the unique size, shape, charge distribution, and exosite of the IDE catalytic chamber contribute to its high affinity ( approximately 100 nm) for insulin. In addition, this structure shows how IDE utilizes the interaction of its exosite with the N terminus of the insulin A chain as well as other properties of the catalytic chamber to guide the unfolding of insulin and allowing for the processive cleavages.

  1. Mechanisms for Ribotoxin-induced Ribosomal RNA Cleavage

    PubMed Central

    He, Kaiyu; Zhou, Hui-Ren; Pestka, James J.

    2012-01-01

    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥25 ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥10 ng/ml) and ribosome-inactivating protein ricin (≥300 ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspase 8, 9 and 3 concurrently with apoptosis further suggested rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors cathepsin L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. PMID:23022514

  2. Size effects and strain localization in atomic-scale cleavage modeling.

    PubMed

    Elsner, B A M; Müller, S

    2015-09-01

    In this work, we study the adhesion and decohesion of Cu(1 0 0) surfaces using density functional theory (DFT) calculations. An upper stress to surface decohesion is obtained via the universal binding energy relation (UBER), but the model is limited to rigid separation of bulk-terminated surfaces. When structural relaxations are included, an unphysical size effect arises if decohesion is considered to occur as soon as the strain energy equals the energy of the newly formed surfaces. We employ the nudged elastic band (NEB) method to show that this size effect is opposed by a size-dependency of the energy barriers involved in the transition. Further, we find that the transition occurs via a localization of bond strain in the vicinity of the cleavage plane, which resembles the strain localization at the tip of a sharp crack that is predicted by linear elastic fracture mechanics. PMID:26219654

  3. A bead-based cleavage method for large-scale identification of protease substrates

    PubMed Central

    Wang, Chunli; Ye, Mingliang; Wei, Xiaoluan; Bian, Yangyang; Cheng, Kai; Zou, Hanfa

    2016-01-01

    Proteolysis is a major form of post translational modification which occurs when a protease cleaves peptide bonds in a target protein to modify its activity. Tracking protease substrates is indispensable for understanding its cellular functions. However, it is difficult to directly identify protease substrates because the end products of proteolysis, the cleaved protein fragments, must be identified among the pool of cellular proteins. Here we present a bead-based cleavage approach using immobilized proteome as the screening library to identify protease substrates. This method enables efficient separation of proteolyzed proteins from background protein mixture. Using caspase-3 as the model protease, we have identified 1159 high confident substrates, among which, strikingly, 43.9% of substrates undergo degradation during apoptosis. The huge number of substrates and positive support of in vivo evidence indicate that the BBC method is a powerful tool for protease substrates identification. PMID:26935269

  4. A bead-based cleavage method for large-scale identification of protease substrates.

    PubMed

    Wang, Chunli; Ye, Mingliang; Wei, Xiaoluan; Bian, Yangyang; Cheng, Kai; Zou, Hanfa

    2016-01-01

    Proteolysis is a major form of post translational modification which occurs when a protease cleaves peptide bonds in a target protein to modify its activity. Tracking protease substrates is indispensable for understanding its cellular functions. However, it is difficult to directly identify protease substrates because the end products of proteolysis, the cleaved protein fragments, must be identified among the pool of cellular proteins. Here we present a bead-based cleavage approach using immobilized proteome as the screening library to identify protease substrates. This method enables efficient separation of proteolyzed proteins from background protein mixture. Using caspase-3 as the model protease, we have identified 1159 high confident substrates, among which, strikingly, 43.9% of substrates undergo degradation during apoptosis. The huge number of substrates and positive support of in vivo evidence indicate that the BBC method is a powerful tool for protease substrates identification. PMID:26935269

  5. The tertiary structure of the four-way DNA junction affords protection against DNase I cleavage.

    PubMed Central

    Murchie, A I; Carter, W A; Portugal, J; Lilley, D M

    1990-01-01

    The accessibility of phosphodiester bonds in the DNA of four-way helical junctions has been probed with the nuclease DNase I. Regions of protection were observed on all four strands of the junctions, that tended to be longer on the strands that are exchanged between the coaxially stacked pairs of helices. The protected regions on the continuous strands of the stacked helices were not located exactly at the junction, but were displaced towards the 3' side of the strand. This is the region of backbone that becomes located in the major groove of the opposed helix in the non-crossed, right-handed structure for the junction, and might therefore be predicted to be protected against cleavage by an enzyme. However, the major grooves of the structure remain accessible to the much smaller probe dimethyl sulphate. Images PMID:2339051

  6. Leather material found on a 6th B.C. Chinese bronze sword: A technical study

    NASA Astrophysics Data System (ADS)

    Luo, Wugan; Si, Yi; Wang, Hongmin; Qin, Ying; Huang, Fengchun; Wang, Changsui

    2011-09-01

    During July to November, 2006, an important archaeological excavation was conducted in Yun country, Hubei province, southern China. Chinese archaeologists found some remnant of leather materials, covered with red pigments, on a 6th century B.C. Chinese bronze sword. To understand the technology/ies that may have been utilized for manufacturing the leathers, a combined of Raman spectroscopy, FT-IR and XRF was thus applied to the remnant of leather materials. Raman analyses showed that red pigment on the leather was cinnabar (HgS). FT-IR and XRF analyses indicated that the content of some elements, such as Ca (existing as CaCO 3) and Fe (existing as Fe 2O 3), were much higher than those in the surrounding grave soil. The results inferred an application of lime depilation and retting, and the Fe-Al compound salt as tanning agent. And it was furthermore implicated that the Fe-Al salt tanning technique had been developed in the middle and late Spring and Autumn Period of China.

  7. Mythos and logos in Hesiod's Theogony, circa 700 B.C.

    PubMed

    Bazopoulou-Kyrkanidou, E

    1996-03-15

    Hesiod's Theogony, a completely preserved poem, is dated from about 700 B.C. It depicts partly a development, partly a situation that has arisen in the course of time in the world. It constitutes an attempt to understand the cosmos as the product of a genealogical evolution, which can be seen as a process of successive separation, differentiation, and hierarchization. In this attempted picture of the world myth and reality are inextricably interwoven. Observations of natural phenomena as far as of congenital malformations are accordingly exaggerated and undergone mythical transformation. Entities enumerated in this genealogical poem, no matter whether they stand for parts and concrete phenomena of the physical world or intellectual properties and abstract concepts, behave, think, and act, and are accordingly though of, in anthropomorphic terms. Monogamy, polygamy, endogamy, exogamy, asexual and sexual reproduction, multiple conceptions and births, dominantly and recessively inherited traits, normal and abnormal offspring, and perceptions and notions on cosmogony, isogamy, and teratogenesis could be observed in the writing of the Theogony and interpreted by rational modern concepts.

  8. THRESHOLD STUDIES ON TNT, COMPOSITION B, C-4, AND ANFO EXPLOSIVES USING THE STEVEN IMPACT TEST

    SciTech Connect

    Vandersall, K S; Switzer, L L; Garcia, F

    2006-06-20

    Steven Impact Tests were performed at low velocity on the explosives TNT (trinitrotolulene), Composition B (63% RDX, 36% TNT, and 1% wax by weight), C-4 (91% RDX, 5.3% Di (2-ethylhexyl) sebacate, 2.1% Polyisobutylene, and 1.6% motor oil by weight) and ANFO (94% ammonium Nitrate with 6% Fuel Oil) in attempts to obtain a threshold for reaction. A 76 mm helium driven gas gun was used to accelerate the Steven Test projectiles up to approximately 200 m/s in attempts to react (ignite) the explosive samples. Blast overpressure gauges, acoustic microphones, standard video and high-speed photography were used to characterize the level of any high explosive reaction violence. No bulk reactions were observed in the TNT, Composition B, C-4 or ANFO explosive samples impacted up to velocities in the range of 190-200 m/s. This work will outline the experimental details and discuss the lack of reaction when compared to the reaction thresholds of other common explosives. These results will also be compared to that of the Susan Test and reaction thresholds observed in the common small-scale safety tests such as the drop hammer and friction tests in hopes of drawing a correlation.

  9. Electronic structures and current conductivities of B, C, N and F defects in amorphous titanium dioxide.

    PubMed

    Pham, Hieu H; Wang, Lin-Wang

    2015-05-01

    Although titanium dioxide (TiO2) has been extensively studied and widely used in energy and environmental areas, the amorphous form and its related defect properties are poorly understood. Recent studies, however, have emphasized the crucial role of amorphousness in producing competitively good performances in photochemical applications. In this work we have investigated for the first time the effects of various dopants (B, C, N and F) on charge carrier transport in amorphous titanium dioxide (a-TiO2), given that doping is a common technique used to tune the electronic properties of semiconductors, and that the existence of these impurities could also be unintentionally introduced during the synthesis process. The a-TiO2 model was obtained using a classical molecular dynamics method, followed by density-functional theory calculations (DFT + U, with Hubbard correction term U) on electronic structures and defect states. The formation of these impurity defects in a-TiO2 was found to be energetically more favorable by several eV than their crystal counterparts (in rutile). The contributions of these defect states to the charge transfer processes were examined by means of Marcus theory.

  10. Final environmental impact statement, Washington Water Power/B.C. Hydro Transmission Interconnection Project

    SciTech Connect

    Not Available

    1992-10-01

    Washington Water Power (WWP) proposes to construct and operate an electric transmission line that would connect with the electrical system of the British Columbia Hydro and Power Authority (B.C. Hydro). The project would be composed of a double-circuit, 230-kilovolt (kV) transmission line from WWP`s existing Beacon Substation located northeast of Spokane, Washington to the international border located northwest of Metaline Falls, Washington. The original Presidential permit application and associated proposed route presented in the draft environmental impact statement (DEIS) have been modified to terminate at the Beacon Substation, instead of WWP`s initially propos