Sample records for b-cell subsets producing

  1. Decreased IL-10-producing regulatory B cells in patients with advanced mycosis fungoides.

    PubMed

    Akatsuka, Taro; Miyagaki, Tomomitsu; Nakajima, Rina; Kamijo, Hiroaki; Oka, Tomonori; Takahashi, Naomi; Suga, Hiraku; Yoshizaki, Ayumi; Asano, Yoshihide; Sugaya, Makoto; Sato, Shinichi

    2018-06-28

    Historically, B cells have been considered as positive regulators of humoral immune responses. Specific B-cell subsets, however, negatively regulate immune responses and are termed "regulatory B cells" (Bregs). Recently, Bregs have been linked to not only inflammatory and autoimmune diseases, but also malignancies via suppressing anti-tumour immunity. To investigate the involvement of Bregs in advanced mycosis fungoides (MF). The frequency of CD19 + CD24 hi CD27 + memory B cells and CD19 + CD24 hi CD38 hi transitional B cells (which enrich IL-10-producing Bregs) was examined in peripheral blood from patients with advanced MF (n = 11) and healthy controls (n = 9) by flow cytometry. The frequency of IL-10-producing Bregs was also measured by flow cytometry. The correlation between frequency or number of B-cell subsets and disease severity markers was also analysed. The frequency of CD19 + CD24 hi CD27 + B cells, CD19 + CD24 hi CD38 hi B cells, and IL-10-producing B cells was decreased in peripheral blood of advanced MF patients. The frequency and number of these B-cell subsets inversely correlated with serum soluble IL-2 receptor and serum lactate dehydrogenase levels. The development of IL-10-producing Bregs is impaired in patients with advanced MF and a decrease in IL-10-producing Bregs may play an important role in the progression of advanced MF.

  2. The role of regulatory B cells in digestive system diseases.

    PubMed

    Zhou, Zhenyu; Gong, Lei; Wang, Xiaoyun; Hu, Zhen; Wu, Gaojue; Tang, Xuejun; Peng, Xiaobin; Tang, Shuan; Meng, Miao; Feng, Hui

    2017-04-01

    The past decade has provided striking insights into a newly identified subset of B cells known as regulatory B cells (Bregs). In addition to producing antibody, Bregs also regulate diseases via cytokine production and antigen presentation. This subset of B cells has protective and potentially therapeutic effects. However, the particularity of Bregs has caused some difficulties in conducting research on their roles. Notably, human B10 cells, which are Bregs that produce interleukin 10, share phenotypic characteristics with other previously defined B cell subsets, and currently, there is no known surface phenotype that is unique to B10 cells. An online search was performed in the PubMed and Web of Science databases for articles published providing evidences on the role of regulatory B cells in digestive system diseases. Abundant evidence has demonstrated that Bregs play a regulatory role in inflammatory, autoimmune, and tumor diseases, and regulatory B cells play different roles in different diseases, but future work needs to determine the mechanisms by which Bregs are activated and how these cells affect their target cells.

  3. CD24(hi)CD27(+) B cells from patients with allergic asthma have impaired regulatory activity in response to lipopolysaccharide.

    PubMed

    van der Vlugt, L E P M; Mlejnek, E; Ozir-Fazalalikhan, A; Janssen Bonas, M; Dijksman, T R; Labuda, L A; Schot, R; Guigas, B; Möller, G M; Hiemstra, P S; Yazdanbakhsh, M; Smits, H H

    2014-04-01

    Regulatory B cells have been identified that strongly reduce allergic and auto-immune inflammation in experimental models by producing IL-10. Recently, several human regulatory B-cell subsets with an impaired function in auto-immunity have been described, but there is no information on regulatory B cells in allergic asthma. In this study, the frequency and function of IL-10 producing B-cell subsets in allergic asthma were investigated. Isolated peripheral blood B cells from 13 patients with allergic asthma and matched healthy controls were analyzed for the expression of different regulatory B-cell markers. Next, the B cells were activated by lipopolysaccharide (LPS), CpG or through the B-cell receptor, followed by co-culture with endogenous memory CD4(+) T cells and house dust mite allergen DerP1. Lower number of IL-10 producing B cells were found in patients in response to LPS, however, this was not the case when B cells were activated through the B-cell receptor or by CpG. Further dissection showed that only the CD24(hi)CD27(+) B-cell subset was reduced in number and IL-10 production to LPS. In response to DerP1, CD4(+) T cells from patients co-cultured with LPS-primed total B cells produced less IL-10 compared to similar cultures from controls. These results are in line with the finding that sorted CD24(hi)CD27(+) B cells are responsible for the induction of IL-10(+) CD4(+) T cells. Taken together, these data indicate that CD24(hi)CD27(+) B cells from allergic asthma patients produce less IL-10 in response to LPS leading to a weaker IL-10 induction in T cells in response to DerP1, which may play a role in allergic asthma. © 2013 John Wiley & Sons Ltd.

  4. Hepatic dendritic cell subsets in the mouse.

    PubMed

    Jomantaite, Ieva; Dikopoulos, Nektarios; Kröger, Andrea; Leithäuser, Frank; Hauser, Hansjörg; Schirmbeck, Reinhold; Reimann, Jörg

    2004-02-01

    The CD11c(+) cell population in the non-parenchymal cell population of the mouse liver contains dendritic cells (DC), NK cells, B cells and T cells. In the hepatic CD11c(+) DC population from immunocompetent or immunodeficient [recombinase-activating gene-1 (RAG1)(-/-)] C57BL/6 mice (rigorously depleted of T cells, B cells and NK cells), we identified a B220(+) CD11c(int) subset of 'plasmacytoid' DC, and a B220(-) CD11c(+) DC subset. The latter DC population could be subdivided into a major, immature (CD40(lo) CD80(lo) CD86(lo) MHC class II(lo)) CD11c(int) subset, and a minor, mature (CD40(hi) CD80(hi) CD86(hi) MHC class II(hi)) CD11c(hi) subset. Stimulated B220(+) but not B220(-) DC produced type I interferon. NKT cell activation in vivo increased the number of liver B220(-) DC three- to fourfold within 18 h post-injection, and up-regulated their surface expression of activation marker, while it contracted the B220(+) DC population. Early in virus infection, the hepatic B220(+) DC subset expanded, and both, the B220(+) as well as B220(-) DC populations in the liver matured. In vitro, B220(-) but not B220(+) DC primed CD4(+) or CD8(+)T cells. Expression of distinct marker profiles and functions, and distinct early reaction to activation signals hence identify two distinct B220(+) and B220(-) subsets in CD11c(+) DC populations freshly isolated from the mouse liver.

  5. CD21 -/low B cells: A Snapshot of a Unique B Cell Subset in Health and Disease.

    PubMed

    Thorarinsdottir, K; Camponeschi, A; Gjertsson, I; Mårtensson, I-L

    2015-09-01

    B cells represent one of the cellular components of the immune system that protects the individual from invading pathogens. In response to the invader, these cells differentiate into plasma cells and produce large amounts of antibodies that bind to and eliminate the pathogen. A hallmark of autoimmune diseases is the production of autoantibodies i.e. antibodies that recognize self. Those that are considered pathogenic can damage tissues and organs, either by direct binding or when deposited as immune complexes. For decades, B cells have been considered to play a major role in autoimmune diseases by antibody production. However, as pathogenic autoantibodies appear to derive mainly from T cell dependent responses, T cells have been the focus for many years. The successful treatment of patients with autoimmune diseases with either B cell depletion therapy (rituximab) or inhibition of B cell survival (belimumab), suggested that not only the autoantibodies but also other B cell features are important. This has caused a surge of interest in B cells and their biology resulting in the identification of various subsets e.g. regulatory B cells, several memory B cell subsets etc. Also, in other conditions such as chronic viral infections and primary immunodeficiency, several B cell subsets with unique characteristics have been identified. In this review, we will discuss one of these subsets, a subset that is expanded in conditions characterized by chronic immune stimulation. This B cell subset lacks, or expresses low, surface levels of the complement receptor 2 (CD21) and has therefore been termed CD21(-/low) B cells. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  6. Evolutionary and Functional Relationships of B Cells from Fish and Mammals: Insights into their Novel Roles in Phagocytosis and Presentation of Particulate Antigen

    PubMed Central

    Sunyer, J. Oriol

    2012-01-01

    The evolutionary origins of Ig-producing B cells appear to be linked to the emergence of fish in this planet. There are three major classes of living fish species, which from most primitive to modern they are referred to as agnathan (e.g., lampreys), Chondrichthyes (e.g., sharks), and teleost fish (e.g., rainbow trout). Agnathans do not have immunoglobulin-producing B cells, however these fish contain a subset of lymphocytes-like cells producing type B variable lymphocyte receptors (VLRBs) that appear to act as functional analogs of immunoglobulins. Chondrichthyes fish represent the most primitive living species containing bona-fide immunoglobulin-producing B cells. Their B cells are known to secrete three types of antibodies, IgM, IgW and IgNAR. Teleost fish are also called bony fish since they represent the most ancient living species containing true bones. Teleost B cells produce three different immunoglobulin isotypes, IgM, IgD and the recently described IgT. While teleost IgM is the principal player in systemic immunity, IgT appears to be a teleost immunoglobulin class specialized in mucosal immune responses. Thus far, three major B cell lineages have been described in teleost, those expressing either IgT or IgD, and the most common lineage which co-expresses IgD and IgM. A few years ago, the study of teleost fish B cells revealed for the first time in vertebrates the existence of B cell subsets with phagocytic and intracellular bactericidal capacities. This finding represented a paradigm shift as professional phagocytosis was believed to be exclusively performed by some cells of the myeloid lineage (i.e., macrophages, monocytes, neutrophils). This phagocytic capacity was also found in amphibians and reptiles, suggesting that this innate capacity was evolutionarily conserved in certain B cell subsets of vertebrates. Recently, the existence of subsets of B cells with phagocytic and bactericidal abilities have also been confirmed in mammals. Moreover, it has been shown that phagocytic B-1 B cells have a potent ability to present particulate antigen to CD4+ T cells. Thus, studies carried out originally on fish B cells have lead to the discovery of new innate and adaptive roles of B cells in mammals. This review will concentrate on the evolutionary and functional relationships of fish and mammalian B cells, focusing mainly on the newly discovered roles of these cells in phagocytosis, intracellular killing and presentation of particulate antigen. PMID:22394174

  7. Differences in Mouse and Human Non-Memory B Cell Pools1

    PubMed Central

    Benitez, Abigail; Weldon, Abby J.; Tatosyan, Lynnette; Velkuru, Vani; Lee, Steve; Milford, Terry-Ann; Francis, Olivia L.; Hsu, Sheri; Nazeri, Kavoos; Casiano, Carlos M.; Schneider, Rebekah; Gonzalez, Jennifer; Su, Rui-Jun; Baez, Ineavely; Colburn, Keith; Moldovan, Ioana; Payne, Kimberly J.

    2014-01-01

    Identifying cross-species similarities and differences in immune development and function is critical for maximizing the translational potential of animal models. Co-expression of CD21 and CD24 distinguishes transitional and mature B cell subsets in mice. Here, we validate these markers for identifying analogous subsets in humans and use them to compare the non-memory B cell pools in mice and humans, across tissues, during fetal/neonatal and adult life. Among human CD19+IgM+ B cells, the CD21/CD24 schema identifies distinct populations that correspond to T1 (transitional 1), T2 (transitional 2), FM (follicular mature), and MZ (marginal zone) subsets identified in mice. Markers specific to human B cell development validate the identity of MZ cells and the maturation status of human CD21/CD24 non-memory B cell subsets. A comparison of the non-memory B cell pools in bone marrow (BM), blood, and spleen in mice and humans shows that transitional B cells comprise a much smaller fraction in adult humans than mice. T1 cells are a major contributor to the non-memory B cell pool in mouse BM where their frequency is more than twice that in humans. Conversely, in spleen the T1:T2 ratio shows that T2 cells are proportionally ∼8 fold higher in humans than mouse. Despite the relatively small contribution of transitional B cells to the human non-memory pool, the number of naïve FM cells produced per transitional B cell is 3-6 fold higher across tissues than in mouse. These data suggest differing dynamics or mechanisms produce the non-memory B cell compartments in mice and humans. PMID:24719464

  8. Reduced CD5(+) CD24(hi) CD38(hi) and interleukin-10(+) regulatory B cells in active anti-neutrophil cytoplasmic autoantibody-associated vasculitis permit increased circulating autoantibodies.

    PubMed

    Aybar, L T; McGregor, J G; Hogan, S L; Hu, Y; Mendoza, C E; Brant, E J; Poulton, C J; Henderson, C D; Falk, R J; Bunch, D O

    2015-05-01

    Pathogenesis of anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis is B cell-dependent, although how particular B cell subsets modulate immunopathogenesis remains unknown. Although their phenotype remains controversial, regulatory B cells (Bregs ), play a role in immunological tolerance via interleukin (IL)-10. Putative CD19(+) CD24(hi) CD38(hi) and CD19(+) CD24(hi) CD27(+) Bregs were evaluated in addition to their CD5(+) subsets in 69 patients with ANCA-associated vasculitis (AAV). B cell IL-10 was verified by flow cytometry following culture with CD40 ligand and cytosine-phosphate-guanosine (CpG) DNA. Patients with active disease had decreased levels of CD5(+) CD24(hi) CD38(hi) B cells and IL-10(+) B cells compared to patients in remission and healthy controls (HCs). As IL-10(+) and CD5(+) CD24(hi) CD38(hi) B cells normalized in remission within an individual, ANCA titres decreased. The CD5(+) subset of CD24(hi) CD38(hi) B cells decreases in active disease and rebounds during remission similarly to IL-10-producing B cells. Moreover, CD5(+) B cells are enriched in the ability to produce IL-10 compared to CD5(neg) B cells. Together these results suggest that CD5 may identify functional IL-10-producing Bregs . The malfunction of Bregs during active disease due to reduced IL-10 expression may thus permit ANCA production. © 2014 British Society for Immunology.

  9. Regulatory B cells in human inflammatory and autoimmune diseases: from mouse models to clinical research.

    PubMed

    Miyagaki, Tomomitsu; Fujimoto, Manabu; Sato, Shinichi

    2015-10-01

    B cells have been generally considered to be positive regulators of immune responses because of their ability to produce antigen-specific antibodies and to activate T cells through antigen presentation. Impairment of B cell development and function may cause inflammatory and autoimmune diseases. Recently, specific B cell subsets that can negatively regulate immune responses have been described in mouse models of a wide variety of inflammatory and autoimmune diseases. The concept of those B cells, termed regulatory B cells, is now recognized as important in the murine immune system. Among several regulatory B cell subsets, IL-10-producing regulatory B cells are the most widely investigated. On the basis of discoveries from studies of such mice, human regulatory B cells that produce IL-10 in most cases are becoming an active area of research. There have been emerging data suggesting the importance of human regulatory B cells in various diseases. Revealing the immune regulation mechanisms of human regulatory B cells in human inflammatory and autoimmune diseases could lead to the development of novel B cell targeted therapies. This review highlights the current knowledge on regulatory B cells, mainly IL-10-producing regulatory B cells, in animal models of inflammatory and autoimmune diseases and in clinical research using human samples. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Activation of CD11b+ Kupffer Cells/Macrophages as a Common Cause for Exacerbation of TNF/Fas-Ligand-Dependent Hepatitis in Hypercholesterolemic Mice

    PubMed Central

    Nakashima, Hiroyuki; Ogawa, Yoshiko; Shono, Satoshi; Kinoshita, Manabu; Nakashima, Masahiro; Sato, Atsushi; Ikarashi, Masami; Seki, Shuhji

    2013-01-01

    We have reported that the mouse hepatic injury induced by either α-galactosylceramide (α-GalCer) or bacterial DNA motifs (CpG-ODN) is mediated by the TNF/NKT cell/Fas-ligand (FasL) pathway. In addition, F4/80+ Kupffer cells can be subclassified into CD68+ subset with a phagocytosing capacity and CD11b+ subset with a TNF-producing capacity. CD11b+ subset increase if mice are fed high-fat and cholesterol diet (HFCD). The present study examined how a HFCD affects the function of NKT cells and F4/80+ CD11b+ subset and these hepatitis models. After the C57BL/6 mice received a HFCD, high-cholesterol diet (HCD), high-fat diet (HFD) and control diet (CD) for four weeks, the HFCD mice increased surface CD1d and intracellular TLR-9 expression by the CD11b+ population compared to CD mice. Hepatic injury induced either by α-GalCer or CpG-ODN was more severe in HCD and HFCD mice compared to CD mice, which was in proportion to the serum TNF levels. In addition, liver cholesterol levels but not serum cholesterol levels nor liver triglyceride levels were involved in the aggravation of hepatitis. The FasL expression of NKT cells induced by both reagents was upregulated in HFCD mice. Furthermore, the liver mononuclear cells and purified F4/80+ CD11b+ subset from HFCD mice stimulated with either reagent in vitro produced a larger amount of TNF than did those from CD mice. Intracellular TNF production in F4/80+ CD11b+ cells was confirmed. The increased number of F4/80+ CD11b+ Kupffer cells/macrophages by HFCD and their enhanced TNF production thus play a pivotal role in TNF/NKT cell/FasL dependent hepatic injury. PMID:23372642

  11. Activation of CD11b+ Kupffer cells/macrophages as a common cause for exacerbation of TNF/Fas-ligand-dependent hepatitis in hypercholesterolemic mice.

    PubMed

    Nakashima, Hiroyuki; Ogawa, Yoshiko; Shono, Satoshi; Kinoshita, Manabu; Nakashima, Masahiro; Sato, Atsushi; Ikarashi, Masami; Seki, Shuhji

    2013-01-01

    We have reported that the mouse hepatic injury induced by either α-galactosylceramide (α-GalCer) or bacterial DNA motifs (CpG-ODN) is mediated by the TNF/NKT cell/Fas-ligand (FasL) pathway. In addition, F4/80(+) Kupffer cells can be subclassified into CD68(+) subset with a phagocytosing capacity and CD11b(+) subset with a TNF-producing capacity. CD11b(+) subset increase if mice are fed high-fat and cholesterol diet (HFCD). The present study examined how a HFCD affects the function of NKT cells and F4/80(+) CD11b(+) subset and these hepatitis models. After the C57BL/6 mice received a HFCD, high-cholesterol diet (HCD), high-fat diet (HFD) and control diet (CD) for four weeks, the HFCD mice increased surface CD1d and intracellular TLR-9 expression by the CD11b(+) population compared to CD mice. Hepatic injury induced either by α-GalCer or CpG-ODN was more severe in HCD and HFCD mice compared to CD mice, which was in proportion to the serum TNF levels. In addition, liver cholesterol levels but not serum cholesterol levels nor liver triglyceride levels were involved in the aggravation of hepatitis. The FasL expression of NKT cells induced by both reagents was upregulated in HFCD mice. Furthermore, the liver mononuclear cells and purified F4/80(+) CD11b(+) subset from HFCD mice stimulated with either reagent in vitro produced a larger amount of TNF than did those from CD mice. Intracellular TNF production in F4/80(+) CD11b(+) cells was confirmed. The increased number of F4/80(+) CD11b(+) Kupffer cells/macrophages by HFCD and their enhanced TNF production thus play a pivotal role in TNF/NKT cell/FasL dependent hepatic injury.

  12. Characterization of the myeloid-derived suppressor cell subset regulated by NK cells in malignant lymphoma.

    PubMed

    Sato, Yusuke; Shimizu, Kanako; Shinga, Jun; Hidaka, Michihiro; Kawano, Fumio; Kakimi, Kazuhiro; Yamasaki, Satoru; Asakura, Miki; Fujii, Shin-Ichiro

    2015-03-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with the ability to suppress immune responses and are currently classified into three distinct MDSC subsets: monocytic, granulocytic and non-monocytic, and non-granulocytic MDSCs. Although NK cells provide an important first-line defense against newly transformed cancer cells, it is unknown whether NK cells can regulate MDSC populations in the context of cancer. In this study, we initially found that the frequency of MDSCs in non-Hodgkin lymphoma (NHL) patients was increased and inversely correlated with that of NK cells, but not that of T cells. To investigate the regulation of MDSC subsets by NK cells, we used an EL4 murine lymphoma model and found the non-monocytic and non-granulocytic MDSC subset, i.e., Gr1 + CD11b + Ly6G med Ly6C med MDSC, is increased after NK cell depletion. The MDSC population that expresses MHC class II, CD80, CD124, and CCR2 is regulated mainly by CD27 + CD11b + NK cells. In addition, this MDSC subset produces some immunosuppressive cytokines, including IL-10 but not nitric oxide (NO) or arginase. We also examined two subsets of MDSCs (CD14 + HLA-DR - and CD14 - HLA-DR - MDSC) in NHL patients and found that higher IL-10-producing CD14 + HLA-DR - MDSC subset can be seen in lymphoma patients with reduced NK cell frequency in peripheral blood. Our analyses of MDSCs in this study may enable a better understanding of how MDSCs manipulate the tumor microenvironment and are regulated by NK cells in patients with lymphoma.

  13. Characterization of the myeloid-derived suppressor cell subset regulated by NK cells in malignant lymphoma

    PubMed Central

    Sato, Yusuke; Shimizu, Kanako; Shinga, Jun; Hidaka, Michihiro; Kawano, Fumio; Kakimi, Kazuhiro; Yamasaki, Satoru; Asakura, Miki; Fujii, Shin-ichiro

    2015-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with the ability to suppress immune responses and are currently classified into three distinct MDSC subsets: monocytic, granulocytic and non-monocytic, and non-granulocytic MDSCs. Although NK cells provide an important first-line defense against newly transformed cancer cells, it is unknown whether NK cells can regulate MDSC populations in the context of cancer. In this study, we initially found that the frequency of MDSCs in non-Hodgkin lymphoma (NHL) patients was increased and inversely correlated with that of NK cells, but not that of T cells. To investigate the regulation of MDSC subsets by NK cells, we used an EL4 murine lymphoma model and found the non-monocytic and non-granulocytic MDSC subset, i.e., Gr1+CD11b+Ly6GmedLy6Cmed MDSC, is increased after NK cell depletion. The MDSC population that expresses MHC class II, CD80, CD124, and CCR2 is regulated mainly by CD27+CD11b+NK cells. In addition, this MDSC subset produces some immunosuppressive cytokines, including IL-10 but not nitric oxide (NO) or arginase. We also examined two subsets of MDSCs (CD14+HLA-DR− and CD14− HLA-DR− MDSC) in NHL patients and found that higher IL-10-producing CD14+HLA-DR−MDSC subset can be seen in lymphoma patients with reduced NK cell frequency in peripheral blood. Our analyses of MDSCs in this study may enable a better understanding of how MDSCs manipulate the tumor microenvironment and are regulated by NK cells in patients with lymphoma. PMID:25949922

  14. Impact of Toxoplasma gondii on Dendritic Cell Subset Function in the Intestinal Mucosa.

    PubMed

    Cohen, Sara B; Denkers, Eric Y

    2015-09-15

    The function of mucosal dendritic cell (DC) subsets in immunity and inflammation is not well understood. In this study, we define four DC subsets present within the lamina propria and mesenteric lymph node compartments based on expression of CD103 and CD11b. Using IL-12p40 YFP (Yet40) reporter mice, we show that CD103(+)CD11b(-) mucosal DCs are primary in vivo sources of IL-12p40; we also identified CD103(-)CD11b(-) mucosal DCs as a novel population producing this cytokine. Infection was preferentially found in CD11b(+) DCs that were negative for CD103. Lamina propria DCs containing parasites were negative for IL-12p40. Instead, production of the cytokine was strictly a property of noninfected cells. We also show that vitamin A metabolism, as measured by ALDH activity, was preferentially found in CD103(+)CD11b(+) DC and was strongly downregulated in all mucosal DC subsets during infection. Finally, overall apoptosis of lamina propria DC subsets was increased during infection. Combined, these results highlight the ability of intestinal Toxoplasma infection to alter mucosal DC activity at both the whole population level and at the level of individual subsets. Copyright © 2015 by The American Association of Immunologists, Inc.

  15. FCRL5 Delineates Functionally Impaired Memory B Cells Associated with Plasmodium falciparum Exposure

    PubMed Central

    Fontana, Mary F.; Feeney, Margaret E.; Jagannathan, Prasanna; Boyle, Michelle J.; Drakeley, Chris J.; Ssewanyana, Isaac; Nankya, Felistas; Mayanja-Kizza, Harriet; Dorsey, Grant; Greenhouse, Bryan

    2015-01-01

    Exposure to Plasmodium falciparum is associated with circulating “atypical” memory B cells (atMBCs), which appear similar to dysfunctional B cells found in HIV-infected individuals. Functional analysis of atMBCs has been limited, with one report suggesting these cells are not dysfunctional but produce protective antibodies. To better understand the function of malaria-associated atMBCs, we performed global transcriptome analysis of these cells, obtained from individuals living in an area of high malaria endemicity in Uganda. Comparison of gene expression data suggested down-modulation of B cell receptor signaling and apoptosis in atMBCs compared to classical MBCs. Additionally, in contrast to previous reports, we found upregulation of Fc receptor-like 5 (FCRL5), but not FCRL4, on atMBCs. Atypical MBCs were poor spontaneous producers of antibody ex vivo, and higher surface expression of FCRL5 defined a distinct subset of atMBCs compromised in its ability to produce antibody upon stimulation. Moreover, higher levels of P. falciparum exposure were associated with increased frequencies of FCRL5+ atMBCs. Together, our findings suggest that FCLR5+ identifies a functionally distinct, and perhaps dysfunctional, subset of MBCs in individuals exposed to P. falciparum. PMID:25993340

  16. Phenotype, effector function, and tissue localization of PD-1-expressing human follicular helper T cell subsets

    PubMed Central

    2011-01-01

    Background It is well established that PD-1 is expressed by follicular T cells but its function in regulation of human T helper cells has been unclear. We investigated the expression modality and function of PD-1 expressed by human T cells specialized in helping B cells. Results We found that PD-1-expressing T cells are heterogeneous in PD-1 expression. We identified three different PD-1-expressing memory T cell subsets (i.e. PD-1low (+), PD-1medium (++), and PD-1high (+++) cells). PD-1+++ T cells expressed CXCR5 and CXCR4 and were localized in the rim of germinal centers. PD-1+ or PD-1++ cells expressed CCR7 and were present mainly in the T cell area or other parts of the B cell follicles. Utilizing a novel antigen density-dependent magnetic sorting (ADD-MS) method, we isolated the three T cell subsets for functional characterization. The germinal center-located PD-1+++ T cells were most efficient in helping B cells and in producing IL-21 and CXCL13. Other PD-1-expressing T cells, enriched with Th1 and Th17 cells, were less efficient than PD-1+++ T cells in these capacities. PD-1+++ T cells highly expressed Ki-67 and therefore appear active in cell activation and proliferation in vivo. IL-2 is a cytokine important for proliferation and survival of the PD-1+++ T cells. In contrast, IL-21, while a major effector cytokine produced by the PD-1-expressing T helper cells, had no function in generation, survival, or proliferation of the PD-1-expressing helper T cells at least in vitro. PD-1 triggering has a suppressive effect on the proliferation and B cell-helping function of PD-1+++ germinal center T cells. Conclusion Our results revealed the phenotype and effector function of PD-1-expressing T helper cell subsets and indicate that PD-1 restrains the B cell-helping function of germinal center-localized T cells to prevent excessive antibody response. PMID:21914188

  17. The excretory-secretory products of Echinococcus granulosus protoscoleces directly regulate the differentiation of B10, B17 and Th17 cells.

    PubMed

    Pan, Wei; Hao, Wen-Ting; Shen, Yu-Juan; Li, Xiang-Yang; Wang, Yan-Juan; Sun, Fen-Fen; Yin, Jian-Hai; Zhang, Jing; Tang, Ren-Xian; Cao, Jian-Ping; Zheng, Kui-Yang

    2017-07-21

    Excretory-secretory products (ESPs) released by helminths are well-known to regulate T cell responses in the host. However, their direct influence in the differentiation of naïve T cells, and especially B cells, remains largely unknown. This study investigated the effects of Echinococcus granulosus protoscoleces ESPs (EgPSC-ESPs) on the differentiation of IL-10-producing B cells (B10), IL-17A-producing B cells (B17) and Th17 cells. BALB/c mice injected with EgPSC were used to evaluate the in vivo profiles of B10, B17 and Th17 cells. In vitro purified CD19 + B and naïve CD4 + T cells were cultured in the presence of native, heat-inactivated or periodate-treated EgPSC-ESPs, and the differentiation of these cell subsets were compared. In contrast to the control group, infected mice showed higher frequencies of B10, B17 and Th17 cells, and higher levels of IL-10 and IL-17A in the sera. Interestingly, B17 cells were first identified to express CD19 + CD1d high . In vitro, B cells cultured with native ESPs exhibited a higher percentage of B10 cells but lower percentage of B17 and Th17 cells compared to the PBS group. Moreover, the relative expression of IL-10 and IL-17A mRNA were consistent with the altered frequencies. However, ESPs subjected to heat-inactivation or periodate treatment exhibited an inverse effect on the induction of these cell subsets. Our findings indicate that ESPs released by EgPSC can directly regulate the differentiation of B10, B17 and Th17 cells, which appear to be heat-labile and carbohydrate-dependent.

  18. IgG1 memory B cells keep the memory of IgE responses.

    PubMed

    He, Jin-Shu; Subramaniam, Sharrada; Narang, Vipin; Srinivasan, Kandhadayar; Saunders, Sean P; Carbajo, Daniel; Wen-Shan, Tsao; Hidayah Hamadee, Nur; Lum, Josephine; Lee, Andrea; Chen, Jinmiao; Poidinger, Michael; Zolezzi, Francesca; Lafaille, Juan J; Curotto de Lafaille, Maria A

    2017-09-21

    The unique differentiation of IgE cells suggests unconventional mechanisms of IgE memory. IgE germinal centre cells are transient, most IgE cells are plasma cells, and high affinity IgE is produced by the switching of IgG1 cells to IgE. Here we investigate the function of subsets of IgG1 memory B cells in IgE production and find that two subsets of IgG1 memory B cells, CD80 + CD73 + and CD80 - CD73 - , contribute distinctively to the repertoires of high affinity pathogenic IgE and low affinity non-pathogenic IgE. Furthermore, repertoire analysis indicates that high affinity IgE and IgG1 plasma cells differentiate from rare CD80 + CD73 + high affinity memory clones without undergoing further mutagenesis. By identifying the cellular origin of high affinity IgE and the clonal selection of high affinity memory B cells into the plasma cell fate, our findings provide fundamental insights into the pathogenesis of allergies, and on the mechanisms of antibody production in memory B cell responses.IgE is an important mediator of protective immunity as well as allergic reaction, but how high affinity IgE antibodies are produced in memory responses is not clear. Here the authors show that IgE can be generated via class-switch recombination in IgG1 memory B cells without additional somatic hypermutation.

  19. IL-35-producing B cells in gastric cancer patients.

    PubMed

    Wang, Ke; Liu, Jianming; Li, Jiansheng

    2018-05-01

    A significant characteristic of advanced gastric cancer (GC) is immune suppression, which can promote the progression of GC. Interleukin 35 (IL-35) is an immune-suppressing cytokine, and it is generally recognized that this cytokine is secreted by regulatory T (Treg) cells. Recently, studies have found that IL-35 can also be produced by B cells in mice. However, scientific studies reporting that IL-35 is secreted by B cells in humans, specifically in cancer patients, are very rare.Blood samples were collected from 30 healthy controls (HCs) and 50 untreated GC patients, and IL-35-producing B cells in the peripheral blood were investigated. Moreover, Treg cells (CD4CD25CD127), myeloid-derived suppressor cells (MDSCs) (CD14HLA-DR) and other lymphocyte subsets (CD3, CD4, CD8 T cells, activated and memory CD4 T cells, activated CD8 T cells, CD14 monocytes, and IL-10-producing B cells) were also examined.IL-35-producing B cells were significantly upregulated in patients with advanced GC. Furthermore, the frequency of IL-35-producing B cells was positively correlated with the frequencies of Treg cells (CD4CD25CD127), MDSCs (CD14HLA-DR), IL-10-producing B cells, and CD14 monocytes in these GC patients.In summary, the frequency of IL-35-producing B cells is significantly elevated in advanced GC; this outcome implies that this group of B cells may participate in GC progression.

  20. Anti-TNF and thiopurine therapy in pregnant IBD patients does not significantly alter a panel of B-cell and T-cell subsets in 1-year-old infants.

    PubMed

    Kattah, Michael G; Milush, Jeffrey M; Burt, Trevor; McCabe, Robert P; Whang, Michael I; Ma, Averil; Mahadevan, Uma

    2018-04-03

    Infants exposed to combination therapy with anti-tumor necrosis factor (anti-TNF) agents and thiopurines may exhibit increased infections at 1 year of age compared to unexposed infants. We hypothesized that this increased risk of infection is due to abnormal development of the newborn immune system. We immunophenotyped B-cell and T-cell subsets using multiparameter flow cytometry in 1-year-old infants whose mothers were exposed to therapeutic agents for IBD. We analyzed samples from infants exposed to infliximab (IFX) or adalimumab (ADA) monotherapy (IFX/ADA, n = 11), certolizumab pegol (CZP) monotherapy (CZP, n = 4), IFX or ADA plus thiopurine combination therapy (IFX/ADA + IM, n = 4), and CZP plus thiopurine combination therapy (CZP + IM, n = 2). Percentages of B cells, CD4 + T helper cells, T regulatory cells (T regs ), and CD8 + cytotoxic T cells, were similar among the groups. Infants exposed to combination therapy (IFX/ADA + IM) exhibited trends toward fewer CD27 + B cells, switched memory B cells, plasmablasts, interferon gamma (IFNγ)-producing CD4 + and CD8 + T cells, and CCR5 + CD4 + T cells, but these did not reach statistical significance. Multiparameter immunophenotyping of major B-cell and T-cell subsets suggests that the adaptive newborn immune system develops largely unaltered after exposure to combination therapy as compared to anti-TNF monotherapy.

  1. Innate lymphoid cells in graft-versus-host disease.

    PubMed

    Konya, V; Mjösberg, J

    2015-11-01

    Innate lymphoid cells (ILC) are lymphocytes lacking rearranged antigen receptors such as those expressed by T and B cells. ILC are important effector and regulatory cells of the innate immune system, controlling lymphoid organogenesis, tissue inflammation, and homeostasis. The family of ILC consists of cytotoxic NK cells and the more recently described noncytotoxic group 1, 2, and 3 ILC. The classification of noncytotoxic ILC-in many aspects-mirrors that of T helper cells, which is based on the expression of master transcription factors and signature cytokines specific for each subset. The IL-22 producing RORγt(+) ILC3 subset was recently found to be critical in the prevention of intestinal graft-versus-host disease (GVHD) following allogeneic hematopoietic cell transplantation (HCT) via strengthening the intestinal mucosal barrier. In this review, we summarize the current view of the immunological functions of human noncytotoxic ILC subsets and discuss the potentially beneficial features of IL-22 producing ILC3 in improving allo-HCT efficacy by attenuating susceptibility to GVHD. In addition, we explore the possibility of other ILC subsets playing a role in GVHD. © 2015 The Authors. American Journal of Transplantation published by Wiley Periodicals, Inc. on behalf of American Society of Transplant Surgeons.

  2. CD24(hi)CD27⁺ and plasmablast-like regulatory B cells in human chronic graft-versus-host disease.

    PubMed

    de Masson, Adèle; Bouaziz, Jean-David; Le Buanec, Hélène; Robin, Marie; O'Meara, Alix; Parquet, Nathalie; Rybojad, Michel; Hau, Estelle; Monfort, Jean-Benoît; Branchtein, Mylène; Michonneau, David; Dessirier, Valérie; Sicre de Fontbrune, Flore; Bergeron, Anne; Itzykson, Raphaël; Dhédin, Nathalie; Bengoufa, Djaouida; Peffault de Latour, Régis; Xhaard, Aliénor; Bagot, Martine; Bensussan, Armand; Socié, Gérard

    2015-03-12

    Interleukin 10 (IL-10)-producing B cells (regulatory B cells [Bregs]) regulate autoimmunity in mice and humans, and a regulatory role of IL-10-producing plasma cells has been described in mice. Dysfunction of B cells that maintain homeostasis may play a role in the pathogenesis of chronic graft-versus-host disease (cGVHD) after allogeneic stem cell transplantation. Here, we found a relation between decreased Breg frequencies and cGVHD severity. An impaired ability of B cells to produce IL-10, possibly linked to poor signal transducer and activator of transcription 3 and extracellular signal-regulated kinase phosphorylation, was found in patients with active cGVHD. IL-10 production was not confined to a single B-cell subset, but enriched in both the CD24(hi)CD27(+) and CD27(hi)CD38(hi) plasmablast B-cell compartments. In vitro plasmablast differentiation increased the frequency of IL-10-producing B cells. We confirmed that allogeneic transplant recipients had an impaired reconstitution of the memory B-cell pool. cGVHD patients had less CD24(hi)CD27(+) B cells and IL-10-producing CD24(hi)CD27(+) B cells. Patients with cGVHD had increased plasmablast frequencies but decreased IL-10-producing plasmablasts. These results suggest a role of CD24(hi)CD27(+) B-cell and plasmablast-derived IL-10 in the regulation of human cGVHD. © 2015 by The American Society of Hematology.

  3. miRNomes of haematopoietic stem cells and dendritic cells identify miR-30b as a regulator of Notch1

    PubMed Central

    Su, Xiaoping; Qian, Cheng; Zhang, Qian; Hou, Jin; Gu, Yan; Han, Yanmei; Chen, Yongjian; Jiang, Minghong; Cao, Xuetao

    2013-01-01

    Dendritic cells (DCs) are critical to initiate the immune response and maintain tolerance, depending on different status and subsets. The expression profiles of microRNAs (miRNAs) in various DC subsets and haematopoietic stem cells (HSCs), which generate DCs, remain to be fully identified. Here we examine miRNomes of mouse bone marrow HSCs, immature DCs, mature DCs and IL-10/NO-producing regulatory DCs by deep sequencing. We identify numerous stage-specific miRNAs and histone modification in HSCs and DCs at different differentiation stages. miR-30b, significantly upregulated via a TGF-beta/Smad3-mediated epigenetic pathway in regulatory DCs, can target Notch1 to promote IL-10 and NO production, suggesting that miR-30b is a negative regulator of immune response. We also identify miRNomes of in vivo counterparts of mature DCs and regulatory DCs and systematically compare them with DCs cultured in vitro. These results provide a resource for studying roles of miRNAs in stem cell biology, development and functional regulation of DC subsets. PMID:24309499

  4. Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon.

    PubMed

    Jeon, Seong Gyu; Kayama, Hisako; Ueda, Yoshiyasu; Takahashi, Takuya; Asahara, Takashi; Tsuji, Hirokazu; Tsuji, Noriko M; Kiyono, Hiroshi; Ma, Ji Su; Kusu, Takashi; Okumura, Ryu; Hara, Hiromitsu; Yoshida, Hiroki; Yamamoto, Masahiro; Nomoto, Koji; Takeda, Kiyoshi

    2012-01-01

    Specific intestinal microbiota has been shown to induce Foxp3(+) regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103(+) dendritic cells (DCs) mediated B. breve-induced development of IL-10-producing T cells. CD103(+) DCs from Il10(-/-), Tlr2(-/-), and Myd88(-/-) mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103(+) DCs failed to induce IL-10 production from co-cultured Il27ra(-/-) T cells. B. breve treatment of Tlr2(-/-) mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103(+) DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4(+) T cells from wild-type mice, but not Il10(-/-) mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells.

  5. Functional heterogeneity of human effector CD8+ T cells.

    PubMed

    Takata, Hiroshi; Naruto, Takuya; Takiguchi, Masafumi

    2012-02-09

    Effector CD8(+) T cells are believed to be terminally differentiated cells having cytotoxic activity and the ability to produce effector cytokines such as INF-γ and TNF-α. We investigated the difference between CXCR1(+) and CXCR1(-) subsets of human effector CD27(-)CD28(-)CD8(+) T cells. The subsets expressed cytolytic molecules similarly and exerted substantial cytolytic activity, whereas only the CXCR1(-) subset had IL-2 productivity and self-proliferative activity and was more resistant to cell death than the CXCR1(+) subset. These differences were explained by the specific up-regulation of CAMK4, SPRY2, and IL-7R in the CXCR1(-) subset and that of pro-apoptotic death-associated protein kinase 1 (DAPK1) in the CXCR1(+) subset. The IL-2 producers were more frequently found in the IL-7R(+) subset of the CXCR1(-) effector CD8(+) T cells than in the IL-7R(-) subset. IL-7/IL-7R signaling promoted cell survival only in the CXCR1(-) subset. The present study has highlighted a novel subset of effector CD8(+) T cells producing IL-2 and suggests the importance of this subset in the homeostasis of effector CD8(+) T cells.

  6. Cathelin-related antimicrobial peptide differentially regulates T- and B-cell function

    PubMed Central

    Kin, Nicholas W.; Chen, Yao; Stefanov, Emily K.; Gallo, Richard L.; Kearney, John F.

    2011-01-01

    Mammalian antimicrobial peptides (AMPs) play an important role in host defense via direct antimicrobial activity as well as immune regulation. The mouse cathelin-related antimicrobial peptide (mCRAMP), produced from the mouse gene Camp, is the only mouse cathelicidin identified and the ortholog of the human gene encoding the peptide LL-37. This study tested the hypothesis that mouse B and T cells produce and respond to mCRAMP. We show that all mature mouse B-cell subsets, including follicular (FO), marginal zone (MZ), B1a, and B1b cells, as well as CD4+ and CD8+ T cells produce Camp mRNA and mCRAMP protein. Camp−/− B cells produced equivalent levels of IgM, IgG3, and IgG2c but less IgG1 and IgE, while Camp−/− CD4+ T cells cultured in Th2-inducing conditions produced more IL-4-expressing cells when compared with WT cells, effects that were reversed upon addition of mCRAMP. In vivo, Camp−/− mice immunized with TNP-OVA absorbed in alum produced an enhanced TNP-specific IgG1 response when compared with WT mice. ELISpot analysis revealed increased numbers of TNP-specific IgG1-secreting splenic B cells and FACS analysis revealed increased CD4+ T-cell IL-4 expression. Our results suggest that mCRAMP differentially regulates B- and T-cell function and implicate mCRAMP in the regulation of adaptive immune responses. PMID:21773974

  7. Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11.

    PubMed

    Montoya, Carlos J; Pollard, David; Martinson, Jeffrey; Kumari, Kumud; Wasserfall, Clive; Mulder, Candice B; Rugeles, Maria T; Atkinson, Mark A; Landay, Alan L; Wilson, S Brian

    2007-09-01

    Identification of human CD1d-restricted T-cell receptor (TCR)-invariant natural killer T (iNKT) cells has been dependent on utilizing combinations of monoclonal antibodies or CD1d tetramers, which do not allow for the most specific analysis of this T-cell subpopulation. A novel monoclonal antibody (clone 6B11), specific for the invariant CDR3 loop of human canonical Valpha24Jalpha18 TCR alpha chain, was developed and used to specifically characterize iNKT cells. In healthy individuals studied for up to 1 year, a wide but stable frequency of circulating iNKT cells (range: 0.01-0.92%) was observed, with no differences in frequency by gender. Four stable iNKT cell subsets were characterized in peripheral blood based on the expression of CD4 and CD8, with CD8(+) iNKT cells being a phenotypic and functionally different subset from CD4(+) and double negative iNKT cells; in particular, LAG-3 was preferentially expressed on CD8(+) iNKT cells. In addition, a strong negative linear correlation between the frequency of total iNKT cells and percentage of the CD4(+) subset was observed. In terms of their potential association with disease, patients at risk for type 1 diabetes had significantly expanded frequencies of double negative iNKT cells when compared to matched controls and first-degree relatives. Moreover, peripheral blood CD4(+) iNKT cells were the highest producers of interleukin-4, while the production of interferon-gamma and tumour necrosis factor-alpha was similar amongst all iNKT cell subsets. These differences in iNKT cell subsets suggest that in humans the relative ratio of iNKT cell subsets may influence susceptibility vs. resistance to immune-mediated diseases.

  8. Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11

    PubMed Central

    Montoya, Carlos J; Pollard, David; Martinson, Jeffrey; Kumari, Kumud; Wasserfall, Clive; Mulder, Candice B; Rugeles, Maria T; Atkinson, Mark A; Landay, Alan L; Wilson, S Brian

    2007-01-01

    Identification of human CD1d-restricted T-cell receptor (TCR)-invariant natural killer T (iNKT) cells has been dependent on utilizing combinations of monoclonal antibodies or CD1d tetramers, which do not allow for the most specific analysis of this T-cell subpopulation. A novel monoclonal antibody (clone 6B11), specific for the invariant CDR3 loop of human canonical Vα24Jα18 TCR α chain, was developed and used to specifically characterize iNKT cells. In healthy individuals studied for up to 1 year, a wide but stable frequency of circulating iNKT cells (range: 0·01–0·92%) was observed, with no differences in frequency by gender. Four stable iNKT cell subsets were characterized in peripheral blood based on the expression of CD4 and CD8, with CD8+ iNKT cells being a phenotypic and functionally different subset from CD4+ and double negative iNKT cells; in particular, LAG-3 was preferentially expressed on CD8+ iNKT cells. In addition, a strong negative linear correlation between the frequency of total iNKT cells and percentage of the CD4+ subset was observed. In terms of their potential association with disease, patients at risk for type 1 diabetes had significantly expanded frequencies of double negative iNKT cells when compared to matched controls and first-degree relatives. Moreover, peripheral blood CD4+ iNKT cells were the highest producers of interleukin-4, while the production of interferon-γ and tumour necrosis factor-α was similar amongst all iNKT cell subsets. These differences in iNKT cell subsets suggest that in humans the relative ratio of iNKT cell subsets may influence susceptibility vs. resistance to immune-mediated diseases. PMID:17662044

  9. The Yin and Yang of Innate Lymphoid Cells in Cancer.

    PubMed

    Carrega, Paolo; Campana, Stefania; Bonaccorsi, Irene; Ferlazzo, Guido

    2016-11-01

    The recent appreciation of novel subsets of innate lymphoid cells (ILCs) as important regulators of tissue homeostasis, inflammation and repair, raise questions regarding the presence and role of these cells in cancer tissues. In addition to natural killer and fetal lymphoid tissue inducer (LTi) cells, the ILC family comprises non-cytolytic, cytokine-producing cells that are classified into ILC1, ILC2 and ILC3 based on phenotypic and functional characteristics. Differently from natural killer cells, which are the prototypical members of ILC1 and whose role in tumors is better established, the involvement of other ILC subsets in cancer progression or resistance is still fuzzy and in several instances controversial, since current studies indicate both context-dependent beneficial or pathogenic effects. Here, we review the current knowledge regarding the involvement of these novel ILC subsets in the context of tumor immunology, highlighting how ILC subsets might behave either as friends or foes. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  10. TLR-mediated stimulation of APC: Distinct cytokine responses of B cells and dendritic cells

    PubMed Central

    Barr, Tom A; Brown, Sheila; Ryan, Gemma; Zhao, Jiexin; Gray, David

    2007-01-01

    In addition to their role in humoral immunity, B lymphocytes are important antigen-presenting cells (APC). In the same way as other APC, B cells make cytokines upon activation and have the potential to modulate T cell responses. In this study, we investigated which mouse B cell subsets are the most potent cytokine producers, and examined the role of Toll-like receptors (TLR) in the control of secretion of IL-6, IL-10, IL-12 and IFN-γ by B cells. Production of some cytokines was restricted to particular subsets. Marginal zone and B1 cells were the predominant source of B cell IL-10 in the spleen. Conversely, follicular B cells were found to express IFN-γ mRNA directly ex vivo. The nature of the activating stimulus dramatically influenced the cytokine made by B cells. Thus, in response to combined TLR stimulation, or via phorbol esters, IFN-γ was secreted. IL-10 was elicited by T-dependent activation or stimulation through TLR2, 4 or 9. This pattern of cytokine expression contrasts with that elicited from dendritic cells. QRT-PCR array data indicate that this may be due to differential expression of TLR signalling molecules, effectors and adaptors. Our data highlight the potentially unique nature of immune modulation when B cells act as APC. PMID:17918201

  11. Probiotic Bifidobacterium breve Induces IL-10-Producing Tr1 Cells in the Colon

    PubMed Central

    Ueda, Yoshiyasu; Takahashi, Takuya; Asahara, Takashi; Tsuji, Hirokazu; Tsuji, Noriko M.; Kiyono, Hiroshi; Ma, Ji Su; Kusu, Takashi; Okumura, Ryu; Hara, Hiromitsu; Yoshida, Hiroki; Yamamoto, Masahiro; Nomoto, Koji; Takeda, Kiyoshi

    2012-01-01

    Specific intestinal microbiota has been shown to induce Foxp3+ regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103+ dendritic cells (DCs) mediated B. breve-induced development of IL-10-producing T cells. CD103+ DCs from Il10 −/−, Tlr2 −/−, and Myd88 −/− mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103+ DCs failed to induce IL-10 production from co-cultured Il27ra −/− T cells. B. breve treatment of Tlr2 −/− mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103+ DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4+ T cells from wild-type mice, but not Il10 −/− mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells. PMID:22693446

  12. Beneficial Effects of cART Initiated during Primary and Chronic HIV-1 Infection on Immunoglobulin-Expression of Memory B-Cell Subsets

    PubMed Central

    Pensieroso, Simone; Tolazzi, Monica; Chiappetta, Stefania; Nozza, Silvia; Lazzarin, Adriano; Tambussi, Giuseppe; Scarlatti, Gabriella

    2015-01-01

    Introduction During HIV-1 infection the B-cell compartment undergoes profound changes towards terminal differentiation, which are only partially restored by antiretroviral therapy (cART). Materials and Methods To investigate the impact of infection as early as during primary HIV-1 infection (PHI) we assessed distribution of B-cell subsets in 19 PHI and 25 chronic HIV-1-infected (CHI) individuals before and during 48 weeks of cART as compared to healthy controls (n = 23). We also analysed Immunoglobulin-expression of memory B-cell subsets to identify alterations in Immunoglobulin-maturation. Results Determination of B-cell subsets at baseline showed that total and Naive B-cells were decreased whereas Activated Memory (AM), Tissue-like Memory (TLM) B-cells and Plasma cells were increased in both PHI and CHI patients. After 4 weeks of cART total B-cells increased, while AM, TLM B-cells and Plasma cells decreased, although without reaching normal levels in either group of individuals. This trend was maintained until week 48, though only total B-cells normalized in both PHI and CHI. Resting Memory (RM) B-cells were preserved since baseline. This subset remained stable in CHI, while was expanded by an early initiation of cART during PHI. Untreated CHI patients showed IgM-overexpression at the expenses of switched (IgM-IgD-) phenotypes of the memory subsets. Interestingly, in PHI patients a significant alteration of Immunoglobulin-expression was evident at BL in TLM cells, and after 4 weeks, despite treatment, in AM and RM subsets. After 48 weeks of therapy, Immunoglobulin-expression of AM and RM almost normalized, but remained perturbed in TLM cells in both groups. Conclusions In conclusion, aberrant activated and exhausted B-cell phenotypes rose already during PHI, while most of the alterations in Ig-expression seen in CHI appeared later, despite 4 weeks of effective cART. After 48 weeks of cART B-cell subsets distribution improved although without full normalization, while Immunoglobulin-expression normalized among AM and RM, remaining perturbed in TLM B-cells of PHI and CHI. PMID:26474181

  13. Beneficial Effects of cART Initiated during Primary and Chronic HIV-1 Infection on Immunoglobulin-Expression of Memory B-Cell Subsets.

    PubMed

    Pogliaghi, Manuela; Ripa, Marco; Pensieroso, Simone; Tolazzi, Monica; Chiappetta, Stefania; Nozza, Silvia; Lazzarin, Adriano; Tambussi, Giuseppe; Scarlatti, Gabriella

    2015-01-01

    During HIV-1 infection the B-cell compartment undergoes profound changes towards terminal differentiation, which are only partially restored by antiretroviral therapy (cART). To investigate the impact of infection as early as during primary HIV-1 infection (PHI) we assessed distribution of B-cell subsets in 19 PHI and 25 chronic HIV-1-infected (CHI) individuals before and during 48 weeks of cART as compared to healthy controls (n = 23). We also analysed Immunoglobulin-expression of memory B-cell subsets to identify alterations in Immunoglobulin-maturation. Determination of B-cell subsets at baseline showed that total and Naive B-cells were decreased whereas Activated Memory (AM), Tissue-like Memory (TLM) B-cells and Plasma cells were increased in both PHI and CHI patients. After 4 weeks of cART total B-cells increased, while AM, TLM B-cells and Plasma cells decreased, although without reaching normal levels in either group of individuals. This trend was maintained until week 48, though only total B-cells normalized in both PHI and CHI. Resting Memory (RM) B-cells were preserved since baseline. This subset remained stable in CHI, while was expanded by an early initiation of cART during PHI. Untreated CHI patients showed IgM-overexpression at the expenses of switched (IgM-IgD-) phenotypes of the memory subsets. Interestingly, in PHI patients a significant alteration of Immunoglobulin-expression was evident at BL in TLM cells, and after 4 weeks, despite treatment, in AM and RM subsets. After 48 weeks of therapy, Immunoglobulin-expression of AM and RM almost normalized, but remained perturbed in TLM cells in both groups. In conclusion, aberrant activated and exhausted B-cell phenotypes rose already during PHI, while most of the alterations in Ig-expression seen in CHI appeared later, despite 4 weeks of effective cART. After 48 weeks of cART B-cell subsets distribution improved although without full normalization, while Immunoglobulin-expression normalized among AM and RM, remaining perturbed in TLM B-cells of PHI and CHI.

  14. B cell subset distribution is altered in patients with severe periodontitis.

    PubMed

    Demoersman, Julien; Pochard, Pierre; Framery, Camille; Simon, Quentin; Boisramé, Sylvie; Soueidan, Assem; Pers, Jacques-Olivier

    2018-01-01

    Several studies have recently highlighted the implication of B cells in physiopathogenesis of periodontal disease by showing that a B cell deficiency leads to improved periodontal parameters. However, the detailed profiles of circulating B cell subsets have not yet been investigated in patients with severe periodontitis (SP). We hypothesised that an abnormal distribution of B cell subsets could be detected in the blood of patients with severe periodontal lesions, as already reported for patients with chronic inflammatory diseases as systemic autoimmune diseases. Fifteen subjects with SP and 13 subjects without periodontitis, according to the definition proposed by the CDC periodontal disease surveillance work group, were enrolled in this pilot observational study. Two flow cytometry panels were designed to analyse the circulating B and B1 cell subset distribution in association with the RANKL expression. A significantly higher percentage of CD27+ memory B cells was observed in patients with SP. Among these CD27+ B cells, the proportion of the switched memory subset was significantly higher. At the same time, human B1 cells, which were previously associated with a regulatory function (CD20+CD69-CD43+CD27+CD11b+), decreased in SP patients. The RANKL expression increased in every B cell subset from the SP patients and was significantly greater in activated B cells than in the subjects without periodontitis. These preliminary results demonstrate the altered distribution of B cells in the context of severe periodontitis. Further investigations with a larger cohort of patients can elucidate if the analysis of the B cell compartment distribution can reflect the periodontal disease activity and be a reliable marker for its prognosis (clinical trial registration number: NCT02833285, B cell functions in periodontitis).

  15. B cell subset distribution is altered in patients with severe periodontitis

    PubMed Central

    Demoersman, Julien; Pochard, Pierre; Framery, Camille; Simon, Quentin; Boisramé, Sylvie; Soueidan, Assem

    2018-01-01

    Several studies have recently highlighted the implication of B cells in physiopathogenesis of periodontal disease by showing that a B cell deficiency leads to improved periodontal parameters. However, the detailed profiles of circulating B cell subsets have not yet been investigated in patients with severe periodontitis (SP). We hypothesised that an abnormal distribution of B cell subsets could be detected in the blood of patients with severe periodontal lesions, as already reported for patients with chronic inflammatory diseases as systemic autoimmune diseases. Fifteen subjects with SP and 13 subjects without periodontitis, according to the definition proposed by the CDC periodontal disease surveillance work group, were enrolled in this pilot observational study. Two flow cytometry panels were designed to analyse the circulating B and B1 cell subset distribution in association with the RANKL expression. A significantly higher percentage of CD27+ memory B cells was observed in patients with SP. Among these CD27+ B cells, the proportion of the switched memory subset was significantly higher. At the same time, human B1 cells, which were previously associated with a regulatory function (CD20+CD69-CD43+CD27+CD11b+), decreased in SP patients. The RANKL expression increased in every B cell subset from the SP patients and was significantly greater in activated B cells than in the subjects without periodontitis. These preliminary results demonstrate the altered distribution of B cells in the context of severe periodontitis. Further investigations with a larger cohort of patients can elucidate if the analysis of the B cell compartment distribution can reflect the periodontal disease activity and be a reliable marker for its prognosis (clinical trial registration number: NCT02833285, B cell functions in periodontitis). PMID:29447240

  16. B-cell subset alterations and correlated factors in HIV-1 infection.

    PubMed

    Pensieroso, Simone; Galli, Laura; Nozza, Silvia; Ruffin, Nicolas; Castagna, Antonella; Tambussi, Giuseppe; Hejdeman, Bo; Misciagna, Donatella; Riva, Agostino; Malnati, Mauro; Chiodi, Francesca; Scarlatti, Gabriella

    2013-05-15

    During HIV-1 infection, the development, phenotype, and functionality of B cells are impaired. Transitional B cells and aberrant B-cell populations arise in blood, whereas a declined percentage of resting memory B cells is detected. Our study aimed at pinpointing the demographic, immunological, and viral factors driving these pathological findings, and the role of antiretroviral therapy in reverting these alterations. B-cell phenotype and correlating factors were evaluated. Variations in B-cell subsets were evaluated by flow cytometry in HIV-1-infected individuals naive to therapy, elite controllers, and patients treated with antiretroviral drugs (virological control or failure). Multivariable analysis was performed to identify variables independently associated with the B-cell alterations. Significant differences were observed among patients' groups in relation to all B-cell subsets. Resting memory B cells were preserved in patients naive to therapy and elite controllers, but reduced in treated patients. Individuals naive to therapy and experiencing multidrug failure, as well as elite controllers, had significantly higher levels of activated memory B cells compared to healthy controls. In the multivariate analysis, plasma viral load and nadir CD4 T cells independently correlated with major B-cell alterations. Coinfection with hepatitis C but not hepatitis B virus also showed an impact on specific B-cell subsets. Successful protracted antiretroviral treatment led to normalization of all B-cell subsets with exception of resting memory B cells. Our results indicate that viremia and nadir CD4 T cells are important prognostic markers of B-cell perturbations and provide evidence that resting memory B-cell depletion during chronic infection is not reverted upon successful antiretroviral therapy.

  17. Categorization of multiple sclerosis relapse subtypes by B cell profiling in the blood.

    PubMed

    Hohmann, Christopher; Milles, Bianca; Schinke, Michael; Schroeter, Michael; Ulzheimer, Jochen; Kraft, Peter; Kleinschnitz, Christoph; Lehmann, Paul V; Kuerten, Stefanie

    2014-09-16

    B cells are attracting increasing attention in the pathogenesis of multiple sclerosis (MS). B cell-targeted therapies with monoclonal antibodies or plasmapheresis have been shown to be successful in a subset of patients. Here, patients with either relapsing-remitting (n = 24) or secondary progressive (n = 6) MS presenting with an acute clinical relapse were screened for their B cell reactivity to brain antigens and were re-tested three to nine months later. Enzyme-linked immunospot technique (ELISPOT) was used to identify brain-reactive B cells in peripheral blood mononuclear cells (PBMC) directly ex vivo and after 96 h of polyclonal stimulation. Clinical severity of symptoms was determined using the Expanded Disability Status Scale (EDSS). Nine patients displayed B cells in the blood producing brain-specific antibodies directly ex vivo. Six patients were classified as B cell positive donors only after polyclonal B cell stimulation. In 15 patients a B cell response to brain antigens was absent. Based on the autoreactive B cell response we categorized MS relapses into three different patterns. Patients who displayed brain-reactive B cell responses both directly ex vivo and after polyclonal stimulation (pattern I) were significantly younger than patients in whom only memory B cell responses were detectable or entirely absent (patterns II and III; p = 0.003). In one patient a conversion to a positive B cell response as measured directly ex vivo and subsequently also after polyclonal stimulation was associated with the development of a clinical relapse. The evaluation of the predictive value of a brain antigen-specific B cell response showed that seven of eight patients (87.5%) with a pattern I response encountered a clinical relapse during the observation period of 10 months, compared to two of five patients (40%) with a pattern II and three of 14 patients (21.4%) with a pattern III response (p = 0.0005; hazard ratio 6.08 (95% confidence interval 1.87-19.77). Our data indicate actively ongoing B cell-mediated immunity against brain antigens in a subset of MS patients that may be causative of clinical relapses and provide new diagnostic and therapeutic options for a subset of patients.

  18. Altered Distribution of Peripheral Blood Maturation-Associated B-Cell Subsets in Chronic Alcoholism.

    PubMed

    Almeida, Julia; Polvorosa, Maria Angeles; Gonzalez-Quintela, Arturo; Madruga, Ignacio; Marcos, Miguel; Pérez-Nieto, Maria Angeles; Hernandez-Cerceño, Maria Luisa; Orfao, Alberto; Laso, Francisco Javier

    2015-08-01

    Although decreased counts of peripheral blood (PB) B cells-associated with an apparently contradictory polyclonal hypergammaglobulinemia-have been reported in chronic alcoholism, no information exists about the specific subsets of circulating B cells altered and their relationship with antibody production. Here, we analyzed for the first time the distribution of multiple maturation-associated subpopulations of PB B cells in alcoholism and its potential relationship with the onset of liver disease. PB samples from 35 male patients-20 had alcoholic hepatitis (AH) and 15 chronic alcoholism without liver disease (AWLD)-were studied, in parallel to 19 male healthy donors (controls). The distribution of PB B-cell subsets (immature/regulatory, naïve, CD27(-) and CD27(+) memory B lymphocytes, and circulating plasmablasts of distinct immunoglobulin-Ig-isotypes) was analyzed by flow cytometry. Patients with AH showed significantly decreased numbers of total PB B lymphocytes (vs. controls and AWLD), at the expense of immature, memory, and, to a lesser extent, also naïve B cells. AWLD showed reduced numbers of immature and naïve B cells (vs. controls), but higher PB counts of plasmablasts (vs. the other 2 groups). Although PB memory B cells were reduced among the patients, the percentage of surface (s)IgA(+) cells (particularly CD27(-) /sIgA(+) cells) was increased in AH, whereas both sIgG(+) and sIgA(+) memory B cells were significantly overrepresented in AWLD versus healthy donors. Regarding circulating plasmablasts, patients with AH only showed significantly reduced counts of sIgG(+) cells versus controls. In contrast, the proportion of both sIgA(+) and sIgG(+) plasmablasts-from all plasmablasts-was reduced in AH and increased in AWLD (vs. the other 2 groups). AH and AWLD patients display a significantly reduced PB B-cell count, at the expense of decreased numbers of recently produced immature/regulatory B cells and naïve B cells, together with an increase in Ig-switched memory B lymphocytes and plasmablasts, particularly of IgA(+) cells. Copyright © 2015 by the Research Society on Alcoholism.

  19. In Vitro Measles Virus Infection of Human Lymphocyte Subsets Demonstrates High Susceptibility and Permissiveness of both Naive and Memory B Cells.

    PubMed

    Laksono, Brigitta M; Grosserichter-Wagener, Christina; de Vries, Rory D; Langeveld, Simone A G; Brem, Maarten D; van Dongen, Jacques J M; Katsikis, Peter D; Koopmans, Marion P G; van Zelm, Menno C; de Swart, Rik L

    2018-04-15

    Measles is characterized by a transient immune suppression, leading to an increased risk of opportunistic infections. Measles virus (MV) infection of immune cells is mediated by the cellular receptor CD150, expressed by subsets of lymphocytes, dendritic cells, macrophages, and thymocytes. Previous studies showed that human and nonhuman primate memory T cells express higher levels of CD150 than naive cells and are more susceptible to MV infection. However, limited information is available about the CD150 expression and relative susceptibility to MV infection of B-cell subsets. In this study, we assessed the susceptibility and permissiveness of naive and memory T- and B-cell subsets from human peripheral blood or tonsils to in vitro MV infection. Our study demonstrates that naive and memory B cells express CD150, but at lower frequencies than memory T cells. Nevertheless, both naive and memory B cells proved to be highly permissive to MV infection. Furthermore, we assessed the susceptibility and permissiveness of various functionally distinct T and B cells, such as helper T (T H ) cell subsets and IgG- and IgA-positive memory B cells, in peripheral blood and tonsils. We demonstrated that T H 1T H 17 cells and plasma and germinal center B cells were the subsets most susceptible and permissive to MV infection. Our study suggests that both naive and memory B cells, along with several other antigen-experienced lymphocytes, are important target cells of MV infection. Depletion of these cells potentially contributes to the pathogenesis of measles immune suppression. IMPORTANCE Measles is associated with immune suppression and is often complicated by bacterial pneumonia, otitis media, or gastroenteritis. Measles virus infects antigen-presenting cells and T and B cells, and depletion of these cells may contribute to lymphopenia and immune suppression. Measles has been associated with follicular exhaustion in lymphoid tissues in humans and nonhuman primates, emphasizing the importance of MV infection of B cells in vivo However, information on the relative susceptibility of B-cell subsets is scarce. Here, we compared the susceptibility and permissiveness to in vitro MV infection of human naive and memory T- and B-cell subsets isolated from peripheral blood or tonsils. Our results demonstrate that both naive and memory B cells are more permissive to MV infection than T cells. The highest infection levels were detected in plasma cells and germinal center B cells, suggesting that infection and depletion of these populations contribute to reduced host resistance. Copyright © 2018 Laksono et al.

  20. In Vitro Measles Virus Infection of Human Lymphocyte Subsets Demonstrates High Susceptibility and Permissiveness of both Naive and Memory B Cells

    PubMed Central

    Laksono, Brigitta M.; Grosserichter-Wagener, Christina; de Vries, Rory D.; Langeveld, Simone A. G.; Brem, Maarten D.; van Dongen, Jacques J. M.; Koopmans, Marion P. G.

    2018-01-01

    ABSTRACT Measles is characterized by a transient immune suppression, leading to an increased risk of opportunistic infections. Measles virus (MV) infection of immune cells is mediated by the cellular receptor CD150, expressed by subsets of lymphocytes, dendritic cells, macrophages, and thymocytes. Previous studies showed that human and nonhuman primate memory T cells express higher levels of CD150 than naive cells and are more susceptible to MV infection. However, limited information is available about the CD150 expression and relative susceptibility to MV infection of B-cell subsets. In this study, we assessed the susceptibility and permissiveness of naive and memory T- and B-cell subsets from human peripheral blood or tonsils to in vitro MV infection. Our study demonstrates that naive and memory B cells express CD150, but at lower frequencies than memory T cells. Nevertheless, both naive and memory B cells proved to be highly permissive to MV infection. Furthermore, we assessed the susceptibility and permissiveness of various functionally distinct T and B cells, such as helper T (TH) cell subsets and IgG- and IgA-positive memory B cells, in peripheral blood and tonsils. We demonstrated that TH1TH17 cells and plasma and germinal center B cells were the subsets most susceptible and permissive to MV infection. Our study suggests that both naive and memory B cells, along with several other antigen-experienced lymphocytes, are important target cells of MV infection. Depletion of these cells potentially contributes to the pathogenesis of measles immune suppression. IMPORTANCE Measles is associated with immune suppression and is often complicated by bacterial pneumonia, otitis media, or gastroenteritis. Measles virus infects antigen-presenting cells and T and B cells, and depletion of these cells may contribute to lymphopenia and immune suppression. Measles has been associated with follicular exhaustion in lymphoid tissues in humans and nonhuman primates, emphasizing the importance of MV infection of B cells in vivo. However, information on the relative susceptibility of B-cell subsets is scarce. Here, we compared the susceptibility and permissiveness to in vitro MV infection of human naive and memory T- and B-cell subsets isolated from peripheral blood or tonsils. Our results demonstrate that both naive and memory B cells are more permissive to MV infection than T cells. The highest infection levels were detected in plasma cells and germinal center B cells, suggesting that infection and depletion of these populations contribute to reduced host resistance. PMID:29437964

  1. Follicular helper T cell in immunity and autoimmunity.

    PubMed

    Mesquita, D; Cruvinel, W M; Resende, L S; Mesquita, F V; Silva, N P; Câmara, N O S; Andrade, L E C

    2016-01-01

    The traditional concept that effector T helper (Th) responses are mediated by Th1/Th2 cell subtypes has been broadened by the recent demonstration of two new effector T helper cells, the IL-17 producing cells (Th17) and the follicular helper T cells (Tfh). These new subsets have many features in common, such as the ability to produce IL-21 and to express the IL-23 receptor (IL23R), the inducible co-stimulatory molecule ICOS, and the transcription factor c-Maf, all of them essential for expansion and establishment of the final pool of both subsets. Tfh cells differ from Th17 by their ability to home to B cell areas in secondary lymphoid tissue through interactions mediated by the chemokine receptor CXCR5 and its ligand CXCL13. These CXCR5+ CD4+ T cells are considered an effector T cell type specialized in B cell help, with a transcriptional profile distinct from Th1 and Th2 cells. The role of Tfh cells and its primary product, IL-21, on B-cell activation and differentiation is essential for humoral immunity against infectious agents. However, when deregulated, Tfh cells could represent an important mechanism contributing to exacerbated humoral response and autoantibody production in autoimmune diseases. This review highlights the importance of Tfh cells by focusing on their biology and differentiation processes in the context of normal immune response to infectious microorganisms and their role in the pathogenesis of autoimmune diseases.

  2. Inflammation-induced CD69+ Kupffer cell feedback inhibits T cell proliferation via membrane-bound TGF-β1.

    PubMed

    Zhang, Xiang; Jiang, Zhengping; Gu, Yan; Liu, Yanfang; Cao, Xuetao; Han, Yanmei

    2016-12-01

    Kupffer cells, tissue-resident macrophage lineage cell, are enriched in vertebrate liver. The mouse F4/80 + Kupffer cells have been subclassified into two subpopulations according to their phenotype and function: CD68 + subpopulation with potent reactive oxygen species (ROS) production and phagocytic capacities, and CD11b + subpopulation with a potent capacity to produce T helper 1 cytokines. In addition, CD11b + Kupffer cells/macrophages may be migrated from the bone marrow or spleen, especially in inflammatory conditions of the liver. For analyzing diverse Kupffer cell subsets, we infected mice with Listeria monocytogenes and analyzed the phenotype variations of hepatic Kupffer cells. During L. monocytogenes infection, hepatic CD69 + Kupffer cells were significantly induced and expanded, and CD69 + Kupffer cells expressed higher level of CD11b, and particularly high level of membrane-bound TGF-β1 (mTGF-β1) but lower level of F4/80. We also found that clodronate liposome administration did not eliminate hepatic CD69 + Kupffer cell subset. We consider the hepatic CD69 + Kupffer cell population corresponds to CD11b + Kupffer cells, the bone marrow-derived population. Hepatic CD69 + Kupffer cells suppressed Ag-nonspecific and OVA-specific CD4 T cell proliferation through mTGF-β1 both in vitro and in vivo, meanwhile, they did not interfere with activation of CD4 T cells. Thus, we have identified a new subset of inflammation-induced CD69 + Kupffer cells which can feedback inhibit CD4 T cell response via cell surface TGF-β1 at the late stage of immune response against infection. CD69 + Kupffer cells may contribute to protect host from pathological injure by preventing overactivation of immune response.

  3. Impact of cladribine therapy on changes in circulating dendritic cell subsets, T cells and B cells in patients with multiple sclerosis.

    PubMed

    Mitosek-Szewczyk, Krystyna; Tabarkiewicz, Jacek; Wilczynska, Barbara; Lobejko, Katarzyna; Berbecki, Jerzy; Nastaj, Marcin; Dworzanska, Ewa; Kolodziejczyk, Beata; Stelmasiak, Zbigniew; Rolinski, Jacek

    2013-09-15

    Cladribine causes sustained reduction in peripheral T and B cell populations while sparing other immune cells. We determined two populations of dendritic cells (DCs): namely CD1c(+)/CD19(-) (myeloid DCs) and CD303(+)/CD123(+) (plasmacytoid DCs), CD19(+) B lymphocytes, CD3(+) T lymphocytes and CD4(+) or CD8(+) subpopulations in patients with multiple sclerosis after cladribine therapy. We examined 50 patients with secondary progressive multiple sclerosis (SP MS) according to McDonalds et al.'s criteria, 2001 [15]. Blood samples were collected before the initiation of cladribine therapy and after 1st, 2nd, 3th, 4th and 5th courses of treatment. DC subsets, T and B cells were analyzed by flow cytometry. During cladribine treatment the myeloid DCs CD1c(+)/CD19(-) did not change (p=0.73175), and the plasmacytoid DCs CD303(+)/CD123(+) significantly increased (p=0.00034) which resulted in significant changes in the ratio of myeloid DCs to plasmacytoid DCs (p=0.00273). During therapy, B lymphocyte CD19(+) significantly decreased (p=0.00005) and significant changes in CD4(+) cells (p=0.00191), changes in CD8(+) cells (p=0.05760) and significant changes in CD3(+) (p=0.01822) were found. We noticed significant trend to increase the CD303(+) circulating the dendritic cells. This population produces large amounts of IFN-alfa. We found significant and rapid decrease in B cells and CD4(+) Th cells. Our results suggest two possible ways of beneficial cladribine influence on immune system in MS. Induction of IFN-alfa producing cells and their predominance over BDCA-1(+) DCs, which are associated with cytotoxic response. Additionally, cladribine could influence two populations of lymphocytes: B cells and Th lymphocytes responsible for induction of immune response against myelin antigens. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Expression of sialosyl-Tn in colony-forming unit-erythroid, erythroblasts, B cells, and a subset of CD4+ cells.

    PubMed

    Muroi, K; Suda, T; Nakamura, M; Okada, S; Nojiri, H; Amemiya, Y; Miura, Y; Hakomori, S

    1994-01-01

    The epitopes Tn and sialosyl-Tn are expressed on erythrocytes of individuals with a very rare blood group, who often suffer from "Tn syndrome." We surveyed expression of Tn and sialosyl-Tn in normal blood cells, malignant transformed cells, and progenitor stem cells from bone marrow (BM). An anti-Tn antibody, IE3, and an anti-sialosyl-Tn antibody, TKH2, were used in this study. TKH2 reacted with erythroblasts, B cells, and a subset of CD4+ cells; but not with erythrocytes. Erythroblastic cell lines (K562, HEL, and UT7/EPO) and B-cell lines (Daudi, Raji, and B-cell lines transformed by Epstein-Barr virus) showed reactivity to TKH2. Similar results from the reactivity of TKH2 with transformed cells from leukemia patients and lymphoma patients were obtained; TKH2 reacted with blasts from erythroleukemia (M6; for 4 of 4 cases) and with lymphocytes from B-cell chronic lymphocytic leukemia (3 of 3), B-cell lymphoma (5 of 5), and CD4+ adult T-cell leukemia (4 of 4), but did not react with blasts from acute myeloid leukemia (M0 to M5; 0 of 22) or acute lymphoid leukemia (B-lymphoid leukemia, 0 of 11; T-lymphoid leukemia, 0 of 2; undifferentiated leukemia, 0 of 1). IE3 did not react with all of the tested cells. CD2-CD19-TKH2+ normal BM cells (BMC) contained blasts and various maturation stages of erythroblasts. The TKH2+ cells produced a large number of colony-forming unit-erythroid (CFU-E) colonies, whereas they produced a small number of burst-forming unit-erythroid colonies and CFU-granulocyte-macrophage colonies. CD34+ normal BMC did not express Tn and sialosyl-Tn. These findings suggest that sialosyl-Tn expresses in CFU-E to erythroblasts.

  5. CD22 expression mediates the regulatory functions of peritoneal B-1a cells during the remission phase of contact hypersensitivity reactions.

    PubMed

    Nakashima, Hiroko; Hamaguchi, Yasuhito; Watanabe, Rei; Ishiura, Nobuko; Kuwano, Yoshihiro; Okochi, Hitoshi; Takahashi, Yoshimasa; Tamaki, Kunihiko; Sato, Shinichi; Tedder, Thomas F; Fujimoto, Manabu

    2010-05-01

    Although contact hypersensitivity (CHS) has been considered a prototype of T cell-mediated immune reactions, recently a significant contribution of regulatory B cell subsets in the suppression of CHS has been demonstrated. CD22, one of the sialic acid-binding immunoglobulin-like lectins, is a B cell-specific molecule that negatively regulates BCR signaling. To clarify the roles of B cells in CHS, CHS in CD22(-/-) mice was investigated. CD22(-/-) mice showed delayed recovery from CHS reactions compared with that of wild-type mice. Transfer of wild-type peritoneal B-1a cells reversed the prolonged CHS reaction seen in CD22(-/-) mice, and this was blocked by the simultaneous injection with IL-10 receptor Ab. Although CD22(-/-) peritoneal B-1a cells were capable of producing IL-10 at wild-type levels, i.p. injection of differentially labeled wild-type/CD22(-/-) B cells demonstrated that a smaller number of CD22(-/-) B cells resided in lymphoid organs 5 d after CHS elicitation, suggesting a defect in survival or retention in activated CD22(-/-) peritoneal B-1 cells. Thus, our study reveals a regulatory role for peritoneal B-1a cells in CHS. Two distinct regulatory B cell subsets cooperatively inhibit CHS responses. Although splenic CD1d(hi)CD5(+) B cells have a crucial role in suppressing the acute exacerbating phase of CHS, peritoneal B-1a cells are likely to suppress the late remission phase as "regulatory B cells." CD22 deficiency results in disturbed CHS remission by impaired retention or survival of peritoneal B-1a cells that migrate into lymphoid organs.

  6. Circulating B cells in type 1 diabetics exhibit fewer maturation-associated phenotypes.

    PubMed

    Hanley, Patrick; Sutter, Jennifer A; Goodman, Noah G; Du, Yangzhu; Sekiguchi, Debora R; Meng, Wenzhao; Rickels, Michael R; Naji, Ali; Luning Prak, Eline T

    2017-10-01

    Although autoantibodies have been used for decades as diagnostic and prognostic markers in type 1 diabetes (T1D), further analysis of developmental abnormalities in B cells could reveal tolerance checkpoint defects that could improve individualized therapy. To evaluate B cell developmental progression in T1D, immunophenotyping was used to classify circulating B cells into transitional, mature naïve, mature activated, and resting memory subsets. Then each subset was analyzed for the expression of additional maturation-associated markers. While the frequencies of B cell subsets did not differ significantly between patients and controls, some T1D subjects exhibited reduced proportions of B cells that expressed transmembrane activator and CAML interactor (TACI) and Fas receptor (FasR). Furthermore, some T1D subjects had B cell subsets with lower frequencies of class switching. These results suggest circulating B cells exhibit variable maturation phenotypes in T1D. These phenotypic variations may correlate with differences in B cell selection in individual T1D patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. B cell modulation strategies in autoimmunity: the SLE example.

    PubMed

    Rosado, M Manuela; Diamanti, Andrea Picchianti; Capolunghi, Federica; Carsetti, Rita

    2011-01-01

    The paradigm that T cells are the prime effectors of autoimmune diseases has been recently challenged by growing evidence that B-lymphocytes play a role in the development, re-activation and persistence of autoimmune disorders. B-cells of different subsets may play different roles in autoimmune pathologies due to their ability to secrete antibodies, produce cytokines, present antigen and form ectopic germinal centers. Thus, a given therapeutic approach or drug may have distinct outcomes depending on which specific B cell subset is targeted. Immunosuppressive therapies such as azathioprine (AZA), cyclophosphamide (CyC) or methotrexate (MTX) are conventionally used in autoimmune diseases with the aim of reducing disease activity and improving the patient's general health conditions. These treatments do not target a specific cellular type or subset and have substantial side effects, such as impairment of liver function and fertility. Moreover, autoimmune patients may be refractory to immunosuppressive therapy. In these cases finding an effective treatment becomes a challenge. The fast evolution in antibody technology is leading to the production of a wide array of humanized monoclonal antibodies, targeting specific cell types or pathways, initiating a new era in the treatment of autoimmune disorders. In addition, the recent discovery that toll like receptors (TLRs) activation can fire up autoimmunity in humans and maintain disease gives the grounds for the development of new drugs targeting the TLR/MyD88 pathway. In contrast to conventional immune-suppression, the availability of drugs interfering with B-cell specific pathogenetic pathways gives the possibility to choose therapies tailored to each disease and, possibly, to each patient.

  8. Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond.

    PubMed

    Garraud, Olivier; Borhis, Gwenoline; Badr, Gamal; Degrelle, Séverine; Pozzetto, Bruno; Cognasse, Fabrice; Richard, Yolande

    2012-11-29

    The immunological roles of B-cells are being revealed as increasingly complex by functions that are largely beyond their commitment to differentiate into plasma cells and produce antibodies, the key molecular protagonists of innate immunity, and also by their compartmentalisation, a more recently acknowledged property of this immune cell category. For decades, B-cells have been recognised by their expression of an immunoglobulin that serves the function of an antigen receptor, which mediates intracellular signalling assisted by companion molecules. As such, B-cells were considered simple in their functioning compared to the other major type of immune cell, the T-lymphocytes, which comprise conventional T-lymphocyte subsets with seminal roles in homeostasis and pathology, and non-conventional T-lymphocyte subsets for which increasing knowledge is accumulating. Since the discovery that the B-cell family included two distinct categories - the non-conventional, or extrafollicular, B1 cells, that have mainly been characterised in the mouse; and the conventional, or lymph node type, B2 cells - plus the detailed description of the main B-cell regulator, FcγRIIb, and the function of CD40(+) antigen presenting cells as committed/memory B-cells, progress in B-cell physiology has been slower than in other areas of immunology. Cellular and molecular tools have enabled the revival of innate immunity by allowing almost all aspects of cellular immunology to be re-visited. As such, B-cells were found to express "Pathogen Recognition Receptors" such as TLRs, and use them in concert with B-cell signalling during innate and adaptive immunity. An era of B-cell phenotypic and functional analysis thus began that encompassed the study of B-cell microanatomy principally in the lymph nodes, spleen and mucosae. The novel discovery of the differential localisation of B-cells with distinct phenotypes and functions revealed the compartmentalisation of B-cells. This review thus aims to describe novel findings regarding the B-cell compartments found in the mouse as a model organism, and in human physiology and pathology. It must be emphasised that some differences are noticeable between the mouse and human systems, thus increasing the complexity of B-cell compartmentalisation. Special attention will be given to the (lymph node and spleen) marginal zones, which represent major crossroads for B-cell types and functions and a challenge for understanding better the role of B-cell specificities in innate and adaptive immunology.

  9. Evaluation of intranuclear BrdU detection procedures for use in multicolor flow cytometry*

    PubMed Central

    Rothaeusler, Kristina; Baumgarth, Nicole

    2010-01-01

    Background Measurement of cell proliferation via BrdU incorporation in combination with multicolor cell surface staining would facilitate studies on cell subsets that require multiple markers for their identification. However, the extent to which the often harsh cell preparation procedures required affect the staining quality of more recently developed fluorescent dyes has not been assessed. Methods Three cell preparation protocols for BrdU measurement were compared for their ability to maintain fluorescent surface staining and scatter parameters of in vivo BrdU-labeled cells by flow cytometry. A 10-color fluorescent panel was developed to test the quality of surface staining following cell treatment and the ability to perform BrdU measurements on even small B lymphocyte subsets. Results All cell preparation procedures affected the quality of fluorescent and/or scatter parameters to varying degrees. Paraformaldehyde / saponin-based procedures preserved sufficient fluorescent surface staining to determine BrdU incorporation rates among all splenic B cell subsets, including B-1a cells, which constitute roughly 0.5% of cells. Turnover rates of B-1a cells were similar to immature B cells and higher than those of the other mature B cell subsets. Conclusion Paraformaldehyde / saponin-based cell preparation procedures facilitate detailed cell turnover studies on small cell subsets in vivo, revealing new functional information on rare cell populations. PMID:16538653

  10. Extended B cell phenotype in patients with myalgic encephalomyelitis/chronic fatigue syndrome: a cross‐sectional study

    PubMed Central

    Mensah, F.; Bansal, A.; Berkovitz, S.; Sharma, A.; Reddy, V.; Leandro, M. J.

    2016-01-01

    Summary Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a heterogeneous condition of unknown aetiology characterized by multiple symptoms including fatigue, post‐exertional malaise and cognitive impairment, lasting for at least 6 months. Recently, two clinical trials of B cell depletion therapy with rituximab (anti‐CD20) reported convincing improvement in symptoms. A possible but undefined role for B cells has therefore been proposed. Studies of the relative percentages of B cell subsets in patients with ME/CFS have not revealed any reproducible differences from healthy controls (HC). In order to explore whether more subtle alterations in B cell subsets related to B cell differentiation exist in ME/CFS patients we used flow cytometry to immunophenotype CD19+ B cells. The panel utilized immunoglobulin (Ig)D, CD27 and CD38 (classical B cell subsets) together with additional markers. A total of 38 patients fulfilling Canadian, Centre for Disease Control and Fukuda ME/CFS criteria and 32 age‐ and sex‐matched HC were included. We found no difference in percentages of classical subsets between ME/CFS patients and HC. However, we observed an increase in frequency (P < 0·01) and expression (MFI; P = 0·03) of CD24 on total B cells, confined to IgD+ subsets. Within memory subsets, a higher frequency of CD21+CD38– B cells (>20%) was associated with the presence of ME/CFS [odds ratio: 3·47 (1·15–10·46); P = 0·03] compared with HC, and there was a negative correlation with disease duration. In conclusion, we identified possible changes in B cell phenotype in patients with ME/CFS. These may reflect altered B cell function and, if confirmed in other patient cohorts, could provide a platform for studies based on clinical course or responsiveness to rituximab therapy. PMID:26646713

  11. Germinal Center T Follicular Helper Cell IL-4 Production Is Dependent on Signaling Lymphocytic Activation Molecule Receptor (CD150)

    PubMed Central

    Yusuf, Isharat; Kageyama, Robin; Monticelli, Laurel; Johnston, Robert J.; DiToro, Daniel; Hansen, Kyle; Barnett, Burton; Crotty, Shane

    2010-01-01

    CD4 T cell help is critical for the generation and maintenance of germinal centers (GCs), and T follicular helper (TFH) cells are the CD4 T cell subset required for this process. Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP [SH2D1A]) expression in CD4 T cells is essential for GC development. However, SAP-deficient mice have only a moderate defect in TFH differentiation, as defined by common TFH surface markers. CXCR5+ TFH cells are found within the GC, as well as along the boundary regions of T/B cell zones. In this study, we show that GC-associated T follicular helper (GC TFH) cells can be identified by their coexpression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of TFH and GC TFH populations. GC TFH cells are a functionally discrete subset of further polarized TFH cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a TH2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC TFH cell subset and SAP− TFH cells are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that uses SAP signaling, is specifically required for IL-4 production by GC TFH cells. GC TFH cells require IL-4 and -21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by GC CD4 T cells but not in TFH cell and GC TFH cell differentiation. PMID:20525889

  12. A CD22-reactive TCR from the T-cell allorepertoire for the treatment of acute lymphoblastic leukemia by TCR gene transfer

    PubMed Central

    Jahn, Lorenz; Hagedoorn, Renate S.; van der Steen, Dirk M.; Hombrink, Pleun; Kester, Michel G.D.; Schoonakker, Marjolein P.; de Ridder, Daniëlle; van Veelen, Peter A.; Falkenburg, J.H. Frederik; Heemskerk, Mirjam H.M.

    2016-01-01

    CD22 is currently evaluated as a target-antigen for the treatment of B-cell malignancies using chimeric antigen receptor (CAR)-engineered T-cells or monoclonal antibodies (mAbs). CAR- and mAbs-based immunotherapies have been successfully applied targeting other antigens, however, occurrence of refractory disease to these interventions urges the identification of additional strategies. Here, we identified a TCR recognizing the CD22-derived peptide RPFPPHIQL (CD22RPF) presented in human leukocyte antigen (HLA)-B*07:02. To overcome tolerance to self-antigens such as CD22, we exploited the immunogenicity of allogeneic HLA. CD22RPF-specific T-cell clone 9D4 was isolated from a healthy HLA-B*07:02neg individual, efficiently produced cytokines upon stimulation with primary acute lymphoblastic leukemia and healthy B-cells, but did not react towards healthy hematopoietic and nonhematopoietic cell subsets, including dendritic cells (DCs) and macrophages expressing low levels of CD22. Gene transfer of TCR-9D4 installed potent CD22-specificity onto recipient CD8+ T-cells that recognized and lysed primary B-cell leukemia. TCR-transduced T-cells spared healthy CD22neg hematopoietic cell subsets but weakly lysed CD22low-expressing DCs and macrophages. CD22-specific TCR-engineered T-cells could form an additional immunotherapeutic strategy with a complementary role to CAR- and antibody-based interventions in the treatment of B-cell malignancies. However, CD22 expression on non-B-cells may limit the attractiveness of CD22 as target-antigen in cellular immunotherapy. PMID:27689397

  13. A CD22-reactive TCR from the T-cell allorepertoire for the treatment of acute lymphoblastic leukemia by TCR gene transfer.

    PubMed

    Jahn, Lorenz; Hagedoorn, Renate S; van der Steen, Dirk M; Hombrink, Pleun; Kester, Michel G D; Schoonakker, Marjolein P; de Ridder, Daniëlle; van Veelen, Peter A; Falkenburg, J H Frederik; Heemskerk, Mirjam H M

    2016-11-01

    CD22 is currently evaluated as a target-antigen for the treatment of B-cell malignancies using chimeric antigen receptor (CAR)-engineered T-cells or monoclonal antibodies (mAbs). CAR- and mAbs-based immunotherapies have been successfully applied targeting other antigens, however, occurrence of refractory disease to these interventions urges the identification of additional strategies. Here, we identified a TCR recognizing the CD22-derived peptide RPFPPHIQL (CD22RPF) presented in human leukocyte antigen (HLA)-B*07:02. To overcome tolerance to self-antigens such as CD22, we exploited the immunogenicity of allogeneic HLA. CD22RPF-specific T-cell clone 9D4 was isolated from a healthy HLA-B*07:02neg individual, efficiently produced cytokines upon stimulation with primary acute lymphoblastic leukemia and healthy B-cells, but did not react towards healthy hematopoietic and nonhematopoietic cell subsets, including dendritic cells (DCs) and macrophages expressing low levels of CD22. Gene transfer of TCR-9D4 installed potent CD22-specificity onto recipient CD8+ T-cells that recognized and lysed primary B-cell leukemia. TCR-transduced T-cells spared healthy CD22neg hematopoietic cell subsets but weakly lysed CD22low-expressing DCs and macrophages. CD22-specific TCR-engineered T-cells could form an additional immunotherapeutic strategy with a complementary role to CAR- and antibody-based interventions in the treatment of B-cell malignancies. However, CD22 expression on non-B-cells may limit the attractiveness of CD22 as target-antigen in cellular immunotherapy.

  14. The role of complement receptor positive and complement receptor negative B cells in the primary and secondary immune response to thymus independent type 2 and thymus dependent antigens.

    PubMed

    Lindsten, T; Yaffe, L J; Thompson, C B; Guelde, G; Berning, A; Scher, I; Kenny, J J

    1985-05-01

    Both complement receptor positive (CR+) and complement receptor negative (CR-) B cells have been shown to be involved in the primary immune response to PC-Hy (phosphocholine conjugated hemocyanin), a thymus dependent (TD) antigen which preferentially induces antibody secretion in Lyb-5+ B cells during a primary adoptive transfer assay. CR+ and CR- B cells also responded in a primary adoptive transfer assay to TNP-Ficoll, a thymus independent type 2 (TI-2) antigen which activates only Lyb-5+ B cells. When the secondary immune response to PC-Hy and TNP-Ficoll were analyzed, it was found that most of the immune memory to both antigens was present in the CR- B cell subset. The CR- B cell subset also dominated the secondary immune response to PC-Hy in immune defective (CBA/N X DBA/2N)F1 male mice. These data indicate that CR- B cells dominate the memory response in both the Lyb-5+ and Lyb-5- B cell subsets of normal and xid immune defective mice and suggest that Lyb-5+ and Lyb-5- B cells can be subdivided into CR+ and CR- subsets.

  15. γδ T Cells Shape Pre-Immune Peripheral B Cell Populations

    PubMed Central

    Huang, Yafei; Getahun, Andrew; Heiser, Ryan A.; Detanico, Thiago O.; Aviszus, Katja; Kirchenbaum, Greg A.; Casper, Tamara L.; Huang, Chunjian; Aydintug, M. Kemal; Carding, Simon R.; Ikuta, Koichi; Huang, Hua; Wysocki, Lawrence J.; Cambier, John C.; O’Brien, Rebecca L.; Born, Willi K.

    2015-01-01

    We previously reported that selective ablation of certain γδ T cell subsets rather than removal of all γδ T cells, strongly affects serum antibody levels in non-immunized mice. This type of manipulation also changed T cells including residual γδ T cells, revealing some interdependence of γδ T cell populations. For example, in mice lacking Vγ4+ and Vγ6+ γδ T cells (B6.TCR-Vγ4−/−/6−/−), we observed expanded Vγ1+ cells, which changed in composition and activation and produced more IL-4 upon stimulation in vitro, increased IL-4 production by αβ T cells as well as spontaneous germinal center formation in the spleen, elevated serum Ig and autoantibodies. We therefore examined B cell populations in this and other γδ-deficient mouse strains. Whereas immature bone marrow B cells remained largely unchanged, peripheral B cells underwent several changes. Specifically, transitional and mature B cells in the spleen of B6.TCR-Vγ4−/−/6−/− mice and other peripheral B cell populations were diminished, most of all splenic marginal zone (MZ) B cells. However, relative frequencies and absolute numbers of antibody-producing cells, and serum levels of antibodies, IL-4 and BAFF, were increased. Cell transfers confirmed that these changes are directly dependent on the altered γδ T cells in this strain, and their enhanced potential of producing IL-4. Further evidence suggests the possibility of direct interactions between γδ T cells and B cells in the splenic MZ. Together, these data demonstrate the capability of γδ T cells of modulating size and productivity of pre-immune peripheral B cell populations. PMID:26582947

  16. γδ T Cells Shape Preimmune Peripheral B Cell Populations.

    PubMed

    Huang, Yafei; Getahun, Andrew; Heiser, Ryan A; Detanico, Thiago O; Aviszus, Katja; Kirchenbaum, Greg A; Casper, Tamara L; Huang, Chunjian; Aydintug, M Kemal; Carding, Simon R; Ikuta, Koichi; Huang, Hua; Wysocki, Lawrence J; Cambier, John C; O'Brien, Rebecca L; Born, Willi K

    2016-01-01

    We previously reported that selective ablation of certain γδ T cell subsets, rather than removal of all γδ T cells, strongly affects serum Ab levels in nonimmunized mice. This type of manipulation also changed T cells, including residual γδ T cells, revealing some interdependence of γδ T cell populations. For example, in mice lacking Vγ4(+) and Vγ6(+) γδ T cells (B6.TCR-Vγ4(-/-)/6(-/-)), we observed expanded Vγ1(+) cells, which changed in composition and activation and produced more IL-4 upon stimulation in vitro, increased IL-4 production by αβ T cells as well as spontaneous germinal center formation in the spleen, and elevated serum Ig and autoantibodies. We therefore examined B cell populations in this and other γδ-deficient mouse strains. Whereas immature bone marrow B cells remained largely unchanged, peripheral B cells underwent several changes. Specifically, transitional and mature B cells in the spleen of B6.TCR-Vγ4(-/-)/6(-/-) mice and other peripheral B cell populations were diminished, most of all splenic marginal zone (MZ) B cells. However, relative frequencies and absolute numbers of Ab-producing cells, as well as serum levels of Abs, IL-4, and BAFF, were increased. Cell transfers confirmed that these changes are directly dependent on the altered γδ T cells in this strain and on their enhanced potential of producing IL-4. Further evidence suggests the possibility of direct interactions between γδ T cells and B cells in the splenic MZ. Taken together, these data demonstrate the capability of γδ T cells of modulating size and productivity of preimmune peripheral B cell populations. Copyright © 2015 by The American Association of Immunologists, Inc.

  17. A reassessment of IgM memory subsets in humans

    PubMed Central

    Bagnara, Davide; Squillario, Margherita; Kipling, David; Mora, Thierry; Walczak, Aleksandra M.; Da Silva, Lucie; Weller, Sandra; Dunn-Walters, Deborah K.; Weill, Jean-Claude; Reynaud, Claude-Agnès

    2015-01-01

    From paired blood and spleen samples from three adult donors we performed high-throughput V-h sequencing of human B-cell subsets defined by IgD and CD27 expression: IgD+CD27+ (“MZ”), IgD−CD27+(“memory”, including IgM (“IgM-only”), IgG and IgA) and IgD−CD27− cells (“double-negative”, including IgM, IgG and IgA). 91,294 unique sequences clustered in 42,670 clones, revealing major clonal expansions in each of these subsets. Among these clones, we further analyzed those shared sequences from different subsets or tissues for Vh-gene mutation, H-CDR3-length, and Vh/Jh usage, comparing these different characteristics with all sequences from their subset of origin, for which these parameters constitute a distinct signature. The IgM-only repertoire profile differed notably from that of MZ B cells by a higher mutation frequency, and lower Vh4 and higher Jh6 gene usage. Strikingly, IgM sequences from clones shared between the MZ and the memory IgG/IgA compartments showed a mutation and repertoire profile of IgM-only and not of MZ B cells. Similarly, all IgM clonal relationships (between MZ, IgM-only, and double-negative compartments) involved sequences with the characteristics of IgM-only B cells. Finally, clonal relationships between tissues suggested distinct recirculation characteristics between MZ and switched B cells. The “IgM-only” subset (including cells with its repertoire signature but higher IgD or lower CD27 expression levels) thus appear as the only subset showing precursor-product relationships with CD27+ switched memory B cells, indicating that they represent germinal center-derived IgM memory B cells, and that IgM memory and MZ B cells constitute two distinct entities. PMID:26355154

  18. A Reassessment of IgM Memory Subsets in Humans.

    PubMed

    Bagnara, Davide; Squillario, Margherita; Kipling, David; Mora, Thierry; Walczak, Aleksandra M; Da Silva, Lucie; Weller, Sandra; Dunn-Walters, Deborah K; Weill, Jean-Claude; Reynaud, Claude-Agnès

    2015-10-15

    From paired blood and spleen samples from three adult donors, we performed high-throughput VH sequencing of human B cell subsets defined by IgD and CD27 expression: IgD(+)CD27(+) ("marginal zone [MZ]"), IgD(-)CD27(+) ("memory," including IgM ["IgM-only"], IgG and IgA) and IgD(-)CD27(-) cells ("double-negative," including IgM, IgG, and IgA). A total of 91,294 unique sequences clustered in 42,670 clones, revealing major clonal expansions in each of these subsets. Among these clones, we further analyzed those shared sequences from different subsets or tissues for VH gene mutation, H-CDR3-length, and VH/JH usage, comparing these different characteristics with all sequences from their subset of origin for which these parameters constitute a distinct signature. The IgM-only repertoire profile differed notably from that of MZ B cells by a higher mutation frequency and lower VH4 and higher JH6 gene usage. Strikingly, IgM sequences from clones shared between the MZ and the memory IgG/IgA compartments showed a mutation and repertoire profile of IgM-only and not of MZ B cells. Similarly, all IgM clonal relationships (among MZ, IgM-only, and double-negative compartments) involved sequences with the characteristics of IgM-only B cells. Finally, clonal relationships between tissues suggested distinct recirculation characteristics between MZ and switched B cells. The "IgM-only" subset (including cells with its repertoire signature but higher IgD or lower CD27 expression levels) thus appear as the only subset showing precursor-product relationships with CD27(+) switched memory B cells, indicating that they represent germinal center-derived IgM memory B cells and that IgM memory and MZ B cells constitute two distinct entities. Copyright © 2015 by The American Association of Immunologists, Inc.

  19. Control of Innate and Adaptive Lymphocytes by the RAR-Retinoic Acid Axis.

    PubMed

    Kim, Chang H

    2018-02-01

    Lymphocytes, such as T cells, B cells, and innate lymphoid cells (ILCs), play central roles in regulating immune responses. Retinoic acids (RAs) are vitamin A metabolites, produced and metabolized by certain tissue cells and myeloid cells in a tissue-specific manner. It has been established that RAs induce gut-homing receptors on T cells, B cells, and ILCs. A mounting body of evidence indicates that RAs exert far-reaching effects on functional differentiation and fate of these lymphocytes. For example, RAs promote effector T cell maintenance, generation of induced gut-homing regulatory and effector T cell subsets, antibody production by B cells, and functional maturation of ILCs. Key functions of RAs in regulating major groups of innate and adaptive lymphocytes are highlighted in this article.

  20. Antibody and B Cell Subset Perturbations in Human Immunodeficiency Virus-Uninfected Patients With Cryptococcosis

    PubMed Central

    Rohatgi, Soma; Nakouzi, Antonio; Carreño, Leandro J; Slosar-Cheah, Magdalena; Kuniholm, Mark H; Wang, Tao; Pappas, Peter G

    2018-01-01

    Abstract The importance of antibody immunity in protection against Cryptococcus neoformans remains unresolved. We measured serum C neoformans-specific and total antibody levels and peripheral blood B cell subsets of 12 previously healthy patients with cryptococcosis (cases) and 21 controls. Before and after adjustment for age, sex, and race, cryptococcal capsular polysaccharide immunoglobulin G was higher in cases than controls, whereas total B and memory B cell levels were lower. These associations parallel previous findings in patients with human immunodeficiency virus-associated cryptococcosis and suggest that B cell subset perturbations may also associate with disease in previously normal individuals with cryptococcosis. PMID:29354657

  1. Antibody and B Cell Subset Perturbations in Human Immunodeficiency Virus-Uninfected Patients With Cryptococcosis.

    PubMed

    Rohatgi, Soma; Nakouzi, Antonio; Carreño, Leandro J; Slosar-Cheah, Magdalena; Kuniholm, Mark H; Wang, Tao; Pappas, Peter G; Pirofski, Liise-Anne

    2018-01-01

    The importance of antibody immunity in protection against Cryptococcus neoformans remains unresolved. We measured serum C neoformans -specific and total antibody levels and peripheral blood B cell subsets of 12 previously healthy patients with cryptococcosis (cases) and 21 controls. Before and after adjustment for age, sex, and race, cryptococcal capsular polysaccharide immunoglobulin G was higher in cases than controls, whereas total B and memory B cell levels were lower. These associations parallel previous findings in patients with human immunodeficiency virus-associated cryptococcosis and suggest that B cell subset perturbations may also associate with disease in previously normal individuals with cryptococcosis.

  2. Chronic Lymphocytic Leukemia B-Cell Normal Cellular Counterpart: Clues From a Functional Perspective

    PubMed Central

    Darwiche, Walaa; Gubler, Brigitte; Marolleau, Jean-Pierre; Ghamlouch, Hussein

    2018-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of small mature-looking CD19+ CD23+ CD5+ B-cells that accumulate in the blood, bone marrow, and lymphoid organs. To date, no consensus has been reached concerning the normal cellular counterpart of CLL B-cells and several B-cell types have been proposed. CLL B-cells have remarkable phenotypic and gene expression profile homogeneity. In recent years, the molecular and cellular biology of CLL has been enriched by seminal insights that are leading to a better understanding of the natural history of the disease. Immunophenotypic and molecular approaches (including immunoglobulin heavy-chain variable gene mutational status, transcriptional and epigenetic profiling) comparing the normal B-cell subset and CLL B-cells provide some new insights into the normal cellular counterpart. Functional characteristics (including activation requirements and propensity for plasma cell differentiation) of CLL B-cells have now been investigated for 50 years. B-cell subsets differ substantially in terms of their functional features. Analysis of shared functional characteristics may reveal similarities between normal B-cell subsets and CLL B-cells, allowing speculative assignment of a normal cellular counterpart for CLL B-cells. In this review, we summarize current data regarding peripheral B-cell differentiation and human B-cell subsets and suggest possibilities for a normal cellular counterpart based on the functional characteristics of CLL B-cells. However, a definitive normal cellular counterpart cannot be attributed on the basis of the available data. We discuss the functional characteristics required for a cell to be logically considered to be the normal counterpart of CLL B-cells. PMID:29670635

  3. Splenic TFH expansion participates in B-cell differentiation and antiplatelet-antibody production during immune thrombocytopenia.

    PubMed

    Audia, Sylvain; Rossato, Marzia; Santegoets, Kim; Spijkers, Sanne; Wichers, Catharina; Bekker, Cornelis; Bloem, Andries; Boon, Louis; Flinsenberg, Thijs; Compeer, Ewoud; van den Broek, Theo; Facy, Olivier; Ortega-Deballon, Pablo; Berthier, Sabine; Leguy-Seguin, Vanessa; Martin, Laurent; Ciudad, Marion; Samson, Maxime; Trad, Malika; Lorcerie, Bernard; Janikashvili, Nona; Saas, Philippe; Bonnotte, Bernard; Radstake, Timothy R D J

    2014-10-30

    Antiplatelet-antibody-producing B cells play a key role in immune thrombocytopenia (ITP) pathogenesis; however, little is known about T-cell dysregulations that support B-cell differentiation. During the past decade, T follicular helper cells (TFHs) have been characterized as the main T-cell subset within secondary lymphoid organs that promotes B-cell differentiation leading to antibody class-switch recombination and secretion. Herein, we characterized TFHs within the spleen of 8 controls and 13 ITP patients. We show that human splenic TFHs are the main producers of interleukin (IL)-21, express CD40 ligand (CD154), and are located within the germinal center of secondary follicles. Compared with controls, splenic TFH frequency is higher in ITP patients and correlates with germinal center and plasma cell percentages that are also increased. In vitro, IL-21 stimulation combined with an anti-CD40 agonist antibody led to the differentiation of splenic B cells into plasma cells and to the secretion of antiplatelet antibodies in ITP patients. Overall, these results point out the involvement of TFH in ITP pathophysiology and the potential interest of IL-21 and CD40 as therapeutic targets in ITP. © 2014 by The American Society of Hematology.

  4. Oral dendritic cells mediate antigen-specific tolerance by stimulating TH1 and regulatory CD4+ T cells.

    PubMed

    Mascarell, Laurent; Lombardi, Vincent; Louise, Anne; Saint-Lu, Nathalie; Chabre, Henri; Moussu, Hélène; Betbeder, Didier; Balazuc, Anne-Marie; Van Overtvelt, Laurence; Moingeon, Philippe

    2008-09-01

    A detailed characterization of oral antigen-presenting cells is critical to improve second-generation sublingual allergy vaccines. To characterize oral dendritic cells (DCs) within lingual and buccal tissues from BALB/c mice with respect to their surface phenotype, distribution, and capacity to polarize CD4(+) T-cell responses. In situ analysis of oral DCs was performed by immunohistology. Purified DCs were tested in vitro for their capacity to capture, process, and present the ovalbumin antigen to naive CD4(+) T cells. In vivo priming of ovalbumin-specific T cells adoptively transferred to BALB/c mice was analyzed by cytofluorometry in cervical lymph nodes after sublingual administration of mucoadhesive ovalbumin. Three subsets of oral DCs with a distinct tissue distribution were identified: (1) a minor subset of CD207(+) Langerhans cells located in the mucosa itself, (2) a major subpopulation of CD11b(+)CD11c(-) and CD11b(+)CD11c(+) myeloid DCs at the mucosal/submucosal interface, and (3) B220(+)120G8(+) plasmacytoid DCs found in submucosal tissues. Purified myeloid and plasmacytoid oral DCs capture and process the antigen efficiently and are programmed to elicit IFN-gamma and/or IL-10 production together with a suppressive function in naive CD4(+) T cells. Targeting the ovalbumin antigen to oral DCs in vivo by using mucoadhesive particles establishes tolerance in the absence of cell depletion through the stimulation of IFN-gamma and IL-10-producing CD4(+) regulatory T cells in cervical lymph nodes. The oral immune system is composed of various subsets of tolerogenic DCs organized in a compartmentalized manner and programmed to induce T(H)1/regulatory T-cell responses.

  5. Cell of origin associated classification of B-cell malignancies by gene signatures of the normal B-cell hierarchy.

    PubMed

    Johnsen, Hans Erik; Bergkvist, Kim Steve; Schmitz, Alexander; Kjeldsen, Malene Krag; Hansen, Steen Møller; Gaihede, Michael; Nørgaard, Martin Agge; Bæch, John; Grønholdt, Marie-Louise; Jensen, Frank Svendsen; Johansen, Preben; Bødker, Julie Støve; Bøgsted, Martin; Dybkær, Karen

    2014-06-01

    Recent findings have suggested biological classification of B-cell malignancies as exemplified by the "activated B-cell-like" (ABC), the "germinal-center B-cell-like" (GCB) and primary mediastinal B-cell lymphoma (PMBL) subtypes of diffuse large B-cell lymphoma and "recurrent translocation and cyclin D" (TC) classification of multiple myeloma. Biological classification of B-cell derived cancers may be refined by a direct and systematic strategy where identification and characterization of normal B-cell differentiation subsets are used to define the cancer cell of origin phenotype. Here we propose a strategy combining multiparametric flow cytometry, global gene expression profiling and biostatistical modeling to generate B-cell subset specific gene signatures from sorted normal human immature, naive, germinal centrocytes and centroblasts, post-germinal memory B-cells, plasmablasts and plasma cells from available lymphoid tissues including lymph nodes, tonsils, thymus, peripheral blood and bone marrow. This strategy will provide an accurate image of the stage of differentiation, which prospectively can be used to classify any B-cell malignancy and eventually purify tumor cells. This report briefly describes the current models of the normal B-cell subset differentiation in multiple tissues and the pathogenesis of malignancies originating from the normal germinal B-cell hierarchy.

  6. Interleukin-35 induces regulatory B cells that suppress autoimmune disease.

    PubMed

    Wang, Ren-Xi; Yu, Cheng-Rong; Dambuza, Ivy M; Mahdi, Rashid M; Dolinska, Monika B; Sergeev, Yuri V; Wingfield, Paul T; Kim, Sung-Hye; Egwuagu, Charles E

    2014-06-01

    Interleukin-10 (IL-10)-producing regulatory B (Breg) cells suppress autoimmune disease, and increased numbers of Breg cells prevent host defense to infection and promote tumor growth and metastasis by converting resting CD4(+) T cells to regulatory T (Treg) cells. The mechanisms mediating the induction and development of Breg cells remain unclear. Here we show that IL-35 induces Breg cells and promotes their conversion to a Breg subset that produces IL-35 as well as IL-10. Treatment of mice with IL-35 conferred protection from experimental autoimmune uveitis (EAU), and mice lacking IL-35 (p35 knockout (KO) mice) or defective in IL-35 signaling (IL-12Rβ2 KO mice) produced less Breg cells endogenously or after treatment with IL-35 and developed severe uveitis. Adoptive transfer of Breg cells induced by recombinant IL-35 suppressed EAU when transferred to mice with established disease, inhibiting pathogenic T helper type 17 (TH17) and TH1 cells while promoting Treg cell expansion. In B cells, IL-35 activates STAT1 and STAT3 through the IL-35 receptor comprising the IL-12Rβ2 and IL-27Rα subunits. As IL-35 also induced the conversion of human B cells into Breg cells, these findings suggest that IL-35 may be used to induce autologous Breg and IL-35(+) Breg cells and treat autoimmune and inflammatory disease.

  7. Abnormal B cell memory subsets dominate HIV-specific responses in infected individuals

    PubMed Central

    Kardava, Lela; Moir, Susan; Shah, Naisha; Wang, Wei; Wilson, Richard; Buckner, Clarisa M.; Santich, Brian H.; Kim, Leo J.Y.; Spurlin, Emily E.; Nelson, Amy K.; Wheatley, Adam K.; Harvey, Christopher J.; McDermott, Adrian B.; Wucherpfennig, Kai W.; Chun, Tae-Wook; Tsang, John S.; Li, Yuxing; Fauci, Anthony S.

    2014-01-01

    Recently, several neutralizing anti-HIV antibodies have been isolated from memory B cells of HIV-infected individuals. Despite extensive evidence of B cell dysfunction in HIV disease, little is known about the cells from which these rare HIV-specific antibodies originate. Accordingly, we used HIV envelope gp140 and CD4 or coreceptor (CoR) binding site (bs) mutant probes to evaluate HIV-specific responses in peripheral blood B cells of HIV-infected individuals at various stages of infection. In contrast to non-HIV responses, HIV-specific responses against gp140 were enriched within abnormal B cells, namely activated and exhausted memory subsets, which are largely absent in the blood of uninfected individuals. Responses against the CoRbs, which is a poorly neutralizing epitope, arose early, whereas those against the well-characterized neutralizing epitope CD4bs were delayed and infrequent. Enrichment of the HIV-specific response within resting memory B cells, the predominant subset in uninfected individuals, did occur in certain infected individuals who maintained low levels of plasma viremia and immune activation with or without antiretroviral therapy. The distribution of HIV-specific responses among memory B cell subsets was corroborated by transcriptional analyses. Taken together, our findings provide valuable insight into virus-specific B cell responses in HIV infection and demonstrate that memory B cell abnormalities may contribute to the ineffectiveness of the antibody response in infected individuals. PMID:24892810

  8. Targeting peripheral blood pro-inflammatory cytotoxic lymphocytes by inhibiting CD137 expression: novel potential treatment for COPD.

    PubMed

    Hodge, Greg; Holmes, Mark; Jersmann, Hubertus; Reynolds, Paul N; Hodge, Sandra

    2014-05-15

    We have shown that chronic obstructive pulmonary disease (COPD) is associated with increased production of pro-inflammatory cytokines and the cytotoxic mediator, granzyme B by peripheral blood steroid resistant CD28nullCD137 + CD8+ T cells and granzyme B by NKT-like and NK cells. We hypothesized that we could target these pro-inflammatory/cytotoxic lymphocytes by inhibiting co-stimulation through CD137. Isolated PBMC from patients with COPD and healthy controls were stimulated with phytohaemagglutinin (PHA) ± blocking anti-CD137 ± 10(-6) M methylprednislone (MP) (±stimulatory anti-CD137 ± control antibodies). Pro-inflammatory cytokine profiles and expression of granzyme B, by T, NKT-like CD28 ± subsets and NK cells were determined using flow cytometry. There was a significant decrease in the percentage of T, NKT-like subsets and NK cells producing IFNγ, TNFα and granzyme B in all subjects in the presence of anti-CD137 blocking antibody compared with PHA alone (eg, 60% decrease in CD8 + granzyme B + cells) or MP. Stimulatory anti-CD137 was associated with an increase in the percentage of pro-inflammatory/cytotoxic cells. The inhibitory effect of anti-CD137 on IFNγ, TNFα and granzyme B production by CD28null cells was greater than by CD28+ cells. Blocking CD137 expression is associated with downregulation of IFNγ, TNFα and granzyme B by CD8+ T and NKT-like and NK cells. Targeting CD137 may have novel therapeutic implications for patients with COPD.

  9. IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke

    PubMed Central

    Bodhankar, Sheetal; Chen, Yingxin; Vandenbark, Arthur A.; Murphy, Stephanie J.; Offner, Halina

    2013-01-01

    Clinical stroke induces inflammatory processes leading to cerebral injury. IL-10 expression is elevated during major CNS diseases and limits inflammation in the brain. Recent evidence demonstrated that absence of B-cells led to larger infarct volumes and increased numbers of activated T-cells, monocytes and microglial cells in the brain, thus implicating a regulatory role of B-cell subpopulations in limiting CNS damage from stroke. The aim of this study was to determine whether the IL-10-producing regulatory B-cell subset can limit CNS inflammation and reduce infarct volume following ischemic stroke in B-cell deficient (µMT−/−) mice. Five million IL-10-producing B-cells were obtained from IL-10-GFP reporter mice and transferred i.v. to µMT−/− mice. After 24 h following this transfer, recipients were subjected to 60 min of middle cerebral artery occlusion (MCAO) followed by 48 hours of reperfusion. Compared to vehicle-treated controls, the IL-10+ B-cell-replenished µMT−/− mice had reduced infarct volume and fewer infiltrating activated T-cells and monocytes in the affected brain hemisphere. These effects in CNS were accompanied by significant increases in regulatory T-cells and expression of the co-inhibitory receptor, PD-1, with a significant reduction in the proinflammatory milieu in the periphery. These novel observations provide the first proof of both immunoregulatory and protective functions of IL-10-secreting B-cells in MCAO that potentially could impart significant benefit for stroke patients in the clinic. PMID:23640015

  10. Clinical relevance and suppressive capacity of human MDSC subsets.

    PubMed

    Lang, Stephan; Bruderek, Kirsten; Kaspar, Cordelia; Höing, Benedikt; Kanaan, Oliver; Dominas, Nina; Hussain, Timon; Droege, Freya; Eyth, Christian Peter; Hadaschik, Boris; Brandau, Sven

    2018-06-18

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of pathologically expanded myeloid cells with immunosuppressive activity. In human disease three major MDSC subpopulations can be defined as monocytic M-MDSC, granulocytic PMN-MDSC and early stage e-MDSC, which lack myeloid lineage markers of the former two subsets. It was the purpose of this study to determine and compare the immunosuppressive capacity and clinical relevance of each of these subsets in patients with solid cancer. The frequency of MDSC subsets in the peripheral blood was determined by flow cytometry in a cohort of 49 patients with advanced head and neck cancer (HNC) and 22 patients with urological cancers. Sorted and purified MDSC subsets were tested in vitro for their T cell suppressive capacity. Frequency of circulating MDSC was correlated with overall survival of HNC patients. A high frequency of PMN-MDSC most strongly correlated with poor overall survival in HNC. T cell suppressive activity was higher in PMN-MDSC compared with M-MDSC and e-MDSC. A subset of CD66b+/CD11b+/CD16+ mature PMN-MDSC displayed high expression and activity of arginase I, and was superior to the other subsets in suppressing proliferation and cytokine production of T cells in both cancer types. High levels of this CD11b+/CD16+ PMN-MDSC, but not other PMN-MDSC subsets, strongly correlated with adverse outcome in HNC. A subset of mature CD11b+/CD16+ PMN-MDSC was identified as the MDSC subset with the strongest immunosuppressive activity and the highest clinical relevance. Copyright ©2018, American Association for Cancer Research.

  11. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus.

    PubMed

    Momtazi-Borojeni, Amir Abbas; Haftcheshmeh, Saeed Mohammadian; Esmaeili, Seyed-Alireza; Johnston, Thomas P; Abdollahi, Elham; Sahebkar, Amirhossein

    2018-02-01

    Curcumin is a polyphenol natural product isolated from turmeric, interacting with different cellular and molecular targets and, consequently, showing a wide range of pharmacological effects. Recent preclinical and clinical trials have revealed immunomodulatory properties of curcumin that arise from its effects on immune cells and mediators involved in the immune response, such as various T-lymphocyte subsets and dendritic cells, as well as different inflammatory cytokines. Systemic lupus erythematosus (SLE) is an inflammatory, chronic autoimmune-mediated disease characterized by the presence of autoantibodies, deposition of immune complexes in various organs, recruitment of autoreactive and inflammatory T cells, and excessive levels of plasma proinflammatory cytokines. The function and numbers of dendritic cells and T cell subsets, such as T helper 1 (Th1), Th17, and regulatory T cells have been found to be significantly altered in SLE. In the present report, we reviewed the results of in vitro, experimental (pre-clinical), and clinical studies pertaining to the modulatory effects that curcumin produces on the function and numbers of dendritic cells and T cell subsets, as well as relevant cytokines that participate in SLE. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. In vitro effects of 4-hydroperoxycyclophosphamide on human immunoregulatory T subset function. I. Selective effects on lymphocyte function in T-B cell collaboration.

    PubMed

    Ozer, H; Cowens, J W; Colvin, M; Nussbaum-Blumenson, A; Sheedy, D

    1982-01-01

    The alkylating agent cyclophosphamide may suppress or enhance immune responses in vivo but is inactive in vitro unless metabolized by microsomal enzyme activation. 4-hydroperoxycyclophosphamide (4-HC) is a synthetic compound that is spontaneously converted in aqueous solution to the active metabolites. In this report, we examined the in vitro sensitivity of functional human T cell subsets to 4-HC in a polyclonal B cell differentiation assay and in the generation of mitogen-induced suppressor cells for effector B cell function. Con A-induced T suppression of B cell differentiation is completely abrogated by a 1-h pretreatment of T cells at very low concentrations of between 10(-2) and 20 nmol/ml, whereas inducer T cell function is sensitive only to concentrations in greater than 40 nmol/ml. The effects of 4-HC on suppressor T cells appear to occur at concentrations that do not result in DNA cross-linking or decreased blastogenesis. Con A-induced T suppressors are generated from within the OKT4+, OKT8- subset and are sensitive to low-dose 4-HC only before activation, whereas differentiated suppressor cells are resistant to concentrations in greater than 80 nmol/ml. Low-dose 4-HC pretreatment of the B cell population results in abrogation of immunoglobulin secretion when treated B cells are cocultured with unfractionated T cells, however, this effect is completely reversible if pretreated B cells are cocultured with T cells devoid of suppressor activity. These results demonstrate that human presuppressor cells for B-effector function differentiate in response to Con A from the OKT4+, OKT8- subset and are exquisitely sensitive to low concentrations of CYP whereas mature suppressor and inducer functions are resistant to all but very high concentrations in vitro. The differential sensitivity of functional T and B cell subsets to 4-HC in vitro can be a very useful probe in dissecting immunoregulatory interactions with man.

  13. Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis

    PubMed Central

    Chousterman, Benjamin G.; Hilgendorf, Ingo; Robbins, Clinton S.; Theurl, Igor; Gerhardt, Louisa M.S.; Iwamoto, Yoshiko; Quach, Tam D.; Ali, Muhammad; Chen, John W.; Rothstein, Thomas L.; Nahrendorf, Matthias; Weissleder, Ralph

    2014-01-01

    Pneumonia is a major cause of mortality worldwide and a serious problem in critical care medicine, but the immunophysiological processes that confer either protection or morbidity are not completely understood. We show that in response to lung infection, B1a B cells migrate from the pleural space to the lung parenchyma to secrete polyreactive emergency immunoglobulin M (IgM). The process requires innate response activator (IRA) B cells, a transitional B1a-derived inflammatory subset which controls IgM production via autocrine granulocyte/macrophage colony-stimulating factor (GM-CSF) signaling. The strategic location of these cells, coupled with the capacity to produce GM-CSF–dependent IgM, ensures effective early frontline defense against bacteria invading the lungs. The study describes a previously unrecognized GM-CSF-IgM axis and positions IRA B cells as orchestrators of protective IgM immunity. PMID:24821911

  14. Bifidobacterium breve attenuates murine dextran sodium sulfate-induced colitis and increases regulatory T cell responses.

    PubMed

    Zheng, Bin; van Bergenhenegouwen, Jeroen; Overbeek, Saskia; van de Kant, Hendrik J G; Garssen, Johan; Folkerts, Gert; Vos, Paul; Morgan, Mary E; Kraneveld, Aletta D

    2014-01-01

    While some probiotics have shown beneficial effects on preventing or treating colitis development, others have shown no effects. In this study, we have assessed the immunomodulating effects of two probiotic strains, Lactobacillus rhamnosus (L. rhamnosus) and Bifidobacterium breve (B. breve) on T cell polarization in vitro, using human peripheral blood mononuclear cells (PBMC), and in vivo, using murine dextran sodium sulfate (DSS) colitis model. With respect to the latter, the mRNA expression of T cell subset-associated transcription factors and cytokines in the colon was measured and the T helper type (Th) 17 and regulatory T cell (Treg) subsets were determined in the Peyer's patches. Both L. rhamnosus and B. breve incubations in vitro reduced Th17 and increased Th2 cell subsets in human PBMCs. In addition, B. breve incubation was also able to reduce Th1 and increase Treg cell subsets in contrast to L. rhamnosus. In vivo intervention with B. breve, but not L. rhamnosus, significantly attenuated the severity of DSS-induced colitis. In DSS-treated C57BL/6 mice, intervention with B. breve increased the expression of mRNA encoding for Th2- and Treg-associated cytokines in the distal colon. In addition, intervention with B. breve led to increases of Treg and decreases of Th17 cell subsets in Peyer's patches of DSS-treated mice. B. breve modulates T cell polarization towards Th2 and Treg cell-associated responses in vitro and in vivo. In vivo B. breve intervention ameliorates DSS-induced colitis symptoms and this protective effect may mediated by its effects on the T-cell composition.

  15. Bifidobacterium breve Attenuates Murine Dextran Sodium Sulfate-Induced Colitis and Increases Regulatory T Cell Responses

    PubMed Central

    Zheng, Bin; van Bergenhenegouwen, Jeroen; Overbeek, Saskia; van de Kant, Hendrik J. G.; Garssen, Johan; Folkerts, Gert; Vos, Paul; Morgan, Mary E.; Kraneveld, Aletta D.

    2014-01-01

    While some probiotics have shown beneficial effects on preventing or treating colitis development, others have shown no effects. In this study, we have assessed the immunomodulating effects of two probiotic strains, Lactobacillus rhamnosus (L. rhamnosus) and Bifidobacterium breve (B. breve) on T cell polarization in vitro, using human peripheral blood mononuclear cells (PBMC), and in vivo, using murine dextran sodium sulfate (DSS) colitis model. With respect to the latter, the mRNA expression of T cell subset-associated transcription factors and cytokines in the colon was measured and the T helper type (Th) 17 and regulatory T cell (Treg) subsets were determined in the Peyer's patches. Both L. rhamnosus and B. breve incubations in vitro reduced Th17 and increased Th2 cell subsets in human PBMCs. In addition, B. breve incubation was also able to reduce Th1 and increase Treg cell subsets in contrast to L. rhamnosus. In vivo intervention with B. breve, but not L. rhamnosus, significantly attenuated the severity of DSS-induced colitis. In DSS-treated C57BL/6 mice, intervention with B. breve increased the expression of mRNA encoding for Th2- and Treg-associated cytokines in the distal colon. In addition, intervention with B. breve led to increases of Treg and decreases of Th17 cell subsets in Peyer's patches of DSS-treated mice. B. breve modulates T cell polarization towards Th2 and Treg cell-associated responses in vitro and in vivo. In vivo B. breve intervention ameliorates DSS-induced colitis symptoms and this protective effect may mediated by its effects on the T-cell composition. PMID:24787575

  16. B cell subsets and dysfunction of regulatory B cells in IgG4-related diseases and primary Sjögren's syndrome: the similarities and differences.

    PubMed

    Lin, Wei; Jin, Lixia; Chen, Hua; Wu, Qingjun; Fei, Yunyun; Zheng, Wenjie; Wang, Qian; Li, Ping; Li, Yongzhe; Zhang, Wen; Zhao, Yan; Zeng, Xiaofeng; Zhang, Fengchun

    2014-05-29

    IgG4-related disease (IgG4-RD) is a multisystem-involved autoimmune disease. Abnormally activated and differentiated B cells may play important roles. Regulatory B cells (Breg) are newly defined B cell subgroups with immunosuppressive functions. In this study, we investigated the differences of B cell subsets, the expressions of co-stimulatory molecules on B cells, and the function of Breg cells in patients with IgG4-RD, primary Sjögren's syndrome (pSS) as well as in healthy controls (HC). Newly diagnosed IgG4-RD patients (n = 48) were enrolled, 38 untreated pSS patients and 30 healthy volunteers were recruited as disease and healthy controls. To analyze B cell subsets and B cell activity, PBMCs were surface stained and detected by flow cytometry. The function of Breg cells was tested by coculturing isolated CD19 + CD24(hi)CD38(hi) Breg cells with purified CD4 + CD25- T cells. Serum cytokines were measured by ELISA and cytometric bead array. Relationship between clinical data and laboratory findings were analyzed as well. Compared with pSS patients and HC, IgG4-RD patients had a lower frequency of peripheral Breg cells. Interestingly, CD19 + CD24-CD38(hi) B cell subsets were significantly higher in peripheral B cells from IgG4-RD patients than in pSS patients and HC, which correlated with serum IgG4 levels. The expression of BAFF-R and CD40 on B cells was significantly lower in IgG4-RD patients compared with those in pSS patients and HC. Unlike HC, Breg cells from pSS patients lacked suppressive functions. B cells in patients with IgG4-RD and pSS display a variety of abnormalities, including disturbed B cell subpopulations, abnormal expression of key signaling molecules, co-stimulatory molecules, and inflammatory cytokines. In addition, a significantly increased B cell subset, CD19 + CD24-CD38(hi) B cells, may play an important role in the pathogenesis of IgG4-RD.

  17. Heterogeneity in Neutrophil Microparticles Reveals Distinct Proteome and Functional Properties*

    PubMed Central

    Dalli, Jesmond; Montero-Melendez, Trinidad; Norling, Lucy V; Yin, Xiaoke; Hinds, Charles; Haskard, Dorian; Mayr, Manuel; Perretti, Mauro

    2013-01-01

    Altered plasma neutrophil microparticle levels have recently been implicated in a number of vascular and inflammatory diseases, yet our understanding of their actions is very limited. Herein, we investigate the proteome of neutrophil microparticles in order to shed light on their biological actions. Stimulation of human neutrophils, either in suspension or adherent to an endothelial monolayer, led to the production of microparticles containing >400 distinct proteins with only 223 being shared by the two subsets. For instance, postadherent microparticles were enriched in alpha-2 macroglobulin and ceruloplasmin, whereas microparticles produced by neutrophils in suspension were abundant in heat shock 70 kDa protein 1. Annexin A1 and lactotransferrin were expressed in both microparticle subsets. We next determined relative abundance of these proteins in three types of human microparticle samples: healthy volunteer plasma, plasma of septic patients and skin blister exudates finding that these proteins were differentially expressed on neutrophil microparticles from these samples reflecting in part the expression profiles we found in vitro. Functional assessment of the neutrophil microparticles subsets demonstrated that in response to direct stimulation neutrophil microparticles produced reactive oxygen species and leukotriene B4 as well as locomoted toward a chemotactic gradient. Finally, we investigated the actions of the two neutrophil microparticles subsets described herein on target cell responses. Microarray analysis with human primary endothelial cells incubated with either microparticle subset revealed a discrete modulation of endothelial cell gene expression profile. These findings demonstrate that neutrophil microparticles are heterogenous and can deliver packaged information propagating the activation status of the parent cell, potentially exerting novel and fundamental roles both under homeostatic and disease conditions. PMID:23660474

  18. Potential importance of B cells in aging and aging-associated neurodegenerative diseases.

    PubMed

    Biragyn, Arya; Aliseychik, Maria; Rogaev, Evgeny

    2017-04-01

    Our understanding of B cells as merely antibody producers is slowly changing. Alone or in concert with antibody, they control outcomes of seemingly different diseases such as cancer, rheumatoid arthritis, diabetes, and multiple sclerosis. While their role in activation of effector immune cells is beneficial in cancer but bad in autoimmune diseases, their immunosuppressive and regulatory subsets (Bregs) inhibit autoimmune and anticancer responses. These pathogenic and suppressive functions are not static and appear to be regulated by the nature and strength of inflammation. Although aging increases inflammation and changes the composition and function of B cells, surprisingly, little is known whether the change affects aging-associated neurodegenerative disease, such as Alzheimer's disease (AD). Here, by analyzing B cells in cancer and autoimmune and neuroinflammatory diseases, we elucidate their potential importance in AD and other aging-associated neuroinflammatory diseases.

  19. Generation of protective T cell-independent antiviral antibody responses in SCID mice reconstituted with follicular or marginal zone B cells.

    PubMed

    Guay, Heath M; Mishra, Rabinarayan; Garcea, Robert L; Welsh, Raymond M; Szomolanyi-Tsuda, Eva

    2009-07-01

    B cells generated in the bone marrow of adult mice enter the periphery as transitional B cells and subsequently differentiate into one of two phenotypically and functionally distinct subsets, marginal zone (MZ) or follicular (Fo) B cells. Recent reports indicate, however, that in response to environmental cues, such as lymphopenia, mature Fo B cells can change to display phenotypic markers characteristic of MZ B cells. Previously, we found that splenic B cells transferred to SCID mice responded to polyoma virus (PyV) infection with T cell-independent (TI) IgM and IgG secretion, reducing the viral load and protecting mice from the lethal effect of the infection. The contribution of MZ and Fo B cell subsets to this antiviral TI-2 response, however, has not been addressed. In this study, we show that both sort-purified MZ and Fo B cells generate protective TI Ab responses to PyV infection when transferred into SCID mice. Moreover, the transferred Fo B cells in the spleens of the PyV-infected SCID mice change phenotype, with many of them displaying MZ B cell characteristics. These findings demonstrate the plasticity of the B cell subsets in virus-infected hosts and show for the first time that B cells derived exclusively from Fo B cells can effectively function in antiviral TI-2 responses.

  20. PDGF-responsive progenitors persist in the subventricular zone across the lifespan

    PubMed Central

    Moore, Lisamarie; Bain, Jennifer M.; Loh, Ji Meng; Levison, Steven W.

    2013-01-01

    The SVZ (subventricular zone) contains neural stem cells and progenitors of various potentialities. Although initially parsed into A, B, and C cells, this germinal zone is comprised of a significantly more diverse population of cells. Here, we characterized a subset of postnatal PRPs (PDGF-AA-responsive precursors) that express functional PDGFα and β receptors from birth to adulthood. When grown in PDGF-AA, dissociated neonatal rat SVZ cells divided to produce non-adherent clusters of progeny. Unlike the self-renewing EGF/FGF-2-responsive precursors that produce neurospheres, these PRPs failed to self-renew after three passages; therefore, we refer to the colonies they produce as spheroids. Upon differentiation these spheroids could produce neurons, type 1 astrocytes and oligodendrocytes. When maintained in medium supplemented with BMP-4 they also produced type 2 astrocytes. Using lineage tracing methods, it became evident that there were multiple types of PRPs, including a subset that could produce neurons, oligodendrocytes, and type 1 and type 2 astrocytes; thus some of these PRPs represent a unique population of precursors that are quatropotential. Spheroids also could be generated from the newborn neocortex and they had the same potentiality as those from the SVZ. By contrast, the adult neocortex produced less than 20% of the numbers of spheroids than the adult SVZ and spheroids from the adult neocortex only differentiated into glial cells. Interestingly, SVZ spheroid producing capacity diminished only slightly from birth to adulthood. Altogether these data demonstrate that there are PRPs that persist in the SVZ that includes a unique population of quatropotential PRPs. PMID:24367913

  1. Patterns of B-lymphocyte gene expression elicited by lipopolysaccharide mitogen.

    PubMed Central

    Janossy, G; Snajdr, J; Simak-Ellis, M

    1976-01-01

    When large proportions of B lymphocytes from the murine spleen are stimulated in vitro by bacterial lipopolysaccharide (LPS) B lymphoblasts with small amounts of intracellular immunoglobulin (Ig) and plasmablasts with large amounts of intracellular Ig concomitantly proliferate. It is likely that B lymphocytes are heterogeneous and LPS activates B cells to express their predetermined functional capacity since bromodeoxyuridine does not inhibit the initiation of Ig synthesis in plasmablasts, and Ig synthesis starts before these cells complete their first mitosis. The results suggest that LPS is a potent polyclonal activator (of a B-cell subset) but it is not a differentiation factor in the sense that it is unable to determine whether its target cell develops extensive endoplasmic reticulum or follows a different pathway. The results do not exclude that modulation of B cells' genetic programming might take place during T cell-dependent B-lymphocyte activation. The observed B-cell heterogeneity offers a possible explanation for the concomitant emergence of B memory cells and antibody producers during the early phase of immune responses in vivo. Images Figure 3 Figure 5 Figure 7 Figure 8 PMID:1088414

  2. Origin and Function of Circulating Plasmablasts during Acute Viral Infections.

    PubMed

    Fink, Katja

    2012-01-01

    Activated B cells proliferate and differentiate into antibody-producing cells, long-lived plasma cells, and memory B cells after immunization or infection. Repeated encounter of the same antigen triggers the rapid re-activation of pre-existing specific memory B cells, which then potentially enter new germinal center reactions and differentiate into short-lived plasmablasts or remain in the system as memory B cells. Short-lived class-switched IgG and IgA plasmablasts appear in the circulation transiently and the frequency of these cells can be remarkably high. The specificities and affinities of single plasmablasts in humans have been reported for several viral infections, so far most extensively for influenza and HIV. In general, the immunoglobulin variable regions of plasmablasts are highly mutated and diverse, suggesting that plasmablasts are derived from memory B cells, yet it is unclear which memory B cell subsets are activated and whether activated memory B cells adapt or mature before differentiation. This review summarizes what is known about the phenotype and the origin of human plasmablasts in the context of viral infections and whether these cells can be predictors of long-lived immunity.

  3. Deficiency in memory B cell compartment in a patient with infertility and recurrent pregnancy losses.

    PubMed

    Sung, N; Byeon, H J; Garcia, M D Salazar; Skariah, A; Wu, L; Dambaeva, S; Beaman, K; Gilman-Sachs, A; Kwak-Kim, J

    2016-11-01

    Alterations in normal balance of B cell subsets have been reported in various rheumatic diseases. In this study, we report a woman with a history of recurrent pregnancy losses (RPL) and infertility who had low levels of memory B cells. A 35-year-old woman with a history of RPL and infertility was demonstrated to have increased peripheral blood CD19+ B cells with persistently low levels of memory B cell subsets. Prior to the frozen donor egg transfer cycle, prednisone and intravenous immunoglobulin G (IVIg) treatment was initiated and patient achieved dichorionic diamniotic twin pregnancies. During pregnancy, proportion (%) of switched memory B cells CD27+IgD- increased, while percent of total CD19+ B cells and CD27-IgD+ naive B cells were gradually decreased with a high dose IVIg treatment. She developed cervical incompetence at 20 weeks of gestation, received a Cesarean section at 32 weeks of gestation due to preterm labor, and delivered twin babies. B cell subset abnormalities may be associated with infertility, RPL and preterm labor, and further investigation is needed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. T cell-intrinsic factors contribute to the differential ability of CD8+ T cells to rapidly secrete IFN-γ in the absence of antigen.

    PubMed

    Bou Ghanem, Elsa N; Nelson, Christina C; D'Orazio, Sarah E F

    2011-02-01

    A subset of CD44(hi)CD8(+) T cells isolated from C57BL/6/J (B6) mice, but not BALB/c/By/J (BALB/c) mice, rapidly secrete IFN-γ within 16 h of infection with Listeria monocytogenes. This Ag-independent response requires the presence of both IL-12 and IL-18. Previous studies showed that dendritic cells from B6 mice produced more Th1-type cytokines such as IL-12 than did those from BALB/c mice in response to L. monocytogenes infection. In this report, we demonstrate that the microenvironment in L. monocytogenes-infected BALB/c mice is sufficient to induce responsive B6 CD8(+) T cells to rapidly secrete IFN-γ. Furthermore, BALB/c CD8(+) T cells did not rapidly secrete IFN-γ even when they were exposed to high concentrations of IL-12 plus IL-18 in vitro. In the presence of IL-12 and IL-18, B6 CD44(hi)CD8(+) T cells upregulated expression of the receptor subunits for these cytokines more rapidly than did BALB/c T cells. In comparing particular subsets of memory phenotype CD8(+) T cells, we found that virtual memory cells, rather than true Ag-experienced cells, had the greatest level of impairment in BALB/c mice. These data suggest that the degree of cytokine-driven bystander activation of CD8(+) T cells that occurs during infection depends on both APCs and T cell-intrinsic properties that can vary among mouse strains.

  5. Aging-dependent decline of IL-10 producing B cells coincides with production of antinuclear antibodies but not rheumatoid factors.

    PubMed

    van der Geest, Kornelis S M; Lorencetti, Pedro G; Abdulahad, Wayel H; Horst, Gerda; Huitema, Minke; Roozendaal, Caroline; Kroesen, Bart-Jan; Brouwer, Elisabeth; Boots, Annemieke M H

    2016-03-01

    Aging is associated with development of autoimmunity. Loss of B cell tolerance in the elderly is suggested by an increased prevalence of anti-nuclear antibodies (ANAs) and rheumatoid factors (RFs). Accumulating evidence indicates that B cells also impact autoimmunity via secretion of cytokines. So far, few studies have directly assessed the effect of aging on the latter B cell function. Here, we determined if and how human aging influences the production of cytokines by B cells. In a cross-sectional study, we found that absolute numbers of circulating B cells were similar in 31 young (ages 19-39) and 73 old (age ≥ 60) individuals. Numbers of transitional B cells (CD19(+)CD27(-)CD38(High)CD24(High)) were decreased in old individuals, whereas numbers of naive and memory B cell subsets were comparable in young and old individuals. Short-term in vitro stimulation of whole blood samples revealed that numbers of B cells capable of producing TNF-α were similar in young and old individuals. In contrast, B cells capable of IL-10 production were decreased in old subjects. This decline of IL-10(+) B cells was observed in old individuals that were ANA positive, and in those that were negative for both ANAs and RFs. However, IL-10(+) B cells were remarkably well retained in the circulation of old subjects that were RF positive. Thus, pro-inflammatory TNF-α(+) B cells are retained in the elderly, whereas IL-10(+) B cells generally decline. In addition, our findings indicate that IL-10(+) B cells may differentially impact the development of ANAs and RFs in the elderly. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. B-cell subsets in the joint compartments of seropositive and seronegative rheumatoid arthritis (RA) and No-RA arthritides express memory markers and ZAP70 and characterize the aggregate pattern irrespectively of the autoantibody status.

    PubMed

    Michelutti, Alessandro; Gremese, Elisa; Morassi, Francesca; Petricca, Luca; Arena, Vincenzo; Tolusso, Barbara; Alivernini, Stefano; Peluso, Giusy; Bosello, Silvia Laura; Ferraccioli, Gianfranco

    2011-01-01

    The aim of the present study was to determine whether different subsets of B cells characterize synovial fluid (SF) or synovial tissue (ST) of seropositive or seronegative rheumatoid arthritis (RA) with respect to the peripheral blood (PB). PB, SF and ST of 14 autoantibody (AB)-positive (rheumatoid factor [RF]-IgM, RF-IgA, anti-citrullinated peptide [CCP]), 13 negative RA and 13 no-RA chronic arthritides were examined for B-cell subsets (Bm1-Bm5 and IgD-CD27 classifications), zeta-associated protein kinase-70 (ZAP70) expression on B cells and cytokine levels (interleukin [IL]-1β, tumor necrosis factor [TNF]-α, IL-6, IL-8 and monocyte chemotactic protein [MCP]-1). Synovial tissues were classified as aggregate and diffuse patterns. No differences were found in B-cell percentages or in subsets in PB and SF between AB(+) and AB(-) RA and no-RA. In both AB(+) and AB(-) RA (and no-RA), the percentage of CD19(+)/ZAP70(+) was higher in SF than in PB (AB(+): P = 0.03; AB(-): P = 0.01; no-RA: P = 0.01). Moreover, SF of both AB(+) and AB(-) RA (and no-RA) patients was characterized by a higher percentage of IgD-CD27(+) and IgD-CD27(-) B cells and lower percentage of IgD(+)CD27(-) (P < 0.05) B cells compared to PB. In SF, ZAP70 positivity is more represented in B cell CD27(+)/IgD(-)/CD38(-). The aggregate synovitis pattern was characterized by higher percentages of Bm5 cells in SF compared with the diffuse pattern (P = 0.05). These data suggest that no difference exists between AB(+) and AB(-) in B-cell subset compartmentalization. CD27(+)/IgD(-)/ZAP70(+) memory B cells accumulate preferentially in the joints of RA, suggesting a dynamic maturation of the B cells in this compartment.

  7. Interaction of PRRS virus with bone marrow monocyte subsets.

    PubMed

    Fernández-Caballero, Teresa; Álvarez, Belén; Alonso, Fernando; Revilla, Concepción; Martínez-Lobo, Javier; Prieto, Cinta; Ezquerra, Ángel; Domínguez, Javier

    2018-06-01

    PRRSV can replicate for months in lymphoid organs leading to persistent host infections. Porcine bone marrow comprises two major monocyte subsets, one of which expresses CD163 and CD169, two receptors involved in the entry of PRRSV in macrophages. In this study, we investigate the permissiveness of these subsets to PRRSV infection. PRRSV replicates efficiently in BM CD163 + monocytes reaching titers similar to those obtained in alveolar macrophages, but with a delayed kinetics. Infection of BM CD163 - monocytes was variable and yielded lower titers. This may be related with the capacity of BM CD163 - monocytes to differentiate into CD163 + CD169 + cells after culture in presence of M-CSF. Both subsets secreted IL-8 in response to virus but CD163 + cells tended to produce higher amounts. The infection of BM monocytes by PRRSV may contribute to persistence of the virus in this compartment and to hematological disorders found in infected animals such as the reduction in the number of peripheral blood monocytes. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. CD73 expression identifies a subset of IgM+ antigen-experienced cells with memory attributes that is T cell and CD40 signalling dependent.

    PubMed

    D'Souza, Lucas; Gupta, Sneh Lata; Bal, Vineeta; Rath, Satyajit; George, Anna

    2017-12-01

    B-cell memory was long characterized as isotype-switched, somatically mutated and germinal centre (GC)-derived. However, it is now clear that the memory pool is a complex mixture that includes unswitched and unmutated cells. Further, expression of CD73, CD80 and CD273 has allowed the categorization of B-cell memory into multiple subsets, with combinatorial expression of the markers increasing with GC progression, isotype-switching and acquisition of somatic mutations. We have extended these findings to determine whether these markers can be used to identify IgM memory phenotypically as arising from T-dependent versus T-independent responses. We report that CD73 expression identifies a subset of antigen-experienced IgM + cells that share attributes of functional B-cell memory. This subset is reduced in the spleens of T-cell-deficient and CD40-deficient mice and in mixed marrow chimeras made with mutant and wild-type marrow, the proportion of CD73 + IgM memory is restored in the T-cell-deficient donor compartment but not in the CD40-deficient donor compartment, indicating that CD40 ligation is involved in its generation. We also report that CD40 signalling supports optimal expression of CD73 on splenic T cells and age-associated B cells (ABCs), but not on other immune cells such as neutrophils, marginal zone B cells, peritoneal cavity B-1 B cells and regulatory T and B cells. Our data indicate that in addition to promoting GC-associated memory generation during B-cell differentiation, CD40-signalling can influence the composition of the unswitched memory B-cell pool. They also raise the possibility that a fraction of ABCs may represent T-cell-dependent IgM memory. © 2017 John Wiley & Sons Ltd.

  9. Stable phenotype of B-cell subsets following cryopreservation and thawing of normal human lymphocytes stored in a tissue biobank.

    PubMed

    Rasmussen, Simon Mylius; Bilgrau, Anders Ellern; Schmitz, Alexander; Falgreen, Steffen; Bergkvist, Kim Steve; Tramm, Anette Mai; Baech, John; Jacobsen, Chris Ladefoged; Gaihede, Michael; Kjeldsen, Malene Krag; Bødker, Julie Støve; Dybkaer, Karen; Bøgsted, Martin; Johnsen, Hans Erik

    2015-01-01

    Cryopreservation is an acknowledged procedure to store vital cells for future biomarker analyses. Few studies, however, have analyzed the impact of the cryopreservation on phenotyping. We have performed a controlled comparison of cryopreserved and fresh cellular aliquots prepared from individual healthy donors. We studied circulating B-cell subset membrane markers and global gene expression, respectively by multiparametric flow cytometry and microarray data. Extensive statistical analysis of the generated data tested the concept that "overall, there are no phenotypic differences between cryopreserved and fresh B-cell subsets." Subsequently, we performed an uncontrolled comparison of tonsil tissue samples. By multiparametric flow analysis, we documented no significant changes following cryopreservation of subset frequencies or membrane intensity for the differentiation markers CD19, CD20, CD22, CD27, CD38, CD45, and CD200. By gene expression profiling following cryopreservation, across all samples, only 16 out of 18708 genes were significantly up or down regulated, including FOSB, KLF4, RBP7, ANXA1 or CLC, DEFA3, respectively. Implementation of cryopreserved tissue in our research program allowed us to present a performance analysis, by comparing cryopreserved and fresh tonsil tissue. As expected, phenotypic differences were identified, but to an extent that did not affect the performance of the cryopreserved tissue to generate specific B-cell subset associated gene signatures and assign subset phenotypes to independent tissue samples. We have confirmed our working concept and illustrated the usefulness of vital cryopreserved cell suspensions for phenotypic studies of the normal B-cell hierarchy; however, storage procedures need to be delineated by tissue-specific comparative analysis. © 2014 Clinical Cytometry Society.

  10. Stable Phenotype Of B-Cell Subsets Following Cryopreservation and Thawing of Normal Human Lymphocytes Stored in a Tissue Biobank.

    PubMed

    Rasmussen, Simon Mylius; Bilgrau, Anders Ellern; Schmitz, Alexander; Falgreen, Steffen; Bergkvist, Kim Steve; Tramm, Anette Mai; Baech, John; Jacobsen, Chris Ladefoged; Gaihede, Michael; Kjeldsen, Malene Krag; Bødker, Julie Støve; Dybkaer, Karen; Bøgsted, Martin; Johnsen, Hans Erik

    2014-09-20

    Background Cryopreservation is an acknowledged procedure to store vital cells for future biomarker analyses. Few studies, however, have analyzed the impact of the cryopreservation on phenotyping. Methods We have performed a controlled comparison of cryopreserved and fresh cellular aliquots prepared from individual healthy donors. We studied circulating B-cell subset membrane markers and global gene expression, respectively by multiparametric flow cytometry and microarray data. Extensive statistical analysis of the generated data tested the concept that "overall, there are phenotypic differences between cryopreserved and fresh B-cell subsets". Subsequently, we performed a consecutive uncontrolled comparison of tonsil tissue samples. Results By multiparametric flow analysis, we documented no significant changes following cryopreservation of subset frequencies or membrane intensity for the differentiation markers CD19, CD20, CD22, CD27, CD38, CD45, and CD200. By gene expression profiling following cryopreservation, across all samples, only 16 out of 18708 genes were significantly up or down regulated, including FOSB, KLF4, RBP7, ANXA1 or CLC, DEFA3, respectively. Implementation of cryopreserved tissue in our research program allowed us to present a performance analysis, by comparing cryopreserved and fresh tonsil tissue. As expected, phenotypic differences were identified, but to an extent that did not affect the performance of the cryopreserved tissue to generate specific B-cell subset associated gene signatures and assign subset phenotypes to independent tissue samples. Conclusions We have confirmed our working concept and illustrated the usefulness of vital cryopreserved cell suspensions for phenotypic studies of the normal B-cell hierarchy; however, storage procedures need to be delineated by tissue specific comparative analysis. © 2014 Clinical Cytometry Society. Copyright © 2014 Clinical Cytometry Society.

  11. The CD94/NKG2C-expressing NK cell subset is augmented in chronic lymphocytic leukemia patients with positive human cytomegalovirus serostatus.

    PubMed

    Petersen, Line; Roug, Anne S; Skovbo, Anni; Thysen, Anna H; Eskelund, Christian W; Hokland, Marianne E

    2009-10-01

    Human cytomegalovirus (HCMV) manipulates the host immune system in various ways. Allegedly, HCMV infection is associated with increased percentages of a particular natural killer (NK) cell subset expressing the activating receptor CD94/NKG2C in both healthy individuals and in patients infected with human immunodeficiency virus (HIV). Whether the HCMV-mediated induction of this specific NK cell subset is also apparent for other diseases characterized by abnormal immune responses, such as malignant blood diseases, is unknown. By comparing the fractions of CD94/NKG2C(+) NK cells in B-cell chronic lymphocytic leukemia (B-CLL) patients having either positive or negative HCMV serostatus, a proportional increase of this cell subset was obvious in the HCMV-seropositive subjects. Therapeutic intervention in the patients with positive HCMV serostatus did not seem to reduce the percentage of CD94/NKG2C-expressing NK cells. Thus, HCMV infection seemingly shapes the NK cell system in healthy individuals, HIV patients, and B-CLL patients in a uniform manner, even though these involve different immunological challenges.

  12. Comparison of the Functional microRNA Expression in Immune Cell Subsets of Neonates and Adults

    PubMed Central

    Yu, Hong-Ren; Hsu, Te-Yao; Huang, Hsin-Chun; Kuo, Ho-Chang; Li, Sung-Chou; Yang, Kuender D.; Hsieh, Kai-Sheng

    2016-01-01

    Diversity of biological molecules in newborn and adult immune cells contributes to differences in cell function and atopic properties. Micro RNAs (miRNAs) are reported to involve in the regulation of immune system. Therefore, determining the miRNA expression profile of leukocyte subpopulations is important for understanding immune system regulation. In order to explore the unique miRNA profiling that contribute to altered immune in neonates, we comprehensively analyzed the functional miRNA signatures of eight leukocyte subsets (polymorphonuclear cells, monocytes, CD4+ T cells, CD8+ T cells, natural killer cells, B cells, plasmacytoid dendritic cells, and myeloid dendritic cells) from both neonatal and adult umbilical cord and peripheral blood samples, respectively. We observed distinct miRNA profiles between adult and neonatal blood leukocyte subsets, including unique miRNA signatures for each cell lineage. Leukocyte miRNA signatures were altered after stimulation. Adult peripheral leukocytes had higher let-7b-5p expression levels compared to neonatal cord leukocytes across multiple subsets, irrespective of stimulation. Transfecting neonatal monocytes with a let-7b-5p mimic resulted in a reduction of LPS-induced interleukin (IL)-6 and TNF-α production, while transfection of a let-7b-5p inhibitor into adult monocytes enhanced IL-6 and TNF-α production. With this functional approach, we provide intact differential miRNA expression profiling of specific immune cell subsets between neonates and adults. These studies serve as a basis to further understand the altered immune response observed in neonates and advance the development of therapeutic strategies. PMID:28066425

  13. Functional Differences between Human NKp44(-) and NKp44(+) RORC(+) Innate Lymphoid Cells.

    PubMed

    Hoorweg, Kerim; Peters, Charlotte P; Cornelissen, Ferry; Aparicio-Domingo, Patricia; Papazian, Natalie; Kazemier, Geert; Mjösberg, Jenny M; Spits, Hergen; Cupedo, Tom

    2012-01-01

    Human RORC(+) lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines in human homeostasis and disease is hampered by a poor characterization of RORC(+) innate cell subsets and a lack of knowledge on the distribution of these cells in adults. Here we show that functionally distinct subsets of human RORC(+) innate lymphoid cells are enriched for secretion of IL-17a or IL-22. Both subsets have an activated phenotype and can be distinguished based on the presence or absence of the natural cytotoxicity receptor NKp44. NKp44(+) IL-22 producing cells are present in tonsils while NKp44(-) IL-17a producing cells are present in fetal developing lymph nodes. Development of human intestinal NKp44(+) ILC is a programmed event that is independent of bacterial colonization and these cells colonize the fetal intestine during the first trimester. In the adult intestine, NKp44(+) ILC are the main ILC subset producing IL-22. NKp44(-) ILC remain present throughout adulthood in peripheral non-inflamed lymph nodes as resting, non-cytokine producing cells. However, upon stimulation lymph node ILC can swiftly initiate cytokine transcription suggesting that secondary human lymphoid organs may function as a reservoir for innate lymphoid cells capable of participating in inflammatory responses.

  14. WC1+ γδ T cells from cattle naturally infected with Mycobacterium avium subsp. paratuberculosis respond differentially to stimulation with PPD-J.

    PubMed

    Albarrak, S M; Waters, W R; Stabel, J R; Hostetter, J M

    2017-08-01

    A role for γδ T cells in protection against mycobacterial infections including Johne's disease (JD) has been suggested. In neonatal calves where the risk to infection with Mycobacterium avium subsp. paratuberculosis (MAP) is high, the majority of circulating CD3 + lymphocytes are γδ TCR + . Bovine γδ T cells are divided into two major subsets based on the surface expression of workshop cluster 1 (WC1). The WC1 + subset, the predominant subset in periphery, is further divided into WC1.1 + and WC1.2 + subpopulations. The ability of γδ T cells to produce IFN-γ prior to CD4 + αβ T cell activation could be crucial to the outcome of MAP infection. In the current study, cattle were naturally infected with MAP and were classified as either in the subclinical or clinical stage of infection. Compared to the control non-infected group, γδ T cell frequency in circulating lymphocytes was significantly lower in the clinical group. The observed decline in frequency was restricted to the WC1.2 + subset, and was not associated with preferential migration to infection sites (distal-ileum). γδ T cells proliferated significantly in recall responses to stimulation with purified protein derivative from MAP (PPD-J) only in subclinically infected cattle. These responses were a heterogeneous mixture of WC1.1 and WC1.2 subsets. Proliferation and IFN-γ production by the WC1.1 + γδ T cell subset was significantly higher in the subclinical group compared to the control and clinical groups. Our data indicates differences in MAP-specific ex-vivo responses of peripheral WC1 + γδ T cells of cattle with the subclinical or clinical form of JD. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Targeting Stereotyped B Cell Receptors from Chronic Lymphocytic Leukemia Patients with Synthetic Antigen Surrogates.

    PubMed

    Sarkar, Mohosin; Liu, Yun; Qi, Junpeng; Peng, Haiyong; Morimoto, Jumpei; Rader, Christoph; Chiorazzi, Nicholas; Kodadek, Thomas

    2016-04-01

    Chronic lymphocytic leukemia (CLL) is a disease in which a single B-cell clone proliferates relentlessly in peripheral lymphoid organs, bone marrow, and blood. DNA sequencing experiments have shown that about 30% of CLL patients have stereotyped antigen-specific B-cell receptors (BCRs) with a high level of sequence homology in the variable domains of the heavy and light chains. These include many of the most aggressive cases that haveIGHV-unmutated BCRs whose sequences have not diverged significantly from the germ line. This suggests a personalized therapy strategy in which a toxin or immune effector function is delivered selectively to the pathogenic B-cells but not to healthy B-cells. To execute this strategy, serum-stable, drug-like compounds able to target the antigen-binding sites of most or all patients in a stereotyped subset are required. We demonstrate here the feasibility of this approach with the discovery of selective, high affinity ligands for CLL BCRs of the aggressive, stereotyped subset 7P that cross-react with the BCRs of several CLL patients in subset 7p, but not with BCRs from patients outside this subset. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Innate lymphoid cells in atherosclerosis.

    PubMed

    Engelbertsen, Daniel; Lichtman, Andrew H

    2017-12-05

    The family of innate lymphoid cells (ILCs) consisting of NK cells, lymphoid tissue inducer cells and the 'helper'-like ILC subsets ILC1, ILC2 and ILC3 have been shown to have important roles in protection against microbes, regulation of inflammatory diseases and involved in allergic reactions. ILC1s produce IFN-γ upon stimulation with IL-12 and IL-18, ILC2s produce IL-5 and IL-13 responding to IL-33 and IL-25 while ILC3s produce IL-17 and IL-22 after stimulation with IL-23 or IL-1. Although few studies have directly investigated the role for ILCs in atherosclerosis, several studies have investigated transcription factors and cytokines shared by ILCs and T helper cells. In this review we summarize our current understanding of the role of ILC in atherosclerosis and discuss future directions. Copyright © 2017. Published by Elsevier B.V.

  17. Flow cytometry analysis of T-cell subsets in cerebrospinal fluid of narcolepsy type 1 patients with long-lasting disease.

    PubMed

    Moresco, Monica; Lecciso, Mariangela; Ocadlikova, Darina; Filardi, Marco; Melzi, Silvia; Kornum, Birgitte Rahbek; Antelmi, Elena; Pizza, Fabio; Mignot, Emmanuel; Curti, Antonio; Plazzi, Giuseppe

    2018-04-01

    Type 1 narcolepsy (NT1) is a central hypersomnia linked to the destruction of hypocretin-producing neurons. A great body of genetic and epidemiological data points to likely autoimmune disease aetiology. Recent reports have characterized peripheral blood T-cell subsets in NT1, whereas data regarding the cerebrospinal fluid (CSF) immune cell composition are lacking. The current study aimed to characterize the T-cell and natural killer (NK) cell subsets in NT1 patients with long disease course. Immune cell subsets from CSF and peripheral blood mononuclear cell (PBMC) samples were analysed by flow cytometry in two age-balanced and sex-balanced groups of 14 NT1 patients versus 14 healthy controls. The frequency of CSF cell groups was compared with PBMCs. Non-parametric tests were used for statistical analyses. The NT1 patients did not show significant differences of CSF immune cell subsets compared to controls, despite a trend towards higher CD4 + terminally differentiated effector memory T cells. T cells preferentially displayed a memory phenotype in the CSF compared to PBMCs. Furthermore, a reduced frequency of CD4 + terminally differentiated effector memory T cells and an increased frequency of NK CD56 bright cells was observed in PBMCs from patients compared to controls. Finally, the ratio between CSF and peripheral CD4 + terminally differentiated effector memory T cells was two-fold increased in NT1 patients versus controls. Significant differences in PBMCs and in CSF/PBMC ratios of immune cell profile were found in NT1 patients compared to healthy controls. These differences might have arisen from the different HLA status, or be primary or secondary to hypocretin deficiency. Further functional studies in patients close to disease onset are required to understand NT1 pathophysiology. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells

    PubMed Central

    Sintes, Jordi; Polentarutti, Nadia; Walland, A. Cooper; Yeiser, John R.; Cunha, Cristina; Lacerda, João F.; Salvatori, Giovanni; Blander, J. Magarian

    2016-01-01

    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition receptor of the humoral innate immune system with ancestral antibody-like properties but unknown antibody-inducing function. In this study, we found binding of PTX3 to splenic marginal zone (MZ) B cells, an innate-like subset of antibody-producing lymphocytes strategically positioned at the interface between the circulation and the adaptive immune system. PTX3 was released by a subset of neutrophils that surrounded the splenic MZ and expressed an immune activation–related gene signature distinct from that of circulating neutrophils. Binding of PTX3 promoted homeostatic production of IgM and class-switched IgG antibodies to microbial capsular polysaccharides, which decreased in PTX3-deficient mice and humans. In addition, PTX3 increased IgM and IgG production after infection with blood-borne encapsulated bacteria or immunization with bacterial carbohydrates. This immunogenic effect stemmed from the activation of MZ B cells through a neutrophil-regulated pathway that elicited class switching and plasmablast expansion via a combination of T cell–independent and T cell–dependent signals. Thus, PTX3 may bridge the humoral arms of the innate and adaptive immune systems by serving as an endogenous adjuvant for MZ B cells. This property could be harnessed to develop more effective vaccines against encapsulated pathogens. PMID:27621420

  19. B cell biology: implications for treatment of systemic lupus erythematosus.

    PubMed

    Anolik, J H

    2013-04-01

    B cells are critical players in the orchestration of properly regulated immune responses, normally providing protective immunity without autoimmunity. Balance in the B cell compartment is achieved through the finely regulated participation of multiple B cell populations with different antibody-dependent and independent functions. Both types of functions allow B cells to modulate other components of the innate and adaptive immune system. Autoantibody-independent B cell functions include antigen presentation, T cell activation and polarization, and dendritic cell modulation. Several of these functions are mediated by the ability of B cells to produce immunoregulatory cytokines and chemokines and by their critical contribution to lymphoid tissue development and organization including the development of ectopic tertiary lymphoid tissue. Additionally, the functional versatility of B cells enables them to play either protective or pathogenic roles in autoimmunity. In turn, B cell dysfunction has been critically implicated in the pathophysiology of systemic lupus erythematosus (SLE), a complex disease characterized by the production of autoantibodies and heterogeneous clinical involvement. Thus, the breakdown of B cell tolerance is a defining and early event in the disease process and may occur by multiple pathways, including alterations in factors that affect B cell activation thresholds, B cell longevity, and apoptotic cell processing. Once tolerance is broken, autoantibodies contribute to autoimmunity by multiple mechanisms including immune-complex mediated Type III hypersensitivity reactions, type II antibody-dependent cytotoxicity, and by instructing innate immune cells to produce pathogenic cytokines including IFNα, TNF and IL-1. The complexity of B cell functions has been highlighted by the variable success of B cell-targeted therapies in multiple autoimmune diseases, including those conventionally viewed as T cell-mediated conditions. Given the widespread utilization of B cell depletion therapy in autoimmune diseases and the need for new therapeutic approaches in SLE, a better understanding of human B cell subsets and the balance of pathogenic and regulatory functions is of the essence.

  20. Deficient EBV-specific B- and T-cell response in patients with chronic fatigue syndrome.

    PubMed

    Loebel, Madlen; Strohschein, Kristin; Giannini, Carolin; Koelsch, Uwe; Bauer, Sandra; Doebis, Cornelia; Thomas, Sybill; Unterwalder, Nadine; von Baehr, Volker; Reinke, Petra; Knops, Michael; Hanitsch, Leif G; Meisel, Christian; Volk, Hans-Dieter; Scheibenbogen, Carmen

    2014-01-01

    Epstein-Barr virus (EBV) has long been discussed as a possible cause or trigger of Chronic Fatigue Syndrome (CFS). In a subset of patients the disease starts with infectious mononucleosis and both enhanced and diminished EBV-specific antibody titers have been reported. In this study, we comprehensively analyzed the EBV-specific memory B- and T-cell response in patients with CFS. While we observed no difference in viral capsid antigen (VCA)-IgG antibodies, EBV nuclear antigen (EBNA)-IgG titers were low or absent in 10% of CFS patients. Remarkably, when analyzing the EBV-specific memory B-cell reservoir in vitro a diminished or absent number of EBNA-1- and VCA-antibody secreting cells was found in up to 76% of patients. Moreover, the ex vivo EBV-induced secretion of TNF-α and IFN-γ was significantly lower in patients. Multicolor flow cytometry revealed that the frequencies of EBNA-1-specific triple TNF-α/IFN-γ/IL-2 producing CD4(+) and CD8(+) T-cell subsets were significantly diminished whereas no difference could be detected for HCMV-specific T-cell responses. When comparing EBV load in blood immune cells, we found more frequently EBER-DNA but not BZLF-1 RNA in CFS patients compared to healthy controls suggesting more frequent latent replication. Taken together, our findings give evidence for a deficient EBV-specific B- and T-cell memory response in CFS patients and suggest an impaired ability to control early steps of EBV reactivation. In addition the diminished EBV response might be suitable to develop diagnostic marker in CFS.

  1. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism

    PubMed Central

    Welty, Nathan E.; Staley, Christopher; Ghilardi, Nico; Sadowsky, Michael J.; Igyártó, Botond Z.

    2013-01-01

    Dendritic cells (DCs) in the intestinal lamina propria (LP) are composed of two CD103+ subsets that differ in CD11b expression. We report here that Langerin is expressed by human LP DCs and that transgenic human langerin drives expression in CD103+CD11b+ LP DCs in mice. This subset was ablated in huLangerin-DTA mice, resulting in reduced LP Th17 cells without affecting Th1 or T reg cells. Notably, cognate DC–T cell interactions were not required for Th17 development, as this response was intact in huLangerin-Cre I-Aβfl/fl mice. In contrast, responses to intestinal infection or flagellin administration were unaffected by the absence of CD103+CD11b+ DCs. huLangerin-DTA x BatF3−/− mice lacked both CD103+ LP DC subsets, resulting in defective gut homing and fewer LP T reg cells. Despite these defects in LP DCs and resident T cells, we did not observe alterations of intestinal microbial communities. Thus, CD103+ LP DC subsets control T cell homeostasis through both nonredundant and overlapping mechanisms. PMID:24019552

  2. Changes in Circulating B Cell Subsets Associated with Aging and Acute SIV Infection in Rhesus Macaques.

    PubMed

    Chang, W L William; Gonzalez, Denise F; Kieu, Hung T; Castillo, Luis D; Messaoudi, Ilhem; Shen, Xiaoying; Tomaras, Georgia D; Shacklett, Barbara L; Barry, Peter A; Sparger, Ellen E

    2017-01-01

    Aging and certain viral infections can negatively impact humoral responses in humans. To further develop the nonhuman primate (NHP) model for investigating B cell dynamics in human aging and infectious disease, a flow cytometric panel was developed to characterize circulating rhesus B cell subsets. Significant differences between human and macaque B cells included the proportions of cells within IgD+ and switched memory populations and a prominent CD21-CD27+ unswitched memory population detected only in macaques. We then utilized the expanded panel to analyze B cell alterations associated with aging and acute simian immunodeficiency virus (SIV) infection in the NHP model. In the aging study, distinct patterns of B cell subset frequencies were observed for macaques aged one to five years compared to those between ages 5 and 30 years. In the SIV infection study, B cell frequencies and absolute number were dramatically reduced following acute infection, but recovered within four weeks of infection. Thereafter, the frequencies of activated memory B cells progressively increased; these were significantly correlated with the magnitude of SIV-specific IgG responses, and coincided with impaired maturation of anti-SIV antibody avidity, as previously reported for HIV-1 infection. These observations further validate the NHP model for investigation of mechanisms responsible for B cells alterations associated with immunosenescence and infectious disease.

  3. Lipopolysaccharide-Elicited TSLPR Expression Enriches a Functionally Discrete Subset of Human CD14+ CD1c+ Monocytes.

    PubMed

    Borriello, Francesco; Iannone, Raffaella; Di Somma, Sarah; Vastolo, Viviana; Petrosino, Giuseppe; Visconte, Feliciano; Raia, Maddalena; Scalia, Giulia; Loffredo, Stefania; Varricchi, Gilda; Galdiero, Maria Rosaria; Granata, Francescopaolo; Del Vecchio, Luigi; Portella, Giuseppe; Marone, Gianni

    2017-05-01

    Thymic stromal lymphopoietin (TSLP) is a cytokine produced mainly by epithelial cells in response to inflammatory or microbial stimuli and binds to the TSLP receptor (TSLPR) complex, a heterodimer composed of TSLPR and IL-7 receptor α (CD127). TSLP activates multiple immune cell subsets expressing the TSLPR complex and plays a role in several models of disease. Although human monocytes express TSLPR and CD127 mRNAs in response to the TLR4 agonist LPS, their responsiveness to TSLP is poorly defined. We demonstrate that TSLP enhances human CD14 + monocyte CCL17 production in response to LPS and IL-4. Surprisingly, only a subset of CD14 + CD16 - monocytes, TSLPR + monocytes (TSLPR + mono), expresses TSLPR complex upon LPS stimulation in an NF-κB- and p38-dependent manner. Phenotypic, functional, and transcriptomic analysis revealed specific features of TSLPR + mono, including higher CCL17 and IL-10 production and increased expression of genes with important immune functions (i.e., GAS6 , ALOX15B , FCGR2B , LAIR1 ). Strikingly, TSLPR + mono express higher levels of the dendritic cell marker CD1c. This evidence led us to identify a subset of peripheral blood CD14 + CD1c + cells that expresses the highest levels of TSLPR upon LPS stimulation. The translational relevance of these findings is highlighted by the higher expression of TSLPR and CD127 mRNAs in monocytes isolated from patients with Gram-negative sepsis compared with healthy control subjects. Our results emphasize a phenotypic and functional heterogeneity in an apparently homogeneous population of human CD14 + CD16 - monocytes and prompt further ontogenetic and functional analysis of CD14 + CD1c + and LPS-activated CD14 + CD1c + TSLPR + mono. Copyright © 2017 by The American Association of Immunologists, Inc.

  4. Ovarian phagocyte subsets and their distinct tissue distribution patterns.

    PubMed

    Carlock, Colin; Wu, Jean; Zhou, Cindy; Ross, April; Adams, Henry; Lou, Yahuan

    2013-01-01

    Ovarian macrophages, which play critical roles in various ovarian events, are probably derived from multiple lineages. Thus, a systemic classification of their subsets is a necessary first step for determination of their functions. Utilizing antibodies to five phagocyte markers, i.e. IA/IE (major histocompatibility complex class II), F4/80, CD11b (Mac-1), CD11c, and CD68, this study investigated subsets of ovarian phagocytes in mice. Three-color immunofluorescence and flow cytometry, together with morphological observation on isolated ovarian cells, demonstrated complicated phenotypes of ovarian phagocytes. Four macrophage and one dendritic cell subset, in addition to many minor phagocyte subsets, were identified. A dendritic cell-like population with a unique phenotype of CD11c(high)IA/IE⁻F4/80⁻ was also frequently observed. A preliminary age-dependent study showed dramatic increases in IA/IE⁺ macrophages and IA/IE⁺ dendritic cells after puberty. Furthermore, immunofluorescences on ovarian sections showed that each subset displayed a distinct tissue distribution pattern. The pattern for each subset may hint to their role in an ovarian function. In addition, partial isolation of ovarian macrophage subset using CD11b antibodies was attempted. Establishment of this isolation method may have provided us a tool for more precise investigation of each subset's functions at the cellular and molecular levels.

  5. Pregnancy and malaria exposure are associated with changes in the B cell pool and in plasma eotaxin levels.

    PubMed

    Requena, Pilar; Campo, Joseph J; Umbers, Alexandra J; Ome, Maria; Wangnapi, Regina; Barrios, Diana; Robinson, Leanne J; Samol, Paula; Rosanas-Urgell, Anna; Ubillos, Itziar; Mayor, Alfredo; López, Marta; de Lazzari, Elisa; Arévalo-Herrera, Myriam; Fernández-Becerra, Carmen; del Portillo, Hernando; Chitnis, Chetan E; Siba, Peter M; Bardají, Azucena; Mueller, Ivo; Rogerson, Stephen; Menéndez, Clara; Dobaño, Carlota

    2014-09-15

    Pregnancy triggers immunological changes aimed to tolerate the fetus, but its impact on B lymphocytes is poorly understood. In addition, exposure to the Plasmodium parasite is associated with altered distribution of peripheral memory B cell (MBC) subsets. To study the combined impact of high malaria exposure and pregnancy in B cell subpopulations, we analyzed PBMCs from pregnant and nonpregnant individuals from a malaria-nonendemic country (Spain) and from a high malaria-endemic country (Papua New Guinea). In the malaria-naive cohorts, pregnancy was associated with a significant expansion of all switched (IgD(-)) MBC and a decrease of naive B cells. Malaria-exposed women had more atypical MBC and fewer marginal zone-like MBC, and their levels correlated with both Plasmodium vivax- and Plasmodium falciparum-specific plasma IgG levels. Classical but not atypical MBC were increased in P. falciparum infections. Moreover, active atypical MBC positively correlated with proinflammatory cytokine plasma concentrations and had lower surface IgG levels than the average. Decreased plasma eotaxin (CCL11) levels were associated with pregnancy and malaria exposure and also correlated with B cell subset frequencies. Additionally, active atypical and active classical MBC expressed higher levels of eotaxin receptor CCR3 than the other B cell subsets, suggesting a chemotactic effect of eotaxin on these B cell subsets. These findings are important to understand immunity to infections like malaria that result in negative outcomes for both the mother and the newborn and may have important implications on vaccine development. Copyright © 2014 by The American Association of Immunologists, Inc.

  6. Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: a retrospective multicentre study.

    PubMed

    Baliakas, Panagiotis; Hadzidimitriou, Anastasia; Sutton, Lesley-Ann; Minga, Eva; Agathangelidis, Andreas; Nichelatti, Michele; Tsanousa, Athina; Scarfò, Lydia; Davis, Zadie; Yan, Xiao-Jie; Shanafelt, Tait; Plevova, Karla; Sandberg, Yorick; Vojdeman, Fie Juhl; Boudjogra, Myriam; Tzenou, Tatiana; Chatzouli, Maria; Chu, Charles C; Veronese, Silvio; Gardiner, Anne; Mansouri, Larry; Smedby, Karin E; Pedersen, Lone Bredo; van Lom, Kirsten; Giudicelli, Véronique; Francova, Hana Skuhrova; Nguyen-Khac, Florence; Panagiotidis, Panagiotis; Juliusson, Gunnar; Angelis, Lefteris; Anagnostopoulos, Achilles; Lefranc, Marie-Paule; Facco, Monica; Trentin, Livio; Catherwood, Mark; Montillo, Marco; Geisler, Christian H; Langerak, Anton W; Pospisilova, Sarka; Chiorazzi, Nicholas; Oscier, David; Jelinek, Diane F; Darzentas, Nikos; Belessi, Chrysoula; Davi, Frederic; Rosenquist, Richard; Ghia, Paolo; Stamatopoulos, Kostas

    2014-11-01

    About 30% of cases of chronic lymphocytic leukaemia (CLL) carry quasi-identical B-cell receptor immunoglobulins and can be assigned to distinct stereotyped subsets. Although preliminary evidence suggests that B-cell receptor immunoglobulin stereotypy is relevant from a clinical viewpoint, this aspect has never been explored in a systematic manner or in a cohort of adequate size that would enable clinical conclusions to be drawn. For this retrospective, multicentre study, we analysed 8593 patients with CLL for whom immunogenetic data were available. These patients were followed up in 15 academic institutions throughout Europe (in Czech Republic, Denmark, France, Greece, Italy, Netherlands, Sweden, and the UK) and the USA, and data were collected between June 1, 2012, and June 7, 2013. We retrospectively assessed the clinical implications of CLL B-cell receptor immunoglobulin stereotypy, with a particular focus on 14 major stereotyped subsets comprising cases expressing unmutated (U-CLL) or mutated (M-CLL) immunoglobulin heavy chain variable genes. The primary outcome of our analysis was time to first treatment, defined as the time between diagnosis and date of first treatment. 2878 patients were assigned to a stereotyped subset, of which 1122 patients belonged to one of 14 major subsets. Stereotyped subsets showed significant differences in terms of age, sex, disease burden at diagnosis, CD38 expression, and cytogenetic aberrations of prognostic significance. Patients within a specific subset generally followed the same clinical course, whereas patients in different stereotyped subsets-despite having the same immunoglobulin heavy variable gene and displaying similar immunoglobulin mutational status-showed substantially different times to first treatment. By integrating B-cell receptor immunoglobulin stereotypy (for subsets 1, 2, and 4) into the well established Döhner cytogenetic prognostic model, we showed these, which collectively account for around 7% of all cases of CLL and represent both U-CLL and M-CLL, constituted separate clinical entities, ranging from very indolent (subset 4) to aggressive disease (subsets 1 and 2). The molecular classification of chronic lymphocytic leukaemia based on B-cell receptor immunoglobulin stereotypy improves the Döhner hierarchical model and refines prognostication beyond immunoglobulin mutational status, with potential implications for clinical decision making, especially within prospective clinical trials. European Union; General Secretariat for Research and Technology of Greece; AIRC; Italian Ministry of Health; AIRC Regional Project with Fondazione CARIPARO and CARIVERONA; Regione Veneto on Chronic Lymphocytic Leukemia; Nordic Cancer Union; Swedish Cancer Society; Swedish Research Council; and National Cancer Institute (NIH). Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. B lymphocyte lineage cells and the respiratory system

    PubMed Central

    Kato, Atsushi; Hulse, Kathryn E.; Tan, Bruce K.; Schleimer, Robert P.

    2013-01-01

    Adaptive humoral immune responses in the airways are mediated by B cells and plasma cells that express highly evolved and specific receptors and produce immunoglobulins of most isotypes. In some cases, such as autoimmune diseases or inflammatory diseases caused by excessive exposure to foreign antigens, these same immune cells can cause disease by virtue of overly vigorous responses. This review discusses the generation, differentiation, signaling, activation and recruitment pathways of B cells and plasma cells, with special emphasis on unique characteristics of subsets of these cells functioning within the respiratory system. The primary sensitization events that generate B cells responsible for effector responses throughout the airways usually occur in the upper airways, in tonsils and adenoid structures that make up Waldeyer’s Ring. Upon secondary exposure to antigen in the airways, antigen-processing dendritic cells migrate into secondary lymphoid organs such as lymph nodes that drain the upper and lower airways and further B cell expansion takes place at those sites. Antigen exposure in the upper or lower airways can also drive expansion of B lineage cells in the airway mucosal tissue and lead to the formation of inducible lymphoid follicles or aggregates that can mediate local immunity or disease. PMID:23540615

  8. Circulating CXCR5+CD4+ T Follicular-Like Helper Cell and Memory B Cell Responses to Human Papillomavirus Vaccines

    PubMed Central

    Matsui, Ken; Adelsberger, Joseph W.; Kemp, Troy J.; Baseler, Michael W.; Ledgerwood, Julie E.; Pinto, Ligia A.

    2015-01-01

    Through the interaction of T follicular helper (Tfh) cells and B cells, efficacious vaccines can generate high-affinity, pathogen-neutralizing antibodies, and memory B cells. Using CXCR5, CXCR3, CCR6, CCR7, PD1, and ICOS as markers, Tfh-like cells can be identified in the circulation and be classified into three functionally distinct subsets that are PD1+ICOS+, PD1+ ICOS-, or PD1-ICOS-. We used these markers to identify different subsets of CXCR5+CD4+ Tfh-like cells in response to highly immunogenic and efficacious vaccines for human papillomaviruses (HPV): Cervarix and Gardasil. In this small study, we used PBMC samples from 11 Gardasil recipients, and 8 Cervarix recipients from the Vaccine Research Center 902 Study to examine the induction of circulating Tfh-like cells and IgD-CD38HiCD27+ memory B cells by flow cytometry. PD1+ICOS+ CXCR3+CCR6-CXCR5+CD4+ (Tfh1-like) cells were induced and peaked on Day (D) 7 post-first vaccination, but not as much on D7 post-third vaccination. We also observed a trend toward increase in PD1+ICOS+ CXCR3-CCR6-CXCR5+CD4+ (Tfh2-like) cells for both vaccines, and PD1+ICOS+ CXCR3-CCR6+CXCR5+CD4+ (Tfh17-like) subset was induced by Cervarix post-first vaccination. There were also minimal changes in the other cellular subsets. In addition, Cervarix recipients had more memory B cells post-first vaccination than did Gardasil recipients at D14 and D30. We found frequencies of memory B cells at D30 correlated with anti-HPV16 and 18 antibody titers from D30, and the induction levels of memory B cells at D30 and PD1+ICOS+Tfh1-like cells at D7 post-first vaccination correlated for Cervarix. Our study showed that induction of circulating CXCR5+CD4+ Tfh-like subsets can be detected following immunization with HPV vaccines, and potentially be useful as a marker of immunogenicity of vaccines. However, further investigations should be extended to different cohorts with larger sample size to better understand the functions of these T cells, as well as their relationship with B cells and antibodies. PMID:26333070

  9. CD94 Defines Phenotypically and Functionally Distinct Mouse NK Cell Subsets1

    PubMed Central

    Yu, Jianhua; Wei, Min; Mao, Hsiaoyin; Zhang, Jianying; Hughes, Tiffany; Mitsui, Takeki; Park, Il-kyoo; Hwang, Christine; Liu, Shujun; Marcucci, Guido; Trotta, Rossana; Benson, Don M.; Caligiuri, Michael A.

    2010-01-01

    Understanding of heterogeneous NK subsets is important for the study of NK cell biology and development, and for the application of NK cell-based therapies in the treatment of disease. Here we demonstrate that the surface expression of CD94 can distinctively divide mouse NK cells into two approximately even CD94low and CD94high subsets in all tested organs and tissues. The CD94high NK subset has significantly greater capacity to proliferate, produce IFN-γ, and lyse target cells than does the CD94low subset. The CD94high subset has exclusive expression of NKG2A/C/E, higher expression of CD117 and CD69, and lower expression of Ly49D (activating) and Ly49G2 (inhibitory). In vivo, purified mouse CD94low NK cells become CD94high NK cells, but not vice versa. Collectively, our data suggest that CD94 is an Ag that can be used to identify functionally distinct NK cell subsets in mice and could also be relevant to late-stage mouse NK cell development. PMID:19801519

  10. Distinct Roles for CXCR6(+) and CXCR6(-) CD4(+) T Cells in the Pathogenesis of Chronic Colitis.

    PubMed

    Mandai, Yasushi; Takahashi, Daisuke; Hase, Koji; Obata, Yuuki; Furusawa, Yukihiro; Ebisawa, Masashi; Nakagawa, Tomoo; Sato, Toru; Katsuno, Tatsuro; Saito, Yasushi; Shimaoka, Takeshi; Yokosuka, Osamu; Yokote, Kotaro; Ohno, Hiroshi

    2013-01-01

    CD4(+) T cells play a central role in the development of inflammatory bowel disease (IBD) via high-level production of effector cytokines such as IFN-γ and TNF-α. To better characterize the colitogenic CD4(+) T cells, we examined their expression of CXCR6, a chemokine receptor that is expressed by T cells upon activation and is upregulated in several inflammatory diseases. We found that 80% of colonic lamina propria CD4(+) T cells expressed CXCR6 in the CD45RB(high) T cell-transferred colitis model. CXCR6 expression was similarly upregulated in inflamed mucosa of patients with Crohn's disease. Although surface marker analysis demonstrated that both CXCR6(+) and CXCR6(-) CD4(+) T-cell subsets consist of the cells with effector and effector-memory cells, the more cells in the CXCR6(+) subset produced IFN-γ and TNF-α compared to CXCR6(-) subset, and only the CXCR6(+) subset produced IL-17A. Nevertheless, adoptive retransfer of lamina propria CXCR6(+) T cells into Rag1 (-/-) recipients failed to induce the disease due to limited expansion of the transferred cells. By contrast, retransfer of CXCR6(-) cells evoked colitis similar to that observed in CD4(+)CD45RB(high) T cell-transferred mice, and resulted in their conversion into CXCR6(+) cells. Collectively, these observations suggest that the CXCR6(+)CD4(+) T-cell subset consists of terminally differentiated effector cells that serve as the major source of effector cytokines in the inflamed tissue, whereas CXCR6(-)CD4(+) T-cell subset serves as a colitogenic memory compartment that retains the ability to proliferate and differentiate into CXCR6(+)CD4(+) T cells.

  11. Distinct Roles for CXCR6+ and CXCR6− CD4+ T Cells in the Pathogenesis of Chronic Colitis

    PubMed Central

    Hase, Koji; Obata, Yuuki; Furusawa, Yukihiro; Ebisawa, Masashi; Nakagawa, Tomoo; Sato, Toru; Katsuno, Tatsuro; Saito, Yasushi; Shimaoka, Takeshi; Yokosuka, Osamu; Yokote, Kotaro; Ohno, Hiroshi

    2013-01-01

    CD4+ T cells play a central role in the development of inflammatory bowel disease (IBD) via high-level production of effector cytokines such as IFN-γ and TNF-α. To better characterize the colitogenic CD4+ T cells, we examined their expression of CXCR6, a chemokine receptor that is expressed by T cells upon activation and is upregulated in several inflammatory diseases. We found that 80% of colonic lamina propria CD4+ T cells expressed CXCR6 in the CD45RBhigh T cell-transferred colitis model. CXCR6 expression was similarly upregulated in inflamed mucosa of patients with Crohn’s disease. Although surface marker analysis demonstrated that both CXCR6+ and CXCR6− CD4+ T-cell subsets consist of the cells with effector and effector-memory cells, the more cells in the CXCR6+ subset produced IFN-γ and TNF-α compared to CXCR6− subset, and only the CXCR6+ subset produced IL-17A. Nevertheless, adoptive retransfer of lamina propria CXCR6+ T cells into Rag1 −/− recipients failed to induce the disease due to limited expansion of the transferred cells. By contrast, retransfer of CXCR6− cells evoked colitis similar to that observed in CD4+CD45RBhigh T cell-transferred mice, and resulted in their conversion into CXCR6+ cells. Collectively, these observations suggest that the CXCR6+CD4+ T-cell subset consists of terminally differentiated effector cells that serve as the major source of effector cytokines in the inflamed tissue, whereas CXCR6−CD4+ T-cell subset serves as a colitogenic memory compartment that retains the ability to proliferate and differentiate into CXCR6+CD4+ T cells. PMID:23840334

  12. Diversity, cellular origin and autoreactivity of antibody-secreting cell expansions in acute Systemic Lupus Erythematosus

    PubMed Central

    Tipton, Christopher M; Fucile, Christopher F; Darce, Jaime; Chida, Asiya; Ichikawa, Travis; Gregoretti, Ivan; Schieferl, Sandra; Hom, Jennifer; Jenks, Scott; Feldman, Ron J; Mehr, Ramit; Wei, Chungwen; Lee, F. Eun-Hyung; Cheung, Wan Cheung; Rosenberg, Alexander F; Sanz, Iñaki

    2015-01-01

    Acute SLE courses with antibody-secreting cells (ASC) surges whose origin, diversity, and contribution to serum autoantibodies remain unknown. Deep sequencing, autoantibody proteome and single-cell analysis demonstrated highly diversified ASC punctuated by VH4-34 clones that produce dominant serum autoantibodies. A fraction of ASC clones contained unmutated autoantibodies, a finding consistent with differentiation outside the germinal centers. A substantial ASC segment derived from a distinct subset of newly activated naïve cells of significant clonality that persist in the circulation for several months. Thus, selection of SLE autoreactivities occurred during polyclonal activation with prolonged recruitment of recently activated naïve B cells. These findings shed light into SLE pathogenesis, help explain the benefit of anti-B cell agents and facilitate the design of future therapies. PMID:26006014

  13. Innate NKTγδ and NKTαβ cells exert similar functions and compete for a thymic niche.

    PubMed

    Pereira, Pablo; Boucontet, Laurent

    2012-05-01

    The transcriptional regulator promyelocytic leukemia zinc finger (PLZF) is highly expressed during the differentiation of natural killer T (NKT) cells and is essential for the acquisition of their effector/memory innate-like phenotype. Staining with anti-PLZF and anti-NK1.1 Abs allows the definition of two subsets of NKTαβ and NKTγδ thymocytes that differ phenotypically and functionally: a PLZF(+) NK1.1(-) subset composed of mostly quiescent cells that secrete more IL-4 than IFN-γ upon activation and a PLZF(+/-) NK1.1(+) subset that expresses CD127, NK1.1, and other NK-cell markers, secrete more IFN-γ than IL-4 upon activation and contains a sizable fraction of dividing cells. The size of the NK1.1(+) population is very tightly regulated and NK1.1(+) αβ and γδ thymocytes compete for a thymic niche. Furthermore, the relative representation of the PLZF(+) and NK1.1(+) subsets varies in a strain-specific manner with C57BL/6 (B6) mice containing more NK1.1(+) cells and (B6 × DBA/2)F1 (B6D2F1) mice more PLZF(+) cells. Consequently, activation of NKT cells in vivo is expected to result in higher levels of IL-4 secreted in B6D2F1 mice than in B6 mice. Consistent with this possibility, B6D2F1 mice, when compared with B6 mice, contain more "innate" CD8(+) thymocytes, the generation of which depends on IL-4 secreted by NKT cells. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Oral Challenge with Wild-Type Salmonella Typhi Induces Distinct Changes in B Cell Subsets in Individuals Who Develop Typhoid Disease.

    PubMed

    Toapanta, Franklin R; Bernal, Paula J; Fresnay, Stephanie; Magder, Laurence S; Darton, Thomas C; Jones, Claire; Waddington, Claire S; Blohmke, Christoph J; Angus, Brian; Levine, Myron M; Pollard, Andrew J; Sztein, Marcelo B

    2016-06-01

    A novel human oral challenge model with wild-type Salmonella Typhi (S. Typhi) was recently established by the Oxford Vaccine Group. In this model, 104 CFU of Salmonella resulted in 65% of participants developing typhoid fever (referred here as typhoid diagnosis -TD-) 6-9 days post-challenge. TD was diagnosed in participants meeting clinical (oral temperature ≥38°C for ≥12h) and/or microbiological (S. Typhi bacteremia) endpoints. Changes in B cell subpopulations following S. Typhi challenge remain undefined. To address this issue, a subset of volunteers (6 TD and 4 who did not develop TD -NoTD-) was evaluated. Notable changes included reduction in the frequency of B cells (cells/ml) of TD volunteers during disease days and increase in plasmablasts (PB) during the recovery phase (>day 14). Additionally, a portion of PB of TD volunteers showed a significant increase in activation (CD40, CD21) and gut homing (integrin α4β7) molecules. Furthermore, all BM subsets of TD volunteers showed changes induced by S. Typhi infections such as a decrease in CD21 in switched memory (Sm) CD27+ and Sm CD27- cells as well as upregulation of CD40 in unswitched memory (Um) and Naïve cells. Furthermore, changes in the signaling profile of some BM subsets were identified after S. Typhi-LPS stimulation around time of disease. Notably, naïve cells of TD (compared to NoTD) volunteers showed a higher percentage of cells phosphorylating Akt suggesting enhanced survival of these cells. Interestingly, most these changes were temporally associated with disease onset. This is the first study to describe differences in B cell subsets directly related to clinical outcome following oral challenge with wild-type S. Typhi in humans.

  15. Association of BAFF, APRIL serum levels, BAFF-R, TACI and BCMA expression on peripheral B-cell subsets with clinical manifestations in systemic lupus erythematosus.

    PubMed

    Salazar-Camarena, D C; Ortiz-Lazareno, P C; Cruz, A; Oregon-Romero, E; Machado-Contreras, J R; Muñoz-Valle, J F; Orozco-López, M; Marín-Rosales, M; Palafox-Sánchez, C A

    2016-05-01

    B-cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) signaling pathways regulate B-cell survival through interactions with their receptors BAFF-R, TACI and BCMA. We evaluated the association of these ligands/receptors on B-cell subsets according to clinical manifestations of systemic lupus erythematosus (SLE). BAFF and APRIL serum concentrations were measured in 30 SLE patients by enzyme-linked immunosorbent assay. The BAFF-R, TACI and BCMA expression was analyzed on each B cell subset (CD19 + CD27-CD38-/ + naïve; CD19 + CD27 + CD38-/ + memory; CD19 + CD27-CD38 + + immature and CD19 + CD27 + CD38 + + plasma cells) by flow cytometry, and compared among patients with different clinical manifestations as well as healthy controls (HCs). Serum BAFF and APRIL levels were high in SLE patients and correlated with the Mex-SLEDAI disease activity index (r = 0.584; p = 0.001 and r = 0.456; p = 0.011, respectively). The SLE patients showed an increased proportion of memory and plasma B cells (p < 0.05). BAFF-R, TACI and BCMA expression in SLE patients was decreased in almost all B cell subsets compared to HCs (p < 0.05). A lower BCMA expression was associated with severe disease activity, glomerulonephritis, serositis and hemolytic anemia (p < 0.01). BCMA expression showed a negative correlation with Mex-SLEDAI score (r = -0.494, p = 0.006). Decreased BCMA expression on peripheral B cells according to severe disease activity suggests that BCMA plays an important regulating role in B-cell hyperactivity and immune tolerance homeostasis in SLE patients. © The Author(s) 2015.

  16. Distinct pattern of lesion distribution in multiple sclerosis is associated with different circulating T-helper and helper-like innate lymphoid cell subsets.

    PubMed

    Gross, Catharina C; Schulte-Mecklenbeck, Andreas; Hanning, Uta; Posevitz-Fejfár, Anita; Korsukewitz, Catharina; Schwab, Nicholas; Meuth, Sven G; Wiendl, Heinz; Klotz, Luisa

    2017-06-01

    Distinct lesion topography in relapsing-remitting multiple sclerosis (RRMS) might be due to different antigen presentation and/or trafficking routes of immune cells into the central nervous system (CNS). To investigate whether distinct lesion patterns in multiple sclerosis (MS) might be associated with a predominance of distinct circulating T-helper cell subset as well as their innate counterparts. Flow cytometric analysis of lymphocytes derived from the peripheral blood of patients with exclusively cerebral (n = 20) or predominantly spinal (n = 12) disease manifestation. Patients with exclusively cerebral or preferential spinal lesion manifestation were associated with increased proportions of circulating granulocyte-macrophage colony-stimulating factor (GM-CSF) producing T H 1 cells or interleukin (IL)-17-producing T H 17 cells, respectively. In contrast, proportions of peripheral IL-17/IL-22-producing lymphoid tissue inducer (LTi), the innate counterpart of T H 17 cells, were enhanced in RRMS patients with exclusively cerebral lesion topography. Distinct T-helper and T-helper-like innate lymphoid cell (ILC) subsets are associated with different lesion topography in RRMS.

  17. Comparison of antibody and cytokine responses to primary Giardia muris infection in H-2 congenic strains of mice.

    PubMed

    Venkatesan, P; Finch, R G; Wakelin, D

    1996-11-01

    The course of primary infections with Giardia muris differs between BALB and B10 H-2 congenic strains of mice. In the first 3 weeks of infection, there is a more rapid decline in intestinal trophozoite and fecal cyst counts in B10 strains than in BALB strains. To determine whether this difference could be explained by variation in specific antibody responses, both secretory immunoglobulin A (IgA) and serum antibody responses were compared between these strains. No significant differences in the timing, titer, or specificity of secretory or serum antibodies were found. However, on comparing specific anti-G. muris serum IgG subclass responses, we found that B10 strains produced IgG2a while BALB strains produced IgG1, suggesting differential involvement of T helper 1 and 2 subsets of lymphocytes. When cells harvested from mesenteric lymph nodes were stimulated with concanavalin A in vitro, both gamma interferon and interleukin-5 were secreted by cells from B10 mice, but only interleukin-5 was secreted by cells from BALB/c mice. Specific blockade of gamma interferon by monoclonal antibody administered to B10 mice resulted in an enhanced intensity of infection.

  18. CD147 (Basigin/Emmprin) identifies FoxP3+CD45RO+CTLA4+-activated human regulatory T cells.

    PubMed

    Solstad, Therese; Bains, Simer Jit; Landskron, Johannes; Aandahl, Einar Martin; Thiede, Bernd; Taskén, Kjetil; Torgersen, Knut Martin

    2011-11-10

    Human CD4(+)FoxP3(+) T cells are functionally and phenotypically heterogeneous providing plasticity to immune activation and regulation. To better understand the functional dynamics within this subset, we first used a combined strategy of subcellular fractionation and proteomics to describe differences at the protein level between highly purified human CD4(+)CD25(+) and CD4(+)CD25(-) T-cell populations. This identified a set of membrane proteins highly expressed on the cell surface of human regulatory T cells (Tregs), including CD71, CD95, CD147, and CD148. CD147 (Basigin or Emmprin) divided CD4(+)CD25(+) cells into distinct subsets. Furthermore, CD147, CD25, FoxP3, and in particular CTLA-4 expression correlated. Phenotypical and functional analyses suggested that CD147 marks the switch between resting (CD45RA(+)) and activated (CD45RO(+)) subsets within the FoxP3(+) T-cell population. Sorting of regulatory T cells into CD147(-) and CD147(+) populations demonstrated that CD147 identifies an activated and highly suppressive CD45RO(+) Treg subset. When analyzing CD4(+) T cells for their cytokine producing potential, CD147 levels grouped the FoxP3(+) subset into 3 categories with different ability to produce IL-2, TNF-α, IFN-γ, and IL-17. Together, this suggests that CD147 is a direct marker for activated Tregs within the CD4(+)FoxP3(+) subset and may provide means to manipulate cells important for immune homeostasis.

  19. Noncoordinate expression of J-chain and Blimp-1 define nurse shark plasma cell populations during ontogeny.

    PubMed

    Castro, Caitlin D; Ohta, Yuko; Dooley, Helen; Flajnik, Martin F

    2013-11-01

    B-lymphocyte-induced maturation protein 1 (Blimp-1) is the master regulator of plasma cell development, controlling genes such as those encoding J-chain and secretory Ig heavy chain. However, some mammalian plasma cells do not express J-chain, and mammalian B1 cells secrete "natural" IgM antibodies without upregulating Blimp-1. While these results have been controversial in mammalian systems, here we describe subsets of normally occurring Blimp-1(-) antibody-secreting cells in nurse sharks, found in lymphoid tissues at all ontogenic stages. Sharks naturally produce large amounts of both pentameric (classically "19S") and monomeric (classically "7S") IgM, the latter an indicator of adaptive immunity. Consistent with the mammalian paradigm, shark Blimp-1 is expressed in splenic 7S IgM-secreting cells, though rarely detected in the J-chain(+) cells producing 19S IgM. Although IgM transcript levels are lower in J-chain(+) cells, these cells nevertheless secrete 19S IgM in the absence of Blimp-1, as demonstrated by ELISPOT and metabolic labeling. Additionally, cells in the shark BM equivalent (epigonal) are Blimp-1(-). Our data suggest that, in sharks, 19S-secreting cells and other secreting memory B cells in the epigonal are maintained for long periods without Blimp-1, but like in mammals, Blimp-1 is required for terminating the B-cell program following an adaptive immune response in the spleen. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. IL-15 induces antigen-independent expansion and differentiation of human naive CD8+ T cells in vitro.

    PubMed

    Alves, Nuno L; Hooibrink, Berend; Arosa, Fernando A; van Lier, René A W

    2003-10-01

    Recent studies in mice have shown that although interleukin 15 (IL-15) plays an important role in regulating homeostasis of memory CD8+ T cells, it has no apparent function in controlling homeostatic proliferation of naive T cells. We here assessed the influence of IL-15 on antigen-independent expansion and differentiation of human CD8+ T cells. Both naive and primed human T cells divided in response to IL-15. In this process, naive CD8+ T cells successively down-regulated CD45RA and CD28 but maintained CD27 expression. Concomitant with these phenotypic changes, naive cells acquired the ability to produce interferon gamma (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha), expressed perforin and granzyme B, and acquired cytotoxic properties. Primed CD8+ T cells, from both noncytotoxic (CD45RA-CD27+) and cytotoxic (CD45RA+CD27-) subsets, responded to IL-15 and yielded ample numbers of cytokine-secreting and cytotoxic effector cells. In summary, all human CD8+ T-cell subsets had the ability to respond to IL-15, which suggests a generic influence of this cytokine on CD8+ T-cell homeostasis in man.

  1. High Aldehyde Dehydrogenase Activity Identifies a Subset of Human Mesenchymal Stromal Cells with Vascular Regenerative Potential.

    PubMed

    Sherman, Stephen E; Kuljanin, Miljan; Cooper, Tyler T; Putman, David M; Lajoie, Gilles A; Hess, David A

    2017-06-01

    During culture expansion, multipotent mesenchymal stromal cells (MSCs) differentially express aldehyde dehydrogenase (ALDH), an intracellular detoxification enzyme that protects long-lived cells against oxidative stress. Thus, MSC selection based on ALDH-activity may be used to reduce heterogeneity and distinguish MSC subsets with improved regenerative potency. After expansion of human bone marrow-derived MSCs, cell progeny was purified based on low versus high ALDH-activity (ALDH hi ) by fluorescence-activated cell sorting, and each subset was compared for multipotent stromal and provascular regenerative functions. Both ALDH l ° and ALDH hi MSC subsets demonstrated similar expression of stromal cell (>95% CD73 + , CD90 + , CD105 + ) and pericyte (>95% CD146 + ) surface markers and showed multipotent differentiation into bone, cartilage, and adipose cells in vitro. Conditioned media (CDM) generated by ALDH hi MSCs demonstrated a potent proliferative and prosurvival effect on human microvascular endothelial cells (HMVECs) under serum-free conditions and augmented HMVEC tube-forming capacity in growth factor-reduced matrices. After subcutaneous transplantation within directed in vivo angiogenesis assay implants into immunodeficient mice, ALDH hi MSC or CDM produced by ALDH hi MSC significantly augmented murine vascular cell recruitment and perfused vessel infiltration compared with ALDH l ° MSC. Although both subsets demonstrated strikingly similar mRNA expression patterns, quantitative proteomic analyses performed on subset-specific CDM revealed the ALDH hi MSC subset uniquely secreted multiple proangiogenic cytokines (vascular endothelial growth factor beta, platelet derived growth factor alpha, and angiogenin) and actively produced multiple factors with chemoattractant (transforming growth factor-β, C-X-C motif chemokine ligand 1, 2, and 3 (GRO), C-C motif chemokine ligand 5 (RANTES), monocyte chemotactic protein 1 (MCP-1), interleukin [IL]-6, IL-8) and matrix-modifying functions (tissue inhibitor of metalloprotinase 1 & 2 (TIMP1/2)). Collectively, MSCs selected for ALDH hi demonstrated enhanced proangiogenic secretory functions and represent a purified MSC subset amenable for vascular regenerative applications. Stem Cells 2017;35:1542-1553. © 2017 AlphaMed Press.

  2. Regulatory B cell: New member of immunosuppressive cell club.

    PubMed

    Ding, Tingting; Yan, Fan; Cao, Shui; Ren, Xiubao

    2015-09-01

    Historically, the pivotal role of B cells or B lymphocytes in immunity has been attributed to the production of antibodies. They were also demonstrated to present antigens to T cells and to secrete cytokines, thereby acting as positive regulators in immune responses. A series of studies on autoimmune diseases, however, led researchers to find a unique subset of B cells, later described as "regulatory B cells" (Bregs), that has the ability to suppress immune responses. Bregs occur not only in autoimmune diseases, but also in inflammation and transplantation. Furthermore, recently published literatures suggested that Bregs contributed to the growth and metastasis of certain cancers. In this review, we will discuss these unique subsets of B cells in different kinds of disorders, with particular emphasis on the mechanisms of their immunoregulatory role that were collected from mice and humans. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  3. Control of epithelial cell function by interleukin-22-producing RORγt+ innate lymphoid cells

    PubMed Central

    Sanos, Stephanie L; Vonarbourg, Cedric; Mortha, Arthur; Diefenbach, Andreas

    2011-01-01

    It is rapidly emerging that the defence system of innate lymphocytes is more diverse than previously recognized. In addition to natural killer (NK) cells, lymphoid tissue inducer (LTi) cells, and natural helper cells have now been identified. LTi cells are developmentally dependent on the orphan transcription factor RORγt and instruct lymph node development during embryogenesis. More recently, it has become evident, that in addition to their role for lymph organ development, LTi cells are also potent producers of cytokines such as interleukin-22 (IL-22) and IL-17 in adult mice. In addition to LTi cells, another RORγt-dependent innate lymphocyte subset co-expressing RORγt and NK cell receptors (NKRs) has been identified. These NKR+ RORγt+ cells are also potent producers of IL-22 but it is unclear whether they are part of the NK cell or LTi cell lineage. This review will highlight recent progress in understanding development and function of innate IL-22-producing lymphocyte subsets. PMID:21391996

  4. PD-1 suppresses development of humoral responses that protect against Tn-bearing tumors

    PubMed Central

    Haro, Marcela A.; Littrell, Chad A.; Yin, Zhaojun; Huang, Xuefei; Haas, Karen M.

    2017-01-01

    Tn is a carbohydrate antigen uniquely exposed on tumor mucins and thus, an ideal target for immunotherapy. However, it has been difficult to elicit protective antibody responses against Tn antigen and other tumor associated carbohydrate antigens. Our study demonstrates this can be attributed to PD-1 immuno-inhibition. Our data show a major role for PD-1 in suppressing mucin- and Tn-specific B-cell activation, expansion, and antibody production important for protection against Tn-bearing tumor cells. These Tn/mucin-specific B cells belong to the innate-like B-1b cell subset typically responsible for T cell–independent antibody responses. Interestingly, PD-1–mediated regulation is B cell–intrinsic and CD4+ cells play a key role in supporting Tn/mucin-specific B cell antibody production in the context of PD-1 deficiency. Mucin-reactive antibodies produced in the absence of PD-1 inhibition largely belong to the IgM subclass and elicit potent antitumor effects via a complement-dependent mechanism. The identification of this role for PD-1 in regulating B cell–dependent antitumor immunity to Tn antigen highlights an opportunity to develop new therapeutic strategies targeting tumor associated carbohydrate antigens. PMID:27856425

  5. [Pathogenic Mechanism and Diagnostic Testing for Drug Allergies].

    PubMed

    Uno, Katsuji

    2018-01-01

     Three stages of the pathogenic mechanism of drug allergies can be considered: antigen formation, immune reaction and inflammation/disorder reaction. Drugs are thought to form 4 types of antigens: drug only, polymers, drug-carrier conjugates, and metabolite-carrier complexes. Antigens are recognized by B cell receptors and T cell receptors. Helper T cells (Th) are differentiated into four subsets, namely, Th1, Th2, Th17 and regulatory T cells (Treg). Th1 produces interleukin (IL)-2 and interferon (IFN)-γ, and activates macrophages and cytotoxic T cells (Tc). Macrophages induce type IV allergies, and Tc lead to serious type IV allergies. On the other hand, Th2 produces IL-4, IL-5, and IL-6, etc., and activates B cells. B cells produce IgE antibodies, and the IgE antibody affects mast cells and induces type I allergies. Activated eosinophil leads to the chronic state of type I allergy. Diagnostic testing for allergenic drugs is necessary for patients with drug allergies. Because in vivo diagnostic tests for allergenic drugs are associated with a risk and burden to the patient, in vitro allergy tests are recommended to identify allergenic drugs. In allergy tests performed in vitro, cytological tests are more effective than serological tests, and the leukocyte migration test (LMT) presently has the highest efficacy. An LMT-chamber is better than LMT-agarose in terms of usability and sensitivity, and it can detect about 80% of allergenic drugs.

  6. Memory B cell dysregulation in HIV-1-infected individuals.

    PubMed

    Carrillo, Jorge; Negredo, Eugènia; Puig, Jordi; Molinos-Albert, Luis Manuel; Rodríguez de la Concepción, Maria Luisa; Curriu, Marta; Massanella, Marta; Navarro, Jordi; Crespo, Manel; Viñets, Ester; Millá, Fuensanta; Clotet, Bonaventura; Blanco, Julià

    2018-01-14

    To characterize the effect of the HIV-1 infection and antiretroviral treatment (ART) in the human memory B (MEB)-cell compartment. A cross-sectional study was designed to analyze MEB cells of HIV-1 ART treated and ART-naive study participants, and uninfected individuals. Frequency and absolute counts of MEB cell subsets in blood were determined by multicolor flow cytometry. Spontaneous cell death and B-cell proliferative capacity was evaluated in vitro by cell culture and flow cytometry. Splenic function was determined by pitted erythrocytes quantification in HIV-1 ART-treated study participants. HIV-1 ART-treated individuals did not show functional hyposplenism despite the lack of recovery IgMIgDCD27 marginal zone-like B cells. Moreover, two germinal center-dependent MEB cells subsets were also dysregulated in HIV-1 individuals: IgMIgDCD27 (IgM only) cells were increased, whereas the switched subset (IgMIgD) was reduced in viremic individuals. Althought ART restored the numbers of these populations; the switched MEB cells were enriched in CD27 cells, which showed the highest susceptibility to spontaneous cell death ex vivo. In addition, B cells from viremic individuals showed a poor response to B-cell receptor and toll-like receptor 9 stimulation that was circumvented when both stimuli were used simultaneously. B cells from HIV-1 study participants show a poor stimulation capacity, that may be bypassed by the proper combination of stimuli, and a dysregulated MEB cell pool that suggest an affectation of the germinal center reaction, only partially normalized by ART. Interestingly, hyposplenism does not explain the lack of recovery of the marginal zone-like B cells in ART-treated HIV-1 individuals.

  7. [Changes and clinical significance of peripheral blood natural killer cells in neonates with bacterial pneumonia].

    PubMed

    Li, Qiuling; Weng, Kaizhi; Zhu, Ling; Mei, Xuqiao; Xu, Liping; Lin, Jiehua

    2014-10-01

    To detect the percentage of total natural killer (NK) cells and its different populations in the peripheral blood from neonates with bacterial pneumonia and discuss the clinical significance of NK cells in the pathogenesis of bacterial pneumonia. Flow cytometry was performed to detect the percentages of NK cells and its subsets in peripheral blood lymphocytes from 38 cases of neonatal bacterial pneumonias and 18 cases of normal neonates. Patients recruited were divided into two groups according to hospitalization days and numbers of peripheral leukocytes: hospitalization days within 10 days (including 10 days) as group A, and more than 10 days as group B; the number of peripheral blood leukocytes <5.0×10(9)/L or >20.0×10(9)/L as severe infection group, and 5.0×10(9)/L< number of peripheral blood leukocytes <20.0×10(9)/L as mild infection group. The percentages of peripheral blood NK cells and CD3(-)CD56(neg)CD16(bright) subset in the neonates with bacterial pneumonia were significantly lower than those of the normal newborns (P<0.01), but there were no statistically significant differences in CD3(-)CD56(bright)CD16(neg/dim) and CD3(-)CD56(dim)CD16(bright) subsets. The percentage of CD3(-)CD56(neg)CD16(bright) subset in group A was significantly lower than that of the normal newborns (P<0.01), while the percentages of the total NK cells and other subsets had no statistical significance. The neonates with bacterial pneumonia had significantly lower percentages of the total NK cells and CD3(-)CD56(neg)CD16(bright) subset in group B as compared with the normal neonates (P<0.01). And the percentages of the total NK cells and its subsets in group B were also lower than those in group A (P<0.05). The percentages of NK cells and each subset in severe infection group were significantly lower than those in mild infection group (P<0.05). To the neonates who suffer from bacterial pneumonia, the more serious and the longer hospital stay, the lower the percentages of NK cells and its subsets are.

  8. Follicular helper T cells in peripheral blood of patients with rheumatoid arthritis.

    PubMed

    Costantino, Alicia Beatriz; Acosta, Cristina Del Valle; Onetti, Laura; Mussano, Eduardo; Cadile, Ignacio Isaac; Ferrero, Paola Virginia

    Rheumatoid arthritis (RA) is a chronic autoimmune disease that is characterized by the presence of different autoantibodies such as rheumatoid factor (RF) and anti-citrullinated protein antibodies. CD4T cells expressing CXCR5, referred as follicular helper T cells (Tfh), collaborate with B cells to produce antibodies. Differential expression of CXCR3 and CCR6 within CD4 + CXCR5 + T cells defines three mayor subsets: CXCR3 + CCR6 - (Tfh1), CXCR3 - CCR6 - (Tfh2) and CXCR3 - CCR6 + (Tfh17). The aim of the study was to assess whether there is an association between the percentage of these cells and RA and whether there is a correlation with disease activity. Twenty-four RA patients, 22 healthy controls (HC) and 16 undifferentiated arthritis (UA) patients were included. Percentage of CD4 + CXCR5 + T cells and their subsets were analyzed by flow cytometry. No differences were found in the percentages of CD4 + CXCR5 + T cells in the comparison of RA vs HC or RA vs UA patients. Tfh1, Tfh2 and Tfh17 subsets showed no differences either. There was no correlation between CD4 + CXCR5 + T cells, Tfh1, Tfh2 and Tfh17, and Disease Activity Score in twenty-eight joints (DAS28) or erythrocyte sedimentation rate. Surprisingly, there was a positive correlation between Tfh17 cells and C-reactive protein. Finally, there was no correlation between CD4 + CXCR5 + T cells, or their subsets, and anti-mutated citrullinated vimentin, or between the cells and RF. There were no differences between the percentages of CD4 + CXCR5 + T cells and their subsets in peripheral blood of RA patients and the percentages of cells in the control groups. This finding does not rule out a pathogenic role of these cells in the development and activity of RA. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  9. Flexible ordering of antibody class switch and V(D)J joining during B-cell ontogeny

    PubMed Central

    Kumar, Satyendra; Wuerffel, Robert; Achour, Ikbel; Lajoie, Bryan; Sen, Ranjan; Dekker, Job; Feeney, Ann J.; Kenter, Amy L.

    2013-01-01

    V(D)J joining is mediated by RAG recombinase during early B-lymphocyte development in the bone marrow (BM). Activation-induced deaminase initiates isotype switching in mature B cells of secondary lymphoid structures. Previous studies questioned the strict ontological partitioning of these processes. We show that pro-B cells undergo robust switching to a subset of immunoglobulin H (IgH) isotypes. Chromatin studies reveal that in pro-B cells, the spatial organization of the Igh locus may restrict switching to this subset of isotypes. We demonstrate that in the BM, V(D)J joining and switching are interchangeably inducible, providing an explanation for the hyper-IgE phenotype of Omenn syndrome. PMID:24240234

  10. Characterization of B cells in healthy pregnant women from late pregnancy to post-partum: a prospective observational study.

    PubMed

    Lima, Jorge; Martins, Catarina; Leandro, Maria J; Nunes, Glória; Sousa, Maria-José; Branco, Jorge C; Borrego, Luís-Miguel

    2016-06-06

    B cells play a role in pregnancy due to their humoral and regulatory activities. To our knowledge, different maturational stages (from transitional to memory) of circulating B cell subsets have not yet been characterized (cell quantification and phenotype identification) in healthy pregnant women. Thus, the objective of our study was to characterize these subsets (as well as regulatory B cells) from late pregnancy to post-partum and to compare them with the circulating B cells of non-pregnant women. In all of the enrolled women, flow cytometry was used to characterize the circulating B cell subsets according to the expression of IgD and CD38 (Bm1-Bm5 classification system). Regulatory B cells were characterized based on the expression of surface antigens (CD24, CD27, and CD38) and the production of IL-10 after lipopolysaccharide stimulation. Compared to the absolute counts of B cells in the non-pregnant women (n = 35), those in the pregnant women (n = 43) were significantly lower (p < 0.05) during the 3rd trimester of pregnancy and on delivery day (immediately after delivery). The percentages of these cells on delivery day and at post-partum were significantly lower than those in the non-pregnant women. In general, the absolute counts and percentages of the majority of the B cell subsets were significantly lower in the 3rd trimester of pregnancy and on delivery day than in the non-pregnant women. However, these counts and percentages did not differ significantly between the post-partum and the non-pregnant women. The most notable exceptions to the above were the percentages of naïve B cells (which were significantly higher in the 3rd trimester and on delivery day than in the non-pregnant women) and of CD24(hi)CD38(hi) regulatory B cells (which were significantly higher in the post-partum than in the non-pregnant women). According to our study, the peripheral B cell compartment undergoes quantitative changes during normal late pregnancy and post-partum. Such findings may allow us to better understand immunomodulation during human pregnancy and provide evidence that could aid in the development of new strategies to diagnose and treat pregnancy-associated disturbances. Our findings could also be useful for studies of the mechanisms of maternal responses to vaccination and infection.

  11. Deconvoluting Post-Transplant Immunity: Cell Subset-Specific Mapping Reveals Pathways for Activation and Expansion of Memory T, Monocytes and B Cells

    PubMed Central

    Grigoryev, Yevgeniy A.; Kurian, Sunil M.; Avnur, Zafi; Borie, Dominic; Deng, Jun; Campbell, Daniel; Sung, Joanna; Nikolcheva, Tania; Quinn, Anthony; Schulman, Howard; Peng, Stanford L.; Schaffer, Randolph; Fisher, Jonathan; Mondala, Tony; Head, Steven; Flechner, Stuart M.; Kantor, Aaron B.; Marsh, Christopher; Salomon, Daniel R.

    2010-01-01

    A major challenge for the field of transplantation is the lack of understanding of genomic and molecular drivers of early post-transplant immunity. The early immune response creates a complex milieu that determines the course of ensuing immune events and the ultimate outcome of the transplant. The objective of the current study was to mechanistically deconvolute the early immune response by purifying and profiling the constituent cell subsets of the peripheral blood. We employed genome-wide profiling of whole blood and purified CD4, CD8, B cells and monocytes in tandem with high-throughput laser-scanning cytometry in 10 kidney transplants sampled serially pre-transplant, 1, 2, 4, 8 and 12 weeks. Cytometry confirmed early cell subset depletion by antibody induction and immunosuppression. Multiple markers revealed the activation and proliferative expansion of CD45RO+CD62L− effector memory CD4/CD8 T cells as well as progressive activation of monocytes and B cells. Next, we mechanistically deconvoluted early post-transplant immunity by serial monitoring of whole blood using DNA microarrays. Parallel analysis of cell subset-specific gene expression revealed a unique spectrum of time-dependent changes and functional pathways. Gene expression profiling results were validated with 157 different probesets matching all 65 antigens detected by cytometry. Thus, serial blood cell monitoring reflects the profound changes in blood cell composition and immune activation early post-transplant. Each cell subset reveals distinct pathways and functional programs. These changes illuminate a complex, early phase of immunity and inflammation that includes activation and proliferative expansion of the memory effector and regulatory cells that may determine the phenotype and outcome of the kidney transplant. PMID:20976225

  12. Deconvoluting post-transplant immunity: cell subset-specific mapping reveals pathways for activation and expansion of memory T, monocytes and B cells.

    PubMed

    Grigoryev, Yevgeniy A; Kurian, Sunil M; Avnur, Zafi; Borie, Dominic; Deng, Jun; Campbell, Daniel; Sung, Joanna; Nikolcheva, Tania; Quinn, Anthony; Schulman, Howard; Peng, Stanford L; Schaffer, Randolph; Fisher, Jonathan; Mondala, Tony; Head, Steven; Flechner, Stuart M; Kantor, Aaron B; Marsh, Christopher; Salomon, Daniel R

    2010-10-14

    A major challenge for the field of transplantation is the lack of understanding of genomic and molecular drivers of early post-transplant immunity. The early immune response creates a complex milieu that determines the course of ensuing immune events and the ultimate outcome of the transplant. The objective of the current study was to mechanistically deconvolute the early immune response by purifying and profiling the constituent cell subsets of the peripheral blood. We employed genome-wide profiling of whole blood and purified CD4, CD8, B cells and monocytes in tandem with high-throughput laser-scanning cytometry in 10 kidney transplants sampled serially pre-transplant, 1, 2, 4, 8 and 12 weeks. Cytometry confirmed early cell subset depletion by antibody induction and immunosuppression. Multiple markers revealed the activation and proliferative expansion of CD45RO(+)CD62L(-) effector memory CD4/CD8 T cells as well as progressive activation of monocytes and B cells. Next, we mechanistically deconvoluted early post-transplant immunity by serial monitoring of whole blood using DNA microarrays. Parallel analysis of cell subset-specific gene expression revealed a unique spectrum of time-dependent changes and functional pathways. Gene expression profiling results were validated with 157 different probesets matching all 65 antigens detected by cytometry. Thus, serial blood cell monitoring reflects the profound changes in blood cell composition and immune activation early post-transplant. Each cell subset reveals distinct pathways and functional programs. These changes illuminate a complex, early phase of immunity and inflammation that includes activation and proliferative expansion of the memory effector and regulatory cells that may determine the phenotype and outcome of the kidney transplant.

  13. Associations of Circulating CXCR3-PD-1+CD4+T cells with Disease Activity of Systemic Lupus Erythematosus.

    PubMed

    Lei, Han; Xue, Yang; Yiyun, Yu; Weiguo, Wan; Ling, Lv; Zou, Hejian

    2018-04-25

    Which helper CD4 + T cell subset contributes to autoantibodies generation and severity of end-organ involvement in lupus patients remains to be explored. Our research aims to investigate the roles of circulating Tfh (cTfh) cell subsets and corresponding CXCR5 - Th cells in lupus patients and their correlation with SLEDAI. Peripheral blood mononuclear cells (PBMCs) were isolated from blood of SLE patients as well as healthy donors. The proportion of Th cell Subsets classified from cell surface markers (CD45RO, CXCR5, CXCR3, CCR6, PD-1, ICOS, and CCR7) is detected by flow cytometry. We found no difference in the frequency of CD45RO + CXCR5 + CD4 + T cells between SLE patients and health controls. As previous reported, SLE patients showed an increase in the percentage of CXCR5 + PD-1 + , CXCR5 + ICOS + PD-1 + and CXCR5 + CCR7 lo PD-1 hi cTfh subset, however, none of these populations had correlation with SLEDAI. Therefore, we further investigated the CXCR5 - subsets, and surprisingly we found that the frequency of CXCR3 - PD-1 + subset was correlated with SLEDAI, ds-DNA IgG, anti-nucleosome antibody, C3, and C4 independent of CXCR5. Consistently, CXCR3 - PD-1 + CD45RO + CD4 + T cells expressed factors associated with B-cell-help for the autoantibody production. CXCR3 - PD-1 + CD4 + T cells are a sensitive indicator to assess SLE disease activity and might contribute B cell help and the generation of autoantibodies in patients.

  14. Single-cell analysis of lymphokine imbalance in asymptomatic HIV-1 infection: evidence for a major alteration within the CD8+ T cell subset

    PubMed Central

    Sousa, A E; Victorino, R M M

    1998-01-01

    In this study we investigated at single-cell level by flow cytometry the potential of T cell cytokine production in asymptomatic HIV-1-infected subjects with > 200 CD4 counts and possible correlation with T helper cell depletion and viral load. Mitogen-stimulated peripheral blood mononuclear cells from 32 HIV-1+ patients and 16 healthy subjects were intracytoplasmically stained for IL-2, interferon-gamma (IFN-γ), IL-4 or IL-10, and the frequency of cytokine-producing cells was assessed in total T cells, CD4, CD8 and CD45RO subsets as well as in CD69+CD3+ gated lymphocytes. HIV-1+ patients, irrespective of their degree of CD4 depletion, exhibited a major increase in IFN-γ+ CD8 T cells, largely due to CD28− cells, as well as a decrease in the capacity of CD8 T cells to produce IL-2. Patients with > 500 CD4 counts showed a diminished frequency of IL-4 expression in CD4 T cells and a negative correlation was found between this parameter and the ex vivo CD4 counts in the 32 patients. Analysis of patients stratified according to viral load revealed a significantly higher proportion of IL-2-producing CD4 cells in the group with < 5000 RNA copies/ml. In short, using single-cell analysis and an antigen-presenting cell-independent stimulus, we have not been able to find any significant cytokine imbalances in the CD4 subset, suggesting that the well described T helper defects are not due to intrinsic alterations in the potential of CD4 T cells to produce cytokines. On the other hand, the major disturbances in the CD8 T lymphocytes agree with the marked activation and possible replicative senescence of CD8 T cells and emphasize the role of this subset in HIV immunopathogenesis. PMID:9649194

  15. A malaria protein factor induces IL-4 production by dendritic cells via PI3K-Akt-NF-κB signaling independent of MyD88/TRIF and promotes Th2 response.

    PubMed

    Wu, Xianzhu; Gowda, Nagaraj M; Kawasawa, Yuka I; Gowda, D Channe

    2018-04-17

    Dendritic cells (DC) and cytokines produced by DC play crucial roles in inducing and regulating pro-/anti-inflammatory and Th1/Th2 responses. DC are known to produce Th1-promoting cytokine, IL-12, in response to malaria and other pathogenic infections, but it is thought that DC do not produce Th2-promoting cytokine, IL-4. Here, we show that a protein factor of malaria parasites induces IL-4 responses by CD11c hi MHCII hi CD3ε - CD49b - CD19 - FcεRI - DC via PI3K-Akt-NF-κB signaling independent of TLR-MyD88/TRIF. Malaria parasite-activated DC induced IL-4 responses by T cells both in vitro and in vivo , favoring Th2, and il-4 deficient DC were unable to induce IL-4 expression by T cell.  Interestingly, lethal parasites, Plasmodium falciparum and P. berghei ANKA, induced IL-4 response primarily by CD8a - DC, whereas nonlethal P. yoelii induced IL-4 by both CD8α + and CD8α - DC. In both P. berghei ANKA- and P. yoelii -infected mice, IL-4-expressing CD8α - DC did not express IL-12, but a distinct CD8α - DC subset expressed IL-12. In P. berghei ANKA infection, CD8α + DC expressed IL-12 but not IL-4, whereas in P. yoelii infection CD8α + DC expressed IL-4 but not IL-12. This differential IL-4 and IL-12 responses by DC subsets may contribute to different Th1/Th2 development and clinical outcomes in lethal and nonlethal malaria. Our results for the first time demonstrate that a malaria protein factor induces IL-4 production by DC via PI3K-Akt-NF-κB signaling, revealing signaling and molecular mechanisms that initiate and promote Th2 development. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  16. IL-12-producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion.

    PubMed

    Rölle, Alexander; Pollmann, Julia; Ewen, Eva-Maria; Le, Vu Thuy Khanh; Halenius, Anne; Hengel, Hartmut; Cerwenka, Adelheid

    2014-12-01

    Human cytomegalovirus (HCMV) infection is the most common cause of congenital viral infections and a major source of morbidity and mortality after organ transplantation. NK cells are pivotal effector cells in the innate defense against CMV. Recently, hallmarks of adaptive responses, such as memory-like features, have been recognized in NK cells. HCMV infection elicits the expansion of an NK cell subset carrying an activating receptor heterodimer, comprising CD94 and NKG2C (CD94/NKG2C), a response that resembles the clonal expansion of adaptive immune cells. Here, we determined that expansion of this NKG2C(+) subset and general NK cell recovery rely on signals derived from CD14(+) monocytes. In a coculture system, a subset of CD14(+) cells with inflammatory monocyte features produced IL-12 in response to HCMV-infected fibroblasts, and neutralization of IL-12 in this model substantially reduced CD25 upregulation and NKG2C(+) subset expansion. Finally, blockade of CD94/NKG2C on NK cells or silencing of the cognate ligand HLA-E in infected fibroblasts greatly impaired expansion of NKG2C(+) NK cells. Together, our results reveal that IL-12, CD14(+) cells, and the CD94/NKG2C/HLA-E axis are critical for the expansion of NKG2C(+) NK cells in response to HCMV infection. Moreover, strategies targeting the NKG2C(+) NK cell subset have the potential to be exploited in NK cell-based intervention strategies against viral infections and cancer.

  17. Crucial role of gamma interferon-producing CD4+ Th1 cells but dispensable function of CD8+ T cell, B cell, Th2, and Th17 responses in the control of Brucella melitensis infection in mice.

    PubMed

    Vitry, Marie-Alice; De Trez, Carl; Goriely, Stanislas; Dumoutier, Laure; Akira, Shizuo; Ryffel, Bernhard; Carlier, Yves; Letesson, Jean-Jacques; Muraille, Eric

    2012-12-01

    Brucella spp. are facultative intracellular bacterial pathogens responsible for brucellosis, a worldwide zoonosis that causes abortion in domestic animals and chronic febrile disease associated with serious complications in humans. There is currently no approved vaccine against human brucellosis, and antibiotic therapy is long and costly. Development of a safe protective vaccine requires a better understanding of the roles played by components of adaptive immunity in the control of Brucella infection. The importance of lymphocyte subsets in the control of Brucella growth has been investigated separately by various research groups and remains unclear or controversial. Here, we used a large panel of genetically deficient mice to compare the importance of B cells, transporter associated with antigen processing (TAP-1), and major histocompatibility complex class II-dependent pathways of antigen presentation as well as T helper 1 (Th1), Th2, and Th17-mediated responses on the immune control of Brucella melitensis 16 M infection. We clearly confirmed the key function played by gamma interferon (IFN-γ)-producing Th1 CD4(+) T cells in the control of B. melitensis infection, whereas IFN-γ-producing CD8(+) T cells or B cell-mediated humoral immunity plays only a modest role in the clearance of bacteria during primary infection. In the presence of a Th1 response, Th2 or Th17 responses do not really develop or play a positive or negative role during the course of B. melitensis infection. On the whole, these results could improve our ability to develop protective vaccines or therapeutic treatments against brucellosis.

  18. Impaired Akt phosphorylation in B-cells of patients with common variable immunodeficiency.

    PubMed

    Yazdani, Reza; Ganjalikhani-Hakemi, Mazdak; Esmaeili, Mohammad; Abolhassani, Hassan; Vaeli, Shahram; Rezaei, Abbas; Sharifi, Zohre; Azizi, Gholamreza; Rezaei, Nima; Aghamohammadi, Asghar

    2017-02-01

    Common variable immunodeficiency (CVID) is a heterogeneous group of primary immunodeficiency characterized by recurrent infections. We evaluated whether defective PI3K/Akt/FoxO pathway could influence B-cell fate. Determination of B-cell subsets in CVD patients and healthy donors (HDs) were performed using flow cytometry. We evaluated mRNA and protein expression of PI3K, Akt and FoxO using real-time PCR and flow cytometry, respectively. Moreover, phosphorylated Akt (pAkt) expression in B-cells has been measured by flowcytometry. We identified a significant reduction in the percentage of marginal zone like B-cells, memory B-cells (total, switched and unswitched) and plasmablasts in patients, as these decreased B-cell subsets had a significant negative correlation with increased apoptosis in patients. Surprisingly, we identified decreased pAkt expression in B-cells of patients than HDs. We described for the first time impaired pAkt expression in B-cells of CVID patients that had a significant correlation with antibody response to the vaccine and worse clinical complications. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. B Cell Depletion Therapy Normalizes Circulating Follicular Th Cells in Primary Sjögren Syndrome.

    PubMed

    Verstappen, Gwenny M; Kroese, Frans G M; Meiners, Petra M; Corneth, Odilia B; Huitema, Minke G; Haacke, Erlin A; van der Vegt, Bert; Arends, Suzanne; Vissink, Arjan; Bootsma, Hendrika; Abdulahad, Wayel H

    2017-01-01

    To assess the effect of B cell depletion therapy on effector CD4+ T cell homeostasis and its relation to objective measures of disease activity in patients with primary Sjögren syndrome (pSS). Twenty-four patients with pSS treated with rituximab (RTX) and 24 healthy controls (HC) were included. Frequencies of circulating effector CD4+ T cell subsets were examined by flow cytometry at baseline and 16, 24, 36, and 48 weeks after the first RTX infusion. Th1, Th2, follicular Th (TFH), and Th17 cells were discerned based on surface marker expression patterns. Additionally, intracellular cytokine staining was performed for interferon-γ, interleukin (IL)-4, IL-21, and IL-17 and serum levels of these cytokines were analyzed. In patients with pSS, frequencies of circulating TFH cells and Th17 cells were increased at baseline compared with HC, whereas frequencies of Th1 and Th2 cells were unchanged. B cell depletion therapy resulted in a pronounced decrease in circulating TFH cells, whereas Th17 cells were only slightly lowered. Frequencies of IL-21-producing and IL-17-producing CD4+ T cells and serum levels of IL-21 and IL-17 were also reduced. Importantly, the decrease in circulating TFH cells was associated with lower systemic disease activity over time, as measured by the European League Against Rheumatism Sjögren's Syndrome Disease Activity Index scores and serum IgG levels. B cell depletion therapy in patients with pSS results in normalization of the elevated levels of circulating TFH cells. This reduction is associated with improved objective clinical disease activity measures. Our observations illustrate the pivotal role of the crosstalk between B cells and TFH cells in the pathogenesis of pSS.

  20. Higher Frequency of CD4+CXCR5+ICOS+PD1+ T Follicular Helper Cells in Patients With Infectious Mononucleosis.

    PubMed

    Liu, Jinlin; Zhou, Yonglie; Yu, Qinghua; Zhao, Zhao; Wang, Huan; Luo, Xiaoming; Chen, Yanxia; Zhu, Zhongliang; Chen, Guoqing; Wu, Mao; Qiu, Liannv

    2015-11-01

    Follicular helper T (Tfh) cells are recognized as a distinct CD4helper T cell subset, and mainly dysregulated in the autoimmune disease, whether it plays a role in the infectious mononucleosis (IM) diseases is unknown. In this study, we found that the CD4CXCR5 Tfh cells were not significantly changed, but the CD4CXCR5ICOS and CD4CXCR5ICOSPD1 Tfh subsets were significantly increased in the IM patients, and all these cells were significantly changed after antiviral therapy. Second, only the numbers of CD4CXCR5ICOSPD1 Tfh cells correlated with the Epstein-Barr virus (EBV) DNA load, negatively correlated with the numbers of naive B cells and amount of IL-21, and positively correlated with the numbers of plasma cells, memory B cells, and atypical lymphocytes. Third, the frequency of CD4CXCR5ICOSPD1 Tfh subset was significantly higher in lymphadenectasis or hepatosplenomegaly patients, and associated with the level of alanine aminotransferase (ALT). All together, our findings discovered this CD4CXCR5ICOSPD1 Tfh cell subset might play an important role in the pathogenesis of IM.

  1. Cytokine networking of innate immunity cells: a potential target of therapy.

    PubMed

    Striz, Ilja; Brabcova, Eva; Kolesar, Libor; Sekerkova, Alena

    2014-05-01

    Innate immune cells, particularly macrophages and epithelial cells, play a key role in multiple layers of immune responses. Alarmins and pro-inflammatory cytokines from the IL (interleukin)-1 and TNF (tumour necrosis factor) families initiate the cascade of events by inducing chemokine release from bystander cells and by the up-regulation of adhesion molecules required for transendothelial trafficking of immune cells. Furthermore, innate cytokines produced by dendritic cells, macrophages, epithelial cells and innate lymphoid cells seem to play a critical role in polarization of helper T-cell cytokine profiles into specific subsets of Th1/Th2/Th17 effector cells or regulatory T-cells. Lastly, the innate immune system down-regulates effector mechanisms and restores homoeostasis in injured tissue via cytokines from the IL-10 and TGF (transforming growth factor) families mainly released from macrophages, preferentially the M2 subset, which have a capacity to induce regulatory T-cells, inhibit the production of pro-inflammatory cytokines and induce healing of the tissue by regulating extracellular matrix protein deposition and angiogenesis. Cytokines produced by innate immune cells represent an attractive target for therapeutic intervention, and multiple molecules are currently being tested clinically in patients with inflammatory bowel disease, rheumatoid arthritis, systemic diseases, autoinflammatory syndromes, fibrosing processes or malignancies. In addition to the already widely used blockers of TNFα and the tested inhibitors of IL-1 and IL-6, multiple therapeutic molecules are currently in clinical trials targeting TNF-related molecules [APRIL (a proliferation-inducing ligand) and BAFF (B-cell-activating factor belonging to the TNF family)], chemokine receptors, IL-17, TGFβ and other cytokines.

  2. Recruitment of bone marrow CD11b+Gr-1+ cells by polymeric nanoparticles for antigen cross-presentation

    NASA Astrophysics Data System (ADS)

    Yang, Ya-Wun; Luo, Wen-Hui

    2017-03-01

    The objective of this study was to investigate the function of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) on the activation of antigen-specific CD8+ T cell responses via the CD11b+Gr-1+ myeloid subpopulations in murine bone marrow (BM). PLGA NPs containing ovalbumin (OVA) were fabricated by the double-emulsion method. The CD11b+Gr-1lowLy-6Chigh and CD11b+Gr-1highLy-6Clow subsets from mice bone marrow were sorted and treated with the PLGA/OVA NPs, followed by co-culture with the carboxyfluorescein succinimidyl ester (CFSE)-labelled OT-I CD8+ cells. Co-culture of OT-I CD8+ T cells with PLGA/OVA NPs-primed CD11b+Gr-1+ subsets upregulated the expression of IL-2, TNF-α, INF-γ, granzyme B, and perforin, resulting in proliferation of CD8+ T cells and differentiation into effector cytotoxic T lymphocytes (CTLs). In vivo proliferation of CFSE-labelled OT-I CD8+ cells in response to OVA was also obtained in the animals immunized with PLGA/OVA NPs. The results presented in this study demonstrate the ability of polymeric NPs to recruit two CD11b+Gr-1+ myeloid subsets for effective presentation of exogenous antigen to OT-I CD8+ T cells in the context of major histocompatibility complex (MHC) class I, leading to an induction of antigen-specific cell proliferation and differentiation into effector cells.

  3. IL-12–producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion

    PubMed Central

    Rölle, Alexander; Pollmann, Julia; Ewen, Eva-Maria; Le, Vu Thuy Khanh; Halenius, Anne; Hengel, Hartmut; Cerwenka, Adelheid

    2014-01-01

    Human cytomegalovirus (HCMV) infection is the most common cause of congenital viral infections and a major source of morbidity and mortality after organ transplantation. NK cells are pivotal effector cells in the innate defense against CMV. Recently, hallmarks of adaptive responses, such as memory-like features, have been recognized in NK cells. HCMV infection elicits the expansion of an NK cell subset carrying an activating receptor heterodimer, comprising CD94 and NKG2C (CD94/NKG2C), a response that resembles the clonal expansion of adaptive immune cells. Here, we determined that expansion of this NKG2C+ subset and general NK cell recovery rely on signals derived from CD14+ monocytes. In a coculture system, a subset of CD14+ cells with inflammatory monocyte features produced IL-12 in response to HCMV-infected fibroblasts, and neutralization of IL-12 in this model substantially reduced CD25 upregulation and NKG2C+ subset expansion. Finally, blockade of CD94/NKG2C on NK cells or silencing of the cognate ligand HLA-E in infected fibroblasts greatly impaired expansion of NKG2C+ NK cells. Together, our results reveal that IL-12, CD14+ cells, and the CD94/NKG2C/HLA-E axis are critical for the expansion of NKG2C+ NK cells in response to HCMV infection. Moreover, strategies targeting the NKG2C+ NK cell subset have the potential to be exploited in NK cell–based intervention strategies against viral infections and cancer. PMID:25384219

  4. A novel subset of helper T cells promotes immune responses by secreting GM-CSF

    PubMed Central

    Zhang, J; Roberts, A I; Liu, C; Ren, G; Xu, G; Zhang, L; Devadas, S; Shi, Yufang

    2013-01-01

    Helper T cells are crucial for maintaining proper immune responses. Yet, they have an undefined relationship with one of the most potent immune stimulatory cytokines, granulocyte macrophage-colony-stimulating factor (GM-CSF). By depleting major cytokines during the differentiation of CD4+ T cells in vitro, we derived cells that were found to produce large amounts of GM-CSF, but little of the cytokines produced by other helper T subsets. By their secretion of GM-CSF, this novel subset of helper T cells (which we have termed ThGM cells) promoted the production of cytokines by other T-cell subtypes, including type 1 helper T cell (Th1), type 2 helper T cell (Th2), type 1 cytotoxic T cell (Tc1), type 2 cytotoxic T cell (Tc2), and naive T cells, as evidenced by the fact that antibody neutralization of GM-CSF abolished this effect. ThGM cells were found to be highly prone to activation-induced cell death (AICD). Inhibitors of TRAIL or granzymes could not block AICD in ThGM cells, whereas inhibition of FasL/Fas interaction partially rescued ThGM cells from AICD. Thus, ThGM cells are a novel subpopulation of T helper cells that produce abundant GM-CSF, exhibit exquisite susceptibility to apoptosis, and therefore play a pivotal role in the regulation of the early stages of immune responses. PMID:24076588

  5. DNA activates human immune cells through a CpG sequence-dependent manner

    PubMed Central

    Bauer, M; Heeg, K; Wagner, H; Lipford, G B

    1999-01-01

    While bacterial DNA and cytosine–guanosine-dinucleotide-containing oligonucleotides (CpG ODN) are well described activators of murine immune cells, their effect on human cells is inconclusive. We investigated their properties on human peripheral blood mononuclear cells (PBMC) and subsets thereof, such as purified monocytes, T and B cells. Here we demonstrate that bacterial DNA and CpG ODN induce proliferation of B cells, while other subpopulations, such as monocytes and T cells, did not proliferate. PBMC mixed cell cultures, as well as purified monocytes, produced interleukin-6 (IL-6), IL-12 and tumour necrosis factor-α upon stimulation with bacterial DNA; however, only IL-6 and IL-12 secretion became induced upon CpG ODN stimulation. We conclude that monocytes, but not B or T cells, represent the prime source of cytokines. Monocytes up-regulated expression of antigen-presenting, major histocompatibility complex class I and class II molecules in response to CpG DNA. In addition, both monocytes and B cells up-regulate costimulatory CD86 and CD40 molecules. The activation by CpG ODN depended on sequence motifs containing the core dinucleotide CG since destruction of the motif strongly reduced immunostimulatory potential. PMID:10457226

  6. TGF-β-induced IκB-ζ controls Foxp3 gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MaruYama, Takashi, E-mail: ta-maru@umin.ac.jp; School of Medicine, Gifu University, Gifu 501-1194

    2015-08-21

    Inhibitor of kappa B (IκB)-ζ, a member of the nuclear IκB family of proteins, is induced by the transforming growth factor (TGF)-β signaling pathway and plays a pivotal role in maintaining the balance of T helper (Th) cell subsets. IκB-ζ deficiency results in reduced percentages of Th17 cells and increased percentages of Th1 cells. In this study, the effects of IκB-ζ deficiency on T-cell subsets were examined further. The data showed that IκB-ζ-deficient T cells had a high capacity for generation of regulatory T cells (Tregs) when T cells were cultured under TGF-β stimulation in the presence of cytokine-neutralizing antibodies.more » Mechanistically, IκB-ζ itself negatively regulated activation of the Foxp3 promoter in a nuclear factor of kappaB-dependent manner. Thus, this study showed that IκB-ζ controlled Treg differentiation. - Highlights: • IκB-ζ-deficient T cells exhibited increased generation of Foxp3{sup +} Tregs. • IκB-ζ played a key role in Foxp3 gene expression. • Retroviral overexpression of IκB-ζ was achieved in T cells.« less

  7. Treatment for moderate to severe atopic dermatitis in alpine and moderate maritime climates differentially affects helper T cells and memory B cells in children.

    PubMed

    Heeringa, J J; Fieten, K B; Bruins, F M; van Hoffen, E; Knol, E F; Pasmans, S G M A; van Zelm, M C

    2018-06-01

    Treatment of atopic dermatitis (AD) is focused on topical anti-inflammatory therapy, epidermal barrier repair and trigger avoidance. Multidisciplinary treatment in both moderate maritime and alpine climates can successfully reduce disease activity in children with AD. However, it remains unclear whether abnormalities in B cell and T cell memory normalize and whether this differs between treatment strategies. To determine whether successful treatment in maritime and alpine climates normalizes B- and T lymphocytes in children with moderate to severe AD. The study was performed in the context of a trial (DAVOS trial, registered at Current Controlled Trials ISCRTN88136485) in which eighty-eight children with moderate to severe AD were randomized to 6 weeks of treatment in moderate maritime climate (outpatient setting) or in the alpine climate (inpatient setting). Before and directly after treatment, disease activity was determined with SA-EASI and serum TARC, and T cell and B cell subsets were quantified in blood. Both treatment protocols achieved a significant decrease in disease activity, which was accompanied by a reduction in circulating memory Treg, transitional B cell and plasmablast numbers. Alpine climate treatment had a significantly greater effect on disease activity and was accompanied by a reduction in blood eosinophils and increases in memory B cells, CD8+ TemRO, CD4+ Tcm and CCR7+ Th2 subsets. Clinically successful treatment of AD induces changes in blood B- and T cell subsets reflecting reduced chronic inflammation. In addition, multidisciplinary inpatient treatment in the alpine climate specifically affects memory B cells, CD8+ T cells and Th2 cells. These cell types could represent good markers for treatment efficacy. © 2018 John Wiley & Sons Ltd.

  8. Targeting CD22 with the monoclonal antibody epratuzumab modulates human B-cell maturation and cytokine production in response to Toll-like receptor 7 (TLR7) and B-cell receptor (BCR) signaling.

    PubMed

    Giltiay, Natalia V; Shu, Geraldine L; Shock, Anthony; Clark, Edward A

    2017-05-15

    Abnormal B-cell activation is implicated in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus (SLE). The B-cell surface molecule CD22, which regulates activation through the B-cell receptor (BCR), is a potential target for inhibiting pathogenic B cells; however, the regulatory functions of CD22 remain poorly understood. In this study, we determined how targeting of CD22 with epratuzumab (Emab), a humanized anti-CD22 IgG1 monoclonal antibody, affects the activation of human B-cell subsets in response to Toll-like receptor 7 (TLR7) and BCR engagement. B-cell subsets were isolated from human tonsils and stimulated with F(ab') 2 anti-human IgM and/or the TLR7 agonist R848 in the presence of Emab or a human IgG1 isotype control. Changes in mRNA levels of genes associated with B-cell activation and differentiation were analyzed by quantitative PCR. Cytokine production was measured by ELISA. Cell proliferation, survival, and differentiation were assessed by flow cytometry. Pretreatment of phenotypically naïve CD19 + CD10 - CD27 - cells with Emab led to a significant increase in IL-10 expression, and in some but not all patient samples to a reduction of IL-6 production in response to TLR7 stimulation alone or in combination with anti-IgM. Emab selectively inhibited the expression of PRDM1, the gene encoding B-lymphocyte-induced maturation protein 1 (Blimp-1) in activated CD10 - CD27 - B cells. CD10 - CD27 - IgD - cells were highly responsive to stimulation through TLR7 as evidenced by the appearance of blasting CD27 hi CD38 hi cells. Emab significantly inhibited the activation and differentiation of CD10 - CD27 - IgD - B cells into plasma cells. Emab can both regulate cytokine expression and block Blimp1-dependent B-cell differentiation, although the effects of Emab may depend on the stage of B-cell development or activation. In addition, Emab inhibits the activation of CD27 - IgD - tonsillar cells, which correspond to so-called double-negative memory B cells, known to be increased in SLE patients with more active disease. These data may be relevant to the therapeutic effect of Emab in vivo via modulation of the production of pro-inflammatory and anti-inflammatory cytokines by B cells. Because Blimp-1 is required by B cells to mature into antibody-producing cells, inhibition of Blimp1 may reduce autoantibody production.

  9. Chemokine (C-C Motif) Receptor 2 Mediates Dendritic Cell Recruitment to the Human Colon but Is Not Responsible for Differences Observed in Dendritic Cell Subsets, Phenotype, and Function Between the Proximal and Distal Colon.

    PubMed

    Bernardo, David; Durant, Lydia; Mann, Elizabeth R; Bassity, Elizabeth; Montalvillo, Enrique; Man, Ripple; Vora, Rakesh; Reddi, Durga; Bayiroglu, Fahri; Fernández-Salazar, Luis; English, Nick R; Peake, Simon T C; Landy, Jon; Lee, Gui H; Malietzis, George; Siaw, Yi Harn; Murugananthan, Aravinth U; Hendy, Phil; Sánchez-Recio, Eva; Phillips, Robin K S; Garrote, Jose A; Scott, Paul; Parkhill, Julian; Paulsen, Malte; Hart, Ailsa L; Al-Hassi, Hafid O; Arranz, Eduardo; Walker, Alan W; Carding, Simon R; Knight, Stella C

    2016-01-01

    Most knowledge about gastrointestinal (GI)-tract dendritic cells (DC) relies on murine studies where CD103 + DC specialize in generating immune tolerance with the functionality of CD11b +/- subsets being unclear. Information about human GI-DC is scarce, especially regarding regional specifications. Here, we characterized human DC properties throughout the human colon. Paired proximal (right/ascending) and distal (left/descending) human colonic biopsies from 95 healthy subjects were taken; DC were assessed by flow cytometry and microbiota composition assessed by 16S rRNA gene sequencing. Colonic DC identified were myeloid (mDC, CD11c + CD123 - ) and further divided based on CD103 and SIRPα (human analog of murine CD11b) expression. CD103 - SIRPα + DC were the major population and with CD103 + SIRPα + DC were CD1c + ILT3 + CCR2 + (although CCR2 was not expressed on all CD103 + SIRPα + DC). CD103 + SIRPα - DC constituted a minor subset that were CD141 + ILT3 - CCR2 - . Proximal colon samples had higher total DC counts and fewer CD103 + SIRPα + cells. Proximal colon DC were more mature than distal DC with higher stimulatory capacity for CD4 + CD45RA + T-cells. However, DC and DC-invoked T-cell expression of mucosal homing markers (β7, CCR9) was lower for proximal DC. CCR2 was expressed on circulating CD1c + , but not CD141 + mDC, and mediated DC recruitment by colonic culture supernatants in transwell assays. Proximal colon DC produced higher levels of cytokines. Mucosal microbiota profiling showed a lower microbiota load in the proximal colon, but with no differences in microbiota composition between compartments. Proximal colonic DC subsets differ from those in distal colon and are more mature. Targeted immunotherapy using DC in T-cell mediated GI tract inflammation may therefore need to reflect this immune compartmentalization.

  10. CD19+CD24hiCD38hiBregs involved in downregulate helper T cells and upregulate regulatory T cells in gastric cancer

    PubMed Central

    Wang, Weiwei; Yuan, Xiangliang; Chen, Hui; Xie, Guohua; Ma, Yanhui; Zheng, Yingxia; Zhou, Yunlan; Shen, Lisong

    2015-01-01

    Regulatory B cells (Bregs) play a critical role in inflammation and autoimmune disease. We characterized the role of Bregs in the progression of gastric cancer. We detected an increase in Bregs producing IL-10 both in peripheral blood mononuclear cells (PBMCs) and in gastric tumors. Multicolor flow cytometry analysis revealed that a subset of CD19+CD24hiCD38hi B cells produces IL-10. Functional studies indicated that increased Bregs do not inhibit the proliferation of CD3+T cells or CD4+ helper T cells (Th cells). However, Bregs do suppress the secretion of IFN-γ and TNF-α by CD4+Th cells. CD19+CD24hiCD38hiBregs were also found to correlate positively with CD4+FoxP3+ regulatory T cells (Tregs). Neutralization experiments showed that Bregs convert CD4+CD25− effector T cells to CD4+FoxP3+Tregs via TGF-β1. Collectively, these findings demonstrate that increased Bregs play a immunosuppressive role in gastric cancer by inhibiting T cells cytokines as well as conversion to Tregs. These results may provide new clues about the underlying mechanisms of immune escape in gastric cancer. PMID:26378021

  11. Evaluation of the effect of selective serotonin-reuptake inhibitors on lymphocyte subsets in patients with a major depressive disorder.

    PubMed

    Hernandez, Maria Eugenia; Martinez-Fong, Daniel; Perez-Tapia, Mayra; Estrada-Garcia, Iris; Estrada-Parra, Sergio; Pavón, Lenin

    2010-02-01

    To date, only the effect of a short-term antidepressant treatment (<12 weeks) on neuroendocrinoimmune alterations in patients with a major depressive disorder has been evaluated. Our objective was to determine the effect of a 52-week long treatment with selective serotonin-reuptake inhibitors on lymphocyte subsets. The participants were thirty-one patients and twenty-two healthy volunteers. The final number of patients (10) resulted from selection and course, as detailed in the enrollment scheme. Methods used to psychiatrically analyze the participants included the Mini-International Neuropsychiatric Interview, Hamilton Depression Scale and Beck Depression Inventory. The peripheral lymphocyte subsets were measured in peripheral blood using flow cytometry. Before treatment, increased counts of natural killer (NK) cells in patients were statistically significant when compared with those of healthy volunteers (312+/-29 versus 158+/-30; cells/mL), but no differences in the populations of T and B cells were found. The patients showed remission of depressive episodes after 20 weeks of treatment along with an increase in NK cell and B cell populations, which remained increased until the end of the study. At the 52nd week of treatment, patients showed an increase in the counts of NK cells (396+/-101 cells/mL) and B cells (268+/-64 cells/mL) compared to healthy volunteers (NK, 159+/-30 cells/mL; B cells, 179+/-37 cells/mL). We conclude that long-term treatment with selective serotonin-reuptake inhibitors not only causes remission of depressive symptoms, but also affects lymphocyte subset populations. The physiopathological consequence of these changes remains to be determined.

  12. Clonal precursor of bone, cartilage, and hematopoietic niche stromal cells

    PubMed Central

    Chan, Charles K. F.; Lindau, Paul; Jiang, Wen; Chen, James Y.; Zhang, Lillian F.; Chen, Ching-Cheng; Seita, Jun; Sahoo, Debashis; Kim, Jae-Beom; Lee, Andrew; Park, Sujin; Nag, Divya; Gong, Yongquan; Kulkarni, Subhash; Luppen, Cynthia A.; Theologis, Alexander A.; Wan, Derrick C.; DeBoer, Anthony; Seo, Eun Young; Vincent-Tompkins, Justin D.; Loh, Kyle; Walmsley, Graham G.; Kraft, Daniel L.; Wu, Joseph C.; Longaker, Michael T.; Weissman, Irving L.

    2013-01-01

    Organs are composites of tissue types with diverse developmental origins, and they rely on distinct stem and progenitor cells to meet physiological demands for cellular production and homeostasis. How diverse stem cell activity is coordinated within organs is not well understood. Here we describe a lineage-restricted, self-renewing common skeletal progenitor (bone, cartilage, stromal progenitor; BCSP) isolated from limb bones and bone marrow tissue of fetal, neonatal, and adult mice. The BCSP clonally produces chondrocytes (cartilage-forming) and osteogenic (bone-forming) cells and at least three subsets of stromal cells that exhibit differential expression of cell surface markers, including CD105 (or endoglin), Thy1 [or CD90 (cluster of differentiation 90)], and 6C3 [ENPEP glutamyl aminopeptidase (aminopeptidase A)]. These three stromal subsets exhibit differential capacities to support hematopoietic (blood-forming) stem and progenitor cells. Although the 6C3-expressing subset demonstrates functional stem cell niche activity by maintaining primitive hematopoietic stem cell (HSC) renewal in vitro, the other stromal populations promote HSC differentiation to more committed lines of hematopoiesis, such as the B-cell lineage. Gene expression analysis and microscopic studies further reveal a microenvironment in which CD105-, Thy1-, and 6C3-expressing marrow stroma collaborate to provide cytokine signaling to HSCs and more committed hematopoietic progenitors. As a result, within the context of bone as a blood-forming organ, the BCSP plays a critical role in supporting hematopoiesis through its generation of diverse osteogenic and hematopoietic-promoting stroma, including HSC supportive 6C3(+) niche cells. PMID:23858471

  13. Immune Cell Subsets Evaluation as a Predictive Tool for Hepatitis B Infection Outcome and Treatment Responsiveness.

    PubMed

    Kandilarova, Snezhina M; Georgieva, Atanaska I; Mihaylova, Anastasiya P; Baleva, Marta P; Atanasova, Valentina K; Petrova, Diana V; Popov, Georgi T; Naumova, Elissaveta J

    2017-03-01

    The patient's immune response is one of the major factors influencing HBV eradication or chronification, and it is thought to be responsible for the treatment success. Our study aimed to investigate whether cellular defense mechanisms are associated with the course of HBV infection (spontaneous recovery [SR] or chronification [CHB]) and with the therapeutic approach. A total of 139 patients (118 with CHB, 21 SR) and 29 healthy individuals (HI) were immunophenotyped by flowcytometry. Fifty-six patients were treatment-naïve, 20 were treated with interferons and 42 with nucleoside/ nucleotide analogues. Deficiency of T lymphocytes, helper-inducer (CD3+CD4+), suppressorcytotoxic (CD8+CD3+) and cytotoxic (CD8+CD11b-, CD8+CD28+) subsets, activated T cells (CD3+HLA-DR+, CD8+CD38+) and increased CD57+CD8- cells, elevated percentages of B lymphocytes and NKT cells were observed in CHB patients compared with HI. In SR patients, elevated CD8+CD11b+, NKT and activated T cells were found in comparison with controls. The higher values of T cells and their subsets in SR patients than in CHB patients reflect a recovery of cellular immunity in resolved HBV infection individuals. In both groups of treated patients, reduced T lymphocytes, CD3+CD4+ and CD8+CD38+ subsets were found in comparison with HI. Higher proportions of cytotoxic subsets were observed in treated patients compared with treatment-naïve CHB patients, more pronounced in the group with interferon therapy. Our data demonstrate that cellular immune profiles may be of prognostic value in predicting the clinical course of HBV infection, and the determination of the therapeutic response.

  14. Spores of two probiotic Bacillus species enhance cellular immunity in BALB/C mice.

    PubMed

    Gong, Li; Huang, Qin; Fu, Aikun; Wu, YanPing; Li, Yali; Xu, Xiaogang; Huang, Yi; Yu, Dongyou; Li, Weifen

    2018-01-01

    Previous studies found that Bacillus subtilis BS02 and B. subtilis subsp. natto BS04 isolated in our laboratory could activate the immune response of murine macrophages in vitro. This study aims to investigate the effects of dietary supplementation with Bacillus species spores on the systemic cellular immune response in BALB/C mice. Results showed that both B. subtilis BS02 and B. subtilis natto BS04 enhanced the phagocytic function of the mononuclear phagocyte system (MPS) and the cytotoxicity of natural killer (NK) cells. In addition, B. subtilis BS02 could increase the respiratory burst activity of blood phagocytes. Furthermore, B. subtilis BS02 and B. subtilis natto BS04 increased the percentage of gamma-interferon-producing CD4 + cells and CD8 + T-cells, but only BS04 increased the percentage of CD3 + cells and CD3 +  CD4 + cells in splenocytes. However, there were no effects on other subsets of splenic lymphocytes and mitogen-induced splenic lymphocyte proliferation. All data suggested that oral administration of B. subtilis BS02 or B. subtilis natto BS04 could significantly enhance cellular immunity in BALB/C mice by increasing phagocytic activity of MPS and cytotoxic activity of NK cells in a strain-specific manner.

  15. Adoptive therapy with chimeric antigen receptor-modified T cells of defined subset composition.

    PubMed

    Riddell, Stanley R; Sommermeyer, Daniel; Berger, Carolina; Liu, Lingfeng Steven; Balakrishnan, Ashwini; Salter, Alex; Hudecek, Michael; Maloney, David G; Turtle, Cameron J

    2014-01-01

    The ability to engineer T cells to recognize tumor cells through genetic modification with a synthetic chimeric antigen receptor has ushered in a new era in cancer immunotherapy. The most advanced clinical applications are in targeting CD19 on B-cell malignancies. The clinical trials of CD19 chimeric antigen receptor therapy have thus far not attempted to select defined subsets before transduction or imposed uniformity of the CD4 and CD8 cell composition of the cell products. This review will discuss the rationale for and challenges to using adoptive therapy with genetically modified T cells of defined subset and phenotypic composition.

  16. Tonsillar CD56brightNKG2A+ NK cells restrict primary Epstein-Barr virus infection in B cells via IFN-γ.

    PubMed

    Jud, Aurelia; Kotur, Monika; Berger, Christoph; Gysin, Claudine; Nadal, David; Lünemann, Anna

    2017-01-24

    Natural killer (NK) cells constitute the first line of defense against viruses and cancers cells. Epstein-Barr virus (EBV) was the first human virus to be directly implicated in carcinogenesis, and EBV infection is associated with a broad spectrum of B cell lymphomas. How NK cells restrict EBV-associated oncogenesis is not understood. Here, we investigated the efficacies and mechanisms of distinct NK cell subsets from tonsils, the portal of entry of EBV, in limiting EBV infection in naïve, germinal center-associated and memory B cells. We found that CD56bright and NKG2A expression sufficiently characterizes the potent anti-EBV capacity of tonsillar NK cells. We observed restriction of EBV infection in B cells as early as 18 hours after infection. The restriction was most efficient in naïve B cells and germinal center-associated B cells, the B cell subsets that exhibited highest susceptibility to EBV infection in vitro. IFN-γ release by and partially NKp44 engagement of CD56bright and NKG2A positive NK cells mediated the restriction that eventually inhibited B-cell transformation. Thus, harnessing CD56brightNKG2A+ NK cell function might be promising to improve treatment strategies that target EBV-associated B cell lymphomas.

  17. Providence of CD25+ KIR+ CD127- FOXP3- CD8+ T cell subset determines the dynamics of tumor immune surveillance.

    PubMed

    Chakraborty, Sreeparna; Bhattacharjee, Pushpak; Panda, Abir K; Kajal, Kirti; Bose, Sayantan; Sa, Gaurisankar

    2018-05-16

    CD8 + T-regulatory cells are progressively emerging as crucial components of immune system. The previous report suggests the presence of FOXP3-positive CD8 + Treg cells, similar to CD4 + Tregs, in cancer patients which produce high levels of IL10 and TGFβ for its immunosuppressive activities. At an early stage of tumor development, we have identified a subset of FOXP3-negative CD8 + CD25 + KIR + CD127 - a Treg-like subset which is essentially IFNγ-positive. However, this early induced CD8 + CD25 + CD127 - T cell subset certainly distinct from the IFNγ + CD8 + T-effecter cells. This CD8 + CD25 + CD127 - T cells are equipped with other FOXP3 - CD8 + Treg cell signature markers and can selectively suppress HLA-E-positive T FH cells in autoimmune condition as well as tumor-induced CD4 + Treg cells. Contrasting to FOXP3-positive CD8 + Tregs, this subset does not inhibit effector T cell proliferation or their functions as they are HLA-E-negative. Adoptive transfer of this early-CD8 + Treg-like subset detained tumor growth and inhibited CD4 + Treg generation that obstacles the immune surveillance and impairs cancer immunotherapy. At the late stage of tumor development, when CD4 + Treg cells dominate tumor-microenvironment, CD4 + Tregs mediate the clonal deletion of this tumor-suppressive FOXP3 - IFNγ + CD8 + CD25 + CD127 - T cells and ensures tumor immune evasion. Our findings suggest that at an early stage of the tumor, this tumor-induced IFNγ-producing FOXP3-negative CD8 + CD25 + CD127 - T cell subset can potentiate immune surveillance by targeting HLA-E-restricted CD4 + Treg cells whereas leaving the effector T cell population unaffected, and hence maneuvering their profile can open up a new avenue in cancer immunotherapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Non-coordinate expression of J-chain and Blimp-1 define nurse shark plasma cell populations during ontogeny

    PubMed Central

    Castro, Caitlin D.; Ohta, Yuko; Dooley, Helen; Flajnik, Martin F.

    2014-01-01

    Summary Blimp-1 is the master regulator of plasma cell development, controlling genes such as J-chain and secretory Ig heavy chain. However, some mammalian plasma cells do not express J-chain, and mammalian B1 cells secrete “natural” IgM antibodies without upregulating Blimp-1. While these results have been controversial in mammalian systems, here we describe subsets of normally occurring Blimp-1- antibody secreting cells in nurse sharks, found in lymphoid tissues at all ontogenic stages. Sharks naturally produce large amounts of both pentameric (classically ‘19S’) and monomeric (classically ‘7S’) IgM, the latter an indicator of adaptive immunity. Consistent with the mammalian paradigm, shark Blimp-1 is expressed in splenic 7S IgM-secreting cells, though rarely detected in the J-chain+ cells producing 19S IgM. Although IgM transcript levels are lower in J-chain+ cells, these cells nevertheless secrete 19S IgM in the absence of Blimp-1, as demonstrated by ELISPOT and metabolic labeling. Additionally, cells in the shark bone marrow equivalent (epigonal) are Blimp-1-. Our data suggest that, in sharks, 19S-secreting cells and other secreting memory B cells in the epigonal can be maintained for long periods without Blimp-1, but like in mammals, Blimp-1 is required for terminating the B cell program following an adaptive immune response in the spleen. PMID:23897025

  19. In vitro haematopoiesis of a novel dendritic-like cell present in murine spleen.

    PubMed

    Tan, Jonathan K H; O'Neill, Helen C

    2010-12-01

    Dendritic cells (DC) are important antigen presenting cells (APC) which induce and control the adaptive immune response. In spleen alone, multiple DC subsets can be distinguished by cell surface marker phenotype. Most of these have been shown to develop from progenitors in bone marrow and to seed lymphoid and tissue sites during development. This study advances in vitro methodology for haematopoiesis of dendritic-like cells from progenitors in spleen. Since spleen progenitors undergo differentiation in vitro to produce these cells, the possibility exists that spleen represents a specific niche for differentiation of this subset. The fact that an equivalent cell subset has been shown to exist in spleen also supports that hypothesis. Studies have been directed at investigating the specific functional role of this novel subset as an APC accessible to blood-borne antigen, as well as the conditions under which haematopoiesis is initiated in spleen, and the type of progenitor involved.

  20. Serum BAFF and APRIL Levels, T-Lymphocyte Subsets, and Immunoglobulins after B-Cell Depletion Using the Monoclonal Anti-CD20 Antibody Rituximab in Myalgic Encephalopathy/Chronic Fatigue Syndrome.

    PubMed

    Lunde, Sigrid; Kristoffersen, Einar K; Sapkota, Dipak; Risa, Kristin; Dahl, Olav; Bruland, Ove; Mella, Olav; Fluge, Øystein

    2016-01-01

    Myalgic Encephalopathy/Chronic Fatigue Syndrome (ME/CFS) is a disease of unknown etiology. We have previously suggested clinical benefit from B-cell depletion using the monoclonal anti-CD20 antibody rituximab in a randomized and placebo-controlled study. Prolonged responses were then demonstrated in an open-label phase-II study with maintenance rituximab treatment. Using blood samples from patients in the previous two clinical trials, we investigated quantitative changes in T-lymphocyte subsets, in immunoglobulins, and in serum levels of two B-cell regulating cytokines during follow-up. B-lymphocyte activating factor of the tumor necrosis family (BAFF) in baseline serum samples was elevated in 70 ME/CFS patients as compared to 56 healthy controls (p = 0.011). There were no significant differences in baseline serum BAFF levels between patients with mild, moderate, or severe ME/CFS, or between responders and non-responders to rituximab. A proliferation-inducing ligand (APRIL) serum levels were not significantly different in ME/CFS patients compared to healthy controls at baseline, and no changes in serum levels were seen during follow-up. Immunophenotyping of peripheral blood T-lymphocyte subsets and T-cell activation markers at multiple time points during follow-up showed no significant differences over time, between rituximab and placebo groups, or between responders and non-responders to rituximab. Baseline serum IgG levels were significantly lower in patients with subsequent response after rituximab therapy compared to non-responders (p = 0.03). In the maintenance study, slight but significant reductions in mean serum immunoglobulin levels were observed at 24 months compared to baseline; IgG 10.6-9.5 g/L, IgA 1.8-1.5 g/L, and IgM 0.97-0.70 g/L. Although no functional assays were performed, the lack of significant associations of T- and NK-cell subset numbers with B-cell depletion, as well as the lack of associations to clinical responses, suggest that B-cell regulatory effects on T-cell or NK-cell subsets are not the main mechanisms for the observed improvements in ME/CFS symptoms observed in the two previous trials. The modest increase in serum BAFF levels at baseline may indicate an activated B-lymphocyte system in a subgroup of ME/CFS patients.

  1. Serum BAFF and APRIL Levels, T-Lymphocyte Subsets, and Immunoglobulins after B-Cell Depletion Using the Monoclonal Anti-CD20 Antibody Rituximab in Myalgic Encephalopathy/Chronic Fatigue Syndrome

    PubMed Central

    Lunde, Sigrid; Kristoffersen, Einar K.; Sapkota, Dipak; Risa, Kristin; Dahl, Olav; Bruland, Ove; Mella, Olav; Fluge, Øystein

    2016-01-01

    Myalgic Encephalopathy/Chronic Fatigue Syndrome (ME/CFS) is a disease of unknown etiology. We have previously suggested clinical benefit from B-cell depletion using the monoclonal anti-CD20 antibody rituximab in a randomized and placebo-controlled study. Prolonged responses were then demonstrated in an open-label phase-II study with maintenance rituximab treatment. Using blood samples from patients in the previous two clinical trials, we investigated quantitative changes in T-lymphocyte subsets, in immunoglobulins, and in serum levels of two B-cell regulating cytokines during follow-up. B-lymphocyte activating factor of the tumor necrosis family (BAFF) in baseline serum samples was elevated in 70 ME/CFS patients as compared to 56 healthy controls (p = 0.011). There were no significant differences in baseline serum BAFF levels between patients with mild, moderate, or severe ME/CFS, or between responders and non-responders to rituximab. A proliferation-inducing ligand (APRIL) serum levels were not significantly different in ME/CFS patients compared to healthy controls at baseline, and no changes in serum levels were seen during follow-up. Immunophenotyping of peripheral blood T-lymphocyte subsets and T-cell activation markers at multiple time points during follow-up showed no significant differences over time, between rituximab and placebo groups, or between responders and non-responders to rituximab. Baseline serum IgG levels were significantly lower in patients with subsequent response after rituximab therapy compared to non-responders (p = 0.03). In the maintenance study, slight but significant reductions in mean serum immunoglobulin levels were observed at 24 months compared to baseline; IgG 10.6–9.5 g/L, IgA 1.8–1.5 g/L, and IgM 0.97–0.70 g/L. Although no functional assays were performed, the lack of significant associations of T- and NK-cell subset numbers with B-cell depletion, as well as the lack of associations to clinical responses, suggest that B-cell regulatory effects on T-cell or NK-cell subsets are not the main mechanisms for the observed improvements in ME/CFS symptoms observed in the two previous trials. The modest increase in serum BAFF levels at baseline may indicate an activated B-lymphocyte system in a subgroup of ME/CFS patients. PMID:27536947

  2. Bacterially activated B-cells drive T cell differentiation towards Tr1 through PD-1/PD-L1 expression.

    PubMed

    Said, Sawsan Sudqi; Barut, Guliz Tuba; Mansur, Nesteren; Korkmaz, Asli; Sayi-Yazgan, Ayca

    2018-04-01

    Regulatory B cells (Bregs) play a crucial role in immunological tolerance primarily through the production of IL-10 in many diseases including autoimmune disorders, allergy, infectious diseases, and cancer. To date, various Breg subsets with overlapping phenotypes have been identified. However, the roles of Bregs in Helicobacter infection are largely unknown. In the present study, we investigate the phenotype and function of Helicobacter -stimulated B cells. Our results demonstrate that Helicobacter felis -stimulated IL-10- producing B cells (Hf stim - IL-10 + B) are composed of B10 and Transitional 2 Marginal Zone Precursor (T2-MZP) cells with expression of CD9, Tim-1, and programmed death 1 (PD-1). On the other hand, Helicobacter felis -stimulated IL-10- nonproducing B (Hf stim - IL-10 - B) cells are mainly marginal zone (MZ) B cells that express PD-L1 and secrete TGF-β, IL-6, and TNF-α, and IgM and IgG2b. Furthermore, we show that both Hf stim - IL-10 + B cells and Hf stim - IL-10 - B cells induce CD49b + LAG-3 + Tr1 cells. Here, we describe a novel mechanism for PD-1/PD-L1- driven B cell-dependent Tr1 cell differentiation. Finally, we explore the capability of Hf stim - IL-10 - B cells to induce Th17 cell differentiation, which we find to be dependent on TGF-β. Taken together, the current study demonstrates that Hf stim - B cells induce Tr1 cells through the PD-1/PD-L1 axis and Th17 cells by secreting TGF-β. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Wiskott-Aldrich syndrome protein deficiency in B cells results in impaired peripheral homeostasis

    PubMed Central

    Meyer-Bahlburg, Almut; Becker-Herman, Shirly; Humblet-Baron, Stephanie; Khim, Socheath; Weber, Michele; Bouma, Gerben; Thrasher, Adrian J.; Batista, Facundo D.

    2008-01-01

    To more precisely identify the B-cell phenotype in Wiskott-Aldrich syndrome (WAS), we used 3 distinct murine in vivo models to define the cell intrinsic requirements for WAS protein (WASp) in central versus peripheral B-cell development. Whereas WASp is dispensable for early bone marrow B-cell development, WASp deficiency results in a marked reduction in each of the major mature peripheral B-cell subsets, exerting the greatest impact on marginal zone and B1a B cells. Using in vivo bromodeoxyuridine labeling and in vitro functional assays, we show that these deficits reflect altered peripheral homeostasis, partially resulting from an impairment in integrin function, rather than a developmental defect. Consistent with these observations, we also show that: (1) WASp expression levels increase with cell maturity, peaking in those subsets exhibiting the greatest sensitivity to WASp deficiency; (2) WASp+ murine B cells exhibit a marked selective advantage beginning at the late transitional B-cell stage; and (3) a similar in vivo selective advantage is manifest by mature WASp+ human B cells. Together, our data provide a better understanding of the clinical phenotype of WAS and suggest that gene therapy might be a useful approach to rescue altered B-cell homeostasis in this disease. PMID:18687984

  4. CD4 T cells play important roles in maintaining IL-17-producing γδ T-cell subsets in naive animals.

    PubMed

    Do, Jeong-Su; Visperas, Anabelle; O'Brien, Rebecca L; Min, Booki

    2012-04-01

    A proportional balance between αβ and γδ T-cell subsets in the periphery is exceedingly well maintained by a homeostatic mechanism. However, a cellular mechanism underlying the regulation remains undefined. We recently reported that a subset of developing γδ T cells spontaneously acquires interleukin (IL)-17-producing capacity even within naive animals through a transforming growth factor (TGF)β1-dependent mechanism, thus considered 'innate' IL-17-producing cells. Here, we report that γδ T cells generated within αβ T cell (or CD4 T cell)-deficient environments displayed altered cytokine profiles; particularly, 'innate' IL-17 expression was significantly impaired compared with those in wild-type mice. Impaired IL-17 production in γδ T cells was directly related to CD4 T-cell deficiency, because depletion of CD4 T cells in wild-type mice diminished and adoptive CD4 T-cell transfer into T-cell receptor β-/- mice restored IL-17 expression in γδ T cells. CD4 T cell-mediated IL-17 expression required TGFβ1. Moreover, Th17 but not Th1 or Th2 effector CD4 T cells were highly efficient in enhancing γδ T-cell IL-17 expression. Taken together, our results highlight a novel CD4 T cell-dependent mechanism that shapes the generation of IL-17+ γδ T cells in naive settings.

  5. Higher Frequency of CD4+CXCR5+ICOS+PD1+ T Follicular Helper Cells in Patients With Infectious Mononucleosis

    PubMed Central

    Liu, Jinlin; Zhou, Yonglie; Yu, Qinghua; Zhao, Zhao; Wang, Huan; Luo, Xiaoming; Chen, Yanxia; Zhu, Zhongliang; Chen, Guoqing; Wu, Mao; Qiu, Liannv

    2015-01-01

    Abstract Follicular helper T (Tfh) cells are recognized as a distinct CD4+helper T cell subset, and mainly dysregulated in the autoimmune disease, whether it plays a role in the infectious mononucleosis (IM) diseases is unknown. In this study, we found that the CD4+CXCR5+ Tfh cells were not significantly changed, but the CD4+CXCR5+ICOS+ and CD4+CXCR5+ICOS+PD1+ Tfh subsets were significantly increased in the IM patients, and all these cells were significantly changed after antiviral therapy. Second, only the numbers of CD4+CXCR5+ICOS+PD1+ Tfh cells correlated with the Epstein-Barr virus (EBV) DNA load, negatively correlated with the numbers of naive B cells and amount of IL-21, and positively correlated with the numbers of plasma cells, memory B cells, and atypical lymphocytes. Third, the frequency of CD4+CXCR5+ICOS+PD1+ Tfh subset was significantly higher in lymphadenectasis or hepatosplenomegaly patients, and associated with the level of alanine aminotransferase (ALT). All together, our findings discovered this CD4+CXCR5+ICOS+PD1+ Tfh cell subset might play an important role in the pathogenesis of IM. PMID:26559315

  6. Comprehensive Approach for Identifying the T Cell Subset Origin of CD3 and CD28 Antibody-Activated Chimeric Antigen Receptor-Modified T Cells.

    PubMed

    Schmueck-Henneresse, Michael; Omer, Bilal; Shum, Thomas; Tashiro, Haruko; Mamonkin, Maksim; Lapteva, Natalia; Sharma, Sandhya; Rollins, Lisa; Dotti, Gianpietro; Reinke, Petra; Volk, Hans-Dieter; Rooney, Cliona M

    2017-07-01

    The outcome of therapy with chimeric Ag receptor (CAR)-modified T cells is strongly influenced by the subset origin of the infused T cells. However, because polyclonally activated T cells acquire a largely CD45RO + CCR7 - effector memory phenotype after expansion, regardless of subset origin, it is impossible to know which subsets contribute to the final T cell product. To determine the contribution of naive T cell, memory stem T cell, central memory T cell, effector memory T cell, and terminally differentiated effector T cell populations to the CD3 and CD28-activated CAR-modified T cells that we use for therapy, we followed the fate and function of individually sorted CAR-modified T cell subsets after activation with CD3 and CD28 Abs (CD3/28), transduction and culture alone, or after reconstitution into the relevant subset-depleted population. We show that all subsets are sensitive to CAR transduction, and each developed a distinct T cell functional profile during culture. Naive-derived T cells showed the greatest rate of proliferation but had more limited effector functions and reduced killing compared with memory-derived populations. When cultured in the presence of memory T cells, naive-derived T cells show increased differentiation, reduced effector cytokine production, and a reduced reproliferative response to CAR stimulation. CD3/28-activated T cells expanded in IL-7 and IL-15 produced greater expansion of memory stem T cells and central memory T cell-derived T cells compared with IL-2. Our strategy provides a powerful tool to elucidate the characteristics of CAR-modified T cells, regardless of the protocol used for expansion, reveals the functional properties of each expanded T cell subset, and paves the way for a more detailed evaluation of the effects of manufacturing changes on the subset contribution to in vitro-expanded T cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. γδ T cells affect IL-4 production and B-cell tolerance

    PubMed Central

    Huang, Yafei; Heiser, Ryan A.; Detanico, Thiago O.; Getahun, Andrew; Kirchenbaum, Greg A.; Casper, Tamara L.; Aydintug, M. Kemal; Carding, Simon R.; Ikuta, Koichi; Huang, Hua; Cambier, John C.; Wysocki, Lawrence J.; O’Brien, Rebecca L.; Born, Willi K.

    2015-01-01

    γδ T cells can influence specific antibody responses. Here, we report that mice deficient in individual γδ T-cell subsets have altered levels of serum antibodies, including all major subclasses, sometimes regardless of the presence of αβ T cells. One strain with a partial γδ deficiency that increases IgE antibodies also displayed increases in IL-4–producing T cells (both residual γδ T cells and αβ T cells) and in systemic IL-4 levels. Its B cells expressed IL-4–regulated inhibitory receptors (CD5, CD22, and CD32) at diminished levels, whereas IL-4–inducible IL-4 receptor α and MHCII were increased. They also showed signs of activation and spontaneously formed germinal centers. These mice displayed IgE-dependent features found in hyper-IgE syndrome and developed antichromatin, antinuclear, and anticytoplasmic autoantibodies. In contrast, mice deficient in all γδ T cells had nearly unchanged Ig levels and did not develop autoantibodies. Removing IL-4 abrogated the increases in IgE, antichromatin antibodies, and autoantibodies in the partially γδ-deficient mice. Our data suggest that γδ T cells, controlled by their own cross-talk, affect IL-4 production, B-cell activation, and B-cell tolerance. PMID:25535377

  8. γδ T cells affect IL-4 production and B-cell tolerance.

    PubMed

    Huang, Yafei; Heiser, Ryan A; Detanico, Thiago O; Getahun, Andrew; Kirchenbaum, Greg A; Casper, Tamara L; Aydintug, M Kemal; Carding, Simon R; Ikuta, Koichi; Huang, Hua; Cambier, John C; Wysocki, Lawrence J; O'Brien, Rebecca L; Born, Willi K

    2015-01-06

    γδ T cells can influence specific antibody responses. Here, we report that mice deficient in individual γδ T-cell subsets have altered levels of serum antibodies, including all major subclasses, sometimes regardless of the presence of αβ T cells. One strain with a partial γδ deficiency that increases IgE antibodies also displayed increases in IL-4-producing T cells (both residual γδ T cells and αβ T cells) and in systemic IL-4 levels. Its B cells expressed IL-4-regulated inhibitory receptors (CD5, CD22, and CD32) at diminished levels, whereas IL-4-inducible IL-4 receptor α and MHCII were increased. They also showed signs of activation and spontaneously formed germinal centers. These mice displayed IgE-dependent features found in hyper-IgE syndrome and developed antichromatin, antinuclear, and anticytoplasmic autoantibodies. In contrast, mice deficient in all γδ T cells had nearly unchanged Ig levels and did not develop autoantibodies. Removing IL-4 abrogated the increases in IgE, antichromatin antibodies, and autoantibodies in the partially γδ-deficient mice. Our data suggest that γδ T cells, controlled by their own cross-talk, affect IL-4 production, B-cell activation, and B-cell tolerance.

  9. Rapid activation of spleen dendritic cell subsets following lymphocytic choriomeningitis virus infection of mice: analysis of the involvement of type 1 IFN.

    PubMed

    Montoya, Maria; Edwards, Matthew J; Reid, Delyth M; Borrow, Persephone

    2005-02-15

    In this study, we report the dynamic changes in activation and functions that occur in spleen dendritic cell (sDC) subsets following infection of mice with a natural murine pathogen, lymphocytic choriomeningitis virus (LCMV). Within 24 h postinfection (pi), sDCs acquired the ability to stimulate naive LCMV-specific CD8+ T cells ex vivo. Conventional (CD11chigh CD8+ and CD4+) sDC subsets rapidly up-regulated expression of costimulatory molecules and began to produce proinflammatory cytokines. Their tendency to undergo apoptosis ex vivo simultaneously increased, and in vivo the number of conventional DCs in the spleen decreased markedly, dropping approximately 2-fold by day 3 pi. Conversely, the number of plasmacytoid (CD11clowB220+) DCs in the spleen increased, so that they constituted almost 40% of sDCs by day 3 pi. Type 1 IFN production was up-regulated in plasmacytoid DCs by 24 h pi. Analysis of DC activation and maturation in mice unable to respond to type 1 IFNs implicated these cytokines in driving infection-associated phenotypic activation of conventional DCs and their enhanced tendency to undergo apoptosis, but also indicated the existence of type 1 IFN-independent pathways for the functional maturation of DCs during LCMV infection.

  10. CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets

    PubMed Central

    Mao, Hsiaoyin C.; Wei, Min; Hughes, Tiffany; Zhang, Jianying; Park, Il-kyoo; Liu, Shujun; McClory, Susan; Marcucci, Guido; Trotta, Rossana

    2010-01-01

    Human CD56bright natural killer (NK) cells possess little or no killer immunoglobulin-like receptors (KIRs), high interferon-γ (IFN-γ) production, but little cytotoxicity. CD56dim NK cells have high KIR expression, produce little IFN-γ, yet display high cytotoxicity. We hypothesized that, if human NK maturation progresses from a CD56bright to a CD56dim phenotype, an intermediary NK cell must exist, which demonstrates more functional overlap than these 2 subsets, and we used CD94 expression to test our hypothesis. CD94highCD56dim NK cells express CD62L, CD2, and KIR at levels between CD56bright and CD94lowCD56dim NK cells. CD94highCD56dim NK cells produce less monokine-induced IFN-γ than CD56bright NK cells but much more than CD94lowCD56dim NK cells because of differential interleukin-12–mediated STAT4 phosphorylation. CD94highCD56dim NK cells possess a higher level of granzyme B and perforin expression and CD94-mediated redirected killing than CD56bright NK cells but lower than CD94lowCD56dim NK cells. Collectively, our data suggest that the density of CD94 surface expression on CD56dim NK cells identifies a functional and likely developmental intermediary between CD56bright and CD94lowCD56dim NK cells. This supports the notion that, in vivo, human CD56bright NK cells progress through a continuum of differentiation that ends with a CD94lowCD56dim phenotype. PMID:19897577

  11. CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets.

    PubMed

    Yu, Jianhua; Mao, Hsiaoyin C; Wei, Min; Hughes, Tiffany; Zhang, Jianying; Park, Il-kyoo; Liu, Shujun; McClory, Susan; Marcucci, Guido; Trotta, Rossana; Caligiuri, Michael A

    2010-01-14

    Human CD56(bright) natural killer (NK) cells possess little or no killer immunoglobulin-like receptors (KIRs), high interferon-gamma (IFN-gamma) production, but little cytotoxicity. CD56(dim) NK cells have high KIR expression, produce little IFN-gamma, yet display high cytotoxicity. We hypothesized that, if human NK maturation progresses from a CD56(bright) to a CD56(dim) phenotype, an intermediary NK cell must exist, which demonstrates more functional overlap than these 2 subsets, and we used CD94 expression to test our hypothesis. CD94(high)CD56(dim) NK cells express CD62L, CD2, and KIR at levels between CD56(bright) and CD94(low)CD56(dim) NK cells. CD94(high)CD56(dim) NK cells produce less monokine-induced IFN-gamma than CD56(bright) NK cells but much more than CD94(low)CD56(dim) NK cells because of differential interleukin-12-mediated STAT4 phosphorylation. CD94(high)CD56(dim) NK cells possess a higher level of granzyme B and perforin expression and CD94-mediated redirected killing than CD56(bright) NK cells but lower than CD94(low)CD56(dim) NK cells. Collectively, our data suggest that the density of CD94 surface expression on CD56(dim) NK cells identifies a functional and likely developmental intermediary between CD56(bright) and CD94(low)CD56(dim) NK cells. This supports the notion that, in vivo, human CD56(bright) NK cells progress through a continuum of differentiation that ends with a CD94(low)CD56(dim) phenotype.

  12. Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy.

    PubMed

    Stagg, John; Loi, Sherene; Divisekera, Upulie; Ngiow, Shin Foong; Duret, Helene; Yagita, Hideo; Teng, Michele W; Smyth, Mark J

    2011-04-26

    Trastuzumab, a monoclonal antibody targeting human epidermal growth factor receptor-2 (HER2/ErbB-2), has become the mainstay of treatment for HER2-positive breast cancer. Nevertheless, its exact mechanism of action has not been fully elucidated. Although several studies suggest that Fc receptor-expressing immune cells are involved in trastuzumab therapy, the relative contribution of lymphocyte-mediated cellular cytotoxicity and antitumor cytokines remains unknown. We report here that anti-ErbB-2 mAb therapy is dependent on the release of type I and type II IFNs but is independent of perforin or FasL. Our study thus challenges the notion that classical antibody-dependent, lymphocyte-mediated cellular cytotoxicity is important for trastuzumab. We demonstrate that anti-ErbB-2 mAb therapy of experimental tumors derived from MMTV-ErbB-2 transgenic mice triggers MyD88-dependent signaling and primes IFN-γ-producing CD8+ T cells. Adoptive cell transfer of purified T cell subsets confirmed the essential role of IFN-γ-producing CD8+ T cells. Notably, anti-ErbB-2 mAb therapy was independent of IL-1R or IL-17Ra signaling. Finally, we investigated whether immunostimulatory approaches with antibodies against programmed death-1 (PD-1) or 41BB (CD137) could be used to capitalize on the immune-mediated effects of trastuzumab. We demonstrate that anti-PD-1 or anti-CD137 mAb can significantly improve the therapeutic activity of anti-ErbB-2 mAb in immunocompetent mice.

  13. Immune reconstitution after allogeneic hematopoietic stem cell transplantation in children: a single institution study of 59 patients.

    PubMed

    Kim, Hyun O; Oh, Hyun Jin; Lee, Jae Wook; Jang, Pil-Sang; Chung, Nack-Gyun; Cho, Bin; Kim, Hack-Ki

    2013-01-01

    Lymphocyte subset recovery is an important factor that determines the success of hematopoietic stem cell transplantation (HSCT). Temporal differences in the recovery of lymphocyte subsets and the factors influencing this recovery are important variables that affect a patient's post-transplant immune reconstitution, and therefore require investigation. The time taken to achieve lymphocyte subset recovery and the factors influencing this recovery were investigated in 59 children who had undergone HSCT at the Department of Pediatrics, The Catholic University of Korea Seoul St. Mary's Hospital, and who had an uneventful follow-up period of at least 1 year. Analyses were carried out at 3 and 12 months post-transplant. An additional study was performed 1 month post-transplant to evaluate natural killer (NK) cell recovery. The impact of pre- and post-transplant variables, including diagnosis of Epstein-Barr virus (EBV) DNAemia posttransplant, on lymphocyte recovery was evaluated. THE LYMPHOCYTE SUBSETS RECOVERED IN THE FOLLOWING ORDER: NK cells, cytotoxic T cells, B cells, and helper T cells. At 1 month post-transplant, acute graft-versus-host disease was found to contribute significantly to the delay of CD16(+)/56(+) cell recovery. Younger patients showed delayed recovery of both CD3(+)/CD8(+) and CD19(+) cells. EBV DNAemia had a deleterious impact on the recovery of both CD3(+) and CD3(+)/CD4(+) lymphocytes at 1 year post-transplant. In our pediatric allogeneic HSCT cohort, helper T cells were the last subset to recover. Younger age and EBV DNAemia had a negative impact on the post-transplant recovery of T cells and B cells.

  14. CD127 and CD25 expression defines CD4+ T cell subsets that are differentially depleted during HIV infection.

    PubMed

    Dunham, Richard M; Cervasi, Barbara; Brenchley, Jason M; Albrecht, Helmut; Weintrob, Amy; Sumpter, Beth; Engram, Jessica; Gordon, Shari; Klatt, Nichole R; Frank, Ian; Sodora, Donald L; Douek, Daniel C; Paiardini, Mirko; Silvestri, Guido

    2008-04-15

    Decreased CD4(+) T cell counts are the best marker of disease progression during HIV infection. However, CD4(+) T cells are heterogeneous in phenotype and function, and it is unknown how preferential depletion of specific CD4(+) T cell subsets influences disease severity. CD4(+) T cells can be classified into three subsets by the expression of receptors for two T cell-tropic cytokines, IL-2 (CD25) and IL-7 (CD127). The CD127(+)CD25(low/-) subset includes IL-2-producing naive and central memory T cells; the CD127(-)CD25(-) subset includes mainly effector T cells expressing perforin and IFN-gamma; and the CD127(low)CD25(high) subset includes FoxP3-expressing regulatory T cells. Herein we investigated how the proportions of these T cell subsets are changed during HIV infection. When compared with healthy controls, HIV-infected patients show a relative increase in CD4(+)CD127(-)CD25(-) T cells that is related to an absolute decline of CD4(+)CD127(+)CD25(low/-) T cells. Interestingly, this expansion of CD4(+)CD127(-) T cells was not observed in naturally SIV-infected sooty mangabeys. The relative expansion of CD4(+)CD127(-)CD25(-) T cells correlated directly with the levels of total CD4(+) T cell depletion and immune activation. CD4(+)CD127(-)CD25(-) T cells were not selectively resistant to HIV infection as levels of cell-associated virus were similar in all non-naive CD4(+) T cell subsets. These data indicate that, during HIV infection, specific changes in the fraction of CD4(+) T cells expressing CD25 and/or CD127 are associated with disease progression. Further studies will determine whether monitoring the three subsets of CD4(+) T cells defined based on the expression of CD25 and CD127 should be used in the clinical management of HIV-infected individuals.

  15. Tissue specific distribution of iNKT cells impacts their cytokine response

    PubMed Central

    Lee, You Jeong; Wang, Haiguang; Starrett, Gabriel J.; Phuong, Vanessa; Jameson, Stephen C.; Hogquist, Kristin A.

    2015-01-01

    Summary Three subsets of invariant natural killer T (iNKT) cells have been identified, NKT1, NKT2 and NKT17, which produce distinct cytokines when stimulated, but little is known about their localization. Here, we have defined the anatomic localization and systemic distribution of these subsets and measured their cytokine production. Thymic NKT2 cells that produced interleukin-4 (IL-4) at steady state were located in the medulla and conditioned medullary thymocytes. NKT2 cells were abundant in the mesenteric lymph node (LN) of BALB/c mice and produced IL-4 in the T cell zone that conditioned other lymphocytes. Intravenous injection of α-galactosylceramide activated NKT1 cells with vascular access, but not LN or thymic NKT cells, resulting in systemic interferon-γ and IL-4 production, while oral α-galactosylceramide activated NKT2 cells in the mesenteric LN, resulting in local IL-4 release. These finding indicate that the localization of iNKT cells governs their cytokine response both at steady state and upon activation. PMID:26362265

  16. Interconnected subsets of memory follicular helper T cells have different effector functions.

    PubMed

    Asrir, Assia; Aloulou, Meryem; Gador, Mylène; Pérals, Corine; Fazilleau, Nicolas

    2017-10-10

    Follicular helper T cells regulate high-affinity antibody production. Memory follicular helper T cells can be local in draining lymphoid organs and circulate in the blood, but the underlying mechanisms of this subdivision are unresolved. Here we show that both memory follicular helper T subsets sustain B-cell responses after reactivation. Local cells promote more plasma cell differentiation, whereas circulating cells promote more secondary germinal centers. In parallel, local memory B cells are homogeneous and programmed to become plasma cells, whereas circulating memory B cells are able to rediversify. Local memory follicular helper T cells have higher affinity T-cell receptors, which correlates with expression of peptide MHC-II at the surface of local memory B cells only. Blocking T-cell receptor-peptide MHC-II interactions induces the release of local memory follicular helper T cells in the circulating compartment. Our studies show that memory follicular helper T localization is highly intertwined with memory B cells, a finding that has important implications for vaccine design.Tfh cells can differentiate into memory cells. Here the authors describe distinct functional and phenotypic profiles of these memory Tfh cells dependent on their anatomical localization to the lymphoid organs or to the circulation.

  17. Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells.

    PubMed

    Ceronie, Bryan; Jacobs, Benjamin M; Baker, David; Dubuisson, Nicolas; Mao, Zhifeng; Ammoscato, Francesca; Lock, Helen; Longhurst, Hilary J; Giovannoni, Gavin; Schmierer, Klaus

    2018-05-01

    The mechanism of action of oral cladribine, recently licensed for relapsing multiple sclerosis, is unknown. To determine whether cladribine depletes memory B cells consistent with our recent hypothesis that effective, disease-modifying treatments act by physical/functional depletion of memory B cells. A cross-sectional study examined 40 people with multiple sclerosis at the end of the first cycle of alemtuzumab or injectable cladribine. The relative proportions and absolute numbers of peripheral blood B lymphocyte subsets were measured using flow cytometry. Cell-subtype expression of genes involved in cladribine metabolism was examined from data in public repositories. Cladribine markedly depleted class-switched and unswitched memory B cells to levels comparable with alemtuzumab, but without the associated initial lymphopenia. CD3 + T cell depletion was modest. The mRNA expression of metabolism genes varied between lymphocyte subsets. A high ratio of deoxycytidine kinase to group I cytosolic 5' nucleotidase expression was present in B cells and was particularly high in mature, memory and notably germinal centre B cells, but not plasma cells. Selective B cell cytotoxicity coupled with slow repopulation kinetics results in long-term, memory B cell depletion by cladribine. These may offer a new target, possibly with potential biomarker activity, for future drug development.

  18. Differentiation, phenotype, and function of interleukin-17-producing human Vγ9Vδ2 T cells.

    PubMed

    Caccamo, Nadia; La Mendola, Carmela; Orlando, Valentina; Meraviglia, Serena; Todaro, Matilde; Stassi, Giorgio; Sireci, Guido; Fournié, Jean Jacques; Dieli, Francesco

    2011-07-07

    In healthy adults, the major peripheral blood γδ T-cell subset expresses the Vγ9Vδ2 TCR and displays pleiotropic features. Here we report that coculture of naive Vγ9Vδ2 T cells with phosphoantigens and a cocktail of cytokines (IL-1-β, TGF-β, IL-6, and IL-23), leads to selective expression of the transcription factor RORγt and polarization toward IL-17 production. IL-17(+) Vγ9Vδ2 T cells express the chemokine receptor CCR6 and produce IL-17 but neither IL-22 nor IFN-γ; they have a predominant terminally differentiated (CD27(-)CD45RA(+)) phenotype and express granzyme B, TRAIL, FasL, and CD161. On antigen activation, IL-17(+) Vγ9Vδ2 T cells rapidly induce CXCL8-mediated migration and phagocytosis of neutrophils and IL-17-dependent production of β-defensin by epithelial cells, indicating that they may be involved in host immune responses against infectious microorganisms. Accordingly, an increased percentage of IL-17(+) Vγ9Vδ2 lymphocytes is detected in the peripheral blood and at the site of disease in children with bacterial meningitis, and this pattern was reversed after successful antibacterial therapy. Most notably, the phenotype of IL-17(+) Vγ9Vδ2 T cells in children with meningitis matches that of in vitro differentiated IL-17(+) Vγ9Vδ2 T cells. Our findings delineate a previously unknown subset of human IL-17(+) Vγ9Vδ2 T lymphocytes implicated in the pathophysiology of inflammatory responses during bacterial infections.

  19. Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia

    PubMed Central

    Ghiotto, Fabio; Fais, Franco; Valetto, Angelo; Albesiano, Emilia; Hashimoto, Shiori; Dono, Mariella; Ikematsu, Hideyuki; Allen, Steven L.; Kolitz, Jonathan; Rai, Kanti R.; Nardini, Marco; Tramontano, Anna; Ferrarini, Manlio; Chiorazzi, Nicholas

    2004-01-01

    Studies of B cell antigen receptors (BCRs) expressed by leukemic lymphocytes from patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that B lymphocytes with some level of BCR structural restriction become transformed. While analyzing rearranged VHDJH and VLJL genes of 25 non–IgM-producing B-CLL cases, we found five IgG+ cases that display strikingly similar BCRs (use of the same H- and L-chain V gene segments with unique, shared heavy chain third complementarity-determining region [HCDR3] and light chain third complementarity-determining region [LCDR3] motifs). These H- and L-chain characteristics were not identified in other B-CLL cases or in normal B lymphocytes whose sequences are available in the public databases. Three-dimensional modeling studies suggest that these BCRs could bind the same antigenic epitope. The structural features of the B-CLL BCRs resemble those of mAb’s reactive with carbohydrate determinants of bacterial capsules or viral coats and with certain autoantigens. These findings suggest that the B lymphocytes that gave rise to these IgG+ B-CLL cells were selected for this unique BCR structure. This selection could have occurred because the precursors of the B-CLL cells were chosen for their antigen-binding capabilities by antigen(s) of restricted nature and structure, or because the precursors derived from a B cell subpopulation with limited BCR heterogeneity, or both. PMID:15057307

  20. Elucidation of Seventeen Human Peripheral Blood B cell Subsets and Quantification of the Tetanus Response Using a Density-Based Method for the Automated Identification of Cell Populations in Multidimensional Flow Cytometry Data

    PubMed Central

    Qian, Yu; Wei, Chungwen; Lee, F. Eun-Hyung; Campbell, John; Halliley, Jessica; Lee, Jamie A.; Cai, Jennifer; Kong, Megan; Sadat, Eva; Thomson, Elizabeth; Dunn, Patrick; Seegmiller, Adam C.; Karandikar, Nitin J.; Tipton, Chris; Mosmann, Tim; Sanz, Iñaki; Scheuermann, Richard H.

    2011-01-01

    Background Advances in multi-parameter flow cytometry (FCM) now allow for the independent detection of larger numbers of fluorochromes on individual cells, generating data with increasingly higher dimensionality. The increased complexity of these data has made it difficult to identify cell populations from high-dimensional FCM data using traditional manual gating strategies based on single-color or two-color displays. Methods To address this challenge, we developed a novel program, FLOCK (FLOw Clustering without K), that uses a density-based clustering approach to algorithmically identify biologically relevant cell populations from multiple samples in an unbiased fashion, thereby eliminating operator-dependent variability. Results FLOCK was used to objectively identify seventeen distinct B cell subsets in a human peripheral blood sample and to identify and quantify novel plasmablast subsets responding transiently to tetanus and other vaccinations in peripheral blood. FLOCK has been implemented in the publically available Immunology Database and Analysis Portal – ImmPort (http://www.immport.org) for open use by the immunology research community. Conclusions FLOCK is able to identify cell subsets in experiments that use multi-parameter flow cytometry through an objective, automated computational approach. The use of algorithms like FLOCK for FCM data analysis obviates the need for subjective and labor intensive manual gating to identify and quantify cell subsets. Novel populations identified by these computational approaches can serve as hypotheses for further experimental study. PMID:20839340

  1. Treatment of experimental stroke with IL-10-producing B-cells reduces infarct size and peripheral and CNS inflammation in wild-type B-cell-sufficient mice

    PubMed Central

    Bodhankar, Sheetal; Chen, Yingxin; Vandenbark, Arthur A.; Murphy, Stephanie J.; Offner, Halina

    2014-01-01

    Clinical stroke induces inflammatory processes leading to cerebral and splenic injury and profound peripheral immunosuppression. IL-10 expression is elevated during major CNS diseases and limits inflammation in the brain. Recent evidence demonstrated that absence of B-cells led to larger infarct volumes and CNS damage after middle cerebral artery occlusion (MCAO) that could be prevented by transfer of IL-10+ B-cells. The purpose of this study was to determine if the beneficial immunoregulatory effects on MCAO of the IL-10+ B-cell subpopulation also extends to B-cell-sufficient mice that would better represent stroke subjects. CNS inflammation and infarct volumes were evaluated in male C57BL/6J (WT) mice that received either RPMI or IL-10+ B-cells and underwent 60 min of middle cerebral artery occlusion (MCAO) followed by 96 hours of reperfusion. Transfer of IL-10+ B-cells markedly reduced infarct volume in WT recipient mice when given 24 hours prior to or 4 hours after MCAO. B-cell protected MCAO mice had increased regulatory subpopulations in the periphery, reduced numbers of activated, inflammatory T-cells, decreased infiltration of T-cells and a less inflammatory milieu in the ischemic hemispheres of the IL-10+ B-cell-treated group. Moreover, transfer of IL-10+ B-cells 24 hours before MCAO led to a significant preservation of regulatory immune subsets in the IL-10+ B-cell protected group presumably indicating their role in immunomodulatory mechanisms, post-stroke. Our studies are the first to demonstrate a major immunoregulatory role for IL-10+ regulatory B-cells in preventing and treating MCAO in WT mice and also implicating their potential role in attenuating complications due to post-stroke immunosuppression. PMID:24374817

  2. PD-1HIGH Follicular CD4 T Helper Cell Subsets Residing in Lymph Node Germinal Centers Correlate with B Cell Maturation and IgG Production in Rhesus Macaques

    PubMed Central

    Xu, Huanbin; Wang, Xiaolei; Lackner, Andrew A.; Veazey, Ronald S.

    2014-01-01

    CD4+ T follicular helper (TFH) cells guide development and maturation of B cells and are crucial for effective antibody responses. Here we found rhesus macaque TFH cells, defined as CXCR5+CD4 T cells, contain two major populations: PD-1INT and PD-1HIGH cells. Of these, PD-1HIGHCD4+ T cells highly co-express ICOS but little CCR7, and reside in lymph node germinal centers (GCs), but not in blood. These cells secrete IL-21 and express transcriptional factor Bcl-6 at higher levels than CXCR5+PD-1INTCD4+ T cells. In addition, the frequency of PD-1HIGHCD4+ T cells is low in lymph nodes of newborns, but increases with age. Levels of PD-1HIGHCD4+ T cells correlate with mature B cells in lymph nodes, and PD-1 blockade in PD-1HIGHCD4+ T and B cell co-cultures significantly inhibits IgG production. In summary, PD-1HIGHCD4+ T cells residing in GC represent a specific TFH subset that contributes to maturation of B cells and IgG production. PMID:24678309

  3. B Cell-Directed Therapeutics in Multiple Sclerosis: Rationale and Clinical Evidence.

    PubMed

    Kinzel, Silke; Weber, Martin S

    2016-12-01

    Over the last decade, evidence condensed that B cells, B cell-derived plasma cells and antibodies play a key role in the pathogenesis and progression of multiple sclerosis (MS). In many patients with MS, peripheral B cells show signs of chronic activation; within the cerebrospinal fluid clonally expanded plasma cells produce oligoclonal immunoglobulins, which remain a hallmark diagnostic finding. Confirming the clinical relevance of these immunological alterations, recent trials testing anti-CD20-mediated depletion of peripheral B cells showed an instantaneous halt in development of new central nervous system lesions and occurrence of relapses. Notwithstanding this enormous success, not all B cells or B cell subsets may contribute in a pathogenic manner, and may, in contrast, exert anti-inflammatory and, thus, therapeutically desirable properties in MS. Naïve B cells, in MS patients similar to healthy controls, are a relevant source of regulatory cytokines such as interleukin-10, which dampens the activity of other immune cells and promotes recovery from acute disease flares in experimental MS models. In this review, we describe in detail pathogenic but also regulatory properties of B and plasma cells in the context of MS and its animal model experimental autoimmune encephalomyelitis. In the second part, we review what impact current and future therapies may have on these B cell properties. Within this section, we focus on the highly encouraging data on anti-CD20 antibodies as future therapy for MS. Lastly, we discuss how B cell-directed therapy in MS could be possibly advanced even further in regard to efficacy and safety by integrating the emerging information on B cell regulation in MS into future therapeutic strategies.

  4. Screening NK-, B- and T-cell phenotype and function in patients suffering from Chronic Fatigue Syndrome.

    PubMed

    Curriu, Marta; Carrillo, Jorge; Massanella, Marta; Rigau, Josepa; Alegre, José; Puig, Jordi; Garcia-Quintana, Ana M; Castro-Marrero, Jesus; Negredo, Eugènia; Clotet, Bonaventura; Cabrera, Cecilia; Blanco, Julià

    2013-03-20

    Chronic Fatigue Syndrome (CFS) is a debilitating neuro-immune disorder of unknown etiology diagnosed by an array of clinical manifestations. Although several immunological abnormalities have been described in CFS, their heterogeneity has limited diagnostic applicability. Immunological features of CFS were screened in 22 CFS diagnosed individuals fulfilling Fukuda criteria and 30 control healthy individuals. Peripheral blood T, B and NK cell function and phenotype were analyzed by flow cytometry in both groups. CFS diagnosed individuals showed similar absolute numbers of T, B and NK cells, with minor differences in the percentage of CD4+ and CD8+ T cells. B cells showed similar subset frequencies and proliferative responses between groups. Conversely, significant differences were observed in T cell subsets. CFS individuals showed increased levels of T regulatory cells (CD25+/FOXP3+) CD4 T cells, and lower proliferative responses in vitro and in vivo. Moreover, CD8 T cells from the CFS group showed significantly lower activation and frequency of effector memory cells. No clear signs of T-cell immunosenescence were observed. NK cells from CFS individuals displayed higher expression of NKp46 and CD69 but lower expression of CD25 in all NK subsets defined. Overall, T cell and NK cell features clearly clustered CFS individuals. Our findings suggest that alterations in T-cell phenotype and proliferative response along with the specific signature of NK cell phenotype may be useful to identify CFS individuals. The striking down modulation of T cell mediated immunity may help to understand intercurrent viral infections in CFS.

  5. Screening NK-, B- and T-cell phenotype and function in patients suffering from Chronic Fatigue Syndrome

    PubMed Central

    2013-01-01

    Background Chronic Fatigue Syndrome (CFS) is a debilitating neuro-immune disorder of unknown etiology diagnosed by an array of clinical manifestations. Although several immunological abnormalities have been described in CFS, their heterogeneity has limited diagnostic applicability. Methods Immunological features of CFS were screened in 22 CFS diagnosed individuals fulfilling Fukuda criteria and 30 control healthy individuals. Peripheral blood T, B and NK cell function and phenotype were analyzed by flow cytometry in both groups. Results CFS diagnosed individuals showed similar absolute numbers of T, B and NK cells, with minor differences in the percentage of CD4+ and CD8+ T cells. B cells showed similar subset frequencies and proliferative responses between groups. Conversely, significant differences were observed in T cell subsets. CFS individuals showed increased levels of T regulatory cells (CD25+/FOXP3+) CD4 T cells, and lower proliferative responses in vitro and in vivo. Moreover, CD8 T cells from the CFS group showed significantly lower activation and frequency of effector memory cells. No clear signs of T-cell immunosenescence were observed. NK cells from CFS individuals displayed higher expression of NKp46 and CD69 but lower expression of CD25 in all NK subsets defined. Overall, T cell and NK cell features clearly clustered CFS individuals. Conclusions Our findings suggest that alterations in T-cell phenotype and proliferative response along with the specific signature of NK cell phenotype may be useful to identify CFS individuals. The striking down modulation of T cell mediated immunity may help to understand intercurrent viral infections in CFS. PMID:23514202

  6. Dendritic Cell Subset Distributions in the Aorta in Healthy and Atherosclerotic Mice

    PubMed Central

    Lutz, Manfred B.; Zernecke, Alma

    2014-01-01

    Dendritic cells (DCs) can be sub-divided into various subsets that play specialized roles in priming of adaptive immune responses. Atherosclerosis is regarded as a chronic inflammatory disease of the vessel wall and DCs can be found in non-inflamed and diseased arteries. We here performed a systematic analyses of DCs subsets during atherogenesis. Our data indicate that distinct DC subsets can be localized in the vessel wall. In C57BL/6 and low density lipoprotein receptor-deficient (Ldlr −/−) mice, CD11c+ MHCII+ DCs could be discriminated into CD103− CD11b+F4/80+, CD11b+F4/80− and CD11b−F4/80− DCs and CD103+ CD11b−F4/80− DCs. Except for CD103− CD11b− F4/80− DCs, these subsets expanded in high fat diet-fed Ldlr −/− mice. Signal-regulatory protein (Sirp)-α was detected on aortic macrophages, CD11b+ DCs, and partially on CD103− CD11b− F4/80− but not on CD103+ DCs. Notably, in FMS-like tyrosine kinase 3-ligand-deficient (Flt3l −/−) mice, a specific loss of CD103+ DCs but also CD103− CD11b+ F4/80− DCs was evidenced. Aortic CD103+ and CD11b+ F4/80− CD103− DCs may thus belong to conventional rather than monocyte-derived DCs, given their dependence on Flt3L-signalling. CD64, postulated to distinguish macrophages from DCs, could not be detected on DC subsets under physiological conditions, but appeared in a fraction of CD103− CD11b+ F4/80− and CD11b+ F4/80+ cells in atherosclerotic Ldlr −/− mice. The emergence of CD64 expression in atherosclerosis may indicate that CD11b+ F4/80− DCs similar to CD11b+ F4/80+ DCs are at least in part derived from immigrated monocytes during atherosclerotic lesion formation. Our data advance our knowledge about the presence of distinct DC subsets and their accumulation characteristics in atherosclerosis, and may help to assist in future studies aiming at specific DC-based therapeutic strategies for the treatment of chronic vascular inflammation. PMID:24551105

  7. Expression of the Grb2-related protein of the lymphoid system in B cell subsets enhances B cell antigen receptor signaling through mitogen-activated protein kinase pathways.

    PubMed

    Yankee, Thomas M; Solow, Sasha A; Draves, Kevin D; Clark, Edward A

    2003-01-01

    Adapter proteins play a critical role in regulating signals triggered by Ag receptor cross-linking. These small molecules link receptor proximal events with downstream signaling pathways. In this study, we explore the expression and function of the Grb2-related protein of the lymphoid system (GrpL)/Grb2-related adaptor downstream of Shc adapter protein in human B cells. GrpL is expressed in naive B cells and is down-regulated following B cell Ag receptor ligation. By contrast, germinal center and memory B cells express little or no GrpL. Using human B cell lines, we detected constitutive interactions between GrpL and B cell linker protein, Src homology (SH)2 domain-containing leukocyte protein of 76 kDa, hemopoietic progenitor kinase 1, and c-Cbl. The N-terminal SH3 domain of GrpL binds c-Cbl while the C-terminal SH3 domain binds B cell linker protein and SH2 domain-containing leukocyte protein of 76 kDa. Exogenous expression of GrpL in a GrpL-negative B cell line leads to enhanced Ag receptor-induced extracellular signal-related kinase and p38 mitogen-activated protein kinase phosphorylation. Thus, GrpL expression in human B cell subsets appears to regulate Ag receptor-mediated signaling events.

  8. Systemic Inflammation in Progressive Multiple Sclerosis Involves Follicular T-Helper, Th17- and Activated B-Cells and Correlates with Progression

    PubMed Central

    Christensen, Jeppe Romme; Börnsen, Lars; Ratzer, Rikke; Piehl, Fredrik; Khademi, Mohsen; Olsson, Tomas; Sørensen, Per Soelberg; Sellebjerg, Finn

    2013-01-01

    Pathology studies of progressive multiple sclerosis (MS) indicate a major role of inflammation including Th17-cells and meningeal inflammation with ectopic lymphoid follicles, B-cells and plasma cells, the latter indicating a possible role of the newly identified subset of follicular T-helper (TFH) cells. Although previous studies reported increased systemic inflammation in progressive MS it remains unclear whether systemic inflammation contributes to disease progression and intrathecal inflammation. This study aimed to investigate systemic inflammation in progressive MS and its relationship with disease progression, using flow cytometry and gene expression analysis of CD4+ and CD8+T-cells, B-cells, monocytes and dendritic cells. Furthermore, gene expression of cerebrospinal fluid cells was studied. Flow cytometry studies revealed increased frequencies of ICOS+TFH-cells in peripheral blood from relapsing-remitting (RRMS) and secondary progressive (SPMS) MS patients. All MS subtypes had decreased frequencies of Th1 TFH-cells, while primary progressive (PPMS) MS patients had increased frequency of Th17 TFH-cells. The Th17-subset, interleukin-23-receptor+CD4+T-cells, was significantly increased in PPMS and SPMS. In the analysis of B-cells, we found a significant increase of plasmablasts and DC-SIGN+ and CD83+B-cells in SPMS. ICOS+TFH-cells and DC-SIGN+B-cells correlated with disease progression in SPMS patients. Gene expression analysis of peripheral blood cell subsets substantiated the flow cytometry findings by demonstrating increased expression of IL21, IL21R and ICOS in CD4+T-cells in progressive MS. Cerebrospinal fluid cells from RRMS and progressive MS (pooled SPMS and PPMS patients) had increased expression of TFH-cell and plasmablast markers. In conclusion, this study is the first to demonstrate the potential involvement of activated TFH-cells in MS. The increased frequencies of Th17-cells, activated TFH- and B-cells parallel findings from pathology studies which, along with the correlation between activated TFH- and B-cells and disease progression, suggest a pathogenic role of systemic inflammation in progressive MS. These observations may have implications for the treatment of progressive MS. PMID:23469245

  9. Identification of novel gammadelta T-cell subsets following bacterial infection in the absence of Vgamma1+ T cells: homeostatic control of gammadelta T-cell responses to pathogen infection by Vgamma1+ T cells.

    PubMed

    Newton, Darren J; Andrew, Elizabeth M; Dalton, Jane E; Mears, Rainy; Carding, Simon R

    2006-02-01

    Although gammadelta T cells are a common feature of many pathogen-induced immune responses, the factors that influence, promote, or regulate the response of individual gammadelta T-cell subsets to infection is unknown. Here we show that in the absence of Vgamma1+ T cells, novel subsets of gammadelta T cells, expressing T-cell receptor (TCR)-Vgamma chains that normally define TCRgammadelta+ dendritic epidermal T cells (DETCs) (Vgamma5+), intestinal intraepithelial lymphocytes (iIELs) (Vgamma7+), and lymphocytes associated with the vaginal epithelia (Vgamma6+), are recruited to the spleen in response to bacterial infection in TCR-Vgamma1-/- mice. By comparison of phenotype and structure of TCR-Vgamma chains and/or -Vdelta chains expressed by these novel subsets with those of their epithelium-associated counterparts, the Vgamma6+ T cells elicited in infected Vgamma1-/- mice were shown to be identical to those found in the reproductive tract, from where they are presumably recruited in the absence of Vgamma1+ T cells. By contrast, Vgamma5+ and Vgamma7+ T cells found in infected Vgamma1-/- mice were distinct from Vgamma5+ DETCs and Vgamma7+ iIELs. Functional analyses of the novel gammadelta T-cell subsets identified for infected Vgamma1-/- mice showed that whereas the Vgamma5+ and Vgamma7+ subsets may compensate for the absence of Vgamma1+ T cells by producing similar cytokines, they do not possess cytocidal activity and they cannot replace the macrophage homeostasis function of Vgamma1+ T cells. Collectively, these findings identify novel subsets of gammadelta T cells, the recruitment and activity of which is under the control of Vgamma1+ T cells.

  10. Folate-deficiency induced cell-specific changes in the distribution of lymphocytes and granulocytes in rats.

    PubMed

    Abe, Ikumi; Shirato, Ken; Hashizume, Yoko; Mitsuhashi, Ryosuke; Kobayashi, Ayumu; Shiono, Chikako; Sato, Shogo; Tachiyashiki, Kaoru; Imaizumi, Kazuhiko

    2013-01-01

    Folate (vitamin B(9)) plays key roles in cell growth and proliferation through regulating the synthesis and stabilization of DNA and RNA, and its deficiency leads to lymphocytopenia and granulocytopenia. However, precisely how folate deficiency affects the distribution of a variety of white blood cell subsets, including the minor population of basophils, and the cell specificity of the effects remain unclear. Therefore, we examined the effects of a folate-deficient diet on the circulating number of lymphocyte subsets [T-lymphocytes, B-lymphocytes, and natural killer (NK) cells] and granulocyte subsets (neutrophils, eosinophils, and basophils) in rats. Rats were divided into two groups, with one receiving the folate-deficient diet (FAD group) and the other a control diet (CON group). All rats were pair-fed for 8 weeks. Plasma folate level was dramatically lower in the FAD group than in the CON group, and the level of homocysteine in the plasma, a predictor of folate deficiency was significantly higher in the FAD group than in the CON group. The number of T-lymphocytes, B-lymphocytes, and NK cells was significantly lower in the FAD group than in the CON group by 0.73-, 0.49-, and 0.70-fold, respectively, indicating that B-lymphocytes are more sensitive to folate deficiency than the other lymphocyte subsets. As expected, the number of neutrophils and eosinophils was significantly lower in the FAD group than in the CON group. However, the number of basophils, the least common type of granulocyte, showed transiently an increasing tendency in the FAD group as compared with the CON group. These results suggest that folate deficiency induces lymphocytopenia and granulocytopenia in a cell-specific manner.

  11. Transcriptional Classification and Functional Characterization of Human Airway Macrophage and Dendritic Cell Subsets

    PubMed Central

    Patel, Vineet I.; Booth, J. Leland; Duggan, Elizabeth S.; Cate, Steven; White, Vicky L.; Hutchings, David; Kovats, Susan; Burian, Dennis M.; Dozmorov, Mikhail; Metcalf, Jordan P.

    2016-01-01

    The respiratory system is a complex network of many cell types, including subsets of macrophages and dendritic cells that work together to maintain steady-state respiration. Due to limitations in acquiring cells from healthy human lung, these subsets remain poorly characterized transcriptionally and phenotypically. We set out to systematically identify these subsets in human airways by developing a schema of isolating large numbers of cells by whole lung bronchoalveolar lavage. Six subsets of phagocytic antigen presenting (HLA-DR+) cells were consistently observed. Aside from alveolar macrophages, subsets of Langerin+, BDCA1− CD14+, BDCA1+ CD14+, BDCA1+ CD14−, and BDCA1− CD14− cells were identified. These subsets varied in their ability to internalize Escherichia coli, Staphylococcus aureus, and Bacillus anthracis particles. All subsets were more efficient at internalizing S. aureus and B. anthracis compared to E. coli. Alveolar macrophages and CD14+ cells were overall more efficient at particle internalization compared to the four other populations. Subsets were further separated into two groups based on their inherent capacities to upregulate surface CD83, CD86, and CCR7 expression levels. Whole genome transcriptional profiling revealed a clade of “true dendritic cells” consisting of Langerin+, BDCA1+ CD14+, and BDCA1+ CD14− cells. The dendritic cell clade was distinct from a macrophage/monocyte clade, as supported by higher mRNA expression levels of several dendritic cell-associated genes, including CD1, FLT3, CX3CR1, and CCR6. Each clade, and each member of both clades, were discerned by specific upregulated genes, which can serve as markers for future studies in healthy and diseased states. PMID:28031342

  12. Peripheral blood monocyte and T cell subsets in children with specific polysaccharide antibody deficiency (SPAD).

    PubMed

    Otero, C; Díaz, D; Uriarte, I; Bezrodnik, L; Finiasz, M R; Fink, S

    2016-01-01

    Specific polysaccharide antibody deficiency (SPAD) is a well reported immunodeficiency characterized by a failure to produce antibodies against polyvalent polysaccharide antigens, expressed by encapsulated microorganisms. The clinical presentation of these patients involves recurrent bacterial infections, being the most frequent agent Streptococcus (S.) pneumoniae. In SPAD patients few reports refer to cells other than B cells. Since the immune response to S. pneumoniae and other encapsulated bacteria was historically considered restricted to B cells, the antibody deficiency seemed enough to justify the repetitive infections in SPAD patients. Our purpose is to determine if the B cell defects reported in SPAD patients are accompanied by defects in other leukocyte subpopulations necessary for the development of a proper adaptive immune response against S. pneumoniae. We here report that age related changes observed in healthy children involving increased percentages of classical monocytes (CD14++ CD16- cells) and decreased intermediate monocytes (CD14++ CD16+ cells), are absent in SPAD patients. Alterations can also be observed in T cells, supporting that the immune deficiency in SPAD patients is more complex than what has been described up to now. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  13. STAT6 is a cargo of exportin 1: Biological relevance in primary mediastinal B-cell lymphoma.

    PubMed

    Miloudi, Hadjer; Leroy, Karen; Jardin, Fabrice; Sola, Brigitte

    2018-06-01

    Primary mediastinal B-cell lymphoma (PMBL) is a distinct B-cell lymphoma subtype with unique clinicopathological and molecular features. PMBL cells are characterised by several genetic abnormalities that conduct to the constitutive activation of the Janus kinase 2/signal transducer and activator of transcription 6 (JAK2/STAT6) signalling pathway. Among recurrent genetic changes in PMBL, we previously reported that the XPO1 gene encoding exportin 1 that controls the nuclear export of cargo proteins and RNAs, is mutated (p.E571K) in about 25% of PMBL cases. We therefore hypothesized that STAT6 could be a cargo of XPO1 and that STAT6 cytoplasm/nucleus shuttle could be altered in a subset of PMBL cells. Using immunocytochemistry techniques as well as the proximity ligation assay, we showed that STAT6 bound XPO1 in PBML cell lines and in HEK-293 cells genetically engineered to produce STAT6. Moreover, XPO1-mediated export of STAT6 occurs in cells expressing either a wild-type or the E571K mutated XPO1 protein. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Aberrant T Cell Signaling and Subsets in Systemic Lupus Erythematosus

    PubMed Central

    Katsuyama, Takayuki; Tsokos, George C.; Moulton, Vaishali R.

    2018-01-01

    Systemic lupus erythematosus (SLE) is a chronic multi-organ debilitating autoimmune disease, which mainly afflicts women in the reproductive years. A complex interaction of genetics, environmental factors and hormones result in the breakdown of immune tolerance to “self” leading to damage and destruction of multiple organs, such as the skin, joints, kidneys, heart and brain. Both innate and adaptive immune systems are critically involved in the misguided immune response against self-antigens. Dendritic cells, neutrophils, and innate lymphoid cells are important in initiating antigen presentation and propagating inflammation at lymphoid and peripheral tissue sites. Autoantibodies produced by B lymphocytes and immune complex deposition in vital organs contribute to tissue damage. T lymphocytes are increasingly being recognized as key contributors to disease pathogenesis. CD4 T follicular helper cells enable autoantibody production, inflammatory Th17 subsets promote inflammation, while defects in regulatory T cells lead to unchecked immune responses. A better understanding of the molecular defects including signaling events and gene regulation underlying the dysfunctional T cells in SLE is necessary to pave the path for better management, therapy, and perhaps prevention of this complex disease. In this review, we focus on the aberrations in T cell signaling in SLE and highlight therapeutic advances in this field. PMID:29868033

  15. Aberrant T Cell Signaling and Subsets in Systemic Lupus Erythematosus.

    PubMed

    Katsuyama, Takayuki; Tsokos, George C; Moulton, Vaishali R

    2018-01-01

    Systemic lupus erythematosus (SLE) is a chronic multi-organ debilitating autoimmune disease, which mainly afflicts women in the reproductive years. A complex interaction of genetics, environmental factors and hormones result in the breakdown of immune tolerance to "self" leading to damage and destruction of multiple organs, such as the skin, joints, kidneys, heart and brain. Both innate and adaptive immune systems are critically involved in the misguided immune response against self-antigens. Dendritic cells, neutrophils, and innate lymphoid cells are important in initiating antigen presentation and propagating inflammation at lymphoid and peripheral tissue sites. Autoantibodies produced by B lymphocytes and immune complex deposition in vital organs contribute to tissue damage. T lymphocytes are increasingly being recognized as key contributors to disease pathogenesis. CD4 T follicular helper cells enable autoantibody production, inflammatory Th17 subsets promote inflammation, while defects in regulatory T cells lead to unchecked immune responses. A better understanding of the molecular defects including signaling events and gene regulation underlying the dysfunctional T cells in SLE is necessary to pave the path for better management, therapy, and perhaps prevention of this complex disease. In this review, we focus on the aberrations in T cell signaling in SLE and highlight therapeutic advances in this field.

  16. Intraclonal Cell Expansion and Selection Driven by B Cell Receptor in Chronic Lymphocytic Leukemia

    PubMed Central

    Colombo, Monica; Cutrona, Giovanna; Reverberi, Daniele; Fabris, Sonia; Neri, Antonino; Fabbi, Marina; Quintana, Giovanni; Quarta, Giovanni; Ghiotto, Fabio; Fais, Franco; Ferrarini, Manlio

    2011-01-01

    The mutational status of the immunoglobulin heavy-chain variable region (IGHV) genes utilized by chronic lymphocytic leukemia (CLL) clones defines two disease subgroups. Patients with unmutated IGHV have a more aggressive disease and a worse outcome than patients with cells having somatic IGHV gene mutations. Moreover, up to 30% of the unmutated CLL clones exhibit very similar or identical B cell receptors (BcR), often encoded by the same IG genes. These “stereotyped” BcRs have been classified into defined subsets. The presence of an IGHV gene somatic mutation and the utilization of a skewed gene repertoire compared with normal B cells together with the expression of stereotyped receptors by unmutated CLL clones may indicate stimulation/selection by antigenic epitopes. This antigenic stimulation may occur prior to or during neoplastic transformation, but it is unknown whether this stimulation/selection continues after leukemogenesis has ceased. In this study, we focused on seven CLL cases with stereotyped BcR Subset #8 found among a cohort of 700 patients; in six, the cells expressed IgG and utilized IGHV4-39 and IGKV1-39/IGKV1D-39 genes, as reported for Subset #8 BcR. One case exhibited special features, including expression of IgM or IgG by different subclones consequent to an isotype switch, allelic inclusion at the IGH locus in the IgM-expressing cells and a particular pattern of cytogenetic lesions. Collectively, the data indicate a process of antigenic stimulation/selection of the fully transformed CLL cells leading to the expansion of the Subset #8 IgG-bearing subclone. PMID:21541442

  17. In vivo detection of peripherin-specific autoreactive B cells during type 1 diabetes pathogenesis1

    PubMed Central

    Garabatos, Nahir; Alvarez, Raimon; Carrillo, Jorge; Carrascal, Jorge; Izquierdo, Cristina; Chapman, Harold D.; Presa, Maximiliano; Mora, Conchi; Serreze, David V.; Verdaguer, Joan; Stratmann, Thomas

    2014-01-01

    Summary Autoreactive B cells are essential for the pathogenesis of type 1 diabetes. The genesis and dynamics of autoreactive B cells remain unknown. Here, we analyzed the immune response in the NOD mouse model to the neuronal protein peripherin (PRPH), a target antigen of islet-infiltrating B cells. PRPH autoreactive B cells recognized a single linear epitope of this protein, in contrast to the multiple epitope recognition commonly observed during autoreactive B cell responses. Autoantibodies to this epitope were also detected in the disease-resistant NOR and C57BL/6 strains. To specifically detect the accumulation of these B cells, we developed a novel approach, octameric peptide display, to follow the dynamics and localization of anti-PRPH B cell during disease progression. Before extended insulitis established, anti-PRPH B cells preferentially accumulated in the peritoneum. Anti-PRPH B cells were likewise detected in C57BL/6 mice, albeit at lower frequencies. As disease unfolded in NOD mice, anti-PRPH B cells invaded the islets and increased in number at the peritoneum of diabetic but not pre-diabetic mice. Isotype switched B cells were only detected in the peritoneum. Anti-PRPH B cells represent a heterogeneous population composed of both B1 and B2 subsets. In the spleen, anti-PRPH B cell were predominantly in the follicular subset. Therefore, anti-PRPH B cells represent a heterogeneous population that is generated early in life but proliferates as diabetes establishes. These findings on the temporal and spatial progression of autoreactive B cells should be relevant for our understanding of B cell function in diabetes pathogenesis. PMID:24610011

  18. The association of exosomes with lymph nodes.

    PubMed

    Hood, Joshua L

    2017-07-01

    Cells produce extracellular nanovesicles known as exosomes that transport information between tissue microenvironments. Exosomes can engage and regulate the function of various immune cell types facilitating both normal and pathological processes. It follows that exosomes should also associate with lymph nodes containing immune cells. Herein, data derived from investigations that incorporate experiments pertaining to the trafficking of exosomes to lymph nodes is reviewed. Within lymph nodes, direct evidence demonstrates that exosomes associate with dendritic cells, subcapsular sinus macrophages, B lymphocytes and stromal cells. Interactions with endothelial cells are also likely. The functional significance of these associations depends on exosome type. Continued investigations into the relationship between exosomes and lymph nodes will further our understanding of how exosomes regulate immune cells subsets and may serve to inspire new exosome based therapeutics to treat a variety of diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The Female Lower Genital Tract Is a Privileged Compartment with IL-10 Producing Dendritic Cells and Poor Th1 Immunity following Chlamydia trachomatis Infection

    PubMed Central

    Marks, Ellen; Tam, Miguel A.; Lycke, Nils Y.

    2010-01-01

    While a primary genital tract infection with C. trachomatis stimulates partial-protection against re-infection, it may also result in severe inflammation and tissue destruction. Here we have dissected whether functional compartments exist in the genital tract that restrict Th1-mediated protective immunity. Apart from the Th1-subset, little is known about the role of other CD4+ T cell subsets in response to a genital tract chlamydial infection. Therefore, we investigated CD4+ T cell subset differentiation in the genital tract using RT-PCR for expression of critical transcription factors and cytokines in the upper (UGT) and lower genital tract (LGT) of female C57BL/6 mice in response to C. trachomatis serovar D infection. We found that the Th1 subset dominated the UGT, as IFN-γ and T-bet mRNA expression were high, while GATA-3 was low following genital infection with C. trachomatis serovar D. By contrast, IL-10 and GATA-3 mRNA dominated the LGT, suggesting the presence of Th2 cells. These functional compartments also attracted regulatory T cells (Tregs) differently as increased FoxP3 mRNA expression was seen primarily in the UGT. Although IL-17A mRNA was somewhat up-regulated in the LGT, no significant change in RORγ-t mRNA expression was observed, suggesting no involvement of Th17 cells. The dichotomy between the LGT and UGT was maintained during infection by IL-10 because in IL-10-deficient mice the distinction between the two compartments was completely lost and a dramatic shift to the predominance of Th1 cells in the LGT occurred. Unexpectedly, the major source of IL-10 was CD11c+ CD11b+ DC, probably creating an anti-inflammatory privileged site in the LGT. PMID:21079691

  20. CD127 and CD25 Expression Defines CD4+ T Cell Subsets That Are Differentially Depleted during HIV Infection1

    PubMed Central

    Dunham, Richard M.; Cervasi, Barbara; Brenchley, Jason M.; Albrecht, Helmut; Weintrob, Amy; Sumpter, Beth; Engram, Jessica; Gordon, Shari; Klatt, Nichole R.; Frank, Ian; Sodora, Donald L.; Douek, Daniel C.; Paiardini, Mirko; Silvestri, Guido

    2009-01-01

    Decreased CD4+ T cell counts are the best marker of disease progression during HIV infection. However, CD4+ T cells are heterogeneous in phenotype and function, and it is unknown how preferential depletion of specific CD4+ T cell subsets influences disease severity. CD4+ T cells can be classified into three subsets by the expression of receptors for two T cell-tropic cytokines, IL-2 (CD25) and IL-7 (CD127). The CD127+CD25low/− subset includes IL-2-producing naive and central memory T cells; the CD127−CD25− subset includes mainly effector T cells expressing perforin and IFN-γ; and the CD127lowCD25high subset includes FoxP3-expressing regulatory T cells. Herein we investigated how the proportions of these T cell subsets are changed during HIV infection. When compared with healthy controls, HIV-infected patients show a relative increase in CD4+CD127−CD25− T cells that is related to an absolute decline of CD4+CD127+CD25low/− T cells. Interestingly, this expansion of CD4+CD127− T cells was not observed in naturally SIV-infected sooty mangabeys. The relative expansion of CD4+CD127−CD25− T cells correlated directly with the levels of total CD4+ T cell depletion and immune activation. CD4+CD127−CD25− T cells were not selectively resistant to HIV infection as levels of cell-associated virus were similar in all non-naive CD4+ T cell subsets. These data indicate that, during HIV infection, specific changes in the fraction of CD4+ T cells expressing CD25 and/or CD127 are associated with disease progression. Further studies will determine whether monitoring the three subsets of CD4+ T cells defined based on the expression of CD25 and CD127 should be used in the clinical management of HIV-infected individuals. PMID:18390743

  1. The human Vδ2+ T-cell compartment comprises distinct innate-like Vγ9+ and adaptive Vγ9- subsets.

    PubMed

    Davey, Martin S; Willcox, Carrie R; Hunter, Stuart; Kasatskaya, Sofya A; Remmerswaal, Ester B M; Salim, Mahboob; Mohammed, Fiyaz; Bemelman, Frederike J; Chudakov, Dmitriy M; Oo, Ye H; Willcox, Benjamin E

    2018-05-02

    Vδ2 + T cells form the predominant human γδ T-cell population in peripheral blood and mediate T-cell receptor (TCR)-dependent anti-microbial and anti-tumour immunity. Here we show that the Vδ2 + compartment comprises both innate-like and adaptive subsets. Vγ9 + Vδ2 + T cells display semi-invariant TCR repertoires, featuring public Vγ9 TCR sequences equivalent in cord and adult blood. By contrast, we also identify a separate, Vγ9 - Vδ2 + T-cell subset that typically has a CD27 hi CCR7 + CD28 + IL-7Rα + naive-like phenotype and a diverse TCR repertoire, however in response to viral infection, undergoes clonal expansion and differentiation to a CD27 lo CD45RA + CX 3 CR1 + granzymeA/B + effector phenotype. Consistent with a function in solid tissue immunosurveillance, we detect human intrahepatic Vγ9 - Vδ2 + T cells featuring dominant clonal expansions and an effector phenotype. These findings redefine human γδ T-cell subsets by delineating the Vδ2 + T-cell compartment into innate-like (Vγ9 + ) and adaptive (Vγ9 - ) subsets, which have distinct functions in microbial immunosurveillance.

  2. Treatment of Primary Cutaneous CD4 Small/Medium T cell Lymphoproliferative Disorder with Intralesional Triamcinolone Acetonide.

    DTIC Science & Technology

    2018-02-15

    12. REPORT TYPE 02/15/2018 Poster 4. TITLE AND SUBTITLE Treatment of Primary Cutaneous CD4+ Small/Medium T- cell Lymphoproliferative Disorder with...cutaneous CD4+ small/medium T- cell lymphoproliferative disorder (LPD) is a generally indolent cutaneous T- cell proliferation. Most cases follow a benign...lmmunohistochemistry showed diffuse CD3+ CD4+ T- cells without CD30, TIA1 or CD10. A subset of medium to large cells expressed BCL-6. Small subsets of B- cells and CDB

  3. The effect of cellular isolation and cryopreservation on the expression of markers identifying subsets of regulatory T cells.

    PubMed

    Zhang, Weiying; Nilles, Tricia L; Johnson, Jacquett R; Margolick, Joseph B

    2016-04-01

    The role of CD4(+) regulatory T cells (Tregs) and their subsets during HIV infection is controversial. Cryopreserved peripheral blood mononuclear cells (PBMC) are an important source for assessing number and function of Tregs. However, it is unknown if PBMC isolation and cryopreservation affect the expression of CD120b and CD39, markers that identify specific subsets of Tregs. HIV-uninfected (HIV-) and -infected (HIV+) men were randomly selected from the Multicenter AIDS Cohort Study (MACS). Percentages of CD120b(+) and CD39(+) Tregs measured by flow cytometry in whole blood and in corresponding fresh and cryopreserved PBMC were compared. Percentages of CD120b(+) Tregs were significantly lower in a) fresh PBMC relative to whole blood, and b) freshly thawed frozen PBMC relative to fresh PBMC when the recovery of viable cryopreserved cells was low. When present, low expression of CD120b in frozen PBMC was reversible by 4h of in vitro culture. In contrast, expression of CD39 on Tregs was not affected by isolation and/or cryopreservation of PBMC, or by relative recovery of cryopreserved PBMC. These findings were unaffected by the HIV status of the donor. The data suggest that percentages of CD120b(+) Tregs and CD39(+) Tregs can be validly measured in either whole blood or PBMC (fresh and frozen) in HIV- and HIV+ men. However, for measurement of CD120b(+) Tregs one type of sample should be used consistently within a given study, and thawed frozen cells may require in vitro culture if recovery of viable cells is low. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. PD-1(HIGH) Follicular CD4 T Helper Cell Subsets Residing in Lymph Node Germinal Centers Correlate with B Cell Maturation and IgG Production in Rhesus Macaques.

    PubMed

    Xu, Huanbin; Wang, Xiaolei; Lackner, Andrew A; Veazey, Ronald S

    2014-01-01

    CD4+ T follicular helper (TFH) cells guide development and maturation of B cells and are crucial for effective antibody responses. Here we found rhesus macaque TFH cells, defined as CXCR5+CD4 T cells, contain two major populations: PD-1(INT) and PD-1(HIGH) cells. Of these, PD-1(HIGH)CD4+ T cells highly co-express ICOS but little CCR7, and reside in lymph node germinal centers (GCs), but not in blood. These cells secrete IL-21 and express transcriptional factor Bcl-6 at higher levels than CXCR5+PD-1(INT)CD4+ T cells. In addition, the frequency of PD-1(HIGH)CD4+ T cells is low in lymph nodes of newborns, but increases with age. Levels of PD-1(HIGH)CD4+ T cells correlate with mature B cells in lymph nodes, and PD-1 blockade in PD-1(HIGH)CD4+ T and B cell co-cultures significantly inhibits IgG production. In summary, PD-1(HIGH)CD4+ T cells residing in GC represent a specific TFH subset that contributes to maturation of B cells and IgG production.

  5. [Effect of Sijunzi Decoction and enteral nutrition on T-cell subsets and nutritional status in patients with gastric cancer after operation: a randomized controlled trial].

    PubMed

    Cai, Jun; Wang, Hua; Zhou, Sheng; Wu, Bin; Song, Hua-Rong; Xuan, Zheng-Rong

    2008-01-01

    To observe the effect of perioperative application of Sijunzi Decoction and enteral nutrition on T-cell subsets and nutritional status in patients with gastric cancer after operation. In this prospective, single-blinded, controlled clinical trial, fifty-nine patients with gastric cancer were randomly divided into three groups: control group (n=20) and two study groups (group A, n=21; group B, n=18). Sjunzi Decoction (100 ml) was administered via nasogastric tube to the patients in the study group B from the second postoperation day to the 9th postoperation day. Patients in the two study groups were given an isocaloric and isonitrogonous enteral diet, which was started on the second day after operation, and continued for eight days. Patients in the control group were given an isocaloric and isonitrogonous parenteral diet for 9 days. All variables of nutritional status such as serum albumin (ALB), prealbumin (PA), transferrin (TRF) and T-cell subsets were measured one day before operation, and one day and 10 days after operation. All the nutritional variables and the levels of CD3(+), CD4(+), CD4(+)/CD8(+) were decreased significantly after operation. Ten days after operation, T-cell subsets and nutritional variables in the two study groups were increased as compare with the control group. The levels of ALB, TRF and T-cell subsets in the study group B were increased significantly as compared with the study group A (P<0.05). Enteral nutrition assisted with Sijunzi Decoction can positively improve and optimize cellular immune function and nutritional status in the patients with gastric cancer after operation.

  6. Metabolic Profile as a Potential Modifier of Long-Term Radiation Effects on Peripheral Lymphocyte Subsets in Atomic Bomb Survivors.

    PubMed

    Yoshida, Kengo; Nakashima, Eiji; Kyoizumi, Seishi; Hakoda, Masayuki; Hayashi, Tomonori; Hida, Ayumi; Ohishi, Waka; Kusunoki, Yoichiro

    2016-09-01

    Immune system impairments reflected by the composition and function of circulating lymphocytes are still observed in atomic bomb survivors, and metabolic abnormalities including altered blood triglyceride and cholesterol levels have also been detected in such survivors. Based on closely related features of immune and metabolic profiles of individuals, we investigated the hypothesis that long-term effects of radiation exposure on lymphocyte subsets might be modified by metabolic profiles in 3,113 atomic bomb survivors who participated in health examinations at the Radiation Effect Research Foundation, Hiroshima and Nagasaki, in 2000-2002. The lymphocyte subsets analyzed involved T-, B- and NK-cell subsets, and their percentages in the lymphocyte fraction were assessed using flow cytometry. Health examinations included metabolic indicators, body mass index, serum levels of total cholesterol, high-density lipoprotein cholesterol, C-reactive protein and hemoglobin A1c, as well as diabetes and fatty liver diagnoses. Standard regression analyses indicated that several metabolic indicators of obesity/related disease, particularly high-density lipoprotein cholesterol levels, were positively associated with type-1 helper T- and B-cell percentages but were inversely associated with naïve CD4 T and NK cells. A regression analysis adjusted for high-density lipoprotein cholesterol revealed a radiation dose relationship with increasing NK-cell percentage. Additionally, an interaction effect was suggested between radiation dose and C-reactive protein on B-cell percentage with a negative coefficient of the interaction term. Collectively, these findings suggest that radiation exposure and subsequent metabolic profile changes, potentially in relationship to obesity-related inflammation, lead to such long-term alterations in lymphocyte subset composition. Because this study is based on cross-sectional and exploratory analyses, the implications regarding radiation exposure, metabolic profiles and circulating lymphocytes warrant future longitudinal and molecular mechanistic studies.

  7. Innate lymphoid cells in normal and disease: An introductory overview.

    PubMed

    Moretta, Lorenzo; Locatelli, Franco

    2016-11-01

    Innate lymphoid cells (ILC) represent a novel group of lymphocytes that, different from T and B-lymphocytes lack recombinant activating genes (RAG-1 or RAG-2) and thus do not express rearranged antigen-specific receptors. Members of this family, i.e. NK cells, have been known since long time, while the other ILCs have been discovered only in recent years, possibly because of their predominant localization in tissues, primarily in mucosal tissues, skin and mucosa-associated lymphoid organs. ILC have been grouped in three major subsets on the basis of their phenotypic and functional features as well as of their dependency on given transcription factors (TF). Briefly, ILC-1 are dependent on T-bet TF and produce interferon (IFN)-γ. Group 2 ILC (ILC2) express GATA-3 TF and produce IL-5, IL-4 and IL-13 (Type 2) cytokines while group 3 ILC (ILC3) express RORγt TF and produce IL-17 and IL-22. ILC provide early defenses against pathogens and intervene in the repair of damaged tissues. ILC activation is mediated by cytokines (specifically acting on different ILC groups) and/or by activating receptors that are, at least in part, the same that had been previously identified in NK cells [1]. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  8. Comparison between flowcytometry and immunoperoxidase staining for the enumeration of lymphocyte subsets.

    PubMed

    Dhaliwal, J S; Malar, B; Quck, C K; Sukumaran, K D; Hassan, K

    1991-06-01

    Immunoperoxidase staining was compared with flowcytometry for the enumeration of lymphocyte subsets. The percentages obtained for peripheral blood lymphocytes using immunoperoxidase (CD3 = 76 CD4 = 27.9, B = 10.7 CD4/CD8 = 1.8) differed significantly from those obtained by flowcytometry (CD3 = 65.7 CD4 = 39.4, CD8 = 25.6, B = 16.7, HLA DR = 11.9 CD4/CD8 = 1.54) for certain subsets (CD3, CD4, B). There was no significant difference in lymphocyte subsets between children and adults using the same method. These differences are probably due to the different methods used to prepare lymphocytes for analysis. Other factors that should also be considered are the presence of CD4 antigen on monocytes and CD8 on natural killer cells.

  9. ROCK2 signaling is required to induce a subset of T follicular helper cells through opposing effects on STATs in autoimmune settings.

    PubMed

    Weiss, Jonathan M; Chen, Wei; Nyuydzefe, Melanie S; Trzeciak, Alissa; Flynn, Ryan; Tonra, James R; Marusic, Suzana; Blazar, Bruce R; Waksal, Samuel D; Zanin-Zhorov, Alexandra

    2016-07-19

    Rho-associated kinase 2 (ROCK2) determines the balance between human T helper 17 (TH17) cells and regulatory T (Treg) cells. We investigated its role in the generation of T follicular helper (TFH) cells, which help to generate antibody-producing B cells under normal and autoimmune conditions. Inhibiting ROCK2 in normal human T cells or peripheral blood mononuclear cells from patients with active systemic lupus erythematosus (SLE) decreased the number and function of TFH cells induced by activation ex vivo. Moreover, inhibition of ROCK2 activity decreased the abundance of the transcriptional regulator Bcl6 (B cell lymphoma 6) and increased that of Blimp1 by reducing the binding of signal transducer and activator of transcription 3 (STAT3) and increasing that of STAT5 to the promoters of the genes Bcl6 and PRDM1, respectively. In the MRL/lpr murine model of SLE, oral administration of the selective ROCK2 inhibitor KD025 resulted in a twofold reduction in the numbers of TFH cells and antibody-producing plasma cells in the spleen, as well as a decrease in the size of splenic germinal centers, which are the sites of interaction between TFH cells and B cells. KD025-treated mice showed a substantial improvement in both histological and clinical scores compared to those of untreated mice and had reduced amounts of Bcl6 and phosphorylated STAT3, as well as increased STAT5 phosphorylation. Together, these data suggest that ROCK2 signaling plays a critical role in controlling the development of TFH cells induced by autoimmune conditions through reciprocal regulation of STAT3 and STAT5 activation. Copyright © 2016, American Association for the Advancement of Science.

  10. Targeting Thromboxane A2 Receptor for Antimetastasis Therapy of Breast Cancer

    DTIC Science & Technology

    2012-09-01

    Figure 1B, right). The predominant localization of TP in the cytosol of MDA-MB-231 cells led us to examine whether a subset of TP is expressed at cell...in the Figure 1C, MDA-MB-231 cells had positive staining at cell surface, suggesting that a subset of TP was localized at plasma membrane. We...34, ISBN 979- 953-307-183-0. 2011. Robbins GT, Nie D. PPAR gamma, bioactive lipids, and cancer progression. Front Biosci. 17:1816-34, 2012. Grants

  11. A systems biology approach to the analysis of subset-specific responses to lipopolysaccharide in dendritic cells.

    PubMed

    Hancock, David G; Shklovskaya, Elena; Guy, Thomas V; Falsafi, Reza; Fjell, Chris D; Ritchie, William; Hancock, Robert E W; Fazekas de St Groth, Barbara

    2014-01-01

    Dendritic cells (DCs) are critical for regulating CD4 and CD8 T cell immunity, controlling Th1, Th2, and Th17 commitment, generating inducible Tregs, and mediating tolerance. It is believed that distinct DC subsets have evolved to control these different immune outcomes. However, how DC subsets mount different responses to inflammatory and/or tolerogenic signals in order to accomplish their divergent functions remains unclear. Lipopolysaccharide (LPS) provides an excellent model for investigating responses in closely related splenic DC subsets, as all subsets express the LPS receptor TLR4 and respond to LPS in vitro. However, previous studies of the LPS-induced DC transcriptome have been performed only on mixed DC populations. Moreover, comparisons of the in vivo response of two closely related DC subsets to LPS stimulation have not been reported in the literature to date. We compared the transcriptomes of murine splenic CD8 and CD11b DC subsets after in vivo LPS stimulation, using RNA-Seq and systems biology approaches. We identified subset-specific gene signatures, which included multiple functional immune mediators unique to each subset. To explain the observed subset-specific differences, we used a network analysis approach. While both DC subsets used a conserved set of transcription factors and major signalling pathways, the subsets showed differential regulation of sets of genes that 'fine-tune' the network Hubs expressed in common. We propose a model in which signalling through common pathway components is 'fine-tuned' by transcriptional control of subset-specific modulators, thus allowing for distinct functional outcomes in closely related DC subsets. We extend this analysis to comparable datasets from the literature and confirm that our model can account for cell subset-specific responses to LPS stimulation in multiple subpopulations in mouse and man.

  12. Development of a Novel CD4+ TCR Transgenic Line That Reveals a Dominant Role for CD8+ Dendritic Cells and CD40 Signaling in the Generation of Helper and CTL Responses to Blood-Stage Malaria.

    PubMed

    Fernandez-Ruiz, Daniel; Lau, Lei Shong; Ghazanfari, Nazanin; Jones, Claerwen M; Ng, Wei Yi; Davey, Gayle M; Berthold, Dorothee; Holz, Lauren; Kato, Yu; Enders, Matthias H; Bayarsaikhan, Ganchimeg; Hendriks, Sanne H; Lansink, Lianne I M; Engel, Jessica A; Soon, Megan S F; James, Kylie R; Cozijnsen, Anton; Mollard, Vanessa; Uboldi, Alessandro D; Tonkin, Christopher J; de Koning-Ward, Tania F; Gilson, Paul R; Kaisho, Tsuneyasu; Haque, Ashraful; Crabb, Brendan S; Carbone, Francis R; McFadden, Geoffrey I; Heath, William R

    2017-12-15

    We describe an MHC class II (I-A b )-restricted TCR transgenic mouse line that produces CD4 + T cells specific for Plasmodium species. This line, termed PbT-II, was derived from a CD4 + T cell hybridoma generated to blood-stage Plasmodium berghei ANKA (PbA). PbT-II cells responded to all Plasmodium species and stages tested so far, including rodent (PbA, P. berghei NK65, Plasmodium chabaudi AS, and Plasmodium yoelii 17XNL) and human ( Plasmodium falciparum ) blood-stage parasites as well as irradiated PbA sporozoites. PbT-II cells can provide help for generation of Ab to P. chabaudi infection and can control this otherwise lethal infection in CD40L-deficient mice. PbT-II cells can also provide help for development of CD8 + T cell-mediated experimental cerebral malaria (ECM) during PbA infection. Using PbT-II CD4 + T cells and the previously described PbT-I CD8 + T cells, we determined the dendritic cell (DC) subsets responsible for immunity to PbA blood-stage infection. CD8 + DC (a subset of XCR1 + DC) were the major APC responsible for activation of both T cell subsets, although other DC also contributed to CD4 + T cell responses. Depletion of CD8 + DC at the beginning of infection prevented ECM development and impaired both Th1 and follicular Th cell responses; in contrast, late depletion did not affect ECM. This study describes a novel and versatile tool for examining CD4 + T cell immunity during malaria and provides evidence that CD4 + T cell help, acting via CD40L signaling, can promote immunity or pathology to blood-stage malaria largely through Ag presentation by CD8 + DC. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Metformin Suppresses Systemic Autoimmunity in Roquinsan/san Mice through Inhibiting B Cell Differentiation into Plasma Cells via Regulation of AMPK/mTOR/STAT3.

    PubMed

    Lee, Seon-Yeong; Moon, Su-Jin; Kim, Eun-Kyung; Seo, Hyeon-Beom; Yang, Eun-Ji; Son, Hye-Jin; Kim, Jae-Kyung; Min, Jun-Ki; Park, Sung-Hwan; Cho, Mi-La

    2017-04-01

    Circulating autoantibodies and immune complex deposition are pathological hallmarks of systemic lupus erythematosus (SLE). B cell differentiation into plasma cells (PCs) and some T cell subsets that function as B cell helpers can be therapeutic targets of SLE. Mechanistic target of rapamycin (mTOR) signaling is implicated in the formation of B cells and germinal centers (GCs). We assessed the effect of metformin, which inhibits mTOR, on the development of autoimmunity using Roquin san/san mice. Oral administration of metformin inhibited the formation of splenic follicles and inflammation in kidney and liver tissues. It also decreased serum levels of anti-dsDNA Abs without affecting serum glucose levels. Moreover, metformin inhibited CD21 high CD23 low marginal zone B cells, B220 + GL7 + GC B cells, B220 - CD138 + PCs, and GC formation. A significant reduction in ICOS + follicular helper T cells was found in the spleens of the metformin-treated group compared with the vehicle-treated group. In addition, metformin inhibited Th17 cells and induced regulatory T cells. These alterations in B and T cell subsets by metformin were associated with enhanced AMPK expression and inhibition of mTOR-STAT3 signaling. Furthermore, metformin induced p53 and NF erythroid-2-related factor-2 activity in splenic CD4 + T cells. Taken together, metformin-induced alterations in AMPK-mTOR-STAT3 signaling may have therapeutic value in SLE by inhibiting B cell differentiation into PCs and GCs. Copyright © 2017 by The American Association of Immunologists, Inc.

  14. [Characteristics of peripheral blood lymphocyte immune subsets in patients with chronic active Epstein-Barr virus infection].

    PubMed

    Xing, Yan; Song, Hong-mei; Li, Tai-sheng; Qiu, Zhi-feng; Wu, Xiao-yan; Wang, Wei; Wei, Min

    2009-06-01

    To study the characteristics of the peripheral blood lymphocyte subsets in pediatric patients with chronic active EBV (CAEBV) infection. Flow cytometry was used to detect the peripheral blood NK, B, T lymphocyte subsets and the functional, regulatory, naïve, memory and activatory subsets of T lymphocytes in 10 pediatric patients with CAEBV infection, 13 pediatric patients with acute Epstein-Barr virus infection (AEBV) and 12 healthy children in our hospital between March 2004 and April 2008. Compared with AEBV group, the number of white blood cells [3325 x 10(6)/L (median, just the same as the following)], lymphocytes (1078 x 10(6)/L), NK cells (68 x 10(6)/L), B cells (84 x 10(6)/L), total T cells (684 x 10(6)/L), CD4+ T cells (406 x 10(6)/L) and CD8+ T cells (295 x 10(6)/L) in CAEBV patients were lower (P<0.05). The functional subset of the CD4+ T cells in CAEBV group (94.5%) was lower than those of the healthy control group (98.7%) (P<0.05), but was still higher than those of AEBV group (74.0%) (P<0.05). While the functional subset of the CD8+ T cells in CAEBV (40.7%) was not dramatically different from the healthy control group (48.3%), but was still higher than that of AEBV group (21.0%) (P<0.05). Although the regulatory subset in CAEBV group (5.0%) was higher than the health control group (4.6%) (P<0.05), but lower than AEBV group (5.8%) (P<0.05). In CAEBV, the proportion of CD4+/CD8+ naïve T cells (32.3%/37.5%) was lower than that of normal group (58.3%/56.6%) (P<0.05), but the proportion of CD4+/CD8+ effective memory T cells in CAEBV group (23.9%/15.1%) was lower than that in AEBV group (36.5%/69.8%) (P<0.05), while the proportion of CD8+ fake naïve T cells in CAEBV (17.5%) was higher than the other 2 groups (P<0.05). The CD8+ activatory subset in CAEBV group (84.4%/34.0%) was higher than that of the healthy control group (44.1%/16.7%) (P<0.05), but still lower than AEBV group (96%/95%) (P<0.05). There is an imbalance in lymphocyte subsets and disturbance in cellular immunity in CAEBV patients, which may be associated with EBV chronic active infection. Detecting the peripheral haematologic parameters and lymphocyte subsets may be helpful in the diagnosis and the differential diagnosis of CAEBV.

  15. Activation of Antigen-Specific CD8(+) T Cells by Poly-DL-Lactide/Glycolide (PLGA) Nanoparticle-Primed Gr-1(high) Cells.

    PubMed

    Luo, Wen-Hui; Yang, Ya-Wun

    2016-04-01

    The aim of this study was to investigate the induction of antigen-specific T cell activation and cell cycle modulation by a poly-DL-lactide/glycolide (PLGA) nanoparticle (NP)-primed CD11b(+)Gr-1(high) subset isolated from mouse bone marrow. PLGA NPs containing the ovalbumin (OVA) antigen were prepared using the double emulsion and solvent evaporation method, and protein release rate and cell viability were determined. The Lin2(¯)CD11b(+)Gr-1(high)Ly6c(low) (Gr-1(high)) subset was sorted from the bone marrow of C57BL/6 J mice by fluorescence-activated cell sorting (FACS) and co-cultured with OT-I CD8(+) splenic T cells. Proliferation of OT-I CD8(+) T cells was monitored, and cell cycles were determined by 5-bromo-2'-deoxyuridine (BrdU) labeling. Treatment of Gr-1(high) cells with PLGA/OVA NPs upregulated expression of the SIINFEKL-H2K(b) complex in the context of MHC I. Co-cultures of OT-I CD8(+) T cells with the PLGA/OVA NP-primed Gr-1(high) cells induced the proliferation of T cells in vitro and modulated cell division and morphology. Treatment of Gr-1(high) cells with PLGA/OVA NPs also induced cell apoptosis and necrosis. This study demonstrated the function of PLGA/OVA NPs in the activation of OT-I CD8(+) T cells and the capability of cross-presentation via the Gr-1(high) polymorphonuclear subset from mouse bone marrow.

  16. A Single HIV-1 Cluster and a Skewed Immune Homeostasis Drive the Early Spread of HIV among Resting CD4+ Cell Subsets within One Month Post-Infection

    PubMed Central

    Avettand-Fenoël, Véronique; Nembot, Georges; Mélard, Adeline; Blanc, Catherine; Lascoux-Combe, Caroline; Slama, Laurence; Allegre, Thierry; Allavena, Clotilde; Yazdanpanah, Yazdan; Duvivier, Claudine; Katlama, Christine; Goujard, Cécile; Seksik, Bao Chau Phung; Leplatois, Anne; Molina, Jean-Michel; Meyer, Laurence; Autran, Brigitte; Rouzioux, Christine

    2013-01-01

    Optimizing therapeutic strategies for an HIV cure requires better understanding the characteristics of early HIV-1 spread among resting CD4+ cells within the first month of primary HIV-1 infection (PHI). We studied the immune distribution, diversity, and inducibility of total HIV-DNA among the following cell subsets: monocytes, peripheral blood activated and resting CD4 T cells, long-lived (naive [TN] and central-memory [TCM]) and short-lived (transitional-memory [TTM] and effector-memory cells [TEM]) resting CD4+T cells from 12 acutely-infected individuals recruited at a median 36 days from infection. Cells were sorted for total HIV-DNA quantification, phylogenetic analysis and inducibility, all studied in relation to activation status and cell signaling. One month post-infection, a single CCR5-restricted viral cluster was massively distributed in all resting CD4+ subsets from 88% subjects, while one subject showed a slight diversity. High levels of total HIV-DNA were measured among TN (median 3.4 log copies/million cells), although 10-fold less (p = 0.0005) than in equally infected TCM (4.5), TTM (4.7) and TEM (4.6) cells. CD3−CD4+ monocytes harbored a low viral burden (median 2.3 log copies/million cells), unlike equally infected resting and activated CD4+ T cells (4.5 log copies/million cells). The skewed repartition of resting CD4 subsets influenced their contribution to the pool of resting infected CD4+T cells, two thirds of which consisted of short-lived TTM and TEM subsets, whereas long-lived TN and TCM subsets contributed the balance. Each resting CD4 subset produced HIV in vitro after stimulation with anti-CD3/anti-CD28+IL-2 with kinetics and magnitude varying according to subset differentiation, while IL-7 preferentially induced virus production from long-lived resting TN cells. In conclusion, within a month of infection, a clonal HIV-1 cluster is massively distributed among resting CD4 T-cell subsets with a flexible inducibility, suggesting that subset activation and skewed immune homeostasis determine the conditions of viral dissemination and early establishment of the HIV reservoir. PMID:23691172

  17. B-cell homeostasis requires complementary CD22 and BLyS/BR3 survival signals.

    PubMed

    Smith, Susan H; Haas, Karen M; Poe, Jonathan C; Yanaba, Koichi; Ward, Christopher D; Migone, Thi-Sau; Tedder, Thomas F

    2010-08-01

    Peripheral B-cell numbers are tightly regulated by homeostatic mechanisms that influence the transitional and mature B-cell compartments and dictate the size and clonotypic diversity of the B-cell repertoire. B-lymphocyte stimulator (BLyS, a trademark of Human Genome Sciences, Inc.) plays a key role in regulating peripheral B-cell homeostasis. CD22 also promotes peripheral B-cell survival through ligand-dependent mechanisms. The B-cell subsets affected by the absence of BLyS and CD22 signals overlap, suggesting that BLyS- and CD22-mediated survival are intertwined. To examine this, the effects of BLyS insufficiency following neutralizing BLyS mAb treatment in mice also treated with CD22 ligand-blocking mAb were examined. Combined targeting of the BLyS and CD22 survival pathways led to significantly greater clearance of recirculating bone marrow, blood, marginal zone and follicular B cells than either treatment alone. Likewise, BLyS blockade further reduced bone marrow, blood and spleen B-cell numbers in CD22(-/-) mice. Notably, BLyS receptor expression and downstream signaling were normal in CD22(-/-) B cells, suggesting that CD22 does not directly alter BLyS responsiveness. CD22 survival signals were likewise intact in the absence of BLyS, as CD22 mAb treatment depleted blood B cells from mice with impaired BLyS receptor 3 (BR3) signaling. Finally, enforced BclxL expression, which rescues BR3 impairment, did not affect B-cell depletion following CD22 mAb treatment. Thus, the current studies support a model whereby CD22 and BLyS promote the survival of overlapping B-cell subsets but contribute to their maintenance through independent and complementary signaling pathways.

  18. Characterization of Functional Antibody and Memory B-Cell Responses to pH1N1 Monovalent Vaccine in HIV-Infected Children and Youth

    PubMed Central

    Curtis, Donna J.; Muresan, Petronella; Nachman, Sharon; Fenton, Terence; Richardson, Kelly M.; Dominguez, Teresa; Flynn, Patricia M.; Spector, Stephen A.; Cunningham, Coleen K.; Bloom, Anthony; Weinberg, Adriana

    2015-01-01

    Objectives We investigated immune determinants of antibody responses and B-cell memory to pH1N1 vaccine in HIV-infected children. Methods Ninety subjects 4 to <25 years of age received two double doses of pH1N1 vaccine. Serum and cells were frozen at baseline, after each vaccination, and at 28 weeks post-immunization. Hemagglutination inhibition (HAI) titers, avidity indices (AI), B-cell subsets, and pH1N1 IgG and IgA antigen secreting cells (ASC) were measured at baseline and after each vaccination. Neutralizing antibodies and pH1N1-specific Th1, Th2 and Tfh cytokines were measured at baseline and post-dose 1. Results At entry, 26 (29%) subjects had pH1N1 protective HAI titers (≥1:40). pH1N1-specific HAI, neutralizing titers, AI, IgG ASC, IL-2 and IL-4 increased in response to vaccination (p<0.05), but IgA ASC, IL-5, IL-13, IL-21, IFNγ and B-cell subsets did not change. Subjects with baseline HAI ≥1:40 had significantly greater increases in IgG ASC and AI after immunization compared with those with HAI <1:40. Neutralizing titers and AI after vaccination increased with older age. High pH1N1 HAI responses were associated with increased IgG ASC, IFNγ, IL-2, microneutralizion titers, and AI. Microneutralization titers after vaccination increased with high IgG ASC and IL-2 responses. IgG ASC also increased with high IFNγ responses. CD4% and viral load did not predict the immune responses post-vaccination, but the B-cell distribution did. Notably, vaccine immunogenicity increased with high CD19+CD21+CD27+% resting memory, high CD19+CD10+CD27+% immature activated, low CD19+CD21-CD27-CD20-% tissue-like, low CD19+CD21-CD27-CD20-% transitional and low CD19+CD38+HLADR+% activated B-cell subsets. Conclusions HIV-infected children on HAART mount a broad B-cell memory response to pH1N1 vaccine, which was higher for subjects with baseline HAI≥1:40 and increased with age, presumably due to prior exposure to pH1N1 or to other influenza vaccination/infection. The response to the vaccine was dependent on B-cell subset distribution, but not on CD4 counts or viral load. Trial Registration ClinicalTrials.gov NCT00992836 PMID:25785995

  19. Exploring the Role of Microbiota in the Limiting of B1 and MZ B-Cell Numbers by Naturally Secreted Immunoglobulins.

    PubMed

    Mohr, Elodie; Lino, Andreia C

    2017-01-01

    Immunoglobulins (Igs)-or antibodies (Ab)-are important to combat foreign pathogens but also to the immune system homeostasis. We developed the AID -/- μS -/- mouse model devoid of total soluble Igs and suitable to monitor the role of Igs on immune homeostasis. We used this experimental system to uncover a negative feedback control of marginal zone (MZ) and B1 B cells numbers by naturally secreted Igs. We raised AID -/- μS -/- mice in germ-free conditions demonstrating that this effect of natural secreted Igs is independent of the microbiota. Herein, we provide a comprehensive description of the protocols to establish and use the AID -/- μS -/- mice to study the role of total secreted Igs or of different Ig classes. This study involves Igs injections to AID -/- μS -/- mice or establishment of AID -/- μS -/- mixed bone marrow chimeras that provide a powerful system to study AID -/- μS -/- B cells in the presence of stable concentrations of different Ig classes. While we describe flow cytometric and histological methods to analyze MZ and B1 B cell subsets, AID -/- μS -/- mice can be used to study the effects of natural Igs on other B cell subsets or immune cells.

  20. Differential effects of Cytomegalovirus carriage on the immune phenotype of middle-aged males and females

    PubMed Central

    van der Heiden, Marieke; van Zelm, Menno C.; Bartol, Sophinus J. W.; de Rond, Lia G. H.; Berbers, Guy A. M.; Boots, Annemieke M. H.; Buisman, Anne-Marie

    2016-01-01

    The elderly population is more susceptible to infections as a result of an altered immune response, commonly referred to as immunosenescence. Cytomegalovirus (CMV)-infection associated changes in blood lymphocytes are known to impact this process, but the interaction with gender remains unclear. Therefore, we analysed the effects and interaction of gender and CMV on the absolute numbers of a comprehensive set of naive and memory T- and B-cell subsets in people between 50 and 65 years of age. Enumeration and characterisation of lymphocyte subsets by flow cytometry was performed on fresh whole blood samples from 255 middle-aged persons. CMV-IgG serostatus was determined by ELISA. Gender was a major factor affecting immune cell numbers. CMV infection was mainly associated with an expansion of late-differentiated T-cell subsets. CMV+ males carried lower numbers of total CD4+, CD4+ central memory (CM) and follicular helper T-cells than females and CMV− males. Moreover, CMV+ males had significantly lower numbers of regulatory T (Treg)-cells and memory B-cells than CMV+ females. We here demonstrate an interaction between the effects of CMV infection and gender on T- and B-cells in middle-aged individuals. These differential effects on adaptive immunity between males and females may have implications for vaccination strategies at middle-age. PMID:27243552

  1. Detailed immunophenotyping of B-cell precursors in regenerating bone marrow of acute lymphoblastic leukaemia patients: implications for minimal residual disease detection.

    PubMed

    Theunissen, Prisca M J; Sedek, Lukasz; De Haas, Valerie; Szczepanski, Tomasz; Van Der Sluijs, Alita; Mejstrikova, Ester; Nováková, Michaela; Kalina, Tomas; Lecrevisse, Quentin; Orfao, Alberto; Lankester, Arjan C; van Dongen, Jacques J M; Van Der Velden, Vincent H J

    2017-07-01

    Flow cytometric detection of minimal residual disease (MRD) in children with B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) requires immunophenotypic discrimination between residual leukaemic cells and B-cell precursors (BCPs) which regenerate during therapy intervals. In this study, EuroFlow-based 8-colour flow cytometry and innovative analysis tools were used to first characterize the immunophenotypic maturation of normal BCPs in bone marrow (BM) from healthy children, resulting in a continuous multiparametric pathway including transition stages. This pathway was subsequently used as a reference to characterize the immunophenotypic maturation of regenerating BCPs in BM from children treated for BCP-ALL. We identified pre-B-I cells that expressed low or dim CD34 levels, in contrast to the classical CD34 high pre-B-I cell immunophenotype. These CD34 -dim pre-B-I cells were relatively abundant in regenerating BM (11-85% within pre-B-I subset), while hardly present in healthy control BM (9-13% within pre-B-I subset; P = 0·0037). Furthermore, we showed that some of the BCP-ALL diagnosis immunophenotypes (23%) overlapped with CD34 -dim pre-B-I cells. Our results indicate that newly identified CD34 -dim pre-B-I cells can be mistaken for residual BCP-ALL cells, potentially resulting in false-positive MRD outcomes. Therefore, regenerating BM, in which CD34 -dim pre-B-I cells are relatively abundant, should be used as reference frame in flow cytometric MRD measurements. © 2017 John Wiley & Sons Ltd.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bass, H.Z.

    As observed from a large panel of mouse T helper clones, there are at least two subsets of CD4{sup +} T cells that both differ in function and demonstrate distinct patterns of cytokine secretion after antigen or mitogen stimulation. Th1 cells synthesize IL-2, INF-{gamma} and lymphotoxin. They produce a DTH reaction in the footpads of naive mice. In addition, Th1 cells are required for the generation of CTL, and they appear to augment IgG2a antibody production. In contrast, by secreting IL-4, IL-5, and IL-6, Th2 cells play an essential role in humoral immunity. TLI consists of high dose, fractionated irradiationmore » delivered selectively to the major lymphoid tissues. Four to six weeks after TLI, the CD4{sup +} cells of the treated mice (counted as a percentage of the total spleen lymphocytes) recover to the similar levels as those in normal BALB/c mice. These CD4{sup +} cells can help normal syngeneic B cells to produce a vigorous antibody response to TNP-KLH in adoptive cell transfer experiments, but the same cells are inactive in the MLR, and they fail to transfer DTH in TNP-KLH primed syngeneic BALB/c mice.« less

  3. CD11c identifies a subset of murine liver natural killer cells that responds to adenoviral hepatitis

    PubMed Central

    Burt, Bryan M.; Plitas, George; Stableford, Jennifer A.; Nguyen, Hoang M.; Bamboat, Zubin M.; Pillarisetty, Venu G.; DeMatteo, Ronald P.

    2008-01-01

    The liver contains a unique repertoire of immune cells and a particular abundance of NK cells. We have found that CD11c defines a distinct subset of NK cells (NK1.1+CD3−) in the murine liver whose function was currently unknown. In naïve animals, CD11c+ liver NK cells displayed an activated phenotype and possessed enhanced effector functions when compared with CD11c− liver NK cells. During the innate response to adenovirus infection, CD11c+ NK cells were the more common IFN-γ-producing NK cells in the liver, demonstrated enhanced lytic capability, and gained a modest degree of APC function. The mechanism of IFN-γ production in vivo depended on TLR9 ligation as well as IL-12 and -18. Taken together, our findings demonstrate that CD11c+ NK cells are a unique subset of NK cells in the murine liver that contribute to the defense against adenoviral hepatitis. PMID:18664530

  4. B-Cell Activation and Tolerance Mediated by B-Cell Receptor, Toll-Like Receptor, and Survival Signal Crosstalk in SLE Pathogenesis

    DTIC Science & Technology

    2017-09-01

    Dec, 2016 "Integrating innate , adaptive, & survival signals to control B cell selection, homeostasis and tolerance" Pasteur Institute of Shanghai...secondary lymphoid tissues. Aging Dis. 2: 361–373. 8. Goenka, R., J. L. Scholz, M. S. Naradikian, and M. P. Cancro. 2014. Memory B cells form in aged...Scholz, and M. P. Cancro. 2011. A B- cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood 118: 1294–1304. 10. Rubtsov, A

  5. Integration of T Cell Receptor, Notch and Cytokine Signals Programs in Mouse γδ T Cell Effector Differentiation.

    PubMed

    Zarin, Payam; In, Tracy S H; Chen, Edward L Y; Singh, Jastaranpreet; Wong, Gladys W; Mohtashami, Mahmood; Wiest, David L; Anderson, Michele K; Zúñiga-Pflücker, Juan Carlos

    2018-05-13

    γδ T-cells perform a wide range of tissue and disease specific functions that are dependent on the effector cytokines produced by these cells. However, the aggregate signals required for the development of interferon-γ (IFNγ) and interleukin-17 (IL-17) producing γδ T-cells remain unknown. Here, we define the cues involved in the functional programming of γδ T-cells, by examining the roles of T-cell receptor (TCR), Notch, and cytokine-receptor signaling. KN6 γδTCR-transduced Rag2 -/- T-cell progenitors were cultured on stromal cells variably expressing TCR and Notch ligands, supplemented with different cytokines. We found that distinct combinations of these signals are required to program IFNγ versus IL-17 producing γδ T cell subsets, with Notch and weak TCR ligands optimally enabling development of γδ17 cells in the presence of IL-1β, IL-21 and IL-23. Notably, these cytokines were also shown to be required for the intrathymic development of γδ17 cells. Together, this work provides a framework of how signals downstream of TCR, Notch and cytokine receptors integrate to program the effector function of IFNγ and IL-17 producing γδ T-cell subsets. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Copresentation of antigen and ligands of Siglec-G induces B cell tolerance independent of CD22.

    PubMed

    Pfrengle, Fabian; Macauley, Matthew S; Kawasaki, Norihito; Paulson, James C

    2013-08-15

    Differentiation of self from nonself is indispensable for maintaining B cell tolerance in peripheral tissues. CD22 and Siglec-G (sialic acid-binding Ig-like lectin G) are two inhibitory coreceptors of the BCR that are implicated in maintenance of tolerance to self Ags. Enforced ligation of CD22 and the BCR by a nanoparticle displaying both Ag and CD22 ligands induces a tolerogenic circuit resulting in apoptosis of the Ag-reactive B cell. Whether Siglec-G also has this property has not been investigated in large part owing to the lack of a selective Siglec-G ligand. In this article, we report the development of a selective high-affinity ligand for Siglec-G and its application as a chemical tool to investigate the tolerogenic potential of Siglec-G. We find that liposomal nanoparticles decorated with Ag and Siglec-G ligand inhibit BCR signaling in both B1 and B2 B cells compared with liposomes displaying Ag alone. Not only is inhibition of B cell activation observed by ligating the BCR with Siglec-G, but robust tolerance toward T-independent and T-dependent Ags is also induced in mice. The ability of Siglec-G to inhibit B cell activation equally in both B1 and B2 subsets is consistent with our observation that Siglec-G is expressed at a relatively constant level throughout numerous B cell subsets. These results suggest that Siglec-G may contribute to maintenance of B cell tolerance toward self Ags in various B cell compartments.

  7. Determining the Origin of Human Germinal Center B Cell-Derived Malignancies.

    PubMed

    Seifert, Marc; Küppers, Ralf

    2017-01-01

    Most human B cell lymphomas originate from germinal center (GC) B cells. This is partly caused by the high proliferative activity of GC B cells and the remodeling processes acting at the immunoglobulin (Ig) loci of these cells, i.e., somatic hypermutation and class-switching. Mistargeting of these processes can cause chromosomal translocations, and the hypermutation machinery may also target non-Ig genes. As somatic hypermutation is exclusively active in GC B cells, the presence of somatic mutations in rearranged IgV genes is a standard criterium for a GC or post-GC B cell origin of lymphomas. Beyond this, ongoing somatic hypermutation during lymphoma clone expansion indicates that the lymphoma has an active GC B cell differentiation program. The proto-oncogene BCL6 is specifically expressed in GC B cells and also acquires somatic mutations as a physiological by-product of the somatic hypermutation process, albeit at a lower level than IgV genes. Thus, detection of BCL6 mutations is a further genetic trait of a GC experience of a B cell lymphoma. Typically, B cell lymphomas retain key features of their specific cells of origin, including a differentiation stage-specific gene expression pattern. This is at least partly due to genetic lesions, which "freeze" the lymphoma cells at the differentiation stage at which the transformation occurred. Therefore, identification of the normal B cell subset with the most similar gene expression pattern to a particular type of B cell lymphoma has been instrumental to deduce the precise cell of origin of lymphomas.We present here protocols to analyze human B cell lymphomas for a potential origin from GC B cells by determining the presence of mutations in rearranged IgV genes and the BCL6 gene, and by comparing the gene expression pattern of lymphoma cells with those of normal B cell subsets by genechip or RNA-sequencing analysis.

  8. From lymphopoiesis to plasma cells differentiation, the age-related modifications of B cell compartment are influenced by "inflamm-ageing".

    PubMed

    Bulati, Matteo; Caruso, Calogero; Colonna-Romano, Giuseppina

    2017-07-01

    Ageing is a complex process characterized by a general decline in physiological functions with increasing morbidity and mortality. The most important aspect of ageing is the chronic inflammatory status, named "inflamm-ageing", strictly associated with the deterioration of the immune function, termed "immunosenescence". Both are causes of increased susceptibility of elderly to infectious diseases, cancer, dementia, cardiovascular diseases and autoimmunity, and of a decreased response to vaccination. It has been widely demonstrated that ageing has a strong impact on the remodelling of the B cell branch of immune system. The first evident effect is the significant decrease in circulating B cells, primarily due to the reduction of new B cell coming from bone marrow (BM) progenitors, as inflammation directly impacts on B lymphopoiesis. Besides, in aged individuals, there is a shift from naïve to memory immunoglobulins production, accompanied by the impaired ability to produce high affinity protective antibodies against newly encountered antigens. This is accompanied by the increase of expanded clones of B cells, which correlates with poor health status. Age-related modifications also occur in naïve/memory B cells subsets. Indeed, in the elderly, there is a reduction of naïve B cells, accompanied by the expansion of memory B cells that show a senescence-associated phenotype. Finally, elderly show the impaired ability of memory B cells to differentiate into plasma cells. It can be concluded that inflammation is the leading cause of the age-related impairment of B cell compartment, which play certainly a key role in the development of age-related diseases. This makes study of B cells in the aged an important tool for monitoring immunosenescence, chronic inflammatory disorders and the effectiveness of vaccines or pharmacological therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Schistosome egg antigens, including the glycoprotein IPSE/alpha-1, trigger the development of regulatory B cells

    PubMed Central

    Veninga, Henrike; van der Vlugt, Luciën E. P. M.; Voskamp, Astrid; Boon, Louis; Westerhof, Lotte B.; Smits, Hermelijn H.

    2017-01-01

    Infection with the helminth Schistosoma (S.) mansoni drives the development of interleukin (IL)-10-producing regulatory B (Breg) cells in mice and man, which have the capacity to reduce experimental allergic airway inflammation and are thus of high therapeutic interest. However, both the involved antigen and cellular mechanisms that drive Breg cell development remain to be elucidated. Therefore, we investigated whether S. mansoni soluble egg antigens (SEA) directly interact with B cells to enhance their regulatory potential, or act indirectly on B cells via SEA-modulated macrophage subsets. Intraperitoneal injections of S. mansoni eggs or SEA significantly upregulated IL-10 and CD86 expression by marginal zone B cells. Both B cells as well as macrophages of the splenic marginal zone efficiently bound SEA in vivo, but macrophages were dispensable for Breg cell induction as shown by macrophage depletion with clodronate liposomes. SEA was internalized into acidic cell compartments of B cells and induced a 3-fold increase of IL-10, which was dependent on endosomal acidification and was further enhanced by CD40 ligation. IPSE/alpha-1, one of the major antigens in SEA, was also capable of inducing IL-10 in naïve B cells, which was reproduced by tobacco plant-derived recombinant IPSE. Other major schistosomal antigens, omega-1 and kappa-5, had no effect. SEA depleted of IPSE/alpha-1 was still able to induce Breg cells indicating that SEA contains more Breg cell-inducing components. Importantly, SEA- and IPSE-induced Breg cells triggered regulatory T cell development in vitro. SEA and recombinant IPSE/alpha-1 also induced IL-10 production in human CD1d+ B cells. In conclusion, the mechanism of S. mansoni-induced Breg cell development involves a direct targeting of B cells by SEA components such as the secretory glycoprotein IPSE/alpha-1. PMID:28753651

  10. Sudden appearance of anti-protein IgG1-forming cell precursors early during primary immunization.

    PubMed

    Nossal, G J; Riedel, C

    1989-06-01

    The anti-keyhole limpet hemocyanin (KLH) B-cell repertoire of unimmunized adult mice was examined by culture of splenocytes (generally 100-3000) at limiting dilution. Cells were polyclonally stimulated with Escherichia coli lipopolysaccharide (LPS) and an interleukin-4-containing lymphokine mixture in the presence of 3T3 fibroblast filler cells. After 7 days of culture, supernatants were examined for their content of anti-KLH IgM and IgG1 antibody by an enzyme-linked immunosorbent assay (ELISA). Parallel cultures of smaller numbers (generally 1-15) of splenocytes were examined to determine the cloning efficiency of B cells in terms of total IgM and IgG1 production. Whereas one spleen cell in 370 produced clones secreting anti-KLH IgM, only 1% of these produced IgG1 that could bind to KLH, despite the fact that about half of the clones switched to IgG1 production with these stimuli. In mice immunized with KLH, this situation did not change until day 5, when there was a sudden, explosive emergence of B cells that could form clones secreting anti-KLH IgG1. The absolute number of such cells in the spleen was found to rise by a factor of 350 between days 3 and 7 of immunization. Moreover, the median amount of IgG1 antibody formed per clone and binding to KLH also rose markedly. In contrast, neither the numbers nor the median KLH-binding antibody content of anti-KLH IgM clones changed significantly after immunization. The results show that the repertoire of anti-protein B cells detected through IgM formation in ELISA consists chiefly of cells producing antibody of low avidity and of doubtful in vivo significance. Assuming that the small proportion of these cells making antibody that is of sufficient avidity to bind as the IgG1 isotype are the ancestors of the many such cells found on day 7 of the primary immune response, one would have to postulate a very high recruitment and/or division rate to account for the increase in numbers and avidity that occurs. It is possible that the anti-KLH IgG1 precursors that suddenly emerge are the results of early variable region gene (V) mutations in B cells. Moreover, it is not excluded that they represent products of a subset of B cells different from those that give rise to the primary in vitro anti-KLH IgM response. The findings have implications for theories of B-cell tolerance.

  11. Memory T cells maintain protracted protection against malaria.

    PubMed

    Krzych, Urszula; Zarling, Stasya; Pichugin, Alexander

    2014-10-01

    Immunologic memory is one of the cardinal features of antigen-specific immune responses, and the persistence of memory cells contributes to prophylactic immunizations against infectious agents. Adequately maintained memory T and B cell pools assure a fast, effective and specific response against re-infections. However, many aspects of immunologic memory are still poorly understood, particularly immunologic memory inducible by parasites, for example, Plasmodium spp., the causative agents of malaria. For example, memory responses to Plasmodium antigens amongst residents of malaria endemic areas appear to be either inadequately developed or maintained, because persons who survive episodes of childhood malaria remain vulnerable to intermittent malaria infections. By contrast, multiple exposures of humans and laboratory rodents to radiation-attenuated Plasmodium sporozoites (γ-spz) induce sterile and long-lasting protection against experimental sporozoite challenge. Multifactorial immune mechanisms maintain this protracted and sterile protection. While the presence of memory CD4 T cell subsets has been associated with lasting protection in humans exposed to multiple bites from Anopheles mosquitoes infected with attenuated Plasmodium falciparum, memory CD8 T cells maintain protection induced with Plasmodium yoelii and Plasmodium berghei γ-spz in murine models. In this review, we discuss our observations that show memory CD8 T cells specific for antigens expressed by P. berghei liver stage parasites as an indispensable component for the maintenance of protracted protective immunity against experimental malaria infection; moreover, the provision of an Ag-depot assures a quick recall of memory T cells as IFN-γ-producing effector CD8 T cells and IL-4- producing CD4 T cells that collaborate with B cells for an effective antibody response. Published by Elsevier B.V.

  12. Identification of two Th1 cell epitopes on the Babesia bovis-encoded 77-kilodalton merozoite protein (Bb-1) by use of truncated recombinant fusion proteins.

    PubMed Central

    Brown, W C; Zhao, S; Woods, V M; Tripp, C A; Tetzlaff, C L; Heussler, V T; Dobbelaere, D A; Rice-Ficht, A C

    1993-01-01

    Previous studies have demonstrated the serologic and T-cell immunogenicity for cattle of a recombinant form of the apical complex-associated 77-kDa merozite protein of Babesia bovis, designated Bb-1. The present study characterizes the immunogenic epitopes of the Bb-1 protein. A series of recombinant truncated fusion proteins spanning the majority of the Bb-1 protein were expressed in Escherichia coli, and their reactivities with bovine peripheral blood mononuclear cells and T-cell clones derived from B. bovis-immune cattle and with rabbit antibodies were determined. Lymphocytes from two immune cattle were preferentially stimulated by the N-terminal half of the Bb-1 protein (amino acids 23 to 266, termed Bb-1A), localizing the T-cell epitopes to the Bb-1A portion of the molecule. CD4+ T-cell clones derived by stimulation with the intact Bb-1 fusion protein were used to identify two T-cell epitopes in the Bb-1A protein, consisting of amino acids SVVLLSAFSGN VWANEAEVSQVVK and FSDVDKTKSTEKT (residues 23 to 46 and 82 to 94). In contrast, rabbit antiserum raised against the intact fusion protein reacted only with the C-terminal half of the protein (amino acids 267 to 499, termed Bb-1B), which contained 28 tandem repeats of the tetrapeptide PAEK or PAET. Biological assays and Northern (RNA) blot analyses for cytokines revealed that following activation with concanavalin A, T-cell clones reactive against the two Bb-1A epitopes produced interleukin-2, gamma interferon, and tumor necrosis factors beta and alpha, but not interleukin-4, suggesting that the Bb-1 antigen preferentially stimulates the Th1 subset of CD4+ T cells in cattle. The studies described here report for the first time the characterization, by cytokine production, of the Th1 subset of bovine T cells and show that, as in mice, protozoal antigens can induce Th1 cells in ruminants. This first demonstration of B. bovis-encoded Th1 cell epitopes provides a rationale for incorporation of all or part of the Bb-1 protein into a recombinant vaccine. Images PMID:7678098

  13. Altered cytokine production by specific human peripheral blood cell subsets immediately following space flight

    NASA Technical Reports Server (NTRS)

    Crucian, B. E.; Cubbage, M. L.; Sams, C. F.

    2000-01-01

    In this study, flow cytometry was used to positively identify the specific lymphocyte subsets exhibiting space flight-induced alterations in cytokine production. Whole blood samples were collected from 27 astronauts at three points (one preflight, two postflight) surrounding four space shuttle missions. Assays performed included serum/urine stress hormones, white blood cell (WBC) phenotyping, and intracellular cytokine production following mitogenic stimulation. Absolute levels of peripheral granulocytes were significantly elevated following space flight, but the levels of circulating lymphocytes and monocytes were unchanged. Lymphocyte subset analysis demonstrated a decreased percentage of T cells, whereas percentages of B cells and natural killer (NK) cells remained unchanged after flight. Nearly all the astronauts exhibited an increased CD4/CD8 T cell ratio. Assessment of naive (CD45RA+) vs. memory (CD45RO+) CD4+ T cell subsets was ambiguous, and subjects tended to group within specific missions. Although no significant trend was seen in absolute monocyte levels, a significant decrease in the percentage of the CD14+ CD16+ monocytes was seen following space flight in all subjects tested. T cell (CD3+) production of interleukin-2 (IL-2) was significantly decreased after space flight, as was IL-2 production by both CD4+ and CD8+ T cell subsets. Production of interferon-gamma (IFN-gamma) was not altered by space flight for the CD8+ cell subset, but there was a significant decrease in IFN-gamma production for the CD4+ T cell subset. Serum and urine stress hormone analysis indicated significant physiologic stresses in astronauts following space flight. Altered peripheral leukocyte subsets, altered serum and urine stress hormone levels, and altered T cell cytokine secretion profiles were all observed postflight. In addition, there appeared to be differential susceptibility to space flight regarding cytokine secretion by T cell subsets. These alterations may be the result of either microgravity exposure or the physiologic stresses of landing and readaptation to unit gravity. Future studies, including in-flight analysis or sampling, will be necessary to determine the cause of these alterations.

  14. Role for early-differentiated natural killer cells in infectious mononucleosis

    PubMed Central

    Azzi, Tarik; Lünemann, Anna; Murer, Anita; Ueda, Seigo; Béziat, Vivien; Malmberg, Karl-Johan; Staubli, Georg; Gysin, Claudine; Berger, Christoph; Münz, Christian

    2014-01-01

    A growing body of evidence suggests that the human natural killer (NK)-cell compartment is phenotypically and functionally heterogeneous and is composed of several differentiation stages. Moreover, NK-cell subsets have been shown to exhibit adaptive immune features during herpes virus infection in experimental mice and to expand preferentially during viral infections in humans. However, both phenotype and role of NK cells during acute symptomatic Epstein-Barr virus (EBV) infection, termed infectious mononucleosis (IM), remain unclear. Here, we longitudinally assessed the kinetics, the differentiation, and the proliferation of subsets of NK cells in pediatric IM patients. Our results indicate that acute IM is characterized by the preferential proliferation of early-differentiated CD56dim NKG2A+ immunoglobulin-like receptor- NK cells. Moreover, this NK-cell subset exhibits features of terminal differentiation and persists at higher frequency during at least the first 6 months after acute IM. Finally, we demonstrate that this NK-cell subset preferentially degranulates and proliferates on exposure to EBV-infected B cells expressing lytic antigens. Thus, early-differentiated NK cells might play a key role in the immune control of primary infection with this persistent tumor-associated virus. PMID:25205117

  15. Role for early-differentiated natural killer cells in infectious mononucleosis.

    PubMed

    Azzi, Tarik; Lünemann, Anna; Murer, Anita; Ueda, Seigo; Béziat, Vivien; Malmberg, Karl-Johan; Staubli, Georg; Gysin, Claudine; Berger, Christoph; Münz, Christian; Chijioke, Obinna; Nadal, David

    2014-10-16

    A growing body of evidence suggests that the human natural killer (NK)-cell compartment is phenotypically and functionally heterogeneous and is composed of several differentiation stages. Moreover, NK-cell subsets have been shown to exhibit adaptive immune features during herpes virus infection in experimental mice and to expand preferentially during viral infections in humans. However, both phenotype and role of NK cells during acute symptomatic Epstein-Barr virus (EBV) infection, termed infectious mononucleosis (IM), remain unclear. Here, we longitudinally assessed the kinetics, the differentiation, and the proliferation of subsets of NK cells in pediatric IM patients. Our results indicate that acute IM is characterized by the preferential proliferation of early-differentiated CD56(dim) NKG2A(+) immunoglobulin-like receptor(-) NK cells. Moreover, this NK-cell subset exhibits features of terminal differentiation and persists at higher frequency during at least the first 6 months after acute IM. Finally, we demonstrate that this NK-cell subset preferentially degranulates and proliferates on exposure to EBV-infected B cells expressing lytic antigens. Thus, early-differentiated NK cells might play a key role in the immune control of primary infection with this persistent tumor-associated virus. © 2014 by The American Society of Hematology.

  16. Deficiency of transcription factor RelB perturbs myeloid and DC development by hematopoietic-extrinsic mechanisms

    PubMed Central

    Briseño, Carlos G.; Gargaro, Marco; Durai, Vivek; Davidson, Jesse T.; Theisen, Derek J.; Anderson, David A.; Novack, Deborah V.; Murphy, Theresa L.; Murphy, Kenneth M.

    2017-01-01

    RelB is an NF-κB family transcription factor activated in the noncanonical pathway downstream of NF-κB–inducing kinase (NIK) and TNF receptor family members including lymphotoxin-β receptor (LTβR) and CD40. Early analysis suggested that RelB is required for classical dendritic cell (cDC) development based on a severe reduction of cDCs in Relb−/− mice associated with profound myeloid expansion and perturbations in B and T cells. Subsequent analysis of radiation chimeras generated from wild-type and Relb−/− bone marrow showed that RelB exerts cell-extrinsic actions on some lineages, but it has remained unclear whether the impact of RelB on cDC development is cell-intrinsic or -extrinsic. Here, we reevaluated the role of RelB in cDC and myeloid development using a series of radiation chimeras. We found that there was no cell-intrinsic requirement for RelB for development of most cDC subsets, except for the Notch2- and LTβR-dependent subset of splenic CD4+ cDC2s. These results identify a relatively restricted role of RelB in DC development. Moreover, the myeloid expansion in Relb−/− mice resulted from hematopoietic-extrinsic actions of RelB. This result suggests that there is an unrecognized but critical role for RelB within the nonhematopoietic niche that controls normal myelopoiesis. PMID:28348230

  17. Comparative quantitative analysis of cluster of differentiation 45 antigen expression on lymphocyte subsets.

    PubMed

    Im, Mijeong; Chae, Hyojin; Kim, Taehoon; Park, Hun-Hee; Lim, Jihyang; Oh, Eun-Jee; Kim, Yonggoo; Park, Yeon-Joon; Han, Kyungja

    2011-07-01

    Since the recent introduction of radioimmunotherapy (RIT) using antibodies against cluster of differentiation (CD) 45 for the treatment of lymphoma, the clinical significance of the CD45 antigen has been increasing steadily. Here, we analyzed CD45 expression on lymphocyte subsets using flow cytometry in order to predict the susceptibility of normal lymphocytes to RIT. Peripheral blood specimens were collected from 14 healthy individuals aged 25-54 yr. The mean fluorescence intensity (MFI) of the cell surface antigens was measured using a FACSCanto II system (Becton Dickinson Bioscience, USA). MFI values were converted into antibody binding capacity values using a Quantum Simply Cellular microbead kit (Bangs Laboratories, Inc., USA). Among the lymphocyte subsets, the expression of CD45 was the highest (725,368±42,763) on natural killer T (NKT) cells, 674,030±48,187 on cytotoxic/suppressor T cells, 588,750±48,090 on natural killer (NK) cells, 580,211±29,168 on helper T (Th) cells, and 499,436±21,737 on B cells. The Th cells and NK cells expressed a similar level of CD45 (P=0.502). Forward scatter was the highest in NKT cells (P<0.05), whereas side scatter differed significantly between each of the lymphocyte subsets (P<0.05). CD3 expression was highest in the Th and NKT cells. NKT cells express the highest levels of CD45 antigen. Therefore, this lymphocyte subset would be most profoundly affected by RIT or pretargeted RIT. The monitoring of this lymphocyte subset during and after RIT should prove helpful.

  18. Decreased Vδ2 γδ T cells associated with liver damage by regulation of Th17 response in patients with chronic hepatitis B.

    PubMed

    Wu, Xiaoli; Zhang, Ji-Yuan; Huang, Ang; Li, Yuan-Yuan; Zhang, Song; Wei, Jun; Xia, Siyuan; Wan, Yajuan; Chen, Weiwei; Zhang, Zheng; Li, Yangguang; Wen, Ti; Chen, Yan; Tanaka, Yoshimasa; Cao, Youjia; Wang, Puyue; Zhao, Liqing; Wu, Zhenzhou; Wang, Fu-Sheng; Yin, Zhinan

    2013-10-15

     γδ T cells comprise a small subset of T cells and play a protective role against cancer and viral infections; however, their precise role in patients with chronic hepatitis B remains unclear.  Flow cytometry and immunofunctional assays were performed to analyze the impact of Vδ2 γδ (Vδ2) T cells in 64 immune-activated patients, 22 immune-tolerant carriers, and 30 healthy controls.  The frequencies of peripheral and hepatic Vδ2 T cells decreased with disease progression from immune tolerant to immune activated. In the latter group of patients, the decreases in peripheral and intrahepatic frequencies of Vδ2 T cells reversely correlated with alanine aminotransferase levels and histological activity index. These activated terminally differentiated memory phenotypic Vδ2 T cells exhibited impaired abilities in proliferation and chemotaxis, while maintained a relative intact interferon (IFN) γ production. Importantly, Vδ2 T cells, in vitro, significantly suppressed the production of cytokines associated with interleukin 17-producing CD4+ T (Th17) cells through both cell contact-dependent and IFN-γ-dependent mechanisms.  Inflammatory microenvironment in IA patients result in decreased numbers of Vδ2 T cells, which play a novel role by regulating the pathogenic Th17 response to protect the liver in patients with chronic hepatitis B.

  19. T Helper 17 Cells Interplay with CD4+CD25highFoxp3+ Tregs in Regulation of Inflammations and Autoimmune Diseases

    PubMed Central

    Mai, Jietang; Wang, Hong; Yang#, Xiao-Feng

    2010-01-01

    Interleukin-17 (IL-17)-secreting T helper 17 cells (Th17) are a recently identified CD4+ T helper subset that has been implicated in various inflammatory and autoimmune diseases. Th17, along with CD4+CD25high Foxp3+ regulatory T cells (Tregs) and other newly emergent T helper subsets, Th9 and Tfh, have expanded the Th1-Th2 paradigm. Although this newly proposed six-subset paradigm significantly improved our understanding on the differentiation of CD4+ T helper cell subsets and the regulation of T helper cells in inflammation and autoimmunity, many questions remain to be answered. In this overview, we will briefly review the following issues: a) Old Th1-Th2 paradigm versus new multi-subset paradigm; b) Structural features of IL-17 family cytokines; c) Th17 cells; d) Effects of IL-17 on various cell types and tissues; e) IL-17 receptor and signaling pathways; f) Th17-mediated inflammations; and g) Protective mechanisms of IL-17 in infections. Lastly, we will look into the interaction of Th17 and Treg in autoimmune diseases and inflammation: Th17 cells interplay with Tregs. Regulation of autoimmunity and inflammation lies in the interplays of the different T helper subsets, therefore, better understanding of these subsets’ interactions with one another would greatly improve our approaches in developing therapy to combat inflammatory and autoimmune diseases. PMID:20515737

  20. MEK and TAK1 Regulate Apoptosis in Colon Cancer Cells with KRAS-Dependent Activation of Proinflammatory Signaling.

    PubMed

    McNew, Kelsey L; Whipple, William J; Mehta, Anita K; Grant, Trevor J; Ray, Leah; Kenny, Connor; Singh, Anurag

    2016-12-01

    MEK inhibitors have limited efficacy in treating RAS-RAF-MEK pathway-dependent cancers due to feedback pathway compensation and dose-limiting toxicities. Combining MEK inhibitors with other targeted agents may enhance efficacy. Here, codependencies of MEK, TAK1, and KRAS in colon cancer were investigated. Combined inhibition of MEK and TAK1 potentiates apoptosis in KRAS-dependent cells. Pharmacologic studies and cell-cycle analyses on a large panel of colon cancer cell lines demonstrate that MEK/TAK1 inhibition induces cell death, as assessed by sub-G 1 accumulation, in a distinct subset of cell lines. Furthermore, TAK1 inhibition causes G 2 -M cell-cycle blockade and polyploidy in many of the cell lines. MEK plus TAK1 inhibition causes reduced G 2 -M/polyploid cell numbers and additive cytotoxic effects in KRAS/TAK1-dependent cell lines as well as a subset of BRAF-mutant cells. Mechanistically, sensitivity to MEK/TAK1 inhibition can be conferred by KRAS and BMP receptor activation, which promote expression of NF-κB-dependent proinflammatory cytokines, driving tumor cell survival and proliferation. MEK/TAK1 inhibition causes reduced mTOR, Wnt, and NF-κB signaling in TAK1/MEK-dependent cell lines concomitant with apoptosis. A Wnt/NF-κB transcriptional signature was derived that stratifies primary tumors into three major subtypes: Wnt-high/NF-κB-low, Wnt-low/NF-κB-high and Wnt-high/NF-κB-high, designated W, N, and WN, respectively. These subtypes have distinct characteristics, including enrichment for BRAF mutations with serrated carcinoma histology in the N subtype. Both N and WN subtypes bear molecular hallmarks of MEK and TAK1 dependency seen in cell lines. Therefore, N and WN subtype signatures could be utilized to identify tumors that are most sensitive to anti-MEK/TAK1 therapeutics. This study describes a potential therapeutic strategy for a subset of colon cancers that are dependent on oncogenic KRAS signaling pathways, which are currently difficult to block with selective agents. Mol Cancer Res; 14(12); 1204-16. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. Reciprocal relationship of T regulatory cells and monocytic myeloid-derived suppressor cells in LP-BM5 murine retrovirus-induced immunodeficiency.

    PubMed

    O'Connor, Megan A; Vella, Jennifer L; Green, William R

    2016-02-01

    Immunomodulatory cellular subsets, including myeloid-derived suppressor cells (MDSCs) and T regulatory cells (Tregs), contribute to the immunosuppressive tumour microenvironment and are targets of immunotherapy, but their role in retroviral-associated immunosuppression is less well understood. Due to known crosstalk between Tregs and MDSCs in the tumour microenvironment, and also their hypothesized involvement during human immunodeficiency virus/simian immunodeficiency virus infection, studying the interplay between these immune cells during LP-BM5 retrovirus-induced murine AIDS is of interest. IL-10-producing FoxP3+ Tregs expanded after LP-BM5 infection. Following in vivo adoptive transfer of natural Treg (nTreg)-depleted CD4+T-cells, and subsequent LP-BM5 retroviral infection, enriched monocytic MDSCs (M-MDSCs) from these nTreg-depleted mice displayed altered phenotypic subsets. In addition, M-MDSCs from LP-BM5-infected nTreg-depleted mice exhibited increased suppression of T-cell, but not B-cell, responses, compared with M-MDSCs derived from non-depleted LP-BM5-infected controls. Additionally, LP-BM5-induced M-MDSCs modulated the production of IL-10 by FoxP3+ Tregs in vitro. These collective data highlight in vitro and for the first time, to the best of our knowledge, in vivo reciprocal modulation between retroviral-induced M-MDSCs and Tregs, and may provide insight into the immunotherapeutic targeting of such regulatory cells during retroviral infection.

  2. ARResT/AssignSubsets: a novel application for robust subclassification of chronic lymphocytic leukemia based on B cell receptor IG stereotypy.

    PubMed

    Bystry, Vojtech; Agathangelidis, Andreas; Bikos, Vasilis; Sutton, Lesley Ann; Baliakas, Panagiotis; Hadzidimitriou, Anastasia; Stamatopoulos, Kostas; Darzentas, Nikos

    2015-12-01

    An ever-increasing body of evidence supports the importance of B cell receptor immunoglobulin (BcR IG) sequence restriction, alias stereotypy, in chronic lymphocytic leukemia (CLL). This phenomenon accounts for ∼30% of studied cases, one in eight of which belong to major subsets, and extends beyond restricted sequence patterns to shared biologic and clinical characteristics and, generally, outcome. Thus, the robust assignment of new cases to major CLL subsets is a critical, and yet unmet, requirement. We introduce a novel application, ARResT/AssignSubsets, which enables the robust assignment of BcR IG sequences from CLL patients to major stereotyped subsets. ARResT/AssignSubsets uniquely combines expert immunogenetic sequence annotation from IMGT/V-QUEST with curation to safeguard quality, statistical modeling of sequence features from more than 7500 CLL patients, and results from multiple perspectives to allow for both objective and subjective assessment. We validated our approach on the learning set, and evaluated its real-world applicability on a new representative dataset comprising 459 sequences from a single institution. ARResT/AssignSubsets is freely available on the web at http://bat.infspire.org/arrest/assignsubsets/ nikos.darzentas@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Differential Expression of CD5 on B Lymphocytes in Cattle Infected with Mycobacterium avium subsp. paratuberculosis

    USDA-ARS?s Scientific Manuscript database

    CD5 is a cell surface molecule involved in antigen recognition and is present on all T lymphocytes and a subset of B lymphocytes. The purpose of this study was to examine CD5+ expression on peripheral blood B cells from healthy, noninfected cattle and cattle with subclinical and clinical paratubercu...

  4. Monoclonal antibodies targeting non-small cell lung cancer stem-like cells by multipotent cancer stem cell monoclonal antibody library.

    PubMed

    Cao, Kaiyue; Pan, Yunzhi; Yu, Long; Shu, Xiong; Yang, Jing; Sun, Linxin; Sun, Lichao; Yang, Zhihua; Ran, Yuliang

    2017-02-01

    Cancer stem cells (CSCs) are a rare subset of cancer cells that play a significant role in cancer initiation, spreading, and recurrence. In this study, a subpopulation of lung cancer stem-like cells (LCSLCs) was identified from non-small cell lung carcinoma cell lines, SPCA-1 and A549, using serum-free suspension sphere-forming culture method. A monoclonal antibody library was constructed using immunized BLAB/c mice with the multipotent CSC cell line T3A-A3. Flow cytometry analysis showed that 33 mAbs targeted antigens can be enriched in sphere cells compared with the parental cells of SPCA-1 and A549 cell lines. Then, we performed functional antibody screening including sphere-forming inhibiting and invasion inhibiting assay. The results showed that two antibodies, 12C7 and 9B8, notably suppressed the self-renewal and invasion of LCSLCs. Fluorescence-activated cell sorting (FACs) found that the positive cells recognized by mAbs, 12C7 or 9B8, displayed features of LCSLCs. Interestingly, we found that these two antibodies recognized different subsets of cells and their combination effect was superior to the individual effect both in vitro and in vivo. Tissue microarrays were applied to detect the expression of the antigens targeted by these two antibodies. The positive expression of 12C7 and 9B8 targeted antigen was 84.4 and 82.5%, respectively, which was significantly higher than that in the non-tumor lung tissues. In conclusion, we screened two potential therapeutic antibodies that target different subsets of LCSLCs.

  5. Epidermotropic presentation by splenic B-cell lymphoma: The importance of clinical-pathologic correlation.

    PubMed

    Hedayat, Amin A; Carter, Joi B; Lansigan, Frederick; LeBlanc, Robert E

    2018-04-01

    There are exceedingly rare reports of patients with epidermotropic B-cell lymphomas. A subset presented with intermittent, variably pruritic papular eruptions and involvement of their spleens, peripheral blood and bone marrow at the time of diagnosis. Furthermore, some experienced an indolent course despite dissemination of their lymphomas. We report a 66-year-old woman with a 12-year history of intermittent eruptions of non-pruritic, salmon-colored papules on her torso and proximal extremities that occurred in winter and resolved with outdoor activity in spring. Skin biopsy revealed an epidermotropic B-cell lymphoma with a non-specific B-cell phenotype and heavy chain class switching with IgG expression. On workup, our patient exhibited mild splenomegaly and low-level involvement of her peripheral blood and bone marrow by a kappa-restricted B-cell population. A splenic B-cell lymphoma was diagnosed. Considering her longstanding history and absences of cytopenias, our patient has been followed without splenectomy or systemic therapy. Furthermore, the papules have responded dramatically to narrowband UVB. Our case and a review of similar rare reports aim to raise awareness among dermatopathologists and dermatologists of a clinically distinct and indolent subset of epidermotropic splenic lymphomas with characteristic clinical and histologic findings. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Innate Lymphoid Cells (ILCs) as Mediators of Inflammation, Release of Cytokines and Lytic Molecules

    PubMed Central

    Elemam, Noha Mousaad

    2017-01-01

    Innate lymphoid cells (ILCs) are an emerging group of immune cells that provide the first line of defense against various pathogens as well as contributing to tissue repair and inflammation. ILCs have been classically divided into three subgroups based on their cytokine secretion and transcription factor profiles. ILC nomenclature is analogous to that of T helper cells. Group 1 ILCs composed of natural killer (NK) cells as well as IFN-γ secreting ILC1s. ILC2s have the capability to produce TH2 cytokines while ILC3s and lymphoid tissue inducer (LTis) are subsets of cells that are able to secrete IL-17 and/or IL-22. A recent subset of ILC known as ILC4 was discovered, and the cells of this subset were designated as NK17/NK1 due to their release of IL-17 and IFN-γ. In this review, we sought to explain the subclasses of ILCs and their roles as mediators of lytic enzymes and inflammation. PMID:29232860

  7. Innate Lymphoid Cells (ILCs) as Mediators of Inflammation, Release of Cytokines and Lytic Molecules.

    PubMed

    Elemam, Noha Mousaad; Hannawi, Suad; Maghazachi, Azzam A

    2017-12-10

    Innate lymphoid cells (ILCs) are an emerging group of immune cells that provide the first line of defense against various pathogens as well as contributing to tissue repair and inflammation. ILCs have been classically divided into three subgroups based on their cytokine secretion and transcription factor profiles. ILC nomenclature is analogous to that of T helper cells. Group 1 ILCs composed of natural killer (NK) cells as well as IFN-γ secreting ILC1s. ILC2s have the capability to produce T H 2 cytokines while ILC3s and lymphoid tissue inducer (LTis) are subsets of cells that are able to secrete IL-17 and/or IL-22. A recent subset of ILC known as ILC4 was discovered, and the cells of this subset were designated as NK17/NK1 due to their release of IL-17 and IFN-γ. In this review, we sought to explain the subclasses of ILCs and their roles as mediators of lytic enzymes and inflammation.

  8. Complex interactions in EML cell stimulation by stem cell factor and IL-3.

    PubMed

    Ye, Zhi-jia; Gulcicek, Erol; Stone, Kathryn; Lam, Tukiet; Schulz, Vincent; Weissman, Sherman M

    2011-03-22

    Erythroid myeloid lymphoid (EML) cells are an established multipotent hematopoietic precursor cell line that can be maintained in medium including stem cell factor (SCF). EML cultures contain a heterogeneous mixture of cells, including a lineage-negative, CD34+ subset of cells that propagate rapidly in SCF and can clonally regenerate the mixed population. A second major subset of EML cells consists of lineage-negative. CD34- cells that can be propagated in IL-3 but grow slowly, if at all, in SCF, although they express the SCF receptor (c-kit). The response of these cells to IL-3 is stimulated synergistically by SCF, and we present evidence that both the synergy and the inhibition of c-kit responses may be mediated by direct interaction with IL-3 receptor. Further, the relative level of tyrosine phosphorylation of various substrates by either cytokine alone differs from that produced by the combination of the two cytokines, suggesting that cell signaling by the combination of the two cytokines differs from that produced by either alone.

  9. Complex interactions in EML cell stimulation by stem cell factor and IL-3

    PubMed Central

    Ye, Zhi-jia; Gulcicek, Erol; Stone, Kathryn; Lam, Tukiet; Schulz, Vincent; Weissman, Sherman M.

    2011-01-01

    Erythroid myeloid lymphoid (EML) cells are an established multipotent hematopoietic precursor cell line that can be maintained in medium including stem cell factor (SCF). EML cultures contain a heterogeneous mixture of cells, including a lineage-negative, CD34+ subset of cells that propagate rapidly in SCF and can clonally regenerate the mixed population. A second major subset of EML cells consists of lineage-negative. CD34− cells that can be propagated in IL-3 but grow slowly, if at all, in SCF, although they express the SCF receptor (c-kit). The response of these cells to IL-3 is stimulated synergistically by SCF, and we present evidence that both the synergy and the inhibition of c-kit responses may be mediated by direct interaction with IL-3 receptor. Further, the relative level of tyrosine phosphorylation of various substrates by either cytokine alone differs from that produced by the combination of the two cytokines, suggesting that cell signaling by the combination of the two cytokines differs from that produced by either alone. PMID:21383156

  10. Targeting dendritic cells--why bother?

    PubMed

    Kreutz, Martin; Tacken, Paul J; Figdor, Carl G

    2013-04-11

    Vaccination is among the most efficient forms of immunotherapy. Although sometimes inducing lifelong protective B-cell responses, T-cell-mediated immunity remains challenging. Targeting antigen to dendritic cells (DCs) is an extensively explored concept aimed at improving cellular immunity. The identification of various DC subsets with distinct functional characteristics now allows for the fine-tuning of targeting strategies. Although some of these DC subsets are regarded as superior for (cross-) priming of naive T cells, controversies still remain about which subset represents the best target for immunotherapy. Because targeting the antigen alone may not be sufficient to obtain effective T-cell responses, delivery systems have been developed to target multiple vaccine components to DCs. In this Perspective, we discuss the pros and cons of targeting DCs: if targeting is beneficial at all and which vaccine vehicles and immunization routes represent promising strategies to reach and activate DCs.

  11. Differential Interaction of Platelet-Derived Extracellular Vesicles with Leukocyte Subsets in Human Whole Blood.

    PubMed

    Weiss, René; Gröger, Marion; Rauscher, Sabine; Fendl, Birgit; Eichhorn, Tanja; Fischer, Michael B; Spittler, Andreas; Weber, Viktoria

    2018-04-26

    Secretion and exchange of biomolecules via extracellular vesicles (EVs) are crucial mechanisms in intercellular communication, and the roles of EVs in infection, inflammation, or thrombosis have been increasingly recognized. EVs have emerged as central players in immune regulation and can enhance or suppress the immune response, depending on the state of donor and recipient cells. We investigated the interaction of blood cell-derived EVs with leukocyte subpopulations (monocytes and their subsets, granulocytes, B cells, T cells, and NK cells) directly in whole blood using a combination of flow cytometry, imaging flow cytometry, cell sorting, and high resolution confocal microscopy. Platelet-derived EVs constituted the majority of circulating EVs and were preferentially associated with granulocytes and monocytes, while they scarcely interacted with lymphocytes. Further flow cytometric differentiation of monocyte subsets provided clear indications for a preferential association of platelet-derived EVs with intermediate (CD14 ++ CD16 + ) monocytes in whole blood.

  12. Expansion of CD25+ Innate Lymphoid Cells Reduces Atherosclerosis

    PubMed Central

    Engelbertsen, Daniel; Foks, Amanda C.; Alberts-Grill, Noah; Kuperwaser, Felicia; Chen, Tao; Lederer, James A.; Jarolim, Petr; Grabie, Nir; Lichtman, Andrew H.

    2015-01-01

    Objective Innate lymphoid cells (ILCs) are a newly discovered subset of immune cells that promote tissue homeostasis and protect against pathogens. ILCs produce cytokines also produced by T lymphocytes that have been shown to affect atherosclerosis, but the influence of ILCs on atherosclerosis has not been explored. Approach and Results We demonstrate that CD25+ ILCs that produce type 2 cytokines (ILC2s) are present in the aorta of atherosclerotic immunodeficient ldlr−/−rag1−/− mice. To investigate the role of ILCs in atherosclerosis, ldlr−/−rag1−/− mice were concurrently fed an atherogenic diet and treated with either ILC-depleting anti-CD90.2 antibodies or with IL-2/anti-IL-2 complexes that expand CD25+ ILCs. Lesion development was not affected by anti-CD90.2 treatment, but was reduced in IL-2/anti-IL-2 -treated mice. These IL-2 treated mice had reduced VLDL cholesterol and increased triglycerides compared to controls and reduced apolipoprotein B100 gene expression in the liver. IL-2/anti-IL-2 treatment caused expansion of ILC2s in aorta and other tissues, elevated levels of IL-5, systemic eosinophila and hepatic eosinophilic inflammation. Blockade of IL-5 reversed the IL-2-complex-induced eosinophilia but did not change lesion size. Conclusions This study demonstrates that expansion of CD25-expressing ILCs by IL-2/anti-IL-2 complexes leads to a reduction in VLDL cholesterol and atherosclerosis. Global depletion of ILCs by anti-CD90.2 did not significantly affect lesion size indicating that different ILC subsets may have divergent effects on atherosclerosis. PMID:26494229

  13. Reconstitution of lymphocyte subpopulations after hematopoietic stem cell transplantation: comparison of hematologic malignancies and donor types in event-free patients.

    PubMed

    Park, Borae G; Park, Chan-Jeoung; Jang, Seongsoo; Chi, Hyun-Sook; Kim, Dae-Young; Lee, Jung-Hee; Lee, Je-Hwan; Lee, Kyoo-Hyung

    2015-12-01

    The reconstitution of different immunocyte subsets after hematopoietic stem cell transplantation (HSCT), follows different timelines. We prospectively investigated changes in lymphocyte subsets after HSCT and their associations with primary diagnosis, conditioning regimen, and HSCT type in event-free patients. A total of 95 patients (48 with acute myeloid leukemia, 22 with acute lymphoid leukemia, and 25 with myelodysplastic syndrome) who underwent allogeneic HSCT (34 sibling matched, 37 unrelated matched, and 24 haploidentical HSCT) but did not experience any events such as relapse or death were enrolled in this study. Lymphocyte subpopulations (T cells, helper/inducer T cells, cytotoxic/suppressor T cells, memory T cells, regulatory T cells, natural killer (NK) cells, NK-T cells, and B cells) were quantified by flow cytometry of peripheral blood from recipients 7 days before and 1, 2, 3, 6, and 12 months after HSCT. Leukocyte counts recovered within 1 month after HSCT. However, the number of T and B lymphocytes recovered at 2 months after HSCT. NK cell counts recovered shortly after haploidentical HSCT. However, T lymphocytes and their subpopulations showed delayed recovery after haploidentical HSCT. Lymphocyte subsets showed different sequential patterns according to HSCT type but no differences were seen according to primary diagnosis or conditioning regimen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Ia.2 Epitope Defines a Subset of Lipid Raft Resident MHC Class II Molecules Crucial to Effective Antigen Presentation1

    PubMed Central

    Busman-Sahay, Kathleen; Sargent, Elizabeth; Harton, Jonathan A.; Drake, James R.

    2016-01-01

    Previous work has established that binding of the 11-5.2 anti-I-Ak mAb, which recognizes the Ia.2 epitope on I-Ak class II molecules, elicits MHC class II signaling, whereas binding of two other anti-I-Ak mAb that recognize the Ia.17 epitope fail to elicit signaling. Using a biochemical approach, we establish that the Ia.2 epitope recognized by the widely used 11-5.2 mAb defines a subset of cell surface I-Ak molecules predominantly found within membrane lipid rafts. Functional studies demonstrate that the Ia.2 bearing subset of I-Ak class II molecules is critically necessary for effective B cell–T cell interactions especially at low antigen doses, a finding consistent with published studies on the role of raft-resident class II molecules in CD4 T cell activation. Interestingly, B cells expressing recombinant I-Ak class II molecules possessing a β chain-tethered HEL peptide lack the Ia.2 epitope and fail to partition into lipid rafts. Moreover, cells expressing Ia.2 negative tethered peptide-class II molecules are severely impaired in their ability to present both tethered peptide or peptide derived from exogenous antigen to CD4 T cells. These results establish the Ia.2 epitope as defining a lipid raft-resident MHC class II confomer vital to the initiation of MHC class II restricted B cell–T cell interactions. PMID:21543648

  15. Expression of BAFF receptors in muscle tissue of myositis patients with anti-Jo-1 or anti-Ro52/anti-Ro60 autoantibodies.

    PubMed

    Kryštůfková, Olga; Barbasso Helmers, Sevim; Venalis, Paulius; Malmström, Vivianne; Lindroos, Eva; Vencovský, Jiří; Lundberg, Ingrid E

    2014-10-10

    Anti-Jo-1 and anti-Ro52 autoantibodies are common in patients with myositis, but the mechanisms behind their production are not known. Survival of autoantibody-producing cells is dependent on B-cell-activating factor of the tumour necrosis factor family (BAFF). BAFF levels are elevated in serum of anti-Jo-1-positive myositis patients and are influenced by type-I interferon (IFN). IFN-producing cells and BAFF mRNA expression are present in myositis muscle. We investigated expression of the receptors for BAFF in muscle tissue in relation to anti-Jo-1 and anti-Ro52/anti-Ro60 autoantibodies and type-I IFN markers. Muscle biopsies from 23 patients with myositis selected based on autoantibody profile and 7 healthy controls were investigated for expression of BAFF receptor (BAFF-R), B-cell maturation antigen (BCMA) and transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI). Nineteen samples were assessed for plasma (CD138) and B-cell (CD19) markers. The numbers of positive cells per area were compared with the expression of plasmacytoid dendritic cell (pDC) marker blood dendritic cell antigen-2 (BDCA-2) and IFNα/β-inducible myxovirus resistance-1 protein (MX-1). BAFF-R, BCMA and TACI were expressed in five, seven and seven patients, respectively, and more frequently in anti-Jo-1-positive and/or anti-Ro52/anti-Ro60-positive patients compared to controls and to patients without these autoantibodies (P = BAFF-R: 0.007, BCMA: 0.03 and TACI: 0.07). A local association of receptors with B and plasma cells was confirmed by confocal microscopy. The numbers of CD138-positive and BCMA-positive cells were correlated (r = 0.79; P = 0.001). Expression of BDCA-2 correlated with numbers of CD138-positive cells and marginally with BCMA-positive cells (r = 0.54 and 0.42, respectively; P = 0.04 and 0.06, respectively). There was a borderline correlation between the numbers of positively stained TACI cells and MX-1 areas (r = 0.38, P = 0.08). The expression pattern of receptors for BAFF on B and plasma cells in muscle suggests a local role for BAFF in autoantibody production in muscle tissues of patients with myositis who have anti-Jo-1 or anti-Ro52/anti-Ro60 autoantibodies. BAFF production could be influenced by type-I IFN produced by pDCs. Thus, B-cell-related molecular pathways may participate in the pathogenesis of myositis in this subset of patients.

  16. Single-cell RNA sequencing reveals developmental heterogeneity among early lymphoid progenitors.

    PubMed

    Alberti-Servera, Llucia; von Muenchow, Lilly; Tsapogas, Panagiotis; Capoferri, Giuseppina; Eschbach, Katja; Beisel, Christian; Ceredig, Rhodri; Ivanek, Robert; Rolink, Antonius

    2017-12-15

    Single-cell RNA sequencing is a powerful technology for assessing heterogeneity within defined cell populations. Here, we describe the heterogeneity of a B220 + CD117 int CD19 - NK1.1 - uncommitted hematopoietic progenitor having combined lymphoid and myeloid potential. Phenotypic and functional assays revealed four subpopulations within the progenitor with distinct lineage developmental potentials. Among them, the Ly6D + SiglecH - CD11c - fraction was lymphoid-restricted exhibiting strong B-cell potential, whereas the Ly6D - SiglecH - CD11c - fraction showed mixed lympho-myeloid potential. Single-cell RNA sequencing of these subsets revealed that the latter population comprised a mixture of cells with distinct lymphoid and myeloid transcriptional signatures and identified a subgroup as the potential precursor of Ly6D + SiglecH - CD11c - Subsequent functional assays confirmed that B220 + CD117 int CD19 - NK1.1 - single cells are, with rare exceptions, not bipotent for lymphoid and myeloid lineages. A B-cell priming gradient was observed within the Ly6D + SiglecH - CD11c - subset and we propose a herein newly identified subgroup as the direct precursor of the first B-cell committed stage. Therefore, the apparent multipotency of B220 + CD117 int CD19 - NK1.1 - progenitors results from underlying heterogeneity at the single-cell level and highlights the validity of single-cell transcriptomics for resolving cellular heterogeneity and developmental relationships among hematopoietic progenitors. © 2017 The Authors.

  17. A subset of IL-10-producing gammadelta T cells protect the liver from Listeria-elicited, CD8(+) T cell-mediated injury.

    PubMed

    Rhodes, Katherine A; Andrew, Elizabeth M; Newton, Darren J; Tramonti, Daniela; Carding, Simon R

    2008-08-01

    Although gammadelta T cells play a role in protecting tissues from pathogen-elicited damage to bacterial, viral and parasitic pathogens, the mechanisms involved in the damage and in the protection have not been clearly elucidated. This has been addressed using a murine model of listeriosis, which in mice lacking gammadelta T cells (TCRdelta(-/-)) is characterised by severe and extensive immune-mediated hepatic necrosis. We show that these hepatic lesions are caused by Listeria-elicited CD8(+) T cells secreting high levels of TNF-alpha that accumulate in the liver of Listeria-infected TCRdelta(-/-) mice. Using isolated populations of gammadelta T cells from wild-type and cytokine-deficient strains of mice to reconstitute TCRdelta(-/-) mice, the TCR variable gene 4 (Vgamma4)(+) subset of gammadelta T cells was shown to protect against liver injury. Hepatoprotection was dependent upon their ability to produce IL-10 after TCR-mediated interactions with Listeria-elicited macrophages and CD8(+) T cells. IL-10-producing Vgamma4(+) T cells also contribute to controlling CD8(+) T cell expansion and to regulating and reducing TNF-alpha secretion by activated CD8(+) T cells. This effect on TNF-alpha production was directly attributed to IL-10. These findings identify a novel mechanism by which pathogen-elicited CD8(+) T cells are regulated via interactions with, and activation of, IL-10-producing hepatoprotective gammadelta T cells.

  18. CD19+ B cell subsets in the peripheral blood and skin lesions of psoriasis patients and their correlations with disease severity

    PubMed Central

    Lu, J.; Ding, Y.; Yi, X.; Zheng, J.

    2016-01-01

    T lymphocytes are important in the pathogenesis of psoriasis, and increasing evidence indicates that B cells also play an important role. The mechanisms of action, however, remain unclear. We evaluated the ratios of CD19+ B cells in peripheral blood mononuclear cells (PBMCs) from 157 patients with psoriasis (65 patients with psoriasis vulgaris, 32 patients with erythrodermic psoriasis, 30 patients with arthropathic psoriasis, and 30 patients with pustular psoriasis) and 35 healthy controls (HCs). Ratios of CD19+ B cells in skin lesions were compared with non-lesions in 7 erythrodermic psoriasis patients. The Psoriasis Area Severity Index (PASI) was used to measure disease severity. CD19+ B cell ratios in PBMCs from psoriasis vulgaris (at both the active and stationary stage) and arthropathic psoriasis patients were higher compared with HCs (P<0.01), but ratios were lower in erythrodermic and pustular psoriasis patients (P<0.01). CD19+ B cell ratios in erythrodermic psoriasis skin lesions were higher than in non-lesion areas (P<0.001). Different subsets of CD19+CD40+, CD19+CD44+, CD19+CD80+, CD19+CD86+, CD19+CD11b+, and CD19+HLA-DR+ B cells in PBMCs were observed in different psoriasis clinical subtypes. PASI scores were positively correlated with CD19+ B cell ratios in psoriasis vulgaris and arthropathic psoriasis cases (r=0.871 and r=0.692, respectively, P<0.01), but were negatively correlated in pustular psoriasis (r=-0.569, P<0.01). The results indicated that similar to T cells, B cells activation may also play important roles in different pathological stages of psoriasis. PMID:27532281

  19. Two R7 RGS proteins shape retinal bipolar cell signaling

    PubMed Central

    Mojumder, Deb Kumar; Qian, Yan; Wensel, Theodore G.

    2009-01-01

    RGS7, RGS11, and their binding partner Gβ5 are localized to the dendritic tips of retinal ON bipolar cells (ON-BPC), where mGluR6 responds to glutamate released from photoreceptor terminals by activation of the RGS7/RGS11 substrate, Gαo. To determine their functions in retinal signaling, we investigated cell-specific expression patterns of RGS7 and RGS11 by immunostaining, and measured light responses by electroretinography (ERG) in mice with targeted disruptions of the genes encoding them. RGS7 staining is present in dendritic tips of all rod ON-BPC, but missing in those for subsets of cone ON-BPC, whereas the converse was true for RGS11 staining. Genetic disruption of either RGS7 or RGS11 produced delays in the ON-BPC-derived electroretinogram b-wave, but no changes in the photoreceptor-derived a-wave. Homozygous RGS7 mutant mice had delays in rod-driven b-waves, whereas, RGS11 mutant mice had delays in rod-driven, and especially in cone-driven b-waves. The b-wave delays were further enhanced in mice homozygous for both RGS7 and RGS11 gene disruptions. Thus, RGS7 and RGS11 act in parallel to regulate the kinetics of ON bipolar cell responses, with differential impacts on the rod and cone pathways. PMID:19535587

  20. IL-7 promotes long-term in vitro survival of unique long-lived memory subset generated from mucosal effector memory CD4+ T cells in chronic colitis mice.

    PubMed

    Takahara, Masahiro; Nemoto, Yasuhiro; Oshima, Shigeru; Matsuzawa, Yu; Kanai, Takanori; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Yamamoto, Kazuhide; Watanabe, Mamoru

    2013-01-01

    Colitogenic memory CD4(+) T cells are important in the pathogenesis of inflammatory bowel disease (IBD). Although memory stem cells with high survival and self-renewal capacity were recently identified in both mice and humans, it is unclear whether a similar subset is present in chronic colitis mice. We sought to identify and purify a long-lived subset of colitogenic memory CD4(+) T cells, which may be targets for treatment of IBD. A long-lived subset of colitogenic memory CD4(+) T cells was purified using a long-term culture system. The characteristics of these cells were assessed. Interleukin (IL)-7 promoted the in vitro survival for >8 weeks of lamina propria (LP) CD4(+) T cells from colitic SCID mice previously injected with CD4(+)CD45RB(high) T cells. These cells were in a quiescent state and divided a maximum of 5 times in 4 weeks. LP CD4(+) T cells expressed higher levels of Bcl-2, integrin-α4β7, CXCR3 and CD25 after than before culture, as well as secreting high concentrations of IL-2 and low concentrations of IFN-γ and IL-17 in response to intestinal bacterial antigens. LP CD4(+) T cells from colitic mice cultured with IL-7 for 8 weeks induced more severe colitis than LP CD4(+) T cells cultured for 4 weeks. We developed a novel culture system to purify a long-lived, highly pathogenic memory subset from activated LP CD4(+) T cells. IL-7 promoted long-term in vitro survival of this subset in a quiescent state. This subset will be a novel, effective target for the treatment of IBD. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Occupational exposure to formaldehyde and alterations in lymphocyte subsets

    PubMed Central

    Hosgood, H. Dean; Zhang, Luoping; Tang, Xiaojiang; Vermeulen, Roel; Hao, Zhenyue; Shen, Min; Qiu, Chuangyi; Ge, Yichen; Hua, Ming; Ji, Zhiying; Li, Senhua; Xiong, Jun; Reiss, Boris; Liu, Songwang; Xin, Kerry X.; Azuma, Mariko; Xie, Yuxuan; Freeman, Laura Beane; Ruan, Xiaolin; Guo, Weihong; Galvan, Noe; Blair, Aaron; Li, Laiyu; Huang, Hanlin; Smith, Martyn T.; Rothman, Nathaniel; Lan, Qing

    2012-01-01

    Background Formaldehyde is used in many occupational settings, most notably in manufacturing, health care, and embalming. Formaldehyde has been classified as a human carcinogen, but its mechanism of action remains uncertain. Methods We carried out a cross-sectional study of 43 formaldehyde exposed-workers and 51 unexposed age and sex-matched controls in Guangdong, China to study formaldehyde’s early biologic effects. To follow-up our previous report that the total lymphocyte count was decreased in formaldehyde-exposed workers compared to controls, we evaluated each major lymphocyte subset (i.e., CD4+ T cells, CD8+ T cells, natural killer (NK) cells, and B cells) and T cell lymphocyte subset (CD4+ naïve and memory T cells, CD8+ naïve and memory T cells, and regulatory T cells). Linear regression of each subset was used to test for differences between exposed workers and controls, adjusting for potential confounders. Results Total NK cell and T cell counts were about 24% (p=0.037) and 16% (p=0.0042) lower, respectively, among exposed workers. Among certain T cell subsets, decreased counts among exposed workers were observed for CD8+ T cells (p=0.026), CD8+ effector memory T cells (p=0.018), and regulatory T cells (CD4+FoxP3+: p=0.04; CD25+FoxP3+: p=0.008). Conclusions Formaldehyde exposed-workers experienced decreased counts of NK cells, regulatory T cells, and CD8+ effector memory T cells; however, due to the small sample size these findings need to be confirmed in larger studies. PMID:22767408

  2. Clonal origin of Epstein-Barr virus (EBV)-infected T/NK-cell subpopulations in EBV-positive T/NK-cell lymphoproliferative disorders of childhood.

    PubMed

    Ohga, Shouichi; Ishimura, Masataka; Yoshimoto, Goichi; Miyamoto, Toshihiro; Takada, Hidetoshi; Tanaka, Tamami; Ohshima, Koichi; Ogawa, Yoshiyasu; Imadome, Ken-Ichi; Abe, Yasunobu; Akashi, Koichi; Hara, Toshiro

    2011-05-01

    In Japan, chronic active Epstein-Barr virus infection (CAEBV) may manifest with infection of T-cells or NK-cells, clonal lymphoid proliferations, and overt lymphoid malignancy. These EBV-positive lymphoproliferative disorders (EBV(+)LPD) of childhood are related to, but distinct from the infectious mononucleosis-like CAEBV seen in Western populations. The clonal nature of viral infection within lymphoid subsets of patients with EBV(+)LPD of childhood is not well described. Viral distribution and clonotype were assessed within T-cell subsets, NK-cells, and CD34(+)stem cells following high purity cell sorting. Six Japanese patients with EBV(+)LPD of childhood (3 T-cell LPD and 3 NK-cell LPD) were recruited. Prior to immunochemotherapy, viral loads and clonal analyses of T-cell subsets, NK-cells, and CD34(+)stem cells were studied by high-accuracy cell sorting (>99.5%), Southern blotting and real-time polymerase chain reaction. Patient 1 had a monoclonal proliferation of EBV-infected γδT-cells and carried a lower copy number of EBV in αβT-cells. Patients 2 and 3 had clonal expansions of EBV-infected CD4(+)T-cells, and lower EBV load in NK-cells. Patients 4, 5 and 6 had EBV(+)NK-cell expansions with higher EBV load than T-cells. EBV-terminal repeats were determined as clonal bands in the minor targeted populations of 5 patients. The size of terminal repeats indicated the same clonotype in minor subsets as in the major subsets of four patients. EBV was not, however, detected in the bone marrow-derived CD34(+)stem cells of patients. A single EBV clonotype may infect multiple NK-cell and T-cell subsets of patients with EBV(+)LPD of childhood. CD34(+)stem cells are spared, suggesting infection of more differentiated elements. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. The Development of Plasmodium falciparum-Specific IL10 CD4 T Cells and Protection from Malaria in Children in an Area of High Malaria Transmission.

    PubMed

    Boyle, Michelle J; Jagannathan, Prasanna; Bowen, Katherine; McIntyre, Tara I; Vance, Hilary M; Farrington, Lila A; Schwartz, Alanna; Nankya, Felistas; Naluwu, Kate; Wamala, Samuel; Sikyomu, Esther; Rek, John; Greenhouse, Bryan; Arinaitwe, Emmanuel; Dorsey, Grant; Kamya, Moses R; Feeney, Margaret E

    2017-01-01

    Cytokine-producing CD4 T cells have important roles in immunity against Plasmodium falciparum (Pf) malaria. However, the factors influencing functional differentiation of Pf- specific CD4 T cells in naturally exposed children are not well understood. Moreover, it is not known which CD4 T-cell cytokine-producing subsets are most critical for protection. We measured Pf- specific IFNγ-, IL10-, and TNFα-producing CD4 T-cell responses by multi-parametric flow cytometry in 265 children aged 6 months to 10 years enrolled in a longitudinal observational cohort in a high malaria transmission site in Uganda. We found that both age and parasite burden were independently associated with cytokine production by CD4 T cells. IL10 production by IFNγ + CD4 T cells was higher in younger children and in those with high-parasite burden during recent infection. To investigate the role of CD4 T cells in immunity to malaria, we measured associations of Pf -specific CD4 cytokine-producing cells with the prospective risk of Pf infection and clinical malaria, adjusting for household exposure to Pf -infected mosquitos. Overall, the prospective risk of infection was not associated with the total frequency of Pf- specific CD4 T cells, nor of any cytokine-producing CD4 subset. However, the frequency of CD4 cells producing IL10 but not inflammatory cytokines (IFNγ and TNFα) was associated with a decreased risk of clinical malaria once infected. These data suggest that functional polarization of the CD4 T-cell response may modulate the clinical manifestations of malaria and play a role in naturally acquired immunity.

  4. IFN-α and CD46 stimulation are associated with active lupus and skew natural T regulatory cell differentiation to type 1 regulatory T (Tr1) cells

    PubMed Central

    Le Buanec, Hélène; Gougeon, Marie-Lise; Mathian, Alexis; Lebon, Pierre; Dupont, Jean-Michel; Peltre, Gabriel; Hemon, Patrice; Schmid, Michel; Bizzini, Bernard; Künding, Thomas; Burny, Arsène; Bensussan, Armand; Amoura, Zahir; Gallo, Robert C.; Zagury, Daniel

    2011-01-01

    Immune suppressive activities exerted by regulatory T-cell subsets have several specific functions, including self-tolerance and regulation of adaptive immune reactions, and their dysfunction can lead to autoimmune diseases and contribute to AIDS and cancer. Two functionally distinct regulatory T-cell subsets are currently identified in peripheral tissues: thymus-developed natural T regulatory cells (nTregs) controlling self-tolerance and antiinflammatory IL-10–secreting type 1 regulatory T cells (Tr1) derived from Ag-stimulated T cells, which regulate inflammation-dependent adaptive immunity and minimize immunopathology. We establish herein that cell contact-mediated nTreg regulatory function is inhibited by inflammation, especially in the presence of the complement C3b receptor (CD46). Instead, as with other T-cell subsets, the latter inflammatory conditions of stimulation skew nTreg differentiation to Tr1 cells secreting IL-10, an effect potentiated by IFN-α. The clinical relevance of these findings was verified in a study of 152 lupus patients, in which we showed that lupus nTreg dysfunction is not due to intrinsic defects but is rather induced by C3b stimulation of CD46 and IFN-α and that these immune components of inflammation are directly associated with active lupus. These results provide a rationale for using anti–IFN-α Ab immunotherapy in lupus patients. PMID:22065791

  5. Lack of autologous mixed lymphocyte reaction in patients with chronic lymphocytic leukemia: evidence for autoreactive T-cell dysfunction not correlated with phenotype, karyotype, or clinical status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, T.; Bloom, M.L.; Dadey, B.

    In the present study, there was a complete lack of autologous MLR between responding T cells or T subsets and unirradiated or irradiated leukemic B cells or monocytes in all 20 patients with CLL, regardless of disease status, stage, phenotype, or karyotype of the disease. The stimulating capacity of unirradiated CLL B cells and CLL monocytes or irradiated CLL B cells was significantly depressed as compared to that of respective normal B cells and monocytes in allogeneic MLR. The responding capacity of CLL T cells was also variably lower than that of normal T cells against unirradiated or irradiated normalmore » allogeneic B cells and monocytes. The depressed allogeneic MLR between CLL B cells or CLL monocytes and normal T cells described in the present study could be explained on the basis of a defect in the stimulating antigens of leukemic B cells or monocytes. The decreased allogeneic MLR of CLL T cells might simply be explained by a defect in the responsiveness of T lymphocytes from patients with CLL. However, these speculations do not adequately explain the complete lack of autologous MLR in these patients. When irradiated CLL B cells or irradiated CLL T cells were cocultured with normal T cells and irradiated normal B cells, it was found that there was no suppressor cell activity of CLL B cells or CLL T cells on normal autologous MLR. Our data suggest that the absence or dysfunction of autoreactive T cells within the Tnon-gamma subset account for the lack of autologous MLR in patients with CLL. The possible significance of the autologous MLR, its relationship to in vivo immunoregulatory mechanisms, and the possible role of breakdown of autoimmunoregulation in the oncogenic process of certain lymphoproliferative and autoimmune diseases in man are discussed.« less

  6. Protection by and maintenance of CD4 effector memory and effector T cell subsets in persistent malaria infection.

    PubMed

    Opata, Michael M; Ibitokou, Samad A; Carpio, Victor H; Marshall, Karis M; Dillon, Brian E; Carl, Jordan C; Wilson, Kyle D; Arcari, Christine M; Stephens, Robin

    2018-04-01

    Protection at the peak of Plasmodium chabaudi blood-stage malaria infection is provided by CD4 T cells. We have shown that an increase in Th1 cells also correlates with protection during the persistent phase of malaria; however, it is unclear how these T cells are maintained. Persistent malaria infection promotes protection and generates both effector T cells (Teff), and effector memory T cells (Tem). We have previously defined new CD4 Teff (IL-7Rα-) subsets from Early (TeffEarly, CD62LhiCD27+) to Late (TeffLate, CD62LloCD27-) activation states. Here, we tested these effector and memory T cell subsets for their ability to survive and protect in vivo. We found that both polyclonal and P. chabaudi Merozoite Surface Protein-1 (MSP-1)-specific B5 TCR transgenic Tem survive better than Teff. Surprisingly, as Tem are associated with antigen persistence, Tem survive well even after clearance of infection. As previously shown during T cell contraction, TeffEarly, which can generate Tem, also survive better than other Teff subsets in uninfected recipients. Two other Tem survival mechanisms identified here are that low-level chronic infection promotes Tem both by driving their proliferation, and by programming production of Tem from Tcm. Protective CD4 T cell phenotypes have not been precisely determined in malaria, or other persistent infections. Therefore, we tested purified memory (Tmem) and Teff subsets in protection from peak pathology and parasitemia in immunocompromised recipient mice. Strikingly, among Tmem (IL-7Rαhi) subsets, only TemLate (CD62LloCD27-) reduced peak parasitemia (19%), though the dominant memory subset is TemEarly, which is not protective. In contrast, all Teff subsets reduced peak parasitemia by more than half, and mature Teff can generate Tem, though less. In summary, we have elucidated four mechanisms of Tem maintenance, and identified two long-lived T cell subsets (TemLate, TeffEarly) that may represent correlates of protection or a target for longer-lived vaccine-induced protection against malaria blood-stages.

  7. Th9 and other IL-9-producing cells in allergic asthma.

    PubMed

    Koch, Sonja; Sopel, Nina; Finotto, Susetta

    2017-01-01

    Allergic asthma is a worldwide increasing chronic disease of the airways which affects more than 300 million people. It is associated with increased IgE, mast cell activation, airway hyperresponsiveness (AHR), mucus overproduction and remodeling of the airways. Previously, this pathological trait has been associated with T helper type 2 (Th2) cells. Recently, different CD4 + T cell subsets (Th17, Th9) as well as cells of innate immunity, like mast cells and innate lymphoid cells type 2 (ILC2s), which are all capable of producing the rediscovered cytokine IL-9, are known to contribute to this disease. Regarding Th9 cells, it is known that naïve T cells develop into IL-9-producing cells in the presence of interleukin-4 (IL-4) and transforming growth factor beta (TGFβ). Downstream of IL-4, several transcription factors like signal transducer and activator of transcription 6 (STAT6), interferon regulatory factor 4 (IRF4), GATA binding protein 3 (GATA3), basic leucine zipper transcription factor, ATF-like (BATF) and nuclear factor of activated T cells (NFAT) are activated. Additionally, the transcription factor PU.1, which is downstream of TGFβ signaling, also seems to be crucial in the development of Th9 cells. IL-9 is a pleiotropic cytokine that influences various distinct functions of different target cells such as T cells, B cells, mast cells and airway epithelial cells by activating STAT1, STAT3 and STAT5. Because of its pleiotropic functions, IL-9 has been demonstrated to be involved in several diseases, such as cancer, autoimmunity and other pathogen-mediated immune-regulated diseases. In this review, we focus on the role of Th9 and IL-9-producing cells in allergic asthma.

  8. Correlation of Tc17 cells at early stages after allogeneic hematopoietic stem cell transplantation with acute graft-versus-host disease.

    PubMed

    Wang, Ling; Zhao, Peng; Song, Lingling; Yan, Fahong; Shi, Chunlei; Li, Ying; Han, Mingzhe; Lan, Ketao

    2016-12-01

    Acute graft-versus-host disease (aGVHD) is associated with an immune dysregulation usually mediated by T lymphocytes. Recently, IL-17-producing T cells including Th17 and Tc17 cells have been implicated in immune-related diseases. However, their roles in aGVHD remain uncertain. In the study, we analyzed IL-17-producing cell recovery and association with the occurrence of aGVHD. While Th17 cells steadily recovered, Tc17 cell numbers remained unaltered during the first 3months after transplantation. Occurrence of aGVHD was correlated with increased level of Tc17 cells at the second months after allo-SCT. Interestingly, Tc17 cells were negatively associated with CD4 + CD25 + FOXP3 + regulatory T (Treg) cells, which was an important prognostic predictor in patients with aGVHD. In addition, we found that Tc17 numbers increased as the increased concentrations of TGF-β and IL-6, which are known to drive Th17 polarization. These finding supported that Tc17 subset is involved in the immunopathology of aGVHD. Blocking the abnormally increased number of Tc17 may be a reasonable therapeutic strategy for aGVHD. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Unique and Common Features of Innate-Like Human Vδ2+ γδT Cells and Mucosal-Associated Invariant T Cells.

    PubMed

    Provine, Nicholas M; Binder, Benedikt; FitzPatrick, Michael E B; Schuch, Anita; Garner, Lucy C; Williamson, Kate D; van Wilgenburg, Bonnie; Thimme, Robert; Klenerman, Paul; Hofmann, Maike

    2018-01-01

    Mucosal-associated invariant T (MAIT) cells are innate-like T cells abundant in humans that can be activated in a TCR-independent manner by inflammatory and antiviral cytokines. In humans, the capacity for TCR-independent activation is functionally linked to a transcriptional program that can be identified by the expression of the C-type lectin receptor, CD161. In addition to MAIT cells, it has been demonstrated that a subset of γδT cells expresses CD161 and can be activated by TCR-independent cytokine stimulation. In this study, we sought to clarify the nature of cytokine-responsive human γδT cells. We could link CD161 expression on Vδ2 + versus Vδ1 + γδT cells to the observation that Vδ2 + γδT cells, but not Vδ1 + γδT cells, robustly produced IFN-γ upon stimulation with a variety of cytokine combinations. Interestingly, both CD161 + and CD161 - Vδ2 + γδT cells responded to these stimuli, with increased functionality within the CD161 + subset. This innate-like responsiveness corresponded to high expression of PLZF and IL-18Rα, analogous to MAIT cells. Vδ2 + γδT cells in human duodenum and liver maintained a CD161 + IL-18Rα + phenotype and produced IFN-γ in response to IL-12 and IL-18 stimulation. In contrast to MAIT cells, we could not detect IL-17A production but observed higher steady-state expression of Granzyme B by Vδ2 + γδT cells. Finally, we investigated the frequency and functionality of γδT cells in the context of chronic hepatitis C virus infection, as MAIT cells are reduced in frequency in this disease. By contrast, Vδ2 + γδT cells were maintained in frequency and displayed unimpaired IFN-γ production in response to cytokine stimulation. In sum, human Vδ2 + γδT cells are a functionally distinct population of cytokine-responsive innate-like T cells that is abundant in blood and tissues with similarities to human MAIT cells.

  10. Identifying Tumor Progenitor Cells | Center for Cancer Research

    Cancer.gov

    All cells within a tumor are not identical. In fact, only a small subset appears to be capable of actually generating the tumor. These tumor-initiating cells tend to resemble normal stem cells, which have the unique ability to give rise to differentiated cells while simultaneously producing additional undifferentiated stem cells. Most chemotherapeutics affect the bulk of a

  11. Tripeptidyl peptidase II is dispensable for the generation of both proteasome-dependent and proteasome-independent ligands of HLA-B27 and other class I molecules.

    PubMed

    Marcilla, Miguel; Villasevil, Eugenia M; de Castro, José Antonio López

    2008-03-01

    A significant fraction of the HLA-B27-bound peptide repertoire is resistant to proteasome inhibitors. The possible implication of tripeptidyl peptidase II (TPPII) in generating this subset was analyzed by quantifying the surface re-expression of HLA-B*2705 after acid stripping in the presence of two TPPII inhibitors, butabindide and Ala-Ala-Phe-chloromethylketone. Neither decreased HLA-B27 re-expression under conditions in which TPPII activity was largely inhibited. This was in contrast to a significant effect of the proteasome inhibitor epoxomicin. The failure of TPPII inhibition to decrease surface re-expression was not limited to HLA-B27, since it was also observed in several HLA-B27-negative cell lines, including Mel JuSo. Actually, HLA class I re-expression in Mel JuSo cells increased as a function of butabindide concentration, which is consistent with an involvement of TPPII in destroying HLA class I ligands. Inhibition of TPPII with small interfering RNA also failed to decrease the surface expression of HLA class I molecules on 143B cells. Our results indicate that TPPII is dispensable for the generation of proteasome-dependent HLA class I ligands and, without excluding its role in producing some individual epitopes, this enzyme is not involved to any quantitatively significant extent, in generating the proteasome-independent HLA-B27-bound peptide repertoire.

  12. CD8αβ+ γδ T Cells: A Novel T Cell Subset with a Potential Role in Inflammatory Bowel Disease.

    PubMed

    Kadivar, Mohammad; Petersson, Julia; Svensson, Lena; Marsal, Jan

    2016-12-15

    γδ T cells have been attributed a wide variety of functions, which in some cases may appear as contradictory. To better understand the enigmatic biology of γδ T cells it is crucial to define the constituting subpopulations. γδ T cells have previously been categorized into two subpopulations: CD8αα + and CD8 - cells. In this study we have defined and characterized a novel subset of human γδ T-cells expressing CD8αβ. These CD8αβ + γδ T cells differed from the previously described γδ T cell subsets in several aspects, including the degree of enrichment within the gut mucosa, the activation status in blood, the type of TCRδ variant used in blood, and small but significant differences in their response to IL-2 stimulation. Furthermore, the novel subset expressed cytotoxic mediators and CD69, and produced IFN-γ and TNF-α. In patients with active inflammatory bowel disease the mucosal frequencies of CD8αβ + γδ T cells were significantly lower as compared with healthy controls, correlated negatively with the degree of disease activity, and increased to normal levels as a result of anti-TNF-α therapy. In conclusion, our results demonstrate that CD8αβ + γδ T cells constitute a novel lymphocyte subset, which is strongly enriched within the gut and may play an important role in gut homeostasis and mucosal healing in inflammatory bowel disease. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. Fully-human Heavy-chain-only Anti-B-cell Maturation Antigen (BCMA) Chimeric Antigen Receptors (CARs) | NCI Technology Transfer Center | TTC

    Cancer.gov

    Chimeric Antigen Receptor T cell (CAR-T) therapies that specifically target B-cell maturation antigen (BCMA) are strong therapeutic candidates for patients with plasma cell malignancy diseases such as, multiple myeloma (MM), as well as for patients with Hodgkin’s lymphoma. BCMA is a cell surface protein preferentially expressed on a subset of B cells and mature plasma cells, but not on other cells in the body. The limited expression of BCMA on B and plasma cells makes BCMA an attractive therapeutic target for B cell and plasma cell malignancy diseases. The 12 anti-BCMA CARs described are fully human CARS and have the potential to treat patients with various plasma cell and B cell malignancy diseases.

  14. Antigenic relatedness of glucosyltransferase enzymes from streptococcus mutans.

    PubMed

    Smith, D J; Taubman, M A

    1977-01-01

    The antigenic relationship of glucosyltransferases (GTF) produced by different serotypes of Streptococcus mutans was studied by using a functional inhibition assay. Rat, rabbit, or hamster immune fluids, directed to cell-associated or supernatant-derived GTF, were tested against ammonium sulfate-precipitated culture supernatants containing GTF from seven strains of S. mutans representing six different serotypes. An antigenic relationship was shown to exist among GTF from serotypes a, d, and g, since both rat and rabbit antisera directed to serotype a or g GTF inhibited GTF of serotypes d and g similarly and both antisera also inhibited serotype a GTF. Furthermore, serum inhibition patterns indicated that GTF of serotypes c and e, and possibly b, are antigenically related to each other, but are antigenically distinct from GTF of serotype a, d, or g. Serum antibody directed to antigens other than enzyme (e.g., serotype-specific antigen or teichoic acid) had little effect on the inhibition assay. Salivas from rats immunized with cell-associated or supernatant-derived GTF exhibited low but consistent inhibition of GTF activity, which generally corresponded to the serum patterns. The sera of two groups of hamsters immunized with GTF (serotype g), enriched either in water-insoluble or water-soluble glucan synthetic activity, gave patterns of inhibition quite similar to those seen with sera from more heterogenous cell-associated or crude supernatant-derived GTF preparations. Both groups of hamster sera also gave virtually identical patterns, suggesting that the two enzyme forms used as antigen share common antigenic determinants. The results from the three animal models suggest that among the cariogenic organisms tested, two (serotypes a, d, g and b, c, e), or perhaps three (serotypes a, d, g; b; and c, e), different subsets of GTF exist that have distinct antigenic determinants within a subset.

  15. MicroRNA-29b mediates altered innate immune development in acute leukemia

    PubMed Central

    Mundy-Bosse, Bethany L.; Scoville, Steven D.; Chen, Li; McConnell, Kathleen; Mao, Hsiaoyin C.; Ahmed, Elshafa H.; Zorko, Nicholas; Harvey, Sophia; Cole, Jordan; Zhang, Xiaoli; Costinean, Stefan; Croce, Carlo M.; Larkin, Karilyn; Byrd, John C.; Vasu, Sumithira; Blum, William; Yu, Jianhua; Freud, Aharon G.; Caligiuri, Michael A.

    2016-01-01

    Natural killer (NK) cells can have potent antileukemic activity following haplo-mismatched, T cell–depleted stem cell transplantations for the treatment of acute myeloid leukemia (AML), but they are not successful in eradicating de novo AML. Here, we have used a mouse model of de novo AML to elucidate the mechanisms by which AML evades NK cell surveillance. NK cells in leukemic mice displayed a marked reduction in the cytolytic granules perforin and granzyme B. Further, as AML progressed, we noted the selective loss of an immature subset of NK cells in leukemic mice and in AML patients. This absence was not due to elimination by cell death or selective reduction in proliferation, but rather to the result of a block in NK cell differentiation. Indeed, NK cells from leukemic mice and humans with AML showed lower levels of TBET and EOMES, transcription factors that are critical for terminal NK cell differentiation. Further, the microRNA miR-29b, a regulator of T-bet and EOMES, was elevated in leukemic NK cells. Finally, deletion of miR-29b in NK cells reversed the depletion of this NK cell subset in leukemic mice. These results indicate that leukemic evasion of NK cell surveillance occurs through miR-mediated dysregulation of lymphocyte development, representing an additional mechanism of immune escape in cancer. PMID:27775550

  16. Previous Ingestion of Lactococcus lactis by Ethanol-Treated Mice Preserves Antigen Presentation Hierarchy in the Gut and Oral Tolerance Susceptibility.

    PubMed

    Alvarenga, Débora M; Perez, Denise A; Gomes-Santos, Ana C; Miyoshi, Anderson; Azevedo, Vasco; Coelho-Dos-Reis, Jordana G A; Martins-Filho, Olindo A; Faria, Ana Maria C; Cara, Denise C; Andrade, Marileia C

    2015-08-01

    Ethanol (EtOH) consumption is able to disturb the ovalbumin (OVA)-oral tolerance induction by interfering on the function of antigen presenting cells (APC), down-regulating dendritic cells (DCs) and macrophages and up-regulating B-lymphocytes and their function, which results in an overall allergic-type immune status. In this study, the potential of a priori administration of Lactococcus lactis (LL) in avoiding loss of oral tolerance in EtOH-treated mice was investigated. Female C57BL/6 mice received, by oral route, ad libitum wild-type (WT) LL or heat-shock protein producer (Hsp65) LL for 4 consecutive days. Seven days later, mice were submitted to short-term high-dose EtOH treatment. After 24 hours, stomach, intestine, spleen, mesenteric lymph nodes (mLN) specimens were collected for biomarkers analysis. Following EtOH-treatment protocol, a group of animals underwent single-gavage OVA-tolerance protocol and sera samples collected for antibody analysis. The ingestion of WT LL or Hsp65 LL is able to restore oral tolerance to OVA in EtOH-treated mice, by reducing local and systemic allergic outcomes such as gastric mast cells and gut-interleukin-4, as well as serum IgE. WT LL treatment prevents the decrease of mLN regulatory T cells induced by the EtOH treatment. Moreover, LL treatment preserves APC hierarchy and antigen presentation commitment in EtOH-treated mice, with conserved DC and macrophage activity over B lymphocytes in mLN and preserved macrophage activity over DC and B-cell subsets in the spleen. The present findings suggest that a priori ingestion of LL preserves essential mechanisms associated with oral tolerance induction that are disturbed by EtOH ingestion. Maintenance of mucosal homeostasis by preserving APC hierarchy and antigen presentation commitment could be associated with T-regulatory subset activities in the gastrointestinal tract. Copyright © 2015 by the Research Society on Alcoholism.

  17. Long-term immunologically competent human peripheral lymphoid tissue cultures in a 3D bioreactor

    PubMed Central

    Kuzin, Igor; Sun, Hongliang; Moshkani, Safiekhatoon; Feng, Changyong; Mantalaris, Athanasios; Wu, JH David; Bottaro, Andrea

    2011-01-01

    Peripheral lymphoid organs (PLOs), the primary sites of development of adaptive immune responses, display a complex structural organization reflecting separation of cellular subsets (e.g. T and B lymphocytes) and functional compartments which is critical for immune function. The generation of in vitro culture systems capable of recapitulating salient features of PLOs for experimental, biotechnological and clinical applications would be highly desirable, but has been hampered so far by the complexity of these systems. We have previously developed a three-dimensional bioreactor system for long-term, functional culture of human bone marrow cells on macroporous microspheres in a packed-bed bioreactor with frequent medium change. Here we adapt the same system for culture of human primary cells from PLOs (tonsil) in the absence of specific exogenous growth factors or activators. Cells in this system displayed higher viability over several weeks, and maintain population diversity and cell surface markers largely comparable to primary cells. Light microscopy showed cells organizing in large diverse clusters within the scaffold pores and presence of B cell-enriched areas. Strikingly, these cultures generated a significant number of antibody-producing B cells when challenged with a panel of diverse antigens, as expected from a lymphoid tissue. Thus the three-dimensional tonsil bioreactor culture system may serve as a useful model of PLOs by recapitulating their structural organization and function ex vivo. PMID:21309085

  18. Long-term immunologically competent human peripheral lymphoid tissue cultures in a 3D bioreactor.

    PubMed

    Kuzin, Igor; Sun, Hongliang; Moshkani, Safiekhatoon; Feng, Changyong; Mantalaris, Athanasios; Wu, J H David; Bottaro, Andrea

    2011-06-01

    Peripheral lymphoid organs (PLOs), the primary sites of development of adaptive immune responses, display a complex structural organization reflecting separation of cellular subsets (e.g., T and B lymphocytes) and functional compartments which is critical for immune function. The generation of in vitro culture systems capable of recapitulating salient features of PLOs for experimental, biotechnological, and clinical applications would be highly desirable, but has been hampered so far by the complexity of these systems. We have previously developed a three-dimensional bioreactor system for long-term, functional culture of human bone marrow cells on macroporous microspheres in a packed-bed bioreactor with frequent medium change. Here we adapt the same system for culture of human primary cells from PLOs (tonsil) in the absence of specific exogenous growth factors or activators. Cells in this system displayed higher viability over several weeks, and maintain population diversity and cell surface markers largely comparable to primary cells. Light microscopy showed cells organizing in large diverse clusters within the scaffold pores and presence of B cell-enriched areas. Strikingly, these cultures generated a significant number of antibody-producing B cells when challenged with a panel of diverse antigens, as expected from a lymphoid tissue. Thus the three-dimensional tonsil bioreactor culture system may serve as a useful model of PLOs by recapitulating their structural organization and function ex vivo. Copyright © 2011 Wiley Periodicals, Inc.

  19. Differential adipokine receptor expression on circulating leukocyte subsets in lean and obese children.

    PubMed

    Keustermans, Genoveva; van der Heijden, Laila B; Boer, Berlinda; Scholman, Rianne; Nuboer, Roos; Pasterkamp, Gerard; Prakken, Berent; de Jager, Wilco; Kalkhoven, Eric; Janse, Arieke J; Schipper, Henk S

    2017-01-01

    Childhood obesity prevalence has increased worldwide and is an important risk factor for type 2 diabetes (T2D) and cardiovascular disease (CVD). The production of inflammatory adipokines by obese adipose tissue contributes to the development of T2D and CVD. While levels of circulating adipokines such as adiponectin and leptin have been established in obese children and adults, the expression of adiponectin and leptin receptors on circulating immune cells can modulate adipokine signalling, but has not been studied so far. Here, we aim to establish the expression of adiponectin and leptin receptors on circulating immune cells in obese children pre and post-lifestyle intervention compared to normal weight control children. 13 obese children before and after a 1-year lifestyle intervention were compared with an age and sex-matched normal weight control group of 15 children. Next to routine clinical and biochemical parameters, circulating adipokines were measured, and flow cytometric analysis of adiponectin receptor 1 and 2 (AdipoR1, AdipoR2) and leptin receptor expression on peripheral blood mononuclear cell subsets was performed. Obese children exhibited typical clinical and biochemical characteristics compared to controls, including a higher BMI-SD, blood pressure and circulating leptin levels, combined with a lower insulin sensitivity index (QUICKI). The 1-year lifestyle intervention resulted in stabilization of their BMI-SD. Overall, circulating leukocyte subsets showed distinct adipokine receptor expression profiles. While monocytes expressed high levels of all adipokine receptors, NK and iNKT cells predominantly expressed AdipoR2, and B-lymphocytes and CD4+ and CD8+ T-lymphocyte subsets expressed AdipoR2 as well as leptin receptor. Strikingly though, leukocyte subset numbers and adipokine receptor expression profiles were largely similar in obese children and controls. Obese children showed higher naïve B-cell numbers, and pre-intervention also higher numbers of immature transition B-cells and intermediate CD14++CD16+ monocytes combined with lower total monocyte numbers, compared to controls. Furthermore, adiponectin receptor 1 expression on nonclassical CD14+CD16++ monocytes was consistently upregulated in obese children pre-intervention, compared to controls. However, none of the differences in leukocyte subset numbers and adipokine receptor expression profiles between obese children and controls remained significant after multiple testing correction. First, the distinct adipokine receptor profiles of circulating leukocyte subsets may partly explain the differential impact of adipokines on leukocyte subsets. Second, the similarities in adipokine receptor expression profiles between obese children and normal weight controls suggest that adipokine signaling in childhood obesity is primarily modulated by circulating adipokine levels, instead of adipokine receptor expression.

  20. Leukocyte counts and lymphocyte subsets in relation to pregnancy and HIV infection in Malawian women.

    PubMed

    Mandala, Wilson L; Gondwe, Esther N; Molyneux, Malcolm E; MacLennan, Jenny M; MacLennan, Calman A

    2017-09-01

    We investigated leukocyte and lymphocyte subsets in HIV-infected or HIV-uninfected, pregnant or non-pregnant Malawian women to explore whether HIV infection and pregnancy may act synergistically to impair cellular immunity. We recruited 54 pregnant and 48 non-pregnant HIV-uninfected women and 24 pregnant and 20 non-pregnant HIV-infected Malawian women. We compared peripheral blood leukocyte and lymphocyte subsets between women in the four groups. Parturient HIV-infected and HIV-uninfected women had more neutrophils (each P<.0001), but fewer lymphocytes (P<.0001; P=.0014) than non-pregnant women. Both groups had fewer total T cells (P<.0001; P=.002) and CD8 + T cells (P<.0001; P=.014) than non-pregnant women. HIV-uninfected parturient women had fewer CD4 + and γδ T cells, B and NK cells (each P<.0001) than non-pregnant women. Lymphocyte subset percentages were not affected by pregnancy. Malawian women at parturition have an increased total white cell count due to neutrophilia and an HIV-unrelated pan-lymphopenia. © 2017 The Author. American Journal of Reproductive Immunology Published by John Wiley & Sons Ltd.

  1. IL-10-overexpressing B cells regulate innate and adaptive immune responses.

    PubMed

    Stanic, Barbara; van de Veen, Willem; Wirz, Oliver F; Rückert, Beate; Morita, Hideaki; Söllner, Stefan; Akdis, Cezmi A; Akdis, Mübeccel

    2015-03-01

    Distinct human IL-10-producing B-cell subsets with immunoregulatory properties have been described. However, the broader spectrum of their direct cellular targets and suppressive mechanisms has not been extensively studied, particularly in relation to direct and indirect IL-10-mediated functions. The aim of the study was to investigate the effects of IL-10 overexpression on the phenotype and immunoregulatory capacity of B cells. Primary human B cells were transfected with hIL-10, and IL-10-overexpressing B cells were characterized for cytokine and immunoglobulin production by means of specific ELISA and bead-based assays. Antigen presentation, costimulation capacity, and transcription factor signatures were analyzed by means of flow cytometry and quantitative RT-PCR. Effects of IL-10-overexpresing B cells on Toll-like receptor-triggered cytokine release from PBMCs, LPS-triggered maturation of monocyte-derived dendritic cells, and tetanus toxoid-induced PBMC proliferation were assessed in autologous cocultures. IL-10-overexpressing B cells acquired a prominent immunoregulatory profile comprising upregulation of suppressor of cytokine signaling 3 (SOCS3), glycoprotein A repetitions predominant (GARP), the IL-2 receptor α chain (CD25), and programmed cell death 1 ligand 1 (PD-L1). Concurrently, their secretion profile was characterized by a significant reduction in levels of proinflammatory cytokines (TNF-α, IL-8, and macrophage inflammatory protein 1α) and augmented production of anti-inflammatory IL-1 receptor antagonist and vascular endothelial growth factor. Furthermore, IL-10 overexpression was associated with a decrease in costimulatory potential. IL-10-overexpressing B cells secreted less IgE and potently suppressed proinflammatory cytokines in PBMCs, maturation of monocyte-derived dendritic cells (rendering their profile to regulatory phenotype), and antigen-specific proliferation in vitro. Our data demonstrate an essential role for IL-10 in inducing an immunoregulatory phenotype in B cells that exerts substantial anti-inflammatory and immunosuppressive functions. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Phenotypic and functional characterization of the major lymphocyte populations in the fruit-eating bat Pteropus alecto.

    PubMed

    Martínez Gómez, Julia María; Periasamy, Pravin; Dutertre, Charles-Antoine; Irving, Aaron Trent; Ng, Justin Han Jia; Crameri, Gary; Baker, Michelle L; Ginhoux, Florent; Wang, Lin-Fa; Alonso, Sylvie

    2016-11-24

    The unique ability of bats to act as reservoir for viruses that are highly pathogenic to humans suggests unique properties and functional characteristics of their immune system. However, the lack of bat specific reagents, in particular antibodies, has limited our knowledge of bat's immunity. Using cross-reactive antibodies, we report the phenotypic and functional characterization of T cell subsets, B and NK cells in the fruit-eating bat Pteropus alecto. Our findings indicate the predominance of CD8 + T cells in the spleen from wild-caught bats that may reflect either the presence of viruses in this organ or predominance of this cell subset at steady state. Instead majority of T cells in circulation, lymph nodes and bone marrow (BM) were CD4 + subsets. Interestingly, 40% of spleen T cells expressed constitutively IL-17, IL-22 and TGF-β mRNA, which may indicate a strong bias towards the Th17 and regulatory T cell subsets. Furthermore, the unexpected high number of T cells in bats BM could suggest an important role in T cell development. Finally, mitogenic stimulation induced proliferation and production of effector molecules by bats immune cells. This work contributes to a better understanding of bat's immunity, opening up new perspectives of therapeutic interventions for humans.

  3. Phenotypic and functional characterization of the major lymphocyte populations in the fruit-eating bat Pteropus alecto

    PubMed Central

    Martínez Gómez, Julia María; Periasamy, Pravin; Dutertre, Charles-Antoine; Irving, Aaron Trent; Ng, Justin Han Jia; Crameri, Gary; Baker, Michelle L.; Ginhoux, Florent; Wang, Lin-Fa; Alonso, Sylvie

    2016-01-01

    The unique ability of bats to act as reservoir for viruses that are highly pathogenic to humans suggests unique properties and functional characteristics of their immune system. However, the lack of bat specific reagents, in particular antibodies, has limited our knowledge of bat’s immunity. Using cross-reactive antibodies, we report the phenotypic and functional characterization of T cell subsets, B and NK cells in the fruit-eating bat Pteropus alecto. Our findings indicate the predominance of CD8+ T cells in the spleen from wild-caught bats that may reflect either the presence of viruses in this organ or predominance of this cell subset at steady state. Instead majority of T cells in circulation, lymph nodes and bone marrow (BM) were CD4+ subsets. Interestingly, 40% of spleen T cells expressed constitutively IL-17, IL-22 and TGF-β mRNA, which may indicate a strong bias towards the Th17 and regulatory T cell subsets. Furthermore, the unexpected high number of T cells in bats BM could suggest an important role in T cell development. Finally, mitogenic stimulation induced proliferation and production of effector molecules by bats immune cells. This work contributes to a better understanding of bat’s immunity, opening up new perspectives of therapeutic interventions for humans. PMID:27883085

  4. B-Cell Activation and Tolerance Mediated by B-Cell Receptor, Toll-Like Receptor, and Survival Signal Crosstalk in SLE Pathogenesis

    DTIC Science & Technology

    2016-09-01

    from adaptive and innate receptors, including the BCR and TLRs, as well as signals from T follicular helper (TFH) cells . In this regard, several TH1...IFN-g that, in concert with innate sensors, controls T-bet and CD11c expression in B cells . Materials and Methods Mice Tbx212/2, Stat62/2, Tbx21f...O’Neill, M. S. Naradikian, J. L. Scholz, and M. P. Cancro. 2011. A B- cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood 118

  5. Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells.

    PubMed

    Sakai, Shunsuke; Kauffman, Keith D; Schenkel, Jason M; McBerry, Cortez C; Mayer-Barber, Katrin D; Masopust, David; Barber, Daniel L

    2014-04-01

    Th1 cells are critical for containment of Mycobacterium tuberculosis infection, but little else is known about the properties of protective CD4 T cell responses. In this study, we show that the pulmonary Th1 response against M. tuberculosis is composed of two populations that are either CXCR3(hi) and localize to lung parenchyma or are CX3CR1(hi)KLRG1(hi) and are retained within lung blood vasculature. M. tuberculosis-specific parenchymal CD4 T cells migrate rapidly back into the lung parenchyma upon adoptive transfer, whereas the intravascular effectors produce the highest levels of IFN-γ in vivo. Importantly, parenchymal T cells displayed greater control of infection compared with the intravascular counterparts upon transfer into susceptible T cell-deficient hosts. Thus, we identified a subset of naturally generated M. tuberculosis-specific CD4 T cells with enhanced protective capacity and showed that control of M. tuberculosis correlates with the ability of CD4 T cells to efficiently enter the lung parenchyma rather than produce high levels of IFN-γ.

  6. Characterization of Human CD8 T Cell Responses in Dengue Virus-Infected Patients from India

    PubMed Central

    Chandele, Anmol; Sewatanon, Jaturong; Gunisetty, Sivaram; Singla, Mohit; Onlamoon, Nattawat; Akondy, Rama S.; Kissick, Haydn Thomas; Nayak, Kaustuv; Reddy, Elluri Seetharami; Kalam, Haroon; Kumar, Dhiraj; Verma, Anil; Panda, HareKrushna; Wang, Siyu; Angkasekwinai, Nasikarn; Pattanapanyasat, Kovit; Chokephaibulkit, Kulkanya; Lodha, Rakesh; Kabra, Sushil; Ahmed, Rafi

    2016-01-01

    ABSTRACT Epidemiological studies suggest that India has the largest number of dengue virus infection cases worldwide. However, there is minimal information about the immunological responses in these patients. CD8 T cells are important in dengue, because they have been implicated in both protection and immunopathology. Here, we provide a detailed analysis of HLA-DR+ CD38+ and HLA-DR− CD38+ effector CD8 T cell subsets in dengue patients from India and Thailand. Both CD8 T cell subsets expanded and expressed markers indicative of antigen-driven proliferation, tissue homing, and cytotoxic effector functions, with the HLA-DR+ CD38+ subset being the most striking in these effector qualities. The breadth of the dengue-specific CD8 T cell response was diverse, with NS3-specific cells being the most dominant. Interestingly, only a small fraction of these activated effector CD8 T cells produced gamma interferon (IFN-γ) when stimulated with dengue virus peptide pools. Transcriptomics revealed downregulation of key molecules involved in T cell receptor (TCR) signaling. Consistent with this, the majority of these CD8 T cells remained IFN-γ unresponsive even after TCR-dependent polyclonal stimulation (anti-CD3 plus anti-CD28) but produced IFN-γ by TCR-independent polyclonal stimulation (phorbol 12-myristate 13-acetate [PMA] plus ionomycin). Thus, the vast majority of these proliferating, highly differentiated effector CD8 T cells probably acquire TCR refractoriness at the time the patient is experiencing febrile illness that leads to IFN-γ unresponsiveness. Our studies open novel avenues for understanding the mechanisms that fine-tune the balance between CD8 T cell-mediated protective versus pathological effects in dengue. IMPORTANCE Dengue is becoming a global public health concern. Although CD8 T cells have been implicated both in protection and in the cytokine-mediated immunopathology of dengue, how the balance is maintained between these opposing functions remains unknown. We comprehensively characterized CD8 T cell subsets in dengue patients from India and Thailand and show that these cells expand massively and express phenotypes indicative of overwhelming antigenic stimulus and tissue homing/cytotoxic-effector functions but that a vast majority of them fail to produce IFN-γ in vitro. Interestingly, the cells were fully capable of producing the cytokine when stimulated in a T cell receptor (TCR)-independent manner but failed to do so in TCR-dependent stimulation. These results, together with transcriptomics, revealed that the vast majority of these CD8 T cells from dengue patients become cytokine unresponsive due to TCR signaling insufficiencies. These observations open novel avenues for understanding the mechanisms that fine-tune the balance between CD8-mediated protective versus pathological effects. PMID:27707928

  7. TCR-pMHC encounter differentially regulates transcriptomes of tissue-resident CD8 T cells.

    PubMed

    Yoshizawa, Akihiro; Bi, Kevin; Keskin, Derin B; Zhang, Guanglan; Reinhold, Bruce; Reinherz, Ellis L

    2018-01-01

    To investigate the role of TCR-pMHC interaction in regulating lung CD8 tissue-resident T cell (T R ) differentiation, polyclonal responses were compared against NP 366-374 /D b and PA 224-233 /D b , two immunodominant epitopes that arise during influenza A infection in mice. Memory niches distinct from iBALTs develop within the lamina propria, supporting CD103 + and CD103 - CD8 T R generation and intraepithelial translocation. Gene set enrichment analysis (GSEA) and weighted gene co-expression network analysis (WGCNA) identify dominant TCR, adherens junction, RIG-I-like and NOD-like pattern recognition receptor as well as TGF-β signaling pathways and memory signatures among PA 224-233 /D b T cells consistent with T resident memory (T RM ) status. In contrast, NP 366-374 /D b T cells exhibit enrichment of effector signatures, upregulating pro-inflammatory mediators even among T RM . While NP 366-374 /D b T cells manifest transcripts linked to canonical exhaustion pathways, PA 224-233 /D b T cells exploit P2rx7 purinoreceptor attenuation. The NP 366-374 /D b CD103 + subset expresses the antimicrobial lactotransferrin whereas PA 224-233 /D b CD103 + utilizes pore-forming mpeg-1, with <22% of genes correspondingly upregulated in CD103 + (or CD103 - ) subsets of both specificities. Thus, TCR-pMHC interactions among T R and antigen presenting cells in a tissue milieu strongly impact CD8 T cell biology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Differential Responsiveness of Innate-like IL-17- and IFN-γ-Producing γδ T Cells to Homeostatic Cytokines.

    PubMed

    Corpuz, Theresa M; Stolp, Jessica; Kim, Hee-Ok; Pinget, Gabriela V; Gray, Daniel H D; Cho, Jae-Ho; Sprent, Jonathan; Webster, Kylie E

    2016-01-15

    γδ T cells respond to molecules upregulated following infection or cellular stress using both TCR and non-TCR molecules. The importance of innate signals versus TCR ligation varies greatly. Both innate-like IL-17-producing γδ T (γδT-17) and IFN-γ-producing γδ T (γδT-IFNγ) subsets tune the sensitivity of their TCR following thymic development, allowing robust responses to inflammatory cytokines in the periphery. The remaining conventional γδ T cells retain high TCR responsiveness. We determined homeostatic mechanisms that govern these various subsets in the peripheral lymphoid tissues. We found that, although innate-like γδT-17 and γδT-IFNγ cells share elements of thymic development, they diverge when it comes to homeostasis. Both exhibit acute sensitivity to cytokines compared with conventional γδ T cells, but they do not monopolize the same cytokine. γδT-17 cells rely exclusively on IL-7 for turnover and survival, aligning them with NKT17 cells; IL-7 ligation triggers proliferation, as well as promotes survival, upregulating Bcl-2 and Bcl-xL. γδT-IFNγ cells instead depend heavily on IL-15. They display traits analogous to memory CD8(+) T cells and upregulate Bcl-xL and Mcl-1 upon cytokine stimulation. The conventional γδ T cells display low sensitivity to cytokine-alone stimulation and favor IL-7 for their turnover, characteristics reminiscent of naive αβ T cells, suggesting that they may also require tonic TCR signaling for population maintenance. These survival constraints suggest that γδ T cell subsets do not directly compete with each other for cytokines, but instead fall into resource niches with other functionally similar lymphocytes. Copyright © 2016 by The American Association of Immunologists, Inc.

  9. A Subset of Host B-Lymphocytes Control Melanoma Metastasis Through a MCAM/MUC18-dependent Interaction: Evidence from Mice and Humans

    PubMed Central

    Staquicini, Fernanda I.; Tandle, Anita; Libutti, Steven K.; Sun, Jessica; Zigler, Maya; Bar-Eli, Menashe; Aliperti, Fabiana; Pérez, Elizabeth C.; Gershenwald, Jeffrey E.; Mariano, Mario; Pasqualini, Renata; Arap, Wadih; Lopes, José D.

    2008-01-01

    Host immunity affects tumor metastasis but the corresponding cellular and molecular mechanisms are not entirely clear. Here we show that a subset of B-lymphocytes (termed B-1 population) -- but not other lymphocytes -- have pro-metastatic effects on melanoma cells in vivo through a direct heterotypic cell-cell interaction. In the classic B16 mouse melanoma model, one mechanism underlying this phenomenon is a specific upregulation and subsequent homophilic interaction mediated by the cell surface glycoprotein MUC18 (also known as melanoma cell adhesion molecule; MCAM). Presence of B-1 lymphocytes in a panel of tumor samples from melanoma patients directly correlates with MUC18 expression in melanoma cells, indicating that the same protein interaction exists in humans. These results suggest a new but as yet unrecognized functional role for host B-1 lymphocytes in tumor metastasis and establish a biochemical basis for such observations. Our findings support the counterintuitive central hypothesis in which a primitive layer of the immune system actually contributes to tumor progression and metastasis in a mouse model and in melanoma patients. Given that monoclonal antibodies against MUC18 are in pre-clinical development but the reason for their anti-tumor activity is not well understood, these translational results are relevant in the setting of human melanoma, and perhaps of other cancers. PMID:18922915

  10. Phage idiotype vaccination: first phase I/II clinical trial in patients with multiple myeloma

    PubMed Central

    2014-01-01

    Background Multiple myeloma is characterized by clonal expansion of B cells producing monoclonal immunoglobulins or fragments thereof, which can be detected in the serum and/or urine and are ideal target antigens for patient-specific immunotherapies. Methods Using phage particles as immunological carriers, we employed a novel chemically linked idiotype vaccine in a clinical phase I/II trial including 15 patients with advanced multiple myeloma. Vaccines composed of purified paraproteins linked to phage were manufactured successfully for each patient. Patients received six intradermal immunizations with phage idiotype vaccines in three different dose groups. Results Phage idiotype was well tolerated by all study participants. A subset of patients (80% in the middle dose group) displayed a clinical response indicated by decrease or stabilization of paraprotein levels. Patients exhibiting a clinical response to phage vaccines also raised idiotype-specific immunoglobulins. Induction of a cellular immune response was demonstrated by a cytotoxicity assay and delayed type hypersensitivity tests. Conclusion We present a simple, time- and cost-efficient phage idiotype vaccination strategy, which represents a safe and feasible patient-specific therapy for patients with advanced multiple myeloma and produced promising anti-tumor activity in a subset of patients. PMID:24885819

  11. Invariant NKT cells provide innate and adaptive help for B cells

    PubMed Central

    Vomhof-DeKrey, Emilie E.; Yates, Jennifer; Leadbetter, Elizabeth A.

    2014-01-01

    B cells rely on CD4+ T cells helper signals to optimize their responses to T-dependent antigens. Recently another subset of T cells has been identified which provides help for B cells, invariant natural killer T (iNKT) cells. INKT cells are unique because they provide both innate and adaptive forms of help to B cells, with divergent outcomes. iNKT cells are widely distributed throughout the spleen at rest, consolidate in the marginal zone of the spleen early after activation, and are later found in germinal centers. Understanding the activation requirements for iNKT cells has led to the development of glycolipid containing nanoparticles which efficiently activate iNKT cells, enhance their cooperation with B cells, and which hold promise for vaccine development. PMID:24514004

  12. Autoantibody-mediated regulation of B cell responses by functional anti-CD22 autoantibodies in patients with systemic sclerosis.

    PubMed

    Odaka, M; Hasegawa, M; Hamaguchi, Y; Ishiura, N; Kumada, S; Matsushita, T; Komura, K; Sato, S; Takehara, K; Fujimoto, M

    2010-02-01

    Studies have demonstrated that B cells play important roles in systemic sclerosis (SSc), especially through the CD19/CD22 autoimmune loop. CD22 is a B cell-specific inhibitory receptor that dampens B cell antigen receptor (BCR) signalling via tyrosine phosphorylation-dependent mechanism. In this study, we examined the presence and functional property of circulating autoantibodies reacting with CD22 in systemic sclerosis. Serum samples from 10 tight skin (TSK/+) mice and 50 SSc patients were assessed for anti-CD22 autoantibodies by enzyme-linked immunosorbent assays using recombinant mouse or human CD22. The association between anti-CD22 antibodies and clinical features was also investigated in SSc patients. Furthermore, the influence of SSc serum including anti-CD22 autoantibodies for CD22 tyrosine phosphorylation was examined by Western blotting using phosphotyrosine-specific antibodies reacting with four major tyrosine motifs of CD22 cytoplasmic domain. Anti-CD22 autoantibodies were positive in 80% of TSK/+ mice and in 22% of SSc patients. Patients positive for anti-CD22 antibodies showed significantly higher modified Rodnan skin thickness score compared with patients negative for anti-CD22 antibodies. Furthermore, anti-CD22 antibodies from patients' sera were capable of reducing phosphorylation of all four CD22 tyrosine motifs, while sera negative for anti-CD22 antibodies did not affect CD22 phosphorylation. Thus, a subset of SSc patients possessed autoantibodies reacting with a major inhibitory B cell response regulator, CD22. Because these antibodies can interfere CD22-mediated suppression onto B cell activation in vitro, SSc B cells produce functional autoantibodies that can enhance their own activation. This unique regulation may contribute to the autoimmune aspect of SSc.

  13. Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen.

    PubMed

    Plantinga, Maud; Guilliams, Martin; Vanheerswynghels, Manon; Deswarte, Kim; Branco-Madeira, Filipe; Toussaint, Wendy; Vanhoutte, Leen; Neyt, Katrijn; Killeen, Nigel; Malissen, Bernard; Hammad, Hamida; Lambrecht, Bart N

    2013-02-21

    Dendritic cells (DCs) are crucial for mounting allergic airway inflammation, but it is unclear which subset of DCs performs this task. By using CD64 and MAR-1 staining, we reliably separated CD11b(+) monocyte-derived DCs (moDCs) from conventional DCs (cDCs) and studied antigen uptake, migration, and presentation assays of lung and lymph node (LN) DCs in response to inhaled house dust mite (HDM). Mainly CD11b(+) cDCs but not CD103(+) cDCs induced T helper 2 (Th2) cell immunity in HDM-specific T cells in vitro and asthma in vivo. Studies in Flt3l(-/-) mice, lacking all cDCs, revealed that moDCs were also sufficient to induce Th2 cell-mediated immunity but only when high-dose HDM was given. The main function of moDCs was the production of proinflammatory chemokines and allergen presentation in the lung during challenge. Thus, we have identified migratory CD11b(+) cDCs as the principal subset inducing Th2 cell-mediated immunity in the LN, whereas moDCs orchestrate allergic inflammation in the lung. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. B-Cell Activation and Tolerance Mediated by B-Cell Receptor, Toll-Like Receptor and Survival Signal Crosstalk in SLE Pathogenesis

    DTIC Science & Technology

    2015-10-01

    reduction in the number of regulatory T cells (Tregs) in STING2/2 lpr/lpr secondary lymphoid organs. Apoptotic debris induces the production of IDO...DNA complex is the exclusive malaria parasite component that activates dendritic cells and triggers innate immune responses. J. Immunol. 184: 4338–4348... cells remain relatively unchanged. Nevertheless, nearly all peripheral lymphoid pools exhibit altered dynamics, shifts in functional subset representation

  15. Anergy and suppression in B-cell responses.

    PubMed

    Elliott, J I

    1992-12-01

    Two main ideas have been put forward to explain the unexpectedly low anti-hapten antibody titres which can result from pre-priming a mouse with carrier before hapten-carrier immunization. The first involves the interaction of a network of idiotype-specific suppressor T cells, the second instead arguing for the role of intrinsic B-cell anergy. This paper proposes that the data available can equally be interpreted as reflecting the suboptimal interaction between T and B cells at differing stages of maturity, provided that memory B cells can be divided into two subsets. Further, it is suggested that these considerations must be taken into account in the analysis of B-cell anergy in receptor transgenic mice.

  16. Dickkopf-3 maintains the PANC-1 human pancreatic tumor cells in a dedifferentiated state.

    PubMed

    Zenzmaier, Christoph; Hermann, Martin; Hengster, Paul; Berger, Peter

    2012-01-01

    Pancreatic cancer (PaCa) is the fourth leading cause of cancer deaths in Western societies, with pancreatic ductal adenocarcinomas (PDACs) accounting for >90% of such cases. PDAC is a heterogeneous disease that includes a subset showing overexpression of the secreted glycoprotein Dickkopf-related protein 3 (Dkk-3), a protein shown to be downregulated in various cancers of different tissues. The biological function of Dkk-3 in this subset was studied using the Dkk-3 expressing PANC-1 cell line as a model for PDACs. The influence of Dkk-3 overexpression and knockdown on cellular differentiation and proliferation of PANC-1 was investigated. Confocal microscopy showed that Dkk-3 was expressed in a fraction of PANC-1 cells. While lentiviral-mediated overexpression of DKK3 did not alter cellular proliferation, knockdown of DKK3 resulted in significant reduction of cellular proliferation and concomitant induction of cell cycle inhibitors CDKN2B (p15INK4b), CDKN1A (p21CIP1) and CDKN1B (p27KIP1). In parallel, pancreatic epithelial cell differentiation markers AMY2A, CELA1, CTRB1, GCG, GLB1 and INS were significantly upregulated. PANC-1 cells differentiated using exendin-4 showed analogous induction of cell cycle inhibitors and differentiation markers. Thus, we conclude that Dkk-3 is required to maintain a highly dedifferentiated and consequently proliferative state in PANC-1, indicating a similar function in the Dkk-3 overexpressing subset of PDACs. Therefore, Dkk-3 represents a potential target for the treatment of Dkk-3-positive subtypes of PaCa to drive cells into cell cycle arrest and differentiation.

  17. Early Loss of Splenic Tfh Cells in SIV-Infected Rhesus Macaques

    PubMed Central

    Moukambi, Félicien; Rabezanahary, Henintsoa; Rodrigues, Vasco; Racine, Gina; Robitaille, Lynda; Krust, Bernard; Andreani, Guadalupe; Soundaramourty, Calayselvy; Silvestre, Ricardo; Laforge, Mireille; Estaquier, Jérôme

    2015-01-01

    Follicular T helper cells (Tfh), a subset of CD4 T lymphocytes, provide crucial help to B cells in the production of antigen-specific antibodies. Although several studies have analyzed the dynamics of Tfh cells in peripheral blood and lymph nodes (LNs) during Aids, none has yet addressed the impact of SIV infection on the dynamics of Tfh cells in the spleen, the primary organ of B cell activation. We show here a significant decrease in splenic Tfh cells in SIVmac251-infected rhesus macaques (RMs) during the acute phase of infection, which persists thereafter. This profound loss is associated with lack of sustained expression of the Tfh-defining transcription factors, Bcl-6 and c-Maf but with higher expression of the repressors KLF2 and Foxo1. In this context of Tfh abortive differentiation and loss, we found decreased percentages of memory B cell subsets and lower titers of SIV-specific IgG. We further demonstrate a drastic remodeling of the lymphoid architecture of the spleen and LNs, which disrupts the crucial cell-cell interactions necessary to maintain memory B cells and Tfh cells. Finally, our data demonstrated the early infection of Tfh cells. Paradoxically, the frequencies of SIV DNA were higher in splenic Tfh cells of RMs progressing more slowly suggesting sanctuaries for SIV in the spleen. Our findings provide important information regarding the impact of HIV/SIV infection on Tfh cells, and provide new clues for future vaccine strategies. PMID:26640894

  18. Interleukin (IL)-18 Binding Protein Deficiency Disrupts Natural Killer Cell Maturation and Diminishes Circulating IL-18

    PubMed Central

    Harms, Robert Z.; Creer, Austin J.; Lorenzo-Arteaga, Kristina M.; Ostlund, Katie R.; Sarvetnick, Nora E.

    2017-01-01

    The cytokine interleukin (IL)-18 is a crucial amplifier of natural killer (NK) cell function. IL-18 signaling is regulated by the inhibitory effects of IL-18 binding protein (IL-18BP). Using mice deficient in IL-18BP (IL-18BPKO), we investigated the impact of mismanaged IL-18 signaling on NK cells. We found an overall reduced abundance of splenic NK cells in the absence of IL-18BP. Closer examination of NK cell subsets in spleen and bone marrow using CD27 and CD11b expression revealed that immature NK cells were increased in abundance, while the mature population of NK cells was reduced. Also, NK cells were polarized to greater production of TNF-α, while dedicated IFN-γ producers were reduced. A novel subset of IL-18 receptor α− NK cells contributed to the expansion of immature NK cells in IL-18BPKO mice. Splenocytes cultured with IL-18 resulted in alterations similar to those observed in IL-18BP deficiency. NK cell changes were associated with significantly reduced levels of circulating plasma IL-18. However, IL-18BPKO mice exhibited normal weight gain and responded to LPS challenge with a >10-fold increase in IFN-γ compared to wild type. Finally, we identified that the source of splenic IL-18BP was among dendritic cells/macrophage localized to the T cell-rich regions of the spleen. Our results demonstrate that IL-18BP is required for normal NK cell abundance and function and also contributes to maintaining steady-state levels of circulating IL-18. Thus, IL-18BP appears to have functions suggestive of a carrier protein, not just an inhibitor. PMID:28900426

  19. High expression of AID and active class switch recombination might account for a more aggressive disease in unmutated CLL patients: link with an activated microenvironment in CLL disease.

    PubMed

    Palacios, Florencia; Moreno, Pilar; Morande, Pablo; Abreu, Cecilia; Correa, Agustín; Porro, Valentina; Landoni, Ana Ines; Gabus, Raul; Giordano, Mirta; Dighiero, Guillermo; Pritsch, Otto; Oppezzo, Pablo

    2010-06-03

    Interaction of chronic lymphocytic leukemia (CLL) B cells with tissue microenvironment has been suggested to favor disease progression by promoting malignant B-cell growth. Previous work has shown expression in peripheral blood (PB) of CLL B cells of activation-induced cytidine deaminase (AID) among CLL patients with an unmutated (UM) profile of immunoglobulin genes and with ongoing class switch recombination (CSR) process. Because AID expression results from interaction with activated tissue microenvironment, we speculated whether the small subset with ongoing CSR is responsible for high levels of AID expression and could be derived from this particular microenvironment. In this work, we quantified AID expression and ongoing CSR in PB of 50 CLL patients and characterized the expression of different molecules related to microenvironment interaction. Our results show that among UM patients (1) high AID expression is restricted to the subpopulation of tumoral cells ongoing CSR; (2) this small subset expresses high levels of proliferation, antiapoptotic and progression markers (Ki-67, c-myc, Bcl-2, CD49d, and CCL3/4 chemokines). Overall, this work outlines the importance of a cellular subset in PB of UM CLL patients with a poor clinical outcome, high AID levels, and ongoing CSR, whose presence might be a hallmark of a recent contact with the microenvironment.

  20. Primary Sjögren's syndrome is characterized by distinct phenotypic and transcriptional profiles of IgD+ unswitched memory B cells.

    PubMed

    Roberts, Mustimbo E P; Kaminski, Denise; Jenks, Scott A; Maguire, Craig; Ching, Kathryn; Burbelo, Peter D; Iadarola, Michael J; Rosenberg, Alexander; Coca, Andreea; Anolik, Jennifer; Sanz, Iñaki

    2014-09-01

    The significance of distinct B cell abnormalities in primary Sjögren's syndrome (SS) remains to be established. We undertook this study to analyze the phenotype and messenger RNA (mRNA) transcript profiles of B cell subsets in patients with primary SS and to compare them with those in sicca syndrome patients and healthy controls. CD19+ B cells from 26 patients with primary SS, 27 sicca syndrome patients, and 22 healthy controls were analyzed by flow cytometry. Gene expression profiles of purified B cell subsets (from 3-5 subjects per group per test) were analyzed using Affymetrix gene arrays. Patients with primary SS had lower frequencies of CD27+IgD- switched memory B cells and CD27+IgD+ unswitched memory B cells compared with healthy controls. Unswitched memory B cell frequencies were also lower in sicca syndrome patients and correlated inversely with serologic hyperactivity in both disease states. Further, unswitched memory B cells in primary SS had lower expression of CD1c and CD21. Gene expression analysis of CD27+ memory B cells separated patients with primary SS from healthy controls and identified a subgroup of sicca syndrome patients with a primary SS-like transcript profile. Moreover, unswitched memory B cell gene expression analysis identified 187 genes differentially expressed between patients with primary SS and healthy controls. A decrease in unswitched memory B cells with serologic hyperactivity is characteristic of both established primary SS and a subgroup of sicca syndrome, which suggests the value of these B cells both as biomarkers of future disease progression and for understanding disease pathogenesis. Overall, the mRNA transcript analysis of unswitched memory B cells suggests that their activation in primary SS takes place through innate immune pathways in the context of attenuated antigen-mediated adaptive signaling. Thus, our findings provide important insight into the mechanisms and potential consequences of decreased unswitched memory B cells in primary SS. Copyright © 2014 by the American College of Rheumatology.

  1. De novo transcriptome profiling of highly purified human lymphocytes primary cells

    PubMed Central

    Bonnal, Raoul J.P.; Ranzani, Valeria; Arrigoni, Alberto; Curti, Serena; Panzeri, Ilaria; Gruarin, Paola; Abrignani, Sergio; Rossetti, Grazisa; Pagani, Massimiliano

    2015-01-01

    To help better understand the role of long noncoding RNAs in the human immune system, we recently generated a comprehensive RNA-seq data set using 63 RNA samples from 13 subsets of T (CD4+ naive, CD4+ TH1, CD4+ TH2, CD4+ TH17, CD4+ Treg, CD4+ TCM, CD4+ TEM, CD8+ TCM, CD8+ TEM, CD8+ naive) and B (B naive, B memory, B CD5+) lymphocytes. There were five biological replicates for each subset except for CD8+ TCM and B CD5+ populations that included 4 replicates. RNA-Seq data were generated by an Illumina HiScanSQ sequencer using the TruSeq v3 Cluster kit. 2.192 billion of paired-ends reads, 2×100 bp, were sequenced and after filtering a total of about 1.7 billion reads were mapped. Using different de novo transcriptome reconstruction techniques over 500 previously unknown lincRNAs were identified. The current data set could be exploited to drive the functional characterization of lincRNAs, identify novel genes and regulatory networks associated with specific cells subsets of the human immune system. PMID:26451251

  2. Whole Blood Activation Results in Altered T Cell and Monocyte Cytokine Production Profiles by Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E.; Sams, Clarence F.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry, a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a whole-blood activation culture has been described. In this study, whole blood activation was compared to traditional PBMC activation and the individual cytokine secretion patterns for both T cells, T cell subsets and monocytes was determined by flow cytometry. RESULTS: For T cell cytokine assessment (IFNg/IL-10 and IL-21/L-4) following PMA +ionomycin activation: (1) a Significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture and (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. Four-color analysiS was used to allow assessment of cytokine production by specific T cell subsets. It was found that IFNgamma production was significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were Significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines (IL-1a/IL-12 and TNFa/IL-10) in conjunction with CD14. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFa. equally well in both culture systems, however monocyte production of IL-10 was significantly elevated in whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing monocytes may represent distinct monocyte subsets with unique functions. CONCLUSIONS: Whole blood culture eliminates the need to purify cell populations prior to culture and may have Significant utility for the routine monitoring of the cytokine balances of the peripheral blood T cell and monocyte populations. In addition, there are distinct advantages to performing whole-blood (WB) activation as compared to PBMC activation. These advantages would include retaining all various cell-cell interactions as well as any soluble factors present in serum that influence cell activation. In this study, alterations in cytokine production are demonstrated between whole blood and PBMC activation. It is likely that whole blood activation more accurately represents the in-vivo immune balance than PBMC activation.

  3. A Phase I Clinical Trial of Systemically Delivered NEMO Binding Domain Peptide in Dogs with Spontaneous Activated B-Cell like Diffuse Large B-Cell Lymphoma

    PubMed Central

    Habineza Ndikuyeze, Georges; Gaurnier-Hausser, Anita; Patel, Reema; Baldwin, Albert S.; May, Michael J.; Flood, Patrick; Krick, Erika; Propert, Kathleen J.; Mason, Nicola J.

    2014-01-01

    Activated B-Cell (ABC) Diffuse Large B-Cell Lymphoma (DLBCL) is a common, aggressive and poorly chemoresponsive subtype of DLBCL, characterized by constitutive canonical NF-κB signaling. Inhibition of NF-κB signaling leads to apoptosis of ABC-DLBCL cell lines, suggesting targeted disruption of this pathway may have therapeutic relevance. The selective IKK inhibitor, NEMO Binding Domain (NBD) peptide effectively blocks constitutive NF-κB activity and induces apoptosis in ABC-DLBCL cells in vitro. Here we used a comparative approach to determine the safety and efficacy of systemic NBD peptide to inhibit constitutive NF-κB signaling in privately owned dogs with spontaneous newly diagnosed or relapsed ABC-like DLBCL. Malignant lymph nodes biopsies were taken before and twenty-four hours after peptide administration to determine biological effects. Intravenous administration of <2 mg/kg NBD peptide was safe and inhibited constitutive canonical NF-κB activity in 6/10 dogs. Reductions in mitotic index and Cyclin D expression also occurred in a subset of dogs 24 hours post peptide and in 3 dogs marked, therapeutically beneficial histopathological changes were identified. Mild, grade 1 toxicities were noted in 3 dogs at the time of peptide administration and one dog developed transient subclinical hepatopathy. Long term toxicities were not identified. Pharmacokinetic data suggested rapid uptake of peptide into tissues. No significant hematological or biochemical toxicities were identified. Overall the results from this phase I study indicate that systemic administration of NBD peptide is safe and effectively blocks constitutive NF-κB signaling and reduces malignant B cell proliferation in a subset of dogs with ABC-like DLBCL. These results have potential translational relevance for human ABC-DLBCL. PMID:24798348

  4. Differential Recruitment of Dendritic Cells Subsets to Lymph Nodes Correlates with a Protective or Permissive T-Cell Response during Leishmania (Viannia) Braziliensis or Leishmania (Leishmania) Amazonensis Infection.

    PubMed

    Carvalho, A K; Carvalho, K; Passero, L F D; Sousa, M G T; da Matta, V L R; Gomes, C M C; Corbett, C E P; Kallas, G E; Silveira, F T; Laurenti, M D

    2016-01-01

    Leishmania (L.) amazonensis (La) and L. (V.) braziliensis (Lb) are responsible for a large clinical and immunopathological spectrum in human disease; while La may be responsible for anergic disease, Lb infection leads to cellular hypersensitivity. To better understand the dichotomy in the immune response caused by these Leishmania species, we evaluated subsets of dendritic cells (DCs) and T lymphocyte in draining lymph nodes during the course of La and Lb infection in BALB/c mice. Our results demonstrated a high involvement of DCs in La infection, which was characterized by the greater accumulation of Langerhans cells (LCs); conversely, Lb infection led to an increase in dermal DCs (dDCs) throughout the infection. Considering the T lymphocyte response, an increase of effector, activated, and memory CD4(+) T-cells was observed in Lb infection. Interleukin- (IL-) 4- and IL-10-producing CD4(+)and CD8(+) T-cells were present in both La and Lb infection; however, interferon- (IFN-) γ-producing CD4(+)and CD8(+) T-cells were detected only in Lb infection. The results suggest that during Lb infection, the dDCs were the predominant subset of DCs that in turn was associated with the development of Th1 immune response; in contrast La infection was associated with a preferential accumulation of LCs and total blockage of the development of Th1 immune response.

  5. Towards Deciphering the Hidden Mechanisms That Contribute to the Antigenic Activation Process of Human Vγ9Vδ2 T Cells.

    PubMed

    Boutin, Lola; Scotet, Emmanuel

    2018-01-01

    Vγ9Vδ2 T cells represent a major unconventional γδ T cell subset located in the peripheral blood of adults in humans and several non-human primates. Lymphocytes that constitute this transitional subset can sense subtle level changes of intracellular phosphorylated intermediates of the isoprenoid biosynthesis pathway (phosphoantigens, pAg), such as isopentenyl pyrophosphate, during cell stress events. This unique antigenic activation process operates in a rigorous framework that requires the expression of butyrophilin 3A1 (BTN3A1/CD277) molecules, which are type I glycoproteins that belong to the B7 family. Several studies have further shown that pAg specifically bind to the intracellular B30.2 domain of BTN3A1 linked to the antigenic activation of Vγ9Vδ2 T cells. Here, we highlight the recent advances in BTN3A1 dynamics induced upon the binding of pAg and the contribution of the different subunits to this activation process. Recent reports support that conformational modifications of BTN3A1 might represent a key step in the detection of infection or tumorigenesis by Vγ9Vδ2 T cells. A better understanding of this mechanism will help optimize novel immunotherapeutical approaches that target defined functions of this unique γδ T cell subset.

  6. Towards Deciphering the Hidden Mechanisms That Contribute to the Antigenic Activation Process of Human Vγ9Vδ2 T Cells

    PubMed Central

    Boutin, Lola; Scotet, Emmanuel

    2018-01-01

    Vγ9Vδ2 T cells represent a major unconventional γδ T cell subset located in the peripheral blood of adults in humans and several non-human primates. Lymphocytes that constitute this transitional subset can sense subtle level changes of intracellular phosphorylated intermediates of the isoprenoid biosynthesis pathway (phosphoantigens, pAg), such as isopentenyl pyrophosphate, during cell stress events. This unique antigenic activation process operates in a rigorous framework that requires the expression of butyrophilin 3A1 (BTN3A1/CD277) molecules, which are type I glycoproteins that belong to the B7 family. Several studies have further shown that pAg specifically bind to the intracellular B30.2 domain of BTN3A1 linked to the antigenic activation of Vγ9Vδ2 T cells. Here, we highlight the recent advances in BTN3A1 dynamics induced upon the binding of pAg and the contribution of the different subunits to this activation process. Recent reports support that conformational modifications of BTN3A1 might represent a key step in the detection of infection or tumorigenesis by Vγ9Vδ2 T cells. A better understanding of this mechanism will help optimize novel immunotherapeutical approaches that target defined functions of this unique γδ T cell subset. PMID:29731756

  7. The TNF receptor and Ig superfamily members form an integrated signaling circuit controlling dendritic cell homeostasis

    PubMed Central

    De Trez, Carl; Ware, Carl F.

    2008-01-01

    Dendritic cells (DC) constitute the most potent antigen presenting cells of the immune system, playing a key role bridging innate and adaptive immune responses. Specialized DC subsets differ depending on their origin, tissue location and the influence of trophic factors, the latter remain to be fully understood. Stromal cell and myeloid-associated Lymphotoxin-β receptor (LTβR) signaling is required for the local proliferation of lymphoid tissue DC. This review focuses the LTβR signaling cascade as a crucial positive trophic signal in the homeostasis of DC subsets. The noncanonical coreceptor pathway comprised of the Immunoglobulin (Ig) superfamily member, B and T lymphocyte attenuator (BTLA) and TNFR superfamily member, Herpesvirus entry mediator (HVEM) counter regulates the trophic signaling by LTβR. Together both pathways form an integrated signaling circuit achieving homeostasis of DC subsets. PMID:18511331

  8. B cells expressing the transcription factor T-bet drive lupus-like autoimmunity

    PubMed Central

    Rubtsov, Anatoly V.; Thurman, Joshua M.; Mennona, Johanna M.; Kappler, John W.; Marrack, Philippa

    2017-01-01

    B cells contribute to multiple aspects of autoimmune disorders and may play a role in triggering disease. Thus, targeting B cells may be a promising strategy for treating autoimmune disorders. Better understanding of the B cell subsets that are responsible for the development of autoimmunity will be critical for developing efficient therapies. Here we have reported that B cells expressing the transcription factor T-bet promote the rapid appearance of autoantibodies and germinal centers in spontaneous murine models of systemic lupus erythematosus (SLE). Conditional deletion of T-bet from B cells impaired the formation of germinal centers and mitigated the development of kidney damage and rapid mortality in SLE mice. B cell–specific deletion of T-bet was also associated with lower activation of both B cells and T cells. Taken together, our results suggest that targeting T-bet–expressing B cells may be a potential target for therapy for autoimmune diseases. PMID:28240602

  9. The CXCL16-CXCR6 chemokine axis in glial tumors.

    PubMed

    Hattermann, Kirsten; Held-Feindt, Janka; Ludwig, Andreas; Mentlein, Rolf

    2013-07-15

    Since chemokines and their receptors play a pivotal role in tumors, we investigated the CXCL16-CXCR6-axis in human astroglial tumors. The transmembrane chemokine CXCL16 is heavily expressed by tumor, microglial and endothelial cells in situ and in vitro. In contrast, the receptor CXCR6 is restricted in glioblastomas to a small subset of proliferating cells positive for the stem-cell markers Musashi, Nanog, Sox2 and Oct4. In particular, the vast majority (about 90%) of Musashi-positive cells stained also for CXCR6. Thus, CXCL16 is highly expressed by glial tumor and stroma cells whereas CXCR6 defines a subset of cells with stem cell character. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The Caenorhabditis elegans gene ham-1 regulates daughter cell size asymmetry primarily in divisions that produce a small anterior daughter cell

    PubMed Central

    Kovacevic, Ismar; Bao, Zhirong

    2018-01-01

    C. elegans cell divisions that produce an apoptotic daughter cell exhibit Daughter Cell Size Asymmetry (DCSA), producing a larger surviving daughter cell and a smaller daughter cell fated to die. Genetic screens for mutants with defects in apoptosis identified several genes that are also required for the ability of these divisions to produce daughter cells that differ in size. One of these genes, ham-1, encodes a putative transcription factor that regulates a subset of the asymmetric cell divisions that produce an apoptotic daughter cell. In a survey of C. elegans divisions, we found that ham-1 mutations affect primarily anterior/posterior divisions that produce a small anterior daughter cell. The affected divisions include those that generate an apoptotic cell as well as those that generate two surviving cells. Our findings suggest that HAM-1 primarily promotes DCSA in a certain class of asymmetric divisions. PMID:29668718

  11. Th17 Immune Cells in vivo: Friend or Foe? | Center for Cancer Research

    Cancer.gov

    Upon encountering an antigen, T cells bearing CD4+ (a helper marker) proliferate and become polarized. During this process, the cells produce specific signaling molecules called cytokines.  This signaling stimulates the T cells to become more specialized.  What results is the production of T cell subsets such as Th1, Th17, or others.

  12. Increased naive CD4+ and B lymphocyte subsets are associated with body mass loss and drive relative lymphocytosis in anorexia nervosa patients.

    PubMed

    Elegido, Ana; Graell, Montserrat; Andrés, Patricia; Gheorghe, Alina; Marcos, Ascensión; Nova, Esther

    2017-03-01

    Anorexia nervosa (AN) is an atypical form of malnutrition with peculiar changes in the immune system. We hypothesized that different lymphocyte subsets are differentially affected by malnutrition in AN, and thus, our aim was to investigate the influence of body mass loss on the variability of lymphocyte subsets in AN patients. A group of 66 adolescent female patients, aged 12-17 years, referred for their first episode of either AN or feeding or eating disorders not elsewhere classified were studied upon admission (46 AN-restricting subtype, 11 AN-binge/purging subtype, and 9 feeding or eating disorders not elsewhere classified). Ninety healthy adolescents served as controls. White blood cells and lymphocyte subsets were analyzed by flow cytometry. Relationships with the body mass index (BMI) z score were assessed in linear models adjusted by diagnostic subtype and age. Leukocyte numbers were lower in AN patients than in controls, and relative lymphocytosis was observed in AN-restricting subtype. Lower CD8 + , NK, and memory CD8 + counts were found in eating disorder patients compared with controls. No differences were found for CD4 + counts or naive and memory CD4 + subsets between the groups. Negative associations between lymphocyte percentage and the BMI z score, as well as between the B cell counts, naive CD4 + percentage and counts, and the BMI z score, were found. In conclusion, increased naive CD4 + and B lymphocyte subsets associated with body mass loss drive the relative lymphocytosis observed in AN patients, which reflects an adaptive mechanism to preserve the adaptive immune response. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. IL-17A is produced by breast cancer TILs and promotes chemoresistance and proliferation through ERK1/2

    PubMed Central

    Cochaud, Stéphanie; Giustiniani, Jérôme; Thomas, Clémence; Laprevotte, Emilie; Garbar, Christian; Savoye, Aude-Marie; Curé, Hervé; Mascaux, Corinne; Alberici, Gilles; Bonnefoy, Nathalie; Eliaou, Jean-François; Bensussan, Armand; Bastid, Jeremy

    2013-01-01

    The proinflammatory cytokine Interleukin 17A (hereafter named IL–17A) or IL-17A producing cells are elevated in breast tumors environment and correlate with poor prognosis. Increased IL-17A is associated with ER(−) or triple negative tumors and reduced Disease Free Survival. However, the pathophysiological role of IL-17A in breast cancer remains unclear although several studies suggested its involvement in cancer cell dissemination. Here we demonstrated that a subset of breast tumors is infiltrated with IL-17A-producing cells. Increased IL-17A seems mainly associated to ER(−) and triple negative/basal-like tumors. Isolation of tumor infiltrating T lymphocytes (TILs) from breast cancer biopsies revealed that these cells secreted significant amounts of IL-17A. We further established that recombinant IL-17A recruits the MAPK pathway by upregulating phosphorylated ERK1/2 in human breast cancer cell lines thereby promoting proliferation and resistance to conventional chemotherapeutic agents such as docetaxel. We also confirmed here that recombinant IL-17A stimulates migration and invasion of breast cancer cells as previously reported. Importantly, TILs also induced tumor cell proliferation, chemoresistance and migration and treatment with IL-17A-neutralizing antibodies abrogated these effects. Altogether these results demonstrated the pathophysiological role of IL-17A-producing cell infiltrate in a subset of breast cancers. Therefore, IL-17A appears as potential therapeutic target for breast cancer. PMID:24316750

  14. Cellular sources and targets of IFN-gamma-mediated protection against viral demyelination and neurological deficits.

    PubMed

    Murray, Paul D; McGavern, Dorian B; Pease, Larry R; Rodriguez, Moses

    2002-03-01

    IFN-gamma is an anti-viral and immunomodulatory cytokine critical for resistance to multiple pathogens. Using mice with targeted disruption of the gene for IFN-gamma, we previously demonstrated that this cytokine is critical for resistance to viral persistence and demyelination in the Theiler's virus model of multiple sclerosis. During viral infections, IFN-gamma is produced by natural killer (NK) cells, CD4(+) and CD8(+) T cells; however, the proportions of lymphocyte subsets responding to virus infection influences the contributions to IFN-gamma-mediated protection. To determine the lymphocyte subsets that produce IFN-gamma to maintain resistance, we used adoptive transfer strategies to generate mice with lymphocyte-specific deficiencies in IFN-gamma-production. We demonstrate that IFN-gamma production by both CD4(+) and CD8(+) T cell subsets is critical for resistance to Theiler's murine encephalomyelitis virus (TMEV)-induced demyelination and neurological disease, and that CD4(+) T cells make a greater contribution to IFN-gamma-mediated protection. To determine the cellular targets of IFN-gamma-mediated responses, we used adoptive transfer studies and bone marrow chimerism to generate mice in which either hematopoietic or somatic cells lacked the ability to express IFN-gamma receptor. We demonstrate that IFN-gamma receptor must be present on central nervous system glia, but not bone marrow-derived lymphocytes, in order to maintain resistance to TMEV-induced demyelination.

  15. Cellular sources and targets of IFN-γ-mediated protection against viral demyelination and neurological deficits

    PubMed Central

    Murray, Paul D.; McGavern, Dorian B.; Pease, Larry R.; Rodriguez, Moses

    2017-01-01

    IFN-γ is an anti-viral and immunomodulatory cytokine critical for resistance to multiple pathogens. Using mice with targeted disruption of the gene for IFN-γ, we previously demonstrated that this cytokine is critical for resistance to viral persistence and demyelination in the Theiler’s virus model of multiple sclerosis. During viral infections, IFN-γ is produced by natural killer (NK) cells, CD4+ and CD8+ T cells; however, the proportions of lymphocyte subsets responding to virus infection influences the contributions to IFN-γ-mediated protection. To determine the lymphocyte subsets that produce IFN-γ to maintain resistance, we used adoptive transfer strategies to generate mice with lymphocyte-specific deficiencies in IFN-γ-production. We demonstrate that IFN-γ production by both CD4+ and CD8+ T cell subsets is critical for resistance to Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelination and neurological disease, and that CD4+ T cells make a greater contribution to IFN-γ-mediated protection. To determine the cellular targets of IFN-γ-mediated responses, we used adoptive transfer studies and bone marrow chimerism to generate mice in which either hematopoietic or somatic cells lacked the ability to express IFN-γ receptor. We demonstrate that IFN-γ receptor must be present on central nervous system glia, but not bone marrow-derived lymphocytes, in order to maintain resistance to TMEV-induced demyelination. PMID:11857334

  16. Update on the pathogenesis of Scleroderma: focus on circulating progenitor cells.

    PubMed

    Brunasso, Alexandra Maria Giovanna; Massone, Cesare

    2016-01-01

    In systemic sclerosis (SSc), the development of fibrosis seems to be a consequence of the initial ischemic process related to an endothelial injury. The initial trigger event in SSc is still unknown, but circulating progenitor cells (CPCs) might play a key role. Such cells have the ability to traffic into injury sites, exhibiting inflammatory features of macrophages, tissue remodeling properties of fibroblasts, and vasculogenesis functions of endothelial cells. The different subsets of CPCs described thus far in SSc arise from a pool of circulating monocyte precursors (CD14 (+) cells) and probably correspond to a different degree of differentiation of a single cell of origin. Several subsets of CPCs have been described in patients with SSc, all have a monocytic origin but may or may not express CD14, and all of these cells have the ability to give origin to endothelial cells, or collagen (Col)-producing cells, or both. We were able to identify six subsets of CPCs: pluripotent stem cells (CD14 (+), CD45 (+), and CD34 (+)), monocyte-derived multipotential cells (MOMCs) or monocyte-derived mesenchymal progenitors (CD14 (+), CD45 (+), CD34 (+), Col I (+), CD11b (+), CD68 (+), CD105 (+), and VEGFR1 (+)), early endothelial progenitor cells (EPCs) or monocytic pro-angiogenic hematopoietic cells or circulating hematopoietic cells (CD14 (+), CD45 (+), CD34 (low/-), VEGFR2 (+/-), CXCR4 (+), c-kit (+), and DC117 (+)), late EPCs (CD14 (-), CD133 (+), VEGFR2 (+), CD144 (+) [VE-cadherin (+)], and CD146 (+)), fibroblast-like cells (FLCs)/circulating Col-producing monocytes (CD14 (+), CD45 (+), CD34 (+/-), and Col I (+)), and fibrocytes (CD14 (-), CD45 (+), CD34 (+), Col I (+), and CXCR4 (+)). It has been demonstrated that circulating CD14 (+) monocytes with an activated phenotype are increased in patients with SSc when compared with normal subjects. CD14 (+), CD34 (+), and Col I (+) spindle-shaped cells have been found in increased numbers in lungs of SSc patients with interstitial lung disease. Elevated blood amounts of early EPCs have been found in patients with SSc by different groups of researchers and such levels correlate directly with the interstitial lung involvement. The prevalence of hematopoietic markers expressed by CPCs that migrate from blood into injury sites in SSc differs and changes according to the degree of differentiation. CXCR4 is the most commonly expressed marker, followed by CD34 and CD45 at an end stage of differentiation. Such difference also indicates a continuous process of cell differentiation that might relate to the SSc clinical phenotype (degree of fibrosis and vascular involvement). A deeper understanding of the role of each subtype of CPCs in the development of the disease will help us to better classify patients in order to offer them targeted approaches in the future.

  17. CD25 identifies a subset of CD4⁺FoxP3⁻ TIL that are exhausted yet prognostically favorable in human ovarian cancer.

    PubMed

    deLeeuw, Ronald J; Kroeger, David R; Kost, Sara E; Chang, Pheh-Ping; Webb, John R; Nelson, Brad H

    2015-03-01

    CD25, the alpha subunit of the IL2 receptor, is a canonical marker of regulatory T cells (Treg) and hence has been implicated in immune suppression in cancer. However, CD25 is also required for optimal expansion and activity of effector T cells in peripheral tissues. Thus, we hypothesized that CD25, in addition to demarcating Tregs, might identify effector T cells in cancer. To investigate this possibility, we used multiparameter flow cytometry and IHC to analyze tumor-infiltrating lymphocytes (TIL) in primary high-grade serous carcinomas, the most common and fatal subtype of ovarian cancer. CD25 was expressed primarily by CD4⁺ TIL, with negligible expression by CD8⁺ TIL. In addition to conventional CD25⁺FoxP3⁺ Tregs, we identified a subset of CD25⁺FoxP3⁻ T cells that comprised up to 13% of CD4⁺ TIL. In tumors with CD8⁺ TIL, CD25⁺FoxP3⁻ T cells showed a strong positive association with patient survival (HR, 0.56; P = 0.02), which exceeded the negative effect of Tregs (HR, 1.55; P = 0.09). Among CD4⁺ TIL subsets, CD25⁺FoxP3⁻ cells expressed the highest levels of PD-1. Moreover, after in vitro stimulation, they failed to produce common T-helper cytokines (IFNγ, TNFα, IL2, IL4, IL10, or IL17A), suggesting that they were functionally exhausted. In contrast, the more abundant CD25⁻FoxP3⁻ subset of CD4⁺ TIL expressed low levels of PD-1 and produced T-helper 1 cytokines, yet conferred no prognostic benefit. Thus, CD25 identifies a subset of CD4⁺FoxP3⁻ TIL that, despite being exhausted at diagnosis, have a strong, positive association with patient survival and warrant consideration as effector T cells for immunotherapy. ©2014 American Association for Cancer Research.

  18. Efficient activation of human T cells of both CD4 and CD8 subsets by urease-deficient recombinant Mycobacterium bovis BCG that produced a heat shock protein 70-M. tuberculosis-derived major membrane protein II fusion protein.

    PubMed

    Mukai, Tetsu; Tsukamoto, Yumiko; Maeda, Yumi; Tamura, Toshiki; Makino, Masahiko

    2014-01-01

    For the purpose of obtaining Mycobacterium bovis bacillus Calmette-Guérin (BCG) capable of activating human naive T cells, urease-deficient BCG expressing a fusion protein composed of Mycobacterium tuberculosis-derived major membrane protein II (MMP-II) and heat shock protein 70 (HSP70) of BCG (BCG-DHTM) was produced. BCG-DHTM secreted the HSP70-MMP-II fusion protein and effectively activated human monocyte-derived dendritic cells (DCs) by inducing phenotypic changes and enhanced cytokine production. BCG-DHTM-infected DCs activated naive T cells of both CD4 and naive CD8 subsets, in an antigen (Ag)-dependent manner. The T cell activation induced by BCG-DHTM was inhibited by the pretreatment of DCs with chloroquine. The naive CD8(+) T cell activation was mediated by the transporter associated with antigen presentation (TAP) and the proteosome-dependent cytosolic cross-priming pathway. Memory CD8(+) T cells and perforin-producing effector CD8(+) T cells were efficiently produced from the naive T cell population by BCG-DHTM stimulation. Single primary infection with BCG-DHTM in C57BL/6 mice efficiently produced T cells responsive to in vitro secondary stimulation with HSP70, MMP-II, and M. tuberculosis-derived cytosolic protein and inhibited the multiplication of subsequently aerosol-challenged M. tuberculosis more efficiently than did vector control BCG. These results indicate that the introduction of MMP-II and HSP70 into urease-deficient BCG may be useful for improving BCG for control of tuberculosis.

  19. Small cell lymphocytic variant of marginal zone lymphoma: A distinct form of marginal zone lymphoma derived from naïve B cells as a cutaneous counterpart to the naïve marginal zone lymphoma of splenic origin.

    PubMed

    Magro, Cynthia M; Olson, Luke C

    2018-02-21

    Primary cutaneous marginal zone lymphoma most commonly represents an indolent form of cutaneous B cell lymphoma. However, epidermotropic marginal zone lymphoma, blastic marginal zone lymphoma and B cell dominant variants without isotype switching can be associated with extracutaneous dissemination. The presumptive cell of origin is a post germinal center B cell with plasmacytic features. In the extracutaneous setting, however, a naïve B cell origin has been proposed for a subset of marginal zone lymphomas, notably splenic marginal zone lymphoma. The author encountered 11 cases of atypical lymphocytic infiltration of the skin primarily occurring in older individuals with an upper arm and head and neck localization; there was a reproducible pattern of diffuse and nodular infiltration by small monomorphic-appearing B cells. Phenotypically, the infiltrate was one predominated by B cells exhibiting CD23 and IgD positivity without immunoreactivity for CD38 and there were either no plasma cells or only a few without light chain restriction. In cases presenting with a solitary lesion complete excision and/or radiation led to successful disease remission in all cases without recurrence or metastatic disease. Of three cases with multiple initial lesions, evidence of extracutaneous disease was seen in two cases and recurrence occurred in one case. No patients have died of lymphoma. Longer term follows up and additional cases are needed to determine if this subset of marginal zone lymphoma is associated with a worse prognosis. Copyright © 2018. Published by Elsevier Inc.

  20. Irf4-dependent CD103+CD11b+ dendritic cells and the intestinal microbiome regulate monocyte and macrophage activation and intestinal peristalsis in postoperative ileus

    PubMed Central

    Pohl, Judith-Mira; Gutweiler, Sebastian; Thiebes, Stephanie; Volke, Julia K; Klein-Hitpass, Ludger; Zwanziger, Denise; Gunzer, Matthias; Jung, Steffen; Agace, William W; Kurts, Christian

    2017-01-01

    Objective Postoperative ileus (POI), the most frequent complication after intestinal surgery, depends on dendritic cells (DCs) and macrophages. Here, we have investigated the mechanism that activates these cells and the contribution of the intestinal microbiota for POI induction. Design POI was induced by manipulating the intestine of mice, which selectively lack DCs, monocytes or macrophages. The disease severity in the small and large intestine was analysed by determining the distribution of orally applied fluorescein isothiocyanate-dextran and by measuring the excretion time of a retrogradely inserted glass ball. The impact of the microbiota on intestinal peristalsis was evaluated after oral antibiotic treatment. Results We found that Cd11c-Cre+ Irf4flox/flox mice lack CD103+CD11b+ DCs, a DC subset unique to the intestine whose function is poorly understood. Their absence in the intestinal muscularis reduced pathogenic inducible nitric oxide synthase (iNOS) production by monocytes and macrophages and ameliorated POI. Pathogenic iNOS was produced in the jejunum by resident Ly6C– macrophages and infiltrating chemokine receptor 2-dependent Ly6C+ monocytes, but in the colon only by the latter demonstrating differential tolerance mechanisms along the intestinal tract. Consistently, depletion of both cell subsets reduced small intestinal POI, whereas the depletion of Ly6C+ monocytes alone was sufficient to prevent large intestinal POI. The differential role of monocytes and macrophages in small and large intestinal POI suggested a potential role of the intestinal microbiota. Indeed, antibiotic treatment reduced iNOS levels and ameliorated POI. Conclusions Our findings reveal that CD103+CD11b+ DCs and the intestinal microbiome are a prerequisite for the activation of intestinal monocytes and macrophages and for dysregulating intestinal motility in POI. PMID:28615301

  1. CXCR3 expression defines a novel subset of innate CD8+ T cells that enhance immunity against bacterial infection and cancer upon stimulation with IL-15

    PubMed Central

    Oghumu, Steve; Terrazas, Cesar A.; Varikuti, Sanjay; Kimble, Jennifer; Vadia, Stephen; Yu, Lianbo; Seveau, Stephanie; Satoskar, Abhay R.

    2015-01-01

    Innate CD8+ T cells are a heterogeneous population with developmental pathways distinct from conventional CD8+ T cells. However, their biology, classification, and functions remain incompletely understood. We recently demonstrated the existence of a novel population of chemokine (C-X-C motif) receptor 3 (CXCR3)-positive innate CD8+ T cells. Here, we investigated the functional properties of this subset and identified effector molecules and pathways which mediate their function. Adoptive transfer of IL-15 activated CXCR3+ innate CD8+ T cells conferred increased protection against Listeria monocytogenes infection in susceptible IFN-γ−/− mice compared with similarly activated CXCR3− subset. This was associated with enhanced proliferation and IFN-γ production in CXCR3+ cells. Further, CXCR3+ innate cells showed enhanced cytotoxicity against a tumor cell line in vitro. In depth analysis of the CXCR3+ subset showed increased gene expression of Ccl5, Klrc1, CtsW, GP49a, IL-2Rβ, Atp5e, and Ly6c but reduced IFN-γR2 and Art2b. Ingenuity pathway analysis revealed an up-regulation of genes associated with T-cell activation, proliferation, cytotoxicity, and translational initiation in CXCR3+ populations. Our results demonstrate that CXCR3 expression in innate CD8+ T cells defines a subset with enhanced cytotoxic potential and protective antibacterial immune functions. Immunotherapeutic approaches against infectious disease and cancer could utilize CXCR3+ innate CD8+ T-cell populations as novel clinical intervention strategies.—Oghumu, S., Terrazas, C. A., Varikuti, S., Kimble, J., Vadia, S., Yu, L., Seveau, S., Satoskar, A. R. CXCR3 expression defines a novel subset of innate CD8+ T cells that enhance immunity against bacterial infection and cancer upon stimulation with IL-15. PMID:25466888

  2. Human intestinal pro-inflammatory CD11chighCCR2+CX3CR1+ macrophages, but not their tolerogenic CD11c-CCR2-CX3CR1- counterparts, are expanded in inflammatory bowel disease.

    PubMed

    Bernardo, D; Marin, A C; Fernández-Tomé, S; Montalban-Arques, A; Carrasco, A; Tristán, E; Ortega-Moreno, L; Mora-Gutiérrez, I; Díaz-Guerra, A; Caminero-Fernández, R; Miranda, P; Casals, F; Caldas, M; Jiménez, M; Casabona, S; De la Morena, F; Esteve, M; Santander, C; Chaparro, M; Gisbert, J P

    2018-05-09

    Although macrophages (Mϕ) maintain intestinal immune homoeostasis, there is not much available information about their subset composition, phenotype and function in the human setting. Human intestinal Mϕ (CD45 + HLA-DR + CD14 + CD64 + ) can be divided into subsets based on the expression of CD11c, CCR2 and CX3CR1. Monocyte-like cells can be identified as CD11c high CCR2 + CX3CR1 + cells, a phenotype also shared by circulating CD14 + monocytes. On the contrary, their Mϕ-like tissue-resident counterparts display a CD11c - CCR2 - CX3CR1 - phenotype. CD11c high monocyte-like cells produced IL-1β, both in resting conditions and after LPS stimulation, while CD11c - Mϕ-like cells produced IL-10. CD11c high pro-inflammatory monocyte-like cells, but not the others, were increased in the inflamed colon from patients with inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. Tolerogenic IL-10-producing CD11c - Mϕ-like cells were generated from monocytes following mucosal conditioning. Finally, the colonic mucosa recruited circulating CD14 + monocytes in a CCR2-dependent manner, being such capacity expanded in IBD. Mϕ subsets represent, therefore, transition stages from newly arrived pro-inflammatory monocyte-like cells (CD11c high CCR2 + CX3CR1 + ) into tolerogenic tissue-resident (CD11c - CCR2 - CX3CR1 - ) Mϕ-like cells as reflected by the mucosal capacity to recruit circulating monocytes and induce CD11c - Mϕ. The process is nevertheless dysregulated in IBD, where there is an increased migration and accumulation of pro-inflammatory CD11c high monocyte-like cells.

  3. Gestational Diabetes Mellitus From Inactivation of Prolactin Receptor and MafB in Islet β-Cells.

    PubMed

    Banerjee, Ronadip R; Cyphert, Holly A; Walker, Emily M; Chakravarthy, Harini; Peiris, Heshan; Gu, Xueying; Liu, Yinghua; Conrad, Elizabeth; Goodrich, Lisa; Stein, Roland W; Kim, Seung K

    2016-08-01

    β-Cell proliferation and expansion during pregnancy are crucial for maintaining euglycemia in response to increased metabolic demands placed on the mother. Prolactin and placental lactogen signal through the prolactin receptor (PRLR) and contribute to adaptive β-cell responses in pregnancy; however, the in vivo requirement for PRLR signaling specifically in maternal β-cell adaptations remains unknown. We generated a floxed allele of Prlr, allowing conditional loss of PRLR in β-cells. In this study, we show that loss of PRLR signaling in β-cells results in gestational diabetes mellitus (GDM), reduced β-cell proliferation, and failure to expand β-cell mass during pregnancy. Targeted PRLR loss in maternal β-cells in vivo impaired expression of the transcription factor Foxm1, both G1/S and G2/M cyclins, tryptophan hydroxylase 1 (Tph1), and islet serotonin production, for which synthesis requires Tph1. This conditional system also revealed that PRLR signaling is required for the transient gestational expression of the transcription factor MafB within a subset of β-cells during pregnancy. MafB deletion in maternal β-cells also produced GDM, with inadequate β-cell expansion accompanied by failure to induce PRLR-dependent target genes regulating β-cell proliferation. These results unveil molecular roles for PRLR signaling in orchestrating the physiologic expansion of maternal β-cells during pregnancy. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  4. The inhibitory HVEM-BTLA pathway counter regulates lymphotoxin receptor signaling to achieve homeostasis of dendritic cells.

    PubMed

    De Trez, Carl; Schneider, Kirsten; Potter, Karen; Droin, Nathalie; Fulton, James; Norris, Paula S; Ha, Suk-won; Fu, Yang-Xin; Murphy, Theresa; Murphy, Kenneth M; Pfeffer, Klaus; Benedict, Chris A; Ware, Carl F

    2008-01-01

    Proliferation of dendritic cells (DC) in the spleen is regulated by positive growth signals through the lymphotoxin (LT)-beta receptor; however, the countering inhibitory signals that achieve homeostatic control are unresolved. Mice deficient in LTalpha, LTbeta, LTbetaR, and the NFkappaB inducing kinase show a specific loss of CD8- DC subsets. In contrast, the CD8alpha- DC subsets were overpopulated in mice deficient in the herpesvirus entry mediator (HVEM) or B and T lymphocyte attenuator (BTLA). HVEM- and BTLA-deficient DC subsets displayed a specific growth advantage in repopulating the spleen in competitive replacement bone marrow chimeric mice. Expression of HVEM and BTLA were required in DC and in the surrounding microenvironment, although DC expression of LTbetaR was necessary to maintain homeostasis. Moreover, enforced activation of the LTbetaR with an agonist Ab drove expansion of CD8alpha- DC subsets, overriding regulation by the HVEM-BTLA pathway. These results indicate the HVEM-BTLA pathway provides an inhibitory checkpoint for DC homeostasis in lymphoid tissue. Together, the LTbetaR and HVEM-BTLA pathways form an integrated signaling network regulating DC homeostasis.

  5. Immune reconstitution in patients with Fanconi anemia after allogeneic bone marrow transplantation.

    PubMed

    Perlingeiro Beltrame, Miriam; Malvezzi, Mariester; Bonfim, Carmem; Covas, Dimas Tadeu; Orfao, Alberto; Pasquini, Ricardo

    2014-07-01

    Fanconi anemia is an autosomal recessive or X-linked genetic disorder characterized by bone marrow (BM) failure/aplasia. Failure of hematopoiesis results in depletion of the BM stem cell reservoir, which leads to severe anemia, neutropenia and thrombocytopenia, frequently requiring therapeutic interventions, including hematopoietic stem cell transplantation (HSCT). Successful BM transplantation (BMT) requires reconstitution of normal immunity. In the present study, we performed a detailed analysis of the distribution of peripheral blood subsets of T, B and natural killer (NK) lymphocytes in 23 patients with Fanconi anemia before and after BMT on days +30, +60, +100, +180, +270 and +360. In parallel, we evaluated the effect of related versus unrelated donor marrow as well as the presence of graft-versus-host disease (GVHD). After transplantation, we found different kinetics of recovery for the distinct major subsets of lymphocytes. NK cells were the first to recover, followed by cytotoxic CD8(+) T cells and B cells, and finally CD4(+) helper T cells. Early lymphocyte recovery was at the expense of memory cells, potentially derived from the graft, whereas recent thymic emigrant (CD31(+) CD45RA(+)) and naive CD4(+) or CD8(+) T cells rose only at 6 months after HSCT, in the presence of immunosuppressive GVHD prophylactic agents. Only slight differences were observed in the early recovery of cytotoxic CD8(+) T cells among those cases receiving a graft from a related donor versus an unrelated donor. Patients with GVHD displayed a markedly delayed recovery of NK cells and B cells as well as of regulatory T cells and both early thymic emigrant and total CD4(+) T cells. Our results support the utility of post-transplant monitoring of a peripheral blood lymphocyte subset for improved follow-up of patients with Fanconi anemia undergoing BMT. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. Cellular and humoral immune reactions in chronic active liver disease. II. Lymphocyte subsets and viral antigens in liver biopsies of patients with acute and chronic hepatitis B.

    PubMed Central

    Eggink, H F; Houthoff, H J; Huitema, S; Wolters, G; Poppema, S; Gips, C H

    1984-01-01

    The characteristics and distribution of the inflammatory infiltrate in liver biopsies of 25 patients with hepatitis B viral (HBV) infection were studied in relation to the distribution and expression of HBV antigens. Mononuclear subsets were characterized with monoclonal (OKT, OKM, Leu) antibodies to surface antigens. For the demonstration of viral antigens directly conjugated antibodies to surface (HBsAg), core (HBcAg) and 'e' (HBeAg) antigen were used. For the study of mutual relations all methods were performed on serial cut tissue sections. In chronic active hepatitis B (CAH-B, n = 12) OKT8+ lymphocytes of T cell origin were the only cell type present in areas with liver cell degeneration and T cell cytotoxicity appears to be the only immune mechanism. In chronic persistent hepatitis B (CPH-B, n = 7) the only conspicuous feature was the presence of many Leu 3+ lymphocytes of the helper/inducer population in the portal tracts. In acute hepatitis B (AHB, n = 6) OKT8+ cells of non-T origin (OKT1-,3-) and Leu 7+ cells of presumed natural killer (NK) potential predominated in the areas with liver cell necrosis, and non-T cell cytotoxicity appears to be the predominant immune mechanism. In none of these disease entities a positive spatial relation could be established between the cytotoxic cells and the demonstrable expression of HBV antigens in hepatocytes. It is concluded that differences in immunological reaction pattern may explain the different course in the three forms of HBV infection studied. Images Fig. 1 Fig. 2 PMID:6713726

  7. [Analysis of the numbers and subsets of MTB-HAg specific TNF-α+ γδ T cells in peripheral blood of patients with active pulmonary tuberculosis].

    PubMed

    Tang, Jie; Chen, Ce; Zha, Cheng; Wang, Zhaohua; Zhang, Chen; Zeng, Linli; Li, Baiqing

    2016-11-01

    Objective To investigate the differences of proportions of tumor necrosis factor α (TNF-α)-producing cells in peripheral blood γδ T cells stimulated with Mycobacterium tuberculosis heat resistant antigen (MTB-HAg) among patients with pulmonary tuberculosis (PTB), latent tuberculosis infection (LTBI) and healthy subjects (HC). Methods The peripheral blood specimens were collected from 15 normal adults, which were divided into HC group (n=9) and LTBI group (n=6), by enzyme-linked immunospot (ELISPOT) kit for diagnosis of Mycobacterium tuberculosis infection, and 12 patients with active PTB. The peripheral blood mononuclear cells (PBMCs) were separated by density gradient centrifugation and simulated with MTB-HAg for 20 hours. Then the cells were collected, and the proportions of TNF-α-producing cells in TCRαβ + T cells, TCRγδ + T cells, CD4 + αβ T cells, CD8 + αβ T cells, and TCR-Vδ2 + T cells were measured with flow cytometry. Results The proportion of TNF-α-producing cells in γδ T cells in patients with PTB was obviously lower than that in LTBI group and HC group; the proportion of TNF-α-producing cells in Vδ2 T cells in PTB patients was apparently lower than that in LTBI and HC; the proportion of Vδ2 T cells in TNF-α + γδ T cells in the peripheral blood of PTB patients was remarkably lower than that in LTBI and HC groups. The proportions of TNF-α-producing cells in peripheral αβ T cells, CD4 + and CD8 + αβ T cells were dramatically lower than those in γδ T cells of the three according groups. Moreover, there were no statistical differences in regard with the proportions of TNF-α-producing cells in αβ T cells, and CD4 + and CD8 + αβ T cells among the three groups. Conclusion The TNF-α production capacity of MTB-HAg specific γδ T cells and Vδ2 T cell subsets in patients with tuberculosis is obviously lower than that of LTBI and HC.

  8. CCR6+ Th cell distribution differentiates systemic lupus erythematosus patients based on anti-dsDNA antibody status.

    PubMed

    Zhong, Wei; Jiang, Zhenyu; Wu, Jiang; Jiang, Yanfang; Zhao, Ling

    2018-01-01

    Systemic lupus erythematosus (SLE) disease has been shown to be associated with the generation of multiple auto-antibodies. Among these, anti-dsDNA antibodies (anti-DNAs) are specific and play a pathogenic role in SLE. Indeed, anti-DNA + SLE patients display a worse disease course. The generation of these pathogenic anti-DNAs has been attributed to the interaction between aberrant T helper (Th) cells and autoimmune B cells. Thus, in this study we have investigated whether CCR6 + Th cells have the ability to differentiate SLE patients based on anti-DNA status, and if their distribution has any correlation with disease activity. We recruited 25 anti-DNA + and 25 anti-DNA - treatment-naive onset SLE patients, matched for various clinical characteristics in our nested matched case-control study. CCR6 + Th cells and their additional subsets were analyzed in each patient by flow cytometry. Anti-DNA + SLE patients specifically had a higher percentage of Th cells expressing CCR6 and CXCR3. Further analysis of CCR6 + Th cell subsets showed that anti-DNA + SLE patients had elevated proportions of Th9, Th17, Th17.1 and CCR4/CXCR3 double-negative (DN) cells. However, the proportions of CCR6 - Th subsets, including Th1 and Th2 cells, did not show any association with anti-DNA status. Finally, we identified a correlation between CCR6 + Th subsets and clinical indicators, specifically in anti-DNA + SLE patients. Our data indicated that CCR6 + Th cells and their subsets were elevated and correlated with disease activity in anti-DNA + SLE patients. We speculated that CCR6 + Th cells may contribute to distinct disease severity in anti-DNA + SLE patients.

  9. Survival and signaling changes in antigen presenting cell subsets after radiation

    NASA Astrophysics Data System (ADS)

    Parker, Jennifer Janell

    Radiation therapy is a widely used cancer treatment that has the potential to influence anti-tumor immune responses. Both myeloablative and non-myeloablative radiation are often used as part of preparatory regimens for hematopoetic stem cell transplantation, in combination with other chemotherapy or immuno-modulatory (e.g. Anti-thymocyte globulin (ATG)) therapies for both cytotoxic and immune modulatory purposes. However, the mechanisms responsible for the effect of radiation on antigen presenting cell (APC) responsiveness and radioresistance are poorly understood. The first studies described in this thesis were designed to identify and characterize early radiation-induced signaling changes in antigen presenting cells and to determine the effects of these signaling changes on APC receptor expression and function. The NFkappaB pathway in antigen presenting cells was chosen for study because it is activated by radiation in a wide range of other cell types and plays a vital role in the maintenance and regulation of the immune system. The effects of therapeutically relevant doses radiation (2 and 20 Gy) were compared at various timepoints in the human monocytic cell line (U937) using phospho-flow cytometry staining methods and cytometric analysis. These studies demonstrated that radiation-induced changes in the phosphorylation state of NFkappaB family members that were p53 independent. However, these changes were dependent upon activation of ATM in response to single or double-stranded breaks in DNA, as shown in experiments using an inhibitor of ATM and ATM siRNA knockdown U937 cells. In addition, studies examining the effect of radiation on co-stimulatory receptors with and without inhibition of the NFkappaB pathway via phospho-flow cytometry revealed that radiation-induced phosphorylation of NEMO promoted the activation and functional maturation of U937 cells. Furthermore, functional studies using both phospho-flow cytometry and/or mixed lymphocyte reactions to examine co-stimulatory receptor activation, pro-inflammatory cytokine release, and T cell proliferation with and without radiation and inhibition of the NFkappaB pathway, demonstrated that NEMO is necessary for the activation, maturation, and enhanced responsiveness of human subsets of antigen presenting cells that occur after radiation. These findings provided insight into the mechanism of action of radiation-enhanced promotion of the antigen presenting cell responses. The methods of analysis employed can be used for monitoring immune changes that impact immune modulation in transplantation and tumor vaccines studies. Furthermore, NFkappaB pathway proteins have the potential to serve as biomarkers for optimal antitumor responses. The NBD peptide may also have usefulness as a therapeutic agent for inhibition of graft versus host disease (GVHD) in patients who have undergone transplantation. While the first set of experiments focused on antigen presenting cell responsiveness, the second set of experiments were designed to enhance our understanding of why antigen presenting cells, specifically monocytes and dendritic cells, are more radioresistant than conventional T cells. Flow cytometric analysis of various surface markers and intracellular signaling markers were used to examine the mechanisms behind the radioresistance of antigen presenting cells. The experiments described here showed a hierarchy of radiosensitivity among T cells, with naive CD8 T cells being the most radiosensitive and CD4 memory T cells being the most radioresistant. Antigen presenting cells were found to be significantly more radioresistant than T cell subsets (<10 fold decrease after radiation), and among APC, monocytes were more radiosensitive than either total or conventional dendritic cells. Furthermore APC expressed lower levels of Bax after radiation than T cells, and APC subsets that expressed high levels were also more sensitive to radiation induced cell death. These results demonstrate that T cell and APC subsets are dying by apoptosis after radiation, and that the differential level of Bax expression is an important determinant of the relative radiosensitivity of these immune cell subsets. Again, these findings are clinically relevant to transplant patients and patients with tumors receiving radiation therapy since APC survival may have importance for the generation of anti-tumor immunity and post-transplantation immune sequelae such as GVHD. In addition, elucidation of the mechanism of death of APC and T cell subsets, as described in chapter 3, provides potential markers of cell death that can be correlated to good graft versus tumor (GVT) effects versus bad (tumor recurrence and persistence) GVT effects. Thus, understanding the mechanistic basis for radiation-induced changes in APC and the effect of these changes on survival and function is essential for optimizing the use of radiation in transplantation and tumor vaccine treatment protocols.

  10. Immune Responses in Acute and Convalescent Patients with Mild, Moderate and Severe Disease during the 2009 Influenza Pandemic in Norway

    PubMed Central

    Mohn, Kristin G.-I.; Cox, Rebecca Jane; Tunheim, Gro; Berdal, Jan Erik; Hauge, Anna Germundsson; Jul-Larsen, Åsne; Peters, Bjoern; Oftung, Fredrik

    2015-01-01

    Increased understanding of immune responses influencing clinical severity during pandemic influenza infection is important for improved treatment and vaccine development. In this study we recruited 46 adult patients during the 2009 influenza pandemic and characterized humoral and cellular immune responses. Those included were either acute hospitalized or convalescent patients with different disease severities (mild, moderate or severe). In general, protective antibody responses increased with enhanced disease severity. In the acute patients, we found higher levels of TNF-α single-producing CD4+T-cells in the severely ill as compared to patients with moderate disease. Stimulation of peripheral blood mononuclear cells (PBMC) from a subset of acute patients with peptide T-cell epitopes showed significantly lower frequencies of influenza specific CD8+ compared with CD4+ IFN-γ T-cells in acute patients. Both T-cell subsets were predominantly directed against the envelope antigens (HA and NA). However, in the convalescent patients we found high levels of both CD4+ and CD8+ T-cells directed against conserved core antigens (NP, PA, PB, and M). The results indicate that the antigen targets recognized by the T-cell subsets may vary according to the phase of infection. The apparent low levels of cross-reactive CD8+ T-cells recognizing internal antigens in acute hospitalized patients suggest an important role for this T-cell subset in protective immunity against influenza. PMID:26606759

  11. Comprehensive Astronaut Immune Assessment Following a Short-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Stowe, Raymond; Yetman, Deborah; Pierson, Duane; Sams, Clarence

    2006-01-01

    Immune system dysregulation has been demonstrated to occur during spaceflight and has the potential to cause serious health risks to crewmembers participating in exploration class missions. As a part of an ongoing NASA flight experiment assessing viral immunity (DSO-500), a generalized immune assessment was performed on 3 crewmembers who participated in the recent STS-114 Space Shuttle mission. The following assays were performed: (1) comprehensive immunophenotype analysis; (2) T cell function/intracellular cytokine profiles; (4) secreted Th1/Th2 cytokine profiles via cytometric bead array. Immunophenotype analysis included a leukocyte differential, lymphocyte subsets, T cell subsets, cytotoxic/effector CD8+ T cells, memory/naive T cell subsets and constitutively activated T cells. Study timepoints were L-180, L-65, L-10, R+0, R+3 and R+14. Detailed data are presented in the poster text. As expected from a limited number of human subjects, data tended to vary with respect to most parameters. Specific post-flight alterations were as follows (subject number in parentheses): Granulocytosis (2/3), reduced NK cells (3/3), elevated CD4/CD8 ratio (3/3), general CD8+ phenotype shift to a less differentiated phenotype (3/3), elevated levels of memory CD4+ T cells (3/3), loss of L-selectin on T cell subsets (3/3), increased levels of activated T cells (2/3), reduced IL-2 producing T cell subsets (3/3), levels of IFNg producing T cells were unchanged. CD8+ T cell expression of the CD69 activation markers following whole blood stimulation with SEA+SEB were dramatically reduced postflight (3/3), whereas other T cell function assessments were largely unchanged. Cytometric bead array assessment of secreted T cell cytokines was performed, following whole blood stimulation with either CD3/CD28 antibodies or PMA+ionomycin for 48 hours. Specific cytokines assessed were IFNg, TNFa, IL-2, IL-4, IL-5, IL-10. Following CD3/CD28 stimulation, all three crewmembers had a mission-associated reduction in the levels of secreted IFNg. One crewmember had a post-flight inversion in the IFNg/IL-10 ratio postflight, which trended back to baseline by R+14. Detailed cytokine data are presented in the poster text. This testing regimen was designed to correlate immunophenotype changes (thought to correspond to specific in-vivo immune responses or pathogenesis), against altered leukocyte function and cytokine profiles. In-flight studies are required to determine if post-flight alterations are reflective of the in-flight condition, or are a response to landing and readaptation.

  12. Human Umbilical Cord Mesenchymal Stem Cells: Subpopulations and Their Difference in Cell Biology and Effects on Retinal Degeneration in RCS Rats.

    PubMed

    Wang, L; Li, P; Tian, Y; Li, Z; Lian, C; Ou, Q; Jin, C; Gao, F; Xu, J-Y; Wang, J; Wang, F; Zhang, J; Zhang, J; Li, W; Tian, H; Lu, L; Xu, G-T

    2017-01-01

    Human umbilical cord mesenchymal stem cells (hUC-MSCs) are potential candidates for treating retinal degeneration (RD). To further study the biology and therapeutic effects of the hUC-MSCs on retinal degeneration. Two hUC-MSC subpopulations, termed hUC-MSC1 and hUC-MSC2, were isolated by single-cell cloning method and their therapeutic functions were compared in RCS rat, a RD model. Although both subsets satisfied the basic requirements for hUC-MSCs, they were significantly different in morphology, proliferation rate, differentiation capacity, phenotype and gene expression. Furthermore, only the smaller, fibroblast-like, faster growing subset hUC-MSC1 displayed stronger colony forming potential as well as adipogenic and osteogenic differentiation capacities. When the two subsets were respectively transplanted into the subretinal spaces of RCS rats, both subsets survived, but only hUC-MSC1 expressed RPE cell markers Bestrophin and RPE65. More importantly, hUC-MSC1 showed stronger rescue effect on the retinal function as indicated by the higher b-wave amplitude on ERG examination, thicker retinal nuclear layer, and decreased apoptotic photoreceptors. When both subsets were treated with interleukin-6, mimicking the inflammatory environment when the cells were transplanted into the eyes with degenerated retina, hUC-MSC1 expressed much higher levels of trophic factors in comparison with hUC-MSC2. The data here, in addition to prove the heterogeneity of hUC-MSCs, confirmed that the stronger therapeutic effects of hUC-MSC1 were attributed to its stronger anti-apoptotic effect, paracrine of trophic factors and potential RPE cell differentiation capacity. Thus, the subset hUC-MSC1, not the other subset or the ungrouped hUC-MSCs should be used for effective treatment of RD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. In vitro generated Th17 cells support the expansion and phenotypic stability of CD4(+)Foxp3(+) regulatory T cells in vivo.

    PubMed

    Zhou, Qiong; Hu, Ya; Howard, O M Zack; Oppenheim, Joost J; Chen, Xin

    2014-01-01

    CD4(+) T cells stimulate immune responses through distinct patterns of cytokine produced by Th1, Th2 or Th17 cells, or inhibit immune responses through Foxp3-expressing regulatory T cells (Tregs). Paradoxically, effector T cells were recently shown to activate Tregs, however, it remains unclear which Th subset is responsible for this effect. In this study, we found that Th17 cells expressed the highest levels of TNF among in vitro generated Th subsets, and most potently promoted expansion and stabilized Foxp3 expression by Tregs when co-transferred into Rag1(-/-) mice. Both TNF and IL-2 produced by Th17 cells contributed to this effect. The stimulatory effect of Th17 cells on Tregs was largely abolished when co-transferred with TNFR2-deficient Tregs. Furthermore, Tregs deficient in TNFR2 also supported a much lower production of IL-17A and TNF expression by co-transferred Th17 cells. Thus, our data indicate that the TNF-TNFR2 pathway plays a crucial role in the reciprocal stimulatory effect of Th17 cells and Tregs. This bidirectional interaction should be taken into account when designing therapy targeting Th17 cells, Tregs, TNF and TNFR2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Distribution of cyclophilin B-binding sites in the subsets of human peripheral blood lymphocytes.

    PubMed

    Denys, A; Allain, F; Foxwell, B; Spik, G

    1997-08-01

    Cyclophilin B (CyPB) is a cyclosporin A (CsA)-binding protein, mainly associated with the secretory pathway and released in biological fluids. We have recently demonstrated that both free CyPB and CyPB-CsA complex specifically bind to peripheral blood T lymphocytes and are internalized. These results suggest that CyPB might promote the targeting of the drug into sensitive cells. Peripheral blood lymphocytes are subdivided in several populations according to their biological functions and sensitivity to CsA. We have investigated the binding of CyPB to these different subsets using a CyPB derivatized by fluorescein through its single cysteine which retains its binding properties. We have confirmed that only T cells were involved in the interaction with CyPB. The ligand binding was found to be heterogeneously distributed on the different T-cell subsets and surface-bound CyPB was mainly associated with the CD4-positive cells. No significant difference was noted between the CD45RA and CD45RO subsets, demonstrating that CyPB-binding sites were equally distributed between native and memory T cells. CD3 stimulation of T lymphocytes led to a decrease in the CyPB-binding capacity, that may be explained by a down-regulation of the CyPB-receptor expression upon T-cell activation. Finally, we demonstrated that CyPB-receptor-positive cells, isolated on CyPB sulphydryl-coupled affinity matrices, are more sensitive to CyPB-complexed CsA than mixed peripheral blood lymphocytes, suggesting that CyPB potentiates CsA activity through the binding of the complex. Taken together, our results demonstrate that CyPB-binding sites are mainly associated with resting cells of the helper T lymphocyte, and that CyPB might modulate the distribution of CsA through the drug targeting to sensitive cells.

  15. Modification of Intestinal Microbiota and Its Consequences for Innate Immune Response in the Pathogenesis of Campylobacteriosis

    PubMed Central

    Heimesaat, Markus M.; Bereswill, Stefan; Tareen, Abdul Malik; Lugert, Raimond; Groß, Uwe; Zautner, Andreas E.

    2013-01-01

    Campylobacter jejuni is the leading cause of bacterial food-borne gastroenteritis in the world, and thus one of the most important public health concerns. The initial stage in its pathogenesis after ingestion is to overcome colonization resistance that is maintained by the human intestinal microbiota. But how it overcomes colonization resistance is unknown. Recently developed humanized gnotobiotic mouse models have provided deeper insights into this initial stage and host's immune response. These studies have found that a fat-rich diet modifies the composition of the conventional intestinal microbiota by increasing the Firmicutes and Proteobacteria loads while reducing the Actinobacteria and Bacteroidetes loads creating an imbalance that exposes the intestinal epithelial cells to adherence. Upon adherence, deoxycholic acid stimulates C. jejuni to synthesize Campylobacter invasion antigens, which invade the epithelial cells. In response, NF-κB triggers the maturation of dendritic cells. Chemokines produced by the activated dendritic cells initiate the clearance of C. jejuni cells by inducing the actions of neutrophils, B-lymphocytes, and various subsets of T-cells. This immune response causes inflammation. This review focuses on the progress that has been made on understanding the relationship between intestinal microbiota shift, establishment of C. jejuni infection, and consequent immune response. PMID:24324507

  16. The Transcription Factor Bright Plays a Role in Marginal Zone B Lymphocyte Development and Autoantibody Production

    PubMed Central

    Oldham, Athenia L.; Miner, Cathrine A.; Wang, Hong-Cheng; Webb, Carol F.

    2011-01-01

    Previous data suggested that constitutive expression of the transcription factor Bright (B cell regulator of immunoglobulin heavy chain transcription), normally tightly regulated during B cell differentiation, was associated with autoantibody production. Here we show that constitutive Bright expression results in skewing of mature B lineage subpopulations toward marginal zone cells at the expense of the follicular subpopulation. C57Bl/6 transgenic mice constitutively expressing Bright in B lineage cells generated autoantibodies that were not the result of global increases in immunoglobulin or of breaches in key tolerance checkpoints typically defective in other autoimmune mouse models. Rather, autoimmunity correlated with increased numbers of marginal zone B cells and alterations in the phenotype and gene expression profiles of lymphocytes within the follicular B cell compartment. These data suggest a novel role for Bright in the normal development of mature B cell subsets and in autoantibody production. PMID:21963220

  17. Monoclonal IgG in MGUS and multiple myeloma targets infectious pathogens

    PubMed Central

    Bosseboeuf, Adrien; Feron, Delphine; Tallet, Anne; Rossi, Cédric; Charlier, Cathy; Garderet, Laurent; Caillot, Denis; Moreau, Philippe; Cardó-Vila, Marina; Pasqualini, Renata; Nelson, Alfreda Destea; Wilson, Bridget S.; Perreault, Hélène; Piver, Eric; Weigel, Pierre; Harb, Jean; Bigot-Corbel, Edith; Hermouet, Sylvie

    2017-01-01

    Subsets of mature B cell neoplasms are linked to infection with intracellular pathogens such as Epstein-Barr virus (EBV), hepatitis C virus (HCV), or Helicobacter pylori. However, the association between infection and the immunoglobulin-secreting (Ig-secreting) B proliferative disorders remains largely unresolved. We investigated whether the monoclonal IgG (mc IgG) produced by patients diagnosed with monoclonal gammopathy of undetermined significance (MGUS) or multiple myeloma (MM) targets infectious pathogens. Antigen specificity of purified mc IgG from a large patient cohort (n = 244) was determined using a multiplex infectious-antigen array (MIAA), which screens for reactivity to purified antigens or lysates from 9 pathogens. Purified mc IgG from 23.4% of patients (57 of 244) specifically recognized 1 pathogen in the MIAA. EBV was the most frequent target (15.6%), with 36 of 38 mc IgGs recognizing EBV nuclear antigen-1 (EBNA-1). MM patients with EBNA-1–specific mc IgG (14.0%) showed substantially greater bone marrow plasma cell infiltration and higher β2-microglobulin and inflammation/infection–linked cytokine levels compared with other smoldering myeloma/MM patients. Five other pathogens were the targets of mc IgG: herpes virus simplex-1 (2.9%), varicella zoster virus (1.6%), cytomegalovirus (0.8%), hepatitis C virus (1.2%), and H. pylori (1.2%). We conclude that a dysregulated immune response to infection may underlie disease onset and/or progression of MGUS and MM for subsets of patients. PMID:28978808

  18. Influenza Vaccination Accelerates Recovery of Ferrets from Lymphopenia

    PubMed Central

    Music, Nedzad; Reber, Adrian J.; Kamal, Ram P.; Blanchfield, Kristy; Wilson, Jason R.; Donis, Ruben O.; Katz, Jacqueline M.; York, Ian A.

    2014-01-01

    Ferrets are a useful animal model for human influenza virus infections, since they closely mimic the pathogenesis of influenza viruses observed in humans. However, a lack of reagents, especially for flow cytometry of immune cell subsets, has limited research in this model. Here we use a panel of primarily species cross-reactive antibodies to identify ferret T cells, cytotoxic T lymphocytes (CTL), B cells, and granulocytes in peripheral blood. Following infection with seasonal H3N2 or H1N1pdm09 influenza viruses, these cell types showed rapid and dramatic changes in frequency, even though clinically the infections were mild. The loss of B cells and CD4 and CD8 T cells, and the increase in neutrophils, were especially marked 1–2 days after infection, when about 90% of CD8+ T cells disappeared from the peripheral blood. The different virus strains led to different kinetics of leukocyte subset alterations. Vaccination with homologous vaccine reduced clinical symptoms slightly, but led to a much more rapid return to normal leukocyte parameters. Assessment of clinical symptoms may underestimate the effectiveness of influenza vaccine in restoring homeostasis. PMID:24968319

  19. Influenza vaccination accelerates recovery of ferrets from lymphopenia.

    PubMed

    Music, Nedzad; Reber, Adrian J; Lipatov, Aleksandr S; Kamal, Ram P; Blanchfield, Kristy; Wilson, Jason R; Donis, Ruben O; Katz, Jacqueline M; York, Ian A

    2014-01-01

    Ferrets are a useful animal model for human influenza virus infections, since they closely mimic the pathogenesis of influenza viruses observed in humans. However, a lack of reagents, especially for flow cytometry of immune cell subsets, has limited research in this model. Here we use a panel of primarily species cross-reactive antibodies to identify ferret T cells, cytotoxic T lymphocytes (CTL), B cells, and granulocytes in peripheral blood. Following infection with seasonal H3N2 or H1N1pdm09 influenza viruses, these cell types showed rapid and dramatic changes in frequency, even though clinically the infections were mild. The loss of B cells and CD4 and CD8 T cells, and the increase in neutrophils, were especially marked 1-2 days after infection, when about 90% of CD8+ T cells disappeared from the peripheral blood. The different virus strains led to different kinetics of leukocyte subset alterations. Vaccination with homologous vaccine reduced clinical symptoms slightly, but led to a much more rapid return to normal leukocyte parameters. Assessment of clinical symptoms may underestimate the effectiveness of influenza vaccine in restoring homeostasis.

  20. Oral Escherichia coli Colonization Factor Antigen I (CFA/I) Fimbriae Ameliorate Arthritis via IL-35, not IL-27

    PubMed Central

    Kochetkova, Irina; Thornburg, Theresa; Callis, Gayle; Holderness, Kathryn; Maddaloni, Massimo; Pascual, David W.

    2014-01-01

    A Salmonella therapeutic expressing enterotoxigenic E. coli colonization factor antigen I (CFA/I) fimbriae protects against collagen-induced arthritis (CIA) by eliciting two regulatory T cell (Treg) subsets: TGF-β-producing Foxp3−CD39+CD4+ and IL-10-producing Foxp3+CD39+CD4+ T cells. However, it is unclear if CFA/I fimbriae alone are protective, and if other regulatory cytokines are involved especially in the context for the EBI3-sharing cytokines, Treg-derived IL-35 and APC-derived IL-27, both capable of suppressing Th17 cells and regulating autoimmune diseases. Subsequent evaluation revealed that a single oral dose of purified, soluble CFA/I fimbriae protected against CIA as effectively as Salmonella-CFA/I, and found Foxp3+CD39+CD4+ T cells as the source of secreted IL-35, whereas IL-27 production by CD11c+ cells was inhibited. Inquiring into their relevance, CFA/I fimbriae-treated IL-27 receptor-deficient (WSX-1−/−) mice were equally protected against CIA as wild-type mice suggesting a limited role for IL-27. In contrast, CFA/I fimbriae-mediated protection was abated in EBI3−/− mice accompanied by the loss of TGF-β- and IL-10-producing Tregs. Adoptive transfer of B6 CD39+CD4+ T cells to EBI3−/− mice with concurrent CFA/I plus IL-35 treatment effectively stimulated Tregs suppressing proinflammatory CII-specific Th cells. Opposingly, recipients co-transferred with B6 and EBI3−/− CD39+CD4+ T cells and treated with CFA/I plus IL-35 failed in protecting mice implicating the importance for endogenous IL-35 to confer CFA/I-mediated protection. Thus, CFA/I fimbriae stimulate IL-35 required for the co-induction of TGF-β and IL-10. PMID:24337375

  1. Neurotrophins promote revascularization by local recruitment of TrkB+ endothelial cells and systemic mobilization of hematopoietic progenitors

    PubMed Central

    Kermani, Pouneh; Rafii, Dahlia; Jin, David K.; Whitlock, Paul; Schaffer, Wendy; Chiang, Anne; Vincent, Loic; Friedrich, Matthias; Shido, Koji; Hackett, Neil R.; Crystal, Ronald G.; Rafii, Shahin; Hempstead, Barbara L.

    2005-01-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) is required for the maintenance of cardiac vessel wall stability during embryonic development through direct angiogenic actions on endothelial cells expressing the tropomysin receptor kinase B (TrkB). However, the role of BDNF and a related neurotrophin ligand, neurotrophin-4 (NT-4), in the regulation of revascularization of the adult tissues is unknown. To study the potential angiogenic capacity of BDNF in mediating the neovascularization of ischemic and non-ischemic adult mouse tissues, we utilized a hindlimb ischemia and a subcutaneous Matrigel model. Recruitment of endothelial cells and promotion of channel formation within the Matrigel plug by BDNF and NT-4 was comparable to that induced by VEGF-A. The introduction of BDNF into non-ischemic ears or ischemic limbs induced neoangiogenesis, with a 2-fold increase in the capillary density. Remarkably, treatment with BDNF progressively increased blood flow in the ischemic limb over 21 days, similar to treatment with VEGF-A. The mechanism by which BDNF enhances capillary formation is mediated in part through local activation of the TrkB receptor and also by recruitment of Sca-1+CD11b+ pro-angiogenic hematopoietic cells. BDNF induces a potent direct chemokinetic action on subsets of marrow-derived Sca-1+ hematopoietic cells co-expressing TrkB. These studies suggest that local regional delivery of BDNF may provide a novel mechanism for inducing neoangiogenesis through both direct actions on local TrkB-expressing endothelial cells in skeletal muscle and recruitment of specific subsets of TrkB+ bone marrow–derived hematopoietic cells to provide peri-endothelial support for the newly formed vessels. PMID:15765148

  2. Identification of Cellular Sources of IL-2 Needed for Regulatory T Cell Development and Homeostasis.

    PubMed

    Owen, David L; Mahmud, Shawn A; Vang, Kieng B; Kelly, Ryan M; Blazar, Bruce R; Smith, Kendall A; Farrar, Michael A

    2018-06-15

    The cytokine IL-2 is critical for promoting the development, homeostasis, and function of regulatory T (Treg) cells. The cellular sources of IL-2 that promote these processes remain unclear. T cells, B cells, and dendritic cells (DCs) are known to make IL-2 in peripheral tissues. We found that T cells and DCs in the thymus also make IL-2. To identify cellular sources of IL-2 in Treg cell development and homeostasis, we used Il2 FL/FL mice to selectively delete Il2 in T cells, B cells, and DCs. Because IL-15 can partially substitute for IL-2 in Treg cell development, we carried out the majority of these studies on an Il15 -/- background. Deletion of Il2 in B cells, DCs, or both these subsets had no effect on Treg cell development, either in wild-type (WT) or Il15 -/- mice. Deletion of Il2 in T cells had minimal effects in WT mice but virtually eliminated developing Treg cells in Il15 -/- mice. In the spleen and most peripheral lymphoid organs, deletion of Il2 in B cells, DCs, or both subsets had no effect on Treg cell homeostasis. In contrast, deletion of Il2 in T cells led to a significant decrease in Treg cells in either WT or Il15 -/- mice. The one exception was the mesenteric lymph nodes where significantly fewer Treg cells were observed when Il2 was deleted in both T cells and DCs. Thus, T cells are the sole source of IL-2 needed for Treg cell development, but DCs can contribute to Treg cell homeostasis in select organs. Copyright © 2018 by The American Association of Immunologists, Inc.

  3. IL-23 (Interleukin-23)-Producing Conventional Dendritic Cells Control the Detrimental IL-17 (Interleukin-17) Response in Stroke.

    PubMed

    Gelderblom, Mathias; Gallizioli, Mattia; Ludewig, Peter; Thom, Vivien; Arunachalam, Priyadharshini; Rissiek, Björn; Bernreuther, Christian; Glatzel, Markus; Korn, Thomas; Arumugam, Thiruma Valavan; Sedlacik, Jan; Gerloff, Christian; Tolosa, Eva; Planas, Anna M; Magnus, Tim

    2018-01-01

    Inflammatory mechanisms can exacerbate ischemic tissue damage and worsen clinical outcome in patients with stroke. Both αβ and γδ T cells are established mediators of tissue damage in stroke, and the role of dendritic cells (DCs) in inducing the early events of T cell activation and differentiation in stroke is not well understood. In a murine model of experimental stroke, we defined the immune phenotype of infiltrating DC subsets based on flow cytometry of surface markers, the expression of ontogenetic markers, and cytokine levels. We used conditional DC depletion, bone marrow chimeric mice, and IL-23 (interleukin-23) receptor-deficient mice to further explore the functional role of DCs. We show that the ischemic brain was rapidly infiltrated by IRF4 + /CD172a + conventional type 2 DCs and that conventional type 2 DCs were the most abundant subset in comparison with all other DC subsets. Twenty-four hours after ischemia onset, conventional type 2 DCs became the major source of IL-23, promoting neutrophil infiltration by induction of IL-17 (interleukin-17) in γδ T cells. Functionally, the depletion of CD11c + cells or the genetic disruption of the IL-23 signaling abrogated both IL-17 production in γδ T cells and neutrophil infiltration. Interruption of the IL-23/IL-17 cascade decreased infarct size and improved neurological outcome after stroke. Our results suggest a central role for interferon regulatory factor 4-positive IL-23-producing conventional DCs in the IL-17-dependent secondary tissue damage in stroke. © 2017 American Heart Association, Inc.

  4. Kinetics of B cell responses to Plasmodium falciparum erythrocyte membrane protein 1 in Ghanaian women naturally exposed to malaria parasites.

    PubMed

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F; Barfod, Lea; Hviid, Lars

    2014-06-01

    Naturally acquired protective immunity to Plasmodium falciparum malaria takes years to develop. It relies mainly on Abs, particularly IgG specific for Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) proteins on the infected erythrocyte surface. It is only partially understood why acquisition of clinical protection takes years to develop, but it probably involves a range of immune-evasive parasite features, not least of which are PfEMP1 polymorphism and clonal variation. Parasite-induced subversion of immunological memory and expansion of "atypical" memory B cells may also contribute. In this first, to our knowledge, longitudinal study of its kind, we measured B cell subset composition, as well as PfEMP1-specific Ab levels and memory B cell frequencies, in Ghanaian women followed from early pregnancy up to 1 y after delivery. Cell phenotypes and Ag-specific B cell function were assessed three times during and after pregnancy. Levels of IgG specific for pregnancy-restricted, VAR2CSA-type PfEMP1 increased markedly during pregnancy and declined after delivery, whereas IgG levels specific for two PfEMP1 proteins not restricted to pregnancy did not. Changes in VAR2CSA-specific memory B cell frequencies showed typical primary memory induction among primigravidae and recall expansion among multigravidae, followed by contraction postpartum in all. No systematic changes in the frequencies of memory B cells specific for the two other PfEMP1 proteins were identified. The B cell subset analysis confirmed earlier reports of high atypical memory B cell frequencies among residents of P. falciparum-endemic areas, and indicated an additional effect of pregnancy. Our study provides new knowledge regarding immunity to P. falciparum malaria and underpins efforts to develop PfEMP1-based vaccines against this disease. Copyright © 2014 by The American Association of Immunologists, Inc.

  5. New immune cells in spondyloarthritis: Key players or innocent bystanders?

    PubMed

    Venken, Koen; Elewaut, Dirk

    2015-12-01

    The central role of the inflammatory cytokines such as TNF-α, IL-23, and IL-17 in the disease pathogenesis of spondyloarthritis (SpA) is unquestionable, given the strong efficacy of anti-cytokine therapeutics used in the treatment of SpA patients. These cytokines are produced by a diverse range of immune cells, some extending beyond the typical spectrum of lineage-defined subsets. Recently, a number of specialized cells, such as innate-like T-cells, innate lymphoid cells (ILCs) and natural killer receptor (NKR)-expressing T cells, have been marked to be involved in SpA pathology. In this chapter, we will elaborate on the unique characteristics of these particular immune subsets and critically evaluate their potential contribution to SpA disease, taking into account their role in joint and gut pathology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Friends and foes of tuberculosis: modulation of protective immunity.

    PubMed

    Brighenti, Susanna; Joosten, Simone A

    2018-05-27

    Protective immunity in tuberculosis (TB) is subject of debate in the TB research community, as this is key to fully understand TB pathogenesis and to develop new promising tools for TB diagnosis and prognosis as well as a more efficient TB vaccine. IFN-γ producing CD4 + T cells are key in TB control, but may not be sufficient to provide protection. Additional subsets have been identified that contribute to protection such as multifunctional and cytolytic T cell subsets, including classical and non-classical T cells as well as novel innate immune cell subsets resulting from trained immunity. However, to define protective immune responses against TB, the complexity of balancing TB immunity also has to be considered. In this review, insights in effector cell immunity and how this is modulated by regulatory cells, associated comorbidities and the host microbiome is discussed. We systematically map how different suppressive immune cell subsets may affect effector cell responses at the local site of infection. We also dissect how common co-morbidities such as HIV, helminthes and diabetes may bias protective TB immunity towards pathogenic and regulatory responses. Finally, also the composition and diversity of the microbiome in the lung and gut could affect host TB immunity. Understanding these various aspects of the immunological balance in the human host is fundamental to prevent TB infection and disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells

    PubMed Central

    Poulin, Lionel Franz; Salio, Mariolina; Griessinger, Emmanuel; Anjos-Afonso, Fernando; Craciun, Ligia; Chen, Ji-Li; Keller, Anna M.; Joffre, Olivier; Zelenay, Santiago; Nye, Emma; Le Moine, Alain; Faure, Florence; Donckier, Vincent; Sancho, David; Cerundolo, Vincenzo; Bonnet, Dominique

    2010-01-01

    In mouse, a subset of dendritic cells (DCs) known as CD8α+ DCs has emerged as an important player in the regulation of T cell responses and a promising target in vaccination strategies. However, translation into clinical protocols has been hampered by the failure to identify CD8α+ DCs in humans. Here, we characterize a population of human DCs that expresses DNGR-1 (CLEC9A) and high levels of BDCA3 and resembles mouse CD8α+ DCs in phenotype and function. We describe the presence of such cells in the spleens of humans and humanized mice and report on a protocol to generate them in vitro. Like mouse CD8α+ DCs, human DNGR-1+ BDCA3hi DCs express Necl2, CD207, BATF3, IRF8, and TLR3, but not CD11b, IRF4, TLR7, or (unlike CD8α+ DCs) TLR9. DNGR-1+ BDCA3hi DCs respond to poly I:C and agonists of TLR8, but not of TLR7, and produce interleukin (IL)-12 when given innate and T cell–derived signals. Notably, DNGR-1+ BDCA3+ DCs from in vitro cultures efficiently internalize material from dead cells and can cross-present exogenous antigens to CD8+ T cells upon treatment with poly I:C. The characterization of human DNGR-1+ BDCA3hi DCs and the ability to grow them in vitro opens the door for exploiting this subset in immunotherapy. PMID:20479117

  8. Detection of Shiga toxin-producing Escherichia coli by sandwich enzyme-linked immunosorbent assay using chicken egg yolk IgY antibodies

    PubMed Central

    Parma, Y. R.; Chacana, P. A.; Lucchesi, P. M. A.; Rogé, A.; Granobles Velandia, C. V.; Krüger, A.; Parma, A. E.; Fernández-Miyakawa, M. E.

    2012-01-01

    Enterohemorrhagic Escherichia coli (EHEC), a subset of Shiga toxin producing E. coli (STEC) is associated with a spectrum of diseases that includes diarrhea, hemorrhagic colitis and a life-threatening hemolytic-uremic syndrome (HUS). Regardless of serotype, Shiga toxins (Stx1 and/or Stx2) are uniformly expressed by all EHEC, and so exploitable targets for laboratory diagnosis of these pathogens. In this study, a sandwich ELISA for determination of Shiga toxin (Stx) was developed using anti-Stx2B subunit antibodies and its performance was compared with that of the Vero cell assay and a commercial immunoassay kit. Chicken IgY was used as capture antibody and a HRP-conjugated rabbit IgG as the detection antibody. The anti-Stx2B IgY was harvested from eggs laid by hens immunized with a recombinant protein fragment. Several parameters were tested in order to optimize the sandwich ELISA assay, including concentration of antibodies, type and concentration of blocking agent, and incubation temperatures. Supernatants from 42 STEC strains of different serotypes and stx variants, including stx2EDL933, stx2vha, stx2vhb, stx2g, stx1EDL933, and stx1d were tested. All Stx variants were detected by the sandwich ELISA, with a detection limit of 115 ng/ml Stx2. Twenty three strains negative for stx genes, including different bacteria species, showed no activity in Vero cell assay and produced negative results in ELISA, except for two strains. Our results show that anti-Stx2B IgY sandwich ELISA could be used in routine diagnosis as a rapid, specific and economic method for detection of Shiga toxin-producing E. coli. PMID:22919675

  9. Different responses to oxidized low-density lipoproteins in human polarized macrophages

    PubMed Central

    2011-01-01

    Background Oxidized low-density lipoprotein (oxLDL) uptake by macrophages plays an important role in foam cell formation. It has been suggested the presence of heterogeneous subsets of macrophage, such as M1 and M2, in human atherosclerotic lesions. To evaluate which types of macrophages contribute to atherogenesis, we performed cDNA microarray analysis to determine oxLDL-induced transcriptional alterations of each subset of macrophages. Results Human monocyte-derived macrophages were polarized toward the M1 or M2 subset, followed by treatment with oxLDL. Then gene expression levels during oxLDL treatment in each subset of macrophages were evaluated by cDNA microarray analysis and quantitative real-time RT-PCR. In terms of high-ranking upregulated genes and functional ontologies, the alterations during oxLDL treatment in M2 macrophages were similar to those in nonpolarized macrophages (M0). Molecular network analysis showed that most of the molecules in the oxLDL-induced highest scoring molecular network of M1 macrophages were directly or indirectly related to transforming growth factor (TGF)-β1. Hierarchical cluster analysis revealed commonly upregulated genes in all subset of macrophages, some of which contained antioxidant response elements (ARE) in their promoter regions. A cluster of genes that were specifically upregulated in M1 macrophages included those encoding molecules related to nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) signaling pathway. Quantitative real-time RT-PCR showed that the gene expression of interleukin (IL)-8 after oxLDL treatment in M2 macrophages was markedly lower than those in M0 and M1 cells. HMOX1 gene expression levels were almost the same in all 3 subsets of macrophages even after oxLDL treatment. Conclusions The present study demonstrated transcriptional alterations in polarized macrophages during oxLDL treatment. The data suggested that oxLDL uptake may affect TGF-β1- and NF-κB-mediated functions of M1 macrophages, but not those of M0 or M2 macrophages. It is likely that M1 macrophages characteristically respond to oxLDL. PMID:21199582

  10. B cell analysis of ethnic groups in Mali with differential susceptibility to malaria

    PubMed Central

    2012-01-01

    Background Several studies indicate that people of the Fulani ethnic group are less susceptible to malaria compared to those of other ethnic groups living sympatrically in Africa, including the Dogon ethnic group. Although the mechanisms of this protection remain unclear, the Fulani are known to have higher levels of Plasmodium falciparum-specific antibodies of all Ig classes as compared to the Dogon. However, the proportions of B cell subsets in the Fulani and Dogon that may account for differences in the levels of Ig have not been characterized. Methods In this cross-sectional study, venous blood was collected from asymptomatic Fulani (n = 25) and Dogon (n = 25) adults in Mali during the malaria season, and from P. falciparum-naïve adults in the U.S. (n = 8). At the time of the blood collection, P. falciparum infection was detected by blood-smear in 16% of the Fulani and 36% of the Dogon volunteers. Thawed lymphocytes were analysed by flow cytometry to quantify B cell subsets, including immature and naïve B cells; plasma cells; and classical, activated, and atypical memory B cells (MBCs). Results The overall distribution of B cell subsets was similar between Fulani and Dogon adults, although the percentage of activated MBCs was higher in the Fulani group (Fulani: 11.07% [95% CI: 9.317 – 12.82]; Dogon: 8.31% [95% CI: 6.378 – 10.23]; P = 0.016). The percentage of atypical MBCs was similar between Fulani and Dogon adults (Fulani: 28.3% [95% CI: 22.73 – 34.88]; Dogon: 29.3% [95% CI: 25.06 – 33.55], but higher than U.S. adults (U.S.: 3.0% [95% CI: -0.21 - 6.164]; P < 0.001). Plasmodium falciparum infection was associated with a higher percentage of plasma cells among Fulani (Fulani infected: 3.3% [95% CI: 1.788 – 4.744]; Fulani uninfected: 1.71% [95% CI: 1.33 – 2.08]; P = 0.011), but not Dogon adults. Conclusion These data show that the malaria-resistant Fulani have a higher percentage of activated MBCs compared to the Dogon, and that P. falciparum infection is associated with a higher percentage of plasma cells in the Fulani compared to the Dogon, findings that may account for the higher levels of P. falciparum antibodies in the Fulani. PMID:22577737

  11. Arginine metabolism is altered in adults with A-B + ketosis-prone diabetes

    USDA-ARS?s Scientific Manuscript database

    A-B + ketosis-prone diabetes (KPD) is a subset of type 2 diabetes in which patients have severe but reversible B cell dysfunction of unknown etiology. Plasma metabolomic analysis indicates that abnormal arginine metabolism may be involved. The objective of this study was to determine the relation be...

  12. γ-Tocopherol supplementation of allergic female mice augments development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates

    PubMed Central

    Abdala-Valencia, Hiam; Soveg, Frank

    2016-01-01

    γ-Tocopherol increases responses to allergen challenge in allergic adult mice, but it is not known whether γ-tocopherol regulates the development of allergic disease. Development of allergic disease often occurs early in life. In clinical studies and animal models, offspring of allergic mothers have increased responsiveness to allergen challenge. Therefore, we determined whether γ-tocopherol augments development of allergic responses in offspring of allergic female mice. Allergic female mice were supplemented with γ-tocopherol starting at mating. The pups from allergic mothers developed allergic lung responses, whereas pups from saline-treated mothers did not respond to allergen challenge. The γ-tocopherol supplementation of allergic female mice increased the numbers of eosinophils twofold in the pup bronchoalveolar lavage and lungs after allergen challenge. There was also about a twofold increase in pup lung CD11b+ subsets of CD11c+ dendritic cells and in numbers of these dendritic cells expressing the transcription factor IRF4. There was no change in several CD11b− dendritic cell subsets. Furthermore, maternal supplementation with γ-tocopherol increased the number of fetal liver CD11b+CD11c+ dendritic cells twofold in utero. In the pups, γ-tocopherol increased lung expression of the inflammatory mediators CCL11, amphiregulin, activin A, and IL-5. In conclusion, maternal supplementation with γ-tocopherol increased fetal development of subsets of dendritic cells that are critical for allergic responses and increased development of allergic responses in pups from allergic mothers. These results have implications for supplementation of allergic mothers with γ-tocopherol in prenatal vitamins. PMID:26801566

  13. The B-Cell Follicle in HIV Infection: Barrier to a Cure.

    PubMed

    Bronnimann, Matthew P; Skinner, Pamela J; Connick, Elizabeth

    2018-01-01

    The majority of HIV replication occurs in secondary lymphoid organs (SLOs) such as the spleen, lymph nodes, and gut-associated lymphoid tissue. Within SLOs, HIV RNA + cells are concentrated in the B-cell follicle during chronic untreated infection, and emerging data suggest that they are a major source of replication in treated disease as well. The concentration of HIV RNA + cells in the B-cell follicle is mediated by several factors. Follicular CD4 + T-cell subsets including T-follicular helper cells and T-follicular regulatory cells are significantly more permissive to HIV than extrafollicular subsets. The B cell follicle also contains a large reservoir of extracellular HIV virions, which accumulate on the surface of follicular dendritic cells (FDCs) in germinal centers. FDC-bound HIV virions remain infectious even in the presence of neutralizing antibodies and can persist for months or even years. Moreover, the B-cell follicle is semi-immune privileged from CTL control. Frequencies of HIV- and SIV-specific CTL are lower in B-cell follicles compared to extrafollicular regions as the majority of CTL do not express the follicular homing receptor CXCR5. Additionally, CTL in the B-cell follicle may be less functional than extrafollicular CTL as many exhibit the recently described CD8 T follicular regulatory phenotype. Other factors may also contribute to the follicular concentration of HIV RNA + cells. Notably, the contribution of NK cells and γδ T cells to control and/or persistence of HIV RNA + cells in secondary lymphoid tissue remains poorly characterized. As HIV research moves increasingly toward the development of cure strategies, a greater understanding of the barriers to control of HIV infection in B-cell follicles is critical. Although no strategy has as of yet proven to be effective, a range of novel therapies to address these barriers are currently being investigated including genetically engineered CTL or chimeric antigen receptor T cells that express the follicular homing molecule CXCR5, treatment with IL-15 or an IL-15 superagonist, use of bispecific antibodies to harness the killing power of the follicular CD8 + T cell population, and disruption of the follicle through treatments such as rituximab.

  14. Impairment of pneumococcal antigen specific isotype-switched Igg memory B-cell immunity in HIV infected Malawian adults.

    PubMed

    Iwajomo, Oluwadamilola H; Finn, Adam; Ogunniyi, Abiodun D; Williams, Neil A; Heyderman, Robert S

    2013-01-01

    Pneumococcal disease is associated with a particularly high morbidity and mortality amongst adults in HIV endemic countries. Our previous findings implicating a B-cell defect in HIV-infected children from the same population led us to comprehensively characterize B-cell subsets in minimally symptomatic HIV-infected Malawian adults and investigate the isotype-switched IgG memory B-cell immune response to the pneumococcus. We show that similar to vertically acquired HIV-infected Malawian children, horizontally acquired HIV infection in these adults is associated with IgM memory B-cell (CD19(+) CD27(+) IgM(+) IgD(+)) depletion, B-cell activation and impairment of specific IgG B-cell memory to a range of pneumococcal proteins. Our data suggest that HIV infection affects both T-cell independent and T-cell dependent B-cell maturation, potentially leading to impairment of humoral responses to extracellular pathogens such as the pneumococcus, and thus leaving this population susceptible to invasive disease.

  15. Interferon-γ production by tubulointerstitial human CD56bright natural killer cells contributes to renal fibrosis and chronic kidney disease progression.

    PubMed

    Law, Becker M P; Wilkinson, Ray; Wang, Xiangju; Kildey, Katrina; Lindner, Mae; Rist, Melissa J; Beagley, Kenneth; Healy, Helen; Kassianos, Andrew J

    2017-07-01

    Natural killer (NK) cells are a population of lymphoid cells that play a significant role in mediating innate immune responses. Studies in mice suggest a pathological role for NK cells in models of kidney disease. In this study, we characterized the NK cell subsets present in native kidneys of patients with tubulointerstitial fibrosis, the pathological hallmark of chronic kidney disease. Significantly higher numbers of total NK cells (CD3 - CD56 + ) were detected in renal biopsies with tubulointerstitial fibrosis compared with diseased biopsies without fibrosis and healthy kidney tissue using multi-color flow cytometry. At a subset level, both the CD56 dim NK cell subset and particularly the CD56 bright NK cell subset were elevated in fibrotic kidney tissue. However, only CD56 bright NK cells significantly correlated with the loss of kidney function. Expression of the tissue-retention and -activation molecule CD69 on CD56 bright NK cells was significantly increased in fibrotic biopsy specimens compared with non-fibrotic kidney tissue, indicative of a pathogenic phenotype. Further flow cytometric phenotyping revealed selective co-expression of activating receptor CD335 (NKp46) and differentiation marker CD117 (c-kit) on CD56 bright NK cells. Multi-color immunofluorescent staining of fibrotic kidney tissue localized the accumulation of NK cells within the tubulointerstitium, with CD56 bright NK cells (NKp46 + CD117 + ) identified as the source of pro-inflammatory cytokine interferon-γ within the NK cell compartment. Thus, activated interferon-γ-producing CD56 bright NK cells are positioned to play a key role in the fibrotic process and progression to chronic kidney disease. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  16. Occupational exposure to trichloroethylene is associated with a decline in lymphocyte subsets and soluble CD27 and CD30 markers

    PubMed Central

    Lan, Qing; Zhang, Luoping; Tang, Xiaojiang; Shen, Min; Smith, Martyn T.; Qiu, Chuangyi; Ge, Yichen; Ji, Zhiying; Xiong, Jun; He, Jian; Reiss, Boris; Hao, Zhenyue; Liu, Songwang; Xie, Yuxuan; Guo, Weihong; Purdue, Mark P.; Galvan, Noe; Xin, Kerry X.; Hu, Wei; Beane Freeman, Laura E.; Blair, Aaron E.; Li, Laiyu; Rothman, Nathaniel; Vermeulen, Roel; Huang, Hanlin

    2010-01-01

    Occupational cohort and case–control studies suggest that trichloroethylene (TCE) exposure may be associated with non-Hodgkin lymphoma (NHL) but findings are not consistent. There is a need for mechanistic studies to evaluate the biologic plausibility of this association. We carried out a cross-sectional molecular epidemiology study of 80 healthy workers that used TCE and 96 comparable unexposed controls in Guangdong, China. Personal exposure measurements were taken over a three-week period before blood collection. Ninety-six percent of workers were exposed to TCE below the current US Occupational Safety and Health Administration Permissible Exposure Limit (100 p.p.m. 8 h time-weighted average), with a mean (SD) of 22.2 (36.0) p.p.m. The total lymphocyte count and each of the major lymphocyte subsets including CD4+ T cells, CD8+ T cells, natural killer (NK) cells and B cells were significantly decreased among the TCE-exposed workers compared with controls (P < 0.05), with evidence of a dose-dependent decline. Further, there was a striking 61% decline in sCD27 plasma level and a 34% decline in sCD30 plasma level among TCE-exposed workers compared with controls. This is the first report that TCE exposure under the current Occupational Safety and Health Administration workplace standard is associated with a decline in all major lymphocyte subsets and sCD27 and sCD30, which play an important role in regulating cellular activity in subsets of T, B and NK cells and are associated with lymphocyte activation. Given that altered immunity is an established risk factor for NHL, these results add to the biologic plausibility that TCE is a possible lymphomagen. PMID:20530238

  17. Switched Memory B Cells Are Increased in Oligoarticular and Polyarticular Juvenile Idiopathic Arthritis and Their Change Over Time Is Related to Response to Tumor Necrosis Factor Inhibitors.

    PubMed

    Marasco, Emiliano; Aquilani, Angela; Cascioli, Simona; Moneta, Gian Marco; Caiello, Ivan; Farroni, Chiara; Giorda, Ezio; D'Oria, Valentina; Marafon, Denise Pires; Magni-Manzoni, Silvia; Carsetti, Rita; De Benedetti, Fabrizio

    2018-04-01

    To investigate whether abnormalities in B cell subsets in patients with juvenile idiopathic arthritis (JIA) correlate with clinical features and response to treatment. A total of 109 patients diagnosed as having oligoarticular JIA or polyarticular JIA were enrolled in the study. B cell subsets in peripheral blood and synovial fluid were analyzed by flow cytometry. Switched memory B cells were significantly increased in patients compared to age-matched healthy controls (P < 0.0001). When patients were divided according to age at onset of JIA, in patients with early-onset disease (presenting before age 6 years) the expansion in switched memory B cells was more pronounced than that in patients with late-onset disease and persisted throughout the disease course. In longitudinal studies, during methotrexate (MTX) treatment, regardless of the presence or absence of active disease, the number of switched memory B cells increased significantly (median change from baseline 36% [interquartile range {IQR} 15, 66]). During treatment with MTX plus tumor necrosis factor inhibitors (TNFi), in patients maintaining disease remission, the increase in switched memory B cells was significantly lower than that in patients who experienced active disease (median change from baseline 4% [IQR -6, 32] versus 41% [IQR 11, 73]; P = 0.004). The yearly rate of increases in switched memory B cells was 1.5% in healthy controls, 1.2% in patients who maintained remission during treatment with MTX plus TNFi, 4.7% in patients who experienced active disease during treatment with MTX plus TNFi, and ~4% in patients treated with MTX alone. Switched memory B cells expand during the disease course at a faster rate in JIA patients than in healthy children. This increase is more evident in patients with early-onset JIA. TNFi treatment inhibits this increase in patients who achieve and maintain remission, but not in those with active disease. © 2018, American College of Rheumatology.

  18. Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma

    PubMed Central

    Bhatt, Aadra P.; Jacobs, Sarah R.; Freemerman, Alex J.; Makowski, Liza; Rathmell, Jeffrey C.; Dittmer, Dirk P.; Damania, Blossom

    2012-01-01

    The metabolic differences between B-NHL and primary human B cells are poorly understood. Among human B-cell non-Hodgkin lymphomas (B-NHL), primary effusion lymphoma (PEL) is a unique subset that is linked to infection with Kaposi's sarcoma-associated herpesvirus (KSHV). We report that the metabolic profiles of primary B cells are significantly different from that of PEL. Compared with primary B cells, both aerobic glycolysis and fatty acid synthesis (FAS) are up-regulated in PEL and other types of nonviral B-NHL. We found that aerobic glycolysis and FAS occur in a PI3K-dependent manner and appear to be interdependent. PEL overexpress the fatty acid synthesizing enzyme, FASN, and both PEL and other B-NHL were much more sensitive to the FAS inhibitor, C75, than primary B cells. Our findings suggest that FASN may be a unique candidate for molecular targeted therapy against PEL and other B-NHL. PMID:22752304

  19. Interleukin-10 Is Produced by a Specific Subset of Taste Receptor Cells and Critical for Maintaining Structural Integrity of Mouse Taste Buds

    PubMed Central

    Chai, Jinghua; Zhou, Minliang; Simon, Nirvine; Huang, Liquan

    2014-01-01

    Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system. PMID:24523558

  20. Interleukin-10 is produced by a specific subset of taste receptor cells and critical for maintaining structural integrity of mouse taste buds.

    PubMed

    Feng, Pu; Chai, Jinghua; Zhou, Minliang; Simon, Nirvine; Huang, Liquan; Wang, Hong

    2014-02-12

    Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system.

  1. [An analysis of immunophenotyping of peripheral lymphocytes in adult patients with infectious mononucleosis and chronic active Epstein-Barr virus infection].

    PubMed

    Xie, J; Wang, H L; Qiu, Z F; Li, T S

    2016-06-01

    To determine the immunophenotypic features of peripheral lymphocytes in adult patients with Epstein-Barr virus(EBV)-associated infectious mononucleosis(IM) and chronic active EBV infection (CAEBV). Eighteen IM patients, 12 CAEBV patients and 18 healthy donors were included. Lymphocyte subsets including CD3(-)CD19(+) B cells, CD3(-)CD16/56(+) NK cells, CD4(+) and CD8(+) T cells in peripheral blood were measured by flow cytometry. The expression of activation markers (HLA-DR and CD38) on CD8(+) T cells and CD28 expression on T cells were also determined. Kruskal-Wallis H and Mann-Whitney U tests were used to compare variables among groups. IM patients had dramatically increased CD8(+) T cell counts than healthy donors (5.22×10(9)/L vs 0.54×10(9)/L, P<0.001). B cell counts moderately reduced in patients with IM than in healthy donors. No difference was found in absolute CD4(+) T cell and NK cell counts between IM and healthy donors. The levels of HLA-DR and CD38 on CD8(+) T cells significantly increased in IM patients compared with those in healthy controls. The intensity of CD28 on CD8(+) T cells significantly decreased, which was not seen on CD4(+) T cells. The median cell counts of B, NK, CD4(+) T and CD8(+) T subsets in CAEBV patients were 0.02×10(9)/L, 0.06×10(9)/L, 0.26×10(9)/L and 0.21×10(9)/L respectively, which were significantly lower than those in healthy donors (0.22×10(9)/L, 0.38×10(9)/L, 0.78×10(9)/L, 0.54×10(9)/L)and IM patients (0.12×10(9)/L, 0.40×10(9)/L, 0.91×10(9)/L, 5.22×10(9)/L). The positive rates of HLA-DR and CD38 on CD8(+) T cells in CAEBV patients were higher than those in healthy controls, but lower than those in IM patients. The immunophenotypic pattern in adult patients with IM is characterized by a dramatic increase of extensively activated CD8(+) T cells, a moderate reduction of CD19(+) B cells and no significant change of CD4(+) T cells and CD16/56(+) NK cells. CAEBV is featured by an immunosuppression status as demonstrated by significantly decreased B, NK, CD4(+) T and CD8(+) T subsets.

  2. Protective Role of Myeloid Cells Expressing a G-CSF Receptor Polymorphism in an Induced Model of Lupus.

    PubMed

    Sivakumar, Ramya; Abboud, Georges; Mathews, Clayton E; Atkinson, Mark A; Morel, Laurence

    2018-01-01

    The genetic analysis of the lupus-prone NZM2410 mouse has identified a suppressor locus, Sle2c2 , which confers resistance to spontaneous lupus in combination with NZM2410 susceptibility loci, or in the chronic graft-versus-host disease (cGVHD) induced model of lupus in the B6. Sle2c2 congenic strain. The candidate gene for  Sle2c2 , the Csf3r gene encoding the granulocyte colony-stimulating factor receptor (G-CSF-R/CD114), was validated when cGVHD was restored in B6. Sle2c2 mice after treatment with G-CSF. The goal of the project reported herein was to investigate the myeloid cells that confer resistance to cGVHD and to ascertain if the mechanism behind their suppression involves the G-CSF pathway. We showed that despite expressing the highest levels of G-CSF-R, neutrophils play only a modest role in the autoimmune activation induced by cGVHD. We also found reduced expression levels of G-CSF-R on the surface of dendritic cells (DCs) and a differential distribution of DC subsets in response to cGVHD in B6. Sle2c2 versus B6 mice. The CD8α + DC subset, known for its tolerogenic phenotype, was expanded upon induction of cGVHD in B6. Sle2c2 mice. In addition, the deficiency of CD8α + DC subset enhanced the severity of cGVHD in B6. Batf3 -/- and B6 .Sle2c2 mice, confirming their role in suppression of cGVHD. B6. Sle2c2 DCs presented lowered activation and antigen presentation abilities and expressed lower levels of genes associated with DC activation and maturation. Exposure to exogenous G-CSF reversed the majority of these phenotypes, suggesting that tolerogenic DCs maintained through a defective G-CSF-R pathway mediated the resistance to cGVHD in B6. Sle2c2 mice.

  3. Radiation-Induce Immune Modulation in Prostate Cancer

    DTIC Science & Technology

    2005-01-01

    Prostate-specific antigen Prostate carcinoma Mammoglobin-A Breast carcinoma Overexpressed Alpha - fetoprotein Hepatocellular carcinoma and yolk-sac tumors...Interleukin-3 cooperates with tumor necrosis factor alpha for the development of human dendritic/Langerhans cells from cord blood CD34+ hematopoietic progenitor...additional subsets, e.g. Langerhans cells of the epidermis, and dermal or interstitial DC. PDC are the major interferon- alpha (IFNca) producing cells

  4. Vitamin A Controls the Presence of RORγ+ Innate Lymphoid Cells and Lymphoid Tissue in the Small Intestine.

    PubMed

    Goverse, Gera; Labao-Almeida, Carlos; Ferreira, Manuela; Molenaar, Rosalie; Wahlen, Sigrid; Konijn, Tanja; Koning, Jasper; Veiga-Fernandes, Henrique; Mebius, Reina E

    2016-06-15

    Changes in diet and microbiota have determining effects on the function of the mucosal immune system. For example, the active metabolite of vitamin A, retinoic acid (RA), has been described to maintain homeostasis in the intestine by its influence on both lymphocytes and myeloid cells. Additionally, innate lymphoid cells (ILCs), important producers of cytokines necessary for intestinal homeostasis, are also influenced by vitamin A in the small intestines. In this study, we show a reduction of both NCR(-) and NCR(+) ILC3 subsets in the small intestine of mice raised on a vitamin A-deficient diet. Additionally, the percentages of IL-22-producing ILCs were reduced in the absence of dietary vitamin A. Conversely, mice receiving additional RA had a specific increase in the NCR(-) ILC3 subset, which contains the lymphoid tissue inducer cells. The dependence of lymphoid tissue inducer cells on vitamin A was furthermore illustrated by impaired development of enteric lymphoid tissues in vitamin A-deficient mice. These effects were a direct consequence of ILC-intrinsic RA signaling, because retinoic acid-related orphan receptor γt-Cre × RARα-DN mice had reduced numbers of NCR(-) and NCR(+) ILC3 subsets within the small intestine. However, lymphoid tissue inducer cells were not affected in these mice nor was the formation of enteric lymphoid tissue, demonstrating that the onset of RA signaling might take place before retinoic acid-related orphan receptor γt is expressed on lymphoid tissue inducer cells. Taken together, our data show an important role for vitamin A in controlling innate lymphoid cells and, consequently, postnatal formed lymphoid tissues within the small intestines. Copyright © 2016 by The American Association of Immunologists, Inc.

  5. Selective dysfunction of subsets of peripheral blood mononuclear cells during pediatric dengue and its relationship with clinical outcome.

    PubMed

    Perdomo-Celis, Federico; Salgado, Doris M; Narváez, Carlos F

    2017-07-01

    During dengue virus (DENV) infection, a blockage of secretion of cytokines such as tumor necrosis factor (TNF)-α and members of the interferon (IFN) family has been described in vitro. We evaluated the functionality of monocytes as well as dendritic, B and T cells isolated from children with mild and severe dengue. Compared with those of healthy children, stimulated monocytes, CD4 + T cells and dendritic cells from children with dengue had lower production of proinflammatory cytokines. The interferon axis was dramatically modulated by infection as plasmacytoid dendritic cells (pDCs) and CD4 + T cells had low production of IFN-α and IFN-γ, respectively; plasma levels of IFN-α and IFN-γ were lower in severely ill children, suggesting a protective role. Patients with antigenemia had the highest levels of IFN-α in plasma but the lowest frequency of IFN-α-producing pDCs, suggesting that DENV infection stimulates a systemic type I IFN response but affects the pDCs function. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The Isolation and Enrichment of Large Numbers of Highly Purified Mouse Spleen Dendritic Cell Populations and Their In Vitro Equivalents.

    PubMed

    Vremec, David

    2016-01-01

    Dendritic cells (DCs) form a complex network of cells that initiate and orchestrate immune responses against a vast array of pathogenic challenges. Developmentally and functionally distinct DC subtypes differentially regulate T-cell function. Importantly it is the ability of DC to capture and process antigen, whether from pathogens, vaccines, or self-components, and present it to naive T cells that is the key to their ability to initiate an immune response. Our typical isolation procedure for DC from murine spleen was designed to efficiently extract all DC subtypes, without bias and without alteration to their in vivo phenotype, and involves a short collagenase digestion of the tissue, followed by selection for cells of light density and finally negative selection for DC. The isolation procedure can accommodate DC numbers that have been artificially increased via administration of fms-like tyrosine kinase 3 ligand (Flt3L), either directly through a series of subcutaneous injections or by seeding with an Flt3L secreting murine melanoma. Flt3L may also be added to bone marrow cultures to produce large numbers of in vitro equivalents of the spleen DC subsets. Total DC, or their subsets, may be further purified using immunofluorescent labeling and flow cytometric cell sorting. Cell sorting may be completely bypassed by separating DC subsets using a combination of fluorescent antibody labeling and anti-fluorochrome magnetic beads. Our procedure enables efficient separation of the distinct DC subsets, even in cases where mouse numbers or flow cytometric cell sorting time is limiting.

  7. Antigen Presenting Properties of a Myeloid Dendritic-Like Cell in Murine Spleen.

    PubMed

    Hey, Ying-Ying; O'Neill, Helen C

    This paper distinguishes a rare subset of myeloid dendritic-like cells found in mouse spleen from conventional (c) dendritic cells (DC) in terms of phenotype, function and gene expression. These cells are tentatively named "L-DC" since they resemble dendritic-like cells produced in longterm cultures of spleen. L-DC can be distinguished on the basis of their unique phenotype as CD11bhiCD11cloMHCII-CD43+Ly6C-Ly6G-Siglec-F- cells. They demonstrate similar ability as cDC to uptake and retain complex antigens like mannan via mannose receptors, but much lower ability to endocytose and retain soluble antigen. While L-DC differ from cDC by their inability to activate CD4+ T cells, they are capable of antigen cross-presentation for activation of CD8+ T cells, although less effectively so than the cDC subsets. In terms of gene expression, CD8- cDC and CD8+ cDC are quite distinct from L-DC. CD8+ cDC are distinguishable from the other two subsets by expression of CD24a, Clec9a, Xcr1 and Tlr11, while CD8- cDC are distinguished by expression of Ccnd1 and H-2Eb2. L-DC are distinct from the two cDC subsets through upregulated expression of Clec4a3, Emr4, Itgam, Csf1r and CD300ld. The L-DC gene profile is quite distinct from that of cDC, confirming a myeloid cell type with distinct antigen presenting properties.

  8. Inhibition of PDGFR by CP-673451 induces apoptosis and increases cisplatin cytotoxicity in NSCLC cells via inhibiting the Nrf2-mediated defense mechanism.

    PubMed

    Yang, Yang; Deng, Yanchao; Chen, Xiangcui; Zhang, Jiahao; Chen, Yueming; Li, Huachao; Wu, Qipeng; Yang, Zhicheng; Zhang, Luyong; Liu, Bing

    2018-05-29

    Platelet-derived growth factor receptors (PDGFRs) are abundantly expressed by stromal cells in the non-small cell lung cancer (NSCLC) microenvironment, and in a subset of cancer cells, usually with their overexpression and/or activating mutation. However, the effect of PDGFR inhibition on lung cancer cells themselves has been largely neglected. In this study, we investigated the anticancer activity of CP-673451, a potent and selective inhibitor of PDGFRβ, on NSCLC cell lines (A549 and H358) and the potential mechanism. The results showed that inhibition of PDGFRβ by CP-673451 induced a significant increase in cell apoptosis, accompanied by ROS accumulation. However, CP-673451 exerted less cytotoxicity in normal lung epithelial cell line BEAS-2B cells determined by MTT and apoptosis assay. Elimination of ROS by NAC reversed the CP-673451-induced apoptosis in NSCLC cells. Furthermore, CP-673451 down-regulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) probably through inhibition of PI3K/Akt pathway. Rescue of Nrf2 activity counteracted the effects of CP-673451 on cell apoptosis and ROS accumulation. Silencing PDGFRβ expression by PDGFRβ siRNA exerted similar effects with CP-673451 in A549 cells, and when PDGFRβ was knockdowned by PDGFRβ siRNA, CP-673451 produced no additional effects on cell viability, ROS and GSH production, Nrf2 expression as well as PI3K/Akt pathway activity. Specifically, Nrf2 plays an indispensable role in NSCLC cell sensitivity to platinum-based treatments and we found that combination of CP-673451 and cisplatin produced a synergistic anticancer effect and substantial ROS production in vitro. Therefore, these results clearly demonstrate the effectiveness of inhibition of PDGFRβ against NSCLC cells and strongly suggest that CP-673451 may be a promising adjuvant chemotherapeutic drug. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Immune cell response to strenuous resistive breathing: comparison with whole body exercise and the effects of antioxidants

    PubMed Central

    Karatza, Maria-Helena; Vasileiou, Spyridoula; Katsaounou, Paraskevi; Mastora, Zafeiria

    2018-01-01

    Background/hypothesis Whole body exercise (WBE) changes lymphocyte subset percentages in peripheral blood. Resistive breathing, a hallmark of diseases of airway obstruction, is a form of exercise for the inspiratory muscles. Strenuous muscle contractions induce oxidative stress that may mediate immune alterations following exercise. We hypothesized that inspiratory resistive breathing (IRB) alters peripheral blood lymphocyte subsets and that oxidative stress mediates lymphocyte subpopulation alterations following both WBE and IRB. Patients and methods Six healthy nonathletes performed two WBE and two IRB sessions for 45 minutes at 70% of VO2 maximum and 70% of maximum inspiratory pressure (Pimax), respectively, before and after the administration of antioxidants (vitamins E, A, and C for 75 days, allopurinol for 30 days, and N-acetylcysteine for 3 days). Blood was drawn at baseline, at the end of each session, and 2 hours into recovery. Lymphocyte subsets were determined by flow cytometry. Results Before antioxidant supplementation at both WBE end and IRB end, the natural killer cell percentage increased, the T helper cell (CD3+ CD4+) percentage was reduced, and the CD4/CD8 ratio was depressed, a response which was abolished by antioxidants only after IRB. Furthermore, at IRB end, antioxidants promoted CD8+ CD38+ and blunted cytotoxic T-cell percentage increase. CD8+ CD45RA+ cell percentage changes were blunted after antioxidant supplementation in both WBE and IRB. Conclusion We conclude that IRB produces (as WBE) changes in peripheral blood lymphocyte subsets and that oxidative stress is a major stimulus predominantly for IRB-induced lymphocyte subset alterations. PMID:29445271

  10. Immune cell response to strenuous resistive breathing: comparison with whole body exercise and the effects of antioxidants.

    PubMed

    Asimakos, Andreas; Toumpanakis, Dimitrios; Karatza, Maria-Helena; Vasileiou, Spyridoula; Katsaounou, Paraskevi; Mastora, Zafeiria; Vassilakopoulos, Theodoros

    2018-01-01

    Whole body exercise (WBE) changes lymphocyte subset percentages in peripheral blood. Resistive breathing, a hallmark of diseases of airway obstruction, is a form of exercise for the inspiratory muscles. Strenuous muscle contractions induce oxidative stress that may mediate immune alterations following exercise. We hypothesized that inspiratory resistive breathing (IRB) alters peripheral blood lymphocyte subsets and that oxidative stress mediates lymphocyte subpopulation alterations following both WBE and IRB. Six healthy nonathletes performed two WBE and two IRB sessions for 45 minutes at 70% of VO 2 maximum and 70% of maximum inspiratory pressure (Pi max ), respectively, before and after the administration of antioxidants (vitamins E, A, and C for 75 days, allopurinol for 30 days, and N-acetylcysteine for 3 days). Blood was drawn at baseline, at the end of each session, and 2 hours into recovery. Lymphocyte subsets were determined by flow cytometry. Before antioxidant supplementation at both WBE end and IRB end, the natural killer cell percentage increased, the T helper cell (CD3+ CD4+) percentage was reduced, and the CD4/CD8 ratio was depressed, a response which was abolished by antioxidants only after IRB. Furthermore, at IRB end, antioxidants promoted CD8+ CD38+ and blunted cytotoxic T-cell percentage increase. CD8+ CD45RA+ cell percentage changes were blunted after antioxidant supplementation in both WBE and IRB. We conclude that IRB produces (as WBE) changes in peripheral blood lymphocyte subsets and that oxidative stress is a major stimulus predominantly for IRB-induced lymphocyte subset alterations.

  11. Update on the pathogenesis of Scleroderma: focus on circulating progenitor cells

    PubMed Central

    Brunasso, Alexandra Maria Giovanna; Massone, Cesare

    2016-01-01

    In systemic sclerosis (SSc), the development of fibrosis seems to be a consequence of the initial ischemic process related to an endothelial injury. The initial trigger event in SSc is still unknown, but circulating progenitor cells (CPCs) might play a key role. Such cells have the ability to traffic into injury sites, exhibiting inflammatory features of macrophages, tissue remodeling properties of fibroblasts, and vasculogenesis functions of endothelial cells. The different subsets of CPCs described thus far in SSc arise from a pool of circulating monocyte precursors (CD14 + cells) and probably correspond to a different degree of differentiation of a single cell of origin. Several subsets of CPCs have been described in patients with SSc, all have a monocytic origin but may or may not express CD14, and all of these cells have the ability to give origin to endothelial cells, or collagen (Col)-producing cells, or both. We were able to identify six subsets of CPCs: pluripotent stem cells (CD14 +, CD45 +, and CD34 +), monocyte-derived multipotential cells (MOMCs) or monocyte-derived mesenchymal progenitors (CD14 +, CD45 +, CD34 +, Col I +, CD11b +, CD68 +, CD105 +, and VEGFR1 +), early endothelial progenitor cells (EPCs) or monocytic pro-angiogenic hematopoietic cells or circulating hematopoietic cells (CD14 +, CD45 +, CD34 low/−, VEGFR2 +/−, CXCR4 +, c-kit +, and DC117 +), late EPCs (CD14 −, CD133 +, VEGFR2 +, CD144 + [VE-cadherin +], and CD146 +), fibroblast-like cells (FLCs)/circulating Col-producing monocytes (CD14 +, CD45 +, CD34 +/−, and Col I +), and fibrocytes (CD14 −, CD45 +, CD34 +, Col I +, and CXCR4 +). It has been demonstrated that circulating CD14 + monocytes with an activated phenotype are increased in patients with SSc when compared with normal subjects. CD14 +, CD34 +, and Col I + spindle-shaped cells have been found in increased numbers in lungs of SSc patients with interstitial lung disease. Elevated blood amounts of early EPCs have been found in patients with SSc by different groups of researchers and such levels correlate directly with the interstitial lung involvement. The prevalence of hematopoietic markers expressed by CPCs that migrate from blood into injury sites in SSc differs and changes according to the degree of differentiation. CXCR4 is the most commonly expressed marker, followed by CD34 and CD45 at an end stage of differentiation. Such difference also indicates a continuous process of cell differentiation that might relate to the SSc clinical phenotype (degree of fibrosis and vascular involvement). A deeper understanding of the role of each subtype of CPCs in the development of the disease will help us to better classify patients in order to offer them targeted approaches in the future. PMID:27158466

  12. Characterization of naïve, memory and effector T cells in progressive multiple sclerosis.

    PubMed

    Nielsen, Birgitte Romme; Ratzer, Rikke; Börnsen, Lars; von Essen, Marina Rode; Christensen, Jeppe Romme; Sellebjerg, Finn

    2017-09-15

    We characterized naïve, central memory (CM), effector memory (EM) and terminally differentiated effector memory (TEMRA) CD4 + and CD8 + T cells and their expression of CD49d and CD26 in peripheral blood in patients with multiple sclerosis (MS) and healthy controls. CD26 + CD28 + CD4 + TEMRA T cells were increased in all subtypes of MS, and CD26 + CD28 + CD8 + TEMRA T cells were increased in relapsing-remitting and secondary progressive MS. Conversely, in progressive MS, CD49d + CM T cells were decreased and natalizumab increased the circulating number of all six subsets but reduced the frequency of most subsets expressing CD49d and CD26. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. B Cell Receptor Signaling-Based Index as a Biomarker for the Loss of Peripheral Immune Tolerance in Autoreactive B Cells in Rheumatoid Arthritis

    PubMed Central

    Lyubchenko, Taras; Zerbe, Gary O.

    2014-01-01

    This study examines the loss of peripherally induced B cell immune tolerance in Rheumatoid arthritis (RA) and establishes a novel signaling-based measure of activation in a subset of autoreactive B cells - the Induced tolerance status index (ITSI). Naturally occurring naïve autoreactive B cells can escape the “classical” tolerogenic mechanisms of clonal deletion and receptor editing, but remain peripherally tolerized through B cell receptor (BCR) signaling inhibition (postdevelopmental “receptor tuning” or anergy). ITSI is a statistical index that numerically determines the level of homology between activation patterns of BCR signaling intermediaries in B cells that are either tolerized or activated by auto antigen exposure, and thus quantifies the level of peripheral immune tolerance. The index is based on the logistic regression analysis of phosphorylation levels in a panel of BCR signaling proteins. Our results demonstrate a new approach to identifying autoreactive B cells based on their BCR signaling features. PMID:25057856

  14. Human CD30+ B cells represent a unique subset related to Hodgkin lymphoma cells.

    PubMed

    Weniger, Marc A; Tiacci, Enrico; Schneider, Stefanie; Arnolds, Judith; Rüschenbaum, Sabrina; Duppach, Janine; Seifert, Marc; Döring, Claudia; Hansmann, Martin-Leo; Küppers, Ralf

    2018-06-11

    Very few B cells in germinal centers (GCs) and extrafollicular (EF) regions of lymph nodes express CD30. Their specific features and relationship to CD30-expressing Hodgkin and Reed/Sternberg (HRS) cells of Hodgkin lymphoma are unclear but highly relevant, because numerous patients with lymphoma are currently treated with an anti-CD30 immunotoxin. We performed a comprehensive analysis of human CD30+ B cells. Phenotypic and IgV gene analyses indicated that CD30+ GC B lymphocytes represent typical GC B cells, and that CD30+ EF B cells are mostly post-GC B cells. The transcriptomes of CD30+ GC and EF B cells largely overlapped, sharing a strong MYC signature, but were strikingly different from conventional GC B cells and memory B and plasma cells, respectively. CD30+ GC B cells represent MYC+ centrocytes redifferentiating into centroblasts; CD30+ EF B cells represent active, proliferating memory B cells. HRS cells shared typical transcriptome patterns with CD30+ B cells, suggesting that they originate from these lymphocytes or acquire their characteristic features during lymphomagenesis. By comparing HRS to normal CD30+ B cells we redefined aberrant and disease-specific features of HRS cells. A remarkable downregulation of genes regulating genomic stability and cytokinesis in HRS cells may explain their genomic instability and multinuclearity.

  15. Functional anergy in a subpopulation of naive B cells from healthy humans that express autoreactive immunoglobulin receptors.

    PubMed

    Duty, J Andrew; Szodoray, Peter; Zheng, Nai-Ying; Koelsch, Kristi A; Zhang, Qingzhao; Swiatkowski, Mike; Mathias, Melissa; Garman, Lori; Helms, Christina; Nakken, Britt; Smith, Kenneth; Farris, A Darise; Wilson, Patrick C

    2009-01-16

    Self-reactive B cells not controlled by receptor editing or clonal deletion may become anergic. We report that fully mature human B cells negative for surface IgM and retaining only IgD are autoreactive and functionally attenuated (referred to as naive IgD(+)IgM(-) B cells [B(ND)]). These B(ND) cells typically make up 2.5% of B cells in the peripheral blood, have antibody variable region genes in germline (unmutated) configuration, and, by all current measures, are fully mature. Analysis of 95 recombinant antibodies expressed from the variable genes of single B(ND) cells demonstrated that they are predominantly autoreactive, binding to HEp-2 cell antigens and DNA. Upon B cell receptor cross-linkage, B(ND) cells have a reduced capacity to mobilize intracellular calcium or phosphorylate tyrosines, demonstrating that they are anergic. However, intense stimulation causes B(ND) cells to fully respond, suggesting that these cells could be the precursors of autoantibody secreting plasma cells in autoimmune diseases such as systemic lupus erythematosus or rheumatoid arthritis. This is the first identification of a distinct mature human B cell subset that is naturally autoreactive and controlled by the tolerizing mechanism of functional anergy.

  16. Beyond NK cells: the expanding universe of innate lymphoid cells.

    PubMed

    Cella, Marina; Miller, Hannah; Song, Christina

    2014-01-01

    For a long time, natural killer (NK) cells were thought to be the only innate immune lymphoid population capable of responding to invading pathogens under the influence of changing environmental cues. In the last few years, an increasing amount of evidence has shown that a number of different innate lymphoid cell (ILC) populations found at mucosal sites rapidly respond to locally produced cytokines in order to establish or maintain homeostasis. These ILC populations closely mirror the phenotype of adaptive T helper subsets in their repertoire of secreted soluble factors. Early in the immune response, ILCs are responsible for setting the stage to mount an adaptive T cell response that is appropriate for the incoming insult. Here, we review the diversity of ILC subsets and discuss similarities and differences between ILCs and NK cells in function and key transcriptional factors required for their development.

  17. Effect of Bacterial Endotoxin and Interleukin-2 on Human Leu-11(+) NK cells: Ultrastructural and Functional Correlations

    DTIC Science & Technology

    1988-01-01

    REPORT DOCUMENTATION PAGE 17 RPORT SICIJRITY (LASWIC,.dION 1 b . RESTRiCIivE MARIN~ AGS Unclassif ied IS. SiCuRItv CLAISJICArION AUTMORITY 3...comparison with T cell detella pertussis endotoxin. subsets. Anat. Rec., 217:274. Mol. Inmuncl., 21:389. 25.Kang, Y. H., M. Carl, and L. 20.Herberman, R. B ... b . OFFICE SYMBOL 9. PRO(.UREMENT INSTRUMENT IDENTIfICATION NUMBER ORGANIZATION Naval Medical of appikawble Research and Development Command 64

  18. Spontaneous Development of Cutaneous Squamous Cell Carcinoma in Mice with Cell-specific Deletion of Inhibitor of κB Kinase 2

    PubMed Central

    Kirkley, Kelly S; Walton, Kelly D; Duncan, Colleen; Tjalkens, Ronald B

    2017-01-01

    The deletion of NFκB in epithelial tissues by using skin-specific promoters can cause both tumor formation and severe inflammatory dermatitis, indicating that this signaling pathway is important for the maintenance of immune homeostasis in epithelial tissues. In the present study, we crossed mice transgenic for loxP-Ikbk2 and human Gfap-cre to selectively delete IKK2 in CNS astrocytes. Unexpectedly, a subset of mice developed severe and progressive skin lesions marked by hyperplasia, hyperkeratosis, dysplasia, inflammation, and neoplasia with a subset of lesions diagnosed as squamous cell carcinoma (SCC). The development of lesions was monitored over a 3.5-y period and over 4 filial generations. Average age of onset of was 4 mo of age with 19.5% of mice affected with frequency increasing in progressive generations. Lesion development appeared to correlate not only with unintended IKK2 deletion in GFAP expressing cells of the epidermis, but also with increased expression of TNF in lesioned skin. The skins changes described in these animals are similar to those in transgenic mice with an epidermis-specific deletion of NFκB and thus represents another genetic mouse model that can be used to study the role of NFκB signaling in regulating the development of SCC. PMID:28935002

  19. Circulating precursor CCR7(lo)PD-1(hi) CXCR5⁺ CD4⁺ T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure.

    PubMed

    He, Jing; Tsai, Louis M; Leong, Yew Ann; Hu, Xin; Ma, Cindy S; Chevalier, Nina; Sun, Xiaolin; Vandenberg, Kirsten; Rockman, Steve; Ding, Yan; Zhu, Lei; Wei, Wei; Wang, Changqi; Karnowski, Alexander; Belz, Gabrielle T; Ghali, Joanna R; Cook, Matthew C; Riminton, D Sean; Veillette, André; Schwartzberg, Pamela L; Mackay, Fabienne; Brink, Robert; Tangye, Stuart G; Vinuesa, Carola G; Mackay, Charles R; Li, Zhanguo; Yu, Di

    2013-10-17

    Follicular B helper T (Tfh) cells support high affinity and long-term antibody responses. Here we found that within circulating CXCR5⁺ CD4⁺ T cells in humans and mice, the CCR7(lo)PD-1(hi) subset has a partial Tfh effector phenotype, whereas CCR7(hi)PD-1(lo) cells have a resting phenotype. The circulating CCR7(lo)PD-1(hi) subset was indicative of active Tfh differentiation in lymphoid organs and correlated with clinical indices in autoimmune diseases. Thus the CCR7(lo)PD-1(hi) subset provides a biomarker to monitor protective antibody responses during infection or vaccination and pathogenic antibody responses in autoimmune diseases. Differentiation of both CCR7(hi)PD-1(lo) and CCR7(lo)PD-1(hi) subsets required ICOS and BCL6, but not SAP, suggesting that circulating CXCR5⁺ helper T cells are primarily generated before germinal centers. Upon antigen reencounter, CCR7(lo)PD-1(hi) CXCR5⁺ precursors rapidly differentiate into mature Tfh cells to promote antibody responses. Therefore, circulating CCR7(lo)PD-1(hi) CXCR5⁺ CD4⁺ T cells are generated during active Tfh differentiation and represent a new mechanism of immunological early memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Treatment of Guillain-Barré syndrome with Bifidobacterium infantis through regulation of T helper cells subsets.

    PubMed

    Shi, Peng; Qu, Hongdang; Nian, Di; Chen, Yuhua; Liu, Xiaolin; Li, Qiang; Li, Qianqian; Wang, Chun; Ye, Ming; Ma, Bo

    2018-06-13

    Guillain-Barré syndrome (GBS) is a rare, autoimmune-mediated disease. The use of Bifidobacterium is reportedly effective in alleviating GBS since they act by regulating T helper (Th) cells. In this study, we explored the differentiation of T helper cell subsets in patients with GBS. We also evaluated the effect of GBS on Bifidobacterium levels in patients and the likely protective influence of this bacterium in alleviating the disease in an animal model. We used flow cytometry, and real-time polymerase chain reaction (PCR) to determine the T cell subsets differentiation among 30 GBS patients and 20 healthy controls (HC). The concentration of Bifidobacterium was assayed by real-time PCR. Experimental autoimmune neuritis (EAN) animal model was established to support the protective role of Bifidobacterium in GBS. The expression of Th cells, Th2 and Th17 in the patients was significantly higher than that in the HC, while Treg cells decreased substantially. Moreover, the levels of Bifidobacterium in the GBS patients were considerably lower than those in the HC, the concentration of Bifidobacterium correlating with Th2 and Th17 subsets negatively. Treatment with Bifidobacterium significantly reduced the levels of Th2 and Th17 and promoted the levels of Treg cells. We concluded from this study that Bifidobacterium alleviated GBS by regulating Th cells, although in-depth studies might be required to fully understand the mechanism of action. Copyright © 2018. Published by Elsevier B.V.

  1. Deletion of Notch1 converts pro-T cells to dendritic cells and promotes thymic B cells by cell-extrinsic and cell-intrinsic mechanisms.

    PubMed

    Feyerabend, Thorsten B; Terszowski, Grzegorz; Tietz, Annette; Blum, Carmen; Luche, Hervé; Gossler, Achim; Gale, Nicholas W; Radtke, Freddy; Fehling, Hans Jörg; Rodewald, Hans-Reimer

    2009-01-16

    Notch1 signaling is required for T cell development and has been implicated in fate decisions in the thymus. We showed that Notch1 deletion in progenitor T cells (pro-T cells) revealed their latent developmental potential toward becoming conventional and plasmacytoid dendritic cells. In addition, Notch1 deletion in pro-T cells resulted in large numbers of thymic B cells, previously explained by T-to-B cell fate conversion. Single-cell genotyping showed, however, that the majority of these thymic B cells arose from Notch1-sufficient cells by a cell-extrinsic pathway. Fate switching nevertheless exists for a subset of thymic B cells originating from Notch1-deleted pro-T cells. Chimeric mice lacking the Notch ligand delta-like 4 (Dll4) in thymus epithelium revealed an essential role for Dll4 in T cell development. Thus, Notch1-Dll4 signaling fortifies T cell commitment by suppressing non-T cell lineage potential in pro-T cells, and normal Notch1-driven T cell development repels excessive B cells in the thymus.

  2. Peripheral CD24hi CD27+ CD19+ B cells subset as a potential biomarker in naïve systemic lupus erythematosus.

    PubMed

    Jin, Lin; Weiqian, Chen; Lihuan, Yue

    2013-12-01

    B cells are likely to play critical roles in the pathogenesis of systemic lupus erythematosus (SLE). Our aim was to investigate the role of peripheral CD24(hi) CD27(+) CD19(+) B cells in Chinese patients with new-onset SLE. Peripheral CD24(hi) CD27(+) CD19(+) B cells were analyzed in 55 new-onset lupus and 36 healthy controls by flow cytometry. All SLE cases were treated with prednisolone and hydroxychloroquine during a 1-year follow-up. Thirteen cases were added with cyclophosphamide or mycophenolate mofetil. The CD24(hi) CD27(+) CD19(+) B cells were analyzed at days 0, 7, 14 and months 1, 3, 6, 9 and 12. Interleukin-10 (IL-10)-producing B cell was detected in eight naïve lupus and 10 healthy controls. Compared to healthy controls, the frequency and number of primary circulating CD24(hi) CD27(+) CD19(+) B cells was significantly reduced in SLE cases (8.22 ± 3.48% vs. 31.67 ± 5.53%, P < 0.0001; 4.04 ± 2.85 vs. 38.66 ± 10.22 10(3) cells/mL, P = 0.0001) before treatment; IL-10(+) CD19(+) B cells and IL-10(+) CD24(hi) CD27(+) CD19(+) B cells also decreased in SLE. Interestingly, primary CD24(hi) CD27(+) CD19(+) B cells inversely correlated with SLE disease activity index (SLEDAI) score. Patients with arthritis and hematologic disorders had a lower primary CD24(hi) CD27(+) CD19(+) B cells. In 48 SLE cases who finished the 1-year follow-up, the frequency and number of CD24(hi) CD27(+) CD19(+) B cells increased from 8.26 ± 3.61% to 25.51 ± 4.56%; 3.99 ± 2.86 to 28.64 ± 11.81 10(3) cells/mm(3) (P < 0.0001), accompanied by a significantly decreased SLEDAI score. Of note, CD24(hi) CD27(+) CD19(+) B cells decreased in some flare cases with an elevated SLEDAI score. These results demonstrate that a lower primary CD24(hi) CD27(+) CD19(+) B cells may be an immunologic aspect of new-onset SLE. CD24(hi) CD27(+) CD19(+) B cells may be a useful tool to evaluate lupus activity and monitor the response to therapy. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  3. The role of bovine γδ T cells and their WC1 co-receptor in response to bacterial pathogens and promoting vaccine efficacy: a model for cattle and humans.

    PubMed

    Baldwin, Cynthia L; Hsu, Haoting; Chen, Chuang; Palmer, Mitchell; McGill, Jodi; Waters, W Ray; Telfer, Janice C

    2014-06-15

    γδ T cells are critical to immune surveillance and protection since they are found as resident cells in many organs and tissues, including in humans and ruminants, and circulate at substantial numbers in the blood. It is known that γδ T cells contribute to cellular immunity and protection against important pathogens including organizing granulomas in response to Mycobacteria. We have shown that IFNγ-producing bovine γδ T cells bearing the WC1 co-receptor are the major cell population responding in recall responses to Leptospira during the first month following priming by vaccination against serovar Hardjo. To date, successful vaccines largely include those to diseases that only require antibody responses for protection and attempts at creating subunit peptide vaccines to stimulate conventional αβ T cells for cellular immune responses have been mostly unsuccessful. However, activation of nonconventional T cells, such as γδ T cells that direct adaptive T cell responses, has received little attention for improving vaccines because it is not clear how best to prime γδ T cells for recall responses. Annotation of the bovine genome showed there were 13 WC1 molecules coded for by individual genes. This gene number is conserved among breeds and individuals and expression of the WC1 molecules are distributed among cells to form a number of γδ T cell subsets. Using RNA silencing, we have shown that the WC1 co-receptor contributes to the ability of γδ T cells to respond to Leptospira spp. The Leptospira-responsive γδ T cells are found within a subset of the serologically defined WC1.1(+) γδ T cell subpopulation and our data indicate that the WC1 molecules expressed act as pattern recognition receptors interacting directly with bacterial components. We are now extending this work to Mycobacteria bovis. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Bone marrow-derived CD13+ cells sustain tumor progression

    PubMed Central

    Dondossola, Eleonora; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2014-01-01

    Non-malignant cells found within neoplastic lesions express alanyl (membrane) aminopeptidase (ANPEP, best known as CD13), and CD13-null mice exhibit limited tumor growth and angiogenesis. We have recently demonstrated that a subset of bone marrow-derived CD11b+CD13+ myeloid cells accumulate within neoplastic lesions in several murine models of transplantable cancer to promote angiogenesis. If these findings were confirmed in clinical settings, CD11b+CD13+ myeloid cells could become a non-malignant target for the development of novel anticancer regimens. PMID:25339996

  5. Plasmacytoid dendritic cells (PDC) are the major DC subset innately producing cytokines in human lymph nodes.

    PubMed

    Cox, Karina; North, Margaret; Burke, Michael; Singhal, Hemant; Renton, Sophie; Aqel, Nayef; Islam, Sabita; Knight, Stella C

    2005-11-01

    Plasmacytoid dendritic cells (PDC) constitute a distinct subset of DC found in human peripheral lymph nodes (LN), but little is known about their function. Cell suspensions were prepared from tumor draining LN (n=20) and control LN (n=11) of women undergoing surgical resection for primary breast cancer and elective surgery for benign conditions, respectively. Using four-color flow cytometry, human leukocyte antigen-DR+ DC subsets were identified phenotypically. The proportions and numbers of cells innately producing interleukin (IL)-4, IL-10, IL-12, and interferon-gamma (IFN-gamma) were also measured from intracellular accumulation of cytokine after blocking with monensin. All flow cytometry data were collected without compensation and were compensated off-line using the Winlist algorithm (Verity software). This package also provided the subtraction program to calculate percentage positive cells and intensity of staining. PDC (CD11c-, CD123+) expressed more cytokines than did myeloid DC (CD11c+) or CD1a+ putative "migratory" DC (P<0.001). LN PDC from patients with a good prognosis (px; n=11) demonstrated a relative increase in IL-12 and IFN-gamma expression (median IL-10:IL-12 ratio=0.78 and median IL-4:IFN-gamma ratio=0.7), and PDC from LN draining poor px cancer (n=9) showed a relative increase in IL-10 and IL-4 expression (median IL-10:IL-12 ratio=1.31 and median IL-4:IFN-gamma ratio=2.6). The difference in IL-4:IFN-gamma expression between good and poor px cancer groups was significant (P<0.05). Thus, PDC innately producing cytokines were identified in cell suspensions from human LN, and the character of PDC cytokine secretion may differ between two breast cancer prognostic groups. We speculate that a shift towards PDC IL-10 and IL-4 expression could promote tumor tolerance in LN draining poor px breast cancer.

  6. MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output.

    PubMed

    O'Connell, Ryan M; Chaudhuri, Aadel A; Rao, Dinesh S; Gibson, William S J; Balazs, Alejandro B; Baltimore, David

    2010-08-10

    The production of blood cells depends on a rare hematopoietic stem-cell (HSC) population, but the molecular mechanisms underlying HSC biology remain incompletely understood. Here, we identify a subset of microRNAs (miRNAs) that is enriched in HSCs compared with other bone-marrow cells. An in vivo gain-of-function screen found that three of these miRNAs conferred a competitive advantage to engrafting hematopoietic cells, whereas other HSC miRNAs attenuated production of blood cells. Overexpression of the most advantageous miRNA, miR-125b, caused a dose-dependent myeloproliferative disorder that progressed to a lethal myeloid leukemia in mice and also enhanced hematopoietic engraftment in human immune system mice. Our study identifies an evolutionarily conserved subset of miRNAs that is expressed in HSCs and functions to modulate hematopoietic output.

  7. Methodological considerations for implementation of lymphocyte subset analysis in a clinical reference laboratory.

    PubMed

    Muirhead, K A; Wallace, P K; Schmitt, T C; Frescatore, R L; Franco, J A; Horan, P K

    1986-01-01

    As the diagnostic utility of lymphocyte subset analysis has been recognized in the clinical research laboratory, a wide variety of reagents and cell preparation, staining and analysis methods have also been described. Methods that are perfectly suitable for analysis of smaller sample numbers in the biological or clinical research setting are not always appropriate and/or applicable in the setting of a high volume clinical reference laboratory. We describe here some of the specific considerations involved in choosing a method for flow cytometric analysis which minimizes sample preparation and data analysis time while maximizing sample stability, viability, and reproducibility. Monoclonal T- and B-cell reagents from three manufacturers were found to give equivalent results for a reference population of healthy individuals. This was true whether direct or indirect immunofluorescence staining was used and whether cells were prepared by Ficoll-Hypaque fractionation (FH) or by lysis of whole blood. When B cells were enumerated using a polyclonal anti-immunoglobulin reagent, less cytophilic immunoglobulin staining was present after lysis than after FH preparation. However, both preparation methods required additional incubation at 37 degrees C to obtain results concordant with monoclonal B-cell reagents. Standard reagents were chosen on the basis of maximum positive/negative separation and the availability of appropriate negative controls. The effects of collection medium and storage conditions on sample stability and reproducibility of subset analysis were also assessed. Specimens collected in heparin and stored at room temperature in buffered medium gave reproducible results for 3 days after specimen collection, using either FH or lysis as the preparation method. General strategies for instrument optimization, quality control, and biohazard containment are also discussed.

  8. Autoreactive T effector memory differentiation mirrors β-cell function in type 1 diabetes.

    PubMed

    Yeo, Lorraine; Woodwyk, Alyssa; Sood, Sanjana; Lorenc, Anna; Eichmann, Martin; Pujol-Autonell, Irma; Melchiotti, Rossella; Skowera, Ania; Fidanis, Efthymios; Dolton, Garry M; Tungatt, Katie; Sewell, Andrew K; Heck, Susanne; Saxena, Alka; Beam, Craig A; Peakman, Mark

    2018-05-31

    In type 1 diabetes, cytotoxic CD8 T cells with specificity for β-cell autoantigens are found in the pancreatic islets where they are implicated in the destruction of insulin-secreting β cells. In contrast, the disease relevance of β-cell-reactive CD8 T cells that are detectable in the circulation, and their relationship to β-cell function, are not known. Here, we tracked multiple, circulating β-cell-reactive CD8 T cell subsets and measured β-cell function longitudinally for two years, starting immediately after diagnosis of type 1 diabetes. We found that change in β-cell-specific effector memory CD8 T cells expressing CD57 was positively correlated with C-peptide change in subjects below 12 years of age. Autoreactive CD57+ effector memory CD8 T cells bore the signature of enhanced effector function (higher expression of granzyme B, killer specific protein 37 and CD16, and reduced expression of CD28) compared with their CD57-negative counterparts, and network association modelling indicated that the dynamics of β-cell-reactive CD57+ effector memory CD8 T cell subsets were strongly linked. Thus, coordinated changes in circulating β-cell-specific CD8 T cells within the CD57+ effector memory subset calibrate to functional insulin reserve in type 1 diabetes, providing a tool for immune monitoring and a mechanism-based target for immunotherapy.

  9. Psychedelics Recruit Multiple Cellular Types and Produce Complex Transcriptional Responses Within the Brain.

    PubMed

    Martin, David A; Nichols, Charles D

    2016-09-01

    There has recently been a resurgence of interest in psychedelics, substances that profoundly alter perception and cognition and have recently demonstrated therapeutic efficacy to treat anxiety, depression, and addiction in the clinic. The receptor mechanisms that drive their molecular and behavioral effects involve activation of cortical serotonin 5-HT 2A receptors, but the responses of specific cellular populations remain unknown. Here, we provide evidence that a small subset of 5-HT 2A -expressing excitatory neurons is directly activated by psychedelics and subsequently recruits other select cell types including subpopulations of inhibitory somatostatin and parvalbumin GABAergic interneurons, as well as astrocytes, to produce distinct and regional responses. To gather data regarding the response of specific neuronal populations, we developed methodology for fluorescence-activated cell sorting (FACS) to segregate and enrich specific cellular subtypes in the brain. These methods allow for robust neuronal sorting based on cytoplasmic epitopes followed by downstream nucleic acid analysis, expanding the utility of FACS in neuroscience research. Copyright © 2016 Forschungsgesellschaft für Arbeitsphysiologie und Arbeitschutz e.V. Published by Elsevier B.V. All rights reserved.

  10. Oncometabolite D-2-Hydroxyglutarate Inhibits ALKBH DNA Repair Enzymes and Sensitizes IDH Mutant Cells to Alkylating Agents.

    PubMed

    Wang, Pu; Wu, Jing; Ma, Shenghong; Zhang, Lei; Yao, Jun; Hoadley, Katherine A; Wilkerson, Matthew D; Perou, Charles M; Guan, Kun-Liang; Ye, Dan; Xiong, Yue

    2015-12-22

    Chemotherapy of a combination of DNA alkylating agents, procarbazine and lomustine (CCNU), and a microtubule poison, vincristine, offers a significant benefit to a subset of glioma patients. The benefit of this regimen, known as PCV, was recently linked to IDH mutation that occurs frequently in glioma and produces D-2-hydroxyglutarate (D-2-HG), a competitive inhibitor of α-ketoglutarate (α-KG). We report here that D-2-HG inhibits the α-KG-dependent alkB homolog (ALKBH) DNA repair enzymes. Cells expressing mutant IDH display reduced repair kinetics, accumulate more DNA damages, and are sensitized to alkylating agents. The observed sensitization to alkylating agents requires the catalytic activity of mutant IDH to produce D-2-HG and can be reversed by the deletion of mutant IDH allele or overexpression of ALKBH2 or AKLBH3. Our results suggest that impairment of DNA repair may contribute to tumorigenesis driven by IDH mutations and that alkylating agents may merit exploration for treating IDH-mutated cancer patients. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Booster dose after 10 years is recommended following 17DD-YF primary vaccination.

    PubMed

    Campi-Azevedo, Ana Carolina; Costa-Pereira, Christiane; Antonelli, Lis R; Fonseca, Cristina T; Teixeira-Carvalho, Andréa; Villela-Rezende, Gabriela; Santos, Raiany A; Batista, Maurício A; Campos, Fernanda M; Pacheco-Porto, Luiza; Melo Júnior, Otoni A; Hossell, Débora M S H; Coelho-dos-Reis, Jordana G; Peruhype-Magalhães, Vanessa; Costa-Silva, Matheus F; de Oliveira, Jaquelline G; Farias, Roberto H; Noronha, Tatiana G; Lemos, Jandira A; von Doellinger, Vanessa dos R; Simões, Marisol; de Souza, Mirian M; Malaquias, Luiz C; Persi, Harold R; Pereira, Jorge M; Martins, José A; Dornelas-Ribeiro, Marcos; Vinhas, Aline de A; Alves, Tatiane R; Maia, Maria de L; Freire, Marcos da S; Martins, Reinaldo de M; Homma, Akira; Romano, Alessandro P M; Domingues, Carla M; Tauil, Pedro L; Vasconcelos, Pedro F; Rios, Maria; Caldas, Iramaya R; Camacho, Luiz A; Martins-Filho, Olindo Assis

    2016-01-01

    A single vaccination of Yellow Fever vaccines is believed to confer life-long protection. In this study, results of vaccinees who received a single dose of 17DD-YF immunization followed over 10 y challenge this premise. YF-neutralizing antibodies, subsets of memory T and B cells as well as cytokine-producing lymphocytes were evaluated in groups of adults before (NVday0) and after (PVday30-45, PVyear1-4, PVyear5-9, PVyear10-11, PVyear12-13) 17DD-YF primary vaccination. YF-neutralizing antibodies decrease significantly from PVyear1-4 to PVyear12-13 as compared to PVday30-45, and the seropositivity rates (PRNT≥2.9Log10mIU/mL) become critical (lower than 90%) beyond PVyear5-9. YF-specific memory phenotypes (effector T-cells and classical B-cells) significantly increase at PVday30-45 as compared to naïve baseline. Moreover, these phenotypes tend to decrease at PVyear10-11 as compared to PVday30-45. Decreasing levels of TNF-α(+) and IFN-γ(+) produced by CD4(+) and CD8(+) T-cells along with increasing levels of IL-10(+)CD4(+)T-cells were characteristic of anti-YF response over time. Systems biology profiling represented by hierarchic networks revealed that while the naïve baseline is characterized by independent micro-nets, primary vaccinees displayed an imbricate network with essential role of central and effector CD8(+) memory T-cell responses. Any putative limitations of this cross-sectional study will certainly be answered by the ongoing longitudinal population-based investigation. Overall, our data support the current Brazilian national immunization policy guidelines that recommend one booster dose 10 y after primary 17DD-YF vaccination.

  12. Stem and Progenitor Cell Subsets Are Affected by JAK2 Signaling and Can Be Monitored by Flow Cytometry

    PubMed Central

    Iida, Ryuji; Welner, Robert S.; Zhao, Wanke; Alberola-lla, José; Medina, Kay L.; Zhao, Zhizhuang Joe; Kincade, Paul W.

    2014-01-01

    Although extremely rare, hematopoietic stem cells (HSCs) are divisible into subsets that differ with respect to differentiation potential and cell surface marker expression. For example, we recently found that CD86− CD150+ CD48− HSCs have limited potential for lymphocyte production. This could be an important new tool for studying hematological abnormalities. Here, we analyzed HSC subsets with a series of stem cell markers in JAK2V617F transgenic (Tg) mice, where the mutation is sufficient to cause myeloproliferative neoplasia with lymphocyte deficiency. Total numbers of HSC were elevated 3 to 20 fold in bone marrow of JAK2V617F mice. Careful analysis suggested the accumulation involved multiple HSC subsets, but particularly those characterized as CD150HI CD86− CD18L°CD41+ and excluding Hoechst dye. Real-Time PCR analysis of their HSC revealed that the erythropoiesis associated gene transcripts Gata1, Klf1 and Epor were particularly high. Flow cytometry analyses based on two differentiation schemes for multipotent progenitors (MPP) also suggested alteration by JAK2 signals. The low CD86 on HSC and multipotent progenitors paralleled the large reductions we found in lymphoid progenitors, but the few that were produced functioned normally when sorted and placed in culture. Either of two HSC subsets conferred disease when transplanted. Thus, flow cytometry can be used to observe the influence of abnormal JAK2 signaling on stem and progenitor subsets. Markers that similarly distinguish categories of human HSCs might be very valuable for monitoring such conditions. They could also serve as indicators of HSC fitness and suitability for transplantation. PMID:24699465

  13. Delayed effects of rhG-CSF mobilization treatment and apheresis on circulating CD34+ and CD34+ Thy-1dim CD38- progenitor cells, and lymphoid subsets in normal stem cell donors for allogeneic transplantation.

    PubMed

    Körbling, M; Anderlini, P; Durett, A; Maadani, F; Bojko, P; Seong, D; Giralt, S; Khouri, I; Andersson, B; Mehra, R; vanBesien, K; Mirza, N; Przepiorka, D; Champlin, R

    1996-12-01

    Allogeneic transplantation of peripheral blood progenitor cells (PBPC) is emerging as a new stem cell transplant modality. Rather than undergoing general anesthesia for bone marrow harvest, normal blood stem cell donors are subjected to rhG-CSF mobilization treatment followed by single or multiple apheresis. Whereas the effects of cytokine treatment and apheresis on stem cell peripheralization and collection have been described, little is known about delayed effects of rhG-CSF treatment and apheresis on a normal hematopoietic system, and there are no long-term data that address safety issues. Ten normal, patient-related donors underwent a 3 or 4 day rhG-CSF (filgrastim) treatment (12 micrograms/kg/day) followed by single or tandem apheresis. We monitored peripheral blood (PB) cellularity including CD34+ and lymphoid subsets at baseline, during cytokine treatment, prior to apheresis, and at days 2, 4, 7, 30 and 100 post-apheresis. The PB progenitor cell concentration peak prior to apheresis was followed by a nadir by day 7 and normalized by day 30, with the exception of the most primitive CD34+ Thy-1dim CD38- progenitor subset that reached a nadir by day 30. Lymphoid subsets such as CD3, 4, 8, suppressor cells (CD3+ 4- 8- TCR+ alpha beta), and B cells (CD19+) showed a similar pattern with a nadir concentration by day 7, followed, except for B cells, by a rebound by day 30 and subnormal counts at day 100. The PB concentrations of hemoglobin and platelets dropped mainly due to the apheresis procedure itself, and normalized by day 30. With cytokine treatment, the PB alkaline phosphatase and lactate dehydrogenase concentrations increased 2.2- and 2.8-fold, respectively, over baseline, and returned to normal range by day 30. Based on the preliminary nature of this study, the clinical relevance of these findings is still unclear.

  14. Expression and Secretion of TNF-α in Mouse Taste Buds: A Novel Function of a Specific Subset of Type II Taste Cells

    PubMed Central

    Feng, Pu; Zhao, Hang; Chai, Jinghua; Huang, Liquan; Wang, Hong

    2012-01-01

    Taste buds are chemosensory structures widely distributed on the surface of the oral cavity and larynx. Taste cells, exposed to the oral environment, face great challenges in defense against potential pathogens. While immune cells, such as T-cells and macrophages, are rarely found in taste buds, high levels of expression of some immune-response-associated molecules are observed in taste buds. Yet, the cellular origins of these immune molecules such as cytokines in taste buds remain to be determined. Here, we show that a specific subset of taste cells selectively expresses high levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α). Based on immuno-colocalization experiments using taste-cell-type markers, the TNF-α-producing cells are predominantly type II taste cells expressing the taste receptor T1R3. These cells can rapidly increase TNF-α production and secretion upon inflammatory challenges, both in vivo and in vitro. The lipopolysaccharide (LPS)-induced TNF-α expression in taste cells was completely eliminated in TLR2−/−/TLR4−/− double-gene-knockout mice, which confirms that the induction of TNF-α in taste buds by LPS is mediated through TLR signaling pathways. The taste-cell-produced TNF-α may contribute to local immune surveillance, as well as regulate taste sensation under normal and pathological conditions. PMID:22905218

  15. Expression and secretion of TNF-α in mouse taste buds: a novel function of a specific subset of type II taste cells.

    PubMed

    Feng, Pu; Zhao, Hang; Chai, Jinghua; Huang, Liquan; Wang, Hong

    2012-01-01

    Taste buds are chemosensory structures widely distributed on the surface of the oral cavity and larynx. Taste cells, exposed to the oral environment, face great challenges in defense against potential pathogens. While immune cells, such as T-cells and macrophages, are rarely found in taste buds, high levels of expression of some immune-response-associated molecules are observed in taste buds. Yet, the cellular origins of these immune molecules such as cytokines in taste buds remain to be determined. Here, we show that a specific subset of taste cells selectively expresses high levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α). Based on immuno-colocalization experiments using taste-cell-type markers, the TNF-α-producing cells are predominantly type II taste cells expressing the taste receptor T1R3. These cells can rapidly increase TNF-α production and secretion upon inflammatory challenges, both in vivo and in vitro. The lipopolysaccharide (LPS)-induced TNF-α expression in taste cells was completely eliminated in TLR2(-/-)/TLR4(-/-) double-gene-knockout mice, which confirms that the induction of TNF-α in taste buds by LPS is mediated through TLR signaling pathways. The taste-cell-produced TNF-α may contribute to local immune surveillance, as well as regulate taste sensation under normal and pathological conditions.

  16. The natural killer cell response to West Nile virus in young and old individuals with or without a prior history of infection.

    PubMed

    Yao, Yi; Strauss-Albee, Dara M; Zhou, Julian Q; Malawista, Anna; Garcia, Melissa N; Murray, Kristy O; Blish, Catherine A; Montgomery, Ruth R

    2017-01-01

    West Nile virus (WNV) typically leads to asymptomatic infection but can cause severe neuroinvasive disease or death, particularly in the elderly. Innate NK cells play a critical role in antiviral defenses, yet their role in human WNV infection is poorly defined. Here we demonstrate that NK cells mount a robust, polyfunctional response to WNV characterized by cytolytic activity, cytokine and chemokine secretion. This is associated with downregulation of activating NK cell receptors and upregulation of NK cell activating ligands for NKG2D. The NK cell response did not differ between young and old WNV-naïve subjects, but a history of symptomatic infection is associated with more IFN-γ producing NK cell subsets and a significant decline in a specific NK cell subset. This NK repertoire skewing could either contribute to or follow heightened immune pathogenesis from WNV infection, and suggests that NK cells could play an important role in WNV infection in humans.

  17. Arginine methylation catalyzed by PRMT1 is required for B cell activation and differentiation.

    PubMed

    Infantino, Simona; Light, Amanda; O'Donnell, Kristy; Bryant, Vanessa; Avery, Danielle T; Elliott, Michael; Tangye, Stuart G; Belz, Gabrielle; Mackay, Fabienne; Richard, Stephane; Tarlinton, David

    2017-10-12

    Arginine methylation catalyzed by protein arginine methyltransferases (PRMT) is a common post-translational modification in mammalian cells, regulating many important functions including cell signalling, proliferation and differentiation. Here we show the role of PRMT1 in B-cell activation and differentiation. PRMT1 expression and activity in human and mouse peripheral B cells increases in response to in vitro or in vivo activation. Deletion of the Prmt1 gene in mature B cells establishes that although the frequency and phenotype of peripheral B cell subsets seem unaffected, immune responses to T-cell-dependent and -independent antigens are substantially reduced. In vitro activation of Prmt1-deficient B cells with a variety of mitogens results in diminished proliferation, differentiation and survival, effects that are correlated with altered signal transduction from the B cell receptor. Thus PRMT1 activity in B cells is required for correct execution of multiple processes that in turn are necessary for humoral immunity.PRMT1 is an arginine methyltransferase involved in a variety of cell functions. Here the authors delete PRMT1 specifically in mature B cells to show the importance of arginine methylation for B cell proliferation, differentiation and survival, and thereby for humoral immunity.

  18. A Positive Correlation between Atypical Memory B Cells and Plasmodium falciparum Transmission Intensity in Cross-Sectional Studies in Peru and Mali

    PubMed Central

    Weiss, Greta E.; Clark, Eva H.; Li, Shanping; Traore, Boubacar; Kayentao, Kassoum; Ongoiba, Aissata; Hernandez, Jean N.; Doumbo, Ogobara K.; Pierce, Susan K.; Branch, OraLee H.; Crompton, Peter D.

    2011-01-01

    Background Antibodies that protect against Plasmodium falciparum (Pf) malaria are only acquired after years of repeated infections. The B cell biology that underlies this observation is poorly understood. We previously reported that “atypical” memory B cells are increased in children and adults exposed to intense Pf transmission in Mali, similar to what has been observed in individuals infected with HIV. In this study we examined B cell subsets of Pf -infected adults in Peru and Mali to determine if Pf transmission intensity correlates with atypical memory B cell expansion. Methodology/Principal Findings In this cross-sectional study venous blood was collected from adults in areas of zero (U.S., n = 10), low (Peru, n = 18) and high (Mali, n = 12) Pf transmission. Adults in Peru and Mali were infected with Pf at the time of blood collection. Thawed lymphocytes were analyzed by flow cytometry to quantify B cell subsets, including atypical memory B cells, defined by the cell surface markers CD19+ CD20+ CD21− CD27− CD10−. In Peru, the mean level of atypical memory B cells, as a percent of total B cells, was higher than U.S. adults (Peru mean: 5.4% [95% CI: 3.61–7.28]; U.S. mean: 1.4% [95% CI: 0.92–1.81]; p<0.0001) but lower than Malian adults (Mali mean 13.1% [95% CI: 10.68–15.57]; p = 0.0001). In Peru, individuals self-reporting ≥1 prior malaria episodes had a higher percentage of atypical memory B cells compared to those reporting no prior episodes (≥1 prior episodes mean: 6.6% [95% CI: 4.09–9.11]; no prior episodes mean: 3.1% [95% CI: 1.52–4.73]; p = 0.028). Conclusions/Significance Compared to Pf-naive controls, atypical memory B cells were increased in Peruvian adults exposed to low Pf transmission, and further increased in Malian adults exposed to intense Pf transmission. Understanding the origin, function and antigen specificity of atypical memory B cells in the context of Pf infection could contribute to our understanding of naturally-acquired malaria immunity. PMID:21264245

  19. Automatic Nuclei Segmentation in H&E Stained Breast Cancer Histopathology Images

    PubMed Central

    Veta, Mitko; van Diest, Paul J.; Kornegoor, Robert; Huisman, André; Viergever, Max A.; Pluim, Josien P. W.

    2013-01-01

    The introduction of fast digital slide scanners that provide whole slide images has led to a revival of interest in image analysis applications in pathology. Segmentation of cells and nuclei is an important first step towards automatic analysis of digitized microscopy images. We therefore developed an automated nuclei segmentation method that works with hematoxylin and eosin (H&E) stained breast cancer histopathology images, which represent regions of whole digital slides. The procedure can be divided into four main steps: 1) pre-processing with color unmixing and morphological operators, 2) marker-controlled watershed segmentation at multiple scales and with different markers, 3) post-processing for rejection of false regions and 4) merging of the results from multiple scales. The procedure was developed on a set of 21 breast cancer cases (subset A) and tested on a separate validation set of 18 cases (subset B). The evaluation was done in terms of both detection accuracy (sensitivity and positive predictive value) and segmentation accuracy (Dice coefficient). The mean estimated sensitivity for subset A was 0.875 (±0.092) and for subset B 0.853 (±0.077). The mean estimated positive predictive value was 0.904 (±0.075) and 0.886 (±0.069) for subsets A and B, respectively. For both subsets, the distribution of the Dice coefficients had a high peak around 0.9, with the vast majority of segmentations having values larger than 0.8. PMID:23922958

  20. Automatic nuclei segmentation in H&E stained breast cancer histopathology images.

    PubMed

    Veta, Mitko; van Diest, Paul J; Kornegoor, Robert; Huisman, André; Viergever, Max A; Pluim, Josien P W

    2013-01-01

    The introduction of fast digital slide scanners that provide whole slide images has led to a revival of interest in image analysis applications in pathology. Segmentation of cells and nuclei is an important first step towards automatic analysis of digitized microscopy images. We therefore developed an automated nuclei segmentation method that works with hematoxylin and eosin (H&E) stained breast cancer histopathology images, which represent regions of whole digital slides. The procedure can be divided into four main steps: 1) pre-processing with color unmixing and morphological operators, 2) marker-controlled watershed segmentation at multiple scales and with different markers, 3) post-processing for rejection of false regions and 4) merging of the results from multiple scales. The procedure was developed on a set of 21 breast cancer cases (subset A) and tested on a separate validation set of 18 cases (subset B). The evaluation was done in terms of both detection accuracy (sensitivity and positive predictive value) and segmentation accuracy (Dice coefficient). The mean estimated sensitivity for subset A was 0.875 (±0.092) and for subset B 0.853 (±0.077). The mean estimated positive predictive value was 0.904 (±0.075) and 0.886 (±0.069) for subsets A and B, respectively. For both subsets, the distribution of the Dice coefficients had a high peak around 0.9, with the vast majority of segmentations having values larger than 0.8.

  1. Immunotoxicity and allergic potential induced by topical application of dimethyl carbonate (DMC) in a murine model

    PubMed Central

    Anderson, Stacey E.; Franko, Jennifer; Anderson, Katie L.; Munson, Albert E.; Lukomska, Ewa; Meade, B. Jean

    2015-01-01

    Dimethyl carbonate (DMC) is an industrial chemical, used as a paint and adhesive solvent, with the potential for significant increases in production. Using select immune function assays, the purpose of these studies was to evaluate the immunotoxicity of DMC following dermal exposure using a murine model. Following a 28-day exposure, DMC produced a significant decrease in thymus weight at concentrations of 75% and greater. No effects on body weight, hematological parameters (erythrocytes, leukocytes, and their differentials), or immune cell phenotyping (B-cells, T-cells, and T-cell sub-sets) were identified. The IgM antibody response to sheep red blood cell (SRBC) was significantly reduced in the spleen but not the serum. DMC was not identified to be an irritant and evaluation of the sensitization potential, conducted using the local lymph node assay (LLNA) at concentrations ranging from 50–100%, did not identify increases in lymphocyte proliferation. These results demonstrate that dermal exposure to DMC induces immune suppression in a murine model and raise concern about potential human exposure and the need for occupational exposure regulations. PMID:22953780

  2. Circulating CD4+CXCR5+ T cells contribute to proinflammatory responses in multiple ways in coronary artery disease.

    PubMed

    Ding, Ru; Gao, Wenwu; He, Zhiqing; Wu, Feng; Chu, Yang; Wu, Jie; Ma, Lan; Liang, Chun

    2017-11-01

    Coronary artery disease (CAD) is a common subtype of cardiovascular disease. The major contributing event is atherosclerosis, which is a progressive inflammatory condition resulting in the thickening of the arterial wall and the formation of atheromatous plaques. Recent evidence suggests that circulating CD4 + CXCR5 + T cells can contribute to inflammatory reactions. In this study, the frequency, phenotype, and function of circulating CD4 + CXCR5 + T cells in CAD patients were examined. Data showed that circulating CD4 + CXCR5 + T cells in CAD patients were enriched with a PD-1 + CCR7 - subset, which was previously identified as the most potent in B cell help. The CD4 + CXCR5 + T cells in CAD patients also secreted significantly higher levels of IFN-γ, IL-17A, and IL-21 than those from healthy controls. Depleting the PD-1 + population significantly reduced the cytokine secretion. Interestingly, the CD4 + CXCR5 + PD-1 - T cells significantly upregulated PD-1 following anti-CD3/CD28 or SEB stimulation. CD4 + CXCR5 + T cells from CAD patients also demonstrated more potent capacity to stimulate B cell inflammation than those from healthy individuals. The phosphorylation of STAT1 and STAT3 were significantly higher in B cells incubated with CD4 + CXCR5 + T cells from CAD than controls. The IL-6 and IFN-γ expression were also significantly higher in B cells incubated with CD4 + CXCR5 + T cells from CAD. Together, this study demonstrated that CAD patients presented a highly activated CD4 + CXCR5 + T cell subset that could contribute to proinflammatory responses in multiple ways. The possibility of using CD4 + CXCR5 + T cells as a therapeutic target should therefore be examined in CAD patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The role of the 2H4 molecule in the generation of suppressor function in Con A-activated T cells.

    PubMed

    Morimoto, C; Letvin, N L; Rudd, C E; Hagan, M; Takeuchi, T; Schlossman, S F

    1986-11-15

    The molecular basis for the suppression generated in a concanavalin A (Con A)-activated T cell culture remains unknown. In this study, we have attempted to determine whether the 2H4 and 4B4 molecules on Con A-activated T cells play some role in the generation of suppression by such cells. We have shown that Con A-activated suppressor cells belong to the 2H4+ subset of T cells but not the 4B4+ (2H4-) subset. Con A-activated T cells exerted their optimal suppressor function on day 2 in culture, a time at which the expression of 2H4 on such cells was maximal and 4B4 was minimal. Furthermore, the stimulation of T cells with the higher concentration of Con A generated the stronger suppressor function. At the same time, both 2H4 expression and density were increased and 4B4 expression and density were decreased on such Con A-activated T cells. More importantly, the treatment of Con A-activated T cells with anti-2H4 antibody but not with anti-4B4, anti-TQ1, or anti-T4 antibodies can block the suppressor function of such cells. Taken together, the above results strongly suggest that the 2H4 molecule itself may be involved in the generation of suppressor function in Con A-activated T cells. The 2H4 antigen on such cells was shown to be comprised of 220,000 and 200,000 m.w. glycoproteins. Thus this study indicates that the 220,000 and 200,000 m.w. structure of the 2H4 molecule may itself play a crucial role in the generation of suppressor signals of Con A-activated cells.

  4. CHEMOKINE RECEPTOR 7 (CCR7)-EXPRESSION AND IFNγ PRODUCTION DEFINE VACCINE-SPECIFIC CANINE T CELL SUBSETS

    PubMed Central

    Hartley, Ashley N.; Tarleton, Rick L.

    2015-01-01

    Canines suffer from and serve as strong translational animals models for many immunological disorders and infectious diseases. Routine vaccination has been a mainstay of protecting dogs through the stimulation of robust antibody responses and expansion of memory T cell populations. Commercially available reagents and described techniques are limited for identifying and characterizing canine T cell subsets and evaluating T cell-specific effector function. To define reagents for delineating naïve versus activated T cells and identify antigen-specific T cells, we tested anti-human and anti-bovine T-cell specific cell surface marker reagents for cross-reactivity with canine peripheral blood mononuclear cells (PBMCs. Both CD4+ and CD8+ T cells from healthy canine donors showed reactivity to CCL19-Ig, a CCR7 ligand, and coexpression with CD62L. An in vitro stimulation with concanavalin A validated downregulation of CCR7 and CD62L expression on stimulated healthy control PBMCs, consistent with an activated T cell phenotype. Anti-IFNγ antibodies identified antigen-specific IFNγ-producing CD4+ and CD8+ T cells upon in vitro vaccine antigen PBMC stimulation. PBMC isolation within 24 hours of sample collection allowed for efficient cell recovery and accurate T cell effector function characterization. These data provide a reagent and techniques platform via flow cytometry for identifying canine T cell subsets and characterizing circulating antigen-specific canine T cells for potential use in diagnostic and field settings. PMID:25758065

  5. Anti-Tumor Immunity in Head and Neck Cancer: Understanding the Evidence, How Tumors Escape and Immunotherapeutic Approaches

    PubMed Central

    Allen, Clint T.; Clavijo, Paul E.; Van Waes, Carter; Chen, Zhong

    2015-01-01

    Many carcinogen- and human papilloma virus (HPV)-associated head and neck cancers (HNSCC) display a hematopoietic cell infiltrate indicative of a T-cell inflamed phenotype and an underlying anti-tumor immune response. However, by definition, these tumors have escaped immune elimination and formed a clinically significant malignancy. A number of both genetic and environmental mechanisms may allow such immune escape, including selection of poorly antigenic cancer cell subsets, tumor produced proinflammatory and immunosuppressive cytokines, recruitment of immunosuppressive immune cell subsets into the tumor and expression of checkpoint pathway components that limit T-cell responses. Here, we explore concepts of antigenicity and immunogenicity in solid tumors, summarize the scientific and clinical data that supports the use of immunotherapeutic approaches in patients with head and neck cancer, and discuss immune-based treatment approaches currently in clinical trials. PMID:26690220

  6. Isolation and Flow Cytometry Analysis of Innate Lymphoid Cells from the Intestinal Lamina Propria.

    PubMed

    Gronke, Konrad; Kofoed-Nielsen, Michael; Diefenbach, Andreas

    2017-01-01

    The intestinal mucosa constitutes the biggest surface area of the body. It is constantly challenged by bacteria, commensal and pathogenic, protozoa, and food-derived irritants. In order to maintain homeostasis, a complex network of signaling circuits has evolved that includes contributions of immune cells. In recent years a subset of lymphocytes, which belong to the innate immune system, has caught particular attention. These so-called innate lymphoid cells (ILC) reside within the lamina propria of the small and large intestines and rapidly respond to environmental challenges. They provide immunity to various types of infections but may also contribute to organ homeostasis as they produce factors acting on epithelial cells thereby enhancing barrier integrity. Here, we describe how these cells can be isolated from their environment and provide an in-depth protocol how to visualize the various ILC subsets by flow cytometry.

  7. T Follicular Helper Cells and B Cell Dysfunction in Aging and HIV-1 Infection

    PubMed Central

    Pallikkuth, Suresh; de Armas, Lesley; Rinaldi, Stefano; Pahwa, Savita

    2017-01-01

    T follicular helper (Tfh) cells are a subset of CD4 T cells that provide critical signals to antigen-primed B cells in germinal centers to undergo proliferation, isotype switching, and somatic hypermutation to generate long-lived plasma cells and memory B cells during an immune response. The quantity and quality of Tfh cells therefore must be tightly controlled to prevent immune dysfunction in the form of autoimmunity and, on the other hand, immune deficiency. Both Tfh and B cell perturbations appear during HIV infection resulting in impaired antibody responses to vaccines such as seasonal trivalent influenza vaccine, also seen in biologic aging. Although many of the HIV-associated defects improve with antiretroviral therapy (ART), excess immune activation and antigen-specific B and T cell responses including Tfh function are still impaired in virologically controlled HIV-infected persons on ART. Interestingly, HIV infected individuals experience increased risk of age-associated pathologies. This review will discuss Tfh and B cell dysfunction in HIV infection and highlight the impact of chronic HIV infection and aging on Tfh–B cell interactions. PMID:29109730

  8. T Follicular Helper Cells and B Cell Dysfunction in Aging and HIV-1 Infection.

    PubMed

    Pallikkuth, Suresh; de Armas, Lesley; Rinaldi, Stefano; Pahwa, Savita

    2017-01-01

    T follicular helper (Tfh) cells are a subset of CD4 T cells that provide critical signals to antigen-primed B cells in germinal centers to undergo proliferation, isotype switching, and somatic hypermutation to generate long-lived plasma cells and memory B cells during an immune response. The quantity and quality of Tfh cells therefore must be tightly controlled to prevent immune dysfunction in the form of autoimmunity and, on the other hand, immune deficiency. Both Tfh and B cell perturbations appear during HIV infection resulting in impaired antibody responses to vaccines such as seasonal trivalent influenza vaccine, also seen in biologic aging. Although many of the HIV-associated defects improve with antiretroviral therapy (ART), excess immune activation and antigen-specific B and T cell responses including Tfh function are still impaired in virologically controlled HIV-infected persons on ART. Interestingly, HIV infected individuals experience increased risk of age-associated pathologies. This review will discuss Tfh and B cell dysfunction in HIV infection and highlight the impact of chronic HIV infection and aging on Tfh-B cell interactions.

  9. Protection Against Type 1 Diabetes Upon Coxsackievirus B4 Infection and iNKT-Cell Stimulation

    PubMed Central

    Ghazarian, Liana; Diana, Julien; Beaudoin, Lucie; Larsson, Pär G.; Puri, Raj K.; van Rooijen, Nico; Flodström-Tullberg, Malin; Lehuen, Agnès

    2013-01-01

    Invariant natural killer T (iNKT) cells belong to the innate immune system and exercise a dual role as potent regulators of autoimmunity and participate in responses against different pathogens. They have been shown to prevent type 1 diabetes development and to promote antiviral responses. Many studies in the implication of environmental factors on the etiology of type 1 diabetes have suggested a link between enteroviral infections and the development of this disease. This study of the pancreatropic enterovirus Coxsackievirus B4 (CVB4) shows that although infection accelerated type 1 diabetes development in a subset of proinsulin 2–deficient NOD mice, the activation of iNKT cells by a specific agonist, α-galactosylceramide, at the time of infection inhibited the disease. Diabetes development was associated with the infiltration of pancreatic islets by inflammatory macrophages, producing high levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α and activation of anti-islet T cells. On the contrary, macrophages infiltrating the islets after CVB4 infection and iNKT-cell stimulation expressed a number of suppressive enzymes, among which indoleamine 2,3-dioxygenase was sufficient to inhibit anti-islet T-cell response and to prevent diabetes. This study highlights the critical interaction between virus and the immune system in the acceleration or prevention of type 1 diabetes. PMID:23894189

  10. Selective Depletion of αβ T Cells and B Cells for Human Leukocyte Antigen-Haploidentical Hematopoietic Stem Cell Transplantation. A Three-Year Follow-Up of Procedure Efficiency.

    PubMed

    Li Pira, Giuseppina; Malaspina, David; Girolami, Elia; Biagini, Simone; Cicchetti, Elisabetta; Conflitti, Gianpiero; Broglia, Manuel; Ceccarelli, Stefano; Lazzaro, Stefania; Pagliara, Daria; Meschini, Antonella; Bertaina, Alice; Montanari, Mauro; Locatelli, Franco

    2016-11-01

    HLA-haploidentical family donors represent a valuable option for children requiring allogeneic hematopoietic stem cell transplantation (HSCT). Because graft-versus-host diseases (GVHD) is a major complication of HLA-haploidentical HSCT because of alloreactive T cells in the graft, different methods have been used for ex vivo T cell depletion. Removal of donor αβ T cells, the subset responsible for GVHD, and of B cells, responsible for post-transplantation lymphoproliferative disorders, have been recently developed for HLA-haploidentical HSCT. This manipulation preserves, in addition to CD34 +  progenitors, natural killer, γδ T, and monocytes/dendritic cells, contributing to anti-leukemia activity and protection against infections. We analyzed depletion efficiency and cell yield in 200 procedures performed in the last 3 years at our center. Donors underwent CD34 +   hematopoietic stem cell (HSC) peripheral blood mobilization with granulocyte colony-stimulating factor (G-CSF). Poor CD34 +  cell mobilizers (48 of 189, 25%) received plerixafor in addition to G-CSF. Aphereses containing a median of 52.5 × 10 9 nucleated cells and 494 × 10 6 CD34 +  HSC were manipulated using the CliniMACS device. In comparison to the initial product, αβ T cell depletion produced a median 4.1-log reduction (range, 3.1 to 5.5) and B cell depletion led to a median 3.4-log reduction (range, 2.0 to 4.7). Graft products contained a median of 18.5 × 10 6 CD34 +  HSC/kg recipient body weight, with median values of residual αβ T cells and B cells of 29 × 10 3 /kg and 33 × 10 3 /kg, respectively. Depletion efficiency monitored at 6-month intervals demonstrated steady performance, while improved recovery of CD34 +  cells was observed after the first year (P = .0005). These data indicate that αβ T cell and B cell depletion of HSC grafts from HLA-haploidentical donors was efficient and reproducible. Copyright © 2016 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  11. Increased Neurotropic Threat from Burkholderia pseudomallei Strains with a B. mallei–like Variation in the bimA Motility Gene, Australia

    PubMed Central

    Fane, Anne; Sarovich, Derek S.; Price, Erin P.; Rush, Catherine M.; Govan, Brenda L.; Parker, Elizabeth; Mayo, Mark; Currie, Bart J.; Ketheesan, Natkunam

    2017-01-01

    Neurologic melioidosis is a serious, potentially fatal form of Burkholderia pseudomallei infection. Recently, we reported that a subset of clinical isolates of B. pseudomallei from Australia have heightened virulence and potential for dissemination to the central nervous system. In this study, we demonstrate that this subset has a B. mallei–like sequence variation of the actin-based motility gene, bimA. Compared with B. pseudomallei isolates having typical bimA alleles, isolates that contain the B. mallei–like variation demonstrate increased persistence in phagocytic cells and increased virulence with rapid systemic dissemination and replication within multiple tissues, including the brain and spinal cord, in an experimental model. These findings highlight the implications of bimA variation on disease progression of B. pseudomallei infection and have considerable clinical and public health implications with respect to the degree of neurotropic threat posed to human health. PMID:28418830

  12. Increased Neurotropic Threat from Burkholderia pseudomallei Strains with a B. mallei-like Variation in the bimA Motility Gene, Australia.

    PubMed

    Morris, Jodie L; Fane, Anne; Sarovich, Derek S; Price, Erin P; Rush, Catherine M; Govan, Brenda L; Parker, Elizabeth; Mayo, Mark; Currie, Bart J; Ketheesan, Natkunam

    2017-05-01

    Neurologic melioidosis is a serious, potentially fatal form of Burkholderia pseudomallei infection. Recently, we reported that a subset of clinical isolates of B. pseudomallei from Australia have heightened virulence and potential for dissemination to the central nervous system. In this study, we demonstrate that this subset has a B. mallei-like sequence variation of the actin-based motility gene, bimA. Compared with B. pseudomallei isolates having typical bimA alleles, isolates that contain the B. mallei-like variation demonstrate increased persistence in phagocytic cells and increased virulence with rapid systemic dissemination and replication within multiple tissues, including the brain and spinal cord, in an experimental model. These findings highlight the implications of bimA variation on disease progression of B. pseudomallei infection and have considerable clinical and public health implications with respect to the degree of neurotropic threat posed to human health.

  13. Altered Cytokine Production By Specific Human Peripheral Blood Cell Subsets Immediately Following Spaceflight

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E.; Cubbage, Michael L.; Sams, Clarence F.

    1999-01-01

    In this study, we have attempted to combine standard immunological assays with the cellular resolving power of the flow cytometer to positively identify the specific cell types involved in spaceflight-induced immune alterations. We have obtained whole blood samples from 27 astronauts collected at three timepoints (L-10, R+0 and R+3) surrounding four recent space shuttle missions. The duration of these missions ranged from 10 to 18 days. Assays performed included serum/urine cortisol, comprehensive subset phenotyping, assessment of cellular activation markers and intracellular cytokine production following mitogenic stimulation. Absolute levels of peripheral granulocytes were significantly elevated following spaceflight, but the levels of circulating lymphocytes and monocytes were unchanged. Lymphocyte subset analysis demonstrated trends towards a decreased percentage of T cells and an increased percentage of B cells. Nearly all of the astronauts exhibited an increased CD4:CD8 ratio, which was dramatic in some individuals. Assessment of memory (CD45RA+) vs. naive (CD45RO+) CD4+ T cell subsets was more ambiguous, with subjects tending to group more as a flight crew. All subjects from one mission demonstrated an increased CD45RA:CD45RO ratio, while all subjects from another Mission demonstrated a decreased ratio. While no significant trend was seen in the monocyte population as defined by scatter, a decreased percentage of the CD14+ CD16+ monocyte subset was seen following spaceflight in all subjects tested. In general, most of the cellular changes described above which were assessed at R+O and compared to L-10 trended to pre-flight levels by R+3. Although no significant differences were seen in the expression of the cellular activation markers CD69 and CD25 following exposure to microgravity, significant alterations were seen in cytokine production in response to mitogenic activation for specific subsets. T cell (CD3+) production of IL-2 was significantly decreased after at R+O as was IL-2 production by both CD4+ and CD8+ T cell subsets for most subjects. Production of IFN(sub gamma) did not appear to be affected by microgravity exposure in either T cells in general or in the CD8+ T cell subset. There was a spaceflight-induced decrease in IFN(sub gamma) production in the CD4+ T cell subset, however it did not reach statistical significance. Serum and urine stress-hormone analysis indicated significant physiologic stresses in astronauts following spaceflight. In summary, these results demonstrate alterations in the peripheral immune system of astronauts immediately after spaceflight of 10 to 18 days duration and support continued research regarding microgravity and immunology (including in-flight sampling) prior to routine long-term spaceflight for astronauts.

  14. Tumor microenvironment is multifaceted.

    PubMed

    Sautès-Fridman, Catherine; Cherfils-Vicini, Julien; Damotte, Diane; Fisson, Sylvain; Fridman, Wolf Hervé; Cremer, Isabelle; Dieu-Nosjean, Marie-Caroline

    2011-03-01

    Cancer initiation, progression, and invasion occur in a complex and dynamic microenvironment which depends on the hosts and sites where tumors develop. Tumors arising in mucosal tissues may progress in an inflammatory context linked to local viral and/or bacterial infections. At the opposite, tumors developing in immunoprivileged sites are protected from microorganisms and grow in an immunosuppressive environment. In the present review, we summarize and present our recent data on the influence of infectious context and immune cell infiltration organization in human Non-Small Cell Lung Cancers (NSCLC) progression. We show that stimulation of tumor cells by TLR for viral ssRNA, such as TLR7/8, or bacteria, such as TLR4, promotes cell survival and induces chemoresistance. On the opposite, stimulation by TLR3, receptor for double-stranded viral RNA, decreases tumor cell viability and induces chemosensitivity in some lung tumor cell lines. Since fresh lung tumor cells exhibit a gene expression profile characteristic of TLR-stimulated lung tumor cell lines, we suspect that viral and bacterial influence may not only act on the host immune system but also directly on tumor growth and sensitivity to chemotherapy. The stroma of NSCLC contains tertiary lymphoid structures (or Tumor-induced Bronchus-Associated Lymphoid Tissues (Ti-BALT)) with mature DC, follicular DC, and T and B cells. Two subsets of immature DC, Langerhans cells (LC) and interstitial DC (intDC), were detected in the tumor nests and the stroma, respectively. Here, we show that the densities of the three DC subsets, mature DC, LC, and intDC, are highly predictive of disease-specific survival in a series of 74 early-stage NSCLC patients. We hypothesize that the mature DC may derive from local activation and migration of the immature DC--and especially LC which contact the tumor cells--to the tertiary lymphoid structures, after sampling and processing of the tumor antigens. In view of the prominent role of DC in the immune response, we suggest that the microenvironment of early-stage NSCLC may allow the in situ activation of the adaptive response. Finally, we find that the eyes or brain of mice with growing B cell lymphoma are infiltrated with T cells and that the cytokines produced ex vivo by the tumoral tissues have an impaired Th1 cytokine profile. Our work illustrates that the host and external tumor microenvironments are multifaceted and strongly influence tumor progression and anti-tumor immune responses.

  15. Direct activation of chordoblasts by retinoic acid is required for segmented centra mineralization during zebrafish spine development.

    PubMed

    Pogoda, Hans-Martin; Riedl-Quinkertz, Iris; Löhr, Heiko; Waxman, Joshua S; Dale, Rodney M; Topczewski, Jacek; Schulte-Merker, Stefan; Hammerschmidt, Matthias

    2018-05-08

    Zebrafish mutants with increased retinoic acid (RA) signaling due to the loss of the RA-inactivating enzyme Cyp26b1 develop a hyper-mineralized spine with gradually fusing vertebral body precursors (centra). However, the underlying cellular mechanisms remain incompletely understood. Here, we show that cells of the notochord epithelium named chordoblasts are sensitive to RA signaling. Chordoblasts are uniformly distributed along the anteroposterior axis and initially generate the continuous collagenous notochord sheath. However, subsequently and iteratively, subsets of these cells undergo further RA-dependent differentiation steps, acquire a stellate-like shape, downregulate expression of the collagen gene col2a1a , switch on cyp26b1 expression and trigger metameric sheath mineralization. This mineralization fails to appear upon chordoblast-specific cell ablation or RA signal transduction blockade. Together, our data reveal that, despite their different developmental origins, the activities and regulation of chordoblasts are very similar to those of osteoblasts, including their RA-induced transition from osteoid-producing cells to osteoid-mineralizing ones. Furthermore, our data point to a requirement for locally controlled RA activity within the chordoblast layer in order to generate the segmented vertebral column. © 2018. Published by The Company of Biologists Ltd.

  16. Constitutive production of catalytic antibodies to a Staphylococcus aureus virulence factor and effect of infection.

    PubMed

    Brown, Eric L; Nishiyama, Yasuhiro; Dunkle, Jesse W; Aggarwal, Shreya; Planque, Stephanie; Watanabe, Kenji; Csencsits-Smith, Keri; Bowden, M Gabriela; Kaplan, Sheldon L; Paul, Sudhir

    2012-03-23

    Antibodies that recognize microbial B lymphocyte superantigenic epitopes are produced constitutively with no requirement for adaptive immune maturation. We report cleavage of the Staphylococcus aureus virulence factor extracellular fibrinogen-binding protein (Efb) by catalytic antibodies produced with no exposure to the bacterium and reduction of the catalytic antibody activity following infection. IgG catalytic antibodies that specifically hydrolyzed Efb via a nucleophilic catalytic mechanism were found in the blood of healthy humans and aseptic mice free of S. aureus infection. IgG hydrolyzed peptide bonds on the C-terminal side of basic amino acids, including a bond located within the C3b-binding domain of Efb. Efb digested with the IgG lost its ability to bind C3b and inhibit complement-dependent antibody-mediated red blood cell lysis. In addition to catalysis, the IgG expressed saturable Efb binding activity. IgG from S. aureus-infected mice displayed reduced Efb cleaving activity and increased Efb binding activity compared with uninfected controls, suggesting differing effects of the infection on the antibody subsets responsible for the two activities. IgG from children hospitalized for S. aureus infection also displayed reduced Efb cleavage compared with healthy children. These data suggest a potential defense function for constitutively produced catalytic antibodies to a putative superantigenic site of Efb, but an adaptive catalytic response appears to be proscribed.

  17. Protein Arginine Methyltransferase 5 as a Driver of Lymphomagenesis

    NASA Astrophysics Data System (ADS)

    Smith, Porsha Latrice

    Over the past decade, it has become clear that oncogenesis is a process driven by a wide variety of triggers including gene mutations, gene amplifications, inflammation, and immune deficiency. The growing pool of data collected from whole genome and epigenome studies of both solid and blood cancers has pointed toward dysregulation of chromatin remodelers as a unique class of cancer drivers. Next generation sequencing studies of lymphomas have identified a wide array of somatic mutations affecting enzymes that regulate epigenetic control of gene expression. Lymphoma is a type of cancer that originates in secondary lymphoid organs and manifests as an outgrowth of transformed lymphocytes, or white blood cells (WBCs) in the blood. The majority of lymphoma cases can be grouped into the Non-Hodgkins lymphoma (NHL) subset and mainly occurs in B-cells. B-cell NHL is a heterogeneous set of cancers that would benefit from new therapies to improve patient progression-free survival. Cancers such as NHL typically present with a combination of genetic and epigenetic aberrations that contribute to the malignancy program. The epigenetic modifier protein arginine methyltransferase 5 (PRMT5) is required for B-cell transformation following Epstein-Barr virus (EBV) infection, and is overexpressed in various subsets of B-cell NHL. Based on these data we hypothesized that PRMT5 is a major driver of B-cell lymphomagenesis. To explore the role of PRMT5 in the development and progression of B-cell NHL we created a small molecule inhibitors targeted to PRMT5. Using the NHL subset mantle cell lymphoma (MCL) as a model we tested the efficacy of the drug. We discovered that PRMT5 was overexpressed in MCL primary samples and cell lines as compared to normal resting B cells. Furthermore, use of the small molecule inhibitor decreased the proliferation and viability in these cells without affecting the normal B-cells. Additionally, use of inhibitors caused G2/M cell cycle and decreased the expression of the oncogenic cell cycle proteins cyclin D1, CDK4 and c-myc but de-repressed the expression of the tumor suppressors PDCD4, C/EBPbeta and ST7. Finally, Nanostring analysis confirmed the dysregulation of multiple microRNA pathways which is attenuated with PRMT5 inhibition. To further explore the role of PRMT5 as a potential driver of lymphomagenesis, we created an Emu-PRMT5 mouse model that overexpressed human PRMT5 in the B-lymphoid compartment of FVB/N mice. Using this model we demonstrated an increase in the incidence of lymphoma as compared to non-transgenic mice. Most of the lymphomas developed were pre-B-cell however the model also generated a number of T-cell lymphomas. Indeed we were also able to isolate and propagate the Tg813 T-cell lymphoma cell line from a transgenic mouse tumor. Inhibition of PRMT5 in the Tg813 cell line with a small molecule inhibitor resulted in apoptosis and loss of the expression of the oncogenic proteins cyclin D1 and c-myc. Furthermore, engraftment of the 813 cell line into both SCID and FVB/N mice caused disseminated lymphoma, characterized by organomegaly and lymphoid tumors, and was lethal within 21 days post-engraftment. Genetic editing utilizing CRISPR/CAS9 technology and an inducible guide RNA system illustrated that genetic knockout of PRMT5 in this line led to decreased proliferation. Taken together, these data demonstrate the role of PRMT5 as a lymphoma driver and describe a novel class of inhibitors in MCL as well as the first PRMT5 transgenic mouse model.

  18. Chitin Recognition via Chitotriosidase Promotes Pathologic Type-2 Helper T Cell Responses to Cryptococcal Infection

    PubMed Central

    Wiesner, Darin L.; Specht, Charles A.; Lee, Chrono K.; Smith, Kyle D.; Mukaremera, Liliane; Lee, S. Thera; Lee, Chun G.; Elias, Jack A.; Nielsen, Judith N.; Boulware, David R.; Bohjanen, Paul R.; Jenkins, Marc K.; Levitz, Stuart M.; Nielsen, Kirsten

    2015-01-01

    Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection. PMID:25764512

  19. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection.

    PubMed

    Wiesner, Darin L; Specht, Charles A; Lee, Chrono K; Smith, Kyle D; Mukaremera, Liliane; Lee, S Thera; Lee, Chun G; Elias, Jack A; Nielsen, Judith N; Boulware, David R; Bohjanen, Paul R; Jenkins, Marc K; Levitz, Stuart M; Nielsen, Kirsten

    2015-03-01

    Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection.

  20. Absence of LTB4/BLT1 axis facilitates generation of mouse GM-CSF-induced long-lasting antitumor immunologic memory by enhancing innate and adaptive immune systems.

    PubMed

    Yokota, Yosuke; Inoue, Hiroyuki; Matsumura, Yumiko; Nabeta, Haruka; Narusawa, Megumi; Watanabe, Ayumi; Sakamoto, Chika; Hijikata, Yasuki; Iga-Murahashi, Mutsunori; Takayama, Koichi; Sasaki, Fumiyuki; Nakanishi, Yoichi; Yokomizo, Takehiko; Tani, Kenzaburo

    2012-10-25

    BLT1 is a high-affinity receptor for leukotriene B4 (LTB4) that is a potent lipid chemoattractant for myeloid leukocytes. The role of LTB4/BLT1 axis in tumor immunology, including cytokine-based tumor vaccine, however, remains unknown. We here demonstrated that BLT1-deficient mice rejected subcutaneous tumor challenge of GM-CSF gene-transduced WEHI3B (WGM) leukemia cells (KO/WGM) and elicited robust antitumor responses against second tumor challenge with WEHI3B cells. During GM-CSF-induced tumor regression, the defective LTB4/BLT1 signaling significantly reduced tumor-infiltrating myeloid-derived suppressor cells, increased the maturation status of dendritic cells in tumor tissues, enhanced their CD4(+) T-cell stimulation capacity and migration rate of dendritic cells that had phagocytosed tumor-associated antigens into tumor-draining lymph nodes, suggesting a positive impact on GM-CSF-sensitized innate immunity. Furthermore, KO/WGM mice displayed activated adaptive immunity by attenuating regulatory CD4(+) T subsets and increasing numbers of Th17 and memory CD44(hi)CD4(+) T subsets, both of which elicited superior antitumor effects as evidenced by adoptive cell transfer. In vivo depletion assays also revealed that CD4(+) T cells were the main effectors of the persistent antitumor immunity. Our data collectively underscore a negative role of LTB4/BLT1 signaling in effective generation and maintenance of GM-CSF-induced antitumor memory CD4(+) T cells.

  1. T suppressor cells are required for the maintenance of the antigen-induced B-cell unresponsive state in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benveniste, E.; Stevens, R.H.

    1983-04-01

    Tetanus toxoid immunization of humans generates circulating B cells which secrete IgG anti-tetanus toxoid antibodies (IgG-Tet) when stimulated in vitro with T cells and pokeweed mitogen (PWM). A unique property of these cells is the inhibition of maturation into antibody-secreting plasma cells following a 1-hr in vitro pulse with tetanus toxoid. Studies were undertaken to determine if different T-cell subsets could modulate the in vitro generated B-cell unresponsive state. The addition of OKT4+/OKT8- cells to antigen-treated B cells resulted in a partial reversal of the antigen-induced inhibition of IgG-Tet synthesis. The addition of OKT4-/OKT8+ cells to the treated B cellsmore » caused a suppression of IgG-Tet synthesis comparable to that seen in cultures containing unfractionated T cells. These results indicate that (1) the B-cell unresponsive state generated by antigen treatment is not absolute, (2) the degree of B-cell unresponsiveness results from a balance of suppressor and helper signals, and (3) T-suppressor cells need to be present to induce and maintain the B-cell unresponsive state.« less

  2. Autoantigen-specific B-cell depletion overcomes failed immune tolerance in type 1 diabetes.

    PubMed

    Henry, Rachel A; Kendall, Peggy L; Thomas, James W

    2012-08-01

    Eliminating autoantigen-specific B cells is an attractive alternative to global B-cell depletion for autoimmune disease treatment. To identify the potential for targeting a key autoimmune B-cell specificity in type 1 diabetes, insulin-binding B cells were tracked within a polyclonal repertoire using heavy chain B-cell receptor (BCR) transgenic (VH125Tg) mice. Insulin-specific B cells are rare in the periphery of nonautoimmune VH125Tg/C57BL/6 mice and WT/NOD autoimmune mice, whereas they clearly populate 1% of mature B-cell subsets in VH125Tg/NOD mice. Autoantigen upregulates CD86 in anti-insulin B cells, suggesting they are competent to interact with T cells. Endogenous insulin occupies anti-insulin BCR beginning with antigen commitment in bone marrow parenchyma, as identified by a second anti-insulin monoclonal antibody. Administration of this monoclonal antibody selectively eliminates insulin-reactive B cells in vivo and prevents disease in WT/NOD mice. Unexpectedly, developing B cells are less amenable to depletion, despite increased BCR sensitivity. These findings exemplify how a critical type 1 diabetes B-cell specificity escapes immune tolerance checkpoints. Disease liability is corrected by eliminating this B-cell specificity, providing proof of concept for a novel therapeutic approach for autoimmune disease.

  3. Characterization of a subset of oligodendrocytes separated on the basis of selective adherence properties.

    PubMed

    Szuchet, S; Yim, S H

    1984-01-01

    A subset of oligodendrocytes (B3,f) was isolated by taking advantage of selective cell-substratum interaction. B3,f cells were characterized morphologically, biochemically, and immunocytochemically. Oligodendrocytes were isolated from 4-to-6-month-old lamb brains by a modified version of our published procedure [Szuchet et al, J Neurosci Methods 3:7-19, 1980]. Freshly isolated cells from band III were plated on plastic culture plates at a concentration of 2 X 10(6) cells/ml. Approximately 40% of the cells attached to the plate under these conditions. The remaining cells formed small floating clusters. We refer to the latter as B3,f oligodendrocytes. After 4 to 5 days, the supernatant containing B3,f cells was removed and centrifuged, and the pellet was resuspended in culture medium and replated on polylysine-coated petri dishes. B3,f oligodendrocytes attached to this surface and extended an intricate network of processes. The purity of the cultures, judged by the number of cells staining with a monoclonal antibody against galactocerebroside was 98-99%. This high degree of cell homogeneity was maintained throughout the life of the cultures. B3,f cells appeared to be highly differentiated and remained so in vitro. This is surmised by the expression of oligodendrocytic characteristic functions such as high levels of CNPase activity typically, 5 microM/min/mgP; high incorporation of H2 35SO4 into sulfatides, an overall lipid metabolism that mimics events associated with myelinogenesis [Szuchet et al, PNAS 80:7019-7023, 1983]; the presence, detected immunocytochemically, of myelin-associated glycoprotein and myelin basic proteins. It is concluded that this culture system offers an opportunity for studying the biology of interfascicular oligodendrocytes and their interaction with neurons and/or astrocytes. It also should open up a way of examining the relevance of oligodendrocyte polymorphism.

  4. Origin and Role of a Subset of Tumor-Associated Neutrophils with Antigen-Presenting Cell Features in Early-Stage Human Lung Cancer.

    PubMed

    Singhal, Sunil; Bhojnagarwala, Pratik S; O'Brien, Shaun; Moon, Edmund K; Garfall, Alfred L; Rao, Abhishek S; Quatromoni, Jon G; Stephen, Tom Li; Litzky, Leslie; Deshpande, Charuhas; Feldman, Michael D; Hancock, Wayne W; Conejo-Garcia, Jose R; Albelda, Steven M; Eruslanov, Evgeniy B

    2016-07-11

    Based on studies in mouse tumor models, granulocytes appear to play a tumor-promoting role. However, there are limited data about the phenotype and function of tumor-associated neutrophils (TANs) in humans. Here, we identify a subset of TANs that exhibited characteristics of both neutrophils and antigen-presenting cells (APCs) in early-stage human lung cancer. These APC-like "hybrid neutrophils," which originate from CD11b(+)CD15(hi)CD10(-)CD16(low) immature progenitors, are able to cross-present antigens, as well as trigger and augment anti-tumor T cell responses. Interferon-γ and granulocyte-macrophage colony-stimulating factor are requisite factors in the tumor that, working through the Ikaros transcription factor, synergistically exert their APC-promoting effects on the progenitors. Overall, these data demonstrate the existence of a specialized TAN subset with anti-tumor capabilities in human cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets

    PubMed Central

    Weston, Wendy; Zayas, Jennifer; Perez, Ruben; George, John; Jurecic, Roland

    2014-01-01

    Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms. PMID:24903657

  6. Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets.

    PubMed

    Weston, Wendy; Zayas, Jennifer; Perez, Ruben; George, John; Jurecic, Roland

    2014-06-06

    Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms.

  7. B Cells and Humoral Immunity in Atherosclerosis

    PubMed Central

    Tsiantoulas, Dimitrios; Diehl, Cody J.; Witztum, Joseph L.; Binder, Christoph J.

    2014-01-01

    Insights into the important contribution of inflammation and immune functions in the development and progression of atherosclerosis have greatly improved our understanding of this disease. Although the role of T cells has been extensively studied for decades, only recently has the role of B cells gained more attention. Recent studies have identified differential effects of different B-cell subsets and helped to clarify the still poorly understood mechanisms by which these act. B1 cells have been shown to prevent lesion formation, whereas B2 cells have been suggested to promote it. Natural IgM antibodies, mainly derived from B1 cells, have been shown to mediate atheroprotective effects, but the functional role of other immunoglobulin classes, particularly IgG, still remains elusive. In this review, we will focus on recent insights on the role of B cells and various immunoglobulin classes and how these may mediate their effects in atherosclerotic lesion formation. Moreover, we will highlight potential therapeutic approaches focusing on B-cell depletion that could be used to translate experimental evidence to human disease. PMID:24855199

  8. A distinct dendritic cell population arises in the thymus of IL-13Rα1-sufficient but not IL-13Rα1-deficient mice.

    PubMed

    Barik, Subhasis; Miller, Mindy; Cattin-Roy, Alexis; Ukah, Tobechukwu; Zaghouani, Habib

    2018-06-18

    IL-13 receptor alpha 1 (IL-13Rα1) associates with IL-4Rα to form a functional IL-4Rα/IL-13Rα1 heteroreceptor (HR) through which both IL-4 and IL-13 signal. Recently, HR expression was associated with the development of M2 type macrophages which function as antigen presenting cells (APCs). Herein, we show that a subset of thymic resident dendritic cells (DCs) expressing high CD11b (CD11b hi ) and intermediate CD11c (CD11c int ) arise in HR-sufficient but not HR-deficient mice. These DCs, which originate from the bone marrow are able to take up Ag from the peritoneum, traffic through the spleen and the lymph nodes and carry it to the thymus. In addition, since the DCs are able to present Ag to T cells, express high levels of the costimulatory molecule CD24, and comprise a CD8α + subset, it is likely that the cells contribute to T cell development and perhaps negative selection of self-reactive lymphocytes. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Mixed phenotype (T/B/myeloid) extramedullary blast crisis as an initial presentation of chronic myelogenous leukemia.

    PubMed

    Qing, Xin; Qing, Annie; Ji, Ping; French, Samuel W; Mason, Holli

    2018-04-01

    Chronic myelogenous leukemia (CML) is a myeloproliferative disorder characterized by the Philadelphia (Ph) chromosome generated by the reciprocal translocation t(9,22)(q34;q11). The natural progression of the disease follows a biphasic or triphasic course. Most cases of CML are diagnosed in the chronic phase. Extramedullary blast crisis rarely occurs during the course of CML, and is extremely rare as the initial presentation of CML. Here, we report the case of a 32-year-old female with enlarged neck lymph nodes and fatigue. She was diagnosed with B-lymphoblastic leukemia/lymphoma with possible mixed phenotype (B/myeloid) by right neck lymph node biopsy at an outside hospital. However, review of her peripheral blood smear and her bone marrow aspirate and biopsy showed features consistent with CML, which was confirmed by PCR and karyotyping. An ultrasound-guided right cervical lymph node core biopsy showed a diffuse infiltrate of blasts, near totally replacing the normal lymph node tissue, admixed with some hematopoietic cells including megakaryocytes, erythroid precursors and maturing myeloid cells. By flow cytometry and immunohistochemistry, the blasts expressed CD2, cytoplasmic CD3, CD5, CD7, CD56, TdT, CD10 (weak, subset), CD19 (subset), CD79a, PAX-5 (subset), CD34, CD38, CD117 (subset), HLA-DR (subset), CD11b, CD13 (subset), CD33 (subset), and weak cytoplasmic myeloperoxidase, without co-expression of surface CD3, CD4, CD8, CD20, CD22, CD14, CD15, CD16 and CD64, consistent with blasts with mixed phenotype (T/B/myeloid). A diagnosis of extramedullary blast crisis of CML was made. Chromosomal analysis performed on the lymph node biopsy tissue revealed multiple numerical and structural abnormalities including the Ph chromosome (46-49,XX,add(1)(p34),add(3)(p25),add(5)(q13),-6,t(9;22)(q34;q11.2),+10,-15,add(17)(p11.2),+19, +der(22)t(9;22),+mar[cp8]). After completion of one cycle of combined chemotherapy plus dasatinib treatment, she was transferred to City of Hope National Cancer Institute for bone marrow transplantation. Diagnosis of extramedullary blast crisis should be suspected in patients with leukocytosis and extramedullary blast proliferation. In this case study, we diagnosed extramedullary blast crisis accompanied by chronic phase of CML in the bone marrow. To our knowledge, this is the first reported case of extramedullary blast crisis as the initial presentation of CML with T/B/myeloid mixed phenotype. Other unusual features associated with this case are also discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Immunomodulatory Effect of Mesenchymal Stem Cells on B Cells

    PubMed Central

    Franquesa, Marcella; Hoogduijn, M. J.; Bestard, O.; Grinyó, J. M.

    2012-01-01

    The research on T cell immunosuppression therapies has attracted most of the attention in clinical transplantation. However, B cells and humoral immune responses are increasingly acknowledged as crucial mediators of chronic allograft rejection. Indeed, humoral immune responses can lead to renal allograft rejection even in patients whose cell-mediated immune responses are well controlled. On the other hand, newly studied B cell subsets with regulatory effects have been linked to tolerance achievement in transplantation. Better understanding of the regulatory and effector B cell responses may therefore lead to new therapeutic approaches. Mesenchymal stem cells (MSC) are arising as a potent therapeutic tool in transplantation due to their regenerative and immunomodulatory properties. The research on MSCs has mainly focused on their effects on T cells and although data regarding the modulatory effects of MSCs on alloantigen-specific humoral response in humans is scarce, it has been demonstrated that MSCs significantly affect B cell functioning. In the present review we will analyze and discuss the results in this field. PMID:22833744

  11. Human dendritic cell subsets display distinct interactions with the pathogenic mould Aspergillus fumigatus.

    PubMed

    Lother, Jasmin; Breitschopf, Tanja; Krappmann, Sven; Morton, C Oliver; Bouzani, Maria; Kurzai, Oliver; Gunzer, Matthias; Hasenberg, Mike; Einsele, Hermann; Loeffler, Juergen

    2014-11-01

    The mould Aspergillus fumigatus is primarily an opportunistic pathogen of immunocompromised patients. Once fungal spores have been inhaled they encounter cells of the innate immune system, which include dendritic cells (DCs). DCs are the key antigen-presenting cells of the immune system and distinct subtypes, which differ in terms of origin, morphology and function. This study has systematically compared the interactions between A. fumigatus and myeloid DCs (mDCs), plasmacytoid DCs (pDCs) and monocyte-derived DCs (moDCs). Analyses were performed by time-lapse video microscopy, scanning electron microscopy, plating assays, flow cytometry, 25-plex ELISA and transwell assays. The three subsets of DCs displayed distinct responses to the fungus with mDCs and moDCs showing the greatest similarities. mDCs and moDCs both produced rough convolutions and occasionally phagocytic cups upon exposure to A. fumigatus whereas pDCs maintained a smooth appearance. Both mDCs and moDCs phagocytosed conidia and germ tubes, while pDCs did not phagocytose any fungi. Analysis of cytokine release and maturation markers revealed specific differences in pro- and anti-inflammatory patterns between the different DC subsets. These distinct characteristics between the DC subsets highlight their differences and suggest specific roles of moDCs, mDCs and pDCs during their interaction with A. fumigatus in vivo. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Characterization of Gastric and Neuronal Histaminergic Populations Using a Transgenic Mouse Model

    PubMed Central

    Walker, Angela K.; Park, Won-Mee; Chuang, Jen-Chieh; Perello, Mario; Sakata, Ichiro; Osborne-Lawrence, Sherri; Zigman, Jeffrey M.

    2013-01-01

    Histamine is a potent biogenic amine that mediates numerous physiological processes throughout the body, including digestion, sleep, and immunity. It is synthesized by gastric enterochromaffin-like cells, a specific set of hypothalamic neurons, as well as a subset of white blood cells, including mast cells. Much remains to be learned about these varied histamine-producing cell populations. Here, we report the validation of a transgenic mouse line in which Cre recombinase expression has been targeted to cells expressing histidine decarboxylase (HDC), which catalyzes the rate-limiting step in the synthesis of histamine. This was achieved by crossing the HDC-Cre mouse line with Rosa26-tdTomato reporter mice, thus resulting in the expression of the fluorescent Tomato (Tmt) signal in cells containing Cre recombinase activity. As expected, the Tmt signal co-localized with HDC-immunoreactivity within the gastric mucosa and gastric submucosa and also within the tuberomamillary nucleus of the brain. HDC expression within Tmt-positive gastric cells was further confirmed by quantitative PCR analysis of mRNA isolated from highly purified populations of Tmt-positive cells obtained by fluorescent activated cell sorting (FACS). HDC expression within these FACS-separated cells was found to coincide with other markers of both ECL cells and mast cells. Gastrin expression was co-localized with HDC expression in a subset of histaminergic gastric mucosal cells. We suggest that these transgenic mice will facilitate future studies aimed at investigating the function of histamine-producing cells. PMID:23555941

  13. Activation of human T-helper/inducer cell, T-cytotoxic/suppressor cell, B-cell, and natural killer (NK)-cells and induction of NK cell activity against K562 chronic myeloid leukemia cells with modified citrus pectin

    USDA-ARS?s Scientific Manuscript database

    Background Modified citrus pectin (MCP) is known for its anti-cancer effects and its ability to be absorbed and circulated in the human body. In this report we tested the ability of MCP to induce the activation of human blood lymphocyte subsets including T-helper/inducer cell, Tcytotoxic/suppres...

  14. Type III IFNs are produced by and stimulate human plasmacytoid dendritic cells1

    PubMed Central

    Yin, Zhiwei; Dai, Jihong; Deng, Jing; Sheikh, Faruk; Natalia, Mahwish; Shih, Tiffany; Lewis-Antes, Anita; Amrute, Sheela B.; Garrigues, Ursula; Doyle, Sean; Donnelly, Raymond P; Kotenko, Sergei V; Fitzgerald-Bocarsly, Patricia

    2012-01-01

    Plasmacytoid dendritic cells (pDC) are rare cells found in peripheral blood and lymphoid tissues. pDC are considered to be “professional” type I interferon (IFN) producing cells and produce 10–100-fold more IFN-α than other cell types in response to enveloped viruses or synthetic TLR-7 and -9 agonists. In this study, purified pDC were found to express high levels of IFN-λ receptor mRNA as well as cell-surface IFN-λ receptor. We have developed intracellular flow cytometry assays using antibodies to IFN-λ1/3 or -λ2 to assess the expression of IFN-λ proteins by pDC. We observed that a subset of human pDC expresses only intracellular IFN-α while another subset produces both IFN-α and IFN-λ after stimulation with virus or the TLR9 agonist, CpGA; the cells that co-expressed IFN-α and IFN-λ were the cells with the highest levels of IFN-α expression. Antibody cross-linking of CD4 or BDCA-2 molecules on pDC inhibited both HSV-induced IFN-λ and IFN-α production. Like the production of IFN-α, the HSV-induced IFN-λ production in pDC was mediated through TLR9 and independent of virus replication. Exogenous IFN-λ treatment of pDC resulted in increased virus-induced expression of both IFN-α and IFN-λ. In addition, both exogenous IFN-λ and –α inhibited dexamethasone-induced apoptosis of pDC. We conclude that pDC are major producers of IFN-λ1 and –λ2 in response to viral stimulation and also express functional receptors for this cytokine. Thus, IFN-λ can serve as an autocrine signal to strengthen the antiviral response of pDC by increasing IFN-α and IFN-λ production, resulting in prolonged pDC survival. PMID:22891284

  15. Effect of Native and Minimally Modified Low-density Lipoprotein on the Activation of Monocyte Subsets.

    PubMed

    Blanco-Favela, Francisco; Espinosa-Luna, José Esteban; Chávez-Rueda, Adriana Karina; Madrid-Miller, Alejandra; Chávez-Sánchez, Luis

    2017-07-01

    In atherosclerosis, monocytes are essential and secrete pro-inflammatory cytokines in response to modified low-density lipoprotein (LDL). Human CD14 ++ CD16 - , CD14 ++ CD16 + and CD14 + CD16 ++ monocytes produce different cytokines. The objective of this research was to determine the number of monocyte subsets positives to cytokines in response to native (nLDL) and minimally modified LDL (mmLDL). Human monocytes from healthy individuals were purified by negative selection and were stimulated with nLDL, mmLDL or LPS. Subsequently, human total monocytes were incubated with monoclonal antibodies specific for CD14 or both CD14 and CD16 to characterize total monocytes and monocyte subsets and with antibodies specific to anti-tumor necrosis factor (TNF)-α, anti-interleukin (IL)-6 and anti-IL-10. The number of cells positive for cytokines was determined and cells cultured with nLDL, mmLDL and LPS were compared with cells cultured only with culture medium. We found that nLDL does not induce in the total monocyte population or in the three monocyte subsets positives to cytokines. MmLDL induced in total monocytes positives to TNF-α and IL-6 as well as in both CD14 ++ CD16 + and CD14 + CD16 ++ and in CD14 ++ CD16 + monocytes, respectively. Moreover, total monocytes and the three monocyte subsets expressed few amounts of cells positives to IL-10 in response to mmLDL. Our study demonstrated that nLDL did not induce cells positives to cytokines and that the CD14 ++ CD16 + and CD14 + CD16 ++ monocyte subsets could be the main sources of TNF-α and IL-6, respectively, in response to mmLDL, which promotes the development and progression of atherosclerotic plaque. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  16. Dual-reactive B cells are autoreactive and highly enriched in the plasmablast and memory B cell subsets of autoimmune mice

    PubMed Central

    Fournier, Emilie M.; Velez, Maria-Gabriela; Leahy, Katelyn; Swanson, Cristina L.; Rubtsov, Anatoly V.; Torres, Raul M.

    2012-01-01

    Rare dual-reactive B cells expressing two types of Ig light or heavy chains have been shown to participate in immune responses and differentiate into IgG+ cells in healthy mice. These cells are generated more often in autoreactive mice, leading us to hypothesize they might be relevant in autoimmunity. Using mice bearing Igk allotypic markers and a wild-type Ig repertoire, we demonstrate that the generation of dual-κ B cells increases with age and disease progression in autoimmune-prone MRL and MRL/lpr mice. These dual-reactive cells express markers of activation and are more frequently autoreactive than single-reactive B cells. Moreover, dual-κ B cells represent up to half of plasmablasts and memory B cells in autoimmune mice, whereas they remain infrequent in healthy mice. Differentiation of dual-κ B cells into plasmablasts is driven by MRL genes, whereas the maintenance of IgG+ cells is partly dependent on Fas inactivation. Furthermore, dual-κ B cells that differentiate into plasmablasts retain the capacity to secrete autoantibodies. Overall, our study indicates that dual-reactive B cells significantly contribute to the plasmablast and memory B cell populations of autoimmune-prone mice suggesting a role in autoimmunity. PMID:22927551

  17. Methods and compositions for diagnosing and preventing a group B streptococcal infection

    DOEpatents

    Brady, Linda Jeannine [Gainesville, FL; Seifert, Kyle N [Harrisonburg, VA; Adderson, Elisabeth E [Memphis, TN; Bohnsack, John F [Salt Lake City, UT

    2009-09-15

    The present invention provides a group B streptococcal (GBS) surface antigen, designated epsilon antigen, that is co-expressed with the delta antigen on a subset of serotype III GBS. Epsilon is expressed on more pathogenic Restriction Digest Pattern (RDP) III-3 GBS, but not on RDP types 1, 2, or 4. Accordingly, the present invention provides compositions and methods for detecting a group B streptococcus serotype III, RDP III-3 strain. Vaccines and methods of identifying agents which inhibit adhesion of a group B streptococcal cell to a host cell are also provided.

  18. Dendritic cells and follicular dendritic cells express a novel ligand for CD38 which influences their maturation and antibody responses.

    PubMed

    Wykes, Michelle N; Beattie, Lynette; Macpherson, Gordon G; Hart, Derek N

    2004-11-01

    CD38 is a cell surface molecule with ADP-ribosyl cyclase activity, which is predominantly expressed on lymphoid and myeloid cells. CD38 has a significant role in B-cell function as some anti-CD38 antibodies can deliver potent growth and differentiation signals, but the ligand that delivers this signal in mice is unknown. We used a chimeric protein of mouse CD38 and human immunogobulin G (IgG) (CD38-Ig) to identify a novel ligand for murine CD38 (CD38L) on networks of follicular dendritic cells (FDCs) as well as dendritic cells (DCs) in the spleen. Flow-cytometry found that all DC subsets expressed cytoplasmic CD38L but only fresh ex vivo CD11c+ CD11b- DCs had cell surface CD38L. Anti-CD38 antibody blocked the binding of CD38-Ig to CD38L, confirming the specificity of detection. CD38-Ig immuno-precipitated ligands of 66 and 130 kDa. Functional studies found that CD38-Ig along with anti-CD40 and anti-major histocompatibility complex (MHC) class II antibody provided maturation signals to DCs in vitro. When CD38-Ig was administered in vivo with antigen, IgG2a responses were significantly reduced, suggesting that B and T cells expressing CD38 may modulate the isotype of antibodies produced through interaction with CD38L on DCs. CD38-Ig also expanded FDC networks when administered in vivo. In conclusion, this study has identified a novel ligand for CD38 which has a role in functional interactions between lymphocytes and DCs or FDCs.

  19. The human CD94 gene encodes multiple, expressible transcripts including a new partner of NKG2A/B.

    PubMed

    Lieto, L D; Maasho, K; West, D; Borrego, F; Coligan, J E

    2006-01-01

    CD94/NKG2A is an inhibitory receptor expressed by natural killer (NK) cells and a subset of CD8+ T cells. Ligation of CD94/NKG2A by its ligand HLA-E results in tyrosine phosphorylation of the NKG2A immunoreceptor tyrosine-based inhibitory motifs, and recruitment and activation of the SH2 domain-bearing tyrosine phosphatase-1, which in turn suppresses activation signals. The nkg2a gene encodes two isoforms, NKG2A and NKG2B, with the latter lacking the stem region. We identified three new alternative transcripts of the cd94 gene in addition to the originally described canonical CD94Full. One of the transcripts, termed CD94-T4, lacks the portion that encodes the stem region. CD94-T4 associates with both NKG2A and NKG2B, but preferentially associates with the latter. This is probably due to the absence of a stem region in both CD94-T4 and NKG2B. CD94-T4/NKG2B is capable of binding HLA-E and, when expressed in E6-1 Jurkat T cells, inhibits TCR mediated signals, demonstrating that this heterodimer is functional. Coevolution of stemless isoforms of CD94 and NKG2A that preferentially pair with each other to produce a functional heterodimer indicates that this may be more than a serendipitous event. CD94-T4/NKG2B may contribute to the plasticity of the NK immunological synapse by insuring an adequate inhibitory signal.

  20. PPAR γ is highly expressed in F4/80hi adipose tissue macrophages and dampens adipose-tissue inflammation

    PubMed Central

    Bassaganya-Riera, Josep; Misyak, Sarah; Guri, Amir J.; Hontecillas, Raquel

    2009-01-01

    Macrophage infiltration into adipose tissue is a hallmark of obesity. We recently reported two phenotypically distinct subsets of adipose tissue macrophages (ATM) based on the surface expression of the glycoprotein F4/80 and responsiveness to treatment with a peroxisome proliferator-activated receptor (PPAR) γ agonist. Hence, we hypothesized that F4/80hi and F4/80lo ATM differentially express PPAR γ. This study phenotypically and functionally characterizes F4/80hi and F4/80lo ATM subsets during obesity. Changes in gene expression were also examined on sorted F4/80lo and F4/80hi ATM by quantitative real-time RT-PCR. We show that while F4/80lo macrophages predominate in adipose tissue of lean mice, obesity causes accumulation of both F4/80lo and F4/80hi ATM. Moreover, accumulation of F4/80hi ATM in adipose tissue is associated with impaired glucose tolerance. Phenotypically, F4/80hi ATM express greater amounts of CD11c, MHC II, CD49b, and CX3CR1 and produce more TNF-α, MCP-1, and IL-10 than F4/80lo ATM. Gene expression analyses of the sorted populations revealed that only the F4/80lo population produced IL-4, whereas the F4/80hi ATM expressed greater amounts of PPAR γ, δ, CD36 and toll-like receptor-4. In addition, the deficiency of PPAR γ in immune cells favors expression of M1 and impairs M2 macrophage marker expression in adipose tissue. Thus, PPAR γ is differentially expressed in F4/80hi versus F4/80low ATM subsets and its deficiency favors a predominance of M1 markers in WAT. PMID:19423085

  1. PPAR gamma is highly expressed in F4/80(hi) adipose tissue macrophages and dampens adipose-tissue inflammation.

    PubMed

    Bassaganya-Riera, Josep; Misyak, Sarah; Guri, Amir J; Hontecillas, Raquel

    2009-01-01

    Macrophage infiltration into adipose tissue is a hallmark of obesity. We recently reported two phenotypically distinct subsets of adipose tissue macrophages (ATM) based on the surface expression of the glycoprotein F4/80 and responsiveness to treatment with a peroxisome proliferator-activated receptor (PPAR) gamma agonist. Hence, we hypothesized that F4/80(hi) and F4/80(lo) ATM differentially express PPAR gamma. This study phenotypically and functionally characterizes F4/80(hi) and F4/80(lo) ATM subsets during obesity. Changes in gene expression were also examined on sorted F4/80(lo) and F4/80(hi) ATM by quantitative real-time RT-PCR. We show that while F4/80(lo) macrophages predominate in adipose tissue of lean mice, obesity causes accumulation of both F4/80(lo) and F4/80(hi) ATM. Moreover, accumulation of F4/80(hi) ATM in adipose tissue is associated with impaired glucose tolerance. Phenotypically, F4/80(hi) ATM express greater amounts of CD11c, MHC II, CD49b, and CX3CR1 and produce more TNF-alpha, MCP-1, and IL-10 than F4/80(lo) ATM. Gene expression analyses of the sorted populations revealed that only the F4/80(lo) population produced IL-4, whereas the F4/80(hi) ATM expressed greater amounts of PPAR gamma, delta, CD36 and toll-like receptor-4. In addition, the deficiency of PPAR gamma in immune cells favors expression of M1 and impairs M2 macrophage marker expression in adipose tissue. Thus, PPAR gamma is differentially expressed in F4/80(hi) versus F4/80(low) ATM subsets and its deficiency favors a predominance of M1 markers in WAT.

  2. Immune Cell Metabolism in Systemic Lupus Erythematosus.

    PubMed

    Choi, Seung-Chul; Titov, Anton A; Sivakumar, Ramya; Li, Wei; Morel, Laurence

    2016-11-01

    Cellular metabolism represents a newly identified checkpoint of effector functions in the immune system. A solid body of work has characterized the metabolic requirements of normal T cells during activation and differentiation into polarized effector subsets. Similar studies have been initiated to characterize the metabolic requirements for B cells and myeloid cells. Only a few studies though have characterized the metabolism of immune cells in the context of autoimmune diseases. Here, we review what is known on the altered metabolic patterns of CD4 + T cells, B cells, and myeloid cells in lupus patients and lupus-prone mice and how they contribute to lupus pathogenesis. We also discuss how defects in immune metabolism in lupus can be targeted therapeutically.

  3. Bone marrow-derived CD13+ cells sustain tumor progression: A potential non-malignant target for anticancer therapy.

    PubMed

    Dondossola, Eleonora; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2014-01-01

    Non-malignant cells found within neoplastic lesions express alanyl (membrane) aminopeptidase (ANPEP, best known as CD13), and CD13-null mice exhibit limited tumor growth and angiogenesis. We have recently demonstrated that a subset of bone marrow-derived CD11b + CD13 + myeloid cells accumulate within neoplastic lesions in several murine models of transplantable cancer to promote angiogenesis. If these findings were confirmed in clinical settings, CD11b + CD13 + myeloid cells could become a non-malignant target for the development of novel anticancer regimens.

  4. Comparison of Phenotypic and Functional Characteristics Between Canine Non-B, Non-T Natural Killer Lymphocytes and CD3+CD5dimCD21- Cytotoxic Large Granular Lymphocytes.

    PubMed

    Lee, Soo-Hyeon; Shin, Dong-Jun; Kim, Yoseop; Kim, Cheol-Jung; Lee, Je-Jung; Yoon, Mee Sun; Uong, Tung Nguyen Thanh; Yu, Dohyeon; Jung, Ji-Youn; Cho, Duck; Jung, Bock-Gie; Kim, Sang-Ki; Suh, Guk-Hyun

    2018-01-01

    Natural killer (NK) cells play a pivotal role in the immune response against infections and malignant transformation, and adopted transfer of NK cells is thought to be a promising therapeutic approach for cancer patients. Previous reports describing the phenotypic features of canine NK cells have produced inconsistent results. Canine NK cells are still defined as non-B and non-T (CD3 - CD21 - ) large granular lymphocytes. However, a few reports have demonstrated that canine NK cells share the phenotypic characteristics of T lymphocytes, and that CD3 + CD5 dim CD21 - lymphocytes are putative canine NK cells. Based on our previous reports, we hypothesized that phenotypic modulation could occur between these two populations during activation. In this study, we investigated the phenotypic and functional differences between CD3 + CD5 dim CD21 - (cytotoxic large granular lymphocytes) and CD3 - CD5 - CD21 - NK lymphocytes before and after culture of peripheral blood mononuclear cells isolated from normal dogs. The results of this study show that CD3 + CD5 dim CD21 - lymphocytes can be differentiated into non-B, non-T NK (CD3 - CD5 - CD21 - TCRαβ - TCRγδ - GranzymeB + ) lymphocytes through phenotypic modulation in response to cytokine stimulation. In vitro studies of purified CD3 + CD5 dim CD21 - cells showed that CD3 - CD5 - CD21 - cells are derived from CD3 + CD5 dim CD21 - cells through phenotypic modulation. CD3 + CD5 dim CD21 - cells share more NK cell functional characteristics compared with CD3 - CD5 - CD21 - cells, including the expression of T-box transcription factors (Eomes, T-bet), the production of granzyme B and interferon-γ, and the expression of NK cell-related molecular receptors such as NKG2D and NKp30. In conclusion, the results of this study suggest that CD3 + CD5 dim CD21 - and CD3 - CD5 - CD21 - cells both contain a subset of putative NK cells, and the difference between the two populations may be due to the degree of maturation.

  5. Fluorescently labeled dengue viruses as probes to identify antigen-specific memory B cells by multiparametric flow cytometry

    PubMed Central

    Woda, Marcia; Mathew, Anuja

    2015-01-01

    Low frequencies of memory B cells in the peripheral blood make it challenging to measure the functional and phenotypic characteristics of this antigen experienced subset of B cells without in vitro culture. To date, reagents are lacking to measure ex vivo frequencies of dengue virus (DENV)-specific memory B cells. We wanted to explore the possibility of using fluorescently labeled DENV as probes to detect antigen-specific memory B cells in the peripheral blood of DENV immune individuals. Alexa Fluor dye-labeled DENV yielded viable virus that could be stored at −80°C for long periods of time. Using a careful gating strategy and methods to decrease non-specific binding, we were able to identify a small frequency of B cells from dengue immune individuals that bound labeled DENV. Sorted DENV+ B cells from immune, but not naïve donors secreted antibodies that bound intact virions after in vitro stimulation. Overall, Alexa Fluor dye labeled -DENV are useful reagents to enable the detection and characterization of memory B cells in DENV immune individuals. PMID:25497702

  6. The contribution of B-cell proliferation to spleen enlargement in Babesia microti-infected mice.

    PubMed Central

    Inchley, C J

    1987-01-01

    Flow cytofluorimetric analysis showed that B-cell proliferation makes a major contribution to the enlargement and increased cellularity of the spleen, which are characteristic of Babesia microti infections in mice. Expansion of the B-cell population was accompanied by modulation of the cell surface, which affected most B lymphocytes, and which was detected as a reduction in the density of surface immunoglobulin. This effect was noted as early as Day 7, shortly after the appearance of parasites in the circulation and the onset of gross spleen changes. In contrast to the results for B cells, the frequency of splenic T cells declined, and when the data were transformed into absolute numbers it became clear that only limited T-cell proliferation had occurred. There was no evidence to suggest that the balance of T-cell subsets was shifted in favour of suppressor T cells. The relationships of these results to reports of immunosuppression by this parasite are discussed. Images Figure 2 Figure 5 PMID:3493207

  7. Identifying Tumor Progenitor Cells | Center for Cancer Research

    Cancer.gov

    All cells within a tumor are not identical. In fact, only a small subset appears to be capable of actually generating the tumor. These tumor-initiating cells tend to resemble normal stem cells, which have the unique ability to give rise to differentiated cells while simultaneously producing additional undifferentiated stem cells. Most chemotherapeutics affect the bulk of a tumor but spare the stem-like cells, allowing the tumor to re-grow once chemotherapy is stopped. If, however, the cancer-initiating cells could be successfully targeted, cancer recurrence could be prevented.

  8. Topical CpG enhances the response of murine malignant melanoma to dacarbazine.

    PubMed

    Najar, Hossain M; Dutz, Jan P

    2008-09-01

    Malignant melanoma is a potentially fatal skin cancer that is increasing in incidence. Standard chemoimmunotherapy consisting of dacarbazine (DTIC) given with IFN-alpha has had disappointing results. We describe a chemoimmunotherapy protocol for cutaneous melanoma that combines the administration of DTIC with the topical application of CpG oligodinucleotide (ODN). Subcutaneous B16 melanoma tumors in C57BL/6 mice were treated with intraperitoneal injections of DTIC followed by the topical application of CpG-ODN over the tumors. This therapeutic approach abrogated the growth of established tumors and significantly enhanced survival. Topical CpG application was more effective than intratumoral CpG. Cell depletion studies indicated that the antitumor effect was dependent on both CD4(+) and CD8(+) cells but not on natural killer (NK) cells. Tumor-specific cytotoxic T-lymphocyte activity was generated in treated animals and was highest in topically treated animals. Immunohistochemical analysis revealed that DTIC, but not CpG, enhanced tumor cell apoptosis. Further, topical CpG induced an expansion of a B220(+)CD8(+) subset of dendritic cells and a subset of NK1.1(+) CD11c(+) cells within the tumors. By enhancing both tumor cell death and local immune activation, DTIC/topical CpG chemoimmunotherapy induced an effective T-cell-dependent host-immune response against melanoma.

  9. Ontogeny and tissue distribution of the chicken Bu-1a antigen.

    PubMed Central

    Houssaint, E; Diez, E; Pink, J R

    1987-01-01

    By using a sensitive technique of immunofluorescence on polyethylene glycol-embedded tissue sections, we could better determine the distribution of L22+ cells in embryonic and adult chickens. L22 mAb was originally described as reacting with bursa and bursa-derived lymphocytes. We now present evidence to suggest that this mAb also reacts with a subset of macrophages found in bursa, thymus, spleen, liver, intestine and peritoneum. The L22+ cells appear early during embryonic life, simultaneously in yolk sac, bursa, thymus, spleen and bone marrow. At all steps of their ontogeny, thymocytes were L22-, while most, if not all, bursal lymphoid cells were L22+. Moreover, L22 antigen can be detected on haemopoietic cells probably precursors, before and during their entry into the bursal rudiment on Day 9 or 10 of embryonic life. We conclude from these data that L22 is not restricted to the B-cell lineage as it is shared with a subset of macrophages. Furthermore, our observations of L22+ cells during embryonic life favour the hypothesis of separate lineages for B-cell and T-cell precursors in chick embryo, which was previously put forward on the basis of different sets of experiments. Images Figure 1 Figure 3 Figure 4 PMID:3499381

  10. Langerin+ dermal dendritic cells are critical for CD8+ T cell activation and IgH γ-1 class switching in response to gene gun vaccines.

    PubMed

    Stoecklinger, Angelika; Eticha, Tekalign D; Mesdaghi, Mehrnaz; Kissenpfennig, Adrien; Malissen, Bernard; Thalhamer, Josef; Hammerl, Peter

    2011-02-01

    The C-type lectin langerin/CD207 was originally discovered as a specific marker for epidermal Langerhans cells (LC). Recently, additional and distinct subsets of langerin(+) dendritic cells (DC) have been identified in lymph nodes and peripheral tissues of mice. Although the role of LC for immune activation or modulation is now being discussed controversially, other langerin(+) DC appear crucial for protective immunity in a growing set of infection and vaccination models. In knock-in mice that express the human diphtheria toxin receptor under control of the langerin promoter, injection of diphtheria toxin ablates LC for several weeks whereas other langerin(+) DC subsets are replenished within just a few days. Thus, by careful timing of diphtheria toxin injections selective states of deficiency in either LC only or all langerin(+) cells can be established. Taking advantage of this system, we found that, unlike selective LC deficiency, ablation of all langerin(+) DC abrogated the activation of IFN-γ-producing and cytolytic CD8(+) T cells after gene gun vaccination. Moreover, we identified migratory langerin(+) dermal DC as the subset that directly activated CD8(+) T cells in lymph nodes. Langerin(+) DC were also critical for IgG1 but not IgG2a Ab induction, suggesting differential polarization of CD4(+) T helper cells by langerin(+) or langerin-negative DC, respectively. In contrast, protein vaccines administered with various adjuvants induced IgG1 independently of langerin(+) DC. Taken together, these findings reflect a highly specialized division of labor between different DC subsets both with respect to Ag encounter as well as downstream processes of immune activation.

  11. LDOC1 mRNA is differentially expressed in chronic lymphocytic leukemia and predicts overall survival in untreated patients

    PubMed Central

    Duzkale, Hatice; Schweighofer, Carmen D.; Coombes, Kevin R.; Barron, Lynn L.; Ferrajoli, Alessandra; O'Brien, Susan; Wierda, William G.; Pfeifer, John; Majewski, Tadeusz; Czerniak, Bogdan A.; Jorgensen, Jeffrey L.; Medeiros, L. Jeffrey; Freireich, Emil J; Keating, Michael J.

    2011-01-01

    We previously identified LDOC1 as one of the most significantly differentially expressed genes in untreated chronic lymphocytic leukemia (CLL) patients with respect to the somatic mutation status of the immunoglobulin heavy-chain variable region genes. However, little is known about the normal function of LDOC1, its contribution to the pathophysiology of CLL, or its prognostic significance. In this study, we have investigated LDOC1 mRNA expression in a large cohort of untreated CLL patients, as well as in normal peripheral blood B-cell (NBC) subsets and primary B-cell lymphoma samples. We have confirmed that LDOC1 is dramatically down-regulated in mutated CLL cases compared with unmutated cases, and have identified a new splice variant, LDOC1S. We show that LDOC1 is expressed in NBC subsets (naive > memory), suggesting that it may play a role in normal B-cell development. It is also expressed in primary B-cell lymphoma samples, in which its expression is associated with somatic mutation status. In CLL, we show that high levels of LDOC1 correlate with biomarkers of poor prognosis, including cytogenetic markers, unmutated somatic mutation status, and ZAP70 expression. Finally, we demonstrate that LDOC1 mRNA expression is an excellent predictor of overall survival in untreated CLL patients. PMID:21310924

  12. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy

    PubMed Central

    Valera, Alexandra; López-Guillermo, Armando; Cardesa-Salzmann, Teresa; Climent, Fina; González-Barca, Eva; Mercadal, Santiago; Espinosa, Íñigo; Novelli, Silvana; Briones, Javier; Mate, José L.; Salamero, Olga; Sancho, Juan M.; Arenillas, Leonor; Serrano, Sergi; Erill, Nadina; Martínez, Daniel; Castillo, Paola; Rovira, Jordina; Martínez, Antonio; Campo, Elias; Colomo, Luis

    2013-01-01

    MYC alterations influence the survival of patients with diffuse large B-cell lymphoma. Most studies have focused on MYC translocations but there is little information regarding the impact of numerical alterations and protein expression. We analyzed the genetic alterations and protein expression of MYC, BCL2, BCL6, and MALT1 in 219 cases of diffuse large B-cell lymphoma. MYC rearrangement occurred as the sole abnormality (MYC single-hit) in 3% of cases, MYC and concurrent BCL2 and/or BCL6 rearrangements (MYC double/triple-hit) in 4%, MYC amplifications in 2% and MYC gains in 19%. MYC single-hit, MYC double/triple-hit and MYC amplifications, but not MYC gains or other gene rearrangements, were associated with unfavorable progression-free survival and overall survival. MYC protein expression, evaluated using computerized image analysis, captured the unfavorable prognosis of MYC translocations/amplifications and identified an additional subset of patients without gene alterations but with similar poor prognosis. Patients with tumors expressing both MYC/BCL2 had the worst prognosis, whereas those with double-negative tumors had the best outcome. High MYC expression was associated with shorter overall survival irrespectively of the International Prognostic Index and BCL2 expression. In conclusion, MYC protein expression identifies a subset of diffuse large B-cell lymphoma with very poor prognosis independently of gene alterations and other prognostic parameters. PMID:23716551

  13. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy.

    PubMed

    Valera, Alexandra; López-Guillermo, Armando; Cardesa-Salzmann, Teresa; Climent, Fina; González-Barca, Eva; Mercadal, Santiago; Espinosa, Iñigo; Novelli, Silvana; Briones, Javier; Mate, José L; Salamero, Olga; Sancho, Juan M; Arenillas, Leonor; Serrano, Sergi; Erill, Nadina; Martínez, Daniel; Castillo, Paola; Rovira, Jordina; Martínez, Antonio; Campo, Elias; Colomo, Luis

    2013-10-01

    MYC alterations influence the survival of patients with diffuse large B-cell lymphoma. Most studies have focused on MYC translocations but there is little information regarding the impact of numerical alterations and protein expression. We analyzed the genetic alterations and protein expression of MYC, BCL2, BCL6, and MALT1 in 219 cases of diffuse large B-cell lymphoma. MYC rearrangement occurred as the sole abnormality (MYC single-hit) in 3% of cases, MYC and concurrent BCL2 and/or BCL6 rearrangements (MYC double/triple-hit) in 4%, MYC amplifications in 2% and MYC gains in 19%. MYC single-hit, MYC double/triple-hit and MYC amplifications, but not MYC gains or other gene rearrangements, were associated with unfavorable progression-free survival and overall survival. MYC protein expression, evaluated using computerized image analysis, captured the unfavorable prognosis of MYC translocations/amplifications and identified an additional subset of patients without gene alterations but with similar poor prognosis. Patients with tumors expressing both MYC/BCL2 had the worst prognosis, whereas those with double-negative tumors had the best outcome. High MYC expression was associated with shorter overall survival irrespectively of the International Prognostic Index and BCL2 expression. In conclusion, MYC protein expression identifies a subset of diffuse large B-cell lymphoma with very poor prognosis independently of gene alterations and other prognostic parameters.

  14. Development of IL-22–producing NK lineage cells from umbilical cord blood hematopoietic stem cells in the absence of secondary lymphoid tissue

    PubMed Central

    Tang, Qin; Ahn, Yong-Oon; Southern, Peter; Blazar, Bruce R.; Miller, Jeffery S.

    2011-01-01

    Human secondary lymphoid tissues (SLTs) contain interleukin-22 (IL-22)–producing cells with an immature NK phenotype. Given their location, these cells are difficult to study. We have generated large numbers of NK22 cells from hematopoietic stem cells. HSC-derived NK22 cells show a CD56+CD117highCD94− phenotype, consistent with stage III NK progenitors. Like freshly isolated SLT stage III cells, HSC-derived NK22 cells express NKp44, CD161, CCR6, IL1 receptor, AHR, and ROR-γτ. IL-1β and IL-23 stimulation results in significant IL-22 but not interferon-γ production. Supernatant from these cells increases CD54 expression on mesenchymal stem cells. Thus, IL-22–producing NK cells can be generated in the absence of SLT. HSC-derived NK22 cells will be valuable in understanding this rare NK subset and create the opportunity for human translational clinical trials. PMID:21310921

  15. Development of IL-22-producing NK lineage cells from umbilical cord blood hematopoietic stem cells in the absence of secondary lymphoid tissue.

    PubMed

    Tang, Qin; Ahn, Yong-Oon; Southern, Peter; Blazar, Bruce R; Miller, Jeffery S; Verneris, Michael R

    2011-04-14

    Human secondary lymphoid tissues (SLTs) contain interleukin-22 (IL-22)-producing cells with an immature NK phenotype. Given their location, these cells are difficult to study. We have generated large numbers of NK22 cells from hematopoietic stem cells. HSC-derived NK22 cells show a CD56(+)CD117(high)CD94(-) phenotype, consistent with stage III NK progenitors. Like freshly isolated SLT stage III cells, HSC-derived NK22 cells express NKp44, CD161, CCR6, IL1 receptor, AHR, and ROR-γτ. IL-1β and IL-23 stimulation results in significant IL-22 but not interferon-γ production. Supernatant from these cells increases CD54 expression on mesenchymal stem cells. Thus, IL-22-producing NK cells can be generated in the absence of SLT. HSC-derived NK22 cells will be valuable in understanding this rare NK subset and create the opportunity for human translational clinical trials.

  16. Reduction in CD4 central memory T-cell subset in costimulation modulator abatacept-treated patients with recent-onset type 1 diabetes is associated with slower C-peptide decline.

    PubMed

    Orban, Tihamer; Beam, Craig A; Xu, Ping; Moore, Keith; Jiang, Qi; Deng, Jun; Muller, Sarah; Gottlieb, Peter; Spain, Lisa; Peakman, Mark

    2014-10-01

    We previously reported that continuous 24-month costimulation blockade by abatacept significantly slows the decline of β-cell function after diagnosis of type 1 diabetes. In a mechanistic extension of that study, we evaluated peripheral blood immune cell subsets (CD4, CD8-naive, memory and activated subsets, myeloid and plasmacytoid dendritic cells, monocytes, B lymphocytes, CD4(+)CD25(high) regulatory T cells, and invariant NK T cells) by flow cytometry at baseline and 3, 6, 12, 24, and 30 months after treatment initiation to discover biomarkers of therapeutic effect. Using multivariable analysis and lagging of longitudinally measured variables, we made the novel observation in the placebo group that an increase in central memory (CM) CD4 T cells (CD4(+)CD45R0(+)CD62L(+)) during a preceding visit was significantly associated with C-peptide decline at the subsequent visit. These changes were significantly affected by abatacept treatment, which drove the peripheral contraction of CM CD4 T cells and the expansion of naive (CD45R0(-)CD62L(+)) CD4 T cells in association with a significantly slower rate of C-peptide decline. The findings show that the quantification of CM CD4 T cells can provide a surrogate immune marker for C-peptide decline after the diagnosis of type 1 diabetes and that costimulation blockade may exert its beneficial therapeutic effect via modulation of this subset. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  17. Characteristics of CD8+ T cell subsets in Chinese patients with chronic HIV infection during initial ART.

    PubMed

    Jiao, Yanmei; Hua, Wei; Zhang, Tong; Zhang, Yonghong; Ji, Yunxia; Zhang, Hongwei; Wu, Hao

    2011-03-25

    CD8+ T cells may play an important role in protecting against HIV. However, the changes of CD8+ T cell subsets during early period of ART have not been fully studied. Twenty-one asymptomatic treatment-naive HIV-infected patients with CD4 T+ cells less than 350 cells/μl were enrolled in the study. Naïve, central memory(CM), effective memory(EM) and terminally differentiated effector (EMRA) CD8+ cell subsets and their activation and proliferation subsets were evaluated in blood samples collected at base line, and week 2, 4, 8 and 12 of ART. The total CD8+ T cells declined and the Naïve and CM subsets had a tendency of increase. Activation levels of all CD8+ T cell subsets except EMRA subset decreased after ART. However, proliferation levels of total CD8+ T cells, EMRA, EM and CM subsets increased at the first 4 weeks of ART, then decreased. Proliferation level of the naïve cells decreased after ART. The changes of CD8+ T cell subsets during initial ART are complex. Our results display a complete phenotypical picture of CD8+ cell subsets during initial ART and provide insights for understanding of immune status during ART.

  18. Characteristics of CD8+ T cell subsets in Chinese patients with chronic HIV infection during initial ART

    PubMed Central

    2011-01-01

    Background CD8+ T cells may play an important role in protecting against HIV. However, the changes of CD8+ T cell subsets during early period of ART have not been fully studied. Methods Twenty-one asymptomatic treatment-naive HIV-infected patients with CD4 T+ cells less than 350 cells/μl were enrolled in the study. Naïve, central memory(CM), effective memory(EM) and terminally differentiated effector (EMRA) CD8+ cell subsets and their activation and proliferation subsets were evaluated in blood samples collected at base line, and week 2, 4, 8 and 12 of ART. Results The total CD8+ T cells declined and the Naïve and CM subsets had a tendency of increase. Activation levels of all CD8+ T cell subsets except EMRA subset decreased after ART. However, proliferation levels of total CD8+ T cells, EMRA, EM and CM subsets increased at the first 4 weeks of ART, then decreased. Proliferation level of the naïve cells decreased after ART. Conclusion The changes of CD8+ T cell subsets during initial ART are complex. Our results display a complete phenotypical picture of CD8+ cell subsets during initial ART and provide insights for understanding of immune status during ART. PMID:21435275

  19. A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma.

    PubMed

    Salaverria, Itziar; Martin-Guerrero, Idoia; Wagener, Rabea; Kreuz, Markus; Kohler, Christian W; Richter, Julia; Pienkowska-Grela, Barbara; Adam, Patrick; Burkhardt, Birgit; Claviez, Alexander; Damm-Welk, Christine; Drexler, Hans G; Hummel, Michael; Jaffe, Elaine S; Küppers, Ralf; Lefebvre, Christine; Lisfeld, Jasmin; Löffler, Markus; Macleod, Roderick A F; Nagel, Inga; Oschlies, Ilske; Rosolowski, Maciej; Russell, Robert B; Rymkiewicz, Grzegorz; Schindler, Detlev; Schlesner, Matthias; Scholtysik, René; Schwaenen, Carsten; Spang, Rainer; Szczepanowski, Monika; Trümper, Lorenz; Vater, Inga; Wessendorf, Swen; Klapper, Wolfram; Siebert, Reiner

    2014-02-20

    The genetic hallmark of Burkitt lymphoma (BL) is the t(8;14)(q24;q32) and its variants leading to activation of the MYC oncogene. It is a matter of debate whether true BL without MYC translocation exists. Here, we identified 59 lymphomas concordantly called BL by 2 gene expression classifiers among 753 B-cell lymphomas. Only 2 (3%) of these 59 molecular BL lacked a MYC translocation, which both shared a peculiar pattern of chromosome 11q aberration characterized by interstitial gains including 11q23.2-q23.3 and telomeric losses of 11q24.1-qter. We extended our analysis to 17 MYC-negative high-grade B-cell lymphomas with a similar 11q aberration and showed this aberration to be recurrently associated with morphologic and clinical features of BL. The minimal region of gain was defined by high-level amplifications in 11q23.3 and associated with overexpression of genes including PAFAH1B2 on a transcriptional and protein level. The recurrent region of loss contained a focal homozygous deletion in 11q24.2-q24.3 including the ETS1 gene, which was shown to be mutated in 4 of 16 investigated cases. These findings indicate the existence of a molecularly distinct subset of B-cell lymphomas reminiscent of BL, which is characterized by deregulation of genes in 11q.

  20. Activation and increase of radio-sensitive CD11b+ recruited Kupffer cells/macrophages in diet-induced steatohepatitis in FGF5 deficient mice

    PubMed Central

    Nakashima, Hiroyuki; Nakashima, Masahiro; Kinoshita, Manabu; Ikarashi, Masami; Miyazaki, Hiromi; Hanaka, Hiromi; Imaki, Junko; Seki, Shuhji

    2016-01-01

    We have recently reported that Kupffer cells consist of two subsets, radio-resistant resident CD68+ Kupffer cells and radio-sensitive recruited CD11b+ Kupffer cells/macrophages (Mφs). Non-alcoholic steatohepatitis (NASH) is characterized not only by hepatic steatosis but also chronic inflammation and fibrosis. In the present study, we investigated the immunological mechanism of diet-induced steatohepatitis in fibroblast growth factor 5 (FGF5) deficient mice. After consumption of a high fat diet (HFD) for 8 weeks, FGF5 null mice developed severe steatohepatitis and fibrosis resembling human NASH. F4/80+ Mφs which were both CD11b and CD68 positive accumulated in the liver. The production of TNF and FasL indicated that they are the pivotal effectors in this hepatitis. The weak phagocytic activity and lack of CRIg mRNA suggested that they were recruited Mφs. Intermittent exposure to 1 Gy irradiation markedly decreased these Mφs and dramatically inhibited liver inflammation without attenuating steatosis. However, depletion of the resident subset by clodronate liposome (c-lipo) treatment increased the Mφs and tended to exacerbate disease progression. Recruited CD11b+ CD68+ Kupffer cells/Mφs may play an essential role in steatohepatitis and fibrosis in FGF5 null mice fed with a HFD. Recruitment and activation of bone marrow derived Mφs is the key factor to develop steatohepatitis from simple steatosis. PMID:27708340

  1. Circulating CD21low B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells

    PubMed Central

    Rakhmanov, Mirzokhid; Keller, Baerbel; Gutenberger, Sylvia; Foerster, Christian; Hoenig, Manfred; Driessen, Gertjan; van der Burg, Mirjam; van Dongen, Jacques J.; Wiech, Elisabeth; Visentini, Marcella; Quinti, Isabella; Prasse, Antje; Voelxen, Nadine; Salzer, Ulrich; Goldacker, Sigune; Fisch, Paul; Eibel, Hermann; Schwarz, Klaus; Peter, Hans-Hartmut; Warnatz, Klaus

    2009-01-01

    The homeostasis of circulating B cell subsets in the peripheral blood of healthy adults is well regulated, but in disease it can be severely disturbed. Thus, a subgroup of patients with common variable immunodeficiency (CVID) presents with an extraordinary expansion of an unusual B cell population characterized by the low expression of CD21. CD21low B cells are polyclonal, unmutated IgM+IgD+ B cells but carry a highly distinct gene expression profile which differs from conventional naïve B cells. Interestingly, while clearly not representing a memory population, they do share several features with the recently defined memory-like tissue, Fc receptor-like 4 positive B cell population in the tonsils of healthy donors. CD21low B cells show signs of previous activation and proliferation in vivo, while exhibiting defective calcium signaling and poor proliferation in response to B cell receptor stimulation. CD21low B cells express decreased amounts of homeostatic but increased levels of inflammatory chemokine receptors. This might explain their preferential homing to peripheral tissues like the bronchoalveolar space of CVID or the synovium of rheumatoid arthritis patients. Therefore, as a result of the close resemblance to the gene expression profile, phenotype, function and preferential tissue homing of murine B1 B cells, we suggest that CD21low B cells represent a human innate-like B cell population. PMID:19666505

  2. Dendritic cell subsets in type 1 diabetes: friend or foe?

    PubMed

    Morel, Penelope A

    2013-12-06

    Type 1 diabetes (T1D) is a T cell mediated autoimmune disease characterized by immune mediated destruction of the insulin-producing β cells in the islets of Langerhans. Dendritic cells (DC) have been implicated in the pathogenesis of T1D and are also used as immunotherapeutic agents. Plasmacytoid (p)DC have been shown to have both protective and pathogenic effects and a newly described merocytic DC population has been shown to break tolerance in the mouse model of T1D, the non-obese diabetic (NOD) mouse. We have used DC populations to prevent the onset of T1D in NOD mice and clinical trials of DC therapy in T1D diabetes have been initiated. In this review we will critically examine the recent published literature on the role of DC subsets in the induction and regulation of the autoimmune response in T1D.

  3. CD27 natural killer cell subsets play different roles during the pre-onset stage of experimental autoimmune encephalomyelitis.

    PubMed

    Gao, Ming; Yang, Yan; Li, Daling; Ming, Bingxia; Chen, Huoying; Sun, Yan; Xiao, Yifan; Lai, Lin; Zou, Huijuan; Xu, Yong; Xiong, Ping; Tan, Zheng; Gong, Feili; Zheng, Fang

    2016-08-01

    NK cells participate in the development of human multiple sclerosis (MS) and mouse experimental autoimmune encephalomyelitis (EAE), but the roles of different NK cell subsets in disease onset remain poorly understood. In this study, murine NK cells were divided into CD27(high) and CD27(low/-) subsets. The CD27(high) subset was decreased and the CD27(low/-) subset was increased in lymphoid organs during the pre-onset stage of EAE. Compared with the counterpart in naïve mice, the CD27(high) subset showed lower expression of Ly49D, Ly49H and NKG2D, and less production of IFN-γ, whereas the CD27(low/-) subset showed similar expression of the above mentioned surface receptors but higher cytotoxic activity in EAE mice. Compared with the CD27(high) subset, the CD27(low/-) subset exhibited increased promotion of DC maturation and no significant inhibition of T cells proliferation and Th17 cells differentiation in vitro Additionally, adoptive transfer of the CD27(low/-) subset, but not the CD27(high) subset, exacerbated the severity of EAE. Collectively, our data suggest the CD27 NK cell subsets play different roles in controlling EAE onset, which provide a new understanding for the regulation of NK cell subsets in early autoimmune disease. © The Author(s) 2016.

  4. Impaired plasmacytoid dendritic cell (PDC)-NK cell activity in viremic human immunodeficiency virus infection attributable to impairments in both PDC and NK cell function.

    PubMed

    Conry, Sara J; Milkovich, Kimberly A; Yonkers, Nicole L; Rodriguez, Benigno; Bernstein, Helene B; Asaad, Robert; Heinzel, Frederick P; Tary-Lehmann, Magdalena; Lederman, Michael M; Anthony, Donald D

    2009-11-01

    Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections impair plasmacytoid dendritic cell (PDC) and natural killer (NK) cell subset numbers and functions, though little is known about PDC-NK cell interactions during these infections. We evaluated PDC-dependent NK cell killing and gamma interferon (IFN-gamma) and granzyme B production, using peripheral blood mononuclear cell (PBMC)-based and purified cell assays of samples from HCV- and HIV-infected subjects. CpG-enhanced PBMC killing and IFN-gamma and granzyme B activity (dependent on PDC and NK cells) were impaired in viremic HIV infection. In purified PDC-NK cell culture experiments, CpG-enhanced, PDC-dependent NK cell activity was cell contact and IFN-alpha dependent, and this activity was impaired in viremic HIV infection but not in HCV infection. In heterologous PDC-NK cell assays, impaired PDC-NK cell killing activity was largely attributable to an NK cell defect, while impaired PDC-NK cell IFN-gamma-producing activity was attributable to both PDC and NK cell defects. Additionally, the response of NK cells to direct IFN-alpha stimulation was defective in viremic HIV infection, and this defect was not attributable to diminished IFN-alpha receptor expression, though IFN-alpha receptor and NKP30 expression was closely associated with killer activity in viremic HIV infection but not in healthy controls. These data indicate that during uncontrolled HIV infection, PDC-dependent NK cell function is impaired, which is in large part attributable to defective IFN-alpha-induced NK cell activity and not to altered IFN-alpha receptor, NKP30, NKP44, NKP46, or NKG2D expression.

  5. Asymmetric segregation of the double-stranded RNA binding protein Staufen2 during mammalian neural stem cell divisions promotes lineage progression.

    PubMed

    Kusek, Gretchen; Campbell, Melissa; Doyle, Frank; Tenenbaum, Scott A; Kiebler, Michael; Temple, Sally

    2012-10-05

    Asymmetric cell divisions are a fundamental feature of neural development, and misregulation can lead to brain abnormalities or tumor formation. During an asymmetric cell division, molecular determinants are segregated preferentially into one daughter cell to specify its fate. An important goal is to identify the asymmetric determinants in neural progenitor cells, which could be tumor suppressors or inducers of specific neural fates. Here, we show that the double-stranded RNA-binding protein Stau2 is distributed asymmetrically during progenitor divisions in the developing mouse cortex, preferentially segregating into the Tbr2(+) neuroblast daughter, taking with it a subset of RNAs. Knockdown of Stau2 stimulates differentiation and overexpression produces periventricular neuronal masses, demonstrating its functional importance for normal cortical development. We immunoprecipitated Stau2 to examine its cargo mRNAs, and found enrichment for known asymmetric and basal cell determinants, such as Trim32, and identified candidates, including a subset involved in primary cilium function. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Asymmetric Segregation of the Double-Stranded RNA Binding Protein Staufen2 during Mammalian Neural Stem Cell Divisions Promotes Lineage Progression

    PubMed Central

    Kusek, Gretchen; Campbell, Melissa; Doyle, Frank; Tenenbaum, Scott A.; Kiebler, Michael; Temple, Sally

    2012-01-01

    Summary Asymmetric cell divisions are a fundamental feature of neural development, and misregulation can lead to brain abnormalities or tumor formation. During an asymmetric cell division, molecular determinants are segregated preferentially into one daughter cell to specify its fate. An important goal is to identify the asymmetric determinants in neural progenitor cells, which could be tumor suppressors or inducers of specific neural fates. Here we show that the double-stranded RNA-binding protein Stau2 is distributed asymmetrically during progenitor divisions in the developing mouse cortex, preferentially segregating into the Tbr2+ neuroblast daughter, taking with it a sub-set of RNAs. Knockdown of Stau2 stimulates differentiation and over-expression produces periventricular neuronal masses, demonstrating its functional importance for normal cortical development. We immunoprecipitated Stau2 to examine its cargo mRNAs, and found enrichment for known asymmetric and basal cell determinants, such as Trim32, and identified novel candidates, including a subset involved in primary cilium function. PMID:22902295

  7. T cell phenotype and intracellular IFN-γ production in peritoneal exudate cells and gut intraepithelial lymphocytes during acute Toxoplasma gondii infection in mice

    PubMed Central

    Shin, Dae-Whan

    2002-01-01

    Although there are many reports on the splenic (systemic) T cell response after Toxoplasma gondii infection, little information is available regarding the local T cell responses of peritoneal exudate cells (PEC) and gut intraepithelial lymphocytes (IEL) following peroral infection with bradyzoites. Mice were infected with 40 cysts of the 76K strain of T. gondii, and then sacrificed at days 0, 1, 4, 7 and 10 postinfection (PI). The cellular composition and T cell responses of PEC and IEL were analyzed. The total number of PEC and IEL per mouse increased after infection, but the ratio of increase was higher in IEL. Lymphocytes were the major component of both PEC and IEL. The relative percentages of PEC macrophages and neutrophils/eosinophils increased significantly at day 1 and 4 PI, whereas those of IEL did not change significantly. The percentage of PEC NK1.1 and γδ T cells peaked at day 4 PI (p < 0.0001), and CD4 and CD8α T cells increased continuously after infection. The percentages of IEL CD8α and γδ T cells decreased slightly at first, and then increased. CD4 and NK1.1 T cells of IEL did not change significantly after infection. IFN-γ-producing PEC NK1.1 T cells increased significantly from day 1 PI, but the other T cell subsets produced IFN-γ abundantly thereafter. The proportion of IEL IFN-γ-producing CD8α and γδ T cells increased significantly after infection, while IEL NK1.1 T cells had similar IFN-γ production patterns. Taken together, CD4 T cells were the major phenotype and the important IFN-γ-producing T cell subsets in PEC after oral infection with T. gondii, whereas CD8α T cells had these roles in IEL. These results suggest that PEC and IEL comprise different cell differentials and T cell responses, and according to infection route these factors may contribute to the different cellular immune responses. PMID:12325441

  8. Dysregulation of B Cell Activity During Proliferative Kidney Disease in Rainbow Trout.

    PubMed

    Abos, Beatriz; Estensoro, Itziar; Perdiguero, Pedro; Faber, Marc; Hu, Yehfang; Díaz Rosales, Patricia; Granja, Aitor G; Secombes, Christopher J; Holland, Jason W; Tafalla, Carolina

    2018-01-01

    Proliferative kidney disease (PKD) is a widespread disease caused by the endoparasite Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea). Clinical disease, provoked by the proliferation of extrasporogonic parasite stages, is characterized by a chronic kidney pathology with underlying transcriptional changes indicative of altered B cell responses and dysregulated T-helper cell-like activities. Despite the relevance of PKD to European and North American salmonid aquaculture, no studies, to date, have focused on further characterizing the B cell response during the course of this disease. Thus, in this work, we have studied the behavior of diverse B cell populations in rainbow trout ( Oncorhynchus mykiss ) naturally infected with T. bryosalmonae at different stages of preclinical and clinical disease. Our results show a clear upregulation of all trout immunoglobulins (Igs) (IgM, IgD, and IgT) demonstrated by immunohistochemistry and Western blot analysis, suggesting the alteration of diverse B cell populations that coexist in the infected kidney. Substantial changes in IgM, IgD, and IgT repertoires were also identified throughout the course of the disease further pointing to the involvement of the three Igs in PKD through what appear to be independently regulated mechanisms. Thus, our results provide strong evidence of the involvement of IgD in the humoral response to a specific pathogen for the first time in teleosts. Nevertheless, it was IgT, a fish-specific Ig isotype thought to be specialized in mucosal immunity, which seemed to play a prevailing role in the kidney response to T. bryosalmonae . We found that IgT was the main Ig coating extrasporogonic parasite stages, IgT + B cells were the main B cell subset that proliferated in the kidney with increasing kidney pathology, and IgT was the Ig for which more significant changes in repertoire were detected. Hence, although our results demonstrate a profound dysregulation of different B cell subsets during PKD, they point to a major involvement of IgT in the immune response to the parasite. These results provide further insights into the pathology of PKD that may facilitate the future development of control strategies.

  9. [Effect of G-CSF in vitro Stimulation on Distribution of Peripheral Lymphocyte Subsets in the Healthy Persons].

    PubMed

    Zhao, Sha-Sha; Fang, Shu; Zhu, Cheng-Ying; Wang, Li-Li; Gao, Chun-Ji

    2018-02-01

    To investigate the effect of granulocyte-colony stimulating factor (G-CSF) in vitro stimulation on the distribution of lymphocyte subset in healthy human. Peripheral blood mononuclear cells (PBMNCs) were collected from 8 healthy volunteers by density gradient centrifugation on Ficoll-Paque TM . In vitro 200 ng/ml G-CSF or 200 ng/ml G-CSF plus 10 µg/ml ConA directly act on PBMNCs, then the colleted cells were cultivated for 3 days. Lymphocyte subsets were stained with the corresponding fluoresce labeled antibodies and detected by flow cytometry. The levels of T cells in G-CSF group and G-CSF+ConA group were both higher than that in the control group (P<0.001, P<0.05). However, there were not significantly different in B cells and NK cells levels among the 3 groups. Furthermore, analysis of the effect of G-CSF on T cell subsets indicated that the levels of CD4 + T cells and CD8 + T cells in G-CSF group were both significantly higher than those in control group (P<0.01, P<0.05), Treg cells was not different between G-CSF and control group. Compared with the control group, the level of CD4 + T cells, CD8 + T cells and Treg cells in G-CSF+ConA group significantly increased (P<0.05, P<0.01, P<0.01). Analysis of G-CSF receptor (G-CSFR) expression showed that G-CSFR expression on T cells in G-CSF+ConA group dramatically increased, as compared with control group (P<0.01). The levels of CD4 + T cells and CD8 + T cells in healthy human peripheral blood can be increased by G-CSF stimulation. ConA can enhance the level of T cells and induce G-CSFR expression on T cells.

  10. Expression and Function of the Cholinergic System in Immune Cells

    PubMed Central

    Fujii, Takeshi; Mashimo, Masato; Moriwaki, Yasuhiro; Misawa, Hidemi; Ono, Shiro; Horiguchi, Kazuhide; Kawashima, Koichiro

    2017-01-01

    T and B cells express most cholinergic system components—e.g., acetylcholine (ACh), choline acetyltransferase (ChAT), acetylcholinesterase, and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Using ChATBAC-eGFP transgenic mice, ChAT expression has been confirmed in T and B cells, dendritic cells, and macrophages. Moreover, T cell activation via T-cell receptor/CD3-mediated pathways upregulates ChAT mRNA expression and ACh synthesis, suggesting that this lymphocytic cholinergic system contributes to the regulation of immune function. Immune cells express all five mAChRs (M1–M5). Combined M1/M5 mAChR-deficient (M1/M5-KO) mice produce less antigen-specific antibody than wild-type (WT) mice. Furthermore, spleen cells in M1/M5-KO mice produce less tumor necrosis factor (TNF)-α and interleukin (IL)-6, suggesting M1/M5 mAChRs are involved in regulating pro-inflammatory cytokine and antibody production. Immune cells also frequently express the α2, α5, α6, α7, α9, and α10 nAChR subunits. α7 nAChR-deficient (α7-KO) mice produce more antigen-specific antibody than WT mice, and spleen cells from α7-KO mice produce more TNF-α and IL-6 than WT cells. This suggests that α7 nAChRs are involved in regulating cytokine production and thus modulate antibody production. Evidence also indicates that nicotine modulates immune responses by altering cytokine production and that α7 nAChR signaling contributes to immunomodulation through modification of T cell differentiation. Together, these findings suggest the involvement of both mAChRs and nAChRs in the regulation of immune function. The observation that vagus nerve stimulation protects mice from lethal endotoxin shock led to the notion of a cholinergic anti-inflammatory reflex pathway, and the spleen is an essential component of this anti-inflammatory reflex. Because the spleen lacks direct vagus innervation, it has been postulated that ACh synthesized by a subset of CD4+ T cells relays vagal nerve signals to α7 nAChRs on splenic macrophages, which downregulates TNF-α synthesis and release, thereby modulating inflammatory responses. However, because the spleen is innervated solely by the noradrenergic splenic nerve, confirmation of an anti-inflammatory reflex pathway involving the spleen requires several more hypotheses to be addressed. We will review and discuss these issues in the context of the cholinergic system in immune cells. PMID:28932225

  11. Neutrophil infiltration is a favorable prognostic factor in early stages of colon cancer.

    PubMed

    Wikberg, Maria L; Ling, Agnes; Li, Xingru; Öberg, Åke; Edin, Sofia; Palmqvist, Richard

    2017-10-01

    The tumor immune response has been proven critical to prognosis in colorectal cancer (CRC), but studies on the prognostic role of neutrophil infiltration have shown contradictory results. The aim of this study was to elucidate the prognostic role of infiltrating neutrophils at different intratumoral subsites and in different molecular subgroups of CRC. The relations between neutrophil infiltration and infiltration of other immune cells (T-cell and macrophage subsets) were also addressed. Expression of the neutrophil marker CD66b was assessed by immunohistochemistry in 448 archival human tumor tissue samples from patients surgically resected for CRC. The infiltration of CD66b-positive cells was semi-quantitatively evaluated along the tumor invasive front, in the tumor center, and within the tumor epithelium (intraepithelial expression). We found that poor infiltration of CD66b-positive cells in the tumor front indicated a worse patient prognosis. The prognostic significance of CD66b infiltration was found to be mainly independent of tumor molecular characteristics and maintained significance in multivariable analysis of stage I-II colon cancers. We further analyzed the prognostic impact of CD66b-positive cells in relation to other immune markers (NOS2, CD163, Tbet, FOXP3, and CD8) and found that neutrophil infiltration, even though strongly correlated to infiltration of other immune cell subsets, had additional prognostic value. In conclusion, we find that low infiltration of neutrophils in the tumor front is an independent prognostic factor for a poorer patient prognosis in early stages of colon cancers. Further studies are needed to elucidate the biological role of neutrophils in colorectal carcinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Amniotic membrane extract differentially regulates human peripheral blood T cell subsets, monocyte subpopulations and myeloid dendritic cells.

    PubMed

    Laranjeira, Paula; Duque, Marta; Vojtek, Martin; Inácio, Maria J; Silva, Isabel; Mamede, Ana C; Laranjo, Mafalda; Pedreiro, Susana; Carvalho, Maria J; Moura, Paulo; Abrantes, Ana M; Maia, Cláudio J; Domingues, Pedro; Domingues, Rosário; Martinho, António; Botelho, Maria F; Trindade, Hélder; Paiva, Artur

    2018-03-26

    The discovery of the immunoregulatory potential of human amniotic membrane (hAM) propelled several studies focusing on its application for the treatment of immunological disorders. However, there is little information regarding the effects of hAM on distinct activation and differentiation stages of immune cells. Here, we aim to investigate the effect of human amniotic membrane extract (hAME) on the pattern of cytokine production by T cells, monocytes and myeloid dendritic cells (mDCs). For this purpose, peripheral blood mononuclear cells (PBMCs) from eight healthy individuals were stimulated in vitro in the presence or absence of hAME. Mitogen-induced proliferation of PBMCs and cytokine production among the distinct T cell functional compartments, monocyte subpopulations and mDCs were evaluated. hAME displayed an anti-proliferative effect and decreased the frequency of T cells producing tumor necrosis factor (TNF)α, interferon (IFN)γ and interleukin (IL)-2, for all T cell functional compartments. The frequency of IL-17 and IL-9-producing T cells was also reduced. The inhibition of mRNA expression of granzyme B, perforin and NKG2D by CD8 + T cells and γδ T cells and the augment of FoxP3 and IL-10 in CD4 + T cells and IL-10 in regulatory T cells were also observed. Furthermore, hAME inhibited IFNγ-induced protein (IP)-10 expression by classical and non-classical monocytes, without hampering the production of TNFα and IL-6 by monocytes and mDCs. These results suggest that hAME exerts an anti-inflammatory effect on T cells, still at a different extent for distinct T cell functional compartments.

  13. Mouse model for acute Epstein-Barr virus infection.

    PubMed

    Wirtz, Tristan; Weber, Timm; Kracker, Sven; Sommermann, Thomas; Rajewsky, Klaus; Yasuda, Tomoharu

    2016-11-29

    Epstein-Barr Virus (EBV) infects human B cells and drives them into continuous proliferation. Two key viral factors in this process are the latent membrane proteins LMP1 and LMP2A, which mimic constitutively activated CD40 receptor and B-cell receptor signaling, respectively. EBV-infected B cells elicit a powerful T-cell response that clears the infected B cells and leads to life-long immunity. Insufficient immune surveillance of EBV-infected B cells causes life-threatening lymphoproliferative disorders, including mostly germinal center (GC)-derived B-cell lymphomas. We have modeled acute EBV infection of naive and GC B cells in mice through timed expression of LMP1 and LMP2A. Although lethal when induced in all B cells, induction of LMP1 and LMP2A in just a small fraction of naive B cells initiated a phase of rapid B-cell expansion followed by a proliferative T-cell response, clearing the LMP-expressing B cells. Interfering with T-cell activity prevented clearance of LMP-expressing B cells. This was also true for perforin deficiency, which in the human causes a life-threatening EBV-related immunoproliferative syndrome. LMP expression in GC B cells impeded the GC reaction but, upon loss of T-cell surveillance, led to fatal B-cell expansion. Thus, timed expression of LMP1 together with LMP2A in subsets of mouse B cells allows one to study major clinically relevant features of human EBV infection in vivo, opening the way to new therapeutic approaches.

  14. Novel assessment tools to evaluate clinical and laboratory responses in a subset of patients enrolled in the Rituximab in Myositis trial.

    PubMed

    Rider, Lisa G; Yip, Adrienne L; Horkayne-Szakaly, Iren; Volochayev, Rita; Shrader, Joseph A; Turner, Maria L; Kong, Heidi H; Jain, Minal S; Jansen, Anna V; Oddis, Chester V; Fleisher, Thomas A; Miller, Frederick W

    2014-01-01

    We aimed to assess changes in myositis core set measures and ancillary clinical and laboratory data from the National Institutes of Health's subset of patients enrolled in the Rituximab in Myositis trial. Eighteen patients (5 dermatomyositis, 8 polymyositis, 5 juvenile dermatomyositis) completed more in-depth testing of muscle strength and cutaneous assessments, patient-reported outcomes, and laboratory tests before and after administration of rituximab. Percentage change in individual measures and in the definitions of improvement (DOIs) and standardized response means were examined over 44 weeks. Core set activity measures improved by 18-70% from weeks 0-44 and were sensitive to change. Fifteen patients met the DOI at week 44, 9 patients met a DOI 50% response, and 4 met a DOI 70% response. Muscle strength and function measures were more sensitive to change than cutaneous assessments. Constitutional, gastrointestinal, and pulmonary systems improved 44-70%. Patient-reported outcomes improved up to 28%. CD20+ B cells were depleted in the periphery, but B cell depletion was not associated with clinical improvement at week 16. This subset of patients had high rates of clinical response to rituximab, similar to patients in the overall trial. Most measures were responsive, and muscle strength had a greater degree of change than cutaneous assessments. Several novel assessment tools, including measures of strength and function, extra-muscular organ activity, fatigue, and health-related quality of life, are promising for use in future myositis trials. Further study of B cell-depleting therapies in myositis, particularly in treatment-naïve patients, is warranted.

  15. Expression of the rat CD26 antigen (dipeptidyl peptidase IV) on subpopulations of rat lymphocytes.

    PubMed

    Gorrell, M D; Wickson, J; McCaughan, G W

    1991-04-15

    The T cell activation antigen CD26 has been recently identified as the cell surface ectopeptidase dipeptidyl peptidase IV (DPP-IV). DPP-IV is found on many cell types, including lymphocytes, epithelial cells, and certain endothelial cells. The MRC OX61 monoclonal antibody (MAb) which specifically recognises rat DPP-IV was used to examine the expression of CD26/DPP-IV on rat lymphocytes. The molecular nature of the antigen was examined by immunoprecipitation from thymocytes, splenocytes, and hepatocytes. Analysis by one- and two-dimensional gel electrophoresis indicated that the native form of CD26 includes a 220-kDa homodimer. On tissue sections MRC OX61 MAb stained nearly all thymocytes and in the spleen and lymph nodes predominantly stained the T cell areas. However, in immunofluorescence experiments OX61 stained 80 to 87% of lymph node cells and 78 to 85% of spleen cells. Furthermore, two-colour immunofluorescence analysis of the CD4+, CD8+, and Ig+ lymphocyte subsets indicated that only 2 to 5% of each of these subsets lacked OX61 staining. Spleen cells and thymocytes of both CD4+ and CD8+ subsets stained much more intensely with OX61 after these cells were stimulated with phytohemagglutinin. These findings indicate that rat CD26 antigen expression is not confined to the T cell population as has been suggested, but also occurs on B cells, and is increased on T cells following their activation.

  16. Neutrophil subset responses in infants with severe viral respiratory infection.

    PubMed

    Cortjens, Bart; Ingelse, Sarah A; Calis, Job C; Vlaar, Alexander P; Koenderman, Leo; Bem, Reinout A; van Woensel, Job B

    2017-03-01

    Neutrophils are the predominant inflammatory cells recruited to the respiratory tract as part of the innate immune response to viral infections. Recent reports indicate the existence of distinct functional neutrophil subsets in the circulatory compartment of adults, following severe inflammatory conditions. Here, we evaluated the occurrence of neutrophil subsets in blood and broncho-alveolar lavage fluid during severe viral respiratory infection in infants based on CD16/CD62L expression. We show that during the course of severe respiratory infection infants may develop four heterogeneous neutrophil subsets in blood (mature, immature, progenitor, and suppressive neutrophils), each with distinct activation states. However, while isolated viral respiratory infection was characterized by a relative absence of suppressive neutrophils in both blood and lungs, only patients with bacterial co-infection were shown to produce suppressive neutrophils. These data suggest the occurrence of distinct and unique neutrophil subset responses during severe viral and (secondary) bacterial respiratory infection in infants. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Interleukin 17-producing γδT cells promote hepatic regeneration in mice.

    PubMed

    Rao, Raghavendra; Graffeo, Christopher S; Gulati, Rishabh; Jamal, Mohsin; Narayan, Suchithra; Zambirinis, Constantinos P; Barilla, Rocky; Deutsch, Michael; Greco, Stephanie H; Ochi, Atsuo; Tomkötter, Lena; Blobstein, Reuven; Avanzi, Antonina; Tippens, Daniel M; Gelbstein, Yisroel; Van Heerden, Eliza; Miller, George

    2014-08-01

    Subsets of leukocytes synergize with regenerative growth factors to promote hepatic regeneration. γδT cells are early responders to inflammation-induced injury in a number of contexts. We investigated the role of γδT cells in hepatic regeneration using mice with disruptions in Tcrd (encodes the T-cell receptor δ chain) and Clec7a (encodes C-type lectin domain family 7 member a, also known as DECTIN1). We performed partial hepatectomies on wild-type C57BL/6, CD45.1, Tcrd(-/-), or Clec7a(-/-) mice. Cells were isolated from livers of patients and mice via mechanical and enzymatic digestion. γδT cells were purified by fluorescence-activated cell sorting. In mice, partial hepatectomy up-regulated expression of CCL20 and ligands of Dectin-1, which was associated with recruitment and activation of γδT cells and their increased production of interleukin (IL)-17 family cytokines. Recruited γδT cells induced production of IL-6 by antigen-presenting cells and suppressed expression of interferon gamma by natural killer T cells, promoting hepatocyte proliferation. Absence of IL-17-producing γδT cells or deletion of Dectin-1 prevented development of regenerative phenotypes in subsets of innate immune cells. This slowed liver regeneration and was associated with reduced expression of regenerative growth factors and cell cycle regulators. Conversely, exogenous administration of IL-17 family cytokines or Dectin-1 ligands promoted regeneration. More broadly, we found that γδT cells are required for inflammatory responses mediated by IL-17 and Dectin-1. γδT cells regulate hepatic regeneration by producing IL-22 and IL-17, which have direct mitogenic effects on hepatocytes and promote a regenerative phenotype in hepatic leukocytes, respectively. Dectin-1 ligation is required for γδT cells to promote hepatic regeneration. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. Interleukin 17-Producing γδT Cells Promote Hepatic Regeneration in Mice

    PubMed Central

    Rao, Raghavendra; Graffeo, Christopher S.; Gulati, Rishabh; Jamal, Mohsin; Narayan, Suchithra; Zambirinis, Constantinos; Barilla, Rocky; Deutsch, Michael; Greco, Stephanie; Ochi, Atsuo; Tomkötter, Lena; Blobstein, Reuven; Avanzi, Antonina; Tippens, Daniel M.; Gelbstein, Yisroel; Heerden, Eliza Van; Miller, George

    2014-01-01

    Background & Aims Subsets of leukocytes synergize with regenerative growth factors to promote hepatic regeneration. γδT cells are early responders to inflammation-induced injury in a number of contexts. We investigated the role of γδT cells in hepatic regeneration using mice with disruptions in Tcrd (encodes the T cell receptor δ chain) and Clec7a (encodes C-type lectin domain family 7 member a, also known as DECTIN1). Methods We performed partial hepatectomies on wild-type C57BL/6, CD45.1, Tcrd−/−, or Clec7a−/− mice. Cells were isolated from livers of patients and mice via mechanical and enzymatic digestion. γδT cells were purified by fluorescence-activated cell sorting. Results In mice, partial hepatectomy upregulated expression of CCL20 and ligands of Dectin-1, associated with recruitment and activation of γδT cells and their increased production of interleukin (IL)17 family cytokines. Recruited γδT cells induced production of IL6 by antigen-presenting cells and suppressed expression of interferon γ by natural killer T cells, promoting hepatocyte proliferation. Absence of IL17-producing γδT cells or deletion of Dectin-1 prevented development of regenerative phenotypes in subsets of innate immune cells. This slowed liver regeneration and was associated with reduced expression of regenerative growth factors and cell cycle regulators. Conversely, exogenous administration of IL17 family cytokines or Dectin-1 ligands promoted regeneration. More broadly, we found that γδT cells are required for inflammatory responses mediated by IL17 and Dectin-1. Conclusions γδT cells regulate hepatic regeneration by producing IL22 and IL17, which have direct mitogenic effects on hepatocytes and promote a regenerative phenotype in hepatic leukocytes, respectively. Dectin-1 ligation is required for γδT cells to promote hepatic regeneration. PMID:24801349

  19. Fascin1-Dependent Filopodia are Required for Directional Migration of a Subset of Neural Crest Cells

    PubMed Central

    Boer, Elena F.; Howell, Elizabeth D.; Schilling, Thomas F.; Jette, Cicely A.; Stewart, Rodney A.

    2015-01-01

    Directional migration of neural crest (NC) cells is essential for patterning the vertebrate embryo, including the craniofacial skeleton. Extensive filopodial protrusions in NC cells are thought to sense chemo-attractive/repulsive signals that provide directionality. To test this hypothesis, we generated null mutations in zebrafish fascin1a (fscn1a), which encodes an actin-bundling protein required for filopodia formation. Homozygous fscn1a zygotic null mutants have normal NC filopodia due to unexpected stability of maternal Fscn1a protein throughout NC development and into juvenile stages. In contrast, maternal/zygotic fscn1a null mutant embryos (fscn1a MZ) have severe loss of NC filopodia. However, only a subset of NC streams display migration defects, associated with selective loss of craniofacial elements and peripheral neurons. We also show that fscn1a-dependent NC migration functions through cxcr4a/cxcl12b chemokine signaling to ensure the fidelity of directional cell migration. These data show that fscn1a-dependent filopodia are required in a subset of NC cells to promote cell migration and NC derivative formation, and that perdurance of long-lived maternal proteins can mask essential zygotic gene functions during NC development. PMID:25607881

  20. Cyclin-dependent kinase inhibitor Cdkn2c regulates B cell homeostasis and function in the NZM2410-derived murine lupus susceptibility locus Sle2c1

    PubMed Central

    Xu, Zhiwei; Potula, Hari-Hara SK; Vallurupalli, Anusha; Perry, Daniel; Baker, Henry; Croker, Byron P.; Dozmorov, Igor; Morel, Laurence

    2013-01-01

    Sle2c1 is an NZM2410 and NZB-derived lupus susceptibility locus that induces an expansion of the B1a cell compartment. B1a cells have a repertoire enriched for autoreactivity, and an expansion of this B cell subset occurs in several mouse models of lupus. A combination of genetic mapping and candidate gene analysis presents Cdkn2c, a gene encoding for cyclin-dependent kinase inhibitor p18INK4c (p18), as the top candidate gene for inducing the Slec2c1 associated expansion of B1a cells. A novel SNP in the NZB allele of the Cdkn2c promoter is associated with a significantly reduced Cdkn2c expression in the splenic B cells and Pc B1a cells from Sle2c1-carrying mice, which leads to a defective G1 cell cycle arrest in splenic B cells and increased proliferation of Pc B1a cells. As cell cycle is differentially regulated in B1a and B2 cells, these results suggest that Cdkn2c plays a critical role in B1a cell self-renewal, and that its impaired expression leads to an accumulation of these cells with high autoreactive potential. PMID:21543644

  1. Human liver infiltrating γδ T cells are composed of clonally expanded circulating and tissue-resident populations.

    PubMed

    Hunter, Stuart; Willcox, Carrie R; Davey, Martin S; Kasatskaya, Sofya A; Jeffery, Hannah C; Chudakov, Dmitriy M; Oo, Ye H; Willcox, Benjamin E

    2018-05-18

    γδ T-cells comprise a substantial proportion of tissue-associated lymphocytes. However, our current understanding of human γδ T-cells is primarily based on peripheral blood subsets, while the immunobiology of tissue-associated subsets remains largely unclear. To address this, we characterised the TCR diversity, immunophenotype and function of human liver infiltrating γδ T-cells, focussing on the predominant tissue-associated Vδ2 neg γδ subset, which is implicated in liver immunopathology. Intrahepatic Vδ2 neg γδ T-cells were highly clonally focussed, with single expanded clonotypes featuring complex, private TCR rearrangements frequently dominating the compartment. Such T-cells were predominantly CD27 lo/neg effector lymphocytes, whereas naïve CD27 hi , TCR diverse populations present in matched blood were generally absent in the liver. Furthermore, while a CD45RA hi Vδ2 neg γδ effector subset present in both liver and peripheral blood contained overlapping TCR clonotypes, the liver Vδ2 neg γδ T-cell pool also included a phenotypically distinct CD45RA lo effector compartment that was enriched for expression of the tissue tropism marker CD69, the hepatic homing chemokine receptors CXCR3 and CXCR6, and liver-restricted TCR clonotypes, suggestive of intrahepatic tissue residency. Liver infiltrating Vδ2 neg γδ cells were capable of polyfunctional cytokine secretion, and unlike peripheral blood subsets, were responsive to both TCR and innate stimuli. These findings suggest the ability of Vδ2 neg γδ T-cells to undergo clonotypic expansion and differentiation is crucial in permitting access to solid tissues such as the liver, and can result in functionally distinct peripheral and liver-resident memory γδ T-cell subsets. They highlight the inherent functional plasticity within the Vδ2 neg γδ T-cell compartment, and may inform design of cellular therapies involving intrahepatic trafficking of γδ T-cells to suppress liver inflammation or combat liver cancer. γδ T cells are frequently enriched in many solid tissues, however the immunobiology of such tissue-associated subsets in humans has remained unclear. We show that intrahepatic γδ T cells are enriched for clonally expanded effector T cells, whereas naïve γδ T cells are largely excluded; moreover, whereas a distinct proportion of circulating T cell clonotypes was present in both the liver tissue and peripheral blood, a functionally and clonotypically distinct population of liver-resident γδ T cells was also evident. Our findings suggest that factors triggering γδ T cell clonal selection and differentiation, such as infection, can drive enrichment of γδ T cells into liver tissue, allowing the development of functionally distinct tissue-restricted memory populations specialised in local hepatic immunosurveillance. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  2. Extensive characterization of the immunophenotype and pattern of cytokine production by distinct subpopulations of normal human peripheral blood MHC II+/lineage− cells

    PubMed Central

    Almeida, J; Bueno, C; Alguero, M C; Sanchez, M L; Cañizo, M C; Fernandez, M E; Vaquero, J M; Laso, F J; Escribano, L; San Miguel, J F; Orfao, A

    1999-01-01

    Dendritic cells (DC) represent the most powerful professional antigen-presenting cells (APC) in the immune system. The aim of the present study was to analyse, on a single-cell basis by multiparametric flow cytometry with simultaneous four-colour staining and a two-step acquisition procedure, the immunophenotypic profile and cytokine production of DC from 67 normal whole peripheral blood (PB) samples. Two clearly different subsets of HLA-II+/lineage− were identified on the basis of their distinct phenotypic characteristics: one DC subset was CD33strong+ and CD123dim+ (0.16 ± 0.06% of the PB nucleated cells and 55.9 ± 11.9% of all PB DC) and the other, CD33dim+ and CD123strong+ (0.12 ± 0.04% of PB nucleated cells and 44.53 ± 11.5% of all PB DC). Moreover, the former DC subpopulation clearly showed higher expression of the CD13 myeloid-associated antigen, the CD29 and CD58 adhesion molecules, the CD2, CD5 and CD86 costimulatory molecules, the CD32 IgG receptor and the CD11c complement receptor. In addition, these cells showed stronger HLA-DR and HLA-DQ expression and a higher reactivity for the IL-6 receptor α-chain (CD126) and for CD38. In contrast, the CD123strong+/CD33dim+ DC showed a stronger reactivity for the CD4 and CD45RA molecules, whereas they did not express the CD58, CD5, CD11c and CD13 antigens. Regarding cytokine production, our results show that while the CD33strong+/CD123dim+ DC are able to produce significant amounts of inflammatory cytokines, such as IL-1β (97 ± 5% of positive cells), IL-6 (96 ± 1.1% of positive cells), IL-12 (81.5 ± 15.5% of positive cells) and tumour necrosis factor-alpha (TNF-α) (84 ± 22.1% of positive cells) as well as chemokines such as IL-8 (99 ± 1% of positive cells), the functional ability of the CD123strong+/CD33dim+ DC subset to produce cytokines under the same conditions was almost null. Our results therefore clearly show the presence of two distinct subsets of DC in normal human PB, which differ not only in their immunophenotype but also in their functionality, as regards cytokine production. PMID:10594557

  3. Monocytes Play an IL-12-Dependent Crucial Role in Driving Cord Blood NK Cells to Produce IFN-g in Response to Trypanosoma cruzi

    PubMed Central

    Guilmot, Aline; Bosse, Julie; Carlier, Yves; Truyens, Carine

    2013-01-01

    We previously reported that foetuses congenitally infected with Trypanosoma cruzi, the agent of Chagas disease, mount an adult-like parasite-specific CD8+ T-cell response, producing IFN-g, and present an altered NK cell phenotype, possibly reflecting a post-activation state supported by the ability of the parasite to trigger IFN-g synthesis by NK cells in vitro. We here extended our knowledge on NK cell activation by the parasite. We compared the ability of T. cruzi to activate cord blood and adult NK cells from healthy individuals. Twenty-four hours co-culture of cord blood mononuclear cells with T. cruzi trypomastigotes and IL-15 induced high accumulation of IFN-g transcripts and IFN-g release. TNF-a, but not IL-10, was also produced. This was associated with up-regulation of CD69 and CD54, and down-regulation of CD62L on NK cells. The CD56bright NK cell subset was the major IFN-g responding subset (up to 70% IFN-g-positive cells), while CD56dim NK cells produced IFN-g to a lesser extent. The response points to a synergy between parasites and IL-15. The neonatal response, observed in all newborns, remained however slightly inferior to that of adults. Activation of IL-15-sensitized cord blood NK cells by the parasite required contacts with live/intact parasites. In addition, it depended on the engagement of TLR-2 and 4 and involved IL-12 and cross-talk with monocytes but not with myeloid dendritic cells, as shown by the use of neutralizing antibodies and cell depletion. This work highlights the ability of T. cruzi to trigger a robust IFN-g response by IL-15-sensitized human neonatal NK cells and the important role of monocytes in it, which might perhaps partially compensate for the neonatal defects of DCs. It suggests that monocyte- and IL-12- dependent IFN-g release by NK cells is a potentially important innate immune response pathway allowing T. cruzi to favour a type 1 immune response in neonates. PMID:23819002

  4. Safety and immunogenicity of mammalian cell derived and Modified Vaccinia Ankara vectored African swine fever subunit antigens in swine.

    PubMed

    Lopera-Madrid, Jaime; Osorio, Jorge E; He, Yongqun; Xiang, Zuoshuang; Adams, L Garry; Laughlin, Richard C; Mwangi, Waithaka; Subramanya, Sandesh; Neilan, John; Brake, David; Burrage, Thomas G; Brown, William Clay; Clavijo, Alfonso; Bounpheng, Mangkey A

    2017-03-01

    A reverse vaccinology system, Vaxign, was used to identify and select a subset of five African Swine Fever (ASF) antigens that were successfully purified from human embryonic kidney 293 (HEK) cells and produced in Modified vaccinia virus Ankara (MVA) viral vectors. Three HEK-purified antigens [B646L (p72), E183L (p54), and O61R (p12)], and three MVA-vectored antigens [B646L, EP153R, and EP402R (CD2v)] were evaluated using a prime-boost immunization regimen swine safety and immunogenicity study. Antibody responses were detected in pigs following prime-boost immunization four weeks apart with the HEK-293-purified p72, p54, and p12 antigens. Notably, sera from the vaccinees were positive by immunofluorescence on ASFV (Georgia 2007/1)-infected primary macrophages. Although MVA-vectored p72, CD2v, and EP153R failed to induce antibody responses, interferon-gamma (IFN-γ + ) spot forming cell responses against all three antigens were detected one week post-boost. The highest IFN-γ + spot forming cell responses were detected against p72 in pigs primed with MVA-p72 and boosted with the recombinant p72. Antigen-specific (p12, p72, CD2v, and EP153R) T-cell proliferative responses were also detected post-boost. Collectively, these results are the first demonstration that ASFV subunit antigens purified from mammalian cells or expressed in MVA vectors are safe and can induce ASFV-specific antibody and T-cell responses following a prime-boost immunization regimen in swine. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Oxytocin signaling in mouse taste buds.

    PubMed

    Sinclair, Michael S; Perea-Martinez, Isabel; Dvoryanchikov, Gennady; Yoshida, Masahide; Nishimori, Katsuhiko; Roper, Stephen D; Chaudhari, Nirupa

    2010-08-05

    The neuropeptide, oxytocin (OXT), acts on brain circuits to inhibit food intake. Mutant mice lacking OXT (OXT knockout) overconsume salty and sweet (i.e. sucrose, saccharin) solutions. We asked if OXT might also act on taste buds via its receptor, OXTR. Using RT-PCR, we detected the expression of OXTR in taste buds throughout the oral cavity, but not in adjacent non-taste lingual epithelium. By immunostaining tissues from OXTR-YFP knock-in mice, we found that OXTR is expressed in a subset of Glial-like (Type I) taste cells, and also in cells on the periphery of taste buds. Single-cell RT-PCR confirmed this cell-type assignment. Using Ca2+ imaging, we observed that physiologically appropriate concentrations of OXT evoked [Ca2+]i mobilization in a subset of taste cells (EC50 approximately 33 nM). OXT-evoked responses were significantly inhibited by the OXTR antagonist, L-371,257. Isolated OXT-responsive taste cells were neither Receptor (Type II) nor Presynaptic (Type III) cells, consistent with our immunofluorescence observations. We also investigated the source of OXT peptide that may act on taste cells. Both RT-PCR and immunostaining suggest that the OXT peptide is not produced in taste buds or in their associated nerves. Finally, we also examined the morphology of taste buds from mice that lack OXTR. Taste buds and their constituent cell types appeared very similar in mice with two, one or no copies of the OXTR gene. We conclude that OXT elicits Ca2+ signals via OXTR in murine taste buds. OXT-responsive cells are most likely a subset of Glial-like (Type I) taste cells. OXT itself is not produced locally in taste tissue and is likely delivered through the circulation. Loss of OXTR does not grossly alter the morphology of any of the cell types contained in taste buds. Instead, we speculate that OXT-responsive Glial-like (Type I) taste bud cells modulate taste signaling and afferent sensory output. Such modulation would complement central pathways of appetite regulation that employ circulating homeostatic and satiety signals.

  6. Adenovirus-specific T-cell Subsets in Human Peripheral Blood and After IFN-γ Immunomagnetic Selection.

    PubMed

    Qian, Chongsheng; Wang, Yingying; Cai, Huili; Laroye, Caroline; De Carvalho Bittencourt, Marcelo; Clement, Laurence; Stoltz, Jean-François; Decot, Véronique; Reppel, Loïc; Bensoussan, Danièle

    2016-01-01

    Adoptive antiviral cellular immunotherapy by infusion of virus-specific T cells (VSTs) is becoming an alternative treatment for viral infection after hematopoietic stem cell transplantation. The T memory stem cell (TSCM) subset was recently described as exhibiting self-renewal and multipotency properties which are required for sustained efficacy in vivo. We wondered if such a crucial subset for immunotherapy was present in VSTs. We identified, by flow cytometry, TSCM in adenovirus (ADV)-specific interferon (IFN)-γ+ T cells before and after IFN-γ-based immunomagnetic selection, and analyzed the distribution of the main T-cell subsets in VSTs: naive T cells (TN), TSCM, T central memory cells (TCM), T effector memory cell (TEM), and effector T cells (TEFF). In this study all of the different T-cell subsets were observed in the blood sample from healthy donor ADV-VSTs, both before and after IFN-γ-based immunomagnetic selection. As the IFN-γ-based immunomagnetic selection system sorts mainly the most differentiated T-cell subsets, we observed that TEM was always the major T-cell subset of ADV-specific T cells after immunomagnetic isolation and especially after expansion in vitro. Comparing T-cell subpopulation profiles before and after in vitro expansion, we observed that in vitro cell culture with interleukin-2 resulted in a significant expansion of TN-like, TCM, TEM, and TEFF subsets in CD4IFN-γ T cells and of TCM and TEM subsets only in CD8IFN-γ T cells. We demonstrated the presence of all T-cell subsets in IFN-γ VSTs including the TSCM subpopulation, although this was weakly selected by the IFN-γ-based immunomagnetic selection system.

  7. Calcium-Binding Proteins S100A8 and S100A9: Investigation of Their Immune Regulatory Effect in Myeloid Cells.

    PubMed

    Yang, Jianxin; Anholts, Jacqueline; Kolbe, Ulrike; Stegehuis-Kamp, Janine A; Claas, Frans H J; Eikmans, Michael

    2018-06-21

    High expression levels of the calcium-binding proteins S100A8 and S100A9 in myeloid cells in kidney transplant rejections are associated with a favorable outcome. Here we investigated the myeloid cell subset expressing these molecules, and their function in inflammatory reactions. Different monocyte subsets were sorted from buffy coats of healthy donors and investigated for S100A8 and S100A9 expression. To characterize S100A9high and S100A9low subsets within the CD14+ classical monocyte subset, intracellular S100A9 staining was combined with flow cytometry (FACS) and qPCR profiling. Furthermore, S100A8 and S100A9 were overexpressed by transfection in primary monocyte-derived macrophages and the THP-1 macrophage cell line to investigate the functional relevance. Expression of S100A8 and S100A9 was primarily found in classical monocytes and to a much lower extent in intermediate and non-classical monocytes. All S100A9+ cells expressed human leukocyte antigen—antigen D related (HLA-DR) on their surface. A small population (<3%) of CD14+ CD11b+ CD33+ HLA-DR− cells, characterized as myeloid derived suppressor cells (MDSCs), also expressed S100A9 to high extent. Overexpression of S100A8 and S00A9 in macrophages led to enhanced extracellular reactive oxygen species (ROS) production, as well as elevated mRNA expression of anti-inflammatory IL-10 . The results suggest that the calcium-binding proteins S100A8 and S100A9 in myeloid cells have an immune regulatory effect.

  8. Fluorescently labeled dengue viruses as probes to identify antigen-specific memory B cells by multiparametric flow cytometry.

    PubMed

    Woda, Marcia; Mathew, Anuja

    2015-01-01

    Low frequencies of memory B cells in the peripheral blood make it challenging to measure the functional and phenotypic characteristics of this antigen experienced subset of B cells without in vitro culture. To date, reagents are lacking to measure ex vivo frequencies of dengue virus (DENV)-specific memory B cells. We wanted to explore the possibility of using fluorescently labeled DENV as probes to detect antigen-specific memory B cells in the peripheral blood of DENV immune individuals. Alexa Fluor dye-labeled DENV yielded viable virus that could be stored at -80°C for long periods of time. Using a careful gating strategy and methods to decrease non-specific binding, we were able to identify a small frequency of B cells from dengue immune individuals that bound labeled DENV. Sorted DENV(+) B cells from immune, but not naïve donors secreted antibodies that bound DENV after in vitro stimulation. Overall, Alexa Fluor dye-labeled DENVs are useful reagents to enable the detection and characterization of memory B cells in DENV immune individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Mutations in the nucleotide binding pocket of MreB can alter cell curvature and polar morphology in Caulobacter.

    PubMed

    Dye, Natalie A; Pincus, Zachary; Fisher, Isabelle C; Shapiro, Lucy; Theriot, Julie A

    2011-07-01

    The maintenance of cell shape in Caulobacter crescentus requires the essential gene mreB, which encodes a member of the actin superfamily and the target of the antibiotic, A22. We isolated 35 unique A22-resistant Caulobacter strains with single amino acid substitutions near the nucleotide binding site of MreB. Mutations that alter cell curvature and mislocalize the intermediate filament crescentin cluster on the back surface of MreB's structure. Another subset have variable cell widths, with wide cell bodies and actively growing thin extensions of the cell poles that concentrate fluorescent MreB. We found that the extent to which MreB localization is perturbed is linearly correlated with the development of pointed cell poles and variable cell widths. Further, we find that a mutation to glycine of two conserved aspartic acid residues that are important for nucleotide hydrolysis in other members of the actin superfamily abolishes robust midcell recruitment of MreB but supports a normal rate of growth. These mutant strains provide novel insight into how MreB's protein structure, subcellular localization, and activity contribute to its function in bacterial cell shape. © 2011 Blackwell Publishing Ltd.

  10. Mutations in the nucleotide binding pocket of MreB can alter cell curvature and polar morphology in Caulobacter

    PubMed Central

    Dye, Natalie A; Pincus, Zachary; Fisher, Isabelle C; Shapiro, Lucy; Theriot, Julie A

    2011-01-01

    Summary The maintenance of cell shape in Caulobacter crescentus requires the essential gene mreB, which encodes a member of the actin superfamily and the target of the antibiotic, A22. We isolated 35 unique A22-resistant Caulobacter strains with single amino acid substitutions near the nucleotide binding site of MreB. Mutations that alter cell curvature and mislocalize the intermediate filament crescentin cluster on the back surface of MreB's structure. Another subset have variable cell widths, with wide cell bodies and actively growing thin extensions of the cell poles that concentrate fluorescent MreB. We found that the extent to which MreB localization is perturbed is linearly correlated with the development of pointed cell poles and variable cell widths. Further, we find that a mutation to glycine of two conserved aspartic acid residues that are important for nucleotide hydrolysis in other members of the actin superfamily abolishes robust midcell recruitment of MreB but supports a normal rate of growth. These mutant strains provide novel insight into how MreB's protein structure, subcellular localization, and activity contribute to its function in bacterial cell shape. PMID:21564339

  11. CD8+ T Cell Exhaustion, Suppressed Gamma Interferon Production, and Delayed Memory Response Induced by Chronic Brucella melitensis Infection

    PubMed Central

    Durward-Diioia, Marina; Harms, Jerome; Khan, Mike; Hall, Cherisse; Smith, Judith A.

    2015-01-01

    Brucella melitensis is a well-adapted zoonotic pathogen considered a scourge of mankind since recorded history. In some cases, initial infection leads to chronic and reactivating brucellosis, incurring significant morbidity and economic loss. The mechanism by which B. melitensis subverts adaptive immunological memory is poorly understood. Previous work has shown that Brucella-specific CD8+ T cells express gamma interferon (IFN-γ) and can transition to long-lived memory cells but are not polyfunctional. In this study, chronic infection of mice with B. melitensis led to CD8+ T cell exhaustion, manifested by programmed cell death 1 (PD-1) and lymphocyte activation gene 3 (LAG-3) expression and a lack of IFN-γ production. The B. melitensis-specific CD8+ T cells that produced IFN-γ expressed less IFN-γ per cell than did CD8+ cells from uninfected mice. Both memory precursor (CD8+ LFA1HI CD127HI KLRG1LO) and long-lived memory (CD8+ CD27HI CD127HI KLRG1LO) cells were identified during chronic infection. Interestingly, after adoptive transfer, mice receiving cells from chronically infected animals were able to contain infection more rapidly than recipients of cells from acutely infected or uninfected donors, although the proportions of exhausted CD8+ T cells increased after adoptive transfer in both challenged and unchallenged recipients. CD8+ T cells of challenged recipients initially retained the stunted IFN-γ production found prior to transfer, and cells from acutely infected mice were never seen to transition to either memory subset at all time points tested, up to 30 days post-primary infection, suggesting a delay in the generation of memory. Here we have identified defects in Brucella-responsive CD8+ T cells that allow chronic persistence of infection. PMID:26416901

  12. Converting adult pancreatic islet α-cells into β-cells by targeting both Dnmt1 and Arx

    PubMed Central

    Chakravarthy, Harini; Gu, Xueying; Enge, Martin; Dai, Xiaoqing; Wang, Yong; Damond, Nicolas; Downie, Carolina; Liu, Kathy; Wang, Jing; Xing, Yuan; Chera, Simona; Thorel, Fabrizio; Quake, Stephen; Oberholzer, Jose; MacDonald, Patrick E.; Herrera, Pedro L.; Kim, Seung K.

    2017-01-01

    Summary Insulin-producing pancreatic β-cells in mice can slowly regenerate from glucagon-producing α-cells in settings like β-cell loss, but the basis of this conversion is unknown. Moreover it remains unclear if this intra-islet cell conversion is relevant to diseases like type 1 diabetes (T1D). We show that the α-cell regulators Aristaless-related homeobox (Arx) and DNA methyltransferase 1 (Dnmt1) maintain α-cell identity in mice. Within 3 months of Dnmt1 and Arx loss, lineage tracing and single cell RNA sequencing revealed extensive α-cell conversion into progeny resembling native β-cells. Physiological studies demonstrated that converted α-cells acquire hallmark β-cell electrophysiology, and show glucose-stimulated insulin secretion. In T1D patients, subsets of Glucagon-expressing cells show loss of DNMT1 and ARX, and produce Insulin and other β-cell factors, suggesting that DNMT1 and ARX maintain α-cell identity in humans. Our work reveals pathways regulated by Arx and Dnmt1 sufficient for achieving targeted generation of β-cells from adult pancreatic α-cells. PMID:28215845

  13. B-cell-specific depletion of tumour necrosis factor alpha inhibits atherosclerosis development and plaque vulnerability to rupture by reducing cell death and inflammation.

    PubMed

    Tay, Christopher; Liu, Yu-Han; Hosseini, Hamid; Kanellakis, Peter; Cao, Anh; Peter, Karlheinz; Tipping, Peter; Bobik, Alex; Toh, Ban-Hock; Kyaw, Tin

    2016-09-01

    B2 lymphocytes promote atherosclerosis development but their mechanisms of action are unknown. Here, we investigated the role of tumour necrosis factor alpha (TNF-α) produced by B2 cells in atherogenesis. We found that 50% of TNF-α-producing spleen lymphocytes were B2 cells and ∼20% of spleen and aortic B cells produced TNF-α in hyperlipidemic ApoE(-/-) mice. We generated mixed bone marrow (80% μMT/20% TNF-α(-/-)) chimeric LDLR(-/-) mice where only B cells did not express TNF-α. Atherosclerosis was reduced in chimeric LDLR(-/-) mice with TNF-α-deficient B cells. TNF-α expression in atherosclerotic lesions and in macrophages were also reduced accompanied by fewer apoptotic cells, reduced necrotic cores, and reduced lesion Fas, interleukin-1β and MCP-1 in mice with TNF-α-deficient B cells compared to mice with TNF-α-sufficient B cells. To confirm that the reduced atherosclerosis is attributable to B2 cells, we transferred wild-type and TNF-α-deficient B2 cells into ApoE(-/-) mice deficient in B cells or in lymphocytes. After 8 weeks of high fat diet, we found that atherosclerosis was increased by wild-type but not TNF-α-deficient B2 cells. Lesions of mice with wild-type B2 cells but not TNF-α-deficient B2 cells also had increased apoptotic cells and necrotic cores. Transferred B2 cells were found in lesions of recipient mice, suggesting that TNF-α-producing B2 cells promote atherosclerosis within lesions. We conclude that TNF-α produced by B2 cells is a key mechanism by which B2 cells promote atherogenesis through augmenting macrophage TNF-α production to induce cell death and inflammation that promote plaque vulnerability. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  14. SAP modulates B cell functions in a genetic background-dependent manner.

    PubMed

    Detre, Cynthia; Yigit, Burcu; Keszei, Marton; Castro, Wilson; Magelky, Erica M; Terhorst, Cox

    2013-06-01

    Mutations affecting the SLAM-associated protein (SAP) are responsible for the X-linked lympho-proliferative syndrome (XLP), a severe primary immunodeficiency syndrome with disease manifestations that include fatal mononucleosis, B cell lymphoma and dysgammaglobulinemia. It is well accepted that insufficient help by SAP-/- CD4+ T cells, in particular during the germinal center reaction, is a component of dysgammaglobulinemia in XLP patients and SAP-/- animals. It is however not well understood whether in XLP patients and SAP-/- mice B cell functions are affected, even though B cells themselves do not express SAP. Here we report that B cell intrinsic responses to haptenated protein antigens are impaired in SAP-/- mice and in Rag-/- mice into which B cells derived from SAP-/- mice together with wt CD4+ T cells had been transferred. This impaired B cells functions are in part depending on the genetic background of the SAP-/- mouse, which affects B cell homeostasis. Surprisingly, stimulation with an agonistic anti-CD40 causes strong in vivo and in vitro B cell responses in SAP-/- mice. Taken together, the data demonstrate that genetic factors play an important role in the SAP-related B cell functions. The finding that anti-CD40 can in part restore impaired B cell responses in SAP-/- mice, suggests potentially novel therapeutic interventions in subsets of XLP patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A distinct plasmablast and naïve B-cell phenotype in primary immune thrombocytopenia

    PubMed Central

    Flint, Shaun M.; Gibson, Adele; Lucas, Geoff; Nandigam, Raghava; Taylor, Louise; Provan, Drew; Newland, Adrian C.; Savage, Caroline O.; Henderson, Robert B.

    2016-01-01

    Primary immune thrombocytopenia is an autoimmune disorder in which platelet destruction is a consequence of both B- and T-cell dysregulation. Flow cytometry was used to further characterize the B- and T-cell compartments in a cross-sectional cohort of 26 immune thrombocytopenia patients including antiplatelet antibody positive (n=14) and negative (n=12) patients exposed to a range of therapies, and a cohort of matched healthy volunteers. Markers for B-cell activating factor and its receptors, relevant B-cell activation markers (CD95 and CD21) and markers for CD4+ T-cell subsets, including circulating T-follicular helper-like cells, were included. Our results indicate that an expanded population of CD95+ naïve B cells correlated with disease activity in immune thrombocytopenia patients regardless of treatment status. A population of CD21-naïve B cells was specifically expanded in autoantibody-positive immune thrombocytopenia patients. Furthermore, the B-cell maturation antigen, a receptor for B-cell activating factor, was consistently and strongly up-regulated on plasmablasts from immune thrombocytopenia patients. These observations have parallels in other autoantibody-mediated diseases and suggest that loss of peripheral tolerance in naïve B cells may be an important component of immune thrombocytopenia pathogenesis. Moreover, the B-cell maturation antigen represents a potential target for plasma cell directed therapies in immune thrombocytopenia. PMID:26969086

  16. A distinct plasmablast and naïve B-cell phenotype in primary immune thrombocytopenia.

    PubMed

    Flint, Shaun M; Gibson, Adele; Lucas, Geoff; Nandigam, Raghava; Taylor, Louise; Provan, Drew; Newland, Adrian C; Savage, Caroline O; Henderson, Robert B

    2016-06-01

    Primary immune thrombocytopenia is an autoimmune disorder in which platelet destruction is a consequence of both B- and T-cell dysregulation. Flow cytometry was used to further characterize the B- and T-cell compartments in a cross-sectional cohort of 26 immune thrombocytopenia patients including antiplatelet antibody positive (n=14) and negative (n=12) patients exposed to a range of therapies, and a cohort of matched healthy volunteers. Markers for B-cell activating factor and its receptors, relevant B-cell activation markers (CD95 and CD21) and markers for CD4(+) T-cell subsets, including circulating T-follicular helper-like cells, were included. Our results indicate that an expanded population of CD95(+) naïve B cells correlated with disease activity in immune thrombocytopenia patients regardless of treatment status. A population of CD21-naïve B cells was specifically expanded in autoantibody-positive immune thrombocytopenia patients. Furthermore, the B-cell maturation antigen, a receptor for B-cell activating factor, was consistently and strongly up-regulated on plasmablasts from immune thrombocytopenia patients. These observations have parallels in other autoantibody-mediated diseases and suggest that loss of peripheral tolerance in naïve B cells may be an important component of immune thrombocytopenia pathogenesis. Moreover, the B-cell maturation antigen represents a potential target for plasma cell directed therapies in immune thrombocytopenia. Copyright© Ferrata Storti Foundation.

  17. Effects of Antiparasite Chemotherapeutic Agents on Immune Functions.

    DTIC Science & Technology

    1984-05-01

    OF ALKYLATING AGENTS AGAINST CELLS PARTICIPATING IN SUPPRESSION OF ANTIBODY RESPONSES* RONALD D. PAUL, ABOUL GHAFFARt and M. MICHAEL SIGEL Department... alkylating agents on the induction and expression of specific suppressor cell activity induced by supraoptimal immunization (SO[) with (4x 109) SRBC was...including 1982b). different subsets of T cells (Cantor & Gershon, A number of alkylating agents which are used as 1979). It is therefore necessary to

  18. IgG1 B cell receptor signaling is inhibited by CD22 and promotes the development of B cells whose survival is less dependent on Igα/β

    PubMed Central

    Waisman, Ari; Kraus, Manfred; Seagal, Jane; Ghosh, Snigdha; Melamed, Doron; Song, Jian; Sasaki, Yoshiteru; Classen, Sabine; Lutz, Claudia; Brombacher, Frank; Nitschke, Lars; Rajewsky, Klaus

    2007-01-01

    We describe a mouse strain in which B cell development relies either on the expression of membrane-bound immunoglobulin (Ig) γ1 or μ heavy chains. Progenitor cells expressing γ1 chains from the beginning generate a peripheral B cell compartment of normal size with all subsets, but a partial block is seen at the pro– to pre–B cell transition. Accordingly, γ1-driven B cell development is disfavored in competition with developing B cells expressing a wild-type (WT) IgH locus. However, the mutant B cells display a long half-life and accumulate in the mature B cell compartment, and even though partial truncation of the Igα cytoplasmic tail compromises their development, it does not affect their maintenance, as it does in WT cells. IgG1-expressing B cells showed an enhanced Ca2+ response upon B cell receptor cross-linking, which was not due to a lack of inhibition by CD22. The enhanced Ca2+ response was also observed in mature B cells that had been switched from IgM to IgG1 expression in vivo. Collectively, these results suggest that the γ1 chain can exert a unique signaling function that can partially replace that of the Igα/β heterodimer in B cell maintenance and may contribute to memory B cell physiology. PMID:17420268

  19. IL-1 receptor antagonist-deficient mice develop autoimmune arthritis due to intrinsic activation of IL-17-producing CCR2+Vγ6+γδ T cells

    PubMed Central

    Akitsu, Aoi; Ishigame, Harumichi; Kakuta, Shigeru; Chung, Soo-hyun; Ikeda, Satoshi; Shimizu, Kenji; Kubo, Sachiko; Liu, Yang; Umemura, Masayuki; Matsuzaki, Goro; Yoshikai, Yasunobu; Saijo, Shinobu; Iwakura, Yoichiro

    2015-01-01

    Interleukin-17 (IL-17)-producing γδ T (γδ17) cells have been implicated in inflammatory diseases, but the underlying pathogenic mechanisms remain unclear. Here, we show that both CD4+ and γδ17 cells are required for the development of autoimmune arthritis in IL-1 receptor antagonist (IL-1Ra)-deficient mice. Specifically, activated CD4+ T cells direct γδ T-cell infiltration by inducing CCL2 expression in joints. Furthermore, IL-17 reporter mice reveal that the Vγ6+ subset of CCR2+ γδ T cells preferentially produces IL-17 in inflamed joints. Importantly, because IL-1Ra normally suppresses IL-1R expression on γδ T cells, IL-1Ra-deficient mice exhibit elevated IL-1R expression on Vγ6+ cells, which play a critical role in inducing them to produce IL-17. Our findings demonstrate a pathogenic mechanism in which adaptive and innate immunity induce an autoimmune disease in a coordinated manner. PMID:26108163

  20. Expression of Immunoglobulin Receptors with Distinctive Features Indicating Antigen Selection by Marginal Zone B Cells from Human Spleen

    PubMed Central

    Colombo, Monica; Cutrona, Giovanna; Reverberi, Daniele; Bruno, Silvia; Ghiotto, Fabio; Tenca, Claudya; Stamatopoulos, Kostas; Hadzidimitriou, Anastasia; Ceccarelli, Jenny; Salvi, Sandra; Boccardo, Simona; Calevo, Maria Grazia; De Santanna, Amleto; Truini, Mauro; Fais, Franco; Ferrarini, Manlio

    2013-01-01

    Marginal zone (MZ) B cells, identified as surface (s)IgMhighsIgDlowCD23low/−CD21+CD38− B cells, were purified from human spleens, and the features of their V(D)J gene rearrangements were investigated and compared with those of germinal center (GC), follicular mantle (FM) and switched memory (SM) B cells. Most MZ B cells were CD27+ and exhibited somatic hypermutations (SHM), although to a lower extent than SM B cells. Moreover, among MZ B-cell rearrangements, recurrent sequences were observed, some of which displayed intraclonal diversification. The same diversifying sequences were detected in very low numbers in GC and FM B cells and only when a highly sensitive, gene-specific polymerase chain reaction was used. This result indicates that MZ B cells could expand and diversify in situ and also suggested the presence of a number of activation-induced cytidine deaminase (AID)-expressing B cells in the MZ. The notion of antigen-driven expansion/selection in situ is further supported by the VH CDR3 features of MZ B cells with highly conserved amino acids at specific positions and by the finding of shared (“stereotyped”) sequences in two different spleens. Collectively, the data are consistent with the notion that MZ B cells are a special subset selected by in situ antigenic stimuli. PMID:23877718

Top