An increase in circulating B cell-activating factor in childhood-onset ocular myasthenia gravis.
Motobayashi, Mitsuo; Inaba, Yuji; Nishimura, Takafumi; Kobayashi, Norimoto; Nakazawa, Yozo; Koike, Kenichi
2015-04-01
Myasthenia gravis is a B cell-mediated autoimmune disorder. The pathophysiology of childhood-onset ocular myasthenia gravis remains unclear. We investigated serum B cell-activating factor levels and other immunological parameters in child patients with ocular myasthenia gravis. Blood samples were obtained from 9 children with ocular myasthenia gravis and 20 age-matched controls. We assayed serum concentrations of B cell-activating factor, anti-acetylcholine receptor antibody titers, 7 types of cytokines (interleukins-2, -4, -6, -10, and -17A; interferon-γ; tumor necrosis factor-α) as well as the percentages of peripheral blood CD4+, CD8+, and CD19+ cells. Serum B cell-activating factor levels were significantly higher before immunosuppressive therapy in patients with childhood-onset ocular myasthenia gravis than in controls and decreased after immunosuppressive therapy. A significant positive correlation was observed between serum B cell-activating factor levels and anti-acetylcholine receptor antibody titers in patients with myasthenia gravis. Serum B cell-activating factor concentrations did not correlate with the percentages of CD4+, CD8+, and CD19+ cells or the CD4+/CD8+ ratio. No significant differences were observed in the levels of the 7 different types of cytokines examined, including interleukin-17A, between preimmunosuppressive therapy myasthenia gravis patients and controls. Circulating B cell-activating factor may play a key role in the pathophysiology of childhood-onset ocular myasthenia gravis. Copyright © 2015 Elsevier Inc. All rights reserved.
Johansson, Katarina; Cebula, Marcus; Rengby, Olle; Dreij, Kristian; Carlström, Karl E; Sigmundsson, Kristmundur; Piehl, Fredrik; Arnér, Elias S J
2017-02-20
Many transcription factors with importance in health and disease are redox regulated. However, how their activities may be intertwined in responses to redox-perturbing stimuli is poorly understood. To enable in-depth characterization of this aspect, we here developed a methodology for simultaneous determination of nuclear factor E2-related factor 2 (Nrf2), hypoxia-inducible factor (HIF), and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) activation at single-cell resolution, using a new tool named pTRAF (plasmid for transcription factor reporter activation based upon fluorescence). The pTRAF allowed determination of Nrf2, HIF, and NF-κB activities in a high-resolution and high-throughput manner, and we here assessed how redox therapeutics affected the activities of these transcription factors in human embryonic kidney cells (HEK293). Cross talk was detected between the three signaling pathways upon some types of redox therapeutics, also by using inducers typically considered specific for Nrf2, such as sulforaphane or auranofin, hypoxia for HIF activation, or tumor necrosis factor alpha (TNFα) for NF-κB stimulation. Doxorubicin, at low nontoxic doses, potentiated TNFα-induced activation of NF-κB and HIF, without effects in stand-alone treatment. Stochastic activation patterns in cell cultures were also considerable upon challenges with several redox stimuli. A novel strategy was here used to study simultaneous activation of Nrf2, HIF, and NF-κB in single cells. The method can also be adapted for studies of other transcription factors. The pTRAF provides new opportunities for in-depth studies of transcription factor activities. In this study, we found that upon challenges of cells with several redox-perturbing conditions, Nrf2, HIF, and NF-κB are uniquely responsive to separate stimuli, but can also display marked cross talk to each other within single cells. Antioxid. Redox Signal. 26, 229-246.
African swine fever virus IAP-like protein induces the activation of nuclear factor kappa B.
Rodríguez, Clara I; Nogal, María L; Carrascosa, Angel L; Salas, María L; Fresno, Manuel; Revilla, Yolanda
2002-04-01
African swine fever virus (ASFV) encodes a homologue of the inhibitor of apoptosis (IAP) that promotes cell survival by controlling the activity of caspase-3. Here we show that ASFV IAP is also able to activate the transcription factor NF-kappaB. Thus, transient transfection of the viral IAP increases the activity of an NF-kappaB reporter gene in a dose-responsive manner in Jurkat cells. Similarly, stably transfected cells expressing ASFV IAP have elevated basal levels of c-rel, an NF-kappaB-dependent gene. NF-kappaB complexes in the nucleus were increased in A224L-expressing cells compared with control cells upon stimulation with phorbol myristate acetate (PMA) plus ionomycin. This resulted in greater NF-kappaB-dependent promoter activity in ASFV IAP-expressing than in control cells, both in basal conditions and after PMA plus ionophore stimulation. The elevated NF-kappaB activity seems to be the consequence of higher IkappaB kinase (IKK) basal activity in these cells. The NF-kappaB-inducing activity of ASFV IAP was abrogated by an IKK-2 dominant negative mutant and enhanced by expression of tumor necrosis factor receptor-associated factor 2.
African Swine Fever Virus IAP-Like Protein Induces the Activation of Nuclear Factor Kappa B
Rodríguez, Clara I.; Nogal, María L.; Carrascosa, Angel L.; Salas, María L.; Fresno, Manuel; Revilla, Yolanda
2002-01-01
African swine fever virus (ASFV) encodes a homologue of the inhibitor of apoptosis (IAP) that promotes cell survival by controlling the activity of caspase-3. Here we show that ASFV IAP is also able to activate the transcription factor NF-κB. Thus, transient transfection of the viral IAP increases the activity of an NF-κB reporter gene in a dose-responsive manner in Jurkat cells. Similarly, stably transfected cells expressing ASFV IAP have elevated basal levels of c-rel, an NF-κB-dependent gene. NF-κB complexes in the nucleus were increased in A224L-expressing cells compared with control cells upon stimulation with phorbol myristate acetate (PMA) plus ionomycin. This resulted in greater NF-κB-dependent promoter activity in ASFV IAP-expressing than in control cells, both in basal conditions and after PMA plus ionophore stimulation. The elevated NF-κB activity seems to be the consequence of higher IκB kinase (IKK) basal activity in these cells. The NF-κB-inducing activity of ASFV IAP was abrogated by an IKK-2 dominant negative mutant and enhanced by expression of tumor necrosis factor receptor-associated factor 2. PMID:11907233
EWS-FLI1 inhibits TNF{alpha}-induced NF{kappa}B-dependent transcription in Ewing sarcoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagirand-Cantaloube, Julie, E-mail: julie.cantaloube@crbm.cnrs.fr; Laud, Karine, E-mail: karine.laud@curie.fr; Institut Curie, Genetique et biologie des cancers, Paris
2010-09-03
Research highlights: {yields} EWS-FLI1 interferes with TNF-induced activation of NF{kappa}B in Ewing sarcoma cells. {yields} EWS-FLI1 knockdown in Ewing sarcoma cells increases TNF-induced NF{kappa}B binding to DNA. {yields} EWS-FLI1 reduces TNF-stimulated NF{kappa}B-dependent transcriptional activation. {yields} Constitutive NF{kappa}B activity is not affected by EWS-FLI1. {yields} EWS-FLI1 physically interacts with NF{kappa}B p65 in vivo. -- Abstract: Ewing sarcoma is primarily caused by a t(11;22) chromosomal translocation encoding the EWS-FLI1 fusion protein. To exert its oncogenic function, EWS-FLI1 acts as an aberrant transcription factor, broadly altering the gene expression profile of tumor cells. Nuclear factor-kappaB (NF{kappa}B) is a tightly regulated transcription factor controllingmore » cell survival, proliferation and differentiation, as well as tumorigenesis. NF{kappa}B activity is very low in unstimulated Ewing sarcoma cells, but can be induced in response to tumor necrosis factor (TNF). We wondered whether NF{kappa}B activity could be modulated by EWS-FLI1 in Ewing sarcoma. Using a knockdown approach in Ewing sarcoma cells, we demonstrated that EWS-FLI1 has no influence on NF{kappa}B basal activity, but impairs TNF-induced NF{kappa}B-driven transcription, at least in part through inhibition of NF{kappa}B binding to DNA. We detected an in vivo physical interaction between the fusion protein and NF{kappa}B p65, which could mediate these effects. Our findings suggest that, besides directly controlling the activity of its primary target promoters, EWS-FLI1 can also indirectly influence gene expression in tumor cells by modulating the activity of key transcription factors such as NF{kappa}B.« less
Sauerwein, R W; Van der Meer, W G; Aarden, L A
1987-08-01
At least two factors with the capacity to induce IgM synthesis in human B cells were found to be present in the 15-20-kDa fraction of the supernatant of mononuclear cells activated with concanavalin A (Con A) and phorbol ester. Previously, it has been shown (Sauerwein, R. W. et al., Eur. J. Immunol. 1985. 15: 611) that interleukin 2 (IL2) in this material is able to induce T cell-dependent IgM secretion in normal B cells. Evidence was obtained for the presence of another factor distinct from IL2 that could replace T cells in the induction of B cell differentiation. We have analyzed this factor with the use of a neoplastic B cell population of prolymphocytic origin that was functionally nonresponsive to IL2. T cell-replacing factor (TRF)-like activity and IL2 could be separated by ion-exchange chromatography, although a small amount of IL2 was recovered in the TRF fractions. This small amount of IL2 was found to be crucial for the observed TRF activity. Moreover, a substantial amount of monomeric Con A was detected in the TRF preparation. Our studies show that Con A in the presence of IL2 can act as a potent inducer of helper function in lower numbers of T cells for normal and neoplastic B cells. Functional assays for T cell contamination in B cell suspensions are therefore of limited value because they are determined by the efficiency of the stimulating signal. Particularly in those B cell factor preparations, obtained from mitogen-activated T cells with an obligatory or unidentified role of IL2, the possible effect of a contaminating mitogen must be considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yu; Wang, Wenhui; Wang, Qi
Highlights: Black-Right-Pointing-Pointer 5-LOX is able to upregulate expression of NF-{kappa}B p65. Black-Right-Pointing-Pointer 5-LOX enhances nuclear translocation of NF-{kappa}B p65 via increasing p-I{kappa}B-{alpha} level. Black-Right-Pointing-Pointer 5-LOX stimulates transcriptional activity of NF-{kappa}B in hepatoma cells. Black-Right-Pointing-Pointer LTB4 activates transcriptional activity of NF-{kappa}B in hepatoma cells. -- Abstract: The issue that lipid metabolism enzyme and its metabolites regulate transcription factors in cancer cell is not fully understood. In this study, we first report that the lipid metabolism enzyme 5-Lipoxygenase (5-LOX) and its metabolite leukotriene B4 (LTB4) are capable of activating nuclear factor-{kappa}B (NF-{kappa}B) in hepatoma cells. We found that the treatment of MK886more » (an inhibitor of 5-LOX) or knockdown of 5-LOX was able to downregulate the expression of NF-{kappa}B p65 at the mRNA level and decreased the phosphorylation level of inhibitor {kappa}B{alpha} (I{kappa}B{alpha}) in the cytoplasm of hepatoma HepG2 or H7402 cells, which resulted in the decrease of the level of nuclear NF-{kappa}B p65. These were confirmed by immunofluorescence staining in HepG2 cell. Moreover, the above treatments were able to decrease the transcriptional activity of NF-{kappa}B in the cells. The LTB4, one of metabolites of 5-LOX, is responsible for 5-LOX-activated NF-{kappa}B in a dose-dependent manner. Thus, we conclude that the lipid metabolism enzyme 5-LOX and its metabolite LTB4 are capable of activating transcription factor NF-{kappa}B in hepatoma cells. Our finding provides new insight into the significance of lipid metabolism in activation of transcription factors in cancer.« less
Touil, Hanane; Kobert, Antonia; Lebeurrier, Nathalie; Rieger, Aja; Saikali, Philippe; Lambert, Caroline; Fawaz, Lama; Moore, Craig S; Prat, Alexandre; Gommerman, Jennifer; Antel, Jack P; Itoyama, Yasuto; Nakashima, Ichiro; Bar-Or, Amit
2018-04-19
The success of clinical trials of selective B cell depletion in patients with relapsing multiple sclerosis (MS) indicates B cells are important contributors to peripheral immune responses involved in the development of new relapses. Such B cell contribution to peripheral inflammation likely involves antibody-independent mechanisms. Of growing interest is the potential that B cells, within the MS central nervous system (CNS), may also contribute to the propagation of CNS-compartmentalized inflammation in progressive (non-relapsing) disease. B cells are known to persist in the inflamed MS CNS and are more recently described as concentrated in meningeal immune-cell aggregates, adjacent to the subpial cortical injury which has been associated with progressive disease. How B cells are fostered within the MS CNS and how they may contribute locally to the propagation of CNS-compartmentalized inflammation remain to be elucidated. We considered whether activated human astrocytes might contribute to B cell survival and function through soluble factors. B cells from healthy controls (HC) and untreated MS patients were exposed to primary human astrocytes that were either maintained under basal culture conditions (non-activated) or pre-activated with standard inflammatory signals. B cell exposure to astrocytes included direct co-culture, co-culture in transwells, or exposure to astrocyte-conditioned medium. Following the different exposures, B cell survival and expression of T cell co-stimulatory molecules were assessed by flow cytometry, as was the ability of differentially exposed B cells to induce activation of allogeneic T cells. Secreted factors from both non-activated and activated human astrocytes robustly supported human B cell survival. Soluble products of pre-activated astrocytes also induced B cell upregulation of antigen-presenting cell machinery, and these B cells, in turn, were more efficient activators of T cells. Astrocyte-soluble factors could support survival and activation of B cell subsets implicated in MS, including memory B cells from patients with both relapsing and progressive forms of disease. Our findings point to a potential mechanism whereby activated astrocytes in the inflamed MS CNS not only promote a B cell fostering environment, but also actively support the ability of B cells to contribute to the propagation of CNS-compartmentalized inflammation, now thought to play key roles in progressive disease.
Tosato, G; Tanner, J; Jones, K D; Revel, M; Pike, S E
1990-01-01
Autocrine growth factors are believed to be important for maintenance of an immortalized state by Epstein-Barr virus (EBV), because cell-free supernatants of EBV-immortalized cell lines promote the proliferation of autologous cells and permit their growth at low cell density. In this study, we provide evidence for the existence of two autocrine growth factor activities produced by EBV-immortalized lines distinguished by size and biological activities. Much of the autocrine growth factor activity in lymphoblastoid cell line supernatants resided in a low-molecular-weight (less than 5,000) fraction. However, up to 20 to 30% of the autocrine growth factor activity resided in the high-molecular-weight (greater than 5,000) fraction. While the nature of the low-molecular-weight growth factor activity remains undefined, the high-molecular-weight growth factor activity was identified as interleukin-6 (IL-6). Culture supernatants from six EBV-induced lymphoblastoid cell lines tested contained IL-6 activity, because they promoted proliferation in the IL-6-dependent hybridoma cell line B9. In addition, a rabbit antibody to human IL-6 neutralized the capacity of the high-molecular-weight (greater than 5,000) fraction of a lymphoblastoid cell line supernatant to promote growth both in autologous EBV-immortalized cells and in B9 cells. Similarly, this high-molecular-weight autocrine growth factor activity was neutralized by a monoclonal antibody to human IL-6. Furthermore, characteristic bands, attributable to IL-6, were visualized in supernatants of each of four EBV-induced lymphoblastoid cell lines after immunoprecipitation with a rabbit antiserum to human IL-6. Thus, in addition to its previously reported properties, IL-6 is an autocrine growth factor for EBV-immortalized B cells cultured under serum-free conditions. Images PMID:2159561
EGF receptor uses SOS1 to drive constitutive activation of NFκB in cancer cells
De, Sarmishtha; Dermawan, Josephine Kam Tai; Stark, George R.
2014-01-01
Activation of nuclear factor κB (NFκB) is a central event in the responses of normal cells to inflammatory signals, and the abnormal constitutive activation of NFκB is important for the survival of most cancer cells. In nonmalignant human cells, EGF stimulates robust activation of NFκB. The kinase activity of the EGF receptor (EGFR) is required, because the potent and specific inhibitor erlotinib blocks the response. Down-regulating EGFR expression or inhibiting EGFR with erlotinib impairs constitutive NFκB activation in several different types of cancer cells and, conversely, increased activation of NFκB leads to erlotinib resistance in these cells. We conclude that EGF is an important mediator of NFκB activation in cancer cells. To explore the mechanism, we selected an erlotinib-resistant cell line in which the guanine nucleotide exchange factor Son of Sevenless 1 (SOS1), well known to be important for EGF-dependent signaling to MAP kinases, is overexpressed. Increased expression of SOS1 increases NFκB activation in several different types of cancer cells, and ablation of SOS1 inhibits EGF-induced NFκB activation in these cells, indicating that SOS1 is a functional component of the pathway connecting EGFR to NFκB activation. Importantly, the guanine nucleotide exchange activity of SOS1 is not required for NFκB activation. PMID:25071181
Brenner, M K; North, M E; Chadda, H R; Farrant, J
1984-01-01
Lectin-free supernatants obtained from PWM-stimulated lymphocytes, enable B cells to proliferate and secrete immunoglobulin. Both functions are augmented by the addition of irradiated T cells. In the presence of antigen, these supernatants also enhance specific anti-tetanus toxoid antibody production. The components of the supernatant responsible for these activities have a molecular weight between 30,000 and 60,000, and have the characteristics of non-specific factors: they are genetically unrestricted, and do not bind to either antigen or anti-DR affinity columns. There is no evidence that the partial T dependency of these factors is an indication that their target is a T cell. Instead, T cells appear necessary to move the B cell into a state of activation in which it becomes responsive to the factor. Alternative activation signals such as Staph. A. Cowan can substitute for T cell help in the proliferative response, but not for immunoglobulin or antibody synthesis. The implications of these results for the approaches used to detect and classify B cell growth factors are discussed. PMID:6608488
Respiratory syncytial virus M2-1 protein induces the activation of nuclear factor kappa B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimers, Kerstin; Buchholz, Katja; Werchau, Hermann
2005-01-20
Respiratory syncytial virus (RSV) induces the production of a number of cytokines and chemokines by activation of nuclear factor kappa B (NF-{kappa}B). The activation of NF-{kappa}B has been shown to depend on viral replication in the infected cells. In this study, we demonstrate that expression of RSV M2-1 protein, a transcriptional processivity and anti-termination factor, is sufficient to activate NF-{kappa}B in A549 cells. Electromobility shift assays show increased NF-{kappa}B complexes in the nuclei of M2-1-expressing cells. M2-1 protein is found in nuclei of M2-1-expressing cells and in RSV-infected cells. Co-immunoprecipitations of nuclear extracts of M2-1-expressing cells and of RSV-infected cellsmore » revealed an association of M2-1 with Rel A protein. Furthermore, the activation of NF-{kappa}B depends on the C-terminus of the RSV M2-1 protein, as shown by NF-{kappa}B-induced gene expression of a reporter gene construct.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingyi; Zhao, Yu; Li, Leilei
2013-05-03
Highlights: •HBXIP is able to upregulate the expression of PDGFB in breast cancer cells. •HBXIP serves as a coactivator of activating transcription factor Sp1. •HBXIP stimulates the PDGFB promoter via activating transcription factor Sp1. •HBXIP promotes the proliferation of breast cancer cell via upregulating PDGFB. -- Abstract: We have reported that the oncoprotein hepatitis B virus X-interacting protein (HBXIP) acts as a novel transcriptional coactivator to promote proliferation and migration of breast cancer cells. Previously, we showed that HBXIP was able to activate nuclear factor-κB (NF-κB) in breast cancer cells. As an oncogene, the platelet-derived growth factor beta polypeptide (PDGFB)more » plays crucial roles in carcinogenesis. In the present study, we found that both HBXIP and PDGFB were highly expressed in breast cancer cell lines. Interestingly, HBXIP was able to increase transcriptional activity of NF-κB through PDGFB, suggesting that HBXIP is associated with PDGFB in the cells. Moreover, HBXIP was able to upregulate PDGFB at the levels of mRNA, protein and promoter in the cells. Then, we identified that HBXIP stimulated the promoter of PDGFB through activating transcription factor Sp1. In function, HBXIP enhanced the proliferation of breast cancer cells through PDGFB in vitro. Thus, we conclude that HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote proliferation of breast cancer cells.« less
The BAFF receptor TACI controls IL-10 production by regulatory B cells and CLL B cells.
Saulep-Easton, D; Vincent, F B; Quah, P S; Wei, A; Ting, S B; Croce, C M; Tam, C; Mackay, F
2016-01-01
Interleukin (IL)-10-producing B cells (B10 cells) have emerged as important regulatory elements with immunosuppressive roles. Chronic lymphocytic leukemia (CLL) B cells also secrete IL-10 and share features of B10 cells, suggesting a possible contribution of CLL B cells to immunosuppression in CLL patients. Factors controlling the emergence of B10 cells are not known. B-cell-activating factor of the tumor necrosis factor (TNF) family (BAFF) is critical for B-cell maturation and survival, and is implicated in the development and progression of CLL. We sought to investigate the role of BAFF in the emergence of IL-10-producing regulatory B cells in healthy donors and CLL patients. Here, we report that BAFF signaling promotes IL-10 production by CLL B cells in a mouse model of CLL and in CLL patients. Moreover, BAFF-mediated IL-10 production by normal and CLL B cells is mediated via its receptor transmembrane activator and cyclophilin ligand interactor. Our work uncovered a major targetable pathway important for the generation of regulatory B cells that is detrimental to immunity in CLL.
Induction of endothelial cell proliferation by angiogenic factors released by activated monocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pakala, Rajbabu; Watanabe, Takuya; Benedict, Claude R
2002-06-01
Introduction: Cell-cell interaction is an essential component of atherosclerotic plaque development. Activated monocytes appear to play a central role in the development of atherosclerosis, not only through foam cell formation but also via the production of various growth factors that induce proliferation of different cell types that are involved in the plaque development. Using serum free co-culture method, we determined the effect of monocytes on endothelial cell proliferation. Methods: Endothelial cell proliferation is determined by the amount of [{sup 3}H]thymidine incorporated in to the DNA. Basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) levels inmore » the conditioned medium were determined by ELISA. Results: Conditioned medium from unactivated monocytes partially inhibited endothelial cell proliferation, whereas conditioned medium from activated monocytes promoted endothelial cell proliferation. The mitogenic effect of conditioned medium derived from activated monocytes is due to the presence of b-FGF, VEGF and IL-8. Neutralizing antibodies against b-FGF, VEGF and IL-8 partially reversed the mitogenic effect of conditioned medium derived from activated monocytes. When b-FGF, VEGF and IL-8 were immunoprecipitated from conditioned medium derived from activated monocytes, it is less mitogenic to endothelial cells. Conclusion: Activated monocytes may play an important role in the development of atherosclerotic plaque by producing endothelial cell growth factors.« less
INTERFERON α ACTIVATES NF-κ B IN JAK1-DEFICIENT CELLS THROUGH A TYK2-DEPENDENT PATHWAY
Yang, Chuan He; Murti, Aruna; Valentine, William J.; Du, Ziyun; Pfeffer, Lawrence M.
2005-01-01
In addition to activating members of the STAT transcription factor family, IFN α/β activates the NF-κ B transcription factor. To determine the role of the JAK-STAT pathway in NF-κ B activation by IFN, we examined NF-κ B activation in JAK1-deficient mutant human fibrosarcoma cells. In wild-type fibrosarcoma cells (2fTGH) IFN activates STAT1, STAT2 and STAT3, as well as NF-κB complexes comprised of p50 and p65. In contrast, in JAK1-deficient cells IFN induces NF-κB activation and NF-κB dependent gene transcription, but does not activate these STAT proteins and has no effect on STAT-dependent gene transcription. Expression of a catalytically-inactive TYK2 tyrosine kinase in JAK1-deficient cells, as well as in the highly IFN-sensitive Daudi lymphoblastoid cell line, abrogates NF-κB activation by IFN. Moreover, IFN does not promote NF-κB activation in TYK2-deficient mutant fibrosarcoma cells. Our results demonstrate a dichotomy between the classical JAK-STAT pathway and the NF-κB signaling pathway. In the IFN signaling pathway leading to STAT activation both JAK1 and TYK2 are essential, while NF-κB activation requires only TYK2. PMID:15883164
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei Li; Kwang, Jimmy; Wang Jin
The transcription factor NF-{kappa}B is commonly activated upon virus infection and a key player in the induction and regulation of the host immune response. The present study demonstrated for the first time that porcine circovirus type 2 (PCV2), which is the primary causative agent of an emerging swine disease, postweaning multisystemic wasting syndrome, can activate NF-{kappa}B in PCV2-infected PK15 cells. In PCV2-infected cells, NF-{kappa}B was activated concomitantly with viral replication, which was characterized by increased DNA binding activity, translocation of NF-{kappa}B p65 from the cytoplasm to the nucleus, as well as degradation and phosphorylation of I{kappa}B{alpha} protein. We further demonstratedmore » PCV2-induced activation of NF-{kappa}B and colocalization of p65 nuclear translocation with virus replication in cultured cells. Treatment of cells with CAPE, a selective inhibitor of NF-{kappa}B activation, reduced virus protein expression and progeny production followed by decreasing PCV2-induced apoptotic caspase activity, indicating the involvement of this transcription factor in induction of cell death. Taken together, these data suggest that NF-{kappa}B activation is important for PCV2 replication and contributes to virus-mediated changes in host cells. The results presented here provide a basis for understanding molecular mechanism of PCV2 infection.« less
Nishitsuji, Hironori; Sugiyama, Ryuichi; Abe, Makoto; Takaku, Hiroshi
2016-01-01
Here, we identify ATP1B3 and fibrillin-1 as novel BST-2-binding proteins. ATP1B3 depletion in HeLa cells (BST-2-positive cells), but not 293T cells (BST-2-negative cells), induced the restriction of HIV-1 production in a BST-2-dependent manner. In contrast, fibrillin-1 knockdown reduced HIV-1 production in 293T and HeLa cells in a BST-2-independent manner. Moreover, NF-κB activation was enhanced by siATP1B3 treatment in HIV-1- and HIV-1ΔVpu-infected HeLa cells. In addition, ATP1B3 silencing induced high level BST-2 expression on the surface of HeLa cells. These results indicate that ATP1B3 is a co-factor that accelerates BST-2 degradation and reduces BST-2-mediated restriction of HIV-1 production and NF-κB activation. PMID:26694617
Murata, J; Ayukawa, K; Ogasawara, M; Watanabe, H; Saiki, I
1999-03-15
We have previously reported that neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) successfully inhibited Matrigel invasion and haptotactic migration of B16-BL6 melanoma cells towards both fibronectin and laminin without affecting their growth. In the present study, we investigated the inhibitory mechanism of tumor cell motility by alpha-MSH. Alpha-MSH significantly blocked the autocrine motility factor (AMF)-enhanced cell motility. However, alpha-MSH did neither prevent the secretion of AMF from B16-BL6 cells nor alter the expression level of AMF receptor (gp78). On the other hand, alpha-MSH induced the secretion of the motility inhibitory factor(s) from B16-BL6 cells in a concentration- and time-dependent manner. The induction of the motility inhibitor(s) was proportional to increasing levels of intracellular cAMP induced by alpha-MSH as well as forskolin, and the activity was abolished by an adenylate cyclase inhibitor, 2',5'-dideoxyadenosine (DDA). The motility-inhibiting activity in conditioned medium (CM) from alpha-MSH-treated B16-BL6 cells was found to have a m.w. below 3 kDa after fractionation. This activity was abolished by boiling but insensitive to trypsin. The treatment of tumor cells with cycloheximide reduced the activity in alpha-MSH-stimulated CM. Our results suggest that alpha-MSH inhibited the motility of B16-BL6 cells through induction of autocrine factor(s).
Role of T-cell-specific nuclear factor κB in islet allograft rejection.
Porras, Delia Lozano; Wang, Ying; Zhou, Ping; Molinero, Luciana L; Alegre, Maria-Luisa
2012-05-27
Pancreatic islet transplantation has the potential to cure type 1 diabetes, a chronic lifelong disease, but its clinical applicability is limited by allograft rejection. Nuclear factor κB (NF-κB) is a transcription factor important for survival and differentiation of T cells. In this study, we tested whether NF-κB in T cells is required for the rejection of islet allografts. Mice expressing a superrepressor form of NF-κB selectively in T cells (IκBαΔN-Tg mice) with or without the antiapoptotic factor Bcl-xL, or mice with impaired T-cell receptor (TCR)- and B cell receptor-driven NF-κB activity (CARMA1-KO mice) were rendered diabetic and transplanted with islet allografts. Secondary skin transplantation in long-term acceptors of islet allografts was used to test for the development of donor-specific tolerance. Immune infiltration of the transplanted islets was examined by immunofluorescence. TCR-transgenic CD4 T cells were used to follow T-cell priming and differentiation. Islet allograft survival was prolonged in IκBαΔN-Tg mice, although the animals did not develop donor-specific tolerance. Reduced NF-κB activity did not prevent T-cell priming or differentiation but reduced survival of activated T cells, as transgenic expression of Bcl-xL restored islet allograft rejection in IκBαΔN-Tg mice. Abolishing TCR- and B cell receptor-driven activation of NF-κB selectively by CARMA1 deficiency prevented T-cell priming and islet allograft rejection. Our data suggest that T cell-NF-κB plays an important role in the rejection of islet allografts. Targeting NF-κB selectively in lymphocytes seems a promising approach to facilitate acceptance of transplanted islets.
Liao, C L; Lin, Y L; Wu, B C; Tsao, C H; Wang, M C; Liu, C I; Huang, Y L; Chen, J H; Wang, J P; Chen, L K
2001-09-01
Flaviviruses comprise a positive-sense RNA genome that replicates exclusively in the cytoplasm of infected cells. Whether flaviviruses require an activated nuclear factor(s) to complete their life cycle and trigger apoptosis in infected cells remains elusive. Flavivirus infections quickly activate nuclear factor kappa B (NF-kappaB), and salicylates have been shown to inhibit NF-kappaB activation. In this study, we investigated whether salicylates suppress flavivirus replication and virus-induced apoptosis in cultured cells. In a dose-dependent inhibition, we found salicylates within a range of 1 to 5 mM not only restricted flavivirus replication but also abrogated flavivirus-triggered apoptosis. However, flavivirus replication was not affected by a specific NF-kappaB peptide inhibitor, SN50, and a proteosome inhibitor, lactacystin. Flaviviruses also replicated and triggered apoptosis in cells stably expressing IkappaBalpha-DeltaN, a dominant-negative mutant that antagonizes NF-kappaB activation, as readily as in wild-type BHK-21 cells, suggesting that NF-kappaB activation is not essential for either flavivirus replication or flavivirus-induced apoptosis. Salicylates still diminished flavivirus replication and blocked apoptosis in the same IkappaBalpha-DeltaN cells. This inhibition of flaviviruses by salicylates could be partially reversed by a specific p38 mitogen-activated protein (MAP) kinase inhibitor, SB203580. Together, these results show that the mechanism by which salicylates suppress flavivirus infection may involve p38 MAP kinase activity but is independent of blocking the NF-kappaB pathway.
Huang, Lei; Kondo, Fumio; Harato, Misako; Feng, Guo-Gang; Ishikawa, Naoshisa; Fujiwara, Yoshihiro; Okada, Shoshiro
2014-01-01
The family of WD repeat proteins comprises a large number of proteins and is involved in a wide variety of cellular processes such as signal transduction, cell growth, proliferation, and apoptosis. Bupivacaine is a sodium channel blocker administered for local infiltration, nerve block, epidural, and intrathecal anesthesia. Recently, we reported that bupivacaine induces reactive oxygen species (ROS) generation and p38 mitogen-activated protein kinase (MAPK) activation, resulting in an increase in the expression of WD repeat-containing protein 35 (WDR35) in mouse neuroblastoma Neuro2a cells. It has been shown that ROS activate MAPK through phosphorylation, followed by activation of nuclear factor-kappa B (NF-κB) and activator protein 1 (AP-1). The present study was undertaken to test whether NF-κB and c-Jun/AP-1 are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Bupivacaine activated both NF-κB and c-Jun in Neuro2a cells. APDC, an NF-κB inhibitor, attenuated the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. GW9662, a selective peroxisome proliferator-activated receptor-γ antagonist, enhanced the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. In contrast, c-Jun siRNA did not inhibit the bupivacaine-induced increase in WDR35 mRNA expression. These results indicate that bupivacaine induces the activation of transcription factors NF-κB and c-Jun/AP-1 in Neuro2a cells, while activation of NF-κB is involved in bupivacaine-induced increases in WDR35 expression. PMID:24466034
Lim, Wilfred; Gee, Katrina; Mishra, Sasmita; Kumar, Ashok
2005-11-01
The engagement of CD28 or CTLA-4 with B7.1 provides the essential second costimulatory signal that regulates the development of immune responses, including T cell activation, differentiation, and induction of peripheral tolerance. The signaling molecules and the transcription factors involved in B7.1 regulation are poorly understood. In this study we investigated the role of MAPKs in the regulation of LPS-induced B7.1 expression in human monocytes and the promonocytic THP-1 cells. Our results show that LPS-induced B7.1 expression in monocytic cells did not involve the activation of either p38 or ERKs. Using the JNK-specific inhibitor SP600125, small interfering RNAs specific for JNK1 and JNK2, and agents such as dexamethasone that inhibit JNK activation, we determined that LPS-induced B7.1 expression was regulated by JNK MAPK in both monocytes and THP-1 cells. In addition, we identified a distinct B7.1-responsive element corresponding to the IFN regulatory factor-7 (IRF-7) binding site in the B7.1 promoter responsible for the regulation of LPS-induced B7.1 transcription. Furthermore, SP600125 and dexamethasone inhibited LPS-induced IRF-7 activity. Taken together, these results suggest that LPS-induced B7.1 transcription in human monocytic cells may be regulated by JNK-mediated activation of the IRF-7 transcription factor.
Groom, Joanna; Mackay, Fabienne
2008-01-01
Systemic autoimmunity such as systemic lupus erythematosus (SLE) is associated with the loss of B-cell tolerance, B-cell dysregulation and autoantibody production. While some autoantibodies may contribute to the pathology seen with SLE, numerous studies have shown that dysregulation of T-cell function is another critical aspect driving disease. The positive results obtained in clinical trials using T-cell- or B-cell-specific treatments have suggested that cooperation between T and B cells probably underlies disease progression in many patients. A similar cooperative mechanism seemed to explain SLE developing in mice overexpressing the B-cell-activating factor from the tumor necrosis factor family (BAFF). However, surprisingly, T-cell-deficient BAFF transgenic (Tg) mice develop SLE similar to T-cell-sufficient BAFF Tg mice, and the disease was linked to innate activation of B cells and production of proinflammatory autoantibody isotypes. In conclusion, dysregulated innate activation of B cells alone can drive disease independently of T cells, and as such this aspect represents a new pathogenic mechanism in autoimmunity.
Oberoi, Pranav; Jabulowsky, Robert A; Bähr-Mahmud, Hayat; Wels, Winfried S
2013-01-01
Natural killer (NK) cells are highly specialized effectors of the innate immune system that hold promise for adoptive cancer immunotherapy. Their cell killing activity is primarily mediated by the pro-apoptotic serine protease granzyme B (GrB), which enters targets cells with the help of the pore-forming protein perforin. We investigated expression of a chimeric GrB fusion protein in NK cells as a means to augment their antitumoral activity. For selective targeting to tumor cells, we fused the epidermal growth factor receptor (EGFR) peptide ligand transforming growth factor α (TGFα) to human pre-pro-GrB. Established human NKL natural killer cells transduced with a lentiviral vector expressed this GrB-TGFα (GrB-T) molecule in amounts comparable to endogenous wildtype GrB. Activation of the genetically modified NK cells by cognate target cells resulted in the release of GrB-T together with endogenous granzymes and perforin, which augmented the effector cells' natural cytotoxicity against NK-sensitive tumor cells. Likewise, GrB-T was released into the extracellular space upon induction of degranulation with PMA and ionomycin. Secreted GrB-T fusion protein displayed specific binding to EGFR-overexpressing tumor cells, enzymatic activity, and selective target cell killing in the presence of an endosomolytic activity. Our data demonstrate that ectopic expression of a targeted GrB fusion protein in NK cells is feasible and can enhance antitumoral activity of the effector cells.
2005-01-01
In vascular endothelial cells, cytokines induce genes that are expressed in inflammatory lesions partly through the activation of transcription factor NF-κB (nuclear factor-κB). Among the members of the NF-κB/rel protein family, homodimers of the RelA subunit of NF-κB can also function as strong transactivators when expressed in cells. However, the functional role of endogenous RelA homodimers has not been clearly elucidated. We investigated whether RelA homodimers are induced in cytokine-treated vascular endothelial cells. Gel mobility-shift and supershift assays revealed that a cytokine TNFα (tumour necrosis factor α) activated both NF-κB1/RelA heterodimers and RelA homodimers that bound to a canonical κB sequence, IgκB (immunoglobulin κB), in SV40 (simian virus 40) immortalized HMEC-1 (human dermal microvascular endothelial cell line 1). In HMEC-1 and HUVEC (human umbilical-vein endothelial cells), TNFα also induced RelA homodimers that bound to the sequence 65-2κB, which specifically binds to RelA homodimers but not to NF-κB1/RelA heterodimers in vitro. Deoxycholic acid, a detergent that can dissociate the NF-κB–IκB complex (where IκB stands for inhibitory κB), induced the binding of the RelA homodimers to 65-2κB from the cytosolic fraction of resting HMEC-1. Furthermore, TNFα induced the transcriptional activity of a reporter gene that was driven by 65-2κB in HMEC-1. These results suggest that in addition to NF-κB1/RelA heterodimers, TNFα also induces RelA homodimers that are functionally active. Thus RelA homodimers may actively participate in cytokine regulation of gene expression in human vascular endothelial cells. PMID:15876188
Tumor necrosis factor-{alpha} enhances IL-15-induced natural killer cell differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jiwon; Lee, Suk Hyung; Korea University of Science and Technology, Yusong, Daejeon 305-333
2009-09-04
The differentiation of natural killer (NK) cells is regulated by various factors including soluble growth factors and transcription factors. Here, we have demonstrated that tumor necrosis factor-{alpha} (TNF-{alpha}) is a positive regulator of NK cell differentiation. TNF-{alpha} augmented the IL-15-induced expression of NK1.1 and CD122 in mature NK cells, and TNF-{alpha} alone also induced NK cell maturation as well as IL-15. TNF-{alpha} also increased IFN-{gamma} production in NK cells in the presence of IL-15. Meanwhile, mRNA expression of several transcription factors, including T-bet and GATA-3, was increased by the addition of TNF-{alpha} and IL-15. In addition, TNF-{alpha} increased nuclear factor-kappamore » B (NF-{kappa}B) activity in NK cells and inhibition of NF-{kappa}B impeded TNF-{alpha}-enhanced NK cell maturation. Overall, these data suggest that TNF-{alpha} significantly increased IL-15-driven NK cell differentiation by increasing the expression of transcription factors that play crucial roles in NK cell maturation and inducing the NF-{kappa}B activity.« less
NASA Astrophysics Data System (ADS)
Hellweg, Christine E.; Langen, Britta; Klimow, Galina; Ruscher, Roland; Schmitz, Claudia; Baumstark-Khan, Christa; Reitz, Günther
2009-10-01
Radiation is a potentially limiting factor for manned long-term space missions. Prolonged exposure to galactic cosmic rays may shorten the healthy life-span after return to Earth due to cancer induction. During the mission, a solar flare can be life threatening. For better risk estimation and development of appropriate countermeasures, the study of the cellular radiation response is necessary. Since apoptosis may be a mechanism the body uses to eliminate damaged cells, the induction by cosmic radiation of the nuclear anti-apoptotic transcription factor nuclear factor κB (NF-κB) could influence the cancer risk of astronauts exposed to cosmic radiation by improving the survival of radiation-damaged cells. In previous studies using a screening assay for the detection of NF-κB-dependent gene induction (HEK-pNF-κB-d2EGFP/Neo cells), the activation of this transcription factor by heavy ions was shown [Baumstark-Khan, C., Hellweg, C.E., Arenz, A., Meier, M.M. Cellular monitoring of the nuclear factor kappa B pathway for assessment of space environmental radiation. Radiat. Res. 164, 527-530, 2005]. Studies with NF-κB inhibitors can map functional details of the NF-κB pathway and the influence of radiation-induced NF-κB activation on various cellular outcomes such as survival or cell cycle arrest. In this work, the efficacy and cytotoxicity of four different NF-κB inhibitors, caffeic acid phenethyl ester (CAPE), capsaicin, the proteasome inhibitor MG-132, and the cell permeable peptide NF-κB SN50 were analyzed using HEK-pNF-κB-d2EGFP/Neo cells. In the recommended concentration range, only CAPE displayed considerable cytotoxicity. CAPE and capsaicin partially inhibited NF-κB activation by the cytokine tumor necrosis factor α. MG-132 completely abolished the activation and was therefore used for experiments with X-rays. NF-κB SN-50 could not reduce NF-κB dependent expression of the reporter destabilized Enhanced Green Fluorescent Protein (d2EGFP). MG-132 entirely suppressed the X-ray induced NF-κB activation in HEK-pNF-κB-d2EGFP/Neo cells. In conclusion, the degradation of the inhibitor of NF-κB (IκB) in the proteasome is essential for X-ray induced NF-κB activation, and MG-132 will be useful in studies of the NF-κB pathway involvement in the cellular response to heavy ion exposure and other space-relevant radiation qualities.
Simonetti, Giorgia; Carette, Amanda; Silva, Kathryn; Wang, Haowei; De Silva, Nilushi S.; Heise, Nicole; Siebel, Christian W.; Shlomchik, Mark J.
2013-01-01
The transcription factor interferon regulatory factor-4 (IRF4) is expressed in B cells at most developmental stages. In antigen-activated B cells, IRF4 controls germinal center formation, class-switch recombination, and the generation of plasma cells. Here we describe a novel function for IRF4 in the homeostasis of mature B cells. Inducible deletion of irf4 specifically in B cells in vivo led to the aberrant accumulation of irf4-deleted follicular B cells in the marginal zone (MZ) area. IRF4-deficient B cells showed elevated protein expression and activation of NOTCH2, a transmembrane receptor and transcriptional regulator known to be required for MZ B cell development. Administration of a NOTCH2-inhibitory antibody abolished nuclear translocation of NOTCH2 in B cells within 12 h and caused a rapid and progressive disintegration of the MZ that was virtually complete 48 h after injection. The disappearance of the MZ was accompanied by a transient increase of MZ-like B cells in the blood rather than increased B cell apoptosis, demonstrating that continued NOTCH2 activation is critical for the retention of B cells in the MZ. Our results suggest that IRF4 controls the positioning of mature B cells in the lymphoid microenvironments by regulating NOTCH2 expression. These findings may have implications for the understanding of B cell malignancies with dysregulated IRF4 and NOTCH2 activity. PMID:24323359
Pratheeshkumar, Poyil; Kuttan, Girija
2011-07-01
In this study, we investigated the effect of vernolide-A on the induction of apoptosis as well as its regulatory effect on the activation of transcription factors in B16F-10 melanoma cells. Treatment of B16F-10 cells with nontoxic concentrations of vernolide-A showed the presence of apoptotic bodies and induced DNA fragmentation in a dose-dependent manner. Cell-cycle analysis and TUNEL assays also confirmed the observation. The proapoptotic genes, p53, Bax, caspase-9, and caspase-3, were upregulated in vernolide-A-treated cells, whereas the antiapoptotic gene, Bcl-2, was downregulated. vernolide-A treatment also showed a downregulation of cyclin D1 expression and upregulated p21 and p27 gene expression in B16F-10 melanoma cells. The study also reveals that vernolide-A treatment could alter the production and expression of proinflammatory cytokines and could inhibit the activation and nuclear translocation of p65, p50, and c-Rel subunits of nuclear factor-κB and other transcription factors, such as c-fos, activated transcription factor-2, and cyclic adenosine monophosphate response-element-binding protein in B16F-10 melanoma cells. These results suggest that vernolide-A induces apoptosis via activation of p53-induced, caspase-3-mediated proapoptotic signaling and suppression of NF-κB-induced, bcl-2-mediated survival signaling.
Seelig, Davis M; Ito, Daisuke; Forster, Colleen L; Yoon, Una A; Breen, Matthew; Burns, Linda J; Bachanova, Veronika; Lindblad-Toh, Kerstin; O'Brien, Timothy D; Schmechel, Stephen C; Rizzardi, Anthony E; Modiano, Jaime F; Linden, Michael A
2017-07-01
Activation of the classical nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway is a common molecular event observed in both human and canine diffuse large B-cell lymphoma (DLBCL). Although the oncogenic potential of the alternative NFκB pathway (ANFκBP) has also been recently identified in DLBCL, its precise role in tumor pathogenesis and potential as a treatment target is understudied. We hypothesized that up-regulation of the ANFκBP plays an important role in the proliferation and survival of canine DLBCL cells, and we demonstrate that the ANFκBP is constitutively active in primary canine DLBCL samples and a cell line (CLBL1). We further demonstrate that a small interfering RNA inhibits the activation of the NFκB pathway and induces apoptosis in canine DLBCL cells. In conclusion, the ANFκBP facilitates survival of canine DLBCL cells, and thus, dogs with spontaneous DLBCL can provide a useful large animal model to study therapies targeting the ANFκBP.
Dilshara, Matharage Gayani; Kang, Chang-Hee; Choi, Yung Hyun; Kim, Gi-Young
2015-01-01
We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-α-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-α-induced mRNA and protein expression of MMP-9 expression. Zymography data confirmed that stimulation of cells with TNF-α significantly increased MMP-9 activity. However, mangiferin substantially reduced the TNF-α-induced activity of MMP-9. Additionally, a matrigel invasion assay showed that mangiferin significantly reduced TNF-α-induced invasion of LNCaP cells. Compared to untreated controls, TNF-α-stimulated LNCaP cells showed a significant increase in nuclear factor-κB (NF-κB) luciferase activity. However, mangiferin treatment markedly decreased TNF-α-induced NF-κB luciferase activity. Furthermore, mangiferin suppressed nuclear translocation of the NF-κB subunits p65 and p50. Collectively, our results indicate that mangiferin is a potential anti-invasive agent that acts by suppressing NF-κB-mediated MMP-9 expression. [BMB Reports 2015; 48(10): 559-564] PMID:25739392
Dilshara, Matharage Gayani; Kang, Chang-Hee; Choi, Yung Hyun; Kim, Gi-Young
2015-10-01
We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-α-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-α-induced mRNA and protein expression of MMP-9 expression. Zymography data confirmed that stimulation of cells with TNF-α significantly increased MMP-9 activity. However, mangiferin substantially reduced the TNF-α-induced activity of MMP-9. Additionally, a matrigel invasion assay showed that mangiferin significantly reduced TNF-α-induced invasion of LNCaP cells. Compared to untreated controls, TNF-α-stimulated LNCaP cells showed a significant increase in nuclear factor-κB (NF-κB) luciferase activity. However, mangiferin treatment markedly decreased TNF-α-induced NF-κB luciferase activity. Furthermore, mangiferin suppressed nuclear translocation of the NF-κB subunits p65 and p50. Collectively, our results indicate that mangiferin is a potential anti-invasive agent that acts by suppressing NF-κB-mediated MMP-9 expression.
A novel NFIA-NFκB feed-forward loop contributes to glioblastoma cell survival
Lee, JunSung; Hoxha, Edlira
2017-01-01
Abstract Background. The nuclear factor I-A (NFIA) transcription factor promotes glioma growth and inhibits apoptosis in glioblastoma (GBM) cells. Here we report that the NFIA pro-survival effect in GBM is mediated in part via a novel NFIA–nuclear factor-kappaB (NFκB) p65 feed-forward loop. Methods. We examined effects of gain- and loss-of-function manipulations of NFIA and NFκB p65 on each other’s transcription, cell growth, apoptosis and sensitivity to chemotherapy in patient-derived GBM cells and established GBM cell lines. Results. NFIA enhanced apoptosis evasion by activating NFκB p65 and its downstream anti-apoptotic factors tumor necrosis factor receptor-associated factor 1 (TRAF1) and cellular inhibitor of apoptosis proteins (cIAPs). Induction of NFκB by NFIA was required to protect cells from apoptosis, and inhibition of NFκB effectively reversed the NFIA anti-apoptotic effect. Conversely, NFIA knockdown decreased expression of NFκB and anti-apoptotic genes TRAF1 and cIAPs, and increased baseline apoptosis. NFIA positively regulated NFκB transcription and NFκB protein level. Interestingly, NFκB also activated the NFIA promoter and increased NFIA level, and knockdown of NFIA was sufficient to attenuate the NFκB pro-survival effect, suggesting a reciprocal regulation between NFIA and NFκB in governing GBM cell survival. Supporting this, NFIA and NFκB expression levels were highly correlated in human GBM and patient-derived GBM cells. Conclusions. These data define a previously unknown NFIA-NFκB feed-forward regulation that may contribute to GBM cell survival. PMID:27994064
The AP-1 transcription factor Fra1 inhibits follicular B cell differentiation into plasma cells
Grötsch, Bettina; Brachs, Sebastian; Lang, Christiane; Luther, Julia; Derer, Anja; Schlötzer-Schrehardt, Ursula; Bozec, Aline; Fillatreau, Simon; Berberich, Ingolf; Hobeika, Elias; Reth, Michael; Wagner, Erwin F.; Schett, Georg
2014-01-01
The cornerstone of humoral immunity is the differentiation of B cells into antibody-secreting plasma cells. This process is tightly controlled by a regulatory gene network centered on the transcriptional repressor B lymphocyte–induced maturation protein 1 (Blimp1). Proliferation of activated B cells is required to foster Blimp1 expression but needs to be terminated to avoid overshooting immune reactions. Activator protein 1 (AP-1) transcription factors become quickly up-regulated upon B cell activation. We demonstrate that Fra1, a Fos member of AP-1, enhances activation-induced cell death upon induction in activated B cells. Moreover, mice with B cell–specific deletion of Fra1 show enhanced plasma cell differentiation and exacerbated antibody responses. In contrast, transgenic overexpression of Fra1 blocks plasma cell differentiation and immunoglobulin production, which cannot be rescued by Bcl2. On the molecular level, Fra1 represses Blimp1 expression and interferes with binding of the activating AP-1 member c-Fos to the Blimp1 promoter. Conversely, overexpression of c-Fos in Fra1 transgenic B cells releases Blimp1 repression. As Fra1 lacks transcriptional transactivation domains, we propose that Fra1 inhibits Blimp1 expression and negatively controls plasma cell differentiation through binding to the Blimp1 promoter. In summary, we demonstrate that Fra1 negatively controls plasma cell differentiation by repressing Blimp1 expression. PMID:25288397
A Pro-Inflammatory Role for Nuclear Factor Kappa B in Childhood Obstructive Sleep Apnea Syndrome
Israel, Lee P.; Benharoch, Daniel; Gopas, Jacob; Goldbart, Aviv D.
2013-01-01
Study Objectives: Childhood obstructive sleep apnea syndrome (OSAS) is associated with an elevation of inflammatory markers such as C-reactive protein (CRP) that correlates with specific morbidities and subsides following intervention. In adults, OSAS is associated with activation of the transcription factor nuclear factor kappa B (NF-kB). We explored the mechanisms underlying NF-kB activation, based on the hypothesis that specific NF-kB signaling is activated in children with OSAS. Design: Adenoid and tonsillar tissues from children with OSAS and matched controls were immunostained against NF-kB classical (p65 and p50) and alternative (RelB and p52) pathway subunits, and NF-kB-dependent cytokines: interleukin (IL)- 1α, IL-1β, tumor necrosis factor-α, and IL-8). Serum CRP levels were measured in all subjects. NF-kB induction was evaluated by a luciferase-NF-kB reporter assay in L428 cells constitutively expressing NF-kB and in Jurkat cells with inducible NF-kB expression. p65 translocation to the nucleus, reflecting NF-kB activation, was measured in cells expressing fluorescent NF-kB-p65-GFP (green fluorescent protein). Setting: Sleep research laboratory. Patients or Participants: Twenty-five children with OSAS and 24 without OSAS. Interventions: N/A. Measurements and Results: Higher expression of IL-1α and classical NF-kB subunits p65 and p50 was observed in adenoids and tonsils of children with OSAS. Patient serum induced NF-kB activity, as measured by a luciferase-NF-kB reporter assay and by induction of p65 nuclear translocation in cells permanently transfected with GFP-p65 plasmid. IL-1β showed increased epithelial expression in OSAS tissues. Conclusions: Nuclear factor kappa B is locally and systemically activated in children with obstructive sleep apnea syndrome. This observation may motivate the search for new anti-inflammatory strategies for controlling nuclear factor kappa B activation in obstructive sleep apnea syndrome. Citation: Israel LP; Benharoch D; Gopas J; Goldbart AD. A pro-inflammatory role for nuclear factor kappa B in childhood obstructive sleep apnea syndrome. SLEEP 2013;36(12):1947-1955. PMID:24293770
A distinct plasmablast and naïve B-cell phenotype in primary immune thrombocytopenia
Flint, Shaun M.; Gibson, Adele; Lucas, Geoff; Nandigam, Raghava; Taylor, Louise; Provan, Drew; Newland, Adrian C.; Savage, Caroline O.; Henderson, Robert B.
2016-01-01
Primary immune thrombocytopenia is an autoimmune disorder in which platelet destruction is a consequence of both B- and T-cell dysregulation. Flow cytometry was used to further characterize the B- and T-cell compartments in a cross-sectional cohort of 26 immune thrombocytopenia patients including antiplatelet antibody positive (n=14) and negative (n=12) patients exposed to a range of therapies, and a cohort of matched healthy volunteers. Markers for B-cell activating factor and its receptors, relevant B-cell activation markers (CD95 and CD21) and markers for CD4+ T-cell subsets, including circulating T-follicular helper-like cells, were included. Our results indicate that an expanded population of CD95+ naïve B cells correlated with disease activity in immune thrombocytopenia patients regardless of treatment status. A population of CD21-naïve B cells was specifically expanded in autoantibody-positive immune thrombocytopenia patients. Furthermore, the B-cell maturation antigen, a receptor for B-cell activating factor, was consistently and strongly up-regulated on plasmablasts from immune thrombocytopenia patients. These observations have parallels in other autoantibody-mediated diseases and suggest that loss of peripheral tolerance in naïve B cells may be an important component of immune thrombocytopenia pathogenesis. Moreover, the B-cell maturation antigen represents a potential target for plasma cell directed therapies in immune thrombocytopenia. PMID:26969086
A distinct plasmablast and naïve B-cell phenotype in primary immune thrombocytopenia.
Flint, Shaun M; Gibson, Adele; Lucas, Geoff; Nandigam, Raghava; Taylor, Louise; Provan, Drew; Newland, Adrian C; Savage, Caroline O; Henderson, Robert B
2016-06-01
Primary immune thrombocytopenia is an autoimmune disorder in which platelet destruction is a consequence of both B- and T-cell dysregulation. Flow cytometry was used to further characterize the B- and T-cell compartments in a cross-sectional cohort of 26 immune thrombocytopenia patients including antiplatelet antibody positive (n=14) and negative (n=12) patients exposed to a range of therapies, and a cohort of matched healthy volunteers. Markers for B-cell activating factor and its receptors, relevant B-cell activation markers (CD95 and CD21) and markers for CD4(+) T-cell subsets, including circulating T-follicular helper-like cells, were included. Our results indicate that an expanded population of CD95(+) naïve B cells correlated with disease activity in immune thrombocytopenia patients regardless of treatment status. A population of CD21-naïve B cells was specifically expanded in autoantibody-positive immune thrombocytopenia patients. Furthermore, the B-cell maturation antigen, a receptor for B-cell activating factor, was consistently and strongly up-regulated on plasmablasts from immune thrombocytopenia patients. These observations have parallels in other autoantibody-mediated diseases and suggest that loss of peripheral tolerance in naïve B cells may be an important component of immune thrombocytopenia pathogenesis. Moreover, the B-cell maturation antigen represents a potential target for plasma cell directed therapies in immune thrombocytopenia. Copyright© Ferrata Storti Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Fei, E-mail: zhufei@zju.edu.cn; Yue, Wanfu; Wang, Yongxia
Nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor which controls the expression of various genes involved in immune responses. However, it is not clear whether NF-κB activation is critical for phagocytosis when Staphylococcus aureus is the pathogen. Using oligonucleotide microarrays, we investigated whether NF-κB cascade genes are altered in a mouse leukemic monocyte macrophage cell line (RAW 264.7) when the cells were stimulated to activate a host innate immune response against live S. aureus or heat-inactivated S. aureus (HISA). NF-κB cascade genes such as Nfκb1, Nfκbiz, Nfκbie, Rel, Traf1 and Tnfaip3 were up-regulated by all treatments at onemore » hour after incubation. NF-κB play an important role in activating phagocytosis in RAW 264.7 cells infected with S. aureus. Inhibition of NF-κB significantly blocked phagocytosis of fluorescently labeled S. aureus and decreased the expression of NFκB1, IL1α, IL1β and TLR2 in this cell line. Our results demonstrate that S. aureus may activate the NF-κB pathway and that NF-κB activation is required for phagocytosis of S. aureus by macrophages. - Highlights: • NF-κB cascade genes such as Nfκb1 and Traf1 were up-regulated by heat-inactivated S. aureus. • Inhibition of NF-κB significantly blocked phagocytosis of fluorescently labeled S. aureus. • NF-κB activation is required for phagocytosis of S. aureus by macrophages.« less
Gadgeel, Shirish M; Ali, Shadan; Philip, Philip A; Wozniak, Antoinette; Sarkar, Fazlul H
2009-05-15
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have shown modest clinical benefit in patients with relapsed nonsmall cell lung cancer (NSCLC). Down-regulation of Akt appears to correlate with the antitumor activity of EGFR-TKIs. Akt activates nuclear factor kappa B (NF-kappaB), which transcribes genes important for cell survival, invasion, and metastasis. The authors hypothesized that genistein, through the inhibition of NF-kappaB, could enhance the activity of EGFR-TKIs in NSCLCs. Three NSCLC cell lines with various EGFR mutation status and sensitivities to EGFR-TKIs were selected: H3255 (L858R), H1650 (del E746-A750), and H1781 (wild-type EGFR). Cells were treated with erlotinib, gefitinib, genistein, or the combination of each of the EGFR-TKIs with genistein. Cell survival and apoptosis were assessed, and expression levels of EGFR, pAkt, cyclooxygenase-2 (COX-2), E-cadherin, prostaglandin E(2) (PGE(2)), and NF-kappaB were measured. Both EGFR-TKIs demonstrated growth inhibition and apoptosis in each of the cell lines, but H1650 and H1781 were much less sensitive. Genistein demonstrated some antitumor activity in all cell lines, but enhanced growth inhibition and apoptosis when combined with the EGFR-TKIs in each of the cell lines. Both combinations down-regulated NF-kappaB significantly more than either agent alone in H3255. In addition, the combinations reduced the expression of EGFR, pAkt, COX-2, and PGE(2,) consistent with inactivation of NF-kappaB. The authors concluded that genistein enhances the antitumor effects of EGFR-TKIs in 3 separate NSCLC cell lines. This enhanced activity is in part because of greater reduction in the DNA-binding activity of NF-kappaB when EGFR-TKIs were combined with genistein.
Kawakami, Akio; Aikawa, Masanori; Nitta, Noriko; Yoshida, Masayuki; Libby, Peter; Sacks, Frank M
2007-01-01
Plasma apolipoprotein CIII (apoCIII) independently predicts risk for coronary heart disease (CHD). We recently reported that apoCIII directly enhances adhesion of human monocytes to endothelial cells (ECs), and identified the activation of PKC alpha as a necessary upstream event of enhanced monocyte adhesion. This study tested the hypothesis that apoCIII activates PKC alpha in human monocytic THP-1 cells, leading to NF-kappaB activation. Among inhibitors specific to PKC activators, phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor D609 limited apoCIII-induced PKC alpha activation and THP-1 cell adhesion. ApoCIII increased PC-PLC activity in THP-1 cells, resulting in PKC alpha activation. Pertussis toxin (PTX) inhibited apoCIII-induced PC-PLC activation and subsequent PKC alpha activation, implicating PTX-sensitive G protein pathway. ApoCIII further activated nuclear factor-kappaB (NF-kappaB) through PKC alpha in THP-1 cells and augmented beta1-integrin expression. The NF-kappaB inhibitor peptide SN50 partially inhibited apoCIII-induced beta1-integrin expression and THP-1 cell adhesion. ApoCIII-rich VLDL had similar effects to apoCIII alone. PTX-sensitive G protein pathway participates critically in PKC alpha stimulation in THP-1 cells exposed to apoCIII, activating NF-kappaB, and increasing beta1-integrin. This action causes monocytic cells to adhere to endothelial cells. Furthermore, because leukocyte NF-kappaB activation contributes to inflammatory aspects of atherogenesis, apoCIII may stimulate diverse inflammatory responses through monocyte activation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Yang; Han, Chen-chen; Li, Yifan
Basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) produced by hepatocellular carcinoma (HCC) cells are responsible for the growth of HCC cells. Accumulating evidence shows that insulin-like growth factor-binding protein-3 (IGFBP-3) suppresses HCC cell proliferation in both IGF-dependent and independent manners. It's unknown, however, whether treatment with exogenous IGFBP-3 inhibits bFGF and PDGF production in HCC cells. The present study demonstrates that IGFBP-3 suppressed IGF-1-induced bFGF and PDGF expression while it does not affect their expression in the absence of IGF-1. To delineate the underlying mechanism, western-blot and RT-PCR assays confirmed that the transcription factor early growth responsemore » protein 1 (EGR1) is involved in IGFBP-3 regulation of bFGF and PDGF. IGFBP-3 inhibition of type 1 insulin-like growth factor receptor (IGF1R), ERK and AKT activation is IGF-1-dependent. Furthermore, transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1, bFGF and PDGF expression. In conclusion, these findings suggest that IGFBP-3 suppresses transcription of EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation. It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation, suggesting that IGFBP-3 could be a target for the treatment of HCC. - Highlights: • IGFBP-3 plays an inhibition role in IGF1-induced HCC cell growth. • IGFBP-3 inhibits bFGF and PDGF production in the IGF-dependent manner. • EGR1 is involved in IGFBP-3 regulation of bFGF and PDGF in HCC cells. • IGFBP-3 suppresses EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation.« less
Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling*♦
Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu.; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I.; Nienhaus, G. Ulrich; Gierschik, Peter
2015-01-01
The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca2+. The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca2+ and regulation of Ca2+-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca2+ release from intracellular stores; (iii) Ca2+ entry from the extracellular compartment; and (iv) nuclear translocation of the Ca2+-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca2+ signaling. PMID:25903139
Transcription factor NF-kappaB participates in regulation of epithelial cell turnover in the colon.
Inan, M S; Tolmacheva, V; Wang, Q S; Rosenberg, D W; Giardina, C
2000-12-01
The transcription factor nuclear factor (NF)-kappaB regulates the expression of genes that can influence cell proliferation and death. Here we analyze the contribution of NF-kappaB to the regulation of epithelial cell turnover in the colon. Immunohistochemical, immunoblot, and DNA binding analyses indicate that NF-kappaB complexes change as colonocytes mature: p65-p50 complexes predominate in proliferating epithelial cells of the colon, whereas the p50-p50 dimer is prevalent in mature epithelial cells. NF-kappaB1 (p50) knockout mice were used to study the role of NF-kappaB in regulating epithelial cell turnover. Knockout animals lacked detectable NF-kappaB DNA binding activity in isolated epithelial cells and had significantly longer crypts with a more extensive proliferative zone than their wild-type counterparts (as determined by proliferating cell nuclear antigen staining and in vivo bromodeoxyuridine labeling). Gene expression profiling reveals that the NF-kappaB1 knockout mice express the potentially growth-enhancing tumor necrosis factor (TNF)-alpha and nerve growth factor-alpha genes at elevated levels, with in situ hybridization localizing some of the TNF-alpha expression to epithelial cells. TNF-alpha is NF-kappaB regulated, and its upregulation in NF-kappaB1 knockouts may result from an alleviation of p50-p50 repression. NF-kappaB complexes may therefore influence cell proliferation in the colon through their ability to selectively activate and/or repress gene expression.
Sirinian, Chaido; Papanastasiou, Anastasios D; Schizas, Michail; Spella, Magda; Stathopoulos, Georgios T; Repanti, Maria; Zarkadis, Ioannis K; King, Tari A; Kalofonos, Haralabos P
2018-05-29
The RANK/RANKL axis emerges as a key regulator of breast cancer initiation, progression, and metastasis. RANK-c is a RANK receptor isoform produced through alternative splicing of the TNFRSF11A (RANK) gene and a dominant-negative regulator of RANK-induced nuclear factor-κB (NF-κB) activation. Here we report that RANK-c transcript is expressed in 3.2% of cases in The Cancer Genome Atlas breast cancer cohort evenly between ER-positive and ER-negative cases. Nevertheless, the ratio of RANK to RANK-c (RANK/RANK-c) is increased in ER-negative breast cancer cell lines compared to ER-positive breast cancer cell lines. In addition, forced expression of RANK-c in ER-negative breast cancer cell lines inhibited stimuli-induced NF-κB activation and attenuated migration, invasion, colony formation, and adhesion of cancer cells. Further, RANK-c expression in MDA-MB-231 cells inhibited lung metastasis and colonization in vivo. The RANK-c-mediated inhibition of cancer cell aggressiveness and nuclear factor-κB (NF-κB) activation in breast cancer cells seems to rely on a RANK-c/TNF receptor-associated factor-2 (TRAF2) protein interaction. This was further confirmed by a mutated RANK-c that is unable to interact with TRAF2 and abolishes the ability to attenuate NF-κB activation, migration, and invasion. Additional protein interaction characterization revealed epidermal growth factor receptor (EGFR) as a novel interacting partner for RANK-c in breast cancer cells with a negative effect on EGFR phosphorylation and EGF-dependent downstream signaling pathway activation. Our findings further elucidate the complex molecular biology of the RANKL/RANK system in breast cancer and provide preliminary data for RANK-c as a possible marker for disease progression and aggressiveness.
Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells
Rhode, Jennifer; Fogoros, Sarah; Zick, Suzanna; Wahl, Heather; Griffith, Kent A; Huang, Jennifer; Liu, J Rebecca
2007-01-01
Background Ginger (Zingiber officinale Rosc) is a natural dietary component with antioxidant and anticarcinogenic properties. The ginger component [6]-gingerol has been shown to exert anti-inflammatory effects through mediation of NF-κB. NF-κB can be constitutively activated in epithelial ovarian cancer cells and may contribute towards increased transcription and translation of angiogenic factors. In the present study, we investigated the effect of ginger on tumor cell growth and modulation of angiogenic factors in ovarian cancer cells in vitro. Methods The effect of ginger and the major ginger components on cell growth was determined in a panel of epithelial ovarian cancer cell lines. Activation of NF-κB and and production of VEGF and IL-8 was determined in the presence or absence of ginger. Results Ginger treatment of cultured ovarian cancer cells induced profound growth inhibition in all cell lines tested. We found that in vitro, 6-shogaol is the most active of the individual ginger components tested. Ginger treatment resulted in inhibition of NF-kB activation as well as diminished secretion of VEGF and IL-8. Conclusion Ginger inhibits growth and modulates secretion of angiogenic factors in ovarian cancer cells. The use of dietary agents such as ginger may have potential in the treatment and prevention of ovarian cancer. PMID:18096028
Dilshara, Matharage Gayani; Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Kang, Chang-Hee; Choi, Yung-Hyun; Kim, Gi-Young
2016-06-01
To evaluate whether the methanol extract of Codium fragile (MECF) regulates tumor necrosis factor-α (TNF-α)-induced invasion of human breast cancer MDA-MB-231 cells by suppressing matrix metalloproteinase-9 (MMP-9). Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis were performed to analyze the expression of MMP-9 and nuclear factor-κB (NF-κB) subunits, p65 and p50, and IκB in MDA-MB-231 cells. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used for cell viability. MMP-9 activity and invasion were measured by gelatin zymography and a matrigel invasion assay, respectively. NF-κB activity was measured by an electrophoretic mobility shift assay and luciferase activity. MECF had no effect on cell viability up to a concentration of 100 μg/mL in human breast cancer MDA-MB-231 cells regardless of the presence of TNF-α. MDA-MB-231 cells that were stimulated with TNF-α showed a marked increase of invasion compared to the untreated control, whereas pretreatment with MECF downregulated the TNF-α-induced invasion of MDA-MB-231 cells. Additionally, zymography, western blot analysis, and RT-PCR confirmed that MECF decreased TNF-α-induced MMP-9 expression and activity which is a key regulator for cancer invasion. According to an electrophoretic morbidity shift assay, pretreatment with MECF in MDA-MB-231 cells significantly decreased the TNF-α-induced DNA-binding activity of NF-κB, which is an important transcription factor for regulating cancer invasion-related genes such as MMP-9. Furthermore, treatment with MECF sustained the expression of p65 and p50 in response to TNF-α in the cytosolic compartment. The luciferase assay demonstrated that MECF attenuated TNF-α-induced NF-κB luciferase activity. MECF exhibited its anti-invasive capability by downregulating TNF-α-induced MMP-9 expression, resulting from the suppression of NF-κB activity in the human breast cancer cell line MDA-MB-231. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.
Kim, Hee-Jun; Kim, Jae-Gyu; Moon, Mi-Young; Park, Seol-Hye; Park, Jae-Bong
2014-01-01
Transforming growth factor (TGF)-β1 plays several roles in a variety of cellular functions. TGF-β1 transmits its signal through Smad transcription factor-dependent and -independent pathways. It was reported that TGF-β1 activates NF-κB and RhoA, and RhoA activates NF-κB in several kinds of cells in a Smad-independent pathway. However, the activation molecular mechanism of NF-κB by RhoA upon TGF-β1 has not been clearly elucidated. We observed that RhoA-GTP level was increased by TGF-β1 in RAW264.7 cells. RhoA-GDP and RhoGDI were bound to N- and C-terminal domains of IKKγ, respectively. Purified IKKγ facilitated GTP binding to RhoA complexed with RhoGDI. Furthermore, Dbs, a guanine nucletotide exchange factor of RhoA much more enhanced GTP binding to RhoA complexed with RhoGDI in the presence of IKKγ. Indeed, si-IKKγ abolished RhoA activation in response to TGF-β1 in cells. However, TGF-β1 stimulated the release of RhoA-GTP from IKKγ and Rho-associated kinase (ROCK), an active RhoA effector protein, directly phosphorylated IKKβ in vitro, whereas TGF-β1-activated kinase 1 activated RhoA upon TGF-β1 stimulation. Taken together, our data indicate that IKKγ facilitates RhoA activation via a guanine nucletotide exchange factor, which in turn activates ROCK to phosphorylate IKKβ, leading to NF-κB activation that induced the chemokine expression and cell migration upon TGF-β1. PMID:24240172
Becerra, E; Scully, M A; Leandro, M J; Heelas, E O; Westwood, J-P; De La Torre, I; Cambridge, G
2015-01-01
Autoantibodies inhibiting the activity of the metalloproteinase, ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13), underlie the pathogenesis of thrombotic thrombocytopenic purpura (TTP). Rituximab (RTX) combined with plasma-exchange (PEX) is an effective treatment in TTP. Patients can remain in remission for extended periods following PEX/RTX, and this is associated with continuing reduction in antibodies to ADAMTS13. Factors controlling B cell differentiation to autoantibody production, including stimulation through the B cell receptor and interactions with the B cell-activating factor (BAFF), may thus impact length of remission. In this cross-sectional study, we measured naive and memory B cell phenotypes [using CD19/immunoglobulin (Ig)D/CD27] following PEX/RTX treatment in TTP patients at B cell return (n = 6) and in 12 patients in remission 10–68 months post-RTX. We also investigated relationships among serum BAFF, soluble CD23 (sCD23– a surrogate measure of acquiring B memory (CD27+) phenotype) and BAFF receptor (BAFF-R) expression. At B cell return after PEX/RTX, naive B cells predominated and BAFF-R expression was reduced compared to healthy controls (P < 0·001). In the remission group, despite numbers of CD19+ B cells within normal limits in most patients, the percentage and absolute numbers of pre-switch and memory B cells remained low, with sCD23 levels at the lower end of the normal range. BAFF levels were correlated inversely with BAFF-R expression and time after therapy. In conclusion, the long-term effects of RTX therapy in patients with TTP included slow regeneration of memory B cell subsets and persistently reduced BAFF-R expression across all B cell subpopulations. This may reflect the delay in selection and differentiation of potentially autoreactive (ADAMTS13-specific) B cells, resulting in relatively long periods of low disease activity after therapy. PMID:25339550
Briegel, K; Hentsch, B; Pfeuffer, I; Serfling, E
1991-01-01
The inducible, T cell-specific enhancers of murine and human Interleukin 2 (Il-2) genes contain the kB-like sequence GGGATTTCACC as an essential cis-acting enhancer motif. When cloned in multiple copies this so-called TCEd (distal T cell element) acts as an inducible proto-enhancer element in E14 T lymphoma cells, but not in HeLa cells. In extracts of induced, Il-2 secreting El4 cells three individual protein factors bind to TCEd DNA. The binding of the most prominent factor, named TCF-1 (T cell factor 1), is correlated with the proto-enhancer activity of TCEd. TCF-1 consists of two polypeptides of about 50 kD and 105 kD; the former seems to be related to the 50 kD polypeptide of NF-kB. Purified NF-kB is also able to bind to the TCEd, but TCF-1 binds stronger than NF-kB to TCEd DNA. The conversion of the TCEd to a 'perfect' NF-kB binding site leads to a tighter binding of NF-kB to TCEd DNA and, as a functional consequence, to the activity of the 'converted' TCEd motifs in HeLa cells. Thus, the substitution of the underlined A residue to a C within the GGGATTTCACC motif abolishes its T cell-restricted activity and leads to its functioning in both El4 cells and HeLa cells. These results indicate that lymphocyte-specific factors binding to the TCEd are involved in the control of T cell specific-transcription of the Il-2 gene. Images PMID:1945879
Alger, Heather M.; Raben, Nina; Pistilli, Emidio; Francia, Dwight; Rawat, Rashmi; Getnet, Derese; Ghimbovschi, Svetlana; Chen, Yi-Wen; Lundberg, Ingrid E.; Nagaraju, Kanneboyina
2011-01-01
Objective Multinucleated cells are relatively resistant to classical apoptosis, and the factors initiating cell-death and damage in myositis are not well defined. We hypothesized that non-immune autophagic cell death may play a role in muscle fiber damage. Recent literature indicates that tumor necrosis factor-alpha-related apoptosis inducing ligand (TRAIL) may induce both NFκB (nuclear factor kappa-light chain enhancer of activated B cells) activation and autophagic cell death in other systems. Here, we have investigated its role in cell death and pathogenesis in vitro and in vivo using myositis (human and mouse) muscle tissues. Methods Gene expression profiling indicated that expression of TRAIL and several autophagy markers was specifically upregulated in myositis muscle tissue; these results were confirmed by immunohistochemistry and immunoblotting. We also analyzed TRAIL-induced cell death (apoptosis and autophagy) and NFκB activation in vitro in cultured cells. Results TRAIL was expressed predominantly in muscle fibers of myositis, but not in biopsies from normal or other dystrophic-diseased muscle. Autophagy markers were upregulated in human and mouse models of myositis. TRAIL expression was restricted to regenerating/atrophic areas of muscle fascicles, blood vessels, and infiltrating lymphocytes. TRAIL induced NFκB activation and IκB degradation in cultured cells that are resistant to TRAIL-induced apoptosis but undergo autophagic cell death. Conclusion Our data demonstrate that TRAIL is expressed in myositis muscle and may mediate both activation of NFκB and autophagic cell death in myositis. Thus, this non-immune pathway may be an attractive target for therapeutic intervention in myositis. PMID:21769834
Cismasiu, Valeriu B; Duque, Javier; Paskaleva, Elena; Califano, Danielle; Ghanta, Sailaja; Young, Howard A; Avram, Dorina
2009-01-15
BCL11B is a transcriptional regulator with an important role in T-cell development and leukaemogenesis. We demonstrated recently that BCL11B controls expression from the IL (interleukin)-2 promoter through direct binding to the US1 (upstream site 1). In the present study, we provide evidence that BCL11B also participates in the activation of IL-2 gene expression by enhancing NF-kappaB (nuclear factor kappaB) activity in the context of TCR (T-cell receptor)/CD28-triggered T-cell activation. Enhanced NF-kappaB activation is not a consequence of BCL11B binding to the NF-kappaB response elements or association with the NF-kappaB-DNA complexes, but rather the result of higher translocation of NF-kappaB to the nucleus caused by enhanced degradation of IkappaB (inhibitor of NF-kappaB). The enhanced IkappaB degradation in cells with increased levels of BCL11B was specific for T-cells activated through the TCR, but not for cells activated through TNFalpha (tumour necrosis factor alpha) or UV light, and was caused by increased activity of IkappaB kinase, as indicated by its increase in phosphorylation. As BCL11B is a transcription factor, we investigated whether the expression of genes upstream of IkappaB kinase in the TCR/CD28 signalling pathway was affected by increased BCL11B expression, and found that Cot (cancer Osaka thyroid oncogene) kinase mRNA levels were elevated. Cot kinase is known to promote enhanced IkappaB kinase activity, which results in the phosphorylation and degradation of IkappaB and activation of NF-kappaB. The implied involvement of Cot kinase in BCL11B-mediated NF-kappaB activation in response to TCR activation is supported by the fact that a Cot kinase dominant-negative mutant or Cot kinase siRNA (small interfering RNA) knockdown blocked BCL11B-mediated NF-kappaB activation. In support of our observations, in the present study we report that BCL11B enhances the expression of several other NF-kappaB target genes, in addition to IL-2. In addition, we provide evidence that BCL11B associates with intron 2 of the Cot kinase gene to regulate its expression.
Tsapakidis, Konstantinos; Vlachostergios, Panagiotis J; Voutsadakis, Ioannis A; Befani, Christina D; Patrikidou, Anna; Hatzidaki, Eleana; Daliani, Danai D; Moutzouris, George; Liakos, Panagiotis; Papandreou, Christos N
2012-06-01
Neuropeptides are important signal initiators in advanced prostate cancer, partially acting through activation of nuclear factor kappa B. Central to nuclear factor kappa B regulation is the ubiquitin-proteasome system, pharmacological inhibition of which has been proposed as an anticancer strategy. We investigated the putative role of the proteasome inhibitor bortezomib in neuropeptides signaling effects on prostate cancer cells. Human prostate cancer cell lines, LNCaP and PC-3, were used to examine cell proliferation, levels of proapoptotic (caspase-3, Bad) and cell cycle regulatory proteins (p53, p27, p21), as well as total and phosphorylated Akt and p44/42 mitogen-activated protein kinase proteins. Furthermore, 20S proteasome activity, subcellular localization of nuclear factor kappa B and transcription of nuclear factor kappa B target genes, interleukin-8 and vascular endothelial growth factor, were assessed. Neuropeptides (endothelin-1, bombesin) increased cell proliferation, whereas bortezomib decreased proliferation and induced apoptosis, an effect maintained after cotreatment with neuropeptides. Bad, p53, p21 and p27 were downregulated by neuropeptides in PC-3, and these effects were reversed with the addition of bortezomib. Neuropeptides increased proteasomal activity and nuclear factor kappa B levels in PC-3, and these effects were prevented by bortezomib. Interleukin-8 and vascular endothelial growth factor transcripts were induced after neuropeptides treatment, but downregulated by bortezomib. These results coincided with the ability of bortezomib to reduce mitogen-activated protein kinase signaling in both cell lines. These findings are consistent with bortezomib-mediated abrogation of neuropeptides-induced proliferative and antiapoptotic signaling. Thus, the effect of the drug on the neuropeptides axis needs to be further investigated, as neuropeptide action in prostate cancer might entail involvement of the proteasome. © 2012 The Japanese Urological Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Young-Rae; Noh, Eun-Mi; Oh, Hyun Ju
2011-02-25
Research highlights: {yields} MMP-9 plays a pivotal role in the invasion of MCF-7 breast cancer cells. {yields} TPA stimulates MMP-9 expression through activation of MAPK/NF-{kappa}B and MAPK/AP-1 pathways. {yields} Dihydroavenanthramide D suppresses MMP-9 expression via inhibition of TPA-induced MAPK/NF-{kappa}B and MAPK/AP-1 activations. {yields} Dihydroavenanthramide D blocks cell invasion of MCF-7 breast cancer cells. -- Abstract: Dihydroavenanthramide D (DHAvD) is a synthetic analog to naturally occurring avenanthramide, which is the active component of oat. Previous study demonstrates that DHAvD strongly inhibits activation of nuclear factor-kappa B (NF-{kappa}B), which is a major component in cancer cell invasion. The present study investigated whethermore » DHAvD can modulate MMP-9 expression and cell invasion in MCF-7 human breast cancer cells. MMP-9 expression and cell invasion in response to 12-O-tetradecanoylphorbol-13-acetate (TPA) was increased, whereas these inductions were muted by DHAvD. DHAvD also suppressed activation of mitogen-activated protein kinase (MAPK), and MAPK-mediated nuclear factor-kappa B (NF-{kappa}B) and activator protein-1 (AP-1) activations in TPA-treated MCF-7 cells. The results indicate that DHAvD-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of the MAPK/NF-{kappa}B and MAPK/AP-1 pathways in MCF-7 cells. DHAvD may have potential value in breast cancer metastasis.« less
Balague, Olga; Mozos, Ana; Martinez, Daniel; Hernandez, Luis; Colomo, Lluis; Mate, Jose Luis; Teruya-Feldstein, Julie; Lin, Oscar; Campo, Elias; Lopez-Guillermo, Armando; Martinez, Antonio
2009-01-01
X box-binding protein 1 (Xbp-1) is a transcription factor that is required for the terminal differentiation of B lymphocytes into plasma cells. The Xbp-1 gene is activated in response to endoplasmic reticulum stress signals, which generate a 50-kDa nuclear protein that acts as a potent transactivator and regulates the expression of genes related to the unfolded protein response. Activated Xbp-1 is essential for cell survival in plasma-cell tumors but its role in B-cell lymphomas is unknown. We analyzed the expression of activated Xbp-1 in reactive lymphoid tissues, 411 lymphomas and plasma-cell neoplasms, and 24 B-cell lines. In reactive tissues, Xbp-1 was only found in nuclear extracts. Nuclear expression of Xbp-1 was observed in occasional reactive plasma cells and in a subpopulation of Irf-4+/Bcl-6−/Pax-5− B cells in the light zones of reactive germinal centers, probably representing cells committed to plasma-cell differentiation. None of the low-grade lymphomas showed evidence of Xbp-1 activation; however, Xbp-1 activation was found in 28% of diffuse large B-cell lymphomas, independent of germinal or postgerminal center phenotype, as well as in 48% of plasmablastic lymphomas and 69% of plasma-cell neoplasms. Diffuse large B-cell lymphomas with nuclear Xbp-1 expression had a significantly worse response to therapy and shorter overall survival compared with negative tumors. These findings suggest that Xbp-1 activation may play a role in the pathogenesis of aggressive B-cell lymphomas. PMID:19389935
Chen, Beidong; Li, Xingguang; Qi, Ruomei
2013-01-01
Oxidized low-density lipoprotein (ox-LDL) is an important risk factor in the development of atherosclerosis. LOX-1, a lectin-like receptor for ox-LDL, is present primarily on endothelial cells and upregulated by ox-LDL, tumor necrosis factor a, shear stress, and cytokines in atherosclerosis. Recent studies demonstrated that ginkgolide B, a platelet-activating factor receptor antagonist, has antiinflammatory and antioxidant effects on endothelial and nerve cells. The present study investigated the effects of ginkgolide B on LOX-1 expression and the possible mechanism of action. Our results showed that ginkgolide B inhibited LOX-1 and intercellular cell adhesion molecule-1 (ICAM-1) expression in ox-LDL-stimulated endothelial cells through a mechanism associated with the attenuation of Akt activation. Similar data were obtained by silencing Akt and LY294002. We also evaluated Sirt1 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. These molecules play a protective role in endothelial cell injury. The results showed that ginkgolide B increased Sirt1 expression in ox-LDL-treated cells. The inhibitory effects of ginkgolide B on LOX-1 and ICAM-1 expression were reduced in Sirt1 siRNA-transfected cells. Nrf2 expression was increased in ox-LDL-treated cells, and ginkgolide B downregulated Nrf2 expression. These results suggest that ginkgolide B reduces Nrf2 expression by inhibiting LOX-1 expression, consequently reducing oxidative stress injury in ox-LDL-stimulated cells. Altogether, these results indicate that the protective effect of ginkgolide B on endothelial cells may be attributable to a decrease in LOX-1 expression and an increase in Sirt1 expression in ox-LDL-stimulated endothelial cells, the mechanism of which is linked to the inhibition of Akt activation. Ginkgolide B may be a multiple-target drug that exerts protective effects in ox-LDL-treated human umbilical vein endothelial cells. PMID:24069345
Mincheva, Stefka; Garcera, Ana; Gou-Fabregas, Myriam; Encinas, Mario; Dolcet, Xavier; Soler, Rosa M
2011-04-27
In vivo and in vitro motoneuron survival depends on the support of neurotrophic factors. These factors activate signaling pathways related to cell survival or inactivate proteins involved in neuronal death. In the present work, we analyzed the involvement of the nuclear factor-κB (NF-κB) pathway in mediating mouse spinal cord motoneuron survival promoted by neurotrophic factors. This pathway comprises ubiquitously expressed transcription factors that could be activated by two different routes: the canonical pathway, associated with IKKα/IKKβ kinase phosphorylation and nuclear translocation RelA (p65)/p50 transcription factors; and the noncanonical pathway, related to IKKα kinase homodimer phosphorylation and RelB/p52 transcription factor activation. In our system, we show that neurotrophic factors treatment induced IKKα and IKKβ phosphorylation and RelA nuclear translocation, suggesting NF-κB pathway activation. Protein levels of different members of the canonical or noncanonical pathways were reduced in a primary culture of isolated embryonic motoneurons using an interference RNA approach. Even in the presence of neurotrophic factors, selective reduction of IKKα, IKKβ, or RelA proteins induced cell death. In contrast, RelB protein reduction did not have a negative effect on motoneuron survival. Together these results demonstrated that the canonical NF-κB pathway mediates motoneuron survival induced by neurotrophic factors, and the noncanonical pathway is not related to this survival effect. Canonical NF-κB blockade induced an increase of Bim protein level and apoptotic cell death. Bcl-x(L) overexpression or Bax reduction counteracted this apoptotic effect. Finally, RelA knockdown causes changes of CREB and Smn protein levels.
NF-κB deregulation in Hodgkin lymphoma.
Weniger, Marc A; Küppers, Ralf
2016-08-01
Hodgkin and Reed/Sternberg (HRS) cells in classical Hodgkin lymphoma (HL) show constitutive activity of both the canonical and non-canonical NF-κB signaling pathways. The central pathogenetic role of this activity is indicated from studies with HL cell lines, which undergo apoptosis upon NF-κB inhibition. Multiple factors contribute to the strong NF-κB activity of HRS cells. This includes interaction with other cells in the lymphoma microenvironment through CD30, CD40, BCMA and other receptors, but also recurrent somatic genetic lesions in various factors of the NF-κB pathway, including destructive mutations in negative regulators of NF-κB signaling (e.g. TNFAIP3, NFKBIA), and copy number gains of genes encoding positive regulators (e.g. REL, MAP3K14). In Epstein-Barr virus-positive cases of classical HL, the virus-encoded latent membrane protein 1 causes NF-κB activation by mimicking an active CD40 receptor. NF-κB activity is also seen in the tumor cells of the rare nodular lymphocyte predominant form of HL, but the causes for this activity are largely unclear. Copyright © 2016 Elsevier Ltd. All rights reserved.
The BCL11A Transcription Factor Directly Activates RAG Gene Expression and V(D)J Recombination
Lee, Baeck-seung; Dekker, Joseph D.; Lee, Bum-kyu; Iyer, Vishwanath R.; Sleckman, Barry P.; Shaffer, Arthur L.; Ippolito, Gregory C.
2013-01-01
Recombination-activating gene 1 protein (RAG1) and RAG2 are critical enzymes for initiating variable-diversity-joining (VDJ) segment recombination, an essential process for antigen receptor expression and lymphocyte development. The transcription factor BCL11A is required for B cell development, but its molecular function(s) in B cell fate specification and commitment is unknown. We show here that the major B cell isoform, BCL11A-XL, binds the RAG1 promoter and Erag enhancer to activate RAG1 and RAG2 transcription in pre-B cells. We employed BCL11A overexpression with recombination substrates in a cultured pre-B cell line as well as Cre recombinase-mediated Bcl11alox/lox deletion in explanted murine pre-B cells to demonstrate direct consequences of BCL11A/RAG modulation on V(D)J recombination. We conclude that BCL11A is a critical component of a transcriptional network that regulates B cell fate by controlling V(D)J recombination. PMID:23438597
Gilbert, K M; Hoffmann, M K
1985-09-01
Dibutyryl cAMP and IL 1 were found to stimulate antigen-specific and polyclonal antibody production when added together to cultures of highly purified B cells. We propose that IL 1 and an elevation in cytoplasmic cAMP represent minimal signal requirements for B cell activation. In contrast to its effect on B cells, dibutyryl cAMP inhibited helper T cell activity. Cyclic AMP suppressed the production of IL 2 and T cell replacing factor (TRF) by T cells and thus abrogated the ability of helper T cells to enhance SRBC-specific antibody production by B cells. Cyclic AMP did not inhibit the generation by T cells of B cell growth factor (BCGF). BCGF, not normally detected in Con A supernatant, was found in the culture supernatant of spleen cells that were stimulated with Con A in the presence of cAMP. Our findings indicate that cAMP blocks the production of an inhibitor of BCGF activity. cAMP had no effect on the production by macrophages of IL 1.
Checker, Rahul; Sandur, Santosh K.; Sharma, Deepak; Patwardhan, Raghavendra S.; Jayakumar, S.; Kohli, Vineet; Sethi, Gautam; Aggarwal, Bharat B.; Sainis, Krishna B.
2012-01-01
Background Ursolic acid (UA), a pentacyclic triterpenoid carboxylic acid, is the major component of many plants including apples, basil, cranberries, peppermint, rosemary, oregano and prunes and has been reported to possess antioxidant and anti-tumor properties. These properties of UA have been attributed to its ability to suppress NF-κB (nuclear factor kappa B) activation. Since NF-κB, in co-ordination with NF-AT (nuclear factor of activated T cells) and AP-1(activator protein-1), is known to regulate inflammatory genes, we hypothesized that UA might exhibit potent anti-inflammatory effects. Methodology/Principal Findings The anti-inflammatory effects of UA were assessed in activated T cells, B cells and macrophages. Effects of UA on ERK, JNK, NF-κB, AP-1 and NF-AT were studied to elucidate its mechanism of action. In vivo efficacy of UA was studied using mouse model of graft-versus-host disease. UA inhibited activation, proliferation and cytokine secretion in T cells, B cells and macrophages. UA inhibited mitogen-induced up-regulation of activation markers and co-stimulatory molecules in T and B cells. It inhibited mitogen-induced phosphorylation of ERK and JNK and suppressed the activation of immunoregulatory transcription factors NF-κB, NF-AT and AP-1 in lymphocytes. Treatment of cells with UA prior to allogenic transplantation significantly delayed induction of acute graft-versus-host disease in mice and also significantly reduced the serum levels of pro-inflammatory cytokines IL-6 and IFN-γ. UA treatment inhibited T cell activation even when added post-mitogenic stimulation demonstrating its therapeutic utility as an anti-inflammatory agent. Conclusions/Significance The present study describes the detailed mechanism of anti-inflammatory activity of UA. Further, UA may find application in the treatment of inflammatory disorders. PMID:22363615
Fan, Wen-Jie; Li, He-Ping; Zhu, He-Shui; Sui, Shi-Ping; Chen, Pei-Ge; Deng, Yue; Sui, Tong-Ming; Wang, Yue-Ying
2016-11-01
To determine the effect of NF-κB on cell proliferation and apoptosis, we investigate the expression of inflammation and apoptosis-related factors in the bovine mammary epithelial cell line, MAC-T. MAC-T cells were cultured in vitro and MTT and LDH assays used to determine the effects of lipopolysaccharide (LPS) on proliferation and cytotoxicity respectively. RT-PCR and western blotting were used to evaluate the effect of LPS and NF-κB inhibition [pyrrolidine dithiocarbamate (PDTC) treatment] on the expression of inflammation and apoptosis-related factors. LPS significantly inhibited MAC-T cell proliferation in a dose- and time-dependent manner. Furthermore, LPS promoted apoptosis while the NF-кB inhibitor PDTC attenuated this effect. After LPS treatment, the NF-кB signaling pathway was activated, and the expression of inflammation and apoptosis-related factors increased. When PDTC blocked NF-кB signaling, the expression of inflammation and apoptosis-related factors were decreased in MAC-T cells. LPS activates the TLR4/NF-κB signaling pathway, inhibits proliferation and promotes apoptosis in MAC-T cells. NF-кB inhibition attenuates MAC-T cell apoptosis and TLR4/NF-κB signaling pathway. NF-кB inhibitor alleviating MAC-T cell apoptosis is presumably modulated by NF-кB.
Deng, Xu-Feng; Zhou, Dong; Liu, Quan-Xing; Zheng, Hong; Ding, Yan; Xu, Wen-Yue; Min, Jia-Xin; Dai, Ji-Gang
2018-05-01
Blocking the activation of nuclear factor κB (NF-κB) is a promising strategy for the treatment of non-small cell lung cancer. The circumsporozoite protein (CSP), a key component of the sporozoite stage of the malaria parasite, was previously reported to block NF-κB activation in hepatocytes. Therefore, in the present study, the effect of CSP on the growth of the human lung cancer cell line, A549, was investigated. It was demonstrated that transfection with a recombinant plasmid expressing CSP was able to inhibit the proliferation of A549 cells in a dose-dependent manner and induce the apoptosis of A549 cells. A NF-κB gene reporter assay indicated that CSP and its nuclear localization signal (NLS) motif were able to equally suppress the activation of NF-κB following stimulation with human recombinant tumor necrosis factor (TNF)-α in A549 cells. Furthermore, western blot analysis indicated that NLS did not affect the phosphorylation and degradation of IκB, but was able to markedly inhibit the nuclear translocation of NF-κB in TNF-α stimulated A549 cells. Therefore, the data suggest that CSP may be investigated as a potential novel NF-κB inhibitor for the treatment of lung cancer.
Wu, Lijun; Zhang, Xu; Zhang, Bin; Shi, Hui; Yuan, Xiao; Sun, Yaoxiang; Pan, Zhaoji; Qian, Hui; Xu, Wenrong
2016-09-01
Exosomes are nano-sized membrane vesicles secreted by both normal and cancer cells. Emerging evidence indicates that cancer cells derived exosomes contribute to cancer progression through the modulation of tumor microenvironment. However, the effects of exosomes derived from gastric cancer cells on macrophages are not well understood. In this study, we investigated the biological role of gastric cancer cells derived exosomes in the activation of macrophages. We demonstrated that gastric cancer cells derived exosomes activated macrophages to express increased levels of proinflammatory factors, which in turn promoted tumor cell proliferation and migration. In addition, gastric cancer cells derived exosomes remarkably upregulated the phosphorylation of NF-κB in macrophages. Inhibiting the activation of NF-κB reversed the upregulation of proinflammatory factors in macrophages and blocked their promoting effects on gastric cancer cells. Moreover, we found that gastric cancer cells derived exosomes could also activate macrophages from human peripheral blood monocytes through the activation of NF-κB. In conclusion, our results suggest that gastric cancer cells derived exosomes stimulate the activation of NF-κB pathway in macrophages to promote cancer progression, which provides a potential therapeutic approach for gastric cancer by interfering with the interaction between exosomes and macrophages in tumor microenvironment.
HTLV-1 Tax upregulates early growth response protein 1 through nuclear factor-κB signaling.
Huang, Qingsong; Niu, Zhiguo; Han, Jingxian; Liu, Xihong; Lv, Zhuangwei; Li, Huanhuan; Yuan, Lixiang; Li, Xiangping; Sun, Shuming; Wang, Hui; Huang, Xinxiang
2017-08-01
Human T cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that causes adult T cell leukemia (ATL) in susceptible individuals. The HTLV-1-encoded oncoprotein Tax induces persistent activation of the nuclear factor-κB (NF-κB) pathway. Early growth response protein 1 (EGR1) is overexpressed in HTLV-1-infected T cell lines and ATL cells. Here, we showed that both Tax expression and HTLV-1 infection promoted EGR1 overexpression. Loss of the NF-κB binding site in the EGR1 promotor or inhibition of NF-κB activation reduced Tax-induced EGR1 upregulation. Tax mutants unable to activate NF-κB induced only slight EGR1 upregulation as compared with wild-type Tax, confirming NF-κB pathway involvement in EGR1 regulation. Tax also directly interacted with the EGR1 protein and increased endogenous EGR1 stability. Elevated EGR1 in turn promoted p65 nuclear translocation and increased NF-κB activation. These results demonstrate a positive feedback loop between EGR1 expression and NF-κB activation in HTLV-1-infected and Tax-expressing cells. Both NF-κB activation and Tax-induced EGR1 stability upregulated EGR1, which in turn enhanced constitutive NF-κB activation and facilitated ATL progression in HTLV-1-infected cells. These findings suggest EGR1 may be an effective anti-ATL therapeutic target.
Dhruv, Harshil D.; McDonough Winslow, Wendy S.; Armstrong, Brock; Tuncali, Serdar; Eschbacher, Jenny; Kislin, Kerri; Loftus, Joseph C.; Tran, Nhan L.; Berens, Michael E.
2013-01-01
Histology of malignant glioma depicts dense proliferative areas rich in angiogenesis as well as dissemination of neoplastic cells into adjacent brain tissue. Although the mechanisms that trigger transition from proliferative to invasive phenotypes are complex, the dichotomy of cell proliferation and migration, the “Go or Grow” hypothesis, argues for specific and coordinated regulation of these phenotypes. We investigated transcriptional elements that accompany the phenotypes of migration and proliferation, and consider the therapeutic significance of the “Go or Grow” hypothesis. Interrogation of matched core and rim regions from human glioblastoma biopsy specimens in situ (n = 44) revealed higher proliferation (Ki67 labeling index) in cells residing at the core compared to the rim. Profiling activated transcription factors in a panel of migration-activated versus migration-restricted GBM cells portrayed strong NF-κB activity in the migratory cell population. In contrast, increased c-Myc activity was found in migration-restricted proliferative cells. Validation of transcriptional activity by NF-κB- or c-Myc-driven GFP or RFP, respectively, showed an increased NF-κB activity in the active migrating cells, whereas the proliferative, migration restricted cells displayed increased c-Myc activity. Immunohistochemistry on clinical specimens validated a robust phosphorylated c-Myc staining in tumor cells at the core, whereas increased phosphorylated NF-κB staining was detected in the invasive tumor cells at the rim. Functional genomics revealed that depletion of c-Myc expression by siRNA oligonucleotides reduced cell proliferation in vitro, but surprisingly, cell migration was enhanced significantly. Conversely, inhibition of NF-κB by pharmacological inhibitors, SN50 or BAY-11, decreased both cell migration in vitro and invasion ex vivo. Notably, inhibition of NF-κB was found to have no effect on the proliferation rate of glioma cells. These findings suggest that the reciprocal and coordinated suppression/activation of transcription factors, such as c-Myc and NF-κB may underlie the shift of glioma cells from a “growing-to-going” phenotype. PMID:23967279
Gu, Yun; Xue, Chenbin; Zhu, Jianbin; Sun, Hualin; Ding, Fei; Cao, Zheng; Gu, Xiaosong
2014-04-01
Considerable research has been devoted to unraveling the regulation of neural stem cell (NSC) differentiation. The responses of NSCs to various differentiation-inducing stimuli, however, are still difficult to estimate. In this study, we aimed to search for a potent growth factor that was able to effectively induce differentiation of NSCs toward Schwann cells. NSCs were isolated from dorsal root ganglia (DRGs) of adult rats and identified by immunostaining. Three different growth factors were used to stimulate the differentiation of DRG-derived NSCs (DRG-NSCs). We found that among these three growth factors, bFGF was the strongest inducer for the glial differentiation of DRG-NSCs, and bFGF induced the generation of an increased number of Schwann cell-like cells as compared to nerve growth factor (NGF) and neuregulin1-β (NRG). These Schwann cell-like cells demonstrated the same characteristics as those of primary Schwann cells. Furthermore, we noted that bFGF-induced differentiation of DRG-NSCs toward Schwann cells might be mediated by binding to fibroblast growth factor receptor-1 (FGFR-1) through activation of MAPK/ERK signal pathway.
Culmsee, Carsten; Siewe, Jan; Junker, Vera; Retiounskaia, Marina; Schwarz, Stephanie; Camandola, Simonetta; El-Metainy, Shahira; Behnke, Hagen; Mattson, Mark P; Krieglstein, Josef
2003-09-17
The tumor suppressor and transcription factor p53 is a key modulator of cellular stress responses, and activation of p53 precedes apoptosis in many cell types. Controversial reports exist on the role of the transcription factor nuclear factor-kappaB (NF-kappaB) in p53-mediated apoptosis, depending on the cell type and experimental conditions. Therefore, we sought to elucidate the role of NF-kappaB in p53-mediated neuron death. In cultured neurons DNA damaging compounds induced activation of p53, whereas NF-kappaB activity declined significantly. The p53 inhibitor pifithrin-alpha (PFT) preserved NF-kappaB activity and protected neurons against apoptosis. Immunoprecipitation experiments revealed enhanced p53 binding to the transcriptional cofactor p300 after induction of DNA damage, whereas binding of p300 to NF-kappaB was reduced. In contrast, PFT blocked the interaction of p53 with the cofactor, whereas NF-kappaB binding to p300 was enhanced. Most interestingly, similar results were observed after oxygen glucose deprivation in cultured neurons and in ischemic brain tissue. Ischemia-induced repression of NF-kappaB activity was prevented and brain damage was reduced by the p53 inhibitor PFT in a dose-dependent manner. It is concluded that a balanced competitive interaction of p53 and NF-kappaB with the transcriptional cofactor p300 exists in neurons. Exposure of neurons to lethal stress activates p53 and disrupts NF-kappaB binding to p300, thereby blocking NF-kappaB-mediated survival signaling. Inhibitors of p53 provide pronounced neuroprotective effects because they block p53-mediated induction of cell death and concomitantly enhance NF-kappaB-induced survival signaling.
Nakayama, Yumi; Kosek, Jolanta; Capone, Lori; Hur, Eun Mi; Schafer, Peter H; Ringheim, Garth E
2017-10-01
BAFF is a B cell survival and maturation factor implicated in the pathogenesis of systemic lupus erythematosus (SLE). In this in vitro study, we describe that soluble BAFF in combination with IL-2 and IL-21 is a T cell contact-independent inducer of human B cell proliferation, plasmablast differentiation, and IgG secretion from circulating CD27 + memory and memory-like CD27 - IgD - double-negative (DN) B cells, but not CD27 - IgD + naive B cells. In contrast, soluble CD40L in combination with IL-2 and IL-21 induces these activities in both memory and naive B cells. Blood from healthy donors and SLE patients have similar circulating levels of IL-2, whereas SLE patients exhibit elevated BAFF and DN B cells and reduced IL-21. B cell differentiation transcription factors in memory, DN, and naive B cells in SLE show elevated levels of Aiolos, whereas Ikaros levels are unchanged. Treatment with CC-220, a modulator of the cullin ring ligase 4-cereblon E3 ubiquitin ligase complex, reduces Aiolos and Ikaros protein levels and BAFF- and CD40L-induced proliferation, plasmablast differentiation, and IgG secretion. The observation that the soluble factors BAFF, IL-2, and IL-21 induce memory and DN B cell activation and differentiation has implications for extrafollicular plasmablast development within inflamed tissue. Inhibition of B cell plasmablast differentiation by reduction of Aiolos and Ikaros may have utility in the treatment of SLE, where elevated levels of BAFF and Aiolos may prime CD27 + memory and DN memory-like B cells to become Ab-producing plasmablasts in the presence of BAFF and proinflammatory cytokines. Copyright © 2017 by The American Association of Immunologists, Inc.
Nakayama, Yumi; Kosek, Jolanta; Capone, Lori; Schafer, Peter H.
2017-01-01
BAFF is a B cell survival and maturation factor implicated in the pathogenesis of systemic lupus erythematosus (SLE). In this in vitro study, we describe that soluble BAFF in combination with IL-2 and IL-21 is a T cell contact-independent inducer of human B cell proliferation, plasmablast differentiation, and IgG secretion from circulating CD27+ memory and memory-like CD27−IgD− double-negative (DN) B cells, but not CD27−IgD+ naive B cells. In contrast, soluble CD40L in combination with IL-2 and IL-21 induces these activities in both memory and naive B cells. Blood from healthy donors and SLE patients have similar circulating levels of IL-2, whereas SLE patients exhibit elevated BAFF and DN B cells and reduced IL-21. B cell differentiation transcription factors in memory, DN, and naive B cells in SLE show elevated levels of Aiolos, whereas Ikaros levels are unchanged. Treatment with CC-220, a modulator of the cullin ring ligase 4-cereblon E3 ubiquitin ligase complex, reduces Aiolos and Ikaros protein levels and BAFF- and CD40L-induced proliferation, plasmablast differentiation, and IgG secretion. The observation that the soluble factors BAFF, IL-2, and IL-21 induce memory and DN B cell activation and differentiation has implications for extrafollicular plasmablast development within inflamed tissue. Inhibition of B cell plasmablast differentiation by reduction of Aiolos and Ikaros may have utility in the treatment of SLE, where elevated levels of BAFF and Aiolos may prime CD27+ memory and DN memory-like B cells to become Ab-producing plasmablasts in the presence of BAFF and proinflammatory cytokines. PMID:28848067
Richardson, Jaime Stella Moses; Aminudin, Norhaniza; Abd Malek, Sri Nurestri
2017-10-01
Plants have been a major source of inspiration in developing novel drug compounds in the treatment of various diseases that afflict human beings worldwide. Ruta angustifolia L. Pers known locally as Garuda has been conventionally used for various medicinal purposes such as in the treatment of cancer. A dihydrofuranocoumarin named chalepin, which was isolated from the chloroform extract of the plant, was tested on its ability to inhibit molecular pathways of human lung carcinoma (A549) cells. Cell cycle analysis and caspase 8 activation were conducted using a flow cytometer, and protein expressions in molecular pathways were determined using Western blot technique. Cell cycle analysis showed that cell cycle was arrested at the S phase. Further studies using Western blotting technique showed that cell cycle-related proteins such as cyclins, cyclin-dependent kinases (CDKs), and inhibitors of CDKs correspond to a cell cycle arrest at the S phase. Chalepin also showed inhibition in the expression of inhibitors of apoptosis proteins. Nuclear factor-kappa B (NF-κB) pathway, signal transducer and activation of transcription 3 (STAT-3), cyclooxygenase-2, and c-myc were also downregulated upon treatment with chalepin. Chalepin was found to induce extrinsic apoptotic pathway. Death receptors 4 and 5 showed a dramatic upregulation at 24 h. Analysis of activation of caspase 8 with the flow cytometer showed an increase in activity in a dose- and time-dependent manner. Activation of caspase 8 induced cleavage of BH3-interacting domain death agonist, which initiated a mitochondrial-dependent or -independent apoptosis. Chalepin causes S phase cell cycle arrest, NF-κB pathway inhibition, and STAT-3 inhibition, induces extrinsic apoptotic pathway, and could be an excellent chemotherapeutic agent. This study reports the capacity of an isolated bioactive compound known as chalepin to suppress the nuclear factor kappa-light-chain-enhancer of activated B cells pathway, signal transducer and activation of transcription 3, and extrinsic apoptotic pathway and also its ability to arrest cell cycle in S phase. This compound was from the leaves of Ruta angustifolia L. Pers. It provides new insight on the ability of this plant in suppressing certain cancers, especially the nonsmall cell lung carcinoma according to this study. Abbreviations used: °C: Degree Celsius, ANOVA: Analysis of variance, ATCC: American Type Culture Collection, BCL-2: B-Cell CLL/Lymphoma 2, Bcl-xL: B-cell lymphoma extra-large, BH3: Bcl-2 homology 3, BID: BH3-interacting domain death agonist, BIR: Baculovirus inhibitor of apoptosis protein repeat, Caspases: Cysteinyl aspartate-specific proteases, CDK: Cyclin-dependent kinase, CO 2 : Carbon dioxide, CST: Cell signaling technologies, DISC: Death-inducing signaling complex, DMSO: Dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DR4: Death receptor 4, DR5: Death receptor 5, E1a: Adenovirus early region 1A, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunosorbent assay, etc.: Etcetera, FADD: Fas-associated protein with death domain, FBS: Fetal bovine serum, FITC: Fluorescein isothiocyanate, G1: Gap 1, G2: Gap 2, HPLC: High-performance liquid chromatography, HRP: Horseradish peroxidase, IAPs: Inhibitor of apoptosis proteins, IC50: Inhibitory concentration at half maximal inhibitory, IKK-α: Inhibitor of nuclear factor kappa-B kinase subunit alpha, IKK-β: Inhibitor of nuclear factor kappa-B kinase subunit beta, IKK-γ: Inhibitor of nuclear factor kappa-B kinase subunit gamma, IKK: IκB kinase, IkBα: Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, m: Meter, M: Mitotic, mm: Millimeter, mRNA: Messenger ribonucleic acid, NaCl: Sodium chloride, NaVO4: Sodium orthovanadate, NEMO: NF-Kappa-B essential modulator, NF-κB: Nuclear factor kappa-light chain-enhancer of activated B cells, NSCLC: Nonsmall cell lung carcinoma, PBS: Phosphate buffered saline, PGE2: Prostaglandin E2, PI: Propidium iodide, PMSF: Phenylmethylsulfonyl fluoride, pRB: Phosphorylated retinoblastoma, R. angustifolia : Ruta angustifolia L. Pers, Rb: Retinoblastoma, rpm: Rotation per minute, RPMI: Roswell Park Memorial Institute, S phase: Synthesis phase, SD: Standard deviation, SDS-PAGE: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Smac: Second mitochondria-derived activator of caspase, SPSS: Statistical Package for the Social Sciences, STAT3: Signal transducer and activation of transcription 3, tBID: Truncated BID, TNF: Tumor necrosis factor, TRADD: Tumor necrosis factor receptor type-1 associated death domain, TRAIL: TNF-related apoptosis- inducing ligand, USA: United States of America, v/v: Volume over volume.
Kimura, Ryuichiro; Senba, Masachika; Cutler, Samuel J; Ralph, Stephen J; Xiao, Gutian; Mori, Naoki
2013-01-01
Human T cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T cell leukemia (ATL) and various inflammatory disorders including HTLV-I-associated myelopathy/tropical spastic paraparesis. HTLV-I oncoprotein Tax is known to cause permanent activation of many cellular transcription factors including nuclear factor-κB (NF-κB), cyclic adenosine 3′,5′-monophosphate response element-binding protein, and activator protein 1 (AP-1). Here, we show that NF-κB-binding cofactor inhibitor of NF-κB-ζ (IκB-ζ) is constitutively expressed in HTLV-I-infected T cell lines and ATL cells, and Tax transactivates the IκB-ζ gene, mainly through NF-κB. Microarray analysis of IκB-ζ-expressing uninfected T cells demonstrated that IκB-ζ induced the expression of NF-κB. and interferon-regulatory genes such as B cell CLL/lymphoma 3 (Bcl3), guanylate-binding protein 1, and signal transducer and activator of transcription 1. The transcriptional activation domain, nuclear localization signal, and NF-κB-binding domain of IκB-ζ were required for Bcl3 induction, and IκB-ζ synergistically enhanced Tax-induced Bcl3 transactivation in an NF-κB-dependent manner. Interestingly, IκB-ζ inhibited Tax-induced NF-κB, AP-1 activation, and HTLV-I transcription. Furthermore, IκB-ζ interacted with Tax in vitro and this interaction was also observed in an HTLV-I-transformed T cell line. These results suggest that IκB-ζ modulates Tax-dependent and Tax-independent gene transcription in T cells. The function of IκB-ζ may be of significance in ATL genesis and pathogenesis of HTLV-I-associated diseases. PMID:24027435
Hwang, Ji-Sun; Jung, Eun-Hye; Kwon, Mi-Youn; Han, Inn-Oc
2016-09-15
We aimed to elucidate the effect of soluble factors secreted by glioma on microglial activation. Conditioned medium (CM) from glioma cells, CRT-MG and C6, significantly induced nitric oxide (NO) production and stimulated the mRNA expression of inducible NO synthase (iNOS), interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha (TNF-α) and cyclooxygenase 2 (COX-2) in BV2 cells. Glioma CM stimulated p38 mitogen-activated protein kinase (MAPK) phosphorylation, and a p38 MAPK inhibitor, SB203580, suppressed CM-induced NO production in BV2 cells. In addition, CM stimulated nuclear factor-kappaB (NF-κB) DNA binding and transcriptional activity, which was repressed by SB203580. Gliomas displayed higher mRNA expression and release of TNF-α and IL-1β than primary astrocyte cells. Neutralization of TNF-α and IL-1β in C6-CM using a neutralizing antibody inhibited NO/iNOS expression in BV-2 cells. These results indicate potential contribution of diffusible tumor-derived factors to regulate microglial activation and subsequent tumor microenvironment. Copyright © 2016. Published by Elsevier B.V.
Myostatin downregulates the expression of basic fibroblast growth factor gene in HeLa cells.
Liu, H Z; Luo, P; Chen, S H; Shang, J H
2012-01-01
Basic fibroblast growth factor (bFGF or FGF-2), a potent tumorigenic cytokine, improves cells proliferation and angiogenesis in tumor and also plays vital roles in tumor growth, metastasis as well as prognosis. Screening and application of effective cytokines against bFGF tumorigenic activity would be helpful to oncologic therapy. Myostatin, a member of transforming growth factor β superfamily, recently showed an antitumor activity and was reported to induce HeLa cells apoptosis through mitochondrion pathway. The above data raised our assumption that expression level of endogenous bFGF gene may be suppressed by exogenous myostatin in myostatin-treated HeLa cells. To test the hypothesis, myostatin was employed to stimulate HeLa cells and expressional level of endogenous bFGF gene in HeLa cells was detected with real-time RT-PCR and ELISA. Results of the suppressed expression level of bFGF gene in Hela cells implied that myostatin may be regarded as an effective cytokine against bFGF to treat certain cancers (Fig. 3, Ref. 26).
The Plasma Concentration of the B Cell Activating Factor Is Increased in Children With Acute Malaria
Nduati, Eunice; Gwela, Agnes; Karanja, Henry; Mugyenyi, Cleopatra; Langhorne, Jean; Marsh, Kevin
2011-01-01
Malaria-specific antibody responses in children often appear to be short-lived but the mechanisms underlying this phenomenon are not well understood. In this study, we investigated the relationship between the B-cell activating factor (BAFF) and its receptors expressed on B cells with antibody responses during and after acute malaria in children. Our results demonstrate that BAFF plasma levels increased during acute malarial disease and reflected disease severity. The expression profiles for BAFF receptors on B cells agreed with rapid activation and differentiation of a proportion of B cells to plasma cells. However, BAFF receptor (BAFF-R) expression was reduced on all peripheral blood B cells during acute infection, but those children with the highest level of BAFF-R expression on B cells maintained schizont-specific immunoglobin G (IgG) over a period of 4 months, indicating that dysregulation of BAFF-R expression on B cells may contribute to short-lived antibody responses to malarial antigens in children. In summary, this study suggests a potential role for BAFF during malaria disease, both as a marker for disease severity and in shaping the differentiation pattern of antigen-specific B cells. PMID:21849293
TAK1 regulates NF-{Kappa}B and AP-1 activation in airway epithelial cells following RSV infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dey, Nilay; Liu Tianshuang; Garofalo, Roberto P.
2011-09-30
Respiratory syncytial virus (RSV) is the most common cause of epidemic respiratory diseases in infants and young children. RSV infection of airway epithelial cells induces the expression of immune/inflammatory genes through the activation of a subset of transcription factors, including Nuclear Factor-{kappa}B (NF-{kappa}B) and AP-1. In this study, we have investigated the signaling pathway leading to activation of these two transcription factors in response to RSV infection. Our results show that IKK{beta} plays a key role in viral-induced NF-{kappa}B activation, while JNK regulates AP-1-dependent gene transcription, as demonstrated by using kinase inactive proteins and chemical inhibitors of the two kinases.more » Inhibition of TAK1 activation, by overexpression of kinase inactive TAK1 or using cells lacking TAK1 expression, significantly reduced RSV-induced NF-{kappa}B and AP-1 nuclear translocation and DNA-binding activity, as well as NF-{kappa}B-dependent gene expression, identifying TAK1 as an important upstream signaling molecule regulating RSV-induced NF-{kappa}B and AP-1 activation. - Highlights: > IKK{beta} is a major kinase involved in RSV-induced NF-{kappa}B activation. > JNK regulates AP-1-dependent gene transcription in RSV infection. > TAK1 is a critical upstream signaling molecule for both pathways in infected cells.« less
Liu, Xinhua; Pan, Lilong; Wang, Xianli; Gong, Qihai; Zhu, Yi Zhun
2012-05-01
Leonurine, a bioactive alkaloid compound in Herba leonuri, has various pharmacological activities, including antioxidant and anti-apoptotic capacities. This study was conducted to test the hypothesis that leonurine was able to attenuate tumor necrosis factor (TNF)-α-induced human umbilical vein endothelial cells (HUVEC) activation and the underlying molecular mechanisms. Mitogen-activated protein kinases (MAPK) activation, nuclear factor-κB (NF-κB) activation, and inflammatory mediators expression were detected by Western blot or enzyme-liked immunosorbent assay, intracellular reactive oxygen species (ROS) and NF-κB p65 translocation were measured by immunofluorescence, endothelial cell-monocyte interaction was detected by microscope. Leonurine inhibited U937 cells adhesion to TNF-α-activated HUVEC in a concentration dependent manner. Treatment with leonurine blocked TNF-α-induced mRNA and protein expression of adhesion molecules (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1), cyclooxygenase-2, and monocyte chemoattractant protein-1 in endothelial cells. In addition, leonurine attenuated TNF-α-induced intracellular ROS production in HUVEC. Furthermore, leonurine also suppressed the TNF-α-activated p38 phosphorylation and IκBα degradation. Subsequently, reduced NF-κB p65 phosphorylation, nuclear translocation, and DNA-binding activity were also observed. Our results demonstrated for the first time that the anti-inflammatory properties of leonurine in endothelial cells, at least in part, through suppression of NF-κB activation, which may have a potential therapeutic use for inflammatory vascular diseases. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Eun, Su-Hyeon; Woo, Je-Te; Kim, Dong-Hyun
2017-04-01
In the preliminary study, tangeretin (5,6,7,8,4'-pentamethoxy flavone), a major constituent of the pericarp of Citrus sp., inhibited TNF- α , IL-12, and IL-23 expression and nuclear factor kappa-B activation in lipopolysaccharide-stimulated dendritic cells; however, it did not affect IL-10 expression. Furthermore, tangeretin (5, 10, and 20 µM) suppressed the activation and translocation of nuclear factor kappa-B (p65) into the nuclei in vitro by inhibiting the binding of lipopolysaccharide on dendritic cells. Oral administration of tangeretin (10 and 20 mg/kg) suppressed the inflammatory responses, such as nuclear factor kappa-B and mitogen-activated protein kinase activation and myeloperoxidase activity, in the colon of mice with 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Tangeretin increased 2,4,6-trinitrobenzene sulfonic acid-suppressed expression of tight junction proteins occludin, claudin-1, and ZO-1. Tangeretin also inhibited 2,4,6-trinitrobenzene sulfonic acid-induced differentiation of Th1 and Th17 cells as well as the expression of T-bet, ROR γ t, interferon- γ , IL-12, IL-17, and TNF- α . However, tangeretin increased 2,4,6-trinitrobenzene sulfonic acid-suppressed differentiation of regulatory T cells as well as the expression of Foxp3 and IL-10. These results suggest that oral administration of tangeretin may attenuate colitis by suppressing IL-12 and TNF- α expression and nuclear factor kappa-B activation through the inhibition of lipopolysaccharide binding on immune cells such as dendritic cells. Georg Thieme Verlag KG Stuttgart · New York.
Akt-Dependent Cytokine Production in Mast Cells
Kitaura, Jiro; Asai, Koichi; Maeda-Yamamoto, Mari; Kawakami, Yuko; Kikkawa, Ushio; Kawakami, Toshiaki
2000-01-01
Cross-linking of FcεRI induces the activation of three protein tyrosine kinases, Lyn, Syk, and Bruton's tyrosine kinase (Btk), leading to the secretion of a panel of proinflammatory mediators from mast cells. This study showed phosphorylation at Ser-473 and enzymatic activation of Akt/protein kinase B, the crucial survival kinase, upon FcεRI stimulation in mouse mast cells. Phosphorylation of Akt is regulated positively by Btk and Syk and negatively by Lyn. Akt in turn can regulate positively the transcriptional activity of interleukin (IL)-2 and tumor necrosis factor (TNF)-α promoters. Transcription from the nuclear factor κB (NF-κB), nuclear factor of activated T cells (NF-AT), and activator protein 1 (AP-1) sites within these promoters is under the control of Akt activity. Accordingly, the signaling pathway involving IκB-α, a cytoplasmic protein that binds NF-κB and inhibits its nuclear translocation, appears to be regulated by Akt in mast cells. Catalytic activity of glycogen synthase kinase (GSK)-3β, a serine/threonine kinase that phosphorylates NF-AT and promotes its nuclear export, seems to be inhibited by Akt. Importantly, Akt regulates the production and secretion of IL-2 and TNF-α in FcεRI-stimulated mast cells. Altogether, these results revealed a novel function of Akt in transcriptional activation of cytokine genes via NF-κB, NF-AT, and AP-1 that contributes to the production of cytokines. PMID:10974038
Xia, Xing-Zhong; Treanor, James; Senaldi, Giorgio; Khare, Sanjay D.; Boone, Tom; Kelley, Michael; Theill, Lars E.; Colombero, Anne; Solovyev, Irina; Lee, Frances; McCabe, Susan; Elliott, Robin; Miner, Kent; Hawkins, Nessa; Guo, Jane; Stolina, Marina; Yu, Gang; Wang, Judy; Delaney, John; Meng, Shi-Yuan; Boyle, William J.; Hsu, Hailing
2000-01-01
We and others recently reported tumor necrosis factor (TNF) and apoptosis ligand–related leukocyte-expressed ligand 1 (TALL-1) as a novel member of the TNF ligand family that is functionally involved in B cell proliferation. Transgenic mice overexpressing TALL-1 have severe B cell hyperplasia and lupus-like autoimmune disease. Here, we describe expression cloning of a cell surface receptor for TALL-1 from a human Burkitt's lymphoma RAJI cell library. The cloned receptor is identical to the previously reported TNF receptor (TNFR) homologue transmembrane activator and calcium modulator and cyclophilin ligand (CAML) interactor (TACI). Murine TACI was subsequently isolated from the mouse B lymphoma A20 cells. Human and murine TACI share 54% identity overall. Human TACI exhibits high binding affinities to both human and murine TALL-1. Soluble TACI extracellular domain protein specifically blocks TALL-1–mediated B cell proliferation without affecting CD40- or lipopolysaccharide-mediated B cell proliferation in vitro. In addition, when injected into mice, soluble TACI inhibits antibody production to both T cell–dependent and –independent antigens. By yeast two-hybrid screening of a B cell library with TACI intracellular domain, we identified that, like many other TNFR family members, TACI intracellular domain interacts with TNFR-associated factor (TRAF)2, 5, and 6. Correspondingly, TACI activation in a B cell line results in nuclear factor κB and c-Jun NH2-terminal kinase activation. The identification and characterization of the receptor for TALL-1 provides useful information for the development of a treatment for B cell–mediated autoimmune diseases such as systemic lupus erythematosus. PMID:10880535
Interleukin-induced increase in Ia expression by normal mouse B cells.
Roehm, N W; Leibson, H J; Zlotnik, A; Kappler, J; Marrack, P; Cambier, J C
1984-09-01
The constitutive culture supernatant (SN) of the macrophage tumor line P388D1 (P388 SN) and the concanavalin A (Con A)-induced culture supernatant of the T cell hybridoma FS6-14.13 (FS6 Con A SN) were shown to contain nonspecific factors capable of inducing increased Ia expression by normal resting B cells in a dose-dependent manner. In six consecutive experiments the relative increase in Ia expression induced by P388 SN was 4.9 +/- 0.9, with FS6 Con A SN 10.7 +/- 1.5, and with a combination of both preparations 13.0 +/- 1.7. This increase in Ia expression was observed to occur in virtually all the B cells, reaching maximum levels within 24 h of culture. The interleukin-induced increase in B cell Ia expression occurred in the absence of ancillary signals provided by ligand-receptor Ig cross-linking and despite the fact that virtually all the control B cells, cultured in the absence of factors, remained in G0. These results suggest that functional receptors for at least some interleukins are expressed on normal resting B cells and their effects can be manifest in the absence of additional activating signals. The increased Ia expression induced by the nonspecific factor preparations was shown to be correlated with enhanced antigen-presenting capacity by the B cells to T cell hybridomas. The nature of the interleukins responsible for these effects remains to be definitively determined, however, the activity of FS6 Con A SN was shown to correlate with B cell growth factor activity and increased B cell Ia expression was not observed using interleukin 2 (IL-2) or interferon-gamma, prepared by recombinant DNA technology.
Scortegagna, Marzia; Cataisson, Christophe; Martin, Rebecca J.; Hicklin, Daniel J.; Schreiber, Robert D.; Yuspa, Stuart H.
2008-01-01
Hypoxia inducible factor-1 (HIF-1) is a master regulatory transcription factor controlling multiple cell-autonomous and non–cell-autonomous processes, such as metabolism, angiogenesis, matrix invasion, and cancer metastasis. Here we used a new line of transgenic mice with constitutive gain of HIF-1 function in basal keratinocytes and demonstrated a signaling pathway from HIF-1 to nuclear factor κ B (NFκB) activation to enhanced epithelial chemokine and cytokine elaboration. This pathway was responsible for a phenotypically silent accumulation of stromal inflammatory cells and a marked inflammatory hypersensitivity to a single 12-O-tetradecanoylphorbol-13-acetate (TPA) challenge. HIF-1–induced NFκB activation was composed of 2 elements, IκB hyperphosphorylation and phosphorylation of Ser276 on p65, enhancing p65 nuclear localization and transcriptional activity, respectively. NFκB transcriptional targets macrophage inflammatory protein-2 (MIP-2/CXCL2/3), keratinocyte chemokine (KC/CXCL1), and tumor necrosis factor [alfa] (TNFα) were constitutively up-regulated and further increased after TPA challenge both in cultured keratinocytes and in transgenic mice. Whole animal KC, MIP-2, or TNFα immunodepletion each abrogated TPA-induced inflammation, whereas blockade of either VEGF or placenta growth factor (PlGF) signaling did not affect transgenic inflammatory hyper-responsiveness. Thus, epithelial HIF-1 gain of function remodels the local environment by cell-autonomous NFκB-mediated chemokine and cytokine secretion, which may be another mechanism by which HIF-1 facilitates either inflammatory diseases or malignant progression. PMID:18199827
Lee, Baeck-Seung; Lee, Bum-Kyu; Iyer, Vishwanath R.; Sleckman, Barry P.; Shaffer, Arthur L.; Ippolito, Gregory C.
2017-01-01
ABSTRACT Recombination activating gene 1 (RAG1) and RAG2 are critical enzymes for initiating variable-diversity-joining [V(D)J] segment recombination, an essential process for antigen receptor expression and lymphocyte development. The BCL11A transcription factor is required for B cell and plasmacytoid dendritic cell (pDC) development, but its molecular function(s) in early B cell fate specification and commitment is unknown. We show here that the major B cell isoform, BCL11A-XL, binds directly to the RAG1 promoter as well as directly to regulatory regions of transcription factors previously implicated in both B cell and pDC development to activate RAG1 and RAG2 gene transcription in pro- and pre-B cells. We employed BCL11A overexpression with recombination substrates to demonstrate direct consequences of BCL11A/RAG modulation on V(D)J recombination. We conclude that BCL11A is a critical component of a transcriptional network that regulates B cell fate by controlling V(D)J recombination. PMID:29038163
Gri, G; Savio, D; Trinchieri, G; Ma, X
1998-03-13
Monocytes/macrophages produce interleukin-12 (IL-12) in response to pathogenic stimulation, whereas most Epstein-Barr virus-transformed (EBV+) B cells constitutively secrete IL-12. The molecular mechanism regulating the constitutive IL-12 gene expression in EBV+ B cells has not been addressed. In this study, using the EBV+ B cell line RPMI-8866, we localized to the human IL-12 p40 promoter two essential cis elements, the NFkappaB site and the Ets site. The NFkappaB site was shown to interact with members of the NFkappaB family: p50 and c-Rel. The Ets site constitutively bound a multi-component Ets-2-containing complex. While the NFkappaB and Ets sites appear equally critical for inducible p40 promoter activity in macrophage cell lines, NFkappaB plays a more dominant role in the constitutive p40 promoter activity in EBV+ B cells. Transient expression of Ets-2 and c-Rel in B, T, and monocytic cell lines synergistically activated the IL-12 p40 promoter, apparently overcoming the requirement for cell type- or stimulant-specific transcription factors. These data provide new evidence that full activation of the human IL-12 p40 promoter may result primarily from the interplay between NFkappaB and Ets family members.
Watchorn, Tammy M; Dowidar, Nabil; Dejong, Cornelis H C; Waddell, Ian D; Garden, O James; Ross, James A
2005-10-01
A novel proteoglycan, proteolysis inducing factor (PIF), is capable of inducing muscle proteolysis during the process of cancer cachexia, and of inducing an acute phase response in human hepatocytes. We investigated whether PIF is able to activate pro-inflammatory pathways in human Kupffer cells, the resident macrophages of the liver, and in monocytes, resulting in the production of pro-inflammatory cytokines. Normal liver tissue was obtained from patients undergoing partial hepatectomy and Kupffer cells were isolated. Monocytes were isolated from peripheral blood. Following exposure to native PIF, pro-inflammatory cytokine production from Kupffer cells and monocytes was measured and the NF-kappaB and STAT3 transcriptional pathways were investigated using electrophoretic mobility shift assays. We demonstrate that PIF is able to activate the transcription factor NF-kappaB and NF-kappaB-inducible genes in human Kupffer cells, and in monocytes, resulting in the production of pro-inflammatory cytokines such as TNF-alpha, IL-8 and IL-6. PIF enhances the expression of the cell surface molecules LFA-1 and CD14 on macrophages. PIF also activates the transcription factor STAT3 in Kupffer cells. The pro-inflammatory effects of PIF, mediated via NF-kappaB and STAT3, are important in macrophage behaviour and may contribute to the inflammatory pro-cachectic process in the liver.
Jin, Rong; Xia, Yiqun; Chen, Qiuxiang; Li, Wulan; Chen, Dahui; Ye, Hui; Zhao, Chengguang; Du, Xiaojing; Shi, Dengjian; Wu, Jianzhang; Liang, Guang
2016-01-01
Background The transcription factor nuclear factor-κB (NF-κB) is constitutively activated in a variety of human cancers, including gastric cancer. NF-κB inhibitors that selectively kill cancer cells are urgently needed for cancer treatment. Curcumin is a potent inhibitor of NF-κB activation. Unfortunately, the therapeutic potential of curcumin is limited by its relatively low potency and poor cellular bioavailability. In this study, we presented a novel NF-κB inhibitor named Da0324, a synthetic asymmetric mono-carbonyl analog of curcumin. The purpose of this study is to research the expression of NF-κB in gastric cancer and the antitumor activity and mechanism of Da0324 on human gastric cancer cells. Methods The expressions between gastric cancer tissues/cells and normal gastric tissues/cells of NF-κB were evaluated by Western blot. The inhibition viability of compounds on human gastric cancer cell lines SGC-7901, BGC-823, MGC-803, and normal gastric mucosa epithelial cell line GES-1 was assessed with the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. Absorption spectrum method and high-performance liquid chromatography method detected the stability of the compound in vitro. The compound-induced changes of inducible NF-κB activation in the SGC-7901 and BGC-823 cells were examined by Western blot analysis and immunofluorescence methods. The antitumor activity of compound was performed by clonogenic assay, matrigel invasion assay, flow cytometric analysis, Western blot analysis, and Hoechst 33258 staining assay. Results High levels of p65 were found in gastric cancer tissues and cells. Da0324 displayed higher growth inhibition against several types of gastric cancer cell lines and showed relatively low toxicity to GES-1. Moreover, Da0324 was more stable than curcumin in vitro. Western blot analysis and immunofluorescence methods showed that Da0324 blocked NF-κB activation. In addition, Da0324 significantly inhibited tumor proliferation and invasion, arrested the cell cycle, and induced apoptosis in vitro. Conclusion The asymmetric mono-carbonyl analog of curcumin Da0324 exhibited significantly improved antigastric cancer activity. Da0324 may be a promising NF-κB inhibitor for the selective targeting of cancer cells. However, further studies are needed in animals to validate these findings for the therapeutic use of Da0324. PMID:27042000
Kim, Da Jung; Kim, Yong Sik
2015-01-01
Trimethyltin (TMT) is known as a potent neurotoxicant that causes neuronal cell death and neuroinflammation, particularly in the hippocampus. Microglial activation is one of the prominent pathological features of TMT neurotoxicity. Nevertheless, it remains unclear how microglial activation occurs in TMT intoxication. In this study, we aimed to investigate the signaling pathways in TMT-induced microglial activation using BV-2 murine microglial cells. Our results revealed that TMT generates reactive oxygen species (ROS) and increases the expression of CD11b and nuclear factor-κB- (NF-κB-) mediated nitric oxide (NO) and tumor necrosis factor- (TNF-) α in BV-2 cells. We also observed that NF-κB activation was controlled by p38 and JNK phosphorylation. Moreover, TMT-induced ROS generation occurred via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in BV-2 cells. Interestingly, treatment with the NADPH oxidase inhibitor apocynin significantly suppressed p38 and JNK phosphorylation and NF-κB activation and ultimately the production of proinflammatory mediators upon TMT exposure. These findings indicate that NADPH oxidase-dependent ROS generation activated p38 and JNK mitogen-activated protein kinases (MAPKs), which then stimulated NF-κB to release proinflammatory mediators in the TMT-treated BV-2 cells.
Kim, Da Jung; Kim, Yong Sik
2015-01-01
Trimethyltin (TMT) is known as a potent neurotoxicant that causes neuronal cell death and neuroinflammation, particularly in the hippocampus. Microglial activation is one of the prominent pathological features of TMT neurotoxicity. Nevertheless, it remains unclear how microglial activation occurs in TMT intoxication. In this study, we aimed to investigate the signaling pathways in TMT-induced microglial activation using BV-2 murine microglial cells. Our results revealed that TMT generates reactive oxygen species (ROS) and increases the expression of CD11b and nuclear factor-κB- (NF-κB-) mediated nitric oxide (NO) and tumor necrosis factor- (TNF-) α in BV-2 cells. We also observed that NF-κB activation was controlled by p38 and JNK phosphorylation. Moreover, TMT-induced ROS generation occurred via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in BV-2 cells. Interestingly, treatment with the NADPH oxidase inhibitor apocynin significantly suppressed p38 and JNK phosphorylation and NF-κB activation and ultimately the production of proinflammatory mediators upon TMT exposure. These findings indicate that NADPH oxidase-dependent ROS generation activated p38 and JNK mitogen-activated protein kinases (MAPKs), which then stimulated NF-κB to release proinflammatory mediators in the TMT-treated BV-2 cells. PMID:26221064
B-cell activating factor detected on both naïve and memory B cells in bullous pemphigoid.
Qian, Hua; Kusuhara, Masahiro; Li, Xiaoguang; Tsuruta, Daisuke; Tsuchisaka, Atsunari; Ishii, Norito; Koga, Hiroshi; Hayakawa, Taihei; Ohara, Koji; Karashima, Tadashi; Ohyama, Bungo; Ohata, Chika; Furumura, Minao; Hashimoto, Takashi
2014-08-01
B-cell activating factor (BAFF), an important immune regulatory cytokine, is involved in development of autoimmune diseases. Although BAFF is expressed in various cells, including dendritic cells (DCs) and monocytes, BAFF expression on B cells has not been well documented. In the present study, BAFF molecules on DCs and naïve and memory B cells in autoimmune bullous diseases, including pemphigus vulgaris, pemphigus foliaceus and bullous pemphigoid (BP), were analysed by flow cytometry. Compared with healthy controls (HC), BAFF expression on naïve and memory B cells increased significantly in BP. No difference in BAFF receptor expression in naïve and memory B cells was shown among all study groups. Furthermore, BAFF expression in both naïve and memory B cells of BP, but not HC, was detected by confocal microscopic analysis. These results implied that BAFF expressed by B cells may play a pathogenic role in autoimmune bullous diseases, particularly BP. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
HTLV-1 Tax upregulates early growth response protein 1 through nuclear factor-κB signaling
Han, Jingxian; Liu, Xihong; Lv, Zhuangwei; Li, Huanhuan; Yuan, Lixiang; Li, Xiangping; Sun, Shuming; Wang, Hui; Huang, Xinxiang
2017-01-01
Human T cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that causes adult T cell leukemia (ATL) in susceptible individuals. The HTLV-1-encoded oncoprotein Tax induces persistent activation of the nuclear factor-κB (NF-κB) pathway. Early growth response protein 1 (EGR1) is overexpressed in HTLV-1-infected T cell lines and ATL cells. Here, we showed that both Tax expression and HTLV-1 infection promoted EGR1 overexpression. Loss of the NF-κB binding site in the EGR1 promotor or inhibition of NF-κB activation reduced Tax-induced EGR1 upregulation. Tax mutants unable to activate NF-κB induced only slight EGR1 upregulation as compared with wild-type Tax, confirming NF-κB pathway involvement in EGR1 regulation. Tax also directly interacted with the EGR1 protein and increased endogenous EGR1 stability. Elevated EGR1 in turn promoted p65 nuclear translocation and increased NF-κB activation. These results demonstrate a positive feedback loop between EGR1 expression and NF-κB activation in HTLV-1-infected and Tax-expressing cells. Both NF-κB activation and Tax-induced EGR1 stability upregulated EGR1, which in turn enhanced constitutive NF-κB activation and facilitated ATL progression in HTLV-1-infected cells. These findings suggest EGR1 may be an effective anti-ATL therapeutic target. PMID:28881635
Gordin, Maya; Tesio, Melania; Cohen, Sivan; Gore, Yael; Lantner, Frida; Leng, Lin; Bucala, Richard; Shachar, Idit
2010-08-15
The signals regulating the survival of mature splenic B cells have become a major focus in recent studies of B cell immunology. Durable B cell persistence in the periphery is dependent on survival signals that are transduced by cell surface receptors. In this study, we describe a novel biological mechanism involved in mature B cell homeostasis, the hepatocyte growth factor/scatter factor (HGF)/c-Met pathway. We demonstrate that c-Met activation by HGF leads to a survival cascade, whereas its blockade results in induction of mature B cell death. Our results emphasize a unique and critical function for c-Met signaling in the previously described macrophage migration inhibitory factor/CD74-induced survival pathway. Macrophage migration inhibitory factor recruits c-Met to the CD74/CD44 complex and thereby enables the induction of a signaling cascade within the cell. This signal results in HGF secretion, which stimulates the survival of the mature B cell population in an autocrine manner. Thus, the CD74-HGF/c-Met axis defines a novel physiologic survival pathway in mature B cells, resulting in the control of the humoral immune response.
Macha, Muzafar A; Matta, Ajay; Chauhan, S S; Siu, K W Michael; Ralhan, Ranju
2011-03-01
Understanding the molecular pathways perturbed in smokeless tobacco- (ST) associated head and neck squamous cell carcinoma (HNSCC) is critical for identifying novel complementary agents for effective disease management. Activation of nuclear factor-kappaB (NF-κB) and cyclooxygenase-2 (COX-2) was reported in ST-associated HNSCC by us [Sawhney,M. et al. (2007) Expression of NF-kappaB parallels COX-2 expression in oral precancer and cancer: association with smokeless tobacco. Int. J. Cancer, 120, 2545-2556]. In search of novel agents for treatment of HNSCC, we investigated the potential of guggulsterone (GS), (4,17(20)-pregnadiene-3,16-dione), a biosafe nutraceutical, in inhibiting ST- and nicotine-induced activation of NF-κB and signal transducer and activator of transcription (STAT) 3 pathways in HNSCC cells. GS inhibited the activation of NF-κB and STAT3 proteins in head and neck cancer cells. This inhibition of NF-κB by GS resulted from decreased phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha the inhibitory subunit of NF-κB. Importantly, treatment of HNSCC cells with GS abrogated both ST- and nicotine-induced nuclear activation of NF-κB and pSTAT3 proteins and their downstream targets COX-2 and vascular endothelial growth factor. Furthermore, GS treatment decreased the levels of ST- and nicotine-induced secreted interleukin-6 in culture media of HNSCC cells. In conclusion, our findings demonstrated that GS treatment abrogates the effects of ST and nicotine on activation of NF-κB and STAT3 pathways in HNSCC cells that contribute to inflammatory and angiogenic responses as well as its progression and metastasis. These findings provide a biologic rationale for further clinical investigation of GS as an effective complementary agent for inhibiting ST-induced head and neck cancer.
Raasch, Jenni; Zeller, Nicolas; van Loo, Geert; Merkler, Doron; Mildner, Alexander; Erny, Daniel; Knobeloch, Klaus-Peter; Bethea, John R.; Waisman, Ari; Knust, Markus; Del Turco, Domenico; Deller, Thomas; Blank, Thomas; Priller, Josef; Brück, Wolfgang
2011-01-01
The IκB kinase complex induces nuclear factor kappa B activation and has recently been recognized as a key player of autoimmunity in the central nervous system. Notably, IκB kinase/nuclear factor kappa B signalling regulates peripheral myelin formation by Schwann cells, however, its role in myelin formation in the central nervous system during health and disease is largely unknown. Surprisingly, we found that brain-specific IκB kinase 2 expression is dispensable for proper myelin assembly and repair in the central nervous system, but instead plays a fundamental role for the loss of myelin in the cuprizone model. During toxic demyelination, inhibition of nuclear factor kappa B activation by conditional ablation of IκB kinase 2 resulted in strong preservation of central nervous system myelin, reduced expression of proinflammatory mediators and a significantly attenuated glial response. Importantly, IκB kinase 2 depletion in astrocytes, but not in oligodendrocytes, was sufficient to protect mice from myelin loss. Our results reveal a crucial role of glial cell-specific IκB kinase 2/nuclear factor kappa B signalling for oligodendrocyte damage during toxic demyelination. Thus, therapies targeting IκB kinase 2 function in non-neuronal cells may represent a promising strategy for the treatment of distinct demyelinating central nervous system diseases. PMID:21310728
Taylor, Shannon L; Frias-Staheli, Natalia; García-Sastre, Adolfo; Schmaljohn, Connie S
2009-02-01
Hantaviruses such as Hantaan virus (HTNV) and Andes virus cause two human diseases, hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome, respectively. For both, disease pathogenesis is thought to be immunologically mediated and there have been numerous reports of patients with elevated levels of proinflammatory and inflammatory cytokines, including tumor necrosis factor alpha (TNF-alpha), in their sera. Multiple viruses have developed evasion strategies to circumvent the host cell inflammatory process, with one of the most prevalent being the disruption of nuclear factor kappa B (NF-kappaB) activation. We hypothesized that hantaviruses might also moderate host inflammation by interfering with this pathway. We report here that the nucleocapsid (N) protein of HTNV was able to inhibit TNF-alpha-induced activation of NF-kappaB, as measured by a reporter assay, and the activation of endogenous p65, an NF-kappaB subunit. Surprisingly, there was no defect in the degradation of the inhibitor of NF-kappaB (IkappaB) protein, nor was there any alteration in the level of p65 expression in HTNV N-expressing cells. However, immunofluorescence antibody staining demonstrated that cells expressing HTNV N protein and a green fluorescent protein-p65 fusion had limited p65 nuclear translocation. Furthermore, we were able to detect an interaction between HTNV N protein and importin alpha, a nuclear import molecule responsible for shuttling NF-kappaB to the nucleus. Collectively, our data suggest that HTNV N protein can sequester NF-kappaB in the cytoplasm, thus inhibiting NF-kappaB activity. These findings, which were obtained using cells transfected with cDNA representing the HTNV N gene, were confirmed using HTNV-infected cells.
Han, S H; Yea, S S; Jeon, Y J; Yang, K H; Kaminski, N E
1998-12-01
Transforming growth factor beta1 (TGF-beta1) has been previously shown to modulate interleukin 2 (IL-2) secretion by activated T-cells. In the present studies, we determined that TGF-beta1 induced IL-2 mRNA expression in the murine T-cell line EL4, in the absence of other stimuli. IL-2 mRNA expression was significantly induced by TGF-beta1 (0.1-1 ng/ml) over a relatively narrow concentration range, which led to the induction of IL-2 secretion. Under identical condition, we examined the effect of TGF-beta1 on the activity of nuclear factor AT (NF-AT), nuclear factor kappaB (NF-kappaB), activator protein-1 (AP-1) and octamer, all of which contribute to the regulation of IL-2 gene expression. Electrophoretic mobility shift assays showed that TGF-beta1 markedly increased NF-AT, NF-kappaB and AP-1 binding to their respective cognate DNA binding sites, whereas octamer binding remained constant, as compared with untreated cells. Employing a reporter gene expression system with p(NF-kappaB)3-CAT, p(NF-AT)3-CAT and p(AP-1)3-CAT, TGF-beta1 treatment of transfected EL4 cells induced a dose-related increase in chloramphenicol acetyltransferase activity that correlated well with the DNA binding profile found in the electrophoretic mobility shift assay studies. These results show that TGF-beta1, in the absence of any additional stimuli, up-regulates the activity of key transcription factors involved in IL-2 gene expression, including NF-AT, NF-kappaB and AP-1, to help promote IL-2 mRNA expression by EL4 cells.
MYD88 Inhibitor ST2825 Suppresses the Growth of Lymphoma and Leukaemia Cells.
Shiratori, Erika; Itoh, Mai; Tohda, Shuji
2017-11-01
Myeloid differentiation primary response gene 88 (MYD88), which activates the nuclear factor kappa B (NF-κB) pathway, is important for the growth of lymphoma and leukaemia cells. In this study, we investigated the effects of ST2825, a synthetic peptidomimetic compound which inhibits MYD88 homodimerization, on their growth. Seven lymphoma and leukaemia cell lines including TMD8, a B-cell lymphoma line with MYD88-activating mutation, were treated with ST2825 and analysed for cell proliferation and expression of NF-κB signalling-related molecules. ST2825 suppressed the growth of all cell lines by inducing apoptosis and down-regulating phosphorylation of NF-κB pathway components inhibitor of nuclear factor kappa B kinase (IκB) and reticuloendotheliosis oncogene A (RelA), as well as of MYD88 activator Bruton tyrosine kinase (BTK), suggesting that MYD88 may affect BTK activity. ST2825 effects were specific as MYD88-targeting siRNA also suppressed phosphorylation of NF-κB signalling proteins and BTK in TMD8 cells. ST2825 may be a novel drug targeting not only B-lymphoid malignancies with MYD88 mutations, but also lymphoma and leukaemia with wild-type MYD88. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
NASA Astrophysics Data System (ADS)
Fuseler, John W.; Merrill, Dana M.; Rogers, Jennifer A.; Grisham, Matthew B.; Wolf, Robert E.
2006-07-01
Nuclear factor kappa B (NF-[kappa]B) is a heterodimeric transcription factor typically composed of p50 and p65 subunits and is a pleiotropic regulator of various inflammatory and immune responses. In quiescent cells, p50/p65 dimers are sequestered in the cytoplasm bound to its inhibitors, the I-[kappa]Bs, which prevent entry into the nucleus. Following cellular stimulation, the I-[kappa]Bs are rapidly degraded, activating NF-[kappa]B. The active form of NF-[kappa]B rapidly translocates into the nucleus, binding to consensus sequences in the promoter/enhancer region of various genes, promoting their transcription. In human vascular endothelial cells activated with tumor necrosis factor-alpha, the activation and translocation of NF-[kappa]B is rapid, reaching maximal nuclear localization by 30 min. In this study, the appearance of NF-[kappa]B (p65 subunit, p65-NF-[kappa]B) in the nucleus visualized by immunofluorescence and quantified by morphometric image analysis (integrated optical density, IOD) is compared to the appearance of activated p65-NF-[kappa]B protein in the nucleus determined biochemically. The appearance of p65-NF-[kappa]B in the nucleus measured by fluorescence image analysis and biochemically express a linear correlation (R2 = 0.9477). These data suggest that localization and relative protein concentrations of NF-[kappa]B can be reliably determined from IOD measurements of the immunofluorescent labeled protein.
Ma, Guoyi; Tabanca, Nurhayat; Husnu Can Baser, K; Kirimer, Nese; Pasco, David S; Khan, Ikhlas A; Khan, Shabana I
2009-03-01
Breast cancer is one of the most prevalent woman cancers. Genomic instability, accumulative mutations, and subsequent changes in intracellular signaling cascades play key roles in the development of human breast cancers. Activation of nuclear factor-kappaB (NF-kappaB) has been implicated in oncogenesis of breast cancers and is known to be associated with resistance to anticancer agents and apoptosis. Blocking NF-kappaB signaling may represent a therapeutic strategy in breast cancer therapy. The objective of this study is to investigate the in vitro effects of epoxypseudoisoeugenol-2-methyl butyrate (EPB), a phenylpropranoid isolated from Pimpinella corymbosa, on the activation of NF-kappaB, cell growth, cell cycle progression and apoptosis in MCF-7 (estrogen-dependent) and BT-549 (estrogen-independent) breast cancer cells. Transcriptional activity of NF-kappaB was measured by cell based reporter gene assay. Cell proliferation was determined by MTT assay. Cell cycle analysis was carried out by flow cytometry and apoptosis was observed by DAPI staining assy. EPB inhibited the NF-kappaB-mediated transcription activity induced by tumor necrosis factor-alpha (TNF-alpha) and phorbol myristate acetate (PMA) in MCF-7 cells. EPB also inhibited constitutive NF-kappaB transcriptional activity in BT-549 cells. EPB inhibited the proliferation of both MCF-7 and BT-549 cells in a concentration- and time-dependent manner. EPB induced cell cycle arrest in G(1)/G(0) phase and apoptosis in both MCF-7 and BT 549 cells. These in vitro results indicated that EPB has a potential for use against both hormone-dependent and hormone-independent breast cancers and its effects seem to be mediated by inhibiting the NF-kappaB activity.
Oakley, Fiona; Meso, Muriel; Iredale, John P; Green, Karen; Marek, Carylyn J; Zhou, Xiaoying; May, Michael J; Millward-Sadler, Harry; Wright, Matthew C; Mann, Derek A
2005-01-01
Resolution of liver fibrosis is associated with clearance of hepatic myofibroblasts by apoptosis; development of strategies that promote this process in a selective way is therefore important. The aim of this study was to determine whether the inhibitor of kappaB kinase suppressor sulfasalazine stimulates hepatic myofibroblast apoptosis and recovery from fibrosis. Hepatic myofibroblasts were generated by culture activation of rat and human hepatic stellate cells. Fibrosis was established in rat livers by chronic injury with carbon tetrachloride followed by recovery with or without sulfasalazine (150 mg/kg) treatment. Treatment of hepatic stellate cells with sulfasalazine (0.5-2.0 mmol/L) induced apoptosis of activated rat and human hepatic stellate cells. A single in vivo administration of sulfasalazine promoted accelerated recovery from fibrosis as assessed by improved fibrosis score, selective clearance of smooth muscle alpha-actin-positive myofibroblasts, reduced hepatic procollagen I and tissue inhibitor of metalloproteinase 1 messenger RNA expression, and increased matrix metalloproteinase 2 activity. Mechanistic studies showed that sulfasalazine selectively blocks nuclear factor-kappaB-dependent gene transcription, inhibits hepatic stellate cell expression of Gadd45beta, stimulates phosphorylation of Jun N-terminal kinase 2, and promotes apoptosis by a mechanism that is prevented by the Jun N-terminal kinase inhibitor SP600125. As further evidence for a survival role for the inhibitor of kappaB kinase/nuclear factor-kappaB pathway in activated hepatic stellate cells, a highly selective cell-permeable peptide inhibitor of kappaB kinase activation also stimulated hepatic stellate cell apoptosis via a Jun N-terminal kinase-dependent mechanism. Inhibition of the inhibitor of kappaB kinase/nuclear factor-kappaB pathway is sufficient to increase the rate at which activated hepatic stellate cells undergo apoptosis both in vitro and in vivo, and drugs that selectively target inhibitor of kappaB kinase have potential as antifibrotics.
Activation of macrophages by an exopolysaccharide isolated from Antarctic Psychrobacter sp. B-3
NASA Astrophysics Data System (ADS)
Yu, Leiye; Sun, Guojie; Wei, Jingfang; Wang, Yingze; Du, Chao; Li, Jiang
2016-09-01
An exopolysaccharide (EPS) was isolated and purified from an Antarctic psychrophilic bacterium B-3, identified as Psychrobacter sp., and the activation of RAW264.7 cells by B-3 EPS was investigated. The results show that B-3 EPS, over a certain concentration range, promoted cell viability, nitric oxide production, tumor necrosis factor (TNF)α secretion, and phagocytic ability. Furthermore, TAK-242, an inhibitor of the toll-like receptor 4 (TLR4) significantly reduced nitric oxide production by these cells after stimulation with B-3 EPS. Moreover, B-3 EPS induced p65 phosphorylation and IκBα degradation in these cells. In conclusion, B-3 EPS might have activated RAW264.7 cells by combining with TLR4 on cell surface and triggering activation of NF-κB signaling pathways, implying that this EPS could activate macrophages and regulate initial immune response.
To NFκB or not to NFκB: The Dilemma on How to Inhibit a Cancer Cell Fate Regulator
Sorriento, Daniela; Illario, Maddalena; Finelli, Rosa; Iaccarino, Guido
2012-01-01
Nuclear factor κB (NFκB) is a transcription factor that plays an important role in carcinogenesis as well as in the regulation of inflammatory response. NFκB is constitutively expressed in tumours where it induces the expression of genes which promote cell proliferation, apoptotic events, angiogenesis, invasion and metastasis. Furthermore, many cancer cells show aberrant or constitutive NFκB activation that mediates resistance to chemo- and radio-therapy. Therefore, the inhibition of NFκB activity appears a potential therapeutic strategy for cancer treatment. In this review, we focus on the role of NFκB in carcinogenesis and summarize actual inhibitors of NFκB that could be potential therapeutic target in cancer therapy. PMID:23905066
Erb, P; Ramila, G; Sklenar, I; Kennedy, M; Sunshine, G H
1985-05-01
Dendritic cells and macrophages obtained from spleen and peritoneal exudate were tested as accessory cells for the activation of lymphokine production by T cells, for supporting T-B cooperation and for the induction of antigen-specific T helper cells. Dendritic cells as well as macrophages were able to activate T cells for interleukin-2 secretion and functioned as accessory cells in T-B cooperation, but only macrophages induced T helper cells, which cooperate with B cells by a linked recognition interaction, to soluble antigens. Dendritic cell- and antigen-activated T cells also did not help B cells in the presence of Con A supernatants which contained various T cell- and B cell-stimulatory factors. The failure of dendritic cells to differentiate memory into functional T helper cells, but their efficient accessory cell function in T-B cooperation, where functional T helper cells are already present, can be best explained by a differential accessory cell requirement for T helper cell activation dependent on the differentiation stage of the T helper cell.
The Interplay of IL-21 and BAFF in the Formation and Maintenance of Human B Cell Memory
Karnell, Jodi L.; Ettinger, Rachel
2011-01-01
To date, IL-21 stands out as the most influential cytokine for human B cell activation and differentiation. Indeed, when compared to other important B cell tropic cytokines such as IL-2, IL-4, IL-6 and IL-10, IL-21 is clearly the most potent in terms of its ability to influence humoral immune responses in humans. IL-21 has wide reaching actions in determining how B cells will respond to co-stimulation ranging from induction of cell death upon BCR crosslinking to potent induction of class switch recombination and plasma cell differentiation when CD40 molecules are co-engaged. Another crucial B cell factor, exemplified in recent clinical trials, is BAFF/BLys. BAFF plays a critical role in the survival of human B cells and plasma blasts and influences B cell expansion and migration. Recent evidence has shown that IL-21 and BAFF can work in concert to promote and perhaps maintain humoral immunity in humans. Notably, BAFF has the unique ability to substitute for CD40L activities in regard to IL-21-co-stimulation and differentiation of a specific B cell subpopulation located in the human splenic marginal zone. However, and perhaps surprisingly, BAFF signals do not have the capability to override IL-21-driven cell death events when BCR is engaged. In stark contrast, anti-CD40 ligation of B cells co-activated with IL-21 and anti-IgM not only reverses this aforementioned activation-induced cell death, but transforms this death signal into one that drives plasma cell differentiation. Here we will discuss these two critical B cell factors, IL-21 and BAFF, and their distinct and complimentary effects on human B cell responses. PMID:22566888
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeong Eun; Hanyang Biomedical Research Institute, Seoul; Park, Jae Hyeon
Oxidative stress can lead to expression of inflammatory transcription factors, which are important regulatory elements in the induction of inflammatory responses. One of the transcription factors, nuclear transcription factor kappa-B (NF-κB) plays a significant role in the inflammation regulatory process. Inflammatory cell death has been implicated in neuronal cell death in some neurodegenerative disorders such as Parkinson's disease (PD). In this study, we investigated the molecular mechanisms underlying apoptosis initiated by chlorpyrifos (CPF)-mediated oxidative stress. Based on the cytotoxic mechanism of CPF, we examined the neuroprotective effects of rosiglitazone (RGZ), a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, against CPF-induced neuronalmore » cell death. The treatment of SH-SY5Y cells with CPF induced oxidative stress. In addition, CPF activated the p38, JNK and ERK mitogen-activated protein kinases (MAPKs), and induced increases in the inflammatory genes such as COX-2 and TNF-α. CPF also induced nuclear translocation of NF-κB and inhibitors of NF-κB abolished the CPF-induced COX-2 expression. Pretreatment with RGZ significantly reduced ROS generation and enhanced HO-1 expression in CPF-exposed cells. RGZ blocked the activation of both p38 and JNK signaling, while ERK activation was strengthened. RGZ also attenuated CPF-induced cell death through the reduction of NF-κB-mediated proinflammatory factors. Results from this study suggest that RGZ may exert an anti-apoptotic effect against CPF-induced cytotoxicity by attenuation of oxidative stress as well as inhibition of the inflammatory cascade via inactivation of signaling by p38 and JNK, and NF-κB. - Highlights: • CPF induces apoptotic cell death in SH-SY5Y cells • ROS involved in CPF-mediated apoptotic cell death • Inflammation involved in CPF-mediated apoptotic cell death • Rosiglitazone modulates ROS and inflammatory response in CPF-treated cells.« less
Kim, EunSook; Matsuse, Michiko; Saenko, Vladimir; Suzuki, Keiji; Ohtsuru, Akira; Yamashita, Shunichi
2012-01-01
Background We previously reported the partial effectiveness of imatinib (also known as STI571, Glivec, or Gleevec) on anaplastic thyroid cancer (ATC) cells. Imatinib is a selective tyrosine kinase inhibitor that has been used for various types of cancer treatments. Recently, several reports have demonstrated that imatinib enhanced the sensitivity of cancer cells to other anticancer drugs. In this study, therefore, we investigated whether imatinib enhances the antitumor activity of docetaxel in ATC cells. Methods Two ATC cell lines, FRO and KTC-2, were treated with imatinib and/or docetaxel. Cell survival assay and flow cytometry for annexin V were used to assess the induction of apoptosis. Changes of pro- and antiapoptotic factors were determined by Western blot. Nuclear factor-κB (NF-κB) activity was measured by DNA-binding assay. Tumor growth was also investigated in vivo. Results The combined treatment significantly enhanced apoptosis compared with single treatment. ATC cells themselves expressed high levels of antiapoptotic factors, X-linked inhibitor of apoptosis (XIAP), and survivin. The treatment with docetaxel alone further increased their expressions; however, the combined treatment blocked the inductions. Although imatinib alone had no effect on NF-κB background levels, combined treatment significantly suppressed the docetaxel-induced NF-κB activation. Further, the combined administration of the drugs also showed significantly greater inhibitory effect on tumor growth in mice xenograft model. Conclusions Imatinib enhanced antitumor activity of docetaxel in ATC cells. Docetaxel seemed to induce both pro- and antiapoptotic signaling pathways in ATC cells, and imatinib blocked the antiapoptotic signal. Thus, docetaxel combined with imatinib emerges as an attractive strategy for the treatment of ATC. PMID:22650230
Jeong, Kwon; Kim, Kiyoon; Kim, Hunsung; Oh, Yoojung; Kim, Seong-Jin; Jo, Yunhee; Choe, Wonchae
2015-06-01
Hypoxia is an important form of physiological stress that induces cell death, due to the resulting endoplasmic reticulum (ER) stress, particularly in solid tumors. Although previous studies have indicated that cyclophilin B (CypB) plays a role in ER stress, there is currently no direct information supporting the mechanism of CypB involvement under hypoxic conditions. However, it has previously been demonstrated that ER stress positively regulates the expression of CypB. In the present study, it was demonstrated that CypB is transcriptionally regulated by hypoxia-mediated activation of transcription factor 6 (ATF6), an ER stress transcription factor. Subsequently, the effects of ATF6 on CypB promoter activity were investigated and an ATF6-responsive region in the promoter was identified. Hypoxia and ATF6 expression each increased CypB promoter activity. Collectively, these results demonstrate that ATF6 positively regulates the expression of CypB by binding to an ATF6-responsive region in the promoter, which may play an important role in the attenuation of apoptosis in the adaption to hypoxia. These results suggest that CypB may be a key molecule in the adaptation of cells to hypoxic conditions.
JEONG, KWON; KIM, KIYOON; KIM, HUNSUNG; OH, YOOJUNG; KIM, SEONG-JIN; JO, YUNHEE; CHOE, WONCHAE
2015-01-01
Hypoxia is an important form of physiological stress that induces cell death, due to the resulting endoplasmic reticulum (ER) stress, particularly in solid tumors. Although previous studies have indicated that cyclophilin B (CypB) plays a role in ER stress, there is currently no direct information supporting the mechanism of CypB involvement under hypoxic conditions. However, it has previously been demonstrated that ER stress positively regulates the expression of CypB. In the present study, it was demonstrated that CypB is transcriptionally regulated by hypoxia-mediated activation of transcription factor 6 (ATF6), an ER stress transcription factor. Subsequently, the effects of ATF6 on CypB promoter activity were investigated and an ATF6-responsive region in the promoter was identified. Hypoxia and ATF6 expression each increased CypB promoter activity. Collectively, these results demonstrate that ATF6 positively regulates the expression of CypB by binding to an ATF6-responsive region in the promoter, which may play an important role in the attenuation of apoptosis in the adaption to hypoxia. These results suggest that CypB may be a key molecule in the adaptation of cells to hypoxic conditions. PMID:26137159
Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B cells.
Pène, Jérôme; Gauchat, Jean-François; Lécart, Sandrine; Drouet, Elodie; Guglielmi, Paul; Boulay, Vera; Delwail, Adriana; Foster, Don; Lecron, Jean-Claude; Yssel, Hans
2004-05-01
IL-21 is a cytokine that regulates the activation of T and NK cells and promotes the proliferation of B cells activated via CD40. In this study, we show that rIL-21 strongly induces the production of all IgG isotypes by purified CD19(+) human spleen or peripheral blood B cells stimulated with anti-CD40 mAb. Moreover, it was found to specifically induce the production of IgG(1) and IgG(3) by CD40-activated CD19(+)CD27(-) naive human B cells. Although stimulation of CD19(+) B cells via CD40 alone induced gamma 1 and gamma 3 germline transcripts, as well as the expression of activation-induced cytidine deaminase, only stimulation with both anti-CD40 mAb and rIL-21 resulted in the production of S gamma/S mu switch circular DNA. These results show that IL-21, in addition to promoting growth and differentiation of committed B cells, is a specific switch factor for the production of IgG(1) and IgG(3).
Grb2 regulates B-cell maturation, B-cell memory responses and inhibits B-cell Ca2+ signalling.
Ackermann, Jochen A; Radtke, Daniel; Maurberger, Anna; Winkler, Thomas H; Nitschke, Lars
2011-04-20
Grb2 is a ubiquitously expressed adaptor protein, which activates Ras and MAP kinases in growth factor receptor signalling, while in B-cell receptor (BCR) signalling this role is controversial. In B cell lines it was shown that Grb2 can inhibit BCR-induced Ca(2+) signalling. Nonetheless, the physiological role of Grb2 in primary B cells is still unknown. We generated a B-cell-specific Grb2-deficient mouse line, which had a severe reduction of mature follicular B cells in the periphery due to a differentiation block and decreased B-cell survival. Moreover, we found several changes in important signalling pathways: enhanced BCR-induced Ca(2+) signalling, alterations in mitogen-activated protein kinase activation patterns and strongly impaired Akt activation, the latter pointing towards a defect in PI3K signalling. Interestingly, B-cell-specific Grb2-deficient mice showed impaired IgG and B-cell memory responses, and impaired germinal centre formation. Thus, Grb2-dependent signalling pathways are crucial for lymphocyte differentiation processes, as well as for control of secondary humoral immune responses.
Guzmán, Mauricio; Sabbione, Florencia; Gabelloni, María Laura; Vanzulli, Silvia; Trevani, Analía Silvina; Giordano, Mirta Nilda; Galletti, Jeremías Gastón
2014-09-04
To evaluate the role of nuclear factor-κB (NF-κB) activation in eye drop preservative toxicity and the effect of topical NF-κB inhibitors on preservative-facilitated allergic conjunctivitis. Balb/c mice were instilled ovalbumin (OVA) combined with benzalkonium chloride (BAK) and/or NF-κB inhibitors in both eyes. After immunization, T-cell responses and antigen-induced ocular inflammation were evaluated. Nuclear factor-κB activation and associated inflammatory changes also were assessed in murine eyes and in an epithelial cell line after BAK exposure. Benzalkonium chloride promoted allergic inflammation and leukocyte infiltration of the conjunctiva. Topical NF-κB inhibitors blocked the disruptive effect of BAK on conjunctival immunological tolerance and ameliorated subsequent ocular allergic reactions. In line with these findings, BAK induced NF-κB activation and the secretion of IL-6 and granulocyte-monocyte colony-stimulating factor in an epithelial cell line and in the conjunctiva of instilled mice. In addition, BAK favored major histocompatibility complex (MHC) II expression in cultured epithelial cells in an NF-κB-dependent fashion after interaction with T cells. Benzalkonium chloride triggers conjunctival epithelial NF-κB activation, which seems to mediate some of its immune side effects, such as proinflammatory cytokine release and increased MHC II expression. Breakdown of conjunctival tolerance by BAK favors allergic inflammation, and this effect can be prevented in mice by topical NF-κB inhibitors. These results suggest a new pharmacological target for preservative toxicity and highlight the importance of conjunctival tolerance in ocular surface homeostasis. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Hamey, Fiona K.; Errami, Youssef
2017-01-01
Differentiation of lineage-committed cells from multipotent progenitors requires the establishment of accessible chromatin at lineage-specific transcriptional enhancers and promoters, which is mediated by pioneer transcription factors that recruit activating chromatin remodeling complexes. Here we show that the Mbd3/nucleosome remodeling and deacetylation (NuRD) chromatin remodeling complex opposes this transcriptional pioneering during B cell programming of multipotent lymphoid progenitors by restricting chromatin accessibility at B cell enhancers and promoters. Mbd3/NuRD-deficient lymphoid progenitors therefore prematurely activate a B cell transcriptional program and are biased toward overproduction of pro–B cells at the expense of T cell progenitors. The striking reduction in early thymic T cell progenitors results in compensatory hyperproliferation of immature thymocytes and development of T cell lymphoma. Our results reveal that Mbd3/NuRD can regulate multilineage differentiation by constraining the activation of dormant lineage-specific enhancers and promoters. In this way, Mbd3/NuRD protects the multipotency of lymphoid progenitors, preventing B cell–programming transcription factors from prematurely enacting lineage commitment. Mbd3/NuRD therefore controls the fate of lymphoid progenitors, ensuring appropriate production of lineage-committed progeny and suppressing tumor formation. PMID:28899870
Ogura, Yuji; Mishra, Vivek; Hindi, Sajedah M.; Kuang, Shihuan; Kumar, Ashok
2013-01-01
Satellite cell self-renewal is an essential process to maintaining the robustness of skeletal muscle regenerative capacity. However, extrinsic factors that regulate self-renewal of satellite cells are not well understood. Here, we demonstrate that TWEAK cytokine reduces the proportion of Pax7+/MyoD− cells (an index of self-renewal) on myofiber explants and represses multiple components of Notch signaling in satellite cell cultures. The number of Pax7+ cells is significantly increased in skeletal muscle of TWEAK knock-out (KO) mice compared with wild-type in response to injury. Furthermore, Notch signaling is significantly elevated in cultured satellite cells and in regenerating myofibers of TWEAK-KO mice. Forced activation of Notch signaling through overexpression of the Notch1 intracellular domain (N1ICD) rescued the TWEAK-mediated inhibition of satellite cell self-renewal. TWEAK also activates the NF-κB transcription factor in satellite cells and inhibition of NF-κB significantly improved the number of Pax7+ cells in TWEAK-treated cultures. Furthermore, our results demonstrate that a reciprocal interaction between NF-κB and Notch signaling governs the inhibitory effect of TWEAK on satellite cell self-renewal. Collectively, our study demonstrates that TWEAK suppresses satellite cell self-renewal through activating NF-κB and repressing Notch signaling. PMID:24151074
Ogura, Yuji; Mishra, Vivek; Hindi, Sajedah M; Kuang, Shihuan; Kumar, Ashok
2013-12-06
Satellite cell self-renewal is an essential process to maintaining the robustness of skeletal muscle regenerative capacity. However, extrinsic factors that regulate self-renewal of satellite cells are not well understood. Here, we demonstrate that TWEAK cytokine reduces the proportion of Pax7(+)/MyoD(-) cells (an index of self-renewal) on myofiber explants and represses multiple components of Notch signaling in satellite cell cultures. The number of Pax7(+) cells is significantly increased in skeletal muscle of TWEAK knock-out (KO) mice compared with wild-type in response to injury. Furthermore, Notch signaling is significantly elevated in cultured satellite cells and in regenerating myofibers of TWEAK-KO mice. Forced activation of Notch signaling through overexpression of the Notch1 intracellular domain (N1ICD) rescued the TWEAK-mediated inhibition of satellite cell self-renewal. TWEAK also activates the NF-κB transcription factor in satellite cells and inhibition of NF-κB significantly improved the number of Pax7(+) cells in TWEAK-treated cultures. Furthermore, our results demonstrate that a reciprocal interaction between NF-κB and Notch signaling governs the inhibitory effect of TWEAK on satellite cell self-renewal. Collectively, our study demonstrates that TWEAK suppresses satellite cell self-renewal through activating NF-κB and repressing Notch signaling.
HTLV Deregulation of the NF-κB Pathway: An Update on Tax and Antisense Proteins Role.
Fochi, Stefania; Mutascio, Simona; Bertazzoni, Umberto; Zipeto, Donato; Romanelli, Maria G
2018-01-01
Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL), an aggressive CD4 + /CD25 + T-cell malignancy and of a severe neurodegenerative disease, HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The chronic activation or deregulation of the canonical and non-canonical nuclear factor kappa B (NF-κB) pathways play a crucial role in tumorigenesis. The HTLV-1 Tax-1 oncoprotein is a potent activator of the NF-κB transcription factors and the NF-κB response is required for promoting the development of HTLV-1 transformed cell lines. The homologous retrovirus HTLV-2, which also expresses a Tax-2 transforming protein, is not associated with ATL. In this review, we provide an updated synopsis of the role of Tax-1 in the deregulation of the NF-κB pathway, highlighting the differences with the homologous Tax-2. Special emphasis is directed toward the understanding of the molecular mechanisms involved in NF-κB activation resulting from Tax interaction with host factors affecting several cellular processes, such as cell cycle, apoptosis, senescence, cell proliferation, autophagy, and post-translational modifications. We also discuss the current knowledge on the role of the antisense viral protein HBZ in down-regulating the NF-κB activation induced by Tax, and its implication in cellular senescence. In addition, we review the recent studies on the mechanism of HBZ-mediated inhibition of NF-κB activity as compared to that exerted by the HTLV-2 antisense protein, APH-2. Finally, we discuss recent advances aimed at understanding the role exerted in the development of ATL by the perturbation of NF-κB pathway by viral regulatory proteins.
HTLV Deregulation of the NF-κB Pathway: An Update on Tax and Antisense Proteins Role
Fochi, Stefania; Mutascio, Simona; Bertazzoni, Umberto; Zipeto, Donato; Romanelli, Maria G.
2018-01-01
Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL), an aggressive CD4+/CD25+ T-cell malignancy and of a severe neurodegenerative disease, HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The chronic activation or deregulation of the canonical and non-canonical nuclear factor kappa B (NF-κB) pathways play a crucial role in tumorigenesis. The HTLV-1 Tax-1 oncoprotein is a potent activator of the NF-κB transcription factors and the NF-κB response is required for promoting the development of HTLV-1 transformed cell lines. The homologous retrovirus HTLV-2, which also expresses a Tax-2 transforming protein, is not associated with ATL. In this review, we provide an updated synopsis of the role of Tax-1 in the deregulation of the NF-κB pathway, highlighting the differences with the homologous Tax-2. Special emphasis is directed toward the understanding of the molecular mechanisms involved in NF-κB activation resulting from Tax interaction with host factors affecting several cellular processes, such as cell cycle, apoptosis, senescence, cell proliferation, autophagy, and post-translational modifications. We also discuss the current knowledge on the role of the antisense viral protein HBZ in down-regulating the NF-κB activation induced by Tax, and its implication in cellular senescence. In addition, we review the recent studies on the mechanism of HBZ-mediated inhibition of NF-κB activity as compared to that exerted by the HTLV-2 antisense protein, APH-2. Finally, we discuss recent advances aimed at understanding the role exerted in the development of ATL by the perturbation of NF-κB pathway by viral regulatory proteins. PMID:29515558
Liu, Xiaobin; Xavier, Christy; Jann, Jamieson; Wu, Hongli
2016-01-01
Protein glutathionylation, defined as the formation of protein mixed disulfides (PSSG) between cysteine residues and glutathione (GSH), can lead to cell death. Glutaredoxin 1 (Grx1) is a thiol repair enzyme which catalyzes the reduction of PSSG. Therefore, Grx1 exerts strong anti-apoptotic effects by improving the redox state, especially in times of oxidative stress. However, there is currently no compound that is identified as a Grx1 activator. In this study, we identified and characterized Salvianolic acid B (Sal B), a natural compound, as a Grx1 inducer, which potently protected retinal pigment epithelial (RPE) cells from oxidative injury. Our results showed that treatment with Sal B protected primary human RPE cells from H2O2-induced cell damage. Interestingly, we found Sal B pretreatment upregulated Grx1 expression in RPE cells in a time- and dose-dependent manner. Furthermore, NF-E2-related factor 2 (Nrf2), the key transcription factor that regulates the expression of Grx1, was activated in Sal B treated RPE cells. Further investigation showed that knockdown of Grx1 by small interfering RNA (siRNA) significantly reduced the protective effects of Sal B. We conclude that Sal B protects RPE cells against H2O2-induced cell injury through Grx1 induction by activating Nrf2 pathway, thus preventing lethal accumulation of PSSG and reversing oxidative damage. PMID:27827892
Marino-Merlo, Francesca; Papaianni, Emanuela; Medici, Maria Antonietta; Macchi, Beatrice; Grelli, Sandro; Mosca, Claudia; Borner, Christoph; Mastino, Antonio
2016-01-01
The transcription factor nuclear factor-kappa B (NF-κB) is a crucial player of the antiviral innate response. Intriguingly, however, NF-κB activation is assumed to favour herpes simplex virus (HSV) infection rather than restrict it. Apoptosis, a form of innate response to viruses, is completely inhibited by HSV in fully permissive cells, but not in cells incapable to fully sustain HSV replication, such as immunocompetent cells. To resolve the intricate interplay among NF-κB signalling, apoptosis and permissiveness to HSV-1 in monocytic cells, we utilized U937 monocytic cells in which NF-κB activation was inhibited by expressing a dominant-negative IκBα. Surprisingly, viral production was increased in monocytic cells in which NF-κB was inhibited. Moreover, inhibition of NF-κB led to increased apoptosis following HSV-1 infection, associated with lysosomal membrane permeabilization. High expression of late viral proteins and induction of apoptosis occurred in distinct cells. Transcriptional analysis of known innate response genes by real-time quantitative reverse transcription-PCR excluded a contribution of the assayed genes to the observed phenomena. Thus, in monocytic cells NF-κB activation simultaneously serves as an innate process to restrict viral replication as well as a mechanism to limit the damage of an excessive apoptotic response to HSV-1 infection. This finding may clarify mechanisms controlling HSV-1 infection in monocytic cells. PMID:27584793
Lee, Jeong Goo
2012-01-01
Purpose. To determine the role of nuclear factor-κB (NF-κB) during FGF-2–mediated endothelial mesenchymal transformation (EMT) in response to interleukin (IL)-1β stimulation in corneal endothelial cells (CECs). Methods. Expression and/or activation of IL-1 receptor–associated protein kinase (IRAK), TNF receptor–associated factor 6 (TRAF6), phosphatidylinositol 3-kinase (PI 3-kinase), IκB kinase (IKK), IκB, NF-κB, and FGF-2 were analyzed by immunoblot analysis. Cell proliferation was measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. NF-κB activity was measured by NF-κB ELISA kit, while binding of NF-κB to the promoter region of FGF-2 gene was determined by chromatin immunoprecipitation. Results. Brief stimulation of CECs with IL-1β upregulated expression of IRAK and TRAF6 and activated PI 3-kinase; expression of IRAK and TRAF6 reached maximum within 60 minutes, after which the expression disappeared, while PI 3-kinase activity was observed up to 4 hours after IL-1β stimulation. Use of specific inhibitor to PI 3-kinase or IRAK demonstrated that IRAK activates PI 3-kinase, the signaling of which phosphorylates IKKα/β and degrades IκB, subsequently leading to activation of NF-κB. The induction of FGF-2 by IL-1β was completely blocked by inhibitors to NF-κB activation (sulfasalazine) or PI 3-kinase (LY294002), and both inhibitors greatly blocked cell proliferation of CECs. Chromatin immunoprecipitation further demonstrated that NF-κB is the transcription factor of FGF-2 as NF-κB binds the putative NF-κB binding site of the FGF-2 promoter. Conclusions. These data suggest that IL-1β signaling combines the canonical pathway and the PI 3-kinase signaling to upregulate FGF-2 production through NF-κB, which plays a key role as a transcription factor of FGF-2 gene. PMID:22323467
Kawano, M; Matsushima, K; Oppenheim, J J
1987-08-01
A bioassay was developed using human small B cells adherent to anti-human IgM (anti-mu)-coated wells. These B cells were stimulated to proliferate by culture supernatants of concanavalin A (Con A)-activated human peripheral blood lymphocytes (Con A Sup) even in the presence of high concentrations of anti-mu coated on assay wells. Human B-cell growth factor (BCGF) activities were partially purified from Con A Sup. Preparative chromatography (Sephacryl S-200 and isoelectrofocusing) yielded a major peak of BCGF activity for B cells adherent to anti-mu-coated wells with a molecular weight of 50,000 (50 kDa) and a pI 7.6. The 50-kDa BCGF was further purified by sequential chromatography using DEAE-Sephacel, CM-Sepharose, Sephacryl S-200, CM-high performance liquid chromatography (HPLC), and hydroxyapatite (HA)-HPLC. The HA-HPLC-purified 50-kDa BCGF was free of interleukin-1 (IL-1), interleukin-2 (IL-2), and interferon activities, but could support growth of BCL1 cells, similar to BCGF-II. Neither IL-1 nor interferon-gamma had any growth-stimulating effect in our B-cell proliferation assay with or without BCGF in Iscove's synthetic assay medium. BCGF-induced proliferation of B cells adherent to anti-mu-coated wells could be markedly augmented by the simultaneous or sequential addition of recombinant human IL-2 (rIL-2). When cultured for 3 days with 50-kDa BCGF, about 40% of B cells adherent to anti-mu-coated wells expressed Tac antigen, and monoclonal anti-Tac antibody inhibited rIL-2 enhancement of proliferation of 50-kDa BCGF-preactivated B cells. In addition, 50-kDa BCGF could induce Tac antigen on an Epstein-Barr virus-transformed B-cell line (ORSON) in the presence of a suboptimal dose of phorbol myristate acetate (PMA) and also on a natural killer-like cell line (YT cells). We have therefore identified a major 50-kDa BCGF activity with Tac antigen-inducing activity that also has a synergistic effect with IL-2 on normal B-cell proliferation.
Kang, Min-Jung; Song, Eun-Jung; Kim, Bo-Yeon; Kim, Dong-Jae; Park, Jong-Hwan
2014-12-01
Although Helicobacter pylori have been known to induce vascular endothelial growth factor (VEGF) production in gastric epithelial cells, the precise mechanism for cellular signaling is incompletely understood. In this study, we investigated the role of bacterial virulence factor and host cellular signaling in VEGF production of H. pylori-infected gastric epithelial cells. We evaluated production of VEGF, activation of nuclear factor nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) and hypoxia-inducible factor-1α (HIF-1α) stabilization in gastric epithelial cells infected with H. pylori WT or isogenic mutants deficient in type IV secretion system (T4SS). H. pylori induced VEGF production in gastric epithelial cells via both T4SS-dependent and T4SS-independent pathways, although T4SS-independent pathway seems to be the dominant signaling. The inhibitor assay implicated that activation of NF-κB and MAPKs is dispensable for H. pylori-induced VEGF production in gastric epithelial cells. H. pylori led to HIF-1α stabilization in gastric epithelial cells independently of T4SS, NF-κB, and MAPKs, which was essential for VEGF production in these cells. N-acetyl-cysteine (NAC), a reactive oxygen species (ROS) inhibitor, treatment impaired H. pylori-induced HIF-1α stabilization and VEGF production in gastric epithelial cells. We defined the important role of ROS-HIF-1α axis in VEGF production of H. pylori-infected gastric epithelial cells, and bacterial T4SS has a minor role in H. pylori-induced VEGF production of gastric epithelial cells. © 2014 John Wiley & Sons Ltd.
Jutooru, Indira; Chadalapaka, Gayathri; Lei, Ping; Safe, Stephen
2010-01-01
Curcumin activates diverse anticancer activities that lead to inhibition of cancer cell and tumor growth, induction of apoptosis, and antiangiogenic responses. In this study, we observed that curcumin inhibits Panc28 and L3.6pL pancreatic cancer cell and tumor growth in nude mice bearing L3.6pL cells as xenografts. In addition, curcumin decreased expression of p50 and p65 proteins and NFκB-dependent transactivation and also decreased Sp1, Sp3, and Sp4 transcription factors that are overexpressed in pancreatic cancer cells. Because both Sp transcription factors and NFκB regulate several common genes such as cyclin D1, survivin, and vascular endothelial growth factor that contribute to the cancer phenotype, we also investigated interactions between Sp and NFκB transcription factors. Results of Sp1, Sp3, and Sp4 knockdown by RNA interference demonstrate that both p50 and p65 are Sp-regulated genes and that inhibition of constitutive or tumor necrosis factor-induced NFκB by curcumin is dependent on down-regulation of Sp1, Sp3, and Sp4 proteins by this compound. Curcumin also decreased mitochondrial membrane potential and induced reactive oxygen species in pancreatic cancer cells, and this pathway is required for down-regulation of Sp proteins in these cells, demonstrating that the mitochondriotoxic effects of curcumin are important for its anticancer activities. PMID:20538607
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Hui; Lin, Lu; Haq, Ihtesham Ul
The transcription factor nuclear factor-κB (NF-κB) plays an important role in diverse processes, including cell proliferation and differentiation, apoptosis and inflammation. However, the role of NF-κB in porcine follicle development is not clearly elucidated. In this study, we demonstrated that follicle stimulating hormone (FSH) increased the level of inhibitor of NF-κB (IκB) protein and promoted the cytoplasmic localization of p65, indicating that FSH inhibits the activation of NF-κB in porcine granulosa cells. Moreover, inhibition of NF-κB by FSH or another specific inhibitor of NF-κB, pyrrolidine dithiocarbamate (PDTC), could activate JNK signaling and enhance autophagic activity in porcine granulosa cells. Knockdownmore » of RelA (p65) Subunit of NF-κB by RNA interference abrogated the activation of JNK signaling pathway and the increase of autophagic protein expression by FSH. Meanwhile, the functional significance of FSH or PDTC-mediated autophagy were further investigated. Our results demonstrated that the increased autophagy promoted progesterone secretion in porcine granulosa cells. Blockage of autophagy by chloroquine obviated the FSH or PDTC-induced progesterone production. Taken together, these results indicate that inhibition of NF-κB increased autophagy via JNK signaling, and promote steroidogenesis in porcine granulosa cells. Our results provide new insights into the regulation and function of autophagy in mammalian follicle development. - Highlights: • FSH inhibits the activation of NF-κB in porcine primary granulosa cells. • Inhibition of NF-κB by FSH promotes autophagy via JNK signaling in granulosa cells. • Increased autophagy contributes to progesterone production in granulosa cells. • This is the first report against beclin1 regulation in porcine granulosa cells.« less
Heusinger, Elena; Kirchhoff, Frank
2017-01-01
The transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) plays a complex role during the replication of primate lentiviruses. On the one hand, NF-κB is essential for induction of efficient proviral gene expression. On the other hand, this transcription factor contributes to the innate immune response and induces expression of numerous cellular antiviral genes. Recent data suggest that primate lentiviruses cope with this challenge by boosting NF-κB activity early during the replication cycle to initiate Tat-driven viral transcription and suppressing it at later stages to minimize antiviral gene expression. Human and simian immunodeficiency viruses (HIV and SIV, respectively) initially exploit their accessory Nef protein to increase the responsiveness of infected CD4+ T cells to stimulation. Increased NF-κB activity initiates Tat expression and productive replication. These events happen quickly after infection since Nef is rapidly expressed at high levels. Later during infection, Nef proteins of HIV-2 and most SIVs exert a very different effect: by down-modulating the CD3 receptor, an essential factor for T cell receptor (TCR) signaling, they prevent stimulation of CD4+ T cells via antigen-presenting cells and hence suppress further induction of NF-κB and an effective antiviral immune response. Efficient LTR-driven viral transcription is maintained because it is largely independent of NF-κB in the presence of Tat. In contrast, human immunodeficiency virus type 1 (HIV-1) and its simian precursors have lost the CD3 down-modulation function of Nef and use the late viral protein U (Vpu) to inhibit NF-κB activity by suppressing its nuclear translocation. In this review, we discuss how HIV-1 and other primate lentiviruses might balance viral and antiviral gene expression through a tight temporal regulation of NF-κB activity throughout their replication cycle. PMID:28261165
Ma, Wei; Gee, Katrina; Lim, Wilfred; Chambers, Kelly; Angel, Jonathan B; Kozlowski, Maya; Kumar, Ashok
2004-01-01
IL-12 plays a critical role in the development of cell-mediated immune responses and in the pathogenesis of inflammatory and autoimmune disorders. Dexamethasone (DXM), an anti-inflammatory glucocorticoid, has been shown to inhibit IL-12p40 production in LPS-stimulated monocytic cells. In this study, we investigated the molecular mechanism by which DXM inhibits IL-12p40 production by studying the role of the mitogen-activated protein kinases (MAPKs), and the key transcription factors involved in human IL-12p40 production in LPS-stimulated monocytic cells. A role for c-Jun N-terminal kinase (JNK) MAPK in LPS-induced IL-12p40 regulation in a promonocytic THP-1/CD14 cell line was demonstrated by using specific inhibitors of JNK activation, SP600125 and a dominant-negative stress-activated protein/extracellular signal-regulated kinase kinase-1 mutant. To identify transcription factors regulating IL-12p40 gene transcription, extensive deletion analyses of the IL-12p40 promoter was performed. The results revealed the involvement of a sequence encompassing the AP-1-binding site, in addition to that of NF-kappaB. The role of AP-1 in IL-12p40 transcription was confirmed by using antisense c-fos and c-jun oligonucleotides. Studies conducted to understand the regulation of AP-1 and NF-kappaB activation by JNK MAPK revealed that both DXM and SP600125 inhibited IL-12p40 gene transcription by inhibiting the activation of AP-1 and NF-kappaB transcription factors as revealed by luciferase reporter and gel mobility shift assays. Taken together, our results suggest that DXM may inhibit IL-12p40 production in LPS-stimulated human monocytic cells by down-regulating the activation of JNK MAPK, the AP-1, and NF-kappaB transcription factors.
Gambi, D; Porrini, A M; Giampietro, A; Macor, S
1991-08-01
Two-color flow cytometric analysis on peripheral blood lymphocytes of 35 untreated multiple sclerosis (MS) patients, 17 other medical disease (OMD) patients and 14 healthy control (HC) subjects was performed to evaluate the levels of different T and B cell subpopulations. In MS patients we observed an increase in CD4+CD29+ helper-inducer cells but this increase was not related to the different phases of the disease. We hypothesize that this change is related to the reduction of CD21+ cells expressing B2 antigen, a 140 kDa molecule disappearing after B cell activation. An increased level of CD4+CD45RA- (helper-inducer-like cells) and a reduction of CD4+CD29- (suppressor-inducer-like cells) were also present in our patients. These findings demonstrate an immune 'disequilibrium' in MS, which is linked with an increased level of CD25+ cells expressing the interleukin-2 (IL-2) receptor. IL-2, besides being a T cell growth factor, is also a B cell growth factor. These data let us hypothesize that an activation of the immune response is present in MS.
Van De Walle, Jacqueline; Romier, Béatrice; Larondelle, Yvan; Schneider, Yves-Jacques
2008-04-01
Deoxynivalenol (DON) is the most prevalent trichothecene mycotoxin in crops in Europe and North America. In human intestinal Caco-2 cells, DON activates the mitogen-activated protein kinases (MAPKs). We hypothesized a link between DON ingestion and intestinal inflammation, and used Caco-2 cells to assess the effects of DON, at plausible intestinal concentrations (250-10,000 ng/ml), on inflammatory mediators acting downstream the MAPKs cascade i.e. activation of nuclear factor-kappaB (NF-kappaB) and interleukin-8 (IL-8) secretion. In addition, Caco-2 cells were co-exposed to pro-inflammatory stimuli in order to mimic an inflamed intestinal epithelium. Dose-dependent increases in NF-kappaB activity and IL-8 secretion were observed, reaching 1.4- and 7.6-fold, respectively using DON at 10 microg/ml. Phosphorylation of inhibitor-kappaB (IkappaB) increased (1.6-fold) at DON levels <0.5 microg/ml. Exposure of Caco-2 cells to pro-inflammatory agents, i.e. 25 ng/ml interleukin-1beta, 100 ng/ml tumor necrosis factor-alpha or 10 microg/ml lipopolysaccharides, activated NF-kappaB and increased IL-8 secretion. Synergistic interactions between these stimuli and DON were observed. These data show that DON induces NF-kappaB activation and IL-8 secretion dose-dependently in Caco-2 cells, and this effect was accentuated upon pro-inflammatory stimulation, suggesting DON exposure could cause or exacerbate intestinal inflammation.
Stage-specific control of early B cell development by the transcription factor Ikaros
Gültekin, Sinan; Dakic, Aleksandar; Axelsson, Elin; Minnich, Martina; Ebert, Anja; Werner, Barbara; Roth, Mareike; Cimmino, Luisa; Dickins, Ross A.; Zuber, Johannes; Jaritz, Markus; Busslinger, Meinrad
2018-01-01
Ikaros is an essential regulator of lymphopoiesis. Here, we studied the B-cell-specific function of Ikaros by conditional Ikzf1 inactivation in pro-B cells. B-cell development was arrested at an aberrant ‘pro-B’ cell stage characterized by increased cell adhesion and loss of pre-B cell receptor signaling. Ikaros was found to activate genes coding for pre-BCR signal transducers and to repress genes involved in the downregulation of pre-BCR signaling and upregulation of the integrin signaling pathway. Unexpectedly, derepression of Aiolos expression could not compensate for the loss of Ikaros in pro-B cells. Ikaros induced or suppressed active chromatin at regulatory elements of activated or repressed target genes. Notably, Ikaros binding and target gene expression was dynamically regulated at distinct stages of early B-lymphopoiesis. PMID:24509509
Vranes, Miroslav; Wahl, Ramon; Pothiratana, Chetsada; Schuler, David; Vincon, Volker; Finkernagel, Florian; Flor-Parra, Ignacio; Kämper, Jörg
2010-01-01
In the phytopathogenic basidiomycete Ustilago maydis, sexual and pathogenic development are tightly connected and controlled by the heterodimeric bE/bW transcription factor complex encoded by the b-mating type locus. The formation of the active bE/bW heterodimer leads to the formation of filaments, induces a G2 cell cycle arrest, and triggers pathogenicity. Here, we identify a set of 345 bE/bW responsive genes which show altered expression during these developmental changes; several of these genes are associated with cell cycle coordination, morphogenesis and pathogenicity. 90% of the genes that show altered expression upon bE/bW-activation require the zinc finger transcription factor Rbf1, one of the few factors directly regulated by the bE/bW heterodimer. Rbf1 is a novel master regulator in a multilayered network of transcription factors that facilitates the complex regulatory traits of sexual and pathogenic development. PMID:20700446
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Wenjing; Hao, Baixia; Wang, Qian
Extracellular signal-regulated kinases (ERKs) have been implicated to be dispensable for self-renewal of mouse embryonic stem (ES) cells, and simultaneous inhibition of both ERK signaling and glycogen synthase kinase 3 (GSK3) not only allows mouse ES cells to self-renew independent of extracellular stimuli but also enables more efficient derivation of naïve ES cells from mouse and rat strains. Interestingly, some ERKs stay active in mouse ES cells which are maintained in regular medium containing leukemia inhibitory factor (LIF) and bone morphogenetic protein (BMP). Yet, the upstream signaling for ERK activation and their roles in mouse ES cells, other than promotingmore » or priming differentiation, have not been determined. Here we found that mouse ES cells express three forms of Raf kinases, A-Raf, B-Raf, and C-Raf. Knocking-down each single Raf member failed to affect the sustained ERK activity, neither did A-Raf and B-Raf double knockdown or B-Raf and C-Raf double knockdown change it in ES cells. Interestingly, B-Raf and C-Raf double knockdown, not A-Raf and B-Raf knockdown, inhibited the maximal ERK activation induced by LIF, concomitant with the slower growth of ES cells. On the other hand, A-Raf, B-Raf, and C-Raf triple knockdown markedly inhibited both the maximal and sustained ERK activity in ES cells. Moreover, Raf triple knockdown, similar to the treatment of U-0126, an MEK inhibitor, significantly inhibited the survival and proliferation of ES cells, thereby compromising the colony propagation of mouse ES cells. In summary, our data demonstrate that all three Raf members are required for ERK activation in mouse ES cells and are involved in growth and survival of mouse ES cells. - Highlights: ●Mouse ES (mES) cells express all three Raf members, A-Raf, B-Raf, and C-Raf. ●Leukemia inhibitory factor (LIF) temporally activates ERKs in mES cells. ●B-Raf and C-Raf are required for LIF-induced maximal ERKs activity in mES cells. ●All Raf members are required for LIF-induced sustained ERK activity in mES cells. ●All Raf members are required the survival and proliferation of mES cells.« less
NF-κB Signalling in Glioblastoma
Soubannier, Vincent; Stifani, Stefano
2017-01-01
Nuclear factor-κB (NF-κB) is a transcription factor regulating a wide array of genes mediating numerous cellular processes such as proliferation, differentiation, motility and survival, to name a few. Aberrant activation of NF-κB is a frequent event in numerous cancers, including glioblastoma, the most common and lethal form of brain tumours of glial cell origin (collectively termed gliomas). Glioblastoma is characterized by high cellular heterogeneity, resistance to therapy and almost inevitable recurrence after surgery and treatment. NF-κB is aberrantly activated in response to a variety of stimuli in glioblastoma, where its activity has been implicated in processes ranging from maintenance of cancer stem-like cells, stimulation of cancer cell invasion, promotion of mesenchymal identity, and resistance to radiotherapy. This review examines the mechanisms of NF-κB activation in glioblastoma, the involvement of NF-κB in several mechanisms underlying glioblastoma propagation, and discusses some of the important questions of future research into the roles of NF-κB in glioblastoma. PMID:28598356
Boncoeur, Emilie; Roque, Telma; Bonvin, Elise; Saint-Criq, Vinciane; Bonora, Monique; Clement, Annick; Tabary, Olivier; Henrion-Caude, Alexandra; Jacquot, Jacky
2008-01-01
Cystic fibrosis is a lethal inherited disorder caused by mutations in a single gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, resulting in progressive oxidative lung damage. In this study, we evaluated the role of CFTR in the control of ubiquitin-proteasome activity and nuclear factor (NF)-κB/IκB-α signaling after lung oxidative stress. After a 64-hour exposure to hyperoxia-mediated oxidative stress, CFTR-deficient (cftr−/−) mice exhibited significantly elevated lung proteasomal activity compared with wild-type (cftr+/+) animals. This was accompanied by reduced lung caspase-3 activity and defective degradation of NF-κB inhibitor IκB-α. In vitro, human CFTR-deficient lung cells exposed to oxidative stress exhibited increased proteasomal activity and decreased NF-κB-dependent transcriptional activity compared with CFTR-sufficient lung cells. Inhibition of the CFTR Cl− channel by CFTRinh-172 in the normal bronchial immortalized cell line 16HBE14o− increased proteasomal degradation after exposure to oxidative stress. Caspase-3 inhibition by Z-DQMD in CFTR-sufficient lung cells mimicked the response profile of increased proteasomal degradation and reduced NF-κB activity observed in CFTR-deficient lung cells exposed to oxidative stress. Taken together, these results suggest that functional CFTR Cl− channel activity is crucial for regulation of lung proteasomal degradation and NF-κB activity in conditions of oxidative stress. PMID:18372427
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Xiao; Gang, Yi; Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi Province
2015-02-06
Highlights: • A shRNA vector based transcription factor decoy, VB-ODN, was designed. • VB-ODN for NF-κB inhibited cell viability in HEK293 cells. • VB-ODN inhibited expression of downstream genes of target transcription factors. • VB-ODN may enhance nuclear entry ratio for its feasibility of virus production. - Abstract: In this study, we designed a short hairpin RNA vector-based oligodeoxynucleotide (VB-ODN) carrying transcription factor (TF) consensus sequence which could function as a decoy to block TF activity. Specifically, VB-ODN for Nuclear factor-κB (NF-κB) could inhibit cell viability and decrease downstream gene expression in HEK293 cells without affecting expression of NF-κB itself.more » The specific binding between VB-ODN produced double-stranded RNA and NF-κB was evidenced by electrophoretic mobility shift assay. Moreover, similar VB-ODNs designed for three other TFs also inhibit their downstream gene expression but not that of themselves. Our study provides a new design of decoy for blocking TF activity.« less
Yeo, Alan T; Chennamadhavuni, Spandan; Whitty, Adrian; Porco, John A; Gilmore, Thomas D
2015-04-23
Increased activity of transcription factor NF-κB has been implicated in many B-cell lymphomas. We investigated effects of synthetic compound calafianin monomer (CM101) on biochemical and biological properties of NF-κB. In human 293 cells, CM101 selectively inhibited DNA binding by overexpressed NF-κB subunits REL (human c-Rel) and p65 as compared to NF-κB p50, and inhibition of REL and p65 DNA binding by CM101 required a conserved cysteine residue. CM101 also inhibited DNA binding by REL in human B-lymphoma cell lines, and the sensitivity of several B-lymphoma cell lines to CM101-induced proliferation arrest and apoptosis correlated with levels of cellular and nuclear REL. CM101 treatment induced both phosphorylation and decreased expression of anti-apoptotic protein Bcl-XL, a REL target gene product, in sensitive B-lymphoma cell lines. Ectopic expression of Bcl-XL protected SUDHL-2 B-lymphoma cells against CM101-induced apoptosis, and overexpression of a transforming mutant of REL decreased the sensitivity of BJAB B-lymphoma cells to CM101-induced apoptosis. Lipopolysaccharide-induced activation of NF-κB signaling upstream components occurred in RAW264.7 macrophages at CM101 concentrations that blocked NF-κB DNA binding. Direct inhibitors of REL may be useful for treating B-cell lymphomas in which REL is active, and may inhibit B-lymphoma cell growth at doses that do not affect some immune-related responses in normal cells.
OCA-B regulation of B-cell development and function.
Teitell, Michael A
2003-10-01
The transcriptional co-activator OCA-B [for Oct co-activator from B cells, also known as OBF-1 (OCT-binding factor-1) and Bob1] is not required for B-cell genesis but does regulate subsequent B-cell development and function. OCA-B deficient mice show strain-specific, partial blocks at multiple stages of B-cell maturation and a complete disruption of germinal center formation in all strains, causing humoral immune deficiency and susceptibility to infection. OCA-B probably exerts its effects through the regulation of octamer-motif controlled gene expression. The OCA-B gene encodes two proteins of distinct molecular weight, designated p34 and p35. The p34 isoform localizes in the nucleus, whereas the p35 isoform is myristoylated and is bound to the cytoplasmic membrane. p35 can traffic to the nucleus and probably activates octamer-dependent transcription, although this OCA-B isoform might regulate B cells through membrane-related signal transduction.
BCR mediated signal transduction in immature and mature B cells.
Koncz, Gábor; Bodor, Csaba; Kövesdi, Dorottya; Gáti, Róbert; Sármay, Gabriella
2002-06-03
Ligation of B cell receptors (BCR) on immature B cells may induce apoptosis, while in mature B cells it stimulates cell activation and growth. The signaling pathway regulating the differential functional response, death or survival of the B cell is not fully characterized. We have tested the intracellular signaling requirement of these processes using B cells isolated from the spleen of irradiated auto-reconstituted (transitional immature B cells) and untreated mice (mature B cells), respectively. We compared the BCR induced intracellular [Ca2+] transient, protein tyrosine phosphorylation and ERK phosphorylation, furthermore, the activation of Elk-1 and CREB transcription factors. The BCR induced rise of intracellular [Ca2+] did not significantly differ in the two populations, only a slight difference in the late phase of the response was observed. Immature B cells responded with a maximum tyrosine phosphorylation to a five times lower dose of anti-IgM compared to the mature population. Most importantly, we have found a significant difference in the tyrosine phosphorylation of the Gab family adaptor proteins, Gab1/2. In contrast to mature B cells, crosslinking of BCR on immature B cells did not induce tyrosine phosphorylation of Gab2, thus the Gab2-organized signal amplification complex could not be produced. Furthermore, we detected a significant difference in the kinetics of BCR induced ERK, Elk-1 and CREB phosphorylation. In immature B cells, ERK was transiently phosphorylated, ceasing after 120 min, while in mature cells, ERK phosphorylation was sustained. Elk-1 and CREB activation was also transient in immature B cells, followed the kinetics of ERK phosphorylation. The lack of sustained Erk1/2 activation suppresses the transcription factors necessary for the proliferation signal. Since ERK is regulated by the phosphorylated Gab1/2, these data demonstrate that BCR triggered phosphorylation and signal amplification of Gab1/2 is a critical step in a life or death decision of B cells.
Chung, Inyoung; Hah, Young-Sool; Ju, SunMi; Kim, Ji-Hye; Yoo, Woong-Sun; Cho, Hee-Young; Yoo, Ji-Myong; Seo, Seong-Wook; Choi, Wan-Sung; Kim, Seong-Jae
2017-07-01
Nuclear factor-kappa B (NF-κB) has been proposed as a therapeutic target for the treatment of cataracts. The authors investigated the relationship between nuclear factor of activated T cells 5 (NFAT5) and NF-κB in ultraviolet B (UVB)-irradiated human lens epithelial (HLE) cells. Human lens epithelial B-3 (HLE-B3) cells were exposed to UVB light at a dose of 10 mJ/cm 2 and then incubated for 24 h. Cell viability was assessed by using the Cell Counting Kit-8 (CCK-8) assay. Gene expression level of NFAT5 was determined using real-time quantitative polymerase chain reaction (qPCR). Protein expression levels of NFAT5, NF-κB p65, and α-smooth muscle actin (α-SMA) and the association of NFAT5 with the NF-κB p65 subunit were measured by Western blot analysis and a co-immunoprecipitation assay, respectively. The cellular distribution of NFAT5 and NF-κB p65 was examined by triple immunofluorescence staining. At 24 h after UVB exposure, cell viability significantly decreased in a dose-dependent manner, and UVB light (15 and 20 mJ/cm 2 ) significantly increased the ROS generation. UVB irradiation increased NFAT5 mRNA and protein levels and increased phosphorylation of NF-κB in HLE-B3 cells. α-SMA protein levels were increased in the irradiated cells. In addition, NFAT5 and NF-κB translocated from the cytoplasm to the nucleus, and binding between the p65 subunit and NFAT5 was increased. Exposure to UVB radiation induces nuclear translocation and stimulates binding between NFAT5 and NF-κB proteins in HLE-B3 cells. These interactions may form part of the biochemical mechanism of cataractogenesis in UVB-irradiated HLECs.
Noda, Chieko; Narita, Yohei; Watanabe, Takahiro; Yoshida, Masahiro; Ashio, Keiji; Sato, Yoshitaka; Goshima, Fumi; Kanda, Teru; Yoshiyama, Hironori; Tsurumi, Tatsuya; Kimura, Hiroshi
2016-01-01
ABSTRACT Latent membrane protein 1 (LMP1) is a major oncogene essential for primary B cell transformation by Epstein-Barr virus (EBV). Previous studies suggested that some transcription factors, such as PU.1, RBP-Jκ, NF-κB, and STAT, are involved in this expression, but the underlying mechanism is unclear. Here, we identified binding sites for PAX5, AP-2, and EBF in the proximal LMP1 promoter (ED-L1p). We first confirmed the significance of PU.1 and POU domain transcription factor binding for activation of the promoter in latency III. We then focused on the transcription factors AP-2 and early B cell factor (EBF). Interestingly, among the three AP-2-binding sites in the LMP1 promoter, two motifs were also bound by EBF. Overexpression, knockdown, and mutagenesis in the context of the viral genome indicated that AP-2 plays an important role in LMP1 expression in latency II in epithelial cells. In latency III B cells, on the other hand, the B cell-specific transcription factor EBF binds to the ED-L1p and activates LMP1 transcription from the promoter. IMPORTANCE Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is crucial for B cell transformation and oncogenesis of other EBV-related malignancies, such as nasopharyngeal carcinoma and T/NK lymphoma. Its expression is largely dependent on the cell type or condition, and some transcription factors have been implicated in its regulation. However, these previous reports evaluated the significance of specific factors mostly by reporter assay. In this study, we prepared point-mutated EBV at the binding sites of such transcription factors and confirmed the importance of AP-2, EBF, PU.1, and POU domain factors. Our results will provide insight into the transcriptional regulation of the major oncogene LMP1. PMID:26819314
Chen, Feng; Hori, Tomohide; Ohashi, Norifumi; Baine, Ann-Marie; Eckman, Christopher B; Nguyen, Justin H
2011-04-01
Mechanisms of brain edema in acute liver failure (ALF) are not completely understood. We recently demonstrated that matrix metalloproteinase 9 (MMP-9) induces significant alterations to occludin in brain endothelial cells in vitro and in brains of mice with experimental ALF (Hepatology 2009;50:1914). In this study we show that MMP-9-induced transactivation of epidermal growth factor receptor (EGFR) and p38 MAPK/NFκB (mitogen-activated protein kinase/nuclear factor-kappa B) signals participate in regulating brain endothelial occludin level. Mouse brain endothelial bEnd3 cells were exposed to MMP-9 or p38 MAPK up-regulation in the presence and absence of EGFR inhibitor, p38 MAPK inhibitor, NFκB inhibitor, and/or appropriate small interfering RNA. Reverse-transcription polymerase chain reaction (RT-PCR) and western blotting were used for messenger RNA and protein expression analyses. Immunohistochemical staining and confocal microscopy were used to demonstrate cellular EGFR activation. Intraperitoneal azoxymethane was use to induce ALF in mice. Brains of comatose ALF mice were processed for histological and biochemical analyses. When bEnd3 cells were exposed to MMP-9, EGFR was significantly transactivated, followed by p38 MAPK activation, I-kappa B alpha (IκBα) degradation, NFκB activation, and suppression of occludin synthesis and expression. Similar EGFR activation and p38 MAPK/NFκB activation were found in the brains of ALF mice, and these changes were attenuated with GM6001 treatment. EGFR activation with p38 MAPK/NFκB signaling contributes to the regulation of tight junction integrity in ALF. EGFR activation may thus play an important role in vasogenic brain edema in ALF. 2011 American Association for the Study of Liver Diseases.
Iκb Kinase α Is Essential for Mature B Cell Development and Function
Kaisho, Tsuneyasu; Takeda, Kiyoshi; Tsujimura, Tohru; Kawai, Taro; Nomura, Fumiko; Terada, Nobuyuki; Akira, Shizuo
2001-01-01
IκB kinase (IKK) α and β phosphorylate IκB proteins and activate the transcription factor, nuclear factor (NF)-κB. Although both are highly homologous kinases, gene targeting experiments revealed their differential roles in vivo. IKKα is involved in skin and limb morphogenesis, whereas IKKβ is essential for cytokine signaling. To elucidate in vivo roles of IKKα in hematopoietic cells, we have generated bone marrow chimeras by transferring control and IKKα-deficient fetal liver cells. The mature B cell population was decreased in IKKα−/− chimeras. IKKα−/− chimeras also exhibited a decrease of serum immunoglobulin basal level and impaired antigen-specific immune responses. Histologically, they also manifested marked disruption of germinal center formation and splenic microarchitectures that depend on mature B cells. IKKα−/− B cells not only showed impairment of survival and mitogenic responses in vitro, accompanied by decreased, although inducible, NF-κB activity, but also increased turnover rate in vivo. In addition, transgene expression of bcl-2 could only partially rescue impaired B cell development in IKKα−/− chimeras. Taken together, these results demonstrate that IKKα is critically involved in the prevention of cell death and functional development of mature B cells. PMID:11181694
Tax-Independent Constitutive IκB Kinase Activation in Adult T-Cell Leukemia Cells1
Hironaka, Noriko; Mochida, Kanako; Mori, Naoki; Maeda, Michiyuki; Yamamoto, Naoki; Yamaoka, Shoji
2004-01-01
Abstract Adult T-cell leukemia (ATL) is a fatal T-cell malignancy that arises long after infection with human T-cell leukemia virus type I (HTLV-I). We reported previously that nuclear factor-κB (NF-κB) was constitutively activated in ATL cells, although expression of the viral proteins was barely detectable, including Tax, which was known to persistently activate NF-κB. Here we demonstrate that ATL cells that do not express detectable Tax protein exhibit constitutive IκB kinase (IKK) activity. Transfection studies revealed that a dominant-negative form of IKK1, and not of IKK2 or NF-κB essential modulator (NEMO), suppressed constitutive NFκB activity in ATL cells. This IKK activity was accompanied by elevated expression of p52, suggesting that the recently described noncanonical pathway of NF-κB activation operates in ATL cells. We finally show that specific inhibition of NF-κB by a super-repressor form of IκBα (SR-IκBα) in HTLV-I-infected T cells results in cell death regardless of Tax expression, providing definitive evidence of an essential role for NF-κB in the survival of ATL cells. In conclusion, the IKK complex is constitutively activated in ATL cells through a cellular mechanism distinct from that of Tax-mediated IKK activation. Further elucidation of this cellular mechanism should contribute to establishing a rationale for treatment of ATL. PMID:15153339
Guillermet-Guibert, J; Saint-Laurent, N; Davenne, L; Rochaix, P; Cuvillier, O; Culler, M D; Pradayrol, L; Buscail, L; Susini, C; Bousquet, C
2007-02-01
Somatostatin is a multifunctional hormone that modulates cell proliferation, differentiation and apoptosis. Mechanisms for somatostatin-induced apoptosis are at present mostly unsolved. Therefore, we investigated whether somatostatin receptor subtype 2 (sst2) induces apoptosis in the nontransformed murine fibroblastic NIH3T3 cells. Somatostatin receptor subtype 2 expression induced an executioner caspase-mediated apoptosis through a tyrosine phosphatase SHP-1 (Src homology domain phosphatase-1)-dependent stimulation of nuclear factor kappa B (NF-kappaB) activity and subsequent inhibition of the mitogen-activated protein kinase JNK. Tumor necrosis factor alpha (TNFalpha) stimulated both NF-kappaB and c-Jun NH2-terminal kinase (JNK) activities, which had opposite action on cell survival. Importantly, sst2 sensitized NIH3T3 cells to TNFalpha-induced apoptosis by (1) upregulating TNFalpha receptor protein expression, and sensitizing to TNFalpha-induced caspase-8 activation; (2) enhancing TNFalpha-mediated activation of NF-kappaB, resulting in JNK inhibition and subsequent executioner caspase activation and cell death. We have here unraveled a novel signaling mechanism for a G protein-coupled receptor, which directly triggers apoptosis and crosstalks with a death receptor to enhance death ligand-induced apoptosis.
BAFF, a Novel Ligand of the Tumor Necrosis Factor Family, Stimulates B Cell Growth
Schneider, Pascal; MacKay, Fabienne; Steiner, Véronique; Hofmann, Kay; Bodmer, Jean-Luc; Holler, Nils; Ambrose, Christine; Lawton, Pornsri; Bixler, Sarah; Acha-Orbea, Hans; Valmori, Danila; Romero, Pedro; Werner-Favre, Christiane; Zubler, Rudolph H.; Browning, Jeffrey L.; Tschopp, Jürg
1999-01-01
Members of the tumor necrosis factor (TNF) family induce pleiotropic biological responses, including cell growth, differentiation, and even death. Here we describe a novel member of the TNF family, designated BAFF (for B cell activating factor belonging to the TNF family), which is expressed by T cells and dendritic cells. Human BAFF was mapped to chromosome 13q32-34. Membrane-bound BAFF was processed and secreted through the action of a protease whose specificity matches that of the furin family of proprotein convertases. The expression of BAFF receptor appeared to be restricted to B cells. Both membrane-bound and soluble BAFF induced proliferation of anti-immunoglobulin M–stimulated peripheral blood B lymphocytes. Moreover, increased amounts of immunoglobulins were found in supernatants of germinal center–like B cells costimulated with BAFF. These results suggest that BAFF plays an important role as costimulator of B cell proliferation and function. PMID:10359578
Brown, Sharron A N; Richards, Christine M; Hanscom, Heather N; Feng, Sheau-Line Y; Winkles, Jeffrey A
2003-01-01
Fn14 is a growth-factor-inducible immediate-early-response gene encoding a 102-amino-acid type I transmembrane protein. The human Fn14 protein was recently identified as a cell-surface receptor for the tumour necrosis factor (TNF) superfamily member named TWEAK (TNF-like weak inducer of apoptosis). In the present paper, we report that the human TWEAK extracellular domain can also bind the murine Fn14 protein. Furthermore, site-specific mutagenesis and directed yeast two-hybrid interaction assays revealed that the TNFR-associated factor (TRAF) 1, 2, 3 and 5 adaptor molecules bind the murine Fn14 cytoplasmic tail at an overlapping, but non-identical, amino acid sequence motif. We also found that TWEAK treatment of quiescent NIH 3T3 cells stimulates inhibitory kappaBalpha phosphorylation and transcriptional activation of a nuclear factor-kappaB (NF-kappaB) enhancer/luciferase reporter construct. Fn14 overexpression in transiently transfected NIH 3T3 cells also promotes NF-kappaB activation, and this cellular response requires an intact TRAF binding site. These results indicate that Fn14 is a functional TWEAK receptor that can associate with four distinct TRAF family members and stimulate the NF-kappaB transcription factor signalling pathway. PMID:12529173
Kensche, Tobias; Tokunaga, Fuminori; Ikeda, Fumiyo; Goto, Eiji; Iwai, Kazuhiro; Dikic, Ivan
2012-01-01
Nuclear factor-κB (NF-κB) essential modulator (NEMO), a component of the inhibitor of κB kinase (IKK) complex, controls NF-κB signaling by binding to ubiquitin chains. Structural studies of NEMO provided a rationale for the specific binding between the UBAN (ubiquitin binding in ABIN and NEMO) domain of NEMO and linear (Met-1-linked) di-ubiquitin chains. Full-length NEMO can also interact with Lys-11-, Lys-48-, and Lys-63-linked ubiquitin chains of varying length in cells. Here, we show that purified full-length NEMO binds preferentially to linear ubiquitin chains in competition with lysine-linked ubiquitin chains of defined length, including long Lys-63-linked deca-ubiquitins. Linear di-ubiquitins were sufficient to activate both the IKK complex in vitro and to trigger maximal NF-κB activation in cells. In TNFα-stimulated cells, NEMO chimeras engineered to bind exclusively to Lys-63-linked ubiquitin chains mediated partial NF-κB activation compared with cells expressing NEMO that binds to linear ubiquitin chains. We propose that NEMO functions as a high affinity receptor for linear ubiquitin chains and a low affinity receptor for long lysine-linked ubiquitin chains. This phenomenon could explain quantitatively distinct NF-κB activation patterns in response to numerous cell stimuli. PMID:22605335
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madonna, Rosalinda; Institute of Cardiology, and Center of Excellence on Aging, 'G. d'Annunzio' University, Chieti; Shelat, Harnath
2009-10-15
Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiacmore » myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.« less
Lactoferricin enhances BMP7-stimulated anabolic pathways in intervertebral disc cells.
Ellman, Michael B; Kim, Jaesung; An, Howard S; Chen, Di; Kc, Ranjan; Li, Xin; Xiao, Guozhi; Yan, Dongyao; Suh, Joon; van Wjnen, Andre J; Wang, James H-C; Kim, Su-Gwan; Im, Hee-Jeong
2013-07-25
Bone-morphogenetic protein-7 (BMP7) is a well-known anabolic and anti-catabolic growth factor on intervertebral disc (IVD) matrix and cell homeostasis. Similarly, Lactoferricin B (LfcinB) has recently been shown to have pro-anabolic, anti-catabolic, anti-oxidative and/or anti-inflammatory effects in bovine disc cells in vitro. In this study, we investigated the potential benefits of using combined peptide therapy with LfcinB and BMP7 for intervertebral disc matrix repair and to understand cellular and signaling mechanisms controlled by these factors. We studied the effects of BMP7 and LfcinB as individual treatments and combined therapy on bovine nucleus pulposus (NP) cells by assessing proteoglycan (PG) accumulation and synthesis, and the gene expression of matrix protein aggrecan and transcription factor SOX-9. We also analyzed the role of Noggin, a BMP antagonist, in IVD tissue and examined its effect after stimulation with LfcinB. To understand the molecular mechanisms by which LfcinB synergizes with BMP7, we investigated the ERK-SP1 axis as a downstream intracellular signaling regulator involved in BMP7 and LfcinB-mediated activities. Treatment of bovine NP cells cultured in alginate with LfcinB plus BMP7 synergistically stimulates PG synthesis and accumulation in part by upregulation of aggrecan gene expression. The synergism results from LfcinB-mediated activation of Sp1 and SMAD signaling pathways by (i) phosphorylation of SMAD 1/5/8; (ii) downregulation of SMAD inhibitory factors [i.e., noggin and SMAD6 (inhibitory SMAD)]; and (iii) upregulation of SMAD4 (universal co-SMAD). These data indicate that LfcinB-suppression of Noggin may eliminate the negative feedback of BMP7, thereby maximizing biological activity of BMP7 and ultimately shifting homeostasis to a pro-anabolic state in disc cells. We propose that combination growth factor therapy using BMP7 and LfcinB may be beneficial for treatment of disc degeneration. Copyright © 2013 Elsevier B.V. All rights reserved.
Kim, Ha-Na; Kim, Do-Hee; Kim, Eun-Hee; Lee, Mee-Hyun; Kundu, Joydeb Kumar; Na, Hye-Kyung; Cha, Young-Nam; Surh, Young-Joon
2014-08-28
Sulforaphane, an isothiocyanate present in cruciferous vegetables, has been reported to possess anti-inflammatory and cancer chemopreventive properties. However, the molecular mechanisms by which sulforaphane suppresses inflammation and carcinogenesis are yet to be fully elucidated. Since the aberrant expression of cyclooxygenase-2 (COX-2) links inflammation and cancer, the present study was aimed to elucidate the mechanisms by which sulforaphane modulates COX-2 overexpression in human mammary epithelial (MCF-10A) cells stimulated with a prototypic tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Treatment of MCF-10A cells with sulforaphane significantly inhibited TPA-induced expression of COX-2 protein and its mRNA transcript. Transient transfection of cells with deletion mutant constructs of COX-2 promoter revealed that the transcription factor nuclear factor-kappaB (NF-κB) plays a key role in TPA-induced COX-2 expression in MCF-10A cells. Pretreatment with sulforaphane significantly attenuated nuclear localization, DNA binding and the transcriptional activity of NF-κB through inhibition of phosphorylation and subsequent degradation of IκBα in MCF-10A cells stimulated with TPA. Sulforaphane also attenuated TPA-induced activation of IκB kinases (IKK), NF-κB-activating kinase (NAK) and extracellular signal-regulated kinase-1/2 (ERK1/2). Pharmacological inhibition of IKK or transient transfection of cells with dominant-negative mutant forms of this kinase abrogated TPA-induced NF-κB activation and COX-2 expression. In addition, the blockade of ERK1/2 activation negated the catalytic activity of IKKα, but not that of IKKβ, whereas silencing NAK by specific siRNA abrogated the IKKβ activity in TPA-treated cells. Taken together, sulforaphane inhibits TPA-induced NF-κB activation and COX-2 expression in MCF-10A cells by blocking two distinct signaling pathways mediated by ERK1/2-IKKα and NAK-IKKβ. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Li, Zhipeng; Yang, Zejia; Passaniti, Antonino; Lapidus, Rena G.; Liu, Xuefeng; Cullen, Kevin J.; Dan, Han C.
2016-01-01
The overexpression or mutation of epidermal growth factor receptor (EGFR) has been associated with a number of cancers, including head and neck squamous cell carcinoma (HNSCC). Increasing evidence indicates that both the phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of Rapamycin (mTOR) and the nuclear factor-kappa B (NF-κB) are constitutively active and contribute to aggressive HNSCC downstream of EGFR. However, whether these two oncogenic signaling pathways exhibit molecular and functional crosstalk in HNSCC is unclear. Our results now reveal that mTORC1, not mTORC2, contributes to NF-κB activation downstream of EGFR/PI3K/Akt signaling. Mechanistically, mTORC1 enhances the inhibitor of nuclear factor kappa-B kinase (IKK) activity to accelerate NF-κB signaling. Concomitantly, activated NF-κB/IKK up-regulates EGFR expression through positive feedback regulation. Blockage of NF-κB/IKK activity by the novel IKKβ specific inhibitor, CmpdA, leads to significant inhibition of cell proliferation and induction of apoptosis. CmpdA also sensitizes intrinsic cisplatin-resistant HNSCC cells to cisplatin treatment. Our findings reveal a new mechanism by which EGFR/PI3K/Akt/mTOR signaling promotes head and neck cancer progression and underscores the need for developing a therapeutic strategy for targeting IKK/NF-κB either as a single agent or in combination with cisplatin in head and neck cancer. PMID:26895469
Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4
Ochiai, Kyoko; Maienschein-Cline, Mark; Simonetti, Giorgia; Chen, Jianjun; Rosenthal, Rebecca; Brink, Robert; Chong, Anita S.; Klein, Ulf; Dinner, Aaron R.; Singh, Harinder; Sciammas, Roger
2013-01-01
Summary The transcription factor IRF4 regulates immunoglobulin class switch recombination and plasma cell differentiation. Its differing concentrations appear to regulate mutually antagonistic programs of B and plasma cell gene expression. We show IRF4 to be also required for generation of germinal center (GC) B cells. Its transient expression in vivo induced the expression of key GC genes including Bcl6 and Aicda. In contrast, sustained and higher concentrations of IRF4 promoted the generation of plasma cells while antagonizing the GC fate. IRF4 co-bound with the transcription factors PU.1 or BATF to Ets or AP-1 composite motifs, associated with genes involved in B cell activation and the GC response. At higher concentrations IRF4 binding shifted to interferon sequence response motifs; these enriched for genes involved in plasma cell differentiation. Our results support a model of “kinetic control” in which signaling induced dynamics of IRF4 in activated B cells control their cell fate outcomes. PMID:23684984
Nuclear factor κB–inducing kinase activation as a mechanism of pancreatic β cell failure in obesity
Malle, Elisabeth K.; Zammit, Nathan W.; Walters, Stacey N.; Koay, Yen Chin; Wu, Jianmin; Tan, Bernice M.; Villanueva, Jeanette E.; Brink, Robert; Loudovaris, Tom; Cantley, James; McAlpine, Shelli R.; Hesselson, Daniel
2015-01-01
The nuclear factor κB (NF-κB) pathway is a master regulator of inflammatory processes and is implicated in insulin resistance and pancreatic β cell dysfunction in the metabolic syndrome. Whereas canonical NF-κB signaling is well studied, there is little information on the divergent noncanonical NF-κB pathway in the context of pancreatic islet dysfunction. Here, we demonstrate that pharmacological activation of the noncanonical NF-κB–inducing kinase (NIK) disrupts glucose homeostasis in zebrafish in vivo. We identify NIK as a critical negative regulator of β cell function, as pharmacological NIK activation results in impaired glucose-stimulated insulin secretion in mouse and human islets. NIK levels are elevated in pancreatic islets isolated from diet-induced obese (DIO) mice, which exhibit increased processing of noncanonical NF-κB components p100 to p52, and accumulation of RelB. TNF and receptor activator of NF-κB ligand (RANKL), two ligands associated with diabetes, induce NIK in islets. Mice with constitutive β cell–intrinsic NIK activation present impaired insulin secretion with DIO. NIK activation triggers the noncanonical NF-κB transcriptional network to induce genes identified in human type 2 diabetes genome-wide association studies linked to β cell failure. These studies reveal that NIK contributes a central mechanism for β cell failure in diet-induced obesity. PMID:26122662
Synergic effects of mycoplasmal lipopeptides and extracellular ATP on activation of macrophages.
Into, Takeshi; Fujita, Mari; Okusawa, Tsugumi; Hasebe, Akira; Morita, Manabu; Shibata, Ken-Ichiro
2002-07-01
Mycoplasmal lipopeptides S-(2,3-bispalmitoyloxypropyl)-CGDPKHSPKSF and S-(2,3-bispalmitoyloxypropyl)-CGNNDESNISFKEK activated a monocytic cell line, THP-1 cells, to produce tumor necrosis factor alpha. The activity of the lipopeptides was augmented by ATP in a dose-dependent manner. In addition, the level of expression of mRNAs for tumor necrosis factor alpha and interleukin-1 beta, -6, and -8 was also upregulated by the lipopeptides and/or extracellular ATP, but that of interleukin-10 was not. The P2X purinergic receptor antagonists pyridoxal phosphate 6-azophenyl 2',4'-disulfonic acid and periodate-oxidized ATP suppressed the activity of ATP to augment the activation of THP-1 cells by the lipopeptides, suggesting that P2X receptors play important roles in the activity of ATP. The nuclear factor kappa B inhibitor dexamethasone also suppressed the activity, suggesting that the activity of ATP is dependent upon the nuclear factor kappa B. Thus, these results suggest that the interaction of extracellular ATP with the P2X receptors is attributed to the activity of ATP to augment the activation of THP-1 cells by mycoplasmal lipopeptides.
NF-κB in Hematological Malignancies
Imbert, Véronique; Peyron, Jean-François
2017-01-01
NF-κB (Nuclear Factor Κ-light-chain-enhancer of activated B cells) transcription factors are critical regulators of immunity, stress response, apoptosis, and differentiation. Molecular defects promoting the constitutive activation of canonical and non-canonical NF-κB signaling pathways contribute to many diseases, including cancer, diabetes, chronic inflammation, and autoimmunity. In the present review, we focus our attention on the mechanisms of NF-κB deregulation in hematological malignancies. Key positive regulators of NF-κB signaling can act as oncogenes that are often prone to chromosomal translocation, amplifications, or activating mutations. Negative regulators of NF-κB have tumor suppressor functions, and are frequently inactivated either by genomic deletions or point mutations. NF-κB activation in tumoral cells is also driven by the microenvironment or chronic signaling that does not rely on genetic alterations. PMID:28561798
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galloway, Chad A.; Smith, Harold C., E-mail: harold.smith@rochester.edu
Apolipoprotein B mRNA is edited at cytidine 6666 in the enterocytes lining the small intestine of all mammals; converting a CAA codon to a UAA stop codon. The conversion is {approx}80% efficient in this tissue and leads to the expression of the truncated protein, ApoB48, essential for secretion of dietary lipid as chylomicrons. Caco-2 cell raft cultures have been used as an in vitro model for the induction of editing activity during human small intestinal cell differentiation. This induction of apoB mRNA editing has been ascribed to the expression of APOBEC-1. In agreement our data demonstrated differentiation-dependent induction of expressionmore » of the editing enzyme APOBEC-1 and in addition we show alternative splicing of the essential auxiliary factor ACF. However, transfection of these editing factors in undifferentiated proliferating Caco-2 cells was not sufficient to induce robust apoB mRNA editing activity. Only differentiation of Caco-2 cells could induce more physiological like levels of apoB mRNA editing. The data suggested that additional regulatory mechanism(s) were induced by differentiation that controlled the functional activity of editing factors.« less
Komlósi, Zsolt I; Kovács, Nóra; van de Veen, Willem; Kirsch, Anna Isabella; Fahrner, Heinz Benedikt; Wawrzyniak, Marcin; Rebane, Ana; Stanic, Barbara; Palomares, Oscar; Rückert, Beate; Menz, Günter; Akdis, Mübeccel; Losonczy, György; Akdis, Cezmi A
2017-09-20
Type 3 innate lymphoid cells (ILC3s) are involved in maintenance of mucosal homeostasis; however, their role in immunoregulation has been unknown. Immature transitional regulatory B (itBreg) cells are innate-like B cells with immunosuppressive properties, and the in vivo mechanisms by which they are induced have not been fully clarified. We aimed to investigate the ILC3-B-cell interaction that probably takes place in human tonsils. ILC3s were isolated from peripheral blood and palatine tonsils, expanded, and cocultured with naive B cells. Tonsillar ILC3s and regulatory B cells were visualized with immunofluorescence histology. ILC3 frequencies were measured in tonsil tissue of allergic and nonallergic patients and in peripheral blood of allergic asthmatic patients and healthy control subjects. A mutually beneficial relationship was revealed between ILC3s and B cells: ILC3s induced IL-15 production in B cells through B cell-activating factor receptor, whereas IL-15, a potent growth factor for ILC3s, induced CD40 ligand (CD40L) expression on circulating and tonsillar ILC3s. IL-15-activated CD40L + ILC3s helped B-cell survival, proliferation, and differentiation of IL-10-secreting, PD-L1-expressing functional itBreg cells in a CD40L- and B cell-activating factor receptor-dependent manner. ILC3s and regulatory B cells were in close connection with each other in palatine tonsils. ILC3 frequency was reduced in tonsil tissue of allergic patients and in peripheral blood of allergic asthmatic patients. Human CD40L + ILC3s provide innate B-cell help and are involved in an innate immunoregulatory mechanism through induction of itBreg cell differentiation, which takes place in palatine tonsils in vivo. This mechanism, which can contribute to maintenance of immune tolerance, becomes insufficient in allergic diseases. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Masuhara, Masaaki; Sato, Takuya; Hada, Naoto; Hakeda, Yoshiyuki
2009-01-01
Disruption of the cooperative function balance between osteoblasts and osteoclasts causes various bone disorders, some of which are attributed to abnormal osteoclast recruitment. Osteoclast differentiation is dependent on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) as well as the macrophage colony-stimulating factor. The osteoclast formation induced by cytokines requires activation of NF-kappaB, AP-1 and nuclear factor of activated T cells c1. However, osteoclasts are not the only cell types that express these transcription factors, suggesting that some unknown molecules specific for osteoclasts may associate with the transcription factors. Here, we explored the possibility of molecules binding directly to NF-kappaB and cloned protective protein/cathepsin A (PPCA) by yeast two-hybrid screening using a cDNA library of osteoclast precursors. Forced expression of PPCA with p50/p65 in HEK293 cells decreased both the level of p50/p65 proteins and the transcriptional activity. Abundant PPCA was detected in the lysosomes of the transfected HEK293 cells, but a small amount of this enzyme was also present in the cytosolic fraction. In addition, over-expression of PPCA caused the disappearance of p50/p65 in both the lysosomal and cytosolic fractions. PPCA was expressed throughout osteoclastogenesis, and the expression was slightly up-regulated by RANKL signaling. Knockdown of PPCA in osteoclast precursors with PPCA siRNA stimulated binding of nuclear proteins to oligonucleotides containing an NF-kappaB binding motif and increased osteoclastogenesis. Our present results indicate a novel role for PPCA in osteoclastogenesis via down-regulation of NF-kappaB activity and suggest a new function for PPCA as an NF-kappaB-degrading enzyme in addition to its known multifunctional properties.
Fan, H; Liu, F; Dong, G; Ren, D; Xu, Y; Dou, J; Wang, T; Sun, L; Hou, Y
2014-01-01
B-cell abnormality including excessive activation and lymphopenia is a central feature of systemic lupus erythematosus (SLE). Although activation threshold, auto-reaction and death of B cells can be affected by intrinsical and/or external signaling, the underlying mechanisms are unclear. Herein, we demonstrate that co-activation of Toll-like receptor 7 (TLR7) and B-cell receptor (BCR) pathways is a core event for the survival/dead states of B cells in SLE. We found that the mortalities of CD19+CD27- and CD19+IgM+ B-cell subsets were increased in the peripheral blood mononuclear cells (PBMCs) of SLE patients. The gene microarray analysis of CD19+ B cells from active SLE patients showed that the differentially expressed genes were closely correlated to TLR7, BCR, apoptosis, necroptosis and immune pathways. We also found that co-activation of TLR7 and BCR could trigger normal B cells to take on SLE-like B-cell characters including the elevated viability, activation and proliferation in the first 3 days and necroptosis in the later days. Moreover, the necroptotic B cells exhibited mitochondrial dysfunction and hypoxia, along with the elevated expression of necroptosis-related genes, consistent with that in both SLE B-cell microarray and real-time PCR verification. Expectedly, pretreatment with the receptor-interacting protein kinase 1 (RIPK1) inhibitor Necrostatin-1, and not the apoptosis inhibitor zVAD, suppressed B-cell death. Importantly, B cells from additional SLE patients also significantly displayed high expression levels of necroptosis-related genes compared with those from healthy donors. These data indicate that co-activation of TLR7 and BCR pathways can promote B cells to hyperactivation and ultimately necroptosis. Our finding provides a new explanation on B-cell lymphopenia in active SLE patients. These data suggest that extrinsic factors may increase the intrinsical abnormality of B cells in SLE patients. PMID:25210799
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taki-Nakano, Nozomi; Advanced Drug Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505; Kotera, Jun
Jasmonates are plant lipid–derived oxylipins that act as key signaling compounds in plant immunity, germination, and development. Although some physiological activities of natural jasmonates in mammalian cells have been investigated, their anti-inflammatory actions in mammalian cells remain unclear. Here, we investigated whether jasmonates protect mouse microglial MG5 cells against lipopolysaccharide (LPS)–induced inflammation. Among the jasmonates tested, only 12-oxo-phytodienoic acid (OPDA) suppressed LPS-induced expression of the typical inflammatory cytokines interleukin-6 and tumor necrosis factor α. In addition, only OPDA reduced LPS-induced nitric oxide production through a decrease in the level of inducible nitric oxide synthase. Further mechanistic studies showed that OPDAmore » suppressed neuroinflammation by inhibiting nuclear factor κB and p38 mitogen-activated protein kinase signaling in LPS-activated MG5 cells. In addition, OPDA induced expression of suppressor of cytokine signaling-1 (SOCS-1), a negative regulator of inflammation, in MG5 cells. Finally, we found that the nuclear factor erythroid 2-related factor 2 signaling cascade induced by OPDA is not involved in the anti-inflammatory effects of OPDA. These results demonstrate that OPDA inhibited LPS-induced cell inflammation in mouse microglial cells via multiple pathways, including suppression of nuclear factor κB, inhibition of p38, and activation of SOCS-1 signaling. -- Highlights: •OPDA attenuates LPS-induced inflammatory cytokines such as IL-6 and TNF-α. •OPDA reduces LPS-induced iNOS expression and NO production. •OPDA suppresses NF-κB and p38 pathways and activates SOCS-1 signaling.« less
Inoue, Ryosuke; Matsuki, Nori-aki; Jing, Gao; Kanematsu, Takashi; Abe, Kihachiro; Hirata, Masato
2005-11-01
1 Bisphosphonates are inhibitors of tumor cell growth as well as of bone resorption by inducing cell apoptosis. However, little is known regarding the mechanisms by which the drug induces cell apoptosis. The aim of the present study was to determine the effect of alendronate, one of the nitrogen-containing bisphosphonates on the phoshoinositide 3-kinase (PI3K)-Akt-NFkappaB pathway, the major cell survival pathway. 2 The PI3K-Akt-NFkappaB pathway was activated in the osteosarcoma cell line MG-63 treated with tumor necrosis factor-alpha or insulin. Saos-2 was also used in some experiments. This was assessed by the production of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), increased PI3K activity, phosphorylation of Akt at serine 473 and threonine 308, increase in activity of the inhibitor of nuclear factor kappaB (IkappaB) kinase (IKK) and finally phosphorylation of IkappaB and its subsequent degradation. 3 Pretreatment with alendronate at 100 microM for 24 h prior to the stimulation with tumor necrosis factor-alpha or insulin partially inhibited the IkappaB phosphorylation and degradation. These events were more clearly observed in the presence of inhibitors of proteasomes, which are responsible for the degradation of IkappaB. The drug also partially inhibited the activity of IKK, but almost fully inhibited the phosphorylation of Akt and the production of PtdIns(3,4,5)P(3). 4 The inhibitory effect of alendronate on IkappaB phosphorylation and degradation was not attenuated by the exogenous addition of geranylgeraniol to replenish the cytosolic isoprenyl lipid substrate. 5 The present findings demonstrate that alendronate inhibited the PI3K-Akt-NFkappaB cell survival pathway at the point of PI3K activation, thus indicating the presence of new targets of alendronate.
Terry, Alan J; Chaplain, Mark A J
2011-12-07
The nuclear factor kappa B (NF-κB) intracellular signalling pathway is central to many stressful, inflammatory, and innate immune responses. NF-κB proteins themselves are transcription factors for hundreds of genes. Experiments have shown that the NF-κB pathway can exhibit oscillatory dynamics-a negative feedback loop causes oscillatory nuclear-cytoplasmic translocation of NF-κB. Given that cell size and shape are known to influence intracellular signal transduction, we consider a spatio-temporal model of partial differential equations for the NF-κB pathway, where we model molecular movement by diffusion and, for several key species including NF-κB, by active transport as well. Through numerical simulations we find values for model parameters such that sustained oscillatory dynamics occur. Our spatial profiles and animations bear a striking resemblance to experimental images and movie clips employing fluorescent fusion proteins. We discover that oscillations in nuclear NF-κB may occur when active transport is across the nuclear membrane only, or when no species are subject to active transport. However, when active transport is across the nuclear membrane and NF-κB is additionally actively transported through the cytoplasm, oscillations are lost. Hence transport mechanisms in a cell will influence its response to activation of its NF-κB pathway. We also demonstrate that sustained oscillations in nuclear NF-κB are somewhat robust to changes in the shape of the cell, or the shape, location, and size of its nucleus, or the location of ribosomes. Yet if the cell is particularly flat or the nucleus sufficiently small, then oscillations are lost. Thus the geometry of a cell may partly determine its response to NF-κB activation. The NF-κB pathway is known to be constitutively active in several human cancers. Our spatially explicit modelling approach will allow us, in future work, to investigate targeted drug therapy of tumours. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lactoferricin Enhances BMP7-Stimulated Anabolic Pathways in Intervertebral Disc Cells
Ellman, Michael B; Kim, Jaesung; An, Howard S; Chen, Di; Kc, Ranjan; Li, Xin; Xiao, Guozhi; Yan, Dongyao; Suh, Joon; van Wijnen, Andre J.; Wang, James H-C; Kim, Su-Gwan; Im, Hee-Jeong
2013-01-01
Bone-morphogenetic protein-7 (BMP7) is a well-known anabolic and anti-catabolic growth factor on intervertebral (IVD) matrix and cell homeostasis. Similarly, lactoferricin B (LfcinB) has recently been shown to have pro-anabolic, anti-catabolic, anti-oxidative and/or anti-inflammatory effects in bovine disc cells in vitro. In this study, we investigated the potential benefits of using combined peptide therapy with LfcinB and BMP7 for intervertebral disc (IVD) matrix repair and to understand cellular and signaling mechanisms controlled by these factors. We studied the effects of BMP7 and LfcinB as individual treatments and combined therapy on bovine nucleus pulposus (NP) cells by assessing proteoglycan (PG) accumulation and synthesis, and the expression of matrix protein aggrecan and transcription factor SOX-9. We also analyzed the role of noggin, a BMP antagonist, in IVD tissue and examined its effect after stimulation with LfcinB. To understand the molecular mechanisms by which LfcinB synergizes with BMP7, we investigated the ERK-SP1 axis as a downstream intracellular signaling regulator involved in BMP7 and LfcinB-mediated activities. Treatment of bovine NP cells cultured in alginate with LfcinB plus BMP7 synergistically stimulates PG synthesis and accumulation in part by upregulation of aggrecan gene expression. The synergism results from LfcinB-mediated activation of Sp1 and SMAD signaling pathways by (i) phosphorylation of SMAD 1/5/8; (ii) downregulation of SMAD inhibitory factors [i.e., noggin (BMP receptor antagonist) and SMAD6 (inhibitory SMAD)]; and (iii) upregulation of SMAD4 (universal co-SMAD). These data indicate that LfcinB-suppression of noggin may eliminate the negative feedback of BMP7, thereby maximizing biological activity of BMP7 and ultimately shifting homeostasis to a pro-anabolic state in disc cells. We propose that combination growth factor therapy using BMP7 and LfcinB may be beneficial for treatment of disc degeneration. PMID:23644135
Li, Jingxia; Zhang, Dongyun; Stoner, Gary D; Huang, Chuanshu
2008-04-01
The chemopreventive properties of edible berries have been demonstrated both in vitro and in vivo, however, the specific molecular mechanisms underlying their anti-cancer effects are largely unknown. Our previous studies have shown that a methanol extract fraction of freeze-dried black raspberries inhibits benzoapyrene (BaP)-induced transformation of Syrian hamster embryo cells. This fraction also blocks activation of activator protein-1 (AP-1) and nuclear factor kappaB (NF-kappaB) induced by benzoapyrene diol-epoxide (BaPDE) in mouse epidermal JB6 Cl 41 cells. To determine if different berry types exhibit specific mechanisms for their anti-cancer effects, we compared the effects of extract fractions from both black raspberries and strawberries on BaPDE-induced activation of various signaling pathways in Cl 41 cells. Black raspberry fractions inhibited the activation of AP-1, NF-kappaB, and nuclear factor of activated T cells (NFAT) by BaPDE as well as their upstream PI-3K/Akt-p70(S6K) and mitogen-activated protein kinase pathways. In contrast, strawberry fractions inhibited NFAT activation, but did not inhibit the activation of AP-1, NF-kappaB or the PI-3K/Akt-p70(S6K) and mitogen-activated protein kinase pathways. Consistent with the effects on NFAT activation, tumor necrosis factor-alpha (TNF-alpha) induction by BaPDE was blocked by extract fractions of both black raspberries and strawberries, whereas vascular endothelial growth factor (VEGF) expression, which depends on AP-1 activation, was suppressed by black raspberry fractions but not strawberry fractions. These results suggest that black raspberry and strawberry components may target different signaling pathways in exerting their anti-carcinogenic effects. (c) 2007 Wiley-Liss, Inc.
Li, Jingxia; Zhang, Dongyun; Stoner, Gary D.; Huang, Chuanshu
2013-01-01
The chemopreventive properties of edible berries have been demonstrated both in vitro and in vivo, however, the specific molecular mechanisms underlying their anti-cancer effects are largely unknown. Our previous studies have shown that a methanol extract fraction of freeze-dried black raspberries inhibits benzoapyrene (BaP)-induced transformation of Syrian hamster embryo cells. This fraction also blocks activation of activator protein-1 (AP-1) and nuclear factor κB (NF-κB) induced by benzoapyrene diol-epoxide (BaPDE) in mouse epidermal JB6 Cl 41 cells. To determine if different berry types exhibit specific mechanisms for their anti-cancer effects, we compared the effects of extract fractions from both black raspberries and strawberries on BaPDE-induced activation of various signaling pathways in Cl 41 cells. Black raspberry fractions inhibited the activation of AP-1, NF-κB, and nuclear factor of activated T cells (NFAT) by BaPDE as well as their upstream PI-3K/Akt-p70S6K and mitogen-activated protein kinase pathways. In contrast, strawberry fractions inhibited NFAT activation, but did not inhibit the activation of AP-1, NF-κB or the PI-3K/Akt-p70S6K and mitogen-activated protein kinase pathways. Consistent with the effects on NFAT activation, tumor necrosis factor-α (TNF-α) induction by BaPDE was blocked by extract fractions of both black raspberries and strawberries, whereas vascular endothelial growth factor (VEGF) expression, which depends on AP-1 activation, was suppressed by black raspberry fractions but not strawberry fractions. These results suggest that black raspberry and strawberry components may target different signaling pathways in exerting their anti-carcinogenic effects. PMID:18085529
The two waves of B-lymphocyte differentiation.
Nossal, G J
1984-01-01
The recombinant DNA revolution has struck cellular immunology with great force, but it has not yet illuminated B-lymphocyte physiology as much as it should have. The problems of the second wave of B-cell differentiation, the post-antigenic wave, will be solved relatively soon, as genetically engineered B-cell-active factors become available. Speculatively, I predict the existence of 3-4 separate factors, each possessing both growth and differentiation activity. The problems of the first set of differentiative processes, those leading to B-lymphocyte genesis, remain frustratingly inaccessible. Just to start an argument, I will speculate that IL-3 will not be involved here, but rather that we must search for non-T-cell-derived (non-lymphokine) factors produced by specialized cells (not macrophages) in the foetal liver or the bone marrow. I issue a challenge to the participants in this forum to reveal how they would go about devising a tissue culture system which at least approximates living bone marrow in its immense potential for B-cell production, because until this is done, the most interesting segment of the whole process will remain a black box.
Jensen, Gitte S; Cash, Howard A; Farmer, Sean; Keller, David
2017-01-01
Objective The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™) cells on human immune cells in vitro. Methods In vitro cultures of human peripheral blood mononuclear cells (PBMC) from healthy blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory cytokines, chemokines, and growth factors. Results Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker on CD3+ CD56− T lymphocytes, CD3+ CD56+ NKT cells, CD3−CD56+ NK cells, and also some cells within the CD3−CD56− non-T non-NK cell subset. Culture supernatants showed robust increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, showing a highly selective growth factor response. Conclusion The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and altered the production of both immune activating and anti-inflammatory cytokines and chemokines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF growth factor involved in postinjury and postinflammation repair and regeneration. This suggests that important immunogenic cell wall components, such as lipoteichoic acid, are undamaged after the inactivation and retain the complex beneficial biological activities previously demonstrated for the cell walls from live B. coagulans GBI-30, 6086 (GanedenBC30) probiotic bacteria. PMID:28848360
Jensen, Gitte S; Cash, Howard A; Farmer, Sean; Keller, David
2017-01-01
The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™) cells on human immune cells in vitro. In vitro cultures of human peripheral blood mononuclear cells (PBMC) from healthy blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory cytokines, chemokines, and growth factors. Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker on CD3 + CD56 - T lymphocytes, CD3 + CD56 + NKT cells, CD3 - CD56 + NK cells, and also some cells within the CD3 - CD56 - non-T non-NK cell subset. Culture supernatants showed robust increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, showing a highly selective growth factor response. The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and altered the production of both immune activating and anti-inflammatory cytokines and chemokines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF growth factor involved in postinjury and postinflammation repair and regeneration. This suggests that important immunogenic cell wall components, such as lipoteichoic acid, are undamaged after the inactivation and retain the complex beneficial biological activities previously demonstrated for the cell walls from live B. coagulans GBI-30, 6086 (GanedenBC30) probiotic bacteria.
Brain-derived neurotrophic factor and its receptors in Bergmann glia cells.
Poblete-Naredo, Irais; Guillem, Alain M; Juárez, Claudia; Zepeda, Rossana C; Ramírez, Leticia; Caba, Mario; Hernández-Kelly, Luisa C; Aguilera, José; López-Bayghen, Esther; Ortega, Arturo
2011-12-01
Brain-derived neurotrophic factor is an abundant and widely distributed neurotrophin expressed in the Central Nervous System. It is critically involved in neuronal differentiation and survival. The expression of brain-derived neurotrophic factor and that of its catalytic active cognate receptor (TrkB) has been extensively studied in neuronal cells but their expression and function in glial cells is still controversial. Despite of this fact, brain-derived neurotrophic factor is released from astrocytes upon glutamate stimulation. A suitable model to study glia/neuronal interactions, in the context of glutamatergic synapses, is the well-characterized culture of chick cerebellar Bergmann glia cells. Using, this system, we show here that BDNF and its functional receptor are present in Bergmann glia and that BDNF stimulation is linked to the activation of the phosphatidyl-inositol 3 kinase/protein kinase C/mitogen-activated protein kinase/Activator Protein-1 signaling pathway. Accordingly, reverse transcription-polymerase chain reaction (RT-PCR) experiments predicted the expression of full-length and truncated TrkB isoforms. Our results suggest that Bergmann glia cells are able to express and respond to BDNF stimulation favoring the notion of their pivotal role in neuroprotection. Copyright © 2011 Elsevier B.V. All rights reserved.
B29 Gene Silencing in Pituitary Cells is Regulated by Its 3′ Enhancer
Malone, Cindy S.; Kuraishy, Ali I.; Fike, Francesca M.; Loya, Ruchika G.; Mikkili, Minil R.; Teitell, Michael A.; Wall, Randolph
2007-01-01
Summary B cell-specific B29 (Igβ, CD79b) genes in rat, mouse, and human are situated between the 5′ growth hormone (GH) locus control region (LCR) and the 3′ GH gene cluster. The entire GH genomic region is DNase1 hypersensitive in GH-expressing pituitary cells, which predicts an “open” chromatin configuration, and yet B29 is not expressed. The B29 promoter and enhancers exhibit histone deacetylation in pituitary cells, but histone deacetylase inhibition failed to activate B29 expression. The B29 promoter and a 3′ enhancer showed local dense DNA methylation in both pituitary and non-lymphoid cells consistent with gene silencing. However, DNA methyltransferase inhibition did not activate B29 expression either. B29 promoter constructs were minimally activated in transfected pituitary cells. Co-transfection of the B cell-specific octamer transcriptional co-activator Bob1 with the B29 promoter construct resulted in high level promoter activity in pituitary cells comparable to B29 promoter activity in transfected B cells. Unexpectedly, inclusion of the B29 3′ enhancer in B29 promoter constructs strongly inhibited B29 transcriptional activity even when pituitary cells were co-transfected with Bob1. Both Oct-1 and Pit-1 bind the B29 3′ enhancer in in vitro EMSA and in in vivo chromatin immunoprecipitation analyses. These data indicate that the GH locus-embedded, tissue-specific B29 gene is silenced in GH-expressing pituitary cells by epigenetic mechanisms, the lack of a B cell-specific transcription factor, and likely by the B29 3′ enhancer acting as a powerful silencer in a context and tissue-specific manner. PMID:16920149
Calcium hydroxide suppresses Porphyromonas endodontalis lipopolysaccharide-induced bone destruction.
Guo, J; Yang, D; Okamura, H; Teramachi, J; Ochiai, K; Qiu, L; Haneji, T
2014-05-01
Porphyromonas endodontalis and its main virulence factor, lipopolysaccharide (LPS), are associated with the development of periapical diseases and alveolar bone loss. Calcium hydroxide is commonly used for endodontic therapy. However, the effects of calcium hydroxide on the virulence of P. endodontalis LPS and the mechanism of P. endodontalis LPS-induced bone destruction are not clear. Calcium hydroxide rescued the P. endodontalis LPS-suppressed viability of MC3T3-E1 cells and activity of nuclear factor-κB (NF-κB) in these cells, resulting in the reduced expression of interleukin-6 and tumor necrosis factor-α. In addition, calcium hydroxide inhibited P. endodontalis LPS-induced osteoclastogenesis by decreasing the activities of NF-κB, p38, and ERK1/2 and the expression of nuclear factor of activated T-cell cytoplasmic 1 in RAW264.7 cells. Calcium hydroxide also rescued the P. endodontalis LPS-induced osteoclastogenesis and bone destruction in mouse calvaria. Taken together, our present results indicate that calcium hydroxide suppressed bone destruction by attenuating the virulence of P. endodontalis LPS on bone cells.
Fang, Ying; Fang, Liurong; Wang, Yang; Lei, Yingying; Luo, Rui; Wang, Dang; Chen, Huanchun; Xiao, Shaobo
2012-04-30
Nuclear factor-kappaB (NF-κB) is an inducible transcription factor that plays a key role in inflammation and immune responses, as well as in the regulation of cell proliferation and survival. Previous studies by our group and others have demonstrated that porcine reproductive and respiratory syndrome virus (PRRSV) infection could activate NF-κB in MARC-145 cells and alveolar macrophages. The nucleocapsid (N) protein was identified as an NF-κB activator among the structural proteins encoded by PRRSV; however, it remains unclear whether the nonstructural proteins (Nsps) contribute to NF-κB activation. In this study, we identified which Nsps can activate NF-κB and investigated the potential mechanism(s) by which they act. By screening the individual Nsps of PRRSV strain WUH3, Nsp2 exhibited great potential to activate NF-κB in MARC-145 and HeLa cells. Overexpression of Nsp2 induced IκBα degradation and nuclear translocation of NF-κB. Furthermore, Nsp2 also induced NF-κB-dependent inflammatory factors, including interleukin (IL)-6, IL-8, COX-2, and RANTES. Compared with the Nsp2 of the classical PRRSV strain, the Nsp2 of highly pathogenic PRRSV (HP-PRRSV) strains that possess a 30 amino acid (aa) deletion in Nsp2 displayed greater NF-κB activation. However, the 30-aa deletion was demonstrated to not be associated with NF-κB activation. Further functional domain analyses revealed that the hypervariable region (HV) of Nsp2 was essential for NF-κB activation. Taken together, these data indicate that PRRSV Nsp2 is a multifunctional protein participating in the modulation of host inflammatory response, which suggests an important role of Nsp2 in pathogenesis and disease outcomes.
NF-κB signaling pathways: role in nervous system physiology and pathology.
Mincheva-Tasheva, Stefka; Soler, Rosa M
2013-04-01
Intracellular pathways related to cell survival regulate neuronal physiology during development and neurodegenerative disorders. One of the pathways that have recently emerged with an important role in these processes is nuclear factor-κB (NF-κB). The activity of this pathway leads to the nuclear translocation of the NF-κB transcription factors and the regulation of anti-apoptotic gene expression. Different stimuli can activate the pathway through different intracellular cascades (canonical, non-canonical, and atypical), contributing to the translocation of specific dimers of the NF-κB transcription factors, and each of these dimers can regulate the transcription of different genes. Recent studies have shown that the activation of this pathway regulates opposite responses such as cell survival or neuronal degeneration. These apparent contradictory effects depend on conditions such as the pathway stimuli, the origin of the cells, or the cellular context. In the present review, the authors summarize these findings and discuss their significance with respect to survival or death in the nervous system.
Murakami, Yukio; Kawata, Akifumi; Seki, Yuya; Koh, Teho; Yuhara, Kenji; Maruyama, Takehisa; Machino, Mamoru; Ito, Shigeru; Kadoma, Yoshinori; Fujisawa, Seiichiro
2012-01-01
The anti-inflammatory activity of magnolol and related compounds is currently a focus of interest. In the present study, the inhibitory effects of these compounds on cyclooxygenase (COX-2) expression and nuclear factor-kappa B (NF-κB) activation were investigated in RAW264.7 macrophage-like cells stimulated with the fimbriae of Porphyromonas gingivalis, an oral anaerobe. The cytotoxicity of magnolol, honokiol, eugenol and bis-eugenol against RAW264.7 cells was determined using a cell counting kit (CCK-8). The regulatory effect of these compounds on the expression of COX-2 mRNA, stimulated by exposure to the fimbriae was investigated by real-time polymerase chain reaction (PCR). NF-κB activation was evaluated by enzyme-linked immunosorbent assay (ELISA)-like microwell colorimetric transcription factor activity assay (Trans-AM) and western blot analysis. The radical-scavenging activity was determined using the induction period method in the methyl methacrylate-azobisisobutyronitrile (AIBN) polymerization system under nearly anaerobic conditions. The phenolic bond dissociation enthalpy (BDE) and orbital energy were calculated at the density functional theory (DFT) B3LYP/6-31G* level. The cytotoxicity against RAW264.7 cells declined in the order bis-eugenol>eugenol> honokiol>magnolol, whereas the radical-scavenging activity declined in the order honokiol, bis-eugenol>magnolol> eugenol. Magnolol and honokiol significantly inhibited the fimbria-induced expression of COX-2 at non-cytotoxic concentrations. Both the fimbria-stimulated binding of NF-κB to its consensus sequence and phosphorylation-dependent proteolysis of inhibitor κB-α were markedly inhibited by magnilol and honokiol, whereas eugenol and bis-eugenol did not inhibit COX-2 expression and NF-κB activation. Magnolol and honokiol possessed a high electronegativity (χ) value. Magnolol and honokiol exhibit antioxidative activity, low cytotoxicity, and anti-inflammatory activity. These compounds may be capable of preventing chronic inflammatory diseases induced by oral bacteria.
Liebson, H J; Marrack, P; Kappler, J
1982-10-01
The concanavalin A- (Con A) stimulated supernatant of normal spleen cells (normal Con A SN) was shown to contain a set of helper factors sufficient to allow T cell- and macrophage- (M phi) depleted murine splenic B cells to produce a plaque-forming cell response to the antigen sheep red blood cells (SRBC). The activity of normal Con A SN could be reconstituted by a mixture of three helper factor preparations. The first was the interleukin 2- (IL 2) containing Con A SN of the T cell hybridoma, FS6-14.13. The second was a normal Con A SN depleted of IL 2 by extended culture with T cell blasts from which the 30,000 to 50,000 m.w. factors were isolated (interleukin X, IL X). The third was a SN either from the M phi tumor cell line P388D1 or from normal M phi taken from Corynebacterium parvum-immune mice. The combination of all three helper factor preparations was required to equal the activity of normal Con A SN; however, the M phi SN had the least overall effect. The M phi SN and IL 2 had to be added at the initiation of the culture period for a maximal effect, but the IL X preparation was most effective when added 24 hr after the initiation of culture. These results indicate that at least three nonspecific helper factors contribute to the helper activity in normal Con A SN.
Terasaki, Hiroto; Kase, Satoru; Shirasawa, Makoto; Otsuka, Hiroki; Hisatomi, Toshio; Sonoda, Shozo; Ishida, Susumu; Ishibashi, Tatsuro; Sakamoto, Taiji
2013-01-01
Asymmetrical secretion of vascular endothelial growth factor (VEGF) by retinal pigment epithelial (RPE) cells in situ is critical for maintaining the homeostasis of the retina and choroid. VEGF is also involved in the development and progression of age-related macular degeneration (AMD). We studied the effect of tumor necrosis factor-α (TNF-α) on the secretion of VEGF in polarized and non-polarized RPE cells (P-RPE cells and N-RPE cells, respectively) in culture and in situ in rats. A subretinal injection of TNF-α caused a decrease in VEGF expression and choroidal atrophy. Porcine RPE cells were seeded on Transwell™ filters, and their maturation and polarization were confirmed by the asymmetrical VEGF secretion and trans electrical resistance. Exposure to TNF-α decreased the VEGF secretion in P-RPE cells but increased it in N-RPE cells in culture. TNF-α inactivated JNK in P-RPE cells but activated it in N-RPE cells, and TNF-α activated NF-κB in P-RPE cells but not in N-RPE cells. Inhibition of NF-κB activated JNK in both types of RPE cells indicating crosstalk between JNK and NF-κB. TNF-α induced the inhibitory effects of NF-κB on JNK in P-RPE cells because NF-κB is continuously inactivated. In N-RPE cells, however, it was not evident because NF-κB was already activated. The basic activation pattern of JNK and NF-κB and their crosstalk led to opposing responses of RPE cells to TNF-α. These results suggest that VEGF secretion under inflammatory conditions depends on cellular polarization, and the TNF-α-induced VEGF down-regulation may result in choroidal atrophy in polarized physiological RPE cells. TNF-α-induced VEGF up-regulation may cause neovascularization by non-polarized or non-physiological RPE cells. PMID:23922887
Wong, Mei Mei; Chen, Yikuan; Margariti, Andriani; Winkler, Bernhard; Campagnolo, Paola; Potter, Claire; Hu, Yanhua; Xu, Qingbo
2014-03-01
Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process. We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α-mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation. Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α-mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.
Park, Song Yi; Shin, Jee-Hye; Kee, Sun-Ho
2017-09-01
β-Catenin is a central player in Wnt signaling, and activation of Wnt signaling is associated with cancer development. E-cadherin in complex with β-catenin mediates cell-cell adhesion, which suppresses β-catenin-dependent Wnt signaling. Recently, a tumor-suppressive role for E-cadherin has been reconsidered, as re-expression of E-cadherin was reported to enhance the metastatic potential of malignant tumors. To explore the role of E-cadherin, we established an E-cadherin-expressing cell line, EC96, from AGS cells that featured undetectable E-cadherin expression and a high level of Wnt signaling. In EC96 cells, E-cadherin re-expression enhanced cell proliferation, although Wnt signaling activity was reduced. Subsequent analysis revealed that nuclear factor-κB (NF-κB) activation and consequent c-myc expression might be involved in E-cadherin expression-mediated cell proliferation. To facilitate rapid proliferation, EC96 cells enhance glucose uptake and produce ATP using both mitochondria oxidative phosphorylation and glycolysis, whereas AGS cells use these mechanisms less efficiently. These events appeared to be mediated by NF-κB activation. Therefore, E-cadherin re-expression and subsequent induction of NF-κB signaling likely enhance energy production and cell proliferation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Pan, Xiaoqi; Wu, Xu; Yan, Dandan; Peng, Cheng; Rao, Chaolong; Yan, Hong
2018-05-15
Acrylamide (ACR) is a classic neurotoxin in animals and humans. However, the mechanism underlying ACR neurotoxicity remains controversial, and effective prevention and treatment measures against this condition are scarce. This study focused on clarifying the crosstalk between the involved signaling pathways in ACR-induced oxidative stress and inflammatory response and investigating the protective effect of antioxidant N-acetylcysteine (NAC) against ACR in PC12 cells. Results revealed that ACR exposure led to oxidative stress characterized by significant increase in reactive oxygen species (ROS) and malondialdehyde (MDA) levels and glutathione (GSH) consumption. Inflammatory response was observed based on the dose-dependently increased levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6). NAC attenuated ACR-induced enhancement of MDA and ROS levels and TNF-α generation. In addition, ACR activated nuclear transcription factor E2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling pathways. Knockdown of Nrf2 by siRNA significantly blocked the increased NF-κB p65 protein expression in ACR-treated PC12 cells. Down-regulation of NF-κB by specific inhibitor BAY11-7082 similarly reduced ACR-induced increase in Nrf2 protein expression. NAC treatment increased Nrf2 expression and suppressed NF-κB p65 expression to ameliorate oxidative stress and inflammatory response caused by ACR. Further results showed that mitogen-activated protein kinases (MAPKs) pathway was activated prior to the activation of Nrf2 and NF-κB pathways. Inhibition of MAPKs blocked Nrf2 and NF-κB pathways. Collectively, ACR activated Nrf2 and NF-κB pathways which were regulated by MAPKs. A crosstalk between Nrf2 and NF-κB pathways existed in ACR-induced cell damage. NAC protected against oxidative damage and inflammatory response induced by ACR by activating Nrf2 and inhibiting NF-κB pathways in PC12 cells. Copyright © 2018 Elsevier B.V. All rights reserved.
IL-17B activated mesenchymal stem cells enhance proliferation and migration of gastric cancer cells.
Bie, Qingli; Zhang, Bin; Sun, Caixia; Ji, Xiaoyun; Barnie, Prince Amoah; Qi, Chen; Peng, Jingjing; Zhang, Danyi; Zheng, Dong; Su, Zhaoliang; Wang, Shengjun; Xu, Huaxi
2017-03-21
Mesenchymal stem cells are important cells in tumor microenvironment. We have previously demonstrated that IL-17B/IL-17RB signal promoted progression of gastric cancer. In this study, we further explored the effect of IL-17B on mesenchymal stem cells in tumor microenvironment and its impact on the tumor progression. The results showed that IL-17B induced the expression of stemness-related genes Nanog, Sox2, and Oct4 in mesenchymal stem cells and enhanced its tumor-promoting effect. The supernatant from cultured mesenchymal stem cells after treating with exogenous rIL-17B promoted the proliferation and migration of MGC-803, therefor suggesting that rIL-17B might promote mesenchymal stem cells to produce soluble factors. In addition, rIL-17B also activated the NF-κΒ, STAT3, β-catenin pathway in mesenchymal stem cells. Our data revealed a new mechanism that IL-17B enhanced the progression of gastric cancer by activating mesenchymal stem cells.
B cells expressing the transcription factor T-bet drive lupus-like autoimmunity
Rubtsov, Anatoly V.; Thurman, Joshua M.; Mennona, Johanna M.; Kappler, John W.; Marrack, Philippa
2017-01-01
B cells contribute to multiple aspects of autoimmune disorders and may play a role in triggering disease. Thus, targeting B cells may be a promising strategy for treating autoimmune disorders. Better understanding of the B cell subsets that are responsible for the development of autoimmunity will be critical for developing efficient therapies. Here we have reported that B cells expressing the transcription factor T-bet promote the rapid appearance of autoantibodies and germinal centers in spontaneous murine models of systemic lupus erythematosus (SLE). Conditional deletion of T-bet from B cells impaired the formation of germinal centers and mitigated the development of kidney damage and rapid mortality in SLE mice. B cell–specific deletion of T-bet was also associated with lower activation of both B cells and T cells. Taken together, our results suggest that targeting T-bet–expressing B cells may be a potential target for therapy for autoimmune diseases. PMID:28240602
Knies, Nathalie; Alankus, Begüm; Weilemann, Andre; Tzankov, Alexandar; Brunner, Kristina; Ruff, Tanja; Kremer, Marcus; Keller, Ulrich B; Lenz, Georg; Ruland, Jürgen
2015-12-29
The aggressive activated B cell-like subtype of diffuse large B-cell lymphoma is characterized by aberrant B-cell receptor (BCR) signaling and constitutive nuclear factor kappa-B (NF-κB) activation, which is required for tumor cell survival. BCR-induced NF-κB activation requires caspase recruitment domain-containing protein 11 (CARD11), and CARD11 gain-of-function mutations are recurrently detected in human diffuse large B-cell lymphoma (DLBCL). To investigate the consequences of dysregulated CARD11 signaling in vivo, we generated mice that conditionally express the human DLBCL-derived CARD11(L225LI) mutant. Surprisingly, CARD11(L225LI) was sufficient to trigger aggressive B-cell lymphoproliferation, leading to early postnatal lethality. CARD11(L225LI) constitutively associated with B-cell CLL/lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) to simultaneously activate the NF-κB and c-Jun N-terminal kinase (JNK) signaling cascades. Genetic deficiencies of either BCL10 or MALT1 completely rescued the phenotype, and pharmacological inhibition of JNK was, similar to NF-κB blockage, toxic to autonomously proliferating CARD11(L225LI)-expressing B cells. Moreover, constitutive JNK activity was observed in primary human activated B cell-like (ABC)-DLBCL specimens, and human ABC-DLBCL cells were also sensitive to JNK inhibitors. Thus, our results demonstrate that enforced activation of CARD11/BCL10/MALT1 signaling is sufficient to drive transformed B-cell expansion in vivo and identify the JNK pathway as a therapeutic target for ABC-DLBCL.
Manna, Sunil K.; Bose, Julie S.; Gangan, Vijay; Raviprakash, Nune; Navaneetha, Thota; Raghavendra, Pongali B.; Babajan, Banaganapalli; Kumar, Chitta S.; Jain, Swatantra K.
2010-01-01
The Dracaena resin is widely used in traditional medicine as an anticancer agent, and benzofuran lignan is the active component. In this report, we provide evidence that the synthetic derivative of benzofuran lignan (Benfur) showed antitumor activities. It induced apoptosis in p53-positive cells. Though it inhibited endotoxin-induced nuclear factor κB (NF-κB) activation in both p53-positive and -negative cells, the activation of caspase 3 was observed in p53-positive cells. It showed partial cell death effect in both p53-positive and -negative cells through inhibition of NF-κB. Cell cycle analysis using flow cytometry showed that treatment with this novel benozofuran lignan derivative to Jurkat T-cells, but not U-937 cells, resulted in a G2/M arrest in a dose- and time-dependent manner. It increased amounts of p21, p27, and cyclin B, but not phospho-Rb through p53 nuclear translocation in Jurkat T-cells, but not in U-937 cells. It inhibited amounts of MDM2 (murine double minute 2) by repressing the transcription factor Sp1, which was also proved in silico. It induced cell death in tumor cells, but not in primary T-cells. Overall, our data suggest that Benfur-mediated cell death is partially dependent upon NF-κB, but predominantly dependent on p53. Thus, this novel benzofuran lignan derivative can be effective chemopreventive or chemotherapeutic agent against malignant T-cells. PMID:20472557
Specific NEMO mutations impair CD40-mediated c-Rel activation and B cell terminal differentiation
Jain, Ashish; Ma, Chi A.; Lopez-Granados, Eduardo; Means, Gary; Brady, William; Orange, Jordan S.; Liu, Shuying; Holland, Steven; Derry, Jonathan M.J.
2004-01-01
Hypomorphic mutations in the zinc finger domain of NF-κB essential modulator (NEMO) cause X-linked hyper-IgM syndrome with ectodermal dysplasia (XHM-ED). Here we report that patient B cells are characterized by an absence of Ig somatic hypermutation (SHM) and defective class switch recombination (CSR) despite normal induction of activation-induced cytidine deaminase (AID) and Iε-Cε transcripts. This indicates that AID expression alone is insufficient to support neutralizing antibody responses. Furthermore, we show that patient B cells stimulated with CD40 ligand are impaired in both p65 and c-Rel activation, and whereas addition of IL-4 can enhance p65 activity, c-Rel activity remains deficient. This suggests that these NF-κB components have different activation requirements and that IL-4 can augment some but not all NEMO-dependent NF-κB signaling. Finally, using microarray analysis of patient B cells we identified downstream effects of impaired NF-κB activation and candidate factors that may be necessary for CSR and SHM in B cells. PMID:15578091
Ota, Yuri; Niiro, Hiroaki; Ota, Shun-Ichiro; Ueki, Naoko; Tsuzuki, Hirofumi; Nakayama, Tsuyoshi; Mishima, Koji; Higashioka, Kazuhiko; Jabbarzadeh-Tabrizi, Siamak; Mitoma, Hiroki; Akahoshi, Mitsuteru; Arinobu, Yojiro; Kukita, Akiko; Yamada, Hisakata; Tsukamoto, Hiroshi; Akashi, Koichi
2016-03-16
The efficacy of B cell-depleting therapies for rheumatoid arthritis underscores antibody-independent functions of effector B cells such as cognate T-B interactions and production of pro-inflammatory cytokines. Receptor activator of nuclear factor κB ligand (RANKL) is a key cytokine involved in bone destruction and is highly expressed in synovial fluid B cells in patients with rheumatoid arthritis. In this study we sought to clarify the generation mechanism of RANKL(+) effector B cells and their impacts on osteoclast differentiation. Peripheral blood and synovial fluid B cells from healthy controls and patients with rheumatoid arthritis were isolated using cell sorter. mRNA expression of RANKL, osteoprotegerin, tumor necrosis factor (TNF)-α, and Blimp-1 was analyzed by quantitative real-time polymerase chain reaction. Levels of RANKL, CD80, CD86, and CXCR3 were analyzed using flow cytometry. Functional analysis of osteoclastogenesis was carried out in the co-culture system using macrophage RAW264 reporter cells. RANKL expression was accentuated in CD80(+)CD86(+) B cells, a highly activated B-cell subset more abundantly observed in patients with rheumatoid arthritis. Upon activation via B-cell receptor and CD40, switched-memory B cells predominantly expressed RANKL, which was further augmented by interferon-γ (IFN-γ) but suppressed by interleukin-21. Strikingly, IFN-γ also enhanced TNF-α expression, while it strongly suppressed osteoprotegerin expression in B cells. IFN-γ increased the generation of CXCR3(+)RANKL(+) effector B cells, mimicking the synovial B cell phenotype in patients with rheumatoid arthritis. Finally, RANKL(+) effector B cells in concert with TNF-α facilitated osteoclast differentiation in vitro. Our current findings have shed light on the generation mechanism of pathogenic RANKL(+) effector B cells that would be an ideal therapeutic target for rheumatoid arthritis in the future.
Kim, Ji H.; Gupta, Subash C.; Park, Byoungduck; Yadav, Vivek R.; Aggarwal, Bharat B.
2012-01-01
Scope The incidence of cancer is significantly lower in regions where turmeric is heavily consumed. Whether lower cancer incidence is due to turmeric was investigated by examining its effects on tumor cell proliferation, on pro-inflammatory transcription factors NF-κB and STAT3, and on associated gene products. Methods and results Cell proliferation and cell cytotoxicity were measured by the MTT method, NF-κB activity by EMSA, protein expression by Western blot analysis, ROS generation by FACS analysis, and osteoclastogenesis by TRAP assay. Turmeric inhibited NF-κB activation and down-regulated NF-κB-regulated gene products linked to survival (Bcl-2, cFLIP, XIAP, and cIAP1), proliferation (cyclin D1 and c-Myc), and metastasis (CXCR4) of cancer cells. The spice suppressed the activation of STAT3, and induced the death receptors (DR)4 and DR5. Turmeric enhanced the production of ROS, and suppressed the growth of tumor cell lines. Furthermore, turmeric sensitized the tumor cells to chemotherapeutic agents capecitabine and taxol. Turmeric was found to be more potent than pure curcumin for cell growth inhibition. Turmeric also inhibited NF-κB activation induced by RANKL that correlated with the suppression of osteoclastogenesis. Conclusion Our results indicate that turmeric can effectively block the proliferation of tumor cells through the suppression of NF-κB and STAT3 pathways. PMID:22147524
Kim, Ji H; Gupta, Subash C; Park, Byoungduck; Yadav, Vivek R; Aggarwal, Bharat B
2012-03-01
The incidence of cancer is significantly lower in regions where turmeric is heavily consumed. Whether lower cancer incidence is due to turmeric was investigated by examining its effects on tumor cell proliferation, on pro-inflammatory transcription factors NF-κB and STAT3, and on associated gene products. Cell proliferation and cell cytotoxicity were measured by the MTT method, NF-κB activity by EMSA, protein expression by Western blot analysis, ROS generation by FACS analysis, and osteoclastogenesis by TRAP assay. Turmeric inhibited NF-κB activation and down-regulated NF-κB-regulated gene products linked to survival (Bcl-2, cFLIP, XIAP, and cIAP1), proliferation (cyclin D1 and c-Myc), and metastasis (CXCR4) of cancer cells. The spice suppressed the activation of STAT3, and induced the death receptors (DR)4 and DR5. Turmeric enhanced the production of ROS, and suppressed the growth of tumor cell lines. Furthermore, turmeric sensitized the tumor cells to chemotherapeutic agents capecitabine and taxol. Turmeric was found to be more potent than pure curcumin for cell growth inhibition. Turmeric also inhibited NF-κB activation induced by RANKL that correlated with the suppression of osteoclastogenesis. Our results indicate that turmeric can effectively block the proliferation of tumor cells through the suppression of NF-κB and STAT3 pathways. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lundell, Anna-Carin; Hesselmar, Bill; Nordström, Inger; Adlerberth, Ingegerd; Wold, Agnes E; Rudin, Anna
2015-10-01
A high proportion of circulating immature/naive CD5(+) B cells during early infancy is a risk factor for allergy development. B-cell activating factor (BAFF) is an important cytokine for B-cell maturation. We sought to investigate whether BAFF levels are related to environmental exposures during pregnancy and early childhood and whether BAFF levels are associated with postnatal B-cell maturation and allergic disease. In the FARMFLORA study, including both farming and nonfarming families, we measured BAFF levels in plasma from mothers and their children at birth and at 1, 4, 18, and 36 months of age. Infants' blood samples were also analyzed for B-cell numbers and proportions of CD5(+) and CD27(+) B cells. Allergic disease was clinically evaluated at 18 and 36 months of age. Circulating BAFF levels were maximal at birth, and farmers' children had higher BAFF levels than nonfarmers' children. Higher BAFF levels at birth were positively associated with proportions of CD27(+) memory B cells among farmers' children and inversely related to proportions of CD5(+) immature/naive B cells among nonfarmers' children. Children with allergic disease at 18 months of age had lower cord blood BAFF levels than nonallergic children. At birth, girls had higher BAFF levels and lower proportions of CD5(+) B cells than boys. Farm exposure during pregnancy appears to induce BAFF production in the newborn child, and high neonatal BAFF levels were associated with more accelerated postnatal B-cell maturation, which lend further strength to the role of B cells in the hygiene hypothesis. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Skalniak, Lukasz; Dziendziel, Monika; Jura, Jolanta
2014-10-01
Recently, we have shown that the treatment of cells with proteasome inhibitor MG-132 results in the induction of expression of monocyte chemotactic protein-1 induced protein 1 (MCPIP1). MCPIP1 is a ribonuclease, responsible for the degradation of transcripts encoding certain pro-inflammatory cytokines. The protein is also known as an inhibitor of NF-κB transcription factor. Thanks to its molecular properties, MCPIP1 is considered as a regulator of inflammation, differentiation, and survival. Using siRNA technology, we show here that MCPIP1 expression contributes to the toxic properties of MG-132 in HeLa cells. The inhibition of proteasome by MG-132 and epoxomicin markedly increased MCPIP1 expression. While MG-132 induces HeLa cell death, down-regulation of MCPIP1 expression by siRNA partially protects HeLa cells from MG-132 toxicity and restores Nuclear factor-κB (NF-κB) activity, inhibited by MG-132 treatment. Inversely, overexpression of MCPIP1 decreased constitutive activity of NF-κB and limited the survival of HeLa cells, as we have shown in the previous study. Interestingly, although MG-132 decreased the expression of IκBα and increased p65 phosphorylation, the inhibition of constitutive NF-κB activity was observed in MG-132-treated cells. Since the elevated constitutive activity of NF-κB is one of the mechanisms providing increased survival of cancer cells, including HeLa cells, we propose that death-promoting properties of MCPIP1 in MG-132-treated HeLa cells may, at least partially, derive from the negative effect on the constitutive NF-κB activity.
Kil, Laurens P; de Bruijn, Marjolein J W; van Nimwegen, Menno; Corneth, Odilia B J; van Hamburg, Jan Piet; Dingjan, Gemma M; Thaiss, Friedrich; Rimmelzwaan, Guus F; Elewaut, Dirk; Delsing, Dianne; van Loo, Pieter Fokko; Hendriks, Rudi W
2012-04-19
On antigen binding by the B-cell receptor (BCR), B cells up-regulate protein expression of the key downstream signaling molecule Bruton tyrosine kinase (Btk), but the effects of Btk up-regulation on B-cell function are unknown. Here, we show that transgenic mice overexpressing Btk specifically in B cells spontaneously formed germinal centers and manifested increased plasma cell numbers, leading to antinuclear autoantibody production and systemic lupus erythematosus (SLE)-like autoimmune pathology affecting kidneys, lungs, and salivary glands. Autoimmunity was fully dependent on Btk kinase activity, because Btk inhibitor treatment (PCI-32765) could normalize B-cell activation and differentiation, and because autoantibodies were absent in Btk transgenic mice overexpressing a kinase inactive Btk mutant. B cells overexpressing wild-type Btk were selectively hyperresponsive to BCR stimulation and showed enhanced Ca(2+) influx, nuclear factor (NF)-κB activation, resistance to Fas-mediated apoptosis, and defective elimination of selfreactive B cells in vivo. These findings unravel a crucial role for Btk in setting the threshold for B-cell activation and counterselection of autoreactive B cells, making Btk an attractive therapeutic target in systemic autoimmune disease such as SLE. The finding of in vivo pathology associated with Btk overexpression may have important implications for the development of gene therapy strategies for X-linked agammaglobulinemia, the immunodeficiency associated with mutations in BTK.
Gulati, Anthony P; Yang, Yang-Ming; Harter, David; Mukhopadhyay, Asok; Aggarwal, Bharat B; Aggarwal, Bharat A; Benzil, Deborah L; Whysner, John; Albino, Anthony P; Murali, Raj; Jhanwar-Uniyal, Meena
2006-01-01
The roles of the mitogen-activated kinase protein (MAPK) pathway, nuclear factor-kappa B (NF-kappaB), and activator protein-1 (AP-1) in cellular responses to growth factors and mitogen are well established. However, the manner by which these proliferative pathways are affected by the tumor suppressor protein p53 is not fully understood. We report here the results of an investigation of the status of p53 on two human melanoma cell lines with wild-type p53 (SK-Mel-186) or mutant p53 (SK-Mel-110). The basal levels of the activated extracellular-signal regulated kinases 1 and 2 (ERK1/2) were high in cells with wild-type p53, but low in cells with mutant p53. The 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced activation of ERK1/2 through the phosphorylation of threonine and tyrosine at 202 and 204, respectively, was demonstrated in both cell lines, however, in a discrete manner. TPA-induced activation of ERK1/2 was sustained in wild-type p53 cells, while only a transient activation was seen in mutant p53 cells. Inhibition of MAPK kinase (MEK), an upstream kinase, by U0126, blocked TPA-induced activation of ERK1/2 in wild-type p53 cells and in mutant p53 cells. Treatment of wild-type p53 (SK-Mel 186) cells with small interfering RNA (siRNA) of p53 displayed a transient induction of activation of ERK1/2 following TPA treatment, indicating that p53 has a role in the regulation of the activation of ERK1/2. NF-kappaB activity decreased significantly in cells with wild-type p53, while enhanced NF-kappaB activity was evident in cells with mutant p53. The expression of either wild-type or mutant p53 had a similar effect on TPA-induced Jun N-terminal kinase (JNK) activation, indicating specificity for the ERK pathway. Similarly, AP-1 binding activity showed a transient variation in both cell lines after TPA treatment but with different kinetics. These observations suggest that both wild-type and mutant p53 can modulate the activation pathways for ERK1/2, and NF-kappaB distinctively, while modulating the pathways of JNK and AP-1 similarly. These differences may influence cellular processes such as proliferation, differentiation, and apoptosis. 2005 Wiley-Liss, Inc.
Kanzaki, Hirotaka; Mukhopadhya, Nishit K.; Cui, Xiaojiang; Ramanujan, V. Krishnan
2016-01-01
A major clinical problem in the treatment of breast cancer is mortality due to metastasis. Understanding the molecular mechanisms associated with metastasis should aid in designing new therapeutic approaches for breast cancer. Trastuzumab is the main therapeutic option for HER2+ breast cancer patients; however, the molecular basis for trastuzumab resistance (TZR) and subsequent metastasis is not known. Earlier, we found expression of basal-like molecular markers in TZR tissues from patients with invasive breast cancer.(1) The basal-like phenotype is a particularly aggressive form of breast cancer. This observation suggests that TZR might contribute to an aggressive phenotype. To understand if resistance to TZR can lead to basal-like phenotype, we generated a trastuzumab-resistant human breast cancer cell line (BT-474-R) that maintained human epidermal growth factor receptor 2 (HER2) overexpression and HER2 mediated signaling. Analysis showed that nuclear factor-kappa B (NF-κB) was constitutively activated in the BT-474-R cells, a feature similar to the basal-like tumor phenotype. Pharmacologic inhibition of NF-κB improved sensitivity of BT-474-R cells to trastuzumab. Interestingly, activation of HER2 independent NF-κB is not shown in luminal B breast cancer cells. Our study suggests that by activating the NF-κB pathway, luminal B cells may acquire a HER2+ basal-like phenotype in which NF-κB is constitutively activated; this notion is consistent with the recently proposed “progression through grade” or “evolution of resistance” hypothesis. Furthermore, we identified IKK-α/IKK-β and nuclear accumulation of RelA/p65 as the major determinants in the resistant cells. Thus our study additionally suggests that the nuclear accumulation of p65 may be a useful marker for identifying metastasis-initiating tumor cells and targeting RelA/p65 may limit metastasis of breast and other cancers associated with NF-κB activation. PMID:26871511
Chunlian, Wu; Heyong, Wang; Jia, Xu; Jie, Huang; Xi, Chen; Gentao, Liu
2014-12-01
Magnolol is a traditional Chinese medicine from the root and bark of Magnolia officinalis. It has long been used to treat anxiety, cough, headache and allergies, as well as a variety of inflammations. Lung inflammation is a key event in the pathogenesis of asthma and chronic obstructive pulmonary disease. The present study sought to examine the effects of magnolol on tumor necrosis factor (TNF)-α-induced upregulation of intercellular adhesion molecule-1 (ICAM-1), activation of the nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathway in cultured human pulmonary epithelial cells, and adhesion of human macrophage-like U937 cells to A549 cells. A549 cells were incubated with magnolol at 25 and 50 μmol/l. Then, 20 ng/ml TNF-α was used to activate the cells. Magnolol inhibited the growth of human pulmonary epithelial A549 cells in a dose- and time-dependent manner. Magnolol suppressed the adhesion of U937 cells to TNF-α-induced A549 cells. In cultured human pulmonary epithelial A549 cells, magnolol decreased TNF-α-induced upregulation of ICAM-1. Magnolol repressed TNF-α-induced activation of NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways in A549 cells by inhibiting phosphorylation of NF-κB, p38, extracellular signal-regulated kinase (ERK) 1/2, and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). These findings support the hypothesis that magnolol inhibits the inflammatory process in lung epithelial A549 cells by suppressing the ICAM-1 and NF-κB and MAPK signaling pathways. Taken together, these results indicate that magnolol offers significant potential as a therapeutic treatment for inflammatory diseases of the lungs including asthma, sepsis, and chronic obstructive pulmonary disease.
Karlsson, Mattias; Scherbak, Nikolai; Khalaf, Hazem; Olsson, Per-Erik; Jass, Jana
2012-11-01
Lactobacillus rhamnosus GR-1 is a probiotic bacterium used to maintain urogenital health. The putative mechanism for its probiotic effect is by modulating the host immunity. Urinary tract infections (UTI) are often caused by uropathogenic Escherichia coli that frequently evade or suppress immune responses in the bladder and can target pathways, including nuclear factor-kappaB (NF-κB). We evaluated the role of L. rhamnosus GR-1 on NF-κB activation in E. coli-stimulated bladder cells. Viable L. rhamnosus GR-1 was found to potentiate NF-κB activity in E. coli-stimulated T24 bladder cells, whereas heat-killed lactobacilli demonstrated a marginal increase in NF-κB activity. Surface components released by trypsin- or LiCl treatment, or the resultant heat-killed shaved lactobacilli, had no effect on NF-κB activity. Isolation of released products from L. rhamnosus GR-1 demonstrated that the induction of NF-κB activity was owing to released product(s) with a relatively large native size. Several putative immunomodulatory proteins were identified, namely GroEL, elongation factor Tu and NLP/P60. GroEL and elongation factor Tu have previously been shown to elicit immune responses from human cells. Isolating and using immune-augmenting substances produced by lactobacilli is a novel strategy for the prevention or treatment of UTI caused by immune-evading E. coli. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Porciani, David; Tedeschi, Lorena; Marchetti, Laura; Citti, Lorenzo; Piazza, Vincenzo; Beltram, Fabio; Signore, Giovanni
2015-01-01
Aptamers able to bind efficiently cell-surface receptors differentially expressed in tumor and in healthy cells are emerging as powerful tools to perform targeted anticancer therapy. Here, we present a novel oligonucleotide chimera, composed by an RNA aptamer and a DNA decoy. Our assembly is able to (i) target tumor cells via an antitransferrin receptor RNA aptamer and (ii) perform selective codelivery of a chemotherapeutic drug (Doxorubicin) and of an inhibitor of a cell-survival factor, the nuclear factor κB decoy oligonucleotide. Both payloads are released under conditions found in endolysosomal compartments (low pH and reductive environment). Targeting and cytotoxicity of the oligonucleotidic chimera were assessed by confocal microscopy, cell viability, and Western blot analysis. These data indicated that the nuclear factor κB decoy does inhibit nuclear factor κB activity and ultimately leads to an increased therapeutic efficacy of Doxorubicin selectively in tumor cells. PMID:25919089
Abós, Beatriz; Wang, Tiehui; Castro, Rosario; Granja, Aitor G; Leal, Esther; Havixbeck, Jeffrey; Luque, Alfonso; Barreda, Daniel R; Secombes, Chris J; Tafalla, Carolina
2016-08-02
Although originally identified as a B cell differentiation factor, it is now known that mammalian interleukin-6 (IL-6) only regulates B cells committed to plasma cells in response to T-dependent (TD) antigens within germinal centers (GCs). Even though adaptive immunity is present in teleost fish, these species lack lymph nodes and GCs. Thus, the aim of the present study was to establish the role of trout IL-6 on B cells, comparing its effects to those induced by bacterial lipopolysaccharide (LPS). We demonstrate that the effects of teleost IL-6 on naïve spleen B cells include proliferation, activation of NF-κB, increased IgM secretion, up-regulation of Blimp1 transcription and decreased MHC-II surface expression that point to trout IL-6 as a differentiation factor for IgM antibody-secreting cells (ASCs). However, LPS induced the secretion of IgM without up-regulating Blimp1, driving the cells towards an intermediate activation state in which antigen presenting mechanisms are elicited together with antibody secretion and expression of pro-inflammatory genes. Our results reveal that, in trout, IL-6 is a differentiation factor for B cells, stimulating IgM responses in the absence of follicular structures, and suggest that it was after follicular structures appeared that this cytokine evolved to modulate TD responses within the GC.
Sugatani, T; Alvarez, U M; Hruska, K A
2003-09-01
Recent studies have reported that activin A enhances osteoclastogenesis in cultures of mouse bone marrow cells stimulated with receptor activator of nuclear factor-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). However, the exact mechanisms by which activin A functions during osteoclastogenesis are not clear. RANKL stimulation of RANK/TRAF6 signaling increases nuclear factor-kappaB (NFkappaB) nuclear translocation and activates the Akt/PKB cell survival pathway. Here we report that activin A alone activates IkappaB-alpha, and stimulates nuclear translocation of NFkappaB and receptor activator of nuclear factor-kappaB (RANK) expression for osteoclastogenesis, but not Akt/PKB survival signal transduction including BAD and mammalian target of rapamycin (mTOR) for survival in osteoclast precursors in vitro. Activin A alone failed to activate Akt, BAD, and mTOR by immunoblotting, and it also failed to prevent apoptosis in osteoclast precursors. While activin A activated IkappaB-alpha and induced nuclear translocation of phosphorylated-NFkappaB, and it also enhanced RANK expression in osteoclast precursors. Moreover, activin A enhanced RANKL- and M-CSF-stimulated nuclear translocation of NFkappaB. Our data suggest that activin A enhances osteoclastogenesis treated with RANKL and M-CSF via stimulation of RANK, thereby increasing the RANKL stimulation. Activin A alone activated the NFkappaB pathway, but not survival in osteoclast precursors in vitro, but it is, thus, insufficient as a sole stimulus to osteoclastogenesis. Copyright 2003 Wiley-Liss, Inc.
Expression and associations of TRAF1, BMI-1, ALDH1, and Lin28B in oral squamous cell carcinoma.
Wu, Tian-Fu; Li, Yi-Cun; Ma, Si-Rui; Bing-Liu; Zhang, Wen-Feng; Sun, Zhi-Jun
2017-04-01
Tumor necrosis factor receptor-associated factor 1, an adaptor protein of tumor necrosis factor 2, is involved in classical nuclear factor (NF)-κB activation and lymphocyte recruitment. However, less is known about the expression and association of tumor necrosis factor receptor-associated factor 1 with cancer stem cell markers in oral squamous cell carcinoma. This study aimed to investigate the expression of tumor necrosis factor receptor-associated factor 1 and stem cell characteristic markers (lin28 homolog B, B cell-specific Moloney murine leukemia virus integration site 1, and aldehyde dehydrogenase 1) in oral squamous cell carcinoma and analyze their relations. Paraffin-embedded tissues of 78 oral squamous cell carcinomas, 39 normal oral mucosa, and 12 oral dysplasia tissues were employed in tissue microarrays, and the expression of tumor necrosis factor receptor-associated factor 1, B cell-specific Moloney murine leukemia virus integration site 1, aldehyde dehydrogenase 1, and lin28 homolog B was measured by immunohistostaining and digital pathological analysis. The expression of tumor necrosis factor receptor-associated factor 1 was higher in the oral squamous cell carcinoma group as compared with the expression in the oral mucosa (p < 0.01) and oral dysplasia (p < 0.001) groups. In addition, the expression of tumor necrosis factor receptor-associated factor 1 was associated with those of B cell-specific Moloney murine leukemia virus integration site 1, aldehyde dehydrogenase 1, and lin28 homolog B (p = 0.032, r 2 = 0.109; p < 0.0001, r 2 = 0.64; and p < 0.001, r 2 = 0.16) in oral squamous cell carcinoma. The patient survival rate was lower in the highly expressed tumor necrosis factor receptor-associated factor 1 group, although the difference was not significant. The clustering analysis showed that tumor necrosis factor receptor-associated factor 1 was most related to aldehyde dehydrogenase 1. These findings suggest that tumor necrosis factor receptor-associated factor 1 has potential direct/indirect regulations with the cancer stem cell markers in oral squamous cell carcinoma, which may help in further analysis of the cancer stem cell characteristics.
Yamada, Kana; Noguchi, Chisato; Kamitori, Kazuyo; Dong, Youyi; Hirata, Yuko; Hossain, Mohammad A; Tsukamoto, Ikuko; Tokuda, Masaaki; Yamaguchi, Fuminori
2012-02-01
Oxidative stress modulates the osteoclast differentiation via redox systems, and thioredoxin 1 (Trx) promotes the osteoclast formation by regulating the activity of transcription factors. The function of Trx is known to be regulated by its binding partner, thioredoxin-interacting protein (TXNIP). We previously reported that the expression of TXNIP gene is strongly induced by a rare sugar D-allose. In this study, we tested the hypothesis that D-allose could inhibit the osteoclast differentiation by regulating the Trx function. We used a murine Raw264 cell line that differentiates to the osteoclast by the receptor activator of nuclear factor-κB ligand (RANKL) treatment. The effect of sugars was evaluated by tartrate-resistant acid phosphatase staining. The expression and localization of TXNIP and Trx protein were examined by Western blotting and immunohistochemisty. The activity of the nuclear factor-κB, nuclear factor of activated T cells, and activator protein 1 transcription factors was measured by the luciferase reporter assay. The addition of D-allose (25 mmol/L) inhibited the osteoclast differentiation down to 9.53% ± 1.27% of a receptor activator of nuclear factor-κB ligand-only treatment. During the osteoclast differentiation, a significant increase of TNXIP was observed by D-allose treatment. The immunohistochemical analysis showed that both Trx and TXNIP existed in the nucleus in preosteoclasts and osteoclasts. Overexpression of TXNIP by plasmid transfection also inhibited the osteoclast formation, indicating the functional importance of TXNIP for the osteoclast differentiation. Transcriptional activity of the activator protein 1, nuclear factor-κB, and nuclear factor of activated T cells, known to be modulated by Trx, were inhibited by D-allose. In conclusion, our data indicate that D-allose is a strong inhibitor of the osteoclast differentiation, and this effect could be caused by TXNIP induction and a resulting inhibition of the Trx function. Copyright © 2012 Elsevier Inc. All rights reserved.
Adam, Liana; Black, Peter C; Kassouf, Wassim; Eve, Beryl; McConkey, David; Munsell, Mark F; Benedict, William F; Dinney, Colin P N
2007-05-01
Intravesical adenovirus mediated interferon-alpha gene transfer has a potent therapeutic effect against superficial human bladder carcinoma xenografts growing in the bladder of athymic nude mice. We determined whether the inhibition of angiogenesis might contribute to the antitumor effect. We treated several human urothelial carcinoma cells with adenovirus mediated interferon-alpha 2b and monitored its effects on the production of angiogenic factors using real-time reverse-transcription polymerase chain reaction, Western blotting, and immunohistochemical analysis and a gel shift based transcription factor array. To assess the role of adenovirus mediated interferon 2b in angiogenic activity we used in vitro invasion assays and evaluated the anti-angiogenic effects of adenovirus mediated interferon gene therapy in an orthotopic murine model of human superficial bladder cancer. In adenovirus mediated interferon-alpha infected 253J B-V cells vascular endothelial growth factor was decreased and anti-angiogenic interferon-gamma inducible protein 10 was up-regulated. In contrast, the addition of as much as 100,000 IU recombinant interferon had no apparent effect on vascular endothelial growth factor production. Conditioned medium derived from adenovirus mediated interferon 2b infected 253J B-V cells greatly decreased the invasive potential of human endothelial cells and down-regulated their matrix metalloproteinase 2 expression compared to controls. Furthermore, adenovirus mediated interferon 2b blocked pro-angiogenic nuclear signals, such as the transcription factors activating protein-1 and 2, stimulating protein-1, nuclear factor kappaB and c-myb. In vivo experiments revealed significant vascular endothelial growth factor down-regulation and decreased tumor vessel density in the adenovirus mediated interferon 2b treated group compared to controls. Treatment with adenovirus mediated interferon 2b increases the angiostatic activity of the bladder cancer microenvironment. This inhibition may prove beneficial for treating superficial bladder cancer with adenovirus mediated interferon-alpha and hopefully contribute to a decreased recurrence rate of this neoplasm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, Youngsic; Jung, Yujung; Kim, Min Cheol
2014-08-08
Highlights: • SHQA increases PPARα/γ transactivation and inhibits MMP-2/-9 expression. • SHQA inhibits TNFα-induced AP-1 and MAPK signaling. • SHQA inhibits TNFα-induced p65 translocation and IκBα phosphorylation. • SHQA inhibits TNFα-induced AP-1 and NF-κB signaling via PPARα. - Abstract: Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, their ligands are targets for the treatment of various skin disorders, such as photo-aging and chronological aging of skin. Intensive studies have revealed that PPARα/γ functions in photo-agingmore » and age-related inflammation by regulating matrix metalloproteinases (MMPs) via activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB). However, the detailed mechanism of PPARα/γ’s role in skin aging has not yet been elucidated. In this study, we confirmed that sargahydroquinoic acid (SHQA) as a PPARα/γ ligand significantly decreased Tumor Necrosis Factor-alpha (TNFα)-induced MMP-2/-9 expression by downregulating TNFα-induced transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in HaCaT human epidermal keratinocyte cells. Treatment of cells with SHQA and GW6471 (PPARα antagonist) not bisphenol A diglycidyl ether (PPARγ antagonists), reversed the effect on TNFα-induced inflammatory signaling pathway activation. Taken together, our data suggest that SHQA inhibit TNFα-induced MMP-2/-9 expression and age-related inflammation by suppressing AP-1 and NF-κB pathway via PPARα.« less
Tumor-associated macrophages as major source of APRIL in gastric MALT lymphoma.
Munari, Fabio; Lonardi, Silvia; Cassatella, Marco A; Doglioni, Claudio; Cangi, Maria Giulia; Amedei, Amedeo; Facchetti, Fabio; Eishi, Yoshinobu; Rugge, Massimo; Fassan, Matteo; de Bernard, Marina; D'Elios, Mario M; Vermi, William
2011-06-16
Lymphoid hyperplasia of gastric mucosa associated with Helicobacter pylori (HP) infection represents a preneoplastic condition of the mucosa associated lymphoid tissue (MALT), which may evolve to a B-cell lymphoma. While it is well established that the initial neoplastic proliferation of B cells is antigen-driven and dependent on the helper activity of HP-specific T cells, it needs to be elucidated which cytokine or soluble factor(s) promote B-cell activation and lymphomagenesis. Herein, we originally report that gastric MALT lymphoma express high levels of a proliferation inducing ligand (APRIL), a novel cytokine crucial in sustaining B-cell proliferation. By immunohistochemistry, we demonstrate that APRIL is produced almost exclusively by gastric lymphoma-infiltrating macrophages located in close proximity to neoplastic B cells. We also show that macrophages produce APRIL on direct stimulation with both HP and HP-specific T cells. Collectively, our results represent the first evidence for an involvement of APRIL in gastric MALT lymphoma development in HP-infected patients.
Minocycline attenuates sevoflurane-induced cell injury via activation of Nrf2
Tian, Yue; Wu, Xiuying; Guo, Shanbin; Ma, Ling; Huang, Wei; Zhao, Xiaochun
2017-01-01
Minocycline has been demonstrated to exert neuroprotective effects in various experimental models. In the present study, we investigated the mechanisms underlying the protective effects of minocycline on cell injury induced by the inhalation of the anesthetic, sevoflurane. In our in vivo experiments using rats, minocycline attenuated sevoflurane-induced neuronal degeneration and apoptosis in the rat hippocampus, and this effect was associated with the minocycline-mediated suppression of oxidative stress in the hippocampus. In in vitro experiments, minocycline inhibited sevoflurane-induced apoptosis and the production of reactive oxygen species (ROS) in H4 human neuroglioma cells. In addition, minocycline suppressed the sevoflurane-induced upregulation of interleukin (IL)-6 and the activation of the nuclear factor-κB (NF-κB) signaling pathway in H4 cells. Furthermore, we found that nuclear factor E2-related factor 2 (Nrf2), an activator of the stress response, was upregulated and activated upon sevoflurane treatment both in the rat hippocampus and in H4 cells. In addition, minocycline further augmented the upregulation and activation of Nrf2 when used in conjunction with sevoflurane. Moreover, the knockdown of Nrf2 in H4 cells by small interfering RNA (siRNA) diminished the cytoprotective effect of minocycline, and attenuated the inhibitory effect of minocycline on ROS production, IL-6 upregulation and the activation of the NF-κB signaling pathway. On the whole, our findings indicate that minocycline may exert protective effects against sevoflurane-induced cell injury via the Nrf2-modulated antioxidant response and the inhibition of the activation of the NF-κB signaling pathway. PMID:28260081
Kastrati, Irida; Siklos, Marton I; Calderon-Gierszal, Esther L; El-Shennawy, Lamiaa; Georgieva, Gergana; Thayer, Emily N; Thatcher, Gregory R J; Frasor, Jonna
2016-02-12
In breast tumors, activation of the nuclear factor κB (NFκB) pathway promotes survival, migration, invasion, angiogenesis, stem cell-like properties, and resistance to therapy--all phenotypes of aggressive disease where therapy options remain limited. Adding an anti-inflammatory/anti-NFκB agent to breast cancer treatment would be beneficial, but no such drug is approved as either a monotherapy or adjuvant therapy. To address this need, we examined whether dimethyl fumarate (DMF), an anti-inflammatory drug already in clinical use for multiple sclerosis, can inhibit the NFκB pathway. We found that DMF effectively blocks NFκB activity in multiple breast cancer cell lines and abrogates NFκB-dependent mammosphere formation, indicating that DMF has anti-cancer stem cell properties. In addition, DMF inhibits cell proliferation and significantly impairs xenograft tumor growth. Mechanistically, DMF prevents p65 nuclear translocation and attenuates its DNA binding activity but has no effect on upstream proteins in the NFκB pathway. Dimethyl succinate, the inactive analog of DMF that lacks the electrophilic double bond of fumarate, is unable to inhibit NFκB activity. Also, the cell-permeable thiol N-acetyl l-cysteine, reverses DMF inhibition of the NFκB pathway, supporting the notion that the electrophile, DMF, acts via covalent modification. To determine whether DMF interacts directly with p65, we synthesized and used a novel chemical probe of DMF by incorporating an alkyne functionality and found that DMF covalently modifies p65, with cysteine 38 being essential for the activity of DMF. These results establish DMF as an NFκB inhibitor with anti-tumor activity that may add therapeutic value in the treatment of aggressive breast cancers. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Messa, Emanuela; Carturan, Sonia; Maffè, Chiara; Pautasso, Marisa; Bracco, Enrico; Roetto, Antonella; Messa, Francesca; Arruga, Francesca; Defilippi, Ilaria; Rosso, Valentina; Zanone, Chiara; Rotolo, Antonia; Greco, Elisabetta; Pellegrino, Rosa M.; Alberti, Daniele; Saglio, Giuseppe; Cilloni, Daniela
2010-01-01
Background Usefulness of iron chelation therapy in myelodysplastic patients is still under debate but many authors suggest its possible role in improving survival of low-risk myelodysplastic patients. Several reports have described an unexpected effect of iron chelators, such as an improvement in hemoglobin levels, in patients affected by myelodysplastic syndromes. Furthermore, the novel chelator deferasirox induces a similar improvement more rapidly. Nuclear factor-κB is a key regulator of many cellular processes and its impaired activity has been described in different myeloid malignancies including myelodysplastic syndromes. Design and Methods We evaluated deferasirox activity on nuclear factor-κB in myelodysplastic syndromes as a possible mechanism involved in hemoglobin improvement during in vivo treatment. Forty peripheral blood samples collected from myelodysplastic syndrome patients were incubated with 50 μM deferasirox for 18h. Results Nuclear factor-κB activity dramatically decreased in samples showing high basal activity as well as in cell lines, whereas no similar behavior was observed with other iron chelators despite a similar reduction in reactive oxygen species levels. Additionally, ferric hydroxyquinoline incubation did not decrease deferasirox activity in K562 cells suggesting the mechanism of action of the drug is independent from cell iron deprivation by chelation. Finally, incubation with both etoposide and deferasirox induced an increase in K562 apoptotic rate. Conclusions Nuclear factor-κB inhibition by deferasirox is not seen from other chelators and is iron and reactive oxygen species scavenging independent. This could explain the hemoglobin improvement after in vivo treatment, such that our hypothesis needs to be validated in further prospective studies. PMID:20534700
Zhang, Shaofei; Zhu, Iris; Deng, Tao; Furusawa, Takashi; Rochman, Mark; Vacchio, Melanie S.; Bosselut, Remy; Yamane, Arito; Casellas, Rafael; Landsman, David; Bustin, Michael
2016-01-01
The activation of naïve B lymphocyte involves rapid and major changes in chromatin organization and gene expression; however, the complete repertoire of nuclear factors affecting these genomic changes is not known. We report that HMGN proteins, which bind to nucleosomes and affect chromatin structure and function, co-localize with, and maintain the intensity of DNase I hypersensitive sites genome wide, in resting but not in activated B cells. Transcription analyses of resting and activated B cells from wild-type and Hmgn−/− mice, show that loss of HMGNs dampens the magnitude of the transcriptional response and alters the pattern of gene expression during the course of B-cell activation; defense response genes are most affected at the onset of activation. Our study provides insights into the biological function of the ubiquitous HMGN chromatin binding proteins and into epigenetic processes that affect the fidelity of the transcriptional response during the activation of B cell lymphocytes. PMID:27112571
NF-κB-Chromatin Interactions Drive Diverse Phenotypes by Modulating Transcriptional Noise
Wong, Victor C.; Bass, Victor L.; Bullock, M. Elise; Chavali, Arvind K.; Lee, Robin E.C.; Mothes, Walther; Gaudet, Suzanne; Miller-Jensen, Kathryn
2018-01-01
SUMMARY Noisy gene expression generates diverse phenotypes, but little is known about mechanisms that modulate noise. Combining experiments and modeling, we studied how tumor necrosis factor (TNF) initiates noisy expression of latent HIV via the transcription factor nuclear factor κB (NF-κB) and how the HIV genomic integration site modulates noise to generate divergent (low-versus-high) phenotypes of viral activation. We show that TNF-induced transcriptional noise varies more than mean transcript number and that amplification of this noise explains low-versus-high viral activation. For a given integration site, live-cell imaging shows that NF-κB activation correlates with viral activation, but across integration sites, NF-κB activation cannot account for differences in transcriptional noise and phenotypes. Instead, differences in transcriptional noise are associated with differences in chromatin state and RNA polymerase II regulation. We conclude that, whereas NF-κB regulates transcript abundance in each cell, the chromatin environment modulates noise in the population to support diverse HIV activation in response to TNF. PMID:29346759
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenei, Veronika; Andersson, Tommy; Jakus, Judit
E3B1, a human homologue of the mouse gene product Abi-1, has been implicated in growth-factor-mediated regulation of the small GTPases p21{sup Ras} and Rac. E3b1 is a regulator of Rac because it can form a complex with Sos-1 and eps8, and such a Sos-1-e3B1-eps8 complex serves as a guanine nucleotide exchange factor for Rac. In the present study, we found that overexpression of e3B1 in NIH3T3/EGFR cells sensitized EGF-induced activation of Rac1, whereas it had no impact on EGF-induced activation of p21{sup Ras}. Remarkably, we found that EGF-induced activation of the p21{sup Ras}-related GTPase Rap1 was also sensitized in NIH3T3/EGFR-e3B1more » cells. Thus, in NIH3T3/EGFR-e3B1 cells, maximal EGF-induced activation of Rap1 occurs with a dose of EGF much lower than in NIH3T3/EGFR cells. We also report that overexpression of e3B1 in NIH3T3/EGFR cells renders EGF-induced activation of Rap1 completely dependent on Src tyrosine kinases but not on c-Abl. However, EGF-induced tyrosine phosphorylation of the Rap GEF C3G occurred regardless of whether e3B1 was overexpressed or not, and this did not involve Src tyrosine kinases. Accordingly, we propose that overexpression of e3B1 in NIH3T3/EGFR cells leads to mobilization of Src tyrosine kinases that participate in EGF-induced activation of Rap1 and inhibition of cell proliferation.« less
Withanolides derived from Physalis peruviana (Poha) with potential anti-inflammatory activity.
Sang-Ngern, Mayuramas; Youn, Ui Joung; Park, Eun-Jung; Kondratyuk, Tamara P; Simmons, Charles J; Wall, Marisa M; Ruf, Michael; Lorch, Sam E; Leong, Ethyn; Pezzuto, John M; Chang, Leng Chee
2016-06-15
Three new withanolides, physaperuvin G (1), with physaperuvins I (2), and J (3), along with seven known derivatives (4-10), were isolated from the aerial parts of Physalis peruviana. The structures of 1-3 were determined by NMR, X-ray diffraction, and mass spectrometry. Compounds 1-10 were evaluated in lipopolysaccharide (LPS)-activated murine macrophage RAW 264.7 cells. Compounds 4, 5, and 10 with potent nitric oxide inhibitory activity in LPS-activated RAW 264.7 cells, with IC50 values in the range of 0.32-7.8μM. In addition, all compounds were evaluated for potential to inhibit tumor necrosis factor-alpha (TNF-α)-activated nuclear factor-kappa B (NF-κB) activity with transfected human embryonic kidney cells 293. Compounds 4-7 inhibited TNF-α-induced NF-κB activity with IC50 values in the range of 0.04-5.6μM. Copyright © 2016 Elsevier Ltd. All rights reserved.
Regulation of Innate Immune Responses by Bovine Herpesvirus 1 and Infected Cell Protein 0 (bICP0)
Jones, Clinton
2009-01-01
Bovine herpesvirus 1 (BoHV-1) infected cell protein 0 (bICP0) is an important transcriptional regulatory protein that stimulates productive infection. In transient transfection assays, bICP0 also inhibits interferon dependent transcription. bICP0 can induce degradation of interferon stimulatory factor 3 (IRF3), a cellular transcription factor that is crucial for activating beta interferon (IFN-β) promoter activity. Recent studies also concluded that interactions between bICP0 and IRF7 inhibit trans-activation of IFN-β promoter activity. The C3HC4 zinc RING (really important new gene) finger located near the amino terminus of bICP0 is important for all known functions of bICP0. A recombinant virus that contains a single amino acid change in a well conserved cysteine residue of the C3HC4 zinc RING finger of bICP0 grows poorly in cultured cells, and does not reactivate from latency in cattle confirming that the C3HC4 zinc RING finger is crucial for viral growth and pathogenesis. A bICP0 deletion mutant does not induce plaques in permissive cells, but induces autophagy in a cell type dependent manner. In summary, the ability of bICP0 to stimulate productive infection, and repress IFN dependent transcription plays a crucial role in the BoHV-1 infection cycle. PMID:21994549
Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A; Manna, Sunil K
2010-02-19
The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor kappaB (NF-kappaB) and also expression of NF-kappaB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-kappaB (IkappaB alpha) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IkappaB alpha kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-kappaB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy.
Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V
2015-07-09
Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents.
Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V
2015-01-01
Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents. PMID:26158513
Moussaieff, Arieh; Shohami, Esther; Kashman, Yoel; Fride, Ester; Schmitz, M Lienhard; Renner, Florian; Fiebich, Bernd L; Munoz, Eduardo; Ben-Neriah, Yinon; Mechoulam, Raphael
2007-12-01
Boswellia resin is a major anti-inflammatory agent in herbal medical tradition, as well as a common food supplement. Its anti-inflammatory activity has been attributed to boswellic acid and its derivatives. Here, we re-examined the anti-inflammatory effect of the resin, using inhibitor of nuclear factor-kappaB alpha (IkappaB alpha) degradation in tumor necrosis factor (TNF) alpha-stimulated HeLa cells for a bioassay-guided fractionation. We thus isolated two novel nuclear factor-kappaB (NF-kappaB) inhibitors from the resin, their structures elucidated as incensole acetate (IA) and its nonacetylated form, incensole (IN). IA inhibited TAK/TAB-mediated IkappaB kinase (IKK) activation loop phosphorylation, resulting in the inhibition of cytokine and lipopolysaccharide-mediated NF-kappaB activation. It had no effect on IKK activity in vitro, and it did not suppress IkappaB alpha phosphorylation in costimulated T-cells, indicating that the kinase inhibition is neither direct nor does it affect all NF-kappaB activation pathways. The inhibitory effect seems specific; IA did not interfere with TNFalpha-induced activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase. IA treatment had a robust anti-inflammatory effect in a mouse inflamed paw model. Cembrenoid diterpenoids, specifically IA and its derivatives, may thus constitute a potential novel group of NF-kappaB inhibitors, originating from an ancient anti-inflammatory herbal remedy.
Campa, Victor M; Baltziskueta, Eder; Bengoa-Vergniory, Nora; Gorroño-Etxebarria, Irantzu; Wesołowski, Radosław; Waxman, Jonathan; Kypta, Robert M
2014-09-30
Expression of Glycogen Synthase Kinase-3 (GSK-3) is elevated in prostate cancer and its inhibition reduces prostate cancer cell proliferation, in part by reducing androgen receptor (AR) signaling. However, GSK-3 inhibition can also activate signals that promote cell proliferation and survival, which may preclude the use of GSK-3 inhibitors in the clinic. To identify such signals in prostate cancer, we screened for changes in transcription factor target DNA binding activity in GSK-3-silenced cells. Among the alterations was a reduction in AR DNA target binding, as predicted from previous studies, and an increase in NFκB DNA target binding. Consistent with the latter, gene silencing of GSK-3 or inhibition using the GSK-3 inhibitor CHIR99021 increased basal NFκB transcriptional activity. Activation of NFκB was accompanied by an increase in the level of the NFκB family member RelB. Conversely, silencing RelB reduced activation of NFκB by CHIR99021. Furthermore, the reduction of prostate cancer cell proliferation by CHIR99021 was potentiated by inhibition of NFκB signaling using the IKK inhibitor PS1145. Finally, stratification of human prostate tumor gene expression data for GSK3 revealed an inverse correlation between NFκB-dependent and androgen-dependent gene expression, consistent with the results from the transcription factor target DNA binding screen. In addition, there was a correlation between expression of androgen-repressed NFκB target genes and reduced survival of patients with metastatic prostate cancer. These findings highlight an association between GSK-3/AR and NFκB signaling and its potential clinical importance in metastatic prostate cancer.
Campa, Victor M.; Baltziskueta, Eder; Bengoa-Vergniory, Nora; Gorroño-Etxebarria, Irantzu; Wesołowski, Radosław; Waxman, Jonathan; Kypta, Robert M.
2014-01-01
Expression of Glycogen Synthase Kinase-3 (GSK-3) is elevated in prostate cancer and its inhibition reduces prostate cancer cell proliferation, in part by reducing androgen receptor (AR) signaling. However, GSK-3 inhibition can also activate signals that promote cell proliferation and survival, which may preclude the use of GSK-3 inhibitors in the clinic. To identify such signals in prostate cancer, we screened for changes in transcription factor target DNA binding activity in GSK-3-silenced cells. Among the alterations was a reduction in AR DNA target binding, as predicted from previous studies, and an increase in NFκB DNA target binding. Consistent with the latter, gene silencing of GSK-3 or inhibition using the GSK-3 inhibitor CHIR99021 increased basal NFκB transcriptional activity. Activation of NFκB was accompanied by an increase in the level of the NFκB family member RelB. Conversely, silencing RelB reduced activation of NFκB by CHIR99021. Furthermore, the reduction of prostate cancer cell proliferation by CHIR99021 was potentiated by inhibition of NFκB signaling using the IKK inhibitor PS1145. Finally, stratification of human prostate tumor gene expression data for GSK3 revealed an inverse correlation between NFκB-dependent and androgen-dependent gene expression, consistent with the results from the transcription factor target DNA binding screen. In addition, there was a correlation between expression of androgen-repressed NFκB target genes and reduced survival of patients with metastatic prostate cancer. These findings highlight an association between GSK-3/AR and NFκB signaling and its potential clinical importance in metastatic prostate cancer. PMID:25327559
Ji, Weidong; Li, Yonghao; Wan, Ting; Wang, Jing; Zhang, Haifeng; Chen, Hong; Min, Wang
2012-09-01
The proinflammtory cytokine tumor necrosis factor (TNF), primarily via TNF receptor 1 (TNFR1), induces nuclear factor-κB (NF-κB)-dependent cell survival, and c-Jun N-terminal kinase (JNK) and caspase-dependent cell death, regulating vascular endothelial cell (EC) activation and apoptosis. However, signaling by the second receptor, TNFR2, is poorly understood. The goal of this study was to dissect how TNFR2 mediates NF-κB and JNK signaling in vascular EC, and its relevance to in vivo EC function. We show that TNFR2 contributes to TNF-induced NF-κB and JNK signaling in EC as TNFR2 deletion or knockdown reduces the TNF responses. To dissect the critical domains of TNFR2 that mediate the TNF responses, we examine the activity of TNFR2 mutant with a specific deletion of the TNFR2 intracellular region, which contains conserved domain I, domain II, domain III, and 2 TNFR-associated factor-2-binding sites. Deletion analyses indicate that different sequences on TNFR2 have distinct roles in NF-κB and JNK activation. Specifically, deletion of the TNFR-associated factor-2-binding sites (TNFR2-59) diminishes the TNFR2-mediated NF-κB, but not JNK activation; whereas, deletion of domain II or domain III blunts TNFR2-mediated JNK but not NF-κB activation. Interestingly, we find that the TNFR-associated factor-2-binding sites ensure TNFR2 on the plasma membrane, but the di-leucine LL motif within the domain II and aa338-355 within the domain III are required for TNFR2 internalization as well as TNFR2-dependent JNK signaling. Moreover, domain III of TNFR2 is responsible for association with ASK1-interacting protein-1, a signaling adaptor critical for TNF-induced JNK signaling. While TNFR2 containing the TNFR-associated factor-2-binding sites prevents EC cell death, a specific activation of JNK without NF-κB activation by TNFR2-59 strongly induces caspase activation and EC apoptosis. Our data reveal that both internalization and ASK1-interacting protein-1 association are required for TNFR2-dependent JNK and apoptotic signaling. Controlling TNFR2-mediated JNK and apoptotic signaling in EC may provide a novel strategy for the treatment of vascular diseases.
Zikherman, Julie; Lau, Tannia; Leitges, Michael; Weiss, Arthur
2014-01-01
Protein kinase Cδ (PKCδ) deficiency causes autoimmune pathology in humans and mice and is crucial for the maintenance of B cell homeostasis. However, the mechanisms underlying autoimmune disease in PKCδ deficiency remain poorly defined. Here, we address the antigen-dependent and -independent roles of PKCδ in B cell development, repertoire selection, and antigen responsiveness. We demonstrate that PKCδ is rapidly phosphorylated downstream of both the B cell receptor (BCR) and the B cell-activating factor (BAFF) receptor. We found that PKCδ is essential for antigen-dependent negative selection of splenic transitional B cells and is required for activation of the proapoptotic Ca2+-Erk pathway that is selectively activated during B cell-negative selection. Unexpectedly, we also identified a previously unrecognized role for PKCδ as a proximal negative regulator of BCR signaling that substantially impacts survival and proliferation of mature follicular B cells. As a consequence of these distinct roles, PKCδ deficiency leads to the survival and development of a B cell repertoire that is not only aberrantly autoreactive but also hyperresponsive to antigen stimulation. PMID:24515435
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yeon-Sook; Park, Jeong Ae; Kim, Jihye
2012-05-04
Highlights: Black-Right-Pointing-Pointer IL-33 as nuclear factor regulated expression of ICAM-1 and VCAM-1. Black-Right-Pointing-Pointer Nuclear IL-33 increased the transcription of NF-{kappa}B p65 by binding to the p65 promoter. Black-Right-Pointing-Pointer Nuclear IL-33 controls NF-{kappa}B-dependent inflammatory responses. -- Abstract: Interleukin (IL)-33, an IL-1 family member, acts as an extracellular cytokine by binding its cognate receptor, ST2. IL-33 is also a chromatin-binding transcriptional regulator highly expressed in the nuclei of endothelial cells. However, the function of IL-33 as a nuclear factor is poorly defined. Here, we show that IL-33 is a novel transcriptional regulator of the p65 subunit of the NF-{kappa}B complex and ismore » involved in endothelial cell activation. Quantitative reverse transcriptase PCR and Western blot analyses indicated that IL-33 mediates the expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in endothelial cells basally and in response to tumor necrosis factor-{alpha}-treatment. IL-33-induced ICAM-1/VCAM-1 expression was dependent on the regulatory effect of IL-33 on the nuclear factor (NF)-{kappa}B pathway; NF-{kappa}B p65 expression was enhanced by IL-33 overexpression and, conversely, reduced by IL-33 knockdown. Moreover, NF-{kappa}B p65 promoter activity and chromatin immunoprecipitation analysis revealed that IL-33 binds to the p65 promoter region in the nucleus. Our data provide the first evidence that IL-33 in the nucleus of endothelial cells participates in inflammatory reactions as a transcriptional regulator of NF-{kappa}B p65.« less
Huh, Jeong-Eun; Lee, Wong In; Kang, Jung Won; Nam, Dongwoo; Choi, Do-Young; Park, Dong-Suk; Lee, Sang Hoon; Lee, Jae-Dong
2014-11-26
Formononetin (1), a plant-derived phytoestrogen, possesses bone protective properties. To address the potential therapeutic efficacy and mechanism of action of 1, we investigated its antiosteoclastogenic activity and its effect on nuclear factor-kappaB ligand (RANKL)-induced bone-marrow-derived macrophages (BMMs). Compound 1 markedly inhibited RANKL-induced osteoclast differentiation in the absence of cytotoxicity, by regulating the expression of osteoprotegerin (OPG) and RANKL in BMMs and in cocultured osteoblasts. Compound 1 significantly inhibited RANKL-induced tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), regulated on activation normal T cell expressed and secreted (RANTES), and macrophage inflammatory protein-1α (MIP-1α) in a concentration-dependent manner. These effects were accompanied by a decrease in RANKL-induced activation of the NF-κB p65 subunit, degradation of inhibitor κBα (IκBα), induction of NF-κB, and phosphorylation of AKT, extracellular-signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK). NF-κB siRNA suppressed AKT, ERK, JNK, and p38 MAPK phosphorylation. Furthermore, 1 significantly suppressed c-Fos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), key transcription factors during osteoclastogenesis. SP600125, a specific inhibitor of JNK, reduced RANKL-induced expression of phospho-c-Jun, c-Fos, and NFATc1 and inhibited osteoclast formation. These results suggested that 1 acted as an antiresorption agent by blocking osteoclast activation.
Zhang, Feng; Shu, Jin-Ling; Li, Ying; Wu, Yu-Jing; Zhang, Xian-Zheng; Han, Le; Tang, Xiao-Yu; Wang, Chen; Wang, Qing-Tong; Chen, Jing-Yu; Chang, Yan; Wu, Hua-Xun; Zhang, Ling-Ling; Wei, Wei
2017-01-01
Paeoniflorin-6'- O -benzene sulfonate (code: CP-25) was the chemistry structural modifications of Paeoniflorin (Pae). CP-25 inhibited B cells proliferation stimulated by B cell activating factor belonging to the TNF family (BAFF) or Tumor necrosis factor alpha (TNF-alpha). CP-25, Rituximab and Etanercept reduced the percentage and numbers of CD19 + B cells, CD19 + CD20 + B cells, CD19 + CD27 + B cells and CD19 + CD20 + CD27 + B cells induced by BAFF or TNF-alpha. There was significant difference between CP-25 and Rituximab or CP-25 and Etanercept. CP-25 down-regulated the high expression of BAFFR, BCMA, and TACI stimulated by BAFF or TNF-alpha. The effects of Rituximab and Etanercept on BAFFR or BCMA were stronger than that of CP-25. CP-25, Rituximab and Etanercept down-regulated significantly the expression of TNFR1 and TNFR2 on B cell stimulated by BAFF or TNF-alpha. CP-25, Rituximab and Etanercept down-regulated the expression of MKK3, P-p38, P-p65, TRAF2, and p52 in B cells stimulated by BAFF and the expression of TRAF2 and P-p65 in B cells stimulated by TNF-alpha. These results suggest that CP-25 regulated moderately activated B cells function by regulating the classical and alternative NF-κB signaling pathway mediated by BAFF and TNF-alpha-TRAF2-NF-κB signaling pathway. This study suggests that CP-25 may be a promising anti-inflammatory immune and soft regulation drug.
Wang, Y; Zhang, J J; Dai, W; Lei, K Y; Pike, J W
1997-07-15
The synthetic glucocorticoid dexamethasone, an immunosuppressive and anti-inflammatory agent, was investigated for its effect on PMA-mediated expression of the inflammatory cytokine IL-1beta in the human monocytic leukemic cell line THP-1. PMA alone induced the production of low levels of IL-1beta in THP-1 cells, whereas dexamethasone alone had no effect. However, dexamethasone potently enhanced PMA-mediated IL-1beta production. Using a selective and potent inhibitor of protein kinase C, we found that synergistic interaction between PMA and dexamethasone requires protein kinase C activation. PMA has been known to activate nuclear factor NF-kappaB in THP-1 cells. Using an oligonucleotide probe corresponding to an NF-kappaB DNA-binding motif of the IL-1beta gene promoter in gel electrophoresis mobility shift assays, we demonstrated that PMA-induced NF-kappaB activation was greatly potentiated by dexamethasone. Our results indicate that glucocorticoids can be positive regulators of inflammatory cytokine gene expression during monocytic cell differentiation.
CVID-associated TACI mutations affect autoreactive B cell selection and activation
Romberg, Neil; Chamberlain, Nicolas; Saadoun, David; Gentile, Maurizio; Kinnunen, Tuure; Ng, Yen Shing; Virdee, Manmeet; Menard, Laurence; Cantaert, Tineke; Morbach, Henner; Rachid, Rima; Martinez-Pomar, Natalia; Matamoros, Nuria; Geha, Raif; Grimbacher, Bodo; Cerutti, Andrea; Cunningham-Rundles, Charlotte; Meffre, Eric
2013-01-01
Common variable immune deficiency (CVID) is an assorted group of primary diseases that clinically manifest with antibody deficiency, infection susceptibility, and autoimmunity. Heterozygous mutations in the gene encoding the tumor necrosis factor receptor superfamily member TACI are associated with CVID and autoimmune manifestations, whereas two mutated alleles prevent autoimmunity. To assess how the number of TACI mutations affects B cell activation and tolerance checkpoints, we analyzed healthy individuals and CVID patients carrying one or two TACI mutations. We found that TACI interacts with the cleaved, mature forms of TLR7 and TLR9 and plays an important role during B cell activation and the central removal of autoreactive B cells in healthy donors and CVID patients. However, only subjects with a single TACI mutation displayed a breached immune tolerance and secreted antinuclear antibodies (ANAs). These antibodies were associated with the presence of circulating B cell lymphoma 6–expressing T follicular helper (Tfh) cells, likely stimulating autoreactive B cells. Thus, TACI mutations may favor CVID by altering B cell activation with coincident impairment of central B cell tolerance, whereas residual B cell responsiveness in patients with one, but not two, TACI mutations enables autoimmune complications. PMID:24051380
Husain, Kazim; Francois, Rony A.; Yamauchi, Teruo; Perez, Marta; Sebti, Said M.; Malafa, Mokenge P.
2011-01-01
The nuclear factor-κB (NF-κB) transcription factor functions as a crucial regulator of cell survival and chemoresistance in pancreatic cancer. Recent studies suggest that tocotrienols, which are the unsaturated forms of vitamin E, are a promising class of anti-cancer compounds that inhibit the growth and survival of many cancer cells, including pancreatic cancer. Here, we show that tocotrienols inhibited NF-κB activity and the survival of human pancreatic cancer cells in vitro and in vivo. Importantly, we found the bioactivity of the 4 natural tocotrienol compounds (α-, β-, δ-, and γ-tocotrienol) to be directly related to their ability to suppress NF-κB activity in vitro and in vivo. The most bioactive tocotrienol for pancreatic cancer, δ-tocotrienol, significantly enhanced the efficacy of gemcitabine to inhibit pancreatic cancer growth and survival in vitro and in vivo. Moreover, we found that δ-tocotrienol augmentation of gemcitabine activity in pancreatic cancer cells and tumors is associated with significant suppression of NF-κB activity and the expression of NF-κB transcriptional targets [Bcl-XL, X-linked inhibitor of apoptosis (XIAP), and survivin]. Our study represents the first comprehensive pre-clinical evaluation of the activity of natural vitamin E compounds in pancreatic cancer. Given these results, we are conducting a phase I trial of δ-tocotrienol in patients with pancreatic cancer utilizing pancreatic tumor cell survival and NF-κB signaling components as intermediate biomarkers. Our data also support future clinical investigation of δ-tocotrienol to augment gemcitabine activity in pancreatic cancer. PMID:21971120
Sawada, Ikuko; Hashimoto, Kae; Sawada, Kenjiro; Kinose, Yasuto; Nakamura, Koji; Toda, Aska; Nakatsuka, Erika; Yoshimura, Akihiko; Mabuchi, Seiji; Fujikawa, Tomoyuki; Itai, Akiko; Kimura, Tadashi
2016-05-01
Aberrant activation of nuclear factor-kappa β (NF-κB) signaling has been correlated with poor outcome among patients with ovarian cancer. Although the therapeutic potential of NF-κB pathway disruption in cancers has been extensively studied, most classical NF-κB inhibitors are poorly selective, exhibit off-target effects, and have failed to be applied in clinical use. IMD-0560, N-[2,5-bis (trifluoromethyl) phenyl]-5-bromo-2-hydroxybenzamide, is a novel low-molecular-weight compound that selectively inhibits the IκB kinase complex and works as an inhibitor of NF-κB signaling. The aim of this study was to assess the therapeutic potential of IMD-0560 against ovarian cancer in vitro and in vivo. NF-κB activity (phosphorylation) was determined in 9 ovarian cancer cell lines and the inhibitory effect of IMD-0560 on NF-κB activation was analyzed by Western blotting. Cell viability, cell cycle, vascular endothelial growth factor (VEGF) expression, and angiogenesis were assessed in vitro to evaluate the effect of IMD-0560 on ovarian cancer cells. In vivo efficacy of IMD-0560 was also investigated using an ovarian cancer xenograft mouse model. The NF-κB signaling pathway was constitutively activated in 8 of 9 ovarian cancer cell lines. IMD-0560 inhibited NF-κB activation and suppressed ovarian cancer cell proliferation by inducing G1 phase arrest. IMD-0560 decreased VEGF secretion from cancer cells and inhibited the tube formation of human umbilical vein endothelial cells. IMD-0560 significantly inhibited peritoneal metastasis and prolonged the survival in an ovarian cancer xenograft mice model. Immunohistochemical staining of excised tumors revealed that IMD-0560 suppressed VEGF expression, tumor angiogenesis, and cancer cell proliferation. IMD-0560 showed promising therapeutic efficacy against ovarian cancer xenograft mice by inducing cell cycle arrest and suppressing VEGF production from cancer cells. IMD-0560 may be a potential future option in regimens for the treatment of ovarian cancer.
Park, Hongzoo; Lee, Dae-Sung; Yim, Mi-Jin; Choi, Yung Hyun; Park, Saegwang; Seo, Su-Kil; Choi, Jung Sik; Jang, Won Hee; Yea, Sung Su; Park, Won Sun; Lee, Chang-Min; Jung, Won-Kyo; Choi, Il-Whan
2015-07-01
Oxidative stress in the retinal pigment epithelium (RPE) can lead to the pathological causes of age-related macular degeneration (AMD). Hypoxia induces oxidative damage in retinal pigment epithelial cells (RPE cells). In this study, we investigated the capacity of 3,3'-diindolylmethane (DIM) to reduce the expression of vascular endothelial growth factor (VEGF) under hypoxic conditions, as well as the molecular mechanisms involved. Human RPE cells (ARPE-19 cells) were treated with cobalt chloride (CoCl2, 200 µM) and/or DIM (10 and 20 µM). The production of VEGF was measured by enzyme-linked immunosorbent assay. The translocation of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-κB (NF-κB) was determined by western blot analysis. The binding activity of HIF-1α and NF-κB was analyzed by electrophoretic mobility shift assay. The phosphorylation levels of mitogen-activated protein kinases (MAPKs) were measured by western blot analysis. The levels of mitochondrial reactive oxygen species (ROS) were detected by fluorescence microplate assay. The results revealed that DIM significantly attenuated the CoCl2-induced expression of VEGF in the ARPE-19 cells. The CoCl2-induced translocation and activation of HIF-1α and NF-κB were also attenuated by treatment with DIM. In addition, DIM inhibited the CoCl2-induced activation of p38 MAPK in the ARPE-19 cells. Pre-treatment with YCG063, a mitochondrial ROS inhibitor, led to the downregulation of the CoCl2-induced production of VEGF by suppressing HIF-1α and NF-κB activity. Taken together, the findings of our study demonstrate that DIM inhibits the CoCl2-induced production of VEGF by suppressing mitochondrial ROS production, thus attenuating the activation of HIF-1α and p38 MAPK/NF-κB.
Markus, Regina P; Cecon, Erika; Pires-Lapa, Marco Antonio
2013-01-01
Pineal gland melatonin is the darkness hormone, while extra-pineal melatonin produced by the gonads, gut, retina, and immune competent cells acts as a paracrine or autocrine mediator. The well-known immunomodulatory effect of melatonin is observed either as an endocrine, a paracrine or an autocrine response. In mammals, nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) blocks noradrenaline-induced melatonin synthesis in pinealocytes, which induces melatonin synthesis in macrophages. In addition, melatonin reduces NF-κB activation in pinealocytes and immune competent cells. Therefore, pathogen- or danger-associated molecular patterns transiently switch the synthesis of melatonin from pinealocytes to immune competent cells, and as the response progresses melatonin inhibition of NF-κB activity leads these cells to a more quiescent state. The opposite effect of NF-κB in pinealocytes and immune competent cells is due to different NF-κB dimers recruited in each phase of the defense response. This coordinated shift of the source of melatonin driven by NF-κB is called the immune-pineal axis. Finally, we discuss how this concept might be relevant to a better understanding of pathological conditions with impaired melatonin rhythms and hope it opens new horizons for the research of side effects of melatonin-based therapies. PMID:23708099
CIKS, a connection to Ikappa B kinase and stress-activated protein kinase.
Leonardi, A; Chariot, A; Claudio, E; Cunningham, K; Siebenlist, U
2000-09-12
Pathogens, inflammatory signals, and stress cause acute transcriptional responses in cells. The induced expression of genes in response to these signals invariably involves transcription factors of the NF-kappaB and AP-1/ATF families. Activation of NF-kappaB factors is thought to be mediated primarily via IkappaB kinases (IKK), whereas that of AP-1/ATF can be mediated by stress-activated protein kinases (SAPKs; also named Jun kinases or JNKs). IKKalpha and IKKbeta are two catalytic subunits of a core IKK complex that also contains the regulatory subunit NEMO (NF-kappaB essential modulator)/IKKgamma. The latter protein is essential for activation of the IKKs, but its mechanism of action is not known. Here we describe the molecular cloning of CIKS (connection to IKK and SAPK/JNK), a previously unknown protein that directly interacts with NEMO/IKKgamma in cells. When ectopically expressed, CIKS stimulates IKK and SAPK/JNK kinases and it transactivates an NF-kappaB-dependent reporter. Activation of NF-kappaB is prevented in the presence of kinase-deficient, interfering mutants of the IKKs. CIKS may help to connect upstream signaling events to IKK and SAPK/JNK modules. CIKS could coordinate the activation of two stress-induced signaling pathways, functions reminiscent of those noted for tumor necrosis factor receptor-associated factor adaptor proteins.
New Epigenetic Therapeutic Intervention for Metastatic Breast Cancer
2016-04-01
transcription factor Twist are markedly over-expressed in TNBC but not luminal breast cancer cells. We also discovered that constitutively activated NF -kB in...transcription factors Twist and NF -kB in gene activation require lysine acetylation, which signs to activate the transcriptional machinery in chromatin...including Twist, NF -kB and STAT3. b. Define the molecular basis of the BET BrDs’ selective interactions with effector proteins through structure-guided
Perl, Andras
2010-02-01
Systemic lupus erythematosus (SLE) is characterized by the dysfunction of T cells, B cells, and dendritic cells, the release of pro-inflammatory nuclear materials from necrotic cells, and the formation of antinuclear antibodies (ANA) and immune complexes of ANA with DNA, RNA, and nuclear proteins. Activation of the mammalian target of rapamycin (mTOR) has recently emerged as a key factor in abnormal activation of T and B cells in SLE. In T cells, increased production of nitric oxide and mitochondrial hyperpolarization (MHP) were identified as metabolic checkpoints upstream of mTOR activation. mTOR controls the expression T-cell receptor-associated signaling proteins CD4 and CD3zeta through increased expression of the endosome recycling regulator Rab5 and HRES-1/Rab4 genes, enhances Ca2+ fluxing and skews the expression of tyrosine kinases both in T and B cells, and blocks the expression of Foxp3 and the generation of regulatory T cells. MHP, increased activity of mTOR, Rab GTPases, and Syk kinases, and enhanced Ca2+ flux have emerged as common T and B cell biomarkers and targets for treatment in SLE.
Wang, Shiow Y; Feng, Rentian; Lu, Yongju; Bowman, Linda; Ding, Min
2005-05-18
The inhibitory effects of strawberry (Fragaria x ananassa Duch.) antioxidant enzymes on tetradecanoylphorbol-13-acetate (TPA) or ultraviolet-B (UVB) induced activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) were studied. The inhibitory effects of strawberry extracts on the proliferation and transformation of human and mouse cancer cells were also evaluated. Strawberries had high activities of glutathione peroxidase, superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase, and glutathione reductase. Strawberry extracts inhibited the proliferation of human lung epithelial cancer cell line A549 and decreased TPA-induced neoplastic transformation of JB6 P+ mouse epidermal cells. Pretreatment of JB6 P+ mouse epidermal cells with strawberry extract resulted in the inhibition of both UVB- and TPA-induced AP-1 and NF-kappaB transactivation. Furthermore, strawberry extract also blocked TPA-induced phosphorylation of extracellular signal-regulated kinases (ERKs) and UVB-induced phosphorylation of ERKs and JNK kinase in JB6 P+ mouse epidermal cell culture. These results suggest that the ability of strawberries to block UVB- and TPA-induced AP-1 and NF-kappaB activation may be due to their antioxidant properties and their ability to reduce oxidative stress. The oxidative events that regulate AP-1 and NF-kappaB transactivation can be important molecular targets for cancer prevention. The strawberries may be highly effective as a chemopreventive agent that acts by targeting the down-regulation of AP-1 and NF-kappaB activities, blocking MAPK signaling, and suppressing cancer cell proliferation and transformation.
Palmer, Guy H.; Machado, Joel; Fernandez, Paula; Heussler, Volker; Perinat, Therese; Dobbelaere, Dirk A. E.
1997-01-01
Infection of cattle with the protozoan Theileria parva results in uncontrolled T lymphocyte proliferation resulting in lesions resembling multicentric lymphoma. Parasitized cells exhibit autocrine growth characterized by persistent translocation of the transcriptional regulatory factor nuclear factor κB (NFκB) to the nucleus and consequent enhanced expression of interleukin 2 and the interleukin 2 receptor. How T. parva induces persistent NFκB activation, required for T cell activation and proliferation, is unknown. We hypothesized that the parasite induces degradation of the IκB molecules which normally sequester NFκB in the cytoplasm and that continuous degradation requires viable parasites. Using T. parva-infected T cells, we showed that the parasite mediates continuous phosphorylation and proteolysis of IκBα. However, IκBα reaccumulated to high levels in parasitized cells, which indicated that T. parva did not alter the normal NFκB-mediated positive feedback loop which restores cytoplasmic IκBα. In contrast, T. parva mediated continuous degradation of IκBβ resulting in persistently low cytoplasmic IκBβ levels. Normal IκBβ levels were only restored following T. parva killing, indicating that viable parasites are required for IκBβ degradation. Treatment of T. parva-infected cells with pyrrolidine dithiocarbamate, a metal chelator, blocked both IκB degradation and consequent enhanced expression of NFκB dependent genes. However treatment using the antioxidant N-acetylcysteine had no effect on either IκB levels or NFκB activation, indicating that the parasite subverts the normal IκB regulatory pathway downstream of the requirement for reactive oxygen intermediates. Identification of the critical points regulated by T. parva may provide new approaches for disease control as well as increase our understanding of normal T cell function. PMID:9356483
Coordination of NF-kappaB and NFAT antagonism by the forkhead transcription factor Foxd1.
Lin, Ling; Peng, Stanford L
2006-04-15
Forkhead transcription factors play critical roles in the maintenance of immune homeostasis. In this study, we demonstrate that this regulation most likely involves intricate interactions between the forkhead family members and inflammatory transcription factors: the forkhead member Foxd1 coordinates the regulation of the activity of two key inflammatory transcription factors, NF-AT and NF-kappaB, with Foxd1 deficiency resulting in multiorgan, systemic inflammation, exaggerated Th cell-derived cytokine production, and T cell proliferation in autologous MLRs. Foxd1-deficient T cells possess increased activity of both NF-AT and NF-kappaB: the former correlates with the ability of Foxd1 to regulate casein kinase 1, an NF-AT inhibitory kinase; the latter with the ability of Foxd1 to regulate Foxj1, which regulates the NF-kappaB inhibitory subunit IkappaB beta. Thus, Foxd1 modulates inflammatory reactions and prevents autoimmunity by directly regulating anti-inflammatory regulators of the NF-AT pathway, and by coordinating the suppression of the NF-kappaB pathway via Foxj1. These findings indicate the presence of a general network of forkhead proteins that enforce T cell quiescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Peng; Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709; Xue, Peng
2013-11-01
Interleukin-6 (IL6) is a multifunctional cytokine that regulates immune and inflammatory responses. Multiple transcription factors, including nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), regulate IL6 transcription. Kelch-like ECH-associated protein 1 (Keap1) is a substrate adaptor protein for the Cullin 3-dependent E3 ubiquitin ligase complex, which regulates the degradation of many proteins, including Nrf2 and IκB kinase β (IKKβ). Here, we found that stable knockdown of Keap1 (Keap1-KD) in RAW 264.7 (RAW) mouse macrophages and human monocyte THP-1 cells significantly increased expression of Il6, and Nrf2-target genes, under basal and lipopolysaccharide (LPS, 0.001–0.1 μg/ml)-challenged conditions. However, Nrf2more » activation alone, by tert-butylhydroquinone treatment of RAW cells, did not increase expression of Il6. Compared to cells transduced with scrambled non-target negative control shRNA, Keap1-KD RAW cells showed enhanced protein levels of IKKβ and increased expression and phosphorylation of NF-κB p65 under non-stressed and LPS-treated conditions. Because the expression of Il6 in Keap1-KD RAW cells was significantly attenuated by silencing of Ikkβ, but not Nrf2, it appears that stabilized IKKβ is responsible for the enhanced transactivation of Il6 in Keap1-KD cells. This study demonstrated that silencing of Keap1 in macrophages boosts LPS-induced transcription of Il6 via NF-κB activation. Given the importance of IL6 in the inflammatory response, the Keap1–IKKβ–NF-κB pathway may be a novel target for treatment and prevention of inflammation and associated disorders. - Highlights: • Knockdown of Keap1 increases expression of Il6 in macrophages. • Silencing of Keap1 results in protein accumulation of IKKβ and NF-κB p65. • Induction of Il6 resulting from Keap1 silencing is attributed to NF-κB activation.« less
Cai, T.; Li, X.; Ding, J.; Luo, W.; Li, J.; Huang, C.
2013-01-01
Cyclooxygenase-2 (COX-2) is a critical enzyme implicated in chronic inflammation-associated cancer development. Our studies have shown that the exposure of Beas-2B cells, a human bronchial epithelial cell line, to lung carcinogenic nickel compounds results in increased COX-2 expression. However, the signaling pathways leading to nickel-induced COX-2 expression are not well understood. In the current study, we found that the exposure of Beas-2B cells to nickel compounds resulted in the activation of both nuclear factor of activated T cell (NFAT) and nuclear factor-κB (NF-κB). The expression of COX-2 induced upon nickel exposure was inhibited by either a NFAT pharmacological inhibitor or the knockdown of NFAT3 by specific siRNA. We further found that the activation of NFAT and NF-κB was dependent on each other. Since our previous studies have shown that NF-κB activation is critical for nickel-induced COX-2 expression in Beas-2B cells exposed to nickel compounds under same experimental condition, we anticipate that there might be a cross-talk between the activation of NFAT and NF-κB for the COX-2 induction due to nickel exposure in Beas-2B cells. Furthermore, we showed that the scavenging of reactive oxygen species (ROS) by introduction of mitochondrial catalase inhibited the activation of both NFAT and NF-κB, and the induction of COX-2 due to nickel exposure. Taken together, our results defining the evidence showing a key role of the cross-talk between NFAT and NF-κB pathways in regulating nickel-induced COX-2 expression, further provide insight into the understanding of the molecular mechanisms linking nickel exposure to its lung carcinogenic effects. PMID:21486220
Aberrantly Expressed OTX Homeobox Genes Deregulate B-Cell Differentiation in Hodgkin Lymphoma.
Nagel, Stefan; Ehrentraut, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G; MacLeod, Roderick A F
2015-01-01
In Hodgkin lymphoma (HL) we recently reported that deregulated homeobox gene MSX1 mediates repression of the B-cell specific transcription factor ZHX2. In this study we investigated regulation of MSX1 in this B-cell malignancy. Accordingly, we analyzed expression and function of OTX homeobox genes which activate MSX1 transcription during embryonal development in the neural plate border region. Our data demonstrate that OTX1 and OTX2 are aberrantly expressed in both HL patients and cell lines. Moreover, both OTX loci are targeted by genomic gains in overexpressing cell lines. Comparative expression profiling and subsequent pathway modulations in HL cell lines indicated that aberrantly enhanced FGF2-signalling activates the expression of OTX2. Downstream analyses of OTX2 demonstrated transcriptional activation of genes encoding transcription factors MSX1, FOXC1 and ZHX1. Interestingly, examination of the physiological expression profile of ZHX1 in normal hematopoietic cells revealed elevated levels in T-cells and reduced expression in B-cells, indicating a discriminatory role in lymphopoiesis. Furthermore, two OTX-negative HL cell lines overexpressed ZHX1 in correlation with genomic amplification of its locus at chromosomal band 8q24, supporting the oncogenic potential of this gene in HL. Taken together, our data demonstrate that deregulated homeobox genes MSX1 and OTX2 respectively impact transcriptional inhibition of (B-cell specific) ZHX2 and activation of (T-cell specific) ZHX1. Thus, we show how reactivation of a specific embryonal gene regulatory network promotes disturbed B-cell differentiation in HL.
N-acetylcysteine and endothelial cell injury by sulfur mustard.
Atkins, K B; Lodhi, I J; Hurley, L L; Hinshaw, D B
2000-12-01
Understanding the underlying mechanisms of cell injury and death induced by the chemical warfare vesicant sulfur mustard (HD) will be extremely helpful in the development of effective countermeasures to this weapon of terror. We have found recently that HD induces both apoptosis and necrosis in endothelial cells (Toxicol. Appl. Pharmacol. 1996; 141: 568-583). Pretreatment of the endothelial cells for 20 h with the redox-active agent N-acetyl-L-cysteine (NAC) selectively prevented apoptotic death induced by HD. In this study, we tested the hypotheses that pretreatment with NAC acts through two different pathways to minimize endothelial injury by HD: NAC pretreatment acts via a glutathione (GSH)-dependent pathway; and NAC pretreatment acts to suppress HD-induced activation of the nuclear transcription factor NFkappaB. We used a fluorescence microscopic assay of apoptotic nuclear features to assess viability and electrophoretic mobility shift assays (EMSAs) to assess the activity of NFkappaB following exposure to HD. The cells were treated with 0-10 mM GSH for 1 h prior to and during exposure to 0 or 500 microM HD for 5-6 h. Cells were also treated with 50 mM NAC or 200 microM buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, alone or in combination overnight prior to exposure to 0 or 500 microM HD for 5-6 h. Externally applied GSH up to a concentration of 5 mM had no toxic effect on the cells. Mild toxicity was associated with 10 mM GSH alone. There was a dose-related enhancement of viability when 2.5 and 5 mM GSH were present during the HD exposure. Pretreatment with BSO alone had no discernible toxicity. However, pretreatment with this inhibitor of GSH synthesis potentiated the toxicity of HD. Pretreatment with 50 mM NAC, as previously reported, provided substantial protection. Combining pretreatment with both BSO and NAC eliminated the protective effect of NAC pretreatment alone on HD injury. These observations are highly suggestive that NAC enhances endothelial survival via GSH-dependent effects and confirms and extends the work of others with different models that externally supplied GSH alone may be a fairly effective countermeasure against HD injury of endothelium. We next examined the hypothesis that HD may activate the nuclear transcription factor NFkappaB by performing EMSAs with nuclear extracts of endothelial cells following exposure to 0, 250 or 500 microM HD. This demonstrated an up to 2.5-fold increase (scanning densitometry) in activation of NFkappaB binding to its consensus sequence induced by 500 microM HD after 5 h of HD exposure. Paradoxically, treatment of the endothelial cells alone with 50 mM NAC activated NFkappaB, although HD-induced activation of NFkappaB was partially suppressed by NAC at 5 h. Factor NFkappaB is an important transcription factor for a number of cytokine genes (e.g. tumor necrosis factor, TNF), which can be activated following stress in endothelial cells. Taken together, these observations suggest that the protective effects of NAC may be mediated by enhanced GSH synthesis. The increased GSH may act to scavenge HD and also prevent oxidative activation of NFkappaB. Under some conditions, NAC may act as an oxidizing agent and thus increase NFkappaB activity. The NFkappaB-dependent gene expression may be important in inducing endothelial cell death as well as in generating a local inflammatory reaction associated with the release of endothelial-derived cytokines.
Transactivation mediated by B-Myb is dependent on TAF(II)250.
Bartusel, Thorsten; Klempnauer, Karl-Heinz
2003-05-15
B-Myb is a highly conserved member of the Myb family of transcription factors, which has been implicated in cell cycle regulation. B-Myb is expressed in most proliferating cells and its activity is highly regulated around the G1/S-phase border of the cell cycle. It is generally assumed that B-Myb regulates the expression of genes that are crucial for cell proliferation; however, the identity of these genes, the molecular mechanisms by which B-Myb stimulates their expression and the involvement of other proteins have not been sufficiently clarified. We have employed the hamster cell line ts13 as a tool to demonstrate a functional link between B-Myb and the coactivator TAF(II)250, a key component of the transcriptional machinery which itself is essential for cell proliferation. ts13 cells express a point-mutated version of TAF(II)250 whose intrinsic histone acetyl transferase activity is temperature sensitive. Transactivation of Myb-responsive reporter genes by B-Myb is temperature-dependent in ts13 cells but not in ts13 cells, which have been rescued by transfection with an expression vector for wild-type TAF(II)250. Furthermore, B-Myb and TAF(II)250 can be coprecipitated, suggesting that both proteins are present in a complex. The formation of this complex is dependent on the DNA-binding domain of B-Myb and not on its transactivation domain. Taken together, these observations provide the first evidence that the coactivator TAF(II)250 is involved in the activation of Myb responsive promoters by B-Myb. The finding that B-Myb transactivation is dependent on a key coactivator involved in cell cycle control is consistent with and strengthens the idea that B-Myb plays a crucial role as a transcription factor in proliferating cells.
Chang, Ying-ling; Chen, Chien-lin; Kuo, Chao-Lin; Chen, Bor-chyuan; You, Jyh-sheng
2010-01-01
Aim: To investigate the effects of glycyrrhetinic acid (GA), an active component extracted from the root of Glycyrrhizae glabra, on the expression of intercellular adhesion molecule-1 (ICAM-1) in tumor necrosis factor-α (TNF-α)-activated human umbilical vein endothelial cells (HUVEC). Methods: ICAM-1 mRNA and protein levels were detected using RT-PCR and cell enzyme-linked immunosorbent assays. The adherence of human monocytic THP-1 cells labeled with [3H]thymidine to HUVEC was determined by counting radioactivity with a scintillation counter. The activation of mitogen-activated protein kinases as well as the degradation of IκB and nuclear factor-κB (NF-κB) or phospho-c-Jun in the nucleus were detected by western blots. NF-κB binding activity was detected using electrophoretic mobility shift assay. Results: GA (50 and 100 μmol/L) significantly inhibits TNF-α-induced ICAM-1 mRNA and protein expressions, as well as THP-1 cell adhesiveness in HUVEC. GA selectively inhibited TNF-α-activated signal pathway of c-Jun N-terminal kinase (JNK), without affecting extracellular signal-regulated kinase 1/2 and p38. Furthermore, GA apparently inhibited IκB/NF-κB signaling system by preventing IκB degradation, NF-κB translocation, and NF-κB/DNA binding activity. Finally, pretreatment with GA or the inhibitors of NF-κB, JNK, and p38 reduced the ICAM-1 protein expression induced by TNF-α. Conclusion: GA inhibits TNF-α-stimulated ICAM-1 expression, leading to a decrease in adherent monocytes to HUVEC. This inhibition is attributed to GA interruption of both JNK/c-Jun and IκB/NF-κB signaling pathways, which decrease activator protein-1 (AP-1) and NF-κB mediated ICAM-1 expressions. The results suggest that GA may provide a beneficial effect in treating vascular diseases associated with inflammation, such as atherosclerosis. PMID:20418897
Nagata, Keiko; Kumata, Keisuke; Nakayama, Yuji; Satoh, Yukio; Sugihara, Hirotsugu; Hara, Sayuri; Matsushita, Michiko; Kuwamoto, Satoshi; Kato, Masako; Murakami, Ichiro; Hayashi, Kazuhiko
2017-04-01
Graves' disease is an autoimmune disease that results in and is the most common cause of hyperthyroidism, and the reactivation of persisting Epstein-Barr virus (EBV) in B lymphocytes induces the differentiation of host B cells into plasma cells. We previously reported that some EBV-infected B cells had thyrotropin receptor antibodies (TRAbs) as surface immunoglobulins (Igs), and EBV reactivation induced these TRAb+EBV+ cells to produce TRAbs. EBV reactivation induces Ig production from host B cells. The purpose of the present study was to examine total Ig productions from B cell culture fluids and to detect activation-induced cytidine deaminase (AID), nuclear factor kappa B (NF-κB), and EBV latent membrane protein (LMP) 1 in culture B cells during EBV reactivation induction and then we discussed the mechanisms of EBV reactivation-induced Ig production in relation to autoimmunity. We showed that the EBV reactivation induces the production of every isotype of Ig and suggested that the Ig production was catalyzed by AID through LMP1 and NF-κB. The results that the amount of IgM was significantly larger compared with IgG suggested the polyclonal B cell activation due to LMP1. We proposed the pathway of EBV reactivation induced Ig production; B cells newly infected with EBV are activated by polyclonal B cell activation and produce Igs through plasma cell differentiation induced by EBV reactivation. LMP1-induced AID enabled B cells to undergo class-switch recombination to produce every isotype of Ig. According to this mechanism, EBV rescues autoreactive B cells to produce autoantibodies, which contribute to the development and exacerbation of autoimmune diseases.
Kumata, Keisuke; Nakayama, Yuji; Satoh, Yukio; Sugihara, Hirotsugu; Hara, Sayuri; Matsushita, Michiko; Kuwamoto, Satoshi; Kato, Masako; Murakami, Ichiro; Hayashi, Kazuhiko
2017-01-01
Abstract Graves' disease is an autoimmune disease that results in and is the most common cause of hyperthyroidism, and the reactivation of persisting Epstein–Barr virus (EBV) in B lymphocytes induces the differentiation of host B cells into plasma cells. We previously reported that some EBV-infected B cells had thyrotropin receptor antibodies (TRAbs) as surface immunoglobulins (Igs), and EBV reactivation induced these TRAb+EBV+ cells to produce TRAbs. EBV reactivation induces Ig production from host B cells. The purpose of the present study was to examine total Ig productions from B cell culture fluids and to detect activation-induced cytidine deaminase (AID), nuclear factor kappa B (NF-κB), and EBV latent membrane protein (LMP) 1 in culture B cells during EBV reactivation induction and then we discussed the mechanisms of EBV reactivation-induced Ig production in relation to autoimmunity. We showed that the EBV reactivation induces the production of every isotype of Ig and suggested that the Ig production was catalyzed by AID through LMP1 and NF-κB. The results that the amount of IgM was significantly larger compared with IgG suggested the polyclonal B cell activation due to LMP1. We proposed the pathway of EBV reactivation induced Ig production; B cells newly infected with EBV are activated by polyclonal B cell activation and produce Igs through plasma cell differentiation induced by EBV reactivation. LMP1-induced AID enabled B cells to undergo class-switch recombination to produce every isotype of Ig. According to this mechanism, EBV rescues autoreactive B cells to produce autoantibodies, which contribute to the development and exacerbation of autoimmune diseases. PMID:28333576
Tokuoka, Miki; Kobayashi, Kenji; Satou, Yutaka
2018-06-06
The transcriptional repressor Snail is required for proper differentiation of the tail muscle of ascidian tadpole larvae. Two muscle lineages (B5.1 and B6.4) contribute to the anterior tail muscle cells, and are consecutively separated from a transcriptionally quiescent germ cell lineage at the 16- and 32-cell stages. Concomitantly, cells of these lineages begin to express Tbx6.b ( Tbx6-r.b ) at the 16- and 32-cell stages, respectively. Meanwhile, Snail expression begins in these two lineages simultaneously at the 32-cell stage. Here, we show that Snail expression is regulated differently between these two lineages. In the B5.1 lineage, Snail was activated through Tbx6.b , which is activated by maternal factors, including Zic-r.a. In the B6.4 lineage, the MAPK pathway was cell-autonomously activated by a constitutively active form of Raf, enabling Zic-r.a to activate Snail independently of Tbx6.b As a result, Snail begins to be expressed at the 32-cell stage simultaneously in these two lineages. Such shortcuts might be required for coordinating developmental programs in embryos in which cells become separated progressively from stem cells, including germline cells. © 2018. Published by The Company of Biologists Ltd.
Synergic Effects of Mycoplasmal Lipopeptides and Extracellular ATP on Activation of Macrophages
Into, Takeshi; Fujita, Mari; Okusawa, Tsugumi; Hasebe, Akira; Morita, Manabu; Shibata, Ken-Ichiro
2002-01-01
Mycoplasmal lipopeptides S-(2,3-bispalmitoyloxypropyl)-CGDPKHSPKSF and S-(2,3-bispalmitoyloxypropyl)-CGNNDESNISFKEK activated a monocytic cell line, THP-1 cells, to produce tumor necrosis factor alpha. The activity of the lipopeptides was augmented by ATP in a dose-dependent manner. In addition, the level of expression of mRNAs for tumor necrosis factor alpha and interleukin-1β, -6, and -8 was also upregulated by the lipopeptides and/or extracellular ATP, but that of interleukin-10 was not. The P2X purinergic receptor antagonists pyridoxal phosphate 6-azophenyl 2′,4′-disulfonic acid and periodate-oxidized ATP suppressed the activity of ATP to augment the activation of THP-1 cells by the lipopeptides, suggesting that P2X receptors play important roles in the activity of ATP. The nuclear factor κB inhibitor dexamethasone also suppressed the activity, suggesting that the activity of ATP is dependent upon the nuclear factor κB. Thus, these results suggest that the interaction of extracellular ATP with the P2X receptors is attributed to the activity of ATP to augment the activation of THP-1 cells by mycoplasmal lipopeptides. PMID:12065499
Vara, Dina; Watt, Joanna M.; Fortunato, Tiago M.; Mellor, Harry; Burgess, Matthew; Wicks, Kate; Mace, Kimberly; Reeksting, Shaun; Lubben, Anneke; Wheeler-Jones, Caroline P.D.
2018-01-01
Abstract Aims: Deoxyribose-1-phosphate (dRP) is a proangiogenic paracrine stimulus released by cancer cells, platelets, and macrophages and acting on endothelial cells. The objective of this study was to clarify how dRP stimulates angiogenic responses in human endothelial cells. Results: Live cell imaging, electron paramagnetic resonance, pull-down of dRP-interacting proteins, followed by immunoblotting, gene silencing of different NADPH oxidases (NOXs), and their regulatory cosubunits by small interfering RNA (siRNA) transfection, and experiments with inhibitors of the sugar transporter glucose transporter 1 (GLUT1) were utilized to demonstrate that dRP acts intracellularly by directly activating the endothelial NOX2 complex, but not NOX4. Increased reactive oxygen species generation in response to NOX2 activity leads to redox-dependent activation of the transcription factor nuclear factor kappa B (NF-κB), which, in turn, induces vascular endothelial growth factor receptor 2 (VEGFR2) upregulation. Using endothelial tube formation assays, gene silencing by siRNA, and antibody-based receptor inhibition, we demonstrate that the activation of NF-κB and VEGFR2 is necessary for the angiogenic responses elicited by dRP. The upregulation of VEGFR2 and NOX2-dependent stimulation of angiogenesis by dRP were confirmed in excisional wound and Matrigel plug vascularization assays in vivo using NOX2−/− mice. Innovation: For the first time, we demonstrate that dRP acts intracellularly and stimulates superoxide anion generation by direct binding and activation of the NOX2 enzymatic complex. Conclusions: This study describes a novel molecular mechanism underlying the proangiogenic activity of dRP, which involves the sequential activation of NOX2 and NF-κB and upregulation of VEGFR2. Antioxid. Redox Signal. 28, 110–130. PMID:28793782
Easty, D J; Guthrie, B A; Maung, K; Farr, C J; Lindberg, R A; Toso, R J; Herlyn, M; Bennett, D C
1995-06-15
Epithelial cell kinase (ECK) is a receptor protein tyrosine kinase, the role of which in melanoma biology is unclear. Here we studied the role of ECK during melanoma progression. ECK mRNA was overexpressed in virtually all melanoma lines tested, and levels were significantly higher in cell lines from distant metastases than primary melanomas; melanocytes were negative. Gene amplification was not detected in melanomas. Levels of ECK protein corresponded well with mRNA levels. B61 or LERK-1, recently identified as an ECK ligand, stimulated the growth of ECK-expressing melanoma cell lines, its first identified biological activity. Melanoma chemotaxis and chemoinvasion were not affected by B61. Growth of normal melanocytes was not affected. mRNA for B61 was detected in both melanoma cell lines and normal melanocytes. B61 was also identified by Western blotting and ECK binding activity with the use of a BIAcore binding assay in melanoma cell-conditioned media. These results suggest that B61 is an autocrine growth factor for melanomas but not normal melanocytes.
Thymoquinone chemosensitizes colon cancer cells through inhibition of NF-κB.
Zhang, Lida; Bai, Yangqiu; Yang, Yuxiu
2016-10-01
In the present study, the effects and molecular mechanisms of thymoquinone (TQ) on colon cancer cells were investigated. Cell viability was determined using a Cell Counting Kit-8 assay, and the results revealed that treatment with TQ significantly decreased cell viability in COLO205 and HCT116 cells in a dose-dependent manner. TQ treatment additionally sensitized COLO205 and HCT116 cells to cisplatin therapy in a concentration-dependent manner. To investigate the molecular mechanisms of TQ action, western blot analysis was used to determine the levels of phosphorylated p65 and nuclear factor-κB (NF-κB)-regulated gene products vascular endothelial growth factor (VEGF), c-Myc and B-cell lymphoma 2 (Bcl-2). The results indicated that TQ treatment significantly decreased the level of phosphorylated p65 in the nucleus, which indicated the inhibition of NF-κB activation by TQ treatment. Treatment with TQ also decreased the expression levels of VEGF, c-Myc and Bcl-2. In addition, the inhibition of NF-κB activation with a specific inhibitor, pyrrolidine dithiocarbamate, potentiated the induction of cell death and caused a chemosensitization effect of TQ in colon cancer cells. Overall, the results of the present study suggested that TQ induced cell death and chemosensitized colon cancer cells by inhibiting NF-κB signaling.
Thymoquinone chemosensitizes colon cancer cells through inhibition of NF-κB
Zhang, Lida; Bai, Yangqiu; Yang, Yuxiu
2016-01-01
In the present study, the effects and molecular mechanisms of thymoquinone (TQ) on colon cancer cells were investigated. Cell viability was determined using a Cell Counting Kit-8 assay, and the results revealed that treatment with TQ significantly decreased cell viability in COLO205 and HCT116 cells in a dose-dependent manner. TQ treatment additionally sensitized COLO205 and HCT116 cells to cisplatin therapy in a concentration-dependent manner. To investigate the molecular mechanisms of TQ action, western blot analysis was used to determine the levels of phosphorylated p65 and nuclear factor-κB (NF-κB)-regulated gene products vascular endothelial growth factor (VEGF), c-Myc and B-cell lymphoma 2 (Bcl-2). The results indicated that TQ treatment significantly decreased the level of phosphorylated p65 in the nucleus, which indicated the inhibition of NF-κB activation by TQ treatment. Treatment with TQ also decreased the expression levels of VEGF, c-Myc and Bcl-2. In addition, the inhibition of NF-κB activation with a specific inhibitor, pyrrolidine dithiocarbamate, potentiated the induction of cell death and caused a chemosensitization effect of TQ in colon cancer cells. Overall, the results of the present study suggested that TQ induced cell death and chemosensitized colon cancer cells by inhibiting NF-κB signaling. PMID:27698868
Gölz, L.; Memmert, S.; Rath-Deschner, B.; Jäger, A.; Appel, T.; Baumgarten, G.; Götz, W.; Frede, S.
2015-01-01
Periodontitis is characterized by deep periodontal pockets favoring the proliferation of anaerobic bacteria like Porphyromonas gingivalis (P. gingivalis), a periodontal pathogen frequently observed in patients suffering from periodontal inflammation. Therefore, the aim of the present study was to investigate the signaling pathways activated by lipopolysaccharide (LPS) of P. gingivalis (LPS-PG) and hypoxia in periodontal ligament (PDL) cells. The relevant transcription factors nuclear factor-kappa B (NF-κB) and hypoxia inducible factor-1 (HIF-1) were determined. In addition, we analyzed the expression of interleukin- (IL-) 1β, matrix metalloproteinase-1 (MMP-1), and vascular endothelial growth factor (VEGF) in PDL cells on mRNA and protein level. This was accomplished by immunohistochemistry of healthy and inflamed periodontal tissues. We detected time-dependent additive effects of LPS-PG and hypoxia on NF-κB and HIF-1α activation in PDL cells followed by an upregulation of IL-1β, MMP-1, and VEGF expression. Immunohistochemistry performed on tissue samples of gingivitis and periodontitis displayed an increase of NF-κB, HIF-1, and VEGF immunoreactivity in accordance with disease progression validating the importance of the in vitro results. To conclude, the present study underlines the significance of NF-κB and HIF-1α and their target genes VEGF, IL-1β, and MMP-1 in P. gingivalis and hypoxia induced periodontal inflammatory processes. PMID:25861162
In vitro anti-inflammatory and anti-cancer activities of Cuscuta reflexa Roxb.
Suresh, V; Sruthi, V; Padmaja, B; Asha, V V
2011-04-12
To determine anti-inflammatory and anti-cancer activities of Cuscuta reflexa in cell lines (in vitro). Anti-inflammatory activity of the water extract was analysed in vitro using lipopolysaccharide (LPS) induced inflammatory reactions in murine macrophage cell line RAW264.7. The expression of COX-2 and TNF-α genes involved in inflammation was analysed by SQ RT-PCR. EMSA was conducted to analyse the influence of the extract on NF-κB signalling. Anti-cancer activity was analysed on Hep3B cells by MTT assay, DAPI staining, annexin V staining and SQ-RT PCR analysis of BAX, Bcl-2, p53 and survivin. The extract down regulated LPS induced over expression of TNF-α and COX-2 in RAW264.7 cells; blocked NF-κB binding to its motifs and induced apoptosis in Hep3B cells as evidenced from MTT, DAPI staining and annexin V staining assays. The extract up regulated pro-apoptotic factors BAX and p53, and down regulated anti-apoptotic factors Bcl-2 and survivin. The study showed that Cuscuta reflexa inhibits LPS induced inflammatory responses in RAW264.7 cells through interplay of TNF-α, COX-2 and NF-κB signalling. It induced apoptosis in Hep3B cells through the up regulation of p53, BAX and down regulation of Bcl-2 and survivin. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakuma, Yuji, E-mail: ysakuma@gancen.asahi.yokohama.jp; Yamazaki, Yukiko; Nakamura, Yoshiyasu
2012-07-13
Highlights: Black-Right-Pointing-Pointer EGFR-mutant cells in 3D culture resist EGFR inhibition compared with suspended cells. Black-Right-Pointing-Pointer Degradation of I{kappa}B and activation of NF-{kappa}B are observed in 3D-cultured cells. Black-Right-Pointing-Pointer Inhibiting NF-{kappa}B enhances the efficacy of the EGFR inhibitor in 3D-cultured cells. -- Abstract: Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cellsmore » cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of I{kappa}B{alpha}, the inhibitor of nuclear factor (NF)-{kappa}B, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-{kappa}B. Moreover, the inhibition of NF-{kappa}B with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-{kappa}B signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.« less
Oh, Yoon Sin; Shin, Seungjin; Lee, Youn-Jung; Kim, Eung Hwi; Jun, Hee-Sook
2011-01-01
Background Betacellulin (BTC), a member of the epidermal growth factor family, is known to play an important role in regulating growth and differentiation of pancreatic beta cells. Growth-promoting actions of BTC are mediated by epidermal growth factor receptors (ErbBs), namely ErbB-1, ErbB-2, ErbB-3 and ErbB-4; however, the exact mechanism for beta cell proliferation has not been elucidated. Therefore, we investigated which ErbBs are involved and some molecular mechanisms by which BTC regulates beta cell proliferation. Methodology/Principal Findings The expression of ErbB-1, ErbB-2, ErbB-3, and ErbB-4 mRNA was detected by RT-PCR in both a beta cell line (MIN-6 cells) and C57BL/6 mouse islets. Immunoprecipitation and western blotting analysis showed that BTC treatment of MIN-6 cells induced phosphorylation of only ErbB-1 and ErbB-2 among the four EGF receptors. BTC treatment resulted in DNA synthetic activity, cell cycle progression, and bromodeoxyuridine (BrdU)-positive staining. The proliferative effect was blocked by treatment with AG1478 or AG825, specific tyrosine kinase inhibitors of ErbB-1 and ErbB-2, respectively. BTC treatment increased mRNA and protein levels of insulin receptor substrate-2 (IRS-2), and this was blocked by the ErbB-1 and ErbB-2 inhibitors. Inhibition of IRS-2 by siRNA blocked cell cycle progression induced by BTC treatment. Streptozotocin-induced diabetic mice injected with a recombinant adenovirus expressing BTC and treated with AG1478 or AG825 showed reduced islet size, reduced numbers of BrdU-positive cells in the islets, and did not attain BTC-mediated remission of diabetes. Conclusions/Significance These results suggest that BTC exerts proliferative activity on beta cells through the activation of ErbB-1 and ErbB-2 receptors, which may increase IRS-2 expression, contributing to the regeneration of beta cells. PMID:21897861
Luo, Jiesi; Cibelli, Jose B
2016-09-19
Dogs have been widely used as a preclinical model for human disease. With the successful generation of canine induced pluripotent stem cells (ciPSCs), the biomedical community has a unique opportunity to study therapeutic interventions using autologous stem cells that can benefit dogs and humans. Unlike mice and human pluripotent cells, which are leukemia inhibitory factor (LIF)- and basic fibroblast growth factor (bFGF)-dependent, respectively, dog iPSCs require both growth factors simultaneously. In an effort to elucidate the role of each factor in the control of ciPSC self-renewal, we performed a series of experiments aiming at understanding the signaling pathways activated by them. We found that bFGF regulates pluripotency by indirectly activating the SMAD2/3 pathway in the presence of feeder cells, exclusively targeting NANOG expression, and inhibiting spontaneous differentiation toward ectoderm and mesoderm. LIF activates the JAK-STAT3 pathway but does not function in the typical manner described in mouse naïve embryonic stem cells. These results show that a unique mechanism for maintenance of pluripotency is present in ciPSC. These findings should be taken into account when establishing stem cell differentiation protocols and may provide more insight into pluripotency regulation in species other than mice and humans.
Avnet, Sofia; Di Pompo, Gemma; Chano, Tokuhiro; Errani, Costantino; Ibrahim-Hashim, Arig; Gillies, Robert J; Donati, Davide Maria; Baldini, Nicola
2017-03-15
The role of mesenchymal stem cells (MSC) in osteosarcoma (OS), the most common primary tumor of bone, has not been extensively elucidated. We have recently shown that OS is characterized by interstitial acidosis, a microenvironmental condition that is similar to a wound setting, in which mesenchymal reactive cells are activated to release mitogenic and chemotactic factors. We therefore intended to test the hypothesis that, in OS, acid-activated MSC influence tumor cell behavior. Conditioned media or co-culture with normal MSC previously incubated with short-term acidosis (pH 6.8 for 10 hr, H + -MSC) enhanced OS clonogenicity and invasion. This effect was mediated by NF-κB pathway activation. In fact, deep-sequencing analysis, confirmed by Real-Time PCR and ELISA, demonstrated that H + -MSC differentially induced a tissue remodeling phenotype with increased expression of RelA, RelB and NF-κB1, and downstream, of CSF2/GM-CSF, CSF3/G-CSF and BMP2 colony-promoting factors, and of chemokines (CCL5, CXCL5 and CXCL1), and cytokines (IL6 and IL8), with an increased expression of CXCR4. An increased expression of IL6 and IL8 were found only in normal stromal cells, but not in OS cells, and this was confirmed in tumor-associated stromal cells isolated from OS tissue. Finally, H + -MSC conditioned medium differentially promoted OS stemness (sarcosphere number, stem-associated gene expression), and chemoresistance also via IL6 secretion. Our data support the hypothesis that the acidic OS microenvironment is a key factor for MSC activation, in turn promoting the secretion of paracrine factors that influence tumor behavior, a mechanism that holds the potential for future therapeutic interventions aimed to target OS. © 2016 UICC.
Ascorbyl Stearate Promotes Apoptosis Through Intrinsic Mitochondrial Pathway in HeLa Cancer Cells.
Mane, Shirish D; Thoh, Maikho; Sharma, Deepak; Sandur, Santosh K; Naidu, K Akhilender
2016-12-01
Ascorbic acid is proposed to have antitumor potential against certain cancer types but has the limitation of requiring high doses for treating cancer. Ascorbyl stearate (ASC-S) is a fatty acid ester derivative of ascorbic acid with comparable potent apoptotic activity. The present study was aimed at understanding the pathway involved in apoptotic activity of ASC-S in cervical cancer cells. The effect of ASC-S on reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) was studied in HeLa cells. Furthermore, the dose-dependent effect of ASC-S on release of cytochrome c, pro-caspase-9, caspase-3, BH3 interacting-domain death agonist (BID), truncated BH3 interacting-domain death agonist (t-BID), FAS ligand (FASL) and transcription factors nuclear factor-kappa B (NF-ĸB), nuclear factor of activated T-cells (NFAT) and activator protein-1 (AP1) were studied in HeLa cells. Treatment of HeLa cells with ASC-S significantly increased the MMP. The modulation of MMP resulted in cleavage of BID, expression of FAS, cleavage of pro-caspase-9 and release of cytochrome c into cytosol. In addition, ASC-S treatment resulted in deregulation of transcription factors NF-ĸB, NFAT and AP1, which play an important role in the development of inflammation and cancer. Our data, for the first time, suggest that ASC-S has an apoptotic effect against HeLa cells by inducing change in mitochondrial membrane permeability, cytochrome c release and subsequent activation of caspase-3 and NF-ĸB. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Loss of calreticulin function decreases NFκB activity by stabilizing IκB protein.
Massaeli, Hamid; Jalali, Shahrzad; Viswanathan, Divya; Mesaeli, Nasrin
2014-11-01
Transcription factor NFκB is activated by several processes including inflammation, endoplasmic-reticulum (ER) stress, increase in Akt signaling and enhanced proteasomal degradation. Calreticulin (CRT) is an ER Ca(2+)-binding chaperone that regulates many cellular processes. Gene-targeted deletion of CRT has been shown to induce ER stress that is accompanied with a significant increase in the proteasome activity. Loss of CRT function increases the resistance of CRT-deficient (crt-/-) cells to UV- and drug-induced apoptosis. Based on these reports we hypothesized that loss of CRT will activate NFκB signaling thus contributing to enhanced resistance to apoptosis. In contrast to our hypothesis, we observed a significant decrease in the basal transcriptional activity of NFκB in CRT-deficient cells. Treatment with lipopolysaccharide failed to increase the transcriptional activity of NFκB in the crt-/- cells to the same level as in the wt cells. Our data illustrate that the mechanism of decreased NFκB activity in CRT-deficient cells is mediated by a significant increase in IκB protein expression. Furthermore, we showed a significant increase in protein phosphatase 2A activity inhibition which resulted in decreased IκBα protein level in CRT-deficient cells. Based on our data we concluded that loss of CRT increases the stability of IκB protein thus reducing NFκB activity. Copyright © 2014 Elsevier B.V. All rights reserved.
Yoshii, Shigeto; Tanaka, Masamitsu; Otsuki, Yoshiro; Fujiyama, Toshiharu; Kataoka, Hideki; Arai, Hajime; Hanai, Hiroyuki; Sugimura, Haruhiko
2001-01-01
Benzo[a]pyrene [B(a)P], a potent procarcinogen found in combustion products such as diesel exhaust and cigarette smoke, has been recently shown to activate the c-Jun NH2-terminal kinase 1 (JNK1) and induce caspase-3-mediated apoptosis in Hepa1c1c7 cells. However, the molecules of the signaling pathway that control the mitogen-activated protein kinase cascades induced by B(a)P and the interaction between those and apoptosis by B(a)P have not been well defined. We report here that B(a)P promoted Cdc42/Rac1, p21-activated kinase 1 (PAK1), and JNK1 activities in 293T and HeLa cells. Moreover, alpha-PAK-interacting exchange factor (α PIX) mRNA and its protein expression were upregulated by B(a)P. While overexpression of an active mutant of α PIX (ΔCH) facilitated B(a)P-induced activation of Cdc42/Rac1, PAK1, and JNK1, overexpression of mutated αPIX (L383R, L384S), which lacks guanine nucleotide exchange factor activity, SH3 domain-deleted αPIX (Δ SH3), which lacks the ability to bind PAK, kinase-negative PAK1 (K299R), and kinase-negative SEK1 (K220A, K224L) inhibited B(a)P-triggered JNK1 activation. Interestingly, overexpression of αPIX (Δ CH) and a catalytically active mutant PAK1 (T423E) accelerated B(a)P-induced apoptosis in HeLa cells, whereas αPIX (Δ SH3), PAK1 (K299R), and SEK 1 (K220A, K224L) inhibited B(a)P-initiated apoptosis. Finally, a preferential caspase inhibitor, Z-Asp-CH2-DCB, strongly blocked the αPIX (Δ CH)-enhanced apoptosis in cells treated with B(a)P but did not block PAK1/JNK1 activation. Taken together, these results indicate that αPIX plays a crucial role in B(a)P-induced apoptosis through activation of the JNK1 pathway kinases. PMID:11564864
Holtmann, Gudrun; Brigulla, Matthias; Steil, Leif; Schütz, Alexandra; Barnekow, Karsta; Völker, Uwe; Bremer, Erhard
2004-01-01
General stress proteins protect Bacillus subtilis cells against a variety of environmental insults. This adaptive response is particularly important for nongrowing cells, to which it confers a multiple, nonspecific, and preemptive stress resistance. Induction of the general stress response relies on the alternative transcription factor, SigB, whose activity is controlled by a partner switching mechanism that also involves the anti-sigma factor, RsbW, and the antagonist protein, RsbV. Recently, the SigB regulon has been shown to be continuously induced and functionally important in cells actively growing at low temperature. With the exception of this chill induction, all SigB-activating stimuli identified so far trigger a transient expression of the SigB regulon that depends on RsbV. Through a proteome analysis and Northern blot and gene fusion experiments, we now show that the SigB regulon is continuously induced in cells growing actively at 51°C, close to the upper growth limit of B. subtilis. This heat induction of SigB-dependent genes requires the environmental stress-responsive phosphatase RsbU, but not the metabolic stress-responsive phosphatase RsbP. RsbU dependence of SigB activation by heat is overcome in mutants that lack RsbV. In addition, loss of RsbV alone or in combination with RsbU triggers a hyperactivation of the general stress regulon exclusively at high temperatures detrimental for cell growth. These new facets of heat induction of the SigB regulon indicate that the current view of the complex genetic and biochemical regulation of SigB activity is still incomplete and that SigB perceives signals independent of the RsbV-mediated signal transduction pathways under heat stress conditions. PMID:15342585
B-cell subset alterations and correlated factors in HIV-1 infection.
Pensieroso, Simone; Galli, Laura; Nozza, Silvia; Ruffin, Nicolas; Castagna, Antonella; Tambussi, Giuseppe; Hejdeman, Bo; Misciagna, Donatella; Riva, Agostino; Malnati, Mauro; Chiodi, Francesca; Scarlatti, Gabriella
2013-05-15
During HIV-1 infection, the development, phenotype, and functionality of B cells are impaired. Transitional B cells and aberrant B-cell populations arise in blood, whereas a declined percentage of resting memory B cells is detected. Our study aimed at pinpointing the demographic, immunological, and viral factors driving these pathological findings, and the role of antiretroviral therapy in reverting these alterations. B-cell phenotype and correlating factors were evaluated. Variations in B-cell subsets were evaluated by flow cytometry in HIV-1-infected individuals naive to therapy, elite controllers, and patients treated with antiretroviral drugs (virological control or failure). Multivariable analysis was performed to identify variables independently associated with the B-cell alterations. Significant differences were observed among patients' groups in relation to all B-cell subsets. Resting memory B cells were preserved in patients naive to therapy and elite controllers, but reduced in treated patients. Individuals naive to therapy and experiencing multidrug failure, as well as elite controllers, had significantly higher levels of activated memory B cells compared to healthy controls. In the multivariate analysis, plasma viral load and nadir CD4 T cells independently correlated with major B-cell alterations. Coinfection with hepatitis C but not hepatitis B virus also showed an impact on specific B-cell subsets. Successful protracted antiretroviral treatment led to normalization of all B-cell subsets with exception of resting memory B cells. Our results indicate that viremia and nadir CD4 T cells are important prognostic markers of B-cell perturbations and provide evidence that resting memory B-cell depletion during chronic infection is not reverted upon successful antiretroviral therapy.
van der Voort, R; Keehnen, R M; Beuling, E A; Spaargaren, M; Pals, S T
2000-10-16
Recently, biochemical, cell biological, and genetic studies have converged to reveal that integral membrane heparan sulfate proteoglycans (HSPGs) are critical regulators of growth and differentiation of epithelial and connective tissues. As a large number of cytokines involved in lymphoid tissue homeostasis or inflammation contain potential HS-binding domains, HSPGs presumably also play important roles in the regulation of the immune response. In this report, we explored the expression, regulation, and function of HSPGs on B lymphocytes. We demonstrate that activation of the B cell antigen receptor (BCR) and/or CD40 induces a strong transient expression of HSPGs on human tonsillar B cells. By means of these HSPGs, the activated B cells can bind hepatocyte growth factor (HGF), a cytokine that regulates integrin-mediated B cell adhesion and migration. This interaction with HGF is highly selective since the HSPGs did not bind the chemokine stromal cell-derived factor (SDF)-1 alpha, even though the affinities of HGF and SDF-1alpha for heparin are similar. On the activated B cells, we observed induction of a specific HSPG isoform of CD44 (CD44-HS), but not of other HSPGs such as syndecans or glypican-1. Interestingly, the expression of CD44-HS on B cells strongly promotes HGF-induced signaling, resulting in an HS-dependent enhanced phosphorylation of Met, the receptor tyrosine kinase for HGF, as well as downstream signaling molecules including Grb2-associated binder 1 (Gab1) and Akt/protein kinase B (PKB). Our results demonstrate that the BCR and CD40 control the expression of HSPGs, specifically CD44-HS. These HSPGs act as functional coreceptors that selectively promote cytokine signaling in B cells, suggesting a dynamic role for HSPGs in antigen-specific B cell differentiation.
An aberrant NOTCH2-BCR signaling axis in B cells from patients with chronic GVHD.
Poe, Jonathan C; Jia, Wei; Su, Hsuan; Anand, Sarah; Rose, Jeremy J; Tata, Prasanthi V; Suthers, Amy N; Jones, Corbin D; Kuan, Pei Fen; Vincent, Benjamin G; Serody, Jonathan S; Horwitz, Mitchell E; Ho, Vincent T; Pavletic, Steven Z; Hakim, Frances T; Owzar, Kouros; Zhang, Dadong; Blazar, Bruce R; Siebel, Christian W; Chao, Nelson J; Maillard, Ivan; Sarantopoulos, Stefanie
2017-11-09
B-cell receptor (BCR)-activated B cells contribute to pathogenesis in chronic graft-versus-host disease (cGVHD), a condition manifested by both B-cell autoreactivity and immune deficiency. We hypothesized that constitutive BCR activation precluded functional B-cell maturation in cGVHD. To address this, we examined BCR-NOTCH2 synergy because NOTCH has been shown to increase BCR responsiveness in normal mouse B cells. We conducted ex vivo activation and signaling assays of 30 primary samples from hematopoietic stem cell transplantation patients with and without cGVHD. Consistent with a molecular link between pathways, we found that BCR-NOTCH activation significantly increased the proximal BCR adapter protein BLNK. BCR-NOTCH activation also enabled persistent NOTCH2 surface expression, suggesting a positive feedback loop. Specific NOTCH2 blockade eliminated NOTCH-BCR activation and significantly altered NOTCH downstream targets and B-cell maturation/effector molecules. Examination of the molecular underpinnings of this "NOTCH2-BCR axis" in cGVHD revealed imbalanced expression of the transcription factors IRF4 and IRF8 , each critical to B-cell differentiation and fate. All- trans retinoic acid (ATRA) increased IRF4 expression, restored the IRF4 -to- IRF8 ratio, abrogated BCR-NOTCH hyperactivation, and reduced NOTCH2 expression in cGVHD B cells without compromising viability. ATRA-treated cGVHD B cells had elevated TLR9 and PAX5 , but not BLIMP1 (a gene-expression pattern associated with mature follicular B cells) and also attained increased cytosine guanine dinucleotide responsiveness. Together, we reveal a mechanistic link between NOTCH2 activation and robust BCR responses to otherwise suboptimal amounts of surrogate antigen. Our findings suggest that peripheral B cells in cGVHD patients can be pharmacologically directed from hyperactivation toward maturity.
NF-κB and the link between inflammation and cancer.
DiDonato, Joseph A; Mercurio, Frank; Karin, Michael
2012-03-01
The nuclear factor-κB (NF-κB) transcription factor family has been considered the central mediator of the inflammatory process and a key participant in innate and adaptive immune responses. Coincident with the molecular cloning of NF-κB/RelA and identification of its kinship to the v-Rel oncogene, it was anticipated that NF-κB itself would be involved in cancer development. Oncogenic activating mutations in NF-κB genes are rare and have been identified only in some lymphoid malignancies, while most NF-κB activating mutations in lymphoid malignancies occur in upstream signaling components that feed into NF-κB. NF-κB activation is also prevalent in carcinomas, in which NF-κB activation is mainly driven by inflammatory cytokines within the tumor microenvironment. Importantly, however, in all malignancies, NF-κB acts in a cell type-specific manner: activating survival genes within cancer cells and inflammation-promoting genes in components of the tumor microenvironment. Yet, the complex biological functions of NF-κB have made its therapeutic targeting a challenge. © 2012 John Wiley & Sons A/S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Xia, E-mail: zhongxia1977@126.com; Li, Xiaonan; Liu, Fuli
2012-08-24
Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibitedmore » TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.« less
Franco, Daiane Gil; Markus, Regina P.
2014-01-01
The constitutive activation of nuclear factor-κB (NF-κB), a key transcription factor involved in neuroinflammation, is essential for the survival of neurons in situ and of cerebellar granule cells in culture. Melatonin is known to inhibit the activation of NF-κB and has a cytoprotective function. In this study, we evaluated whether the cytoprotective effect of melatonin depends on the state of activation of a mixed cerebellar culture that is composed predominantly of granule cells; we tested the effect of melatonin on cultured rat cerebellar cells stimulated or not with lipopolysaccharide (LPS). The addition of melatonin (0.1 nM–1 µM) reduced the survival of naïve cells while inhibiting LPS-induced cell death. Melatonin (100 nM) transiently (15 min) inhibited the nuclear translocation of both NF-κB dimers (p50/p50, p50/RelA) and, after 60 min, increased the activation of p50/RelA. Melatonin-induced p50/RelA activity in naïve cells resulted in the transcription of inducible nitric oxide synthase (iNOS) and the production of NO. Otherwise, in cultures treated with LPS, melatonin blocked the LPS-induced activation of p50/RelA and the reduction in p50/p50 levels and inhibited iNOS expression and NO synthesis. Therefore, melatonin in vehicle-treated cells induces cell death, while it protects against LPS-induced cytotoxicity. In summary, we confirmed that melatonin is a neuroprotective drug when cerebellar cells are challenged; however, melatonin can also lead to cell death when the normal balance of the NF-κB pathway is disturbed. Our data provide a mechanistic basis for understanding the influence of cell context on the final output response of melatonin. PMID:25184316
Patterns of B-lymphocyte gene expression elicited by lipopolysaccharide mitogen.
Janossy, G; Snajdr, J; Simak-Ellis, M
1976-01-01
When large proportions of B lymphocytes from the murine spleen are stimulated in vitro by bacterial lipopolysaccharide (LPS) B lymphoblasts with small amounts of intracellular immunoglobulin (Ig) and plasmablasts with large amounts of intracellular Ig concomitantly proliferate. It is likely that B lymphocytes are heterogeneous and LPS activates B cells to express their predetermined functional capacity since bromodeoxyuridine does not inhibit the initiation of Ig synthesis in plasmablasts, and Ig synthesis starts before these cells complete their first mitosis. The results suggest that LPS is a potent polyclonal activator (of a B-cell subset) but it is not a differentiation factor in the sense that it is unable to determine whether its target cell develops extensive endoplasmic reticulum or follows a different pathway. The results do not exclude that modulation of B cells' genetic programming might take place during T cell-dependent B-lymphocyte activation. The observed B-cell heterogeneity offers a possible explanation for the concomitant emergence of B memory cells and antibody producers during the early phase of immune responses in vivo. Images Figure 3 Figure 5 Figure 7 Figure 8 PMID:1088414
Utility of Clostridium difficile toxin B for inducing anti-tumor immunity.
Huang, Tuxiong; Li, Shan; Li, Guangchao; Tian, Yuan; Wang, Haiying; Shi, Lianfa; Perez-Cordon, Gregorio; Mao, Li; Wang, Xiaoning; Wang, Jufang; Feng, Hanping
2014-01-01
Clostridium difficile toxin B (TcdB) is a key virulence factor of bacterium and induces intestinal inflammatory disease. Because of its potent cytotoxic and proinflammatory activities, we investigated the utility of TcdB in developing anti-tumor immunity. TcdB induced cell death in mouse colorectal cancer CT26 cells, and the intoxicated cells stimulated the activation of mouse bone marrow-derived dendritic cells and subsequent T cell activation in vitro. Immunization of BALB/c mice with toxin-treated CT26 cells elicited potent anti-tumor immunity that protected mice from a lethal challenge of the same tumor cells and rejected pre-injected tumors. The anti-tumor immunity generated was cell-mediated, long-term, and tumor-specific. Further experiments demonstrated that the intact cell bodies were important for the immunogenicity since lysing the toxin-treated tumor cells reduced their ability to induce antitumor immunity. Finally, we showed that TcdB is able to induce potent anti-tumor immunity in B16-F10 melanoma model. Taken together, these data demonstrate the utility of C. difficile toxin B for developing anti-tumor immunity.
Wang, Xu; Zhu, Yuting; Sun, Congcong; Wang, Tao; Shen, Yingjie; Cai, Wanhui; Sun, Jia; Chi, Lisha; Wang, Haijun; Song, Na; Niu, Chao; Shen, Jiayi; Cong, Weitao; Zhu, Zhongxin; Xuan, Yuanhu; Li, Xiaokun; Jin, Litai
2017-01-01
Skin wound healing is a complex process requiring the coordinated behavior of many cell types, especially in the proliferation and migration of fibroblasts. Basic fibroblast growth factor (bFGF) is a member of the FGF family that promotes fibroblast migration, but the underlying molecular mechanism remains elusive. The present RNA sequencing study showed that the expression levels of several canonical Wnt pathway genes, including Wnt2b, Wnt3, Wnt11, T-cell factor 7 (TCF7), and Frizzled 8 (FZD8) were modified by bFGF stimulation in fibroblasts. Enzyme-linked immunosorbent assay (ELISA) analysis also showed that Wnt pathway was activated under bFGF treatment. Furthermore, treatment of fibroblasts with lithium chloride or IWR-1, an inducer and inhibitor of the Wnt signaling pathway, respectively, promoted and inhibited cell migration. Also, levels of cytosolic glycogen synthase kinase 3 beta phosphorylated at serine9 (pGSK3β Ser9) and nuclear β-catenin were increased upon exposure to bFGF. Molecular and biochemical assays indicated that phosphoinositide 3-kinase (PI3K) signaling activated the GSK3β/β-catenin/Wnt signaling pathway via activation of c-Jun N-terminal kinase (JNK), suggesting that PI3K and JNK act at the upstream of β-catenin. In contrast, knock-down of β-catenin delayed fibroblast cell migration even under bFGF stimulation. RNA sequencing analysis of β-catenin knock-down fibroblasts demonstrated that β-catenin positively regulated the transcription of bFGF and FGF21. Moreover, FGF21 treatment activated AKT and JNK, and accelerated fibroblast migration to a similar extent as bFGF does. In addition, ELISA analysis demonstrated that both of bFGF and FGF21 were auto secretion factor and be regulated by Wnt pathway stimulators. Taken together, our analyses define a feedback regulatory loop between bFGF (FGF21) and Wnt signaling acting through β-catenin in skin fibroblasts. PMID:28217097
Li, Bin; Cheung, Pak Yan; Wang, Xianghong; Tsao, Sai Wah; Ling, Ming Tat; Wong, Yong Chuan; Cheung, Annie L M
2007-11-01
Inhibitor of differentiation or DNA binding (Id-1) is a helix-loop-helix protein that is over-expressed in many types of cancer including esophageal cancer. This study aims to investigate its effects on the phosphatidylinositol-3-kinase (PI3K)/Akt/ nuclear factor kappa B (NFkappaB) signaling pathway and the significance in protecting esophageal cancer cells against apoptosis. We found elevated expression of phosphorylated forms of Akt, glycogen synthase kinase 3beta and inhibitor of kappa B, as well as increased nuclear translocation of NFkappaB subunit p65 and NFkappaB DNA-binding activity, in esophageal cancer cells with stable ectopic Id-1 expression. Transient transfection of Id-1 into HEK293 cells confirmed activation of PI3K/Akt/NFkappaB signaling and the effects were counteracted by the PI3K inhibitor LY294002. Treatment with tumor necrosis factor-alpha (TNF-alpha) elicited a significantly weaker apoptotic response, following a marked and sustained activation of Akt and NFkappaB in the Id-1-over-expressing cells, compared with the vector control. The effects of Id-1 on the PI3K/Akt/NFkappaB signaling pathway and apoptosis were reversed in esophageal cancer cells transfected with siRNA against Id-1. In addition, inhibition of PI3K or NFkappaB signaling using the PI3K inhibitor LY294002 or the NFkappaB inhibitor Bay11-7082 increased the sensitivity of Id-1-over-expressing esophageal cancer cells to TNF-alpha-induced apoptosis. Our results provide the first evidence that Id-1 induces the activation of PI3K/Akt/NFkappaB signaling pathway, and protects esophageal cancer cells from TNF-alpha-induced apoptosis in vitro. Inactivation of Id-1 may provide us with a novel strategy to improve the treatment and survival of patients with esophageal cancer.
Ding, Wei; Nowakowski, Grzegorz S; Knox, Traci R; Boysen, Justin C; Maas, Mary L; Schwager, Susan M; Wu, Wenting; Wellik, Linda E; Dietz, Allan B; Ghosh, Asish K; Secreto, Charla R; Medina, Kay L; Shanafelt, Tait D; Zent, Clive S; Call, Timothy G; Kay, Neil E
2009-11-01
It was hypothesized that contact between chronic lymphocytic leukaemia (CLL) B-cells and marrow stromal cells impact both cell types. To test this hypothesis, we utilized a long-term primary culture system from bone biopsies that reliably generates a mesenchymal stem cell (MSC). Co-culture of MSC with CLL B-cells protected the latter from both spontaneous apoptosis and drug-induced apoptosis. The CD38 expression in previously CD38 positive CLL B-cells was up-regulated with MSC co-culture. Upregulation of CD71, CD25, CD69 and CD70 in CLL B-cells was found in the co-culture. CD71 upregulation was more significantly associated with high-risk CLL, implicating CD71 regulation in the microenvironment predicting disease progression. In MSC, rapid ERK and AKT phosphorylation (within 30 min) were detected when CLL B-cells and MSC were separated by transwell; indicating that activation of MSC was mediated by soluble factors. These findings support a bi-directional activation between bone marrow stromal cells and CLL B-cells.
Functional analysis of the OCA-B promoter.
Stevens, S; Wang, L; Roeder, R G
2000-06-15
OCA-B was identified as a B cell-specific coactivator that functions with either Oct-1 or Oct-2 to mediate efficient cell type-specific transcription via the octamer site (ATGCAAAT) both in vivo and in vitro. Mice lacking OCA-B exhibit normal Ag-independent B cell maturation. In contrast, Ag-dependent functions, including production of secondary Ig isotypes and germinal center formation, are greatly affected. To better understand OCA-B expression and, ultimately, the defects observed in the OCA-B knockout mice, we have cloned the OCA-B promoter and examined its function in both transformed and primary B cells. We show here that the OCA-B promoter is developmentally regulated, with activity increasing throughout B cell differentiation. Through physical and functional assays, we have found an activating transcription factor/cAMP response element binding protein binding site (or cAMP response element) that is crucial for OCA-B promoter activity. Furthermore, we demonstrate that IL-4 and anti-CD40 induce both the OCA-B promoter and octamer-dependent promoters, thus implicating OCA-B in B cell signaling events in the nucleus.
The Murine Factor H-Related Protein FHR-B Promotes Complement Activation.
Cserhalmi, Marcell; Csincsi, Ádám I; Mezei, Zoltán; Kopp, Anne; Hebecker, Mario; Uzonyi, Barbara; Józsi, Mihály
2017-01-01
Factor H-related (FHR) proteins consist of varying number of complement control protein domains that display various degrees of sequence identity to respective domains of the alternative pathway complement inhibitor factor H (FH). While such FHR proteins are described in several species, only human FHRs were functionally investigated. Their biological role is still poorly understood and in part controversial. Recent studies on some of the human FHRs strongly suggest a role for FHRs in enhancing complement activation via competing with FH for binding to certain ligands and surfaces. The aim of the current study was the functional characterization of a murine FHR, FHR-B. To this end, FHR-B was expressed in recombinant form. Recombinant FHR-B bound to human C3b and was able to compete with human FH for C3b binding. FHR-B supported the assembly of functionally active C3bBb alternative pathway C3 convertase via its interaction with C3b. This activity was confirmed by demonstrating C3 activation in murine serum. In addition, FHR-B bound to murine pentraxin 3 (PTX3), and this interaction resulted in murine C3 fragment deposition due to enhanced complement activation in mouse serum. FHR-B also induced C3 deposition on C-reactive protein, the extracellular matrix (ECM) extract Matrigel, and endothelial cell-derived ECM when exposed to mouse serum. Moreover, mouse C3 deposition was strongly enhanced on necrotic Jurkat T cells and the mouse B cell line A20 by FHR-B. FHR-B also induced lysis of sheep erythrocytes when incubated in mouse serum with FHR-B added in excess. Altogether, these data demonstrate that, similar to human FHR-1 and FHR-5, mouse FHR-B modulates complement activity by promoting complement activation via interaction with C3b and via competition with murine FH.
Suboj, Priya; Babykutty, Suboj; Valiyaparambil Gopi, Deepak Roshan; Nair, Rakesh S; Srinivas, Priya; Gopala, Srinivas
2012-04-11
Aloe emodin (AE), a natural anthraquinone, is reported to have antiproliferative activity in various cancer cell lines. In this study we analyzed molecular mechanisms involved in the antimigratory and antiangiogenic activity of this hydroxy anthraquinone in colon cancer cell, WiDr. Our results show that a relatively non toxic concentration of AE suppressed the phorbol-12-myristyl-13-acetate (PMA) induced migration and invasion of tumor cells. On analysis for the molecules involved in the migration/invasion, we found AE downregulated mRNA expression and promoter/gelatinolytic activity of Matrix Metalloproteinase (MMP)-2/9, as well as the RhoB expression at gene and protein level. It was also a strong inhibitor of Vascular Endothelial Growth Factor (VEGF) expression, promoter activity and endothelial cell migration/invasion and in vitro angiogenesis. AE suppressed the nuclear translocation and DNA binding of NF-κB, which is an important transcription factor for controlling MMP-2/9 and VEGF gene expression. Taken together these data indicate that AE target multiple molecules responsible for cellular invasion, migration and angiogenesis. Inhibitory effect on angiogenic and metastatic regulatory processes make AE a sensible candidate as a specific blocker of tumor associated events. Copyright © 2011 Elsevier B.V. All rights reserved.
Tong, Weihua; Wang, Quan; Sun, Donghui; Suo, Jian
2016-11-01
Curcumin, an active nontoxic ingredient of turmeric, possesses potent anti-inflammatory, antioxidant and anti-cancer properties; however, the molecular mechanisms of curcumin are not fully understood. The transcription factor nuclear factor-κB (NF-κB) is key in cellular processes, and the expression/activation of urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP9) are crucial for cell invasion. The present study investigated the hypothesis that curcumin inhibits colon cancer cell invasion by modulating NF-κB-mediated expression and activation of uPA and MMP9. Human colon cancer SW480 and LoVo cells were treated with various concentrations of curcumin. Curcumin was demonstrated to dose-dependently inhibit the adhesion and proliferation ability of LoVo and SW480 cells using Transwell and MTT assays, respectively. In addition, curcumin activated 5' AMP-activated protein kinase (AMPK) and suppressed p65 NF-κB phosphorylation, as shown by western blot analysis. Compound C, a potent AMPK inhibitor, abolished curcumin-induced inhibition of NF-κB, uPA and MMP9, suggesting that AMPK activation is responsible for curcumin-mediated NF-κB, uPA and MMP9 inhibition. The binding activity of NF-κB to DNA was examined and western blotting and quantitative polymerase reaction was performed to detect the effect of curcumin on the expression of uPA and MMP9. The present results revealed that curcumin significantly decreased the expression of uPA and MMP9 and NF-κB DNA binding activity. Furthermore, curcumin decreased the level of the p65 subunit of NF-κB binding to the promoter of the gene encoding uPA and MMP9, which suppressed transcriptional activation of uPA and MMP9. Overall, the present data suggest that curcumin inhibits colon cancer cell invasion via AMPK activation and subsequent inhibition of p65 NF-κB, uPA and MMP9. The therapeutic potential of curcumin for colon cancer metastasis required additional study.
Nhiem, Nguyen Xuan; Yen, Pham Hai; Ngan, Nguyen Thi Thanh; Quang, Tran Hong; Kiem, Phan Van; Minh, Chau Van; Tai, Bui Huu; Cuong, Nguyen Xuan; Song, Seok Bean
2012-01-01
Abstract Momordica charantia: is used to treat various diseases, including inflammatory conditions. Previous reports indicated that the extract of this plant inhibits activation of nuclear transcription factor-κB (NF-κB) but activates peroxisome proliferator-activated receptor (PPAR). Additionally, cucurbitane-type triterpene glycosides are the main bioactive components of the fruit of M. charantia. Therefore, we investigated the anti-inflammatory activity of 17 cucurbitane-type triterpene glycosides (1–17) isolated from this plant. Their inhibition of NF-κB and activation of PPAR activities in HepG2 cells were measured using luciferase reporter and PPAR subtype transactivation assays. Compounds 6 and 8 were found to inhibit NF-κB activation stimulated by tumor necrosis factor-α (TNFα) in a dose-dependent manner. With 50% inhibition concentration (IC50) values of 0.4 μM, compounds 6 and 8 were more potent inhibitors than the positive control, sulfasalazine (IC50=0.9 μM). Compounds 4, 6, and 8 also inhibited TNFα-induced expressions of inducible nitric oxide synthase and cyclooxygenase-2 mRNA. However, only compound 13 significantly increased PPARγ transactivation. PMID:22248180
Pasupuleti, Nagarekha; Leon, Leonardo; Carraway, Kermit L.
2013-01-01
5′–Βenzylglycinyl-amiloride (UCD38B) and glycinyl-amiloride (UCD74A) are cell-permeant and cell-impermeant derivatives of amiloride, respectively, and used here to identify the cellular mechanisms of action underlying their antiglioma effects. UCD38B comparably kills proliferating and nonproliferating gliomas cells when cell cycle progression is arrested either by cyclin D1 siRNA or by acidification. Cell impermeant UCD74A inhibits plasmalemmal urokinase plasminogen activator (uPA) and the type 1 sodium-proton exchanger with potencies analogous to UCD38B, but is cytostatic. In contrast, UCD38B targets intracellular uPA causing mistrafficking of uPA into perinuclear mitochondria, reducing the mitochondrial membrane potential, and followed by the release of apoptotic inducible factor (AIF). AIF nuclear translocation is followed by a caspase-independent necroptotic cell death. Reduction in AIF expression by siRNA reduces the antiglioma cytotoxic effects of UCD38B, while not activating the caspase pathway. Ultrastructural changes shortly following treatment with UCD38B demonstrate dilation of endoplasmic reticulum (ER) and mitochondrial swelling followed by nuclear condensation within hours consistent with a necroptotic cell death differing from apoptosis and from autophagy. These drug mechanism of action studies demonstrate that UCD38B induces a cell cycle-independent, caspase-independent necroptotic glioma cell death that is mediated by AIF and independent of poly (ADP-ribose) polymerase and H2AX activation. PMID:23241369
Meunier, Alice; Latrémolière, Alban; Dominguez, Elisa; Mauborgne, Annie; Philippe, Stéphanie; Hamon, Michel; Mallet, Jacques; Benoliel, Jean-Jacques; Pohl, Michel
2007-04-01
Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor kappaB (NF-kappaB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor. NF-kappaB is a pleiotropic factor also involved in central nervous system homeostasy. To study its role in chronic pain, it is thus essential to inhibit the NF-kappaB pathway selectively in activated spinal glial cells. Here, we show that when restricted to spinal cord and targeted to glial cells, lentiviral vector-mediated delivery of NF-kappaB super- repressor IkappaBalpha resulted in an inhibition of the NF-kappaB pathway activated in the rat spinal cord after sciatic nerve injury (chronic constriction injury, CCI). Concomitantly, IkappaBalpha overproduction prevented the enhanced expression of interleukin-6 and of inducible nitric oxide synthase associated with chronic constriction injury and resulted in prolonged antihyperalgesic and antiallodynic effects. These data show that targeted blockade of NF-kappaB activity in spinal glia efficiently alleviates pain behavior in CCI rats, demonstrating the active participation of the glial NF-kappaB pathway in the development of neuropathic pain after peripheral nerve injury.
Xu, Dan-Dan; Zhou, Peng-Jun; Wang, Ying; Zhang, Li; Fu, Wu-Yu; Ruan, Bi-Bo; Xu, Hai-Peng; Hu, Chao-Zhi; Tian, Lu; Qin, Jin-Hong; Wang, Sheng; Wang, Xiao; Li, Yi-Cheng; Liu, Qiu-Ying; Ren, Zhe; Zhang, Rong; Wang, Yi-Fei
2016-05-17
Recent studies have suggested that cancer cells contain subpopulations that can initiate tumor growth, self-renew, and maintain tumor cell growth. However, for esophageal cancer cells, the relationship between STAT3, microRNAs and cancer stem cells remains unclear. Serum-free culture was used to enrich esophageal cancer stem-like cells (ECSLC). Flow cytometry determined the proportion of ECSLC. qPCR were performed to examine expression level of stemness factors, mesenchymal markers, ATP-binding cassette (ABC) transporters, STAT3, miR-181b, CYLD. Western blot were performed to analyze the expression of STAT3, p-STAT3 and CYLD (cylindromatosis). BALB/c mice xenograft studies were conducted to evaluate the tumorigenicity of enriched ECSLC. Sphere formation assay and colony formation assays were employed to analyze the relationship between STAT3 and miR-181b. Luciferase assays were used to evaluate activity which CYLD is a target of miR-181b. Sphere formation cells (SFCs) with properties of ECSLC were enriched. Enriched SFCs in serum-free suspension culture exhibited cancer stem-like cell properties and increased single-positive CD44 + CD24-, stemness factor, mesenchymal marker expression ABC transporters and tumorigenicity in vivo compared with the parental cells. Additionally, we found that reciprocal activation between STAT3 and miR-181b regulated SFCs proliferation. Moreover, STAT3 directly activated miR-181b transcription in SFCs and miR-181b then potentiated p-STAT3 activity. Luciferase assays indicated that CYLD was a direct and functional target of miR-181b. The mutual regulation between STAT3 and miR-181b in SFCs was required for proliferation and apoptosis resistance. STAT3 and miR-181b control each other's expression in a positive feedback loop that regulates SFCs via CYLD pathway. These findings maybe is helpful for targeting ECSLC and providing approach for esophageal cancer treatments.
Ankers, John M; Awais, Raheela; Jones, Nicholas A; Boyd, James; Ryan, Sheila; Adamson, Antony D; Harper, Claire V; Bridge, Lloyd; Spiller, David G; Jackson, Dean A; Paszek, Pawel; Sée, Violaine; White, Michael RH
2016-01-01
Dynamic cellular systems reprogram gene expression to ensure appropriate cellular fate responses to specific extracellular cues. Here we demonstrate that the dynamics of Nuclear Factor kappa B (NF-κB) signalling and the cell cycle are prioritised differently depending on the timing of an inflammatory signal. Using iterative experimental and computational analyses, we show physical and functional interactions between NF-κB and the E2 Factor 1 (E2F-1) and E2 Factor 4 (E2F-4) cell cycle regulators. These interactions modulate the NF-κB response. In S-phase, the NF-κB response was delayed or repressed, while cell cycle progression was unimpeded. By contrast, activation of NF-κB at the G1/S boundary resulted in a longer cell cycle and more synchronous initial NF-κB responses between cells. These data identify new mechanisms by which the cellular response to stress is differentially controlled at different stages of the cell cycle. DOI: http://dx.doi.org/10.7554/eLife.10473.001 PMID:27185527
APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation.
Merluzzi, Sonia; Gri, Giorgia; Gattei, Valter; Pagano, Michele; Pucillo, Carlo
2008-08-01
Apurinic/apyrimidinic endonuclease-1/Redox factor-1, a multifunctional DNA base excision repair and redox regulation enzyme, plays an important role in oxidative signalling, transcription factor regulation, and cell cycle control. Recently, we have demonstrated that following the triggering of CD40 on B cells, APE/Ref-1 translocates from the cytoplasm to the nucleus and regulates the activity of B cell-specific transcription factors. In the present paper we investigate whether APE/Ref-1 plays a role in controlling CD40-mediated B cell proliferation too. We demonstrate a concurrent increase in proliferation and decrease in apoptosis of primary mouse B cells activated by CD40 cross-linking and transfected with functional APE/Ref-1 antisense oligonucleotide. Moreover, we provide evidence that a redox-mediated signalling mechanism is involved in this process and we propose that APE/Ref-1, controlling the intracellular redox state, may also affect the cell cycle by inducing nucleus-cytoplasm redistribution of p21. Together, these findings suggest that APE/Ref-1 could act as a negative regulator in an adaptive response to elevated ROS levels following CD40 cross-linking. Considering the important role of ROS and APE/Ref-1 in CD40-mediated B cell proliferation, our data will contribute to understand the mechanisms of tumor escape and suggest APE/Ref-1 as a novel target for tumor therapeutic approaches.
APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation
Merluzzi, Sonia; Gri, Giorgia; Gattei, Valter; Pagano, Michele; Pucillo, Carlo
2009-01-01
Apurinic/apyrimidinic endonuclease-1/Redox factor-1, a multifunctional DNA base excision repair and redox regulation enzyme, plays an important role in oxidative signalling, transcription factor regulation, and cell cycle control. Recently, we have demonstrated that following the triggering of CD40 on B cells, APE/Ref-1 translocates from the cytoplasm to the nucleus and regulates the activity of B cell-specific transcription factors. In the present paper we investigate whether APE/Ref-1 plays a role in controlling CD40-mediated B cell proliferation too. We demonstrate a concurrent increase in proliferation and decrease in apoptosis of primary mouse B cells activated by CD40 cross-linking and transfected with functional APE/Ref-1 antisense oligonucleotide. Moreover, we provide evidence that a redox-mediated signalling mechanism is involved in this process and we propose that APE/Ref-1, controlling the intracellular redox state, may also affect the cell cycle by inducing nucleus-cytoplasm redistribution of p21. Together, these findings suggest that APE/Ref-1 could act as a negative regulator in an adaptive response to elevated ROS levels following CD40 cross-linking. Considering the important role of ROS and APE/Ref-1 in CD40-mediated B cell proliferation, our data will contribute to understand the mechanisms of tumor escape and suggest APE/Ref-1 as a novel target for tumor therapeutic approaches. PMID:18617267
Blazka, M E; Germolec, D R; Simeonova, P; Bruccoleri, A; Pennypacker, K R; Luster, M I
Nuclear transcription factors, such as NF-kB and NF-IL6, are believed to play an important role in regulating the expression of genes that encode for products involved in tissue damage and inflammation and, thus, may represent early biomarkers for chemical toxicities. In the present study changes in DNA binding activity of these factors were examined in livers of mice administered hepatotoxic doses of acetaminophen (APAP). NF-kB and NF-IL6 DNA binding occurred constitutively in control mouse liver. However, within 4 hr following administration of hepatotoxic doses of APAP, their binding activities were transiently lost and is in contrast to AP-1 transcription factor where activation occurs under similar conditions. These changes corresponded with increased release of inflammatory mediators (IL-6, serum amyloid A) and increased levels of enzymatic markers of hepatocyte damage. Similarly, treatment of mice with gadolinium chloride, an inhibitor of Kupffer cell activation and known to protect against APAP-induced hepatotoxicity, reduced the observed pathophysiological response in the liver while altering the APAP-associated changes in NF-kB DNA binding activity. NF-kB was found predominantly in parenchymal and endothelial cells and was composed primarily of relatively inactive p50 homodimer subunits in control liver. Taken together, these studies suggest that hepatotoxicity is associated with early and complex changes in DNA binding activities of specific transcription factors. In particular, NF-kB and NF-IL6 may serve as negative regulators of hepatocyte-derived inflammatory mediators and is analogous to that previously observed in certain other cell systems such as B lymphocytes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Jin Sil; Lee, Sora; Yoo, Young Do, E-mail: ydy1130@korea.ac.kr
2014-08-08
Highlights: • Romo1 expression is required for constitutive nuclear DNA-binding activity of NF-κB. • Romo1 depletion suppresses tumor growth in vivo. • Romo1 presents a potential therapeutic target for diseases. - Abstract: Deregulation of nuclear factor-κB (NF-κB) and related pathways contribute to tumor cell proliferation and invasion. Mechanisms for constitutive NF-κB activation are not fully explained; however, the underlying defects appear to generate and maintain pro-oxidative conditions. In hepatocellular carcinoma (HCC) tissues, up-regulation of reactive oxygen species modulator 1 (Romo1) correlates positively with tumor size. In the present study, we showed that Romo1 expression is required to maintain constitutive nuclearmore » DNA-binding activity of NF-κB and transcriptional activity through constitutive IκBα phosphorylation. Overexpression of Romo1 promoted p65 nuclear translocation and DNA-binding activity. We also show that Romo1 depletion suppressed anchorage-independent colony formation by HCC cells and suppressed tumor growth in vivo. Based on these findings, Romo1 may be a principal regulatory factor in the maintenance of constitutive NF-κB activation in tumor cells. In the interest of anti-proliferative treatments for cancer, Romo1 may also present a productive target for drug development.« less
Hung, Chi-Nan; Huang, Hui-Pei; Wang, Chau-Jong; Liu, Kai-Li; Lii, Chong-Kuei
2014-10-01
Endothelial dysfunction is an early indicator of cardiovascular diseases. Increased stimulation of tumor necrosis factor-α (TNF-α) triggers the inflammatory mediator secretion of endothelial cells, leading to atherosclerotic risk. In this study, we investigated whether sulforaphane (SFN) affected the expression of intracellular adhesion molecule-1 (ICAM-1) in TNF-α-induced ECV 304 endothelial cells. Our data showed that SFN attenuated TNF-α-induced expression of ICAM-1 in ECV 304 cells. Pretreatment of ECV 304 cells with SFN inhibited dose-dependently the secretion of proinflammatory cytokines, such as interleukin (IL)-1β, IL-6, and IL-8. SFN inhibited TNF-α-induced nuclear factor-κB (NF-κB) DNA binding activity. Furthermore, SFN decreased TNF-α-mediated phosphorylation of IκB kinase (IKK) and IκBα, Rho A, ROCK, ERK1/2, and plasminogen activator inhibitor-1 (PAI-1) levels. Collectively, SFN inhibited the NF-κB DNA binding activity and downregulated the TNF-α-mediated induction of ICAM-1 in endothelial cells by inhibiting the Rho A/ROCK/NF-κB signaling pathway, suggesting the beneficial effects of SFN on suppression of inflammation within the atherosclerotic lesion.
Dagher, Zeina; Garçon, Guillaume; Billet, Sylvain; Verdin, Anthony; Ledoux, Frédéric; Courcot, Dominique; Aboukais, Antoine; Shirali, Pirouz
2007-01-01
To contribute to improving knowledge on the adverse health effects induced by particulate matter (PM) air pollution, an extensive investigation was undertaken of the underlying mechanisms of action activated by PM(2.5) air pollution collected in Dunkerque, a strongly industrialized French seaside city. Their chemical and physical characteristics have been previously determined, and earlier in vitro short-term studies have shown them to cause dose-dependent and time-dependent oxidative damage, gene expression and protein secretion of inflammatory mediators, and apoptotic events in human lung epithelial cells (L132) in culture. Hence, this work studied the activation of nuclear factor-kappa B (NF-kappaB)/inhibitory kappa B (IkappaB) by Dunkerque city PM(2.5) in these target cells, by determination of phosphorylated p65 and phosphorylated IkappaBalpha protein levels in cytoplasmic extracts, and p65 and p50 DNA binding in nuclear extracts. In PM-exposed L132 cells, there were concentration- and/or time-dependent increases in nuclear p65 and cytoplasmic IkB-alpha phosphorylation, and nuclear p65 and p50 DNA binding. Taken together, these results showed that Dunkerque city PM(2.5) were involved in the activation of the NF-kappaB/IkappaB complex, notably through the occurrence of oxidative stress conditions, and, therefore, in the gene expression and protein secretion of inflammatory mediators in target L132 cells. Hence, these findings suggested that the activation of the NF-kappaB/IkappaB complex preceded cytotoxicity in Dunkerque city PM-exposed L132 cells. (c) 2007 John Wiley & Sons, Ltd.
Kefiran antagonizes cytopathic effects of Bacillus cereus extracellular factors.
Medrano, Micaela; Pérez, Pablo Fernando; Abraham, Analía Graciela
2008-02-29
Kefiran, the polysaccharide produced by microorganisms present in kefir grains, is a water-soluble branched glucogalactan containing equal amounts of D-glucose and D-galactose. In this study, the effect of kefiran on the biological activity of Bacillus cereus strain B10502 extracellular factors was assessed by using cultured human enterocytes (Caco-2 cells) and human erythrocytes. In the presence of kefiran concentrations ranging from 300 to 1000 mg/L, the ability of B. cereus B10502 spent culture supernatants to detach and damage cultured human enterocytes was significantly abrogated. In addition, mitochondrial dehydrogenase activity was higher when kefiran was present during the cell toxicity assays. Protection was also demonstrated in hemolysis and apoptosis/necrosis assays. Scanning electron microscopy showed the protective effect of kefiran against structural cell damages produced by factors synthesized by B. cereus strain B10502. Protective effect of kefiran depended on strain of B. cereus. Our findings demonstrate the ability of kefiran to antagonize key events of B. cereus B10502 virulence. This property, although strain-specific, gives new perspectives for the role of bacterial exopolysaccharides in functional foods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, Wang; Chunhua, Ma, E-mail: machunhuabest@126.com; Shumin, Wang, E-mail: wangshuminch@126.com
The purpose of the present study was to investigate the protective role of acteoside (AC) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). BalB/c mice intraperitoneally received AC (30, and 60 mg/kg) or dexamethasone (2 mg/kg) 2 h prior to or after intratracheal instillation of LPS. Treatment with AC significantly decreased lung wet-to-dry weight (W/D) ratio and lung myeloperoxidase (MPO) activity and ameliorated LPS-induced lung histopathological changes. In addition, AC increased super oxide dismutase (SOD) level and inhibited malondialdehyde (MDA) content, total cell and neutrophil infiltrations, and levels of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6)more » in bronchoalveolar lavage fluid (BALF) in LPS-stimulated mice. Furthermore, we demonstrated that AC inhibited the phosphorylation of IκBα, nuclear factor-κB (NF-κB) p65, inhibitor of nuclear factor kappa-B kinase-α (IKK-α) and inhibitor of nuclear factor kappa-B kinase-β (IKKβ) in LPS-induced inflammation in A549 cells. Our data suggested that LPS evoked the inflammatory response in lung epithelial cells A549. The experimental results indicated that the protective mechanism of AC might be attributed partly to the inhibition of proinflammatory cytokine production and NF-κB activation. - Highlights: • Acteoside inhibited inflammation in LPS-induced lung injury in mice. • Acteoside inhibited inflammation in lung epithelial cells A549. • Acteoside inhibited NF-kB activation in LPS-induced mice and lung epithelial cells A549.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chao-Feng
Purpose: Vascular smooth muscle cell (VSMC) proliferation plays a critical role in the pathogenesis of atherosclerosis and restenosis. This study investigated piperazinedione derived compound TW-01-mediated inhibitory effects on VSMC proliferation and intimal hyperplasia. Methods: Cell proliferation was determined using [{sup 3}H]-thymidine incorporation and MTT assay; cell cycle distribution was measured using flow cytometry; proteins and mRNA expression were determined using western blotting and RT-PCR analyses; DNA binding activity of nuclear factor-κB (NF-κB), as measured using enzyme-linked immunosorbent assays (ELISA); in vivo effects of TW-01 were determined using balloon angioplasty in the rat. Results: TW-01 significantly inhibited cell proliferation. At themore » concentrations used, no cytotoxic effects were observed. Three predominant signaling pathways were inhibited by TW-01: (a) extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) activation and its downstream effectors of c-fos, c-jun, and c-myc; (b) DNA binding activity of nuclear factor-κB (NF-κB); and, (c) Akt/protein kinase B (PKB) and cell cycle progression. Furthermore, TW-01 also inhibited Ras activation, a shared upstream event of each of these signaling cascades. In vascular injury studies, oral administration of TW-01 significantly suppressed intimal hyperplasia induced by balloon angioplasty. Conclusion: The present study suggests that TW-01 might be a potential candidate for atherosclerosis treatment. - Highlights: • TW-01significantly inhibits vascular smooth muscle cell proliferation. • TW-01 inhibits ERK, Akt and Ras pathway and DNA binding activity of NF-κB. • TW-01 significantly suppresses intimal hyperplasia induced by balloon angioplasty. • TW-01 might be a potential candidate for atherosclerosis treatment.« less
Barrios, C S; Castillo, L; Zhi, H; Giam, C-Z; Beilke, M A
2014-01-01
Retroviral co-infections with human immunodeficiency virus type-1 (HIV-1) and human T cell leukaemia virus type 1 (HTLV-1) or type 2 (HTLV-2) are prevalent in many areas worldwide. It has been observed that HIV-1/HTLV-2 co-infections are associated with slower rates of CD4(+) T cell decline and delayed progression to AIDS. This immunological benefit has been linked to the ability of Tax2, the transcriptional activating protein of HTLV-2, to induce the expression of macrophage inflammatory protein (MIP)-1α/CCL3, MIP-1β/CCL4 and regulated upon activation normal T cell expressed and secreted (RANTES)/CCL5 and to down-regulate the expression of the CCR5 co-receptor in peripheral blood mononuclear cells (PBMCs). This study aimed to assess the role of Tax2-mediated activation of the nuclear factor kappa B (NF-κB) signalling pathway on the production of the anti-viral CC-chemokines MIP-1α, MIP-1β and RANTES. Recombinant Tax1 and Tax2 proteins, or proteins expressed via adenoviral vectors used to infect cells, were tested for their ability to activate the NF-κB pathway in cultured PBMCs in the presence or absence of NF-κB pathway inhibitors. Results showed a significant release of MIP-1α, MIP-1β and RANTES by PBMCs after the activation of p65/RelA and p50. The secretion of these CC-chemokines was significantly reduced (P < 0·05) by canonical NF-κB signalling inhibitors. In conclusion, Tax2 protein may promote innate anti-viral immune responses through the activation of the canonical NF-κB pathway. © 2013 British Society for Immunology.
Lim, Sheri; MacIntyre, David A.; Lee, Yun S.; Khanjani, Shirin; Terzidou, Vasso; Teoh, T. G.; Bennett, Phillip R.
2012-01-01
Background Prior to the onset of human labour there is an increase in the synthesis of prostaglandins, cytokines and chemokines in the fetal membranes, particular the amnion. This is associated with activation of the transcription factor nuclear factor kappa B (NFκB). In this study we characterised the level of NFκB activity in amnion epithelial cells as a measure of amnion activation in samples collected from women undergoing caesarean section at 39 weeks gestation prior to the onset of labour. Methodology/Principal Findings We found that a proportion of women exhibit low or moderate NFκB activity while other women exhibit high levels of NFκB activity (n = 12). This activation process does not appear to involve classical pathways of NFκB activation but rather is correlated with an increase in nuclear p65-Rel-B dimers. To identify the full range of genes upregulated in association with amnion activation, microarray analysis was performed on carefully characterised non-activated amnion (n = 3) samples and compared to activated samples (n = 3). A total of 919 genes were upregulated in response to amnion activation including numerous inflammatory genes such cyclooxygenase-2 (COX-2, 44-fold), interleukin 8 (IL-8, 6-fold), IL-1 receptor accessory protein (IL-1RAP, 4.5-fold), thrombospondin 1 (TSP-1, 3-fold) and, unexpectedly, oxytocin receptor (OTR, 24-fold). Ingenuity Pathway Analysis of the microarray data reveal the two main gene networks activated concurrently with amnion activation are i) cell death, cancer and morphology and ii) cell cycle, embryonic development and tissue development. Conclusions/Significance Our results indicate that assessment of amnion NFκB activation is critical for accurate sample classification and subsequent interpretation of data. Collectively, our data suggest amnion activation is largely an inflammatory event that occurs in the amnion epithelial layer as a prelude to the onset of labour. PMID:22485186
Chen, Haimin; Wang, Feng; Mao, Haihua; Yan, Xiaojun
2014-07-01
Carrageenan (CGN), a high molecular weight sulfated polysaccharide, is a traditional ingredient used in food industry. Its degraded forms have been identified as potential carcinogens, although the mechanism remains unclear. The effects of degraded λ-carrageenan (λ-dCGN) on murine RAW264.7 cells and human THP-1-derived macrophage cells were investigated by studying its actions on tumor necrosis factor alpha (TNF-α) secretion, Toll-like receptor 4 (TLR4) expression, and activation of nuclear factor-κb (NF-κB) and activation protein-1 (AP-1) pathways. We found that λ-dCGN was much stronger than native λ-CGN in the activation of macrophages to secrete TNF-α. Treatment of RAW264.7 cells with λ-dCGN resulted in the upregulation of TLR4, CD14 and MD-2 expressions, but it did not increase the binding of lipopolysacchride (LPS) with macrophages. Meanwhile, λ-dCGN treatment activated NF-κB via B-cell lymphoma/leukemia 10 (Bcl10) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) phosphorylation. In addition, λ-dCGN induced extracellular signal-regulated kinases/1/2/mitogen-activated protein kinases (ERK1/2/MAPK) and AP-1 activation. Interestingly, pretreatment of RAW264.7 cells with λ-dCGN markedly enhanced LPS-stimulated TNF-α secretion. This pretreatment resulted in the enhanced phosphorylation of ERK1/2 and c-Jun N-terminal kinase (JNK) and intensified activation of AP-1. λ-dCGN induced an inflammatory reaction via both NF-κB and AP-1, and enhanced the inflammatory effect of LPS through AP-1 activation. The study demonstrated the role of λ-dCGN to induce the inflammatory reaction and to aggravate the effect of LPS on macrophages, suggesting that λ-dCGN produced during food processing and gastric digestion may be a safety concern. Copyright © 2014 Elsevier B.V. All rights reserved.
Enhancement of CD8+ T-cell memory by removal of a vaccinia virus nuclear factor-κB inhibitor
Ren, Hongwei; Ferguson, Brian J; de Motes, Carlos Maluquer; Sumner, Rebecca P; Harman, Laura E R; Smith, Geoffrey L
2015-01-01
Factors influencing T-cell responses are important for vaccine development but are incompletely understood. Here, vaccinia virus (VACV) protein N1 is shown to impair the development of both effector and memory CD8+ T cells and this correlates with its inhibition of nuclear factor-κB (NF-κB) activation. Infection with VACVs that either have the N1L gene deleted (vΔN1) or contain a I6E mutation (vN1.I6E) that abrogates its inhibition of NF-κB resulted in increased central and memory CD8+ T-cell populations, increased CD8+ T-cell cytotoxicity and lower virus titres after challenge. Furthermore, CD8+ memory T-cell function was increased following infection with vN1.I6E, with more interferon-γ production and greater protection against VACV infection following passive transfer to naive mice, compared with CD8+ T cells from mice infected with wild-type virus (vN1.WT). This demonstrates the importance of NF-κB activation within infected cells for long-term CD8+ T-cell memory and vaccine efficacy. Further, it provides a rationale for deleting N1 from VACV vectors to enhance CD8+ T-cell immunogenicity, while simultaneously reducing virulence to improve vaccine safety. PMID:25382035
Camponeschi, Alessandro; Todi, Laura; Cristofoletti, Cristina; Lazzeri, Cristina; Carbonari, Maurizio; Mitrevski, Milica; Marrapodi, Ramona; Del Padre, Martina; Fiorilli, Massimo; Casato, Milvia; Visentini, Marcella
2018-06-01
The transcription factor DEC1/STRA13 (also known as BHLHE40 and SHARP2) is involved in a number of processes including inhibition of cell proliferation and delay of cell cycle, and is a negative regulator of B cell activation and development in mice. We show here that, unlike in mice, DEC1/STRA13 expression is induced in human naïve and memory resting B cells by activation through the B-cell receptor (BCR) or Toll-like receptor 9 (TLR9). siRNA silencing of DEC1/STRA13 increases the capacity of activated B cells to perform a high number of divisions after TLR9 ligation. This identifies DEC1/STRA13 as a critical negative regulator of clonal expansion of activated human B cells. We also show that DEC1/STRA13 is upregulated in human anergic CD21 low B cells clonally expanded in patients with HCV-associated mixed cryoglobulinemia, which fail to proliferate in response to BCR or TLR9 ligation. siRNA knockdown of DEC1/STRA13, however, fails to restore responsiveness to stimuli in these cells, although it might improve the proliferative capacity in a subset of anergic cells with less pronounced proliferative defect. Copyright © 2018 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Liu, Vincent Wing Sun; Yau, Wing Lung; Tam, Chun Wai; Yao, Kwok-Ming; Shiu, Stephen Yuen Wing
2017-05-31
A major current challenge in the treatment of advanced prostate cancer, which can be initially controlled by medical or surgical castration, is the development of effective, safe, and affordable therapies against progression of the disease to the stage of castration resistance. Here, we showed that in LNCaP and 22Rv1 prostate cancer cells transiently overexpressing androgen receptor splice variant-7 (AR-V7), nuclear factor-kappa B (NF-κB) was activated and could result in up-regulated interleukin ( IL ) -6 gene expression, indicating a positive interaction between AR-V7 expression and activated NF-κB/IL-6 signaling in castration-resistant prostate cancer (CRPC) pathogenesis. Importantly, both AR-V7-induced NF-κB activation and IL-6 gene transcription in LNCaP and 22Rv1 cells could be inhibited by melatonin. Furthermore, stimulation of AR-V7 mRNA expression in LNCaP cells by betulinic acid, a pharmacological NF-κB activator, was reduced by melatonin treatment. Our data support the presence of bi-directional positive interactions between AR-V7 expression and NF-κB activation in CRPC pathogenesis. Of note, melatonin, by inhibiting NF-κB activation via the previously-reported MT₁ receptor-mediated antiproliferative pathway, can disrupt these bi-directional positive interactions between AR-V7 and NF-κB and thereby delay the development of castration resistance in advanced prostate cancer. Apparently, this therapeutic potential of melatonin in advanced prostate cancer/CRPC management is worth translation in the clinic via combined androgen depletion and melatonin repletion.
Liu, Vincent Wing Sun; Yau, Wing Lung; Tam, Chun Wai; Yao, Kwok-Ming; Shiu, Stephen Yuen Wing
2017-01-01
A major current challenge in the treatment of advanced prostate cancer, which can be initially controlled by medical or surgical castration, is the development of effective, safe, and affordable therapies against progression of the disease to the stage of castration resistance. Here, we showed that in LNCaP and 22Rv1 prostate cancer cells transiently overexpressing androgen receptor splice variant-7 (AR-V7), nuclear factor-kappa B (NF-κB) was activated and could result in up-regulated interleukin (IL)-6 gene expression, indicating a positive interaction between AR-V7 expression and activated NF-κB/IL-6 signaling in castration-resistant prostate cancer (CRPC) pathogenesis. Importantly, both AR-V7-induced NF-κB activation and IL-6 gene transcription in LNCaP and 22Rv1 cells could be inhibited by melatonin. Furthermore, stimulation of AR-V7 mRNA expression in LNCaP cells by betulinic acid, a pharmacological NF-κB activator, was reduced by melatonin treatment. Our data support the presence of bi-directional positive interactions between AR-V7 expression and NF-κB activation in CRPC pathogenesis. Of note, melatonin, by inhibiting NF-κB activation via the previously-reported MT1 receptor-mediated antiproliferative pathway, can disrupt these bi-directional positive interactions between AR-V7 and NF-κB and thereby delay the development of castration resistance in advanced prostate cancer. Apparently, this therapeutic potential of melatonin in advanced prostate cancer/CRPC management is worth translation in the clinic via combined androgen depletion and melatonin repletion. PMID:28561752
Strategies of NF-κB signaling modulation by ectromelia virus in BALB/3T3 murine fibroblasts.
Struzik, Justyna; Szulc-Dąbrowska, Lidia; Winnicka, Anna; Niemiałtowski, Marek
2015-10-01
Nuclear factor κB (NF-κB) is a pleiotropic transcription factor that regulates the expression of immune response genes. NF-κB signaling can be disrupted by pathogens that prevent host immune response. In this work, we examined the influence of ectromelia (mousepox) virus (ECTV) on NF-κB signaling in murine BALB/3T3 fibroblasts. Activation of NF-κB via tumor necrosis factor (TNF) receptor 1 (TNFR1) in these cells induces proinflammatory cytokine secretion. We show that ECTV does not recruit NF-κB to viral factories or induce NF-κB nuclear translocation in BALB/3T3 cells. Additionally, ECTV counteracts TNF-α-induced p65 NF-κB nuclear translocation during the course of infection. Inhibition of TNF-α-induced p65 nuclear translocation was also observed in neighboring cells that underwent fusion with ECTV-infected cells. ECTV inhibits the key step of NF-κB activation, i.e. Ser32 phosphorylation and degradation of inhibitor κBα (IκBα) induced by TNF-α. We also observed that ECTV prevents TNF-α-induced Ser536 of p65 phosphorylation in BALB/3T3 cells. Studying TNFR1 signaling provides information about regulation of inflammatory response and cell survival. Unraveling poxviral immunomodulatory strategies may be helpful in drug target identification as well as in vaccine development. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huq Ronny, Faisal Mahmudul; Igarashi, Hideya; Core Research for Evolutional Science and Technology
2006-02-03
BCR-crosslinking triggers activation-induced cell death (AICD) selectively in the restricted stage of B-cell differentiation. We examined the transcription of a protein phosphatase subunit G5PR in immature and mature B-cells, because absence of this factor augmented cell sensitivity to AICD, associated with increased activation of JNK and Bim. BCR-crosslinking-induced G5pr transcription in AICD-resistant mature splenic IgM{sup lo}IgD{sup hi} B-cells but not in AICD susceptible immature IgM{sup hi}IgD{sup lo} B-cells. Thus, G5pr induction correlated with the prevention of AICD; High in mature splenic CD23{sup hi} B-cells but low in immature B-cells of neonatal mice, sub-lethally irradiated mice, or xid mice. Lack ofmore » G5pr upregulation was associated with the prolonged activation of JNK. The G5pr cDNA transfection protected an immature B-cell line WEHI-231 from BCR-mediated AICD. The differential expression of G5PR might be responsible for the antigen-dependent selection of B-cells.« less
Winkler, Mark T; Bushey, Ryan T; Gottlin, Elizabeth B; Campa, Michael J; Guadalupe, Eross S; Volkheimer, Alicia D; Weinberg, J Brice; Patz, Edward F
2017-01-01
Rituximab therapy for B cell chronic lymphocytic leukemia (B-CLL) has met with mixed success. Among several factors to which resistance can be attributed is failure to activate complement dependent cytotoxicity (CDC) due to protective complement regulatory proteins, including the soluble regulator complement factor H (CFH). We hypothesized that rituximab killing of non-responsive B-CLL cells could be augmented by a novel human monoclonal antibody against CFH. The B cells from 11 patients with B-CLL were tested ex vivo in CDC assays with combinations of CFH monoclonal antibody, rituximab, and a negative control antibody. CDC of rituximab non-responsive malignant B cells from CLL patients could in some cases be augmented by the CFH monoclonal antibody. Antibody-mediated cytotoxicity of cells was dependent upon functional complement. In one case where B-CLL cells were refractory to CDC by the combination of rituximab plus CFH monoclonal antibody, additionally neutralizing the membrane complement regulatory protein CD59 allowed CDC to occur. Inhibiting CDC regulatory proteins such as CFH holds promise for overcoming resistance to rituximab therapy in B-CLL.
Alvarez-Guardia, David; Palomer, Xavier; Coll, Teresa; Serrano, Lucía; Rodríguez-Calvo, Ricardo; Davidson, Mercy M; Merlos, Manuel; El Kochairi, Ilhem; Michalik, Liliane; Wahli, Walter; Vázquez-Carrera, Manuel
2011-02-01
Owing to its high fat content, the classical Western diet has a range of adverse effects on the heart, including enhanced inflammation, hypertrophy, and contractile dysfunction. Proinflammatory factors secreted by cardiac cells, which are under the transcriptional control of nuclear factor-κB (NF-κB), may contribute to heart failure and dilated cardiomyopathy. The underlying mechanisms are complex, since they are linked to systemic metabolic abnormalities and changes in cardiomyocyte phenotype. Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate metabolism and are capable of limiting myocardial inflammation and hypertrophy via inhibition of NF-κB. Since PPARβ/δ is the most prevalent PPAR isoform in the heart, we analyzed the effects of the PPARβ/δ agonist GW501516 on inflammatory parameters. A high-fat diet induced the expression of tumor necrosis factor-α, monocyte chemoattractant protein-1, and interleukin-6, and enhanced the activity of NF-κB in the heart of mice. GW501516 abrogated this enhanced proinflammatory profile. Similar results were obtained when human cardiac AC16 cells exposed to palmitate were coincubated with GW501516. PPARβ/δ activation by GW501516 enhanced the physical interaction between PPARβ/δ and p65, which suggests that this mechanism may also interfere NF-κB transactivation capacity in the heart. GW501516-induced PPARβ/δ activation can attenuate the inflammatory response induced in human cardiac AC16 cells exposed to the saturated fatty acid palmitate and in mice fed a high-fat diet. This is relevant, especially taking into account that PPARβ/δ has been postulated as a potential target in the treatment of obesity and the insulin resistance state. Copyright © 2010 Elsevier B.V. All rights reserved.
Li, Xiaomei; Huang, Ying; Bi, Chengfeng; Yuan, Ji; He, Hong; Zhang, Hong; Yu, QiuBo; Fu, Kai; Li, Dan
2017-06-01
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma, whose main prognostic factor is closely related to germinal center B-cell-like subtype (GCB- DLBCL) or activated B-cell-like type (non-GCB-DLBCL). The most common type of primary central nervous system lymphoma is diffuse large B-cell type with poor prognosis and the reason is unclear. This study aims to stratify primary central nervous system diffuse large B-cell lymphoma (PCNS-DLBCL) according to the cell-of-origin (COO) and to investigate the multiple proteins expression of C-MYC, BCL-6, BCL-2, TP53, further to elucidate the reason why primary central nervous system diffuse large B-cell lymphoma possesses a poor clinical outcome as well. Nineteen cases of primary central nervous system DLBCL were stratified according to immunostaining algorithms of Hans, Choi and Meyer (Tally) and we investigated the multiple proteins expression of C-MYC, BCL-6, BCL-2, TP53. The Epstein-Barr virus and Borna disease virus infection were also detected. Among nineteen cases, most (15-17 cases) were assigned to the activated B-cell-like subtype, highly expression of C-MYC (15 cases, 78.9%), BCL-2 (10 cases, 52.6%), BCL-6 (15 cases, 78.9%). Unfortunately, two cases were positive for PD-L1 while PD-L2 was not expressed in any case. Two cases infected with BDV but no one infected with EBV. In conclusion, most primary central nervous system DLBCLs show an activated B-cell-like subtype characteristic and have multiple expressions of C-MYC, BCL-2, BCL-6 protein, these features might be significant factor to predict the outcome and guide treatment of PCNS-DLBCLs. Copyright © 2017 Elsevier GmbH. All rights reserved.
Wang, Wei; Chen, Jing; Li, Xiao Guang; Xu, Jie
2016-12-01
The AMP-activated protein kinase (AMPK) pathway has been shown to be able to regulate inflammation in several cell lines. We reported that fenoterol, a β 2 -adrenergic receptor (β 2 -AR) agonist, inhibited lipopolysaccharide (LPS)-induced AMPK activation and inflammatory cytokine production in THP-1 cells, a monocytic cell line in previous studies. 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (AICAR) is an agonist of AMPK. Whether AICAR induced AMPK activation and inflammatory cytokine production in THP-1 cells can be inhibited by fenoterol is unknown. In this study, we explored the mechanism of β 2 -AR stimulation with fenoterol in AICAR-induced inflammatory cytokine secretion in THP-1 cells. We studied AMPK activation using p-AMPK and AMPK antibodies, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion in THP-1 cells stimulated by β 2 -AR in the presence or absence of AICAR and small interfering RNA (siRNA)-mediated knockdown of β-arrestin-2 or AMPKα1 subunit. AICAR-induced AMPK activation, NF-κB activation and tumor necrosis factor (TNF)-α release were reduced by fenoterol. In addition, siRNA-mediated knockdown of β-arrestin-2 abolished fenoterol's inhibition of AICAR-induced AMPK activation and TNF-α release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol in AICAR-treated THP-1 cells. Furthermore, siRNA-mediated knockdown of AMPKα1 significantly attenuated AICAR-induced NF-κB activation and TNF-α release, so AMPKα1 was a key signaling molecule involved in AICAR-induced inflammatory cytokine production. These data suggested that fenoterol inhibited AICAR-induced AMPK activation and TNF-α release through β-arrestin-2 in THP-1 cells. Management especially inhibition of AMPK signaling may provide new approaches and strategies for the treatments of immune diseases including inflammatory diseases and other critical illness. Published by Elsevier Masson SAS.
Nagel, Stefan; Venturini, Letizia; Meyer, Corinna; Kaufmann, Maren; Scherr, Michaela; Drexler, Hans G; Macleod, Roderick A F
2011-02-01
Myocyte enhancer factor 2C (MEF2C) encodes a transcription factor which is ectopically expressed in T-cell acute lymphoblastic leukemia (T-ALL) cell lines, deregulated directly by ectopically expressed homeodomain protein NKX2-5 or by loss of promoter regions via del(5)(q14). Here, we analyzed the MEF2C 5'-region, thus identifying potential regulatory binding sites for GFI1B, basic helix-loop-helix proteins, STAT5, and HOXA9/HOXA10. Chromatin immunoprecipitation and overexpression analyses demonstrated direct activation by GFI1B and LYL1 and inhibition by STAT5. HOXA9/HOXA10 activated expression of NMYC which in turn mediated MEF2C repression, indicating an indirect mode of regulation via NMYC interactor (NMI) and STAT5. Lacking comma: Chromosomal deletion of the STAT5 binding site in LOUCY cells reduced protein levels of STAT5 in some MEF2C-positve T-ALL cell lines, and the presence of inhibitory IL7-JAK-STAT5 signaling highlighted the repressive impact of this factor in MEF2C regulation. Taken together, our results indicate that the expression of MEF2C in T-ALL cells is principally deregulated via activating leukemic transcription factors GFI1B or NKX2-5 and by escaping inhibitory developmental STAT5 signaling.
Tian, Deying; Wang, Jingjing; Zheng, Zizheng; Xia, Ningshao
2014-01-01
Hepatitis E virus (HEV) is one of the primary causative agents of acute hepatitis, and represents a major cause of severe public health problems in developing countries. The pathogenesis of HEV is not well characterized, however, primarily due to the lack of well-defined cell and animal models. Here, we investigated the effects of genotype 1 HEV open reading frame 3 (ORF3) on TNF-α-induced nucleus factor-κappa B (NF-κB) signaling. Human lung epithelial cells (A549) were transiently transfected with ORF3 containing plasmids. These cells were then stimulated with TNF-α and the nucleus translocation of the p65 NF-κB subunit was assessed using western blot and laser confocal microscopy. DNA-binding activity of p65 was also examined using electrophoretic mobility shift assay (EMSA), and the suppression of NF-κB target genes were detected using real-time RT-PCR and ELISA. These results enabled us to identify the decreased phosphorylation levels of IKBα. We focused on the gene of negative regulation of NF-κB, represented by TNF-α-induced protein 3 (TNFAIP3, also known as A20). Reducing the levels of A20 with siRNAs significantly enhances luciferase activation of NF-κB. Furthermore, HEV ORF3 regulated A20 primarily via activating transcription factor 6 (ATF6), involved in unfolded protein response (UPR), resulting in the degradation or inactivation of the receptor interacting protein 1 (RIP1), a major upstream activator of IKB kinase compounds (IKKs). Consequently, the phosphorylation of IKBα and the nucleus translocation of p65 are blocked, which contributes to diminished NF-κB DNA-binding activation and NF-κB-dependent gene expression. The findings suggest that genotype 1 HEV, through ORF3, may transiently activate NF-κB through UPR in early stage, and subsequently inhibit TNF-α-induced NF-κB signaling in late phase so as to create a favorable virus replication environment. PMID:24959724
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Ling; Reinach, Peter; Lu, Luo
2005-11-15
Tumor necrosis factor (TNF-{alpha}) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-{alpha} also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-{alpha} stimulation induced activation of a voltage-gated K{sup +} channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-{alpha} on downstream events included NF{kappa}B nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-{alpha} induced increases inmore » p21 expression resulting in partial cell cycle attenuation in the G{sub 1} phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-{alpha}-induced K{sup +} channel activity effectively prevented NF{kappa}B nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-{alpha}. In conclusion, TNF-{alpha} promotes survival of HCE cells through sequential stimulation of K{sup +} channel and NF{kappa}B activities. This response to TNF-{alpha} is dependent on stimulating K{sup +} channel activity because following suppression of K{sup +} channel activity TNF-{alpha} failed to activate NF{kappa}B nuclear translocation and binding to nuclear DNA.« less
CD4+CD25+ T-Cells Control Autoimmunity in the Absence of B-Cells
Mariño, Eliana; Villanueva, Jeanette; Walters, Stacey; Liuwantara, David; Mackay, Fabienne; Grey, Shane T.
2009-01-01
OBJECTIVE Tumor necrosis factor ligand family members B-cell–activating factor (BAFF) and a proliferation-inducing ligand (APRIL) can exert powerful effects on B-cell activation and development, type 1 T-helper cell (Th1) immune responses, and autoimmunity. We examined the effect of blocking BAFF and APRIL on the development of autoimmune diabetes. RESEARCH DESIGN AND METHODS Female NOD mice were administered B-cell maturation antigen (BCMA)-Fc from 9 to 15 weeks of age. Diabetes incidence, islet pathology, and T- and B-cell populations were examined. RESULTS BCMA-Fc treatment reduced the severity of insulitis and prevented diabetes development in NOD mice. BCMA-Fc–treated mice showed reduced follicular, marginal-zone, and T2MZ B-cells. B-cell reduction was accompanied by decreased frequencies of pathogenic CD4+CD40+ T-cells and reduced Th1 cytokines IL-7, IL-15, and IL-17. Thus, T-cell activation was blunted with reduced B-cells. However, BCMA-Fc–treated mice still harbored detectable diabetogenic T-cells, suggesting that regulatory mechanisms contributed to diabetes prevention. Indeed, BCMA-Fc–treated mice accumulated increased CD4+CD25+ regulatory T-cells (Tregs) with age. CD4+CD25+ cells were essential for maintaining euglycemia because their depletion abrogated BCMA-Fc–mediated protection. BCMA-Fc did not directly affect Treg homeostasis given that CD4+CD25+Foxp3+ T-cells did not express TACI or BR3 receptors and that CD4+CD25+Foxp3+ T-cell frequencies were equivalent in wild-type, BAFF−/−, TACI−/−, BCMA−/−, and BR3−/− mice. Rather, B-cell depletion resulted in CD4+CD25+ T-cell–mediated protection from diabetes because anti-CD25 monoclonal antibody treatment precipitated diabetes in both diabetes-resistant NOD.μMT−/− and BCMA-Fc–treated mice. CONCLUSIONS BAFF/APRIL blockade prevents diabetes. BCMA-Fc reduces B-cells, subsequently blunting autoimmune activity and allowing endogenous regulatory mechanisms to preserve a prehyperglycemic state. PMID:19336675
Yanashima, Kensuke; Chieosilapatham, Panjit; Yoshimoto, Eri; Okumura, Ko; Ogawa, Hideoki; Niyonsaba, François
2017-08-01
Host defense (antimicrobial) peptides not only display antimicrobial activities against numerous pathogens but also exert a broader spectrum of immune-modulating functions. Innate defense regulators (IDRs) are a class of host defense peptides synthetically developed from natural or endogenous cationic host defense peptides. Of the IDRs developed to date, IDR-1018 is more efficient not only in killing bacteria but also in regulating the various functions of macrophages and neutrophils and accelerating the wound healing process. Because mast cells intimately participate in wound healing and a number of host defense peptides involved in wound healing are also known to activate mast cells, this study aimed to investigate the effects of IDR-1018 on mast cell activation. Here, we showed that IDR-1018 induced the degranulation of LAD2 human mast cells and caused their production of leukotrienes, prostaglandins and various cytokines and chemokines, including granulocyte-macrophage colony-stimulating factor, interleukin-8, monocyte chemoattractant protein-1 and -3, macrophage-inflammatory protein-1α and -1β, and tumor necrosis factor-α. Furthermore, IDR-1018 increased intracellular calcium mobilization and induced mast cell chemotaxis. The mast cell activation was markedly suppressed by pertussis toxin, U-73122, U0126, SB203580, JNK inhibitor II, and NF-κB activation inhibitor II, suggesting the involvement of G-protein, phospholipase C, ERK, p38, JNK and NF-κB pathways, respectively, in IDR-1018-induced mast cell activation. Notably, we confirmed that IDR-1018 caused the phosphorylation of MAPKs and IκB. Altogether, the current study suggests a novel immunomodulatory role of IDR-1018 through its ability to recruit and activate human mast cells at the sites of inflammation and wounds. We report that IDR-1018 stimulates various functions of human mast cells. IDR-1018-induced mast cell activation is mediated through G protein, PLC, MAPK and NF-κB pathways. IDR-1018 will be a useful therapeutic agent for wound healing.
CIKS, a connection to IκB kinase and stress-activated protein kinase
Leonardi, Antonio; Chariot, Alain; Claudio, Estefania; Cunningham, Kirk; Siebenlist, Ulrich
2000-01-01
Pathogens, inflammatory signals, and stress cause acute transcriptional responses in cells. The induced expression of genes in response to these signals invariably involves transcription factors of the NF-κB and AP-1/ATF families. Activation of NF-κB factors is thought to be mediated primarily via IκB kinases (IKK), whereas that of AP-1/ATF can be mediated by stress-activated protein kinases (SAPKs; also named Jun kinases or JNKs). IKKα and IKKβ are two catalytic subunits of a core IKK complex that also contains the regulatory subunit NEMO (NF-κB essential modulator)/IKKγ. The latter protein is essential for activation of the IKKs, but its mechanism of action is not known. Here we describe the molecular cloning of CIKS (connection to IKK and SAPK/JNK), a previously unknown protein that directly interacts with NEMO/IKKγ in cells. When ectopically expressed, CIKS stimulates IKK and SAPK/JNK kinases and it transactivates an NF-κB-dependent reporter. Activation of NF-κB is prevented in the presence of kinase-deficient, interfering mutants of the IKKs. CIKS may help to connect upstream signaling events to IKK and SAPK/JNK modules. CIKS could coordinate the activation of two stress-induced signaling pathways, functions reminiscent of those noted for tumor necrosis factor receptor-associated factor adaptor proteins. PMID:10962033
Interleukin-5 regulates genes involved in B-cell terminal maturation.
Horikawa, Keisuke; Takatsu, Kiyoshi
2006-08-01
Interleukin (IL)-5 induces CD38-activated splenic B cells to differentiate into immunoglobulin M-secreting cells and undergo micro to gamma 1 class switch recombination (CSR) at the DNA level, resulting in immunoglobulin G1 (IgG1) production. Interestingly, IL-4, a well-known IgG1-inducing factor does not induce immunoglobulin production or micro to gamma 1 CSR in CD38-activated B cells. In the present study, we implemented complementary DNA microarrays to investigate the contribution of IL-5-induced gene expression in CD38-stimulated B cells to immunoglobulin-secreting cell differentiation and micro to gamma 1 CSR. IL-5 and IL-4 stimulation of CD38-activated B cells induced the expression of 418 and 289 genes, respectively, that consisted of several clusters. Surprisingly, IL-5-inducible 78 genes were redundantly regulated by IL-4. IL-5 and IL-4 also suppressed the gene expression of 319 and 325 genes, respectively, 97 of which were overlapped. Genes critically regulated by IL-5 include immunoglobulin-related genes such as J chain and immunoglobulinkappa, and genes involved in B-cell maturation such as BCL6, activation-induced cytidine deaminase (Aid) and B lymphocyte-induced maturation protein-1 (Blimp-1) and tend to be induced slowly after IL-5 stimulation. Intriguingly, among genes, the retroviral induction of Blimp-1 and Aid in CD38-activated B cells could induce IL-4-dependent maturation to Syndecan-1+ antibody-secreting cells and micro to gamma 1 CSR, respectively, in CD38-activated B cells. Taken together, preferential Aid and Blimp-1 expression plays a critical role in IL-5-induced immunoglobulin-secreting cell differentiation and micro to gamma 1 CSR in CD38-activated B cells.
Ridley, Anna; Hatano, Hiroko; Wong-Baeza, Isabel; Shaw, Jacqueline; Matthews, Katherine K; Al-Mossawi, Hussein; Ladell, Kristin; Price, David A; Bowness, Paul; Kollnberger, Simon
2016-04-01
In the spondyloarthritides (SpA), increased numbers of CD4+ T cells express killer cell immunoglobulin-like receptor 3DL2 (KIR-3DL2). The aim of this study was to determine the factors that induce KIR-3DL2 expression, and to characterize the relationship between HLA-B27 and the phenotype and function of KIR-3DL2-expressing CD4+ T cells in SpA. In total, 34 B27+ patients with SpA, 28 age- and sex-matched healthy controls (20 B27- and 8 B27+), and 9 patients with rheumatoid arthritis were studied. KIR-3DL2 expression and other phenotypic characteristics of peripheral blood and synovial fluid CD4+ T cells were studied by flow cytometry, quantitative polymerase chain reaction, and Western blotting. T cell receptor clonality was determined by template-switch anchored reverse transcription-polymerase chain reaction and sequencing analysis. Cytokines were measured by enzyme-linked immunosorbent assay. Cellular activation induced KIR-3DL2 expression on both naive and effector CD4+ T cells. KIR-3DL2 binding to B27+ cells promoted expression of KIR-3DL2, the Th17-specific transcription factor retinoic acid receptor-related orphan nuclear receptor γt, and the antiapoptotic factor B cell lymphoma 2. KIR-3DL2+CD4+ T cells in patients with ankylosing spondylitis were oligoclonal and enriched for markers of T cell activation and for the gut homing receptor CCR9. In the presence of B27+ antigen-presenting cells, KIR-3DL2+CD4+ T cells produced less interleukin-2 (IL-2) but more IL-17. This effect was blocked by HC10, an antibody that inhibits the binding of KIR-3DL2 to B27 heavy chains. KIR-3DL2 binding to HLA-B27 licenses Th17 cell differentiation in SpA. These findings raise the therapeutic potential of targeting HLA-B27-KIR-3DL2 interactions for the treatment of B27+ patients with SpA. © 2016 The Authors. Arthritis & Rheumatology published by Wiley Periodicals, Inc. on behalf of the American College of Rheumatology.
Porcine arterivirus activates the NF-{kappa}B pathway through I{kappa}B degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang-Myeong; Kleiboeker, Steven B.
2005-11-10
Nuclear factor-kappaB (NF-{kappa}B) is a critical regulator of innate and adaptive immune function as well as cell proliferation and survival. The present study demonstrated for the first time that a virus belonging to the Arteriviridae family activates NF-{kappa}B in MARC-145 cells and alveolar macrophages. In porcine reproductive and respiratory syndrome virus (PRRSV)-infected cells, NF-{kappa}B activation was characterized by translocation of NF-{kappa}B from the cytoplasm to the nucleus, increased DNA binding activity, and NF-{kappa}B-regulated gene expression. NF-{kappa}B activation was increased as PRRSV infection progressed and in a viral dose-dependent manner. UV-inactivation of PRRSV significantly reduced the level of NF-{kappa}B activation. Degradationmore » of I{kappa}B protein was detected late in PRRSV infection, and overexpression of the dominant negative form of I{kappa}B{alpha} (I{kappa}B{alpha}DN) significantly suppressed NF-{kappa}B activation induced by PRRSV. However, I{kappa}B{alpha}DN did not affect viral replication and viral cytopathic effect. PRRSV infection induced oxidative stress in cells by generating reactive oxygen species (ROS), and antioxidants inhibited NF-{kappa}B DNA binding activity in PRRSV-infected cells, suggesting ROS as a mechanism by which NF-{kappa}B was activated by PRRSV infection. Moreover, NF-{kappa}B-dependent expression of matrix metalloproteinase (MMP)-2 and MMP-9 was observed in PRRSV-infected cells, an observation which implies that NF-{kappa}B activation is a biologically significant aspect of PRRSV pathogenesis. The results presented here provide a basis for understanding molecular pathways of pathology and immune evasion associated with disease caused by PRRSV.« less
Annamalai, Govindhan; Suresh, Kathiresan
2018-02-01
Nuclear factor-kappaB (NF-κB) and activator protein 1 (AP-1) is a major transcription factor which regulates many biological and pathological processes such as inflammation and cell proliferation, which are major implicates in cancer progression. [6]-Shogaol ([6]-SHO) is a major constituent of ginger, exhibits various biological properties such as anti-oxidants, anti-inflammation and anti-tumor. Recently, we proven that [6]-SHO prevents oral squamous cell carcinoma by activating proapoptotic factors in in vitro and in vivo experimental model. However, the preventive efficacy of [6]-SHO in 7,12-dimethylbenz[a]anthracene (DMBA) induced hamster buccal pouch carcinogenesis (HBP) has not been fully elucidated, so far. Hence, we aimed to investigate the effect of [6]-SHO on inflammation and cell proliferation by inhibiting the translocation of NF-κB and AP-1 in DMBA induced HBP carcinogenesis. In this study, we observed upregulation of inflammatory markers (COX-2, iNOS, TNF-α, interleukin-1 and -6), cell proliferative markers (Cyclin D1, PCNA and Ki-67) and aberrant activation of NF-κB, AP-1, IKKβ, c-jun, c-fos and decreased IκB-α in DMBA induced hamsters. Conversely, oral administration of [6]-SHO strongly inhibited constitutive phosphorylation and degradation of IκB and inhibit phosphorylation of c-jun, c-fos, resulting in inhibition of nuclear translocation of NF-κBp65 and AP-1. Thus, inhibition of NF-κB and AP-1 activation by [6]-SHO attenuates inflammation and cell proliferative response in DMBA induced hamsters. Our finding suggested that [6]-SHO is a novel functional agent capable of preventing DMBA induced inflammation and cell proliferation associated tumorigenesis by modulating multiple signalling molecules. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Lampronti, Ilaria; Khan, Mahmud T.H.; Borgatti, Monica; Bianchi, Nicoletta
2008-01-01
Several transcription factors (TFs) play crucial roles in governing the expression of different genes involved in the immune response, embryo or cell lineage development, cell apoptosis, cell cycle progression, oncogenesis, repair and fibrosis processes and inflammation. As far as inflammation, TFs playing pivotal roles are nuclear factor kappa B (NF-kB), activator protein (AP-1), signal transducer and activator of transcription (STATs), cAMP response element binding protein (CREB) and GATA-1 factors. All these TFs regulate the expression of pro-inflammatory cytokines and are involved in the pathogenesis of a number of human disorders, particularly those with an inflammatory component. Since several medicinal plants can be employed to produce extracts exhibiting biological effects and because alteration of gene transcription represents a very interesting approach to control the expression of selected genes, this study sought to verify the ability of several extracts derived from Bangladeshi medicinal plants in interfering with molecular interactions between different TFs and specific DNA sequences. We first analyzed the antiproliferative activity of 19 medicinal plants on different human cell lines, including erythroleukemia K562, B lymphoid Raji and T lymphoid Jurkat cell lines. Secondly, we employed the electrophoretic mobility shift assay as a suitable technique for a fast screening of plant extracts altering the binding between NF-kB, AP-1, GATA-1, STAT-3, CREB and the relative target DNA elements. PMID:18830455
1979-01-01
Delayed type hypersensitivity to the hapten azobenzenearsonate (ABA) can be induced and suppressed by the administration of hapten-coupled syngeneic spleen cells by the appropriate route. Suppressor T cells stimulated by the intravenous administration of ABA-coupled spleen cells have been shown to produce a discrete subcellular factor(s) which is capable of suppressing delayed type hypersensitivity to azobenzenearsonate in the mouse. Such suppressor factors may be produced by the mechanical disruption of suppressor cells or by placing such suppressor cells in culture for 24 h. The suppressor factor(s) (SF) derived from ABA-specific suppressor cells exhibit biological specificity for the suppression of ABA delayed type hypersensitivity (DTH), but not trinitro-phenyl DTH, as well as the capacity to bind to ABA immunoadsorbents. Passage of suppressor factor(s) over reverse immunoadsorbents utilizing a rabbit anti-mouse F(ab')2 antiserum demonstrated that the antigen-specific T-cell derived SF does not bear conventional immunoglobulin markers. The suppressor factor(s) are not immunoglobulin molecules was further demonstrated by the inability of anti-ABA antibodies to suppress ABA DTH. Gel filtration of ABA suppressor factor(s) showed that the majority of the suppressive activity was present in a fraction with molecular weight ranging between 6.8 x 10(4) and 3.3 x 10(4) daltons. We also analyzed for the presence of determinants encoded by the H-2 major histocompatibility complex (MHC) and found that immunoadsorbents prepared utilizing antisera capable of interacting with gene products of the whole or selected gene regions of H-2 MHC, i.e., B10.D2 anti-B10.A and B10 anti- B10.A immunoadsorbents, retained the suppressive activity of ABA-SF. Elution of such columns with glycine HCl buffers (pH 2.8) permitted recovery of specific suppressive activity. Taken collectively such data supports the notion that suppressor T-cell-derived ABA suppressor factors have antigen-binding specificity as well as determinants controlled by the K end of the H-2 MHC. The distribution of strains capable of making SF has also been analyzed. The relationship of the antigen-binding specificity to VH gene products is discussed in this and the companion paper. PMID:312894
Binding Mode Analysis of Zerumbone to Key Signal Proteins in the Tumor Necrosis Factor Pathway
Fatima, Ayesha; Abdul, Ahmad Bustamam Hj.; Abdullah, Rasedee; Karjiban, Roghayeh Abedi; Lee, Vannajan Sanghiran
2015-01-01
Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF) α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL) death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ) and the Nuclear factor κB (NF-κB) component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis. PMID:25629232
Tsukamoto, Yumiko; Uehara, Shoji; Mizoguchi, Chieko; Sato, Atsushi; Horikawa, Keisuke; Takatsu, Kiyoshi
2005-10-21
Mature B-2 cells expressing surface IgM and IgD proliferate upon stimulation by CD38, CD40 or lipopolysaccharide (LPS) and differentiate into IgG1-producing plasma cells in the presence of cytokines. The process of class switch recombination (CSR) from IgM to other isotypes is highly regulated by cytokines and activation-induced cytidine deaminase (AID). Blimp-1 and XBP-1 play an essential role in the terminal differentiation of switched B-2 cells to Ig-producing plasma cells. IL-5 induces AID and Blimp-1 expression in CD38- and CD40-activated B-2 cells, leading to mu to gamma1 CSR at DNA level and IgG1 production. IL-4, a well-known IgG1-inducing factor, does not induce mu to gamma1 CSR in CD38-activated B-2 cells or Blimp-1, while IL-4 induces mu to gamma1 CSR, XBP-1 expression, and IgG1 production expression in CD40-activated B-2 cells. Interestingly, the addition of 8-mercaptoguanosine (8-SGuo) with IL-4 to the culture of CD38-activated B cells can induce mu to gamma1 CSR, Blimp-1 expression, and IgG1 production. Intriguingly, 8-SGuo by itself induces AID expression in CD38-activated B cells. However, it does not induce mu to gamma1 CSR. These results imply that the mode of B-cell activation for extracellular stimulation affects the outcome of cytokine stimulation with respect to the efficiency and direction of CSR, and the requirements of the transcriptional regulator and the generation of antibody-secreting cells. Furthermore, our data suggest the requirement of additional molecules in addition to AID for CSR.
Impact of C-rel inhibition of cord blood-derived B-, T-, and NK cells.
Fallahi, Shirin; Mohammadi, Seyede Momeneh; Tayefi Nasrabadi, Hamid; Alihemmati, Alireza; Samadi, Naser; Gholami, Sanaz; Shanehbandi, Dariush; Nozad Charoudeh, Hojjatollah
2017-12-01
The c-Rel transcription factor is a unique member of the nuclear factor (NF)-κB family that has a role in curtailing the proliferation, differentiation, cytokine production, and overall activity of B- and T-cells. In addition, c-Rel is a key regulator of apoptosis in that it influences the expression of anti-apoptotic genes such as Bcl-2 and Bcl-xL; conversely, inhibition of c-Rel increases cell apoptosis. To better understand the relationship between c-Rel expression and effects on B- and T-cell expansion, the current study evaluated c-Rel expression in cord blood mononuclear cells. This particular source was selected as cord blood is an important source of cells used for transplantation and immunotherapy, primarily in treating leukemias. As stem cell factor (SCF) and FLT3 are important agents for hematopoietic stem cell expansion, and cytokines like interleukin (IL)-2, -7, and -15 are essential for T- and B- (and also NK) cell development and proliferation, the current study evaluated c-Rel expression in cord blood mononuclear cells and CD34 + cells, as well as effects on B-, T-, and NK cells associated with alterations in c-Rel expression, using flow cytometry and PCR. The results showed c-Rel expression increased among cells cultured in the presence of SCF and FLT3 but was reduced when IL-2, IL-7, and IL-15 were used all together. Further, inhibition of c-Rel expression by siRNA reduced cord blood-derived B-, T-, and NK cell differentiation and expansion. These results indicated that with cells isolated from cord blood, c-Rel has an important role in B-, T-, and NK cell differentiation and, further, that agents (select cytokines/growth factors) that could impact on its expression might not only affect immune cell profiles in a host but could potentially also limit apoptotic activities in (non-)immune cells in that host. In the context of cancer (immuno)therapy, in particular, when cord blood is used an important source in stem cell transplantation in leukemia patients, such down-regulating changes in c-Rel levels could be counter-productive.
Lai, Kenneth; Di Girolamo, Nick; Conway, Robert M; Jager, Martine J; Madigan, Michele C
2007-05-01
Ultraviolet radiation (UVR) can induce DNA damage and regulate the expression of factors important for tumour growth and metastasis, including matrix metalloproteinases (MMPs). Epidemiological studies suggest that chronic UVR exposure, especially during early adulthood, may be a risk factor in patients with choroidal melanoma. However, the effects of UV(R)-B on human choroidal melanocyte survival and growth are unknown. In this study, we investigated if UV(R)-B affected the in vitro survival, growth and MMP production of choroidal melanocytes and melanoma cells. Cultures of primary choroidal melanocytes and melanoma cell lines (OCM-1 and OCM-8) were exposed to UV(R)-B (0-30 mJ/cm(2)). The cell morphology and growth were examined, and cell viability was assessed using an MTT assay. Gelatin zymography was used to assess the enzymatic activity for MMP-2 and -9 in conditioned media following UV(R)-B treatment. UV(R)-B > or =20 mJ/cm(2) was cytotoxic for choroidal melanocytes. Cytotoxic doses of 5 to 10 mJ/cm(2) were found for OCM-8 and OCM-1 melanoma cell lines. Low levels of UV(R)-B (2.5 and 3.5 mJ/cm(2)) significantly reduced melanoma cell viability after 48 h, although melanocyte viability was not affected by doses of UV(R)-B <10 mJ/cm(2). Conditioned media from melanoma cells and melanocytes displayed pro-MMP-2 activity independent of UV(R)-B. Control and UV(R)-B-treated OCM-1 cells secreted active MMP-2 up to 72 h. Pro-MMP-9 activity was seen from 36 h for control and UV(R)-B-treated OCM-1 and OCM-8 cells. Melanocytes appeared more resistant to physiological doses of UV(R)-B than melanoma cells; the potential of melanocytes to initially survive DNA damage following UV(R)-B exposure may be relevant to the subsequent transformation of melanocytes to melanomas. Although UV(R)-B did not induce the production and/or activation of MMP-2 and -9 in melanocytes or melanoma cells, we are currently investigating whether DNA damage-response genes such as p53 and p21 can be regulated following UVR exposure, and whether they are important for choroidal melanoma development.
Shi, Qiang; Cox, Laura A; Glenn, Jeremy; Tejero, Maria E; Hondara, Vida; Vandeberg, John L; Wang, Xing Li
2010-02-01
1. Vascular inflammation plays a critical role in atherogenesis. Previously, we showed that baboon arterial endothelial cells (BAEC) were hyporesponsive to lipopolysaccharide (LPS) compared with human arterial endothelial cells (HAEC). 2. In the present study, we investigated mechanisms underlying differential responses between HAEC and BAEC to tumour necrosis factor (TNF)-alpha and LPS. 3. Both HAEC and BAEC responded similarly to TNF-alpha. However, BAEC showed retarded responses to LPS in expression of E-selectin, intercellular adhesion molecule-1, monocyte chemotactic protein-1 and interleukin-8 (P < 0.05). These changes were confirmed at the mRNA level. Tumour necrosis factor-alpha activated nuclear factor-kappaB members such as p50, p52, p65, c-rel and RelB in both HAEC and BAEC. In contrast, LPS activated p50 and p65 only in HAEC. Using microarray assays, we found that TNF receptor-associated factor 2 (TRAF-2), TNF receptor superfamily, member 1A-associated via death domain (TRADD) and nuclear factors such as nuclear factor of kappa in B-cells inhibitor, alpha (NFKBIA) and nuclear factor of kappa in B-cells inhibitor, beta (NFKBIB) were upregulated by LPS only in HAEC. Although the baseline expression of Toll-like receptor (TLR) 4 was low in both HAEC and BAEC, TNF-alpha activated TLR4 expression in both cell types. Although LPS increased TLR4 expression only in HAEC, human and baboon peripheral blood mononuclear cells exhibited similar TLR4 expression and response to LPS. Transfecting BAEC with TLR4/myeloid differentiation protein-2 overexpression vector conferred BAEC responsiveness to LPS. 4. The findings of the present study indicate that an altered TLR4 system may be responsible for the resistance of baboon endothelial cells to LPS. Given the importance of TLR4 in human immune responses and vascular diseases, the natural resistance of baboons to LPS/TLR4-initiated inflammation could make the baboon a valuable animal model in which to study how inflammation affects atherogenesis.
Immunomodulatory Effects of the Mycosporine-Like Amino Acids Shinorine and Porphyra-334
Becker, Kathrin; Hartmann, Anja; Ganzera, Markus; Fuchs, Dietmar; Gostner, Johanna M.
2016-01-01
Mycosporine-like amino acids (MAAs) are secondary metabolites, produced by a large variety of microorganisms including algae, cyanobacteria, lichen and fungi. MAAs act as UV-absorbers and photo-protectants. MAAs are suggested to exert pharmaceutical relevant bioactivities in the human system. We particularly focused on their effect on defence and regulatory pathways that are active in inflamed environments. The MAAs shinorine and porphyra-334 were isolated and purified from the red algae Porphyra sp. using chromatographic methods. The effect of MAAs on central signaling cascades, such as transcription factor nuclear factor kappa b (NF-κB) activation, as well as tryptophan metabolism, was investigated in human myelomonocytic THP-1 and THP-1-Blue cells. Cells were exposed to the MAAs in the presence or absence of lipopolysaccharide (LPS). NF-κB activity and the activity of tryptophan degrading enzyme indoleamine 2,3-dioxygenase (IDO-1) were used as readout. Compounds were tested in the concentration range from 12.5 to 200 µg/mL. Both MAAs were able to induce NF-κB activity in unstimulated THP-1-Blue cells, whereby the increase was dose-dependent and more pronounced with shinorine treatment. While shinorine also slightly superinduced NF-κB in LPS-stimulated cells, porphyra-334 reduced NF-κB activity in this inflammatory background. Modulation of tryptophan metabolism was moderate, suppressive in stimulated cells with the lower treatment concentration of both MAAs and with the unstimulated cells upon porphyra-334 treatment. Inflammatory pathways are affected by MAAs, but despite the structural similarity, diverse effects were observed. PMID:27338421
YANG, CAILING; YAN, JIANGUO; YUAN, GUOYAN; ZHANG, YINGHUA; LU, DERONG; REN, MINGXIN; CUI, WEIGANG
2014-01-01
Icotinib is an epidermal growth factor receptor tyrosine kinase inhibitor, which has been revealed to inhibit proliferation in tumor cells. However, the effect of icotinib on cancer cell metastasis remains to be explained. This study examines the effect of icotinib on the migration and invasion of squamous cells of tongue carcinoma (Tca8113 cells) in vitro. The results of the Boyden chamber invasion assay demonstrated that icotinib reduced cell invasion, suppressed the protein levels of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, and increased the expression of tissue inhibitor of metalloproteinase-1. In addition, icotinib was found to significantly decrease the protein levels of nuclear factor κB (NF-κB) p65, which suggested that icotinib inhibits NF-κB activity. Furthermore, treatment with the NF-κB inhibitor, pyrrolidine dithiocarbamate, suppressed cell invasion and MMP-2 expression. These results suggested that icotinib inhibits the invasion of Tca8113 cells by downregulating MMP via the inactivation of the NF-κB signaling pathways. PMID:25120710
Yang, Cailing; Yan, Jianguo; Yuan, Guoyan; Zhang, Yinghua; Lu, Derong; Ren, Mingxin; Cui, Weigang
2014-09-01
Icotinib is an epidermal growth factor receptor tyrosine kinase inhibitor, which has been revealed to inhibit proliferation in tumor cells. However, the effect of icotinib on cancer cell metastasis remains to be explained. This study examines the effect of icotinib on the migration and invasion of squamous cells of tongue carcinoma (Tca8113 cells) in vitro . The results of the Boyden chamber invasion assay demonstrated that icotinib reduced cell invasion, suppressed the protein levels of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, and increased the expression of tissue inhibitor of metalloproteinase-1. In addition, icotinib was found to significantly decrease the protein levels of nuclear factor κB (NF-κB) p65, which suggested that icotinib inhibits NF-κB activity. Furthermore, treatment with the NF-κB inhibitor, pyrrolidine dithiocarbamate, suppressed cell invasion and MMP-2 expression. These results suggested that icotinib inhibits the invasion of Tca8113 cells by downregulating MMP via the inactivation of the NF-κB signaling pathways.
Krüger, Kristin; Schrader, Katrin; Klempt, Martin
2017-01-01
Titanium dioxide (TiO2) is one of the most applied nanomaterials and widely used in food and non-food industries as an additive or coating material (E171). It has been shown that E171 contains up to 37% particles which are smaller than 100 nm and that TiO2 nanoparticles (NPs) induce cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells (NF-κB) reporter cell line (Caco-2nfkb-RE), Real time polymerase chain reaction (PCR), and inhibition of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO2 NPs (nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the uptake of TiO2 NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to TiO2 NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO2 NPs enter the cell via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway, which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells exposed to 32 nm and 490 nm TiO2 particles. PMID:28387727
Krüger, Kristin; Schrader, Katrin; Klempt, Martin
2017-04-07
Titanium dioxide (TiO₂) is one of the most applied nanomaterials and widely used in food and non-food industries as an additive or coating material (E171). It has been shown that E171 contains up to 37% particles which are smaller than 100 nm and that TiO₂ nanoparticles (NPs) induce cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells (NF-κB) reporter cell line (Caco-2 nfkb-RE ), Real time polymerase chain reaction (PCR), and inhibition of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO₂ NPs (nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the uptake of TiO₂ NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to TiO₂ NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO₂ NPs enter the cell via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway, which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells exposed to 32 nm and 490 nm TiO₂ particles.
Lee, Seung-Hee; Lee, Jee Hyun; Kim, Eun-Ju; Kim, Won-Jung; Suk, Kyoungho; Kim, Joo-Hwan; Song, Gyu Yong; Lee, Won-Ha
2012-07-01
Decursin and related coumarin compounds in herbal extracts have a number of biological activities against inflammation, angiogenesis and cancer. We have analysed a derivative of decursin (CSL-32) for activity against inflammatory activation of cancer cells, such as migration, invasion and expression of pro-inflammatory mediators. The human fibrosarcoma cell line, HT1080, was treated with TNFα (tumour necrosis factor α) in the presence or absence of CSL-32. The cellular responses and modification of signalling adapters were analysed with respect to the production of pro-inflammatory mediators, as also migration, adhesion and invasion. Treatment of HT1080 cells with CSL-32 inhibited their proliferation, without affecting cell viability, and TNFα-induced expression of pro-inflammatory mediators, such as MMP-9 (matrix metalloproteinase-9) and IL-8 (interleukin-8). CSL-32 also suppressed phosphorylation and degradation of IκB (inhibitory κB), phosphorylation of p65 subunit of NF-κB (nuclear factor-κB) and nuclear translocation of NF-κB, which are required for the expression of pro-inflammatory mediators. In addition, CSL-32 inhibited invasion and migration of HT1080 cells, as also cellular adhesion to fibronectin, an ECM (extracellular matrix) protein. CSL-32 treatment resulted in a dose-dependent inhibition of PI3K (phosphoinositide 3-kinase) activity, required for the cellular migration. The analyses show that CSL-32 inhibits processes associated with inflammation, such as the production of pro-inflammatory mediators, as well as adhesion, migration and invasion in HT1080 cells.
Edmead, C E; Patel, Y I; Wilson, A; Boulougouris, G; Hall, N D; Ward, S G; Sansom, D M
1996-10-15
A major obstacle in understanding the signaling events that follow CD28 receptor ligation arises from the fact that CD28 acts as a costimulus to TCR engagement, making it difficult to assess the relative contribution of CD28 signals as distinct from those of the TCR. To overcome this problem, we have exploited the observation that activated human T cell blasts can be stimulated via the CD28 surface molecule in the absence of antigenic challenge; thus, we have been able to observe the response of normal T cells to CD28 activation in isolation. Using this system, we observed that CD28 stimulation by B7-transfected CHO cells induced a proliferative response in T cells that was not accompanied by measurable IL-2 production. However, subsequent analysis of transcription factor generation revealed that B7 stimulation induced both activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) complexes, but not NF-AT. In contrast, engagement of the TCR by class II MHC/superantigen, either with or without CD28 ligation, resulted in the induction of NF-AT, AP-1, and NF-kappaB as well as IL-2 production. Using selective inhibitors, we investigated the signaling pathways involved in the CD28-mediated induction of AP-1 and NF-kappaB. This revealed that NF-kappaB generation was sensitive to chloroquine, an inhibitor of acidic sphingomyelinase, but not to the phosphatidylinositol 3-kinase inhibitor, wortmannin. In contrast, AP-1 generation was inhibited by wortmannin and was also variably sensitive to chloroquine. These data suggest that in activated normal T cells, CD28-derived signals can stimulate proliferation at least in part via NF-kappaB and AP-1 generation, and that this response uses both acidic sphingomyelinase and phosphatidylinositol 3-kinase-linked pathways.
Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A.; Manna, Sunil K.
2010-01-01
The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor κB (NF-κB) and also expression of NF-κB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-κB (IκBα) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IκBα kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-κB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy. PMID:20018848
Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Dilshara, Matharage Gayani; Park, Sang Rul; Choi, Yung Hyun; Hyun, Jin-Won; Chang, Weon-Young; Kim, Gi-Young
2014-08-01
Little is known about the molecular mechanism through which 18β-glycyrrhetinic acid (GA) inhibits metastasis and invasion of cancer cells. Therefore, this study aimed to investigate the effects of GA on the expression of matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) in various types of cancer cells. We found that treatment with GA reduces tumor necrosis factor-α (TNF-α)-induced Matrigel invasion with few cytotoxic effects. Our findings also showed that MMP-9 and VEGF expression increases in response to TNF-α; however, GA reverses their expression. In addition, GA inhibited inhibitory factor kappa B degradation, sustained nuclear factor-kappa B (NF-κB) subunits, p65 and p50, in the cytosol compartments, and consequently suppressed the TNF-α-induced DNA-binding activity and luciferase activity of NF-κB. Specific NF-κB inhibitors, pyrrolidine dithiocarbamate, MG132, and PS-1145, also attenuated TNF-α-mediated MMP-9 and VEGF expression as well as activity by suppressing their regulatory genes. Furthermore, phosphorylation of TNF-α-induced phosphatidyl-inositol 3 kinase (PI3K)/Akt was significantly downregulated in the presence of GA accompanying with the inhibition of NF-κB activity, and as presumed, the specific PI3K/Akt inhibitor LY294002 significantly decreased MMP-9 and VEGF expression as well as activity. These results suggest that GA operates as a potential anti-invasive agent by downregulating MMP-9 and VEGF via inhibition of PI3K/Akt-dependent NF-κB activity. Taken together, GA might be an effective anti-invasive agent by suppressing PI3K/Akt-mediated NF-κB activity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mitochondrial Reactive Oxygen Species Trigger Hypoxia-Induced Transcription
NASA Astrophysics Data System (ADS)
Chandel, N. S.; Maltepe, E.; Goldwasser, E.; Mathieu, C. E.; Simon, M. C.; Schumacker, P. T.
1998-09-01
Transcriptional activation of erythropoietin, glycolytic enzymes, and vascular endothelial growth factor occurs during hypoxia or in response to cobalt chloride (CoCl2) in Hep3B cells. However, neither the mechanism of cellular O2 sensing nor that of cobalt is fully understood. We tested whether mitochondria act as O2 sensors during hypoxia and whether hypoxia and cobalt activate transcription by increasing generation of reactive oxygen species (ROS). Results show (i) wild-type Hep3B cells increase ROS generation during hypoxia (1.5% O2) or CoCl2 incubation, (ii) Hep3B cells depleted of mitochondrial DNA (ρ 0 cells) fail to respire, fail to activate mRNA for erythropoietin, glycolytic enzymes, or vascular endothelial growth factor during hypoxia, and fail to increase ROS generation during hypoxia; (iii) ρ 0 cells increase ROS generation in response to CoCl2 and retain the ability to induce expression of these genes; and (iv) the antioxidants pyrrolidine dithiocarbamate and ebselen abolish transcriptional activation of these genes during hypoxia or CoCl2 in wild-type cells, and abolish the response to CoCl2 in ρ 0 cells. Thus, hypoxia activates transcription via a mitochondria-dependent signaling process involving increased ROS, whereas CoCl2 activates transcription by stimulating ROS generation via a mitochondria-independent mechanism.
Ling, H; Yang, H; Tan, S-H; Chui, W-K; Chew, E-H
2010-01-01
BACKGROUND AND PURPOSE Shogaols are reported to possess anti-inflammatory and anticancer activities. However, the antimetastatic potential of shogaols remains unexplored. This study was performed to assess the effects of shogaols against breast cancer cell invasion and to investigate the underlying mechanisms. EXPERIMENTAL APPROACH The anti-invasive effect of a series of shogaols was initially evaluated on MDA-MB-231 breast cancer cells using the matrigel invasion assay. The suppressive effects of 6-shogaol on phorbol 12-myristate 13-acetate (PMA)-induced matrix metalloproteinase-9 (MMP-9) gelatinolytic activity and nuclear factor-κB (NF-κB) activation were further determined. KEY RESULTS Shogaols (6-, 8- and 10-shogaol) inhibited PMA-stimulated MDA-MB-231 cell invasion with an accompanying decrease in MMP-9 secretion. 6-Shogaol was identified to display the greatest anti-invasive effect in association with a dose-dependent reduction in MMP-9 gene activation, protein expression and secretion. The NF-κB transcriptional activity was decreased by 6-shogaol; an effect mediated by inhibition of IκB phosphorylation and degradation that subsequently led to suppression of NF-κB p65 phosphorylation and nuclear translocation. In addition, 6-shogaol was found to inhibit JNK activation with no resulting reduction in activator protein-1 transcriptional activity. By using specific inhibitors, it was demonstrated that ERK and NF-κB signalling, but not JNK and p38 signalling, were involved in PMA-stimulated MMP-9 activation. CONCLUSIONS AND IMPLICATIONS 6-Shogaol is a potent inhibitor of MDA-MB-231 cell invasion, and the molecular mechanism involves at least in part the down-regulation of MMP-9 transcription by targeting the NF-κB activation cascade. This class of naturally occurring small molecules thus have potential for clinical use as antimetastatic treatments. PMID:20718733
Ling, H; Yang, H; Tan, S-H; Chui, W-K; Chew, E-H
2010-12-01
Shogaols are reported to possess anti-inflammatory and anticancer activities. However, the antimetastatic potential of shogaols remains unexplored. This study was performed to assess the effects of shogaols against breast cancer cell invasion and to investigate the underlying mechanisms. The anti-invasive effect of a series of shogaols was initially evaluated on MDA-MB-231 breast cancer cells using the matrigel invasion assay. The suppressive effects of 6-shogaol on phorbol 12-myristate 13-acetate (PMA)-induced matrix metalloproteinase-9 (MMP-9) gelatinolytic activity and nuclear factor-κB (NF-κB) activation were further determined. Shogaols (6-, 8- and 10-shogaol) inhibited PMA-stimulated MDA-MB-231 cell invasion with an accompanying decrease in MMP-9 secretion. 6-Shogaol was identified to display the greatest anti-invasive effect in association with a dose-dependent reduction in MMP-9 gene activation, protein expression and secretion. The NF-κB transcriptional activity was decreased by 6-shogaol; an effect mediated by inhibition of IκB phosphorylation and degradation that subsequently led to suppression of NF-κB p65 phosphorylation and nuclear translocation. In addition, 6-shogaol was found to inhibit JNK activation with no resulting reduction in activator protein-1 transcriptional activity. By using specific inhibitors, it was demonstrated that ERK and NF-κB signalling, but not JNK and p38 signalling, were involved in PMA-stimulated MMP-9 activation. 6-Shogaol is a potent inhibitor of MDA-MB-231 cell invasion, and the molecular mechanism involves at least in part the down-regulation of MMP-9 transcription by targeting the NF-κB activation cascade. This class of naturally occurring small molecules thus have potential for clinical use as antimetastatic treatments. © 2010 The Authors. British Journal of Pharmacology © 2010 The British Pharmacological Society.
Wu, Xuewei; Qi, Jun; Bradner, James E.; Xiao, Gutian; Chen, Lin-Feng
2013-01-01
The etiology of human T cell leukemia virus 1 (HTLV-1)-mediated adult T cell leukemia is associated with the ability of viral oncoprotein Tax to induce sustained NF-κB activation and the expression of many NF-κB target genes. Acetylation of the RelA subunit of NF-κB and the subsequent recruitment of bromodomain-containing factor Brd4 are important for the expression of NF-κB target genes in response to various stimuli. However, their contributions to Tax-mediated NF-κB target gene expression and tumorigenesis remain unclear. Here we report that Tax induced the acetylation of lysine 310 of RelA and the binding of Brd4 to acetylated RelA to facilitate Tax-mediated transcriptional activation of NF-κB. Depletion of Brd4 down-regulated Tax-mediated NF-κB target gene expression and cell proliferation. Inhibiting the interaction of Brd4 and acetylated RelA with the bromodomain extraterminal protein inhibitor JQ1 suppressed the proliferation of Tax-expressing rat fibroblasts and Tax-positive HTLV-1-infected cells and Tax-mediated cell transformation and tumorigenesis. Moreover, JQ1 attenuated the Tax-mediated transcriptional activation of NF-κB, triggering the polyubiquitination and proteasome-mediated degradation of constitutively active nuclear RelA. Our results identify Brd4 as a key regulator for Tax-mediated NF-κB gene expression and suggest that targeting epigenetic regulators such as Brd4 with the bromodomain extraterminal protein inhibitor might be a potential therapeutic strategy for cancers and other diseases associated with HTLV-1 infection. PMID:24189064
Palanichamy, Arumugam; Bauer, Jason W; Yalavarthi, Srilakshmi; Meednu, Nida; Barnard, Jennifer; Owen, Teresa; Cistrone, Christopher; Bird, Anna; Rabinovich, Alfred; Nevarez, Sarah; Knight, Jason S.; Dedrick, Russell; Rosenberg, Alexander; Wei, Chungwen; Rangel-Moreno, Javier; Liesveld, Jane; Sanz, Inaki; Baechler, Emily; Kaplan, Mariana J.; Anolik, Jennifer H
2014-01-01
Inappropriate activation of type I interferon (IFN) plays a key role in the pathogenesis of autoimmune disease, including systemic lupus erythematosus (SLE). Here we report the presence of IFN activation in SLE bone marrow (BM), as measured by an IFN gene signature, increased IFN regulated chemokines, and direct production of IFN by BM resident cells, associated with profound changes in B cell development. The majority of SLE patients had an IFN signature in the BM that was more pronounced than the paired peripheral blood (PB) and correlated with both higher autoantibodies and disease activity. Pronounced alterations in B cell development were noted in SLE in the presence of an IFN signature with a reduction in the fraction of pro/pre B cells suggesting an inhibition in early B cell development and an expansion of B cells at the transitional (T2) stage. These B cell changes strongly correlated with an increase in BAFF and APRIL expression in the IFN high BM. Furthermore, we found that BM neutrophils in SLE were prime producers of IFN-α and B cell factors. In NZM lupus-prone mice similar changes in B cell development were observed and mediated by IFN, given abrogation in NZM mice lacking type I IFN receptor. BM neutrophils were abundant, responsive to and producers of IFN, in close proximity to B cells. These results indicate that the BM is an important but previously unrecognized target organ in SLE with neutrophil mediated IFN activation and alterations in B cell ontogeny and selection. PMID:24379124
Taylor, Juliet M; Crack, Peter J; Gould, Jodee A; Ali, Uğur; Hertzog, Paul J; Iannello, Rocco C
2004-11-01
This study was designed to elucidate the mechanisms involved in elevated cell death arising from an altered endogenous oxidant state. Increased levels of cell death were detected in cells lacking Gpx1 following the addition of exogenous H2O2. This increased apoptosis correlated with a down-regulation in the activation of the PI(3)K-Akt survival pathway. The importance of this pathway in protecting against H2O2-induced cell death was highlighted by the increased susceptibility of wild-type cells to apoptosis when treated with the PI(3)K inhibitor, LY294002. Activation of the oxidative stress sensitive transcription factor, NFkappaB, was elevated in the Gpx1-/- cells. Significantly, NFkappaB activation could be increased in wild-type cells through the addition of dominant-negative Akt. Therefore, our results suggest that the increased susceptibility of Gpx1-/- cells to H2O2-induced apoptosis can be attributed in part to diminished activation of Akt despite an up-regulation in the activation of the prosurvival NFkappaB. Thus, the PI(3)K-Akt and NFkappaB pathways can act independently of each other in an endogenous model of oxidative stress.
Acidosis promotes invasiveness of breast cancer cells through ROS-AKT-NF-κB pathway
Gupta, Subash C.; Singh, Ramesh; Pochampally, Radhika; Watabe, Kounosuke; Mo, Yin-Yuan
2014-01-01
It is well known that acidic microenvironment promotes tumorigenesis, however, the underlying mechanism remains largely unknown. In the present study, we show that acidosis promotes invasiveness of breast cancer cells through a series of signaling events. First, our study indicates that NF-κB is a key factor for acidosis-induced cell invasion. Acidosis activates NF-κB without affecting STAT3 activity; knockdown of NF-κB p65 abrogates the acidosis-induced invasion activity. Next, we show that the activation of NF-κB is mediated through phosphorylation and degradation of IκBα; and phosphorylation and nuclear translocation of p65. Upstream to NF-κB signaling, AKT is activated under acidic conditions. Moreover, acidosis induces generation of reactive oxygen species (ROS) which can be suppressed by ROS scavengers, reversing the acidosis-induced activation of AKT and NF-κB, and invasiveness. As a negative regulator of AKT, PTEN is oxidized and inactivated by the acidosis-induced ROS. Finally, inhibition of NADPH oxidase (NOX) suppresses acidosis-induced ROS production, suggesting involvement of NOX in acidosis-induced signaling cascade. Of considerable interest, acidosis-induced ROS production and activation of AKT and NF-κB can be only detected in cancer cells, but not in non-malignant cells. Together, these results demonstrate a cancer specific acidosis-induced signaling cascade in breast cancer cells, leading to cell invasion. PMID:25504433
Xu, Qing; Chen, Ling-Xiu; Ran, Dan-Hua; Xie, Wen-Yue; Li, Qi; Zhou, Xiang-Dong
2017-08-15
Bombesin receptor-activated protein (BRAP) is highly expressed in human bronchial epithelial cells. Recent studies have shown that BRAP reduces oxidative stress, inhibits airway inflammation and suppresses nuclear factor kappaB (NF-κB) activity. Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases. Neutrophil elastase (NE) is a potent inducer of mucin5AC (MUC5AC), which is considered the predominant mucin secreted by human airway epithelial cells. Here, we hypothesize that BRAP may regulate NE-induced MUC5AC hypersecretion in a bronchial epithelial cell line (HBE16). We also investigated the underlying mechanism involved in the process. In this study, we found that BRAP was present in HBE16 human bronchial epithelial cells and was significantly increased by NE. Next, we found that the up-regulation of BRAP by pEGFP-N1-BRAP caused a significant decrease in the increased levels of MUC5AC expression, NF-κB activity, and the phosphorylation of extracellular signal-regulated kinases (ERK) and epidermal growth factor receptor (EGFR) induced by NE. Meanwhile, there was a significant decrease in ROS, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) levels when BRAP was up-regulated by pEGFP-N1-BRAP. Moreover, when cells were transfected with pEGFP-N1-BRAP and pretreated with NF-κB, ERK or EGFR inhibitors before the NE stimulation, there were further decreased in MUC5AC expression, NF-κB activity, and the phosphorylation of ERK and EGFR. These results suggest that BRAP plays an important role in airway inflammation and its overexpression may regulate NE-induced MUC5AC hypersecretion in HBE16 cells via the EGFR/ERK/NF-κB signaling pathway. Copyright © 2017. Published by Elsevier Inc.
Jacobs, H; Bast, A; Peters, G J; van der Vijgh, W J F; Haenen, G R M M
2011-01-01
Background: Despite therapeutic advances, the prognosis of patients with metastatic soft tissue sarcoma (STS) remains extremely poor. The results of a recent clinical phase II study, evaluating the protective effects of the semisynthetic flavonoid 7-mono-O-(β-hydroxyethyl)-rutoside (monoHER) on doxorubicin-induced cardiotoxicity, suggest that monoHER enhances the antitumour activity of doxorubicin in STSs. Methods: To molecularly explain this unexpected finding, we investigated the effect of monoHER on the cytotoxicity of doxorubicin, and the potential involvement of glutathione (GSH) depletion and nuclear factor-κB (NF-κB) inactivation in the chemosensitising effect of monoHER. Results: MonoHER potentiated the antitumour activity of doxorubicin in the human liposarcoma cell line WLS-160. Moreover, the combination of monoHER with doxorubicin induced more apoptosis in WLS-160 cells compared with doxorubicin alone. MonoHER did not reduce intracellular GSH levels. On the other hand, monoHER pretreatment significantly reduced doxorubicin-induced NF-κB activation. Conclusion: These results suggest that reduction of doxorubicin-induced NF-κB activation by monoHER, which sensitises cancer cells to apoptosis, is involved in the chemosensitising effect of monoHER in human liposarcoma cells. PMID:21245867
Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N
2015-05-01
Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4(+) T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. © 2014 British Society for Immunology.
Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N
2015-01-01
Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4+ T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. PMID:25492061
Pak, Jhang Ho; Shin, Jimin; Song, In-Sung; Shim, Sungbo; Jang, Sung-Wuk
2017-01-01
Matrix metalloproteinase-9 plays an important role in the invasion and metastasis of various types of cancer cells. We have previously reported that excretory-secretory products from Clonorchis sinensis increases matrix metalloproteinase-9 expression. However, the regulatory mechanisms through which matrix metalloproteinase-9 expression affects cholangiocarcinoma development remain unclear. In the current study, we examined the potential role of excretory-secretory products in regulating the migration and invasion of various cholangiocarcinoma cell lines. We demonstrated that excretory-secretory products significantly induced matrix metalloproteinase-9 expression and activity in a concentration-dependent manner. Reporter gene and chromatin immunoprecipitation assays showed that excretory-secretory products induced matrix metalloproteinase-9 expression by enhancing the activity of nuclear factor-kappa B. Moreover, excretory-secretory products induced the degradation and phosphorylation of IκBα and stimulated nuclear factor-kappa B p65 nuclear translocation, which was regulated by extracellular signal-regulated kinase 1/2. Taken together, our findings indicated that the excretory-secretory product-dependent enhancement of matrix metalloproteinase-9 activity and subsequent induction of IκBα and nuclear factor-kappa B activities may contribute to the progression of cholangiocarcinoma. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okazaki, Shogo; Nakatani, Fumi; Masuko, Kazue
2016-01-29
The use of monoclonal antibodies (mAbs) for cancer therapy is one of the most important strategies for current cancer treatment. The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases, which regulates cancer cell proliferation, survival, and migration, is a major molecular target for antibody-based therapy. ErbB4/HER4, which contains a ligand-binding extracellular region, is activated by several ligands, including neuregulins (NRGs), heparin-binding EGF-like growth factor, betacellulin and epiregulin. Although there are clinically approved antibodies for ErbB1 and ErbB2, there are no available therapeutic mAbs for ErbB4, and it is not known whether ErbB4 is a useful target for antibody-basedmore » cancer therapy. In this study, we developed an anti-ErbB4 mAb (clone P6-1) that suppresses NRG-dependent activation of ErbB4 and examined its effect on breast cancer cell proliferation in the extracellular matrix. - Highlights: • We newly generated four clones of human ErbB4 specific mAb. • ErbB4 mAb clone P6-1 blocks ErbB4 phosphorylation induced by NRG-1. • ErbB4 mAb clone P6-1 suppresses NRG-1-promoted breast cancer cells proliferation on three dimensional culture condition.« less
B Cell Activation by Outer Membrane Vesicles—A Novel Virulence Mechanism
Perez Vidakovics, Maria Laura A.; Jendholm, Johan; Mörgelin, Matthias; Månsson, Anne; Larsson, Christer; Cardell, Lars-Olaf; Riesbeck, Kristian
2010-01-01
Secretion of outer membrane vesicles (OMV) is an intriguing phenomenon of Gram-negative bacteria and has been suggested to play a role as virulence factors. The respiratory pathogens Moraxella catarrhalis reside in tonsils adjacent to B cells, and we have previously shown that M. catarrhalis induce a T cell independent B cell response by the immunoglobulin (Ig) D-binding superantigen MID. Here we demonstrate that Moraxella are endocytosed and killed by human tonsillar B cells, whereas OMV have the potential to interact and activate B cells leading to bacterial rescue. The B cell response induced by OMV begins with IgD B cell receptor (BCR) clustering and Ca2+ mobilization followed by BCR internalization. In addition to IgD BCR, TLR9 and TLR2 were found to colocalize in lipid raft motifs after exposure to OMV. Two components of the OMV, i.e., MID and unmethylated CpG-DNA motifs, were found to be critical for B cell activation. OMV containing MID bound to and activated tonsillar CD19+ IgD+ lymphocytes resulting in IL-6 and IgM production in addition to increased surface marker density (HLA-DR, CD45, CD64, and CD86), whereas MID-deficient OMV failed to induce B cell activation. DNA associated with OMV induced full B cell activation by signaling through TLR9. Importantly, this concept was verified in vivo, as OMV equipped with MID and DNA were found in a 9-year old patient suffering from Moraxella sinusitis. In conclusion, Moraxella avoid direct interaction with host B cells by redirecting the adaptive humoral immune response using its superantigen-bearing OMV as decoys. PMID:20090836
Chun, Jin Mi; Nho, Kyoung Jin; Kim, Hyo Seon; Lee, A Yeong; Moon, Byeong Cheol; Kim, Ho Kyoung
2014-07-10
Houttuynia cordata Thunb. (Saururaceae) has been used in traditional medicine for treatment of inflammatory diseases. This study evaluated the anti-inflammatory effects of an ethyl acetate fraction derived from a Houttuynia cordata extract (HCE-EA) on the production of inflammatory mediators and the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. To measure the effects of HCE-EA on pro-inflammatory cytokine and inflammatory mediator's expression in RAW 264.7 cells, we used the following methods: cell viability assay, Griess reagent assay, enzyme-linked immunosorbent assay, real-time polymerase chain reaction and western blotting analysis. HCE-EA downregulated nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin (IL-6) production in the cells, as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Furthermore, HCE-EA suppressed nuclear translocation of the NF-κB p65 subunit, which correlated with an inhibitory effect on IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) phosphorylation. HCE-EA also attenuated the activation of MAPKs (p38 and JNK). Our results suggest that the anti-inflammatory properties of HCE-EA may stem from the inhibition of pro-inflammatory mediators via suppression of NF-κB and MAPK signaling pathways.
NF-κB-Induced IL-6 Ensures STAT3 Activation and Tumor Aggressiveness in Glioblastoma
McFarland, Braden C.; Hong, Suk W.; Rajbhandari, Rajani; Twitty, George B.; Gray, G. Kenneth; Yu, Hao; Benveniste, Etty N.; Nozell, Susan E.
2013-01-01
Glioblastoma (GBM) is the most aggressive, neurologically destructive and deadly tumor of the central nervous system (CNS). In GBM, the transcription factors NF-κB and STAT3 are aberrantly activated and associated with tumor cell proliferation, survival, invasion and chemoresistance. In addition, common activators of NF-κB and STAT3, including TNF-α and IL-6, respectively, are abundantly expressed in GBM tumors. Herein, we sought to elucidate the signaling crosstalk that occurs between the NF-κB and STAT3 pathways in GBM tumors. Using cultured GBM cell lines as well as primary human GBM xenografts, we elucidated the signaling crosstalk between the NF-κB and STAT3 pathways utilizing approaches that either a) reduce NF-κB p65 expression, b) inhibit NF-κB activation, c) interfere with IL-6 signaling, or d) inhibit STAT3 activation. Using the clinically relevant human GBM xenograft model, we assessed the efficacy of inhibiting NF-κB and/or STAT3 alone or in combination in mice bearing intracranial xenograft tumors in vivo. We demonstrate that TNF-α-induced activation of NF-κB is sufficient to induce IL-6 expression, activate STAT3, and elevate STAT3 target gene expression in GBM cell lines and human GBM xenografts in vitro. Moreover, the combined inhibition of NF-κB and STAT3 signaling significantly increases survival of mice bearing intracranial tumors. We propose that in GBM, the activation of NF-κB ensures subsequent STAT3 activation through the expression of IL-6. These data verify that pharmacological interventions to effectively inhibit the activity of both NF-κB and STAT3 transcription factors must be used in order to reduce glioma size and aggressiveness. PMID:24244348
NF-κB-induced IL-6 ensures STAT3 activation and tumor aggressiveness in glioblastoma.
McFarland, Braden C; Hong, Suk W; Rajbhandari, Rajani; Twitty, George B; Gray, G Kenneth; Yu, Hao; Benveniste, Etty N; Nozell, Susan E
2013-01-01
Glioblastoma (GBM) is the most aggressive, neurologically destructive and deadly tumor of the central nervous system (CNS). In GBM, the transcription factors NF-κB and STAT3 are aberrantly activated and associated with tumor cell proliferation, survival, invasion and chemoresistance. In addition, common activators of NF-κB and STAT3, including TNF-α and IL-6, respectively, are abundantly expressed in GBM tumors. Herein, we sought to elucidate the signaling crosstalk that occurs between the NF-κB and STAT3 pathways in GBM tumors. Using cultured GBM cell lines as well as primary human GBM xenografts, we elucidated the signaling crosstalk between the NF-κB and STAT3 pathways utilizing approaches that either a) reduce NF-κB p65 expression, b) inhibit NF-κB activation, c) interfere with IL-6 signaling, or d) inhibit STAT3 activation. Using the clinically relevant human GBM xenograft model, we assessed the efficacy of inhibiting NF-κB and/or STAT3 alone or in combination in mice bearing intracranial xenograft tumors in vivo. We demonstrate that TNF-α-induced activation of NF-κB is sufficient to induce IL-6 expression, activate STAT3, and elevate STAT3 target gene expression in GBM cell lines and human GBM xenografts in vitro. Moreover, the combined inhibition of NF-κB and STAT3 signaling significantly increases survival of mice bearing intracranial tumors. We propose that in GBM, the activation of NF-κB ensures subsequent STAT3 activation through the expression of IL-6. These data verify that pharmacological interventions to effectively inhibit the activity of both NF-κB and STAT3 transcription factors must be used in order to reduce glioma size and aggressiveness.
HTLV-1 basic leucine zipper factor downregulates cyclin D1 expression via interactions with NF-κB.
Ma, Yunyun; Zhang, Bo; Wang, Dong; Qian, Lili; Song, Xianmei; Wang, Xueyin; Yang, Chaokuan; Zhao, Guoqiang
2017-03-01
Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus. It can cause adult T cell leukemia (ATL) and other diseases. The HTLV-1 basic leucine zipper (bZIP) factor (HBZ), which is encoded by the minus-strand of the provirus, is expressed in all cases of ATL and involved in T cell proliferation. However, the exact mechanism underlying its growth-promoting activity is poorly understood. Herein, we demonstrated that HBZ suppressed cyclin D1 expression by inhibiting the nuclear factor (NF)-κB signaling pathway. Among the potential mechanisms of cyclin D1 inhibition mediated by HBZ, we found that HBZ suppressed cyclin D1 promoter activity. Luciferase assay analysis revealed that HBZ repressed cyclin D1 promoter activity by suppressing NF-κB‑driven transcription mediated by the p65 subunit. Using an immunoprecipitation assay, we found that HBZ could bind to p65, but not p50. Finally, we showed that HBZ selectively interacted with p65 via its AD+bZIP domains. By suppressing cyclin D1 expression, HBZ can alter cell cycle progression of HTLV-1-infected cells, which may be critical for oncogenesis.
Feist, Maren; Schwarzfischer, Philipp; Heinrich, Paul; Sun, Xueni; Kemper, Judith; von Bonin, Frederike; Perez-Rubio, Paula; Taruttis, Franziska; Rehberg, Thorsten; Dettmer, Katja; Gronwald, Wolfram; Reinders, Jörg; Engelmann, Julia C; Dudek, Jan; Klapper, Wolfram; Trümper, Lorenz; Spang, Rainer; Oefner, Peter J; Kube, Dieter
2018-04-17
Knowledge of stromal factors that have a role in the transcriptional regulation of metabolic pathways aside from c-Myc is fundamental to improvements in lymphoma therapy. Using a MYC-inducible human B-cell line, we observed the cooperative activation of STAT3 and NF-κB by IL10 and CpG stimulation. We show that IL10 + CpG-mediated cell proliferation of MYC low cells depends on glutaminolysis. By 13 C- and 15 N-tracing of glutamine metabolism and metabolite rescue experiments, we demonstrate that GOT2 provides aspartate and nucleotides to cells with activated or aberrant Jak/STAT and NF-κB signaling. A model of GOT2 transcriptional regulation is proposed, in which the cooperative phosphorylation of STAT3 and direct joint binding of STAT3 and p65/NF-κB to the proximal GOT2 promoter are important. Furthermore, high aberrant GOT2 expression is prognostic in diffuse large B-cell lymphoma underscoring the current findings and importance of stromal factors in lymphoma biology.
The E3 ligase c-Cbl regulates dendritic cell activation
Chiou, Shin-Heng; Shahi, Payam; Wagner, Ryan T; Hu, Hongbo; Lapteva, Natalia; Seethammagari, Mamatha; Sun, Shao-Cong; Levitt, Jonathan M; Spencer, David M
2011-01-01
The activation of innate and adaptive immunity is always balanced by inhibitory signalling mechanisms to maintain tissue integrity. We have identified the E3 ligase c-Cbl––known for its roles in regulating lymphocyte signalling––as a modulator of dendritic cell activation. In c-Cbl-deficient dendritic cells, Toll-like receptor-induced expression of proinflammatory factors, such as interleukin-12, is increased, correlating with a greater potency of dendritic-cell-based vaccines against established tumours. This proinflammatory phenotype is accompanied by an increase in nuclear factor (NF)-κB activity. In addition, c-Cbl deficiency reduces both p50 and p105 levels, which have been shown to modulate the stimulatory function of NF-κB. Our data indicate that c-Cbl has a crucial, RING-domain-dependent role in regulating dendritic cell maturation, probably by facilitating the regulatory function of p105 and/or p50. PMID:21799517
Medjkane, Souhila; Perez-Sanchez, Cristina; Gaggioli, Cedric; Sahai, Erik; Treisman, Richard
2009-03-01
Rho GTPases control cytoskeletal dynamics through cytoplasmic effectors and regulate transcriptional activation through myocardin-related transcription factors (MRTFs), which are co-activators for serum response factor (SRF). We used RNA interference to investigate the contribution of the MRTF-SRF pathway to cytoskeletal dynamics in MDA-MB-231 breast carcinoma and B16F2 melanoma cells, in which basal MRTF-SRF activity is Rho-dependent. Depletion of MRTFs or SRF reduced cell adhesion, spreading, invasion and motility in culture, without affecting proliferation or inducing apoptosis. MRTF-depleted tumour cell xenografts showed reduced cell motility but proliferated normally. Tumour cells depleted of MRTF or SRF failed to colonize the lung from the bloodstream, being unable to persist after their arrival in the lung. Only a few genes show MRTF-dependent expression in both cell lines. Two of these, MYH9 (NMHCIIa) and MYL9 (MLC2), are also required for invasion and lung colonization. Conversely, expression of activated MAL/MRTF-A increases lung colonization by poorly metastatic B16F0 cells. Actin-based cell behaviour and experimental metastasis thus require Rho-dependent nuclear signalling through the MRTF-SRF network.
Zhi, Yunlai; Lu, Hongting; Duan, Yuhe; Sun, Weisheng; Guan, Ge; Dong, Qian; Yang, Chuanmin
2015-02-01
Metastasis is a hallmark of malignant neuroblastoma and is the main reason for therapeutic failure and recurrence of the tumor. The CXC chemokine receptor-4 (CXCR4), a Gi protein-coupled receptor for the ligand CXCL12/stromal cell-derived factor-1α (SDF-1α), is expressed in various types of tumor. This receptor mediates the homing of tumor cells to specific organs that express the ligand, CXCL12, for this receptor and plays an important role in tumor growth, invasion, metastasis and angiogenesis. In the present study, the inflammatory cytokine, tumor necrosis factor‑α (TNF‑α) upregulated CXCR4 expression in neuroblastoma cells and increased migration to the CXCR4 ligand SDF‑1α. In addition, this effect was dependent upon NF-κB transcriptional activity, as blocking the NF-κB pathway with pyrrolidinedithiocarbamic acid ammonium salt suppressed TNF-α‑induced upregulation of CXCR4 expression and reduced the migration towards the CXCR4 ligand, SDF-1α. Treating neuroblastoma cells with TNF-α resulted in the activation of nuclear factor-kappa B (NF-κB) and subsequently, the translocation of NF-κB from the cytoplasm to the nucleus. Using immunohistochemistry, NF‑κB and CXCR4 were significantly correlated with each other (P=0.0052, Fisher's exact test) in a cohort of neuroblastoma samples (n=80). The present study indicates that the inflammatory cytokine, TNF-α, partially functions through the NF‑κB signaling pathway to upregulate CXCR4 expression to foster neuroblastoma cell metastasis. These findings indicate that effective inhibition of neuroblastoma metastasis should be directed against the inflammatory cytokine-induced NF‑κB/CXCR4/SDF‑1α signaling pathway.
Kwon, Hakju; Ogle, Louise; Benitez, Bobby; Bohuslav, Jan; Montano, Mauricio; Felsher, Dean W; Greene, Warner C
2005-10-21
Type I human T cell leukemia virus (HTLV-I) is etiologically linked with adult T cell leukemia, an aggressive and usually fatal expansion of activated CD4+ T lymphocytes that frequently traffic to skin. T cell transformation induced by HTLV-I involves the action of the 40-kDa viral Tax transactivator protein. Tax both stimulates the HTLV-I long terminal repeat and deregulates the expression of select cellular genes by altering the activity of specific host transcription factors, including cyclic AMP-responsive element-binding protein (CREB)/activating transcription factor, NF-kappaB/Rel, and serum response factor. To study initiating events involved in HTLV-I Tax-induced T cell transformation, we generated "Tet-off" transgenic mice conditionally expressing in a lymphocyte-restricted manner (EmuSR alpha promoter-enhancer) either wild-type Tax or mutant forms of Tax that selectively compromise the NF-kappaB (M22) or CREB/activating transcription factor (M47) activation pathways. Wild-type Tax and M47 Tax-expressing mice, but not M22-Tax expressing mice, developed progressive alopecia, hyperkeratosis, and skin lesions containing profuse activated CD4 T cell infiltrates with evidence of deregulated inflammatory cytokine production. In addition, these animals displayed systemic lymphadenopathy and splenomegaly. These findings suggest that Tax-mediated activation of NF-kappaB plays a key role in the development of this aggressive skin disease that shares several features in common with the skin disease occurring during the preleukemic stage in HTLV-I-infected patients. Of note, this skin disease completely resolved when Tax transgene expression was suppressed by administration of doxycycline, emphasizing the key role played by this viral oncoprotein in the observed pathology.
Cheng, Aiwu; Coksaygan, Turhan; Tang, Hongyan; Khatri, Rina; Balice-Gordon, Rita J; Rao, Mahendra S; Mattson, Mark P
2007-03-01
During development of the mammalian cerebral cortex neural stem cells (NSC) first generate neurons and subsequently produce glial cells. The mechanism(s) responsible for this developmental shift from neurogenesis to gliogenesis is unknown. Brain-derived neurotrophic factor (BDNF) is believed to play important roles in the development of the mammalian cerebral cortex; it enhances neurogenesis and promotes the differentiation and survival of newly generated neurons. Here, we provide evidence that a truncated form of the BDNF receptor tyrosine kinase B (trkB-t) plays a pivotal role in directing embryonic mouse cortical NSC to a glial cell fate. Expression of trkB-t promotes differentiation of NSC toward astrocytes while inhibiting neurogenesis both in cell culture and in vivo. The mechanism by which trkB-t induces astrocyte genesis is not simply the result of inhibition of full-length receptor with intrinsic tyrosine kinase activity signaling. Instead, binding of BDNF to trkB-t activates a signaling pathway (involving a G-protein and protein kinase C) that induced NSC to become glial progenitors and astrocytes. Thus, the increased expression of trkB-t in the embryonic cerebral cortex that occurs coincident with astrocyte production plays a pivotal role in the developmental transition from neurogenesis to gliogenesis. Our findings suggest a mechanism by which a single factor (BDNF) regulates the production of the two major cell types in the mammalian cerebral cortex.
Perfettini, Jean-Luc; Roumier, Thomas; Castedo, Maria; Larochette, Nathanael; Boya, Patricia; Raynal, Brigitte; Lazar, Vladimir; Ciccosanti, Fabiola; Nardacci, Roberta; Penninger, Josef; Piacentini, Mauro; Kroemer, Guido
2004-03-01
The coculture of cells expressing the HIV-1 envelope glycoprotein complex (Env) with cells expressing CD4 results into cell fusion, deregulated mitosis, and subsequent cell death. Here, we show that NF-kappaB, p53, and AP1 are activated in Env-elicited apoptosis. The nuclear factor kappaB (NF-kappaB) super repressor had an antimitotic and antiapoptotic effect and prevented the Env-elicited phosphorylation of p53 on serine 15 and 46, as well as the activation of AP1. Transfection with dominant-negative p53 abolished apoptosis and AP1 activation. Signs of NF-kappaB and p53 activation were also detected in lymph node biopsies from HIV-1-infected individuals. Microarrays revealed that most (85%) of the transcriptional effects of HIV-1 Env were blocked by the p53 inhibitor pifithrin-alpha. Macroarrays led to the identification of several Env-elicited, p53-dependent proapoptotic transcripts, in particular Puma, a proapoptotic "BH3-only" protein from the Bcl-2 family known to activate Bax/Bak. Down modulation of Puma by antisense oligonucleotides, as well as RNA interference of Bax and Bak, prevented Env-induced apoptosis. HIV-1-infected primary lymphoblasts up-regulated Puma in vitro. Moreover, circulating CD4+ lymphocytes from untreated, HIV-1-infected donors contained enhanced amounts of Puma protein, and these elevated Puma levels dropped upon antiretroviral therapy. Altogether, these data indicate that NF-kappaB and p53 cooperate as the dominant proapoptotic transcription factors participating in HIV-1 infection.
Oh, Jung Hwa; Kwon, Taeg Kyu
2009-05-01
We here investigated the functional effect of withaferin A on airway inflammation and its action mechanism. Withaferin A inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in human lung epithelial A549 cells stimulated with tumor necrosis factor-alpha (TNF-alpha), resulting in the suppression of leukocyte adhesion to lung epithelial A549 cells. In addition, withaferin A inhibited TNF-alpha-induced expression of adhesion molecules (ICAM-1 and VCAM-1) protein and mRNA in a dose-dependent manner. Withaferin A prevented DNA binding activity of nuclear factor-kappaB (NF-kappaB) and nuclear translocation of NF-kappaB. It also inhibited phosphorylation of Akt and extracellular signal-regulated kinase (ERK), which are upstream in the regulation of adhesion molecules by TNF-alpha. Furthermore, withaferin A inhibited U937 monocyte adhesion to A549 cells stimulated by TNF-alpha, suggesting that it may inhibit the binding of these cells by regulating the expression of critical adhesion molecules by TNF-alpha. Taken together, these results suggest that withaferin A inhibits cell adhesion through inhibition of ICAM-1 and VCAM-1 expression, at least in part, by blocking Akt and down-regulating NF-kappaB activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Fandong; Li, Yan; Tian, Xin
Highlights: • Inhibition of TAK1 kinase activity suppresses NF-κB activation and RCC cell survival. • TAK1 inhibitors induces apoptotic cytotoxicity against RCC cells. • RCC cells with TAK1 depletion show reduced cell viability and increased apoptosis. • TAK1 and p-NF-κB are both over-expressed in human RCC tissues. • Inhibition or depletion of TAK1 enhances the activity of vinblastine sulfate. - Abstract: Renal cell carcinoma (RCC) is common renal malignancy within poor prognosis. TGF-β-activated kinase 1 (TAK1) plays vital roles in cell survival, apoptosis-resistance and carcinogenesis through regulating nuclear factor-κB (NF-κB) and other cancer-related pathways. Here we found that TAK1 inhibitorsmore » (LYTAK1, 5Z-7-oxozeanol (5Z) and NG-25) suppressed NF-κB activation and RCC cell (786-O and A489 lines) survival. TAK1 inhibitors induced apoptotic cytotoxicity against RCC cells, which was largely inhibited by the broad or specific caspase inhibitors. Further, shRNA-mediated partial depletion of TAK1 reduced 786-O cell viability whiling activating apoptosis. Significantly, TAK1 was over-expressed in human RCC tissues, and its level was correlated with phosphorylated NF-κB. Finally, kinase inhibition or genetic depletion of TAK1 enhanced the activity of vinblastine sulfate (VLB) in RCC cells. Together, these results suggest that TAK1 may be an important oncogene or an effective target for RCC intervention.« less
Lopez-Haber, Cynthia; Barrio-Real, Laura; Casado-Medrano, Victoria
2016-01-01
The growth factor heregulin (HRG), a ligand of ErbB3 and ErbB4 receptors, contributes to breast cancer development and the promotion of metastatic disease, and its expression in breast tumors has been associated with poor clinical outcome and resistance to therapy. In this study, we found that breast cancer cells exposed to sustained HRG treatment show markedly enhanced Rac1 activation and migratory activity in response to the CXCR4 ligand SDF-1/CXCL12, effects mediated by P-Rex1, a Rac-guanine nucleotide exchange factor (GEF) aberrantly expressed in breast cancer. Notably, HRG treatment upregulates surface expression levels of CXCR4, a G protein-coupled receptor (GPCR) implicated in breast cancer metastasis and an indicator of poor prognosis in breast cancer patients. A detailed mechanistic analysis revealed that CXCR4 upregulation and sensitization of the Rac response/motility by HRG are mediated by the transcription factor hypoxia-inducible factor 1α (HIF-1α) via ErbB3 and independently of ErbB4. HRG caused prominent induction in the nuclear expression of HIF-1α, which transcriptionally activates the CXCR4 gene via binding to a responsive element located in positions −1376 to −1372 in the CXCR4 promoter, as revealed by mutagenesis analysis and chromatin immunoprecipitation (ChIP). Our results uncovered a novel function for ErbB3 in enhancing breast cancer cell motility and sensitization of the P-Rex1/Rac1 pathway through HIF-1α-mediated transcriptional induction of CXCR4. PMID:27185877
Estrogen Modulation of MgATPase Activity of Nonmuscle Myosin-II-B Filaments
Gorodeski, George I.
2008-01-01
The study tested the hypothesis that estrogen controls epithelial paracellular resistance through modulation of myosin. The objective was to understand how estrogen modulates non-muscle myosin-II-B (NMM-II-B), the main component of the cortical actomyosin in human epithelial cervical cells. Experiments used human cervical epithelial cells CaSki as a model, and end points were NMM-II-B phosphorylation, filamentation, and MgATPase activity. The results were as follows: 1) treatment with estrogen increased phosphorylation and MgATPase activity and decreased NMM-II-B filamentation; 2) estrogen effects could be blocked by antisense nucleotides for the estrogen receptor-α and by ICI-182,780, tamoxifen, and the casein kinase-II (CK2) inhibitor, 5,6-dichloro-1-β-(D)-ribofuranosylbenzimidazole and attenuated by AG1478 and PD98059 (inhibitors of epithelial growth factor receptor and ERK/MAPK) but not staurosporine [blocker of protein kinase C (PKC)]; 3) treatments with the PKC activator sn-1,2-di-octanoyl diglyceride induced biphasic effect on NMM-II-B MgATPase activity: an increase at 1 nM to 1 μM and a decrease in activity at more than 1 μM; 4) sn-1,2-dioctanoyl diglyceride also decreased NMM-II-B filamentation in a monophasic and saturable dose dependence (EC50 1–10 μM); 5) when coincubated directly with purified NMM-II-B filaments, both CK2 and PKC decreased filamentation and increased MgATPase activity; 6) assays done on disassembled NMM-II-B filaments showed MgATPase activity in filaments obtained from estrogen-treated cells but not estrogen-depleted cells; and 7) incubations in vitro with CK2, but not PKC, facilitated MgATPase activity, even in disassembled NMM-II-B filaments. The results suggest that estrogen, in an effect mediated by estrogen receptor-α and CK2 and involving the epithelial growth factor receptor and ERK/MAPK cascades, increases NMM-II-B MgATPase activity independent of NMM-II-B filamentation status. PMID:17023528
Meunier, Alice; Latrémolière, Alban; Dominguez, Elisa; Mauborgne, Annie; Philippe, Stéphanie; Hamon, Michel; Mallet, Jacques; Benoliel, Jean-Jacques; Pohl, Michel
2007-04-01
Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor κB (NF-κB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor. NF-κB is a pleiotropic factor also involved in central nervous system homeostasy. To study its role in chronic pain, it is thus essential to inhibit the NF-κB pathway selectively in activated spinal glial cells. Here, we show that when restricted to spinal cord and targeted to glial cells, lentiviral vector-mediated delivery of NF-κB super- repressor IκBα resulted in an inhibition of the NF-κB pathway activated in the rat spinal cord after sciatic nerve injury (chronic constriction injury, CCI). Concomitantly, IκBα overproduction prevented the enhanced expression of interleukin-6 and of inducible nitric oxide synthase associated with chronic constriction injury and resulted in prolonged antihyperalgesic and antiallodynic effects. These data show that targeted blockade of NF-κB activity in spinal glia efficiently alleviates pain behavior in CCI rats, demonstrating the active participation of the glial NF-κB pathway in the development of neuropathic pain after peripheral nerve injury. Copyright © 2007 The American Society of Gene Therapy. Published by Elsevier Inc. All rights reserved.
Fang, Jung-Da; Lee, Sheau-Ling
2014-07-01
Hepatocyte growth factor (HGF) is a chemoattractant and inducer for neural stem/progenitor (NS/P) cell migration. Although the type II transmembrane serine protease, matriptase (MTP) is an activator of the latent HGF, MTP is indispensable on NS/P cell motility induced by the active form of HGF. This suggests that MTP's action on NS/P cell motility involves mechanisms other than proteolytic activation of HGF. In the present study, we investigate the role of MTP in HGF-stimulated signaling events. Using specific inhibitors of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) or focal adhesion kinase (FAK), we demonstrated that in NS/P cells HGF-activated c-Met induces PI3k-Akt signaling which then leads to FAK activation. This signaling pathway ultimately induces MMP2 expression and NS/P cell motility. Knocking down of MTP in NS/P cells with specific siRNA impaired HGF-stimulation of c-Met, Akt and FAK activation, blocked HGF-induced production of MMP2 and inhibited HGF-stimulated NS/P cell motility. MTP-knockdown NS/P cells cultured in the presence of recombinant protein of MTP protease domain or transfected with the full-length wild-type but not the protease-defected MTP restored HGF-responsive events in NS/P cells. In addition to functioning as HGF activator, our data revealed novel function of MTP on HGF-stimulated c-Met signaling activation. Copyright © 2014. Published by Elsevier B.V.
Buono, P; Conciliis, L D; Izzo, P; Salvatore, F
1997-01-01
A DNA region located at around -200 bp in the 5' flanking region (region D) of the human brain-type fructose-bisphosphate aldolase (aldolase C) gene has been analysed. We show by transient transfection assay and electrophoretic-mobility-shift assay (EMSA) that the binding of transcriptional activators to region D is much more efficient (80% versus 30%) in human neuroblastoma cells (SKNBE) than in the non-neuronal cell line A1251, which contains low levels of aldolase C mRNA. The sequence of region D, CAAGGTCA, is very similar to the AAAGGTCA motif present in the mouse steroid 21-hydroxylase gene; the latter motif binds nerve-growth-factor-induced B factor (NGFI-B), which is a member of the thyroid/steroid/retinoid nuclear receptor gene family. Competition experiments in EMSA and antibody-directed supershift experiments showed that NGFI-B is involved in the binding to region D of the human aldolase C gene. Furthermore, the regulation of the aldolase C gene (which is the second known target of NGFI-B) expression during development parallels that of NGFI-B. PMID:9173889
Yu, X; Zhen, Y; Yang, H; Wang, H; Zhou, Y; Wang, E; Marincola, F M; Mai, C; Chen, Y; Wei, H; Song, Y; Lyu, X; Ye, Y; Cai, L; Wu, Q; Zhao, M; Hua, S; Fu, Q; Zhang, Y; Yao, K; Liu, Z; Li, X; Fang, W
2013-05-16
Connective tissue growth factor (CTGF) has different roles in different types of cancer. However, the involvement and molecular basis of CTGF in tumor progression and prognosis of human nasopharyngeal carcinoma (NPC) have almost never been reported. In this study, we observed that downregulated CTGF expression was significantly associated with NPC progression and poor prognosis. Knockdown of CTGF markedly elevated the ability of cell proliferation in vivo and in vitro. Subsequently, we discovered that the reduction of CTGF increased the expression of miR-18b, an oncomir-promoting cell proliferation. Further, we discovered that attenuated CTGF-mediated upregulation of miR-18b was dependent on the increased binding of transcription factors Jun proto-oncogene (C-Jun) and v-Myc myelocytomatosis viral oncogene homolog (C-Myc) to miR-18b promoter region via phosphoinositide 3-kinase (PI3K)/AKT pathway. Finally, we further found that miR-18b directly suppressed the expression of CTGF in NPC. In clinical fresh specimens, miR-18b was widely overexpressed and inversely correlated with CTGF expression in NPC. Our studies are the first to demonstrate that reduced CTGF as an unfavorable prognosis factor mediates the activation of miR-18b, an oncomir directly suppresses CTGF expression, by PI3K/AKT/C-Jun and C-Myc and promotes cell growth of NPC.
Hajishengallis, George; Tapping, Richard I.; Martin, Michael H.; Nawar, Hesham; Lyle, Elizabeth A.; Russell, Michael W.; Connell, Terry D.
2005-01-01
The type II heat-labile enterotoxins (LT-IIa and LT-IIb) of Escherichia coli have an AB5 subunit structure similar to that of cholera toxin (CT) and other type I enterotoxins, despite significant differences in the amino acid sequences of their B subunits and different ganglioside receptor specificities. LT-II holotoxins and their nontoxic B subunits display unique properties as immunological adjuvants distinct from those of CT and its B subunits. In contrast to type II holotoxins, the corresponding pentameric B subunits, LT-IIaB and LT-IIbB, stimulated cytokine release in both human and mouse cells dependent upon Toll-like receptor 2 (TLR2). Induction of interleukin-1β (IL-1β), IL-6, IL-8, or tumor necrosis factor alpha in human THP-1 cells by LT-IIaB or LT-IIbB was inhibited by anti-TLR2 but not by anti-TLR4 antibody. Furthermore, transient expression of TLR1 and TLR2 in human embryonic kidney 293 cells resulted in activation of a nuclear factor-κB-dependent luciferase gene in response to LT-IIaB or LT-IIbB. Moreover, peritoneal macrophages from TLR2-deficient mice failed to respond to LT-IIaB or LT-IIbB, in contrast to wild-type or TLR4-deficient cells. These results demonstrate that besides their established binding to gangliosides, the B subunits of type II enterotoxins also interact with TLR2. Although a ganglioside-nonbinding mutant (T34I) of LT-IIaB effectively induced cytokine release, a phenotypically similar point mutation (T13I) in LT-IIbB abrogated cytokine induction, suggesting a variable requirement for gangliosides as coreceptors in TLR2 agonist activity. TLR2-dependent activation of mononuclear cells by type II enterotoxin B subunits appears to be a novel mechanism whereby these molecules may exert their immunomodulatory and adjuvant activities. PMID:15731031
Neurotensin stimulates mitogenesis of prostate cancer cells through a novel c-Src/Stat5b pathway.
Amorino, G P; Deeble, P D; Parsons, S J
2007-02-01
Neuroendocrine (NE)-like cells are hypothesized to contribute to the progression of prostate cancer by producing factors that enhance the growth, survival or metastatic capabilities of surrounding tumor cells. Many of the factors known to be secreted by NE-like cells, such as neurotensin (NT), parathyroid hormone-related peptide, serotonin, bombesin, etc., are agonists for G-protein-coupled receptors, but the signaling pathways activated by these agonists in prostate tumor cells are not fully defined. Identification of such pathways could provide insights into novel methods of treating late-stage disease. Using conditioned culture medium (CM) from LNCaP-derived NE-like cells (as a source of these agonists) or NT (a prototypical component of CM) to treat PC3 cells, we found that the epidermal growth factor (EGF) receptor (EGFR) was transactivated and that such activation was required for maximal PC3 cell mitogenesis, as measured by 5-bromo-2'-deoxy-uridine incorporation or cell number. NT also induced a time-dependent increase in EGFR Tyr(845) phosphorylation and phosphorylation of c-Src and signal transducer and activator of transcription 5b (Stat5b) (a downstream effector of Tyr(845)), events that were blocked by specific inhibition of c-Src (which mediates Tyr(845) phosphorylation of EGFR) or of EGFR. Introduction of mutant forms of EGFR (Tyr(845)) or Stat5b in PC3 cells, or treatment with selective, catalytic inhibitors of EGFR, c-Src and matrix metalloproteinases (MMPs) resulted in the loss of NT-induced stimulation of DNA synthesis, relative to wild-type controls. These data indicate that the mitogenic effect of NT on prostate cancer cells requires transactivation of the EGFR by MMPs and a novel downstream pathway involving c-Src, phosphorylation of EGFR Tyr(845) and activation of Stat5b.
Lim, Michelle C C; Maubach, Gunter; Sokolova, Olga; Feige, Michael H; Diezko, Rolf; Buchbinder, Jörn; Backert, Steffen; Schlüter, Dirk; Lavrik, Inna N; Naumann, Michael
2017-01-01
The human pathogen Helicobacter pylori infects more than half of the world’s population and is a paradigm for persistent yet asymptomatic infection but increases the risk for chronic gastritis and gastric adenocarcinoma. For successful colonization, H. pylori needs to subvert the host cell death response, which serves to confine pathogen infection by killing infected cells and preventing malignant transformation. Infection of gastric epithelial cells by H. pylori provokes direct and fast activation of the proinflammatory and survival factor NF-κB, which regulates target genes, such as CXCL8, BIRC3 and TNFAIP3. However, it is not known how H. pylori exploits NF-κB activation and suppresses the inflammatory response and host apoptotic cell death, in order to avert the innate immune response and avoid cell loss, and thereby enhance colonization to establish long-term infection. Here we assign for the first time that H. pylori and also Campylobacter jejuni-induced ubiquitin-editing enzyme A20 bifunctionally terminates NF-κB activity and negatively regulates apoptotic cell death. Mechanistically, we show that the deubiquitinylase activity of A20 counteracts cullin3-mediated K63-linked ubiquitinylation of procaspase-8, therefore restricting the activity of caspase-8. Interestingly, another inducible NF-κB target gene, the scaffold protein p62, ameliorates the interaction of A20 with procaspase-8. In conclusion, pathogen-induced de novo synthesis of A20 regulates the shut-off of the survival factor NF-κB but, on the other hand, also impedes caspase-8-dependent apoptotic cell death so as to promote the persistence of pathogens. PMID:28574503
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Hyeon-Jae; Lee, Jin-Hwee; Jung, Yi-Sook, E-mail: yisjung@ajou.ac.kr
Highlights: • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced TARC and MDC expression in HaCaT cells. • PKCζ, p38 MAPK, or NF-κB mediate TNF-α/IFN-γ-induced TARC and MDC expression. • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced activation of PKCζ, p38 MAPK, or NF-κB. • (+)-Nootkatone suppresses chemokine expression by inhibiting of PKCζ and p38 pathways. - Abstract: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate themore » effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jie; Zeng, Zhi; Wu, Teng
The activation of nuclear factor-κB (NF-κB) and the subsequent overexpression of its downstream targets transforming growth factor-β1 (TGF-β1) and fibronectin (FN) are among the hallmarks for the progressive diabetic nephropathy. Our previous studies demonstrated that emodin ameliorated renal injury and inhibited extracellular matrix accumulation in kidney and mesangial cells under diabetic condition. However, the molecular mechanism has not been fully elucidated. Here, we showed that emodin significantly attenuated high glucose-induced NF-κB nuclear translocation in mesangial cells. Interestingly, emodin also inhibited the DNA-binding activity and transcriptional activity of NF-κB. Furthermore, NF-κB-mediated TGF-β1 and FN expression was significantly decreased by emodin. Thesemore » results demonstrated that emodin suppressed TGF-β1 and FN overexpression through inhibition of NF-κB activation, suggesting that emodin-mediated inhibition of the NF-κB pathway could protect against diabetic nephropathy. - Highlights: • Emodin decreased high glucose-induced p65 phosphorylation in MCs. • Emodin decreased high glucose-induced IκB-α degradation in MCs. • Emodin decreased high glucose-induced p65 translocation in MCs. • Emodin blocked high glucose-induced NF-κB activity. • Emodin blocked high glucose-induced the expression of TGF-β1 and FN.« less
Functional role of human NK cell receptor 2B4 (CD244) isoforms.
Mathew, Stephen O; Rao, Krithi K; Kim, Jong R; Bambard, Nowland D; Mathew, Porunelloor A
2009-06-01
2B4 (CD244), a member of the signaling lymphocyte-activation molecule (SLAM/CD150), is expressed on all NK cells, a subpopulation of T cells, monocytes and basophils. Human NK cells express two isoforms of 2B4, h2B4-A and h2B4-B that differ in a small portion of the extracellular domain. In the present investigation, we have studied the functions of h2B4-A and h2B4-B. Our study demonstrated that these two isoforms differ in their binding affinity for CD48, which results in differential cytotoxic activity as well as intracellular calcium release by NK cells upon target cell recognition. Analysis of the predicted 3-D structure of the two isoforms showed conformational differences that could account for their differences in binding affinity to CD48. h2B4-A was able to mediate natural cytotoxicity against CD48-expressing K562 target cells and induce intracellular calcium release, whereas h2B4-B showed no effects. NK-92MI, U937, THP-1, KU812, primary monocytes, basophils and NK cells showed expression of both h2B4-A and h2B4-B whereas YT and IL-2-activated NK cells did not show any h2B4-B expression. Stimulation of NK cells through 2B4 resulted in decreased mRNA levels of both h2B4-A and h2B4-B indicating that down-regulation of 2B4 isoforms may be an important factor in controlling NK cell activation during immune responses.
Chen, Feng; Hori, Tomohide; Ohashi, Norifumi; Baine, Ann-Marie; Eckman, Christopher B.; Nguyen, Justin H.
2011-01-01
Mechanisms of brain edema in acute liver failure (ALF) are not completely understood. We recently demonstrated that matrix metalloproteinase 9 (MMP-9) induces significant alterations to occludin in brain endothelial cells in vitro and in brains of mice with experimental ALF (Hepatology 50:1914, 2009). In this study, we show that MMP-9-induced transactivation of epidermal growth factor receptor (EGFR) and p38MAPK/NFκB signals participate in regulating brain endothelial occludin level. Mouse brain endothelial bEnd3 cells were exposed to MMP-9 or p38 MAPK upregulation in the presence and absence of EGFR inhibitor, p38 MAPK inhibitor, NFκB inhibitor, and/or appropriate small interfering RNA. RT-PCR and western blotting were used for mRNA and protein expression analyses. Immunohistochemical staining and confocal microscopy were used to demonstrate cellular EGFR activation. Intraperitoneal azoxymethane was use to induce ALF in mice. Brains of comatose ALF mice were processed for histological and biochemical analyses. When bEnd3 cells were exposed to MMP-9, EGFR was significantly transactivated, followed by p38 MAPK activation, IκBα degradation, NFκB activation, and suppression of occludin synthesis and expression. Similar EGFR activation and p38 MAPK/NFκB activation were found in the brains of ALF mice, and these changes were attenuated with GM6001 treatment. Conclusion EGFR activation with p38 MAPK/NFκB signaling contributes to the regulation of tight junction integrity in ALF. EGFR activation may thus play an important role in vasogenic brain edema in ALF. PMID:21480332
Loganathan, R; Selvaduray, K R; Nesaretnam, K; Radhakrishnan, A K
2013-04-01
Tocotrienols and tocopherols are members of the vitamin E family, with similar structures; however, only tocotrienols have been reported to achieve potent anti-cancer effects. The study described here has evaluated anti-cancer activity of vitamin E to elucidate mechanisms of cell death, using human breast cancer cells. Anti-cancer activity of a tocotrienol-rich fraction (TRF) and a tocotrienol-enriched fraction (TEF) isolated from palm oil, as well as pure vitamin E analogues (α-tocopherol, α-, δ- and γ-tocotrienols) were studied using highly aggressive triple negative MDA-MB-231 cells and oestrogen-dependent MCF-7 cells, both of human breast cancer cell lines. Cell population growth was evaluated using a Coulter particle counter. Cell death mechanism, poly(ADP-ribose) polymerase cleavage and levels of NF-κB were determined using commercial ELISA kits. Tocotrienols exerted potent anti-proliferative effects on both types of cell by inducing apoptosis, the underlying mechanism of cell death being ascertained using respective IC50 concentrations of all test compounds. There was marked induction of apoptosis in both cell lines by tocotrienols compared to treatment with Paclitaxel, which was used as positive control. This activity was found to be associated with cleavage of poly(ADP-ribose) polymerase (a DNA repair protein), demonstrating involvement of the apoptotic cell death signalling pathway. Tocotrienols also inhibited expression of nuclear factor kappa-B (NF-κB), which in turn can increase sensitivity of cancer cells to apoptosis. Tocotrienols induced anti-proliferative and apoptotic effects in association with DNA fragmentation, poly(ADP-ribose) polymerase cleavage and NF-κB inhibition in the two human breast cancer cell lines. © 2013 Blackwell Publishing Ltd.
Role of BAFF and APRIL in human B-cell chronic lymphocytic leukaemia
Haiat, Stéphanie; Billard, Christian; Quiney, Claire; Ajchenbaum-Cymbalista, Florence; Kolb, Jean-Pierre
2006-01-01
B-cell chronic lymphocytic leukaemia (B-CLL) is the most prevalent leukaemia in Western countries and is characterized by the gradual accumulation in patients of small mature B cells. Since the vast majority of tumoral cells are quiescent, the accumulation mostly results from deficient apoptosis rather than from acute proliferation. Although the phenomenon is relevant in vivo, B-CLL cells die rapidly in vitro as a consequence of apoptosis, suggesting a lack of essential growth factors in the culture medium. Indeed, the rate of B-CLL cell death in vitro is modulated by different cytokines, some favouring the apoptotic process, others counteracting it. Two related members of the tumour necrosis factor family, BAFF (B-cell activating factor of the TNF family) and APRIL (a proliferation-inducing ligand), already known for their crucial role in normal B-cell survival, differentiation and apoptosis, were recently shown to be expressed by B-CLL cells. These molecules are able to protect the leukaemic cells against spontaneous and drug-induced apoptosis via autocrine and/or paracrine pathways. This review will focus on the role of BAFF and APRIL in the survival of tumoral cells. It will discuss the expression of these molecules by B-CLL cells, their regulation, transduction pathways and their effects on leukaemic cells. The design of reagents able to counteract the effects of these molecules seems to be a new promising therapeutic approach for B-CLL and is already currently developed in the treatment of autoimmune diseases. PMID:16827889
The immunomodulatory effects of interferon-gamma on mature B-lymphocyte responses.
Jurado, A; Carballido, J; Griffel, H; Hochkeppel, H K; Wetzel, G D
1989-06-15
Interferon-gamma (IFN-gamma) exerts a broad spectrum of activities which affect the responses of mature B-cells. It strongly inhibits B-cell activation, acts as a B-cell growth factor (BCGF), and also induces final differentiation to immunoglobulin (Ig) production. IFN-gamma is deeply involved in the differential control of isotype expression, as it enhances IgG2a production and suppresses both IgG1 and IgE production. Although it is now possible to draw a general scheme of the effects of IFN-gamma on B-cells, a number of paradoxical results still exist in the field. In this manuscript, different experimental systems are analyzed in an attempt to explain these apparent paradoxes.
Mobasheri, Ali; Henrotin, Yves; Biesalski, Hans-Konrad; Shakibaei, Mehdi
2012-01-01
Interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) are key cytokines that drive the production of inflammatory mediators and matrix-degrading enzymes in osteoarthritis (OA). These proinflammatory cytokines bind to their respective cell surface receptors and activate inflammatory signaling pathways culminating with the activation of nuclear factor κB (NF-κB), a transcription factor that can be triggered by a host of stress-related stimuli including, excessive mechanical stress and ECM degradation products. Once activated, NF-κB regulates the expression of many cytokines, chemokines, adhesion molecules, inflammatory mediators, and several matrix-degrading enzymes. Therefore, proinflammatory cytokines, their cell surface receptors, NF-κB and downstream signaling pathways are therapeutic targets in OA. This paper critically reviews the recent literature and outlines the potential prophylactic properties of plant-derived phytochemicals such as curcumin and resveratrol for targeting NF-κB signaling and inflammation in OA to determine whether these phytochemicals can be used as functional foods.
Bergamo, Elisa; Diani, Erica; Bertazzoni, Umberto; Romanelli, Maria Grazia
2017-01-01
HTLV-1 and HTLV-2 viruses express Tax transactivator proteins required for viral genome transcription and capable of transforming cells in vivo and in vitro. Although Tax oncogenic potential needs to be further elucidated, it is well established that Tax proteins activate, among others, transcription factors of the NF-ĸB family, which are involved in immune and inflammatory responses, cell growth, apoptosis, stress responses and oncogenesis. Here, we describe a reporter gene assay applied for quantitative analysis of Tax-dependent NF-ĸB activation. The procedure is based on co-transfection of two individual vectors containing the cDNA for firefly and Renilla luciferase enzymes and vectors expressing Tax proteins. The luciferase expression is driven by cis-NF-ĸB promoter regulatory elements responsive to Tax transactivating factor. This assay is particularly useful to investigate Tax influence on NF-ĸB activation mediated by viral or host factors.
Corn, Radiah A; Aronica, Mark A; Zhang, Fuping; Tong, Yingkai; Stanley, Sarah A; Kim, Se Ryoung Agnes; Stephenson, Linda; Enerson, Ben; McCarthy, Susan; Mora, Ana; Boothby, Mark
2003-08-15
NF-kappaB/Rel transcription factors are linked to innate immune responses and APC activation. Whether and how the induction of NF-kappaB signaling in normal CD4(+) T cells regulates effector function are not well-understood. The liberation of NF-kappaB dimers from inhibitors of kappaB (IkappaBs) constitutes a central checkpoint for physiologic regulation of most forms of NF-kappaB. To investigate the role of NF-kappaB induction in effector T cell responses, we targeted inhibition of the NF-kappaB/Rel pathway specifically to T cells. The Th1 response in vivo is dramatically weakened when T cells defective in their NF-kappaB induction (referred to as IkappaBalpha(DeltaN) transgenic cells) are activated by a normal APC population. Analyses in vivo, and IL-12-supplemented T cell cultures in vitro, reveal that the mechanism underlying this T cell-intrinsic requirement for NF-kappaB involves activation of the IFN-gamma gene in addition to clonal expansion efficiency. The role of NF-kappaB in IFN-gamma gene expression includes a modest decrease in Stat4 activation, T box expressed in T cell levels, and differentiation efficiency along with a more prominent postdifferentiation step. Further, induced expression of Bcl-3, a trans-activating IkappaB-like protein, is decreased in T cells as a consequence of NF-kappaB inhibition. Together, these findings indicate that NF-kappaB induction in T cells regulates efficient clonal expansion, Th1 differentiation, and IFN-gamma production by Th1 lymphocytes at a control point downstream from differentiation.
Llacuna, Laura; Marí, Montserrat; Lluis, Josep M; García-Ruiz, Carmen; Fernández-Checa, José C; Morales, Albert
2009-05-01
Nuclear factor (NF)-kappaB participates in ischemia/reperfusion (I/R) hepatic signaling, stimulating both protective mechanisms and the generation of inflammatory cytokines. After analyzing NF-kappaB activation during increasing times of ischemia in murine I/R, we observed that the nuclear translocation of p65 paralleled Src and IkappaB tyrosine phosphorylation, which peaked after 60 minutes of ischemia. After extended ischemic periods (90 to 120 minutes) however, nuclear p65 levels were inversely correlated with the progressive induction of oxidative stress. Despite this profile of NF-kappaB activation, inflammatory genes, such as tumor necrosis factor (TNF) and interleukin (IL)-1beta, predominantly induced by Kupffer cells, increased throughout time during ischemia (30 to 120 minutes), whereas protective NF-kappaB-dependent genes, such as manganese superoxide dismutase (Mn-SOD), expressed in parenchymal cells, decreased. Consistent with this behavior, gadolinium chloride pretreatment abolished TNF/IL-1beta up-regulation during ischemia without affecting Mn-SOD levels. Interestingly, specific glutathione (GSH) up-regulation in hepatocytes by S-adenosylmethionine increased Mn-SOD expression and protected against I/R-mediated liver injury despite TNF/IL-1beta induction. Similar protection was achieved by administration of the SOD mimetic MnTBAP. In contrast, indiscriminate hepatic GSH depletion by buthionine-sulfoximine before I/R potentiated oxidative stress and decreased both nuclear p65 and Mn-SOD expression levels, increasing TNF/IL-1beta up-regulation and I/R-induced liver damage. Thus, the divergent role of NF-kappaB activation in selective liver cell populations underlies the dichotomy of NF-kappaB in hepatic I/R injury, illustrating the relevance of specifically maintaining NF-kappaB activation in parenchymal cells.
Revilla-i-Domingo, Roger; Bilic, Ivan; Vilagos, Bojan; Tagoh, Hiromi; Ebert, Anja; Tamir, Ido M; Smeenk, Leonie; Trupke, Johanna; Sommer, Andreas; Jaritz, Markus; Busslinger, Meinrad
2012-01-01
Pax5 controls the identity and development of B cells by repressing lineage-inappropriate genes and activating B-cell-specific genes. Here, we used genome-wide approaches to identify Pax5 target genes in pro-B and mature B cells. In these cell types, Pax5 bound to 40% of the cis-regulatory elements defined by mapping DNase I hypersensitive (DHS) sites, transcription start sites and histone modifications. Although Pax5 bound to 8000 target genes, it regulated only 4% of them in pro-B and mature B cells by inducing enhancers at activated genes and eliminating DHS sites at repressed genes. Pax5-regulated genes in pro-B cells account for 23% of all expression changes occurring between common lymphoid progenitors and committed pro-B cells, which identifies Pax5 as an important regulator of this developmental transition. Regulated Pax5 target genes minimally overlap in pro-B and mature B cells, which reflects massive expression changes between these cell types. Hence, Pax5 controls B-cell identity and function by regulating distinct target genes in early and late B lymphopoiesis. PMID:22669466
Nagai, K; Takahashi, Y; Mikami, I; Fukusima, T; Oike, H; Kobori, M
2009-01-01
Background and purpose: Cell-to-cell interactions between mast cells and activated T cells are increasingly recognized as a possible mechanism in the aetiology of allergic or non-allergic inflammatory disorders. To determine the anti-allergic effect of fisetin, we examined the ability of fisetin to suppress activation of the human mast cell line, HMC-1, induced by activated Jurkat T cell membranes. Experimental approach: HMC-1 cells were incubated with or without fisetin for 15 min and then co-cultured with Jurkat T cell membranes activated by phorbol-12-myristate 13-acetate for 16 h. We determined gene expression in activated HMC-1 cells by DNA microarray and quantitative reverse transcription (RT)-PCR analysis. We also examined activation of the transcription factor NF-κB and MAP kinases (MAPKs) in activated HMC-1 cells. Key results: Fisetin suppresses cell spreading and gene expression in HMC-1 cells stimulated by activated T cell membranes. Additionally, we show that these stimulated HMC-1 cells expressed granzyme B. The stimulatory interaction also induced activation of NF-κB and MAPKs; these activations were suppressed by fisetin. Fisetin also reduced the amount of cell surface antigen CD40 and intercellular adhesion molecule-1 (ICAM-1) on activated HMC-1 cells. Conclusions and implications: Fisetin suppressed activation of HMC-1 cells by activated T cell membranes by interfering with cell-to-cell interaction and inhibiting the activity of NF-κB and MAPKs and thereby suppressing gene expression. Fisetin may protect against the progression of inflammatory diseases by limiting interactions between mast cells and activated T cells. PMID:19702784
Induction of nuclear factor kappaB by the CD30 receptor is mediated by TRAF1 and TRAF2.
Duckett, C S; Gedrich, R W; Gilfillan, M C; Thompson, C B
1997-01-01
CD30 is a lymphoid cell-specific surface receptor which was originally identified as an antigen expressed on Hodgkin's lymphoma cells. Activation of CD30 induces the nuclear factor kappaB (NF-kappaB) transcription factor. In this study, we define the domains in CD30 which are required for NF-kappaB activation. Two separate elements of the cytoplasmic domain which were capable of inducing NF-kappaB independently of one another were identified. The first domain (domain 1) mapped to a approximately 120-amino-acid sequence in the membrane-proximal region of the CD30 cytoplasmic tail, between residues 410 and 531. A second, more carboxy-terminal region (domain 2) was identified between residues 553 and 595. Domain 2 contains two 5- to 10-amino-acid elements which can mediate the binding of CD30 to members of the tumor necrosis factor receptor-associated factor (TRAF) family of signal transducing proteins. Coexpression of CD30 with TRAF1 or TRAF2 but not TRAF3 augmented NF-kappaB activation through domain 2 but not domain 1. NF-kappaB induction through domain 2 was inhibited by coexpression of either full-length TRAF3 or dominant negative forms of TRAF1 or TRAF2. In contrast, NF-kappaB induction by domain 1 was not affected by alterations in TRAF protein levels. Together, these data support a model in which CD30 can induce NF-kappaB by both TRAF-dependent and -independent mechanisms. TRAF-dependent induction of NF-kappaB appears to be regulated by the relative levels of individual TRAF proteins in the cell. PMID:9032281
Döring, Axinia; Sloka, Scott; Lau, Lorraine; Mishra, Manoj; van Minnen, Jan; Zhang, Xu; Kinniburgh, David; Rivest, Serge; Yong, V Wee
2015-01-21
Approaches to stimulate remyelination may lead to recovery from demyelinating injuries and protect axons. One such strategy is the activation of immune cells with clinically used medications, since a properly directed inflammatory response can have healing properties through mechanisms such as the provision of growth factors and the removal of cellular debris. We previously reported that the antifungal medication amphotericin B is an activator of circulating monocytes, and their tissue-infiltrated counterparts and macrophages, and of microglia within the CNS. Here, we describe that amphotericin B activates these cells through engaging MyD88/TRIF signaling. When mice were subjected to lysolecithin-induced demyelination of the spinal cord, systemic injections of nontoxic doses of amphotericin B and another activator, macrophage colony-stimulating factor (MCSF), further elevated the representation of microglia/macrophages at the site of injury. Treatment with amphotericin B, particularly in combination with MCSF, increased the number of oligodendrocyte precursor cells and promoted remyelination within lesions; these pro-regenerative effects were mitigated in mice treated with clodronate liposomes to reduce circulating monocytes and tissue-infiltrated macrophages. Our results have identified candidates among currently used medications as potential therapies for the repair of myelin. Copyright © 2015 the authors 0270-6474/15/351136-13$15.00/0.
Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi
2012-04-04
γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.
Sakai, Eiko; Aoki, Yuri; Yoshimatsu, Masako; Nishishita, Kazuhisa; Iwatake, Mayumi; Fukuma, Yutaka; Okamoto, Kuniaki; Tanaka, Takashi; Tsukuba, Takayuki
2016-07-15
Osteoclasts are multinucleated bone-resorbing cells that differentiate in response to receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL). Enhanced osteoclastogenesis contributes to bone diseases, such as osteoporosis and rheumatoid arthritis. Rubus parvifolius L. is traditionally used as an herbal medicine for rheumatism; however, its detailed chemical composition and the molecular mechanisms responsible for its biological action have not been elucidated. To investigate the mechanisms by which R. parvifolius L. extract and its major constituent sanguiin H-6, inhibit osteoclastogenesis and bone resorption. Cell proliferation, cell differentiation, and bone resorption were detected in vitro. Inhibition of signaling pathways, marker protein expression, and protein nuclear translocation were evaluated by western blot analysis. Tumor necrosis factor-α (TNF-α)-mediated osteoclastogenesis was examined in vivo. R. parvifolius L. extract inhibited the bone-resorption activity of osteoclasts. In addition, sanguiin H-6 markedly inhibited RANKL-induced osteoclast differentiation and bone resorption, reduced reactive oxygen species production, and inhibited the phosphorylation of inhibitor of NF-κB alpha (IκBα) and p38 mitogen-activated protein kinase. Sanguiin H-6 also decreased the protein levels of nuclear factor of activated T cells cytoplasmic-1 (NFATc1), cathepsin K, and c-Src. Moreover, sanguiin H-6 inhibited the nuclear translocation of NFATc1, c-Fos, and NF-κB in vitro, as well as TNF-α-mediated osteoclastogenesis in vivo. Our data revealed that R. parvifolius L. has anti-bone resorption activity and suggest that its constituent, sanguiin H-6, can potentially be used for the prevention and treatment of bone diseases associated with excessive osteoclast formation and subsequent bone destruction. Copyright © 2016 Elsevier GmbH. All rights reserved.
Chang, Hebron C; Yang, Hsin-Ling; Pan, Jih-Hao; Korivi, Mallikarjuna; Pan, Jian-You; Hsieh, Meng-Chang; Chao, Pei-Min; Huang, Pei-Jane; Tsai, Ching-Tsan; Hseu, You-Cheng
2016-01-01
Hericium erinaceus (HE) is an edible mushroom that has been shown to exhibit anticancer and anti-inflammatory activities. We investigated the antiangiogenic and antioxidant potentials of ethanol extracts of HE in human endothelial (EA.hy926) cells upon tumor necrosis factor-α- (TNF-α-) stimulation (10 ng/mL). The underlying molecular mechanisms behind the pharmacological efficacies were elucidated. We found that noncytotoxic concentrations of HE (50-200 μg/mL) significantly inhibited TNF-α-induced migration/invasion and capillary-like tube formation of endothelial cells. HE treatment suppressed TNF-α-induced activity and/or overexpression of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1). Furthermore, HE downregulated TNF-α-induced nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) followed by suppression of I-κB (inhibitor-κB) degradation. Data from fluorescence microscopy illustrated that increased intracellular ROS production upon TNF-α-stimulation was remarkably inhibited by HE pretreatment in a dose-dependent manner. Notably, HE triggered antioxidant gene expressions of heme oxygenase-1 (HO-1), γ-glutamylcysteine synthetase (γ-GCLC), and glutathione levels, which may contribute to inhibition of ROS. Increased antioxidant status was associated with upregulated nuclear translocation and transcriptional activation of NF-E2 related factor-2 (Nrf2) in HE treated cells. Our findings conclude that antiangiogenic and anti-inflammatory activities of H. erinaceus may contribute to its anticancer property through modulation of MMP-9/NF-κB and Nrf2-antioxidant signaling pathways.
Chang, Hebron C.; Yang, Hsin-Ling; Pan, Jih-Hao; Korivi, Mallikarjuna; Pan, Jian-You; Hsieh, Meng-Chang; Chao, Pei-Min; Huang, Pei-Jane; Tsai, Ching-Tsan; Hseu, You-Cheng
2016-01-01
Hericium erinaceus (HE) is an edible mushroom that has been shown to exhibit anticancer and anti-inflammatory activities. We investigated the antiangiogenic and antioxidant potentials of ethanol extracts of HE in human endothelial (EA.hy926) cells upon tumor necrosis factor-α- (TNF-α-) stimulation (10 ng/mL). The underlying molecular mechanisms behind the pharmacological efficacies were elucidated. We found that noncytotoxic concentrations of HE (50–200 μg/mL) significantly inhibited TNF-α-induced migration/invasion and capillary-like tube formation of endothelial cells. HE treatment suppressed TNF-α-induced activity and/or overexpression of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1). Furthermore, HE downregulated TNF-α-induced nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) followed by suppression of I-κB (inhibitor-κB) degradation. Data from fluorescence microscopy illustrated that increased intracellular ROS production upon TNF-α-stimulation was remarkably inhibited by HE pretreatment in a dose-dependent manner. Notably, HE triggered antioxidant gene expressions of heme oxygenase-1 (HO-1), γ-glutamylcysteine synthetase (γ-GCLC), and glutathione levels, which may contribute to inhibition of ROS. Increased antioxidant status was associated with upregulated nuclear translocation and transcriptional activation of NF-E2 related factor-2 (Nrf2) in HE treated cells. Our findings conclude that antiangiogenic and anti-inflammatory activities of H. erinaceus may contribute to its anticancer property through modulation of MMP-9/NF-κB and Nrf2-antioxidant signaling pathways. PMID:26823953
Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon
2016-09-01
This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E₂ (PGE₂), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells.
Wang, Tianjiao; Lu, Ye; Polk, Avery; Chowdhury, Pinki; Zamalloa, Carlos Murga; Fujiwara, Hiroshi; Suemori, Koichiro; Beyersdorf, Niklas; Hristov, Alexandra C.; Lim, Megan S.; Bailey, Nathanael G.; Wilcox, Ryan A.
2016-01-01
Purpose T-cell lymphomas are a molecularly heterogeneous group of non-Hodgkin lymphomas (NHL) that account for a disproportionate number of NHL disease-related deaths due to their inherent and acquired resistance to standard multiagent chemotherapy regimens. Despite their molecular heterogeneity and frequent loss of various T-cell specific receptors, the T-cell antigen receptor is retained in the majority of these lymphomas. As T-cell receptor (TCR) engagement activates a number of signaling pathways and transcription factors that regulate T-cell growth and survival, we examined the TCR’s role in mediating resistance to chemotherapy. Experimental Design Genetic and pharmacologic strategies were utilized to determine the contribution of tyrosine kinases and transcription factors activated in conventional T cells following T-cell receptor (TCR) engagement in acquired chemotherapy resistance in primary T-cell lymphoma cells and patient-derived cell lines. Results Here we report that TCR signaling activates a signaling axis that includes ITK, NF-κB, and GATA-3, and promotes chemotherapy resistance. Conclusions These observations have significant therapeutic implications, as pharmacologic inhibition of ITK prevented activation of this signaling axis and overcame chemotherapy resistance. PMID:27780854
Molecular mechanisms of ulcer healing.
Tarnawski, A
2000-04-01
An ulcer in the gastrointestinal tract is a deep necrotic lesion penetrating the entire mucosal thickness and muscularis mucosae. Ulcer healing is an active process of filling the mucosal defect with proliferating and migrating epithelial and connective tissue cells. At the ulcer margin, epithelial cells proliferate and migrate onto the granulation tissue to cover (reepithelialize) the ulcer and also invade granulation tissue to reconstruct glandular structures within the ulcer scar. The reepithelialization and reconstruction of glandular structures is controlled by growth factors: trefoil peptides, EGF, HGF, bFGF and PDGF; and locally produced cytokines by regenerating cells in an orderly fashion and integrated manner to ensure the quality of mucosal restoration. These growth factors, most notably EGF, trigger cell proliferation via signal transduction pathways involving EGF-R, adapter proteins (Grb2, Shc and Sos), Ras, Raf1 and MAP (Erk1/Erk2) kinases, which, after translocation to nuclei, activate transcription factors and cell proliferation. Cell migration requires cytoskeletal rearrangements and is controlled by growth factors via Rho/Rac and signaling pathways involving PLC-gamma, PI-3 K and phosphorylation of focal adhesion proteins. Granulation tissue develops at the ulcer base. It consists of connective tissue cells: fibroblasts, macrophages and proliferating endothelial cells forming microvessels under the control of angiogenic growth factors: bFGF, VEGF and angiopoietins, which all promote angiogenesiscapillary vessel formation, essential for the restoration of microvascular network in the mucosa and thus crucial for oxygen and nutrient supply. The major mechanism of activation of angiogenic growth factors and their receptor expression appears to be hypoxia, which activates hypoxia-inducible factor, which binds to VEGF promoter.
Pan, M H; Lin-Shiau, S Y; Ho, C T; Lin, J H; Lin, J K
2000-02-15
We investigated the inhibition of IkappaB kinase (IKK) activity in lipopolysaccharide (LPS)-activated murine macrophages (RAW 264.7 cell line) by various polyphenols including (-)-epigallocatechin-3-gallate, theaflavin, a mixture of theaflavin-3 gallate and theaflavin-3'-gallate, theaflavin-3,3'-digallate (TF-3), pyrocyanidin B-3, casuarinin, geraniin, and penta-O-galloyl-beta-D-glucose (5GG). TF-3 inhibited IKK activity in activated macrophages more strongly than did the other polyphenols. TF-3 strongly inhibited both IKK1 and IKK2 activity and prevented the degradation of IkappaBalpha and IkappaBbeta in activated macrophage cells. The results suggested that the inhibition of IKK activity by TF-3 could occur by a direct effect on IKKs or on upstream events in the signal transduction pathway. Furthermore, geraniin, 5GG, and TF-3 all blocked phosphorylation of IKB from the cytosolic fraction, inhibited nuclear factor-kappaB (NFkappaB) activity, and inhibited increases in inducible nitric oxide synthase levels in activated macrophages. These results suggest that TF-3 may exert its anti-inflammatory and cancer chemopreventive actions by suppressing the activation of NFkappaB through inhibition of IKK activity.
Noujima-Harada, Mai; Takata, Katsuyoshi; Miyata-Takata, Tomoko; Sakurai, Hiroaki; Igarashi, Kazuhiko; Ito, Etsuro; Nagakita, Keina; Taniguchi, Kohei; Ohnishi, Nobuhiko; Omote, Shizuma; Tabata, Tetsuya; Sato, Yasuharu; Yoshino, Tadashi
2017-05-01
Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell lymphoma subtype, and the Epstein-Barr virus (EBV)-positive subtype of DLBCL is known to show a more aggressive clinical behavior than the EBV-negative one. BTB and CNC homology 2 (BACH2) has been highlighted as a tumor suppressor in hematopoietic malignancies; however, the role of BACH2 in EBV-positive DLBCL is unclear. In the present study, BACH2 expression and its significance were studied in 23 EBV-positive and 43 EBV-negative patient samples. Immunohistochemistry revealed BACH2 downregulation in EBV-positive cases (P < 0.0001), although biallelic deletion of BACH2 was not detected by FISH. Next, we analyzed the contribution of BACH2 negativity to aggressiveness in EBV-positive B-cell lymphomas using FL-18 (EBV-negative) and FL-18-EB cells (FL-18 sister cell line, EBV-positive). In BACH2-transfected FL-18-EB cells, downregulation of phosphorylated transforming growth factor-β-activated kinase 1 (pTAK1) and suppression in p65 nuclear fractions were observed by Western blot analysis contrary to non-transfected FL-18-EB cells. In patient samples, pTAK1 expression and significant nuclear p65, p50, and p52 localization were detected immunohistochemically in BACH2-negative DLBCL (P < 0.0001, P = 0.006, and P = 0.001, respectively), suggesting that BACH2 downregulation contributes to constitutive activation of the nuclear factor-κB pathway through TAK1 phosphorylation in BACH2-negative DLBCL (most EBV-positive cases). Although further molecular and pathological studies are warranted to clarify the detailed mechanisms, downregulation of BACH2 may contribute to constitutive activation of the nuclear factor-κB pathway through TAK1 activation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Yu, Xin; Siegel, Rachael; Roeder, Robert G
2006-06-02
OCA-B is a B cell-specific transcriptional coactivator for OCT factors during the activation of immunoglobulin genes. In addition, OCA-B is crucial for B cell activation and germinal center formation. However, the molecular mechanisms for OCA-B function in these processes are not clear. Our previous studies documented two OCA-B isoforms and suggested a novel mechanism for the function of the myristoylated, membrane-bound form of OCA-B/p35 as a signaling molecule. Here, we report the identification of galectin-1, and related galectins, as a novel OCA-B-interacting protein. The interaction of OCA-B and galectin-1 can be detected both in vivo and in vitro. The galectin-1 binding domain in OCA-B has been localized to the N terminus of OCA-B. In B cells lacking OCA-B expression, increased galectin-1 expression, secretion, and cell surface association are observed. Consistent with these observations, and a reported inhibitory interaction of galectin-1 with CD45, the phosphatase activity of CD45 is reduced modestly, but significantly, in OCA-B-deficient B cells. Finally, galectin-1 is shown to negatively regulate B cell proliferation and tyrosine phosphorylation upon BCR stimulation. Together, these results raise the possibility that OCA-B may regulate BCR signaling through an association with galectin-1.
TGF-β-induced IκB-ζ controls Foxp3 gene expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
MaruYama, Takashi, E-mail: ta-maru@umin.ac.jp; School of Medicine, Gifu University, Gifu 501-1194
2015-08-21
Inhibitor of kappa B (IκB)-ζ, a member of the nuclear IκB family of proteins, is induced by the transforming growth factor (TGF)-β signaling pathway and plays a pivotal role in maintaining the balance of T helper (Th) cell subsets. IκB-ζ deficiency results in reduced percentages of Th17 cells and increased percentages of Th1 cells. In this study, the effects of IκB-ζ deficiency on T-cell subsets were examined further. The data showed that IκB-ζ-deficient T cells had a high capacity for generation of regulatory T cells (Tregs) when T cells were cultured under TGF-β stimulation in the presence of cytokine-neutralizing antibodies.more » Mechanistically, IκB-ζ itself negatively regulated activation of the Foxp3 promoter in a nuclear factor of kappaB-dependent manner. Thus, this study showed that IκB-ζ controlled Treg differentiation. - Highlights: • IκB-ζ-deficient T cells exhibited increased generation of Foxp3{sup +} Tregs. • IκB-ζ played a key role in Foxp3 gene expression. • Retroviral overexpression of IκB-ζ was achieved in T cells.« less
Saltzman, Jonah W.; Battaglino, Ricardo A.; Salles, Loise; Jha, Prateek; Sudhakar, Supreetha; Garshick, Eric; Stott, Helen L.; Zafonte, Ross
2013-01-01
Abstract Autoimmunity is thought to contribute to poor neurological outcomes after spinal cord injury (SCI). There are few mechanism-based therapies, however, designed to reduce tissue damage and neurotoxicity after SCI because the molecular and cellular bases for SCI-induced autoimmunity are not completely understood. Recent groundbreaking studies in rodents indicate that B cells are responsible for SCI-induced autoimmunity. This novel paradigm, if confirmed in humans, could aid in the design of neuroprotective immunotherapies. The aim of this study was to investigate the molecular signaling pathways and mechanisms by which autoimmunity is induced after SCI, with the goal of identifying potential targets in therapies designed to reduce tissue damage and inflammation in the chronic phase of SCI. To that end, we performed an exploratory microarray analysis of peripheral blood mononuclear cells to identify differentially expressed genes in chronic SCI. We identified a gene network associated with lymphoid tissue structure and development that was composed of 29 distinct molecules and five protein complexes, including two cytokines, a proliferation-inducing ligand (APRIL) and B-cell–activating factor (BAFF), and one receptor, B-cell maturation antigen (BMCA) involved in B cell development, proliferation, activation, and survival. Real-time polymerase chain reaction analysis from ribonucleic acid samples confirmed upregulation of these three genes in SCI. To our knowledge, this is the first report that peripheral blood mononuclear cells produce increased levels of BAFF and APRIL in chronic SCI. This finding provides evidence of systemic regulation of SCI-autoimmunity via APRIL and BAFF mediated activation of B cells through BMCA and points toward these molecules as potential targets of therapies designed to reduce neuroinflammation after SCI. PMID:23088438
Identification of LMO2 transcriptome and interactome in diffuse large B-cell lymphoma
Cubedo, Elena; Gentles, Andrew J.; Huang, Chuanxin; Natkunam, Yasodha; Bhatt, Shruti; Lu, Xiaoqing; Jiang, Xiaoyu; Romero-Camarero, Isabel; Freud, Aharon; Zhao, Shuchun; Bacchi, Carlos E.; Martínez-Climent, Jose A.; Sánchez-García, Isidro; Melnick, Ari
2012-01-01
LMO2 regulates gene expression by facilitating the formation of multipartite DNA-binding complexes. In B cells, LMO2 is specifically up-regulated in the germinal center (GC) and is expressed in GC-derived non-Hodgkin lymphomas. LMO2 is one of the most powerful prognostic indicators in diffuse large B-cell (DLBCL) patients. However, its function in GC B cells and DLBCL is currently unknown. In this study, we characterized the LMO2 transcriptome and transcriptional complex in DLBCL cells. LMO2 regulates genes implicated in kinetochore function, chromosome assembly, and mitosis. Overexpression of LMO2 in DLBCL cell lines results in centrosome amplification. In DLBCL, the LMO2 complex contains some of the traditional partners, such as LDB1, E2A, HEB, Lyl1, ETO2, and SP1, but not TAL1 or GATA proteins. Furthermore, we identified novel LMO2 interacting partners: ELK1, nuclear factor of activated T-cells (NFATc1), and lymphoid enhancer-binding factor1 (LEF1) proteins. Reporter assays revealed that LMO2 increases transcriptional activity of NFATc1 and decreases transcriptional activity of LEF1 proteins. Overall, our studies identified a novel LMO2 transcriptome and interactome in DLBCL and provides a platform for future elucidation of LMO2 function in GC B cells and DLBCL pathogenesis. PMID:22517897
Ridley, Anna; Hatano, Hiroko; Wong‐Baeza, Isabel; Shaw, Jacqueline; Matthews, Katherine K.; Al‐Mossawi, Hussein; Ladell, Kristin; Price, David A.; Bowness, Paul
2016-01-01
Objective In the spondyloarthritides (SpA), increased numbers of CD4+ T cells express killer cell immunoglobulin‐like receptor 3DL2 (KIR‐3DL2). The aim of this study was to determine the factors that induce KIR‐3DL2 expression, and to characterize the relationship between HLA–B27 and the phenotype and function of KIR‐3DL2–expressing CD4+ T cells in SpA. Methods In total, 34 B27+ patients with SpA, 28 age‐ and sex‐matched healthy controls (20 B27− and 8 B27+), and 9 patients with rheumatoid arthritis were studied. KIR-3DL2 expression and other phenotypic characteristics of peripheral blood and synovial fluid CD4+ T cells were studied by flow cytometry, quantitative polymerase chain reaction, and Western blotting. T cell receptor clonality was determined by template‐switch anchored reverse transcription–polymerase chain reaction and sequencing analysis. Cytokines were measured by enzyme‐linked immunosorbent assay. Results Cellular activation induced KIR‐3DL2 expression on both naive and effector CD4+ T cells. KIR‐3DL2 binding to B27+ cells promoted expression of KIR‐3DL2, the Th17‐specific transcription factor retinoic acid receptor–related orphan nuclear receptor γt, and the antiapoptotic factor B cell lymphoma 2. KIR‐3DL2+CD4+ T cells in patients with ankylosing spondylitis were oligoclonal and enriched for markers of T cell activation and for the gut homing receptor CCR9. In the presence of B27+ antigen‐presenting cells, KIR‐3DL2+CD4+ T cells produced less interleukin‐2 (IL‐2) but more IL‐17. This effect was blocked by HC10, an antibody that inhibits the binding of KIR‐3DL2 to B27 heavy chains. Conclusion KIR‐3DL2 binding to HLA–B27 licenses Th17 cell differentiation in SpA. These findings raise the therapeutic potential of targeting HLA–B27–KIR‐3DL2 interactions for the treatment of B27+ patients with SpA. PMID:26841353
Rho protein GTPases and their interactions with NFκB: crossroads of inflammation and matrix biology
Tong, Louis; Tergaonkar, Vinay
2014-01-01
The RhoGTPases, with RhoA, Cdc42 and Rac being major members, are a group of key ubiquitous proteins present in all eukaryotic organisms that subserve such important functions as cell migration, adhesion and differentiation. The NFκB (nuclear factor κB) is a family of constitutive and inducible transcription factors that through their diverse target genes, play a major role in processes such as cytokine expression, stress regulation, cell division and transformation. Research over the past decade has uncovered new molecular links between the RhoGTPases and the NFκB pathway, with the RhoGTPases playing a positive or negative regulatory role on NFκB activation depending on the context. The RhoA–NFκB interaction has been shown to be important in cytokine-activated NFκB processes, such as those induced by TNFα (tumour necrosis factor α). On the other hand, Rac is important for activating the NFκB response downstream of integrin activation, such as after phagocytosis. Specific residues of Rac1 are important for triggering NFκB activation, and mutations do obliterate this response. Other upstream triggers of the RhoGTPase–NFκB interactions include the suppressive p120 catenin, with implications for skin inflammation. The networks described here are not only important areas for further research, but are also significant for discovery of targets for translational medicine. PMID:24877606
Amit, Sharon; Ben-Neriah, Yinon
2003-02-01
Nuclear factor-kappa B (NF-kappaB) activation relies primarily on ubiquitin-mediated degradation of its inhibitor IkappaB. NF-kappaB plays an important role in many aspects of tumor development, progression, and therapy. Some types of cancer are characterized by constitutive NF-kappaB activity, whereas in others such activity is induced following chemotherapy. NF-kappaB-harboring tumors are generally resistant to chemotherapy and their eradication requires NF-kappaB inhibition. Here we describe the mechanisms of NF-kappaB activation in normal and tumor cells, review prevalent notions regarding the factor's contribution to tumorigenicity and discuss present and future options for NF-kappaB inhibition in cancer. The ubiquitination-mediated activation of NF-kappaB is intersected by another cancer-associated protein, beta-catenin. We, therefore, compare the related activation pathways and discuss the possibility of differential targeting of the involved ubiquitination machinery. Copyright 2002 Elsevier Science Ltd.
Yu, Tao; Yang, Yanyan; Kwak, Yi-Seong; Song, Gwan Gyu; Kim, Mi-Yeon; Rhee, Man Hee; Cho, Jae Youl
2017-04-01
Ginsenoside Rc (G-Rc) is one of the major protopanaxadiol-type saponins isolated from Panax ginseng , a well-known medicinal herb with many beneficial properties including anticancer, anti-inflammatory, antiobesity, and antidiabetic effects. In this study, we investigated the effects of G-Rc on inflammatory responses in vitro and examined the mechanisms of these effects. The in vitro inflammation system used lipopolysaccharide-treated macrophages, tumor necrosis factor-α/interferon-γ-treated synovial cells, and HEK293 cells transfected with various inducers of inflammation. G-Rc significantly inhibited the expression of macrophage-derived cytokines, such as tumor necrosis factor-α and interleukin-1β. G-Rc also markedly suppressed the activation of TANK-binding kinase 1/IκB kinase ε/interferon regulatory factor-3 and p38/ATF-2 signaling in activated RAW264.7 macrophages, human synovial cells, and HEK293 cells. G-Rc exerts its anti-inflammatory actions by suppressing TANK-binding kinase 1/IκB kinase ε/interferon regulatory factor-3 and p38/ATF-2 signaling.
Zhang, Guo-Jun; Chen, Tsing-Bau; Bednar, Bohumil; Connolly, Brett M; Hargreaves, Richard; Sur, Cyrille; Williams, David L
2007-08-01
The in vivo hollow fiber assay, in which semipermeable hollow fibers filled with tumor cells, are implanted into animals, was originally developed to screen for anticancer compounds before assessment in more complex tumor models. To enhance screening and evaluation of anticancer drugs, we have applied optical imaging technology to this assay. To demonstrate that tumor cells inside hollow fibers can communicate with the host mice, we have used fluorescence imaging in vivo and CD31 immunostaining ex vivo to show that angiogenesis occurs around cell-filled hollow fibers by 2 weeks after subcutaneous implantation. Bioluminescence imaging has been used to follow the number of luciferase-expressing tumor cells within implanted hollow fibers; proliferation of those cells was found to be significantly inhibited by docetaxel or irinotecan. We also used bioluminescence imaging of hollow fibers to monitor the nuclear factor kappaB (NFkappaB) pathway in vivo; NFkappaB activation by lipopolysaccharide and tumor necrosis factor-alpha was evaluated in tumor cell lines genetically engineered to express luciferase controlled by an NFkappaB-responsive element. These results demonstrate that optical imaging of hollow fibers containing reporter tumor cells can be used for the rapid and accurate evaluation of antitumor activities of anticancer drugs and for measurement of molecular pathways.
Tang, Jin; Luo, Lingying
2018-06-01
Pediatric asthma is still a health threat to the pediatric population in recent years. The airway remodeling induced by abnormal airway smooth muscle (ASM) cell proliferation is an important cause of asthma. MicroRNAs (miRNAs) are important regulators of ASM cell proliferation. Numerous studies have reported that miR-20b-5p is a critical regulator for cell proliferation. However, whether miR-20b-5p is involved in regulating ASM cell proliferation remains unknown. In this study, we aimed to investigate the potential role of miR-20b-5p in regulating the proliferation of fetal ASM cell induced by platelet-derived growth factor (PDGF). Here, we showed that miR-20b-5p was significantly decreased in fetal ASM cells treated with PDGF. Biological experiments showed that the overexpression of miR-20b-5p inhibited the proliferation while miR-20b-5p inhibition markedly promoted the proliferation of fetal ASM cells. Bioinformatics analysis and luciferase reporter assay showed that miR-20b-5p directly targeted the 3'-UTR of signal transducer and activator of transcription 3 (STAT3). Further data showed that miR-20b-5p negatively regulated the expression of STAT3 in fetal ASM cells. Moreover, miR-20b-5p regulates the transcriptional activity of STAT3 in fetal ASM cells. Overexpression of STAT3 reversed the inhibitory effect of miR-20b-5p overexpression on fetal ASM cell proliferation while the knockdown of STAT3 abrogated the promoted effect of miR-20b-5p inhibition on fetal ASM cell proliferation. Overall, our results show that miR-20b-5p impedes PDGF-induced proliferation of fetal ASM cells through targeting STAT3. Our study suggests that miR-20b-5p may play an important role in airway remodeling during asthma and suggests that miR-20b-5p may serve as a potential therapeutic target for pediatric asthma. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Elisia, Ingrid
2013-01-01
The present study investigates the relative ability of α-, γ-, and δ-tocopherol (Toc) to modulate cell signaling events that are associated with inflammatory responses in fetal-derived intestinal (FHs 74 Int) cells. Secretion of the proinflammatory cytokine IL-8 in FHs 74 Int cells was stimulated in the following order: α-Toc < γ-Toc < δ-Toc. A similar proinflammatory response was observed when inflammation was induced in FHs 74 Int cells. Modulation of IL-8 expression by Toc corresponded to an isoform-specific modulation of NF-κB and nuclear factor-erythroid 2-related factor 2 (Nrf2) cell signaling pathways involved in expression of proinflammatory cytokines and antioxidant enzymes, respectively. δ-Toc and, to a lesser extent, γ-Toc activated NF-κB and Nrf2 signaling, as indicated by the greater nuclear translocation of transcription factors. Activation of NF-κB signaling by γ- and δ-Toc was accompanied by upregulation of NF-κB target genes, such as IL-8 and prostaglandin-endoperoxide synthase 2, with and without a prior IFNγ-PMA challenge. Nevertheless, γ- and δ-Toc, particularly δ-Toc, concurrently downregulated glutamate-cysteine ligase, a Nrf2 target gene that encodes for glutathione biosynthesis. This observation was substantiated by confirmation that γ- and δ-Toc were effective at decreasing glutamate-cysteine ligase protein expression and cellular glutathione content. Downregulation of glutathione content in fetal intestinal cells corresponded to induction of apoptosis-mediated cytotoxicity. In conclusion, γ- and δ-Toc are biologically active isoforms of vitamin E and show superior bioactivity to α-Toc in modulating cell signaling events that contribute to a proinflammatory response in fetal-derived intestinal cells. PMID:24136788
Geleziunas, Romas; Ferrell, Sharon; Lin, Xin; Mu, Yajun; Cunningham, Emmett T.; Grant, Mark; Connelly, Margery A.; Hambor, John E.; Marcu, Kenneth B.; Greene, Warner C.
1998-01-01
Tax corresponds to a 40-kDa transforming protein from the pathogenic retrovirus human T-cell leukemia virus type 1 (HTLV-1) that activates nuclear expression of the NF-κB/Rel family of transcription factors by an unknown mechanism. Tax expression promotes N-terminal phosphorylation and degradation of IκBα, a principal cytoplasmic inhibitor of NF-κB. Our studies now demonstrate that HTLV-1 Tax activates the recently identified cellular kinases IκB kinase α (IKKα) and IKKβ, which normally phosphorylate IκBα on both of its N-terminal regulatory serines in response to tumor necrosis factor alpha (TNF-α) and interleukin-1 (IL-1) stimulation. In contrast, a mutant of Tax termed M22, which does not induce NF-κB, fails to activate either IKKα or IKKβ. Furthermore, endogenous IKK enzymatic activity was significantly elevated in HTLV-1-infected and Tax-expressing T-cell lines. Transfection of kinase-deficient mutants of IKKα and IKKβ into either human Jurkat T or 293 cells also inhibits NF-κB-dependent reporter gene expression induced by Tax. Similarly, a kinase-deficient mutant of NIK (NF-κB-inducing kinase), which represents an upstream kinase in the TNF-α and IL-1 signaling pathways leading to IKKα and IKKβ activation, blocks Tax induction of NF-κB. However, plasma membrane-proximal elements in these proinflammatory cytokine pathways are apparently not involved since dominant negative mutants of the TRAF2 and TRAF6 adaptors, which effectively block signaling through the cytoplasmic tails of the TNF-α and IL-1 receptors, respectively, do not inhibit Tax induction of NF-κB. Together, these studies demonstrate that HTLV-1 Tax exploits a distal part of the proinflammatory cytokine signaling cascade leading to induction of NF-κB. The pathological alteration of this cytokine pathway leading to NF-κB activation by Tax may play a central role in HTLV-1-mediated transformation of human T cells, clinically manifested as the adult T-cell leukemia. PMID:9710600
Kong, Dejuan; Banerjee, Sanjeev; Huang, Wei; Li, Yiwei; Wang, Zhiwei; Kim, Hyeong-Reh Choi; Sarkar, Fazlul H.
2013-01-01
Platelet-derived growth factor-D (PDGF-D) is a newly recognized growth factor known to regulate many cellular processes, including cell proliferation, transformation, invasion, and angiogenesis. Recent studies have shown that PDGF-D and its cognate receptor PDGFR-β are expressed in prostate tumor tissues, suggesting that PDGF-D might play an important role in the development and progression of prostate cancer. However, the biological role of PDGF-D in tumorigenesis remains elusive. In this study, we found that PDGF-D–overexpressing PC3 cells (PC3 cells stably transfected with PDGF-D cDNA and referred to as PC3 PDGF-D) exhibited a rapid growth rate and enhanced cell invasion that was associated with the activation of mammalian target of rapamycin (mTOR) and reduced Akt activity. Rapamycin repressed mTOR activity and concomitantly resulted in the activation of Akt, which could attenuate the therapeutic effects of mTOR inhibitors. In contrast, B-DIM (BR-DIM from Bioresponse, Inc.; a chemopreventive agent) significantly inhibited both mTOR and Akt in PC3 PDGF-D cells, which were correlated with decreased cell proliferation and invasion. Moreover, conditioned medium from PC3 PDGF-D cells significantly increased the tube formation of human umbilical vein endothelial cells, which was inhibited by B-DIM treatment concomitant with reduced full-length and active form of PDGF-D. Our results suggest that B-DIM could serve as a novel and efficient chemopreventive and/or therapeutic agent by inactivation of both mTOR and Akt activity in PDGF-D–overexpressing prostate cancer. PMID:18339874
CD30 induction of human immunodeficiency virus gene transcription is mediated by TRAF2
Tsitsikov, Erdyni N.; Wright, Dowain A.; Geha, Raif S.
1997-01-01
CD30 is a member of the tumor necrosis factor receptor (TNFR) superfamily expressed on activated T and B lymphocytes and natural killer cells. Ligation of CD30 was previously shown to induce NF-κB activation and HIV expression in chronically infected T lymphocytes. In this study, we report that two members of the TNFR-associated factor (TRAF) family of proteins, TRAF1 and TRAF2, independently bind to the intracellular domain of CD30 (CD30IC). Transient overexpression of TRAF2, but not TRAF1, induced NF-κB activation and HIV-1-long terminal repeat-driven transcription in the T cell line, KT3. Moreover, dominant negative mutants consisting of the TRAF domain of TRAF1 and TRAF2 inhibited CD30 induction of NF-κB activation and HIV-1 transcription. These results suggest that CD30 ligation may enhance the expression of HIV via TRAF-2-mediated activation of NF-κB. PMID:9037063
Epigenetics of Peripheral B-Cell Differentiation and the Antibody Response
Zan, Hong; Casali, Paolo
2015-01-01
Epigenetic modifications, such as histone post-translational modifications, DNA methylation, and alteration of gene expression by non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are heritable changes that are independent from the genomic DNA sequence. These regulate gene activities and, therefore, cellular functions. Epigenetic modifications act in concert with transcription factors and play critical roles in B cell development and differentiation, thereby modulating antibody responses to foreign- and self-antigens. Upon antigen encounter by mature B cells in the periphery, alterations of these lymphocytes epigenetic landscape are induced by the same stimuli that drive the antibody response. Such alterations instruct B cells to undergo immunoglobulin (Ig) class switch DNA recombination (CSR) and somatic hypermutation (SHM), as well as differentiation to memory B cells or long-lived plasma cells for the immune memory. Inducible histone modifications, together with DNA methylation and miRNAs modulate the transcriptome, particularly the expression of activation-induced cytidine deaminase, which is essential for CSR and SHM, and factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1. These inducible B cell-intrinsic epigenetic marks guide the maturation of antibody responses. Combinatorial histone modifications also function as histone codes to target CSR and, possibly, SHM machinery to the Ig loci by recruiting specific adaptors that can stabilize CSR/SHM factors. In addition, lncRNAs, such as recently reported lncRNA-CSR and an lncRNA generated through transcription of the S region that form G-quadruplex structures, are also important for CSR targeting. Epigenetic dysregulation in B cells, including the aberrant expression of non-coding RNAs and alterations of histone modifications and DNA methylation, can result in aberrant antibody responses to foreign antigens, such as those on microbial pathogens, and generation of pathogenic autoantibodies, IgE in allergic reactions, as well as B cell neoplasia. Epigenetic marks would be attractive targets for new therapeutics for autoimmune and allergic diseases, and B cell malignancies. PMID:26697022
Christian, Jan; Vier, Juliane; Paschen, Stefan A.; Häcker, Georg
2010-01-01
Chlamydiae are obligate intracellular bacteria that frequently cause human disease. Chlamydiae replicate in a membranous vacuole in the cytoplasm termed inclusion but have the ability to transport proteins into the host cell cytosol. Chlamydial replication is associated with numerous changes of host cell functions, and these changes are often linked to proteolytic events. It has been shown earlier that the member of the NF-κB family of inflammation-associated transcription factors, p65/RelA, is cleaved during chlamydial infection, and a chlamydial protease has been implicated. We here provide evidence that the chlamydial protease chlamydial protease-like activity factor (CPAF) is responsible for degradation of p65/RelA during infection. This degradation was seen in human and in mouse cells infected with either Chlamydia trachomatis or Chlamydia pneumoniae where it correlated with the expression of CPAF and CPAF activity. Isolated expression of active C. trachomatis or C. pneumoniae CPAF in human or mouse cells yielded a p65 fragment of indistinguishable size from the one generated during infection. Expression of active CPAF in human cells caused a mild reduction in IκBα phosphorylation but a strong reduction in NF-κB reporter activity in response to interleukin-1β. Infection with C. trachomatis likewise reduced this responsiveness. IL-1β-dependent secretion of IL-8 was further reduced by CPAF expression. Secretion of CPAF is, thus, a mechanism that reduces host cell sensitivity to a proinflammatory stimulus, which may facilitate bacterial growth in vivo. PMID:21041296
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Byung Hak; Lee, Jun-Young; Seo, Jee Hee
Nuclear factor (NF)-{kappa}B regulates a central common signaling for immunity and cell survival. Artemisolide (ATM) was previously isolated as a NF-{kappa}B inhibitor from a plant of Artemisia asiatica. However, molecular basis of ATM on NF-{kappa}B activation remains to be defined. Here, we demonstrate that ATM is a typical inhibitor of I{kappa}B kinase {beta} (IKK{beta}), resulting in inhibition of lipopolysaccharide (LPS)-induced NF-{kappa}B activation in RAW 264.7 macrophages. ATM inhibited the kinase activity of highly purified IKK{beta} and also LPS-induced IKK activity in the cells. Moreover, the effect of ATM on IKK{beta} activity was completely abolished by substitution of Cys-179 residue ofmore » IKK{beta} to Ala residue, indicating direct targeting site of ATM. ATM could inhibit I{kappa}B{alpha} phosphorylation in LPS-activated RAW 264.7 cells and subsequently prevent NF-{kappa}B activation. Further, we demonstrate that ATM down-regulates NF-{kappa}B-dependent TNF-{alpha} expression. Taken together, this study provides a pharmacological potential of ATM in NF-{kappa}B-dependent inflammatory disorders.« less
Tsukinoki, Tomoko; Sugiyama, Hitoshi; Sunami, Reiko; Kobayashi, Mizuho; Onoda, Tetsuya; Maeshima, Yohei; Yamasaki, Yasushi; Makino, Hirofumi
2004-09-01
Fas ligand (FasL) is a well-known death factor; however, the role of FasL in the regulation of human glomerulonephritis remains unclear. We investigated the renal expression and localization of FasL in various forms of human glomerulonephritis by immunohistochemistry, utilizing confocal laser scanning microscopy. We further evaluated cytokine-induced FasL expression via nuclear factor (NF)kappaB in cultured human mesangial cells (HMC). The level of soluble FasL was measured by a specific enzyme-linked immunosorbent assay (ELISA). The frequency of glomerular FasL-positive cases was higher in lupus nephritis (37.9%) as compared with other forms of glomerulonephritis (8.7%). The glomerular FasL score in proliferative lupus nephritis was significantly higher than that in nonproliferative forms. Patients with a high apoptosis score, severe microhematuria, proteinuria, or decreased renal function had a high FasL score. Double immunolabelling demonstrated that the most prevalent phenotypes of FasL-positive cells were mesangial cells. In cultured HMC, interleukin (IL)1beta, lipopolysaccharide (LPS), or gamma interferon (IFN) upregulated membrane-bound FasL. IL1beta significantly, and LPS or gammaIFN weakly activated NFkappaB, but none of these agents activated NFkappaB/Rel-related nuclear factor of activated T cells (NFATc) or IFN regulatory factor-1. IL1beta-mediated NFkappaB was completely inhibited in the presence of lactacystin, a potent inhibitor of NFkappaB. Lactacystin-mediated inhibition of NFkappaB reduced FasL protein levels. Matrix metalloproteinase (MMP)-7, but not other MMPs (1, 2, 3, 8, or 9), significantly sensitized HMC to release soluble FasL after IL1beta stimulation. The results suggest that: (1) upregulation of mesangial FasL may contribute to the glomerular inflammation in proliferative lupus nephritis in vivo; (2) proinflammatory cytokines, in particular IL1beta, produced in nephritis can upregulate FasL via the transcription factor NFkappaB in HMC; and (3) MMP-7-mediated release of soluble FasL could control the mesangial inflammation.
Marasco, Emiliano; Aquilani, Angela; Cascioli, Simona; Moneta, Gian Marco; Caiello, Ivan; Farroni, Chiara; Giorda, Ezio; D'Oria, Valentina; Marafon, Denise Pires; Magni-Manzoni, Silvia; Carsetti, Rita; De Benedetti, Fabrizio
2018-04-01
To investigate whether abnormalities in B cell subsets in patients with juvenile idiopathic arthritis (JIA) correlate with clinical features and response to treatment. A total of 109 patients diagnosed as having oligoarticular JIA or polyarticular JIA were enrolled in the study. B cell subsets in peripheral blood and synovial fluid were analyzed by flow cytometry. Switched memory B cells were significantly increased in patients compared to age-matched healthy controls (P < 0.0001). When patients were divided according to age at onset of JIA, in patients with early-onset disease (presenting before age 6 years) the expansion in switched memory B cells was more pronounced than that in patients with late-onset disease and persisted throughout the disease course. In longitudinal studies, during methotrexate (MTX) treatment, regardless of the presence or absence of active disease, the number of switched memory B cells increased significantly (median change from baseline 36% [interquartile range {IQR} 15, 66]). During treatment with MTX plus tumor necrosis factor inhibitors (TNFi), in patients maintaining disease remission, the increase in switched memory B cells was significantly lower than that in patients who experienced active disease (median change from baseline 4% [IQR -6, 32] versus 41% [IQR 11, 73]; P = 0.004). The yearly rate of increases in switched memory B cells was 1.5% in healthy controls, 1.2% in patients who maintained remission during treatment with MTX plus TNFi, 4.7% in patients who experienced active disease during treatment with MTX plus TNFi, and ~4% in patients treated with MTX alone. Switched memory B cells expand during the disease course at a faster rate in JIA patients than in healthy children. This increase is more evident in patients with early-onset JIA. TNFi treatment inhibits this increase in patients who achieve and maintain remission, but not in those with active disease. © 2018, American College of Rheumatology.
Patel, Sapan J; Darie, Costel C; Clarkson, Bayard D
2017-02-01
The mechanisms underlying the aberrant growth and interactions between cells are not understood very well. The pre-B acute lymphoblastic leukemia cells directly obtained from an adult patient grow very poorly or do not grow at all at low density (LD), but grow better at high starting cell density (HD). We found that the LD ALL3 cells can be stimulated to grow in the presence of diffusible, soluble factors secreted by ALL3 cells themselves growing at high starting cell density. We then developed a biochemical purification procedure that allowed us to purify the factor(s) with stimulatory activity and analyzed them by nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). Using nanoLC-MS/MS we have identified several proteins which were further processed using various bioinformatics tools. This resulted in eight protein candidates which might be responsible for the growth activity on non-growing LD ALL3 cells and their involvement in the stimulatory activity are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
STATs MEDIATE FIBROBLAST GROWTH FACTOR INDUCED VASCULAR ENDOTHELIAL MORPHOGENESIS
Yang, Xinhai; Qiao, Dianhua; Meyer, Kristy; Friedl, Andreas
2009-01-01
The fibroblast growth factors (FGFs) play diverse roles in development, wound healing and angiogenesis. The intracellular signal transduction pathways which mediate these pleiotropic activities remain incompletely understood. We show here that the proangiogenic factors FGF2 and FGF8b can activate signal transducers and activators of transcription (STATs) in mouse microvascular endothelial cells. Both FGF2 and FGF8b activate STAT5 and to a lesser extent STAT1, but not STAT3. The FGF2-dependent activation of endothelial STAT5 was confirmed in vivo with the matrigel plug angiogenesis assay. In tissue samples of human gliomas, a tumor type where FGF-induced angiogenesis is important, STAT5 is detected in tumor vessel endothelial cell nuclei, consistent with STAT5 activation. By forced expression of constitutively active or dominant-negative mutant STAT5A in mouse brain endothelial cells, we further show that STAT5 activation is both necessary and sufficient for FGF-induced cell migration, invasion and tube formation, which are key events in vascular endothelial morphogenesis and angiogenesis. In contrast, STAT5 is not required for brain endothelial cell mitogenesis. The cytoplasmic tyrosine kinases Src and Janus kinase 2 (Jak2) both appear to be involved in the activation of STAT5, as their inhibition reduces FGF2 and FGF8b induced STAT5 phosphorylation and endothelial cell tube formation. Constitutively active STAT5A partially restores tube formation in the presence of Src or Jak2 inhibitors. These observations demonstrate that FGFs utilize distinct signaling pathways to induce angiogenic phenotypes. Together, our findings implicate the FGF-Jak2/Src-STAT5 cascade as a critical angiogenic FGF signaling pathway. PMID:19176400
Sun, Ya Nan; Li, Wei; Song, Seok Bean; Yan, Xi Tao; Yang, Seo Young; Kim, Young Ho
2016-01-01
Polygonum multiflorum is well-known as "Heshouwu" in traditional Chinese herbal medicine. In Northeast Asia, it is often used as a tonic to prevent premature aging of the kidney and liver, tendons, and bones and strengthening of the lower back and knees. To research the anti-inflammatory activities of components from P. multiflorum. The compounds were isolated by a combination of silica gel and YMC R-18 column chromatography, and their structures were identified by analysis of spectroscopic data (1D, 2D-nuclear magnetic resonance, and mass spectrometry). The anti-inflammatory activities of the isolated compounds 1-15 were evaluated by luciferase reporter gene assays. Fifteen compounds (1-15) were isolated from the roots of P. multiflorum. Compounds 1-5 and 14-15 significantly inhibited tumor necrosis factor-α-induced nuclear factor kappa B-luciferase activity, with IC50 values of 24.16-37.56 μM. Compounds 1-5 also greatly enhanced peroxisome proliferator-activated receptors transcriptional activity with EC50 values of 18.26-31.45 μM. The anthraquinone derivatives were the active components from the roots of P. multiflorum as an inhibitor on inflammation-related factors in human hepatoma cells. Therefore, we suggest that the roots of P. multiflorum can be used to treat natural inflammatory diseases. This study presented that fifteen compounds (1-15) isolated from the roots of Polygonum multiflrum exert signifiant anti inflmmatory effects by inhibiting TNF α induced NF κB activation and PPARs transcription. Abbreviation used: NF κB: Nuclear factor kappa B, PPARs: Peroxisome proliferator activated receptors, PPREs: Peroxisome proliferator response elements, TNF α: Tumor necrosis factor α, ESI-MS: Electrospray ionization mass spectrometry, HepG2: Human hepatoma cells.
Lee, Jin-Sun; Wang, Tsu-Shing; Lin, Ming Cheng; Lin, Wei-Wen; Yang, Jaw-Ji
2017-10-31
Curcumin, a popular yellow pigment of the dietary spice turmeric, has been reported to inhibit cell growth and to induce apoptosis in a wide variety of cancer cells. Although numerous studies have investigated anticancer effects of curcumin, the precise molecular mechanism of action remains unidentified. Whereas curcumin mediates cell survival and apoptosis through mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling cascades, its impact on the upstream regulation of MAPK is unclear. The leucine-zipper and sterile-α motif kinase alpha (ZAKα), a mitogen-activated protein kinase kinase kinase (MAP3K), activates the c-Jun N-terminal kinase (JNK) and NF-κB pathway. This paper investigated the prospective involvement of ZAKα in curcumin-induced effects on cancer cells. Our results suggest that the antitumor activity of curcumin is mediated via a mechanism involving inhibition of ZAKα activity.
IRE1α links Nck1 deficiency to attenuated PTP1B expression in HepG2 cells.
Li, Hui; Li, Bing; Larose, Louise
2017-08-01
PTP1B, a prototype of the non-receptor subfamily of the protein tyrosine phosphatase superfamily, plays a key role in regulating intracellular signaling from various receptor and non-receptor protein tyrosine kinases. Previously, we reported that silencing Nck1 in human hepatocellular carcinoma HepG2 cells enhances basal and growth factor-induced activation of the PI3K-Akt pathway through attenuating PTP1B expression. However, the underlying mechanism by which Nck1 depletion represses PTP1B expression remains unclear. In this study, we found that silencing Nck1 attenuates PTP1B expression in HepG2 cells through down-regulation of IRE1α. Indeed, we show that silencing Nck1 in HepG2 cells leads to decreased IRE1α expression and signaling. Accordingly, IRE1α depletion using siRNA in HepG2 cells enhances PI3K-dependent basal and growth factor-induced Akt activation, reproducing the effects of silencing Nck1 on activation of this pathway. In addition, depletion of IRE1α also leads to reduced PTP1B expression, which was rescued by ectopic expression of IRE1α in Nck1-depleted cells. Mechanistically, we found that silencing either Nck1 or IRE1α in HepG2 cells decreases PTP1B mRNA levels and stability. However, despite miR-122 levels, a miRNA targeting PTP1B 3' UTR and inducing PTP1B mRNA degradation in HepG2 cells, are increased in both Nck1- and IRE1α-depleted HepG2 cells, a miR-122 antagomir did not rescue PTP1B expression in these cells. Overall, this study highlights an important role for Nck1 in fine-tuning IRE1α expression and signaling that regulate PTP1B expression and subsequent activation of the PI3K-Akt pathway in HepG2 cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Valles, Soraya L; Benlloch, María; Rodriguez, María L; Mena, Salvador; Pellicer, José A; Asensi, Miguel; Obrador, Elena; Estrela, José M
2013-03-22
Interleukin (IL)-6 (mainly of tumor origin) activates glutathione (GSH) release from hepatocytes and its interorgan transport to B16-F10 melanoma metastatic foci. We studied if this capacity to overproduce IL-6 is regulated by cancer cell-independent mechanisms. Murine B16-F10 melanoma cells were cultured, transfected with red fluorescent protein, injected i.v. into syngenic C57BL/6J mice to generate lung and liver metastases, and isolated from metastatic foci using high-performance cell sorting. Stress hormones and IL-6 levels were measured by ELISA, and CRH expression in the brain by in situ hybridization. DNA binding activity of NF-κB, CREB, AP-1, and NF-IL-6 was measured using specific transcription factor assay kits. IL-6 expression was measured by RT-PCR, and silencing was achieved by transfection of anti-IL-6 small interfering RNA. GSH was determined by HPLC. Cell death analysis was distinguished using fluorescence microscopy, TUNEL labeling, and flow cytometry techniques. Statistical analyses were performed using Student's t test. Plasma levels of stress-related hormones (adrenocorticotropin hormone, corticosterone, and noradrenaline) increased, following a circadian pattern and as compared to non-tumor controls, in mice bearing B16-F10 lung or liver metastases. Corticosterone and noradrenaline, at pathophysiological levels, increased expression and secretion of IL-6 in B16-F10 cells in vitro. Corticosterone- and noradrenaline-induced transcriptional up-regulation of IL-6 gene involves changes in the DNA binding activity of nuclear factor-κB, cAMP response element-binding protein, activator protein-1, and nuclear factor for IL-6. In vivo inoculation of B16-F10 cells transfected with anti-IL-6-siRNA, treatment with a glucocorticoid receptor blocker (RU-486) or with a β-adrenoceptor blocker (propranolol), increased hepatic GSH whereas decreased plasma IL-6 levels and metastatic growth. Corticosterone, but not NORA, also induced apoptotic cell death in metastatic cells with low GSH content. Our results describe an interorgan system where stress-related hormones, IL-6, and GSH coordinately regulate metastases growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krassowska, Anna; Gordon-Keylock, Sabrina; Samuel, Kay
We investigated whether the in vitro differentiation of ES cells into haematopoietic progenitors could be enhanced by exposure to the aorta-gonadal-mesonephros (AGM) microenvironment that is involved in the generation of haematopoietic stem cells (HSC) during embryonic development. We established a co-culture system that combines the requirements for primary organ culture and differentiating ES cells and showed that exposure of differentiating ES cells to the primary AGM region results in a significant increase in the number of ES-derived haematopoietic progenitors. Co-culture of ES cells on the AM20-1B4 stromal cell line derived from the AGM region also increases haematopoietic activity. We concludemore » that factors promoting the haematopoietic activity of differentiating ES cells present in primary AGM explants are partially retained in the AM20.1B4 stromal cell line and that these factors are likely to be different to those required for adult HSC maintenance.« less
Artemisia asiatica ethanol extract exhibits anti-photoaging activity.
Jeong, Deok; Lee, Jongsung; Jeong, Seong-Gu; Hong, Yo Han; Yoo, Sulgi; Han, Sang Yun; Kim, Ji Hye; Kim, Sunggyu; Kim, Jin Sic; Chung, Young Soo; Kim, Jong-Hoon; Yi, Young-Su; Cho, Jae Youl
2018-06-28
Artemisia asiatica Nakai is a traditional herbal plant that has long been used in anti-inflammatory, anti-infective and skin protective remedies. In this study, traditionally known skin-protective activity of Artemisia asiatica Nakai was examined with its ethanol extract (Aa-EE) under various photoaging conditions using skin-originated cells, and the underlying mechanism was also examined using various types of cells. Effects of Aa-EE on cell viability, photocytotoxicity, and expression of matrix metalloproteinases (MMPs), cyclooxygenase (COX)-2, and moisturizing factors were measured in B16F10, HEK293, NIH3T3, and HaCaT cells under untreated and ultraviolet B (UVB)-irradiation conditions. Anti-melanogenic effect of Aa-EE was also examined by measuring both melanin content in B16F10 cells and tyrosinase activity. Anti-photoaging mechanism of Aa-EE was explored by determining the activation levels of signaling molecules by immunoblotting analysis. Aa-EE protected HaCaT cells from UVB irradiation-induced death. Aa-EE increased the expression of a type 1 pro-collagen gene and decreased the expression of matrix metalloproteinases, and COX-2 in NIH3T3 cells induced by UVB. Aa-EE increased the expression of transglutamase-1, hyaluronic acid synthase (HAS)-2, and HAS-3 in HaCaT cells and decreased the production of melanin in α-melanocyte-stimulating hormone-stimulated B16F10 cells by suppressing tyrosinase activity and the expression of tyrosinase, microphthalmia-associated transcription factor, tyrosinase-related protein (TRP)-1 and TRP-2. The results suggest that Aa-EE could be skin-protective remedy with anti-photoaging, anti-apoptotic, skin remodeling, moisturizing, and anti-melanogenesis properties. Copyright © 2018 Elsevier B.V. All rights reserved.
Inada, Masaki; Takita, Morichika; Yokoyama, Satoshi; Watanabe, Kenta; Tominari, Tsukasa; Matsumoto, Chiho; Hirata, Michiko; Maru, Yoshiro; Maruyama, Takayuki; Sugimoto, Yukihiko; Narumiya, Shuh; Uematsu, Satoshi; Akira, Shizuo; Murphy, Gillian; Nagase, Hideaki; Miyaura, Chisato
2015-12-11
The stromal cells associated with tumors such as melanoma are significant determinants of tumor growth and metastasis. Using membrane-bound prostaglandin E synthase 1 (mPges1(-/-)) mice, we show that prostaglandin E2 (PGE2) production by host tissues is critical for B16 melanoma growth, angiogenesis, and metastasis to both bone and soft tissues. Concomitant studies in vitro showed that PGE2 production by fibroblasts is regulated by direct interaction with B16 cells. Autocrine activity of PGE2 further regulates the production of angiogenic factors by fibroblasts, which are key to the vascularization of both primary and metastatic tumor growth. Similarly, cell-cell interactions between B16 cells and host osteoblasts modulate mPGES-1 activity and PGE2 production by the osteoblasts. PGE2, in turn, acts to stimulate receptor activator of NF-κB ligand expression, leading to osteoclast differentiation and bone erosion. Using eicosanoid receptor antagonists, we show that PGE2 acts on osteoblasts and fibroblasts in the tumor microenvironment through the EP4 receptor. Metastatic tumor growth and vascularization in soft tissues was abrogated by an EP4 receptor antagonist. EP4-null Ptger4(-/-) mice do not support B16 melanoma growth. In vitro, an EP4 receptor antagonist modulated PGE2 effects on fibroblast production of angiogenic factors. Our data show that B16 melanoma cells directly influence host stromal cells to generate PGE2 signals governing neoangiogenesis and metastatic growth in bone via osteoclast erosive activity as well as angiogenesis in soft tissue tumors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Inada, Masaki; Takita, Morichika; Yokoyama, Satoshi; Watanabe, Kenta; Tominari, Tsukasa; Matsumoto, Chiho; Hirata, Michiko; Maru, Yoshiro; Maruyama, Takayuki; Sugimoto, Yukihiko; Narumiya, Shuh; Uematsu, Satoshi; Akira, Shizuo; Murphy, Gillian; Nagase, Hideaki; Miyaura, Chisato
2015-01-01
The stromal cells associated with tumors such as melanoma are significant determinants of tumor growth and metastasis. Using membrane-bound prostaglandin E synthase 1 (mPges1−/−) mice, we show that prostaglandin E2 (PGE2) production by host tissues is critical for B16 melanoma growth, angiogenesis, and metastasis to both bone and soft tissues. Concomitant studies in vitro showed that PGE2 production by fibroblasts is regulated by direct interaction with B16 cells. Autocrine activity of PGE2 further regulates the production of angiogenic factors by fibroblasts, which are key to the vascularization of both primary and metastatic tumor growth. Similarly, cell-cell interactions between B16 cells and host osteoblasts modulate mPGES-1 activity and PGE2 production by the osteoblasts. PGE2, in turn, acts to stimulate receptor activator of NF-κB ligand expression, leading to osteoclast differentiation and bone erosion. Using eicosanoid receptor antagonists, we show that PGE2 acts on osteoblasts and fibroblasts in the tumor microenvironment through the EP4 receptor. Metastatic tumor growth and vascularization in soft tissues was abrogated by an EP4 receptor antagonist. EP4-null Ptger4−/− mice do not support B16 melanoma growth. In vitro, an EP4 receptor antagonist modulated PGE2 effects on fibroblast production of angiogenic factors. Our data show that B16 melanoma cells directly influence host stromal cells to generate PGE2 signals governing neoangiogenesis and metastatic growth in bone via osteoclast erosive activity as well as angiogenesis in soft tissue tumors. PMID:26475855
Karthikeyan, Ramasamy; Kanimozhi, Govindasamy; Prasad, Nagarajan Rajendra; Agilan, Balupillai; Ganesan, Muthusamy; Mohana, Shanmugham; Srithar, Gunaseelan
2016-08-01
Ultraviolet B (UVB) irradiation alters multiple molecular pathways in the skin, thereby inducing skin damage. Human dermal fibroblasts (HDFa) were subjected to single UVB-irradiation (18mJ/cm(2)) resulting in reactive oxygen species (ROS) generation, oxidative DNA damage and upregulation of nuclear factor kappa B (NF-κB) expression. Further, it has been observed that there was a significant cytokine production (TNF-α and IL-6) in UVB irradiated HDFa cells. Our results show that 7-hydroxycoumarin (7-OHC) prevents UVB-induced activation of NF-κB thereby subsequently preventing the overexpression of TNF-α and IL-6 in HDFa cells. Further, 7-OHC prevents UVB-induced activation of cyclooxygenase-2 (COX-2) expression, an inflammatory mediator in skin cells. Moreover, 7-OHC inhibited mRNA expression pattern of matrix metalloproteinases (MMP-1 and MMP-9) in UVB irradiated skin cells. Furthermore, 7-OHC restored antioxidant status, thereby scavenging the excessively generated ROS; consequently preventing the oxidative DNA damage. It has also been noticed that 7-OHC prevents UVB mediated DNA damage through activation of DNA repair enzymes such as XRCC1 and HOGG1. In this study, we treated HDFa cells with 7-OHC before and after UVB irradiation and we found that pretreatment showed better results when compared to posttreatment. Further, 7-OHC showed 9.8416 sun protection factor (SPF) value and it absorbs photons in the UVB wavelength rage. Thus, it has been concluded that sunscreen property, free radical scavenging potential and prevention of NF-κB activation play a role for photoprotective property of 7-OHC. Copyright © 2016 Elsevier B.V. All rights reserved.
2010-01-01
Background Multidrug resistance (MDR) is a major obstacle in cancer treatment and is often the result of overexpression of the drug efflux protein, P-glycoprotein (P-gp), as a consequence of hyperactivation of NFκB, AP1 and Nrf2 transcription factors. In addition to effluxing chemotherapeutic drugs, P-gp also plays a specific role in blocking caspase-dependent apoptotic pathways. One feature that cytotoxic treatments of cancer have in common is activation of the transcription factor NFκB, which regulates inflammation, cell survival and P-gp expression and suppresses the apoptotic potential of chemotherapeutic agents. As such, NFκB inhibitors may promote apoptosis in cancer cells and could be used to overcome resistance to chemotherapeutic agents. Results Although the natural withanolide withaferin A and polyphenol quercetin, show comparable inhibition of NFκB target genes (involved in inflammation, angiogenesis, cell cycle, metastasis, anti-apoptosis and multidrug resistance) in doxorubicin-sensitive K562 and -resistant K562/Adr cells, only withaferin A can overcome attenuated caspase activation and apoptosis in K562/Adr cells, whereas quercetin-dependent caspase activation and apoptosis is delayed only. Interestingly, although withaferin A and quercetin treatments both decrease intracellular protein levels of Bcl2, Bim and P-Bad, only withaferin A decreases protein levels of cytoskeletal tubulin, concomitantly with potent PARP cleavage, caspase 3 activation and apoptosis, at least in part via a direct thiol oxidation mechanism. Conclusions This demonstrates that different classes of natural NFκB inhibitors can show different chemosensitizing effects in P-gp overexpressing cancer cells with impaired caspase activation and attenuated apoptosis. PMID:20438634
ERK2 phosphorylation of serine 77 regulates Bmf pro-apoptotic activity.
Shao, Y; Aplin, A E
2012-01-19
B-cell lymphoma 2 (Bcl-2) homology 3 (BH3)-only proteins represent a class of pro-apoptotic factors that neutralize pro-survival Bcl-2 proteins, and, in some cases, directly activate Bax. The mechanisms of control and the role of BH3-only proteins, such as Bcl-2 like protein 11 extra large and Bad are well studied. By contrast, relatively little is known about the regulation and role of Bcl-2 modifying factor (Bmf). The B-RAF oncogene is mutated in ∼8% of human tumors. We have previously shown that Bmf is upregulated at the transcript level and is required for apoptosis induced by targeting B-RAF signaling in tumor cells harboring mutant B-RAF. In this study, we show that Bmf is regulated at the post-translational level by mutant B-RAF-MEK-ERK2 signaling. Extracellular signal-regulated kinase (ERK2) directly phosphorylates Bmf on serine 74 and serine 77 residues with serine 77 being the predominant site. In addition, serine 77 phosphorylation reduces Bmf pro-apoptotic activity likely through a mechanism independent of altering Bmf localization to the mitochondria and/or interactions with dynein light chain 2 and the pro-survival proteins, B-cell lymphoma extra large, Bcl-2 and Mcl-1. These data identify a novel mode of regulation in Bmf that modulates its pro-apoptotic activity in mutant B-RAF tumor cells.
Evaluation of NF-kappaB Signaling in T Cells
2009-01-01
ranging from myelomas (46) to breast cancer (47) to esophageal cancer (48), to name a few. NF-κB activation is also implicated in several leukemias and...nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer . J Clin Invest 100:2952-2960. 48. Abdel-Latif, M. M., J. O’Riordan, H. J...42), cyclin D1 (43), and cyclin E (44, 45). Furthermore, NF-κB activity has been linked to the proliferation of various types of cancer cells
Verbeke, Len; Mannaerts, Inge; Schierwagen, Robert; Govaere, Olivier; Klein, Sabine; Vander Elst, Ingrid; Windmolders, Petra; Farre, Ricard; Wenes, Mathias; Mazzone, Massimiliano; Nevens, Frederik; van Grunsven, Leo A.; Trebicka, Jonel; Laleman, Wim
2016-01-01
Hepatic inflammation drives hepatic stellate cells (HSC), resulting in liver fibrosis. The Farnesoid-X receptor (FXR) antagonizes inflammation through NF-κB inhibition. We investigated preventive and therapeutic effects of FXR agonist obeticholic acid (OCA) on hepatic inflammation and fibrosis in toxic cirrhotic rats. Cirrhosis was induced by thioacetamide (TAA) intoxication. OCA was given during or after intoxication with vehicle-treated rats as controls. At sacrifice, fibrosis, hemodynamic and biochemical parameters were assessed. HSC activation, cell turn-over, hepatic NF-κB activation, pro-inflammatory and pro-fibrotic cytokines were determined. The effect of OCA was further evaluated in isolated HSC, Kupffer cells, hepatocytes and liver sinusoidal endothelial cells (LSEC). OCA decreased hepatic inflammation and fibrogenesis during TAA-administration and reversed fibrosis in established cirrhosis. Portal pressure decreased through reduced intrahepatic vascular resistance. This was paralleled by decreased expression of pro-fibrotic cytokines (transforming growth-factor β, connective tissue growth factor, platelet-derived growth factor β-receptor) as well as markers of hepatic cell turn-over, by blunting effects of pro-inflammatory cytokines (e.g. monocyte chemo-attractant protein-1). In vitro, OCA inhibited both LSEC and Kupffer cell activation; while HSC remained unaffected. This related to NF-κB inhibition via up-regulated IκBα. In conclusion, OCA inhibits hepatic inflammation in toxic cirrhotic rats resulting in decreased HSC activation and fibrosis. PMID:27634375
Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Lee, Kyoung-Tae; Choi, Yung Hyun; Moon, Sung-Kwon; Kim, Wun-Jae; Kim, Gi-Young
2015-10-01
Although acetylshikonin (ACS) is known to have antioxidant and antitumor activities, whether ACS regulates the expression of proinflammatory mediators in lipopolysaccharide (LPS)-stimulated microglial cells remains unclear. In this study, it was found that ACS isolated from Lithospermum erythrorhizon inhibits LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) release by suppressing the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in BV2 microglial cells. Furthermore, ACS reduced the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) and subsequently suppressed iNOS and COX-2 expression. Consistent with these data, ACS attenuated the phosphorylation of PI3K and Akt and suppressed the DNA-binding activity of NF-κB by inducing the generation of reactive oxygen species (ROS) in LPS-stimulated cells. In addition, ACS enhanced heme oxygenase-1 (HO-1) expression via nuclear factor-erythroid 2-related factor 2 (Nrf2) activation. Zinc protoporphyrin, a specific HO-1 inhibitor, partially attenuated the antagonistic effects of ACS on LPS-induced NO and PGE2 production. By contrast, the presence of cobalt protoporphyrin, a specific HO-1 inducer, potently suppressed LPS-induced NO and PGE2 production. These data indicate that ACS downregulates proinflammatory mediators such as NO and PGE2 by suppressing PI3K/Akt-dependent NF-κB activity induced by ROS as well as inducing Nrf2-dependent HO-1 activity. Taken together, ACS might be a good candidate to regulate LPS-mediated inflammatory diseases.
Lu, Yun-Yueh; Franz, Bettina; Truttmann, Matthias C; Riess, Tanja; Gay-Fraret, Jérémie; Faustmann, Marco; Kempf, Volkhard A J; Dehio, Christoph
2013-05-01
The Gram-negative, zoonotic pathogen Bartonella henselae is the aetiological agent of cat scratch disease, bacillary angiomatosis and peliosis hepatis in humans. Two pathogenicity factors of B. henselae - each displaying multiple functions in host cell interaction - have been characterized in greater detail: the trimeric autotransporter Bartonella adhesin A (BadA) and the type IV secretion system VirB/D4 (VirB/D4 T4SS). BadA mediates, e.g. binding to fibronectin (Fn), adherence to endothelial cells (ECs) and secretion of vascular endothelial growth factor (VEGF). VirB/D4 translocates several Bartonella effector proteins (Beps) into the cytoplasm of infected ECs, resulting, e.g. in uptake of bacterial aggregates via the invasome structure, inhibition of apoptosis and activation of a proangiogenic phenotype. Despite this knowledge of the individual activities of BadA or VirB/D4 it is unknown whether these major virulence factors affect each other in their specific activities. In this study, expression and function of BadA and VirB/D4 were analysed in a variety of clinical B. henselae isolates. Data revealed that most isolates have lost expression of either BadA or VirB/D4 during in vitro passages. However, the phenotypic effects of coexpression of both virulence factors was studied in one clinical isolate that was found to stably coexpress BadA and VirB/D4, as well as by ectopic expression of BadA in a strain expressing VirB/D4 but not BadA. BadA, which forms a dense layer on the bacterial surface, negatively affected VirB/D4-dependent Bep translocation and invasome formation by likely preventing close contact between the bacterial cell envelope and the host cell membrane. In contrast, BadA-dependent Fn binding, adhesion to ECs and VEGF secretion were not affected by a functional VirB/D4 T4SS. The obtained data imply that the essential virulence factors BadA and VirB/D4 are likely differentially expressed during different stages of the infection cycle of Bartonella. © 2012 Blackwell Publishing Ltd.
Nizamutdinova, Irina Tsoy; Dusio, Giuseppina F.; Gasheva, Olga Yu.; Skoog, Hunter; Tobin, Richard; Peddaboina, Chander; Meininger, Cynthia J.; Zawieja, David C.; Newell-Rogers, M. Karen; Gashev, Anatoliy A.
2016-01-01
This study aimed to establish mechanistic links between the aging-associated changes in the functional status of mast cells and the altered responses of mesenteric tissue and mesenteric lymphatic vessels (MLVs) to acute inflammation. We used an in vivo model of acute peritoneal inflammation induced by lipopolysaccharide treatment of adult (9-month) and aged (24-month) F-344 rats. We analyzed contractility of isolated MLVs, mast cell activation, activation of nuclear factor-κB (NF-κB) without and with stabilization of mast cells by cromolyn or blockade of all types of histamine receptors and production of 27 major pro-inflammatory cytokines in adult and aged perilymphatic mesenteric tissues and blood. We found that the reactivity of aged contracting lymphatic vessels to LPS-induced acute inflammation was abolished and that activated mast cells trigger NF-κB signaling in the mesentery through release of histamine. The aging-associated basal activation of mesenteric mast cells limits acute inflammatory NF-κB activation in aged mesentery. We conclude that proper functioning of the mast cell/histamine/NF-κB axis is necessary for reactions of the lymphatic vessels to acute inflammatory stimuli as well as for interaction and trafficking of immune cells near and within the collecting lymphatics. PMID:27875806
Masterson, Claire; O'Toole, Daniel; Leo, Annemarie; McHale, Patricia; Horie, Shahd; Devaney, James; Laffey, John G
2016-04-01
Diverse effects of hypercapnic acidosis are mediated via inhibition of nuclear factor-κB, a pivotal transcription factor, in the setting of injury, inflammation, and repair, but the underlying mechanisms of action of hypercapnic acidosis on this pathway is unclear. We aim to examine the effect of hypercapnic acidosis on the nuclear factor-κB pathway in the setting of Escherichia coli-induced lung injury and characterize the underlying mechanisms in subsequent in vitro studies. In vivo animal study and subsequent in vitro studies. University Research Laboratory. Adult male Sprague-Dawley rats and pulmonary epithelial cells. Following pulmonary IκBα-SuperRepressor transgene overexpression or sham and intratracheal E. coli inoculation, rats underwent 4 hours of mechanical ventilation under normocapnia or hypercapnic acidosis, and nuclear factor-κB activation, animal survival, lung injury, and cytokine profile were assessed. Subsequent in vitro studies examined the effect of hypercapnic acidosis on specific nuclear factor-κB canonical pathway kinases via overexpression of these components and in vitro kinase activity assays. The effect of hypercapnic acidosis on the p50/p65 nuclear factor-κB heterodimer was then assessed. Hypercapnic acidosis and IκBα-SuperRepressor transgene overexpression reduced E. coli-induced lung inflammation and injury, decreased nuclear factor-κB activity, and increased animal survival. Hypercapnic acidosis inhibited canonical nuclear factor-κB signaling via reduced phosphorylative activation, reducing IκB kinase-β activation and intrinsic activity, thereby decreasing IκBα degradation, and subsequent nuclear factor-κB translocation. Hypercapnic acidosis also directly reduced DNA binding of the nuclear factor-κB p65 subunit, although this effect was less marked. Hypercapnic acidosis reduced E. coli inflammation and lung injury in vivo and reduced nuclear factor-κB activation predominantly by inhibiting the activation and intrinsic activity of IκB kinase-β.
Dias, Manoela Maciel dos Santos; Noratto, Giuliana; Martino, Hercia Stampini Duarte; Arbizu, Shirley; Peluzio, Maria do Carmo Gouveia; Talcott, Stephen; Ramos, Afonso Mota; Mertens-Talcott, Susanne U
2014-01-01
This study aimed to evaluate the cell growth inhibition activity of açai (Euterpe oleracea Mart.) polyphenolic extract against colon cancer HT-29 and SW-480 cells and the nonmalignant CCD-18Co colon fibroblast cells. Results showed that açai polyphenolic extract (5-20 mg/L) inhibited preferentially the growth of SW-480 cells with no toxicity in CCD-18Co cells, and this was accompanied by reduction of H2O2-induced reactive oxygen species (ROS) generation. The mechanisms involved in SW-480 cell growth-inhibition by açai polyphenolic extract included the downregulation of NF-κB proinflammatory transcription factor and the nuclear factor-kappa B targets intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Furthermore, prooncogenic specificity proteins (Sp) were downregulated as well as Sp-targets Bcl-2, vascular endothelial growth factor, and survivin. This was accompanied by activation of mitochondrial proapoptotic pathway involving increase of cytochrome c, cleavage of caspase-3, and decrease of PARP-1. Results strongly suggest that açai polyphenolic extract has antiinflammatory and cytotoxic activities in colon cancer cells and can be effective as natural colon cancer chemopreventive agents.
Nakaya, K; Mizuno, R; Ohhashi, T
2001-12-01
We investigated whether supernatant cultured with melanoma cell lines B16-BL6 and K1735 or the Lewis lung carcinoma cell line (LLC) can regulate lymphatic pump activity with bioassay preparations isolated from murine iliac lymph vessels. B16-BL6 and LLC supernatants caused significant dilation of lymph microvessels with cessation of pump activity. B16-BL6 supernatant produced dose-related cessation of lymphatic pump activity. There was no significant tachyphylaxis in the supernatant-mediated inhibitory response of lymphatic pump activity. Pretreatment with 3 x 10(-5) M N(omega)-nitro-L-arginine methyl ester (L-NAME) or 10(-7) M or 10(-6) M glibenclamide and 5 x 10(-4) M 5-hydroxydecanoic acid caused significant reduction of supernatant-mediated inhibitory responses. Simultaneous treatment with 10(-3) M L-arginine and 3 x 10(-5) M L-NAME significantly lessened L-NAME-induced inhibition of the supernatant-mediated response, suggesting that endogenous nitric oxide (NO) plays important roles in supernatant-mediated inhibitory responses. Chemical treatment dialyzed substances of <1,000 molecular weight (MW), producing complete reduction of the supernatant-mediated response. In contrast, pretreatment with heating or digestion with protease had no significant effect on supernatant-mediated response. These findings suggest that B16-BL6 cells may release nonpeptide substance(s) of <1,000 MW, resulting in significant cessation of lymphatic pump activity via production and release of endogenous NO and activation of mitochondrial ATP-sensitive K(+) channels.
Chu, Z L; DiDonato, J A; Hawiger, J; Ballard, D W
1998-06-26
The Tax oncoprotein of human T-cell leukemia virus type 1 (HTLV1) chronically activates transcription factor NF-kappaB by a mechanism involving degradation of IkappaBalpha, an NF-kappaB-associated cytoplasmic inhibitor. Tax-induced breakdown of IkappaBalpha requires phosphorylation of the inhibitor at Ser-32 and Ser-36, which is also a prerequisite for the transient activation of NF-kappaB in cytokine-treated T lymphocytes. However, it remained unclear how Tax interfaces with the cellular NF-kappaB/IkappaB signaling machinery to generate a chronic rather than a transient NF-kappaB response. We now demonstrate that Tax associates with cytokine-inducible IkappaB kinase (IKK) complexes containing catalytic subunits IKKalpha and IKKbeta, which mediate phosphorylation of IkappaBalpha at Ser-32 and Ser-36. Unlike their transiently activated counterparts in cytokine-treated cells, Tax-associated forms of IKK are constitutively active in either Tax transfectants or HTLV1-infected T lymphocytes. Moreover, point mutations in Tax that ablate its IKK-binding function also prevent Tax-mediated activation of IKK and NF-kappaB. Together, these findings suggest that the persistent activation of NF-kappaB in HTLV1-infected T-cells is mediated by a direct Tax/IKK coupling mechanism.
Kim, Jae Kwang; Lee, Ji Eun; Jung, Eun Hye; Jung, Ji Yun; Jung, Dae Hwa; Ku, Sae Kwang; Cho, Il Je; Kim, Sang Chan
2018-01-01
Hemistepsin A (HsA) is a sesquiterpene lactone isolated from Hemistepta lyrata (Bunge) Bunge. We investigated the anti-inflammatory effects of HsA and sought to determine its mechanisms of action in macrophages. HsA pretreatment inhibited nitric oxide production, and reduced the expression of iNOS and COX-2 in Toll-like receptor ligand-stimulated RAW 264.7 cells. Additionally, HsA decreased the secretion of proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated Kupffer cells as well as in RAW 264.7 cells. HsA inhibited phosphorylation of IKKα/β and degradation of IκBα, resulting in decreased nuclear translocation of nuclear factor-κB (NF-κB) and its transcriptional activity. Moreover, HsA phosphorylated nuclear factor erythroid 2-related factor 2 (Nrf2), increased expression levels of antioxidant genes, and attenuated LPS-stimulated H 2 O 2 production. Phosphorylation of p38 and c-Jun N-terminal kinase was required for HsA-mediated Nrf2 phosphorylation. In a D-galactosamine/LPS-induced liver injury model, HsA ameliorated D-galactosamine/LPS-induced hepatocyte degeneration and inflammatory cells infiltration. Moreover, immunohistochemical analyses using nitrotyrosine, 4-hydroxynonenal, and cleaved poly (ADP-ribose) polymerase antibodies revealed that HsA protected the liver from oxidative stress. Furthermore, HsA reduced the numbers of proinflammatory cytokine-positive cells in hepatic tissues. Thus, these results suggest HsA may be a promising natural product to manage inflammation-mediated tissue injuries through inhibition of NF-κB and activation of Nrf2. Copyright © 2017 Elsevier Ltd. All rights reserved.
The PBX1 lupus susceptibility gene regulates CD44 expression
Niu, Yuxin; Sengupta, Mayami; Titov, Anton A.; Choi, Seung-Chul; Morel, Laurence
2017-01-01
PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4+ T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and show that the lupus-associated isoform PBX1-d has unique molecular functions. PMID:28257976
Hasegawa, S; Ichiyama, T; Sonaka, I; Ohsaki, A; Okada, S; Wakiguchi, H; Kudo, K; Kittaka, S; Hara, M; Furukawa, S
2012-02-01
The activation of nuclear factor-kappa B (NF-κB) in vascular endothelial cells may be involved in vascular pathogeneses such as vasculitis or atherosclerosis. Recently, it has been reported that some amino acids exhibit anti-inflammatory effects. We investigated the inhibitory effects of a panel of amino acids on cytokine production or expression of adhesion molecules that are involved in inflammatory diseases in various cell types. The activation of NF-κB was determined in human coronary arterial endothelial cells (HCAECs) because NF-κB modulates the production of many cytokines and the expression of adhesion molecules. We examined the inhibitory effects of the amino acids cysteine, histidine and glycine on the induction of NF-κB activation, expression of CD62E (E-selectin) and the production of interleukin (IL)-6 in HCAECs stimulated with tumour necrosis factor (TNF)-α. Cysteine, histidine and glycine significantly reduced NF-κB activation and inhibitor κBα (IκBα) degradation in HCAECs stimulated with TNF-α. Additionally, all the amino acids inhibited the expression of E-selectin and the production of IL-6 in HCAECs, and the effects of cysteine were the most significant. Our results show that glycine, histidine and cysteine can inhibit NF-κB activation, IκBα degradation, CD62E expression and IL-6 production in HCAECs, suggesting that these amino acids may exhibit anti-inflammatory effects during endothelial inflammation. © 2012 The Authors. Clinical and Experimental Immunology © 2012 British Society for Immunology.
Hecker, M.; Preiss, C.; Klemm, P.; Busse, R.
1996-01-01
1. In view of the potential deleterious effects of high amounts of nitric oxide (NO) produced by the inducible isoform of NO synthase (iNOS) in inflammation, the prevention of the expression of this enzyme represents an important therapeutic goal. In cytokine-stimulated cells, activation of nuclear factor kappa B (NF-kappa B) is crucial for the increase in iNOS gene expression. Since NF-kappa B activation appears to involve a redox-sensitive step, we have investigated whether three structurally unrelated antioxidants, 5,7-dihydroxyflavone (chrysin), 3,4-dichloroisocoumarin (DCI) and N-acetyl 5-hydroxytryptamine (N-acetylserotonin, NAS), affect iNOS expression in cultured RAW 264.7 monocyte/macrophages stimulated with bacterial lipopolysaccharide (LPS, 140 ng ml-1) and interferon-gamma (IFN gamma, 5 u ml-1). 2. During a 6 h incubation period neither LPS nor IFN gamma alone exerted a significant effect but when combined, caused a prominent increase in nitrite formation, iNOS mRNA and protein abundance. Co-incubation with chrysin (50 microM), DCI (50 microM) or NAS (1 mM) markedly attenuated this increase in iNOS gene expression. 3. DCI, but not chrysin or NAS, prevented the activation of NF-kappa B in cells exposed to LPS plus IFN gamma for 30 min. In contrast, all three antioxidants significantly blunted the DNA-binding activity of interferon regulatory factor 1 (IRF-1), which mediates the synergistic effect of IFN gamma on iNOS gene expression in cells treated for 2 h with LPS plus IFN gamma. 4. DCI thus appears to inhibit iNOS gene expression at the transcriptional level by preventing the activation of both NF-kappa B and IRF-1. The inhibitory effect of DCI on NF-kappa B activation, however, does not seem to be related to its antioxidative properties, since DCI, unlike chrysin or NAS, is a potent serine protease inhibitor which stabilizes the inactive NF-kappa B complex by protecting the inhibitory I kappa B-alpha subunit from proteolytic degradation. 5. The virtually identical inhibitory effect of chrysin, DCI and NAS on the activation of IRF-1 points to a redox-sensitive step in the activation of this transcription factor, which in contrast to NF-kappa B requires de novo protein synthesis. 6. Since iNOS gene expression in human cells and tissues usually requires the combination of several cytokines, antioxidants such as chrysin and NAS which do not interfere with the activation of NF-kappa B may be of therapeutic value for selectively inhibiting the enhanced expression of this enzyme in inflammation. Images Figure 4 Figure 6 Figure 7 PMID:8864559
Paul, N L; Lenardo, M J; Novak, K D; Sarr, T; Tang, W L; Ruddle, N H
1990-11-01
Human T-cell leukemia virus type I (HTLV-I)-infected T-cell lines constitutively produce high levels of biologically active lymphotoxin (LT; tumor necrosis factor-beta) protein and LT mRNA. To understand the regulation of LT transcription by HTLV-I, we analyzed the ability of a series of deletions of the LT promoter to drive the chloramphenicol acetyltransferase (CAT) reporter gene in HTLV-I-positive MT-2 cells. The smallest LT promoter fragment (-140 to +77) that was able to drive CAT activity contained a site that was similar to the immunoglobulin kappa-chain NF-kappa B-binding site. Since the HTLV-I tax gene activates the nuclear form of NF-kappa B, this finding suggested a possible means of HTLV-I activation of LT production. We found that the LT kappa B-like site specifically formed a complex with NF-kappa B-containing nuclear extract from MT-2, C81-66-45, and other activated T cells. Mutation of the LT kappa B site in the context of the LT promoter (-293 to +77) (mutant M1) reduced the ability of the promoter to drive the CAT gene in HTLV-I-infected and noninfected human T-cell lines. These data suggest a general role for NF-kappa B activation in the induction of LT gene transcription. Activation of LT in HTLV-I-infected cells may explain the pathology associated with HTLV-I infection, including the hypercalcemia that is prevalent in adult T-cell leukemia.
Paul, N L; Lenardo, M J; Novak, K D; Sarr, T; Tang, W L; Ruddle, N H
1990-01-01
Human T-cell leukemia virus type I (HTLV-I)-infected T-cell lines constitutively produce high levels of biologically active lymphotoxin (LT; tumor necrosis factor-beta) protein and LT mRNA. To understand the regulation of LT transcription by HTLV-I, we analyzed the ability of a series of deletions of the LT promoter to drive the chloramphenicol acetyltransferase (CAT) reporter gene in HTLV-I-positive MT-2 cells. The smallest LT promoter fragment (-140 to +77) that was able to drive CAT activity contained a site that was similar to the immunoglobulin kappa-chain NF-kappa B-binding site. Since the HTLV-I tax gene activates the nuclear form of NF-kappa B, this finding suggested a possible means of HTLV-I activation of LT production. We found that the LT kappa B-like site specifically formed a complex with NF-kappa B-containing nuclear extract from MT-2, C81-66-45, and other activated T cells. Mutation of the LT kappa B site in the context of the LT promoter (-293 to +77) (mutant M1) reduced the ability of the promoter to drive the CAT gene in HTLV-I-infected and noninfected human T-cell lines. These data suggest a general role for NF-kappa B activation in the induction of LT gene transcription. Activation of LT in HTLV-I-infected cells may explain the pathology associated with HTLV-I infection, including the hypercalcemia that is prevalent in adult T-cell leukemia. Images PMID:1976820
Obligatory Role for B Cells in the Development of Angiotensin II-Dependent Hypertension.
Chan, Christopher T; Sobey, Christopher G; Lieu, Maggie; Ferens, Dorota; Kett, Michelle M; Diep, Henry; Kim, Hyun Ah; Krishnan, Shalini M; Lewis, Caitlin V; Salimova, Ekaterina; Tipping, Peter; Vinh, Antony; Samuel, Chrishan S; Peter, Karlheinz; Guzik, Tomasz J; Kyaw, Tin S; Toh, Ban-Hock; Bobik, Alexander; Drummond, Grant R
2015-11-01
Clinical hypertension is associated with raised serum IgG antibodies. However, whether antibodies are causative agents in hypertension remains unknown. We investigated whether hypertension in mice is associated with B-cell activation and IgG production and moreover whether B-cell/IgG deficiency affords protection against hypertension and vascular remodeling. Angiotensin II (Ang II) infusion (0.7 mg/kg per day; 28 days) was associated with (1) a 25% increase in the proportion of splenic B cells expressing the activation marker CD86, (2) an 80% increase in splenic plasma cell numbers, (3) a 500% increase in circulating IgG, and (4) marked IgG accumulation in the aortic adventitia. In B-cell-activating factor receptor-deficient (BAFF-R(-/-)) mice, which lack mature B cells, there was no evidence of Ang II-induced increases in serum IgG. Furthermore, the hypertensive response to Ang II was attenuated in BAFF-R(-/-) (Δ30±4 mm Hg) relative to wild-type (Δ41±5 mm Hg) mice, and this response was rescued by B-cell transfer. BAFF-R(-/-) mice displayed reduced IgG accumulation in the aorta, which was associated with 80% fewer aortic macrophages and a 70% reduction in transforming growth factor-β expression. BAFF-R(-/-) mice were also protected from Ang II-induced collagen deposition and aortic stiffening (assessed by pulse wave velocity analysis). Finally, like BAFF-R deficiency, pharmacological depletion of B cells with an anti-CD20 antibody attenuated Ang II-induced hypertension by ≈35%. Hence, these studies demonstrate that B cells/IgGs are crucial for the development of Ang II-induced hypertension and vessel remodeling in mice. Thus, B-cell-targeted therapies-currently used for autoimmune diseases-may hold promise as future treatments for hypertension. © 2015 American Heart Association, Inc.
Chang, Ya-Ching; Chang, Mei-Chi; Chen, Yi-Jane; Liou, Ji-Uei; Chang, Hsiao-Hua; Huang, Wei-Ling; Liao, Wan-Chuen; Chan, Chiu-Po; Jeng, Po-Yuan; Jeng, Jiiang-Huei
2017-06-01
Basic fibroblast growth factor (bFGF) plays differential effects on the proliferation, differentiation, and extracellular matrix turnover in various tissues. However, limited information is known about the effect of bFGF on dental pulp cells. The purposes of this study were to investigate whether bFGF influences the cell differentiation and extracellular matrix turnover of human dental pulp cells (HDPCs) and the related gene and protein expression as well as the role of the mitogen-activated protein kinase (MEK)/extracellular-signal regulated kinase (ERK) signaling pathway. The expression of fibroblast growth factor receptors (FGFRs) in HDPCs was also studied. The expression of FGFR1 and FGFR2 in HDPCs was investigated by reverse-transcription polymerase chain reaction. HDPCs were treated with different concentrations of bFGF. Cell proliferation was evaluated using the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Cell differentiation was evaluated using alkaline phosphatase (ALP) staining. Changes in messenger expression of cyclin B1 and tissue inhibitor of metalloproteinase (TIMP) 1 were determined by reverse-transcription polymerase chain reaction. Changes in protein expression of cdc2, TIMP-1, TIMP-2, and collagen I were determined by Western blotting. U0126 was used to clarify the role of MEK/ERK signaling. HDPCs expressed both FGFR1 and FGFR2. Cell viability was stimulated by 50-250 ng/mL bFGF. The expression and enzyme activities of ALP were inhibited by 10-500 ng/mL bFGF. At similar concentrations, bFGF stimulates cdc2, cyclin B1, and TIMP-1 messenger RNA and protein expression. bFGF showed little effect on TIMP-2 and partly inhibited collagen I expression of pulp cells. U0126 (a MEK/ERK inhibitor) attenuated the bFGF-induced increase of cyclin B1, cdc2, and TIMP-1. bFGF may be involved in pulpal repair and regeneration by activation of FGFRs to regulate cell growth; stimulate cdc2, cyclin B1, and TIMP-1 expression; and inhibit ALP. These events are partly associated with MEK/ERK signaling. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Cyclosporin a inhibits T cell-mediated augmentation of mouse natural killer activity.
Yanagihara, R H; Adler, W H
1982-06-01
Cyclosporin A (CSA) in vitro inhibited the spontaneous cytotoxic activity of mouse spleen cells against YAC target cells in a 4 hr 51Cr release assay. While natural killer (NK) cells were inhibited directly by CSA, these suppressive effects were largely reversible by coculture of effector cells for an optimal period with polyinosinic-polycytidylic acid (Poly I:C) or lipopolysaccharide (LPS). In contrast concanavalin A (Con A), in the presence of CSA, was unable to augment NK activity. The supernatant, however, of mouse spleen cells cultured with Con A was fully able to augment the NK the activity by freshly cultured spleen cells in the presence of CSA. The results indicate that CSA inhibits NK activity by two distinct mechanisms: a) a direct inactivation of NK cells and b) a suppression of production or release of an NK-activating factor from T cells, but not B cells or macrophages.
Tsuji-Takayama, Kazue; Suzuki, Motoyuki; Yamamoto, Mayuko; Harashima, Akira; Okochi, Ayumi; Otani, Takeshi; Inoue, Toshiya; Sugimoto, Akira; Motoda, Ryuichi; Yamasaki, Fumiyuki; Nakamura, Shuji; Kibata, Masayoshi
2008-02-01
Interleukin (IL)-10 is an immunosuppressive cytokine produced by many cell types, including T cells. We previously reported that a novel type of regulatory T (Treg) cells, termed HOZOT, which possesses a FOXP3+CD4+CD8+CD25+ phenotype and dual suppressor/cytotoxic activities, produced high levels of IL-10. In this study, we examined the mechanisms of high IL-10 production by HOZOT, focusing on Janus activating kinase (JAK)/signal transducers and activators of transcription (STAT) signaling pathway. We prepared five different types of T cells, including HOZOT from human umbilical cord blood. Cytokine productions of IL-10, interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) were compared among these T cells after anti-CD3/CD28 antibody stimulation in the presence or absence of IL-2. Specific inhibitors for JAK/STAT, nuclear factor-kappaB (NF-kappaB), and nuclear factor for activated T cell (NFAT) were used to analyze signal transduction mechanisms. IL-10 production by HOZOTs was greatly enhanced by the addition of IL-2. Little or no enhancement of IFN-gamma and TNF-alpha production was observed under the same conditions. The enhancing effect of IL-2 was specific for both HOZOT and IL-10-secreting Treg cells. T helper type 2 cells, whose IL-10 production mechanisms involve GATA-3, failed to show IL-2-mediated enhancement of IL-10. Similar enhancing effects of IL-15 and IFN-alpha suggested a major role of JAK/STAT activation pathway for high IL-10 production. Further inhibitor experiments demonstrated that STAT5 rather than STAT3 was critically involved in this mechanism. Our results demonstrated that IL-2 selectively enhanced production of IL-10 in HOZOT primarily through activation of STAT5, which synergistically acts with NF-kappaB/NFAT activation, implying a novel regulatory mechanism of IL-10 production in Treg cells.
Sung, Bokyung; Cho, Sung-Gook; Liu, Mingyao; Aggarwal, Bharat B.
2011-01-01
Osteoclastogenesis is associated with aging and various age-related inflammatory chronic diseases, including cancer. Receptor activator of nuclear factor-kappaB (NF-κB) ligand (RANKL), a member of the tumor necrosis factor superfamily, has been implicated as a major mediator of bone resorption, suggesting that agents that can suppress RANKL signaling might inhibit osteoclastogenesis, a process closely linked to bone resorption. We therefore investigated whether butein, a tetrahydroxychalcone, could inhibit RANKL signaling and suppress osteoclastogenesis induced by RANKL or tumor cells. We found that human multiple myeloma cells (MM.1S and U266), breast tumor cells (MDA-MB-231), and prostate tumor cells (PC-3) induced differentiation of macrophages to osteoclasts, as indicated by TRAP-positive cells, and that butein suppressed this process. The chalcone also suppressed the expression of RANKL by the tumor cells. We further found that butein suppressed RANKL-induced NF-κB activation and that this suppression correlated with the inhibition of IκBα kinase and suppression of phosphorylation and degradation of IκBα, an inhibitor of NF-κB. Finally, butein also suppressed the RANKL-induced differentiation of macrophages to osteoclasts in a dose-dependent and time-dependent manner. Collectively, our results indicate that butein suppresses the osteoclastogenesis induced by tumor cells and by RANKL, by suppression of the NF-κB activation pathway. PMID:21170936
Yan, Bin; Yang, Xinping; Lee, Tin-Lap; Friedman, Jay; Tang, Jun; Van Waes, Carter; Chen, Zhong
2007-01-01
Background Differentially expressed gene profiles have previously been observed among pathologically defined cancers by microarray technologies, including head and neck squamous cell carcinomas (HNSCCs). However, the molecular expression signatures and transcriptional regulatory controls that underlie the heterogeneity in HNSCCs are not well defined. Results Genome-wide cDNA microarray profiling of ten HNSCC cell lines revealed novel gene expression signatures that distinguished cancer cell subsets associated with p53 status. Three major clusters of over-expressed genes (A to C) were defined through hierarchical clustering, Gene Ontology, and statistical modeling. The promoters of genes in these clusters exhibited different patterns and prevalence of transcription factor binding sites for p53, nuclear factor-κB (NF-κB), activator protein (AP)-1, signal transducer and activator of transcription (STAT)3 and early growth response (EGR)1, as compared with the frequency in vertebrate promoters. Cluster A genes involved in chromatin structure and function exhibited enrichment for p53 and decreased AP-1 binding sites, whereas clusters B and C, containing cytokine and antiapoptotic genes, exhibited a significant increase in prevalence of NF-κB binding sites. An increase in STAT3 and EGR1 binding sites was distributed among the over-expressed clusters. Novel regulatory modules containing p53 or NF-κB concomitant with other transcription factor binding motifs were identified, and experimental data supported the predicted transcriptional regulation and binding activity. Conclusion The transcription factors p53, NF-κB, and AP-1 may be important determinants of the heterogeneous pattern of gene expression, whereas STAT3 and EGR1 may broadly enhance gene expression in HNSCCs. Defining these novel gene signatures and regulatory mechanisms will be important for establishing new molecular classifications and subtyping, which in turn will promote development of targeted therapeutics for HNSCC. PMID:17498291
Cerdan, C; Courcoul, M; Razanajaona, D; Pierrès, A; Maroc, N; Lopez, M; Mannoni, P; Mawas, C; Olive, D; Birg, F
1990-02-01
Following the observation that, besides acute myeloid leukemia cells, acute lymphoid leukemia cells of either B or T phenotype could express the transcript for the colony-stimulating factor 1 (CSF-1), a growth factor known to be restricted to the monocytic-macrophage lineage, various sources of resting and/or activated T cells and thymocytes were screened for expression of this hemopoietic growth factor. We report here that the CSF-1 transcript was rapidly (7 h) induced in T cells by a variety of stimuli, but was not detectable in either resting T cells or thymocytes. In addition, secretion of CSF-1 was detectable in the supernatants of activated T cells by 72 h, with a peak around 92-120 h. In contrast to activated monocytes, the transcript of the c-fms proto-oncogene, the product of which is the receptor for CSF-1, was not detectable in either resting or activated T cells. This observation could be relevant to the intimate relationships between T cells and antigen-presenting cells during immune responses.
Phromnoi, Kanokkarn; Reuter, Simone; Sung, Bokyung; Prasad, Sahdeo; Kannappan, Ramaswamy; Yadav, Vivek R.; Chanmahasathien, Wisinee; Limtrakul, Pornngarm
2011-01-01
Most anticancer drugs have their origin in traditional medicinal plants. We describe here a flavone, 5,3′-dihydroxy-3,6,7,8,4′-pentamethoxyflavone (PMF), from the leaves of the Thai plant Gardenia obtusifolia, that has anti-inflammatory and anticancer potential. Because the nuclear factor-κB (NF-κB) pathway is linked to inflammation and tumorigenesis, we investigated the effect of PMF on this pathway. We found that PMF suppressed NF-κB activation induced by inflammatory agents, tumor promoters, and carcinogens. This suppression was not specific to the cell type. Although PMF did not directly modify the ability of NF-κB proteins to bind to DNA, it inhibited IκBα (inhibitory subunit of NF-κB) kinase, leading to suppression of phosphorylation and degradation of IκBα, and suppressed consequent p65 nuclear translocation, thus abrogating NF-κB-dependent reporter gene expression. Suppression of the NF-κB cell signaling pathway by the flavone led to the inhibition of expression of NF-κB-regulated gene products that mediate inflammation (cyclooxygenase-2), survival (XIAP, survivin, Bcl-xL, and cFLIP), proliferation (cyclin D1), invasion (matrix metalloproteinase-9), and angiogenesis (vascular endothelial growth factor). Suppression of antiapoptotic gene products by PMF correlated with the enhancement of apoptosis induced by tumor necrosis factor-α and the chemotherapeutic agents cisplatin, paclitaxel, and 5-flurouracil. Overall, our results indicate that PMF suppresses the activation of NF-κB and NF-κB-regulated gene expression, leading to the enhancement of apoptosis. This is the first report to demonstrate that this novel flavone has anti-inflammatory and anticancer effects by targeting the IKK complex. PMID:20930110
Gawanbacht, Ali; Van Driessche, Benoît; Van Lint, Carine; Peeters, Martine; Kirchhoff, Frank
2017-01-01
Primate lentiviruses have evolved sophisticated strategies to suppress the immune response of their host species. For example, HIV-2 and most simian immunodeficiency viruses (SIVs) use their accessory protein Nef to prevent T cell activation and antiviral gene expression by downmodulating the T cell receptor CD3. This Nef function was lost in HIV-1 and other vpu-encoding viruses suggesting that the acquisition of Vpu-mediated NF-κB inhibition reduced the selection pressure for inhibition of T cell activation by Nef. To obtain further insights into the modulation of NF-κB activity by primate lentiviral accessory factors, we analyzed 32 Vpr proteins from a large panel of divergent primate lentiviruses. We found that those of SIVcol and SIVolc infecting Colobinae monkeys showed the highest efficacy in suppressing NF-κB activation. Vpr-mediated inhibition of NF-κB resulted in decreased IFNβ promoter activity and suppressed type I IFN induction in virally infected primary cells. Interestingly, SIVcol and SIVolc differ from all other primate lentiviruses investigated by the lack of both, a vpu gene and efficient Nef-mediated downmodulation of CD3. Thus, primate lentiviruses have evolved at least three alternative strategies to inhibit NF-κB-dependent immune activation. Functional analyses showed that the inhibitory activity of SIVolc and SIVcol Vprs is independent of DCAF1 and the induction of cell cycle arrest. While both Vprs target the IKK complex or a factor further downstream in the NF-κB signaling cascade, only SIVolc Vpr stabilizes IκBα and inhibits p65 phosphorylation. Notably, only de-novo synthesized but not virion-associated Vpr suppressed the activation of NF-κB, thus enabling NF-κB-dependent initiation of viral gene transcription during early stages of the replication cycle, while minimizing antiviral gene expression at later stages. Our findings highlight the key role of NF-κB in antiviral immunity and demonstrate that primate lentiviruses follow distinct evolutionary paths to modulate NF-κB-dependent expression of viral and antiviral genes. PMID:28859166
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandermark, Erik R.; Deluca, Krysta A.; Gardner, Courtney R.
2012-03-30
The NF-kB family of transcription factors regulates important biological functions including cell growth, survival and the immune response. We found that Human Papillomavirus type 16 (HPV-16) E7 and E6/E7 proteins inhibited basal and TNF-alpha-inducible NF-kB activity in human epithelial cells cultured from the cervical transformation zone, the anatomic region where most cervical cancers develop. In contrast, HPV-16 E6 regulated NF-kB in a cell type- and cell growth-dependent manner. NF-kB influenced immortalization of cervical cells by HPV16. Inhibition of NF-kB by an IkB alpha repressor mutant increased colony formation and immortalization by HPV-16. In contrast, activation of NF-kB by constitutive expressionmore » of p65 inhibited proliferation and immortalization. Our results suggest that inhibition of NF-kB by HPV-16 E6/E7 contributes to immortalization of cells from the cervical transformation zone.« less
Wang, Xun; Yang, Lingyun; Huang, Feng; Zhang, Qiuyang; Liu, Sen; Ma, Lin; You, Zongbing
2017-01-01
Programmed cell death protein 1 (PD-1) acts on PD-1 ligands (PD-L1 and PD-L2) to suppress activation of cytotoxic T lymphocytes. Interleukin-17 (IL-17) and tumor necrosis factor-α (TNF-α) are co-expressed by T helper 17 (TH17) cells in many tumors. The purpose of this study was to test if IL-17 and TNF-α may synergistically induce PD-L1 expression in human prostate cancer LNCaP and human colon cancer HCT116 cell lines. We found that IL-17 did not induce PD-L1 mRNA expression, but up-regulated PD-L1 protein expression in HCT116 and LNCaP cells. TNF-α induced PD-L1 mRNA and protein expression in both cell lines. Neither IL-17 nor TNF-α induced PD-L2 mRNA or protein expression. IL-17 and TNF-α acted individually rather than cooperatively in induction of PD-L1 expression. IL-17 and/or TNF-α activated AKT, nuclear factor-κB (NF-κB), and extracellular signal-regulated kinases 1/2 (ERK1/2) signaling pathways in HCT116 cells, whereas only NF-κB signaling was activated in LNCaP cells. NF-κB inhibitor could diminish PD-L1 protein expression induced by IL-17 and/or TNF-α in both HCT116 and LNCaP cell lines. ERK1/2 inhibitor could also reduce PD-L1 protein expression induced by IL-17 and/or TNF-α in HCT116 cells, while AKT inhibitor could abolish PD-L1 protein expression induced by IL-17 and/or TNF-α in LNCaP cells. These results suggest that IL-17 and TNF-α act individually rather than cooperatively through activation of NF-κB and ERK1/2 signaling to up-regulate PD-L1 expression in HCT116 cells, while the two inflammatory cytokines act through activation of NF-κB signaling, in the presence of AKT activity, to up-regulate PD-L1 expression in LNCaP cells. PMID:28223102
Minocycline attenuates sevoflurane-induced cell injury via activation of Nrf2.
Tian, Yue; Wu, Xiuying; Guo, Shanbin; Ma, Ling; Huang, Wei; Zhao, Xiaochun
2017-04-01
Minocycline has been demonstrated to exert neuroprotective effects in various experimental models. In the present study, we investigated the mechanisms underlying the protective effects of minocycline on cell injury induced by the inhalation of the anesthetic, sevoflurane. In our in vivo experiments using rats, minocycline attenuated sevoflurane-induced neuronal degeneration and apoptosis in the rat hippocampus, and this effect was associated with the minocycline-mediated suppression of oxidative stress in the hippocampus. In in vitro experiments, minocycline inhibited sevoflurane-induced apoptosis and the production of reactive oxygen species (ROS) in H4 human neuroglioma cells. In addition, minocycline suppressed the sevoflurane-induced upregulation of interleukin (IL)-6 and the activation of the nuclear factor-κB (NF-κB) signaling pathway in H4 cells. Furthermore, we found that nuclear factor E2-related factor 2 (Nrf2), an activator of the stress response, was upregulated and activated upon sevoflurane treatment both in the rat hippocampus and in H4 cells. In addition, minocycline further augmented the upregulation and activation of Nrf2 when used in conjunction with sevoflurane. Moreover, the knockdown of Nrf2 in H4 cells by small interfering RNA (siRNA) diminished the cytoprotective effect of minocycline, and attenuated the inhibitory effect of minocycline on ROS production, IL-6 upregulation and the activation of the NF-κB signaling pathway. On the whole, our findings indicate that minocycline may exert protective effects against sevoflurane-induced cell injury via the Nrf2-modulated antioxidant response and the inhibition of the activation of the NF-κB signaling pathway.
Fascin Overexpression Promotes Cholangiocarcinoma RBE Cell Proliferation, Migration, and Invasion.
Zhao, Haiying; Yang, Fuquan; Zhao, Wenyan; Zhang, Chunjv; Liu, Jingang
2016-04-01
Fascin is overexpressed in various tumor tissues and is closely related to tumor metastasis and invasion. However, the role of fascin in cholangiocarcinoma RBE cells has not been clearly reported. This study aimed to establish a cholangiocarcinoma cell line with stable and high expression of fascin to observe the effect of fascin on cell proliferation, migration, and invasion. A fascin overexpression vector, pcDNA3.1-Fascin, was constructed and transfected into the human cholangiocarcinoma RBE cell line. The results of real-time polymerase chain reaction, Western blot, and immunofluorescence indicated that fascin was steadily and highly expressed in RBE cells. The results of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide and colony formation assay indicated that upregulated fascin expression could enhance cholangiocarcinoma cell proliferation. The results of wound healing assay and transwell assay indicated that fascin could promote cholangiocarcinoma cell migration and invasion, and a further study found that the nuclear factor-κB signaling pathway was activated after upregulation of fascin, whereas E-cadherin expression in these cells was significantly decreased. Additionally, E-cadherin expression was significantly increased after inhibiting nuclear factor-κB activity using inhibitor or small interfering RNA, and E-cadherin expression was decreased by fascin overexpression after nuclear factor-κB inhibition, suggesting that nuclear factor-κB signaling pathway was not involved in the regulation of E-cadherin by fascin. In summary, the results of this study demonstrated that fascin effectively promoted cholangiocarcinoma RBE cell proliferation, migration, and invasion. This study provides evidence for fascin as a potential target in the treatment of cholangiocarcinoma. © The Author(s) 2015.
Role of hypoxia-inducible factor-{alpha} in hepatitis-B-virus X protein-mediated MDR1 activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Hyo-Kyung; Han, Chang Yeob; Cheon, Eun-Pa
2007-06-01
The transition from chemotherapy-responsive cancer cells to chemotherapy-resistant cancer cells is mainly accompanied by the increased expression of multi-drug resistance 1 (MDR1). We found that hepatitis-B-virus X protein (HBx) increases the transcriptional activity and protein level of MDR1 in a hepatoma cell line, H4IIE. In addition, HBx overexpression made H4IIE cells more resistant to verapamil-uptake. HBx stabilized hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) and induced the nuclear translocation of C/EBP{beta}. Reporter gene analyses showed that HBx increased the reporter activity in the cells transfected with the reporter containing MDR1 gene promoter. Moreover, the luciferase reporter gene activity was significantly inhibited by HIF-1{alpha} siRNAmore » but not by overexpression of C/EBP dominant negative mutant. These results imply that HBx increases the MDR1 transporter activity through the transcriptional activation of the MDR1 gene with HIF-1{alpha} activation, and suggest HIF-1{alpha} for the therapeutic target of HBV-mediated chemoresistance.« less
Wu, Kaiming; Zhao, Zhenxian; Ma, Jun; Chen, Jianhui; Peng, Jianjun; Yang, Shibin; He, Yulong
2017-01-01
MicroRNA-193b (miRNA-193b) is often differentially expressed and is an important regulator of gene expression in colon cancer. The aim of the present study was to determine whether miRNA-193b affects cell growth in colon cancer and to investigate the potential underlying mechanisms. Patients with colorectal cancer (CRC; n=20) and healthy volunteers (n=10) were enrolled from the Department of Gastrointestinal Surgery Center, First Affiliated Hospital of Sun Yat-Sen University (Guangzhou, China). Western blot analysis was used to evaluate the protein expression of SMAD3 and transforming growth factor-β (TGF-β) in the patient samples. It was determined that miRNA-193b expression was markedly elevated in the CRC tissue samples. Furthermore, silencing of miRNA-193bin SW620 CRC cells by specific inhibitors significantly reduced the cell proliferation and induced apoptosis. In addition, the downregulation of miRNA-193b significantly activated the protein expression of SMAD3 and TGF-β, and promoted caspase-3 activity in SW620 cells. The results of the present study suggested that the deregulation of miRNA-193b may affect cell growth in colon cancer via the TGF-β and SMAD3 signaling pathways. PMID:28454433
Quercetin, not caffeine, is a major neuroprotective component in coffee.
Lee, Moonhee; McGeer, Edith G; McGeer, Patrick L
2016-10-01
Epidemiologic studies indicate that coffee consumption reduces the risk of Parkinson's disease and Alzheimer's disease. To determine the factors involved, we examined the protective effects of coffee components. The test involved prevention of neurotoxicity to SH-SY5Y cells that was induced by lipopolysaccharide plus interferon-γ or interferon-γ released from activated microglia and astrocytes. We found that quercetin, flavones, chlorogenic acid, and caffeine protected SH-SY5Y cells from these toxins. They also reduced the release of tumor necrosis factor-α and interleukin-6 from the activated microglia and astrocytes and attenuated the activation of proteins from P38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa light chain enhancer of activated B cells (NFκB). After exposure to toxin containing glial-stimulated conditioned medium, we also found that quercetin reduced oxidative/nitrative damage to DNA, as well as to the lipids and proteins of SH-SY5Y cells. There was a resultant increase in [GSH]i in SH-SY5Y cells. The data indicate that quercetin is the major neuroprotective component in coffee against Parkinson's disease and Alzheimer's disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Giri, Biplab; Gomes, Antony; Sengupta, Radha; Banerjee, Sanjeev; Nautiyal, Jyoti; Sarkar, Fazlul H; Majumdar, Adhip P N
2009-01-01
Curcumin, an active ingredient of turmeric with no discernable toxicity, inhibits the growth of transformed cells and the development and progression of colon carcinogenesis in experimental animals. Recent data from one of our laboratories demonstrated that a crude skin extract or a purified crystalline compound (Bufo melanostictus-antineoplastic factor 1, BM-ANF1) from Indian common toad (Bufo melanostictus, Schneider) skin inhibits the growth of human leukemic cells. The present investigation was undertaken to determine whether combining BM-ANF1 with curcumin would be a better therapeutic strategy for colon cancer. Colon cancer HCT-116 cells were used. Changes in growth, apoptosis, growth factor receptor signaling and events of the cell cycle were analyzed. Curcumin together with BM-ANF1 produced a greater inhibition of HCT-116 cells growth than either agent alone, attributable to the inhibition of proliferation and stimulation of apoptosis, as evidenced by suppression of proliferating cell nuclear antigen (PCNA) expression, cell cycle arrest at the G2/M-phase and caspase-3 activation. There was also a marked reduction of cyclin-dependent kinase (CDK)2, CDK4 and cyclin B expression and up-regulation of CDK inhibitors (p21, p27) and p53, accompanied by attenuation of Akt signaling and nuclear factor-kappa B (NF-kappaB) activation. BM-ANF1 in combination with curcumin causes a marked inhibition of growth of colon cancer cells and could be an effective therapeutic strategy for colon cancer.
Wang, Chengze; Gu, Weiting; Zhang, Yunpeng; Ji, Yawen; Wen, Yong; Xu, Xin
2017-07-05
Cigarette smoking is one of highly risk factors of cervical cancer. Recently nicotine has been reported to increase proliferation and invasion in some smoking related cancers, like non-small cell lung cancer and esophageal squamous cell cancer. However, the effects and mechanisms of nicotine stimulation on cervical cancer cells are not clear. Here, we investigated the effects and mechanisms of nicotine stimulation on HeLa cells in vitro. In our study, we found that nicotine could accelerate HeLa cells migration and invasion, activate PI3K/Akt and NF-κB pathways and increase the expression of Vimentin in vitro. Moreover, we demonstrated that the specific PI3K inhibitor LY294002 could reverse nicotine-induced cell migration and invasion, NF-κB activation and up-regulation of Vimentin. Inhibition of NF-κB by Pyrrolidine dithiocarbamate (PDTC) also antagonized nicotine-induced cell migration, invasion and up-regulation of Vimentin. Simply put, these findings suggest that nicotine promotes cervical carcinoma cell line HeLa migration and invasion by activating PI3k/Akt/NF-κB pathway in vitro. Copyright © 2017 Elsevier GmbH. All rights reserved.
2014-01-01
Background Houttuynia cordata Thunb. (Saururaceae) has been used in traditional medicine for treatment of inflammatory diseases. This study evaluated the anti-inflammatory effects of an ethyl acetate fraction derived from a Houttuynia cordata extract (HCE-EA) on the production of inflammatory mediators and the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods To measure the effects of HCE-EA on pro-inflammatory cytokine and inflammatory mediator’s expression in RAW 264.7 cells, we used the following methods: cell viability assay, Griess reagent assay, enzyme-linked immunosorbent assay, real-time polymerase chain reaction and western blotting analysis. Results HCE-EA downregulated nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin (IL-6) production in the cells, as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Furthermore, HCE-EA suppressed nuclear translocation of the NF-κB p65 subunit, which correlated with an inhibitory effect on IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) phosphorylation. HCE-EA also attenuated the activation of MAPKs (p38 and JNK). Conclusions Our results suggest that the anti-inflammatory properties of HCE-EA may stem from the inhibition of pro-inflammatory mediators via suppression of NF-κB and MAPK signaling pathways. PMID:25012519
Identification of a novel A20-binding inhibitor of nuclear factor-kappa B activation termed ABIN-2.
Van Huffel, S; Delaei, F; Heyninck, K; De Valck, D; Beyaert, R
2001-08-10
The nuclear factor kappaB (NF-kappaB) plays a central role in the regulation of genes implicated in immune responses, inflammatory processes, and apoptotic cell death. The zinc finger protein A20 is a cellular inhibitor of NF-kappaB activation by various stimuli and plays a critical role in terminating NF-kappaB responses. The underlying mechanism for NF-kappaB inhibition by A20 is still unknown. A20 has been shown to interact with several proteins including tumor necrosis factor (TNF) receptor-associated factors 2 and 6, as well as the inhibitory protein of kappaB kinase (IKK) gamma protein. Here we report the cloning and characterization of ABIN-2, a previously unknown protein that binds to the COOH-terminal zinc finger domain of A20. NF-kappaB activation induced by TNF and interleukin-1 is inhibited by overexpression of ABIN-2. The latter also inhibits NF-kappaB activation induced by overexpression of receptor-interacting protein or TNF receptor-associated factor 2. In contrast, NF-kappaB activation by overexpression of IKKbeta or direct activators of the IKK complex, such as Tax, cannot be inhibited by ABIN-2. These results indicate that ABIN-2 interferes with NF-kappaB activation upstream of the IKK complex and that it might contribute to the NF-kappaB-inhibitory function of A20.
Gauldie, J; Richards, C; Harnish, D; Lansdorp, P; Baumann, H
1987-01-01
One of the oldest and most preserved of the homeostatic responses of the body to injury is the acute phase protein response associated with inflammation. The liver responds to hormone-like mediators by the increased synthesis of a series of plasma proteins called acute phase reactants. In these studies, we examined the relationship of hepatocyte-stimulating factor derived from peripheral blood monocytes to interferon beta 2 (IFN-beta 2), which has been cloned. Antibodies raised against fibroblast-derived IFN-beta having neutralizing activity against both IFN-beta 1 and -beta 2 inhibited the major hepatocyte-stimulating activity derived from monocytes. Fibroblast-derived mediator elicited the identical stimulated response in human HepG2 cells and primary rat hepatocytes as the monocyte cytokine. Finally, recombinant-derived human B-cell stimulatory factor type 2 (IFN-beta 2) from Escherichia coli induced the synthesis of all major acute phase proteins studied in human hepatoma HepG2 and primary rat hepatocyte cultures. These data demonstrate that monocyte-derived hepatocyte-stimulating factor and IFN-beta 2 share immunological and functional identity and that IFN-beta 2, also known as B-cell stimulatory factor and hybridoma plasmacytoma growth factor, has the hepatocyte as a major physiologic target and thereby is essential in controlling the hepatic acute phase response. Images PMID:2444978
Lakshmi, Sowmya P; Reddy, Aravind T; Zhang, Yingze; Sciurba, Frank C; Mallampalli, Rama K; Duncan, Steven R; Reddy, Raju C
2014-03-07
Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory condition and a leading cause of death, with no available cure. We assessed the actions in pulmonary epithelial cells of peroxisome proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor with anti-inflammatory effects, whose role in COPD is largely unknown. We found that PPARγ was down-regulated in lung tissue and epithelial cells of COPD patients, via both reduced expression and phosphorylation-mediated inhibition, whereas pro-inflammatory nuclear factor-κB (NF-κB) activity was increased. Cigarette smoking is the main risk factor for COPD, and exposing airway epithelial cells to cigarette smoke extract (CSE) likewise down-regulated PPARγ and activated NF-κB. CSE also down-regulated and post-translationally inhibited the glucocorticoid receptor (GR-α) and histone deacetylase 2 (HDAC2), a corepressor important for glucocorticoid action and whose down-regulation is thought to cause glucocorticoid insensitivity in COPD. Treating epithelial cells with synthetic (rosiglitazone) or endogenous (10-nitro-oleic acid) PPARγ agonists strongly up-regulated PPARγ expression and activity, suppressed CSE-induced production and secretion of inflammatory cytokines, and reversed its activation of NF-κB by inhibiting the IκB kinase pathway and by promoting direct inhibitory binding of PPARγ to NF-κB. In contrast, PPARγ knockdown via siRNA augmented CSE-induced chemokine release and decreases in HDAC activity, suggesting a potential anti-inflammatory role of endogenous PPARγ. The results imply that down-regulation of pulmonary epithelial PPARγ by cigarette smoke promotes inflammatory pathways and diminishes glucocorticoid responsiveness, thereby contributing to COPD pathogenesis, and further suggest that PPARγ agonists may be useful for COPD treatment.
Finkelman, F D; Katona, I M; Urban, J F; Snapper, C M; Ohara, J; Paul, W E
1986-01-01
The lymphokine B-cell stimulatory factor 1 (BSF-1) has been shown to greatly enhance the differentiation of lipopolysaccharide-activated B cells into IgG1- and IgE-secreting cells in vitro. To determine whether in vivo IgG1 and IgE antibody responses are BSF-1 dependent, the ability of a monoclonal rat IgG1 anti-BSF-1 antibody, 11B11, to affect polyclonal IgG1 and IgE production in mice infected with the nematode parasite Nippostrongylus brasiliensis or injected with a purified goat antibody to mouse IgD was studied. 11B11-containing ascites fluid or purified 11B11 strongly inhibited IgE production in both systems but did not affect IgG1 production, while control ascites or normal rat IgG1 had no IgE-inhibitory activity. These results indicate an important physiologic role for BSF-1 in the generation of IgE antibody responses and suggest means for limiting the production of antibodies responsible for allergic reactions without inhibiting protective antibody responses. PMID:3491987
NF-κB dynamics show digital activation and analog information processing in cells
NASA Astrophysics Data System (ADS)
Tay, Savas; Hughey, Jake; Lee, Timothy; Lipniacki, Tomasz; Covert, Markus; Quake, Stephen
2010-03-01
Cells operate in ever changing environments using extraordinary communication capabilities. Cell-to-cell communication is mediated by signaling molecules that form spatiotemporal concentration gradients, which requires cells to respond to a wide range of signal intensities. We used high-throughput microfluidic cell culture, quantitative gene expression analysis and mathematical modeling to investigate how single mammalian cells respond to different concentrations of the signaling molecule TNF-α via the transcription factor NF-κB. We measured NF-κB activity in thousands of live cells under TNF-α doses covering four orders of magnitude. In contrast to population studies, the activation is a stochastic, switch-like process at the single cell level with fewer cells responding at lower doses. The activated cells respond fully and express early genes independent of the TNF-α concentration, while only high dose stimulation results in the expression of late genes. Cells also encode a set of analog parameters such as the NF-κB peak intensity, response time and number of oscillations to modulate the outcome. We developed a stochastic model that reproduces both the digital and analog dynamics as well as the gene expression profiles at all measured conditions, constituting a broadly applicable model for TNF-α induced NF-κB signaling in various types of cells.
Ren, Ke; Zhang, Wei; Shi, Yujun; Gong, Jianping
2010-06-01
Pim-2 is proved to be relevant to the tumorigenesis of hepatocellular carcinoma (HCC), but the mechanism is unclear. We studied the relationship among Pim-2, NF-kappaB and API-5. In our experiment, expression level of the three factors and phosphorylation level of API-5, as well as NF-kappaB activity, were detected in HCC tissues and the nontumorous controls. Then Pim-2 gene was transfected into nontumorous liver cells L02, and Pim-2 SiRNA was transfected into hepatoblastoma cell line HepG2. Parthenolide was added as NF-kappaB inhibitor. The same detections as above were repeated in the cells, along with the apoptosis analysis. We found the levels of Pim-2, NF-kappaB and API-5, as well as NF-kappaB activity, were significantly higher in HCC tissues. Pim-2 level was increased in L02 cells after the transfection of Pim-2 gene, but decreased in HepG2 cells after the transfection of Pim-2 SiRNA. The levels of NF-kappaB and API-5, as well as NF-kappaB activity and API-5 phosphorylation level, were in accordance with Pim-2 level, but could be reversed by Parthenolide. Cell apoptosis rates were negatively correlated with API-5 phosphorylation level. Therefore, we infer that Pim-2 could activate API-5 to inhibit the apoptosis of liver cells, and NF-kappaB is the key regulator.
Popov, Sergey W; Moldenhauer, Gerhard; Wotschke, Beate; Brüderlein, Silke; Barth, Thomas F; Dorsch, Karola; Ritz, Olga; Möller, Peter; Leithäuser, Frank
2007-07-15
Activation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) and class switch recombination (CSR) in activated B lymphocytes and is potentially implicated in genomic instability of B-cell malignancies. For unknown reasons, B-cell neoplasms often lack SHM and CSR in spite of high AID expression. Here, we show that primary mediastinal B-cell lymphoma (PMBL), an immunoglobulin (Ig)-negative lymphoma that possesses hypermutated, class-switched Ig genes, expresses high levels of AID with an intact primary structure but does not do CSR in 14 of 16 cases analyzed. Absence of CSR coincided with low Ig germ-line transcription, whereas high level germ-line transcription was observed only in those two cases with active CSR. Interleukin-4/CD40L costimulation induced CSR and a marked up-regulation of germ-line transcription in the PMBL-derived cell line MedB-1. In the PMBL cell line Karpas 1106P, CSR was not inducible and germ-line transcription remained low on stimulation. However, Karpas 1106P, but not MedB-1, had ongoing SHM of the Ig gene and BCL6. These genes were transcribed in Karpas 1106P, whereas transcription was undetectable or low in MedB-1 cells. Thus, accessibility of the target sequences seems to be a major limiting factor for AID-dependent somatic gene diversification in PMBL.
Assar, Emelia A; Vidalle, Magdalena Castellano; Chopra, Mridula; Hafizi, Sassan
2016-07-01
We studied the effect of the potent dietary antioxidant lycopene on multiple points along the nuclear factor kappa B (NF-κB) signaling pathway in prostate and breast cancer cells. Lycopene significantly inhibited prostate and breast cancer cell growth at physiologically relevant concentrations of ≥1.25 μM. Similar concentrations also caused a 30-40 % reduction in inhibitor of kappa B (IκB) phosphorylation in the cells, as determined by western blotting. Furthermore, the same degree of inhibition by lycopene was observed for NF-κB transcriptional activity, as determined by reporter gene assay. Concomitant with this, immunofluorescence staining of lycopene-treated cells showed a significant suppression (≥25 %) of TNF-induced NF-κB p65 subunit nuclear translocation. Further probing of lycopene's effects on upstream elements of the NF-κB pathway showed a 25 % inhibition of both activity of recombinant IκB kinase β (IKKβ) kinase in a cell-free in vitro assay, as well as activity of IKKβ immunoprecipitated from MDA-MB-231 cells treated with lycopene. In conclusion, the anticancer properties of lycopene may occur through inhibition of the NF-κB signaling pathway, beginning at the early stage of cytoplasmic IKK kinase activity, which then leads to reduced NF-κB-responsive gene regulation. Furthermore, these effects in cancer cells were observed at concentrations of lycopene that are relevant and achievable in vivo.
Antitumor activities and immunomodulatory of rice bran polysaccharides and its sulfates in vitro.
Wang, Li; Li, Yulin; Zhu, Lidan; Yin, Ran; Wang, Ren; Luo, Xiaohu; Li, Yongfu; Li, Yanan; Chen, Zhengxing
2016-07-01
Polysaccharides purified from rice bran show antitumor activity against tumor cells, yet the mechanism of this action remains poorly understood. To address this issue, our study evaluated the effect of rice bran polysaccharides on mouse melanoma cell line B16, and Raw264.7 macrophages. Rice bran polysaccharides (RBP) failed to inhibit B16 cell growth in vitro. However, Raw264.7 macrophages treated by RBP enhancement of cytotoxic effects. The cytotoxicity was confirmed by the stimulation of nitric oxide (NO) production and tumor necrosis factor-α (TNF-α) secretion on Raw264.7 macrophages in a dose-dependent manner. RBP2, a fraction of RBP, notably enhanced the inhibition of B16 cells and boosted the immunepotentiation effect compared with RBP. To further enhance the inhibition of B16 cell growth, sulfated polysaccharides (SRBP) was derived using the chlorosulfonic acid-pyridine method. SRBP2 was found to suppress B16 cell growth, reduce B16 cell survival and stimulate NO and TNF-α production. However, SRBP2 displayed a cytotoxic effect on Raw264.7 macrophages. These results suggest that the antitumor activity of RBP and RBP2 is mediated mainly through the activation of macrophages. SRBP2 exerts its antitumor activity by inducing apoptosis in tumor cells and the secretion of NO and TNF-α. Copyright © 2016 Elsevier B.V. All rights reserved.
Connective Tissue Growth Factor (CTGF) as a Regulator of Lactogenic Differentiation
2009-06-09
1 1.62 Myeloid leukemia factor 1, Mlf1 1.57 ADAMTS-l4 1.55 E2F transcription factor, E2F2 1.44 Tensin 4 -1.5 BCL2/adenovirus E1B interacting... Mlf1 1.57 ADAMTS-l4 1.55 Ras homolog gene family, member B, RhoB 1.48 Cell Differentiation-associated Wingless-type MMTV integration site family...B, relB 1.92 Myeloid leukemia factor 1, Mlf1 1.57 Growth Factor, Catalytic Activity-associated Dual specificity protein phosphatase 8, Dusp8
Rivera, G M; Antoku, S; Gelkop, S; Shin, N Y; Hanks, S K; Pawson, T; Mayer, B J
2006-06-20
The Nck family of Src homology (SH) 2/SH3 domain adaptors functions to link tyrosine phosphorylation induced by extracellular signals with downstream regulators of actin dynamics. We investigated the role of mammalian Nck adaptors in signaling from the activated platelet-derived growth factor (PDGF) receptor (PDGFbetaR) to the actin cytoskeleton. We report here that Nck adaptors are required for cytoskeletal reorganization and chemotaxis stimulated by PDGF-B. Analysis of tyrosine-phosphorylated proteins demonstrated that Crk-associated substrate (p130(Cas)), not the activated PDGFbetaR itself, is the major Nck SH2 domain-binding protein in PDGF-B-stimulated cells. Both Nck- and p130(Cas)-deficient cells fail to display cytoskeletal rearrangements, including the formation of membrane ruffles and the disassembly of actin bundles, typically shown by their WT counterparts in response to PDGF-B. Furthermore, Nck and p130(Cas) colocalize in phosphotyrosine-enriched membrane ruffles induced by PDGF-B in NIH 3T3 cells. These results suggest that Nck adaptors play an essential role in linking the activated PDGFbetaR with actin dynamics through a pathway that involves p130(Cas).
A tick B-cell inhibitory protein from salivary glands of the hard tick, Hyalomma asiaticum asiaticum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Da; Department of Life Science and Technology, Changshu Institute of Technology, Changshu 215500; Liang Jiangguo
2006-05-05
Some studies done to date suggest that B-cell inhibitory factor occurred in tick saliva. In this study, a novel protein having B-cell inhibitory activity was purified and characterized from the salivary glands of the hard tick, Hyalomma asiaticum asiaticum. This protein was named B-cell inhibitory factor (BIF). The cDNA encoding BIF was cloned by cDNA library screening. The predicted protein from the cDNA sequence is composed of 138 amino acids including the mature BIF. No similarity was found by Blast search. The lipopolysaccharide-induced B-cell proliferation was inhibited by BIF. This is First report of the identification and characterization of B-cellmore » inhibitory protein from tick. The current study facilitates the study of identifying the interaction among tick, Borrelia burgdorferi, the causative agent of Lyme disease, and host.« less
Calfee-Mason, Karen G.; Lee, Eun Y.; Spear, Brett T.; Glauert, Howard P.
2008-01-01
Peroxisome proliferators (PPs) are a diverse class of chemicals, which cause a dramatic increase in the size and number of hepatic peroxisomes in rodents and eventually lead to the development of hepatic tumors. Nuclear factor-κB (NF-κB) is a transcription factor activated by reactive oxygen and is involved in cell proliferation and apoptosis. Previously we found that the peroxisome proliferator ciprofibrate (CIP) activates NF-κB and that dietary vitamin E decreases CIP-induced NF-κB DNA binding. We therefore hypothesized that inhibition of NF-κB by vitamin E is necessary for effects of vitamin E on CIP-induced cell proliferation and the inhibition of apoptosis by CIP. Sixteen B6129 female mice (p50+/+) and twenty mice deficient in the p50 subunit of NF-κB (p50−/−) were fed a purified diet containing 10 or 250 mg/kg vitamin E (α-tocopherol acetate) for 28 days. At that time, half of the mice were placed on the same diet with 0.01% CIP for 10 days. CIP treatment increased the DNA binding activity of NF-κB and cell proliferation, but had no significant effect on apoptosis. Compared to wild-type mice, the p50−/− mice had lower NF-κB activation, higher basal levels of cell proliferation and apoptosis, and a lower ratio of reduced glutathione to oxidized glutathione (GSH/GSSG). There was approximately a 60% reduction in cell proliferation in the CIP-treated p50−/− mice fed higher vitamin E in comparison to the p50−/− mice fed lower vitamin E. Dietary vitamin E also inhibited the DNA binding activity of NF-κB, increased apoptosis, and increased the GSH/GSSG ratio. This study shows the effects of vitamin E on cell growth parameters do not appear to be solely through decreased NF-κB activation, suggesting that vitamin E is acting by other molecular mechanisms. PMID:18336980
Rosenberg, I M; Göke, M; Kanai, M; Reinecker, H C; Podolsky, D K
1997-10-01
Epithelial cell kinase (Eck) is a member of a large family of receptor tyrosine kinases whose functions remain largely unknown. Expression and regulation of Eck and its cognate ligand B61 were analyzed in the human colonic adenocarcinoma cell line Caco-2. Immunocytochemical staining demonstrated coexpression of Eck and B61 in the same cells, suggestive of an autocrine loop. Eck levels were maximal in preconfluent cells. In contrast, B61 levels were barely detectable in preconfluent cells and increased progressively after the cells reached confluence. Caco-2 cells cultured in the presence of added B61 showed a significant reduction in the levels of dipeptidyl peptidase and sucrase-isomaltase mRNA, markers of Caco-2 cell differentiation. Cytokines interleukin-1beta (IL-1beta), basic fibroblast growth factor, IL-2, epidermal growth factor, and transforming growth factor-beta modulated steady-state levels of Eck and B61 mRNA and regulated Eck activation as assessed by tyrosine phosphorylation. Functionally, stimulation of Eck by B61 resulted in increased proliferation, enhanced barrier function, and enhanced restitution of injured epithelial monolayers. These results suggest that the Eck-B61 interaction, a target of regulatory peptides, plays a role in intestinal epithelial cell development, migration, and barrier function, contributing to homeostasis and preservation of continuity of the epithelial barrier.
Zhang, Huasheng; Zhang, Dingding; Li, Hua; Yan, Huiying; Zhang, Zihuan; Zhou, Chenhui; Chen, Qiang; Ye, Zhennan; Hang, Chunhua
2018-06-01
The transcription factor nuclear factor-κB (NF-κB) has been shown to function as a key regulator of cell death or survival in neuronal cells. Previous studies indicate that the biphasic activation of NF-κB occurs following experimental neonatal hypoxia-ischemia and subarachnoid hemorrhage. However, the comprehensive understanding of NF-κB activity following traumatic brain injury (TBI) is incomplete. In the current study, an in vitro model of TBI was designed to investigate the NF-κB activity and expression of p65 and c-Rel subunits following traumatic neuronal injury. Primary cultured neurons were assigned to control and transected groups. NF-κB activity was detected by electrophoretic mobility shift assay. Western blotting and immunofluorescence were used to investigate the expression and distribution of p65 and c-Rel. Reverse transcription-quantitative polymerase chain reaction was performed to assess the downstream genes of NF-κB. Lactate dehydrogenase (LDH) quantification and trypan blue staining were used to estimate the neuronal injury. Double peaks of elevated NF-κB activity were observed at 1 and 24 h following transection. The expression levels of downstream genes exhibited similar changes. The protein levels of p65 also presented double peaks while c-Rel was elevated significantly in the late stage. The results of the trypan blue staining and LDH leakage assays indicated there was no sustained neuronal injury during the late peak of NF-κB activity. In conclusion, biphasic activation of NF-κB is induced following experimental traumatic neuronal injury. The elevation of p65 and c-Rel levels at different time periods suggests that within a single neuron, NF-κB may participate in different pathophysiological processes.
Lu, Li; Shi, Wenli; Deshmukh, Rahul R.; Long, Jie; Cheng, Xiaoli; Ji, Weidong; Zeng, Guohua; Chen, Xianliang; Zhang, Yajie; Dou, Q. Ping
2014-01-01
The inflammatory microenvironment plays an important role in the process of tumor development. Tumor necrosis factor-α (TNF-α), a key pro-inflammatory cytokine, has a significant role in this process. Natural medicinal products such as Withaferin A (WA) and Celastrol (Cel) have shown anti-cancer and anti-inflammatory properties that can be attributed to multiple mechanisms including, but not limited to, apoptosis induction due to the inhibition of proteasomal activities. This study aimed to investigate the effects of TNF-α in combination with WA or Cel in vitro in MDA-MB-231 breast cancer cells. TNF-α, when combined with WA or Cel, activated caspase-3 and -9 and downregulated XIAP in a dose-dependent manner, leading to induction of apoptosis in MDA-MB-231 breast cancer cells. The combination also caused accumulation of the proteasomal target protein IκBα, resulting in inhibition of the nuclear translocation of nuclear factor-κB (NF-κB). Taken together, these results suggest that TNF-α could sensitize breast cancer cells MDA-MB-231 to WA and Cel, at least in part, through inhibiting the activation of NF-κB signaling, leading to XIAP inhibition with subsequent upregulation of caspase-3 and -9 activities. Thus, the anti-cancer activities of TNF-α are enhanced when combined with the natural proteasome inhibitors, WA or Cel. PMID:25419573
Hajishengallis, George; Nawar, Hesham; Tapping, Richard I.; Russell, Michael W.; Connell, Terry D.
2004-01-01
The type II heat-labile enterotoxins, LT-IIa and LT-IIb, exhibit potent adjuvant properties. However, little is known about their immunomodulatory activities upon interaction with innate immune cells, unlike the widely studied type I enterotoxins that include cholera toxin (CT). We therefore investigated interactions of LT-IIa and LT-IIb with human monocytic THP-1 cells. We found that LT-II enterotoxins were inactive in stimulating cytokine release, whereas CT induced low levels of interleukin-1β (IL-1β) and IL-8. However, all three enterotoxins potently regulated cytokine induction in cells activated by bacterial lipopolysaccharide or fimbriae. Induction of proinflammatory (tumor necrosis factor α [TNF-α]) or chemotactic (IL-8) cytokines was downregulated, whereas induction of cytokines with anti-inflammatory (IL-10) or mucosal adjuvant properties (IL-1β) was upregulated by the enterotoxins. These effects appeared to depend on their A subunits, because isolated B-pentameric subunits lacked regulatory activity. Enterotoxin-mediated inhibition of proinflammatory cytokine induction in activated cells was partially attributable to synergism for endogenous production of IL-10 and to an IL-10-independent inhibition of nuclear factor κB (NF-κB) activation. In sharp contrast to the holotoxins, the B pentamers (LT-IIaB and, to a greater extent, LT-IIbB) stimulated cytokine production, suggesting a link between the absence of the A subunit and increased proinflammatory properties. In this regard, the ability of LT-IIbB to activate NF-κB and induce TNF-α and IL-8 was antagonized by the LT-IIb holotoxin. These findings support distinct immunomodulatory roles for the LT-II holotoxins and their respective B pentamers. Moreover, the anti-inflammatory properties of the holotoxins may serve to suppress innate immunity and promote the survival of the pathogen. PMID:15501764
Artificial Induction of Sox21 Regulates Sensory Cell Formation in the Embryonic Chicken Inner Ear
Freeman, Stephen D.; Daudet, Nicolas
2012-01-01
During embryonic development, hair cells and support cells in the sensory epithelia of the inner ear derive from progenitors that express Sox2, a member of the SoxB1 family of transcription factors. Sox2 is essential for sensory specification, but high levels of Sox2 expression appear to inhibit hair cell differentiation, suggesting that factors regulating Sox2 activity could be critical for both processes. Antagonistic interactions between SoxB1 and SoxB2 factors are known to regulate cell differentiation in neural tissue, which led us to investigate the potential roles of the SoxB2 member Sox21 during chicken inner ear development. Sox21 is normally expressed by sensory progenitors within vestibular and auditory regions of the early embryonic chicken inner ear. At later stages, Sox21 is differentially expressed in the vestibular and auditory organs. Sox21 is restricted to the support cell layer of the auditory epithelium, while it is enriched in the hair cell layer of the vestibular organs. To test Sox21 function, we used two temporally distinct gain-of-function approaches. Sustained over-expression of Sox21 from early developmental stages prevented prosensory specification, and abolished the formation of both hair cells and support cells. However, later induction of Sox21 expression at the time of hair cell formation in organotypic cultures of vestibular epithelia inhibited endogenous Sox2 expression and Notch activity, and biased progenitor cells towards a hair cell fate. Interestingly, Sox21 did not promote hair cell differentiation in the immature auditory epithelium, which fits with the expression of endogenous Sox21 within mature support cells in this tissue. These results suggest that interactions among endogenous SoxB family transcription factors may regulate sensory cell formation in the inner ear, but in a context-dependent manner. PMID:23071561
Wang, Yanping; Yan, Ming; Yu, Yan; Wu, Jintao; Yu, Jinhua; Fan, Zhipeng
2013-06-01
Various factors can affect the functions of dental pulp stem cells (DPSCs). However, little knowledge is available about the effects of estrogen deficiency on the differentiation of DPSCs. In this study, an estrogen-deficient rat model was constructed and multi-colony-derived DPSCs were obtained from the incisors of ovariectomized (OVX) or sham-operated rats. Odonto/osteogenic differentiation and the possible involvement of the nuclear factor kappa B (NF-κB) pathway in the OVX-DPSCs/Sham-DPSCs of these rats were then investigated. OVX-DPSCs presented decreased odonto/osteogenic capacity and an activated NF-κB pathway, as compared with Sham-DPSCs. When the cellular NF-κB pathway was specifically inhibited by BMS345541, the odonto/osteogenic potential in OVX-DPSCs was significantly upregulated. Thus, estrogen deficiency down-regulated the odonto/osteogenic differentiation of DPSCs by activating NF-κB signaling and inhibition of the NF-κB pathway effectively rescued the decreased differentiation potential of DPSCs.
Silbermann, Katrin; Schneider, Grit; Grassmann, Ralph
2008-11-01
The human T-cell leukemia virus type 1 (HTLV-1) Tax oncoprotein transforms human lymphocytes and is critical for the pathogenesis of HTLV-1-induced adult T-cell leukaemia. In HTLV-transformed cells, Tax upregulates interleukin (IL)-13, a cytokine with proliferative and anti-apoptotic functions that is linked to leukaemogenesis. Tax-stimulated IL-13 is thought to result in autocrine stimulation of HTLV-infected cells and thus may be relevant to their growth. The causal transactivation of the IL-13 promoter by Tax is predominantly dependent on a nuclear factor of activated T cells (NFAT)-binding P element. Here, it was shown that the isolated IL-13 Tax-responsive element (IL13TaxRE) was sufficient to mediate IL-13 transactivation by Tax and NFAT1. However, cyclosporin A, a specific NFAT inhibitor, revealed that Tax transactivation of IL13TaxRE or wild-type IL-13 promoter was independent of NFAT and that NFAT did not contribute to IL-13 upregulation in HTLV-transformed cells. By contrast, Tax stimulation was repressible by an efficient nuclear factor (NF)-kappaB inhibitor (IkBaDN), indicating the requirement for NF-kappaB. The capacity of NF-kappaB to stimulate IL13TaxRE was demonstrated by a strong response to NF-kappaB in reporter assays and by direct binding of NF-kappaB to IL13TaxRE. Thus, IL13TaxRE in the IL-13 promoter represents a dually active promoter element responsive to NF-kappaB and NFAT. Together, these results indicate that Tax causes IL-13 upregulation in HTLV-1-infected cells via NF-kappaB.
Nitta, T; Okumura, S; Nakano, M
1985-02-01
Butanol-extracted water soluble adjuvant (Bu-WSA) obtained from Bacterionema matruchotii was not mitogenic for human peripheral blood mononuclear cells (PBM) but was capable of enhancing (3H) thymidine uptake of T cells stimulated by concanavalin A (Con A) in the presence of B cells or macrophages (M phi) in vitro. The mechanisms of the synergy of Con A and Bu-WSA were studied by using separated cell populations from PBM. Both subfractioned OKT4+ and OKT8+ cells were responsive to co-stimulation by Con A and Bu-WSA in the presence of an accessory cell population. Allogeneic B cells and M phi as well as autologous cells had helper function as accessory cells. Heavy irradiation with gamma-rays did not affect the function of the accessory cells, but previous treatment of B cells with anti-Ig serum plus complement (C) or treatment of M phi with anti-M phi serum plus C deprived them of their function. The treatment of accessory cells with anti-HLA-DR serum, regardless of the presence or absence of C, resulted in loss of their helper function. Cultures in Marbrook-type vessels showed that a mixed cell population of T cells and accessory cells in the lower chamber produced some active factor(s) after co-stimulation with Con A and Bu-WSA, and by passing through the membrane filter separating the chambers, the factor(s) enhanced the proliferation of the Con A-activated T cell population in the upper chamber. The factor(s) was presumed to be interleukin 2 (IL 2), because it supported the growth of IL 2-dependent CTLL cells. These results indicate that the synergy of Con A and Bu-WSA on the proliferative response of human PBM is due to the elevation of growth factor production from T cells stimulated by those mitogens.
Sidrauski, Carmela; Tsai, Jordan C; Kampmann, Martin; Hearn, Brian R; Vedantham, Punitha; Jaishankar, Priyadarshini; Sokabe, Masaaki; Mendez, Aaron S; Newton, Billy W; Tang, Edward L; Verschueren, Erik; Johnson, Jeffrey R; Krogan, Nevan J; Fraser, Christopher S; Weissman, Jonathan S; Renslo, Adam R; Walter, Peter
2015-01-01
The general translation initiation factor eIF2 is a major translational control point. Multiple signaling pathways in the integrated stress response phosphorylate eIF2 serine-51, inhibiting nucleotide exchange by eIF2B. ISRIB, a potent drug-like small molecule, renders cells insensitive to eIF2α phosphorylation and enhances cognitive function in rodents by blocking long-term depression. ISRIB was identified in a phenotypic cell-based screen, and its mechanism of action remained unknown. We now report that ISRIB is an activator of eIF2B. Our reporter-based shRNA screen revealed an eIF2B requirement for ISRIB activity. Our results define ISRIB as a symmetric molecule, show ISRIB-mediated stabilization of activated eIF2B dimers, and suggest that eIF2B4 (δ-subunit) contributes to the ISRIB binding site. We also developed new ISRIB analogs, improving its EC50 to 600 pM in cell culture. By modulating eIF2B function, ISRIB promises to be an invaluable tool in proof-of-principle studies aiming to ameliorate cognitive defects resulting from neurodegenerative diseases. DOI: http://dx.doi.org/10.7554/eLife.07314.001 PMID:25875391
Park, Chung Mu; Cho, Chung Won; Song, Young Sun
2014-04-01
Anti-inflammatory and anti-oxidative activities of polysaccharides from Taraxacum officinale (TOP 1 and 2) were analyzed in RAW 264.7 cells. First, lipopolysaccharide (LPS) was applied to identify anti-inflammatory activity of TOPs, which reduced expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α. TOPs treatment inhibited phosphorylation of inflammatory transcription factor, nuclear factor (NF)κB, and its upstream signaling molecule, PI3K/Akt. Second, cytoprotective potential of TOPs against oxidative stress was investigated via heme oxygenase (HO)-1 induction. HO-1, one of phase II enzymes shows antioxidative activity, was potently induced by TOPs treatment, which was in accordance with the nuclear translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). In addition, TOPs treatment phosphorylated PI3K/Akt with slight activation of c-Jun NH2-terminal kinase (JNK). TOPs-mediated HO-1 induction protected macrophage cells from oxidative stress-induced cell death, which was confirmed by SnPP and CoPP (HO-1 inhibitor and inducer, respectively). Consequently, TOPs potently inhibited NFκB-mediated inflammation and accelerated Nrf2-mediated antioxidative potential through the modulation of PI3K/Akt pathway, which would contribute to their promising strategy for novel anti-inflammatory and anti-oxidative agents. Copyright © 2014. Published by Elsevier Ltd.
Son, Beomseok; Jun, Se Young; Seo, HyunJeong; Youn, HyeSook; Yang, Hee Jung; Kim, Wanyeon; Kim, Hyung Kook; Kang, ChulHee; Youn, BuHyun
2016-02-24
Increased survival of cancer cells mediated by high levels of ionizing radiation (IR) reduces the effectiveness of radiation therapy for non-small cell lung cancer (NSCLC). In the present study, danshensu which is a selected component of traditional oriental medicine (TOM) compound was found to reduce the radioresistance of NSCLC by inhibiting the nuclear factor-κB (NF-κB) pathway. Of the various TOM compounds reported to inhibit the IR activation of NF-κB, danshensu was chosen as a final candidate based on the results of structural comparisons with human metabolites and monoamine oxidase B (MAOB) was identified as the putative target enzyme. Danshensu decreased the activation of NF-κB by inhibiting MAOB activity in A549 and NCI-H1299 NSCLC cells. Moreover, it suppressed IR-induced epithelial-to-mesenchymal transition, expressions of NF-κB-regulated prosurvival and proinflammatory genes, and in vivo radioresistance of mouse xenograft models. Taken together, this study shows that danshensu significantly reduces MAOB activity and attenuates NF-κB signaling to elicit the radiosensitization of NSCLC.
Brown, Charles O; Salem, Kelley; Wagner, Brett A; Bera, Soumen; Singh, Neeraj; Tiwari, Ajit; Choudhury, Amit; Buettner, Garry R; Goel, Apollina
2012-06-15
IL (interleukin)-6, an established growth factor for multiple myeloma cells, induces myeloma therapy resistance, but the resistance mechanisms remain unclear. The present study determines the role of IL-6 in re-establishing intracellular redox homoeostasis in the context of myeloma therapy. IL-6 treatment increased myeloma cell resistance to agents that induce oxidative stress, including IR (ionizing radiation) and Dex (dexamethasone). Relative to IR alone, myeloma cells treated with IL-6 plus IR demonstrated reduced annexin/propidium iodide staining, caspase 3 activation, PARP [poly(ADP-ribose) polymerase] cleavage and mitochondrial membrane depolarization with increased clonogenic survival. IL-6 combined with IR or Dex increased early intracellular pro-oxidant levels that were causally related to activation of NF-κB (nuclear factor κB) as determined by the ability of N-acetylcysteine to suppress both pro-oxidant levels and NF-κB activation. In myeloma cells, upon combination with hydrogen peroxide treatment, relative to TNF (tumour necrosis factor)-α, IL-6 induced an early perturbation in reduced glutathione level and increased NF-κB-dependent MnSOD (manganese superoxide dismutase) expression. Furthermore, knockdown of MnSOD suppressed the IL-6-induced myeloma cell resistance to radiation. MitoSOX Red staining showed that IL-6 treatment attenuated late mitochondrial oxidant production in irradiated myeloma cells. The present study provides evidence that increases in MnSOD expression mediate IL-6-induced resistance to Dex and radiation in myeloma cells. The results of the present study indicate that inhibition of antioxidant pathways could enhance myeloma cell responses to radiotherapy and/or chemotherapy.
Brown, Charles O.; Salem, Kelley; Wagner, Brett A.; Bera, Soumen; Singh, Neeraj; Tiwari, Ajit; Choudhury, Amit; Buettner, Garry R.; Goel, Apollina
2012-01-01
IL (interleukin)-6, an established growth factor for multiple myeloma cells, induces myeloma therapy resistance, but the resistance mechanisms remain unclear. The present study determines the role of IL-6 in re-establishing intracellular redox homoeostasis in the context of myeloma therapy. IL-6 treatment increased myeloma cell resistance to agents that induce oxidative stress, including IR (ionizing radiation) and Dex (dexamethasone). Relative to IR alone, myeloma cells treated with IL-6 plus IR demonstrated reduced annexin/propidium iodide staining, caspase 3 activation, PARP [poly(ADP-ribose) polymerase] cleavage and mitochondrial membrane depolarization with increased clonogenic survival. IL-6 combined with IR or Dex increased early intracellular pro-oxidant levels that were causally related to activation of NF-κB (nuclear factor κB) as determined by the ability of N-acetylcysteine to suppress both pro-oxidant levels and NF-κB activation. In myeloma cells, upon combination with hydrogen peroxide treatment, relative to TNF (tumour necrosis factor)-α, IL-6 induced an early perturbation in reduced glutathione level and increased NF-κB-dependent MnSOD (manganese superoxide dismutase) expression. Furthermore, knockdown of MnSOD suppressed the IL-6-induced myeloma cell resistance to radiation. MitoSOX Red staining showed that IL-6 treatment attenuated late mitochondrial oxidant production in irradiated myeloma cells. The present study provides evidence that increases in MnSOD expression mediate IL-6-induced resistance to Dex and radiation in myeloma cells. The results of the present study indicate that inhibition of antioxidant pathways could enhance myeloma cell responses to radiotherapy and/or chemotherapy. PMID:22471522
Herman, Sarah E. M.; Gordon, Amber L.; Hertlein, Erin; Ramanunni, Asha; Zhang, Xiaoli; Jaglowski, Samantha; Flynn, Joseph; Jones, Jeffrey; Blum, Kristie A.; Buggy, Joseph J.; Hamdy, Ahmed
2011-01-01
B-cell receptor (BCR) signaling is aberrantly activated in chronic lymphocytic leukemia (CLL). Bruton tyrosine kinase (BTK) is essential to BCR signaling and in knockout mouse models its mutation has a relatively B cell–specific phenotype. Herein, we demonstrate that BTK protein and mRNA are significantly over expressed in CLL compared with normal B cells. Although BTK is not always constitutively active in CLL cells, BCR or CD40 signaling is accompanied by effective activation of this pathway. Using the irreversible BTK inhibitor PCI-32765, we demonstrate modest apoptosis in CLL cells that is greater than that observed in normal B cells. No influence of PCI-32765 on T-cell survival is observed. Treatment of CD40 or BCR activated CLL cells with PCI-32765 results in inhibition of BTK tyrosine phosphorylation and also effectively abrogates downstream survival pathways activated by this kinase including ERK1/2, PI3K, and NF-κB. In addition, PCI-32765 inhibits activation-induced proliferation of CLL cells in vitro, and effectively blocks survival signals provided externally to CLL cells from the microenvironment including soluble factors (CD40L, BAFF, IL-6, IL-4, and TNF-α), fibronectin engagement, and stromal cell contact. Based on these collective data, future efforts targeting BTK with the irreversible inhibitor PCI-32765 in clinical trials of CLL patients is warranted. PMID:21422473
Bierlein De la Rosa, Metzere; Sharma, Anup D; Mallapragada, Surya K; Sakaguchi, Donald S
2017-11-01
The use of genetically modified mesenchymal stem cells (MSCs) is a rapidly growing area of research targeting delivery of therapeutic factors for neuro-repair. Cells can be programmed to hypersecrete various growth/trophic factors such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and nerve growth factor (NGF) to promote regenerative neurite outgrowth. In addition to genetic modifications, MSCs can be subjected to transdifferentiation protocols to generate neural cell types to physically and biologically support nerve regeneration. In this study, we have taken a novel approach by combining these two unique strategies and evaluated the impact of transdifferentiating genetically modified MSCs into a Schwann cell-like phenotype. After 8 days in transdifferentiation media, approximately 30-50% of transdifferentiated BDNF-secreting cells immunolabeled for Schwann cell markers such as S100β, S100, and p75 NTR . An enhancement was observed 20 days after inducing transdifferentiation with minimal decreases in expression levels. BDNF production was quantified by ELISA, and its biological activity tested via the PC12-TrkB cell assay. Importantly, the bioactivity of secreted BDNF was verified by the increased neurite outgrowth of PC12-TrkB cells. These findings demonstrate that not only is BDNF actively secreted by the transdifferentiated BDNF-MSCs, but also that it has the capacity to promote neurite sprouting and regeneration. Given the fact that BDNF production remained stable for over 20 days, we believe that these cells have the capacity to produce sustainable, effective, BDNF concentrations over prolonged time periods and should be tested within an in vivo system for future experiments. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Skardal, Aleksander; Murphy, Sean V; Crowell, Kathryn; Mack, David; Atala, Anthony; Soker, Shay
2017-10-01
For many cellular therapies being evaluated in preclinical and clinical trials, the mechanisms behind their therapeutic effects appear to be the secretion of growth factors and cytokines, also known as paracrine activity. Often, delivered cells are transient, and half-lives of the growth factors that they secrete are short, limiting their long-term effectiveness. The goal of this study was to optimize a hydrogel system capable of in situ cell delivery that could sequester and release growth factors secreted from those cells after the cells were no longer present. Here, we demonstrate the use of a fast photocross-linkable heparin-conjugated hyaluronic acid (HA-HP) hydrogel as a cell delivery vehicle for sustained growth factor release, which extends paracrine activity. The hydrogel could be modulated through cross-linking geometries and heparinization to support sustained release proteins and heparin-binding growth factors. To test the hydrogel in vivo, we used it to deliver amniotic fluid-derived stem (AFS) cells, which are known to secrete cytokines and growth factors, in full thickness skin wounds in a nu/nu murine model. Despite transience of the AFS cells in vivo, the HA-HP hydrogel with AFS cells improved wound closure and reepithelialization and increased vascularization and production of extracellular matrix in vivo. These results suggest that HA-HP hydrogel has the potential to prolong the paracrine activity of cells, thereby increasing their therapeutic effectiveness in wound healing. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1986-2000, 2017. © 2016 Wiley Periodicals, Inc.
Lungu, Gina; Covaleda, Lina; Mendes, Odete; Martini-Stoica, Heidi; Stoica, George
2008-06-01
Matrix metalloproteinase-9 (MMP-9) plays a critical role in tumor invasion and metastasis. Here, we investigate the effect of fibroblast growth factor-1 (FGF-1) on the expression of MMP-9 in ENU1564, an ethyl-N-nitrosourea-induced rat mammary adenocarcinoma cell line. We observed that FGF-1 induces a dose-dependent increase in MMP-9 mRNA, protein, and activity in ENU1564 cells. To gain insight into the molecular mechanism of MMP-9 regulation by FGF-1, we investigated the role of components of PI3K-Akt and MEK1/2-ERK signaling pathways in our system since NF-kappaB and AP-1 transcription factor binding sites have been characterized in the upstream region of the MMP-9 gene. We demonstrated that FGF-1 increases Akt phosphorylation, triggers nuclear translocation of NF-kappaBp65, and enhances degradation of cytoplasmic IkappaBalpha. Pretreatment of cells with LY294002, a PI3K inhibitor, significantly inhibited MMP-9 protein expression in FGF-1-treated cells. Conversely, our data show that FGF-1 increases ERK phosphorylation in ENU1564 cells, increases c-jun and c-fos mRNA expression in a time-dependent manner, and triggers nuclear translocation of c-jun. Pretreatment of cells with PD98059, a MEK1/2 inhibitor significantly inhibited MMP-9 protein expression in FGF-1 treated cells. Finally, we observed increased DNA binding of NF-kappaB and AP-1 in FGF-1-treated cells and that mutation of either NF-kappaB or AP-1 response elements prevented MMP-9 promoter activation by FGF-1. Taken together, these results demonstrated that FGF-1-induced MMP-9 expression in ENU1564 cells is associated with increasing DNA binding activities of NF-kappaB and AP-1 and involve activation of a dual signaling pathway, PI3K-Akt and MEK1/2-ERK. (c) 2007 Wiley-Liss, Inc.
Anti-B-Cell Therapies in Autoimmune Neurological Diseases: Rationale and Efficacy Trials.
Alexopoulos, Harry; Biba, Angie; Dalakas, Marinos C
2016-01-01
B cells have an ever-increasing role in the etiopathology of a number of autoimmune neurological disorders, acting as antibody-producing cells and, most importantly, as sensors, coordinators, and regulators of the immune response. B cells, among other functions, regulate the T-cell activation process through their participation in antigen presentation and production of cytokines. The availability of monoclonal antibodies or fusion proteins against B-cell surface molecules or B-cell trophic factors bestows a rational approach for treating autoimmune neurological disorders, even when T cells are the main effector cells. This review summarizes basic aspects of B-cell biology, discusses the role(s) of B cells in neurological autoimmunity, and presents anti-B-cell drugs that are either currently on the market or are expected to be available in the near future for treating neurological autoimmune disorders.
Eukaryotic Initiation Factor 4H Is under Transcriptional Control of p65/NF-κB
Fiume, Giuseppe; Rossi, Annalisa; de Laurentiis, Annamaria; Falcone, Cristina; Pisano, Antonio; Vecchio, Eleonora; Pontoriero, Marilena; Scala, Iris; Scialdone, Annarita; Masci, Francesca Fasanella; Mimmi, Selena; Palmieri, Camillo; Scala, Giuseppe; Quinto, Ileana
2013-01-01
Protein synthesis is mainly regulated at the initiation step, allowing the fast, reversible and spatial control of gene expression. Initiation of protein synthesis requires at least 13 translation initiation factors to assemble the 80S ribosomal initiation complex. Loss of translation control may result in cell malignant transformation. Here, we asked whether translational initiation factors could be regulated by NF-κB transcription factor, a major regulator of genes involved in cell proliferation, survival, and inflammatory response. We show that the p65 subunit of NF-κB activates the transcription of eIF4H gene, which is the regulatory subunit of eIF4A, the most relevant RNA helicase in translation initiation. The p65-dependent transcriptional activation of eIF4H increased the eIF4H protein content augmenting the rate of global protein synthesis. In this context, our results provide novel insights into protein synthesis regulation in response to NF-κB activation signalling, suggesting a transcription-translation coupled mechanism of control. PMID:23776612
Subedi, Lalita; Venkatesan, Ramu; Kim, Sun Yeou
2017-07-03
Allyl isothiocyanate (AITC), present in Wasabia japonica (wasabi), is an aliphatic isothiocyanate derived from the precursor sinigrin, which is a glucosinolate present in vegetables of the Brassica family. Traditionally, it has been used to treat rheumatic arthralgia, blood circulation, and pain. This study focuses on its anti-apoptotic activity through the regulation of lipopolysaccharide (LPS)-induced neuroinflammation. Furthermore, we assessed its neuroprotective efficacy, which it achieves through the upregulation of nerve growth factor (NGF) production. Pretreatment with AITC significantly inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, decreased tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandin E2 (PGE2), and nitric oxide (NO) production in activated microglia, and increased the nerve growth factor (NGF) and neurite outgrowth in neuroblastoma cells. AITC inhibited the nuclear factor (NF-κB-mediated transcription by modulating mitogen activated protein kinase (MAPK) signaling, particularly downregulating c-Jun N-terminal kinase (JNK) phosphorylation, which was followed by a reduction in the TNF-α expression in activated microglia. This promising effect of AITC in controlling JNK/NF-κB/TNF-α cross-linking maintains the Bcl-2 gene family and protects neuroblastoma cells from activated microglia-induced toxicity. These findings provide novel insights into the anti-neuroinflammatory effects of AITC on microglial cells, which may have clinical significance in neurodegeneration.
Subedi, Lalita
2017-01-01
Allyl isothiocyanate (AITC), present in Wasabia japonica (wasabi), is an aliphatic isothiocyanate derived from the precursor sinigrin, which is a glucosinolate present in vegetables of the Brassica family. Traditionally, it has been used to treat rheumatic arthralgia, blood circulation, and pain. This study focuses on its anti-apoptotic activity through the regulation of lipopolysaccharide (LPS)-induced neuroinflammation. Furthermore, we assessed its neuroprotective efficacy, which it achieves through the upregulation of nerve growth factor (NGF) production. Pretreatment with AITC significantly inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, decreased tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandin E2 (PGE2), and nitric oxide (NO) production in activated microglia, and increased the nerve growth factor (NGF) and neurite outgrowth in neuroblastoma cells. AITC inhibited the nuclear factor (NF-κB-mediated transcription by modulating mitogen activated protein kinase (MAPK) signaling, particularly downregulating c-Jun N-terminal kinase (JNK) phosphorylation, which was followed by a reduction in the TNF-α expression in activated microglia. This promising effect of AITC in controlling JNK/NF-κB/TNF-α cross-linking maintains the Bcl-2 gene family and protects neuroblastoma cells from activated microglia-induced toxicity. These findings provide novel insights into the anti-neuroinflammatory effects of AITC on microglial cells, which may have clinical significance in neurodegeneration. PMID:28671636
Smith, M R; Greene, W C
1991-01-01
The Tax oncoprotein of the type I human T cell leukemia virus (HTLV-I) activates transcription of cellular and viral genes through at least two different transcription factor pathways. Tax activates transcription of the c-fos proto-oncogene by a mechanism that appears to involve members of the cAMP response element binding protein (CREB) and activating transcription factor (ATF) family of DNA-binding proteins. Tax also induces the nuclear expression of the NF-kappa B family of rel oncogene-related enhancer-binding proteins. We have investigated the potential role of these CREB/ATF and NF-kappa B/Rel transcription factors in Tax-mediated transformation by analyzing the oncogenic potential of Tax mutants that functionally segregate these two pathways of transactivation. Rat fibroblasts (Rat2) stably expressing either the wild-type Tax protein or a Tax mutant selectively deficient in the ability to induce NF-kappa B/Rel demonstrated marked changes in morphology and growth characteristics including the ability to form tumors in athymic mice. In contrast, Rat2 cells stably expressing a Tax mutant selectively deficient in the ability to activate transcription through CREB/ATF demonstrated no detectable changes in morphology or growth characteristics. These results suggest that transcriptional activation through the CREB/ATF pathway may play an important role in Tax-mediated cellular transformation. Images PMID:1832173
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ci Xinxin; Song Yu; Zeng Fanqin
2008-07-18
Ceftiofur is a new broad-spectrum, third-generation cephalosporin antibiotic for veterinary use. Immunopharmacological studies can provide new information on the immunomodulatory activities of some drugs, including their effect on cytokine productions. For this reason, we investigated the effect of ceftiofur on cytokine productions in vitro. We found that ceftiofur can downregulate tumor necrosis factor-{alpha} (TNF-{alpha}), interleukin-1{beta} (IL-1{beta}), and interleukin-6 (IL-6), but did not affect interleukin-10 (IL-10) production. We further investigated signal transduction mechanisms to determine how ceftiofur affects. RAW 264.7 cells were pretreated with 1, 5, or 10 mg/L of ceftiofur 1 h prior to treatment with 1 mg/L of LPS.more » Thirty minutes later, cells were harvested and mitogen activated protein kinases (MAPKs) activation was measured by Western blot. Alternatively, cells were fixed and nuclear factor-{kappa}B (NF-{kappa}B) activation was measured using immunocytochemical analysis. Signal transduction studies showed that ceftiofur significantly inhibited extracellular signal-regulated kinase (ERK), p38, and c-jun NH{sub 2}-terminal kinase (JNK) phosphorylation protein expression. Ceftiofur also inhibited p65-NF-{kappa}B translocation into the nucleus. Therefore, ceftiofur may inhibit LPS-induced production of inflammatory cytokines by blocking NF-{kappa}B and MAPKs signaling in RAW264.7 cells.« less
Lavorgna, Alfonso; Matsuoka, Masao; Harhaj, Edward William
2014-01-01
Human T-cell leukemia virus type 1 (HTLV-1) infection is linked to the development of adult T-cell leukemia (ATL) and the neuroinflammatory disease HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax protein functions as a potent viral oncogene that constitutively activates the NF-κB transcription factor to transform T cells; however, the underlying mechanisms remain obscure. Here, using next-generation RNA sequencing we identified the IL-25 receptor subunit IL-17RB as an aberrantly overexpressed gene in HTLV-1 immortalized T cells. Tax induced the expression of IL-17RB in an IκB kinase (IKK) and NF-κB-dependent manner. Remarkably, Tax activation of the canonical NF-κB pathway in T cells was critically dependent on IL-17RB expression. IL-17RB and IL-25 were required for HTLV-1-induced immortalization of primary T cells, and the constitutive NF-κB activation and survival of HTLV-1 transformed T cells. IL-9 was identified as an important downstream target gene of the IL-17RB pathway that drives the proliferation of HTLV-1 transformed cells. Furthermore, IL-17RB was overexpressed in leukemic cells from a subset of ATL patients and also regulated NF-κB activation in some, but not all, Tax-negative ATL cell lines. Together, our results support a model whereby Tax instigates an IL-17RB-NF-κB feed-forward autocrine loop that is obligatory for HTLV-1 leukemogenesis. PMID:25340344
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Guangwen; Yang, Tianming; Wang, Chaoyuan
2013-06-15
Gastrodia elata Blume (G. elata) is a famous restorative food in East Asia. It can be used as an auxiliary reagent in hepatocellular carcinoma (HCC) treatment. Previous studies unveiled that G. elata exhibited immunomodulatory activities. To explore the active ingredients contributing to its immunomodulatory activities, gastrodin, vanillin, and parishin B were purified from G. elata and their anti-HCC effects were assessed in vivo. Among these compounds, only gastrodin was capable of repressing transplanted H22 ascitic hepatic tumor cell growth in vivo with low toxicity. Further investigations were designed to explore the effects of gastrodin on the immune system of tumor-bearingmore » mice and potential molecular mechanisms underlying these effects. Our data showed that gastrodin ameliorated tumor cell transplantation-induced activation of endogenous pro-apoptotic pathway in CD4 + T cells and abnormalities in serum cytokine profiles in host animals. These events enhanced cytotoxic activities of natural killer and CD8 + T cells against H22 hepatic cancer cells. Gastrodin administration specifically upregulated mRNA levels of several nuclear factor κB (NF-κB) responsive genes in CD4 + T cells but not in CD8 + T cells. Chromatin immunoprecipitation assay showed that gastrodin increased the association of NF-κB p65 subunit to the promoter regions of IL-2 and Bcl-2 encoding genes in CD4 + T cells. Our investigations demonstrated that gastrodin is the main active ingredient contributing to the anticancer immunomodulatory properties of G. elata. Promoting NF-κB-mediated gene transcription in CD4 + T cells is implicated in its immunomodulatory activity. - Highlights: • Gastrodin stimulates anticancer immune response. • Gastrodin represses tumor transplantation-induced CD4 + T cell apoptosis. • Gastrodin activates NF-κB activity in CD4 + T cells.« less
Xie, Xuemeng; Tu, Jinfu; You, Heyi; Hu, Bingren
2017-01-01
Given the important role that inhibitory kappa B (IκB) kinase β (IKKβ) plays in pancreatic cancer (PC) development and progression, inhibitors targeting IKKβ are believed to be increasingly popular as novel anti-PC therapies. Two synthetic molecules, named EF24 and EF31 , exhibited favorable potential in terms of inhibition of both IKKβ activity and PC cell proliferation. Aiming to enhance their cellular efficacy and to analyze their structure-activity relationship, four series of EF24 and EF31 analogs were designed and synthesized. Through kinase activity and vitality screening of cancer cells, D6 displayed excellent inhibition of both IKKβ activity and PC cell proliferation. Additionally, multiple biological evaluations showed that D6 was directly bound to IKKβ and significantly suppressed the activation of the IKKβ/nuclear factor κB pathway induced by tumor necrosis factor-α, as well as effectively inducing cancer cell apoptosis. Moreover, molecular docking and molecular dynamics simulation analysis indicated that the dominant force between D6 and IKKβ comprised hydrophobic interactions. In conclusion, D6 may be a promising therapeutic agent for PC treatment and it also provides a structural lead for the design of novel IKKβ inhibitors.
Xie, Xuemeng; Tu, Jinfu; You, Heyi; Hu, Bingren
2017-01-01
Given the important role that inhibitory kappa B (IκB) kinase β (IKKβ) plays in pancreatic cancer (PC) development and progression, inhibitors targeting IKKβ are believed to be increasingly popular as novel anti-PC therapies. Two synthetic molecules, named EF24 and EF31, exhibited favorable potential in terms of inhibition of both IKKβ activity and PC cell proliferation. Aiming to enhance their cellular efficacy and to analyze their structure–activity relationship, four series of EF24 and EF31 analogs were designed and synthesized. Through kinase activity and vitality screening of cancer cells, D6 displayed excellent inhibition of both IKKβ activity and PC cell proliferation. Additionally, multiple biological evaluations showed that D6 was directly bound to IKKβ and significantly suppressed the activation of the IKKβ/nuclear factor κB pathway induced by tumor necrosis factor-α, as well as effectively inducing cancer cell apoptosis. Moreover, molecular docking and molecular dynamics simulation analysis indicated that the dominant force between D6 and IKKβ comprised hydrophobic interactions. In conclusion, D6 may be a promising therapeutic agent for PC treatment and it also provides a structural lead for the design of novel IKKβ inhibitors. PMID:28553074
Oleanane-triterpenoids from Panax stipuleanatus inhibit NF-κB
Liang, Chun; Ding, Yan; Song, Seok Bean; Kim, Jeong Ah; Cuong, Nguyen Manh; Ma, Jin Yeul; Kim, Young Ho
2013-01-01
In continuation of our research to find biological components from Panax stipuleanatus, four oleanane-type triterpenes (12 to 15) were isolated successively. Fifteen oleanane-type saponins (1 to 15) were evaluated for nuclear factor (NF)-κB activity using a luciferase reporter gene assay in HepG2 cells. Compounds 6 to 11 inhibited NF-κB, with IC50 values between 3.1 to 18.9 μM. The effects on inducible nitric oxide synthase and cyclooxygenase-2 by compounds 8, 10, and 11 were also examined using reverse transcription-polymerase chain reaction. Three compounds (8, 10, and 11) inhibited NF-κB activity by reducing the concentration of inflammatory factors in HepG2 cells. PMID:23717159
Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon
2016-01-01
This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells. PMID:27169820
Ambrosio, Maria Raffaella; De Falco, Giulia; Rocca, Bruno Jim; Barone, Aurora; Amato, Teresa; Bellan, Cristiana; Lazzi, Stefano; Leoncini, Lorenzo
2015-10-01
The concept of unidirectional differentiation of the haematopoietic stem cell has been challenged after recent findings that human B cell progenitors and even mature B cells can be reprogrammed into histiocytic/dendritic cells by altering expression of lineage-associated transcription factors. The conversion of mature B cell lymphomas to Langerhans cell neoplasms is not well documented. Three previous reports have described clonally related follicular lymphoma and Langerhans cell tumours, whereas no case has been published of clonally related marginal zone lymphoma and Langerhans cell sarcoma. We describe the case of a 77-year-old patient who developed a Langerhans cell sarcoma and 6 years later a nodal marginal zone lymphoma. Mutation status examination showed 100 % gene identity to the germline sequence, suggesting direct trans-differentiation or dedifferentiation of the nodal marginal zone lymphoma to the Langerhans cell sarcoma rather than a common progenitor. We found inactivation of paired box 5 (PAX-5) in the lymphoma cells by methylation, along with duplication of part of the long arm of chromosomes 16 and 17 in the sarcoma cells. The absence of PAX-5 could have triggered B cells to differentiate into macrophages and dendritic cells. On the other hand, chromosomal imbalances might have activated genes involved in myeloid lineage maturation, transcription activation and oncogenesis. We hypothesize that this occurred because of previous therapies for nodal marginal zone lymphoma. Better understanding of this phenomenon may help in unravelling the molecular interplay between transcription factors during haematopoietic lineage commitment and may expand the spectrum of clonally related mature B cell neoplasms and Langerhans cell tumours.
Paschoalin, Thaysa; Carmona, Adriana K; Rodrigues, Elaine G; Oliveira, Vitor; Monteiro, Hugo P; Juliano, Maria A; Juliano, Luiz; Travassos, Luiz R
2007-01-01
Background Angiogenesis is a fundamental process that allows tumor growth by providing nutrients and oxygen to the tumor cells. Beyond the oxygen diffusion limit from a capillary blood vessel, tumor cells become apoptotic. Angiogenesis results from a balance of pro- and anti-angiogenic stimuli. Endogenous inhibitors regulate enzyme activities that promote angiogenesis. Tumor cells may express pro-angiogenic factors and hydrolytic enzymes but also kinin-degrading oligopeptidases which have been investigated. Results Angiogenesis induced by B16F10-Nex2 melanoma cells was studied in a co-culture with HUVEC on Matrigel. A stimulating effect on angiogenesis was observed in the presence of B16F10-Nex2 lysate and plasma membrane. In contrast, the B16F10-Nex2 culture supernatant inhibited angiogenesis in a dose-dependent manner. This effect was abolished by the endo-oligopeptidase inhibitor, JA-2. Thimet oligopeptidase (TOP) and neurolysin activities were then investigated in B16F10-Nex2 melanoma cells aiming at gene sequencing, enzyme distribution and activity, influence on tumor development, substrate specificity, hydrolytic products and susceptibility to inhibitors. Fluorescence resonance energy transfer (FRET) peptides as well as neurotensin and bradykinin were used as substrates. The hydrolytic activities in B16F10-Nex2 culture supernatant were totally inhibited by o-phenanthrolin, JA-2 and partially by Pro-Ile. Leupeptin, PMSF, E-64, Z-Pro-Prolinal and captopril failed to inhibit these hydrolytic activities. Genes encoding M3A enzymes in melanoma cells were cloned and sequenced being highly similar to mouse genes. A decreased proliferation of B16F10-Nex2 cells was observed in vitro with specific inhibitors of these oligopeptidases. Active rTOP but not the inactive protein inhibited melanoma cell development in vivo increasing significantly the survival of mice challenged with the tumor cells. On Matrigel, rTOP inhibited the bradykinin – induced angiogenesis. A possible regulation of the homologous tumor enzyme in the perivascular microenvironment is suggested based on the observed rTOP inhibition by an S-nitrosothiol NO donor. Conclusion Data show that melanoma cells secrete endo-oligopeptidases which have an important role in tumor proliferation in vitro and in vivo. rTOP inhibited growth of subcutaneously injected B16F10-Nex2 cells in mice. TOP from tumor cells and bradykinin in endothelial cells are two antagonist factors that may control angiogenesis essential for melanoma growth. A regulatory role of NO or S-nitrosothiols is suggested. PMID:17620116
Paschoalin, Thaysa; Carmona, Adriana K; Rodrigues, Elaine G; Oliveira, Vitor; Monteiro, Hugo P; Juliano, Maria A; Juliano, Luiz; Travassos, Luiz R
2007-07-09
Angiogenesis is a fundamental process that allows tumor growth by providing nutrients and oxygen to the tumor cells. Beyond the oxygen diffusion limit from a capillary blood vessel, tumor cells become apoptotic. Angiogenesis results from a balance of pro- and anti-angiogenic stimuli. Endogenous inhibitors regulate enzyme activities that promote angiogenesis. Tumor cells may express pro-angiogenic factors and hydrolytic enzymes but also kinin-degrading oligopeptidases which have been investigated. Angiogenesis induced by B16F10-Nex2 melanoma cells was studied in a co-culture with HUVEC on Matrigel. A stimulating effect on angiogenesis was observed in the presence of B16F10-Nex2 lysate and plasma membrane. In contrast, the B16F10-Nex2 culture supernatant inhibited angiogenesis in a dose-dependent manner. This effect was abolished by the endo-oligopeptidase inhibitor, JA-2. Thimet oligopeptidase (TOP) and neurolysin activities were then investigated in B16F10-Nex2 melanoma cells aiming at gene sequencing, enzyme distribution and activity, influence on tumor development, substrate specificity, hydrolytic products and susceptibility to inhibitors. Fluorescence resonance energy transfer (FRET) peptides as well as neurotensin and bradykinin were used as substrates. The hydrolytic activities in B16F10-Nex2 culture supernatant were totally inhibited by o-phenanthrolin, JA-2 and partially by Pro-Ile. Leupeptin, PMSF, E-64, Z-Pro-Prolinal and captopril failed to inhibit these hydrolytic activities. Genes encoding M3A enzymes in melanoma cells were cloned and sequenced being highly similar to mouse genes. A decreased proliferation of B16F10-Nex2 cells was observed in vitro with specific inhibitors of these oligopeptidases. Active rTOP but not the inactive protein inhibited melanoma cell development in vivo increasing significantly the survival of mice challenged with the tumor cells. On Matrigel, rTOP inhibited the bradykinin - induced angiogenesis. A possible regulation of the homologous tumor enzyme in the perivascular microenvironment is suggested based on the observed rTOP inhibition by an S-nitrosothiol NO donor. Data show that melanoma cells secrete endo-oligopeptidases which have an important role in tumor proliferation in vitro and in vivo. rTOP inhibited growth of subcutaneously injected B16F10-Nex2 cells in mice. TOP from tumor cells and bradykinin in endothelial cells are two antagonist factors that may control angiogenesis essential for melanoma growth. A regulatory role of NO or S-nitrosothiols is suggested.
Saldanha-Araujo, Felipe; Haddad, Rodrigo; de Farias, Kelen C R Malmegrim; Souza, Alessandra de Paula Alves; Palma, Patrícia V; Araujo, Amélia G; Orellana, Maristela D; Voltarelli, Julio C; Covas, Dimas T; Zago, Marco A; Panepucci, Rodrigo A
2012-01-01
Abstract Mesenchymal stem cells (MSCs) are known to induce the conversion of activated T cells into regulatory T cells in vitro. The marker CD69 is a target of canonical nuclear factor kappa-B (NF-κB) signalling and is transiently expressed upon activation; however, stable CD69 expression defines cells with immunoregulatory properties. Given its enormous therapeutic potential, we explored the molecular mechanisms underlying the induction of regulatory cells by MSCs. Peripheral blood CD3+ T cells were activated and cultured in the presence or absence of MSCs. CD4+ cell mRNA expression was then characterized by microarray analysis. The drug BAY11-7082 (BAY) and a siRNA against v-rel reticuloendotheliosis viral oncogene homolog B (RELB) were used to explore the differential roles of canonical and non-canonical NF-κB signalling, respectively. Flow cytometry and real-time PCR were used for analyses. Genes with immunoregulatory functions, CD69 and non-canonical NF-κB subunits (RELB and NFKB2) were all expressed at higher levels in lymphocytes co-cultured with MSCs. The frequency of CD69+ cells among lymphocytes cultured alone progressively decreased after activation. In contrast, the frequency of CD69+ cells increased significantly following activation in lymphocytes co-cultured with MSCs. Inhibition of canonical NF-κB signalling by BAY immediately following activation blocked the induction of CD69; however, inhibition of canonical NF-κB signalling on the third day further induced the expression of CD69. Furthermore, late expression of CD69 was inhibited by RELB siRNA. These results indicate that the canonical NF-κB pathway controls the early expression of CD69 after activation; however, in an immunoregulatory context, late and sustained CD69 expression is promoted by the non-canonical pathway and is inhibited by canonical NF-κB signalling. PMID:21777379
Fgf signaling controls pharyngeal taste bud formation through miR-200 and Delta-Notch activity.
Kapsimali, Marika; Kaushik, Anna-Lila; Gibon, Guillaume; Dirian, Lara; Ernest, Sylvain; Rosa, Frederic M
2011-08-01
Taste buds, the taste sensory organs, are conserved in vertebrates and composed of distinct cell types, including taste receptor, basal/presynaptic and support cells. Here, we characterize zebrafish taste bud development and show that compromised Fgf signaling in the larva results in taste bud reduction and disorganization. We determine that Fgf activity is required within pharyngeal endoderm for formation of Calb2b(+) cells and reveal miR-200 and Delta-Notch signaling as key factors in this process. miR-200 knock down shows that miR-200 activity is required for taste bud formation and in particular for Calb2b(+) cell formation. Compromised delta activity in mib(-/-) dramatically reduces the number of Calb2b(+) cells and increases the number of 5HT(+) cells. Conversely, larvae with increased Notch activity and ascl1a(-/-) mutants are devoid of 5HT(+) cells, but have maintained and increased Calb2b(+) cells, respectively. These results show that Delta-Notch signaling is required for intact taste bud organ formation. Consistent with this, Notch activity restores Calb2b(+) cell formation in pharyngeal endoderm with compromised Fgf signaling, but fails to restore the formation of these cells after miR-200 knock down. Altogether, this study provides genetic evidence that supports a novel model where Fgf regulates Delta-Notch signaling, and subsequently miR-200 activity, in order to promote taste bud cell type differentiation.
The anti-esophageal cancer cell activity by a novel tyrosine/phosphoinositide kinase inhibitor PP121
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Yi; Zhou, Yajuan; Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan 430071
Here we explored the potential effect of PP121, a novel dual inhibitor of tyrosine and phosphoinositide kinases, against human esophageal cancer cells. We showed that PP121 exerted potent cytotoxic effect in primary (patient-derived) and established (Eca-109, TE-1 and TE-3 lines) esophageal cancer cells, possibly through activating caspase-3-dependnent apoptosis. PP121 was, however, non-cytotoxic to the normal human esophageal epithelial cells (EECs). At the molecular level, we showed that PP121 blocked Akt-mTOR (mammalian target of rapamycin) activation in esophageal cancer cells, which was restored by introducing a constitutively-active Akt (CA-Akt). Yet, CA-Akt only partly inhibited cytotoxicity by PP121 in Eca-109 cells. Importantly, wemore » showed that PP121 inhibited nuclear factor kappa B (NFκB) signaling activation in esophageal cancer cells, which appeared independent of Akt-mTOR blockage. In vivo, oral administration of PP121 remarkably inhibited Eca-109 xenograft growth in nude mice, and significantly improved mice survival. Further, the immunohistochemistry (IHC) and Western blot assays analyzing xenografted tumors showed that PP121 inhibited Akt-mTOR and NFκB activations in vivo. Together, we demonstrate that PP121 potently inhibits esophageal cancer cells in vitro and in vivo, possibly through concurrently inhibiting Akt-mTOR and NFκB signalings. - Highlights: • PP121 is cytotoxic against primary and established esophageal cancer cells. • PP121 induces caspase-3-dependnent apoptosis in esophageal cancer cells. • PP121 blocks Akt-mTOR activation in esophageal cancer cells. • PP121 inhibits NFκB activation, independent of Akt-mTOR blockage. • PP121 inhibits Eca-109 xenograft growth and Akt-mTOR/NFκB activation in vivo.« less
Ortiz-López, Leonardo; Vega-Rivera, Nelly Maritza; Babu, Harish; Ramírez-Rodríguez, Gerardo Bernabé
2017-01-01
The generation of new neurons during adulthood involves local precursor cell migration and terminal differentiation in the dentate gyrus. These events are influenced by the hippocampal microenvironment. Brain-derived neurotrophic factor (BDNF) is relevant for hippocampal neuronal development and behavior. Interestingly, studies that have been performed in controlled in vitro systems that involve isolated precursor cells that were derived from the dentate gyrus (AHPCs) have shown that BDNF induces the activation of the TrkB receptor and, consequentially, might activate signaling pathways that favor survival and neuronal differentiation. Based on the fact that the cellular events of AHPCs that are induced by single factors can be studied in this controlled in vitro system, we investigated the ability of BDNF and the involvement of protein kinase C (PKC), as one of the TrkB-downstream activated signaling proteins, in the regulation of migration, here reflected by motility, of AHPCs. Precursor cells were cultured following a concentration-response curve (1-640 ng/ml) for 24 or 96 h. We found that BDNF favored cell survival without altering the viability under culture proliferative conditions of the AHPCs. Concomitantly, glial- and neuronal-differentiated precursor cells increased as a consequence of survival promoted by BDNF. Additionally, pharmacological approaches showed that BDNF (40 ng/ml)-induced migration of AHPCs was blocked with the compounds K252a and GF109203x, which prevent the activation of TrkB and PKC, respectively. The results indicate that in the in vitro migration of differentiated AHPCs it is involved the BDNF and TrkB cascade. Our results provide additional information about the mechanism by which BDNF impacts adult neurogenesis in the hippocampus.
Sinha, S; Ghildiyal, R; Mehta, V S; Sen, E
2013-05-02
Gliomas are resistant to radiation therapy, as well as to TNFα induced killing. Radiation-induced TNFα triggers Nuclear factor κB (NFκB)-mediated radioresistance. As inhibition of NFκB activation sensitizes glioma cells to TNFα-induced apoptosis, we investigated whether TNFα modulates the responsiveness of glioma cells to ionizing radiation-mimetic Neocarzinostatin (NCS). TNFα enhanced the ability of NCS to induce glioma cell apoptosis. NCS-mediated death involved caspase-9 activation, reduction of mitochondrial copy number and lactate production. Death was concurrent with NFκB, Akt and Erk activation. Abrogation of Akt and NFκB activation further potentiated the death inducing ability of NCS in TNFα cotreated cells. NCS-induced p53 expression was accompanied by increase in TP53-induced glycolysis and apoptosis regulator (TIGAR) levels and ATM phosphorylation. siRNA-mediated knockdown of TIGAR abrogated NCS-induced apoptosis. While DN-IκB abrogated NCS-induced TIGAR both in the presence and absence of TNFα, TIGAR had no effect on NFκB activation. Transfection with TIGAR mutant (i) decreased apoptosis and γH2AX foci formation (ii) decreased p53 (iii) elevated ROS and (iv) increased Akt/Erk activation in cells cotreated with NCS and TNFα. Heightened TIGAR expression was observed in GBM tumors. While NCS induced ATM phosphorylation in a NFκB independent manner, ATM inhibition abrogated TIGAR and NFκB activation. Metabolic gene profiling indicated that TNFα affects NCS-mediated regulation of several genes associated with glycolysis. The existence of ATM-NFκB axis that regulate metabolic modeler TIGAR to overcome prosurvival response in NCS and TNFα cotreated cells, suggests mechanisms through which inflammation could affect resistance and adaptation to radiomimetics despite concurrent induction of death.
Sinha, S; Ghildiyal, R; Mehta, V S; Sen, E
2013-01-01
Gliomas are resistant to radiation therapy, as well as to TNFα induced killing. Radiation-induced TNFα triggers Nuclear factor κB (NFκB)-mediated radioresistance. As inhibition of NFκB activation sensitizes glioma cells to TNFα-induced apoptosis, we investigated whether TNFα modulates the responsiveness of glioma cells to ionizing radiation-mimetic Neocarzinostatin (NCS). TNFα enhanced the ability of NCS to induce glioma cell apoptosis. NCS-mediated death involved caspase-9 activation, reduction of mitochondrial copy number and lactate production. Death was concurrent with NFκB, Akt and Erk activation. Abrogation of Akt and NFκB activation further potentiated the death inducing ability of NCS in TNFα cotreated cells. NCS-induced p53 expression was accompanied by increase in TP53-induced glycolysis and apoptosis regulator (TIGAR) levels and ATM phosphorylation. siRNA-mediated knockdown of TIGAR abrogated NCS-induced apoptosis. While DN-IκB abrogated NCS-induced TIGAR both in the presence and absence of TNFα, TIGAR had no effect on NFκB activation. Transfection with TIGAR mutant (i) decreased apoptosis and γH2AX foci formation (ii) decreased p53 (iii) elevated ROS and (iv) increased Akt/Erk activation in cells cotreated with NCS and TNFα. Heightened TIGAR expression was observed in GBM tumors. While NCS induced ATM phosphorylation in a NFκB independent manner, ATM inhibition abrogated TIGAR and NFκB activation. Metabolic gene profiling indicated that TNFα affects NCS-mediated regulation of several genes associated with glycolysis. The existence of ATM-NFκB axis that regulate metabolic modeler TIGAR to overcome prosurvival response in NCS and TNFα cotreated cells, suggests mechanisms through which inflammation could affect resistance and adaptation to radiomimetics despite concurrent induction of death. PMID:23640457
Oxaliplatin antagonizes HIV-1 latency by activating NF-κB without causing global T cell activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaoli; Liu, Sijie; Wang, Pengfei
Highlights: • The chemotherapeutic drug oxaliplatin reactivates latent HIV-1 in this cell line model of HIV-1 latency. • Reactivation is synergized when oxaliplatin is used in combination with valproic acid. • Oxaliplatin reactivates latent HIV-1 through activation of NF-kB and does not induce T cell activation. - Abstract: Reactivation of latent HIV-1 is a promising strategy for the clearance of the viral reservoirs. Because of the limitations of current agents, identification of new latency activators is urgently required. Using an established model of HIV-1 latency, we examined the effect of Oxaliplatin on latent HIV-1 reactivation. We showed that Oxaliplatin, alonemore » or in combination with valproic acid (VPA), was able to reactivate HIV-1 without inducing global T cell activation. We also provided evidence that Oxaliplatin reactivated HIV-1 expression by inducing nuclear factor kappa B (NF-κB) nuclear translocation. Our results indicated that Oxaliplatin could be a potential drug candidate for anti-latency therapies.« less