Science.gov

Sample records for b-cell translocation gene

  1. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT

    PubMed Central

    Cheng, Y-C; Chen, P-H; Chiang, H-Y; Suen, C-S; Hwang, M-J; Lin, T-Y; Yang, H-C; Lin, W-C; Lai, P-L; Shieh, S-Y

    2015-01-01

    BTG3 (B-cell translocation gene 3) is a p53 target that also binds and inhibits E2F1. Although it connects two major growth-regulatory pathways functionally and is downregulated in human cancers, whether and how BTG3 acts as a tumor suppressor remain largely uncharacterized. Here we present evidence that BTG3 binds and suppresses AKT, a kinase frequently deregulated in cancers. BTG3 ablation results in increased AKT activity that phosphorylates and inhibits glycogen synthase kinase 3β. Consequently, we also observed elevated β-catenin/T-cell factor activity, upregulation of mesenchymal markers, and enhanced cell migration. Consistent with these findings, BTG3 overexpression suppressed tumor growth in mouse xenografts, and was associated with diminished AKT phosphorylation and reduced β-catenin in tissue specimens. Significantly, a short BTG3-derived peptide was identified, which recapitulates these effects in vitro and in cells. Thus, our study provides mechanistic insights into a previously unreported AKT inhibitory pathway downstream of p53. The identification of an AKT inhibitory peptide also unveils a new avenue for cancer therapeutics development. PMID:25569101

  2. Enhancement of B-cell translocation gene-1 expression by prostaglandin E2 in macrophages and the relationship to proliferation.

    PubMed Central

    Suk, K; Sipes, D G; Erickson, K L

    1997-01-01

    Although prostaglandin (PG) E2 is known to suppress various macrophage functions, the molecular mechanisms by which that occurs are largely unknown. To understand better those mechanisms, differential screening of a cDNA library from PGE2-treated macrophages was performed. Subsequently, the DNA sequence of a differentially expressed cDNA clone was determined and the cDNA was identified as B-cell translocation gene-1 (BTG1), a recently cloned antiproliferative gene. A two-to threefold increase in macrophage BTG1 expression was observed after PGE2 treatment. PGE1 and platelet-activating factor, but not leukotrienes B4, and C4, or lipopolysaccharide, also enhanced BTG1 expression. Furthermore, this effect ws mimicked by dibutyryl cAMP which indicated the involvement of elevated cAMP in the PGE2-mediated enhancement of BTG1. Moreover, there was an inverse correlation between BTG1 mRNA expression and macrophage proliferation; however, BTG1 alteration was not associated with macrophage tumoricidal activation. Thus, BTG1 may play a role in PGE2-mediated inhibition of macrophage proliferation and not activation. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 Figure 8 PMID:9203975

  3. Loss of B-cell translocation gene 2 expression in estrogen receptor-positive breast cancer predicts tamoxifen resistance

    PubMed Central

    Takahashi, Maiko; Hayashida, Tetsu; Okazaki, Hiroshi; Miyao, Kazuhiro; Jinno, Hiromitsu; Kitagawa, Yuko

    2014-01-01

    B-cell translocation gene 2 (BTG2), a gene suppressed in a subset of aggressive breast cancer, is repressed by estrogen. BTG2 inhibits the expression of HER ligands and promotes AKT activation, which plays an essential role in the tamoxifen resistance of estrogen receptor (ER)-positive breast cancer. To determine if BTG2 expression modifies tamoxifen efficacy, a cohort of 60 patients treated with adjuvant tamoxifen monotherapy was analyzed. We found that increased BTG2 expression showed better clinical survival and was the only independent prognostic factor for disease-free survival (hazard ratio, 0.691; 95% confidence interval, 0.495–0.963; P = 0.029). Tamoxifen suppressed the human epidermal growth factor receptor 2 (HER2)-Akt signaling in BTG2 expressing ER-positive breast cancer cells with a correlated increase in sensitivity, whereas BTG2 knockdown abrogated this sensitivity. Consistent with this observation, tamoxifen significantly suppressed the growth ratio, tumor weight and Ki-67 expression in BTG2 expressing breast cancer xenografts in mice. These studies demonstrate that BTG2 is a significant factor in tamoxifen response, acting through modification of AKT activation in ER-positive/HER2-negative breast cancer. PMID:24698107

  4. A novel function of B-cell translocation gene 1 (BTG1) in the regulation of hepatic insulin sensitivity in mice via c-Jun.

    PubMed

    Xiao, Fei; Deng, Jiali; Yu, Junjie; Guo, Yajie; Chen, Shanghai; Guo, Feifan

    2016-01-01

    Insulin resistance is one of the major factors contributing to metabolic diseases, but the underlying mechanisms are still poorly understood. As an important cofactor, B-cell translocation gene 1 (BTG1) is involved in many physiologic processes; however, the direct effect of BTG1 on insulin sensitivity has not been described. In our study, BTG1 overexpression or knockdown improved or impaired insulin signaling in vitro, respectively. In addition, adenovirus-mediated BTG1 overexpression improved insulin sensitivity in wild-type (WT) and insulin-resistant leptin-receptor mutated (db/db) mice. In addition, transgenic BTG1-overexpressing mice were resistant to high-carbohydrate diet-induced insulin resistance. Adenovirus-mediated BTG1 knockdown consistently impaired insulin sensitivity in WT and insulin-sensitive leucine-deprived mice. Moreover, hepatic BTG1 expression was increased by leucine deprivation via the mammalian target of rapamycin/ribosomal protein S6 kinase 1 pathway. Furthermore, c-Jun expression was up-regulated by BTG1, and adenovirus-mediated c-Jun knockdown blocked BTG1-improved insulin signaling and insulin sensitivity in vitro and in vivo. Finally, BTG1 promoted c-Jun expression via stimulating c-Jun and retinoic acid receptor activities. Taken together, these results identify a novel function for BTG1 in the regulation of hepatic insulin sensitivity and provide important insights into the nutritional regulation of BTG1 expression.- Xiao, F., Deng, J., Yu, J., Guo, Y., Chen, S., Guo, F. A novel function of B-cell translocation gene 1 (BTG1) in the regulation of hepatic insulin sensitivity in mice via c-Jun.

  5. B-cell translocation gene 2 positively regulates GLP-1-stimulated insulin secretion via induction of PDX-1 in pancreatic β-cells.

    PubMed

    Hwang, Seung-Lark; Kwon, Okyun; Kim, Sun-Gyun; Lee, In-Kyu; Kim, Yong Deuk

    2013-05-24

    Glucagon-like peptide-1 (GLP-1) is a potent glucoincretin hormone and an important agent for the treatment of type 2 diabetes. Here we demonstrate that B-cell translocation gene 2 (BTG2) is a crucial regulator in GLP-1-induced insulin gene expression and insulin secretion via upregulation of pancreatic duodenal homeobox-1 (PDX-1) in pancreatic β-cells. GLP-1 treatment significantly increased BTG2, PDX-1 and insulin gene expression in pancreatic β-cells. Notably, adenovirus-mediated overexpression of BTG2 significantly elevated insulin secretion, as well as insulin and PDX-1 gene expression. Physical interaction studies showed that BTG2 is associated with increased PDX-1 occupancy on the insulin gene promoter via a direct interaction with PDX-1. Exendin-4 (Ex-4), a GLP-1 agonist, and GLP-1 in pancreatic β-cells increased insulin secretion through the BTG2-PDX-1-insulin pathway, which was blocked by endogenous BTG2 knockdown using a BTG2 small interfering RNA knockdown system. Finally, we revealed that Ex-4 and GLP-1 significantly elevated insulin secretion via upregulation of the BTG2-PDX-1 axis in pancreatic islets, and this phenomenon was abolished by endogenous BTG2 knockdown. Collectively, our current study provides a novel molecular mechanism by which GLP-1 positively regulates insulin gene expression via BTG2, suggesting that BTG2 has a key function in insulin secretion in pancreatic β-cells.

  6. Upregulation of B-cell translocation gene 2 by epigallocatechin-3-gallate via p38 and ERK signaling blocks cell proliferation in human oral squamous cell carcinoma cells.

    PubMed

    Lee, Jehn-Chuan; Chung, Li-Chuan; Chen, Yu-Jen; Feng, Tsui-Hsia; Chen, Wen-Tsung; Juang, Horng-Heng

    2015-05-01

    Oral squamous cell carcinoma (OSCC) is a well-known malignancy that accounts for the majority of oral cancers. B-cell translocation gene 2 (BTG2) is an important regulator of cell cycle dynamics in cancer cells. However, the role of BTG2 in OSCC cells and the influences of epigallocatechin-3-gallate (EGCG) on BTG2 gene expressions have not been well evaluated. The objectives of this study were to examine the effect of EGCG-induced BTG2 expression and the potential signal pathways involved. The (3)H-thymidine incorporation and Western-blot assays revealed cell proliferation was attenuated by EGCG via upregulation of BTG2 expression causing cell cycle G1 phase arrest in OSCC cells. BTG2 overexpression decreased tumor cell growth, while BTG2 knockdown illuminated the opposite effect in xenograft animal studies. Overexpressed BTG2 arrested the cell cycle at the G1 phase and downregulated protein expressions of cyclin A, cyclin D, and cyclin E. Western-blot assays indicated that EGCG induced phosphorylation of p38, JNK, and ERK. However, pretreatments with selective mitogen-activated protein kinase (MAPK) inhibitors, SB203580 (p38 inhibitor) and PD0325901 (ERK1/2 inhibitor), significantly suppressed the activation of EGCG on BTG2 expression. Our results indicate that EGCG attenuates cell proliferation of OSCC cells by upregulating BTG2 expression via p38 and ERK pathways. PMID:25721086

  7. Cell of origin associated classification of B-cell malignancies by gene signatures of the normal B-cell hierarchy.

    PubMed

    Johnsen, Hans Erik; Bergkvist, Kim Steve; Schmitz, Alexander; Kjeldsen, Malene Krag; Hansen, Steen Møller; Gaihede, Michael; Nørgaard, Martin Agge; Bæch, John; Grønholdt, Marie-Louise; Jensen, Frank Svendsen; Johansen, Preben; Bødker, Julie Støve; Bøgsted, Martin; Dybkær, Karen

    2014-06-01

    Recent findings have suggested biological classification of B-cell malignancies as exemplified by the "activated B-cell-like" (ABC), the "germinal-center B-cell-like" (GCB) and primary mediastinal B-cell lymphoma (PMBL) subtypes of diffuse large B-cell lymphoma and "recurrent translocation and cyclin D" (TC) classification of multiple myeloma. Biological classification of B-cell derived cancers may be refined by a direct and systematic strategy where identification and characterization of normal B-cell differentiation subsets are used to define the cancer cell of origin phenotype. Here we propose a strategy combining multiparametric flow cytometry, global gene expression profiling and biostatistical modeling to generate B-cell subset specific gene signatures from sorted normal human immature, naive, germinal centrocytes and centroblasts, post-germinal memory B-cells, plasmablasts and plasma cells from available lymphoid tissues including lymph nodes, tonsils, thymus, peripheral blood and bone marrow. This strategy will provide an accurate image of the stage of differentiation, which prospectively can be used to classify any B-cell malignancy and eventually purify tumor cells. This report briefly describes the current models of the normal B-cell subset differentiation in multiple tissues and the pathogenesis of malignancies originating from the normal germinal B-cell hierarchy. PMID:23998255

  8. Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell-like diffuse large B cell lymphoma.

    PubMed

    Lenz, Georg; Nagel, Inga; Siebert, Reiner; Roschke, Anna V; Sanger, Warren; Wright, George W; Dave, Sandeep S; Tan, Bruce; Zhao, Hong; Rosenwald, Andreas; Muller-Hermelink, Hans Konrad; Gascoyne, Randy D; Campo, Elias; Jaffe, Elaine S; Smeland, Erlend B; Fisher, Richard I; Kuehl, W Michael; Chan, Wing C; Staudt, Louis M

    2007-03-19

    To elucidate the mechanisms underlying chromosomal translocations in diffuse large B cell lymphoma (DLBCL), we investigated the nature and extent of immunoglobulin class switch recombination (CSR) in these tumors. We used Southern blotting to detect legitimate and illegitimate CSR events in tumor samples of the activated B cell-like (ABC), germinal center B cell-like (GCB), and primary mediastinal B cell lymphoma (PMBL) subgroups of DLBCL. The frequency of legitimate CSR was lower in ABC DLBCL than in GCB DLBCL and PMBL. In contrast, ABC DLBCL had a higher frequency of internal deletions within the switch mu (Smu) region compared with GCB DLBCL and PMBL. ABC DLBCLs also had frequent deletions within Sgamma and other illegitimate switch recombinations. Sequence analysis revealed ongoing Smu deletions within ABC DLBCL tumor clones, which were accompanied by ongoing duplications and activation-induced cytidine deaminase-dependent somatic mutations. Unexpectedly, short fragments derived from multiple chromosomes were interspersed within Smu in one case. These findings suggest that ABC DLBCLs have abnormalities in the regulation of CSR that could predispose to chromosomal translocations. Accordingly, aberrant switch recombination was responsible for translocations in ABC DLBCLs involving BCL6, MYC, and a novel translocation partner, SPIB. PMID:17353367

  9. Microbial Translocation and B Cell Dysfunction in Human Immunodeficiency Virus Disease

    PubMed Central

    Jiang, Wei

    2013-01-01

    The gut mucosal barrier disrupted in HIV disease, resulting in increased systemic exposure to microbial products such as Lipo Polys Accharide (LPS). The association of enhanced microbial translocation and B cell dysfunction in HIV disease is not fully understood. High dose and short term exposure of microbial Toll-Like Receptor (TLR) agonists were used as vaccine adjuvants, however, low dose and long term exposure of TLR agonists could be harmful. The characteristics of B cell dysfunction in HIV disease included B cell, especially memory B cell depletion, enhanced levels of autoimmune antibodies and impaired vaccine or antigen responsiveness. This review discusses and explores the possibility of the effect of microbial translocation on memory B cell depletion and impaired vaccine responses in HIV infection. By determining the mechanisms of B cell depletion and perturbations in HIV disease, it may be possible to design interventions that can improve immune responses to vaccines, reduce selected opportunistic infections and perhaps slow disease progression. PMID:23869197

  10. Genetic errors of the human caspase recruitment domain-B-cell lymphoma 10-mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (CBM) complex: Molecular, immunologic, and clinical heterogeneity.

    PubMed

    Pérez de Diego, Rebeca; Sánchez-Ramón, Silvia; López-Collazo, Eduardo; Martínez-Barricarte, Rubén; Cubillos-Zapata, Carolina; Ferreira Cerdán, Antonio; Casanova, Jean-Laurent; Puel, Anne

    2015-11-01

    Three members of the caspase recruitment domain (CARD) family of adaptors (CARD9, CARD10, and CARD11) are known to form heterotrimers with B-cell lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (MALT1). These 3 CARD-BCL10-MALT1 (CBM) complexes activate nuclear factor κB in both the innate and adaptive arms of immunity. Human inherited defects of the 3 components of the CBM complex, including the 2 adaptors CARD9 and CARD11 and the 2 core components BCL10 and MALT1, have recently been reported. Biallelic loss-of-function mutant alleles underlie several different immunologic and clinical phenotypes, which can be assigned to 2 distinct categories. Isolated invasive fungal infections of unclear cellular basis are associated with CARD9 deficiency, whereas a broad range of clinical manifestations, including those characteristic of T- and B-lymphocyte defects, are associated with CARD11, MALT1, and BCL10 deficiencies. Interestingly, human subjects with these mutations have some features in common with the corresponding knockout mice, but other features are different between human subjects and mice. Moreover, germline and somatic gain-of-function mutations of MALT1, BCL10, and CARD11 have also been found in patients with other lymphoproliferative disorders. This broad range of germline and somatic CBM lesions, including loss-of-function and gain-of-function mutations, highlights the contribution of each of the components of the CBM complex to human immunity.

  11. BCL2 Translocation Defines a Unique Tumor Subset within the Germinal Center B-Cell-Like Diffuse Large B-Cell Lymphoma

    PubMed Central

    Iqbal, Javeed; Sanger, Warren G.; Horsman, Douglas E.; Rosenwald, Andreas; Pickering, Diane L.; Dave, Bhavana; Dave, Sandeep; Xiao, Li; Cao, Kajia; Zhu, Quiming; Sherman, Simon; Hans, Christine P.; Weisenburger, Dennis D.; Greiner, Timothy C.; Gascoyne, Randy D.; Ott, German; Müller-Hermelink, H. Konrad; Delabie, Jan; Braziel, Rita M.; Jaffe, Elaine S.; Campo, Elias; Lynch, James C.; Connors, Joseph M.; Vose, Julie M.; Armitage, James O.; Grogan, Thomas M.; Staudt, Louis M.; Chan, Wing C.

    2004-01-01

    Gene expression profiling of diffuse large B-cell lymphoma (DLBCL) has revealed prognostically important subgroups: germinal center B-cell-like (GCB) DLBCL, activated B cell-like (ABC) DLBCL, and primary mediastinal large B-cell lymphoma. The t(14;18)(q32;q21) has been reported previously to define a unique subset within the GCB-DLBCL. We evaluated for the translocation in 141 cases of DLBCL that were successfully gene expression profiled. Using a dual-probe fluorescence in situ hybridization assay, we detected the t(14;18) in 17% of DLBCLs and in 34% of the GCB subgroup which contained the vast majority of positive cases. In addition, 12 t(14;18)-positive cases detected by polymerase chain reaction assays on additional samples were added to the fluorescence in situ hybridization-positive cases for subsequent analysis. Immunohistochemical data indicated that BCL2, BCL6, and CD10 protein were preferentially expressed in the t(14;18)-positive cases as compared to t(14;18)-negative cases. Within the GCB subgroup, the expression of BCL2 and CD10, but not BCL6, differed significantly between cases with or without the t(14;18): 88% versus 24% for BCL2 and 72% versus 32% for CD10, respectively. In the GCB-DLBCL subgroup, a heterogeneous group of genes is overexpressed in the t(14;18)-positive subset, among which BCL2 is a significant discriminator. Interestingly, the t(14;18)-negative subset is dominated by overexpression of cell cycle-associated genes, indicating that these tumors are significantly more proliferative, suggesting distinctive pathogenetic mechanisms. However, despite this higher proliferative activity, there was no significant difference in overall or failure-free survival between the t(14;18)-positive and -negative subsets within the GCB subgroup. PMID:15215171

  12. IRF8 is associated with germinal center B-cell-like type of diffuse large B-cell lymphoma and exceptionally involved in translocation t(14;16)(q32.33;q24.1).

    PubMed

    Tinguely, Marianne; Thies, Svenja; Frigerio, Simona; Reineke, Tanja; Korol, Dimitri; Zimmermann, Dieter R

    2014-01-01

    Chromosomal translocations involving the immunoglobulin loci represent frequent oncogenic events in B-cell lymphoma development. Although IRF8 (ICSBP-1) protein expression has been demonstrated in germinal center B-cells and related lymphomas in a single report, the IRF8 gene was not described as an immunoglobulin heavy chain (IGH) translocation partner. In a discovery-driven approach we searched for new translocation partners of IGH in diffuse large B-cell lymphoma (DLBCL) by long distance inverse polymerase chain reaction (LDI-PCR) and Sanger sequencing. A t(14;16)(q32.33;q24.1) IGH/IRF8 was detected in a CD5+de novo DLBCL, confirmed by translocation specific PCR and fluorescence in situ hybridization (FISH) analysis. No further IRF8 aberration could be identified either by LDI-PCR in an additional five CD5+DLBCLs or by FISH on 78 formalin-fixed paraffin-embedded biopsies. Subsequent screening for IRF8 by immunohistochemistry revealed IRF8 expression in 18/78 (23%), correlating with a germinal center B-cell-like (GCB) type of DLBCL. This hitherto unknown translocation t(14;16)(q32.33;q24.1) is likely to represent the initiator of a multistep lymphomagenesis in a CD5+de novo DLBCL. PMID:23573829

  13. Rheumatoid factors, B cells and immunoglobulin genes.

    PubMed

    Jefferis, R

    1995-04-01

    The paradigm of self, non-self discrimination in the immune system is under review as autoreactive B or T cells are increasingly delineated within normal individuals. The products of autoreactive B cells are, mostly, polyspecific IgM antibodies of low affinity. These 'natural' antibodies include rheumatoid factors (RF) encoded by unmutated germline immunoglobulin genes. In rheumatoid arthritis (RA) the RF may be of the IgM, IgG or IgA isotype, show evidence of somatic mutation and have increased affinity; consistent with maturation of an antigen driven immune response. This response could be initiated or driven by an auto-immunogenic form of IgG or an exogenous cross-reactive antigen. Changes in galactosylation of IgG have been reported to be a valuable diagnostic and prognostic indicator in RA. Speculation that these changes may precipitate some of the disease processes is critically reviewed.

  14. Biological characterization of adult MYC-translocation-positive mature B-cell lymphomas other than molecular Burkitt lymphoma.

    PubMed

    Aukema, Sietse M; Kreuz, Markus; Kohler, Christian W; Rosolowski, Maciej; Hasenclever, Dirk; Hummel, Michael; Küppers, Ralf; Lenze, Dido; Ott, German; Pott, Christiane; Richter, Julia; Rosenwald, Andreas; Szczepanowski, Monika; Schwaenen, Carsten; Stein, Harald; Trautmann, Heiko; Wessendorf, Swen; Trümper, Lorenz; Loeffler, Markus; Spang, Rainer; Kluin, Philip M; Klapper, Wolfram; Siebert, Reiner

    2014-04-01

    Chromosomal translocations affecting the MYC oncogene are the biological hallmark of Burkitt lymphomas but also occur in a subset of other mature B-cell lymphomas. If accompanied by a chromosomal break targeting the BCL2 and/or BCL6 oncogene these MYC translocation-positive (MYC(+)) lymphomas are called double-hit lymphomas, otherwise the term single-hit lymphomas is applied. In order to characterize the biological features of these MYC(+) lymphomas other than Burkitt lymphoma we explored, after exclusion of molecular Burkitt lymphoma as defined by gene expression profiling, the molecular, pathological and clinical aspects of 80 MYC-translocation-positive lymphomas (31 single-hit, 46 double-hit and 3 MYC(+)-lymphomas with unknown BCL6 status). Comparison of single-hit and double-hit lymphomas revealed no difference in MYC partner (IG/non-IG), genomic complexity, MYC expression or gene expression profile. Double-hit lymphomas more frequently showed a germinal center B-cell-like gene expression profile and had higher IGH and MYC mutation frequencies. Gene expression profiling revealed 130 differentially expressed genes between BCL6(+)/MYC(+) and BCL2(+)/MYC(+) double-hit lymphomas. BCL2(+)/MYC(+) double-hit lymphomas more frequently showed a germinal center B-like gene expression profile. Analysis of all lymphomas according to MYC partner (IG/non-IG) revealed no substantial differences. In this series of lymphomas, in which immunochemotherapy was administered in only a minority of cases, single-hit and double-hit lymphomas had a similar poor outcome in contrast to the outcome of molecular Burkitt lymphoma and lymphomas without the MYC break. Our data suggest that, after excluding molecular Burkitt lymphoma and pediatric cases, MYC(+) lymphomas are biologically quite homogeneous with single-hit and double-hit lymphomas as well as IG-MYC and non-IG-MYC(+) lymphomas sharing various molecular characteristics.

  15. Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell–like diffuse large B cell lymphoma

    PubMed Central

    Lenz, Georg; Nagel, Inga; Siebert, Reiner; Roschke, Anna V.; Sanger, Warren; Wright, George W.; Dave, Sandeep S.; Tan, Bruce; Zhao, Hong; Rosenwald, Andreas; Muller-Hermelink, Hans Konrad; Gascoyne, Randy D.; Campo, Elias; Jaffe, Elaine S.; Smeland, Erlend B.; Fisher, Richard I.; Kuehl, W. Michael; Chan, Wing C.; Staudt, Louis M.

    2007-01-01

    To elucidate the mechanisms underlying chromosomal translocations in diffuse large B cell lymphoma (DLBCL), we investigated the nature and extent of immunoglobulin class switch recombination (CSR) in these tumors. We used Southern blotting to detect legitimate and illegitimate CSR events in tumor samples of the activated B cell–like (ABC), germinal center B cell–like (GCB), and primary mediastinal B cell lymphoma (PMBL) subgroups of DLBCL. The frequency of legitimate CSR was lower in ABC DLBCL than in GCB DLBCL and PMBL. In contrast, ABC DLBCL had a higher frequency of internal deletions within the switch μ (Sμ) region compared with GCB DLBCL and PMBL. ABC DLBCLs also had frequent deletions within Sγ and other illegitimate switch recombinations. Sequence analysis revealed ongoing Sμ deletions within ABC DLBCL tumor clones, which were accompanied by ongoing duplications and activation-induced cytidine deaminase–dependent somatic mutations. Unexpectedly, short fragments derived from multiple chromosomes were interspersed within Sμ in one case. These findings suggest that ABC DLBCLs have abnormalities in the regulation of CSR that could predispose to chromosomal translocations. Accordingly, aberrant switch recombination was responsible for translocations in ABC DLBCLs involving BCL6, MYC, and a novel translocation partner, SPIB. PMID:17353367

  16. MYC gene rearrangements detected by interphase fluorescence in situ hybridization in diffuse large B-cell lymphomas.

    PubMed

    Misharina, J A; Sitko, V V; Klymenko, S V; Minchenko, J A; Kurchenko, A I; Silaev, Y O; Lyashenko, L O; Polyanska, V M; Bebeshko, V G

    2014-09-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma, including approximately 30-40% of all B-cell non-Hodgkin lymphomas (B-NHL). Chromosomal translocations are the hallmark of genetic aberrations in B-lymphoma and are often associated with a specific subtype of B-NHL. MYC gene dysregulation due to chromosomal translocations is characteristic for the most cases of Burkitt's lymphoma. Objective. The goal of this study was to improve the diagnostic accuracy of DLBCL. Identification of chromosome 8 and 14 abnormalities including the translocation of MYC gene t(8; 14)(q24; q32) in substrate cells of lymph nodes was applied using the method of tri-color interphase fluorescence in situ hybridization (I-FISH). Materials and methods. Lymph node biopsy specimens of 17 patients with diffuse large B-cell lymphoma and three patients with Burkitt's lymphoma (including one participant of liquidation of consequences of the catastrophe at the Chornobyl NPP) were studied. The age of patients ranged from 10 to 66 years old (41.3 ± 3.7 average). Biopsy specimens fixed in paraffin. I-FISH-analysis was performed using the commercial test Vysis IGH/MYC, CEP 8 tri-color, dual fusion translocation probe (Abbott Molecular, USA). Results and conclusions. MYC gene and immunoglobulin heavy chain (IGH) gene translocations were found in four out of twenty persons. Consequently the I-FISH method allows identification of of MYC and IGH gene rearrangements in tissue cells substrate of lymphoma fixed in paraffin. Using this method the molecular-cytogenetic abnormalities were found in eight of twenty patients with B-cell lymphoma providing verification of the lymphoma diagnosis, prediction of their clinical course and advance in management i.e increase the effectiveness of therapy, in refractory lymphoma cases among others.

  17. Enhanced insulin-receptor tyrosine kinase activity associated with chromosomal translocation (1;19) in a pre-B-cell leukemia line.

    PubMed

    Newman, J D; Harrison, L C; Eckardt, G S; Jack, I

    1992-02-01

    The gene for the insulin receptor has been assigned to chromosome 19 near the breakpoint of the translocation t(1;19) which occurs in 25% of pre-B-cell leukemias. Insulin receptors in a pre-B-cell leukemia cell line (ACV) with t(1;19) were found to have 2-fold higher affinity for insulin, 5-fold higher basal and insulin-stimulated beta sub-unit autophosphorylation, and 2-fold higher basal and 4-fold higher insulin-stimulated beta sub-unit kinase activity on the synthetic peptide poly(Glu,Tyr), compared to receptors in a B-cell line (ADD) with normal karyotype from the same patient. ACV cells had a novel 13-kb receptor mRNA species and expressed a DNA polymorphism localized to the tyrosine kinase domain of the receptor gene. These findings suggest that t(1;19) in the ACV cell may result in rearrangement of the insulin receptor gene and translation of a receptor with enhanced tyrosine kinase activity. PMID:1310491

  18. Clonal rearrangements of immunoglobulin genes and progression to B cell lymphoma in cutaneous lymphoid hyperplasia.

    PubMed

    Wood, G S; Ngan, B Y; Tung, R; Hoffman, T E; Abel, E A; Hoppe, R T; Warnke, R A; Cleary, M L; Sklar, J

    1989-07-01

    Cutaneous lymphoid hyperplasia (CLH) is a disorder characterized by the development of one or more skin lesions containing dense lymphoid infiltrates that exhibit the histopathologic features of a benign, reactive process. Nevertheless, some cases have been associated with the subsequent development of clinically overt lymphomas. This suggests that monoclonal populations may exist in some cases of CLH and that these cases may represent a subset more likely to evolve into lymphoma. To determine if such a subset of CLH can be distinguished, Southern blot analysis of DNA was used to study the immunogenotypic features of lesions from 14 patients with clinical, histopathologic, and immunopathologic findings characteristic of CLH. Five cases exhibited detectable clonal rearrangements of immunoglobulin genes. Furthermore, one of these five cases evolved into overt diffuse large cell lymphoma of B cell lineage during a 2-year follow-up of recurrent disease at the original cutaneous site. The immunoglobulin gene rearrangements of this lymphoma were identical to those of the prior CLH lesion. There was no evidence of detectable t(14;18) chromosomal translocations or clonal rearrangements of the beta gene of the T cell receptor in any case. It was concluded that CLH can be divided into two subsets based on the presence or absence of a clonal B cell population, and that overt lymphoma can arise from the former subset and contain the same B cell clone identified in the pre-existent CLH lesion.

  19. Isolation and characterization of a novel B cell activation gene

    SciTech Connect

    Hong, J.X.; Wilson, G.L.; Fox, C.H.; Kehrl, J.H. )

    1993-05-01

    Using subtractive cDNA cloning, the authors have isolated a series of cDNA clones that are differentially expressed between B and T lymphocytes. Whereas some of the isolated cDNA are from known B cell-specific genes, many of them represent previously uncharacterized genes. One of these unknown genes was denoted as BL34. Northern blot analysis performed with the BL34 cDNA revealed a 1.6-kb mRNA transcript that was present at low levels in RNA extracted from resting B lymphocytes, but whose expression was markedly increased in RNA prepared from mitogen-activated B cells. Similarly, RNA prepared from several B cell lines treated with phorbol myristate acetate (PMA) contained high levels of BL34 mRNA. In contrast, RNA from purified T cells treated with phytohemagglutinin and PMA had undetectable amounts of BL34 mRNA. In addition, high levels of BL34 mRNA were detected in RNA purified from PBMC of a patient with B cell acute lymphocytic leukemia. Southern blot analysis of human DNA from various tissues and cells lines demonstrated that BL34 is a single-copy gene without evidence of rearrangement. Two full length BL34 cDNA were sequenced, and an open reading frame of 588 bp was identified that was predicted to encode for a 196 amino acid protein. Searches of several protein data bases failed to find any homologous proteins. To directly analyze the expression of BL34 mRNA in lymphoid tissues in situ, hybridization studies with human tonsil tissue sections were performed. BL34 mRNA was detected in a portion of the cells in the germinal center region and adjacent to the mantle region. Further characterization of the BL34 gene and its protein should lead to insights to its role in B cell function and the consequences of its over-expression in acute lymphocytic leukemia. 26 refs., 6 figs., 1 tab.

  20. AID-targeting and hypermutation of non-immunoglobulin genes does not correlate with proximity to immunoglobulin genes in germinal center B cells.

    PubMed

    Gramlich, Hillary Selle; Reisbig, Tara; Schatz, David G

    2012-01-01

    Upon activation, B cells divide, form a germinal center, and express the activation induced deaminase (AID), an enzyme that triggers somatic hypermutation of the variable regions of immunoglobulin (Ig) loci. Recent evidence indicates that at least 25% of expressed genes in germinal center B cells are mutated or deaminated by AID. One of the most deaminated genes, c-Myc, frequently appears as a translocation partner with the Ig heavy chain gene (Igh) in mouse plasmacytomas and human Burkitt's lymphomas. This indicates that the two genes or their double-strand break ends come into close proximity at a biologically relevant frequency. However, the proximity of c-Myc and Igh has never been measured in germinal center B cells, where many such translocations are thought to occur. We hypothesized that in germinal center B cells, not only is c-Myc near Igh, but other mutating non-Ig genes are deaminated by AID because they are near Ig genes, the primary targets of AID. We tested this "collateral damage" model using 3D-fluorescence in situ hybridization (3D-FISH) to measure the distance from non-Ig genes to Ig genes in germinal center B cells. We also made mice transgenic for human MYC and measured expression and mutation of the transgenes. We found that there is no correlation between proximity to Ig genes and levels of AID targeting or gene mutation, and that c-Myc was not closer to Igh than were other non-Ig genes. In addition, the human MYC transgenes did not accumulate mutations and were not deaminated by AID. We conclude that proximity to Ig loci is unlikely to be a major determinant of AID targeting or mutation of non-Ig genes, and that the MYC transgenes are either missing important regulatory elements that allow mutation or are unable to mutate because their new nuclear position is not conducive to AID deamination.

  1. Genes and translocations involved in POF.

    PubMed

    Schlessinger, David; Herrera, Luisa; Crisponi, Laura; Mumm, Steven; Percesepe, Antonio; Pellegrini, Massimo; Pilia, Giuseppe; Forabosco, Antonino

    2002-08-15

    Changes at a single autosomal locus and many X-linked loci have been implicated in women with gonadal dysgenesis [premature ovarian failure (POF) with deficits in ovarian follicles]. For the chromosome 3 locus, a forkhead transcription factor gene (FOXL2) has been identified, in which lesions result in decreased follicles by haploinsufficiency. In contrast, sporadic X; autosomal translocations are distributed at many points on the X, but concentrate in a critical region on Xq. The association of the breakpoints with genes involved in ovarian function is thus far weak (in four analyzed cases) and has not been related to pathology in other POF patients. While many more translocations can be analyzed in detail as the human genome sequence is refined, it remains possible that translocations like X monosomy (Turner syndrome) lead to POF not by interrupting specific genes important in ovarian development, but by causing aberrations in pairing or X-inactivation during folliculogenesis. It is noted that the critical region has unusual features, neighboring the X-inactivation center and including an 18 Mb region of very low recombination. These suggest that chromosome dynamics in the region may be sensitive to structural changes, and when modified by translocations might provoke apoptosis at meiotic checkpoints. Choices among models for the etiology of POF should be feasible based on studies of ovarian follicle development and attrition in mouse models. Studies would prominently include gene expression profiling of developmental-specific pathways in nascent ovaries with controlled levels of Foxl2 and interacting proteins, or with defined changes in the X chromosome.

  2. Prognostic impact of RUNX1 and ETV6 gene copy number on pediatric B-cell precursor acute lymphoblastic leukemia with or without hyperdiploidy.

    PubMed

    Kutlay, Nuket Yurur; Pekpak, Esra; Altıner, Sule; Ileri, Talia; Vicdan, Arzu Nedime; Dinçaslan, Handan; Ince, Elif Unal; Tukun, Fatma Ajlan

    2016-09-01

    The ETV6/RUNX1 fusion gene is a valuable prognostic marker that is frequently observed in B-cell precursor acute lymphoblastic leukemia (B-cell ALL). However, the clinical significance of copy number aberrations in these genes remains unclear. In this study, the effects of various aberrations inETV6 and RUNX1 gene copy number on disease prognosis were evaluated in 21 pediatric patients diagnosed with B-cell ALL with/without t(12;21). The prognostic significance of changes in gene copy number of ETV6 or RUNX1 in the presence or absence of hyperdiploidy, trisomy 21, and t(12;21) translocation were also evaluated. RUNX1 gene copy number amplifications were detected in 83 % of the patients who lacked t(12;21) and in all of the patients with hyperdiploidy. Trisomy 21 was detected in 78 % of the patients with hyperdiploidy. Changes in ETV6 gene copy number were detected in patients who lacked both the t(12;21) translocation and RUNX1 gene copy number amplifications. However, RUNX1 gene copy number amplification and ETV6 deletion were observed in all of the patients with t(12;21). RUNX1 gene copy number amplification was associated with hyperdiploidy, but not with t(12;21). Thus, the evaluation of distinct FISH and cytogenetic patterns in patients with B-cell ALL may strengthen the prognostic significance of changes in gene copy number. PMID:27393278

  3. Lentiviral-mediated gene therapy restores B cell tolerance in Wiskott-Aldrich syndrome patients.

    PubMed

    Pala, Francesca; Morbach, Henner; Castiello, Maria Carmina; Schickel, Jean-Nicolas; Scaramuzza, Samantha; Chamberlain, Nicolas; Cassani, Barbara; Glauzy, Salome; Romberg, Neil; Candotti, Fabio; Aiuti, Alessandro; Bosticardo, Marita; Villa, Anna; Meffre, Eric

    2015-10-01

    Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency characterized by microthrombocytopenia, eczema, and high susceptibility to developing tumors and autoimmunity. Recent evidence suggests that B cells may be key players in the pathogenesis of autoimmunity in WAS. Here, we assessed whether WAS protein deficiency (WASp deficiency) affects the establishment of B cell tolerance by testing the reactivity of recombinant antibodies isolated from single B cells from 4 WAS patients before and after gene therapy (GT). We found that pre-GT WASp-deficient B cells were hyperreactive to B cell receptor stimulation (BCR stimulation). This hyperreactivity correlated with decreased frequency of autoreactive new emigrant/transitional B cells exiting the BM, indicating that the BCR signaling threshold plays a major role in the regulation of central B cell tolerance. In contrast, mature naive B cells from WAS patients were enriched in self-reactive clones, revealing that peripheral B cell tolerance checkpoint dysfunction is associated with impaired suppressive function of WAS regulatory T cells. The introduction of functional WASp by GT corrected the alterations of both central and peripheral B cell tolerance checkpoints. We conclude that WASp plays an important role in the establishment and maintenance of B cell tolerance in humans and that restoration of WASp by GT is able to restore B cell tolerance in WAS patients. PMID:26368308

  4. B-cell lymphomas with concurrent MYC and BCL2 abnormalities other than translocations behave similarly to MYC/BCL2 double-hit lymphomas.

    PubMed

    Li, Shaoying; Seegmiller, Adam C; Lin, Pei; Wang, Xuan J; Miranda, Roberto N; Bhagavathi, Sharathkumar; Medeiros, L Jeffrey

    2015-02-01

    Large B-cell lymphomas with IGH@BCL2 and MYC rearrangement, known as double-hit lymphoma (DHL), are clinically aggressive neoplasms with a poor prognosis. Some large B-cell lymphomas have concurrent abnormalities of MYC and BCL2 other than coexistent translocations. Little is known about patients with these lymphomas designated here as atypical DHL. We studied 40 patients of atypical DHL including 21 men and 19 women, with a median age of 60 years. Nine (23%) patients had a history of B-cell non-Hodgkin lymphoma. There were 30 diffuse large B-cell lymphoma (DLBCL), 7 B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and Burkitt lymphoma, and 3 DLBCL with coexistent follicular lymphoma. CD10, BCL2, and MYC were expressed in 28/39 (72%), 33/35 (94%), and 14/20 (70%) cases, respectively. Patients were treated with standard (n=14) or more aggressive chemotherapy regimens (n=17). We compared the atypical DHL group with 76 patients with DHLand 35 patients with DLBCL lacking MYC and BCL2 abnormalities. The clinicopathologic features and therapies were similar between patients with atypical and typical DHL. The overall survival of patients with atypical double-hit lymphoma was similar to that of patients with double-hit lymphoma (P=0.47) and significantly worse than that of patients with DLBCL with normal MYC and BCL2 (P=0.02). There were some minor differences. Cases of atypical double-hit lymphoma more often have DLBCL morphology (P<0.01), less frequently expressed CD10 (P<0.01), and patients less often had an elevated serum lactate dehydrogenase level (P=0.01). In aggregate, these results support expanding the category of MYC/BCL2 DHL to include large B-cell lymphomas with coexistent MYC and BCL2 abnormalities other than concurrent translocations. PMID:25103070

  5. Epstein-Barr Virus-Induced Gene 3 (EBI3): A Novel Diagnosis Marker in Burkitt Lymphoma and Diffuse Large B-Cell Lymphoma

    PubMed Central

    Bastard, Christian; Picquenot, Jean-Michel; Couturier, Jérôme; Radford-Weiss, Isabelle; Dietrich, Céline; Brousse, Nicole; Vacher-Lavenu, Marie-Cécile; Devergne, Odile

    2011-01-01

    The distinction between Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL), two types of mature aggressive B-cell lymphomas that require distinct treatments, can be difficult because of forms showing features intermediate between DLBCL and BL (here called BL/DLBCL). They can be discriminated by the presence of c-myc translocations characteristic of BL. However, these are not exclusive of BL and when present in DLBCL are associated with lower survival. In this study, we show that Epstein-Barr virus-induced gene 3 (EBI3) is differentially expressed among BL and DLBCL. Analysis of gene expression data from 502 cases of aggressive mature B-cell lymphomas available on Gene Expression Omnibus and immunohistochemical analysis of 184 cases of BL, BL/DLBCL or DLBCL, showed that EBI3 was not expressed in EBV-positive or -negative BL cases, whereas it was expressed by over 30% of tumoral cells in nearly 80% of DLBCL cases, independently of their subtypes. In addition, we show that c-myc overexpression represses EBI3 expression, and that DLBCL or BL/DLBCL cases with c-myc translocations have lower expression of EBI3. Thus, EBI3 immunohistochemistry could be useful to discriminate BL from DLBCL, and to identify cases of BL/DLBCL or DLBCL with potential c-myc translocations. PMID:21931777

  6. Spi-C has opposing effects to PU.1 on gene expression in progenitor B cells.

    PubMed

    Schweitzer, Brock L; Huang, Kelly J; Kamath, Meghana B; Emelyanov, Alexander V; Birshtein, Barbara K; DeKoter, Rodney P

    2006-08-15

    The Ets transcription factor Spi-C, expressed in B cells and macrophages, is closely related to PU.1 and has the ability to recognize the same DNA consensus sequence. However, the function of Spi-C has yet to be determined. The purpose of this study is to further examine Spi-C activity in B cell development. First, using retroviral vectors to infect PU.1(-/-) fetal liver progenitors, Spi-C was found to be inefficient at inducing cytokine-dependent proliferation and differentiation of progenitor B (pro-B) cells or macrophages relative to PU.1 or Spi-B. Next, Spi-C was ectopically expressed in fetal liver-derived, IL-7-dependent pro-B cell lines. Wild-type (WT) pro-B cells ectopically expressing Spi-C (WT-Spi-C) have several phenotypic characteristics of pre-B cells such as increased CD25 and decreased c-Kit surface expression. In addition, WT-Spi-C pro-B cells express increased levels of IgH sterile transcripts and reduced levels of expression and transcription of the FcgammaRIIb gene. Gel-shift analysis suggests that Spi-C, ectopically expressed in pro-B cells, can bind PU.1 consensus sites in the IgH intronic enhancer and FcgammaRIIb promoter. Transient transfection analysis demonstrated that PU.1 functions to repress the IgH intronic enhancer and activate the FcgammaRIIb promoter, while Spi-C opposes these activities. WT-Spi-C pro-B cells have reduced levels of dimethylation on lysine 9 of histone H3 within the IgH 3' regulatory region, indicating that Spi-C can contribute to removal of repressive features in the IgH locus. Overall, these studies suggest that Spi-C may promote B cell differentiation by modulating the activity of PU.1-dependent genes.

  7. Burkitt's lymphoma is a malignancy of mature B cells expressing somatically mutated V region genes.

    PubMed Central

    Klein, U.; Klein, G.; Ehlin-Henriksson, B.; Rajewsky, K.; Küppers, R.

    1995-01-01

    BACKGROUND: The developmental stage from which stems the malignant B cell population in Burkitt's lymphoma (BL) is unclear. An approach to answering this question is provided by the sequence analysis of rear-ranged immunoglobulin (Ig) variable region (V) genes from BL for evidence of somatic mutations, together with a phenotypic characterization. As somatic hypermutation of Ig V region genes occurs in germinal center B cells, somatically mutated Ig genes are found in germinal center B cells and their descendents. MATERIALS AND METHODS: Rearranged V kappa region genes from 10 kappa-expressing sporadic and endemic BL-derived cell lines (9 IgM and 1 IgG positive) and three kappa-expressing endemic BL biopsy specimens were amplified by polymerase chain reaction and sequenced. In addition, VH region gene sequences from these cell lines were determined. RESULTS: All BL cell lines and the three biopsy specimens carried somatically mutated V region genes. The average mutation frequency of rearranged V kappa genes from eight BL cell lines established from sporadic BL was 1.8%. A higher frequency (6%) was found in five endemic cases (three biopsy specimens and two BL cell lines). CONCLUSIONS: The detection of somatic mutations in the rearranged V region genes suggests that both sporadic and endemic BL represent a B-cell malignancy originating from germinal center B cells or their descendants. Interestingly, the mutation frequency detected in sporadic BL is in a range similar to that characteristic for IgM-expressing B cells in the human peripheral blood and for mu chain-expressing germinal center B cells, whereas the mutation frequency found in endemic BL is significantly higher. PMID:8529116

  8. Identification of Highly Methylated Genes across Various Types of B-Cell Non-Hodgkin Lymphoma

    PubMed Central

    Bethge, Nicole; Honne, Hilde; Hilden, Vera; Trøen, Gunhild; Eknæs, Mette; Liestøl, Knut; Holte, Harald; Delabie, Jan; Smeland, Erlend B.; Lind, Guro E.

    2013-01-01

    Epigenetic alterations of gene expression are important in the development of cancer. In this study, we identified genes which are epigenetically altered in major lymphoma types. We used DNA microarray technology to assess changes in gene expression after treatment of 11 lymphoma cell lines with epigenetic drugs. We identified 233 genes with upregulated expression in treated cell lines and with downregulated expression in B-cell lymphoma patient samples (n = 480) when compared to normal B cells (n = 5). The top 30 genes were further analyzed by methylation specific PCR (MSP) in 18 lymphoma cell lines. Seven of the genes were methylated in more than 70% of the cell lines and were further subjected to quantitative MSP in 37 B-cell lymphoma patient samples (diffuse large B-cell lymphoma (activated B-cell like and germinal center B-cell like subtypes), follicular lymphoma and Burkitt`s lymphoma) and normal B lymphocytes from 10 healthy donors. The promoters of DSP, FZD8, KCNH2, and PPP1R14A were methylated in 28%, 67%, 22%, and 78% of the 36 tumor samples, respectively, but not in control samples. Validation using a second series of healthy donor controls (n = 42; normal B cells, peripheral blood mononuclear cells, bone marrow, tonsils and follicular hyperplasia) and fresh-frozen lymphoma biopsies (n = 25), confirmed the results. The DNA methylation biomarker panel consisting of DSP, FZD8, KCNH2, and PPP1R14A was positive in 89% (54/61) of all lymphomas. Receiver operating characteristic analysis to determine the discriminative power between lymphoma and healthy control samples showed a c-statistic of 0.96, indicating a possible role for the biomarker panel in monitoring of lymphoma patients. PMID:24260260

  9. Diagnostic value of immunoglobulin κ light chain gene rearrangement analysis in B-cell lymphomas

    PubMed Central

    KOKOVIC, IRA; NOVAKOVIC, BARBARA JEZERSEK; NOVAKOVIC, SRDJAN

    2015-01-01

    Analysis of the immunoglobulin κ light chain (IGK) gene is an alternative method for B-cell clonality assessment in the diagnosis of mature B-cell proliferations in which the detection of clonal immunoglobulin heavy chain (IGH) gene rearrangements fails. The aim of the present study was to evaluate the added value of standardized BIOMED-2 assay for the detection of clonal IGK gene rearrangements in the diagnostic setting of suspected B-cell lymphomas. With this purpose, 92 specimens from 80 patients with the final diagnosis of mature B-cell lymphoma (37 specimens), mature T-cell lymphoma (26 specimens) and reactive lymphoid proliferation (29 specimens) were analyzed for B-cell clonality. B-cell clonality analysis was performed using the BIOMED-2 IGH and IGK gene clonality assays. The determined sensitivity of the IGK assay was 67.6%, while the determined sensitivity of the IGH assay was 75.7%. The sensitivity of combined IGH+IGK assay was 81.1%. The determined specificity of the IGK assay was 96.2% in the group of T-cell lymphomas and 96.6% in the group of reactive lesions. The determined specificity of the IGH assay was 84.6% in the group of lymphomas and 86.2% in the group of reactive lesions. The comparison of GeneScan (GS) and heteroduplex pretreatment-polyacrylamide gel electrophoresis (HD-PAGE) methods for the analysis of IGK gene rearrangements showed a higher efficacy of GS analysis in a series of 27 B-cell lymphomas analyzed by both methods. In the present study, we demonstrated that by applying the combined IGH+IGK clonality assay the overall detection rate of B-cell clonality was increased by 5.4%. Thus, we confirmed the added value of the standardized BIOMED-2 IGK assay for assessment of B-cell clonality in suspected B-cell lymphomas with inconclusive clinical and cyto/histological diagnosis. PMID:25501347

  10. Early B-cell factor 1 (EBF1) is critical for transcriptional control of SLAMF1 gene in human B cells.

    PubMed

    Schwartz, Anton M; Putlyaeva, Lidia V; Covich, Milica; Klepikova, Anna V; Akulich, Kseniya A; Vorontsov, Ilya E; Korneev, Kirill V; Dmitriev, Sergey E; Polanovsky, Oleg L; Sidorenko, Svetlana P; Kulakovskiy, Ivan V; Kuprash, Dmitry V

    2016-10-01

    Signaling lymphocytic activation molecule family member 1 (SLAMF1)/CD150 is a co-stimulatory receptor expressed on a variety of hematopoietic cells, in particular on mature lymphocytes activated by specific antigen, costimulation and cytokines. Changes in CD150 expression level have been reported in association with autoimmunity and with B-cell chronic lymphocytic leukemia. We characterized the core promoter for SLAMF1 gene in human B-cell lines and explored binding sites for a number of transcription factors involved in B cell differentiation and activation. Mutations of SP1, STAT6, IRF4, NF-kB, ELF1, TCF3, and SPI1/PU.1 sites resulted in significantly decreased promoter activity of varying magnitude, depending on the cell line tested. The most profound effect on the promoter strength was observed upon mutation of the binding site for Early B-cell factor 1 (EBF1). This mutation produced a 10-20 fold drop in promoter activity and pinpointed EBF1 as the master regulator of human SLAMF1 gene in B cells. We also identified three potent transcriptional enhancers in human SLAMF1 locus, each containing functional EBF1 binding sites. Thus, EBF1 interacts with specific binding sites located both in the promoter and in the enhancer regions of the SLAMF1 gene and is critical for its expression in human B cells.

  11. B cells in autoimmune diseases: Insights from analyses of immunoglobulin variable (Ig V) gene usage

    PubMed Central

    Foreman, Angela Lee; Van de Water, Judy; Gougeon, Marie-Lise; Gershwin, M. Eric

    2007-01-01

    The role of B cells in autoimmune diseases has not been fully elucidated. It is also unclear whether breaking of B cell tolerance in patients with autoimmune diseases is due to underlying defects in the molecular mechanisms involved in the arrangement of antibody genes or deficiencies in the subsequent selective influences that shape the antibody repertoire. Analysis of immunoglobulin (Ig) variable (V) gene usage is beginning to provide answers to some of these questions. Such analyses have identified some differences in the basic Ig V gene repertoire of patients with autoimmune diseases compared to healthy controls, even though none of these differences can be considered major. Defects in positive and negative selection, mutational targeting and, in some cases, receptor editing have also been detected. In addition, analysis of Ig V gene usage in target organs and tissues of patients with autoimmune diseases have clearly demonstrated that there is a highly compartmentalized clonal expansion of B cells driven by a limited number of antigens in these tissues. Great progress has been made in the structural and functional characterization of disease-associated antibodies, largely because of the development of the combinatorial library technique. Use of antibodies generated by this technique offers great promise in identifying B cell epitopes on known target antigens and in gaining greater insights into the pathogenic role of B cells in both B- and T-cell-mediated autoimmune diseases. PMID:17537385

  12. Transcriptional control of MHC class II gene expression during differentiation from B cells to plasma cells.

    PubMed

    Dellabona, P; Latron, F; Maffei, A; Scarpellino, L; Accolla, R S

    1989-04-15

    In this study we investigated the molecular mechanisms responsible for the extinction of the constitutive MHC class II gene expression of human B cells on somatic cell hybridization with murine plasmocytoma cells. We found that this event is due to trans-acting suppressor functions of mouse origin pre-existing in the plasmocytoma cells and acting at transcriptional level. Transcription of the entire family of human class II genes is suppressed, including genes as DO beta for which a distinct regulation of expression in B cells had been previously demonstrated. Suppression appears specific for class II genes because in the hybrids expression of MHC class I genes of mouse is unaffected and of human only partially reduced. Interestingly, also murine invariant chain gene is expressed in both parental plasmocytoma and hybrid cells although at reduced amounts as compared to a murine class II positive B cell line. The class II negative phenotype of hybrid cells and parental plasmocytoma cells is highly stable and unaffected by treatment with protein synthesis inhibitors, suggesting that the transcriptional suppressor function is not mediated by rapid, labile turning-over proteins. Possible mechanisms responsible for transcriptional regulation of MHC class II gene expression during terminal differentiation of B cells to plasma cells are discussed. PMID:2495328

  13. A human follicular lymphoma B cell line hypermutates its functional immunoglobulin genes in vitro.

    PubMed

    Wu, H; Pelkonen, E; Knuutila, S; Kaartinen, M

    1995-12-01

    The functional immunoglobulin (Ig) genes of B lymphocytes undergo somatic mutations during immune responses. These mutations modify the antigen binding site of the immunoglobulins, thereby enhancing the average affinity of the antibodies produced. The molecular mechanism underlying these B cell hypermutations remains unresolved, partly because it is difficult to grow normal B cells in long-term cell cultures and because there is no suitable transformed or malignant B cell line which generates mutations in its immunoglobulin genes in vitro. Here, we show that the recently established follicular lymphoma line HF-1.3.4 generates somatic hypermutations in vitro at a high frequency of 0.7 x 10(-6) mutations per base pair per generation in standard cell cultures (RPMI 1640 + 5% fetal calf serum). This shows for the first time that B cell hypermutation can occur without T cells or T cell factors. The mutation frequency increased approximately tenfold to 1 x 10(-5) mutations/base pair/generation with B cell-specific growth factors (interleukins-2 and -4 and three antibodies stimulatory to HF-1.3.4 cells). This HF-1.3.4 lymphoma line may help to elucidate the molecular mechanism of Ig gene hypermutation.

  14. Fucoidan prevents C{epsilon} germline transcription and NF{kappa}B p52 translocation for IgE production in B cells

    SciTech Connect

    Oomizu, Souichi; Yanase, Yuhki; Suzuki, Hidenori; Kameyoshi, Yoshikazu; Hide, Michihiro . E-mail: mhide@hiroshima-u.ac.jp

    2006-11-24

    Fucoidan, a dietary fiber contained in seaweed, reduces the increase of antigen-specific IgE in mice exposed to ovalbumin. In this study, we investigated the effect of fucoidan on IgE production and intracellular events in B cells in vitro. Fucoidan inhibited the production of IgE and C{epsilon} germline transcription in murine B cells induced by IL-4 (100 ng/ml) and anti-CD40 antibodies (10 {mu}g/ml), whereas it stimulated cell proliferation. A significant effect of fucoidan on IgE production was observed when B cells were stimulated with a higher dose (5 {mu}g/ml) of anti-CD40 antibodies, but not when stimulated with lower doses (1.25, 2.5 {mu}g/ml), regardless of the IL-4 concentrations. Moreover, nuclear translocation of NF{kappa}B p52, but neither that of NF{kappa}B p65, nor the phosphorylation of JAK1 and STAT6 was reduced by fucoidan. These results suggest that fucoidan inhibited IgE production by preventing the NF{kappa}B p52-mediated pathways activated by CD40.

  15. Stochastic rearrangement of immunoglobulin variable-region genes in chicken B-cell development.

    PubMed Central

    Benatar, T; Tkalec, L; Ratcliffe, M J

    1992-01-01

    The molecular mechanism by which immunoglobulin (Ig) gene rearrangement occurs is highly conserved between mammalian and avian species. However, in avian species, an equivalent to the mammalian pre-B cell, which has undergone Ig heavy-chain gene rearrangement and expresses mu heavy chains in the absence of Ig light-chain rearrangement, has not been convincingly demonstrated. It is consequently unclear whether an ordered progression of gene rearrangement events leading to functional Ig expression occurs in avian species. To examine the sequence of Ig gene rearrangement events in chicken B-cell development, we transformed day 12 embryo bursal cells with the REV-T(CSV) retrovirus. More than 100 clones were analyzed by Southern blotting and polymerase chain reaction for the presence of Ig gene rearrangements. The majority of these clones contained only germline Ig sequences. Several clones contained complete heavy- and light-chain rearrangements and 13 clones contained only heavy-chain rearrangements analogous to stages of mammalian B-cell development. However, 5 clones contained rearrangements of light-chain genes in the absence of complete heavy-chain rearrangement. Consequently, we conclude that rearrangement of chicken Ig light-chain genes does not require heavy-chain variable-region rearrangement. This observation suggests that chicken Ig gene rearrangement events required for Ig expression occur stochastically rather than sequentially. Images PMID:1502173

  16. How do B cells differ from T cells in terms of gene expression?

    PubMed

    Lefkovits, I

    1995-01-01

    As part of an ongoing program to identify the genes that distinguish B cells from T cells, we have analyzed 910 molecular species of polypeptides detectable in mouse lymphocytes by 2D gel electrophoresis. Of these 910 polypeptides, 488 were present in both B and T cells, 185 in B but not T cells, and 237 in T but not B cells. The detected set of polypeptides accounts for more than 95% of the protein mass of lymphocytes. There are about 2000 other polypeptides that are below the threshold of detection. We have started to identify and to retrieve cDNA clones belonging to the B and T cell subset.

  17. Dynamic Epstein-Barr virus gene expression on the path to B-cell transformation.

    PubMed

    Price, Alexander M; Luftig, Micah A

    2014-01-01

    Epstein-Barr virus (EBV) is an oncogenic human herpesvirus in the γ-herpesvirinae subfamily that contains a 170-180kb double-stranded DNA genome. In vivo, EBV commonly infects B and epithelial cells and persists for the life of the host in a latent state in the memory B-cell compartment of the peripheral blood. EBV can be reactivated from its latent state, leading to increased expression of lytic genes that primarily encode for enzymes necessary to replicate the viral genome and structural components of the virion. Lytic cycle proteins also aid in immune evasion, inhibition of apoptosis, and the modulation of other host responses to infection. In vitro, EBV has the potential to infect primary human B cells and induce cellular proliferation to yield effectively immortalized lymphoblastoid cell lines, or LCLs. EBV immortalization of B cells in vitro serves as a model system for studying EBV-mediated lymphomagenesis. While much is known about the steady-state viral gene expression within EBV-immortalized LCLs and other EBV-positive cell lines, relatively little is known about the early events after primary B-cell infection. It was previously thought that upon latent infection, EBV only expressed the well-characterized latency-associated transcripts found in LCLs. However, recent work has characterized the early, but transient, expression of lytic genes necessary for efficient transformation and delayed responses in the known latency genes. This chapter summarizes these recent findings that show how dynamic and controlled expression of multiple EBV genes can control the activation of B cells, entry into the cell cycle, the inhibition of apoptosis, and innate and adaptive immune responses. PMID:24373315

  18. Immunoglobulin gene translocations in chronic lymphocytic leukemia: A report of 35 patients and review of the literature

    PubMed Central

    DE BRAEKELEER, MARC; TOUS, CORINE; GUÉGANIC, NADIA; LE BRIS, MARIE-JOSÉE; BASINKO, AUDREY; MOREL, FRÉDÉRIC; DOUET-GUILBERT, NATHALIE

    2016-01-01

    Chronic lymphocytic leukemia (CLL) represents the most common hematological malignancy in Western countries, with a highly heterogeneous clinical course and prognosis. Translocations involving the immunoglobulin (IG) genes are regularly identified. From 2000 to 2014, we identified an IG gene translocation in 18 of the 396 patients investigated at diagnosis (4.6%) and in 17 of the 275 analyzed during follow-up (6.2%). A total of 4 patients in whom the IG translocation was identified at follow-up did not carry the translocation at diagnosis. The IG heavy locus (IGH) was involved in 27 translocations (77.1%), the IG κ locus (IGK) in 1 (2.9%) and the IG λ locus (IGL) in 7 (20.0%). The chromosome band partners of the IG translocations were 18q21 in 16 cases (45.7%), 11q13 and 19q13 in 4 cases each (11.4% each), 8q24 in 3 cases (8.6%), 7q21 in 2 cases (5.7%), whereas 6 other bands were involved once (2.9% each). At present, 35 partner chromosomal bands have been described, but the partner gene has solely been identified in 10 translocations. CLL associated with IG gene translocations is characterized by atypical cell morphology, including plasmacytoid characteristics, and the propensity of being enriched in prolymphocytes. The IG heavy chain variable region (IGHV) mutational status varies between translocations, those with unmutated IGHV presumably involving cells at an earlier stage of B-cell lineage. All the partner genes thus far identified are involved in the control of cell proliferation and/or apoptosis. The translocated partner gene becomes transcriptionally deregulated as a consequence of its transposition into the IG locus. With the exception of t(14;18)(q32;q21) and its variants, prognosis appears to be poor for the other translocations. Therefore, searching for translocations involving not only IGH, but also IGL and IGK, by banding and molecular cytogenetics is required. Furthermore, it is important to identify the partner gene to ensure the patients receive

  19. Gene expression-based risk score in diffuse large B-cell lymphoma.

    PubMed

    Bret, Caroline; Klein, Bernard; Moreaux, Jérôme

    2012-12-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma and displays heterogeneous clinical and molecular characteristics. In this study, high throughput gene expression profiling of DLBCL tumor samples was used to design a 12-gene expression-based risk score (GERS) predictive for patient's overall survival. GERS allowed identifying a high-risk group comprising 46,4% of the DLBCL patients in two independent cohorts (n=414 and n=69). GERS was shown to be an independent predictor of survival when compared to the previously published prognostic factors, including the International Prognostic Index (IPI). GERS displayed a prognostic value in germinal-center B-cell-like subgroup (GCB) and activated B cell-like (ABC) molecular subgroups of patients as well as in DLBCL patients treated with cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP) or rituximab-CHOP (R-CHOP) regimens. Combination of GERS and IPI lead to a potent prognostic classification of DLBCL patients. Finally, a genomic instability gene signature was highlighted in gene expression profiles of patients belonging to the high-risk GERS-defined group. PMID:23482333

  20. Acute leukemias of different lineages have similar MLL gene fusions encoding related chimeric proteins resulting from chromosomal translocation

    SciTech Connect

    Corral, J.; Forster, A.; Thompson, S.; Rabbitts, T.H. ); Lampert, F. ); Kaneko, Y. ); Slater, R.; Kroes, W.G. ); Van Der Schoot, C.E. ); Ludwig, W.D. ); Karpas, A. ); Pocock, C.; Cotter, F. )

    1993-09-15

    The MLL gene, on human chromosome 11q23, undergoes chromosomal translocation in acute leukemias, resulting in gene fusion with AF4 (chromosome 4) and ENL (chromosome 19). The authors report here translocation of MLL with nine different chromosomes and two paracentric chromosome 11 deletions in early B cell, B- or T-cell lineage, or nonlymphocytic acute leukemias. The mRNA translocation junction from 22t(4;11) patients, including six adult leukemias, and nine t(11;19) tumors reveals a remarkable conservation of breakpoints within MLL, AF4, or ENL genes, irrespective of tumor phenotype. Typically, the breakpoints are upstream of the zinc-finger region of MLL, and deletion of this region can accompany translocation, supporting the der(11) chromosome as the important component in leukemogenesis. Partial sequence of a fusion between MLL and the AFX1 gene from chromosome X shows the latter to be rich in Ser/Pro codons, like the ENL mRNA. These data suggest that the heterogeneous 11q23 abnormalities might cause attachment of Ser/Pro-rich segments to the NH[sub 2] terminus of MLL, lacking the zinc-finger region, and that translocation occurs in early hematopoietic cells, before commitment to distinct lineages. 36 refs., 2 figs.

  1. NODAL DIFFUSE LARGE B-CELL LYMPHOMAS IN CHILDREN AND ADOLESCENTS: IMMUNOHISTOCHEMICAL EXPRESSION PATTERNS AND C-MYC TRANSLOCATION IN RELATION TO CLINICAL OUTCOME

    PubMed Central

    Gualco, Gabriela; Weiss, Lawrence M.; Harrington, William J.; Bacchi, Carlos E.

    2009-01-01

    Diffuse large B-cell lymphoma (DLBCL) is a very infrequent neoplasm in the pediatric age group; therefore there are very few studies on the immunophenotype or genetics of these cases. We studied a series of 16 patients with nodal DLBCL occurring in patients between 10 and 18 years of age. The cases were classified according to the 2008 World Health Organization classification criteria, with application of immunohistochemistry for the detection of CD10, BCL-6 and MUM1 proteins to divide the lymphomas into germinal center and non-germinal center types. In addition, TCL1, BCL-2 expression, and the Ki-67 proliferation index were evaluated by immunohistochemistry, and c-MYC and BCL-2 translocations were evaluated by FISH. All these parameters were correlated with clinical features and outcome. Our study revealed that centroblastic morphology and the germinal center type of DLBCL are more prevalent in these young patients (63%), with 37% containing a c-MYC translocation. Only one case showed a BCL-2 translocation, reflecting a double-hit case with features intermediate between DLBCL and Burkitt lymphoma. We found a higher frequency of BCL-2 expression than previously reported, with no direct influence on the outcome of the disease in univariate or multivariate analysis. The expression of TCL1 has not been specifically studied in nodal pediatric DLBCL before; we found a 31% incidence of TCL1 expression. MUM1 expression was observed in 44% of the cases and these positive cases showed a significant negative impact on clinical outcome. TCL1 is directly and significantly associated with the presence of c-MYC and a high proliferative index. The germinal center and non-germinal center subtypes showed significant differences for both overall survival and disease-free interval. C-MYC translocation was found in 37% of patients, and had a favorable impact on clinical outcome. We conclude that nodal pediatric and adolescent DLBCL are mainly of the germinal center type, with a

  2. Nodal diffuse large B-cell lymphomas in children and adolescents: immunohistochemical expression patterns and c-MYC translocation in relation to clinical outcome.

    PubMed

    Gualco, Gabriela; Weiss, Lawrence M; Harrington, William J; Bacchi, Carlos E

    2009-12-01

    Diffuse large B-cell lymphoma (DLBCL) is a very infrequent neoplasm in the pediatric age group; therefore there are very few studies on the immunophenotype or genetics of these cases. We studied a series of 16 patients with nodal DLBCL occurring in patients between 10 and 18 years of age. The cases were classified according to the 2008 World Health Organization classification criteria, with application of immunohistochemistry for the detection of CD10, BCL-6, and MUM1 proteins to divide the lymphomas into germinal center and nongerminal center types. In addition, TCL1, BCL-2 expression, and the Ki-67 proliferation index were evaluated by immunohistochemistry, and c-MYC and BCL2 translocations were evaluated by fluorescence in situ hybridization. All these parameters were correlated with clinical features and outcome. Our study revealed that centroblastic morphology and the germinal center type of DLBCL are more prevalent in these young patients (63%), with 37% containing a c-MYC translocation. Only 1 case showed a BCL2 translocation, reflecting a double-hit case with features intermediate between DLBCL and Burkitt lymphoma. We found a higher frequency of BCL-2 expression than previously reported, with no direct influence on the outcome of the disease in univariate or multivariate analysis. The expression of TCL1 has not been specifically studied in nodal pediatric DLBCL before; we found a 31% incidence of TCL1 expression. MUM1 expression was observed in 44% of the cases and these positive cases showed a significant negative impact on clinical outcome. TCL1 is directly and significantly associated with the presence of c-MYC and a high proliferative index. The germinal center and nongerminal center subtypes showed significant differences for both overall survival and disease-free interval. c-MYC translocation was found in 37% of patients, and had a favorable impact on clinical outcome. We conclude that nodal pediatric and adolescent DLBCL are mainly of the germinal

  3. Absence of missense mutations in activated c-myc genes in avian leukosis virus-induced B-cell lymphomas

    SciTech Connect

    Hahn, M.; Hayward, W.S.

    1988-06-01

    The authors determined the nucleotide sequences of two independent DNA clones which contained the activated c-myc genes from avian leukosis virus-induced B-cell lymphomas. Neither of these c-myce genes contained missense mutations. This strongly supports the notion that the c-myc photo-oncogene in avian leukosis virus-induced B-cell lymphomas can be oncogenically activated by altered expression of the gene without a change in the primary structure of the gene product.

  4. Primary sacral non-germinal center type diffuse large B-cell lymphoma with MYC translocation: a case report and a review of the literature.

    PubMed

    Shimada, Asami; Sugimoto, Kei-Ji; Wakabayashi, Mutsumi; Imai, Hidenori; Sekiguchi, Yasunobu; Nakamura, Noriko; Sawada, Tomohiro; Ota, Yasunori; Komatsu, Norio; Noguchi, Masaaki

    2013-01-01

    An 85-year-old man presented with pain and numbness in the left buttock, and physical examination revealed an approximately 7 cm mass extending from the first to the third sacral vertebrae; biopsy of the mass led to the diagnosis of CD10-negative, BCL6-weakly positive, MUM1-positive, non-germinal center (non-GC) type diffuse large B-cell lymphoma (DLBCL). Furthermore, serological testing showed negative results for Epstein-Barr virus (EBV) infection, and fluorescence in situ hybridization (FISH) revealed a MYC translocation. Radiographs showed no remarkable osteolytic bone destruction, and the patient was staged with Stage IAE. After 8 cycles of rituximab therapy and 6 cycles of CHOP therapy, complete remission has been maintained until now, approximately 1 year after the treatment. Primary sacral lymphoma is very rare, with only 6 reported cases, including the present one. A review of the reported cases revealed that the disease predominantly affects elderly men, is usually non-GC-type DLBCL and stage IAE, measures approximately 2-7 cm in diameter in general, and does not show early recurrence after chemotherapy or chemoradiotherapy. There is no report in the literature yet of primary sacral DLBCL with MYC translocation, and this is the first case report. On the other hand, 35 cases of CD10-negative DLBCL with MYC translocation, including the present one, have been reported, and a review of the reported cases showed that the disease predominantly affects Asians, middle-aged or elderly men, shows positivity for either BCL6 or MUM1 and negativity for EBV, and has a high international prognostic index and poor prognosis.

  5. Statin-induced changes in gene expression in EBV-transformed and native B-cells.

    PubMed

    Bolotin, Eugene; Armendariz, Angela; Kim, Kyungpil; Heo, Seok-Jin; Boffelli, Dario; Tantisira, Kelan; Rotter, Jerome I; Krauss, Ronald M; Medina, Marisa W

    2014-03-01

    Human lymphoblastoid cell lines (LCLs), generated through Epstein-Barr Virus (EBV) transformation of B-lymphocytes (B-cells), are a commonly used model system for identifying genetic influences on human diseases and on drug responses. We have previously used LCLs to examine the cellular effects of genetic variants that modulate the efficacy of statins, the most prescribed class of cholesterol-lowering drugs used for the prevention and treatment of cardiovascular disease. However, statin-induced gene expression differences observed in LCLs may be influenced by their transformation, and thus differ from those observed in native B-cells. To assess this possibility, we prepared LCLs and purified B-cells from the same donors, and compared mRNA profiles after 24 h incubation with simvastatin (2 µm) or sham buffer. Genes involved in cholesterol metabolism were similarly regulated between the two cell types under both the statin and sham-treated conditions, and the statin-induced changes were significantly correlated. Genes whose expression differed between the native and transformed cells were primarily implicated in cell cycle, apoptosis and alternative splicing. We found that ChIP-seq signals for MYC and EBNA2 (an EBV transcriptional co-activator) were significantly enriched in the promoters of genes up-regulated in the LCLs compared with the B-cells, and could be involved in the regulation of cell cycle and alternative splicing. Taken together, the results support the use of LCLs for the study of statin effects on cholesterol metabolism, but suggest that drug effects on cell cycle, apoptosis and alternative splicing may be affected by EBV transformation. This dataset is now uploaded to GEO at the accession number GSE51444.

  6. Global gene expression changes of in vitro stimulated human transformed germinal centre B cells as surrogate for oncogenic pathway activation in individual aggressive B cell lymphomas

    PubMed Central

    2012-01-01

    Background Aggressive Non-Hodgkin lymphomas (NHL) are a group of lymphomas derived from germinal centre B cells which display a heterogeneous pattern of oncogenic pathway activation. We postulate that specific immune response associated signalling, affecting gene transcription networks, may be associated with the activation of different oncogenic pathways in aggressive Non-Hodgkin lymphomas (NHL). Methodology The B cell receptor (BCR), CD40, B-cell activating factor (BAFF)-receptors and Interleukin (IL) 21 receptor and Toll like receptor 4 (TLR4) were stimulated in human transformed germinal centre B cells by treatment with anti IgM F(ab)2-fragments, CD40L, BAFF, IL21 and LPS respectively. The changes in gene expression following the activation of Jak/STAT, NF-кB, MAPK, Ca2+ and PI3K signalling triggered by these stimuli was assessed using microarray analysis. The expression of top 100 genes which had a change in gene expression following stimulation was investigated in gene expression profiles of patients with Aggressive non-Hodgkin Lymphoma (NHL). Results αIgM stimulation led to the largest number of changes in gene expression, affecting overall 6596 genes. While CD40L stimulation changed the expression of 1194 genes and IL21 stimulation affected 902 genes, only 283 and 129 genes were modulated by lipopolysaccharide or BAFF receptor stimulation, respectively. Interestingly, genes associated with a Burkitt-like phenotype, such as MYC, BCL6 or LEF1, were affected by αIgM. Unique and shared gene expression was delineated. NHL-patients were sorted according to their similarity in the expression of TOP100 affected genes to stimulated transformed germinal centre B cells The αIgM gene module discriminated individual DLBCL in a similar manner to CD40L or IL21 gene modules. DLBCLs with low module activation often carry chromosomal MYC aberrations. DLBCLs with high module activation show strong expression of genes involved in cell-cell communication, immune responses

  7. Transgenic expression of Spi-C impairs B-cell development and function by affecting genes associated with BCR signaling.

    PubMed

    Zhu, Xiang; Schweitzer, Brock L; Romer, Eric J; Sulentic, Courtney E W; DeKoter, Rodney P

    2008-09-01

    Spi-C is an Ets family transcription factor closely related to PU.1 and Spi-B. Expression of Spi-C is developmentally regulated in the B-cell lineage, but its function remains unknown. To determine the function of Spi-C in B-cell development, we generated mice expressing a B-cell-specific Spi-C transgene under the control of the IgH intronic enhancer. Spi-C transgenic mice had 50% fewer B cells than wild-type littermates. Flow cytometric analyses showed that splenic transitional B cells and bone marrow pre-B or immature B cells from transgenic mice were dramatically reduced compared with those of wild type. Both nonspecific and Ag-specific serum IgM levels were significantly increased in transgenic mice, while serum IgG levels were significantly decreased compared with wild type. Spi-C transgenic B cells proliferated poorly after stimulation by anti-IgM or anti-CD40 in vitro, although they responded normally to LPS stimulation. Using real-time RT-PCR, we found that several BCR signaling-related mediators were downregulated at pre-B-cell and mature B-cell stages in transgenic mice, while an inhibitor of BCR signaling was upregulated. Taken together, these data indicate that ectopic expression of Spi-C can impair B-cell development and function by affecting genes associated with BCR signaling.

  8. CD23+/CD21hi B-cell translocation and ipsilateral lymph node collapse is associated with asymmetric arthritic flare in TNF-Tg mice

    PubMed Central

    2011-01-01

    Introduction Rheumatoid arthritis (RA) is a chronic autoimmune disease with episodic flares in affected joints. However, how arthritic flare occurs only in select joints during a systemic autoimmune disease remains an enigma. To better understand these observations, we developed longitudinal imaging outcomes of synovitis and lymphatic flow in mouse models of RA, and identified that asymmetric knee flare is associated with ipsilateral popliteal lymph node (PLN) collapse and the translocation of CD23+/CD21hi B-cells (B-in) into the paracortical sinus space of the node. In order to understand the relationship between this B-in translocation and lymph drainage from flaring joints, we tested the hypothesis that asymmetric tumor necrosis factor (TNF)-induced knee arthritis is associated with ipsilateral PLN and iliac lymph node (ILN) collapse, B-in translocation, and decreased afferent lymphatic flow. Methods TNF transgenic (Tg) mice with asymmetric knee arthritis were identified by contrast-enhanced (CE) magnetic resonance imaging (MRI), and PLN were phenotyped as "expanding" or "collapsed" using LNcap threshold = 30 (Arbitrary Unit (AU)). Inflammatory-erosive arthritis was confirmed by histology. Afferent lymphatic flow to PLN and ILN was quantified by near infrared imaging of injected indocyanine green (NIR-ICG). The B-in population in PLN and ILN was assessed by immunohistochemistry (IHC) and flow cytometry. Linear regression analyses of ipsilateral knee synovial volume and afferent lymphatic flow to PLN and ILN were performed. Results Afferent lymph flow to collapsed nodes was significantly lower (P < 0.05) than flow to expanding nodes by NIR-ICG imaging, and this occurred ipsilaterally. While both collapsed and expanding PLN and ILN had a significant increase (P < 0.05) of B-in compared to wild type (WT) and pre-arthritic TNF-Tg nodes, B-in of expanding lymph nodes (LN) resided in follicular areas while B-in of collapsed LN were present within LYVE-1+ lymphatic

  9. E mu/S mu transposition into Myc is sometimes a precursor for T(12;15) translocation in mouse B cells.

    PubMed

    Kovalchuk, Alexander L; Kim, Joong Su; Janz, Siegfried

    2003-05-01

    Misguided immunoglobulin (Ig) class switch recombination (CSR) has been implicated in the origin of Myc-activating chromosomal translocations, T(12;15), in BALB/c mouse plasmacytomas (PCTs). CSR has also been involved in the progression of T(12;15); for example, the approximation of Myc to the 3'-C alpha enhancer. This study provides evidence for an additional mechanism by which aberrant CSR may facilitate T(12;15): transposition of Ig heavy-chain (IgH) sequences to Myc. Five IgH transposons containing the intronic heavy-chain enhancer, E mu, and a truncated switch mu region, S mu, were found in the first intron of Myc in lymph node cells of IL-6 transgenic BALB/c mice. In two cases E mu/S mu transposition primed Myc to get involved in apparent trans-chromosomal CSR to C gamma 1, presumably leading to T(12;15). Translocations preceded by E mu/S mu transposition can sometimes be distinguished from de novo translocations by molecular fingerprints in translocation breakpoint regions (Ig switch region [S] inversions and unusual gene orders in composite S regions). The presence of such fingerprints in some PCTs suggests that the tumors sometimes evolve from transposition-bearing precursors. We propose that E mu/S mu transposition to Myc may facilitate plasmacytomagenesis by sensitizing Myc to undergo T(12;15) translocation. T(12;15), in turn, juxtaposes Myc to the 3'-C alpha enhancer, which appears to be required for deregulating Myc in a manner that is conducive to PCT development.

  10. A Gene Panel, Including LRP12, Is Frequently Hypermethylated in Major Types of B-Cell Lymphoma

    PubMed Central

    Bethge, Nicole; Honne, Hilde; Andresen, Kim; Hilden, Vera; Trøen, Gunhild; Liestøl, Knut; Holte, Harald; Delabie, Jan; Lind, Guro E.; Smeland, Erlend B.

    2014-01-01

    Epigenetic modifications and DNA methylation in particular, have been recognized as important mechanisms to alter gene expression in malignant cells. Here, we identified candidate genes which were upregulated after an epigenetic treatment of B-cell lymphoma cell lines (Burkitt's lymphoma, BL; Follicular lymphoma, FL; Diffuse large B-cell lymphoma, DLBCL activated B-cell like, ABC; and germinal center like, GCB) and simultaneously expressed at low levels in samples from lymphoma patients. Qualitative methylation analysis of 24 candidate genes in cell lines revealed five methylated genes (BMP7, BMPER, CDH1, DUSP4 and LRP12), which were further subjected to quantitative methylation analysis in clinical samples from 59 lymphoma patients (BL, FL, DLBCL ABC and GCB; and primary mediastinal B-cell lymphoma, PMBL). The genes LRP12 and CDH1 showed the highest methylation frequencies (94% and 92%, respectively). BMPER (58%), DUSP4 (32%) and BMP7 (22%), were also frequently methylated in patient samples. Importantly, all gene promoters were unmethylated in various control samples (CD19+ peripheral blood B cells, peripheral blood mononuclear cells and tonsils) as well as in follicular hyperplasia samples, underscoring a high specificity. The combination of LRP12 and CDH1 methylation could successfully discriminate between the vast majority of the lymphoma and control samples, emphasized by receiver operating characteristic analysis with a c-statistic of 0.999. These two genes represent promising epigenetic markers which may be suitable for monitoring of B-cell lymphoma. PMID:25226156

  11. A gene panel, including LRP12, is frequently hypermethylated in major types of B-cell lymphoma.

    PubMed

    Bethge, Nicole; Honne, Hilde; Andresen, Kim; Hilden, Vera; Trøen, Gunhild; Liestøl, Knut; Holte, Harald; Delabie, Jan; Lind, Guro E; Smeland, Erlend B

    2014-01-01

    Epigenetic modifications and DNA methylation in particular, have been recognized as important mechanisms to alter gene expression in malignant cells. Here, we identified candidate genes which were upregulated after an epigenetic treatment of B-cell lymphoma cell lines (Burkitt's lymphoma, BL; Follicular lymphoma, FL; Diffuse large B-cell lymphoma, DLBCL activated B-cell like, ABC; and germinal center like, GCB) and simultaneously expressed at low levels in samples from lymphoma patients. Qualitative methylation analysis of 24 candidate genes in cell lines revealed five methylated genes (BMP7, BMPER, CDH1, DUSP4 and LRP12), which were further subjected to quantitative methylation analysis in clinical samples from 59 lymphoma patients (BL, FL, DLBCL ABC and GCB; and primary mediastinal B-cell lymphoma, PMBL). The genes LRP12 and CDH1 showed the highest methylation frequencies (94% and 92%, respectively). BMPER (58%), DUSP4 (32%) and BMP7 (22%), were also frequently methylated in patient samples. Importantly, all gene promoters were unmethylated in various control samples (CD19+ peripheral blood B cells, peripheral blood mononuclear cells and tonsils) as well as in follicular hyperplasia samples, underscoring a high specificity. The combination of LRP12 and CDH1 methylation could successfully discriminate between the vast majority of the lymphoma and control samples, emphasized by receiver operating characteristic analysis with a c-statistic of 0.999. These two genes represent promising epigenetic markers which may be suitable for monitoring of B-cell lymphoma. PMID:25226156

  12. B-cell reconstitution after lentiviral vector–mediated gene therapy in patients with Wiskott-Aldrich syndrome

    PubMed Central

    Castiello, Maria Carmina; Scaramuzza, Samantha; Pala, Francesca; Ferrua, Francesca; Uva, Paolo; Brigida, Immacolata; Sereni, Lucia; van der Burg, Mirjam; Ottaviano, Giorgio; Albert, Michael H.; Grazia Roncarolo, Maria; Naldini, Luigi; Aiuti, Alessandro; Villa, Anna; Bosticardo, Marita

    2015-01-01

    Background Wiskott-Aldrich syndrome (WAS) is a severe X-linked immunodeficiency characterized by microthrombocytopenia, eczema, recurrent infections, and susceptibility to autoimmunity and lymphomas. Hematopoietic stem cell transplantation is the treatment of choice; however, administration of WAS gene–corrected autologous hematopoietic stem cells has been demonstrated as a feasible alternative therapeutic approach. Objective Because B-cell homeostasis is perturbed in patients with WAS and restoration of immune competence is one of the main therapeutic goals, we have evaluated reconstitution of the B-cell compartment in 4 patients who received autologous hematopoietic stem cells transduced with lentiviral vector after a reduced-intensity conditioning regimen combined with anti-CD20 administration. Methods We evaluated B-cell counts, B-cell subset distribution, B cell–activating factor and immunoglobulin levels, and autoantibody production before and after gene therapy (GT). WAS gene transfer in B cells was assessed by measuring vector copy numbers and expression of Wiskott-Aldrich syndrome protein. Results After lentiviral vector-mediated GT, the number of transduced B cells progressively increased in the peripheral blood of all patients. Lentiviral vector-transduced progenitor cells were able to repopulate the B-cell compartment with a normal distribution of B-cell subsets both in bone marrow and the periphery, showing a WAS protein expression profile similar to that of healthy donors. In addition, after GT, we observed a normalized frequency of autoimmune-associated CD19+CD21−CD35− and CD21low B cells and a reduction in B cell–activating factor levels. Immunoglobulin serum levels and autoantibody production improved in all treated patients. Conclusions We provide evidence that lentiviral vector-mediated GT induces transgene expression in the B-cell compartment, resulting in ameliorated B-cell development and functionality and contributing to immunologic

  13. Compositions and methods for detecting gene rearrangements and translocations

    DOEpatents

    Rowley, Janet D.; Diaz, Manuel O.

    2000-01-01

    Disclosed is a series of nucleic acid probes for use in diagnosing and monitoring certain types of leukemia using, e.g., Southern and Northern blot analyses and fluorescence in situ hybridization (FISH). These probes detect rearrangements, such as translocations involving chromosome band 11q23 with other chromosomes bands, including 4q21, 6q27, 9p22, 19p13.3, in both dividing leukemic cells and interphase nuclei. The breakpoints in all such translocations are clustered within an 8.3 kb BamHI genomic region of the MLL gene. A novel 0.7 kb BamH1 cDNA fragment derived from this gene detects rearrangements on Southern blot analysis with a single BamHI restriction digest in all patients with the common 11q23 translocations and in patients with other 11q23 anomalies. Northern blot analyses are presented demonstrating that the MLL gene has multiple transcripts and that transcript size differentiates leukemic cells from normal cells. Also disclosed are MLL fusion proteins, MLL protein domains and anti-MLL antibodies.

  14. HMGN proteins modulate chromatin regulatory sites and gene expression during activation of naïve B cells

    PubMed Central

    Zhang, Shaofei; Zhu, Iris; Deng, Tao; Furusawa, Takashi; Rochman, Mark; Vacchio, Melanie S.; Bosselut, Remy; Yamane, Arito; Casellas, Rafael; Landsman, David; Bustin, Michael

    2016-01-01

    The activation of naïve B lymphocyte involves rapid and major changes in chromatin organization and gene expression; however, the complete repertoire of nuclear factors affecting these genomic changes is not known. We report that HMGN proteins, which bind to nucleosomes and affect chromatin structure and function, co-localize with, and maintain the intensity of DNase I hypersensitive sites genome wide, in resting but not in activated B cells. Transcription analyses of resting and activated B cells from wild-type and Hmgn−/− mice, show that loss of HMGNs dampens the magnitude of the transcriptional response and alters the pattern of gene expression during the course of B-cell activation; defense response genes are most affected at the onset of activation. Our study provides insights into the biological function of the ubiquitous HMGN chromatin binding proteins and into epigenetic processes that affect the fidelity of the transcriptional response during the activation of B cell lymphocytes. PMID:27112571

  15. Early B-cell Factor gene association with multiple sclerosis in the Spanish population

    PubMed Central

    Martínez, Alfonso; Mas, Ana; de las Heras, Virginia; Arroyo, Rafael; Fernández-Arquero, Miguel; de la Concha, Emilio G; Urcelay, Elena

    2005-01-01

    Background The etiology of multiple sclerosis (MS) is at present not fully elucidated, although it is considered to result from the interaction of environmental and genetic susceptibility factors. In this work we aimed at testing the Early B-cell Factor (EBF1) gene as a functional and positional candidate risk factor for this neurological disease. Axonal damage is a hallmark for multiple sclerosis clinical disability and EBF plays an evolutionarily conserved role in the expression of proteins essential for axonal pathfinding. Failure of B-cell differentiation was found in EBF-deficient mice and involvement of B-lymphocytes in MS has been suggested from their presence in cerebrospinal fluid and lesions of patients. Methods The role of the EBF1 gene in multiple sclerosis susceptibility was analyzed by performing a case-control study with 356 multiple sclerosis patients and 540 ethnically matched controls comparing the EBF1 polymorphism rs1368297 and the microsatellite D5S2038. Results Significant association of an EBF1-intronic polymorphism (rs1368297, A vs. T: p = 0.02; OR = 1.26 and AA vs. [TA+TT]: p = 0.02; OR = 1.39) was discovered. This association was even stronger after stratification for the well-established risk factor of multiple sclerosis in the Major Histocompatibility Complex, DRB1*1501 (AA vs. [TA+TT]: p = 0.005; OR = 1.78). A trend for association in the case-control study of another EBF1 marker, the allele 5 of the very informative microsatellite D5S2038, was corroborated by Transmission Disequilibrium Test of 53 trios (p = 0.03). Conclusion Our data support EBF1 gene association with MS pathogenesis in the Spanish white population. Two genetic markers within the EBF1 gene have been found associated with this neurological disease, indicative either of their causative role or that of some other polymorphism in linkage disequilibrium with them. PMID:16255771

  16. Vaccinia virus inhibits NF-κB-dependent gene expression downstream of p65 translocation.

    PubMed

    Sumner, Rebecca P; Maluquer de Motes, Carlos; Veyer, David L; Smith, Geoffrey L

    2014-03-01

    The transcription factor nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) plays a critical role in host defense against viral infection by inducing the production of proinflammatory mediators and type I interferon. Consequently, viruses have evolved many mechanisms to block its activation. The poxvirus vaccinia virus (VACV) encodes numerous inhibitors of NF-κB activation that target multiple points in the signaling pathway. A derivative of VACV strain Copenhagen, called vv811, lacking 55 open reading frames in the left and right terminal regions of the genome was reported to still inhibit NF-κB activation downstream of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β), suggesting the presence of one or more additional inhibitors. In this study, we constructed a recombinant vv811 lacking the recently described NF-κB inhibitor A49 (vv811ΔA49), yielding a virus that lacked all currently described inhibitors downstream of TNF-α and IL-1β. Unlike vv811, vv811ΔA49 no longer inhibited degradation of the phosphorylated inhibitor of κBα and p65 translocated into the nucleus. However, despite this translocation, vv811ΔA49 still inhibited TNF-α- and IL-1β-induced NF-κB-dependent reporter gene expression and the transcription and production of cytokines induced by these agonists. This inhibition did not require late viral gene expression. These findings indicate the presence of another inhibitor of NF-κB that is expressed early during infection and acts by a novel mechanism downstream of p65 translocation into the nucleus.

  17. Different patterns of bcl-6 and p53 gene mutations in tonsillar B cells indicate separate mutational mechanisms.

    PubMed

    Yavuz, Akif S; Monson, Nancy L; Yavuz, Sule; Grammer, Amrie C; Longo, Nancy; Girschick, Hermann J; Lipsky, Peter E

    2002-11-01

    Mutations within the 5'-non-coding region of the bcl-6 gene can occur in lymphomas that originate from germinal centers (GCs), as well as in normal memory and GC B cells. Mutations in the p53 gene occur in 50% of human cancers. Since both bcl-6 and p53 can be mutated in certain circumstances, we investigated the accumulation of mutations in these genes in individual tonsillar B and T cells to determine whether the mutations exhibited a pattern anticipated from the B-cell hypermutation machinery. In tonsillar GC B cells, the overall mutational frequencies in the 5'-non-coding region of the bcl-6 gene was 0.85 x 10(-3)/bp. In contrast, there were no mutations in a region 2.8 kb downstream of the promoter. RGYW (purine, guanine, pyrimidine, A/T) targeting and a significantly lower mutational frequency in nai;ve B and GC founder B cells compared with GC B cells suggested that a similar mutator mechanism was active on Ig genes and this non-Ig gene. The mutational frequency in the exon-7-region of p53 was similar in the GC, memory and nai;ve B-cell subsets (1.02 x 10(-3) to 1.25 x 10(-3)/bp). RGYW/WRCY motifs were not targeted preferentially in the p53 gene. Moreover, a comparable mutational frequency of p53 was noted in tonsillar B and T cells. Hence, mutations in p53 do not appear to be the result of the B-cell hypermutational mechanism.

  18. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development.

    PubMed

    Ortega-Molina, Ana; Boss, Isaac W; Canela, Andres; Pan, Heng; Jiang, Yanwen; Zhao, Chunying; Jiang, Man; Hu, Deqing; Agirre, Xabier; Niesvizky, Itamar; Lee, Ji-Eun; Chen, Hua-Tang; Ennishi, Daisuke; Scott, David W; Mottok, Anja; Hother, Christoffer; Liu, Shichong; Cao, Xing-Jun; Tam, Wayne; Shaknovich, Rita; Garcia, Benjamin A; Gascoyne, Randy D; Ge, Kai; Shilatifard, Ali; Elemento, Olivier; Nussenzweig, Andre; Melnick, Ari M; Wendel, Hans-Guido

    2015-10-01

    The gene encoding the lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma and diffuse large B cell lymphoma; however, the biological consequences of KMT2D mutations on lymphoma development are not known. Here we show that KMT2D functions as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. KMT2D deficiency also delays germinal center involution and impedes B cell differentiation and class switch recombination. Integrative genomic analyses indicate that KMT2D affects methylation of lysine 4 on histone H3 (H3K4) and expression of a set of genes, including those in the CD40, JAK-STAT, Toll-like receptor and B cell receptor signaling pathways. Notably, other KMT2D target genes include frequently mutated tumor suppressor genes such as TNFAIP3, SOCS3 and TNFRSF14. Therefore, KMT2D mutations may promote malignant outgrowth by perturbing the expression of tumor suppressor genes that control B cell-activating pathways. PMID:26366710

  19. Surface IgM mediated regulation of RAG gene expression in E mu-N-myc B cell lines.

    PubMed Central

    Ma, A; Fisher, P; Dildrop, R; Oltz, E; Rathbun, G; Achacoso, P; Stall, A; Alt, F W

    1992-01-01

    Transgenic mice carrying either the c-myc or N-myc oncogene deregulated by the immunoglobulin heavy chain enhancer element (E mu) develop both pre-B and B cell lymphomas (E mu-c-myc and E mu-N-myc lymphomas). We report here that B cell lines derived from these tumors, as well as a line derived from v-myc retroviral transformation, simultaneously express surface immunoglobulin (a hallmark of mature B cells) as well as a common subset of genes normally restricted to the pre-B stage of development-including the recombinase activating genes RAG-1 and RAG-2. Continued RAG-1 and RAG-2 expression in these lines is associated with VDJ recombinase activity detected with a VDJ recombination substrate. Cross-linking of the surface immunoglobulin on these lines with an anti-mu antibody leads to rapid, specific and reversible down-regulation of RAG-1 and RAG-2 gene expression. We also find that a small but significant percentage of normal surface immunoglobulin bearing bone marrow B cells express the RAG-1 gene. These findings are discussed in the context of their possible implications for the control of specific gene expression during the pre-B to B cell transition. Images PMID:1628630

  20. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development

    PubMed Central

    Ortega-Molina, Ana; Boss, Isaac W.; Canela, Andres; Pan, Heng; Jiang, Yanwen; Zhao, Chunying; Jiang, Man; Hu, Deqing; Agirre, Xabier; Niesvizky, Itamar; Lee, Ji-Eun; Chen, Hua-Tang; Ennishi, Daisuke; Scott, David W.; Mottok, Anja; Hother, Christoffer; Liu, Shichong; Cao, Xing-Jun; Tam, Wayne; Shaknovich, Rita; Garcia, Benjamin A.; Gascoyne, Randy D.; Ge, Kai; Shilatifard, Ali; Elemento, Olivier; Nussenzweig, Andre; Melnick, Ari M.; Wendel, Hans-Guido

    2015-01-01

    The lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma (FL) and diffuse large B cell lymphoma (DLBCL). However, the biological consequences of KMT2D mutations on lymphoma development are not known. Here we show that KMT2D functions as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. KMT2D deficiency also delays germinal center (GC) involution, impedes B cell differentiation and class switch recombination (CSR). Integrative genomic analyses indicate that KMT2D affects H3K4 methylation and expression of a specific set of genes including those in the CD40, JAK-STAT, Toll-like receptor, and B cell receptor pathways. Notably, other KMT2D target genes include frequently mutated tumor suppressor genes such as TNFAIP3, SOCS3, and TNFRSF14. Therefore, KMT2D mutations may promote malignant outgrowth by perturbing the expression of tumor suppressor genes that control B cell activating pathways. PMID:26366710

  1. Deletion of genes encoding PU.1 and Spi-B in B cells impairs differentiation and induces pre-B cell acute lymphoblastic leukemia.

    PubMed

    Sokalski, Kristen M; Li, Stephen K H; Welch, Ian; Cadieux-Pitre, Heather-Anne T; Gruca, Marek R; DeKoter, Rodney P

    2011-09-01

    The E26 transformation-specific (Ets) transcription factor PU.1 is required to generate lymphoid progenitor cells from hematopoietic stem cells, but it is not required to generate B cells from committed B-cell lineage progenitors. We hypothesized that PU.1 function in B-cell differentiation is complemented by the related Ets transcription factor Spi-B. To test this hypothesis, mice were generated lacking both PU.1 and Spi-B in the B-cell lineage. Unlike mice lacking PU.1 or Spi-B, mice deficient in both PU.1 and Spi-B in the B-cell lineage had reduced frequencies of B cells as well as impaired B-cell differentiation. Strikingly, all PU.1 and Spi-B-deficient mice developed pre-B cell acute lymphoblastic leukemia before 30 weeks of age. Pre-B cells accumulated in the thymus resulting in massive thymic enlargement and dyspnea. These findings demonstrate that PU.1 and Spi-B are essential transcriptional regulators of B-cell differentiation as well as novel tumor suppressors in the B-cell lineage.

  2. Identification of Primary Mediastinal Large B-cell Lymphoma at Nonmediastinal Sites by Gene Expression Profiling.

    PubMed

    Yuan, Ji; Wright, George; Rosenwald, Andreas; Steidl, Christian; Gascoyne, Randy D; Connors, Joseph M; Mottok, Anja; Weisenburger, Dennis D; Greiner, Timothy C; Fu, Kai; Smith, Lynette; Rimsza, Lisa M; Jaffe, Elaine S; Campo, Elias; Martinez, Antonio; Delabie, Jan; Braziel, Rita M; Cook, James R; Ott, German; Vose, Julie M; Staudt, Louis M; Chan, Wing C

    2015-10-01

    Mediastinal involvement is considered essential for the diagnosis of primary mediastinal large B-cell lymphoma (PMBL). However, we have observed cases of diffuse large B-cell lymphoma (DLBCL) with features of PMBL but without detectable mediastinal involvement. The goal was to assess our previously established gene expression profiling (GEP) signature for PMBL in classifying these cases. In a large series of DLBCL cases, we identified 24 cases with a GEP signature of PMBL, including 9 cases with a submission diagnosis of DLBCL consistent with PMBL (G-PMBL-P) and 15 cases with a submission diagnosis of DLBCL. The pathology reviewers agreed with the diagnosis in the 9 G-PMBL-P cases. Among the other 15 DLBCL cases, 11 were considered to be PMBL or DLBCL consistent with PMBL, 3 were considered to be DLBCL, and 1 case was a gray-zone lymphoma with features intermediate between DLBCL and classical Hodgkin lymphoma. All 9 G-PMBL-P and 9 of the 15 DLBCL cases (G-PMBL-M) had demonstrated mediastinal involvement at presentation. Interestingly, 6 of the 15 DLBCL cases (G-PMBL-NM) had no clinical or radiologic evidence of mediastinal involvement. The 3 subgroups of PMBL had otherwise similar clinical characteristics, and there were no significant differences in overall survival. Genetic alterations of CIITA and PDL1/2 were detected in 26% and 40% of cases, respectively, including 1 G-PMBL-NM case with gain of PDL1/2. In conclusion, PMBL can present as a nonmediastinal tumor without evidence of mediastinal involvement, and GEP offers a more precise diagnosis of PMBL. PMID:26135560

  3. GCN5 is essential for IRF-4 gene expression followed by transcriptional activation of Blimp-1 in immature B cells.

    PubMed

    Kikuchi, Hidehiko; Nakayama, Masami; Kuribayashi, Futoshi; Imajoh-Ohmi, Shinobu; Nishitoh, Hideki; Takami, Yasunari; Nakayama, Tatsuo

    2014-03-01

    During B-cell differentiation, the gene expression of B-cell differentiation-related transcription factors must be strictly controlled by epigenetic mechanisms including histone acetylation and deacetylation, to complete the differentiation pathway. GCN5, one of the most important histone acetyltransferases, is involved in epigenetic events for transcriptional regulation through alterations in the chromatin structure. In this study, by analyzing the homozygous DT40 mutants GCN5(-/-), generated with gene targeting techniques, we found that GCN5 was necessary for transcriptional activation of IRF-4, an essential transcription factor for plasma cell differentiation. GCN5 deficiency caused drastic decreases in both the mRNA and the protein levels of Blimp-1 and IRF-4. The ectopic expression of Blimp-1 and IRF-4 suggests that IRF-4, but not Blimp-1, is the target gene of GCN5 in immature B cells. Moreover, a chromatin immunoprecipitation assay showed that GCN5 bound to the IRF-4 gene around its 5'-flanking region and acetylated H3K9 residues within chromatin surrounding the region in vivo, suggesting that gene expression of IRF-4 is certainly regulated by GCN5. These results reveal that GCN5 is essential for IRF-4 gene expression, followed by transcriptional activation of Blimp-1, and plays a key role in epigenetic regulation of B-cell differentiation.

  4. Novel Cryptic Rearrangements in Adult B-Cell Precursor Acute Lymphoblastic Leukemia Involving the MLL Gene

    PubMed Central

    Othman, Moneeb A. K.; Grygalewicz, Beata; Pienkowska-Grela, Barbara; Rincic, Martina; Rittscher, Katharina; Melo, Joana B.; Carreira, Isabel M.; Meyer, Britta; Marzena, Watek

    2015-01-01

    MLL (mixed-lineage-leukemia) gene rearrangements are typical for acute leukemia and are associated with an aggressive course of disease, with a worse outcome than comparable case, and thus require intensified treatment. Here we describe a 69-year-old female with adult B cell precursor acute lymphoblastic leukemia (BCP-ALL) with hyperleukocytosis and immunophenotype CD10- and CD19+ with cryptic MLL rearrangements. G-banding at the time of diagnosis showed a normal karyotype: 46,XX. Molecular cytogenetics using multitude multicolor banding (mMCB) revealed a complex rearrangement of the two copies of chromosome 11. However, a locus-specific probe additionally identified that the MLL gene at 11q23.3 was disrupted, and that the 5′ region was inserted into the chromosomal sub-band 4q21; thus the aberration involved three chromosomes and five break events. Unfortunately, the patient died six months after the initial diagnosis from serious infections and severe complications. Overall, the present findings confirm that, by far not all MLL aberrations are seen by routine chromosome banding techniques and that fluorescence in situ hybridization (FISH) should be regarded as standard tool to access MLL rearrangements in patients with BCP-ALL. PMID:25699572

  5. Novel Cryptic Rearrangements in Adult B-Cell Precursor Acute Lymphoblastic Leukemia Involving the MLL Gene.

    PubMed

    Othman, Moneeb A K; Grygalewicz, Beata; Pienkowska-Grela, Barbara; Rincic, Martina; Rittscher, Katharina; Melo, Joana B; Carreira, Isabel M; Meyer, Britta; Marzena, Watek; Liehr, Thomas

    2015-05-01

    MLL (mixed-lineage-leukemia) gene rearrangements are typical for acute leukemia and are associated with an aggressive course of disease, with a worse outcome than comparable case, and thus require intensified treatment. Here we describe a 69-year-old female with adult B cell precursor acute lymphoblastic leukemia (BCP-ALL) with hyperleukocytosis and immunophenotype CD10- and CD19+ with cryptic MLL rearrangements. G-banding at the time of diagnosis showed a normal karyotype: 46,XX. Molecular cytogenetics using multitude multicolor banding (mMCB) revealed a complex rearrangement of the two copies of chromosome 11. However, a locus-specific probe additionally identified that the MLL gene at 11q23.3 was disrupted, and that the 5' region was inserted into the chromosomal sub-band 4q21; thus the aberration involved three chromosomes and five break events. Unfortunately, the patient died six months after the initial diagnosis from serious infections and severe complications. Overall, the present findings confirm that, by far not all MLL aberrations are seen by routine chromosome banding techniques and that fluorescence in situ hybridization (FISH) should be regarded as standard tool to access MLL rearrangements in patients with BCP-ALL. PMID:25699572

  6. Molecular cloning and nucleotide sequence of a transforming gene detected by transfection of chicken B-cell lymphoma DNA

    NASA Astrophysics Data System (ADS)

    Goubin, Gerard; Goldman, Debra S.; Luce, Judith; Neiman, Paul E.; Cooper, Geoffrey M.

    1983-03-01

    A transforming gene detected by transfection of chicken B-cell lymphoma DNA has been isolated by molecular cloning. It is homologous to a conserved family of sequences present in normal chicken and human DNAs but is not related to transforming genes of acutely transforming retroviruses. The nucleotide sequence of the cloned transforming gene suggests that it encodes a protein that is partially homologous to the amino terminus of transferrin and related proteins although only about one tenth the size of transferrin.

  7. Age-related accumulation of Ig VH gene somatic mutations in peripheral B cells from aged humans

    PubMed Central

    CHONG, Y; IKEMATSU, H; YAMAJI, K; NISHIMURA, M; KASHIWAGI, S; HAYASHI, J

    2003-01-01

    To investigate age-related alterations in human humoral immunity, we analysed Ig heavy chain variable region genes expressed by peripheral B cells from young and aged individuals. Three hundred and twenty-seven cDNA sequences, 163 µ and 164 γ transcripts with VH5 family genes, were analysed for somatic hypermutation and VHDJH recombinational features. Unmutated and mutated µ transcripts were interpreted as being from naive and memory IgM B cells, respectively. In young and aged individuals, the percentages of naive IgM among total µ transcripts were 39% and 42%, respectively. D and JH segment usage in naive IgM from aged individuals was similar to that from young individuals. The mutational frequencies of memory IgM were similar in young and aged individuals. γ transcripts, which are regarded as being from memory IgG B cells, showed a significantly higher mutational frequency (7·6%) in aged than in young individuals (5·8%) (P < 0·01). These findings suggest that VHDJH recombinational diversity was preserved, but that the accumulation of somatic mutations in the IgG VH region was increased in aged humans. The accumulation of somatic mutations in IgG B cells during ageing may imply that an age-related alteration exists in the selection and/or maintenance of peripheral memory B cells. PMID:12823279

  8. B-cell differentiation in the chicken: expression of immunoglobulin genes in the bursal and peripheral lymphocytes.

    PubMed

    Mansikka, A; Veromaa, T; Vainio, O; Toivanen, P

    1989-03-01

    We have studied the expression of immunoglobulin genes in the chicken B-cell precursors, and of a B-cell surface marker (Bu-1) on the bursal and peripheral B cells during normal ontogeny. Since there is no way of distinguishing the precursor cells from the more mature bursal lymphocytes on the basis of surface markers, we chose to study the total bursal lymphocyte population at ages when the numbers of the various precursor cells (bursal, early post-bursal, and post-bursal stem cells) in the bursa are estimated to be at their highest. Thereafter, comparisons with the more mature lymphocytes in the peripheral organs were made. As a result, levels of the lambda and mu transcripts and expression of Bu-1 antigen in the chicken B-cell precursors were found to be unchanged during the post-hatching period. In the light of these experiments, the later events of B-cell differentiation, i.e. the development from the bursal to post-bursal B lymphocytes, occurs without the lambda, mu, and Bu-1 gene loci involved. On the other hand, the higher level of lambda and mu expression in the splenic B lymphocytes indicates that the post-bursal stem cells mature into highly active plasma cells after seeding to the peripheral organs.

  9. Gene expression profiling of the response to interferon beta in Epstein-Barr-transformed and primary B cells of patients with multiple sclerosis.

    PubMed

    Khsheibun, Rana; Paperna, Tamar; Volkowich, Anat; Lejbkowicz, Izabella; Avidan, Nili; Miller, Ariel

    2014-01-01

    The effects of interferon-beta (IFN-β), one of the key immunotherapies used in multiple sclerosis (MS), on peripheral blood leukocytes and T cells have been extensively studied. B cells are a less abundant leukocyte type, and accordingly less is known about the B cell-specific response to IFN-β. To identify gene expression changes and pathways induced by IFN-β in B cells, we studied the in vitro response of human Epstein Barr-transformed B cells (lymphoblast cell lines-LCLs), and validated our results in primary B cells. LCLs were derived from an MS patient repository. Whole genome expression analysis identified 115 genes that were more than two-fold differentially up-regulated following IFN-β exposure, with over 50 previously unrecognized as IFN-β response genes. Pathways analysis demonstrated that IFN-β affected LCLs in a similar manner to other cell types by activating known IFN-β canonical pathways. Additionally, IFN-β increased the expression of innate immune response genes, while down-regulating many B cell receptor pathway genes and genes involved in adaptive immune responses. Novel response genes identified herein, NEXN, DDX60L, IGFBP4, and HAPLN3, B cell receptor pathway genes, CD79B and SYK, and lymphocyte activation genes, LAG3 and IL27RA, were validated as IFN-β response genes in primary B cells. In this study new IFN-β response genes were identified in B cells, with possible implications to B cell-specific functions. The study's results emphasize the applicability of LCLs for studies of human B cell drug response. The usage of LCLs from patient-based repositories may facilitate future studies of drug response in MS and other immune-mediated disorders with a B cell component.

  10. A new non-Hodgkin's B-cell line (DoHH2) with a chromosomal translocation t(14;18)(q32;q21).

    PubMed

    Kluin-Nelemans, H C; Limpens, J; Meerabux, J; Beverstock, G C; Jansen, J H; de Jong, D; Kluin, P M

    1991-03-01

    A spontaneously growing EBV-negative B-cell line (DoHH2) was established from the pleural fluid cells of a 60-year-old man with centroblastic/centrocytic non-Hodgkin's lymphoma, that had transformed into an immunoblastic lymphoma. The pleural fluid cells and the DoHH2 cells expressed IgG lambda, were reactive with CD10 and CD19 monoclonal antibodies, and showed by cytogenetic analysis 48,XY, +7, +del(12)(q24), t(14;18)(q32;q21). Southern blot analysis of mini-satellite DNA patterns, and of rearrangements of the immunoglobulin genes and bcl-2, confirmed that the cell line was derived from the patient's clonal lymphoma cells. Direct nucleotide sequence analysis on polymerase chain reaction (PCR) products of the t(14;18) junction revealed an identical sequence for the JH-bcl-2 junction at JH6 and in the major breakpoint region of bcl-2 in both the original tumor cells and the DoHH2 cell line. The cell line was valuable as a standard quantification control for PCR analysis of the t(14;18) breakpoint. Titration experiments demonstrated the detection of up to one tumor cell in 10(5) normal blood lymphocytes.

  11. Generation of B cell-deficient pigs by highly efficient CRISPR/Cas9-mediated gene targeting.

    PubMed

    Chen, Fengjiao; Wang, Ying; Yuan, Yilin; Zhang, Wei; Ren, Zijian; Jin, Yong; Liu, Xiaorui; Xiong, Qiang; Chen, Qin; Zhang, Manling; Li, Xiaokang; Zhao, Lihua; Li, Ze; Wu, Zhaoqiang; Zhang, Yanfei; Hu, Feifei; Huang, Juan; Li, Rongfeng; Dai, Yifan

    2015-08-20

    Generating B cell-deficient mutant is the first step to produce human antibody repertoires in large animal models. In this study, we applied the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system to target the JH region of the pig IgM heavy chain gene which is crucial for B cell development and differentiation. Transfection of IgM-targeting Cas9 plasmid in primary porcine fetal fibroblasts (PFFs) enabled inducing gene knock out (KO) in up to 53.3% of colonies analyzed, a quarter of which harbored biallelic modification, which was much higher than that of the traditional homologous recombination (HR). With the aid of somatic cell nuclear transfer (SCNT) technology, three piglets with the biallelic IgM heavy chain gene mutation were produced. The piglets showed no antibody-producing B cells which indicated that the biallelic mutation of the IgM heavy chain gene effectively knocked out the function of the IgM and resulted in a B cell-deficient phenotype. Our study suggests that the CRISPR/Cas9 system combined with SCNT technology is an efficient genome-editing approach in pigs.

  12. Genetic and Physical Interaction of the B-Cell SLE-Associated Genes BANK1 and BLK

    PubMed Central

    Castillejo-López, Casimiro; Delgado-Vega, Angélica M.; Wojcik, Jerome; Kozyrev, Sergey V.; Thavathiru, Elangovan; Wu, Ying-Yu; Sánchez, Elena; Pöllmann, David; López-Egido, Juan R.; Fineschi, Serena; Domínguez, Nicolás; Lu, Rufei; James, Judith A.; Merrill, Joan T.; Kelly, Jennifer A.; Kaufman, Kenneth M.; Moser, Kathy; Gilkeson, Gary; Frostegård, Johan; Pons-Estel, Bernardo A.; D’Alfonso, Sandra; Witte, Torsten; Callejas, José Luis; Harley, John B.; Gaffney, Patrick; Martin, Javier; Guthridge, Joel M.; Alarcón-Riquelme, Marta E.

    2012-01-01

    Objectives Altered signaling in B-cells is a predominant feature of systemic lupus erythematosus (SLE). The genes BANK1 and BLK were recently described as associated with SLE. BANK1 codes for a B-cell-specific cytoplasmic protein involved in B-cell receptor signaling and BLK codes for an Src tyrosine kinase with important roles in B-cell development. To characterize the role of BANK1 and BLK in SLE, we performed a genetic interaction analysis hypothesizing that genetic interactions could reveal functional pathways relevant to disease pathogenesis. Methods We Used the method GPAT16 to analyze the gene-gene interactions of BANK1 and BLK. Confocal microscopy was used to investigate co-localization, and immunoprecipitation was used to verify the physical interaction of BANK1 and BLK. Results Epistatic interactions between BANK1 and BLK polymorphisms associated with SLE were observed in a discovery set of 279 patients and 515 controls from Northern Europe. A meta-analysis with 4399 European individuals confirmed the genetic interactions between BANK1 and BLK. As BANK1 was identified as a binding partner of the Src tyrosine kinase LYN, we tested the possibility that BANK1 and BLK could also show a protein-protein interaction. We demonstrated co-immunoprecipitation and co-localization of BLK and BANK1. In a Daudi cell line and primary naïve B-cells the endogenous binding was enhanced upon B-cell receptor stimulation using anti-IgM antibodies. Conclusions Here, we show a genetic interaction between BANK1 and BLK, and demonstrate that these molecules interact physically. Our results have important consequences for the understanding of SLE and other autoimmune diseases and identify a potential new signaling pathway. PMID:21978998

  13. Loss of an Igκ gene enhancer in mature B cells results in rapid gene silencing and partial reversible dedifferentiation.

    PubMed

    Zhou, Xiaorong; Xiang, Yougui; Ding, Xiaoling; Garrard, William T

    2013-05-01

    We address here whether there is cellular memory of a transcriptional enhancer once it has served its purpose to establish an active chromatin state. We have previously shown that the mouse Igκ gene's downstream enhancers, E3' and Ed, are essential but play redundant roles for establishing transcriptional activity in the locus during B cell development. To determine whether these enhancers are also necessary for the maintenance of transcriptional activity, we conditionally deleted E3' in mature B cells that possessed Ed(-/-) alleles. Upon E3' deletion, the locus became rapidly silenced and lost positive histone epigenetic marks, and the mature B cells partially dedifferentiated, induced RAG-1 and -2 along with certain other pro-B cell makers, and then redifferentiated after triggering Igλ gene rearrangements. We conclude that the Igκ gene's downstream enhancers are essential for both the establishment and maintenance of transcriptional activity and that there is no cellular memory of previous transcriptional activity in this locus. Furthermore, upon enhancer loss, the mature B cells unexpectedly underwent reversible retrograde differentiation. This result establishes that receptor editing can occur in mature B cells and raises the possibility that this may provide a tolerance mechanism for eliminating autoreactive B cells in the periphery.

  14. Coexistent rearrangements of c-MYC, BCL2, and BCL6 genes in a diffuse large B-cell lymphoma.

    PubMed

    Ueda, Chiyoko; Nishikori, Momoko; Kitawaki, Toshio; Uchiyama, Takashi; Ohno, Hitoshi

    2004-01-01

    We present a patient with stage III de novo diffuse large B-cell lymphoma. The lymphoma cells showed mature B-cell immunophenotype but lacked surface immunoglobulin (Ig) expression. Long-distance and long-distance inverse polymerase chain reaction assays to detect the oncogene/Ig gene rearrangement revealed that the cells carried 3 independent fusion genes, namely, c-MYC/Ig heavy chain gene (IgH), BCL2/IgH, and Ig lambda light chain gene/BCL6. Thus, the lymphoma cells concurrently carried t(8;14)(q24;q32), t(14;18)(q32;q21), and t(3;22)(q27;q11), which developed in association with class switching, V/D/J recombination, and somatic hypermutation, respectively. The lymphoma responded to chemoradiotherapy, and the patient has been well for 2 years, suggesting that multiple oncogene rearrangements may not necessarily be associated with poor clinical outcome.

  15. Regulation of chick early B-cell factor-1 gene expression in feather development.

    PubMed

    El-Magd, Mohammed Abu; Sayed-Ahmed, Ahmed; Awad, Ashraf; Shukry, Mustafa

    2014-05-01

    The chick Ebf1 (early B-cell factor-1) gene is a member of a novel family of helix loop helix transcription factors. The expression profile, regulation and significance of this gene have been extensively studied in lymphatic, nervous, adipose and muscular tissues. However, cEbf1 expression, regulation and function in the feather of chick embryo have not yet been investigated. cEbf1 expression was first detected throughout the mesenchymal core of some few feather placodes (D7-D7.5). After feathers became mature and grew distally (D9 and D10), the mesenchymal expression of cEbf1 became confined to the caudal margin of the proximal half of all formed feather buds. Because this dynamic pattern of expression resembles that of Sonic Hedgehog (Shh) protein and bone morphogenetic protein (Bmp4) plus the crucial role of these two major signals in feather development, we hypothesized that cEbf1 expression in the feather may be regulated by Shh and Bmp4. In a feather explant culture system, Shh signals are necessary to initiate and maintain cEbf1 expression in the posterior half of the feather bud, while Bmp4 is crucial for the initial cEbf1 expression in the anterior half of the feather bud. Inhibition of Shh, not only down-regulates cEbf1, but also changes the morphology of feather buds, which become irregular and fused. This is the first study to demonstrate that cEbf1 expression in the feather bud is under the control of Shh and Bmp4 signals and that expression may play a role in the normal development of feathers.

  16. Primary mediastinal (thymic) large B-cell lymphoma with a der(14)t(8;14)(q24;q32) and a translocation of MYC to the derivative chromosome 14 with a deleted IgH locus.

    PubMed

    Stejskalova, Eva; Jarosova, Marie; Kabickova, Edita; Smelhaus, Vratislav; Mrhalova, Marcela; Kodet, Roman

    2006-10-15

    We report a case of primary mediastinal (thymic) large B-cell lymphoma (PMBL) with an initial karyotype containing numerical chromosomal aberrations: +X, +9, +12, +21, and a novel translocation t(2;11)(q?31; q23 approximately 24) with a duplication of the derivative chromosome 11. Subsequent multicolor fluorescence in situ hybridization (M-FISH) analysis revealed a der(14)t(8;14)(q24;q32). Further analysis using fluorescence in situ hybridization (FISH) with locus-specific probes revealed loss of the entire IgH locus from the der(14)t(8;14) and relocation of MYC to this derivative chromosome 14. Our data show definitively the existence of the t(8;14) in PMBL, previously only suspected. This finding supplies additional evidence that a translocation-mediated MYC activation may be an important event in the pathogenesis of this unique lymphoma. PMID:17011988

  17. Protein kinase Cθ gene expression is oppositely regulated by GCN5 and EBF1 in immature B cells.

    PubMed

    Kikuchi, Hidehiko; Nakayama, Masami; Kuribayashi, Futoshi; Imajoh-Ohmi, Shinobu; Nishitoh, Hideki; Takami, Yasunari; Nakayama, Tatsuo

    2014-05-01

    In this study, we revealed that GCN5 and early B cell factor 1 (EBF1) participate in regulation of protein kinase Cθ (PKCθ) gene expression in an opposite manner in immature B cells. GCN5-deficiency in DT40 caused drastic down-regulation of transcription of PKCθ. In contrast, EBF1-deficiency brought about remarkable up-regulation of that of PKCθ, and re-expression of EBF1 dramatically suppressed transcription of PKCθ. Chromatin immunoprecipitation assay revealed that GCN5 binds to the 5'-flanking region of the chicken PKCθ gene and acetylates histone H3, and EBF1 binds to the 5'-flanking region of the gene surrounding putative EBF1 binding motifs.

  18. Fig1, an interleukin 4-induced mouse B cell gene isolated by cDNA representational difference analysis

    PubMed Central

    Chu, Charles C.; Paul, William E.

    1997-01-01

    Interleukin 4 (IL-4) is a cytokine that regulates growth and differentiation of lymphoid and nonlymphoid cells. To study the molecular basis of IL-4 function, we used a cDNA subtraction approach based on the representational difference analysis method. This subtractive amplification technique allowed us to use small amounts of RNA from lipopolysaccharide ± IL-4-stimulated normal B cells to obtain IL-4-induced genes from these cells. We report here on one such gene, Fig1 (interleukin-four induced gene 1), the first characterized immediate–early IL-4 inducible gene from B cells. Fig1 expression is strikingly limited to the lymphoid compartment. B cells, but not T cells or mast cells, express Fig1 in response to IL-4 within 2 hr in a cycloheximide resistant manner. IL-2, IL-5, and Il-6 do not induce Fig1 in culture. Fig1 maps between Klk1 and Ldh3 on mouse chromosome 7, near two loci involved with murine lupus, Sle3 and Lbw5. The Fig1 cDNA sequence encodes a predicted 70-kDa flavoprotein with best homology to the monoamine oxidases, particularly in domains responsible for FAD binding. PMID:9122225

  19. AID-induced remodeling of immunoglobulin genes and B cell fate.

    PubMed

    Laffleur, Brice; Denis-Lagache, Nicolas; Péron, Sophie; Sirac, Christophe; Moreau, Jeanne; Cogné, Michel

    2014-03-15

    Survival and phenotype of normal and malignant B lymphocytes are critically dependent on constitutive signals by the B cell receptor (BCR) for antigen. In addition, either antigen ligation of the BCR or various mitogenic stimuli result in B cell activation and induction of activation-induced deaminase (AID). AID activity can in turn mediate somatic hypermutation (SHM) of immunoglobulin (Ig) V regions and also deeply remodel the Ig heavy chain locus through class switch recombination (CSR) or locus suicide recombination (LSR). In addition to changes linked to affinity for antigen, modifying the class/isotype (i.e. the structure and function) of the BCR or suddenly deleting BCR expression also modulates the fate of antigen-experienced B cells.

  20. Epstein-Barr virus infection in vitro can rescue germinal center B cells with inactivated immunoglobulin genes.

    PubMed

    Chaganti, Sridhar; Bell, Andrew I; Pastor, Noelia Begue; Milner, Anne E; Drayson, Mark; Gordon, John; Rickinson, Alan B

    2005-12-15

    Immunoglobulin genotyping of Epstein-Barr virus (EBV)-positive posttransplantation lymphoproliferative disease has suggested that such lesions often arise from atypical post-germinal center B cells, in some cases carrying functionally inactivated immunoglobulin genes. To investigate whether EBV can rescue cells that are failed products of the somatic hypermutation process occurring in germinal centers (GCs), we isolated GC cells from tonsillar cell suspensions and exposed them to EBV in vitro. Screening more than 100 EBV-transformed cell lines of GC origin identified 6 lines lacking surface immunoglobulin, a phenotype never seen among lines derived from circulating naive or memory B cells. Furthermore, 3 of the 6 surface immunoglobulin-negative GC lines carried inactivating mutations in the immunoglobulin H (IgH) variable gene sequence. The ability of EBV to rescue aberrant products of the germinal center reaction in vitro strengthens the probability that a parallel activity contributes to EBV's lymphomagenic potential in vivo.

  1. Chromosomal localization of the gene for human B-cell antigen CD40

    SciTech Connect

    Ramesh, N.; Geha, R. ); Ramesh, V.; Gusella, J.F. )

    1993-05-01

    CD40 is a surface glycoprotein expressed on all human B lymphocytes and plays an important role in B-cell development, growth, and differentiation. Anti-CD40 monoclonal antibodies cause isotype switching in B cells treated with IL-4. CD40 is a member of a family of proteins that include low-affinity nerve growth factor receptor, TNF receptor, and the antigen Fas. The ligand for CD40 had been recently identified and had been assigned to the X chromosome. Using a panel of human-rodent somatic cell hybrids, the authors now show that CD40 maps to human chromosome 20.

  2. Histone deacetylase inhibitor abexinostat affects chromatin organization and gene transcription in normal B cells and in mantle cell lymphoma.

    PubMed

    Markozashvili, Diana; Pichugin, Andrei; Barat, Ana; Camara-Clayette, Valerie; Vasilyeva, Natalia V; Lelièvre, Hélène; Kraus-Berthier, Laurence; Depil, Stéphane; Ribrag, Vincent; Vassetzky, Yegor

    2016-04-15

    Mantle cell lymphoma (MCL) is a rare lymphoma caused by the t(11:14) juxtaposing the cyclin D1 (CCND1) locus on chromosome 11 and the immunoglobulin heavy chain (IgH) locus on chromosome 14. Several new treatments are proposed for MCL, including histone deacetylase inhibitors (HDACi). We have studied gene expression and chromatin organization in the translocated 11q13 locus in MCL cells as compared to lymphoblastoid cell lines as well as the effect of HDACi abexinostat on chromatin organization and gene expression in the 11q13 locus. We have identified a cluster of genes overexpressed in the translocation region on chromosome 11 in MCL cells. Abexinostat provokes a genome-wide disaggregation of heterochromatin. The genes upregulated after the t(11;14) translocation react to the HDACi treatment by increasing their expression, but their gene promoters do not show significant alterations in H3K9Ac and H3K9me2 levels in abexinostat-treated cells.

  3. Epigenetic Regulation of the Blimp-1 Gene (Prdm1) in B Cells Involves Bach2 and Histone Deacetylase 3.

    PubMed

    Tanaka, Hiromu; Muto, Akihiko; Shima, Hiroki; Katoh, Yasutake; Sax, Nicolas; Tajima, Shinya; Brydun, Andrey; Ikura, Tsuyoshi; Yoshizawa, Naoko; Masai, Hisao; Hoshikawa, Yutaka; Noda, Tetsuo; Nio, Masaki; Ochiai, Kyoko; Igarashi, Kazuhiko

    2016-03-18

    B lymphocyte-induced maturation protein 1 (Blimp-1) encoded by Prdm1 is a master regulator of plasma cell differentiation. The transcription factor Bach2 represses Blimp-1 expression in B cells to stall terminal differentiation, by which it supports reactions such as class switch recombination of the antibody genes. We found that histones H3 and H4 around the Prdm1 intron 5 Maf recognition element were acetylated at higher levels in X63/0 plasma cells expressing Blimp-1 than in BAL17 mature B cells lacking its expression. Conversely, methylation of H3-K9 was lower in X63/0 cells than BAL17 cells. Purification of the Bach2 complex in BAL17 cells revealed its interaction with histone deacetylase 3 (HDAC3), nuclear co-repressors NCoR1 and NCoR2, transducin β-like 1X-linked (Tbl1x), and RAP1-interacting factor homolog (Rif1). Chromatin immunoprecipitation confirmed the binding of HDAC3 and Rif1 to the Prdm1 locus. Reduction of HDAC3 or NCoR1 expression by RNA interference in B cells resulted in an increased Prdm1 mRNA expression. Bach2 is suggested to cooperate with HDAC3-containing co-repressor complexes in B cells to regulate the stage-specific expression of Prdm1 by writing epigenetic modifications at the Prdm1 locus.

  4. Validation and implementation of a method for microarray gene expression profiling of minor B-cell subpopulations in man

    PubMed Central

    2014-01-01

    Background This report describes a method for the generation of global gene expression profiles from low frequent B-cell subsets by using fluorescence-activated cell sorting and RNA amplification. However, some of the differentiating compartments involve a low number of cells and therefore it is important to optimize and validate each step in the procedure. Methods Normal lymphoid tissues from blood, tonsils, thymus and bone marrow were immunophenotyped by the 8-colour Euroflow panel using multiparametric flow cytometry. Subsets of B-cells containing cell numbers ranging from 800 to 33,000 and with frequencies varying between 0.1 and 10 percent were sorted, subjected to mRNA purification, amplified by the NuGEN protocol and finally analysed by the Affymetrix platform. Results Following a step by step strategy, each step in the workflow was validated and the sorting/storage conditions optimized as described in this report. First, an analysis of four cancer cell lines on Affymetrix arrays, using either 100 ng RNA labelled with the Ambion standard protocol or 1 ng RNA amplified and labelled by the NuGEN protocol, revealed a significant correlation of gene expressions (r ≥ 0.9 for all). Comparison of qPCR data in samples with or without amplification for 8 genes showed that a relative difference between six cell lines was preserved (r ≥ 0.9). Second, a comparison of cells sorted into PrepProtect, RNAlater or directly into lysis/binding buffer showed a higher yield of purified mRNA following storage in lysis/binding buffer (p < 0.001). Third, the identity of the B-cell subsets validated by the cluster of differentiation (CD) membrane profile was highly concordant with the transcriptional gene expression (p-values <0.001). Finally, in normal bone marrow and tonsil samples, eight evaluated genes were expressed in accordance with the biology of lymphopoiesis (p-values < 0.001), which enabled the generation of a gene-specific B-cell atlas. Conclusion A

  5. Restricted use of fetal VH3 immunoglobulin genes by unselected B cells in the adult. Predominance of 56p1-like VH genes in common variable immunodeficiency.

    PubMed

    Braun, J; Berberian, L; King, L; Sanz, I; Govan, H L

    1992-05-01

    The large VH3 family of human immunoglobulin genes is commonly used throughout B cell ontogeny. However, B cells of the fetus and certain autoantibody-producing clones are restricted to a recurrent subset of VH3 genes, and VH3 B cells are deficient in certain immunodeficiency diseases. In this study, we have sequenced a set of rearranged VH3 genes generated by genomic polymerase chain reaction (PCR) from normal adults and those with common variable immunodeficiency (CVI). In both groups, all cones were readily identifiable with the fetal VH3 subset, and were further distinguished by limited DH motifs and exclusive use of JH4. In CVI, the residual population of VH3 B cells were notable for predominant use of 56p1-like VH genes. All clones displayed sequence divergence (including somatic mutation) with evidence of strong selection against complementarity-determining region (CDR) coding change. A survey of other V gene families indicates that human V gene diversity may be restricted in general by germline mechanisms. These findings suggest that the expressed antibody repertoire in the human adult may be much smaller than anticipated, and selected by processes in part distinct from the paradigm of maximal antigen-binding diversity.

  6. Machine learning-based classification of diffuse large B-cell lymphoma patients by eight gene expression profiles.

    PubMed

    Zhao, Shuangtao; Dong, Xiaoli; Shen, Wenzhi; Ye, Zhen; Xiang, Rong

    2016-05-01

    Gene expression profiling (GEP) had divided the diffuse large B-cell lymphoma (DLBCL) into molecular subgroups: germinal center B-cell like (GCB), activated B-cell like (ABC), and unclassified (UC) subtype. However, this classification with prognostic significance was not applied into clinical practice since there were more than 1000 genes to detect and interpreting was difficult. To classify cancer samples validly, eight significant genes (MYBL1, LMO2, BCL6, MME, IRF4, NFKBIZ, PDE4B, and SLA) were selected in 414 patients treated with CHOP/R-CHOP chemotherapy from Gene Expression Omnibus (GEO) data sets. Cutoffs for each gene were obtained using receiver-operating characteristic curves (ROC) new model based on the support vector machine (SVM) estimated the probability of membership into one of two subgroups: GCB and Non-GCB (ABC and UC). Furtherly, multivariate analysis validated the model in another two cohorts including 855 cases in all. As a result, patients in the training and validated cohorts were stratified into two subgroups with 94.0%, 91.0%, and 94.4% concordance with GEP, respectively. Patients with Non-GCB subtype had significantly poorer outcomes than that with GCB subtype, which agreed with the prognostic power of GEP classification. Moreover, the similar prognosis received in the low (0-2) and high (3-5) IPI scores group demonstrated that the new model was independent of IPI as well as GEP method. In conclusion, our new model could stratify DLBCL patients with CHOP/R-CHOP regimen matching GEP subtypes effectively. PMID:26869285

  7. Prognostic impact of concurrent MYC and BCL6 rearrangements and expression in de novo diffuse large B-cell lymphoma

    PubMed Central

    Deng, Lijuan; Wang, Xiaoxiao; Manyam, Ganiraju C.; Visco, Carlo; Montes-Moreno, Santiago; Zhang, Li; Dybkær, Karen; Chiu, April; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L.; Hsi, Eric D.; Choi, William W.L.; van Krieken, J. Han; Huh, Jooryung; Ponzoni, Maurilio; Ferreri, Andrés J.M.; Parsons, Ben M.; Møller, Michael B.; Piris, Miguel A.; Winter, Jane N.; Medeiros, L. Jeffrey; Hu, Shimin; Young, Ken H.

    2016-01-01

    Double-hit B-cell lymphoma is a common designation for a group of tumors characterized by concurrent translocations of MYC and BCL2, BCL6, or other genes. The prognosis of concurrent MYC and BCL6 translocations is not well known. In this study, we assessed rearrangements and expression of MYC, BCL2 and BCL6 in 898 patients with de novo diffuse large B-cell lymphoma treated with standard chemotherapy (cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab). Neither BCL6 translocation alone (more frequent in activated B-cell like diffuse large B-cell lymphoma) nor in combination with MYC translocation (observed in 2.0% of diffuse large B-cell lymphoma) predicted poorer survival in diffuse large B-cell lymphoma patients. Diffuse large B-cell lymphoma patients with MYC/BCL6 co-expression did have significantly poorer survival, however, MYC/BCL6 co-expression had no effect on prognosis in the absence of MYC/BCL2 co-expression, and had no additive impact in MYC+/BCL2+ cases. The isolated MYC+/BCL6+/BCL2− subset, more frequent in germinal center B-cell like diffuse large B-cell lymphoma, had significantly better survival compared with the isolated MYC+/BCL2+/BCL6− subset (more frequent in activated B-cell like diffuse large B-cell lymphoma). In summary, diffuse large B-cell lymphoma patients with either MYC/BCL6 rearrangements or MYC/BCL6 co-expression did not always have poorer prognosis; MYC expression levels should be evaluated simultaneously; and double-hit B-cell lymphoma needs to be refined based on the specific genetic abnormalities present in these tumors. PMID:26573234

  8. Gene Mutation Profiles in Primary Diffuse Large B Cell Lymphoma of Central Nervous System: Next Generation Sequencing Analyses.

    PubMed

    Todorovic Balint, Milena; Jelicic, Jelena; Mihaljevic, Biljana; Kostic, Jelena; Stanic, Bojana; Balint, Bela; Pejanovic, Nadja; Lucic, Bojana; Tosic, Natasa; Marjanovic, Irena; Stojiljkovic, Maja; Karan-Djurasevic, Teodora; Perisic, Ognjen; Rakocevic, Goran; Popovic, Milos; Raicevic, Sava; Bila, Jelena; Antic, Darko; Andjelic, Bosko; Pavlovic, Sonja

    2016-01-01

    The existence of a potential primary central nervous system lymphoma-specific genomic signature that differs from the systemic form of diffuse large B cell lymphoma (DLBCL) has been suggested, but is still controversial. We investigated 19 patients with primary DLBCL of central nervous system (DLBCL CNS) using the TruSeq Amplicon Cancer Panel (TSACP) for 48 cancer-related genes. Next generation sequencing (NGS) analyses have revealed that over 80% of potentially protein-changing mutations were located in eight genes (CTNNB1, PIK3CA, PTEN, ATM, KRAS, PTPN11, TP53 and JAK3), pointing to the potential role of these genes in lymphomagenesis. TP53 was the only gene harboring mutations in all 19 patients. In addition, the presence of mutated TP53 and ATM genes correlated with a higher total number of mutations in other analyzed genes. Furthermore, the presence of mutated ATM correlated with poorer event-free survival (EFS) (p = 0.036). The presence of the mutated SMO gene correlated with earlier disease relapse (p = 0.023), inferior event-free survival (p = 0.011) and overall survival (OS) (p = 0.017), while mutations in the PTEN gene were associated with inferior OS (p = 0.048). Our findings suggest that the TP53 and ATM genes could be involved in the molecular pathophysiology of primary DLBCL CNS, whereas mutations in the PTEN and SMO genes could affect survival regardless of the initial treatment approach. PMID:27164089

  9. Gene Mutation Profiles in Primary Diffuse Large B Cell Lymphoma of Central Nervous System: Next Generation Sequencing Analyses

    PubMed Central

    Todorovic Balint, Milena; Jelicic, Jelena; Mihaljevic, Biljana; Kostic, Jelena; Stanic, Bojana; Balint, Bela; Pejanovic, Nadja; Lucic, Bojana; Tosic, Natasa; Marjanovic, Irena; Stojiljkovic, Maja; Karan-Djurasevic, Teodora; Perisic, Ognjen; Rakocevic, Goran; Popovic, Milos; Raicevic, Sava; Bila, Jelena; Antic, Darko; Andjelic, Bosko; Pavlovic, Sonja

    2016-01-01

    The existence of a potential primary central nervous system lymphoma-specific genomic signature that differs from the systemic form of diffuse large B cell lymphoma (DLBCL) has been suggested, but is still controversial. We investigated 19 patients with primary DLBCL of central nervous system (DLBCL CNS) using the TruSeq Amplicon Cancer Panel (TSACP) for 48 cancer-related genes. Next generation sequencing (NGS) analyses have revealed that over 80% of potentially protein-changing mutations were located in eight genes (CTNNB1, PIK3CA, PTEN, ATM, KRAS, PTPN11, TP53 and JAK3), pointing to the potential role of these genes in lymphomagenesis. TP53 was the only gene harboring mutations in all 19 patients. In addition, the presence of mutated TP53 and ATM genes correlated with a higher total number of mutations in other analyzed genes. Furthermore, the presence of mutated ATM correlated with poorer event-free survival (EFS) (p = 0.036). The presence of the mutated SMO gene correlated with earlier disease relapse (p = 0.023), inferior event-free survival (p = 0.011) and overall survival (OS) (p = 0.017), while mutations in the PTEN gene were associated with inferior OS (p = 0.048). Our findings suggest that the TP53 and ATM genes could be involved in the molecular pathophysiology of primary DLBCL CNS, whereas mutations in the PTEN and SMO genes could affect survival regardless of the initial treatment approach. PMID:27164089

  10. TBL1XR1/TP63: a novel recurrent gene fusion in B-cell non-Hodgkin lymphoma | Office of Cancer Genomics

    Cancer.gov

    Recently, the landscape of single base mutations in diffuse large B-cell lymphoma (DLBCL) was described. Here we report the discovery of a gene fusion between TBL1XR1 and TP63, the only recurrent somatic novel gene fusion identified in our analysis of transcriptome data from 96 DLBCL cases. Based on this cohort and a further 157 DLBCL cases analyzed by FISH, the incidence in de novo germinal center B cell-like (GCB) DLBCL is 5% (6 of 115).

  11. Expression of a truncated Hmga1b gene induces gigantism, lipomatosis and B-cell lymphomas in mice.

    PubMed

    Fedele, Monica; Visone, Rosa; De Martino, Ivana; Palmieri, Dario; Valentino, Teresa; Esposito, Francesco; Klein-Szanto, Andres; Arra, Claudio; Ciarmiello, Andrea; Croce, Carlo M; Fusco, Alfredo

    2011-02-01

    HMGA1 gene rearrangements have been frequently described in human lipomas. In vitro studies suggest that HMGA1 proteins have a negative role in the control of adipocyte cell growth, and that HMGA1 gene truncation acts in a dominant-negative fashion. Therefore, to define better the role of the HMGA1 alterations in the generation of human lipomas, we generated mice carrying an Hmga1b truncated (Hmga1b/T) gene. These mice develop a giant phenotype together with a drastic expansion of the retroperitoneal and subcutaneous white adipose tissue. We show that the activation of the E2F pathway likely accounts, at least in part, for this phenotype. Interestingly, the Hmga1b/T mice also develop B-cell lymphomas similar to that occurring in Hmga1-knockout mice, supporting a dominant-negative role of the Hmga1b/T mutant also in vivo.

  12. A Strategy for Full Interrogation of Prognostic Gene Expression Patterns: Exploring the Biology of Diffuse Large B Cell Lymphoma

    PubMed Central

    Rimsza, Lisa M.; Unger, Joseph M.; Tome, Margaret E.; LeBlanc, Michael L.

    2011-01-01

    Background Gene expression profiling yields quantitative data on gene expression used to create prognostic models that accurately predict patient outcome in diffuse large B cell lymphoma (DLBCL). Often, data are analyzed with genes classified by whether they fall above or below the median expression level. We sought to determine whether examining multiple cut-points might be a more powerful technique to investigate the association of gene expression with outcome. Methodology/Principal Findings We explored gene expression profiling data using variable cut-point analysis for 36 genes with reported prognostic value in DLBCL. We plotted two-group survival logrank test statistics against corresponding cut-points of the gene expression levels and smooth estimates of the hazard ratio of death versus gene expression levels. To facilitate comparisons we also standardized the expression of each of the genes by the fraction of patients that would be identified by any cut-point. A multiple comparison adjusted permutation p-value identified 3 different patterns of significance: 1) genes with significant cut-point points below the median, whose loss is associated with poor outcome (e.g. HLA-DR); 2) genes with significant cut-points above the median, whose over-expression is associated with poor outcome (e.g. CCND2); and 3) genes with significant cut-points on either side of the median, (e.g. extracellular molecules such as FN1). Conclusions/Significance Variable cut-point analysis with permutation p-value calculation can be used to identify significant genes that would not otherwise be identified with median cut-points and may suggest biological patterns of gene effects. PMID:21829609

  13. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas.

    PubMed

    Pasqualucci, L; Neumeister, P; Goossens, T; Nanjangud, G; Chaganti, R S; Küppers, R; Dalla-Favera, R

    2001-07-19

    Genomic instability promotes tumorigenesis and can occur through various mechanisms, including defective segregation of chromosomes or inactivation of DNA mismatch repair. Although B-cell lymphomas are associated with chromosomal translocations that deregulate oncogene expression, a mechanism for genome-wide instability during lymphomagenesis has not been described. During B-cell development, the immunoglobulin variable (V) region genes are subject to somatic hypermutation in germinal-centre B cells. Here we report that an aberrant hypermutation activity targets multiple loci, including the proto-oncogenes PIM1, MYC, RhoH/TTF (ARHH) and PAX5, in more than 50% of diffuse large-cell lymphomas (DLCLs), which are tumours derived from germinal centres. Mutations are distributed in the 5' untranslated or coding sequences, are independent of chromosomal translocations, and share features typical of V-region-associated somatic hypermutation. In contrast to mutations in V regions, however, these mutations are not detectable in normal germinal-centre B cells or in other germinal-centre-derived lymphomas, suggesting a DLCL-associated malfunction of somatic hypermutation. Intriguingly, the four hypermutable genes are susceptible to chromosomal translocations in the same region, consistent with a role for hypermutation in generating translocations by DNA double-strand breaks. By mutating multiple genes, and possibly by favouring chromosomal translocations, aberrant hypermutation may represent the major contributor to lymphomagenesis.

  14. Age-related decrease in the proportion of germinal center B cells from mouse Peyer's patches is accompanied by an accumulation of somatic mutations in their immunoglobulin genes.

    PubMed

    González-Fernández, A; Gilmore, D; Milstein, C

    1994-11-01

    Somatic hypermutation of immunoglobulin genes and the generation of memory B cells seems to take place in germinal centers, which are chronically present in Peyer's patches. Age-associated changes in the germinal center B cell compartment of Peyer's patches and in the mutations of a kappa light chain transgene were analyzed in unimmunized mice. Somatic mutations accumulate in germinal center B cells slowly and continuously to reach an apparent plateau when the animals are around 5 months old. In contrast, the proportion of germinal center B cells reaches a maximum in very young mice (about 2 months old) and decreases progressively thereafter. These results suggest that the highly mutated B cells in older mice arise by the successive accumulation of mutations in memory cells. The data also show that the optimum time for the analysis of hypermutation of transgenes in Peyer's patches is when the mice are about 5 months old.

  15. Aberrant expression of the CHFR prophase checkpoint gene in human B-cell non-Hodgkin lymphoma.

    PubMed

    Song, Aiqin; Ye, Junli; Zhang, Kunpeng; Yu, Hongsheng; Gao, Yanhua; Wang, Hongfang; Sun, Lirong; Xing, Xiaoming; Yang, Kun; Zhao, Min

    2015-05-01

    Checkpoint with FHA and Ring Finger (CHFR) is a checkpoint protein that reportedly initiates a cell cycle delay in response to microtubule stress during prophase in mitosis, which has become an interesting target for understanding cancer pathogenesis. Recently, aberrant methylation of the CHFR gene associated with gene silencing has been reported in several cancers. In the present study, we examined the expression of CHFR in B-cell non-Hodgkin lymphoma (B-NHL) in vitro and in vivo. Our results showed that the expression level of CHFR mRNA and protein was reduced in B-NHL tissue samples and B cell lines. Furthermore, CHFR methylation was detected in 39 of 122 B-NHL patients, which was not found in noncancerous reactive hyperplasia of lymph node (RH) tissues. CHFR methylation correlated with the reduced expression of CHFR, high International Prognostic Index (IPI) scores and later pathologic Ann Arbor stages of B-NHL. Treatment with demethylation reagent, 5-Aza-dC, could eliminate the hypermethylation of CHFR, enhance CHFR expression and cell apoptosis and inhibit the cell proliferation of Raji cells, which could be induced by high expression of CHFR in Raji cells. Our results indicated that aberrant methylation of CHFR may be associated with the pathogenesis, progression for B-NHL, which might be a novel molecular marker as prognosis and treatment for B-NHL. PMID:25798877

  16. NK and B cell deficiency in a MPS type II family with novel mutation in the IDS gene.

    PubMed

    Torres, Leuridan Cavalcante; Soares, Diogo Cordeiro de Queiroz; Kulikowski, Leslie Domenici; Franco, Jose Francisco; Kim, Chong Ae

    2014-10-01

    The mucopolysaccharidoses (MPSs) are a group of rare, inherited lysosomal storage disorders that are clinically characterized by abnormalities in multiple organ systems and reduced life expectancy. Whereas the lysosome is essential to the functioning of the immune system, some authors suggest that the MPS patients have abnormalities in the immune system similar to the patients with primary immunodeficiency. In this study, we evaluated 8 male MPS type II patients of the same family with novel mutation in the IDS gene. We found in this MPS family a quantitative deficiency of NK and B cells with normal values of IgG, IgM and IgA serum antibodies and normal response to polysaccharide antigens. Interestingly, abnormalities found in these patients were not observed in other MPS patients, suggesting that the type of mutation found in the IDS gene can be implicated in the immunodeficiency.

  17. Elevated PC responsive B cells and anti-PC antibody production in transgenic mice harboring anti-PC immunoglobulin genes.

    PubMed

    Pinkert, C A; Manz, J; Linton, P J; Klinman, N R; Storb, U

    1989-12-01

    The rearrangement of heavy and light chain immunoglobulin genes is necessary for the production of functional antibody molecules. The myeloma MOPC 167 produces specific antibodies to the antigen phosphorylcholine (PC), which is present on bacterial surfaces, fungi and other environmental contaminants. Rearranged heavy and light chain immunoglobulin genes cloned from MOPC 167 were microinjected into mouse eggs. Within the resulting transgenic mice, expression of the transgenes were limited to lymphoid tissues. Transgenic mice produced elevated levels of anti-PC antibodies constitutively, at 16 days of age, when normal non-transgenic mice were not fully immunocompetent. A triggering antigenic stimulus was not necessary to evoke anti-PC immunoglobulin production. Additionally, the frequency of PC-responsive B cells in these transgenic mice was further increased upon specific immunization.

  18. Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors.

    PubMed

    Sutton, Lesley-Ann; Young, Emma; Baliakas, Panagiotis; Hadzidimitriou, Anastasia; Moysiadis, Theodoros; Plevova, Karla; Rossi, Davide; Kminkova, Jana; Stalika, Evangelia; Pedersen, Lone Bredo; Malcikova, Jitka; Agathangelidis, Andreas; Davis, Zadie; Mansouri, Larry; Scarfò, Lydia; Boudjoghra, Myriam; Navarro, Alba; Muggen, Alice F; Yan, Xiao-Jie; Nguyen-Khac, Florence; Larrayoz, Marta; Panagiotidis, Panagiotis; Chiorazzi, Nicholas; Niemann, Carsten Utoft; Belessi, Chrysoula; Campo, Elias; Strefford, Jonathan C; Langerak, Anton W; Oscier, David; Gaidano, Gianluca; Pospisilova, Sarka; Davi, Frederic; Ghia, Paolo; Stamatopoulos, Kostas; Rosenquist, Richard

    2016-08-01

    We report on markedly different frequencies of genetic lesions within subsets of chronic lymphocytic leukemia patients carrying mutated or unmutated stereotyped B-cell receptor immunoglobulins in the largest cohort (n=565) studied for this purpose. By combining data on recurrent gene mutations (BIRC3, MYD88, NOTCH1, SF3B1 and TP53) and cytogenetic aberrations, we reveal a subset-biased acquisition of gene mutations. More specifically, the frequency of NOTCH1 mutations was found to be enriched in subsets expressing unmutated immunoglobulin genes, i.e. #1, #6, #8 and #59 (22-34%), often in association with trisomy 12, and was significantly different (P<0.001) to the frequency observed in subset #2 (4%, aggressive disease, variable somatic hypermutation status) and subset #4 (1%, indolent disease, mutated immunoglobulin genes). Interestingly, subsets harboring a high frequency of NOTCH1 mutations were found to carry few (if any) SF3B1 mutations. This starkly contrasts with subsets #2 and #3 where, despite their immunogenetic differences, SF3B1 mutations occurred in 45% and 46% of cases, respectively. In addition, mutations within TP53, whilst enriched in subset #1 (16%), were rare in subsets #2 and #8 (both 2%), despite all being clinically aggressive. All subsets were negative for MYD88 mutations, whereas BIRC3 mutations were infrequent. Collectively, this striking bias and skewed distribution of mutations and cytogenetic aberrations within specific chronic lymphocytic leukemia subsets implies that the mechanisms underlying clinical aggressiveness are not uniform, but rather support the existence of distinct genetic pathways of clonal evolution governed by a particular stereotyped B-cell receptor selecting a certain molecular lesion(s). PMID:27198719

  19. Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors

    PubMed Central

    Sutton, Lesley-Ann; Young, Emma; Baliakas, Panagiotis; Hadzidimitriou, Anastasia; Moysiadis, Theodoros; Plevova, Karla; Rossi, Davide; Kminkova, Jana; Stalika, Evangelia; Pedersen, Lone Bredo; Malcikova, Jitka; Agathangelidis, Andreas; Davis, Zadie; Mansouri, Larry; Scarfò, Lydia; Boudjoghra, Myriam; Navarro, Alba; Muggen, Alice F.; Yan, Xiao-Jie; Nguyen-Khac, Florence; Larrayoz, Marta; Panagiotidis, Panagiotis; Chiorazzi, Nicholas; Niemann, Carsten Utoft; Belessi, Chrysoula; Campo, Elias; Strefford, Jonathan C.; Langerak, Anton W.; Oscier, David; Gaidano, Gianluca; Pospisilova, Sarka; Davi, Frederic; Ghia, Paolo; Stamatopoulos, Kostas; Rosenquist, Richard

    2016-01-01

    We report on markedly different frequencies of genetic lesions within subsets of chronic lymphocytic leukemia patients carrying mutated or unmutated stereotyped B-cell receptor immunoglobulins in the largest cohort (n=565) studied for this purpose. By combining data on recurrent gene mutations (BIRC3, MYD88, NOTCH1, SF3B1 and TP53) and cytogenetic aberrations, we reveal a subset-biased acquisition of gene mutations. More specifically, the frequency of NOTCH1 mutations was found to be enriched in subsets expressing unmutated immunoglobulin genes, i.e. #1, #6, #8 and #59 (22–34%), often in association with trisomy 12, and was significantly different (P<0.001) to the frequency observed in subset #2 (4%, aggressive disease, variable somatic hypermutation status) and subset #4 (1%, indolent disease, mutated immunoglobulin genes). Interestingly, subsets harboring a high frequency of NOTCH1 mutations were found to carry few (if any) SF3B1 mutations. This starkly contrasts with subsets #2 and #3 where, despite their immunogenetic differences, SF3B1 mutations occurred in 45% and 46% of cases, respectively. In addition, mutations within TP53, whilst enriched in subset #1 (16%), were rare in subsets #2 and #8 (both 2%), despite all being clinically aggressive. All subsets were negative for MYD88 mutations, whereas BIRC3 mutations were infrequent. Collectively, this striking bias and skewed distribution of mutations and cytogenetic aberrations within specific chronic lymphocytic leukemia subsets implies that the mechanisms underlying clinical aggressiveness are not uniform, but rather support the existence of distinct genetic pathways of clonal evolution governed by a particular stereotyped B-cell receptor selecting a certain molecular lesion(s). PMID:27198719

  20. High concordance of gene expression profiling-correlated immunohistochemistry algorithms in diffuse large B-cell lymphoma, not otherwise specified.

    PubMed

    Hwang, Hee Sang; Park, Chan-Sik; Yoon, Dok Hyun; Suh, Cheolwon; Huh, Jooryung

    2014-08-01

    Diffuse large B-cell lymphoma (DLBCL) is classified into prognostically distinct germinal center B-cell (GCB) and activated B-cell subtypes by gene expression profiling (GEP). Recent reports suggest the role of GEP subtypes in targeted therapy. Immunohistochemistry (IHC) algorithms have been proposed as surrogates of GEP, but their utility remains controversial. Using microarray, we examined the concordance of 4 GEP-correlated and 2 non-GEP-correlated IHC algorithms in 381 DLBCLs, not otherwise specified. Subtypes and variants of DLBCL were excluded to minimize the possible confounding effect on prognosis and phenotype. Survival was analyzed in 138 cyclophosphamide, adriamycin, vincristine, and prednisone (CHOP)-treated and 147 rituximab plus CHOP (R-CHOP)-treated patients. Of the GEP-correlated algorithms, high concordance was observed among Hans, Choi, and Visco-Young algorithms (total concordance, 87.1%; κ score: 0.726 to 0.889), whereas Tally algorithm exhibited slightly lower concordance (total concordance 77.4%; κ score: 0.502 to 0.643). Two non-GEP-correlated algorithms (Muris and Nyman) exhibited poor concordance. Compared with the Western data, incidence of the non-GCB subtype was higher in all algorithms. Univariate analysis showed prognostic significance for Hans, Choi, and Visco-Young algorithms and BCL6, GCET1, LMO2, and BCL2 in CHOP-treated patients. On multivariate analysis, Hans algorithm retained its prognostic significance. By contrast, neither the algorithms nor individual antigens predicted survival in R-CHOP treatment. The high concordance among GEP-correlated algorithms suggests their usefulness as reliable discriminators of molecular subtype in DLBCL, not otherwise specified. Our study also indicates that prognostic significance of IHC algorithms may be limited in R-CHOP-treated Asian patients because of the predominance of the non-GCB type. PMID:24705314

  1. High concordance of gene expression profiling-correlated immunohistochemistry algorithms in diffuse large B-cell lymphoma, not otherwise specified.

    PubMed

    Hwang, Hee Sang; Park, Chan-Sik; Yoon, Dok Hyun; Suh, Cheolwon; Huh, Jooryung

    2014-08-01

    Diffuse large B-cell lymphoma (DLBCL) is classified into prognostically distinct germinal center B-cell (GCB) and activated B-cell subtypes by gene expression profiling (GEP). Recent reports suggest the role of GEP subtypes in targeted therapy. Immunohistochemistry (IHC) algorithms have been proposed as surrogates of GEP, but their utility remains controversial. Using microarray, we examined the concordance of 4 GEP-correlated and 2 non-GEP-correlated IHC algorithms in 381 DLBCLs, not otherwise specified. Subtypes and variants of DLBCL were excluded to minimize the possible confounding effect on prognosis and phenotype. Survival was analyzed in 138 cyclophosphamide, adriamycin, vincristine, and prednisone (CHOP)-treated and 147 rituximab plus CHOP (R-CHOP)-treated patients. Of the GEP-correlated algorithms, high concordance was observed among Hans, Choi, and Visco-Young algorithms (total concordance, 87.1%; κ score: 0.726 to 0.889), whereas Tally algorithm exhibited slightly lower concordance (total concordance 77.4%; κ score: 0.502 to 0.643). Two non-GEP-correlated algorithms (Muris and Nyman) exhibited poor concordance. Compared with the Western data, incidence of the non-GCB subtype was higher in all algorithms. Univariate analysis showed prognostic significance for Hans, Choi, and Visco-Young algorithms and BCL6, GCET1, LMO2, and BCL2 in CHOP-treated patients. On multivariate analysis, Hans algorithm retained its prognostic significance. By contrast, neither the algorithms nor individual antigens predicted survival in R-CHOP treatment. The high concordance among GEP-correlated algorithms suggests their usefulness as reliable discriminators of molecular subtype in DLBCL, not otherwise specified. Our study also indicates that prognostic significance of IHC algorithms may be limited in R-CHOP-treated Asian patients because of the predominance of the non-GCB type.

  2. Genes differentially regulated by NKX2-3 in B cells between ulcerative colitis and Crohn's disease patients and possible involvement of EGR1.

    PubMed

    Yu, Wei; Lin, Zhenwu; Hegarty, John P; Chen, Xi; Kelly, Ashley A; Wang, Yunhua; Poritz, Lisa S; Koltun, Walter A

    2012-06-01

    Ulcerative colitis (UC) and Crohn's disease (CD) are two related yet different forms of chronic intestinal inflammation. We investigated the genes regulated by NKX2-3 in B cells from a UC patient by cDNA microarray and compared the results to those genes regulated by NKX2-3 in B cells from a CD patient. Genes regulated by NKX2-3 in B cells from UC were mainly involved in cell growth, inflammation, and immune response. Among the genes regulated by NKX2-3 in both UC and CD, expression of 145 genes was similarly altered and 34 genes was differentially affected by NKX2-3 knockdown. EGR1 was up-regulated in NKX2-3 knockdown B cells from UC while down-regulated in NKX2-3 knockdown B cells from CD. mRNA expressions of NKX2-3 and EGR1 were increased in diseased intestinal tissues from 19 CD patients. NKX2-3 may play different roles in UC and CD pathogenesis by differential regulation of EGR1.

  3. Variant B Cell Receptor Isotype Functions Differ in Hairy Cell Leukemia with Mutated BRAF and IGHV Genes

    PubMed Central

    Weston-Bell, Nicola J.; Forconi, Francesco; Kluin-Nelemans, Hanneke C.; Sahota, Surinder S.

    2014-01-01

    A functional B-cell receptor (BCR) is critical for survival of normal B-cells, but whether it plays a comparable role in B-cell malignancy is as yet not fully delineated. Typical Hairy Cell Leukemia (HCL) is a rare B-cell tumor, and unique in expressing multiple surface immunoglobulin (sIg) isotypes on individual tumor cells (mult-HCL), to raise questions as to their functional relevance. Typical mult-HCL also displays a mutated BRAF V(600)E lesion. Since wild type BRAF is a primary conduit for transducing normal BCR signals, as revealed by deletion modelling studies, it is as yet not apparent if mutated BRAF alters BCR signal transduction in mult-HCL. To address these questions, we examined BCR signalling in mult-HCL cases uniformly displaying mutated BRAF and IGHV genes. Two apparent functional sets were delineated by IgD co-expression. In sIgD+ve mult-HCL, IgD mediated persistent Ca2+ flux, also evident via >1 sIgH isotype, linked to increased ERK activation and BCR endocytosis. In sIgD−ve mult-HCL however, BCR-mediated signals and downstream effects were restricted to a single sIgH isotype, with sIgM notably dysfunctional and remaining immobilised on the cell surface. These observations reveal discordance between expression and function of individual isotypes in mult-HCL. In dual sIgL expressing cases, only a single sIgL was fully functional. We examined effects of anti-BCR stimuli on mult-HCL survival ex-vivo. Significantly, all functional non-IgD isotypes increased ERK1/2 phosphorylation but triggered apoptosis of tumor cells, in both subsets. IgD stimuli, in marked contrast retained tumor viability. Despite mutant BRAF, BCR signals augment ERK1/2 phosphorylation, but isotype dictates functional downstream outcomes. In mult-HCL, sIgD retains a potential to transduce BCR signals for tumor survival in-vivo. The BCR in mult-HCL emerges as subject to complex regulation, with apparent conflicting signalling by individual isotypes when co-expressed with s

  4. Human carbon catabolite repressor protein (CCR4)-associative factor 1: cloning, expression and characterization of its interaction with the B-cell translocation protein BTG1.

    PubMed Central

    Bogdan, J A; Adams-Burton, C; Pedicord, D L; Sukovich, D A; Benfield, P A; Corjay, M H; Stoltenborg, J K; Dicker, I B

    1998-01-01

    The human BTG1 protein is thought to be a potential tumour suppressor because its overexpression inhibits NIH 3T3 cell proliferation. However, little is known about how BTG1 exerts its anti-proliferative activity. In this study, we used the yeast 'two-hybrid' system to screen for interacting protein partners and identified human carbon catabolite repressor protein (CCR4)-associative factor 1 (hCAF-1), a homologue of mouse CAF-1 (mCAF-1) and Saccharomyces cerevisiae yCAF-1/POP2. In vitro the hCAF-1/BTG1 complex formation was dependent on the phosphorylation of a putative p34cdc2 kinase site on BTG1 (Ser-159). In yeast, the Ala-159 mutant did not interact with hCAF-1. In addition, phosphorylation of Ser-159 in vitro showed specificity for the cell cycle kinases p34CDK2/cyclin E and p34CDK2/cyclin A, but not for p34CDK4/cyclin D1 or p34cdc2/cyclin B. Cell synchrony experiments with primary cultures of rat aortic smooth-muscle cells (RSMCs) demonstrated that message and protein levels of rat CAF-1 (rCAF-1) were up-regulated under conditions of cell contact, as previously reported for BTG1 [Wilcox, Scott, Subramanian, Ross, Adams-Burton, Stoltenborg and Corjay (1995) Circulation 92, I34-I35]. Western blot and immunohistochemical analysis showed that rCAF-1 localizes to the nucleus of contact-inhibited RSMCs, where it was physically associated with BTG1, as determined by co-immunoprecipitation with anti-hCAF-1 antisera. Overexpression of hCAF-1 in NIH 3T3 and osteosarcoma (U-2-OS) cells was itself anti-proliferative with colony formation reduced by 67% and 90% respectively. Taken together, these results indicate that formation of the hCAF-1/BTG1 complex is driven by phosphorylation at BTG1 (Ser-159) and implicates this complex in the signalling events of cell division that lead to changes in cellular proliferation associated with cell-cell contact. PMID:9820826

  5. Expression of the B cell repertoire in lpr mice; abnormal expansion of a few VHJ558 germ-line genes.

    PubMed Central

    Alarcón-Riquelme, M E; Fernández, C

    1995-01-01

    Analysis of the VH gene repertoire of the J558 family was done in lipopolysaccharide (LPS)-stimulated resting cells and in vivo activated cells derived from C57Bl/6-lpr mice (IghCb). Using a restriction fragment length polymorphism (RFLP) based on digestion with the restriction enzyme Pstl, the expression of the subfamilies of the J558 family of VH genes could be determined. The J558 subfamily repertoire of resting B cells of the lpr mice was similar to that of the normal mice, while the J558 repertoire of the in vivo-activated cells was altered: analysis and sequencing of the IgM-expressed J558 repertoire of a sick female mouse showed that 50% of the J558 genes were represented by a single VH gene rearrangement, showing that its expansion was monoclonal. Furthermore, this same rearrangement made up to 90% of the J558 repertoire in the IgG2a+ population, showing that it had been preferentially selected, expanded and switched. However, compared with its IgM counterpart, it showed no evidence of somatic hypermutation. PMID:7851020

  6. Genomic Hallmarks of Genes Involved in Chromosomal Translocations in Hematological Cancer

    PubMed Central

    Shugay, Mikhail; Ortiz de Mendíbil, Iñigo; Vizmanos, José L.; Novo, Francisco J.

    2012-01-01

    Reciprocal chromosomal translocations (RCTs) leading to the formation of fusion genes are important drivers of hematological cancers. Although the general requirements for breakage and fusion are fairly well understood, quantitative support for a general mechanism of RCT formation is still lacking. The aim of this paper is to analyze available high-throughput datasets with computational and robust statistical methods, in order to identify genomic hallmarks of translocation partner genes (TPGs). Our results show that fusion genes are generally overexpressed due to increased promoter activity of 5′ TPGs and to more stable 3′-UTR regions of 3′ TPGs. Furthermore, expression profiling of 5′ TPGs and of interaction partners of 3′ TPGs indicates that these features can help to explain tissue specificity of hematological translocations. Analysis of protein domains retained in fusion proteins shows that the co-occurrence of specific domain combinations is non-random and that distinct functional classes of fusion proteins tend to be associated with different components of the gene fusion network. This indicates that the configuration of fusion proteins plays an important role in determining which 5′ and 3′ TPGs will combine in specific fusion genes. It is generally accepted that chromosomal proximity in the nucleus can explain the specific pairing of 5′ and 3′ TPGS and the recurrence of hematological translocations. Using recently available data for chromosomal contact probabilities (Hi-C) we show that TPGs are preferentially located in early replicated regions and occupy distinct clusters in the nucleus. However, our data suggest that, in general, nuclear position of TPGs in hematological cancers explains neither TPG pairing nor clinical frequency. Taken together, our results support a model in which genomic features related to regulation of expression and replication timing determine the set of candidate genes more likely to be translocated in

  7. Laser-based microdissection of single cells from tissue sections and PCR analysis of rearranged immunoglobulin genes from isolated normal and malignant human B cells.

    PubMed

    Küppers, Ralf; Schneider, Markus; Hansmann, Martin-Leo

    2013-01-01

    Normal and malignant B cells carry rearranged immunoglobulin (Ig) variable region genes, which due to their practically limitless diversity represent ideal clonal markers for these cells. We describe here an approach to isolate single cells from frozen tissue sections by microdissection using a laser-based method. From the isolated cells rearranged IgH and Igκ genes are amplified in a semi-nested PCR approach, using a collection of V gene family-specific primers recognizing nearly all V gene segments together with primers for the J gene segments. By sequence analysis of V genes from distinct cells, the clonal relationship of the B lineage cells can unequivocally be determined and related to the histological distribution of the cells. The approach is also useful to determine V, D, and J gene usage. Moreover, the presence and pattern of somatic Ig V gene mutations give valuable insight into the stage of differentiation of the B cells.

  8. Application of HSVtk suicide gene to X-SCID gene therapy: Ganciclovir treatment offsets gene corrected X-SCID B cells

    SciTech Connect

    Uchiyama, Toru; Kumaki, Satoru . E-mail: kumakis@idac.tohoku.ac.jp; Ishikawa, Yoshinori; Onodera, Masafumi; Sato, Miki; Du, Wei; Sasahara, Yoji; Tanaka, Nobuyuki; Sugamura, Kazuo; Tsuchiya, Shigeru

    2006-03-10

    Recently, a serious adverse effect of uncontrolled clonal T cell proliferation due to insertional mutagenesis of retroviral vector was reported in X-SCID gene therapy clinical trial. To offset the side effect, we have incorporated a suicide gene into therapeutic retroviral vector for selective elimination of transduced cells. In this study, B-cell lines from two X-SCID patients were transduced with bicistronic retroviral vector carrying human {gamma}c chain cDNA and Herpes simplex virus thymidine kinase gene. After confirmation of functional reconstitution of the {gamma}c chain, the cells were treated with ganciclovir (GCV). The {gamma}c chain positive cells were eliminated under low concentration without cytotoxicity on untransduced cells and have not reappeared at least for 5 months. Furthermore, the {gamma}c chain transduced cells were still sensitive to GCV after five months. These results demonstrated the efficacy of the suicide gene therapy although further in vivo studies are required to assess feasibility of this approach in clinical trial.

  9. A mouse variable gene fragment binds to DNA independently of the BCR context: a possible role for immature B-cell repertoire establishment.

    PubMed

    Maranhão, Andrea Queiroz; Costa, Maria Beatriz Walter; Guedes, Leonardo; Moraes-Vieira, Pedro Manoel; Raiol, Tainá; Brigido, Marcelo Macedo

    2013-01-01

    B-cell maturation occurs in several steps and requires constant stimulus for its continuing development. From the emergence of the pre-B-cell receptor, signal transduction stimulates and supports B-cell development. Current viewpoints indicate that both positive selection pressure for autoantigens and tonic signaling constitutively stimulate B-cell maturation. In this work, we tested for the presence of a putative DNA binding site in a variable gene segment in a germline configuration, independently of VDJ recombination. After a survey of the public antibody databases, we chose a single mouse heavy variable gene segment that is highly represented in anti-nucleic acid antibodies and tested it for ssDNA binding. A phage display approach was used to search for intrinsic binding to oligo deoxythymidine. The results revealed that binding to an antigen can be influenced by the use of a specific DNA binding V[Formula: see text] gene segment. Our data support the idea that some variable genes have intrinsic reactivity towards specific types of endogenous autoantigens, and this property may contribute to the establishment of the immature B-cell repertoire.

  10. A Mouse Variable Gene Fragment Binds to DNA Independently of the BCR Context: A Possible Role for Immature B-Cell Repertoire Establishment

    PubMed Central

    Maranhão, Andrea Queiroz; Costa, Maria Beatriz Walter; Guedes, Leonardo; Moraes-Vieira, Pedro Manoel; Raiol, Tainá; Brigido, Marcelo Macedo

    2013-01-01

    B-cell maturation occurs in several steps and requires constant stimulus for its continuing development. From the emergence of the pre-B-cell receptor, signal transduction stimulates and supports B-cell development. Current viewpoints indicate that both positive selection pressure for autoantigens and tonic signaling constitutively stimulate B-cell maturation. In this work, we tested for the presence of a putative DNA binding site in a variable gene segment in a germline configuration, independently of VDJ recombination. After a survey of the public antibody databases, we chose a single mouse heavy variable gene segment that is highly represented in anti-nucleic acid antibodies and tested it for ssDNA binding. A phage display approach was used to search for intrinsic binding to oligo deoxythymidine. The results revealed that binding to an antigen can be influenced by the use of a specific DNA binding V gene segment. Our data support the idea that some variable genes have intrinsic reactivity towards specific types of endogenous autoantigens, and this property may contribute to the establishment of the immature B-cell repertoire. PMID:24023756

  11. Targeted next generation sequencing of clinically significant gene mutations and translocations in leukemia.

    PubMed

    Duncavage, Eric J; Abel, Haley J; Szankasi, Philippe; Kelley, Todd W; Pfeifer, John D

    2012-06-01

    Leukemias are currently subclassified based on the presence of recurrent cytogenetic abnormalities and gene mutations. These molecular findings are the basis for risk-adapted therapy; however, such data are generally obtained by disparate methods in the clinical laboratory, and often rely on low-resolution techniques such as fluorescent in situ hybridization. Using targeted next generation sequencing, we demonstrate that the full spectrum of prognostically significant gene mutations including translocations, single nucleotide variants (SNVs), and insertions/deletions (indels) can be identified simultaneously in multiplexed sequence data. As proof of concept, we performed hybrid capture using a panel of 20 genes implicated in leukemia prognosis (covering a total of 1 Mbp) from five leukemia cell lines including K562, NB4, OCI-AML3, kasumi-1, and MV4-11. Captured DNA was then sequenced in multiplex on an Illumina HiSeq. Using an analysis pipeline based on freely available software we correctly identified DNA-level translocations in three of the three cell lines where translocations were covered by our capture probes. Furthermore, we found all published gene mutations in commonly tested genes including NPM1, FLT3, and KIT. The same methodology was applied to DNA extracted from the bone marrow of a patient with acute myeloid leukemia, and identified a t(9;11) translocation with single base accuracy as well other gene mutations. These results indicate that targeted next generation sequencing can be successfully applied in the clinical laboratory to identify a full spectrum of DNA mutations ranging from SNVs and indels to translocations. Such methods have the potential to both greatly streamline and improve the accuracy of DNA-based diagnostics.

  12. Translocation of Y-Linked Genes to the Dot Chromosome in Drosophila pseudoobscura

    PubMed Central

    Larracuente, Amanda M.; Noor, Mohamed A. F.; Clark, Andrew G.

    2010-01-01

    One of the most striking cases of sex chromosome reorganization in Drosophila occurred in the lineage ancestral to Drosophila pseudoobscura, where there was a translocation of Y-linked genes to an autosome. These genes went from being present only in males, never recombining, and having an effective population size of 0.5N to a state of autosomal linkage, where they are passed through both sexes, may recombine, and their effective population size has quadrupled. These genes appear to be functional, and they underwent a drastic reduction in intron size after the translocation. A Y-autosome translocation may pose problems in meiosis if the rDNA locus responsible for X–Y pairing had also moved to an autosome. In this study, we demonstrate that the Y-autosome translocation moved Y-linked genes onto the dot chromosome, a small, mainly heterochromatic autosome with some sex chromosome–like properties. The rDNA repeats occur exclusively on the X chromosome in D. pseudoobscura, but we found that the new Y chromosome of this species harbors four clusters bearing only the intergenic spacer region (IGS) of the rDNA repeats. This arrangement appears analogous to the situation in Drosophila simulans, where X-rDNA to Y-IGS pairing could be responsible for X–Y chromosome pairing. We postulate that the nascent D. pseudoobscura Y chromosome acquired and amplified copies of the IGS, suggesting a potential mechanism for X–Y pairing in D. pseudoobscura. PMID:20147437

  13. Rearrangement and expression of endogenous immunoglobulin genes occur in many murine B cells expressing transgenic membrane IgM.

    PubMed

    Stall, A M; Kroese, F G; Gadus, F T; Sieckmann, D G; Herzenberg, L A; Herzenberg, L A

    1988-05-01

    Transgenic mice carrying immunoglobulin genes coding for mu heavy chain and kappa light chain have been used to study the mechanisms involved in allelic and isotypic exclusion. We report here that individual cells from transgenic mice carrying a functionally rearranged mu heavy chain gene (capable of generating both membrane and secreted forms of IgM) can rearrange an endogenous mu heavy chain gene and simultaneously produce both transgenic and endogenous IgM. These "double-producing" cells express both endogenous and transgenic IgM in the cytoplasm (detected by immunohistology) and on the cell surface (detected by multiparameter fluorescence-activated cell sorter analysis). In addition, they secrete mixed IgM molecules containing both transgenic and endogenous mu heavy chains (detected in serum by radioimmune assay). The transgenic mice studied also have relatively large numbers of cells that produce endogenous immunoglobulin in the absence of detectable transgenic immunoglobulin ("endogenous-only cells"). The mechanisms that generate double-producing cells and endogenous-only cells appear to be under genetic control because the frequencies of these B-cell populations are characteristic for a given transgenic line. Thus, our findings indicate that more is involved in triggering allelic exclusion than the simple presence or absence of membrane mu heavy chains (as has been previously postulated).

  14. B-cell gene rearrangement in benign and malignant lymphoid proliferations of mucosa-associated lymphoid tissue and lymph nodes.

    PubMed

    Torlakovic, E; Cherwitz, D L; Jessurun, J; Scholes, J; McGlennen, R

    1997-02-01

    The polymerase chain reaction (PCR) with polyacrylamide gel electrophoresis was used to study patterns of immunoglobulin heavy chain (IgH) gene rearrangement (GR) in formalin-fixed, paraffin-embedded specimens of lymphomas and reactive conditions of mucosa-associated lymphoid tissue (MALT) and lymph node. DNA amplification was performed directly on sections obtained from paraffin blocks. Five patterns of PCR products were observed: a single band, two or more discrete bands, smearing, a single band overlying a smear, and two or more bands over a smear. A pure polyclonal pattern (smear) was observed in all of the reactive lymph nodes but in only 15% of cases of Helicobacter pylori (HP) gastritis with lymphoid hyperplasia, 25% of cases of HP gastritis without lymphoid hyperplasia, and 37% of colonic specimens of various types. Patterns consisting of multiple bands with or without background smearing were common in gastritis, colitis, and gastric lymphomas. Single bands or dominant bands were present in all lymph node and salivary gland lymphomas, 12 of 14 cases of gastric lymphoma, and 17 of 20 cases of HP gastritis with lymphoid hyperplasia. These bands were reproducible in deeper sections from the same paraffin block or similar areas sampled in different blocks in all of the lymph node and salivary gland lymphomas, 11 of 12 gastric lymphomas, but only 1 of 17 cases of HP gastritis with lymphoid hyperplasia. Bands were also found in 3 of 20 cases of HP gastritis without lymphoid hyperplasia and 17 of 38 colonic specimens, but these were not reproducible. The complexity of patterns of IgH GR in acquired MALT compared with lymph nodes may be the result of a relative paucity of B-cell clones or preferential proliferation of B-cell clones with a limited area of distribution.

  15. An update of preimplantation genetic diagnosis in gene diseases, chromosomal translocation, and aneuploidy screening.

    PubMed

    Chang, Li-Jung; Chen, Shee-Uan; Tsai, Yi-Yi; Hung, Chia-Cheng; Fang, Mei-Ya; Su, Yi-Ning; Yang, Yu-Shih

    2011-09-01

    Preimplantation genetic diagnosis (PGD) is gradually widely used in prevention of gene diseases and chromosomal abnormalities. Much improvement has been achieved in biopsy technique and molecular diagnosis. Blastocyst biopsy can increase diagnostic accuracy and reduce allele dropout. It is cost-effective and currently plays an important role. Whole genome amplification permits subsequent individual detection of multiple gene loci and screening all 23 pairs of chromosomes. For PGD of chromosomal translocation, fluorescence in-situ hybridization (FISH) is traditionally used, but with technical difficulty. Array comparative genomic hybridization (CGH) can detect translocation and 23 pairs of chromosomes that may replace FISH. Single nucleotide polymorphisms array with haplotyping can further distinguish between normal chromosomes and balanced translocation. PGD may shorten time to conceive and reduce miscarriage for patients with chromosomal translocation. PGD has a potential value for mitochondrial diseases. Preimplantation genetic haplotyping has been applied for unknown mutation sites of single gene disease. Preimplantation genetic screening (PGS) using limited FISH probes in the cleavage-stage embryo did not increase live birth rates for patients with advanced maternal age, unexplained recurrent abortions, and repeated implantation failure. Polar body and blastocyst biopsy may circumvent the problem of mosaicism. PGS using blastocyst biopsy and array CGH is encouraging and merit further studies. Cryopreservation of biopsied blastocysts instead of fresh transfer permits sufficient time for transportation and genetic analysis. Cryopreservation of embryos may avoid ovarian hyperstimulation syndrome and possible suboptimal endometrium. PMID:22384431

  16. Detection of Critical Genes Associated with Overall Survival (OS) and Progression-Free Survival (PFS) in Reconstructed Canine B-Cell Lymphoma Gene Regulatory Network (GRN).

    PubMed

    Zamani-Ahmadmahmudi, Mohamad; Najafi, Ali; Nassiri, Seyed Mahdi

    2016-01-01

    Canine B-cell lymphoma GRN was reconstructed from gene expression data in the STRING and MiMI databases. Critical genes of networks were identified and correlations of critical genes with overall survival (OS) and progression-free survival (PFS) were evaluated. Significant changes were detected in the expressions of GLUL, CD44, CD79A, ARF3, FOS, BLOC1S1, FYN, GZMB, GALNT3, IFI44, CD3G, GNG2, ESRP1, and CCND1 in the STRING network and of PECAM1, GLUL, CD44, GDI1, E2F4, TLE1, CD79A, UCP2, CCND1, FYN, RHOQ, BIN1, and A2M in the MiMI network. Final survival analysis highlighted CCND1 and FOS as genes with significant correlations with OS and PFS.

  17. Histone H2AX suppresses translocations in lymphomas of Eμ-c-Myctransgenic mice that contain a germline amplicon of tumor-promoting genes

    PubMed Central

    Fusello, Angela; Horowitz, Julie; Yang-Iott, Katherine; Brady, Brenna L; Yin, Bu; Rowh, Marta AW; Rappaport, Eric; Bassing, Craig H

    2013-01-01

    The DNA damage response (DDR) can restrain the ability of oncogenes to cause genomic instability and drive malignant transformation. The gene encoding the histone H2AX DDR factor maps to 11q23, a region frequently altered in human cancers. Since H2ax functions as a haploinsufficient suppressor of B lineage lymphomas with c-Myc amplification and/or translocation, we determined the impact of H2ax expression on the ability of deregulated c-Myc expression to cause genomic instability and drive transformation of B cells. Neither H2ax deficiency nor haploinsufficiency affected the rate of mortality of Eμ-c-Myc mice from B lineage lymphomas with genomic deletions and amplifications. Yet H2ax functioned in a dosage-dependent manner to prevent unbalanced translocations in Eμ-c-Myc tumors, demonstrating that H2ax functions in a haploinsufficient manner to suppress allelic imbalances and limit molecular heterogeneity within and among Eμ-c-Myc lymphomas. Regardless of H2ax copy number, all Eμ-c-Myc tumors contained identical amplification of chromosome 19 sequences spanning 20 genes. Many of these genes encode proteins with tumor-promoting activities, including Cd274, which encodes the PD-L1 programmed death ligand that induces T cell apoptosis and enables cancer cells to escape immune surveillance. This amplicon was in non-malignant B and T cells and non-lymphoid cells, linked to the Eμ-c-Myc transgene, and associated with overexpression of PD-L1 on non-malignant B cells. Our data demonstrate that, in addition to deregulated c-Myc expression, non-malignant B lineage lymphocytes of Eμ-c-Myc transgenic mice may have constitutive amplification and increased expression of other tumor-promoting genes. PMID:23966158

  18. Gene deregulation and spatial genome reorganization near breakpoints prior to formation of translocations in anaplastic large cell lymphoma

    PubMed Central

    Mathas, Stephan; Kreher, Stephan; Meaburn, Karen J.; Jöhrens, Korinna; Lamprecht, Björn; Assaf, Chalid; Sterry, Wolfram; Kadin, Marshall E.; Daibata, Masanori; Joos, Stefan; Hummel, Michael; Stein, Harald; Janz, Martin; Anagnostopoulos, Ioannis; Schrock, Evelin; Misteli, Tom; Dörken, Bernd

    2009-01-01

    Although the identification and characterization of translocations have rapidly increased, little is known about the mechanisms of how translocations occur in vivo. We used anaplastic large cell lymphoma (ALCL) with and without the characteristic t(2;5)(p23;q35) translocation to study the mechanisms of formation of translocations and of ALCL transformation. We report deregulation of several genes located near the ALCL translocation breakpoint, regardless of whether the tumor contains the t(2;5). The affected genes include the oncogenic transcription factor Fra2 (located on 2p23), the HLH protein Id2 (2p25), and the oncogenic tyrosine kinase CSF1-receptor (5q33.1). Their up-regulation promotes cell survival and repression of T cell-specific gene expression programs that are characteristic for ALCL. The deregulated genes are in spatial proximity within the nuclear space of t(2;5)-negative ALCL cells, facilitating their translocation on induction of double-strand breaks. These data suggest that deregulation of breakpoint-proximal genes occurs before the formation of translocations, and that aberrant transcriptional activity of genomic regions is linked to their propensity to undergo chromosomal translocations. Also, our data demonstrate that deregulation of breakpoint-proximal genes has a key role in ALCL. PMID:19321746

  19. X-linked intellectual disability related genes disrupted by balanced X-autosome translocations.

    PubMed

    Moysés-Oliveira, Mariana; Guilherme, Roberta Santos; Meloni, Vera Ayres; Di Battista, Adriana; de Mello, Claudia Berlim; Bragagnolo, Silvia; Moretti-Ferreira, Danilo; Kosyakova, Nadezda; Liehr, Thomas; Carvalheira, Gianna Maria; Melaragno, Maria Isabel

    2015-12-01

    Detailed molecular characterization of chromosomal rearrangements involving X-chromosome has been a key strategy in identifying X-linked intellectual disability-causing genes. We fine-mapped the breakpoints in four women with balanced X-autosome translocations and variable phenotypes, in order to investigate the corresponding genetic contribution to intellectual disability. We addressed the impact of the gene interruptions in transcription and discussed the consequences of their functional impairment in neurodevelopment. Three patients presented with cognitive impairment, reinforcing the association between the disrupted genes (TSPAN7-MRX58, KIAA2022-MRX98, and IL1RAPL1-MRX21/34) and intellectual disability. While gene expression analysis showed absence of TSPAN7 and KIAA2022 expression in the patients, the unexpected expression of IL1RAPL1 suggested a fusion transcript ZNF611-IL1RAPL1 under the control of the ZNF611 promoter, gene disrupted at the autosomal breakpoint. The X-chromosomal breakpoint definition in the fourth patient, a woman with normal intellectual abilities, revealed disruption of the ZDHHC15 gene (MRX91). The expression assays did not detect ZDHHC15 gene expression in the patient, thus questioning its involvement in intellectual disability. Revealing the disruption of an X-linked intellectual disability-related gene in patients with balanced X-autosome translocation is a useful tool for a better characterization of critical genes in neurodevelopment. © 2015 Wiley Periodicals, Inc. PMID:26290131

  20. Shutoff of BZLF1 gene expression is necessary for immortalization of primary B cells by Epstein-Barr virus.

    PubMed

    Yu, Xianming; McCarthy, Patrick J; Wang, Zhenxun; Gorlen, Daniel A; Mertz, Janet E

    2012-08-01

    The BZLF1 gene controls the switch between latent and lytic infection by Epstein-Barr virus (EBV). We previously reported that both the ZV and ZIIR elements within the BZLF1 promoter, Zp, are potent transcription silencers within the context of an intact EBV genome. We report here identification of another sequence element, ZV', which synergized with ZV in repressing Zp via binding ZEB1 or ZEB2. We then determined the phenotype of a variant of EBV strain B95.8 in which the ZV, ZV', and ZIIR elements were concurrently mutated. HEK293 cell lines infected with this triple mutant (tmt) virus spontaneously synthesized 6- to 10-fold more viral BZLF1, BRLF1, BMRF1, and BLLF1 RNAs, 3- to 6-fold more viral Zta, Rta, and EAD proteins, 3- to 5-fold more viral DNA, and 7- to 9-fold more infectious virus than did 293 cell lines latently infected with either the ZV ZV' double mutant (dmt) or ZIIR mutant (mt) virus. While ZV ZV' ZIIR tmt EBV efficiently infected human primary blood B cells in vitro, it was highly defective in immortalizing them. Instead of the nearly complete silencing of BZLF1 gene expression that occurs within 4 days after primary infection with wild-type EBV, the ZV ZV' ZIIR tmt-infected cells continued to synthesize BZLF1 RNA, with 90% of them dying within 9 days postinfection. BL41 cells infected with this "superlytic" virus also exhibited increased synthesis of BZLF1 and BMRF1 RNAs. Thus, we conclude that the ZV, ZV', and ZIIR silencing elements act synergistically to repress transcription from Zp, thereby tightly controlling BZLF1 gene expression, which is crucial for establishing and maintaining EBV latency.

  1. Antigen-Independent Appearance of Recombination Activating Gene (Rag)-Positive Bone Marrow B Cells in the Spleens of Immunized Mice

    PubMed Central

    Gärtner, Frank; Alt, Frederick W.; Monroe, Robert J.; Seidl, Katherine J.

    2000-01-01

    Splenic B lineage cells expressing recombination activation genes (RAG+) in mice immunized with 4-hydroxy-3-nitrophenyl-acetyl coupled to chicken γ-globulin (NP-CGG) and the adjuvant aluminum-hydroxide (alum) have been proposed to be mature B cells that reexpress RAG after an antigen encounter in the germinal center (GC), a notion supported by findings of RAG expression in peripheral B lymphocyte populations activated in vitro. However, recent studies indicate that these cells might be immature B cells that have not yet extinguished RAG expression. Here, we employ RAG2–green fluorescent protein (GFP) fusion gene knock-in mice to show that RAG+ B lineage cells do appear in the spleen after the administration of alum alone, and that their appearance is independent of T cell interactions via the CD40 pathway. Moreover, splenic RAG+ B lineage cells were detectable in immunized RAG2-deficient mice adoptively transferred with bone marrow (BM) cells, but not with spleen cells from RAG+ mice. Although splenic RAG+ B cells express surface markers associated with GC B cells, we also find the same basic markers on progenitor/precursor BM B cells. Finally, we did not detect RAG gene expression after the in vitro stimulation of splenic RAG− mature B cells with mitogens (lipopolysaccharide and anti-CD40) and cytokines (interleukin [IL]-4 and IL-7). Together, our studies indicate that RAG+ B lineage cells from BM accumulate in the spleen after immunization, and that this accumulation is not the result of an antigen-specific response. PMID:11120771

  2. BCL2 Antibodies Targeted At Different Epitopes Detect Varying Levels of Protein Expression and Correlate with Frequent Gene Amplification in Diffuse Large B Cell Lymphoma

    PubMed Central

    Kendrick, Samantha L.; Redd, Lucas; Muranyi, Andrea; Henricksen, Leigh A.; Stanislaw, Stacey; Smith, Lynette M.; Perry, Anamarija M.; Fu, Kai; Weisenburger, Dennis D.; Rosenwald, Andreas; Ott, German; Gascoyne, Randy D.; Jaffe, Elaine S.; Campo, Elías; Delabie, Jan; Braziel, Rita M.; Cook, James R.; Tubbs, Raymond R.; Staudt, Louis M.; Chan, Wing Chung; Steidl, Christian; Grogan, Thomas M.; Rimsza, Lisa M.

    2014-01-01

    Summary Patients with aggressive, BCL2 protein-positive (+) diffuse large B-cell lymphoma (DLBCL) often experience rapid disease progression that is refractory to standard therapy. However, there is potential for false-negative staining of BCL2 using the standard monoclonal mouse 124 antibody that hinders the identification of these high-risk DLBCL patients. Herein, we compare two alternative rabbit monoclonal antibodies (E17 and SP66) to the 124 clone in staining for BCL2 in formalin-fixed, paraffin-embedded DLBCL tissues. Overall, in two independent DLBCL cohorts E17 and SP66 detected BCL2 expression more frequently than 124. In the context of MYC expression, cases identified as BCL2 (+) with SP66 demonstrated the strongest correlation with worse OS. The 124 clone failed to detect BCL2 expression in the majority of translocation (+), amplification (+), and activated B-cell DLBCL cases in which high levels of BCL2 protein are expected. Using dual in-situ hybridization (Dual ISH) as a new tool to detect BCL2 translocation and amplification, we observed similar results as previously reported for fluorescence ISH for translocation but a higher amplification frequency, indicating that BCL2 amplification may be under-reported in DLBCL. Among the discrepant cases, phosphorylation of BCL2 at T69 and/or S70 was more common than in the concordant cases and may contribute to the 124 false-negatives, in addition to previously associated mutations within the epitope region. The accurate detection of BCL2 expression is important in the prognosis and treatment of DLBCL particularly with new anti-BCL2 therapies. PMID:25090918

  3. Human balanced translocation and mouse gene inactivation implicate Basonuclin 2 in distal urethral development

    PubMed Central

    Bhoj, Elizabeth J; Ramos, Purita; Baker, Linda A; Cost, Nicholas; Nordenskjöld, Agneta; Elder, Frederick F; Bleyl, Steven B; Bowles, Neil E; Arrington, Cammon B; Delhomme, Brigitte; Vanhoutteghem, Amandine; Djian, Philippe; Zinn, Andrew R

    2011-01-01

    We studied a man with distal hypospadias, partial anomalous pulmonary venous return, mild limb-length inequality and a balanced translocation involving chromosomes 9 and 13. To gain insight into the etiology of his birth defects, we mapped the translocation breakpoints by high-resolution comparative genomic hybridization (CGH), using chromosome 9- and 13-specific tiling arrays to analyze genetic material from a spontaneously aborted fetus with unbalanced segregation of the translocation. The chromosome 13 breakpoint was ∼400 kb away from the nearest gene, but the chromosome 9 breakpoint fell within an intron of Basonuclin 2 (BNC2), a gene that encodes an evolutionarily conserved nuclear zinc-finger protein. The BNC2/Bnc2 gene is abundantly expressed in developing mouse and human periurethral tissues. In all, 6 of 48 unrelated subjects with distal hypospadias had nine novel nonsynonymous substitutions in BNC2, five of which were computationally predicted to be deleterious. In comparison, two of 23 controls with normal penile urethra morphology, each had a novel nonsynonymous substitution in BNC2, one of which was predicted to be deleterious. Bnc2−/− mice of both sexes displayed a high frequency of distal urethral defects; heterozygotes showed similar defects with reduced penetrance. The association of BNC2 disruption with distal urethral defects and the gene's expression pattern indicate that it functions in urethral development. PMID:21368915

  4. VH mutant rabbits lacking the VH1a2 gene develop a2+ B cells in the appendix by gene conversion-like alteration of a rearranged VH4 gene.

    PubMed

    Sehgal, D; Mage, R G; Schiaffella, E

    1998-02-01

    We investigated the molecular basis for the appearance of V(H)a2 allotype-bearing B cells in mutant Alicia rabbits. The mutation arose in an a2 rabbit; mutants exhibit altered expression of V(H) genes because of a small deletion encompassing V(H)1a2, the 3'-most gene in the V(H) locus. The V(H)1 gene is the major source of V(H)a allotype because this gene is preferentially rearranged in normal rabbits. In young homozygous ali/ali animals, the levels of a2 molecules found in the serum increase with age. In adult ali/ali rabbits, 20 to 50% of serum Igs and B cells bear a2 allotypic determinants. Previous studies suggested that positive selection results in expansion of a2 allotype-bearing B cells in the appendix of young mutant ali/ali rabbits. We separated appendix cells from a 6-wk-old Alicia rabbit by FACS based on the expression of surface IgM and a2 allotype. The VDJ portion of the expressed Ig mRNA was amplified from the IgM+ a2+ and IgM+ a2- populations by reverse transcriptase-PCR. The cDNAs from both populations were cloned and sequenced. Analysis of these sequences suggested that, in a2+ B cells, the first D proximal functional gene in Alicia rabbits, V(H)4a2, rearranged and was altered further by a gene conversion-like mechanism. Upstream V(H) genes were identified as potential gene sequence donors; V(H)9 was found to be the most frequently used gene donor. Among the a2- B cells, y33 was the most frequently rearranged gene.

  5. Expression of human {beta}-defensin-2 gene induced by CpG-DNA in human B cells

    SciTech Connect

    Han, Su Ho; Kim, Young-Eun; Park, Jeong-A; Park, Jae-Bong; Kim, Yong-Sun; Lee, Younghee; Choi, Ihn-Geun; Kwon, Hyung-Joo

    2009-11-20

    Defensins have a broad range of antimicrobial activity against bacteria, fungi, and viruses. The expression of human {beta}-defensin-2 (hBD-2) is prevalently observed in epithelial cells and is induced by bacterial infection. Here, we have shown that the expression of the hBD-2 gene and release of hBD-2 protein into the medium is up-regulated in response to CpG-DNA in human B cell line RPMI 8226. The induction of hBD-2 was dependent on CG sequence and phosphorothioate backbone-modification. This was also confirmed in primary human lymphocytes. To shed light on the molecular mechanism involved in hBD-2 induction by CpG-DNA, we examined the contribution of the NF-{kappa}B signaling pathway in RPMI 8226 cells. Suppression of MyD88 function and inhibition of NF-{kappa}B nuclear localization blocked hBD-2 induction. The NF-{kappa}B pathway inhibitors also abolished hBD-2 induction. These results may contribute to a better understanding on the therapeutic effects of CpG-DNA against infectious diseases.

  6. CD38 and interleukin 6 gene polymorphism in egyptians with diffuse large B-cell lymphoma (DLBCL).

    PubMed

    Talaat, Roba M; Abdel-Aziz, Amal M; El-Maadawy, Eman A; Abdel-Bary, Naser

    2015-01-01

    Given the importance of understanding the genetic variations involved in the pathogenesis of non-Hodgkin's lymphoma (NHL), this pilot study was designed to investigate the impact of CD38 (184C/G; rs6449182) and IL-6 (-174 G/C; rs1800795) gene polymorphism on susceptibility of Egyptians to diffuse large B cell lymphoma (DLBCL); major types of NHL. To the best of our knowledge, this study is the first one that examines CD38 polymorphism in the NHL. Genotyping polymorphism is performed using restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) for CD38 and Mutagenically separated PCR (MS-PCR) for IL-6 in 100 Egyptian NHL patients with DLBCL subtype and 119 normal controls. The serum level of IL-6 was measured using Enzyme-linked immunosorbent assay (ELISA). CD38 (184C/G) genotype is significantly increased in NHL patients (p < 0.01), while the GG genotype is significantly increased in controls (p < 0.05). Only two genotypes were found (GG and GC) in IL-6 (-174), no CC in our NHL patients and only one case in the controls. Insignificant change in IL-6 (-174 G/C) genotypes was recorded. Significantly increased serum IL-6 (p < 0.05) was positively correlated (r = 0.17; p < 0.05) with the disease. Taken together, our data stressed the importance of CD38 gene polymorphism in developing DLBCL. Our pilot study indicates that CD38 (184) CG genotype might play a role in DLBCL susceptibility in Egyptians. Additional prospective studies on larger population are needed to confirm our findings.

  7. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma.

    PubMed

    Schmitz, Roland; Hansmann, Martin-Leo; Bohle, Verena; Martin-Subero, Jose Ignacio; Hartmann, Sylvia; Mechtersheimer, Gunhild; Klapper, Wolfram; Vater, Inga; Giefing, Maciej; Gesk, Stefan; Stanelle, Jens; Siebert, Reiner; Küppers, Ralf

    2009-05-11

    Proliferation and survival of Hodgkin and Reed/Sternberg (HRS) cells, the malignant cells of classical Hodgkin lymphoma (cHL), are dependent on constitutive activation of nuclear factor kappaB (NF-kappaB). NF-kappaB activation through various stimuli is negatively regulated by the zinc finger protein A20. To determine whether A20 contributes to the pathogenesis of cHL, we sequenced TNFAIP3, encoding A20, in HL cell lines and laser-microdissected HRS cells from cHL biopsies. We detected somatic mutations in 16 out of 36 cHLs (44%), including missense mutations in 2 out of 16 Epstein-Barr virus-positive (EBV(+)) cHLs and a missense mutation, nonsense mutations, and frameshift-causing insertions or deletions in 14 out of 20 EBV(-) cHLs. In most mutated cases, both TNFAIP3 alleles were inactivated, including frequent chromosomal deletions of TNFAIP3. Reconstitution of wild-type TNFAIP3 in A20-deficient cHL cell lines revealed a significant decrease in transcripts of selected NF-kappaB target genes and caused cytotoxicity. Extending the mutation analysis to primary mediastinal B cell lymphoma (PMBL), another lymphoma with constitutive NF-kappaB activity, revealed destructive mutations in 5 out of 14 PMBLs (36%). This report identifies TNFAIP3 (A20), a key regulator of NF-kappaB activity, as a novel tumor suppressor gene in cHL and PMBL. The significantly higher frequency of TNFAIP3 mutations in EBV(-) than EBV(+) cHL suggests complementing functions of TNFAIP3 inactivation and EBV infection in cHL pathogenesis. PMID:19380639

  8. Pretransplant Mobilization with Granulocyte Colony-Stimulating Factor Improves B-Cell Reconstitution by Lentiviral Vector Gene Therapy in SCID-X1 Mice

    PubMed Central

    Huston, Marshall W.; Riegman, Adriaan R.A.; Yadak, Rana; van Helsdingen, Yvette; de Boer, Helen; van Til, Niek P.

    2014-01-01

    Abstract Hematopoietic stem cell (HSC) gene therapy is a demonstrated effective treatment for X-linked severe combined immunodeficiency (SCID-X1), but B-cell reconstitution and function has been deficient in many of the gene therapy treated patients. Cytoreductive preconditioning is known to improve HSC engraftment, but in general it is not considered for SCID-X1 since the poor health of most of these patients at diagnosis and the risk of toxicity preclude the conditioning used in standard bone marrow stem cell transplantation. We hypothesized that mobilization of HSC by granulocyte colony-stimulating factor (G-CSF) should create temporary space in bone marrow niches to improve engraftment and thereby B-cell reconstitution. In the present pilot study supplementing our earlier preclinical evaluation (Huston et al., 2011), Il2rg−/− mice pretreated with G-CSF were transplanted with wild-type lineage negative (Lin−) cells or Il2rg−/− Lin− cells transduced with therapeutic IL2RG lentiviral vectors. Mice were monitored for reconstitution of lymphocyte populations, level of donor cell chimerism, and antibody responses as compared to 2 Gy total body irradiation (TBI), previously found effective in promoting B-cell reconstitution. The results demonstrate that G-CSF promotes B-cell reconstitution similar to low-dose TBI and provides proof of principle for an alternative approach to improve efficacy of gene therapy in SCID patients without adverse effects associated with cytoreductive conditioning. PMID:25222508

  9. Genes Translocated into the Plastid Inverted Repeat Show Decelerated Substitution Rates and Elevated GC Content.

    PubMed

    Li, Fay-Wei; Kuo, Li-Yaung; Pryer, Kathleen M; Rothfels, Carl J

    2016-01-01

    Plant chloroplast genomes (plastomes) are characterized by an inverted repeat (IR) region and two larger single copy (SC) regions. Patterns of molecular evolution in the IR and SC regions differ, most notably by a reduced rate of nucleotide substitution in the IR compared to the SC region. In addition, the organization and structure of plastomes is fluid, and rearrangements through time have repeatedly shuffled genes into and out of the IR, providing recurrent natural experiments on how chloroplast genome structure can impact rates and patterns of molecular evolution. Here we examine four loci (psbA, ycf2, rps7, and rps12 exon 2-3) that were translocated from the SC into the IR during fern evolution. We use a model-based method, within a phylogenetic context, to test for substitution rate shifts. All four loci show a significant, 2- to 3-fold deceleration in their substitution rate following translocation into the IR, a phenomenon not observed in any other, nontranslocated plastid genes. Also, we show that after translocation, the GC content of the third codon position and of the noncoding regions is significantly increased, implying that gene conversion within the IR is GC-biased. Taken together, our results suggest that the IR region not only reduces substitution rates, but also impacts nucleotide composition. This finding highlights a potential vulnerability of correlating substitution rate heterogeneity with organismal life history traits without knowledge of the underlying genome structure. PMID:27401175

  10. Genes Translocated into the Plastid Inverted Repeat Show Decelerated Substitution Rates and Elevated GC Content

    PubMed Central

    Li, Fay-Wei; Kuo, Li-Yaung; Pryer, Kathleen M.; Rothfels, Carl J.

    2016-01-01

    Plant chloroplast genomes (plastomes) are characterized by an inverted repeat (IR) region and two larger single copy (SC) regions. Patterns of molecular evolution in the IR and SC regions differ, most notably by a reduced rate of nucleotide substitution in the IR compared to the SC region. In addition, the organization and structure of plastomes is fluid, and rearrangements through time have repeatedly shuffled genes into and out of the IR, providing recurrent natural experiments on how chloroplast genome structure can impact rates and patterns of molecular evolution. Here we examine four loci (psbA, ycf2, rps7, and rps12 exon 2–3) that were translocated from the SC into the IR during fern evolution. We use a model-based method, within a phylogenetic context, to test for substitution rate shifts. All four loci show a significant, 2- to 3-fold deceleration in their substitution rate following translocation into the IR, a phenomenon not observed in any other, nontranslocated plastid genes. Also, we show that after translocation, the GC content of the third codon position and of the noncoding regions is significantly increased, implying that gene conversion within the IR is GC-biased. Taken together, our results suggest that the IR region not only reduces substitution rates, but also impacts nucleotide composition. This finding highlights a potential vulnerability of correlating substitution rate heterogeneity with organismal life history traits without knowledge of the underlying genome structure. PMID:27401175

  11. Extinction of expression of the translocated myc gene in somatic cell hybrids between mouse myeloma and L-cells.

    PubMed

    Greenberg, A; Hijazzi, M; Sharir, H; Cohen, L; Bergman, Y; Ber, R; Laskov, R

    1989-01-15

    Most murine plasma-cell tumors show a t(12;15) reciprocal chromosomal translocation which truncates the first exon of one of the myc gene alleles and fuses it to one of the switch regions of the immunoglobulin (Ig) heavy-chain locus. This results in constitutive activation of the translocated myc gene and the production of smaller-sized mRNA molecules, which are initiated at new sites in the first myc intron. The normal myc allele is not expressed in these myeloma cells. We have studied the expression of the translocated myc gene in somatic cell hybrids between mouse myeloma and L-cells. Our previous findings show that Ig gene expression is extinguished in such hybrids. In the present work we found that the hybrids contain the normal and translocated myc genes. In contrast to the myeloma parental cells which express the translocated myc gene, the hybrids are similar to the L-cells in expressing only the normal myc allele. Our results suggest that the L-cell, fibroblast-like phenotype, is dominant in these hybrids, and show that the translocated myc gene is expressed in a tissue-specific manner in the context of the myeloma cell, and is not expressed when subjected to a fibroblast-like cellular environment.

  12. Microarray gene expression analysis of fixed archival tissue permits molecular classification and identification of potential therapeutic targets in diffuse large B-cell lymphoma.

    PubMed

    Linton, Kim; Howarth, Christopher; Wappett, Mark; Newton, Gillian; Lachel, Cynthia; Iqbal, Javeed; Pepper, Stuart; Byers, Richard; Chan, Wing John; Radford, John

    2012-01-01

    Refractory/relapsed diffuse large B-cell lymphoma (DLBCL) has a poor prognosis. Novel drugs targeting the constitutively activated NF-κB pathway characteristic of ABC-DLBCL are promising, but evaluation depends on accurate activated B cell-like (ABC)/germinal center B cell-like (GCB) molecular classification. This is traditionally performed on gene microarray expression profiles of fresh biopsies, which are not routinely collected, or by immunohistochemistry on formalin-fixed, paraffin-embedded (FFPE) tissue, which lacks reproducibility and classification accuracy. We explored the possibility of using routine archival FFPE tissue for gene microarray applications. We examined Affymetrix HG U133 Plus 2.0 gene expression profiles from paired archival FFPE and fresh-frozen tissues of 40 ABC/GCB-classified DLBCL cases to compare classification accuracy and test the potential for this approach to aid the discovery of therapeutic targets and disease classifiers in DLBCL. Unsupervised hierarchical clustering of unselected present probe sets distinguished ABC/GCB in FFPE with remarkable accuracy, and a Bayesian classifier correctly assigned 32 of 36 cases with >90% probability. Enrichment for NF-κB genes was appropriately seen in ABC-DLBCL FFPE tissues. The top discriminatory genes expressed in FFPE separated cases with high statistical significance and contained novel biology with potential therapeutic insights, warranting further investigation. These results support a growing understanding that archival FFPE tissues can be used in microarray experiments aimed at molecular classification, prognostic biomarker discovery, and molecular exploration of rare diseases.

  13. Fixed nuclei as alternative template of BIOMED-2 multiplex polymerase chain reaction for immunoglobulin gene clonality testing in B-cell malignancies.

    PubMed

    Tang, Yuan; Chen, Jie; Wang, Jianchao; Zheng, Ke; Liao, Dianying; Liao, Xiaomei; Liu, Weiping; Wang, Lin

    2015-01-01

    Evaluation of immunoglobulin (Ig) gene rearrangements with BIOMED-2 multiplex PCR has become a standard detection of clonality in mature B cell malignancies. Conventionally, this method is relatively labor-intensive and time-consuming, as it requires DNA isolation from bone marrow aspirates (BM) or peripheral blood (PB) in patients with BM or PB involvement. On the other hand, fluorescence in situ hybridization (FISH) is routinely used as genetic screening in B cell malignancies, but the surplus fixed nuclei initially prepared for FISH usually turn useless afterwards. We sought to use these surplus nuclei after FISH as a template to perform PCR-based Ig gene clonality testing. Templates of 12 patients with mature B cell malignancies, which consisted of both DNA isolated with commercial DNA isolation kit from fresh BM or PB (DNA group) and the fixed nuclei initially prepared for FISH (nuclei group) from the same individuals, were subjected to PCR with BIOMED-2 primer sets for immunoglobulin heavy chain and kappa light chain under recommended conditions. Our result, for the first time, showed a high consistency between the two groups in detecting B cell clonality, which indicates that nuclei for FISH can function as a reliable template comparable to fresh tissue-isolated DNA in PCR based Ig clonality testing. This offers a simple, rapid and more economical alternative to standard Ig testing based on regular DNA.

  14. Human pre-B and B cell membrane mu-chains are noncovalently associated with a disulfide-linked complex containing a product of the B29 gene.

    PubMed

    Clark, M R; Friedrich, R J; Campbell, K S; Cambier, J C

    1992-11-01

    B cell activation after Ag binding to membrane Ig (mIg) is mediated by a complex series of events that involves proximal activation of a tyrosine kinase and phospholipase C. Until recently it was unclear how mIgM and mIgD, with their limited cytoplasmic domains (three amino acids on each H chain), were able to couple to these secondary signal transducers. Studies of murine B cells conducted in several laboratories, including our own, suggest that products of the mb-1 (IgM-alpha or IgD-alpha) and B29 (Ig-beta, Ig-gamma) genes occur as disulfide-linked alpha/beta and alpha/gamma heterodimers that are noncovalently associated with mIgM and mIgD. Although studies utilizing Daudi and Raji cell lines indicate that human mIgM is also associated with a dimer containing the mb-1 gene product, the other molecules associated with the human receptor have not been identified. In this report we characterize the phosphoproteins that are noncovalently associated with mIgM on human tonsillar B cells and human pre-B cell lines. mIgM is noncovalently associated with a disulfide-linked heterodimer composed of variably glycosylated forms of two core proteins with apparent molecular mass of 26.5 and 27 kDa. Western blotting analysis reveals that the lower m.w. component of each of the mIgM-associated heterodimers and its 27-kDa deglycosylated core protein are reactive with antibodies against the murine B29 gene product. Thus, a product of the B29 gene is a component of the AgR complex in human and murine B cells, occurring as a disulfide linked dimer with product(s) of the mb-1 gene. Interestingly, mb-1 and B29 gene products expressed on human cells are much more heterogenously N-glycosylated than their murine B cell counterparts.

  15. cDNA sequence of a human skeletal muscle ADP/ATP translocator: lack of a leader peptide, divergence from a fibroblast translocator cDNA, and coevolution with mitochondrial DNA genes

    SciTech Connect

    Neckelmann, N.; Li, K.; Wade, R.P.; Shuster, R.; Wallace, D.C.

    1987-11-01

    The authors have characterized a 1400-nucleotide cDNA for the human skeletal muscle ADP/ATP translocator. The deduced amino acid sequence is 94% homologous to the beef heart ADP/ATP translocator protein and contains only a single additional amino-terminal methionine. This implies that the human translocator lacks an amino-terminal targeting peptide, a conclusion substantiated by measuring the molecular weight of the protein synthesized in vitro. A 1400-nucleotide transcript encoding the skeletal muscle translocator was detected on blots of total RNA from human heart, kidney, skeletal muscle, and HeLa cells by hybridization with oligonucleotide probes homologous to the coding region and 3' noncoding region of the cDNA. However, the level of this mRNA varied substantially among tissues. Comparison of our skeletal muscle translocator sequence with that of a recently published human fibroblast translocator cognate revealed that the two proteins are 88% identical and diverged about 275 million years ago. Hence, tissues vary both in the level of expression of individual translocator genes and in differential expression of cognate translocator genes. Comparison of the base substitution rates of the ADP/ATP translocator and the oxidative phosphorylation genes encoded by mitochondrial DNA revealed that the mitochondrial DNA genes fix 10 times more synonymous substitutions and 12 times more replacement substitutions; yet, these nuclear and cytoplasmic respiration genes experience comparable evolutionary constraints. This suggest that the mitochondrial DNA genes are highly prone to deleterious mutations.

  16. Small molecule inhibitors of IkappaB kinase are selectively toxic for subgroups of diffuse large B-cell lymphoma defined by gene expression profiling.

    PubMed

    Lam, Lloyd T; Davis, R Eric; Pierce, Jackie; Hepperle, Michael; Xu, Yajun; Hottelet, Maria; Nong, Yuhua; Wen, Danyi; Adams, Julian; Dang, Lenny; Staudt, Louis M

    2005-01-01

    Constitutive activation of the NF-kappaB pathway is required for survival of the activated B cell-like (ABC) subgroup of diffuse large B-cell lymphoma (DLBCL). Here we show that a small molecule IkappaB kinase (IKK) inhibitor, PS-1145, and related compounds are toxic for ABC DLBCL cell lines but not for cell lines derived from the other prevalent form of DLBCL, germinal center B cell-like DLBCL. Treatment of ABC lines with these inhibitors rapidly induced a series of gene expression changes that were attributable to cessation of constitutive IKK activity, similar to changes induced by acute expression of genetic inhibitors of NF-kappaB, confirming the effectiveness and specificity of this compound. Before cell death, inhibition of IKK also induced features of apoptosis and an arrest in the G1 phase of the cell cycle. To test further the specificity of this toxicity, an inducible form of NF-kappaB was created by fusing the p65 NF-kappaB subunit with the ligand-binding domain of the estrogen receptor (p65-ERD). In the presence of tamoxifen, p65-ERD reversed the toxicity of IKK inhibition and restored expression of many NF-kappaB target genes. Another subgroup of DLBCL, primary mediastinal B-cell lymphoma (PMBL), also expresses NF-kappaB target genes, and treatment of a PMBL cell line with an IKK inhibitor was toxic and induced gene expression changes of a distinct group of NF-kappaB target genes. These studies validate the NF-kappaB pathway as a promising therapeutic target in ABC DLBCL, PMBL, and other lymphomas that depend on the activity of NF-kappaB for survival and proliferation. PMID:15671525

  17. Identification and validation of a two-gene expression index for subtype classification and prognosis in Diffuse Large B-Cell Lymphoma.

    PubMed

    Xu, Qinghua; Tan, Cong; Ni, Shujuan; Wang, Qifeng; Wu, Fei; Liu, Fang; Ye, Xun; Meng, Xia; Sheng, Weiqi; Du, Xiang

    2015-01-01

    The division of diffuse large B-cell lymphoma (DLBCL) into germinal center B-cell-like (GCB) and activated B-cell-like (ABC) subtypes based on gene expression profiling has proved to be a landmark in understanding the pathogenesis of the disease. This study aims to identify a novel biomarker to facilitate the translation of research into clinical practice. Using a training set of 350 patients, we identified a two-gene expression signature, "LIMD1-MYBL1 Index", which is significantly associated with cell-of-origin subtypes and clinical outcome. This two-gene index was further validated in two additional dataset. Tested against the gold standard method, the LIMD1-MYBL1 Index achieved 81% sensitivity, 89% specificity for ABC group and 81% sensitivity, 87% specificity for GCB group. The ABC group had significantly worse overall survival than the GCB group (hazard ratio = 3.5, P = 0.01). Furthermore, the performance of LIMD1-MYBL1 Index was satisfactory compared with common immunohistochemical algorithms. Thus, the LIMD1-MYBL1 Index had considerable clinical value for DLBCL subtype classification and prognosis. Our results might prompt the further development of this two-gene index to a simple assay amenable to routine clinical practice. PMID:25940947

  18. Expression of HOX genes in acute leukemia cell lines with and without MLL translocations.

    PubMed

    Quentmeier, Hilmar; Dirks, Wilhelm G; Macleod, Roderick A F; Reinhardt, Julia; Zaborski, Margarete; Drexler, Hans G

    2004-03-01

    In primary cells from acute leukemia patients, expression of the genes MEIS1, HOXA5, HOXA7 and HOXA9 has been reported to be correlated with the occurrence of MLL translocations. It was our aim to find out whether MLL mutant (MLLmu) and MLL wild-type (MLLwt) acute leukemia-derived cell lines might likewise be discriminated on the basis of HOX gene expression. Southern blot analysis, performed to verify the MLL status of the cells, showed that NOMO-1 was the only cell line not tested previously carrying a rearranged MLL gene. Fluorescence in situ hybridization analysis demonstrated that this cell line exhibited a reciprocal t(9;11)(q23;p22). Sequencing of RT-PCR products thereof identified unique MLL exon 10/AF-9 exon 5 fusion transcripts. We divided the acute leukemia-derived cell lines (n = 37) according to the results of Southern blot analysis into MLLmu (n = 19) and MLLwt (n = 18). Expression of HOX genes was then analyzed by applying reverse transcriptase-polymerase chain reaction, Northern and Western blot analyses. Acute myeloid leukemia (AML) cell lines expressed the HOX genes significantly more often than acute lymphoblastic (ALL) cell lines. In ALL, cells with MLL translocations expressed the genes 4 times more often than MLLwt cells. Most distinct was the correlation between MLL status and MEIS1 expression in ALL-derived cell lines: 8/8 MLLmu but 0/10 MLLwt cell lines expressed MEIS1. Northern and Western blot analysis confirmed that also HOXA9 and FLT3 were significantly more often and stronger expressed in MLLmu than in MLLwt ALL cell lines. These results suggest that MLL aberrations may regulate MEIS1 and HOXA9 gene expression in ALL-derived cell lines, while AML-derived cell lines express these genes independently of the MLL status. PMID:15160920

  19. Regulation of B cell linker protein transcription by PU.1 and Spi-B in murine B cell acute lymphoblastic leukemia.

    PubMed

    Xu, Li S; Sokalski, Kristen M; Hotke, Kathryn; Christie, Darah A; Zarnett, Oren; Piskorz, Jan; Thillainadesan, Gobi; Torchia, Joseph; DeKoter, Rodney P

    2012-10-01

    B cell acute lymphoblastic leukemia (B-ALL) is frequently associated with mutations or chromosomal translocations of genes encoding transcription factors. Conditional deletion of genes encoding the E26-transformation-specific transcription factors, PU.1 and Spi-B, in B cells (ΔPB mice) leads to B-ALL in mice at 100% incidence rate and with a median survival of 21 wk. We hypothesized that PU.1 and Spi-B may redundantly activate transcription of genes encoding tumor suppressors in the B cell lineage. Characterization of aging ΔPB mice showed that leukemia cells expressing IL-7R were found in enlarged thymuses. IL-7R-expressing B-ALL cells grew in culture in response to IL-7 and could be maintained as cell lines. Cultured ΔPB cells expressed reduced levels of B cell linker protein (BLNK), a known tumor suppressor gene, compared with controls. The Blnk promoter contained a predicted PU.1 and/or Spi-B binding site that was required for promoter activity and occupied by PU.1 and/or Spi-B as determined by chromatin immunoprecipitation. Restoration of BLNK expression in cultured ΔPB cells opposed IL-7-dependent proliferation and induced early apoptosis. We conclude that the tumor suppressor BLNK is a target of transcriptional activation by PU.1 and Spi-B in the B cell lineage.

  20. Mutations, kataegis, and translocations in B lymphocytes: towards a mechanistic understanding of AID promiscuous activity

    PubMed Central

    Casellas, Rafael; Basu, Uttiya; Yewdell, William T.; Chaudhuri, Jayanta; Robbiani, Davide F.; Di Noia, Javier M.

    2016-01-01

    As B cells engage in the immune response they express the deaminase AID to initiate the hypermutation and recombination of immunoglobulin genes, which are crucial processes for the efficient recognition and disposal of pathogens, However, AID must be tightly controlled in B cells to minimize off-targeting mutations, which can drive chromosomal translocations and the development of B cell malignancies, such as lymphomas. Recent genomic and biochemical analyses have begun to unravel the crucial question of how AID-mediated deamination is targeted outside immunoglobulin genes. Here, we discuss the transcriptional and topological features that are emerging as key drivers of AID promiscuous activity. PMID:26898111

  1. Long-range oncogenic activation of Igh-c-myc translocations by the Igh 3' regulatory region.

    PubMed

    Gostissa, Monica; Yan, Catherine T; Bianco, Julia M; Cogné, Michel; Pinaud, Eric; Alt, Frederick W

    2009-12-10

    B-cell malignancies, such as human Burkitt's lymphoma, often contain translocations that link c-myc or other proto-oncogenes to the immunoglobulin heavy chain locus (IgH, encoded by Igh). The nature of elements that activate oncogenes within such translocations has been a long-standing question. Translocations within Igh involve DNA double-strand breaks initiated either by the RAG1/2 endonuclease during variable, diversity and joining gene segment (V(D)J) recombination, or by activation-induced cytidine deaminase (AID, also known as AICDA) during class switch recombination (CSR). V(D)J recombination in progenitor B (pro-B) cells assembles Igh variable region exons upstream of mu constant region (Cmu) exons, which are the first of several sets of C(H) exons ('C(H) genes') within a C(H) locus that span several hundred kilobases (kb). In mature B cells, CSR deletes Cmu and replaces it with a downstream C(H) gene. An intronic enhancer (iEmu) between the variable region exons and Cmu promotes V(D)J recombination in developing B cells. Furthermore, the Igh 3' regulatory region (Igh3'RR) lies downstream of the C(H) locus and modulates CSR by long-range transcriptional enhancement of C(H) genes. Transgenic mice bearing iEmu or Igh3'RR sequences fused to c-myc are predisposed to B lymphomas, demonstrating that such elements can confer oncogenic c-myc expression. However, in many B-cell lymphomas, Igh-c-myc translocations delete iEmu and place c-myc up to 200 kb upstream of the Igh3'RR. Here we address the oncogenic role of the Igh3'RR by inactivating it in two distinct mouse models for B-cell lymphoma with Igh-c-myc translocations. We show that the Igh3'RR is dispensable for pro-B-cell lymphomas with V(D)J recombination-initiated translocations, but is required for peripheral B-cell lymphomas with CSR-associated translocations. As the Igh3'RR is not required for CSR-associated Igh breaks or Igh-c-myc translocations in peripheral B-cell lymphoma progenitors, we conclude that

  2. Morphologic and functional effects of gamma secretase inhibition on splenic marginal zone B cells.

    PubMed

    de Vera Mudry, Maria Cristina; Regenass-Lechner, Franziska; Ozmen, Laurence; Altmann, Bernd; Festag, Matthias; Singer, Thomas; Müller, Lutz; Jacobsen, Helmut; Flohr, Alexander

    2012-01-01

    The γ-secretase complex is a promising target in Alzheimer's disease because of its role in the amyloidogenic processing of β-amyloid precursor protein. This enzyme also catalyzes the cleavage of Notch receptor, resulting in the nuclear translocation of intracellular Notch where it modulates gene transcription. Notch signaling is essential in cell fate decisions during embryogenesis, neuronal differentiation, hematopoiesis, and development of T and B cells, including splenic marginal zone (MZ) B cells. This B cell compartment participates in the early phases of the immune response to blood-borne bacteria and viruses. Chronic treatment with the oral γ-secretase inhibitor RO4929097 resulted in dose-dependent decreased cellularity (atrophy) of the MZ of rats and mice. Significant decreases in relative MZ B-cell numbers of RO4929097-treated animals were confirmed by flow cytometry. Numbers of MZ B cells reverted to normal after a sufficient RO4929097-free recovery period. Functional characterization of the immune response in relation to RO4929097-related MZ B cell decrease was assessed in mice vaccinated with inactivated vesicular stomatitis virus (VSV). Compared with the immunosuppressant cyclosporin A, RO4929097 caused only mild and reversible delayed early neutralizing IgM and IgG responses to VSV. Thus, the functional consequence of MZ B cell decrease on host defense is comparatively mild.

  3. Tet2 facilitates the de-repression of myeloid target genes during C/EBPa induced transdifferentiation of pre-B cells

    PubMed Central

    Kallin, Eric M.; Rodríguez-Ubreva, Javier; Christensen, J esper; Cimmino, Luisa; Aifantis, Iannis; Helin, Kristian; Ballestar, Esteban; Graf, Thomas

    2013-01-01

    SUMMARY The methylcytosine hydroxylase Tet2 has been implicated in hematopoietic differentiation and the formation of myeloid malignancies when mutated. An ideal system to study the role of Tet2 in myelopoeisis is C/EBPa induced transdifferentiation of pre-B cells into macrophages. Here we found that C/EBPa binds to upstream regions of Tet2 and that the gene becomes activated. Tet2 knockdowns impaired the upregulation of macrophage markers as well as phagocytic capacity, suggesting that the enzyme is required for both early and late stage myeloid differentiation. A slightly weaker effect was seen in primary cells with a Tet2 ablation. Expression arrays of transdifferentiating cells with Tet2 knockdowns permitted the identification of a small subset of myeloid genes whose upregulation was blunted. Activation of these target genes was accompanied by rapid increases of promoter hydroxy-methylation. Our observations indicate that Tet2 helps C/EBPa rapidly de-repress myeloid genes during the conversion of pre-B cells into macrophages. PMID:22981865

  4. Molecular cloning and chromosomal mapping of bone marrow stromal cell surface gene, BST2, that may be involved in pre-B-cell growth

    SciTech Connect

    Ishikawa, Jun; Kaisho, Tsuneyasu; Tomizawa, Hitoshi

    1995-04-10

    Bone marrow stromal cells regulate B-cell growth and development through their surface molecules and cytokines. In this study, we generated a mAb, RS38, that recognized a novel human membrane protein, BST-2, expressed on bone marrow stromal cell lines and synovial cell lines. We cloned a cDNA encoding BST-2 from a rheumatoid arthritis-derived synovial cell line. BST-2 is a 30- to 36-kDa type II transmembrane protein, consisting of 180 amino acids. The BST-2 gene (HGMW-approved symbol BST2) is located on chromosome 19p13.2. BST-2 is expressed not only on certain bone marrow stromal cell lines but also on various normal tissues, although its expression pattern is different from that of another bone marrow stromal cell surface molecule, BST-1. BST-2 surface expression on fibroblast cell lines facilitated the stromal cell-dependent growth of a murine bone marrow-derived pre-B-cell line, DW34. The results suggest that BST-2 may be involved in pre-B-cell growth. 45 refs., 7 figs., 2 tabs.

  5. Multiple myeloma oncogene 1 (MUM1)/interferon regulatory factor 4 (IRF4) upregulates monokine induced by interferon-gamma (MIG) gene expression in B-cell malignancy.

    PubMed

    Uranishi, M; Iida, S; Sanda, T; Ishida, T; Tajima, E; Ito, M; Komatsu, H; Inagaki, H; Ueda, R

    2005-08-01

    MUM1 (multiple myeloma oncogene 1)/IRF4 (interferon regulatory factor 4) is a transcription factor that is activated as a result of t(6;14)(p25;q32) in multiple myeloma. MUM1 expression is seen in various B-cell lymphomas and predicts an unfavorable outcome in some lymphoma subtypes. To elucidate its role in B-cell malignancies, we prepared MUM1-expressing Ba/F3 cells, which proliferated until higher cellular density than the parental cells, and performed cDNA microarray analysis to identify genes whose expression is regulated by MUM1. We found that the expression of four genes including FK506-binding protein 3 (FKBP3), the monokine induced by interferon-gamma(MIG), Fas apoptotic inhibitory molecule (Faim) and Zinc-finger protein 94 was altered in the MUM1-expressing cells. We then focused on MIG since its expression was immediately upregulated by MUM1. In reporter assays, MUM1 activated the MIG promoter in cooperation with PU.1, and the interaction between MUM1 and the MIG promoter sequence was confirmed. The expression of MIG was correlated with that of MUM1 in B-CLL cell lines, and treatment with neutralizing antibodies against MIG and its receptor, CXCR3, slightly inhibited the proliferation of two MUM1-expressing lines. These results suggest that MUM1 plays roles in the progression of B-cell lymphoma/leukemia by regulating the expression of various genes including MIG. Leukemia (2005) 19, 1471-1478. doi:10.1038/sj.leu.2403833; published online 16 June 2005.

  6. Characterization and expression analysis of B Cell receptor accessory molecule CD79 gene in humphead snapper ( Lutjanus sanguineus)

    NASA Astrophysics Data System (ADS)

    Huang, Yucong; Yan, Xiuying; Cai, Shuanghu; Cai, Jia; Jian, Jichang; Lu, Yishan; Tang, Jufen; Wu, Zaohe

    2016-04-01

    CD79, a key component of the B cell antigen receptor complex, is composed of CD79α(Igα) and CD79β(Igβ) encoded by mb-1 and B29 respectively, and plays an important role in B cell signaling. In this study, we isolated and characterized mb-1 and B29 from humphead snapper ( Lutjanus sanguineus). Their tissue distribution and expression profiles after stimulations in vitro and in vivo were also investigated. The humphead snapper mb-1 and B29 contain open reading frames of 684 bp and 606 bp, encoding 227 amino acids and 201 amino acids, respectively. Both CD79α and CD79β possess signal peptide, extracellular Ig domain, transmembrane region and immunoreceptor tyrosine kinase activation motif (ITAM). Mb-1 is highly expressed in lymphoid organs (thymus, posterior kidney and spleen) and mucosal-associated lymphoid tissues (gill and intestine), while B29 is mainly detected in posterior kidney, spleen, gill and skin. Furthermore, transcription of mb-1 and B29 in head kidney leucocytes was up-regulated following lipopolysaccharide (LPS), pokeweed mitogen (PWM), and polyinosinic-polycytidylic acid (PolyI:C) stimulation, respectively, and their expression level in anterior kidney and spleen was also increased after challenged with formalin-inactived Vibrio harveyi. These results indicated that humphead snapper CD79 molecule might play an important role in immune response to pathogen infection.

  7. Myeloid Translocation Gene-16 Co-Repressor Promotes Degradation of Hypoxia-Inducible Factor 1

    PubMed Central

    Kumar, Parveen; Gullberg, Urban; Olsson, Inge; Ajore, Ram

    2015-01-01

    The myeloid translocation gene 16 (MTG16) co-repressor down regulates expression of multiple glycolytic genes, which are targets of the hypoxia-inducible factor 1 (HIF1) heterodimer transcription factor that is composed of oxygen-regulated labile HIF1α and stable HIF1β subunits. For this reason, we investigated whether MTG16 might regulate HIF1 negatively contributing to inhibition of glycolysis and stimulation of mitochondrial respiration. A doxycycline Tet-On system was used to control levels of MTG16 in B-lymphoblastic Raji cells. Results from co-association studies revealed MTG16 to interact with HIF1α. The co-association required intact N-terminal MTG16 residues including Nervy Homology Region 1 (NHR1). Furthermore, electrophoretic mobility shift assays demonstrated an association of MTG16 with hypoxia response elements (HREs) in PFKFB3, PFKFB4 and PDK1 promoters in-vitro. Results from chromatin immunoprecipitation assays revealed co-occupancy of these and other glycolytic gene promoters by HIF1α, HIF1β and MTG16 in agreement with possible involvement of these proteins in regulation of glycolytic target genes. In addition, MTG16 interacted with prolyl hydroxylase D2 and promoted ubiquitination and proteasomal degradation of HIF1α. Our findings broaden the area of MTG co-repressor functions and reveal MTG16 to be part of a protein complex that controls the levels of HIF1α. PMID:25974097

  8. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias

    SciTech Connect

    Ziemin-van der Poel, S.; McCabe, N.R.; Gill, H.J.; Espinosa, R. III; Patel, Y.; Harden, A.; Rubinelli, P.; Smith, S.D.; LeBeau, M.M.; Rowley, J.D.; Diaz, M.O. )

    1991-12-01

    Recurring chromosomal translocations involving chromosome 11, band q23, have been observed in acute lymphoid leukemias and especially in acute myeloid leukemias. The authors recently showed that breakpoints in four 11q23 translocations, t(4,11)(q21;q23), t(6;11)(q27;q23), t(9;11)(p22;q23), and t(11;19)(q23;p13.3), were contained within a yeast artificial chromosome clone bearing the CD3D and CD3G gene loci. They have identified within the CD3 yeast artificial chromosome a transcription unit that spans the breakpoint junctions of the 4;11, 9;11, and 11;19 translocations, and they describe two other, related transcripts that are upregulated in the RS4;11 cell line. They have named this gene MLL (myeloid/lymphoid, or mixed-lineage, leukemia).

  9. Dual targeting and retrograde translocation: regulators of plant nuclear gene expression can be sequestered by plastids.

    PubMed

    Krause, Kirsten; Oetke, Svenja; Krupinska, Karin

    2012-01-01

    Changes in the developmental or metabolic state of plastids can trigger profound changes in the transcript profiles of nuclear genes. Many nuclear transcription factors were shown to be controlled by signals generated in the organelles. In addition to the many different compounds for which an involvement in retrograde signaling is discussed, accumulating evidence suggests a role for proteins in plastid-to-nucleus communication. These proteins might be sequestered in the plastids before they act as transcriptional regulators in the nucleus. Indeed, several proteins exhibiting a dual localization in the plastids and the nucleus are promising candidates for such a direct signal transduction involving regulatory protein storage in the plastids. Among such proteins, the nuclear transcription factor WHIRLY1 stands out as being the only protein for which an export from plastids and translocation to the nucleus has been experimentally demonstrated. Other proteins, however, strongly support the notion that this pathway might be more common than currently believed.

  10. High Throughput Sequencing Analysis of the Immunoglobulin Heavy Chain Gene from Flow-Sorted B Cell Sub-Populations Define the Dynamics of Follicular Lymphoma Clonal Evolution.

    PubMed

    Carlotti, Emanuela; Wrench, David; Rosignoli, Guglielmo; Marzec, Jacek; Sangaralingam, Ajanthah; Hazanov, Lena; Michaeli, Miri; Hallam, Simon; Chaplin, Tracy; Iqbal, Sameena; Calaminici, Maria; Young, Bryan; Mehr, Ramit; Campbell, Peter; Fitzgibbon, Jude; Gribben, John G

    2015-01-01

    Understanding the dynamics of evolution of Follicular Lymphoma (FL) clones during disease progression is important for monitoring and targeting this tumor effectively. Genetic profiling of serial FL biopsies and examples of FL transmission following bone marrow transplant suggest that this disease may evolve by divergent evolution from a common ancestor cell. However where this ancestor cell resides and how it evolves is still unclear. The analysis of the pattern of somatic hypermutation of the immunoglobulin gene (Ig) is traditionally used for tracking the physiological clonal evolution of B cells within the germinal center and allows to discriminate those cells that have just entered the germinal center and display features of ancestor cells from those B cells that keep re-circulating across different lymphoid organs. Here we investigated the pattern of somatic hypermutation of the heavy chain of the immunoglobulin gene (IgH-VH) in 4 flow-sorted B cells subpopulations belonging to different stages of differentiation, from sequential lymph node biopsies of cases displaying diverse patterns of evolution, using the GS-FLX Titanium sequencing platform. We observed an unexpectedly high level of clonality, with hundreds of distinct tumor subclones in the different subpopulations from the same sample, the majority detected at a frequency <10-2. By using a lineage trees analysis we observed in all our FL and t-FL cases that the oligoclonal FL population was trapped in a narrow intermediate stage of maturation that maintains the capacity to undergo SHM, but was unable to further differentiate. The presence of such a complex architecture highlights challenges currently encountered in finding a cure for this disease. PMID:26325507

  11. Restricted isotype, distinct variable gene usage, and high rate of gp120 specificity of HIV-1 envelope-specific B cells in colostrum compared with those in blood of HIV-1-infected, lactating African women.

    PubMed

    Sacha, C R; Vandergrift, N; Jeffries, T L; McGuire, E; Fouda, G G; Liebl, B; Marshall, D J; Gurley, T C; Stiegel, L; Whitesides, J F; Friedman, J; Badiabo, A; Foulger, A; Yates, N L; Tomaras, G D; Kepler, T B; Liao, H X; Haynes, B F; Moody, M A; Permar, S R

    2015-03-01

    A successful HIV-1 vaccine must elicit immune responses that impede mucosal virus transmission, though functional roles of protective HIV-1 Envelope (Env)-specific mucosal antibodies remain unclear. Colostrum is a rich source of readily accessible mucosal B cells that may help define the mucosal antibody response contributing to prevention of postnatal HIV-1 transmission. To examine the HIV-1 Env-specific colostrum B-cell repertoire, single B cells were isolated from 17 chronically HIV-infected, lactating women, producing 51 blood and 39 colostrum HIV-1 Env-specific B-cell antibodies. All HIV-1 Env-specific colostrum-derived antibodies were immunoglobulin (Ig)G1 isotype and had mean heavy chain complementarity-determining region 3 (CDR3) lengths and mutation frequencies similar to those isolated from blood. However, variable heavy chain (VH) gene subfamily 1(∼)69 usage was higher among colostrum than blood HIV-1 Env-reactive antibodies (49% vs. 20%, P=0.006, Fisher's exact test). Additionally, more HIV-1 Env-specific colostrum antibodies were gp120 specific than those isolated from blood (44% vs. 16%, P=0.005, Fisher's exact test). One cross-compartment HIV-1 Env-specific clonal B-cell lineage was identified. These unique characteristics of colostrum B-cell antibodies suggest selective homing of HIV-1-specific IgG1-secreting memory B cells to the mammary gland and have implications for targeting mucosal B-cell populations by vaccination. PMID:25100291

  12. The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression.

    PubMed

    Streatfield, S J; Weber, A; Kinsman, E A; Häusler, R E; Li, J; Post-Beittenmiller, D; Kaiser, W M; Pyke, K A; Flügge, U I; Chory, J

    1999-09-01

    The Arabidopsis chlorophyll a/b binding protein (CAB) gene underexpressed 1 (cue1) mutant underexpresses light-regulated nuclear genes encoding chloroplast-localized proteins. cue1 also exhibits mesophyll-specific chloroplast and cellular defects, resulting in reticulate leaves. Both the gene underexpression and the leaf cell morphology phenotypes are dependent on light intensity. In this study, we determine that CUE1 encodes the plastid inner envelope phosphoenolpyruvate/phosphate translocator (PPT) and define amino acid residues that are critical for translocator function. The biosynthesis of aromatics is compromised in cue1, and the reticulate phenotype can be rescued by feeding aromatic amino acids. Determining that CUE1 encodes PPT indicates the in vivo role of the translocator in metabolic partitioning and reveals a mesophyll cell-specific requirement for the translocator in Arabidopsis leaves. The nuclear gene expression defects in cue1 suggest that a light intensity-dependent interorganellar signal is modulated through metabolites dependent on a plastid supply of phosphoenolpyruvate.

  13. Disruption of genes in the retinoid cascade may explain the microscopic neuroblastoma in a fetus with de novo unbalanced translocation

    SciTech Connect

    Goodman, A.B.

    1995-03-13

    The microscopic neuroblastoma in a fetus with de novo unbalanced translocation (3;10)(q21;q26) may be explained as the disruption of genes in the retinoid cascade, rather than simply a two-hit hypothesis for the development of tumor cells. 5 refs.

  14. A Williams syndrome patient with a familial t(6;7) translocation and deletion of the elastin gene

    SciTech Connect

    Pober, B.R.; Gibson, L.H.; Yang-Feng, T.L.

    1994-09-01

    Discovery of a {open_quotes}balanced{close_quotes} reciprocal translocation [46,XX,t(6;7)(q11.2;q11.23)] on routine amniocentesis prompted clinical and cytogenetic study of additional family members. The same t(6;7) translocation was found in the clincally normal father and in a sibling with Williams syndrome (WS). WS had been diagnosed previously according to clinical criteria including distinctive facial features, supravalvar aortic stenosis requiring surgical repair, dental abnormalties and developmental delay. A clinically normal female was delivered and the translocation was confirmed with a cord blood specimen. Hemizygosity for the gene, elastin, (which has been mapped to the chromosome 7 translocation breakpoint, 7q11.23, in this family) appears to be a cause of WS. We therefore investigated whether the t(6;7) in the phenotypically normal father represented more than a simple reciprocal translocation. FISH using a chromosome 7 specific library revealed no differences between the cytogenetically identical, yet phenotypically distinct, father and son. Hybridization with a cosmid MR127D4 containing elastin sequence showed that the WS patient was missing one allele from the derivative chromosome 7 whereas both his mother and father had two copies of the elastin gene. This family indicates that the de novo loss of one copy of the elastin gene produces the recognizable phenotype of Williams syndrome. Molecular characterization (with additional probes) of the extent of this de novo deletion near the translocation breakpoint is in progress. This information will be valuable for defining the WS-critical region and will lead to a better understanding of the molecular basis for WS.

  15. Charged Amino Acid-rich Leucine Zipper-1 (Crlz-1) as a Target of Wnt Signaling Pathway Controls Pre-B Cell Proliferation by Affecting Runx/CBFβ-targeted VpreB and λ5 Genes.

    PubMed

    Choi, Seung-Young; Park, Sung-Kyun; Yoo, Han-Woong; Pi, Joo-Hyun; Kang, Chang-Joong

    2016-07-15

    The proliferation of pre-B cells is known to further increase the clonal diversity of B cells at the stage of pre-B cells by allowing the same rearranged heavy chains to combine with differently rearranged light chains in a subsequent developmental stage. Crlz-1 (charged amino acid-rich leucine zipper-1) was found to control this proliferation of pre-B cells by working as a Wnt (wingless-related mouse mammary tumor virus integration site) target gene in these cells. Mechanistically, Crlz-1 protein functioned by mobilizing cytoplasmic CBFβ (core binding factor β) into the nucleus to allow Runx (runt-related transcription factor)/CBFβ heterodimerization. Runx/CBFβ then turned on its target genes such as EBF (early B cell factor), VpreB, and λ5 and thereby pre-B cell receptor signaling, leading to the expression of cyclins D2 and D3 Actually, the proliferative function of Crlz-1 was demonstrated by not only Crlz-1 or β-catenin knockdown but also Crlz-1 overexpression. Furthermore, the mechanistic view that the proliferative function of Crlz-1 is caused by relaying Wnt/β-catenin to pre-B cell receptor signaling pathways through the regulation of Runx/CBFβ heterodimerization was also verified by employing niclosamide, XAV939, and LiCl as Wnt inhibitors and activator, respectively. PMID:27226553

  16. Immunoglobulin genes undergo legitimate repair in human B cells not only after cis- but also frequent trans-class switch recombination.

    PubMed

    Laffleur, B; Bardet, S M; Garot, A; Brousse, M; Baylet, A; Cogné, M

    2014-01-01

    Immunoglobulin (Ig) genes specifically recruit activation-induced deaminase (AID) for 'on-target' DNA deamination, initiating either variable (V) region somatic hypermutation, or double-strand break intermediates of class switch recombination (CSR). Such breaks overwhelmingly undergo legitimate intra-Ig repair rather than rare illegitimate and potentially oncogenic junctions outside of Ig loci. We show that in human B cells, legitimate synapsis and repair efficiently join Ig genes whether physically linked on one chromosome or located apart on both alleles. This indicates mechanisms faithfully recognizing and/or pairing loci with homology in structure and accessibility, thus licensing interchromosomal trans-CSR junctions while usually preventing illegitimate interchromosomal recombination with AID off-target genes. Physical linkage of IgH genes in cis on the same allele just increases the likelihood of legitimate repair by another fourfold. The strongest force driving CSR might thus be recognition of legitimate target genes. Formation of IgH intra-allelic loops along this process would then constitute a consequence rather than a pre-requisite of this gene-pairing process.

  17. Recurrent mutations of the exportin 1 gene (XPO1) and their impact on selective inhibitor of nuclear export compounds sensitivity in primary mediastinal B-cell lymphoma.

    PubMed

    Jardin, Fabrice; Pujals, Anais; Pelletier, Laura; Bohers, Elodie; Camus, Vincent; Mareschal, Sylvain; Dubois, Sydney; Sola, Brigitte; Ochmann, Marlène; Lemonnier, François; Viailly, Pierre-Julien; Bertrand, Philippe; Maingonnat, Catherine; Traverse-Glehen, Alexandra; Gaulard, Philippe; Damotte, Diane; Delarue, Richard; Haioun, Corinne; Argueta, Christian; Landesman, Yosef; Salles, Gilles; Jais, Jean-Philippe; Figeac, Martin; Copie-Bergman, Christiane; Molina, Thierry Jo; Picquenot, Jean Michel; Cornic, Marie; Fest, Thierry; Milpied, Noel; Lemasle, Emilie; Stamatoullas, Aspasia; Moeller, Peter; Dyer, Martin J S; Sundstrom, Christer; Bastard, Christian; Tilly, Hervé; Leroy, Karen

    2016-09-01

    Primary mediastinal B-cell lymphoma (PMBL) is an entity of B-cell lymphoma distinct from the other molecular subtypes of diffuse large B-cell lymphoma (DLBCL). We investigated the prevalence, specificity, and clinical relevance of mutations of XPO1, which encodes a member of the karyopherin-β nuclear transporters, in a large cohort of PMBL. PMBL cases defined histologically or by gene expression profiling (GEP) were sequenced and the XPO1 mutational status was correlated to genetic and clinical characteristics. The XPO1 mutational status was also assessed in DLBCL, Hodgkin lymphoma (HL) and mediastinal gray-zone lymphoma (MGZL).The biological impact of the mutation on Selective Inhibitor of Nuclear Export (SINE) compounds (KPT-185/330) sensitivity was investigated in vitro. XPO1 mutations were present in 28/117 (24%) PMBL cases and in 5/19 (26%) HL cases but absent/rare in MGZL (0/20) or DLBCL (3/197). A higher prevalence (50%) of the recurrent codon 571 variant (p.E571K) was observed in GEP-defined PMBL and was associated with shorter PFS. Age, International Prognostic Index and bulky mass were similar in XPO1 mutant and wild-type cases. KPT-185 induced a dose-dependent decrease in cell proliferation and increased cell-death in PMBL cell lines harboring wild type or XPO1 E571K mutant alleles. Experiments in transfected U2OS cells further confirmed that the XPO1 E571K mutation does not have a drastic impact on KPT-330 binding. To conclude the XPO1 E571K mutation represents a genetic hallmark of the PMBL subtype and serves as a new relevant PMBL biomarker. SINE compounds appear active for both mutated and wild-type protein. Am. J. Hematol. 91:923-930, 2016. © 2016 Wiley Periodicals, Inc. PMID:27312795

  18. Identifying Gene Disruptions in Novel Balanced de novo Constitutional Translocations in Childhood Cancer Patients by Whole Genome Sequencing

    PubMed Central

    Ritter, Deborah I.; Haines, Katherine; Cheung, Hannah; Davis, Caleb F.; Lau, Ching C.; Berg, Jonathan S.; Brown, Chester W.; Thompson, Patrick A.; Gibbs, Richard; Wheeler, David A.; Plon, Sharon E.

    2014-01-01

    Purpose We applied whole genome sequencing to children diagnosed with neoplasms and found to carry apparently balanced constitutional translocations, to discover novel genic disruptions. Methods We applied SV calling programs CREST, Break Dancer, SV-STAT and CGAP-CNV, and developed an annotative filtering strategy to achieve nucleotide resolution at the translocations. Results We identified the breakpoints for t(6;12) (p21.1;q24.31) disrupting HNF1A in a patient diagnosed with hepatic adenomas and Maturity Onset Diabetes of the Young (MODY). Translocation as the disruptive event of HNF1A, a gene known to be involved in MODY3, has not been previously reported. In a subject with Hodgkin’s lymphoma and subsequent low-grade glioma, we identified t(5;18) (q35.1;q21.2), disrupting both SLIT3 and DCC, genes previously implicated in both glioma and lymphoma. Conclusions These examples suggest that implementing clinical whole genome sequencing in the diagnostic work-up of patients with novel but apparently balanced translocations may reveal unanticipated disruption of disease-associated genes and aid in prediction of the clinical phenotype. PMID:25569436

  19. The Transcriptional Co-Repressor Myeloid Translocation Gene 16 Inhibits Glycolysis and Stimulates Mitochondrial Respiration

    PubMed Central

    Kumar, Parveen; Sharoyko, Vladimir V.; Spégel, Peter; Gullberg, Urban; Mulder, Hindrik; Olsson, Inge; Ajore, Ram

    2013-01-01

    The myeloid translocation gene 16 product MTG16 is found in multiple transcription factor–containing complexes as a regulator of gene expression implicated in development and tumorigenesis. A stable Tet-On system for doxycycline–dependent expression of MTG16 was established in B-lymphoblastoid Raji cells to unravel its molecular functions in transformed cells. A noticeable finding was that expression of certain genes involved in tumor cell metabolism including 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 and 4 (PFKFB3 and PFKFB4), and pyruvate dehydrogenase kinase isoenzyme 1 (PDK1) was rapidly diminished when MTG16 was expressed. Furthermore, hypoxia–stimulated production of PFKFB3, PFKFB4 and PDK1 was inhibited by MTG16 expression. The genes in question encode key regulators of glycolysis and its coupling to mitochondrial metabolism and are commonly found to be overexpressed in transformed cells. The MTG16 Nervy Homology Region 2 (NHR2) oligomerization domain and the NHR3 protein–protein interaction domain were required intact for inhibition of PFKFB3, PFKFB4 and PDK1 expression to occur. Expression of MTG16 reduced glycolytic metabolism while mitochondrial respiration and formation of reactive oxygen species increased. The metabolic changes were paralleled by increased phosphorylation of mitogen–activated protein kinases, reduced levels of amino acids and inhibition of proliferation with a decreased fraction of cells in S-phase. Overall, our findings show that MTG16 can serve as a brake on glycolysis, a stimulator of mitochondrial respiration and an inhibitor of cell proliferation. Hence, elevation of MTG16 might have anti–tumor effect. PMID:23840896

  20. The transcriptional co-repressor myeloid translocation gene 16 inhibits glycolysis and stimulates mitochondrial respiration.

    PubMed

    Kumar, Parveen; Sharoyko, Vladimir V; Spégel, Peter; Gullberg, Urban; Mulder, Hindrik; Olsson, Inge; Ajore, Ram

    2013-01-01

    The myeloid translocation gene 16 product MTG16 is found in multiple transcription factor-containing complexes as a regulator of gene expression implicated in development and tumorigenesis. A stable Tet-On system for doxycycline-dependent expression of MTG16 was established in B-lymphoblastoid Raji cells to unravel its molecular functions in transformed cells. A noticeable finding was that expression of certain genes involved in tumor cell metabolism including 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 and 4 (PFKFB3 and PFKFB4), and pyruvate dehydrogenase kinase isoenzyme 1 (PDK1) was rapidly diminished when MTG16 was expressed. Furthermore, hypoxia-stimulated production of PFKFB3, PFKFB4 and PDK1 was inhibited by MTG16 expression. The genes in question encode key regulators of glycolysis and its coupling to mitochondrial metabolism and are commonly found to be overexpressed in transformed cells. The MTG16 Nervy Homology Region 2 (NHR2) oligomerization domain and the NHR3 protein-protein interaction domain were required intact for inhibition of PFKFB3, PFKFB4 and PDK1 expression to occur. Expression of MTG16 reduced glycolytic metabolism while mitochondrial respiration and formation of reactive oxygen species increased. The metabolic changes were paralleled by increased phosphorylation of mitogen-activated protein kinases, reduced levels of amino acids and inhibition of proliferation with a decreased fraction of cells in S-phase. Overall, our findings show that MTG16 can serve as a brake on glycolysis, a stimulator of mitochondrial respiration and an inhibitor of cell proliferation. Hence, elevation of MTG16 might have anti-tumor effect.

  1. Nuclear translocation uncovers the amyloid peptide Aβ42 as a regulator of gene transcription.

    PubMed

    Barucker, Christian; Harmeier, Anja; Weiske, Joerg; Fauler, Beatrix; Albring, Kai Frederik; Prokop, Stefan; Hildebrand, Peter; Lurz, Rudi; Heppner, Frank L; Huber, Otmar; Multhaup, Gerhard

    2014-07-18

    Although soluble species of the amyloid-β peptide Aβ42 correlate with disease symptoms in Alzheimer disease, little is known about the biological activities of amyloid-β (Aβ). Here, we show that Aβ peptides varying in lengths from 38 to 43 amino acids are internalized by cultured neuroblastoma cells and can be found in the nucleus. By three independent methods, we demonstrate direct detection of nuclear Aβ42 as follows: (i) biochemical analysis of nuclear fractions; (ii) detection of biotin-labeled Aβ in living cells by confocal laser scanning microscopy; and (iii) transmission electron microscopy of Aβ in cultured cells, as well as brain tissue of wild-type and transgenic APPPS1 mice (overexpression of amyloid precursor protein and presenilin 1 with Swedish and L166P mutations, respectively). Also, this study details a novel role for Aβ42 in nuclear signaling, distinct from the amyloid precursor protein intracellular domain. Chromatin immunoprecipitation showed that Aβ42 specifically interacts as a repressor of gene transcription with LRP1 and KAI1 promoters. By quantitative RT-PCR, we confirmed that mRNA levels of the examined candidate genes were exclusively decreased by the potentially neurotoxic Aβ42 wild-type peptide. Shorter peptides (Aβ38 or Aβ40) and other longer peptides (nontoxic Aβ42 G33A substitution or Aβ43) did not affect mRNA levels. Overall, our data indicate that the nuclear translocation of Aβ42 impacts gene regulation, and deleterious effects of Aβ42 in Alzheimer disease pathogenesis may be influenced by altering the expression profiles of disease-modifying genes.

  2. Isoforms of Pax5 and co-regulation of T- and B-cells associated genes influence phenotypic traits of ascetic cells causing Dalton's lymphoma.

    PubMed

    Bharti, Brij; Mishra, Rajnikant

    2011-12-01

    The Pax5 and its isoforms influence proliferation of B- and T-cells, during development and oncogenesis but molecular mechanism and host-tumor relationship is not clear. This report describes status of Pax5 isoforms and co-regulation of molecular markers of ascite cells causing Dalton's lymphoma in murine. Higher expressions of Pax5, CD19, CD3, Ras and Raf were observed in DLA cells. The levels of transcripts as well as p53 protein were also higher in DLA cells. The transcript of p53 from DLA cells was a variant of p53 having deletion of 50bp as compared to control. On annotation, it reflects transformation related protein p53 pseudogene mRNA. Lower level of superoxide dismutase (SOD) indicates oxidative stress and higher level of LDH5 in DLA cells reflects hypoxia in cancerous condition. The expression of Pax5d/e isoforms in DLA cells suggests presence of resting B-cells. Thus, isoforms of Pax5 and co-regulation of T- and B-cells associated genes influence phenotypic traits of ascetic cells causing Dalton's lymphoma. PMID:21854813

  3. The analysis of VH and VL genes repertoires of Fab library built from peripheral B cells of human rabies virus vaccinated donors.

    PubMed

    Houimel, Mehdi

    2014-08-01

    A human combinatorial Fab antibody library was generated from immune repertoire based on peripheral B cells of ten rabies virus vaccinated donors. The analysis of random Fab fragments from the unselected library presented some bias of V gene usage towards IGHV-genes and IGLV-gen families. The screening of the Fab library on rabies virus allowed specific human Fab antibody fragments characterized for their gene encoding sequences, binding and specificities to RV. Genetic analysis of selected Fabs indicated that the IGHV and IGLV differ from the germ-line sequence. At the level of nucleotide sequences, the IGHV and IGLV domains were found to share 74-92% and 90-96% homology with sequences encoded by the corresponding human germ-line genes respectively. IGHV domains are characterized most frequently by IGHV3 genes, and large proportions of the anti-RV heavy chain IGHV domains are obtained following a VDJ recombination process that uses IGHD3, IGHD2, IGHD1 and IGHD6 genes. IGHJ3 and IGHJ4 genes are predominantly used in RV-Fab. The IGLV domains are dominated by IGKV1, IGLV1 and IGLV3 genes. Numerous somatic hypermutations in the RV-specific IGHV are detected, but only limited amino acid replacement in most of the RV-specific IGLV particularly in those encoded by J proximal IGLV or IGKV genes are found. Furthermore, IGHV3-IGKV1, IGHV3-IGVL1, and IGHV3-IGLV3 germ-line family pairings are preferentially enriched after the screening on rabies virus.

  4. Generation of Recombination Activating Gene-1-Deficient Neonatal Piglets: A Model of T and B Cell Deficient Severe Combined Immune Deficiency

    PubMed Central

    Ito, Tetsuya; Sendai, Yutaka; Yamazaki, Satoshi; Seki-Soma, Marie; Hirose, Kensuke; Watanabe, Motoo; Fukawa, Kazuo; Nakauchi, Hiromitsu

    2014-01-01

    Although severe combined immune deficiency (SCID) is a very important research model for mice and SCID mice are widely used, there are only few reports describing the SCID pig models. Therefore, additional research in this area is needed. In this study, we describe the generation of Recombination activating gene-1 (Rag-1)-deficient neonatal piglets in Duroc breed using somatic cell nuclear transfer (SCNT) with gene targeting and analysis using fluorescence-activated cell sorting (FACS) and histology. We constructed porcine Rag-1 gene targeting vectors for the Exon 2 region and obtained heterozygous/homozygous Rag-1 knockout cell colonies using SCNT. We generated two Rag-1-deficient neonatal piglets and compared them with wild-type neonatal piglets. FACS analysis showed that Rag-1 disruption causes a lack of Immunoglobulin M-positive B cells and CD3-positive T cells in peripheral blood mononuclear cells. Consistent with FACS analysis, histological analysis revealed structural defects and an absence of mature lymphocytes in the spleen, mesenteric lymph node (MLNs), and thymus in Rag-1-deficient piglets. These results confirm that Rag-1 is necessary for the generation of lymphocytes in pigs, and Rag-1-deficient piglets exhibit a T and B cell deficient SCID (T-B-SCID) phenotype similar to that of rodents and humans. The T-B-SCID pigs with Rag-1 deficiency generated in this study could be a suitably versatile model for laboratory, translational, and biomedical research, including the development of a humanized model and assessment of pluripotent stem cells. PMID:25437445

  5. Bortezomib induces nuclear translocation of IκBα resulting in gene-specific suppression of NF-κB--dependent transcription and induction of apoptosis in CTCL.

    PubMed

    Juvekar, Ashish; Manna, Subrata; Ramaswami, Sitharam; Chang, Tzu-Pei; Vu, Hai-Yen; Ghosh, Chandra C; Celiker, Mahmut Y; Vancurova, Ivana

    2011-02-01

    Cutaneous T-cell lymphoma (CTCL) is characterized by constitutive activation of nuclear factor κB (NF-κB), which plays a crucial role in the survival of CTCL cells and their resistance to apoptosis. NF-κB activity in CTCL is inhibited by the proteasome inhibitor bortezomib; however, the mechanisms remained unknown. In this study, we investigated mechanisms by which bortezomib suppresses NF-κB activity in CTCL Hut-78 cells. We demonstrate that bortezomib and MG132 suppress NF-κB activity in Hut-78 cells by a novel mechanism that consists of inducing nuclear translocation and accumulation of IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha), which then associates with NF-κB p65 and p50 in the nucleus and inhibits NF-κB DNA binding activity. Surprisingly, however, while expression of NF-κB-dependent antiapoptotic genes cIAP1 and cIAP2 is inhibited by bortezomib, expression of Bcl-2 is not suppressed. Chromatin immunoprecipitation indicated that cIAP1 and cIAP2 promoters are occupied by NF-κB p65/50 heterodimers, whereas Bcl-2 promoter is occupied predominantly by p50/50 homodimers. Collectively, our data reveal a novel mechanism of bortezomib function in CTCL and suggest that the inhibition of NF-κB-dependent gene expression by bortezomib is gene specific and depends on the subunit composition of NF-κB dimers recruited to NF-κB-responsive promoters. PMID:21224428

  6. Bortezomib induces nuclear translocation of IκBα resulting in gene-specific suppression of NF-κB--dependent transcription and induction of apoptosis in CTCL.

    PubMed

    Juvekar, Ashish; Manna, Subrata; Ramaswami, Sitharam; Chang, Tzu-Pei; Vu, Hai-Yen; Ghosh, Chandra C; Celiker, Mahmut Y; Vancurova, Ivana

    2011-02-01

    Cutaneous T-cell lymphoma (CTCL) is characterized by constitutive activation of nuclear factor κB (NF-κB), which plays a crucial role in the survival of CTCL cells and their resistance to apoptosis. NF-κB activity in CTCL is inhibited by the proteasome inhibitor bortezomib; however, the mechanisms remained unknown. In this study, we investigated mechanisms by which bortezomib suppresses NF-κB activity in CTCL Hut-78 cells. We demonstrate that bortezomib and MG132 suppress NF-κB activity in Hut-78 cells by a novel mechanism that consists of inducing nuclear translocation and accumulation of IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha), which then associates with NF-κB p65 and p50 in the nucleus and inhibits NF-κB DNA binding activity. Surprisingly, however, while expression of NF-κB-dependent antiapoptotic genes cIAP1 and cIAP2 is inhibited by bortezomib, expression of Bcl-2 is not suppressed. Chromatin immunoprecipitation indicated that cIAP1 and cIAP2 promoters are occupied by NF-κB p65/50 heterodimers, whereas Bcl-2 promoter is occupied predominantly by p50/50 homodimers. Collectively, our data reveal a novel mechanism of bortezomib function in CTCL and suggest that the inhibition of NF-κB-dependent gene expression by bortezomib is gene specific and depends on the subunit composition of NF-κB dimers recruited to NF-κB-responsive promoters.

  7. Clonal Progression during the T Cell-Dependent B Cell Antibody Response Depends on the Immunoglobulin DH Gene Segment Repertoire

    PubMed Central

    Trad, Ahmad; Tanasa, Radu Iulian; Lange, Hans; Zemlin, Michael; Schroeder, Harry W.; Lemke, Hilmar

    2014-01-01

    The diversity of the third complementarity determining region of the IgH chain is constrained by natural selection of immunoglobulin diversity (DH) sequence. To test the functional significance of this constraint in the context of thymus-dependent (TD) immune responses, we immunized BALB/c mice with WT or altered DH sequence with 2-phenyloxazolone-coupled chicken serum albumin (phOx-CSA). We chose this antigen because studies of the humoral immune response to the hapten phOx were instrumental in the development of the current theoretical framework on which our understanding of the forces driving TD responses is based. To allow direct comparison, we used the classic approach of generating monoclonal Ab (mAb) from various stages of the immune response to phOx to assess the effect of changing the sequence of the DH on clonal expansion, class switching, and affinity maturation, which are hallmarks of TD responses. Compared to WT, TD-induced humoral IgM as well as IgG antibody production in the D-altered ΔD-DμFS and ΔD-iD strains were significantly reduced. An increased prevalence of IgM-producing hybridomas from late primary, secondary, and tertiary memory responses suggested either impaired class switch recombination (CSR) or impaired clonal expansion of class switched B cells with phOx reactivity. Neither of the D-altered strains demonstrated the restriction in the VH/VL repertoire, the elimination of VH1 family-encoded antibodies, the focusing of the distribution of CDR-H3 lengths, or the selection for the normally dominant Ox1 clonotype, which all are hallmarks of the anti-phOx response in WT mice. These changes in clonal selection and expansion, as well as CSR indicate that the genetic constitution of the DH locus, which has been selected by evolution, can strongly influence the functional outcome of a TD humoral response. PMID:25157256

  8. FCGR2C Polymorphisms Associated with HIV-1 Vaccine Protection Are Linked to Altered Gene Expression of Fc-γ Receptors in Human B Cells.

    PubMed

    Peng, Xinxia; Li, Shuying S; Gilbert, Peter B; Geraghty, Daniel E; Katze, Michael G

    2016-01-01

    The phase III Thai RV144 vaccine trial showed an estimated vaccine efficacy (VE) to prevent HIV-1 infection of 31.2%, which has motivated the search for immune correlates of vaccine protection. In a recent report, several single nucleotide polymorphisms (SNPs) in FCGR2C were identified to associate with the level of VE in the RV144 trial. To investigate the functional significance of these SNPs, we utilized a large scale B cell RNA sequencing database of 462 individuals from the 1000 Genomes Project to examine associations between FCGR2C SNPs and gene expression. We found that the FCGR2C SNPs that associated with vaccine efficacy in RV144 also strongly associated with the expression of FCGR2A/C and one of them also associated with the expression of Fc receptor-like A (FCRLA), another Fc-γ receptor (FcγR) gene that was not examined in the previous report. These results suggest that the expression of FcγR genes is influenced by these SNPs either directly or in linkage with other causal variants. More importantly, these results motivate further investigations into the potential for a causal association of expression and alternative splicing of FCGR2C and other FcγR genes with the HIV-1 vaccine protection in the RV144 trial and other similar studies. PMID:27015273

  9. 1,25-dihydroxyvitamin D{sub 3} impairs NF-{kappa}B activation in human naive B cells

    SciTech Connect

    Geldmeyer-Hilt, Kerstin; Heine, Guido; Hartmann, Bjoern; Baumgrass, Ria; Radbruch, Andreas; Worm, Margitta

    2011-04-22

    Highlights: {yields} In naive B cells, VDR activation by calcitriol results in reduced NF-{kappa}B p105 and p50 protein expression. {yields} Ligating the VDR with calcitriol causes reduced nuclear translocation of NF-{kappa}B p65. {yields} Reduced nuclear amount of p65 after calcitriol incubation results in reduced binding of p65 on the p105 promoter. {yields} Thus, vitamin D receptor signaling may reduce or prevent activation of B cells and unwanted immune responses, e.g. in IgE dependent diseases such as allergic asthma. -- Abstract: 1{alpha},25-dihydroxyvitamin D{sub 3} (calcitriol), the bioactive metabolite of vitamin D, modulates the activation and inhibits IgE production of anti-CD40 and IL-4 stimulated human peripheral B cells. Engagement of CD40 results in NF-{kappa}B p50 activation, which is essential for the class switch to IgE. Herein, we investigated by which mechanism calcitriol modulates NF-{kappa}B mediated activation of human naive B cells. Naive B cells were predominantly targeted by calcitriol in comparison with memory B cells as shown by pronounced induction of the VDR target gene cyp24a1. Vitamin D receptor activation resulted in a strongly reduced p105/p50 protein and mRNA expression in human naive B cells. This effect is mediated by impaired nuclear translocation of p65 and consequently reduced binding of p65 to its binding site in the p105 promoter. Our data indicate that the vitamin D receptor reduces NF-{kappa}B activation by interference with NF-{kappa}B p65 and p105. Thus, the vitamin D receptor inhibits costimulatory signal transduction in naive B cells, namely by reducing CD40 signaling.

  10. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling*♦

    PubMed Central

    Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu.; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I.; Nienhaus, G. Ulrich; Gierschik, Peter

    2015-01-01

    The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca2+. The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca2+ and regulation of Ca2+-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca2+ release from intracellular stores; (iii) Ca2+ entry from the extracellular compartment; and (iv) nuclear translocation of the Ca2+-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca2+ signaling. PMID:25903139

  11. B cells in transplantation

    PubMed Central

    Dijke, Esme I.; Platt, Jeffrey L.; Blair, Paul; Clatworthy, Menna R.; Patel, Jignesh K.; Kfoury, A.G.; Cascalho, Marilia

    2016-01-01

    B cell responses underlie the most vexing immunological barriers to organ transplantation. Much has been learned about the molecular mechanisms of B cell responses to antigen and new therapeutic agents that specifically target B cells or suppress their functions are available. Yet, despite recent advances, there remains an incomplete understanding about how B cell functions determine the fate of organ transplants and how, whether or when potent new therapeutics should optimally be used. This gap in understanding reflects in part the realization that besides producing antibodies, B cells can also regulate cellular immunity, contribute to the genesis of tolerance and induce accommodation. Whether non-specific depletion of B cells, their progeny or suppression of their functions would undermine these non-cognate functions and whether graft outcome would suffer as a result is unknown. These questions were discussed at a symposium on “B cells in transplantation” at the 2015 ISHLT annual meeting. Those discussions are summarized here and a new perspective is offered. PMID:26996930

  12. Plasmodium Infection Promotes Genomic Instability and AID Dependent B Cell Lymphoma

    PubMed Central

    Robbiani, Davide F.; Deroubaix, Stephanie; Feldhahn, Niklas; Oliveira, Thiago Y.; Callen, Elsa; Wang, Qiao; Jankovic, Mila; Silva, Israel T.; Rommel, Philipp C.; Bosque, David; Eisenreich, Tom; Nussenzweig, André; Nussenzweig, Michel C.

    2015-01-01

    Summary Chronic infection with Plasmodium falciparum was epidemiologically associated with endemic Burkitt’s lymphoma, a mature B cell cancer characterized by chromosome translocation between the c-myc oncogene and Igh, over 50 years ago. Whether infection promotes B cell lymphoma, and if so by what mechanism remains unknown. To investigate the relationship between parasitic disease and lymphomagenesis we used Plasmodium chabaudi (Pc) to produce chronic malaria infection in mice. Pc induces prolonged expansion of germinal centers (GCs), unique compartments where B cells undergo rapid clonal expansion and express activation-induced cytidine deaminase (AID), a DNA mutator. GC B cells elicited during Pc infection suffer widespread DNA damage leading to chromosome translocations. Although infection does not change the overall rate, it modifies lymphomagenesis to favor mature B cell lymphomas that are AID dependent and show chromosome translocations. Thus, malaria infection favors mature B cell cancers by eliciting protracted AID expression in GC B cells. PMID:26276629

  13. Cooperativity between the J and S elements of class II major histocompatibility complex genes as enhancers in normal and class II- negative patient and mutant B cell lines

    PubMed Central

    1995-01-01

    The class II major histocompatibility complex genes all contain in their proximal promoters three cis-elements called S, X, and Y that are conserved in both sequence and position, and a fourth element, J, conserved in sequence but not in position. J, X, and Y and, to some extent, S, have been shown to be functionally important in regulation of expression of these genes. In the present study, a protein factor that binds cooperatively to the S plus J elements of the promoter of the class II major histocompatibility complex gene DPA has been detected. Moreover, functional cooperativity between S and J in activation of the enhancerless -40 interferon-beta (-40 IFN-beta) promoter has been demonstrated. Finally, the latter assay appears to subdivide complementation group A of class II negative human B cell lines that includes both mutants generated in vitro and cells from patients with the bare lymphocyte syndrome (type II). In three of these cell lines, the enhancerless -40 IFN-beta promoter containing the S plus J elements was functionally active, while in the others it was inactive. PMID:7790817

  14. Replication of Early B-cell Factor 1 (EBF1) Gene-by-psychosocial Stress Interaction Effects on Central Adiposity in a Korean Population

    PubMed Central

    Min, Jin-Young

    2016-01-01

    Objectives Central obesity plays a major role in the development of many chronic diseases, including cardiovascular disease and cancer. Chronic stress may be involved in the pathophysiology of central obesity. Although several large-scale genome-wide association studies have reported susceptibility genes for central adiposity, the effects of interactions between genes and psychosocial stress on central adiposity have rarely been examined. A recent study focusing on Caucasians discovered the novel gene early B-cell factor 1 (EBF1), which was associated with central obesity-related traits via interactions with stress levels. We aimed to evaluate EBF1 gene-by-stress interaction effects on central adiposity traits, including visceral adipose tissue (VAT), in Korean adults. Methods A total of 1467 Korean adults were included in this study. We selected 22 single-nucleotide polymorphisms (SNPs) in the EBF1 gene and analyzed their interactions with stress on central adiposity using additive, dominant, and recessive genetic modeling. Results The four SNPs that had strong linkage disequilibrium relationships (rs10061900, rs10070743, rs4704967, and rs10056564) demonstrated significant interactions with the waist-hip ratio in the dominant model (pint<0.007). In addition, two other SNPs (rs6556377 and rs13180086) were associated with VAT by interactions with stress levels, especially in the recessive genetic model (pint<0.007). As stress levels increased, the mean values of central adiposity traits according to SNP genotypes exhibited gradual but significant changes (p<0.05). Conclusions These results suggest that the common genetic variants for EBF1 are associated with central adiposity through interactions with stress levels, emphasizing the importance of managing stress in the prevention of central obesity. PMID:27744667

  15. Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig loci in activated B cells

    PubMed Central

    Staszewski, Ori; Baker, Richard E.; Ucher, Anna J.; Martier, Raygene; Stavnezer, Janet; Guikema, Jeroen E.J.

    2011-01-01

    After immunization or infection, activation-induced cytidine deaminase (AID) initiates diversification of immunoglobulin (Ig) genes in B cells, introducing mutations within the antigen binding V regions (somatic hypermutation, SHM) and double-strand DNA breaks (DSBs) into switch (S) regions, leading to antibody class switch recombination (CSR). We asked if during B cell activation, AID also induces DNA breaks at genes other than IgH genes. Using a non-biased genome-wide approach, we have identified hundreds of reproducible AID-dependent DSBs in mouse splenic B cells shortly after induction of CSR in culture. Most interestingly, AID induces DSBs at sites syntenic with sites of translocations, deletions, and amplifications found in human B cell lymphomas, including within the oncogene B cell lymphoma11a (bcl11a)/evi9. Unlike AID-induced DSBs in Ig genes, genome-wide AID-dependent DSBs are not restricted to transcribed regions, and frequently occur within repeated sequence elements, including CA-repeats and non-CA tandem repeats, and SINEs. PMID:21255732

  16. Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells.

    PubMed

    Staszewski, Ori; Baker, Richard E; Ucher, Anna J; Martier, Raygene; Stavnezer, Janet; Guikema, Jeroen E J

    2011-01-21

    After immunization or infection, activation-induced cytidine deaminase (AID) initiates diversification of immunoglobulin (Ig) genes in B cells, introducing mutations within the antigen-binding V regions (somatic hypermutation, SHM) and double-strand DNA breaks (DSBs) into switch (S) regions, leading to antibody class switch recombination (CSR). We asked if, during B cell activation, AID also induces DNA breaks at genes other than IgH genes. Using a nonbiased genome-wide approach, we have identified hundreds of reproducible, AID-dependent DSBs in mouse splenic B cells shortly after induction of CSR in culture. Most interestingly, AID induces DSBs at sites syntenic with sites of translocations, deletions, and amplifications found in human B cell lymphomas, including within the oncogene B cell lymphoma11a (bcl11a)/evi9. Unlike AID-induced DSBs in Ig genes, genome-wide AID-dependent DSBs are not restricted to transcribed regions and frequently occur within repeated sequence elements, including CA repeats, non-CA tandem repeats, and SINEs.

  17. Expression cloning of human B cell immunoglobulins.

    PubMed

    Wardemann, Hedda; Kofer, Juliane

    2013-01-01

    The majority of lymphomas originate from B cells at the germinal center stage or beyond. Preferential selection of B cell clones by a limited set of antigens has been suggested to drive lymphoma development. However, little is known about the specificity of the antibodies expressed by lymphoma cells, and the role of antibody-specificity in lymphomagenesis remains elusive. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows the unbiased characterization of the human antibody repertoire on a single cell level through the generation of recombinant monoclonal antibodies from single primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow cytometric isolation of single human B cells, to the RT-PCR-based amplification of the expressed Igh, Igκ, and Igλ chain genes, and Ig gene expression vector cloning for the in vitro production of monoclonal antibodies. The strategy may be used to obtain information on the clonal evolution of B cell lymphomas by single cell Ig gene sequencing and on the antibody reactivity of human lymphoma B cells.

  18. Distinctive patterns of BCL6 molecular alterations and their functional consequences in different subgroups of diffuse large B-cell lymphoma

    PubMed Central

    Iqbal, J; Greiner, TC; Patel, K; Dave, BJ; Smith, L; Ji, J; Wright, G; Sanger, WG; Pickering, DL; Jain, S; Horsman, DE; Shen, Y; Fu, K; Weisenburger, DD; Hans, CP; Campo, E; Gascoyne, RD; Rosenwald, A; Jaffe, ES; Delabie, J; Rimsza, L; Ott, G; Müller-Hermelink, HK; Connors, JM; Vose, JM; McKeithan, T; Staudt, LM; Chan, WC

    2008-01-01

    Gene expression profiling of diffuse large B-cell lymphoma (DLBCL) has revealed biologically and prognostically distinct subgroups: germinal center B-cell-like (GCB), activated B-cell-like (ABC) and primary mediastinal (PM) DLBCL. The BCL6 gene is often translocated and/or mutated in DLBCL. Therefore, we examined the BCL6 molecular alterations in these DLBCL subgroups, and their impact on BCL6 expression and BCL6 target gene repression. BCL6 translocations at the major breakpoint region (MBR) were detected in 25 (18.8%) of 133 DLBCL cases, with a higher frequency in the PM (33%) and ABC (24%) subgroups than in the GCB (10%) subgroup. Translocations at the alternative breakpoint region (ABR) were detected in five (6.4%) of 78 DLBCL cases, with three cases in ABC and one case each in the GCB and the unclassifiable subgroups. The translocated cases involved IgH and non-IgH partners in about equal frequency and were not associated with different levels of BCL6 mRNA and protein expression. BCL6 mutations were detected in 61% of DLBCL cases, with a significantly higher frequency in the GCB and PM subgroups (> 70%) than in the ABC subgroup (44%). Exon-1 mutations were mostly observed in the GCB subgroup. The repression of known BCL6 target genes correlated with the level of BCL6 mRNA and protein expression in GCB and ABC subgroups but not with BCL6 translocation and intronic mutations. No clear inverse correlation between BCL6 expression and p53 expression was observed. Patients with higher BCL6 mRNA or protein expression had a significantly better overall survival. The biological role of BCL6 in translocated cases where repression of known target genes is not demonstrated is intriguing and warrants further investigation. PMID:17625604

  19. Control region translocation and a tRNA gene inversion in the mitogenome of Paraplagusia japonica (Pleuronectiformes: Cynoglossidae).

    PubMed

    Gong, Li; Shi, Wei; Wang, Zhong-Ming; Miao, Xian-Guang; Kong, Xiao-Yu

    2013-12-01

    Paraplagusia japonica (Cynoglossidae, Soleoidei) is characterized by a bilaterally asymmetrical and a series of fringes on the lips on the ocular side. Here we report for the first time the mitogenome of this tongue sole, which is 16,694 bp in length, and the gene order has been reorganized. The tRNA-Gln gene translocated from the light strand (L-strand) to the heavy strand (H-strand), accompanied by tRNA-Ile gene shuffling. In addition, the putative control region translocated downstream to the place between the ND1 and the tRNA-Gln genes, leaving a 26-bp trace fragment in the original position. Nevertheless, the rest gene order is identical to that of the typical fish. In addition, it is the first report of the rare ATT as an initiation codon for ND3, and the ATP6 (- 26) and ND5 (+26) are unusually shorter or longer than those in other flatfish. These data will provide useful information for better understanding the molecular mechanisms of gene reorganization in fish mitogenome.

  20. Alternative messenger RNA splicing of autophagic gene Beclin 1 in human B-cell acute lymphoblastic leukemia cells.

    PubMed

    Niu, Yu-Na; Liu, Qing-Qing; Zhang, Su-Ping; Yuan, Na; Cao, Yan; Cai, Jin-Yang; Lin, Wei-Wei; Xu, Fei; Wang, Zhi-Jian; Chen, Bo; Wang, Jian-Rong

    2014-01-01

    Beclin 1 is a key factor for initiation and regulation of autophagy, which is a cellular catabolic process involved in tumorigenesis. To investigate the role of alternative splicing of Beclin1 in the regulation of autophagy in leukemia cells, Beclin1 mRNA from 6 different types of cell lines and peripheral blood mononuclear cells from 2 healthy volunteers was reversely transcribed, subcloned, and screened for alternative splicing. New transcript variants were analyzed by DNA sequencing. A transcript variant of Beclin 1 gene carrying a deletion of exon 11, which encoded a C-terminal truncation of Beclin 1 isoform, was found. The alternative isoform was assessed by bioinformatics, immunoblotting and subcellular localization. The results showed that this variable transcript is generated by alternative 3' splicing, and its translational product displayed a reduced activity in induction of autophagy by starvation, indicating that the spliced isoform might function as a dominant negative modulator of autophagy. Our findings suggest that the alternative splicing of Beclin 1 might play important roles in leukemogenesis regulated by autophagy.

  1. Cotton Leaf Curl Multan Betasatellite DNA as a Tool to Deliver and Express the Human B-Cell Lymphoma 2 (Bcl-2) Gene in Plants.

    PubMed

    Kharazmi, Sara; Ataie Kachoie, Elham; Behjatnia, Seyed Ali Akbar

    2016-05-01

    The betasatellite DNA associated with Cotton leaf curl Multan virus (CLCuMB) contains a single complementary-sense ORF, βC1, which is a pathogenicity determinant. CLCuMB was able to replicate in plants in the presence of diverse helper geminiviruses, including Tomato leaf curl virus-Australia (TLCV-Au), Iranian isolate of Tomato yellow leaf curl virus (TYLCV-[Ab]), and Beet curly top virus (BCTV-Svr), and can be used as a plant gene delivery vector. To test the hypothesis that CLCuMB has the potential to act as an animal gene delivery vector, a specific insertion construct was produced by the introduction of a human B-cell lymphoma 2 (Bcl-2) cDNA into a mutant DNA of CLCuMB in which the βC1 was deleted (β∆C1). The recombinant βΔC1-Bcl-2 construct was successfully replicated in tomato and tobacco plants in the presence of TLCV-Au, BCTV-Svr and TYLCV-[Ab]. Real-time PCR and Western blot analyses of plants containing the replicative forms of recombinant βΔC1-Bcl-2 DNA showed that Bcl-2 gene was expressed in an acceptable level in these plants, indicating that β∆C1 can be used as a tool to deliver and express animal genes in plants. This CLCuMB-based system, having its own promoter activity, offers the possibility of production of animal recombinant proteins in plants. PMID:27041273

  2. A B-Cell Superantigen Induces the Apoptosis of Murine and Human Malignant B Cells

    PubMed Central

    Lorenzo, Daniela; Duarte, Alejandra; Mundiñano, Juliana; Berguer, Paula; Nepomnaschy, Irene; Piazzon, Isabel

    2016-01-01

    B-cell superantigens (Sags) bind to conserved sites of the VH or VL regions of immunoglobulin molecules outside their complementarity-determining regions causing the apoptosis of normal cognate B cells. No attempts to investigate whether B-cell Sags are able to induce the apoptosis of cognate malignant B cells were reported. In the present study we show that protein L (PpL), secreted by Finegoldia magna, a B-cell Sag which interacts with κ+ bearing cells, induces the apoptosis of murine and human κ+ lymphoma B cells both in vitro and in vivo. Apoptosis was not altered by caspase-8 inhibitor. No alterations in the levels of Bid, Fas and Fas-L were found suggesting that PpL does not activate the extrinsic pathway of apoptosis. The involvement of the intrinsic pathway was clearly indicated by: i) alterations in mitochondrial membrane potential (ΔΨm) both in murine and human lymphoma cells exposed to PpL; ii) decreased levels of apoptosis in the presence of caspase-9 inhibitor; iii) significant increases of Bim and Bax protein levels and downregulation of Bcl-2; iv) the translocation from the cytoplasm to the mitochondria of Bax and Bim pro-apoptotic proteins and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor and v) the translocation of Bcl-2 protein from the mitochondria to the cytosol and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor. The possibility of a therapeutic use of Sags in lymphoma/leukemia B cell malignancies is discussed. PMID:27603942

  3. A B-Cell Superantigen Induces the Apoptosis of Murine and Human Malignant B Cells.

    PubMed

    Lorenzo, Daniela; Duarte, Alejandra; Mundiñano, Juliana; Berguer, Paula; Nepomnaschy, Irene; Piazzon, Isabel

    2016-01-01

    B-cell superantigens (Sags) bind to conserved sites of the VH or VL regions of immunoglobulin molecules outside their complementarity-determining regions causing the apoptosis of normal cognate B cells. No attempts to investigate whether B-cell Sags are able to induce the apoptosis of cognate malignant B cells were reported. In the present study we show that protein L (PpL), secreted by Finegoldia magna, a B-cell Sag which interacts with κ+ bearing cells, induces the apoptosis of murine and human κ+ lymphoma B cells both in vitro and in vivo. Apoptosis was not altered by caspase-8 inhibitor. No alterations in the levels of Bid, Fas and Fas-L were found suggesting that PpL does not activate the extrinsic pathway of apoptosis. The involvement of the intrinsic pathway was clearly indicated by: i) alterations in mitochondrial membrane potential (ΔΨm) both in murine and human lymphoma cells exposed to PpL; ii) decreased levels of apoptosis in the presence of caspase-9 inhibitor; iii) significant increases of Bim and Bax protein levels and downregulation of Bcl-2; iv) the translocation from the cytoplasm to the mitochondria of Bax and Bim pro-apoptotic proteins and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor and v) the translocation of Bcl-2 protein from the mitochondria to the cytosol and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor. The possibility of a therapeutic use of Sags in lymphoma/leukemia B cell malignancies is discussed. PMID:27603942

  4. The Histological and Biological Spectrum of Diffuse Large B-cell Lymphoma in the WHO Classification

    PubMed Central

    Menon, Madhu P.; Pittaluga, Stefania; Jaffe, Elaine S.

    2012-01-01

    Diffuse large B cell lymphomas (DLBCL) are aggressive B-cell lymphomas that are clinically, pathologically and genetically diverse, in part reflecting the functional diversity of the B-cell system. The focus in recent years has been towards incorporation of clinical features, morphology, immunohistochemistry and ever evolving genetic data into the classification scheme. The 2008 WHO classification reflects this complexity with the addition of several new entities and variants. The discovery of distinct subtypes by gene expression profiling (GEP) heralded a new era with a focus on pathways of transformation as well as a promise of more targeted therapies, directed at specific pathways. Some DLBCLs exhibit unique clinical characteristics with a predilection for specific anatomic sites; the anatomic site often reflects underlying biological distinctions. Recently, the spectrum of EBV-driven B-cell proliferations in patients without iatrogenic or congenital immunosuppression has been better characterized; most of these occur in patients of advanced age, and include EBV-positive large B-cell lymphoma of the elderly. HHV-8 is involved in the pathogenesis of primary effusion lymphoma, which can present as a “solid variant.” Two borderline categories were created; one deals with tumors at the interface between classical Hodgkin lymphoma (cHL) and DLBCL. The second confronts the interface between Burkitt Lymphoma (BL) and DLBCL, so called “B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma” in the 2008 classification. Most cases harbor both MYC and BCL2 translocations, and are highly aggressive. Another interesting entity is ALK+ DLBCL, which renders itself potentially targetable by ALK inhibitors. Ongoing investigations at the genomic level, with both exome and whole genome sequencing, are sure to reveal new pathways of transformation in the future. PMID:23006945

  5. Reciprocal translocations

    SciTech Connect

    1993-12-31

    Chapter 26, describes reciprocal translocations of chromosomes: their occurrence, breakpoints, and multiple rearrangements. In addition, phenotypes of balanced and unbalanced translocation carriers and fetal death are discussed. Examples of translocation families are given. Meiosis and genetic risk in translocation carriers is presented. Finally, sperm chromosomes in meiotic segregation analysis is mentioned. 39 refs., 3 figs., 1 tab.

  6. Next generation sequencing and the management of diffuse large B-cell lymphoma: from whole exome analysis to targeted therapy.

    PubMed

    Jardin, Fabrice

    2014-01-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma, accounting for 30-40% of newly diagnosed non-Hodgkin lymphomas. Historically, DLBCL has been thought to involve recurrent translocations of the IGH gene and the deregulation of rearranged oncogenes. Recent advances in next generation sequencing (NGS) have provided a vast and comprehensive catalogue of cancer genes involved in DLBCL pathogenesis. Whole exome sequencing (WES) of more than two hundred DLBCLs has completely redefined the genetic landscape of the disease by identifying recurrent single nucleotide variants and providing new therapeutic opportunities for the germinal center B-cell like (GCB), activated B-cell like (ABC), or primary mediastinal B-cell (PMBL) molecular subtypes. Some of these somatic mutations target genes that play a crucial role in B-cell function (BCR signaling, NF-κB pathway, NOTCH signaling, Toll-like receptor signaling, and the PI3K pathway), immunity, cell cycle/apoptosis, or chromatin modification. In this review, we present an overview of the mutations recently discovered by NGS in DLBCL and discuss their biological relevance and possible impacts on clinical management. PMID:25091488

  7. Evaluation of the NOD/SCID xenograft model for glucocorticoid-regulated gene expression in childhood B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    2011-01-01

    Background Glucocorticoids such as prednisolone and dexamethasone are critical drugs used in multi-agent chemotherapy protocols used to treat acute lymphoblastic leukemia (ALL), and response to glucocorticoids is highly predictive of outcome. The NOD/SCID xenograft mouse model of ALL is a clinically relevant model in which the mice develop a systemic leukemia which retains the fundamental biological characteristics of the original disease. Here we report a study evaluating the NOD/SCID xenograft mouse model to investigate glucocorticoid-induced gene expression. Cells from a glucocorticoid-sensitive xenograft derived from a child with B-cell precursor ALL were inoculated into NOD/SCID mice. When highly engrafted the mice were randomized into groups of 4 to receive dexamethasone 15 mg/kg by intraperitoneal injection or vehicle control. Leukemia cells were harvested from mice spleens at 0, 8, 24 or 48 hours thereafter, and gene expression analyzed on Illumina WG-6_V3 chips, comparing all groups to time 0 hours. Results The 8 hour dexamethasone-treated timepoint had the highest number of significantly differentially expressed genes, with fewer observed at the 24 and 48 hour timepoints, and with minimal changes seen across the time-matched controls. When compared to publicly available datasets of glucocorticoid-induced gene expression from an in vitro cell line study and from an in vivo study of patients with ALL, at the level of pathways, expression changes in the 8 hour xenograft samples showed a similar response to patients treated with glucocorticoids. Replicate analysis revealed that at the 8 hour timepoint, a dataset with high signal and differential expression, using data from 3 replicates instead of 4 resulted in excellent recovery scores of > 0.9. However at other timepoints with less signal very poor recovery scores were obtained with 3 replicates. Conclusions The NOD/SCID xenograft mouse model provides a reproducible experimental system in which to

  8. Heterogeneous breakpoints on the immunoglobulin genes are involved in fusion with the 5' region of BCL2 in B-cell tumors.

    PubMed

    Yonetani, N; Ueda, C; Akasaka, T; Nishikori, M; Uchiyama, T; Ohno, H

    2001-09-01

    The 5' flanking region of the BCL2 gene (5'-BCL2) is a breakpoint cluster of rearrangements with immunoglobulin genes (IGs). In contrast to t(14;18)(q32;q21) affecting the 3' region of BCL2, 5'-BCL2 can fuse to not only the heavy chain gene (IGH), but also two light chain gene (IGL) loci. We report here cloning and sequencing of a total of eleven 5'-BCL2 / IGs junctional areas of B-cell tumors, which were amplified by long-distance polymerase chain reaction-based assays. The breakpoints on 5'-BCL2 were distributed from 378 to 2312 bp upstream of the translational initiation site and, reflecting the alteration of regulatory sequences of BCL2, 5'-BCL2 / IGs-positive cells showed markedly higher levels of BCL2 expression than those of t(14;18)-positive cells. In contrast, the breakpoints on the IGs were variable. Two 5'-BCL2 / IGH and two 5'-BCL2 / IGLkappa junctions occurred 5' of the joining (J) segments, suggesting operation of an erroneous variable (V) / diversity (D) / J and V / J rearrangement mechanism. However, two other 5'-BCL2 / IGH junctions affected switch regions, and the kappa-deleting element, which is located 24 kb downstream of the constant region of IGLkappa, followed the 5'-BCL2 in another case. One 5'-BCL2 / IGLkappa and two 5'-BCL2 / IGLlambda junctions involved intronic regions where the normal recombination process does not occur. In the remaining one case, the 5'-BCL2 fused 3' of a Vlambda gene that was upstream of another Vlambda / Jlambda complex carrying a non-producing configuration, indicating that the receptor editing mechanism was likely involved in this rearrangement. Our study revealed heterogeneous anatomy of the 5'-BCL2 / IGs fusion gene leading to transcriptional activation of BCL2, and suggested that the mechanisms underlying the formation of this particular oncogene / IGs recombination are not identical to those of t(14;18).

  9. G-rich proto-oncogenes are targeted for genomic instability in B-cell lymphomas.

    PubMed

    Duquette, Michelle L; Huber, Michael D; Maizels, Nancy

    2007-03-15

    Diffuse large B-cell lymphoma is the most common lymphoid malignancy in adults. It is a heterogeneous disease with variability in outcome. Genomic instability of a subset of proto-oncogenes, including c-MYC, BCL6, RhoH, PIM1, and PAX5, can contribute to initial tumor development and has been correlated with poor prognosis and aggressive tumor growth. Lymphomas in which these proto-oncogenes are unstable derive from germinal center B cells that express activation-induced deaminase (AID), the B-cell-specific factor that deaminates DNA to initiate immunoglobulin gene diversification. Proto-oncogene instability is evident as both aberrant hypermutation and translocation, paralleling programmed instability which diversifies the immunoglobulin loci. We have asked if genomic sequence correlates with instability in AID-positive B-cell lymphomas. We show that instability does not correlate with enrichment of the WRC sequence motif that is the consensus for deamination by AID. Instability does correlate with G-richness, evident as multiple runs of the base guanine on the nontemplate DNA strand. Extending previous analysis of c-MYC, we show experimentally that transcription of BCL6 and RhoH induces formation of structures, G-loops, which contain single-stranded regions targeted by AID. We further show that G-richness does not characterize translocation breakpoints in AID-negative B- and T-cell malignancies. These results identify G-richness as one feature of genomic structure that can contribute to genomic instability in AID-positive B-cell malignancies.

  10. Activation-Induced Cytidine Deaminase Expression in Human B Cell Precursors Is Essential for Central B Cell Tolerance.

    PubMed

    Cantaert, Tineke; Schickel, Jean-Nicolas; Bannock, Jason M; Ng, Yen-Shing; Massad, Christopher; Oe, Tyler; Wu, Renee; Lavoie, Aubert; Walter, Jolan E; Notarangelo, Luigi D; Al-Herz, Waleed; Kilic, Sara Sebnem; Ochs, Hans D; Nonoyama, Shigeaki; Durandy, Anne; Meffre, Eric

    2015-11-17

    Activation-induced cytidine deaminase (AID), the enzyme-mediating class-switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin genes, is essential for the removal of developing autoreactive B cells. How AID mediates central B cell tolerance remains unknown. We report that AID enzymes were produced in a discrete population of immature B cells that expressed recombination-activating gene 2 (RAG2), suggesting that they undergo secondary recombination to edit autoreactive antibodies. However, most AID+ immature B cells lacked anti-apoptotic MCL-1 and were deleted by apoptosis. AID inhibition using lentiviral-encoded short hairpin (sh)RNA in B cells developing in humanized mice resulted in a failure to remove autoreactive clones. Hence, B cell intrinsic AID expression mediates central B cell tolerance potentially through its RAG-coupled genotoxic activity in self-reactive immature B cells.

  11. The significance of single nucleotide polymorphism rs2070770 in CD20 gene in Chinese patients with diffuse large B-cell lymphoma.

    PubMed

    Zhang, Li-Na; Wang, Li; Fang, Cheng; Zou, Zhi-Jian; Fan, Lei; Zhang, Run; Young, Ken H; Li, Jian-Yong; Xu, Wei

    2015-03-01

    The purpose of this study was to investigate the significance of polymorphisms in the CD20 gene in patients with diffuse large B-cell lymphoma (DLBCL). We sequenced exons 3-8 in 160 patients with de novo DLBCL and detected the expression of CD20 via immunohistochemistry. We found two single nucleotide polymorphisms (SNPs): rs17155019 in the 5' untranslated region and rs2070770 (ILE72/ILE72) in exon 4. There was no significant difference in genotype frequencies of SNPs between patients and controls (p = 0.855 and 0.251, respectively). In patients who received rituximab-containing chemotherapies, the T allele of rs2070770 was significantly associated with superior overall survival (OS) (p = 0.029) and progression-free survival (p = 0.045). Analogously, in patients who did not receive rituximab, the T allele of rs2070770 (p = 0.047) was also significantly associated with longer OS. In conclusion, SNPs of CD20 were not high risk factors of DLBCL, but the T allele of rs2070770 was a potential indicator of superior survival.

  12. A novel IGH@ gene rearrangement associated with CDKN2A/B deletion in young adult B-cell acute lymphoblastic leukemia

    PubMed Central

    OTHMAN, MONEEB A.K.; GRYGALEWICZ, BEATA; PIENKOWSKA-GRELA, BARBARA; RYGIER, JOLANTA; EJDUK, ANNA; RINCIC, MARTINA; MELO, JOANA B.; CARREIRA, ISABEL M.; MEYER, BRITTA; LIEHR, THOMAS

    2016-01-01

    Acquired copy number changes are common in acute leukemia. They are reported as recurrent amplifications or deletions (del), and may be indicative of involvement of oncogenes or tumor suppressor genes in acquired disease, as well as serving as potential biomarkers for prognosis or as targets for molecular therapy. The present study reported a gain of copy number of 14q13 to 14q32, leading to immunoglobulin heavy chain locus splitting in a young adult female. To the best of our knowledge, this rearrangement has not been previously reported in B-cell acute lymphoblastic leukemia (ALL). Low resolution banding cytogenetics performed at the time of diagnosis revealed a normal karyotype. However, retrospective application of fluorescence in situ hybridization (FISH) banding and locus-specific FISH probes, as well as multiplex ligation-dependent probe amplification and high resolution array-comparative genomic hybridization, revealed previously hidden aberrations. Overall, a karyotype of 46, XX, del(9) (p21.3 p21.3),derivative(14) (pter-> q32.33:: q32.33-> q13 ::q32.33-> qter) was determined. The patient was treated according to the Polish Adult Leukemia Group protocol and achieved complete remission. The results of the present study indicate that a favorable prognosis is associated with these aberrations when the aforementioned treatment is administered. PMID:26998132

  13. Transcription of the Epstein-Barr virus nuclear antigen 1 (EBNA1) gene occurs before induction of the BCR2 (Cp) EBNA gene promoter during the initial stages of infection in B cells.

    PubMed

    Schlager, S; Speck, S H; Woisetschläger, M

    1996-06-01

    The purpose of this study was to gain insights into the regulation of Epstein-Barr virus (EBV) gene transcription during the establishment of viral latency in B cells. During the early stages of EBV infection in B lymphocytes, transcription of six viral nuclear antigens (EBNAs) is initiated from an early promoter (Wp). This is followed by a switch of promoter usage to an upstream promoter, Cp, whose activity is autoregulated by both EBNA1 and EBNA2. Previously it was demonstrated that infection of primary B cells with EBNA2-negative (EBNA2-) EBNA4-mutant (EBNA4mut) virus resulted only in the expression of mutant EBNA4 protein and failure to express the other EBNA gene products (C. Rooney H. G. Howe, S. H. Speck, and G. Miller, J. Virol. 63:1531-1539, 1989). We extended this research to demonstrate that Wp-to-Cp switching did not occur upon infection of primary B cells with an EBNA2- EBNA4mut virus (M. Woisetschlaeger, X. W. Jin, C. N. Yandara, L. A. Furmanski, J. L. Strominger, and S. H. Speck, Proc. Natl. Acad. Sci. USA 88:3942-3946, 1991). Further characterization of this phenomenon led to the identification of an EBNA2-dependent enhancer upstream of Cp. On the basis of these data, a model was proposed in which initial transcription from Wp gives rise to the expression of EBNA2 and EBNA4, and then transcription is upregulated from Cp via the EBNA2- dependent enhancer (Woisetschlaeger et al., as noted above). Implicit in this model is that transcription of the EBNA1 and EBNA3a to -3c genes is dependent on the switch from Wp to Cp, since primary cells infected with EBNA2- EBNA4mut virus fail to switch and also fail to express these viral antigens. Here we critically evaluate this model and demonstrate, in contrast to the predictions of the model, that transcription of both the EBNA1 and EBNA2 genes precedes activation of Cp. Furthermore, the level of EBNA1 gene transcription was strongly reduced in primary B cells infected with EBNA2- EBNA4mut virus compared with

  14. Effects of cytotoxin-associated gene A (CagA) positive Helicobacter pylori infection on anti-platelet glycoprotein antibody producing B cells in patients with primary idiopathic thrombocytopenic purpura (ITP)

    PubMed Central

    Cheng, Yuan-Shan; Kuang, Li-Ping; Zhuang, Chun-Lan; Jiang, Jia-Dian; Shi, Man

    2015-01-01

    Objective: To explore the effects of cytotoxin-associated gene A (CagA) positive Helicobacter pylori (H. pylori or HP) infection on circulating B cells producing specific platelet glycoprotein antibodies and the association between therapeutic outcomes in primary idiopathic thrombocytopenic purpura (ITP) patients. Methods: A total of 76 newly diagnosed primary ITP patients were included in the study which was conducted at the first affiliated hospital of Shantou University Medical college, in Shantou city China, between January 2013 and January 2014. These patients were tested for H. pylori infection by 13C urea breath test and for anti-CagA antibody in H. pylori positive cases by enzyme-linked immunosorbent assay (ELISA) method. Anti-GPIb and anti-GPIIb/IIIa antibody-producing B cells were measured using an enzyme-linked immunospot (ELISPOT) assay in all ITP patients and 30 controls. Anti-nuclear antibody (ANA) was also detected in ITP patients. Results: The numbers of anti-GPIIb/IIIa antibody-producing B cells in HP+CagA+ patients were higher than in HP+CagA- or HP- patients. However, anti-GPIb antibody-producing B cells were found higher in HP- patients. Analysis of treatment outcomes showed that a therapeutic response was more likely in patients presenting anti-GPIIb/IIIa B cells, but the poor response was found to be associated with anti-GPIb B cells and ANA presences. Conclusion: CagA antigen of H. pylori may induce anti-GPIIb/IIIa antibodies production by a molecular mimicry mechanism. Anti-GPIIb/IIIa and anti-GPIb antibody producing B Cells detection is useful for predicting treatment effects of primary ITP. PMID:25878627

  15. Identification of PPAP2B as a novel recurrent translocation partner gene of HMGA2 in lipomas.

    PubMed

    Bianchini, Laurence; Birtwisle, Loïc; Saâda, Esma; Bazin, Audrey; Long, Elodie; Roussel, Jean-François; Michiels, Jean-François; Forest, Fabien; Dani, Christian; Myklebost, Ola; Birtwisle-Peyrottes, Isabelle; Pedeutour, Florence

    2013-06-01

    Most lipomas are characterized by translocations involving the HMGA2 gene in 12q14.3. These rearrangements lead to the fusion of HMGA2 with an ectopic sequence from the translocation chromosome partner. Only five fusion partners of HMGA2 have been identified in lipomas so far. The identification of novel fusion partners of HMGA2 is important not only for diagnosis in soft tissue tumors but also because these genes might have an oncogenic role in other tumors. We observed that t(1;12)(p32;q14) was the second most frequent translocation in our series of lipomas after t(3;12)(q28;q14.3). We detected overexpression of HMGA2 mRNA and protein in all t(1;12)(p32;q14) lipomas. We used a fluorescence in situ hybridization-based positional cloning strategy to characterize the 1p32 breakpoint. In 11 cases, we identified PPAP2B, a member of the lipid phosphate phosphatases family as the 1p32 target gene. Reverse transcription-polymerase chain reaction analysis followed by nucleotide sequencing of the fusion transcript indicated that HMGA2 3' untranslated region (3'UTR) fused with exon 6 of PPAP2B in one case. In other t(1;12) cases, the breakpoint was extragenic, located in the 3'region flanking PPAP2B 3'UTR. Moreover, in one case showing a t(1;6)(p32;p21) we observed a rearrangement of PPAP2B and HMGA1, which suggests that HMGA1 might also be a fusion partner for PPAP2B. Our results also revealed that adipocytic differentiation of human mesenchymal stem cells derived from adipose tissue was associated with a significant decrease in PPAP2B mRNA expression suggesting that PPAP2B might play a role in adipogenesis.

  16. Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells.

    PubMed

    Schwer, Bjoern; Wei, Pei-Chi; Chang, Amelia N; Kao, Jennifer; Du, Zhou; Meyers, Robin M; Alt, Frederick W

    2016-02-23

    High-throughput, genome-wide translocation sequencing (HTGTS) studies of activated B cells have revealed that DNA double-strand breaks (DSBs) capable of translocating to defined bait DSBs are enriched around the transcription start sites (TSSs) of active genes. We used the HTGTS approach to investigate whether a similar phenomenon occurs in primary neural stem/progenitor cells (NSPCs). We report that breakpoint junctions indeed are enriched around TSSs that were determined to be active by global run-on sequencing analyses of NSPCs. Comparative analyses of transcription profiles in NSPCs and B cells revealed that the great majority of TSS-proximal junctions occurred in genes commonly expressed in both cell types, possibly because this common set has higher transcription levels on average than genes transcribed in only one or the other cell type. In the latter context, among all actively transcribed genes containing translocation junctions in NSPCs, those with junctions located within 2 kb of the TSS show a significantly higher transcription rate on average than genes with junctions in the gene body located at distances greater than 2 kb from the TSS. Finally, analysis of repair junction signatures of TSS-associated translocations in wild-type versus classical nonhomologous end-joining (C-NHEJ)-deficient NSPCs reveals that both C-NHEJ and alternative end-joining pathways can generate translocations by joining TSS-proximal DSBs to DSBs on other chromosomes. Our studies show that the generation of transcription-associated DSBs is conserved across divergent cell types.

  17. Expression of ribosomal RNA genes in lines of barley with a standard karyotype and with a translocated nucleolar organizer

    SciTech Connect

    Karag'ozov, L.K.; Ananiev, E.D.; Mateeva, Z.E.; Khadzhiolov, A.A.

    1986-10-01

    The authors have investigated the rRNA synthesis and the sensitivity of rRNA genes to the action of DNAase I in developing embryos of two forms of barley. The Frigga variety has a standard karyotype and the T/sub 506/ line is characterized by translocation of the nucleolar organizer, which leads to a reduction in the number of nucleoli observed in the telophase. The results of the investigation of rRNA synthesis in vivo and of the activity of RNA polymerase I in isolated nuclei revealed the absence of differences between the two barley forms. They have established that the genes of ribosomal RNAs possess greater sensitivity to digestion by DNAase the authors compared to that of the total nuclear DNA. They conclude that the translocation of one of the nucleolar organizers causes a delay in the appearance of its activity during the telophase, this not changing the expression of the rRNA genes in the subsequent stages of cell development.

  18. Bruton's Tyrosine Kinase Regulates the Activation of Gene Rearrangements at the λ Light Chain Locus in Precursor B Cells in the Mouse

    PubMed Central

    Dingjan, Gemma M.; Middendorp, Sabine; Dahlenborg, Katarina; Maas, Alex; Grosveld, Frank; Hendriks, Rudolf W.

    2001-01-01

    Bruton's tyrosine kinase (Btk) is a nonreceptor tyrosine kinase involved in precursor B (pre-B) cell receptor signaling. Here we demonstrate that Btk-deficient mice have an ∼50% reduction in the frequency of immunoglobulin (Ig) λ light chain expression, already at the immature B cell stage in the bone marrow. Conversely, transgenic mice expressing the activated mutant BtkE41K showed increased λ usage. As the κ/λ ratio is dependent on (a) the level and kinetics of κ and λ locus activation, (b) the life span of pre-B cells, and (c) the extent of receptor editing, we analyzed the role of Btk in these processes. Enforced expression of the Bcl-2 apoptosis inhibitor did not alter the Btk dependence of λ usage. Crossing 3-83μδ autoantibody transgenic mice into Btk-deficient mice showed that Btk is not essential for receptor editing. Also, Btk-deficient surface Ig+ B cells that were generated in vitro in interleukin 7-driven bone marrow cultures manifested reduced λ usage. An intrinsic defect in λ locus recombination was further supported by the finding in Btk-deficient mice of reduced λ usage in the fraction of pre-B cells that express light chains in their cytoplasm. These results implicate Btk in the regulation of the activation of the λ locus for V(D)J recombination in pre-B cells. PMID:11369788

  19. Circulating CD21low B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells

    PubMed Central

    Rakhmanov, Mirzokhid; Keller, Baerbel; Gutenberger, Sylvia; Foerster, Christian; Hoenig, Manfred; Driessen, Gertjan; van der Burg, Mirjam; van Dongen, Jacques J.; Wiech, Elisabeth; Visentini, Marcella; Quinti, Isabella; Prasse, Antje; Voelxen, Nadine; Salzer, Ulrich; Goldacker, Sigune; Fisch, Paul; Eibel, Hermann; Schwarz, Klaus; Peter, Hans-Hartmut; Warnatz, Klaus

    2009-01-01

    The homeostasis of circulating B cell subsets in the peripheral blood of healthy adults is well regulated, but in disease it can be severely disturbed. Thus, a subgroup of patients with common variable immunodeficiency (CVID) presents with an extraordinary expansion of an unusual B cell population characterized by the low expression of CD21. CD21low B cells are polyclonal, unmutated IgM+IgD+ B cells but carry a highly distinct gene expression profile which differs from conventional naïve B cells. Interestingly, while clearly not representing a memory population, they do share several features with the recently defined memory-like tissue, Fc receptor-like 4 positive B cell population in the tonsils of healthy donors. CD21low B cells show signs of previous activation and proliferation in vivo, while exhibiting defective calcium signaling and poor proliferation in response to B cell receptor stimulation. CD21low B cells express decreased amounts of homeostatic but increased levels of inflammatory chemokine receptors. This might explain their preferential homing to peripheral tissues like the bronchoalveolar space of CVID or the synovium of rheumatoid arthritis patients. Therefore, as a result of the close resemblance to the gene expression profile, phenotype, function and preferential tissue homing of murine B1 B cells, we suggest that CD21low B cells represent a human innate-like B cell population. PMID:19666505

  20. Imbalanced MHC class II molecule expression at surface of murine B cell lymphomas

    PubMed Central

    1986-01-01

    To study the role of class II MHC expression in mouse lymphomagenesis, we examined the cell surface expression of I-A/E antigens on 24 spontaneous or murine leukemia virus (MuLV)-induced mouse B10.A (I-Ak, I-Ek) B cell lymphomas. Two primary B10.A B cell lymphomas were observed with strong I-Ek expression but with only minimal cell surface I-Ak expression. Both tumors are readily transplantable in syngeneic mice, with maintenance of their I-A-, I-E+ phenotype. Strikingly, one I- A-, I-E+ B cell lymphoma contains a (11; 17) translocation with a breakpoint on chromosome 17 that is localized within or very close to the H-2 complex. DNA of both tumors contains normal restriction enzyme fragments of the A alpha and A beta genes. Northern blot analyses indicated that one I-A-, I-E+ tumor strongly expressed A alpha, E alpha, and E beta mRNAs but possessed only a weak expression of A beta mRNA. The other B cell lymphoma showed A beta, E alpha, and E beta mRNA expression but only minimal A alpha mRNA expression. In 11 primary B10.A B cell lymphomas with a normal I-A+, I-E+ phenotype, no imbalances in A alpha/A beta mRNA levels were observed. The implications of these findings for the role of class II MHC expression in mouse B cell lymphoma-genesis are discussed. PMID:3486245

  1. Evidence for a wide occurrence of proton-translocating pyrophosphatase genes in parasitic and free-living protozoa.

    PubMed

    Pérez-Castiñeira, José R; Alvar, Jorge; Ruiz-Pérez, Luis M; Serrano, Aurelio

    2002-06-14

    Proton-translocating inorganic pyrophosphatases (H(+)-PPase, EC 3.6.1.1) are integral membrane proteins that have been extensively studied in higher plants, the photosynthetic bacterium Rhodospirillum rubrum and, more recently, in some human pathogenic protozoa. By using a PCR-based approach, fragments of genes coding for H(+)-PPases in a number of protists, both free-living and parasites of animals and plants, that belong to diverse taxonomic groups (trypanosomatids, ciliates, apicomplexans, euglenoids, amoeboid mycetozoa, heterokonts) have been isolated. The experimental procedure involved the use of degenerate oligonucleotides designed from protein domains conserved in H(+)-PPases from plants and bacteria. The PCR-amplified DNA fragments exhibited the characteristic genomic structure and codon usage of the corresponding protozoan group. Paralogous genes were found in some species suggesting the occurrence of protein isoforms. These results indicate that H(+)-PPases are more widely distributed among protozoa than previously thought.

  2. Cloning of the anhidrotic ectodermal dysplasia gene: Identification of cDNAs associated with CpG islands mapped near translocation breakpoint in two female patients

    SciTech Connect

    Srivastava, A.K.; Schlessinger, D.; Kere, J.

    1994-09-01

    The gene for the X chromosomal developmental disorder anhidrotic ectodermal dysplasia (EDA) has been mapped to Xq12-q13 by linkage analysis and is expressed in a few females with chromosomal translocations involving band Xq12-q13. A yeast artificial chromosome (YAC) contig (2.0 Mb) spanning two translocation breakpoints has been assembled by sequence-tagged site (STS)-based chromosomal walking. The two translocation breakpoints (X:autosome translocations from the affected female patients) have been mapped less than 60 kb apart within a YAC contig. Unique probes and intragenic STSs (mapped between the two translocations) have been developed and a somatic cell hybrid carrying the translocated X chromosome from the AK patient has been analyzed by isolating unique probes that span the breakpoint. Several STSs made from intragenic sequences have been found to be conserved in mouse, hamster and monkey, but we have detected no mRNAs in a number of tissues tested. However, a probe and STS developed from the DNA spanning the AK breakpoint is conserved in mouse, hamster and monkey, and we have detected expressed sequences in skin cells and cDNA libraries. In addition, unique sequences have been obtained from two CpG islands in the region that maps proximal to the breakpoints. cDNAs containing these sequences are being studied as candidates for the gene affected in the etiology of EDA.

  3. A Constitutional Translocation t(1;17)(p36.2;q11.2) in a Neuroblastoma Patient Disrupts the Human NBPF1 and ACCN1 Genes

    PubMed Central

    Staes, Katrien; Vandesompele, Jo; Laureys, Geneviève; De Smet, Els; Berx, Geert; Speleman, Frank; van Roy, Frans

    2008-01-01

    The human 1p36 region is deleted in many different types of tumors, and so it probably harbors one or more tumor suppressor genes. In a Belgian neuroblastoma patient, a constitutional balanced translocation t(1;17)(p36.2;q11.2) may have led to the development of the tumor by disrupting or activating a gene. Here, we report the cloning of both translocation breakpoints and the identification of a novel gene that is disrupted by this translocation. This gene, named NBPF1 for Neuroblastoma BreakPoint Family member 1, belongs to a recently described gene family encoding highly similar proteins, the functions of which are unknown. The translocation truncates NBPF1 and gives rise to two chimeric transcripts of NBPF1 sequences fused to sequences derived from chromosome 17. On chromosome 17, the translocation disrupts one of the isoforms of ACCN1, a potential glioma tumor suppressor gene. Expression of the NBPF family in neuroblastoma cell lines is highly variable, but it is decreased in cell lines that have a deletion of chromosome 1p. More importantly, expression profiling of the NBPF1 gene showed that its expression is significantly lower in cell lines with heterozygous NBPF1 loss than in cell lines with a normal 1p chromosome. Meta-analysis of the expression of NBPF and ACCN1 in neuroblastoma tumors indicates a role for the NBPF genes and for ACCN1 in tumor aggressiveness. Additionally, DLD1 cells with inducible NBPF1 expression showed a marked decrease of clonal growth in a soft agar assay. The disruption of both NBPF1 and ACCN1 genes in this neuroblastoma patient indicates that these genes might suppress development of neuroblastoma and possibly other tumor types. PMID:18493581

  4. Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare).

    PubMed

    Tiong, Jingwen; McDonald, Glenn; Genc, Yusuf; Shirley, Neil; Langridge, Peter; Huang, Chun Y

    2015-09-01

    Low zinc (Zn) in soils reduces yield and grain Zn content. Regulation of ZRT/IRT-like protein (ZIP) family genes is a major mechanism in plant adaptation to low and fluctuating Zn in soil. Although several Zn deficiency-inducible ZIP genes are identified in cereals, there has been no systematic study on the association of Zn deficiency-induced uptake and root-to-shoot translocation with expression of ZIP family genes. We measured Zn deficiency-induced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare) plants by resupplying 0.5 μM Zn, and quantified the transcripts of thirteen HvZIP genes. Subcellular localization and tissue-specific expression were also determined for Zn deficiency-inducible HvZIP genes. Zn deficiency enhanced the capacity of uptake and root-to-shoot translocation of Zn, and sustained the enhanced capacity for 6 d after Zn resupply. Six HvZIP genes were highly induced in roots of Zn-deficient plants, and their proteins were localized in the plasma membrane. Tissue-specific expression in roots supports their roles in uptake and root-to-shoot translocation of Zn under low Zn conditions. Our results provide a comprehensive view on the physiological roles of ZIP genes in plant adaptation to low and fluctuating Zn in soil, and pave the way for development of new strategies to improve Zn-deficiency tolerance and biofortification in cereals. PMID:25904503

  5. Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare).

    PubMed

    Tiong, Jingwen; McDonald, Glenn; Genc, Yusuf; Shirley, Neil; Langridge, Peter; Huang, Chun Y

    2015-09-01

    Low zinc (Zn) in soils reduces yield and grain Zn content. Regulation of ZRT/IRT-like protein (ZIP) family genes is a major mechanism in plant adaptation to low and fluctuating Zn in soil. Although several Zn deficiency-inducible ZIP genes are identified in cereals, there has been no systematic study on the association of Zn deficiency-induced uptake and root-to-shoot translocation with expression of ZIP family genes. We measured Zn deficiency-induced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare) plants by resupplying 0.5 μM Zn, and quantified the transcripts of thirteen HvZIP genes. Subcellular localization and tissue-specific expression were also determined for Zn deficiency-inducible HvZIP genes. Zn deficiency enhanced the capacity of uptake and root-to-shoot translocation of Zn, and sustained the enhanced capacity for 6 d after Zn resupply. Six HvZIP genes were highly induced in roots of Zn-deficient plants, and their proteins were localized in the plasma membrane. Tissue-specific expression in roots supports their roles in uptake and root-to-shoot translocation of Zn under low Zn conditions. Our results provide a comprehensive view on the physiological roles of ZIP genes in plant adaptation to low and fluctuating Zn in soil, and pave the way for development of new strategies to improve Zn-deficiency tolerance and biofortification in cereals.

  6. Detection of TMPRSS2-ERG translocations in human prostate cancer by expression profiling using GeneChip Human Exon 1.0 ST arrays.

    PubMed

    Jhavar, Sameer; Reid, Alison; Clark, Jeremy; Kote-Jarai, Zsofia; Christmas, Timothy; Thompson, Alan; Woodhouse, Christopher; Ogden, Christopher; Fisher, Cyril; Corbishley, Cathy; De-Bono, Johann; Eeles, Rosalind; Brewer, Daniel; Cooper, Colin

    2008-01-01

    Translocation of TMPRSS2 to the ERG gene, found in a high proportion of human prostate cancer, results in overexpression of the 3'-ERG sequences joined to the 5'-TMPRSS2 promoter. The studies presented here were designed to test the ability of expression analysis on GeneChip Human Exon 1.0 ST arrays to detect 5'-TMPRSS2-ERG-3' hybrid transcripts encoded by this translocation. Monitoring the relative expression of each ERG exon revealed altered transcription of the ERG gene in 15 of a series of 27 prostate cancer samples. In all cases, exons 4 to 11 exhibited enhanced expression compared with exons 2 and 3. This pattern of expression indicated that the most abundant hybrid transcripts involve fusions to ERG exon 4, and RT-PCR analyses confirmed the joining of TMPRSS2 exon 1 to ERG exon 4 in all 15 cases. The exon expression patterns also indicated that TMPRSS2-ERG fusion transcripts commonly contain deletion of ERG exon 8. Analysis of gene-level data from the arrays allowed the identification of genes whose expression levels significantly correlated with the presence of the translocation. These studies demonstrate that expression analyses using exon arrays represent a valuable approach for detecting ETS gene translocation in prostate cancer, in parallel with analyses of gene expression profiles.

  7. Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8.

    PubMed

    Fischer, W; Püls, J; Buhrdorf, R; Gebert, B; Odenbreit, S; Haas, R

    2001-12-01

    Helicobacter pylori (Hp) carries a type IV secretion system encoded by the cag pathogenicity island (cag-PAI), which is used to: (i) translocate the bacterial effector protein CagA into different types of eukaryotic cells; and (ii) induce the synthesis and secretion of chemokines, such as interleukin-8 (IL-8). The cag-PAI in Hp 26695 consists of 27 putative genes, six of which were identified as homologues to the basic type IV secretion system represented by the Agrobacterium tumefaciens virB operon. To define the role and contribution of each of the 27 genes, we applied a precise deletion/insertion mutagenesis procedure to knock out each individual gene without causing polar effects on the expression of downstream genes. Seventeen out of 27 genes were found to be absolutely essential for translocation of CagA into host cells and 14 out of 27 for the ability of Hp fully to induce transcription of IL-8. The products of hp0524 (virD4 homologue), hp0526 and hp0540 are absolutely essential for the translocation of CagA, but not for the induction of IL-8. In contrast, the products of hp0520, hp0521, hp0534, hp0535, hp0536 and hp0543 are not necessary for either translocation of CagA or for IL-8 induction. Our data argue against a translocated IL-8-inducing effector protein encoded by the cag-PAI. We isolated a variant of Hp 26695, which spontaneously switched off its capacity for IL-8 induction and translocation of CagA, but retained the complete cag-PAI. We identified a point mutation in gene hp0532, causing a premature translational stop in the corresponding polypeptide chain, providing a putative explanation for the defect in the type IV secretion system of the spontaneous mutant. PMID:11886563

  8. Cytoprotective effect of kaempferol on paraquat-exposed BEAS-2B cells via modulating expression of MUC5AC.

    PubMed

    Podder, Biswajit; Song, Kyoung Seob; Song, Ho-Yeon; Kim, Yong-Sik

    2014-01-01

    Mucins are highly glycosylated secretary proteins produced by most epithelial cells. Hypersecretion of mucins is one of the prominent symptoms of several airway diseases, including asthma, cystic fibrosis, nasal allergy, rhinitis, and sinusitis. Paraquat (PQ), a common herbicide, has been associated with pulmonary damage and is a potent reactive oxygen species (ROS) producer. However, until now the role of PQ on mucin overproduction has not been studied. The aim of this study is to explore how kaempferol (KM), a widely used dietary flavonoid, affects the protection of human PQ-exposed bronchial epithelium BEAS-2B cells by suppressing Mucin gene expression via nuclear factor-kappa B (NF-κB). We observed that PQ generates intracellular ROS, and also induces lipid peroxidation in BEAS-2B cells. Additionally, we found that PQ effectively induces the expression of the MUC5AC gene; however, co-treatment of PQ with KM drastically reduces its expression. Furthermore, we observed that PQ activates NF-κB, while co-treatment with KM occludes its nuclear translocation, and additionally KM repressed the PQ phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) in BEAS-2B cells. Based on our data, we believe that KM can suppress the over-expression of the MUC5AC gene. This would contribute to the protection of PQ cytotoxicity to exposed BEAS-2B cells, and allow further study toward a better understanding of ROS-associated diseases. PMID:25177032

  9. Gene gun bombardment-mediated expression and translocation of EGFP-tagged GLUT4 in skeletal muscle fibres in vivo.

    PubMed

    Lauritzen, Hans P M M; Reynet, Christine; Schjerling, Peter; Ralston, Evelyn; Thomas, Stephen; Galbo, Henrik; Ploug, Thorkil

    2002-09-01

    Cellular protein trafficking has been studied to date only in vitro or with techniques that are invasive and have a low time resolution. To establish a gentle method for analysis of glucose transporter-4 (GLUT4) trafficking in vivo in fully differentiated rat skeletal muscle fibres we combined the enhanced green fluorescent protein (EGFP) labelling technique with physical transfection methods in vivo: intramuscular plasmid injection or gene gun bombardment. During optimisation experiments with plasmid coding for the EGFP reporter alone EGFP-positive muscle fibres were counted after collagenase treatment of in vivo transfected flexor digitorum brevis (FDB) muscles. In contrast to gene gun bombardment, intramuscular injection produced EGFP expression in only a few fibres. Regardless of the transfection technique, EGFP expression was higher in muscles from 2-week-old rats than in those from 6-week-old rats and peaked around 1 week after transfection. The gene gun was used subsequently with a plasmid coding for EGFP linked to the C-terminus of GLUT4 (GLUT4-EGFP). Rats were anaesthetised 5 days after transfection and insulin given i.v. with or without accompanying electrical hindleg muscle stimulation. After stimulation, the hindlegs were fixed by perfusion. GLUT4-EGFP-positive FDB fibres were isolated and analysed by confocal microscopy. The intracellular distribution of GLUT4-EGFP under basal conditions as well as after translocation to the plasma membrane in response to insulin, contractions, or both, was in accordance with previous studies of endogenous GLUT4. Finally, GLUT4-EGFP trafficking in quadriceps muscle in vivo was studied using time-lapse microscopy analysis in anaesthetised mice and the first detailed time-lapse recordings of GLUT4-EGFP translocation in fully differentiated skeletal muscle in vivo were obtained.

  10. A phylogeny of the temperate seabasses (Moronidae) characterized by a translocation of the mt-nd6 gene.

    PubMed

    Williams, E P; Peer, A C; Miller, T J; Secor, D H; Place, A R

    2012-01-01

    The entire mitochondrial genome of the striped bass Morone saxatilis was sequenced together with the mitochondrial (mt) control regions of the white bass Morone chrysops, white perch Morone americana, yellow bass Morone mississippiensis, spotted seabass Dicentrarchus punctatus, European seabass Dicentrarchus labrax and the Japanese seabass Lateolabrax japonicus. The resultant 17 580 base pair circular genome of M. saxatilis contains 38 genes (13 proteins, 23 transfer RNAs and two ribosomal RNAs) and a control region bordered by the proline and phenylalanine mitochondrial tRNAs. Gene arrangement was similar to other vertebrates, except that the mt-nd6 gene was found within the control region rather than the canonical position between the mt-nd5 and mt-cyb genes. This translocation was found in all the Morone and Dicentrarchus species studied without functional copies or pseudogenes in the ancestral position. In L. japonicus, the mt-nd6 gene was found in the canonical position without evidence of an mt-nd6 gene in the control region. A Bayesian analysis of these and published mt-nd6 sequences from 45 other Perciformes grouped the Morone and Dicentrarchus species monophyletically with a probability of 1·00 with respect to L. japonicus and all other perciforms, and placed the Dicentrarchus species in the basal position. These data reinforce current placement of L. japonicus outside the Moronidae and provide a clear evolutionary character to define this family. The phylogeny of the Moronidae presented here also supports the hypothesis of an anadromous common ancestor to this family that gave rise to the North American estuarine and freshwater species. A series of tandem repeats previously reported in M. saxatilis was found in the control region of all Morone species between the mt-nd6 and mt-rnr1 genes, but not in either Dicentrarchus species, which reinforces the continued use of these two separate genera. PMID:22220893

  11. Macrophage colony-stimulating factor receptor marks and regulates a fetal myeloid-primed B-cell progenitor in mice.

    PubMed

    Zriwil, Alya; Böiers, Charlotta; Wittmann, Lilian; Green, Joanna C A; Woll, Petter S; Jacobsen, Sten Eirik W; Sitnicka, Ewa

    2016-07-14

    Although it is well established that unique B-cell lineages develop through distinct regulatory mechanisms during embryonic development, much less is understood about the differences between embryonic and adult B-cell progenitor cells, likely to underpin the genetics and biology of infant and childhood PreB acute lymphoblastic leukemia (PreB-ALL), initiated by distinct leukemia-initiating translocations during embryonic development. Herein, we establish that a distinct subset of the earliest CD19(+) B-cell progenitors emerging in the E13.5 mouse fetal liver express the colony-stimulating factor-1 receptor (CSF1R), previously thought to be expressed, and play a lineage-restricted role in development of myeloid lineages, and macrophages in particular. These early embryonic CSF1R(+)CD19(+) ProB cells also express multiple other myeloid genes and, in line with this, possess residual myeloid as well as B-cell, but not T-cell lineage potential. Notably, these CSF1R(+) myeloid-primed ProB cells are uniquely present in a narrow window of embryonic fetal liver hematopoiesis and do not persist in adult bone marrow. Moreover, analysis of CSF1R-deficient mice establishes a distinct role of CSF1R in fetal B-lymphopoiesis. CSF1R(+) myeloid-primed embryonic ProB cells are relevant for infant and childhood PreB-ALLs, which frequently have a bi-phenotypic B-myeloid phenotype, and in which CSF1R-rearrangements have recently been reported.

  12. Macrophage colony-stimulating factor receptor marks and regulates a fetal myeloid-primed B-cell progenitor in mice

    PubMed Central

    Zriwil, Alya; Böiers, Charlotta; Wittmann, Lilian; Green, Joanna C. A.; Woll, Petter S.; Jacobsen, Sten Eirik W.

    2016-01-01

    Although it is well established that unique B-cell lineages develop through distinct regulatory mechanisms during embryonic development, much less is understood about the differences between embryonic and adult B-cell progenitor cells, likely to underpin the genetics and biology of infant and childhood PreB acute lymphoblastic leukemia (PreB-ALL), initiated by distinct leukemia-initiating translocations during embryonic development. Herein, we establish that a distinct subset of the earliest CD19+ B-cell progenitors emerging in the E13.5 mouse fetal liver express the colony-stimulating factor-1 receptor (CSF1R), previously thought to be expressed, and play a lineage-restricted role in development of myeloid lineages, and macrophages in particular. These early embryonic CSF1R+CD19+ ProB cells also express multiple other myeloid genes and, in line with this, possess residual myeloid as well as B-cell, but not T-cell lineage potential. Notably, these CSF1R+ myeloid-primed ProB cells are uniquely present in a narrow window of embryonic fetal liver hematopoiesis and do not persist in adult bone marrow. Moreover, analysis of CSF1R-deficient mice establishes a distinct role of CSF1R in fetal B-lymphopoiesis. CSF1R+ myeloid-primed embryonic ProB cells are relevant for infant and childhood PreB-ALLs, which frequently have a bi-phenotypic B-myeloid phenotype, and in which CSF1R-rearrangements have recently been reported. PMID:27207794

  13. Macrophage colony-stimulating factor receptor marks and regulates a fetal myeloid-primed B-cell progenitor in mice.

    PubMed

    Zriwil, Alya; Böiers, Charlotta; Wittmann, Lilian; Green, Joanna C A; Woll, Petter S; Jacobsen, Sten Eirik W; Sitnicka, Ewa

    2016-07-14

    Although it is well established that unique B-cell lineages develop through distinct regulatory mechanisms during embryonic development, much less is understood about the differences between embryonic and adult B-cell progenitor cells, likely to underpin the genetics and biology of infant and childhood PreB acute lymphoblastic leukemia (PreB-ALL), initiated by distinct leukemia-initiating translocations during embryonic development. Herein, we establish that a distinct subset of the earliest CD19(+) B-cell progenitors emerging in the E13.5 mouse fetal liver express the colony-stimulating factor-1 receptor (CSF1R), previously thought to be expressed, and play a lineage-restricted role in development of myeloid lineages, and macrophages in particular. These early embryonic CSF1R(+)CD19(+) ProB cells also express multiple other myeloid genes and, in line with this, possess residual myeloid as well as B-cell, but not T-cell lineage potential. Notably, these CSF1R(+) myeloid-primed ProB cells are uniquely present in a narrow window of embryonic fetal liver hematopoiesis and do not persist in adult bone marrow. Moreover, analysis of CSF1R-deficient mice establishes a distinct role of CSF1R in fetal B-lymphopoiesis. CSF1R(+) myeloid-primed embryonic ProB cells are relevant for infant and childhood PreB-ALLs, which frequently have a bi-phenotypic B-myeloid phenotype, and in which CSF1R-rearrangements have recently been reported. PMID:27207794

  14. The life and death of a B cell.

    PubMed

    Defrance, Thierry; Casamayor-Pallejà, Montserrat; Krammer, Peter H

    2002-01-01

    Regulation of apoptosis in the B cell lineage has implications for homeostasis, quality control of the antibody response, and tolerance. In this chapter we examine the different checkpoints that control life and death decisions of B cells during the antigen-independent and antigen-dependent phases of their development. We discuss the cell death mechanism involved in elimination of unwanted B cells at different stages of their development as well as the signals that trigger or repress the apoptotic process. At the steady state, before or after development of an immune response, B cell apoptosis ensures that the antigen receptor (BCR) on newly produced B cells is functional and does not recognize self-antigens with high avidity. It also ensures that the size of the peripheral B cell compartment remains constant in spite of the continuous input of B cells from the bone marrow. All these processes are controlled by the mitochondrial death pathway and are thus perturbed by overexpression of the antiapoptotic members of the bcl-2 gene family. By contrast, the death receptor pathway plays a prominent role during the antigen-dependent phase of B cell development. Three sets of membrane molecules stand as crucial regulators of B cell survival. First, the BCR which plays a central but ambiguous role. On the one hand, it triggers death of B cells that recognize self-antigens or have been exposed to repeated antigenic stimulations. On the other hand, it promotes survival of the peripheral mature B cell pool and protects activated B cells from CD95-induced killing. Second, the death receptor Fas/CD95 which is instrumental in censoring B cells activated in a bystander fashion at the initiation of the response to T-dependent antigens. It also drives elimination of low-affinity and self-reactive B cell clones that arise through the process of somatic mutations during the germinal center reaction. As such, it contributes to the affinity maturation of the antibody response. Finally

  15. Identification of COL3A1 and RAB2A as novel translocation partner genes of PLAG1 in lipoblastoma.

    PubMed

    Yoshida, Hideki; Miyachi, Mitsuru; Ouchi, Kazutaka; Kuwahara, Yasumichi; Tsuchiya, Kunihiko; Iehara, Tomoko; Konishi, Eiichi; Yanagisawa, Akio; Hosoi, Hajime

    2014-07-01

    Lipoblastoma is a rapidly growing, benign neoplasm in children. Surgical excision is usually curative, with a recurrence rate of about 20%. Because the histology of lipoblastoma is heterogeneous and overlaps with other lipomatous tumors, some lipoblastoma cases have been difficult to diagnose. The detection of PLAG1 gene rearrangement is useful for the diagnosis of lipoblastoma. Three fusion partner genes are known in relation to PLAG1 in lipoblastoma HAS2 at 8q24.1, COL1A2 at 7q22, and RAD51L1 at 14q24. Herein, we describe another two novel fusion genes in lipoblastoma tumor specimens. We checked six tumors for the presence of two known fusion genes, HAS2-PLAG1 and COL1A2-PLAG1. Only HAS2-PLAG1 was found in one of the cases. Next, we attempted to identify potential PLAG1 fusion partners using 5'RACE. Sequence analysis revealed two novel fusion genes, COL3A1-PLAG1 in three cases and RAB2A-PLAG1 in one case, respectively. As a result of the translocations, the constitutively active promoter of the partner gene drives the ectopic expression of PLAG1. We also evaluated whether a high level of PLAG1 expression can be used to help differentiate lipomatous tumors. PLAG1 expression was evaluated by real-time PCR in five lipoblastoma tumor specimens. The expressions were 70-150 times higher in lipoblastomas than in human adipocytes. However, PLAG1 expression was low in one case of lipoma. These results demonstrate that PLAG1 overexpression is a potential marker of lipoblastoma. Our findings, in agreement with previous studies, show that lipoblastoma is a group of lipomatous tumors with PLAG1 rearrangement and overexpression. © 2014 Wiley Periodicals, Inc. PMID:24700772

  16. Syk Tyrosine Kinase Is Required for the Positive Selection of Immature B Cells into the Recirculating B Cell Pool

    PubMed Central

    Turner, Martin; Gulbranson-Judge, Adam; Quinn, Marian E.; Walters, Alice E.; MacLennan, Ian C.M.; Tybulewicz, Victor L.J.

    1997-01-01

    The tyrosine kinase Syk has been implicated as a key signal transducer from the B cell antigen receptor (BCR). We show here that mutation of the Syk gene completely blocks the maturation of immature B cells into recirculating cells and stops their entry into B cell follicles. Furthermore, using radiation chimeras we demonstrate that this developmental block is due to the absence of Syk in the B cells themselves. Syk-deficient B cells are shown to have the life span of normal immature B cells. If this is extended by over-expression of Bcl-2, they accumulate in the T zone and red pulp of the spleen in increased numbers, but still fail to mature to become recirculating follicular B cells. Despite this defect in maturation, Syk-deficient B cells were seen to give rise to switched as well as nonswitched splenic plasma cells. Normally only a proportion of immature B cells is recruited into the recirculating pool. Our results suggest that Syk transduces a BCR signal that is absolutely required for the positive selection of immature B cells into the recirculating B cell pool. PMID:9396770

  17. Low expression of human histocompatibility leukocyte antigen-DR is associated with hypermethylation of human histocompatibility leukocyte antigen-DR alpha gene regions in B cells from patients with systemic lupus erythematosus.

    PubMed Central

    Sano, H; Compton, L J; Shiomi, N; Steinberg, A D; Jackson, R A; Sasaki, T

    1985-01-01

    The relationship between the expression of HLA-DR antigens and the HLA-DR alpha gene methylation was examined in systemic lupus erythematosus (SLE). Using permanent B cell lines, we found reduced DR expression in SLE. The low DR expression was correlated with high anti-DNA antibody titers in patients' sera. The amounts of DR alpha message were lower in SLE cells than in normal controls, suggesting that the low expression of DR antigens is associated with gene functions. The extent of DNA methylation was examined at five CCGG sites in the HLA-DR alpha locus. DNA from both SLE and normal cells showed variable methylation patterns. Since the DR alpha gene is a single-copy gene, such a variability is the result of assaying a mixture of transformed clones containing methylated DR alpha gene, with other clones containing unmethylated DR alpha gene. A distinctive feature of normal cells was a consistent methylation pattern: 12 normal cell lines showed exactly the same pattern. In contrast, 28 SLE cell lines showed a cell-line-specific methylation, and hypermethylation at the DR alpha locus. The hypermethylation is often associated with transcriptionally inactive genes. Thus, our results suggest that (a) B cells with hypermethylated DR genes might express no or few DR antigens; (b) the ratio of cells with differently methylated DR genes is consistent in normal individuals, while, in SLE patients, cells with hypermethylated DR genes predominate, resulting in apparently reduced DR antigen expression; and (c) the aberrant DR expression could be associated directly with immunoregulatory dysfunctions in SLE disease. Images PMID:2997276

  18. C/EBPα poises B cells for rapid reprogramming into induced pluripotent stem cells.

    PubMed

    Di Stefano, Bruno; Sardina, Jose Luis; van Oevelen, Chris; Collombet, Samuel; Kallin, Eric M; Vicent, Guillermo P; Lu, Jun; Thieffry, Denis; Beato, Miguel; Graf, Thomas

    2014-02-13

    CCAAT/enhancer binding protein-α (C/EBPα) induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem (iPS) cells when co-expressed with the transcription factors Oct4 (Pou5f1), Sox2, Klf4 and Myc (hereafter called OSKM). However, how C/EBPα accomplishes these effects is unclear. Here we find that in mouse primary B cells transient C/EBPα expression followed by OSKM activation induces a 100-fold increase in iPS cell reprogramming efficiency, involving 95% of the population. During this conversion, pluripotency and epithelial-mesenchymal transition genes become markedly upregulated, and 60% of the cells express Oct4 within 2 days. C/EBPα acts as a 'path-breaker' as it transiently makes the chromatin of pluripotency genes more accessible to DNase I. C/EBPα also induces the expression of the dioxygenase Tet2 and promotes its translocation to the nucleus where it binds to regulatory regions of pluripotency genes that become demethylated after OSKM induction. In line with these findings, overexpression of Tet2 enhances OSKM-induced B-cell reprogramming. Because the enzyme is also required for efficient C/EBPα-induced immune cell conversion, our data indicate that Tet2 provides a mechanistic link between iPS cell reprogramming and B-cell transdifferentiation. The rapid iPS reprogramming approach described here should help to fully elucidate the process and has potential clinical applications. PMID:24336202

  19. Transcriptional Gene Silencing Mediated by a Plastid Inner Envelope Phosphoenolpyruvate/Phosphate Translocator CUE1 in Arabidopsis1[OA

    PubMed Central

    Shen, Jie; Ren, Xiaozhi; Cao, Rui; Liu, Jun; Gong, Zhizhong

    2009-01-01

    Mutations in REPRESSOR OF SILENCING1 (ROS1) lead to the transcriptional gene silencing (TGS) of ProRD29A:LUC (LUCIFERASE) and Pro35S:NPTII (Neomycin Phosphotransferase II) reporter genes. We performed a genetic screen to find suppressors of ros1 that identified two mutant alleles in the Arabidopsis (Arabidopsis thaliana) CHLOROPHYLL A/B BINDING PROTEIN UNDEREXPRESSED1 (CUE1) gene, which encodes a plastid inner envelope phosphoenolpyruvate/phosphate translocator. The cue1 mutations released the TGS of Pro35S:NPTII and the transcriptionally silent endogenous locus TRANSCRIPTIONAL SILENCING INFORMATION in a manner that was independent of DNA methylation but dependent on chromatin modification. The cue1 mutations did not affect the TGS of ProRD29A:LUC in ros1, which was dependent on RNA-directed DNA methylation. It is possible that signals from chloroplasts help to regulate the epigenetic status of a subset of genomic loci in the nucleus. PMID:19515789

  20. Lymphomagenic CARD11/BCL10/MALT1 signaling drives malignant B-cell proliferation via cooperative NF-κB and JNK activation

    PubMed Central

    Knies, Nathalie; Alankus, Begüm; Weilemann, Andre; Tzankov, Alexandar; Brunner, Kristina; Ruff, Tanja; Kremer, Marcus; Keller, Ulrich B.; Lenz, Georg; Ruland, Jürgen

    2015-01-01

    The aggressive activated B cell-like subtype of diffuse large B-cell lymphoma is characterized by aberrant B-cell receptor (BCR) signaling and constitutive nuclear factor kappa-B (NF-κB) activation, which is required for tumor cell survival. BCR-induced NF-κB activation requires caspase recruitment domain-containing protein 11 (CARD11), and CARD11 gain-of-function mutations are recurrently detected in human diffuse large B-cell lymphoma (DLBCL). To investigate the consequences of dysregulated CARD11 signaling in vivo, we generated mice that conditionally express the human DLBCL-derived CARD11(L225LI) mutant. Surprisingly, CARD11(L225LI) was sufficient to trigger aggressive B-cell lymphoproliferation, leading to early postnatal lethality. CARD11(L225LI) constitutively associated with B-cell CLL/lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) to simultaneously activate the NF-κB and c-Jun N-terminal kinase (JNK) signaling cascades. Genetic deficiencies of either BCL10 or MALT1 completely rescued the phenotype, and pharmacological inhibition of JNK was, similar to NF-κB blockage, toxic to autonomously proliferating CARD11(L225LI)-expressing B cells. Moreover, constitutive JNK activity was observed in primary human activated B cell-like (ABC)-DLBCL specimens, and human ABC-DLBCL cells were also sensitive to JNK inhibitors. Thus, our results demonstrate that enforced activation of CARD11/BCL10/MALT1 signaling is sufficient to drive transformed B-cell expansion in vivo and identify the JNK pathway as a therapeutic target for ABC-DLBCL. PMID:26668357

  1. Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea.

    PubMed

    Shabani, Leila; Sabzalian, Mohammad R; Mostafavi pour, Sodabeh

    2016-01-01

    Mycorrhizal fungi are key microorganisms for enhancing phytoremediation of soils contaminated with heavy metals. In this study, the effects of the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae (=Glomus mosseae) on physiological and molecular mechanisms involved in the nickel (Ni) tolerance of tall fescue (Festuca arundinacea = Schedonorus arundinaceus) were investigated. Nickel addition had a pronounced negative effect on tall fescue growth and photosynthetic pigment contents, as well as on AMF colonization. Phosphorus content increased markedly in mycorrhizal plants (M) compared to non-inoculated (NM) ones. However, no significant difference was observed in root carbohydrate content between AMF-inoculated and non-inoculated plants. For both M and NM plants, Ni concentrations in shoots and roots increased according to the addition of the metal into soil, but inoculation with F. mosseae led to significantly lower Ni translocation from roots to the aboveground parts compared to non-inoculated plants. ABC transporter and metallothionein transcripts accumulated to considerably higher levels in tall fescue plants colonized by F. mosseae than in the corresponding non-mycorrhizal plants. These results highlight the importance of mycorrhizal colonization in alleviating Ni-induced stress by reducing Ni transport from roots to shoots of tall fescue plants.

  2. A novel rearrangement in the mitochondrial genome of tongue sole, Cynoglossus semilaevis: control region translocation and a tRNA gene inversion.

    PubMed

    Kong, Xiaoyu; Dong, Xiaoli; Zhang, Yanchun; Shi, Wei; Wang, Zhongming; Yu, Ziniu

    2009-12-01

    The organization of fish mitochondrial genomes (mitogenomes) is quite conserved, usually with the heavy strand encoding 12 of 13 protein-coding genes and 14 of 22 tRNA genes, and the light strand encoding ND6 and the remaining 8 tRNA genes. Currently, there are only a few reports on gene reorganization of fish mitogenomes, with only two types of rearrangements (shuffling and translocation) observed. No gene inversion has been detected in approximately 420 complete fish mitogenomes available so far. Here we report a novel rearrangement in the mitogenome of Cynoglossus semilaevis (Cynoglossinae, Cynoglossidae, Pleuronectiformes). The genome is 16,371 bp in length and contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and 2 main noncoding regions, the putative control region and the light-strand replication origin. A striking finding of this study is that the tRNA(Gln) gene is translocated from the light to the heavy strand (Q inversion). This is accompanied by shuffling of the tRNA(Ile) gene and long-range translocation of the putative control region downstream to a site between ND1 and the tRNA(Gln) gene. The remaining gene order is identical to that of typical fish mitogenomes. Additionally, unique characters of this mitogenome, including a high A+T content and length variations of 8 protein-coding genes, were found through comparison of the mitogenome sequence with those from other flatfishes. All the features detected and their relationships with the rearrangements, as well as a possible rearrangement pathway, are discussed. These data provide interesting information for better understanding the molecular mechanisms of gene reorganization in fish mitogenomes.

  3. A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma.

    PubMed

    Salaverria, Itziar; Martin-Guerrero, Idoia; Wagener, Rabea; Kreuz, Markus; Kohler, Christian W; Richter, Julia; Pienkowska-Grela, Barbara; Adam, Patrick; Burkhardt, Birgit; Claviez, Alexander; Damm-Welk, Christine; Drexler, Hans G; Hummel, Michael; Jaffe, Elaine S; Küppers, Ralf; Lefebvre, Christine; Lisfeld, Jasmin; Löffler, Markus; Macleod, Roderick A F; Nagel, Inga; Oschlies, Ilske; Rosolowski, Maciej; Russell, Robert B; Rymkiewicz, Grzegorz; Schindler, Detlev; Schlesner, Matthias; Scholtysik, René; Schwaenen, Carsten; Spang, Rainer; Szczepanowski, Monika; Trümper, Lorenz; Vater, Inga; Wessendorf, Swen; Klapper, Wolfram; Siebert, Reiner

    2014-02-20

    The genetic hallmark of Burkitt lymphoma (BL) is the t(8;14)(q24;q32) and its variants leading to activation of the MYC oncogene. It is a matter of debate whether true BL without MYC translocation exists. Here, we identified 59 lymphomas concordantly called BL by 2 gene expression classifiers among 753 B-cell lymphomas. Only 2 (3%) of these 59 molecular BL lacked a MYC translocation, which both shared a peculiar pattern of chromosome 11q aberration characterized by interstitial gains including 11q23.2-q23.3 and telomeric losses of 11q24.1-qter. We extended our analysis to 17 MYC-negative high-grade B-cell lymphomas with a similar 11q aberration and showed this aberration to be recurrently associated with morphologic and clinical features of BL. The minimal region of gain was defined by high-level amplifications in 11q23.3 and associated with overexpression of genes including PAFAH1B2 on a transcriptional and protein level. The recurrent region of loss contained a focal homozygous deletion in 11q24.2-q24.3 including the ETS1 gene, which was shown to be mutated in 4 of 16 investigated cases. These findings indicate the existence of a molecularly distinct subset of B-cell lymphomas reminiscent of BL, which is characterized by deregulation of genes in 11q.

  4. A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma.

    PubMed

    Salaverria, Itziar; Martin-Guerrero, Idoia; Wagener, Rabea; Kreuz, Markus; Kohler, Christian W; Richter, Julia; Pienkowska-Grela, Barbara; Adam, Patrick; Burkhardt, Birgit; Claviez, Alexander; Damm-Welk, Christine; Drexler, Hans G; Hummel, Michael; Jaffe, Elaine S; Küppers, Ralf; Lefebvre, Christine; Lisfeld, Jasmin; Löffler, Markus; Macleod, Roderick A F; Nagel, Inga; Oschlies, Ilske; Rosolowski, Maciej; Russell, Robert B; Rymkiewicz, Grzegorz; Schindler, Detlev; Schlesner, Matthias; Scholtysik, René; Schwaenen, Carsten; Spang, Rainer; Szczepanowski, Monika; Trümper, Lorenz; Vater, Inga; Wessendorf, Swen; Klapper, Wolfram; Siebert, Reiner

    2014-02-20

    The genetic hallmark of Burkitt lymphoma (BL) is the t(8;14)(q24;q32) and its variants leading to activation of the MYC oncogene. It is a matter of debate whether true BL without MYC translocation exists. Here, we identified 59 lymphomas concordantly called BL by 2 gene expression classifiers among 753 B-cell lymphomas. Only 2 (3%) of these 59 molecular BL lacked a MYC translocation, which both shared a peculiar pattern of chromosome 11q aberration characterized by interstitial gains including 11q23.2-q23.3 and telomeric losses of 11q24.1-qter. We extended our analysis to 17 MYC-negative high-grade B-cell lymphomas with a similar 11q aberration and showed this aberration to be recurrently associated with morphologic and clinical features of BL. The minimal region of gain was defined by high-level amplifications in 11q23.3 and associated with overexpression of genes including PAFAH1B2 on a transcriptional and protein level. The recurrent region of loss contained a focal homozygous deletion in 11q24.2-q24.3 including the ETS1 gene, which was shown to be mutated in 4 of 16 investigated cases. These findings indicate the existence of a molecularly distinct subset of B-cell lymphomas reminiscent of BL, which is characterized by deregulation of genes in 11q. PMID:24398325

  5. B Cells, Antibodies, and More

    PubMed Central

    Hoffman, William; Lakkis, Fadi G.

    2016-01-01

    B cells play a central role in the immunopathogenesis of glomerulonephritides and transplant rejection. B cells secrete antibodies that contribute to tissue injury via multiple mechanisms. In addition, B cells contribute to disease pathogenesis in autoimmunity and alloimmunity by presenting antigens as well as providing costimulation and cytokines to T cells. B cells also play an immunomodulatory role in regulating the immune response by secreting cytokines that inhibit disease onset and/or progression. B cell–targeted approaches for treating immune diseases of the kidney and other organs have gained significant momentum. However, much remains to be understood about B-cell biology in order to determine the timing, duration, and context of optimal therapeutic response to B cell–targeted approaches. In this review, we discuss the multifaceted roles of B cells as enhancers and regulators of immunity with relevance to kidney disease and transplantation. PMID:26700440

  6. The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family.

    PubMed

    Lin, Choun-Sea; Chen, Jeremy J W; Huang, Yao-Ting; Chan, Ming-Tsair; Daniell, Henry; Chang, Wan-Jung; Hsu, Chen-Tran; Liao, De-Chih; Wu, Fu-Huei; Lin, Sheng-Yi; Liao, Chen-Fu; Deyholos, Michael K; Wong, Gane Ka-Shu; Albert, Victor A; Chou, Ming-Lun; Chen, Chun-Yi; Shih, Ming-Che

    2015-01-01

    The NAD(P)H dehydrogenase complex is encoded by 11 ndh genes in plant chloroplast (cp) genomes. However, ndh genes are truncated or deleted in some autotrophic Epidendroideae orchid cp genomes. To determine the evolutionary timing of the gene deletions and the genomic locations of the various ndh genes in orchids, the cp genomes of Vanilla planifolia, Paphiopedilum armeniacum, Paphiopedilum niveum, Cypripedium formosanum, Habenaria longidenticulata, Goodyera fumata and Masdevallia picturata were sequenced; these genomes represent Vanilloideae, Cypripedioideae, Orchidoideae and Epidendroideae subfamilies. Four orchid cp genome sequences were found to contain a complete set of ndh genes. In other genomes, ndh deletions did not correlate to known taxonomic or evolutionary relationships and deletions occurred independently after the orchid family split into different subfamilies. In orchids lacking cp encoded ndh genes, non cp localized ndh sequences were identified. In Erycina pusilla, at least 10 truncated ndh gene fragments were found transferred to the mitochondrial (mt) genome. The phenomenon of orchid ndh transfer to the mt genome existed in ndh-deleted orchids and also in ndh containing species. PMID:25761566

  7. The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family

    PubMed Central

    Lin, Choun-Sea; Chen, Jeremy J. W.; Huang, Yao-Ting; Chan, Ming-Tsair; Daniell, Henry; Chang, Wan-Jung; Hsu, Chen-Tran; Liao, De-Chih; Wu, Fu-Huei; Lin, Sheng-Yi; Liao, Chen-Fu; Deyholos, Michael K.; Wong, Gane Ka-Shu; Albert, Victor A.; Chou, Ming-Lun; Chen, Chun-Yi; Shih, Ming-Che

    2015-01-01

    The NAD(P)H dehydrogenase complex is encoded by 11 ndh genes in plant chloroplast (cp) genomes. However, ndh genes are truncated or deleted in some autotrophic Epidendroideae orchid cp genomes. To determine the evolutionary timing of the gene deletions and the genomic locations of the various ndh genes in orchids, the cp genomes of Vanilla planifolia, Paphiopedilum armeniacum, Paphiopedilum niveum, Cypripedium formosanum, Habenaria longidenticulata, Goodyera fumata and Masdevallia picturata were sequenced; these genomes represent Vanilloideae, Cypripedioideae, Orchidoideae and Epidendroideae subfamilies. Four orchid cp genome sequences were found to contain a complete set of ndh genes. In other genomes, ndh deletions did not correlate to known taxonomic or evolutionary relationships and deletions occurred independently after the orchid family split into different subfamilies. In orchids lacking cp encoded ndh genes, non cp localized ndh sequences were identified. In Erycina pusilla, at least 10 truncated ndh gene fragments were found transferred to the mitochondrial (mt) genome. The phenomenon of orchid ndh transfer to the mt genome existed in ndh-deleted orchids and also in ndh containing species. PMID:25761566

  8. The molecular biology of diffuse large B-cell lymphoma.

    PubMed

    Frick, Mareike; Dörken, Bernd; Lenz, Georg

    2011-12-01

    Diffuse large B-cell lymphoma (DLBCL) represents the most common type of malignant lymphoma. In the last few years, significant progress has been achieved in the understanding of the molecular pathogenesis of this entity. Gene expression profiling has identified three molecular DLBCL subtypes, termed germinal-center B-cell-like (GCB) DLBCL, activated B-cell-like (ABC) DLBCL, and primary mediastinal B-cell lymphoma (PMBL). In this review, we summarize our current understanding of the biology of these DLBCL subtypes with a special emphasis on novel diagnostic and therapeutic approaches. PMID:23556103

  9. The G1138A mutation rate in the fibroblast growth factor receptor 3 (FGFR3) gene is increased in cells carrying the t (4; 14) translocation.

    PubMed

    Reddy, P L; Grewal, R P

    2009-01-01

    Spontaneous mutations are a common phenomenon, occurring in both germ-line and somatic genomes. They may have deleterious consequences including the development of genetic disorders or, when occurring in somatic tissues, may participate in the process of carcinogenesis. Similar to many mutational hotspots, the G1138A mutation in the fibroblast growth factor receptor 3 (FGFR3) gene occurs at a CpG site. In germ-line tissues, the G1138A mutation results in achondroplasia and has one of the highest spontaneous mutation rates in the human genome. Although not at the G1138A site, there are increased rates of other somatic mutations in the FGFR3 gene that have been reported in multiple myeloma cases associated with a translocation, t (4; 14). The chromosome-4 break points in this translocation are clustered in a 70-kb region centromeric to the FGFR3 gene. We hypothesized that this translocation may impact the mutation rate at the G1138A site. We employed a semi-quantitative polymerase chain reaction-based assay to measure the frequency of this mutation in multiple myeloma cell lines carrying t (4; 14) translocation. Analysis of these cell lines varied from no change to a 10-fold increase in the mutation frequency compared with normal controls. In general, there was an increase in the G1138A mutational frequency suggesting that chromosomal rearrangement can affect the stability of the CpG hotspots. PMID:19551630

  10. B cell abnormalities in systemic lupus erythematosus

    PubMed Central

    2003-01-01

    Systemic lupus erythematosus (SLE) is a chronic, multisystem autoimmune disease characterized by the differentiation of short- and long-lived immunoglobulin secreting plasma cells that secrete pathogenic autoantibodies. Ectopic germinal centers and plasma cells secreting autoantibodies have been observed in lupus nephritis kidneys. Candidate genetic susceptibility loci for SLE include genes that affect differentiation and survival of plasma cells, such as those that influence activation, proliferation, cytokine and chemokine secretion/responsiveness, and apoptosis of the T and B cells that are involved in humoral immunity generated in germinal centers, as well as genes that are involved in presentation and clearance of apoptotic material and autoantigens by antigen presenting cells and other phagocytes. Emerging data have demonstrated that B lymphocytes are active participants in humoral immune responses that lead to T-dependent and T-independent differentiation of immunoglobulin-secreting plasma cells by homotypic CD154–CD40 interactions as well as continued stimulation by B cell activating factor through B cell maturation antigen, B cell activating factor receptor and transmembrane activater. PMID:15180894

  11. B cell abnormalities in systemic lupus erythematosus.

    PubMed

    Grammer, Amrie C; Lipsky, Peter E

    2003-01-01

    Systemic lupus erythematosus (SLE) is a chronic, multisystem autoimmune disease characterized by the differentiation of short- and long-lived immunoglobulin secreting plasma cells that secrete pathogenic autoantibodies. Ectopic germinal centers and plasma cells secreting autoantibodies have been observed in lupus nephritis kidneys. Candidate genetic susceptibility loci for SLE include genes that affect differentiation and survival of plasma cells, such as those that influence activation, proliferation, cytokine and chemokine secretion/responsiveness, and apoptosis of the T and B cells that are involved in humoral immunity generated in germinal centers, as well as genes that are involved in presentation and clearance of apoptotic material and autoantigens by antigen presenting cells and other phagocytes. Emerging data have demonstrated that B lymphocytes are active participants in humoral immune responses that lead to T-dependent and T-independent differentiation of immunoglobulin-secreting plasma cells by homotypic CD154-CD40 interactions as well as continued stimulation by B cell activating factor through B cell maturation antigen, B cell activating factor receptor and transmembrane activater.

  12. Expression of specific genes involved in Cd uptake, translocation, vacuolar compartmentalisation and recycling in Populus alba Villafranca clone.

    PubMed

    Romè, Chiara; Huang, Xin-Yuan; Danku, John; Salt, David E; Sebastiani, Luca

    2016-09-01

    Cadmium (Cd) is a heavy metal toxic to humans and its occurrence in soils represents a significant environmental problem. Poplar trees may provide one possible option to help remove Cd contamination from soil. However, before this is practicable, the ability of poplar to accumulate Cd needs to be enhanced. A better understanding of the genes involved in Cd accumulation in poplar would help to achieve this goal. Here, we monitored the expression of genes known to be involved in Cd uptake, accumulation and translocation from other species, in order to provide information on their potential role in Cd accumulation in poplar. Cd concentration in poplar was significantly higher in roots than in stem and leaves in Cd treated plants. Expression of the poplar homologues of IRT1, NRAMP and OPT3 was initially increased after exposure to Cd but reduced after longer term Cd exposure. Exposure to Cd also influenced the accumulation of Fe, Ca, Cu, Mg and Mn in poplar. In particular, Cd treated plants had a higher concentration of Fe, Ca, Cu, and Mg in leaves and stem compared to control plants after one day and one week of experiment; while in roots after one month Cd treated plants had a lower concentration of Mn, Fe, Cu, Co, and Mg.

  13. Expression of specific genes involved in Cd uptake, translocation, vacuolar compartmentalisation and recycling in Populus alba Villafranca clone.

    PubMed

    Romè, Chiara; Huang, Xin-Yuan; Danku, John; Salt, David E; Sebastiani, Luca

    2016-09-01

    Cadmium (Cd) is a heavy metal toxic to humans and its occurrence in soils represents a significant environmental problem. Poplar trees may provide one possible option to help remove Cd contamination from soil. However, before this is practicable, the ability of poplar to accumulate Cd needs to be enhanced. A better understanding of the genes involved in Cd accumulation in poplar would help to achieve this goal. Here, we monitored the expression of genes known to be involved in Cd uptake, accumulation and translocation from other species, in order to provide information on their potential role in Cd accumulation in poplar. Cd concentration in poplar was significantly higher in roots than in stem and leaves in Cd treated plants. Expression of the poplar homologues of IRT1, NRAMP and OPT3 was initially increased after exposure to Cd but reduced after longer term Cd exposure. Exposure to Cd also influenced the accumulation of Fe, Ca, Cu, Mg and Mn in poplar. In particular, Cd treated plants had a higher concentration of Fe, Ca, Cu, and Mg in leaves and stem compared to control plants after one day and one week of experiment; while in roots after one month Cd treated plants had a lower concentration of Mn, Fe, Cu, Co, and Mg. PMID:27467553

  14. Characterization of 8p21.3 chromosomal deletions in B-cell lymphoma: TRAIL-R1 and TRAIL-R2 as candidate dosage-dependent tumor suppressor genes.

    PubMed

    Rubio-Moscardo, Fanny; Blesa, David; Mestre, Cinta; Siebert, Reiner; Balasas, Theo; Benito, Adalberto; Rosenwald, Andreas; Climent, Joan; Martinez, Jose I; Schilhabel, Markus; Karran, E Lorraine; Gesk, Stefan; Esteller, Manel; deLeeuw, Ronald; Staudt, Louis M; Fernandez-Luna, Jose Luis; Pinkel, Daniel; Dyer, Martin J S; Martinez-Climent, Jose A

    2005-11-01

    Deletions of chromosome 8p are a recurrent event in B-cell non-Hodgkin lymphoma (B-NHL), suggesting the presence of a tumor suppressor gene. We have characterized these deletions using comparative genomic hybridization to microarrays, fluorescence in situ hybridization (FISH) mapping, DNA sequencing, and functional studies. A minimal deleted region (MDR) of 600 kb was defined in chromosome 8p21.3, with one mantle cell lymphoma cell line (Z138) exhibiting monoallelic deletion of 650 kb. The MDR extended from bacterial artificial chromosome (BAC) clones RP11-382J24 and RP11-109B10 and included the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor gene loci. Sequence analysis of the individual expressed genes within the MDR and DNA sequencing of the entire MDR in Z138 did not reveal any mutation. Gene expression analysis and quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) showed down-regulation of TRAIL-R1 and TRAIL-R2 receptor genes as a consistent event in B-NHL with 8p21.3 loss. Epigenetic inactivation was excluded via promoter methylation analysis. In vitro studies showed that TRAIL-induced apoptosis was dependent on TRAIL-R1 and/or -R2 dosage in most tumors. Resistance to apoptosis of cell lines with 8p21.3 deletion was reversed by restoration of TRAIL-R1 or TRAIL-R2 expression by gene transfection. Our data suggest that TRAIL-R1 and TRAIL-R2 act as dosage-dependent tumor suppressor genes whose monoallelic deletion can impair TRAIL-induced apoptosis in B-cell lymphoma. PMID:16051735

  15. The B-Cell-Specific src-Family Kinase Blk Is Dispensable for B-Cell Development and Activation

    PubMed Central

    Texido, Gemma; Su, I-hsin; Mecklenbräuker, Ingrid; Saijo, Kaoru; Malek, Sami N.; Desiderio, Stephen; Rajewsky, Klaus; Tarakhovsky, Alexander

    2000-01-01

    The B-cell lymphocyte kinase (Blk) is a src-family protein tyrosine kinase specifically expressed in B-lineage cells of mice. The early onset of Blk expression during B-cell development in the bone marrow and the high expression levels of Blk in mature B cells suggest a possible important role of Blk in B-cell physiology. To study the in vivo function of Blk, mice homozygous for the targeted disruption of the blk gene were generated. In homozygous mutant mice, neither blk mRNA nor Blk protein is expressed. Despite the absence of Blk, the development, in vitro activation, and humoral immune responses of B cells to T-cell-dependent and -independent antigens are unaltered. These data are consistent with functional redundancy of Blk in B-cell development and immune responses. PMID:10648608

  16. Lon protease inactivation, or translocation of the lon gene, potentiate bacterial evolution to antibiotic resistance.

    PubMed

    Nicoloff, Hervé; Andersson, Dan I

    2013-12-01

    Previous work demonstrated that selection for Escherichia coli mutants with low antibiotic resistance frequently resulted in co-selection of lon mutations and that lon(-) mutants evolved higher-level resistance faster than a lon(+) strain. Here we show that lon mutation causes a very low multidrug resistance by inducing the AcrAB-TolC pump via stabilization of the acrAB transcriptional activators MarA and SoxS, which are substrates of the Lon protease. Fast evolution of lon(-) mutants towards higher resistance involves selection of frequent next-step mutations consisting of large duplications including acrAB and the mutated lon gene. Resistance results from the combined effects of acrAB duplication and lon mutation increasing dosage of efflux pump. In contrast, when acrAB duplication occurs as the first step mutation, increased Lon activity caused by lon(+) co-duplication mitigates the effect of acrAB duplication on resistance, and faster evolution towards higher resistance is not observed. As predicted, when the functional lon gene is relocated far from acrAB to prevent their co-duplication, first-step acrAB duplication confers higher resistance, which then allows selection of frequent next-step mutations and results in faster evolution towards higher resistance. Our results demonstrate how order of appearance of mutations and gene location can influence the rate of resistance evolution.

  17. Analysis of the Ten-Eleven Translocation 2 (TET2) gene mutation in myeloproliferative neoplasms.

    PubMed

    Ha, Jung-Sook; Jeon, Dong-Seok; Kim, Jae-Ryong; Ryoo, Nam-Hee; Suh, Jang-Soo

    2014-01-01

    Loss-of-function mutations in the putative tumor suppressor gene, Ten-Eleven Ttranslocation 2(TET2), have been identified recently in myeloproliferative neoplasms (MPNs). The present study analyzed the TET2 gene in 99 MPNs patients. The overall TET2 mutational frequency was 12.1% (22.2% in polycythemia vera (PV), 9.7% in essential thrombocythemia (ET), 18.2% in primary myelofibrosis (PMF,) and 0% in unclassified MPNs), and 11 mutations (p.Lys95Asnfs*18, p.Gln967Asnfs*40, p.Lys1022Glufs*4, p.Asp1314Metfs*49, p.Gln1534Alafs*43, p.Tyr1618Leufs*4, p.Leu1609Glufs*45, p.Gly1735*, Q599R, c.3409+1G>T, c.4044+2insT) were identified. All the patients with TET2 mutation were accompanied by the JAK2 V617F mutation. The existence of the TET2 mutation was not related to the patient's age, hematologic indices, JAK2 V617F allele burden, frequencies of organomegaly, marrow fibrosis, or thrombotic/hemorrhagic complications in entire MPN patients. However, tendencies toward higher JAK2 V617F allele burdens (88.0±4.3% vs. 19.1±28.7%, P=0.034) and higher Hct (47.4±5.4% vs. 25.5±6.2%, P=0.037) were detected in PMF patients harboring TET2 mutations. Moreover, a significantly higher frequency of organomegaly was identified in ET patients harboring the TET2 mutation (50% vs. 19.6%, P=0.018). The TET2 mutation most likely contributes to clinical phenotypes and shows a high accompanying rate with JAK2 V617F; larger scale studies involving more MPN patients are needed. PMID:24795056

  18. Molecular and cytogenetic characterization of expanded B-cell clones from multiclonal versus monoclonal B-cell chronic lymphoproliferative disorders

    PubMed Central

    Henriques, Ana; Rodríguez-Caballero, Arancha; Criado, Ignacio; Langerak, Anton W.; Nieto, Wendy G.; Lécrevisse, Quentin; González, Marcos; Cortesão, Emília; Paiva, Artur; Almeida, Julia; Orfao, Alberto

    2014-01-01

    Chronic antigen-stimulation has been recurrently involved in the earlier stages of monoclonal B-cell lymphocytosis, chronic lymphocytic leukemia and other B-cell chronic lymphoproliferative disorders. The expansion of two or more B-cell clones has frequently been reported in individuals with these conditions; potentially, such coexisting clones have a greater probability of interaction with common immunological determinants. Here, we analyzed the B-cell receptor repertoire and molecular profile, as well as the phenotypic, cytogenetic and hematologic features, of 228 chronic lymphocytic leukemia-like and non-chronic lymphocytic leukemia-like clones comparing multiclonal (n=85 clones from 41 cases) versus monoclonal (n=143 clones) monoclonal B-cell lymphocytosis, chronic lymphocytic leukemia and other B-cell chronic lymphoproliferative disorders. The B-cell receptor of B-cell clones from multiclonal cases showed a slightly higher degree of HCDR3 homology than B-cell clones from mono clonal cases, in association with unique hematologic (e.g. lower B-lymphocyte counts) and cytogenetic (e.g. lower frequency of cytogenetically altered clones) features usually related to earlier stages of the disease. Moreover, a subgroup of coexisting B-cell clones from individual multiclonal cases which were found to be phylogenetically related showed unique molecular and cytogenetic features: they more frequently shared IGHV3 gene usage, shorter HCDR3 sequences with a greater proportion of IGHV mutations and del(13q14.3), than other unrelated B-cell clones. These results would support the antigen-driven nature of such multiclonal B-cell expansions, with potential involvement of multiple antigens/epitopes. PMID:24488564

  19. Complex Oncogenic Translocations with Gene Amplification are Initiated by Specific DNA Breaks in Lymphocytes

    PubMed Central

    Wright, Sarah M.; Woo, Yong H.; Alley, Travis L.; Shirley, Bobbi-Jo; Akeson, Ellen C.; Snow, Kathy J.; Maas, Sarah A.; Elwell, Rachel L.; Foreman, Oded; Mills, Kevin D.

    2009-01-01

    Chromosomal instability is a hallmark of many tumor types. Complex chromosomal rearrangements with associated gene amplification, known as complicons, characterize many hematologic and solid cancers. While chromosomal aberrations, including complicons, are useful diagnostic and prognostic cancer markers, their molecular origins are not known. Although accumulating evidence has implicated DNA double strand break repair in suppression of oncogenic genome instability, the genomic elements required for chromosome rearrangements, especially complex lesions, have not been elucidated. Using a mouse model of B-lineage lymphoma, characterized by complicon formation involving the immunoglobulin heavy chain (Igh) locus and the c-myc oncogene, we have now investigated the requirement for specific genomic segments as donors for complex rearrangements. We now demonstrate that specific DNA double strand breaks, occurring within a narrow segment of Igh are necessary to initiate complicon formation. By contrast, neither specific DNA breaks nor the powerful intronic enhancer Eμ are required for complicon-independent oncogenesis. This study is the first to delineate mechanisms of complex versus simple instability, and the first to identify specific chromosomal elements required for complex chromosomal aberrations. These findings will illuminate genomic cancer susceptibility and risk factors. PMID:19435904

  20. Complex oncogenic translocations with gene amplification are initiated by specific DNA breaks in lymphocytes.

    PubMed

    Wright, Sarah M; Woo, Yong H; Alley, Travis L; Shirley, Bobbi-Jo; Akeson, Ellen C; Snow, Kathy J; Maas, Sarah A; Elwell, Rachel L; Foreman, Oded; Mills, Kevin D

    2009-05-15

    Chromosomal instability is a hallmark of many tumor types. Complex chromosomal rearrangements with associated gene amplification, known as complicons, characterize many hematologic and solid cancers. Whereas chromosomal aberrations, including complicons, are useful diagnostic and prognostic cancer markers, their molecular origins are not known. Although accumulating evidence has implicated DNA double-strand break repair in suppression of oncogenic genome instability, the genomic elements required for chromosome rearrangements, especially complex lesions, have not been elucidated. Using a mouse model of B-lineage lymphoma, characterized by complicon formation involving the immunoglobulin heavy chain (Igh) locus and the c-myc oncogene, we have now investigated the requirement for specific genomic segments as donors for complex rearrangements. We now show that specific DNA double-strand breaks, occurring within a narrow segment of Igh, are necessary to initiate complicon formation. By contrast, neither specific DNA breaks nor the powerful intronic enhancer Emu are required for complicon-independent oncogenesis. This study is the first to delineate mechanisms of complex versus simple instability and the first to identify specific chromosomal elements required for complex chromosomal aberrations. These findings will illuminate genomic cancer susceptibility and risk factors.

  1. Fusion of platelet-derived growth receptor {beta} to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation

    SciTech Connect

    Golub, T.; Barker, G.; Gilliland, D.G.

    1994-09-01

    Chronic myelomonocytic leukemia (CMML) is a myelodysplastic syndrome characterized by abnormal clonal myeloid proliferation, and by progression to acute myelogenous leukemia (AML). A recently recognized subgroup of CMML has a t(5;12) (q33;p13) balanced translocation. Fluorescence in situ hybridization (FISH) localized the translocation breakpoint near the CSF1 receptor (CSF1R) locus on chromosome 5q. Pulsed-field gel electrophoresis confirmed rearrangements near CSF1R, but involvement of CSF1R itself was excluded. Southern blotting showed a rearrangement within the closely linked PDGF receptor {beta} (PDGFR{beta}) gene. Ribonuclease protection assays localized the translocation breakpoint to nucleotide 1766 in PDGFR{beta} RNA. Anchored PCR was used to identify the chromosome 12 fusion partner, a novel ets-like protein, tel. Tel contains a highly conserved carboxy terminal ets-like DNA-binding domain, and an amino terminal domain with a predicted helix-loop-helix (HLH) secondary structure. The consequence of the t(5;12) translocation is fusion of the tel HLH domain to the PDGFR{beta} transmembrane and tyrosine kinase domains. The tel HLH domain may contribute a dimerization motif which serves to constitutively activate PDGFR{beta} tyrosine kinase activity. The tel-PDGFR{beta} fusion demonstrates the oncogenic potential of PDGFR{beta}, and may provide a paradigm for early events in the pathogenesis of AML.

  2. Generation of immunoglobulin light chain gene diversity in Raja erinacea is not associated with somatic rearrangement, an exception to a central paradigm of B cell immunity

    PubMed Central

    1995-01-01

    In all vertebrate species examined to date, rearrangement and somatic modification of gene segmental elements that encode portions of the antigen-combining sites of immunoglobulins are integral components of the generation of antibody diversity. In the phylogenetically primitive cartilaginous fishes, gene segments encoding immunoglobulin heavy and light chain loci are arranged in multiple clusters, in which segmental elements are separated by only 300-400 bp. In some cases, segmental elements are joined in the germline of nonlymphoid cells (joined genes). Both genomic library screening and direct amplification of genomic DNA have been used to characterize at least 89 different type I light chain gene clusters in the skate, Raja. Analyses of predicted nucleotide sequences and predicted peptide structures are consistent with the distribution of genes into different sequence groups. Predicted amino acid sequence differences are preferentially distributed in complementarity-determining versus framework regions, and replacement-type substitutions exceed neutral substitutions. When specific germline sequences are related to the sequences of individual cDNAs, it is apparent that the joined genes are expressed and are potentially somatically mutated. No evidence was found for the presence of any type I light chain gene in Raja that is not germline joined. The type I light chain gene clusters in Raja appear to represent a novel gene system in which combinatorial and junctional diversity are absent. PMID:7790811

  3. Entropic effects in formation of chromosome territories: towards understanding of radiation-induced gene translocation frequency

    NASA Astrophysics Data System (ADS)

    Gudowska-Nowak, Ewa; Ritter, Sylvia; Durante, Marco; Deperas-Standylo, Joanna; Ciesla, Michal

    2012-07-01

    A detailed understanding of structural organization of biological target, such as geometry of an inter-phase chromosome, is an essential prerequisite for gaining deeper insight into relationship between radiation track structure and radiation-induced biological damage [1]. In particular, coupling of biophysical models aimed to describe architecture of chromosomes and their positioning in a cell nucleus [2-4] with models of local distribution of ionizations caused by passing projectiles, are expected to result in more accurate estimates of aberration induction caused by radiation. There is abundant experimental evidence indicating that arrangements of chromosomes in eukaryotic cell nucleus is non-random and has been evolutionary conserved in specific cell types. Moreover, the radial position of a given chromosome territory (CT) within the cell nucleus has been shown to correlate with its size and gene density. Usually it is assumed that chromosomal geometry and positioning result from the action of specific forces acting locally, such as hydrogen bonds, electrostatic, Van der Waals or hydrophobic interactions operating between nucleosomes and within their interiors. However, it is both desirable and instructive to learn to what extend organization of inter-phase chromosomes is affected by nonspecific entropic forces. In this study we report results of a coarse-grained analysis of a chromatin structure modeled by two distinct approaches. In the first method, we adhere to purely statistical analysis of chromatin packing within a chromosome territory. On the basis of the polymer theory, the chromatin fiber of diameter 30nm is approximated by a chain of spheres, each corresponding to about 30 kbp. Random positioning of the center of the domain is repeated for 1000 spherical nuclei. Configuration of the domain is determined by a random packing of a polymer (a string of identical beads) in estimated fraction of space occupied by a chromosome of a given length and mass

  4. ABSENCE OF SCLEROSTIN ADVERSELY AFFECTS B CELL SURVIVAL

    PubMed Central

    Cain, Corey J.; Rueda, Randell; McLelland, Bryce; Collette, Nicole M.; Loots, Gabriela G.; Manilay, Jennifer O.

    2012-01-01

    Increased osteoblast activity in sclerostin-knockout (Sost−/−) mice results in generalized hyperostosis and bones with small bone marrow cavities due to hyperactive mineralizing osteoblast populations. Hematopoietic cell fate decisions are dependent on their local microenvironment, which contains osteoblast and stromal cell populations that support both hematopoietic stem cell quiescence and facilitate B cell development. In this study, we investigated whether high bone mass environments affect B cell development via the utilization of Sost−/− mice, a model of sclerosteosis. We found the bone marrow of Sost−/− mice to be specifically depleted of B cells, due to elevated apoptosis at all B cell developmental stages. In contrast, B cell function in the spleen was normal. Sost expression analysis confirmed that Sost is primarily expressed in osteocytes and is not expressed in any hematopoietic lineage, which indicated that the B cell defects in Sost−/− mice are non-cell autonomous and this was confirmed by transplantation of wildtype (WT) bone marrow into lethally irradiated Sost−/− recipients. WT→Sost−/− chimeras displayed a reduction in B cells, whereas reciprocal Sost−/−→WT chimeras did not, supporting the idea that the Sost−/− bone environment cannot fully support normal B cell development. Expression of the pre-B cell growth stimulating factor, Cxcl12, was significantly lower in bone marrow stromal cells of Sost−/− mice while the Wnt target genes Lef-1 and Ccnd1 remained unchanged in B cells. Taken together, these results demonstrate a novel role for Sost in the regulation of bone marrow environments that support B cells. PMID:22434688

  5. t(3;11) translocation in treatment-related acute myeloid leukemia fuses MLL with the GMPS (GUANOSINE 5' MONOPHOSPHATE SYNTHETASE) gene.

    PubMed

    Pegram, L D; Megonigal, M D; Lange, B J; Nowell, P C; Rowley, J D; Rappaport, E F; Felix, C A

    2000-12-15

    The partner gene of MLL was identified in a patient with treatment-related acute myeloid leukemia in which the karyotype suggested t(3;11)(q25;q23). Prior therapy included the DNA topoisomerase II inhibitors, teniposide and doxorubicin. Southern blot analysis indicated that the MLL gene was involved in the translocation. cDNA panhandle polymerase chain reaction (PCR) was used, which does not require partner gene-specific primers, to identify the chimeric transcript. Reverse-transcription of first-strand cDNAs with oligonucleotides containing known MLL sequence at the 5' ends and random hexamers at the 3' ends generated templates with an intra-strand loop for PCR. In-frame fusions of either MLL exon 7 or exon 8 with the GMPS (GUANOSINE 5'-MONOPHOSPHATE SYNTHETASE) gene from chromosome band 3q24 were detected. The fusion transcript was alternatively spliced. Guanosine monophosphate synthetase is essential for de novo purine synthesis. GMPS is the first partner gene of MLL on chromosome 3q and the first gene of this type in leukemia-associated translocations. (Blood. 2000;96:4360-4362)

  6. Translocations in epithelial cancers

    PubMed Central

    Chad Brenner, J.; Chinnaiyan, Arul M.

    2009-01-01

    Genomic translocations leading to the expression of chimeric transcripts characterize several hematologic, mesenchymal and epithelial malignancies. While several gene fusions have been linked to essential molecular events in hematologic malignancies, the identification and characterization of recurrent chimeric transcripts in epithelial cancers has been limited. However, the recent discovery of the recurrent gene fusions in prostate cancer has sparked a revitalization of the quest to identify novel rearrangements in epithelial malignancies. Here, the molecular mechanisms of gene fusions that drive several epithelial cancers and the recent technological advances that increase the speed and reliability of recurrent gene fusion discovery are explored. PMID:19406209

  7. Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes.

    PubMed

    Scriber, Jon Mark

    2013-01-01

    Comprising 50%-75% of the world's fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience) may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including "invasive species" in various ecosystems as they may become disrupted in different ways by rapid climate change. "Invasive genes" (into new species and populations) need to be recognized for their positive creative potential and addressed in conservation programs. "Genetic rescue" via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae) with their long-term historical data base (phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced "reshuffling" (recombinations) of species composition, genotypes, and genomes may become

  8. Mercury and silver induce B cell activation and anti-nucleolar autoantibody production in outbred mouse stocks: are environmental factors more important than the susceptibility genes in connection with autoimmunity?

    PubMed

    Abedi-Valugerdi, M

    2009-01-01

    Environmental and predisposing genetic factors are known to play a crucial role in the development of systemic autoimmune diseases. With respect to the role of environmental factors, it is not known how and to what extent they contribute to the initiation and exacerbation of systemic autoimmunity. In the present study, I considered this issue and asked if environmental factors can induce autoimmunity in the absence of specific susceptible genes. The development of genetically controlled mercury- and silver-induced B cell activation and anti-nucleolar autoantibodies (ANolA) production in genetically heterozygous outbred Institute of Cancer Research (ICR), Naval Medical Research Institute (NMRI) and Black Swiss mouse stocks were analysed. Four weeks of treatment with both mercury and silver induced a strong B cell activation characterized by increased numbers of splenic antibody-secreting cells of at least one or more immunoglobulin (Ig) isotype(s) in all treated stocks. The three stocks also exhibited a marked increase in the serum IgE levels in response to mercury, but not silver. More importantly, in response to mercury a large numbers of ICR (88%), NMRI (96%) and Black Swiss (100%) mice produced different levels of IgG1 and IgG2a ANolA (a characteristic which is linked strictly to the H-2 genes). Similarly, but at lower magnitudes, treatment with silver also induced the production of IgG1 and IgG2a ANolA in 60% of ICR, 75% of NMRI and 100% of Black Swiss mice. Thus, the findings of this study suggest that long-term exposure to certain environmental factors can activate the immune system to produce autoimmunity per se, without requiring specific susceptible genes.

  9. Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells

    PubMed Central

    Schwer, Bjoern; Wei, Pei-Chi; Chang, Amelia N.; Kao, Jennifer; Du, Zhou; Meyers, Robin M.; Alt, Frederick W.

    2016-01-01

    High-throughput, genome-wide translocation sequencing (HTGTS) studies of activated B cells have revealed that DNA double-strand breaks (DSBs) capable of translocating to defined bait DSBs are enriched around the transcription start sites (TSSs) of active genes. We used the HTGTS approach to investigate whether a similar phenomenon occurs in primary neural stem/progenitor cells (NSPCs). We report that breakpoint junctions indeed are enriched around TSSs that were determined to be active by global run-on sequencing analyses of NSPCs. Comparative analyses of transcription profiles in NSPCs and B cells revealed that the great majority of TSS-proximal junctions occurred in genes commonly expressed in both cell types, possibly because this common set has higher transcription levels on average than genes transcribed in only one or the other cell type. In the latter context, among all actively transcribed genes containing translocation junctions in NSPCs, those with junctions located within 2 kb of the TSS show a significantly higher transcription rate on average than genes with junctions in the gene body located at distances greater than 2 kb from the TSS. Finally, analysis of repair junction signatures of TSS-associated translocations in wild-type versus classical nonhomologous end-joining (C-NHEJ)–deficient NSPCs reveals that both C-NHEJ and alternative end-joining pathways can generate translocations by joining TSS-proximal DSBs to DSBs on other chromosomes. Our studies show that the generation of transcription-associated DSBs is conserved across divergent cell types. PMID:26873106

  10. The 3;21 translocation in myelodysplasia results in a fusion transcript between the AML1 gene and the gene for EAP, a highly conserved protein associated with the Epstein-Barr virus small RNA EBER 1.

    PubMed Central

    Nucifora, G; Begy, C R; Erickson, P; Drabkin, H A; Rowley, J D

    1993-01-01

    In the 8;21 translocation, the AML1 gene, located at chromosome band 21q22, is translocated to chromosome 8 (q22), where it is fused to the ETO gene and transcribed as a chimeric gene. AML1 is the human homolog of the recently cloned mouse gene pebp2 alpha B, homologous to the DNA binding alpha subunit of the polyoma enhancer factor pebp2. AML1 is also involved in a translocation with chromosome 3 that is seen in patients with therapy-related acute myeloid leukemia and myelodysplastic syndrome and in chronic myelogenous leukemia in blast crisis. We have isolated a fusion cDNA clone from a t(3;21) library derived from a patient with therapy-related myelodysplastic syndrome; this clone contains sequences from AML1 and from EAP, which we have now localized to band 3q26. EAP has previously been characterized as a highly expressed small nuclear protein of 128 residues (EBER 1) associated with Epstein-Barr virus small RNA. The fusion clone contains the DNA binding 5' part of AML1 that is fused to ETO in the t(8;21) and, in addition, at least one other exon. The translocation replaces the last nine codons of AML1 with the last 96 codons of EAP. The fusion does not maintain the correct reading frame of EAP and may not lead to a functional chimeric protein. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:8395054

  11. T-cell leukemia 1 expression in nodal Epstein-Barr virus-negative diffuse large B-cell lymphoma and primary mediastinal B-cell lymphoma.

    PubMed

    Gualco, Gabriela; Weiss, Lawrence M; Barber, Glen N; Bacchi, Carlos E

    2010-09-01

    The physiologic expression of the product of the proto-oncogene TCL1 (T-cell leukemia 1) is primarily restricted to early embryonic cells. In nonneoplastic B cells, the expression of TCL1 is determined by the differentiation step with silencing at the germinal center stage. TCL1 protein is overexpressed in a wide variety of human diseases. It has been shown that TCL1 is a powerful B-cell oncogene, which has been implicated in the pathogenesis of various types of mature B-cell lymphomas. There is no comparative information in the literature addressing the expression of TCL1 in pediatric and adult nodal diffuse large B-cell lymphoma or primary mediastinal large B-cell lymphoma. We studied 55 cases of adult and pediatric diffuse large B-cell lymphoma and primary mediastinal large B-cell lymphoma to analyze the phenotypic profile of these lymphomas, including TCL1 expression, and its relationship with clinical outcome in different age groups. The cases were analyzed by immunohistochemistry for the expression of TCL1, CD10, BCL-2, BCL-6, and MUM1. We also evaluated c-MYC translocation by fluorescence in situ hybridization. TCL1 was observed in 11 cases, 5 pediatric and 6 adult cases, all but one diffuse large B-cell lymphoma. Pediatric cases showed a significant association between TCL1 expression, high proliferative index, and presence of c-MYC translocation. TCL1 positivity was predominantly found in germinal center phenotype diffuse large B-cell lymphoma. Overall survival was worse in adult TCL1-positive cases than pediatric ones. Primary mediastinal large B-cell lymphomas infrequently expressed TCL1 in both age groups.

  12. Somatic Rearrangement in B Cells: It's (Mostly) Nuclear Physics.

    PubMed

    Aiden, Erez Lieberman; Casellas, Rafael

    2015-08-13

    We discuss how principles of nuclear architecture drive typical gene rearrangements in B lymphocytes, whereas translocation hot spots and recurrent lesions reflect the extent of AID-mediated DNA damage and selection.

  13. Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation.

    PubMed

    Panagopoulos, Ioannis; Thorsen, Jim; Gorunova, Ludmila; Haugom, Lisbeth; Bjerkehagen, Bodil; Davidson, Ben; Heim, Sverre; Micci, Francesca

    2013-07-01

    Endometrial stromal sarcomas (ESS) are genetically heterogeneous uterine tumors in which a JAZF1-SUZ12 chimeric gene resulting from the chromosomal translocation t(7;17)(p15;q21) as well as PHF1 rearrangements (in chromosomal band 6p21) with formation of JAZF1-PHF1, EPC1-PHF1, and MEAF6-PHF1 chimeras have been described. Here, we investigated two ESS characterized cytogenetically by the presence of a der(22)t(X;22)(p11;q13). Whole transcriptome sequencing one of the tumors identified a ZC3H7-BCOR chimeric transcript. Reverse transciptase-PCR with the ZC3H7B forward and BCOR reverse primer combinations confirmed the presence of a ZC3H7-BCOR chimeric transcript in both ESS carrying a der(22)t(X;22) but not in a control ESS with t(1;6) and the MEAF6-PHF1 fusion. Sequencing of the amplified cDNA fragments showed that in both cases ESS exon 10 of ZC3H7B (from 22q13; accession number NM_017590 version 4) was fused to exon 8 of BCOR (from Xp11; accession number NM_001123385 version 1). Reciprocal multiple BCOR-ZC3H7B cDNA fragments were amplified in only one case suggesting that ZC3H7B-BCOR, on the der(22)t(X;22), is the pathogenetically important fusion gene. The putative ZC3H7B-BCOR protein would contain the tetratricopeptide repeats and LD motif from ZC3H7B and the AF9 binding site (1093-1233aa), the 3 ankyrin repeats (1410-1509 aa), and the NSPC1 binding site of BCOR. Although the presence of these motifs suggests various functions of the chimeric protein, it is possible that its most important role may be in epigenetic regulation. Whether or not the (patho)genetic subsets JAZF1-SUZ12, PHF1 rearrangements, and ZC3H7B-BCOR correspond to any phenotypic, let alone clinically important, differences in ESS remain unknown. PMID:23580382

  14. YY1 Is Required for Germinal Center B Cell Development

    PubMed Central

    Vuyyuru, Raja; Jha, Vibha; Hodewadekar, Suchita; Manser, Tim; Atchison, Michael L.

    2016-01-01

    YY1 has been implicated as a master regulator of germinal center B cell development as YY1 binding sites are frequently present in promoters of germinal center-expressed genes. YY1 is known to be important for other stages of B cell development including the pro-B and pre-B cells stages. To determine if YY1 plays a critical role in germinal center development, we evaluated YY1 expression during B cell development, and used a YY1 conditional knock-out approach for deletion of YY1 in germinal center B cells (CRE driven by the immunoglobulin heavy chain γ1 switch region promoter; γ1-CRE). We found that YY1 is most highly expressed in germinal center B cells and is increased 3 fold in splenic B cells activated by treatment with anti-IgM and anti-CD40. In addition, deletion of the yy1 gene by action of γ1-CRE recombinase resulted in significant loss of GC cells in both un-immunized and immunized contexts with corresponding loss of serum IgG1. Our results show a crucial role for YY1 in the germinal center reaction. PMID:27167731

  15. Smith-Lemli-Opitz syndrome in a female with a de novo, balanced translocation involving 7q32: Probable disruption of an SLOS gene

    SciTech Connect

    Wallace, M.; Zori, R.T.; Alley, T.; Whidden, E.; Gray, B.A.; Williams, C.A.

    1994-05-01

    A 3-month-old infant girl had manifestations of the Smith-Lemli-Opitz syndrome (SLOS) including typical positional anomalies of the limbs, apparent Hirschsprung disease, cataracts, ptosis, anteverted nares, cleft of the posterior palate, small tongue, broad maxillary alveolar ridges, and abnormally low serum cholesterol levels. Chromosomal analysis showed a de novo balanced translocation interpreted as 46,XX,t(7;20)(q32.1;q13.2). We hypothesize that the translocation breakpoint in this case interrupts one SLOS allele and that the other allele at the same locus has a more subtle mutation that was inherited from the other parent. This case, as well as cytogenetic observations in other SLOS cases, suggests that SLOS could be due to autosomal recessive mutation at a gene in 7q32. 33 refs., 3 figs., 1 tab.

  16. Suppression of experimental autoimmune myasthenia gravis in IL-10 gene-disrupted mice is associated with reduced B cells and serum cytotoxicity on mouse cell line expressing AChR.

    PubMed

    Poussin, M A; Goluszko, E; Hughes, T K; Duchicella, S I; Christadoss, P

    2000-11-01

    To analyze the role of interleukin-10 (IL-10) in experimental autoimmune myasthenia gravis (EAMG) pathogenesis, we induced clinical EAMG in C57BL/6 and IL-10 gene-knockout (KO) mice. IL-10 KO mice had a lower incidence and severity of EAMG, with less muscle acetylcholine receptor (AChR) loss. AChR-immunized IL-10 KO mice showed a significantly higher AChR-specific proliferative response, altered cytokine response, lower number of class II-positive cells and B-cells, but a greater CD5(+)CD19(+) population than C57BL/6 mice. The lower clinical incidence in IL-10 KO could be explained not by a reduction of the quantity, but by a possible difference in the pathogenicity of anti-AChR antibodies.

  17. The expression of 16 genes related to the cell of origin and immune response predicts survival in elderly patients with diffuse large B-cell lymphoma treated with CHOP and rituximab

    PubMed Central

    Jais, Jean-Philippe; Haioun, Corine; Molina, Thierry J; Rickman, David S.; De Reynies, Aurélien; Berger, Françoise; Gisselbrecht, Christian; Brière, Josette; Reyes, Félix; Gaulard, Philippe; Feugier, Pierre; Labouyrie, Eric; Tilly, Hervé; Bastard, Christian; Coiffier, Bertrand; Salles, Gilles; Leroy, Karen

    2008-01-01

    Gene expression profiles have been associated with clinical outcome in patients with Diffuse Large B-Cell Lymphoma (DLBCL) treated with anthracycline containing chemotherapy. Using Affymetrix HU133A microarrays, we analyzed the lymphoma transcriptional profile of 30 patients treated with CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) and 23 patients treated with Ritxumab (R)-CHOP in the Groupe d’Etude des Lymphomes de l’Adulte clinical centers. We used this data set to select transcripts showing an association with progression free survival in all patients or showing a differential effect in the two treatment groups. We performed real-time quantitative RT-PCR in the 23 R-CHOP samples of the screening set and 44 R-CHOP additional samples to evaluate the prognostic significance of these transcripts. In these 67 patients, the level of expression of 16 genes and the cell of origin classification were significantly associated with overall survival, independently of the International Prognostic Index. A multivariate model comprising 4 genes of the cell of origin signature (LMO2, MME, LPP and FOXP1) and 2 genes related to immune response, identified for their differential effects in R-CHOP patients (APOBEC3G and RAB33A), demonstrated a high predictive efficiency in this set of patients, suggesting that both features affect outcome in DLBCL patients receiving immunochemotherapy. PMID:18615101

  18. B-cell memory and the persistence of antibody responses.

    PubMed Central

    MacLennan, I C; García de Vinuesa, C; Casamayor-Palleja, M

    2000-01-01

    Antigens such as viral envelope proteins and bacterial exotoxins induce responses which result in the production of neutralizing antibody. These responses persist for years and provide highly efficient defence against reinfection. During these antibody responses a proportion of participating B cells mutate the genes that encode their immunoglobulin variable regions. This can increase the affinity of the antibody, but can also induce autoreactive B cells. Selection mechanisms operate which allow the cells with high affinity for the provoking antigen to persist, while other B cells recruited into the response die. PMID:10794052

  19. Close proximity to Igh is a contributing factor to AID-mediated translocations.

    PubMed

    Rocha, Pedro P; Micsinai, Mariann; Kim, JungHyun Rachel; Hewitt, Susannah L; Souza, Patricia P; Trimarchi, Thomas; Strino, Francesco; Parisi, Fabio; Kluger, Yuval; Skok, Jane A

    2012-09-28

    Class switch recombination (CSR) has the potential to generate genomic instability in B cells as activation-induced cytidine deaminase (AID), which mediates this process, is known to target many sites outside Igh. Nonetheless we do not fully understand what factors influence AID targeting genome-wide. Given that errors in CSR can lead to dangerous, oncogenic chromosomal translocations it is important to identify the elements that determine which genes are at risk of being "hit" and could be involved in aberrant rearrangements. Here we have investigated the influence of nuclear organization in determining "off-target" activity and the choice of fusion partners. Our studies indicate that the vast majority of known AID-mediated Igh translocation partners are found in chromosomal domains that contact this locus during class switching. Further, these interaction domains can be used to identify other genes that are hit by AID.

  20. Epigenetics and B-cell Lymphoma

    PubMed Central

    Shaknovich, Rita; Melnick, Ari

    2011-01-01

    STRUCTURED ABSTRACT Purpose of review It has only recently become apparent that mutations in epigenetic mechanisms and perturbation of epigenomic patterning are frequent events in B-cell lymphomas. The purpose of this review is to highlight these new findings and provide a conceptual framework for understanding how epigenetic modifications might contribute to lymphomagenesis. Recent findings Somatic mutations affecting histone methyltransferases such as EZH2 and MLL2, histone demethylases including UTX and JMJD2C and histone acetyltransferases including CBP and p300 are recurrent and common in lymphomas. These mutations result in disruption of chromatin structure and functions of other proteins, ultimately causing aberrant transcriptional programming affecting multiple gene networks. Widespread perturbation of cytosine methylation patterning now appears to be a hallmark of B-cell lymphomas and occurs in specific patterns that can distinguish disease subtypes. Therapeutic targeting strategies can overcome abnormal epigenetic mechanisms and potently kill lymphoma cells. Summary Newly discovered epigenetic lesions may provide critical insights into the genesis of B-cell lymphomas but further studies are required to understand how they affect biological mechanism. Epigenetic lesions offer tremendous opportunities for the development of improved biomarkers and treatments. PMID:21577103

  1. Cytoplasmic H2O2 prevents translocation of NPR1 to the nucleus and inhibits the induction of PR genes in Arabidopsis

    PubMed Central

    Peleg-Grossman, Smadar; Melamed-Book, Naomi; Cohen, Gil

    2010-01-01

    Plants activate a number of defense reactions in response to pathogen attack. One of the major pathways involves biosynthesis of Salicylic acid (SA), which acts as a signaling molecule that regulates local defense reaction at the infection site and in induction of systemic acquired resistance (SAR). SA is sensed and transduced by NPR1 protein, which is a redox sensitive protein that acts as a central transcription activator of many pathogenesis related and defense related genes. In its uninduced state NPR1 exists as an oligomer in the cytoplasm. Following pathogen attack and SAR induction, cells undergo a biphasic change in cellular redox, resulting in reduction of NPR1 to a monomeric form, which moves to the nucleus. Recently, it was shown that pathogen attack or SA treatment cause S-nitrosylation of NPR1, promoting NPR1 oligomerization and restricting it in the cytoplasm. We used A. thaliana mutants in cytosolic ASCORBATE PEROXIDASE, apx1 and plants expressing antisense CATALASE gene, as well as the CATALASE inhibitor 3-amino-1,2,4-triazole, to examine the effect of H2O2 on the pathogen-triggered translocation of the NPR1 to the nucleus. Our results show that the pathogen-triggered or SA-induced nuclear translocation is prevented by accumulation of H2O2 in the cytosol. Moreover, we show that increased accumulation of cytoplasmic ROS in apx1 mutants reduced the NPR1-dependent gene expression. We suggest that H2O2 has a signaling role in pathogenesis, acting as a negative regulator of NPR1 translocation to the nucleus, limiting the NPR1-dependent gene expression. PMID:21051935

  2. DNA markers closely linked to nematode resistance genes in sugar beet (Beta vulgaris L.) mapped using chromosome additions and translocations originating from wild beets of the Procumbentes section.

    PubMed

    Jung, C; Koch, R; Fischer, F; Brandes, A; Wricke, G; Herrmann, R G

    1992-03-01

    Genes conferring resistance to the beet cyst nematode (Heterodera schachtii Schm.) have been transferred to sugar beet (Beta vulgaris L.) from three wild species of the Procumbentes section using monosomic addition and translocation lines, because no meiotic recombination occurs between chromosomes of cultured and wild species. In the course of a project to isolate the nematode resistance genes by strategies of reverse genetics, probes were cloned from DNA of a fragmented B. procumbens chromosome carrying a resistance gene, which had been isolated by pulsed-field gel electrophoresis. One probe (pRK643) hybridized with a short dispersed repetitive DNA element, which was found only in wild beets, and thus may be used as a molecular marker for nematode resistance to progeneis of monosomic addition lines segregating resistant and susceptible individuals. Additional probes for the resistance gene region were obtained with a polymerase chain reaction (PCR)-based strategy using repetitive primers to amplify DNA located between repetitive elements. One of these probes established the existence of at least six different chromosomes from wild beet species, each conferring resistance independently of the others. A strict correlation between the length of the wild beet chromatin introduced in fragment addition and translocation lines and the repeat copy number has been used physically to map the region conferring resistance to a chromosome segment of 0.5-3 Mb.

  3. The complex translocation (9;14;14) involving IGH and CEBPE genes suggests a new subgroup in B-lineage acute lymphoblastic leukemia

    PubMed Central

    Zerrouki, Rachid; Benhassine, Traki; Bensaada, Mustapha; Lauzon, Patricia; Trabzi, Anissa

    2016-01-01

    Abstract Many subtypes of acute lymphoblastic leukemia (ALL) are associated with specific chromosomal rearrangements. The complex translocation t(9;14;14), a variant of the translocation (14;14)(q11;q32), is a rare but recurrent chromosomal abnormality involving the immunoglobulin heavy-chain (IGH) and CCAAT enhancer-binding protein (CEBPE) genes in B-lineage ALL (B-ALL) and may represent a new B-ALL subgroup. We report here the case of a 5-year-old girl with B-ALL, positive for CD19, CD38 and HLA-DR. A direct technique and G-banding were used for chromosomal analysis and fluorescentin situ hybridization (FISH) with BAC probes was used to investigate a possible rearrangement of the IGH andCEBPE genes. The karyotype exhibit the chromosomal aberration 46,XX,del(9)(p21),t(14;14)(q11;q32). FISH with dual-color break-apartIGH-specific and CEPBE-specific bacterial artificial chromosome (BAC) probes showed a complex t(9;14;14) associated with a deletion of cyclin-dependent kinase inhibitor 2A (CDKN2A) and paired box gene 5 (PAX5) at 9p21-13 and duplication of the fusion gene IGH-CEBPE. PMID:27007892

  4. Ancestral Y-linked genes were maintained by translocation to the X and Y chromosomes fused to an autosomal pair in the Okinawa spiny rat Tokudaia muenninki.

    PubMed

    Murata, Chie; Kuroki, Yoko; Imoto, Issei; Kuroiwa, Asato

    2016-09-01

    Two species of the genus Tokudaia lack the Y chromosome and SRY, but several Y-linked genes have been rescued by translocation or transposition to other chromosomes. Tokudaia muenninki is the only species in the genus that maintains the Y owing to sex chromosome-autosome fusions. According to previous studies, many SRY pseudocopies and other Y-linked genes have evolved by excess duplication in this species. Using RNA-seq and RT-PCR, we found that ZFY, EIF2S3Y, TSPY, UTY, DDX3Y, USP9Y, and RBMY, but not UBA1Y, had high deduced amino acid sequence similarity and similar expression patterns with other rodents, suggesting that these genes were functional. Based on FISH and quantitative real-time PCR, all of the genes except for UTY and DDX3Y were amplified on the X and Y chromosomes with approximately 10-66 copies in the male genome. In a comparative analysis of the 372.4-kb BAC sequence and Y-linked gene transcripts from T. muenninki with the mouse Y genomic sequence, we observed that multiple-copy genes in the ancestral Y genome were nonfunctional, indicating that the gene functions were assumed by amplified copies. We also found a LTR sequence at the distal end of a SRY duplication unit, suggesting that unequal sister chromatid exchange mediated by retrotransposable elements could have been involved in SRY amplification. Our results revealed that the Y-linked genes were rescued from degeneration via translocations to other sex chromosomal regions and amplification events in T. muenninki.

  5. Ancestral Y-linked genes were maintained by translocation to the X and Y chromosomes fused to an autosomal pair in the Okinawa spiny rat Tokudaia muenninki.

    PubMed

    Murata, Chie; Kuroki, Yoko; Imoto, Issei; Kuroiwa, Asato

    2016-09-01

    Two species of the genus Tokudaia lack the Y chromosome and SRY, but several Y-linked genes have been rescued by translocation or transposition to other chromosomes. Tokudaia muenninki is the only species in the genus that maintains the Y owing to sex chromosome-autosome fusions. According to previous studies, many SRY pseudocopies and other Y-linked genes have evolved by excess duplication in this species. Using RNA-seq and RT-PCR, we found that ZFY, EIF2S3Y, TSPY, UTY, DDX3Y, USP9Y, and RBMY, but not UBA1Y, had high deduced amino acid sequence similarity and similar expression patterns with other rodents, suggesting that these genes were functional. Based on FISH and quantitative real-time PCR, all of the genes except for UTY and DDX3Y were amplified on the X and Y chromosomes with approximately 10-66 copies in the male genome. In a comparative analysis of the 372.4-kb BAC sequence and Y-linked gene transcripts from T. muenninki with the mouse Y genomic sequence, we observed that multiple-copy genes in the ancestral Y genome were nonfunctional, indicating that the gene functions were assumed by amplified copies. We also found a LTR sequence at the distal end of a SRY duplication unit, suggesting that unequal sister chromatid exchange mediated by retrotransposable elements could have been involved in SRY amplification. Our results revealed that the Y-linked genes were rescued from degeneration via translocations to other sex chromosomal regions and amplification events in T. muenninki. PMID:27333765

  6. Regulation of VH replacement by B cell receptor-mediated signaling in human immature B cells.

    PubMed

    Liu, Jing; Lange, Miles D; Hong, Sang Yong; Xie, Wanqin; Xu, Kerui; Huang, Lin; Yu, Yangsheng; Ehrhardt, Götz R A; Zemlin, Michael; Burrows, Peter D; Su, Kaihong; Carter, Robert H; Zhang, Zhixin

    2013-06-01

    VH replacement provides a unique RAG-mediated recombination mechanism to edit nonfunctional IgH genes or IgH genes encoding self-reactive BCRs and contributes to the diversification of Ab repertoire in the mouse and human. Currently, it is not clear how VH replacement is regulated during early B lineage cell development. In this article, we show that cross-linking BCRs induces VH replacement in human EU12 μHC(+) cells and in the newly emigrated immature B cells purified from peripheral blood of healthy donors or tonsillar samples. BCR signaling-induced VH replacement is dependent on the activation of Syk and Src kinases but is inhibited by CD19 costimulation, presumably through activation of the PI3K pathway. These results show that VH replacement is regulated by BCR-mediated signaling in human immature B cells, which can be modulated by physiological and pharmacological treatments.

  7. Primary Mediastinal B-Cell Lymphoma

    PubMed Central

    Pileri, Stefano A.; Gaidano, Gianluca; Zinzani, Pier Luigi; Falini, Brunangelo; Gaulard, Philippe; Zucca, Emanuele; Pieri, Federica; Berra, Eva; Sabattini, Elena; Ascani, Stefano; Piccioli, Milena; Johnson, Peter W. M.; Giardini, Roberto; Pescarmona, Edoardo; Novero, Domenico; Piccaluga, Pier Paolo; Marafioti, Teresa; Alonso, Miguel A.; Cavalli, Franco

    2003-01-01

    Although primary mediastinal (thymic) large B-cell lymphoma has been primarily studied, its precise phenotype, molecular characteristics, and histogenesis are still a matter of debate. The International Extranodal Lymphoma Study Group collected 137 such cases for extensive pathological review. Histologically, the lymphomatous growth was predominantly diffuse with fibrosis that induced compartmentalized cell aggregation. It consisted of large cells with varying degrees of nuclear polymorphism and clear to basophilic cytoplasm. On immunohistochemistry, the following phenotype was observed: CD45+, CD20+, CD79a+, PAX5/BSAP+, BOB.1+, Oct-2+, PU.1+, Bcl-2+, CD30+, HLA-DR+, MAL protein+/−, Bcl-6+/−, MUM1/IRF4+/−, CD10−/+, CD21−, CD15−, CD138−, CD68−, and CD3−. Immunoglobulins were negative both at immunohistochemistry and in situ hybridization. Molecular analysis, performed in 45 cases, showed novel findings. More than half of the cases displayed BCL-6 gene mutations, which usually occurred along with functioning somatic IgVH gene mutations and Bcl-6 and/or MUM1/IRF4 expression. The present study supports the concept that a sizable fraction of cases of this lymphoma are from activated germinal center or postgerminal center cells. However, it differs from other aggressive B-cell lymphomas in that it shows defective immunoglobulin production despite the expression of OCT-2, BOB.1, and PU.1 transcription factors and the lack of IgVH gene crippling mutations. PMID:12507907

  8. Genomic Comparison of Translocating and Non-Translocating Escherichia coli

    PubMed Central

    Bachmann, Nathan L.; Katouli, Mohammad; Polkinghorne, Adam

    2015-01-01

    Translocation of E. coli across the gut epithelium can result in fatal sepsis in post-surgical patients. In vitro and in vivo experiments have identified the existence of a novel pathotype of translocating E. coli (TEC) that employs an unknown mechanism for translocating across epithelial cells to the mesenteric lymph nodes and the blood stream in both humans and animal models. In this study the genomes of four TEC strains isolated from the mesenteric lymph nodes of a fatal case of hospitalised patient (HMLN-1), blood of pigs after experimental shock (PC-1) and after non-lethal haemorrhage in rats (KIC-1 and KIC-2) were sequenced in order to identify the genes associated with their adhesion and/or translocation. To facilitate the comparison, the genomes of a non-adhering, non-translocating E. coli (46–4) and adhering but non-translocating E. coli (73–89) were also sequenced and compared. Whole genome comparison revealed that three (HMLN-1, PC-1 and KIC-2) of the four TEC strains carried a genomic island that encodes a Type 6 Secretion System that may contribute to adhesion of the bacteria to gut epithelial cells. The human TEC strain HMLN-1 also carried the invasion ibeA gene, which was absent in the animal TEC strains and is likely to be associated with host-specific translocation. Phylogenetic analysis revealed that the four TEC strains were distributed amongst three distinct E. coli phylogroups, which was supported by the presence of phylogroup specific fimbriae gene clusters. The genomic comparison has identified potential genes that can be targeted with knock-out experiments to further characterise the mechanisms of E. coli translocation. PMID:26317913

  9. Genome-wide profiling identifies a DNA methylation signature that associates with TET2 mutations in diffuse large B-cell lymphoma

    PubMed Central

    Asmar, Fazila; Punj, Vasu; Christensen, Jesper; Pedersen, Marianne T.; Pedersen, Anja; Nielsen, Anders B.; Hother, Christoffer; Ralfkiaer, Ulrik; Brown, Peter; Ralfkiaer, Elisabeth; Helin, Kristian; Grønbæk, Kirsten

    2013-01-01

    The discovery that the Ten-Eleven Translocation (TET) hydroxylases cause DNA demethylation has fundamentally changed the notion of how DNA methylation is regulated. Clonal analysis of the hematopoetic stem cell compartment suggests that TET2 mutations can be early events in hematologic cancers and recent investigations have shown TET2 mutations in diffuse large B-cell lymphoma. However, the detection rates and the types of TET2 mutations vary, and the relation to global methylation patterns has not been investigated. Here, we show TET2 mutations in 12 of 100 diffuse large B-cell lymphomas with 7% carrying loss-of-function and 5% carrying missense mutations. Genome-wide methylation profiling using 450K Illumina arrays identified 315 differentially methylated genes between TET2 mutated and TET2 wild-type cases. TET2 mutations are primarily associated with hypermethylation within CpG islands (70%; P<0.0001), and at CpG-rich promoters (60%; P<0.0001) of genes involved in hematopoietic differentiation and cellular development. Hypermethylated loci in TET2 mutated samples overlap with the bivalent (H3K27me3/H3K4me3) silencing mark in human embryonic stem cells (P=1.5×10−30). Surprisingly, gene expression profiling showed that only 11% of the hypermethylated genes were down-regulated, among which there were several genes previously suggested to be tumor suppressors. A meta-analysis suggested that the 35 hypermethylated and down-regulated genes are associated with the activated B-cell-like type of diffuse large B-cell lymphoma in other studies. In conclusion, our data suggest that TET2 mutations may cause aberrant methylation mainly of genes involved in hematopoietic development, which are silenced but poised for activation in human embryonic stem cells. PMID:23831920

  10. Isoniazid prevents Nrf2 translocation by inhibiting ERK1 phosphorylation and induces oxidative stress and apoptosis

    PubMed Central

    Verma, Ajeet Kumar; Yadav, Arti; Dewangan, Jayant; Singh, Sarvendra Vikram; Mishra, Manisha; Singh, Pradhyumna Kumar; Rath, Srikanta Kumar

    2015-01-01

    Isoniazid is used either alone or in combination with other drugs for the treatment of tuberculosis. It is also used for the prevention of tuberculosis. Chronic treatment of Isoniazid may cause severe liver damage leading to acute liver failure. The mechanism through which Isoniazid causes liver damage is investigated. Isoniazid treatment generates reactive oxygen species and induces apoptosis in Hep3B cells. It induces antioxidative and apoptotic genes leading to increase in mRNA expression and protein levels in Hep3B cells. Whole genome expression analysis of Hep3B cells treated with Isoniazid has resulted in differential expression of various genes playing prime role in regulation of apoptotic, antioxidative, DNA damage, cell signaling, cell proliferation and differentiation pathways. Isoniazid increased cytosolic Nrf2 protein level while decreased nuclear Nrf2 protein level. It also decreased ERK1 phosphorylation and treatment of Hep3B cells with ERK inhibitor followed by Isoniazid resulting in increased apoptosis in these cells. Two dimensional gel electrophoresis results have also shown differential expression of various protein species including heat shock proteins, proteins playing important role in oxidative stress, DNA damage, apoptosis, cell proliferation and differentiation. Results suggest that Isoniazid induces apoptosis through oxidative stress and also prevents Nrf2 translocation into the nucleus by reducing ERK1 phosphorylation thus preventing cytoprotective effect. PMID:26202867

  11. Long Noncoding RNA Expression during Human B-Cell Development.

    PubMed

    Petri, Andreas; Dybkær, Karen; Bøgsted, Martin; Thrue, Charlotte Albæk; Hagedorn, Peter H; Schmitz, Alexander; Bødker, Julie Støve; Johnsen, Hans Erik; Kauppinen, Sakari

    2015-01-01

    Long noncoding RNAs (lncRNAs) have emerged as important regulators of diverse cellular processes, but their roles in the developing immune system are poorly understood. In this study, we analysed lncRNA expression during human B-cell development by array-based expression profiling of eleven distinct flow-sorted B-cell subsets, comprising pre-B1, pre-B2, immature, naive, memory, and plasma cells from bone marrow biopsies (n = 7), and naive, centroblast, centrocyte, memory, and plasmablast cells from tonsil tissue samples (n = 6), respectively. A remapping strategy was used to assign the array probes to 37630 gene-level probe sets, reflecting recent updates in genomic and transcriptomic databases, which enabled expression profiling of 19579 long noncoding RNAs, comprising 3947 antisense RNAs, 5277 lincRNAs, 7625 pseudogenes, and 2730 additional lncRNAs. As a first step towards inferring the functions of the identified lncRNAs in developing B-cells, we analysed their co-expression with well-characterized protein-coding genes, a method known as "guilt by association". By using weighted gene co-expression network analysis, we identified 272 lincRNAs, 471 antisense RNAs, 376 pseudogene RNAs, and 64 lncRNAs within seven sub-networks associated with distinct stages of B-cell development, such as early B-cell development, B-cell proliferation, affinity maturation of antibody, and terminal differentiation. These data provide an important resource for future studies on the functions of lncRNAs in development of the adaptive immune response, and the pathogenesis of B-cell malignancies that originate from distinct B-cell subpopulations. PMID:26394393

  12. Activation-induced necroptosis contributes to B-cell lymphopenia in active systemic lupus erythematosus

    PubMed Central

    Fan, H; Liu, F; Dong, G; Ren, D; Xu, Y; Dou, J; Wang, T; Sun, L; Hou, Y

    2014-01-01

    B-cell abnormality including excessive activation and lymphopenia is a central feature of systemic lupus erythematosus (SLE). Although activation threshold, auto-reaction and death of B cells can be affected by intrinsical and/or external signaling, the underlying mechanisms are unclear. Herein, we demonstrate that co-activation of Toll-like receptor 7 (TLR7) and B-cell receptor (BCR) pathways is a core event for the survival/dead states of B cells in SLE. We found that the mortalities of CD19+CD27- and CD19+IgM+ B-cell subsets were increased in the peripheral blood mononuclear cells (PBMCs) of SLE patients. The gene microarray analysis of CD19+ B cells from active SLE patients showed that the differentially expressed genes were closely correlated to TLR7, BCR, apoptosis, necroptosis and immune pathways. We also found that co-activation of TLR7 and BCR could trigger normal B cells to take on SLE-like B-cell characters including the elevated viability, activation and proliferation in the first 3 days and necroptosis in the later days. Moreover, the necroptotic B cells exhibited mitochondrial dysfunction and hypoxia, along with the elevated expression of necroptosis-related genes, consistent with that in both SLE B-cell microarray and real-time PCR verification. Expectedly, pretreatment with the receptor-interacting protein kinase 1 (RIPK1) inhibitor Necrostatin-1, and not the apoptosis inhibitor zVAD, suppressed B-cell death. Importantly, B cells from additional SLE patients also significantly displayed high expression levels of necroptosis-related genes compared with those from healthy donors. These data indicate that co-activation of TLR7 and BCR pathways can promote B cells to hyperactivation and ultimately necroptosis. Our finding provides a new explanation on B-cell lymphopenia in active SLE patients. These data suggest that extrinsic factors may increase the intrinsical abnormality of B cells in SLE patients. PMID:25210799

  13. Robertsonian translocations

    SciTech Connect

    1993-12-31

    Chapter 27, describes the occurrence of Robertsonian translocations (RTs), which refer to the recombination of whole chromosome arms, in both monocentric and dicentric chromosomes. The nonrandom participation of acrocentric chromosomes in RTs is documented by various methods, including unbiased ascertainment and ascertainment through trisomy, infertility, unspecified mental retardation, and Prader-Willi syndrome. Causes of nonrandom participation of chromosomes in RTs is presented, as are the following topics: segregation in carriers of RTs and segregation in sperm cells of RT carriers, interchromosomal effects and conclusions. 48 refs., 3 figs., 2 tabs.

  14. Dysfunctional B-cell activation in cirrhosis due to hepatitis C infection associated with disappearance of CD27+ B-cell population

    PubMed Central

    Doi, Hiroyoshi; Iyer, Tara K.; Carpenter, Erica; Li, Hong; Chang, Kyong-Mi; Vonderheide, Robert H.; Kaplan, David E.

    2011-01-01

    Background Chronic hepatitis C virus infection is a leading cause of cirrhosis and hepatocellular carcinoma. Both advanced solid tumors and hepatitis C have previously been associated with memory B-cell dysfunction. In this study we sought to dissect the impact of viral infection, cirrhosis and liver cancer on memory B-cell frequency and function in the spectrum of HCV disease. Methods Peripheral blood from healthy donors, HCV-infected patients with F1–F2 liver fibrosis, HCV-infected patients with cirrhosis, patients with HCV-related hepatocellular carcinoma and non-HCV-infected cirrhotics were assessed for B-cell phenotype by flow cytometry. Isolated B-cells were stimulated with anti-CD40 antibodies and TLR9 agonist for assessment of costimulation marker expression, cytokine production, immunoglobulin production and CD4+ T-cell allostimulatory capacity. Results CD27+ memory B-cells, and more specifically CD27+IgM+ B-cells, were markedly less frequent in cirrhotic patients independent of HCV infection. Circulating B-cells in cirrhotics were hyporesponsive to CD40/TLR9 activation as characterized by CD70 upregulation, TNFβ secretion, IgG production and T-cell allostimulation. Lastly, blockade of TLR4 and TLR9 signaling abrogated the activation of normal donor B-cells by cirrhotic plasma suggesting a role for bacterial translocation in driving B-cell changes in cirrhosis. Conclusion Profound abnormalities in B-cell phenotype and function occur in cirrhosis independent of hepatitis C viral infection. These B-cell defects may explain in part the vaccine hyporesponsiveness and susceptibility to bacterial infection in this population. PMID:21932384

  15. A homozygous balanced reciprocal translocation suggests LINC00237 as a candidate gene for MOMO (macrosomia, obesity, macrocephaly, and ocular abnormalities) syndrome.

    PubMed

    Vu, Phi Yen; Toutain, Jérôme; Cappellen, David; Delrue, Marie-Ange; Daoud, Hussein; El Moneim, Azza Abd; Barat, Pascal; Montaubin, Orianne; Bonnet, Françoise; Dai, Zong Qi; Philippe, Christophe; Tran, Cong Toai; Rooryck, Caroline; Arveiler, Benoît; Saura, Robert; Briault, Sylvain; Lacombe, Didier; Taine, Laurence

    2012-11-01

    Macrosomia, obesity, macrocephaly, and ocular abnormalities syndrome (MOMO syndrome) has been reported in only four patients to date. In these sporadic cases, no chromosomal or molecular abnormality has been identified thus far. Here, we report on the clinical, cytogenetic, and molecular findings in a child of healthy consanguineous parents suffering from MOMO syndrome. Conventional karyotyping revealed an inherited homozygous balanced reciprocal translocation (16;20)(q21;p11.2). Uniparental disomy testing showed bi-parental inheritance for both derivative chromosomes 16 and 20. The patient's oligonucleotide array-comparative genomic hybridization profile revealed no abnormality. From the homozygous balanced reciprocal translocation (16;20)(q21;p11.2), a positional cloning strategy, designed to narrow 16q21 and 20p11.2 breakpoints, revealed the disruption of a novel gene located at 20p11.23. This gene is now named LINC00237, according to the HUGO (Human Genome Organization) nomenclature. The gene apparently leads to the production of a non-coding RNA. We established that LINC00237 was expressed in lymphocytes of control individuals while normal transcripts were absent in lymphocytes of our MOMO patient. LINC00237 was not ubiquitously expressed in control tissues, but it was notably highly expressed in the brain. Our results suggested autosomal recessive inheritance of MOMO syndrome. LINC00237 could play a role in the pathogenesis of this syndrome and could provide new insights into hyperphagia-related obesity and intellectual disability.

  16. Promoter swapping between the genes for a novel zinc finger protein and beta-catenin in pleiomorphic adenomas with t(3;8)(p21;q12) translocations.

    PubMed

    Kas, K; Voz, M L; Röijer, E; Aström, A K; Meyen, E; Stenman, G; Van de Ven, W J

    1997-02-01

    Pleiomorphic adenoma of the salivary glands is a benign epithelial tumour occurring primarily in the major and minor salivary glands. It is by far the most common type of salivary gland tumour. Microscopically, pleiomorphic adenomas show a marked histological diversity with epithelial, myoepithelial and mesenchymal components in a variety of patterns. In addition to a cytogenetic subgroup with normal karyotypes, pleiomorphic adenomas are characterized by recurrent chromosome rearrangements, particularly reciprocal translocations, with breakpoints at 8q12, 3p21, and 12q13-15, in that order of frequency. The most common abnormality is a reciprocal t(3;8)(p21;q12). We here demonstrate that the t(3;8)(p21;q12) results in promoter swapping between PLAG1, a novel, developmentally regulated zinc finger gene at 8q12, and the constitutively expressed gene for beta-catenin (CTNNB1), a protein interface functioning in the WG/WNT signalling pathway and specification of cell fate during embryogenesis. Fusions occur in the 5'-non-coding regions of both genes, exchanging regulatory control elements while preserving the coding sequences. Due to the t(3;8)(p21;q12), PLAG1 is activated and expression levels of CTNNB1 are reduced. Activation of PLAG1 was also observed in an adenoma with a variant translocation t(8;15)(q12;q14). Our results indicate that PLAG1 activation due to promoter swapping is a crucial event in salivary gland tumourigenesis.

  17. Fc Receptor-Like Proteins in Pathophysiology of B-cell Disorder

    PubMed Central

    Capone, Mollie; Bryant, John Matthew; Sutkowski, Natalie; Haque, Azizul

    2016-01-01

    Members of the family of Fc receptor-like (FcRL) proteins, homologous to FcγRI, have been identified by multiple research groups. Consequently, they have been described using multiple nomenclatures including Fc receptor homologs (FcRH), immunoglobulin superfamily receptor translocation-associated genes (IRTA), immunoglobulin-Fc-gp42-related genes (IFGP), Src homology 2 domain-containing phosphatase anchor proteins (SPAP), and B cell cross-linked by anti-immunoglobulin M-activating sequences (BXMAS). They are now referred to under a unified nomenclature as FCRL. Eight different human FCRL genes have been identified, all of which appear to be related to the genes of the immunoglobulin superfamily (IgSF) of cellular adhesion molecules. These type 1 transmembrane glycoproteins are composed of different combinations of 5 types of immunoglobulin-like domains, with each protein consisting of 3 to 9 domains, and no individual domain type conserved throughout all of the FCRL proteins. Ligands for the majority of the FCRLs remain unknown. In general, FCRL expression is restricted to lymphocytes and is primarily expressed in B-lymphocytes, supporting FCRL’s involvement in a variety of immune disorders. Most FCRLs functionally repress B-cell activation; however, they might have dual roles in lymphocyte functions as these proteins often possess immunoreceptor tyrosine activation (ITAM) and inhibitory (ITIM) motif elements. The biological functions of these newly recognized FCRL proteins are just beginning to emerge, and might provide the insight necessary for understanding pathophysiology of lymphocyte disorders and treating different immune diseases. PMID:27446638

  18. Chemokine-mediated B cell trafficking during early rabbit GALT development

    PubMed Central

    Zhai, Shi-Kang; Volgina, Veronica V.; Sethupathi, Periannan; Knight, Katherine L.; Lanning, Dennis K.

    2014-01-01

    Microbial and host cell interactions stimulate rabbit B cells to diversify the primary antibody repertoire in gut-associated lymphoid tissues (GALT). B cells at the base of appendix follicles begin proliferating and diversifying their V-(D)-J genes around 1 week of age, ∼5 days after B cells first begin entering appendix follicles, To gain insight into the microbial and host cell interactions that stimulate B cells to diversify the primary antibody repertoire, we analyzed B cell trafficking within follicles during the first week of life. We visualized B cells, as well as chemokines that mediate B cell homing in lymphoid tissues, by in situ hybridization, and examined B cell chemokine receptor expression by flow cytometry. We found that B cells were activated, and began downregulating their BCRs, well before a detectable B cell proliferative region appeared at the follicle base. The proliferative region was similar to germinal center dark zones, in that it exhibited elevated CXCL12 mRNA expression, and B cells that upregulated CXCR4 mRNA in response to signals acquired from select intestinal commensals localized in this region. Our results suggest that, after entering appendix follicles, B cells home sequentially to the FAE, the FDC network, the B cell:T cell boundary and, ultimately, the base of the follicle, where they enter a proliferative program and diversify the primary antibody repertoire. PMID:25385821

  19. Downregulation of FOXP1 is required during germinal center B-cell function

    PubMed Central

    Sagardoy, Ainara; Martinez-Ferrandis, Jose I.; Roa, Sergio; Bunting, Karen L.; Aznar, María Angela; Elemento, Olivier; Shaknovich, Rita; Fontán, Lorena; Fresquet, Vicente; Perez-Roger, Ignacio; Robles, Eloy F.; De Smedt, Linde; Sagaert, Xavier

    2013-01-01

    B-cell maturation and germinal center (GC) formation are dependent on the interplay between BCL6 and other transcriptional regulators. FOXP1 is a transcription factor that regulates early B-cell development, but whether it plays a role in mature B cells is unknown. Analysis of human tonsillar B-cell subpopulations revealed that FOXP1 shows the opposite expression pattern to BCL6, suggesting that FOXP1 regulates the transition from resting follicular B cell to activated GC B cell. Chromatin immunoprecipitation-on-chip and gene expression assays on B cells indicated that FOXP1 acts as a transcriptional activator and repressor of genes involved in the GC reaction, half of which are also BCL6 targets. To study FOXP1 function in vivo, we developed transgenic mice expressing human FOXP1 in lymphoid cells. These mice exhibited irregular formation of splenic GCs, showing a modest increase in naïve and marginal-zone B cells and a significant decrease in GC B cells. Furthermore, aberrant expression of FOXP1 impaired transcription of noncoding γ1 germline transcripts and inhibited efficient class switching to the immunoglobulin G1 isotype. These studies show that FOXP1 is physiologically downregulated in GC B cells and that aberrant expression of FOXP1 impairs mechanisms triggered by B-cell activation, potentially contributing to B-cell lymphomagenesis. PMID:23580662

  20. Transcriptional analysis of the B cell germinal center reaction

    PubMed Central

    Klein, Ulf; Tu, Yuhai; Stolovitzky, Gustavo A.; Keller, Jeffrey L.; Haddad, Joseph; Miljkovic, Vladan; Cattoretti, Giorgio; Califano, Andrea; Dalla-Favera, Riccardo

    2003-01-01

    The germinal center (GC) reaction is crucial for T cell-dependent immune responses and is targeted by B cell lymphomagenesis. Here we analyzed the transcriptional changes that occur in B cells during GC transit (naïve B cells → centroblasts → centrocytes → memory B cells) by gene expression profiling. Naïve B cells, characterized by the expression of cell cycle-inhibitory and antiapoptotic genes, become centroblasts by inducing an atypical proliferation program lacking c-Myc expression, switching to a proapoptotic program, and down-regulating cytokine, chemokine, and adhesion receptors. The transition from GC to memory cells is characterized by a return to a phenotype similar to that of naïve cells except for an apoptotic program primed for both death and survival and for changes in the expression of cell surface receptors including IL-2 receptor β. These results provide insights into the dynamics of the GC reaction and represent the basis for the analysis of B cell malignancies. PMID:12604779

  1. Detection of the bcl-2 t(14;18) Translocation and Proto-Oncogene Expression in Primary Intraocular Lymphoma

    PubMed Central

    Wallace, Dana J.; Shen, DeFen; Reed, George F.; Miyanaga, Masaru; Mochizuki, Manabu; Sen, H. Nida; Dahr, Samuel S.; Buggage, Ronald R.; Nussenblatt, Robert B.; Chan, Chi-Chao

    2007-01-01

    PURPOSE Primary intraocular lymphoma (PIOL) is a diffuse large B cell lymphoma that initially infiltrates the retina, vitreous, or optic nerve head, with or without central nervous system involvement. This study examined the expression of the bcl-2 t(14;18) translocation, the bcl-10 gene, and high expression of bcl-6 mRNA in PIOL cells. METHODS Microdissection and PCR analysis were used to examine vitreous specimens in patients with PIOL for the presence of bcl-2 t(14;18) translocations, the bcl-10 gene, and expression of bcl-6 mRNA. A medical record review was also conducted to determine whether the bcl-2 t(14;18) translocation correlated with prognosis. RESULTS Forty of 72 (55%) PIOL patients expressed the bcl-2 t(14;18) translocation at the major breakpoint region. Fifteen of 68 (22%) patients expressed the translocation at the minor cluster region. The bcl-10 gene was detected in 6 of 26 (23%) patients, whereas 4 of 4 (100%) PIOL patients expressed higher levels of bcl-6 mRNA compared with inflammatory lymphocytes. An analysis of clinical outcome in 23 PIOL patients revealed no significant association between bcl-2 t(14;18) translocations and survival or relapse. However, patients with the translocation were significantly younger. CONCLUSIONS PIOL has unique molecular patterns of bcl-2, bcl-10, and bcl-6 when compared with other systemic lympho-mas. This study lays the foundation for future studies aimed at exploring the genotypic classification of PIOL based on the quantitative molecular framework of gene expression profil-ing, with the goal of providing useful adjuncts to the pathologic diagnosis of this complex disease. PMID:16799010

  2. Diffuse Large B-Cell Lymphoma Version 1.2016.

    PubMed

    Zelenetz, Andrew D; Gordon, Leo I; Wierda, William G; Abramson, Jeremy S; Advani, Ranjana H; Andreadis, C Babis; Bartlett, Nancy; Byrd, John C; Fayad, Luis E; Fisher, Richard I; Glenn, Martha J; Habermann, Thomas M; Lee Harris, Nancy; Hernandez-Ilizaliturri, Francisco; Hoppe, Richard T; Horwitz, Steven M; Kaminski, Mark S; Kelsey, Christopher R; Kim, Youn H; Krivacic, Susan; LaCasce, Ann S; Lunning, Matthew; Nademanee, Auayporn; Porcu, Pierluigi; Press, Oliver; Rabinovitch, Rachel; Reddy, Nishitha; Reid, Erin; Roberts, Kenneth; Saad, Ayman A; Sokol, Lubomir; Swinnen, Lode J; Vose, Julie M; Yahalom, Joachim; Zafar, Nadeem; Dwyer, Mary; Sundar, Hema

    2016-02-01

    Diffuse large B-cell lymphomas (DLBCL) are now considered a heterogeneous group of distinct molecular subtypes (germinal center B-cell DLBCL, activated B-cell DLBCL, and primary mediastinal large B-cell lymphoma (PMBL) with varied natural history and response to therapy. In addition, a subset of patients with DLBCL have concurrent MYC and/or BCL2 gene rearrangements (double-hit lymphomas; DHL) and others have a dual expression of both MYC and BCL2 proteins (double-expressing DLBCL; DEL). The standard of care for the treatment of patients with PMBL, DHL, or DEL has not been established. Adequate immunophenotyping and molecular testing (in selected circumstances) are necessary for the accurate diagnosis of different subtypes of DLBCL. The NCCN Guidelines included in this issue, part of the NCCN Guidelines for non-Hodgkin's lymphomas, address the diagnosis and management of DLBCL and its subtypes. PMID:26850490

  3. Nucleotide sequence of the afimbrial-adhesin-encoding afa-3 gene cluster and its translocation via flanking IS1 insertion sequences.

    PubMed Central

    Garcia, M I; Labigne, A; Le Bouguenec, C

    1994-01-01

    The afa gene clusters encode afimbrial adhesins (AFAs) that are expressed by uropathogenic and diarrhea-associated Escherichia coli strains. The plasmid-borne afa-3 gene cluster is responsible for the biosynthesis of the AFA-III adhesin that belongs to the Dr family of hemagglutinins. Reported in this work is the nucleotide sequence of the 9.2-kb insert of the recombinant plasmid pILL61, which contains the afa-3 gene cluster cloned from a cystitis-associated E. coli strain (A30). The afa-3 gene cluster was shown to contain six open reading frames, designated afaA to afaF. It was organized in two divergent transcriptional units. Five of the six Afa products showed marked homologies with proteins encoded by previously described adhesion systems that allowed us to attribute to each of them a putative function in the biogenesis of the AFA-III adhesin. AfaE was identified as the structural adhesin product, whereas AfaB and AfaC were recognized as periplasmic chaperone and outer membrane anchor proteins, respectively. The AfaA and AfaF products were shown to be homologous to the PapI-PapB transcriptional regulatory proteins. No function could be attributed to the AfaD product, the gene of which was previously shown to be dispensable for the synthesis of a functional adhesin. Upstream of the afa-3 gene cluster, a 1.2-kb region was found to be 96% identical to the RepFIB sequence of one of the enterotoxigenic E. coli plasmids (P307), suggesting a common ancestor plasmid. This region contains an integrase-like gene (int). Sequence analysis revealed the presence of an IS1 element between the int gene and the afa-3 gene cluster. Two other IS1 elements were detected and located in the vicinity of the afa-3 gene cluster by hybridization experiments. The afa-3 gene cluster was therefore found to be flanked by two IS1 elements in direct orientation and two in opposite orientations. The afa-3 gene cluster, flanked by two directly oriented IS1 elements, was shown to translocate

  4. RAG1 and RAG2 expression by B cell subsets from human tonsil and peripheral blood.

    PubMed

    Girschick, H J; Grammer, A C; Nanki, T; Mayo, M; Lipsky, P E

    2001-01-01

    It has been suggested that B cells acquire the capacity for secondary V(D)J recombination during germinal center (GC) reactions. The nature of these B cells remains controversial. Subsets of tonsil and blood B cells and also individual B cells were examined for the expression of recombination-activating gene (RAG) mRNA. Semiquantitative analysis indicated that RAG1 mRNA was present in all tonsil B cell subsets, with the largest amount found in naive B cells. RAG2 mRNA was only found in tonsil naive B cells, centrocytes, and to a lesser extent in centroblasts. Neither RAG1 nor RAG2 mRNA was routinely found in normal peripheral blood B cells. In individual tonsil B cells, RAG1 and RAG2 mRNAs were found in 18% of naive B cells, 22% of GC founder cells, 0% of centroblasts, 13% of centrocytes, and 9% of memory B cells. Individual naive tonsil B cells containing both RAG1 and RAG2 mRNA were activated (CD69(+)). In normal peripheral blood approximately 5% of B cells expressed both RAG1 and RAG2. These cells were uniformly postswitch memory B cells as documented by the coexpression of IgG mRNA. These results indicate that coordinate RAG expression is not found in normal peripheral naive B cells but is up-regulated in naive B cells which are activated in the tonsil. With the exception of centroblasts, RAG1 and RAG2 expression can be found in all components of the GC, including postswitch memory B cells, some of which may circulate in the blood of normal subjects.

  5. Malaria-associated atypical memory B cells exhibit markedly reduced B cell receptor signaling and effector function.

    PubMed

    Portugal, Silvia; Tipton, Christopher M; Sohn, Haewon; Kone, Younoussou; Wang, Jing; Li, Shanping; Skinner, Jeff; Virtaneva, Kimmo; Sturdevant, Daniel E; Porcella, Stephen F; Doumbo, Ogobara K; Doumbo, Safiatou; Kayentao, Kassoum; Ongoiba, Aissata; Traore, Boubacar; Sanz, Inaki; Pierce, Susan K; Crompton, Peter D

    2015-05-08

    Protective antibodies in Plasmodium falciparum malaria are only acquired after years of repeated infections. Chronic malaria exposure is associated with a large increase in atypical memory B cells (MBCs) that resemble B cells expanded in a variety of persistent viral infections. Understanding the function of atypical MBCs and their relationship to classical MBCs will be critical to developing effective vaccines for malaria and other chronic infections. We show that VH gene repertoires and somatic hypermutation rates of atypical and classical MBCs are indistinguishable indicating a common developmental history. Atypical MBCs express an array of inhibitory receptors and B cell receptor (BCR) signaling is stunted in atypical MBCs resulting in impaired B cell responses including proliferation, cytokine production and antibody secretion. Thus, in response to chronic malaria exposure, atypical MBCs appear to differentiate from classical MBCs becoming refractory to BCR-mediated activation and potentially interfering with the acquisition of malaria immunity.

  6. Transcription of the Tollip gene is elevated in intestinal epithelial cells through impaired O-GlcNAcylation-dependent nuclear translocation of the negative regulator Elf-1

    SciTech Connect

    Sugi, Yutaka; Takahashi, Kyoko; Nakano, Kou; Hosono, Akira; Kaminogawa, Shuichi

    2011-09-09

    Highlights: {yields} Transcriptional activation of the Tollitip gene is higher in IECs than in monocytes. {yields} Nt -194/-186 region acts as a cis-element and is recognized by Elf-1. {yields} Elf-1 suppresses Tollip gene transcription in monocytes but not in IECs. {yields} O-GlcNAc modification is necessary for nuclear translocation of Elf-1. {yields} O-GlcNAcylation-dependent nuclear translocation of Elf-1 is impaired in IECs. -- Abstract: Intestinal epithelial cells (IECs) must be tolerant of the large number of commensal bacteria inhabiting the intestinal tract to avoid excessive inflammatory reactions. Toll-interacting protein (Tollip), a negative regulator of Toll-like receptor signaling, is known to be expressed at high levels in IECs, and to thereby contribute to the hyporesponsiveness of IECs to commensals. In this study, we analyzed the underlying mechanisms for elevated transcription of the Tollip gene in IECs using a human IEC line, Caco-2, and a human monocyte line, THP-1, as a control. Elf-1 was identified as a transcription factor that negatively regulates Tollip gene expression. The transcription factor Elf-1 was localized in the nucleus by O-linked N-acetylglucosamine (O-GlcNAc) modification, whereas the unmodified form was detected only in the cytoplasm. Comparison of Caco-2 and THP-1 cells revealed that O-GlcNAc modification of Elf-1 was significantly lower in IECs than in monocytes. Collectively, the results indicate that insufficient O-GlcNAc modification prevents Elf-1-mediated transcriptional repression and thereby upregulates Tollip gene expression in IECs.

  7. Association of germline genetic variants in RFC, IL15 and VDR genes with minimal residual disease in pediatric B-cell precursor ALL

    PubMed Central

    Dawidowska, Małgorzata; Kosmalska, Maria; Sędek, Łukasz; Szczepankiewicz, Aleksandra; Twardoch, Magdalena; Sonsala, Alicja; Szarzyńska-Zawadzka, Bronisława; Derwich, Katarzyna; Lejman, Monika; Pawelec, Katarzyna; Obitko-Płudowska, Agnieszka; Pawińska-Wąsikowska, Katarzyna; Kwiecińska, Kinga; Kołtan, Andrzej; Dyla, Agnieszka; Grzeszczak, Władysław; Kowalczyk, Jerzy R.; Szczepański, Tomasz; Ziętkiewicz, Ewa; Witt, Michał

    2016-01-01

    Minimal residual disease (MRD) enables reliable assessment of risk in acute lymphoblastic leukemia (ALL). However, little is known on association between MRD status and germline genetic variation. We examined 159 Caucasian (Slavic) patients with pediatric ALL, treated according to ALL-IC-BFM 2002/2009 protocols, in search for association between 23 germline polymorphisms and MRD status at day 15, day 33 and week 12, with adjustment for MRD-associated clinical covariates. Three variants were significantly associated with MRD: rs1544410 in VDR (MRD-day15); rs1051266 in RFC (MRD-day33, MRD-week12), independently and in an additive effect with rs10519613 in IL15 (MRD-day33). The risk alleles for MRD-positivity were: A allele of VDR (OR = 2.37, 95%CI = 1.07–5.21, P = 0.03, MRD-day15); A of RFC (OR = 1.93, 95%CI = 1.05–3.52, P = 0.03, MRD-day33 and MRD-week12, P < 0.01); A of IL15 (OR = 2.30, 95%CI = 1.02–5.18, P = 0.04, MRD-day33). The risk for MRD-day33-positive status was higher in patients with risk alleles in both RFC and IL15 loci than in patients with risk alleles in one locus or no risk alleles: 2 vs. 1 (OR = 3.94, 95% CI = 1.28–12.11, P = 0.024), 2 vs. 0 (OR = 6.75, 95% CI = 1.61–28.39, P = 0.012). Germline variation in genes related to pharmacokinetics/pharmacodynamics of anti-leukemic drugs and to anti-tumor immunity of the host is associated with MRD status and might help improve risk assessment in ALL. PMID:27427275

  8. Association of germline genetic variants in RFC, IL15 and VDR genes with minimal residual disease in pediatric B-cell precursor ALL.

    PubMed

    Dawidowska, Małgorzata; Kosmalska, Maria; Sędek, Łukasz; Szczepankiewicz, Aleksandra; Twardoch, Magdalena; Sonsala, Alicja; Szarzyńska-Zawadzka, Bronisława; Derwich, Katarzyna; Lejman, Monika; Pawelec, Katarzyna; Obitko-Płudowska, Agnieszka; Pawińska-Wąsikowska, Katarzyna; Kwiecińska, Kinga; Kołtan, Andrzej; Dyla, Agnieszka; Grzeszczak, Władysław; Kowalczyk, Jerzy R; Szczepański, Tomasz; Ziętkiewicz, Ewa; Witt, Michał

    2016-01-01

    Minimal residual disease (MRD) enables reliable assessment of risk in acute lymphoblastic leukemia (ALL). However, little is known on association between MRD status and germline genetic variation. We examined 159 Caucasian (Slavic) patients with pediatric ALL, treated according to ALL-IC-BFM 2002/2009 protocols, in search for association between 23 germline polymorphisms and MRD status at day 15, day 33 and week 12, with adjustment for MRD-associated clinical covariates. Three variants were significantly associated with MRD: rs1544410 in VDR (MRD-day15); rs1051266 in RFC (MRD-day33, MRD-week12), independently and in an additive effect with rs10519613 in IL15 (MRD-day33). The risk alleles for MRD-positivity were: A allele of VDR (OR = 2.37, 95%CI = 1.07-5.21, P = 0.03, MRD-day15); A of RFC (OR = 1.93, 95%CI = 1.05-3.52, P = 0.03, MRD-day33 and MRD-week12, P < 0.01); A of IL15 (OR = 2.30, 95%CI = 1.02-5.18, P = 0.04, MRD-day33). The risk for MRD-day33-positive status was higher in patients with risk alleles in both RFC and IL15 loci than in patients with risk alleles in one locus or no risk alleles: 2 vs. 1 (OR = 3.94, 95% CI = 1.28-12.11, P = 0.024), 2 vs. 0 (OR = 6.75, 95% CI = 1.61-28.39, P = 0.012). Germline variation in genes related to pharmacokinetics/pharmacodynamics of anti-leukemic drugs and to anti-tumor immunity of the host is associated with MRD status and might help improve risk assessment in ALL. PMID:27427275

  9. The translocation t(2;11)(p21;q23) without MLL gene rearrangement--a possible marker of good prognosis in myelodysplastic syndrome patients.

    PubMed

    Dvorak, Pavel; Lysak, Daniel; Vokurka, Samuel; Michalova, Kyra; Sarova, Iveta; Jonasova, Anna; Hruba, Martina; Rykovska, Anna; Subrt, Ivan

    2014-06-01

    The translocation t(2;11)(p21;q23) is associated with de novo myelodysplastic syndromes (MDS) and has an overall frequency of approximately 1%. The outcome of MDS patients with this translocation is not clear until now, because most of the clinical data addressing the t(2;11)(p21;q23) has been collected without investigating the status of the mixed lineage leukemia (MLL) gene. In this report, we present seven new patients with MDS diagnosis and the t(2;11)(p21;q23) in bone marrow cells; all of them without MLL gene rearrangement. They were found in two databases consisting of 1185 patients of two Czech institutions. These patients tended to be younger and showed a strong male predominance. A cytological and histological assessment of bone marrow at diagnosis revealed only mild MDS with marked dysplasia in megakaryopoiesis. Similar to other primary abnormalities in MDS (e.g. deletion of 11q), the t(2;11)(p21;q23) was frequently associated with deletion of 5q. Our results stress the common clinicopathological features of this entity and indicate that the t(2;11)(p21;q23) may be associated with a good prognosis for MDS patients (median survival 72 months).

  10. [Regulatory B cells in human autoimmune diseases].

    PubMed

    Miyagaki, Tomomitsu

    2015-01-01

    B cells have been generally considered to be positive regulators of immune responses because of their ability to produce antigen-specific antibodies and to activate T cells through antigen presentation. Impairment of B cell development and function may cause autoimmune diseases. Recently, specific B cell subsets that can negatively regulate immune responses have been described in mouse models of a wide variety of autoimmune diseases. The concept of those B cells, termed regulatory B cells, is now recognized as important in the murine immune system. Among several regulatory B cell subsets, IL-10-producing regulatory B cells are the most widely investigated. On the basis of discoveries from studies of such mice, human regulatory B cells that produce IL-10 in most cases are becoming an active area of research. There have been emerging data suggesting the importance of human regulatory B cells in various diseases. Revealing the immune regulation mechanisms of human regulatory B cells in human autoimmune diseases could lead to the development of novel B cell targeted therapies. This review highlights the current knowledge on regulatory B cells, mainly IL-10-producing regulatory B cells, in clinical research using human samples. PMID:26725860

  11. Translocation breakpoint at 7q31 associated with tics: further evidence for IMMP2L as a candidate gene for Tourette syndrome.

    PubMed

    Patel, Chirag; Cooper-Charles, Lisa; McMullan, Dominic J; Walker, Judith M; Davison, Val; Morton, Jenny

    2011-06-01

    Gilles de la Tourette syndrome is a complex neuropsychiatric disorder with a strong genetic basis. We identified a male patient with Tourette syndrome-like tics and an apparently balanced de novo translocation [46,XY,t(2;7)(p24.2;q31)]. Further analysis using array comparative genomic hybridisation (CGH) revealed a cryptic deletion at 7q31.1-7q31.2. Breakpoints disrupting this region have been reported in one isolated and one familial case of Tourette syndrome. In our case, IMMP2L, a gene coding for a human homologue of the yeast inner mitochondrial membrane peptidase subunit 2, was disrupted by the breakpoint on 7q31.1, with deletion of exons 1-3 of the gene. The IMMP2L gene has previously been proposed as a candidate gene for Tourette syndrome, and our case provides further evidence of its possible role in the pathogenesis. The deleted region (7q31.1-7q31.2) of 7.2 Mb of genomic DNA also encompasses numerous genes, including FOXP2, associated with verbal dyspraxia, and the CFTR gene.

  12. B cell homeostasis and plasma cell homing controlled by Krüppel-like factor 2.

    PubMed

    Winkelmann, Rebecca; Sandrock, Lena; Porstner, Martina; Roth, Edith; Mathews, Martina; Hobeika, Elias; Reth, Michael; Kahn, Mark L; Schuh, Wolfgang; Jäck, Hans-Martin

    2011-01-11

    Krüppel-like factor 2 (KLF2) controls T lymphocyte egress from lymphoid organs by regulating sphingosin-1 phosphate receptor 1 (S1Pr1). Here we show that this is not the case for B cells. Instead, KLF2 controls homeostasis of B cells in peripheral lymphatic organs and homing of plasma cells to the bone marrow, presumably by controlling the expression of β(7)-integrin. In mice with a B cell-specific deletion of KLF2, S1Pr1 expression on B cells was only slightly affected. Accordingly, all splenic B cell subsets including B1 cells were present, but their numbers were increased with a clear bias for marginal zone (MZ) B cells. In contrast, fewer peyers patches harboring fewer B cells were found, and fewer B1 cells in the peritoneal cavity as well as recirculating B cells in the bone marrow were detected. Upon thymus-dependent immunization, IgG titers were diminished, and antigen-specific plasma cells were absent in the bone marrow, although numbers of antigen-specific splenic plasmablasts were normal. KLF2 plays also a role in determining the identity of follicular B cells, as KLF2-deficient follicular B cells showed calcium responses similar to those of MZ B cells and failed to down-regulate MZ B cell signature genes, such as CD21 and CXCR7. PMID:21187409

  13. In Vivo Mitochondrial p53 Translocation Triggers a Rapid First Wave of Cell Death in Response to DNA Damage That Can Precede p53 Target Gene Activation

    PubMed Central

    Erster, Susan; Mihara, Motohiro; Kim, Roger H.; Petrenko, Oleksi; Moll, Ute M.

    2004-01-01

    p53 promotes apoptosis in response to death stimuli by transactivation of target genes and by transcription-independent mechanisms. We recently showed that wild-type p53 rapidly translocates to mitochondria in response to multiple death stimuli in cultured cells. Mitochondrial p53 physically interacts with antiapoptotic Bcl proteins, induces Bak oligomerization, permeabilizes mitochondrial membranes, and rapidly induces cytochrome c release. Here we characterize the mitochondrial p53 response in vivo. Mice were subjected to γ irradiation or intravenous etoposide administration, followed by cell fractionation and immunofluorescence studies of various organs. Mitochondrial p53 accumulation occurred in radiosensitive organs like thymus, spleen, testis, and brain but not in liver and kidney. Of note, mitochondrial p53 translocation was rapid (detectable at 30 min in thymus and spleen) and triggered an early wave of marked caspase 3 activation and apoptosis. This caspase 3-mediated apoptosis was entirely p53 dependent, as shown by p53 null mice, and preceded p53 target gene activation. The transcriptional p53 program had a longer lag phase than the rapid mitochondrial p53 program. In thymus, the earliest apoptotic target gene products PUMA, Noxa, and Bax appeared at 2, 4, and 8 h, respectively, while Bid, Killer/DR5, and p53DinP1 remained uninduced even after 20 h. Target gene induction then led to further increase in active caspase 3. Similar biphasic kinetics was seen in cultured human cells. Our results suggest that in sensitive organs mitochondrial p53 accumulation in vivo occurs soon after a death stimulus, triggering a rapid first wave of apoptosis that is transcription independent and may precede a second slower wave that is transcription dependent. PMID:15254240

  14. Adhesive interactions regulate transcriptional diversity in malignant B cells.

    PubMed

    Nadav-Dagan, Liat; Shay, Tal; Dezorella, Nili; Naparstek, Elizabeth; Domany, Eytan; Katz, Ben-Zion; Geiger, Benjamin

    2010-04-01

    The genetic profiling of B-cell malignancies is rapidly expanding, providing important information on the tumorigenic potential, response to treatment, and clinical outcome of these diseases. However, the relative contributions of inherent gene expression versus microenvironmental effects are poorly understood. The regulation of gene expression programs by means of adhesive interactions was studied here in ARH-77 human malignant B-cell variants, derived from the same cell line by selective adhesion to a fibronectin matrix. The populations included cells that adhere to fibronectin and are highly tumorigenic (designated "type A" cells) and cells that fail to adhere to fibronectin and fail to develop tumors in vivo ("type F" cells). To identify genes directly affected by cell adhesion to fibronectin, type A cells deprived of an adhesive substrate (designated "AF cells") were also examined. Bioinformatic analyses revealed a remarkable correlation between cell adhesion and both B-cell differentiation state and the expression of multiple myeloma (MM)-associated genes. The highly adherent type A cells expressed higher levels of NFkappaB-regulated genes, many of them associated with MM. Moreover, we found that the transcription of several MM-related proto-oncogenes is stimulated by adhesion to fibronectin. In contrast, type F cells, which display poor adhesive and tumorigenic properties, expressed genes associated with higher levels of B-cell differentiation. Our findings indicate that B-cell differentiation, as manifested by gene expression profiles, is attenuated by cell adhesion to fibronectin, leading to upregulation of specific genes known to be associated with the pathogenesis of MM.

  15. Multiple Curricula for B Cell Developmental Programming.

    PubMed

    Rothenberg, Ellen V

    2016-09-20

    B-1 B cells differ from conventional B-2 B cells functionally, but how these differences relate to the ontogeny of these lineages has been unclear. Two recent Immunity articles, Kristiansen et al. (2016) and Montecino-Rodriguez et al. (2016), now provide insight into the origins of B-1 and B-2 B cells, revealing a multi-layered developmental program and successive waves of B cell precursors.

  16. Multiple Curricula for B Cell Developmental Programming.

    PubMed

    Rothenberg, Ellen V

    2016-09-20

    B-1 B cells differ from conventional B-2 B cells functionally, but how these differences relate to the ontogeny of these lineages has been unclear. Two recent Immunity articles, Kristiansen et al. (2016) and Montecino-Rodriguez et al. (2016), now provide insight into the origins of B-1 and B-2 B cells, revealing a multi-layered developmental program and successive waves of B cell precursors. PMID:27653594

  17. Integrating understanding of epidemiology and genomics in B-cell non-Hodgkin lymphoma as a pathway to novel management strategies.

    PubMed

    Glass, Samantha; Phan, Anh; Williams, Jessica N; Flowers, Christopher R; Koff, Jean L

    2016-03-01

    Non-Hodgkin lymphomas include a biologically and clinically heterogeneous group of cancers distinguished by genetics, histology, and treatment outcomes. New discoveries regarding the genomic alterations and epidemiological exposures associated with these lymphomas have enhanced our understanding of factors that contribute to lymphomagenesis for specific subtypes. We explore the impact of normal B-cell biology engineered for recognizing a wide variety of antigens on the development of specific lymphoma subtypes, review lymphoma genetics, and examine the epidemiology of B-cell NHLs including recent investigations of risk factors for particular lymphoma subtypes based on large pooled analyses. Burkitt lymphoma, an aggressive form of B-cell NHL involving translocation of the MYC gene and an immunoglobulin gene has been associated with a history of eczema, hepatitis C, and occupation as a cleaner. Increased risk of diffuse large B-cell lymphoma has been associated with increased young adult body mass index, history of B-cell-activating autoimmune diseases, hepatitis C, and several single nucleotide variants involving the human leukocyte antigen (HLA) region of chromosome 6 and non-HLA loci near EXOC2, PVT1, MYC, and NCOA1. Tumor sequencing studies suggest that multiple pathways are involved in the development of DLBCL. Additional studies of epidemiological exposures, genome wide associations, and tumor sequencing in follicular, lymphoplasmacytic, marginal zone, and mantle cell lymphoma demonstrate overlapping areas of increased risk factors and unique factors for specific subtypes. Integrating these findings is important for constructing comprehensive models of NHL pathogenesis, which could yield novel targets for therapy and strategies for lymphoma prevention in certain populations. PMID:27115168

  18. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.

    PubMed

    Gomez, Eric J; Gerhardt, Karl; Judd, Justin; Tabor, Jeffrey J; Suh, Junghae

    2016-01-26

    Gene delivery vectors that are activated by external stimuli may allow improved control over the location and the degree of gene expression in target populations of cells. Light is an attractive stimulus because it does not cross-react with cellular signaling networks, has negligible toxicity, is noninvasive, and can be applied in space and time with unparalleled precision. We used the previously engineered red (R)/far-red (FR) light-switchable protein phytochrome B (PhyB) and its R light dependent interaction partner phytochrome interacting factor 6 (PIF6) from Arabidopsis thaliana to engineer an adeno-associated virus (AAV) platform whose gene delivery efficiency is controlled by light. Upon exposure to R light, AAV engineered to display PIF6 motifs on the capsid bind to PhyB tagged with a nuclear localization sequence (NLS), resulting in significantly increased translocation of viruses into the host cell nucleus and overall gene delivery efficiency. By modulating the ratio of R to FR light, the gene delivery efficiency can be tuned to as little as 35% or over 600% of the unengineered AAV. We also demonstrate spatial control of gene delivery using projected patterns of codelivered R and FR light. Overall, our successful use of light-switchable proteins in virus capsid engineering extends these important optogenetic tools into the adjacent realm of nucleic acid delivery and enables enhanced, tunable, and spatially controllable regulation of viral gene delivery. Our current light-triggered viral gene delivery prototype may be broadly useful for genetic manipulation of cells ex vivo or in vivo in transgenic model organisms, with the ultimate prospect of achieving dose- and site-specific gene expression profiles for either therapeutic (e.g., regenerative medicine) or fundamental discovery research efforts.

  19. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.

    PubMed

    Gomez, Eric J; Gerhardt, Karl; Judd, Justin; Tabor, Jeffrey J; Suh, Junghae

    2016-01-26

    Gene delivery vectors that are activated by external stimuli may allow improved control over the location and the degree of gene expression in target populations of cells. Light is an attractive stimulus because it does not cross-react with cellular signaling networks, has negligible toxicity, is noninvasive, and can be applied in space and time with unparalleled precision. We used the previously engineered red (R)/far-red (FR) light-switchable protein phytochrome B (PhyB) and its R light dependent interaction partner phytochrome interacting factor 6 (PIF6) from Arabidopsis thaliana to engineer an adeno-associated virus (AAV) platform whose gene delivery efficiency is controlled by light. Upon exposure to R light, AAV engineered to display PIF6 motifs on the capsid bind to PhyB tagged with a nuclear localization sequence (NLS), resulting in significantly increased translocation of viruses into the host cell nucleus and overall gene delivery efficiency. By modulating the ratio of R to FR light, the gene delivery efficiency can be tuned to as little as 35% or over 600% of the unengineered AAV. We also demonstrate spatial control of gene delivery using projected patterns of codelivered R and FR light. Overall, our successful use of light-switchable proteins in virus capsid engineering extends these important optogenetic tools into the adjacent realm of nucleic acid delivery and enables enhanced, tunable, and spatially controllable regulation of viral gene delivery. Our current light-triggered viral gene delivery prototype may be broadly useful for genetic manipulation of cells ex vivo or in vivo in transgenic model organisms, with the ultimate prospect of achieving dose- and site-specific gene expression profiles for either therapeutic (e.g., regenerative medicine) or fundamental discovery research efforts. PMID:26618393

  20. The complete mitochondrial genome sequence of Cynoglossus abbreviatus (Pleuronectiformes: Cynoglossidae) with control region translocation and tRNA-Gln gene inversion.

    PubMed

    Shi, Wei; Gong, Li; Kong, Xiao-Yu

    2016-05-01

    Cynoglossus abbreviatus (Cynoglossidae, Soleoidei) is characterized by a bilaterally asymmetrical with both eyes on the left side. In this study, the complete mitogenome of this tongue sole has been reported for the first time. The gene order in C. abbreviatus mitogenome possesses a novel rearrangement like other tonguefish. The tRNA-Gln gene moves from the light strand to the heavy strand, accompanied by tRNA-Ile gene shuffling, leaving a large non-coding region (88 bp) between these two tRNAs. Additionally, the control region translocates to the place between ND1 and tRNA-Gln genes. The total length is 16,417 bp, with 30.9%, 29.5%, 24.9% and 14.7% for A, T, C and G, respectively (60.4% for AT content). These molecular data will provide useful information about the mechanism of gene reorganization in Cynoglossidae mitogenome and further phylogenetic study on Pleuronectiformes.

  1. The Rice COLEOPTILE PHOTOTROPISM1 Gene Encoding an Ortholog of Arabidopsis NPH3 Is Required for Phototropism of Coleoptiles and Lateral Translocation of AuxinW⃞

    PubMed Central

    Haga, Ken; Takano, Makoto; Neumann, Ralf; Iino, Moritoshi

    2005-01-01

    We isolated a mutant, named coleoptile phototropism1 (cpt1), from γ-ray–mutagenized japonica-type rice (Oryza sativa). This mutant showed no coleoptile phototropism and severely reduced root phototropism after continuous stimulation. A map-based cloning strategy and transgenic complementation test were applied to demonstrate that a NPH3-like gene deleted in the mutant corresponds to CPT1. Phylogenetic analysis of putative CPT1 homologs of rice and related proteins indicated that CPT1 has an orthologous relationship with Arabidopsis thaliana NPH3. These results, along with those for Arabidopsis, demonstrate that NPH3/CPT1 is a key signal transduction component of higher plant phototropism. In an extended study with the cpt1 mutant, it was found that phototropic differential growth is accompanied by a CPT1-independent inhibition of net growth. Kinetic investigation further indicated that a small phototropism occurs in cpt1 coleoptiles. This response, induced only transiently, was thought to be caused by the CPT1-independent growth inhibition. The 3H-indole-3-acetic acid applied to the coleoptile tip was asymmetrically distributed between the two sides of phototropically responding coleoptiles. However, no asymmetry was induced in cpt1 coleoptiles, indicating that lateral translocation of auxin occurs downstream of CPT1. It is concluded that the CPT1-dependent major phototropism of coleoptiles is achieved by lateral auxin translocation and subsequent growth redistribution. PMID:15598797

  2. Adenylyl cyclase A expression is tip-specific in Dictyostelium slugs and directs StatA nuclear translocation and CudA gene expression.

    PubMed

    Verkerke-van Wijk, I; Fukuzawa, M; Devreotes, P N; Schaap, P

    2001-06-01

    cAMP oscillations, generated by adenylyl cyclase A (ACA), coordinate cell aggregation in Dictyostelium and have also been implicated in organizer function during multicellular development. We used a gene fusion of the ACA promoter with a labile lacZ derivative to study the expression pattern of ACA. During aggregation, most cells expressed ACA, but thereafter expression was lost in all cells except those of the anterior tip. Before aggregation, ACA transcription was strongly upregulated by nanomolar cAMP pulses. Postaggregative transcription was sustained by nanomolar cAMP pulses, but downregulated by a continuous micromolar cAMP stimulus and by the stalk-cell-inducing factor DIF. Earlier work showed that the transcription factor StatA displays tip-specific nuclear translocation and directs tip-specific expression of the nuclear protein CudA, which is essential for culmination. Both StatA and CudA were present in nuclei throughout the entire slug in an aca null mutant that expresses ACA from the constitutive actin15 promoter. This suggests that the tip-specific expression of ACA directs tip-specific nuclear translocation of StatA and tip-specific expression of CudA.

  3. Interallelic class switch recombination contributes significantly to class switching in mouse B cells.

    PubMed

    Reynaud, Stéphane; Delpy, Laurent; Fleury, Laurence; Dougier, Hei-Lanne; Sirac, Christophe; Cogné, Michel

    2005-05-15

    Except for the expression of IgM and IgD, DNA recombination is constantly needed for the expression of other Ig classes and subclasses. The predominant path of class switch recombination (CSR) is intrachromosomal, and the looping-out and deletion model has been abundantly documented. However, switch regions also occasionally constitute convenient substrates for interchromosomal recombination, since it is noticeably the case in a number of chromosomal translocations causing oncogene deregulation in the course of lymphoma and myeloma. Although asymmetric accessibility of Ig alleles should theoretically limit its occurrence, interallelic CSR was shown to occur at low levels during IgA switching in rabbit, where the definition of allotypes within both V and C regions helped identify interchromosomally derived Ig. Thus, we wished to evaluate precisely interallelic CSR frequency in mouse B cells, by using a system in which only one allele (of b allotype) could express a functional VDJ region, whereas only interallelic CSR could restore expression of an excluded (a allotype) allele. In our study, we show that interchromosomal recombination of V(H) and Cgamma or Calpha occurs in vivo in B cells at a frequency that makes a significant contribution to physiological class switching: trans-association of V(H) and C(H) genes accounted for 7% of all alpha mRNA, and this frequency was about twice higher for the gamma3 transcripts, despite the much shorter distance between the J(H) region and the Cgamma3 gene, thus confirming that this phenomenon corresponded to site-specific switching and not to random recombination between long homologous loci. PMID:15879114

  4. Characterization of memory B cells from thymus and its impact for DLBCL classification.

    PubMed

    Bergkvist, Kim Steve; Nørgaard, Martin Agge; Bøgsted, Martin; Schmitz, Alexander; Nyegaard, Mette; Gaihede, Michael; Bæch, John; Grønholdt, Marie-Louise; Jensen, Frank Svendsen; Johansen, Preben; Urup, Thomas; El-Galaly, Tarec C; Madsen, Jakob; Bødker, Julie Støve; Dybkær, Karen; Johnsen, Hans Erik

    2016-10-01

    The rare memory B cells in thymus (Thy) are considered the cells of origin for primary mediastinal large B-cell lymphoma. The objectives of the present study were to characterize the normal memory B-cell compartment in Thy and to support its association with primary mediastinal B-cell lymphoma. Seven paired human tissue samples from Thy and sternum bone marrow (BM) were harvested during cardiac surgery. B-cell subsets were phenotyped by Euroflow standard and fluorescence-activated cell sorting for microarray analysis on the Human Exon 1.0 ST Arrays platform. Differentially expressed genes between Thy and BM memory B cells were identified and correlated with the molecular subclasses of diffuse large B-cell lymphoma. Within Thy, 4% (median; range 2%-14%) of the CD45(+) hematopoietic cells were CD19(+) B cells, with a major fraction being CD27(+)/CD38(-) memory B cells (median 80%, range 76%-93%). The BM contained 14% (median; range 3%-27%), of which only a minor fraction (median 5%, range 2%-10%) were memory B cells. Global gene expression analysis of the memory B-cell subsets from the two compartments identified 133 genes upregulated in Thy, including AICDA, REL, STAT1, TNF family, SLAMF1, CD80, and CD86. In addition, exons 4 and 5 in the 3' end of AICDA were more highly expressed in Thy than in BM. The Thy memory B-cell gene profile was overexpressed in primary mediastinal B-cell lymphoma compared with other diffuse large B-cell lymphoma subclasses. The present study describes a Thy memory B-cell subset and its gene profile correlated with primary mediastinal B-cell lymphomas, suggesting origin from Thy memory B cells.

  5. Memory B cells in mouse models.

    PubMed

    Bergmann, B; Grimsholm, O; Thorarinsdottir, K; Ren, W; Jirholt, P; Gjertsson, I; Mårtensson, I-L

    2013-08-01

    One of the principles behind vaccination, as shown by Edward Jenner in 1796, and host protection is immunological memory, and one of the cells central to this is the antigen-experienced memory B cell that responds rapidly upon re-exposure to the initiating antigen. Classically, memory B cells have been defined as progenies of germinal centre (GC) B cells expressing isotype-switched and substantially mutated B cell receptors (BCRs), that is, membrane-bound antibodies. However, it has become apparent over the last decade that this is not the only pathway to B cell memory. Here, we will discuss memory B cells in mice, as defined by (1) cell surface markers; (2) multiple layers; (3) formation in a T cell-dependent and either GC-dependent or GC-independent manner; (4) formation in a T cell-independent fashion. Lastly, we will touch upon memory B cells in; (5) mouse models of autoimmune diseases. PMID:23679222

  6. B Cell Autonomous TLR Signaling and Autoimmunity

    PubMed Central

    Meyer-Bahlburg, Almut; Rawlings, David J

    2009-01-01

    B cells play a central role in the pathogenesis of multiple autoimmune diseases and the recognition of importance of B cells in these disorders has grown dramatically in association with the remarkable success of B-cell depletion as a treatment for autoimmunity. The precise mechanisms that promote alterations in B cell tolerance remain incompletely defined. There is increasing evidence, however, that TLRs play a major role in these events. Stimulation of B cells via the TLR pathway not only leads to an increase in antibody production but also promotes additional changes including cytokine production and upregulation of activation markers increasing the effectiveness of B cells as APCs. Understanding the role of TLRs in systemic autoimmunity will not only provide insight into the disease pathogenesis but may also lead to the development of novel therapies. This article gives an overview of TLR signaling in B cells and the possible involvement of such signals in autoimmune diseases. PMID:18295736

  7. Acute megakaryoblastic leukemia with a four-way variant translocation originating the RBM15-MKL1 fusion gene.

    PubMed

    Torres, Lurdes; Lisboa, Susana; Vieira, Joana; Cerveira, Nuno; Santos, Joana; Pinheiro, Manuela; Correia, Cecília; Bizarro, Susana; Almeida, Marta; Teixeira, Manuel R

    2011-05-01

    Acute megakaryoblastic leukemia (AMKL) with t(1;22)(p13;q13) is a subset of acute myeloid leukemia (AML) representing <1% of all cases and about 70% of pediatric AMKL in the first year of life. We present a case of a 7-month-old female in whom the bone marrow karyotype showed the derivative chromosome der(22)t(1;22)(p13;q13). The RBM15-MKL1 fusion transcript was detected by RT-PCR and confirmed by sequencing analyses. FISH analyses revealed the presence of the four-way translocation t(1;22;17;18)(p13;q13;q22;q12). PMID:21370421

  8. Insulin-like Growth Factor-I Receptor (IGF-IR) Translocates to Nucleus and Autoregulates IGF-IR Gene Expression in Breast Cancer Cells

    PubMed Central

    Sarfstein, Rive; Pasmanik-Chor, Metsada; Yeheskel, Adva; Edry, Liat; Shomron, Noam; Warman, Naama; Wertheimer, Efrat; Maor, Sharon; Shochat, Lea; Werner, Haim

    2012-01-01

    The insulin-like growth factor (IGF) system plays an important role in mammary gland biology as well as in the etiology of breast cancer. The IGF-I receptor (IGF-IR), which mediates the biological actions of IGF-I and IGF-II, has emerged in recent years as a promising therapeutic target. The IGF and estrogen signaling pathways act in a synergistic manner in breast epithelial cells. The present study was aimed at investigating 1) the putative translocation of IGF-IR and the related insulin receptor (IR) to the nucleus in breast cancer cells, 2) the impact of IGF-IR and IR levels on IGF-IR biosynthesis in estrogen receptor (ER)-positive and ER-depleted breast cancer cells, and 3) the potential transcription factor role of IGF-IR in the specific context of IGF-IR gene regulation. We describe here a novel mechanism of autoregulation of IGF-IR gene expression by cellular IGF-IR, which is seemingly dependent on ER status. Regulation of the IGF-IR gene by IGF-IR protein is mediated at the level of transcription, as demonstrated by 1) binding assays (DNA affinity chromatography and ChIP) showing specific IGF-IR binding to IGF-IR promoter DNA and 2) transient transfection assays showing transactivation of the IGF-IR promoter by exogenous IGF-IR. The IR is also capable of translocating to the nucleus and binding the IGF-IR promoter in ER-depleted, but not in ER-positive, cells. However, transcription factors IGF-IR and IR display diametrically opposite activities in the context of IGF-IR gene regulation. Thus, whereas IGF-IR stimulated IGF-IR gene expression, IR inhibited IGF-IR promoter activity. In summary, we have identified a novel mechanism of IGF-IR gene autoregulation in breast cancer cells. The clinical implications of these findings and, in particular, the impact of IGF-IR/IR nuclear localization on targeted therapy require further investigation. PMID:22128190

  9. Microbes and B cell development.

    PubMed

    Wesemann, Duane R

    2015-01-01

    Animals and many of their chronic microbial inhabitants form relationships of symbiotic mutualism, which occurs when coexisting life-forms derive mutual benefit from stable associations. While microorganisms receive a secure habitat and constant food source from vertebrate hosts, they are required for optimal immune system development and occupy niches otherwise abused by pathogens. Microbes have also been shown to provide vertebrate hosts with metabolic capabilities that enhance energy and nutrient uptake from the diet. The immune system plays a central role in the establishment and maintenance of host-microbe homeostasis, and B lineage cells play a key role in this regulation. Here, I reviewed the structure and function of the microbiota and the known mechanisms of how nonpathogenic microbes influence B cell biology and immunoglobulin repertoire development early in life. I also discuss what is known about how B lineage cells contribute to the process of shaping the composition of commensal/mutualistic microbe membership.

  10. Hematopoietic stem cell transplantation for pediatric mature B-cell acute lymphoblastic leukemia with non-L3 morphology and MLL-AF9 gene fusion: three case reports and review of the literature.

    PubMed

    Sarashina, Takeo; Iwabuchi, Haruko; Miyagawa, Naoyuki; Sekimizu, Masahiro; Yokosuka, Tomoko; Fukuda, Kunio; Hamanoue, Satoshi; Iwasaki, Fuminori; Goto, Shoko; Shiomi, Masae; Imai, Chihaya; Goto, Hiroaki

    2016-07-01

    Mature B-cell acute lymphoblastic leukemia (B-ALL) is typically associated with French-American-British (FAB)-L3 morphology and MYC gene rearrangement. However, rare cases of mature B-ALL with non-L3 morphology and MLL-AF9 fusion have been reported, and such cases are characterized by a rapid and aggressive clinical course. We here report three such cases of pediatric mature B-ALL in female patients respectively aged 15 months, 4 years, and 4 months. Bone marrow smears at diagnosis showed FAB-L1 morphology in all patients. Immunophenotypically, they were positive for cluster of differentiation (CD)10, CD19, CD20 (or CD22), Human Leukocyte Antigen-DR, and surface immunoglobulin λ. No evidence of MYC rearrangement was detected in any of the cases by fluorescent in situ hybridization (FISH) analysis. However, MLL rearrangement was detected by FISH, and MLL-AF9 fusion was confirmed by reverse transcriptase-polymerase chain reaction. All patients achieved complete remission after conventional chemotherapy and subsequently underwent hematopoietic stem cell transplantation as high-risk ALL; patient 3 for infantile ALL with MLL rearrangement and the others for ALL with MLL rearrangement and hyperleukocytosis (white blood cell count at diagnosis >50 × 10(9)/L). At the latest follow-up for each case (12-98 months post-transplantation), complete remission was maintained. Moreover, we discuss the clinical, genetic, and immunophenotypic features of this rare disease. PMID:27084248

  11. Early B-cell Factor 1 Regulates the Expansion of B-cell Progenitors in a Dose-dependent Manner*

    PubMed Central

    Åhsberg, Josefine; Ungerbäck, Jonas; Strid, Tobias; Welinder, Eva; Stjernberg, Jenny; Larsson, Malin; Qian, Hong; Sigvardsson, Mikael

    2013-01-01

    Transcription factor doses are of importance for normal and malignant B-lymphocyte development; however, the understanding of underlying mechanisms and functional consequences of reduced transcription factor levels is limited. We have analyzed progenitor and B-lineage compartments in mice carrying heterozygote mutations in the E2a, Ebf1, or Pax5 gene. Although lymphoid progenitors from Ebf1 or Pax5 heterozygote mice were specified and lineage-restricted in a manner comparable with Wt progenitors, this process was severely impaired in E2a heterozygote mutant mice. This defect was not significantly enhanced upon combined deletion of E2a with Ebf1 or Pax5. Analysis of the pre-B-cell compartment in Ebf1 heterozygote mice revealed a reduction in cell numbers. These cells expressed Pax5 and other B-lineage-associated genes, and global gene expression analysis suggested that the reduction of the pre-B-cell compartment was a result of impaired pre-B-cell expansion. This idea was supported by a reduction in IL2Rα-expressing late pre-B-cells as well as by cell cycle analysis and by the finding that the complexity of the VDJ rearrangement patterns was comparable in Wt and Ebf1+/− pre-B-cells, although the number of progenitors was reduced. Heterozygote deletion of Ebf1 resulted in impaired response to IL7 in vitro and reduced expression levels of pre-BCR on the cell surface, providing possible explanations for the observed stage-specific reduction in cellular expansion. Thus, transcription factor doses are critical for specification as well as expansion of B-lymphoid progenitors, providing increased insight into the molecular regulation of B-cell development. PMID:24078629

  12. FOXP1 potentiates Wnt/β-catenin signaling in diffuse large B cell lymphoma.

    PubMed

    Walker, Matthew P; Stopford, Charles M; Cederlund, Maria; Fang, Fang; Jahn, Christopher; Rabinowitz, Alex D; Goldfarb, Dennis; Graham, David M; Yan, Feng; Deal, Allison M; Fedoriw, Yuri; Richards, Kristy L; Davis, Ian J; Weidinger, Gilbert; Damania, Blossom; Major, Michael B

    2015-02-03

    The transcription factor FOXP1 (forkhead box protein P1) is a master regulator of stem and progenitor cell biology. In diffuse large B cell lymphoma (DLBCL), copy number amplifications and chromosomal translocations result in overexpression of FOXP1. Increased abundance of FOXP1 in DLBCL is a predictor of poor prognosis and resistance to therapy. We developed a genome-wide, mass spectrometry-coupled, gain-of-function genetic screen, which revealed that FOXP1 potentiates β-catenin-dependent, Wnt-dependent gene expression. Gain- and loss-of-function studies in cell models and zebrafish confirmed that FOXP1 was a general and conserved enhancer of Wnt signaling. In a Wnt-dependent fashion, FOXP1 formed a complex with β-catenin, TCF7L2 (transcription factor 7-like 2), and the acetyltransferase CBP [CREB (adenosine 3',5'-monophosphate response element-binding protein)-binding protein], and this complex bound the promoters of Wnt target genes. FOXP1 promoted the acetylation of β-catenin by CBP, and acetylation was required for FOXP1-mediated potentiation of β-catenin-dependent transcription. In DLBCL, we found that FOXP1 promoted sensitivity to Wnt pathway inhibitors, and knockdown of FOXP1 or blocking β-catenin transcriptional activity slowed xenograft tumor growth. These data connect excessive FOXP1 with β-catenin-dependent signal transduction and provide a molecular rationale for Wnt-directed therapy in DLBCL.

  13. FOXP1 Potentiates Wnt/β-catenin Signaling in Diffuse Large B-cell Lymphoma

    PubMed Central

    Walker, Matthew P.; Stopford, Charles M.; Cederlund, Maria; Fang, Fang; Jahn, Christopher; Rabinowitz, Alex D.; Goldfarb, Dennis; Graham, David M.; Yan, Feng; Deal, Allison M.; Fedoriw, Yuri; Richards, Kristy L.; Davis, Ian J.; Weidinger, Gilbert; Damania, Blossom; Major, Michael B.

    2015-01-01

    The transcription factor FOXP1 is a master regulator of stem and progenitor cell biology. In diffuse large B-cell lymphoma (DLBCL), copy number amplifications and chromosomal translocations result in overexpression of FOXP1. Increased FOXP1 protein abundance in DLBCL predicts poor prognosis and resistance to therapy. To connect gene overexpression with phenotype, we developed a genome-wide mass spectrometry-coupled gain-of-function genetic screen, revealing that FOXP1 potentiates β-catenin-dependent Wnt signal transduction. Gain-of-function and loss-of-function studies in cell models and zebrafish confirmed that FOXP1 was a general and conserved co-activator of Wnt signaling. In a Wnt-dependent fashion, FOXP1 co-complexed with β-catenin, TCF7L2, and the acetyltransferase CBP, and bound the promoters of Wnt target genes. FOXP1 promoted the acetylation of β-catenin by CBP, and acetylation was required for FOXP1-potentiation of β-catenin-dependent transcription. In DLBCL, we found that FOXP1 promoted sensitivity to Wnt pathway inhibitors and knockdown of FOXP1 or Wnt signaling slowed xenograft tumor growth. These data connect FOXP1 overexpression with β-catenin-dependent signal transduction, and provide a new molecular rationale for Wnt-directed therapy in DLBCL. PMID:25650440

  14. Molecular characterization of primary mediastinal B cell lymphoma.

    PubMed

    Tsang, P; Cesarman, E; Chadburn, A; Liu, Y F; Knowles, D M

    1996-06-01

    Primary mediastinal B cell lymphoma (PMBL) is a diffuse large B cell lymphoma (DLCL) postulated to arise from noncirculating thymic B lymphocytes. Because of its distinctive clinical and morphological features and putative unique cellular origin, PMBL is generally considered a distinct clinicopathological entity. Little is known, however, about the molecular characteristics of PMBL. Therefore, we analyzed 16 PMBLs for molecular alterations involving the bcl-1, bcl-2, bcl-6, c-myc, H-ras, K-ras, N-ras, and p53 genes and for Epstein-Barr virus infection, which are commonly involved in lymphoid neoplasia. Employing a combination of Southern blotting and/or polymerase chain reaction and single-strand conformation polymorphism assays, we detected genetic alterations in 7 of the 16 (44%) PMBLs. Whereas the bcl-6 gene is rearranged in up to 45% of DLCLs, rearrangement of the bcl-6 gene was detected in only 1 of these 16 (6%) PMBLS. Point mutations of the 5' noncoding region of the c-myc gene were demonstrated in 3 other cases (19%), although c-myc gene rearrangements were not seen by Southern blotting. Missense point mutations of the p53 gene were identified in 3 additional PMBLs (19%). Alterations of the bcl-1, bcl-2, or ras genes and evidence of Epstein-Barr virus infection were not observed. In conclusion, a variety of molecular lesions occur in PMBLs and may be involved in their pathogenesis. This molecular genetic pattern bears little resemblance to that known for other B cell malignancies, including DLCL. In particular, the infrequent occurrence of bcl-6 gene rearrangement in PMBLs distinguishes them from other DLCLs of B cell origin, suggesting that PMBLs do not represent a distinct subtype of DLCL. PMID:8669486

  15. Molecular characterization of primary mediastinal B cell lymphoma.

    PubMed Central

    Tsang, P.; Cesarman, E.; Chadburn, A.; Liu, Y. F.; Knowles, D. M.

    1996-01-01

    Primary mediastinal B cell lymphoma (PMBL) is a diffuse large B cell lymphoma (DLCL) postulated to arise from noncirculating thymic B lymphocytes. Because of its distinctive clinical and morphological features and putative unique cellular origin, PMBL is generally considered a distinct clinicopathological entity. Little is known, however, about the molecular characteristics of PMBL. Therefore, we analyzed 16 PMBLs for molecular alterations involving the bcl-1, bcl-2, bcl-6, c-myc, H-ras, K-ras, N-ras, and p53 genes and for Epstein-Barr virus infection, which are commonly involved in lymphoid neoplasia. Employing a combination of Southern blotting and/or polymerase chain reaction and single-strand conformation polymorphism assays, we detected genetic alterations in 7 of the 16 (44%) PMBLs. Whereas the bcl-6 gene is rearranged in up to 45% of DLCLs, rearrangement of the bcl-6 gene was detected in only 1 of these 16 (6%) PMBLS. Point mutations of the 5' noncoding region of the c-myc gene were demonstrated in 3 other cases (19%), although c-myc gene rearrangements were not seen by Southern blotting. Missense point mutations of the p53 gene were identified in 3 additional PMBLs (19%). Alterations of the bcl-1, bcl-2, or ras genes and evidence of Epstein-Barr virus infection were not observed. In conclusion, a variety of molecular lesions occur in PMBLs and may be involved in their pathogenesis. This molecular genetic pattern bears little resemblance to that known for other B cell malignancies, including DLCL. In particular, the infrequent occurrence of bcl-6 gene rearrangement in PMBLs distinguishes them from other DLCLs of B cell origin, suggesting that PMBLs do not represent a distinct subtype of DLCL. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8669486

  16. Long noncoding RNAs in B-cell development and activation

    PubMed Central

    Brazão, Tiago F.; Johnson, Jethro S.; Müller, Jennifer; Heger, Andreas; Ponting, Chris P.

    2016-01-01

    Long noncoding RNAs (lncRNAs) are potentially important regulators of cell differentiation and development, but little is known about their roles in B lymphocytes. Using RNA-seq and de novo transcript assembly, we identified 4516 lncRNAs expressed in 11 stages of B-cell development and activation. Most of these lncRNAs have not been previously detected, even in the closely related T-cell lineage. Comparison with lncRNAs previously described in human B cells identified 185 mouse lncRNAs that have human orthologs. Using chromatin immunoprecipitation-seq, we classified 20% of the lncRNAs as either enhancer-associated (eRNA) or promoter-associated RNAs. We identified 126 eRNAs whose expression closely correlated with the nearest coding gene, thereby indicating the likely location of numerous enhancers active in the B-cell lineage. Furthermore, using this catalog of newly discovered lncRNAs, we show that PAX5, a transcription factor required to specify the B-cell lineage, bound to and regulated the expression of 109 lncRNAs in pro-B and mature B cells and 184 lncRNAs in acute lymphoblastic leukemia. PMID:27381906

  17. Impairment of Mature B Cell Maintenance upon Combined Deletion of the Alternative NF-κB Transcription Factors RELB and NF-κB2 in B Cells.

    PubMed

    De Silva, Nilushi S; Silva, Kathryn; Anderson, Michael M; Bhagat, Govind; Klein, Ulf

    2016-03-15

    BAFF is critical for the survival and maturation of mature B cells. BAFF, via BAFFR, activates multiple signaling pathways in B cells, including the alternative NF-κB pathway. The transcription factors RELB and NF-κB2 (p100/p52) are the downstream mediators of the alternative pathway; however, the B cell-intrinsic functions of these NF-κB subunits have not been studied in vivo using conditional alleles, either individually or in combination. We in this study report that B cell-specific deletion of relb led to only a slight decrease in the fraction of mature splenic B cells, whereas deletion of nfkb2 caused a marked reduction. This phenotype was further exacerbated upon combined deletion of relb and nfkb2 and most dramatically affected the maintenance of marginal zone B cells. BAFF stimulation, in contrast to CD40 activation, was unable to rescue relb/nfkb2-deleted B cells in vitro. RNA-sequencing analysis of BAFF-stimulated nfkb2-deleted versus normal B cells suggests that the alternative NF-κB pathway, in addition to its critical role in BAFF-mediated cell survival, may control the expression of genes involved in the positioning of B cells within the lymphoid microenvironment and in the establishment of T cell-B cell interactions. Thus, by ablating the downstream transcription factors of the alternative NF-κB pathway specifically in B cells, we identify in this study a critical role for the combined activity of the RELB and NF-κB2 subunits in B cell homeostasis that cannot be compensated for by the canonical NF-κB pathway under physiological conditions.

  18. B-Cell Dysregulation in Crohn's Disease Is Partially Restored with Infliximab Therapy

    PubMed Central

    Timmermans, Wilhelmina M. C.; van Laar, Jan A. M.; van der Houwen, Tim B.; Kamphuis, Lieke S. J.; Bartol, Sophinus J. W.; Lam, King H.; Ouwendijk, Rob J.; Sparrow, Miles P.; Gibson, Peter R.; van Hagen, P. Martin

    2016-01-01

    Background B-cell depletion can improve a variety of chronic inflammatory diseases, but does not appear beneficial for patients with Crohn’s disease. Objective To elucidate the involvement of B cells in Crohn’s disease, we here performed an ‘in depth’ analysis of intestinal and blood B-cells in this chronic inflammatory disease. Methods Patients with Crohn’s disease were recruited to study B-cell infiltrates in intestinal biopsies (n = 5), serum immunoglobulin levels and the phenotype and molecular characteristics of blood B-cell subsets (n = 21). The effects of infliximab treatment were studied in 9 patients. Results Granulomatous tissue showed infiltrates of B lymphocytes rather than Ig-secreting plasma cells. Circulating transitional B cells and CD21low B cells were elevated. IgM memory B cells were reduced and natural effector cells showed decreased replication histories and somatic hypermutation (SHM) levels. In contrast, IgG and IgA memory B cells were normally present and their Ig gene transcripts carried increased SHM levels. The numbers of transitional and natural effector cells were normal in patients who responded clinically well to infliximab. Conclusions B cells in patients with Crohn’s disease showed signs of chronic stimulation with localization to granulomatous tissue and increased molecular maturation of IgA and IgG. Therapy with TNFα-blockers restored the defect in IgM memory B-cell generation and normalized transitional B-cell levels, making these subsets candidate markers for treatment monitoring. Together, these results suggest a chronic, aberrant B-cell response in patients with Crohn’s disease, which could be targeted with new therapeutics that specifically regulate B-cell function. PMID:27468085

  19. DHA down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes by attenuating CAR translocation

    SciTech Connect

    Li, C.-C.; Lii, C.-K.; Liu, K.-L.; Yang, J.-J.; Chen, H.-W.

    2007-12-15

    The constitutive androstane receptor (CAR) plays an important role in regulating the expression of detoxifying enzymes, including cytochrome P450 2B (CYP 2B). Phenobarbital (PB) induction of human CYP 2B6 and mouse CYP 2b10 has been shown to be mediated by CAR. Our previous study showed that PB-induced CYP 2B1 expression in rat primary hepatocytes is down-regulated by both n-6 and n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA); however, the mechanism for this down-regulation by DHA was previously unknown. The objective of the present study was to determine whether change in CAR translocation is involved in the down-regulation by n-6 and n-3 PUFAs of PB-induced CYP 2B1 expression in rat primary hepatocytes. We used 100 {mu}M arachidonic acid, linoleic acid, eicosapentaenoic acid, and DHA to test this hypothesis. PB triggered the translocation of CAR from the cytosol into the nucleus in a dose-dependent and time-dependent manner in our hepatocyte system, and the CAR distribution in rat primary hepatocytes was significantly affected by DHA. DHA treatment decreased PB-inducible accumulation of CAR in the nuclear fraction and increased it in the cytosolic fraction in a dose-dependent manner. The down-regulation of CYP 2B1 expression by DHA occurred in a dose-dependent manner, and a similar pattern was found for the nuclear accumulation of CAR. The results of immunoprecipitation showed a CAR/RXR heterodimer bound to nuclear receptor binding site 1 (NR-1) of the PB-responsive enhancer module (PBREM) of the CYP 2B1gene. The EMSA results showed that PB-induced CAR binding to NR-1 was attenuated by DHA. Taken together, these results suggest that attenuation of CAR translocation and decreased subsequent binding to NR-1 are involved in DHA's down-regulation of PB-induced CYP 2B1 expression.

  20. B-Cell Hematologic Malignancy Vaccination Registry

    ClinicalTrials.gov

    2015-09-15

    Monoclonal Gammopathy of Undetermined Significance; Multiple Myeloma; Waldenstrom Macroglobulinemia; Lymphocytosis; Lymphoma, Non-Hodgkin; B-Cell Chronic Lymphocytic Leukemia; Hematological Malignancies

  1. Extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue arising in the lateral ventricle.

    PubMed

    Kelley, Todd W; Prayson, Richard A; Barnett, Gene H; Stevens, Glen H J; Cook, James R; Hsi, Eric D

    2005-10-01

    Extranodal marginal zone B-cell lymphomas of mucosa-associated lymphoid tissue (MALT) lymphomas are a well-described type of low-grade B-cell non-Hodgkin lymphoma. They typically arise adjacent to mucosal surfaces in the gastrointestinal tract, lung and conjunctiva, and, less frequently, in the skin, salivary gland and thyroid gland. Unusual locations, such as the genitourinary tract, thymus and meninges, have also been reported. We recently encountered a case of an intracranial MALT lymphoma in a 53-year-old man who presented with persistent headaches and a seizure. The lesion developed as a mass within the lateral ventricle, appeared to be arising from the choroid plexus, and was not associated with meninges. Histologically, there was a vaguely nodular, dense lymphoid infiltrate with occasional benign follicles colonized by marginal zone lymphoma, suggesting derivation from a focus of prior inflammation. Translocations involving the MALT1 gene were not identified but karyotypic evaluation highlighted a complex cytogenetic profile with many chromosomal abnormalities. This rare case provides insight into the pathophysiology of MALT lymphomas.

  2. IL-6 contributes to an immune tolerance checkpoint in post germinal center B cells.

    PubMed

    Yan, Yi; Wang, Ying-Hua; Diamond, Betty

    2012-02-01

    The generation of a B cell repertoire involves producing and subsequently purging autoreactive B cells. Receptor editing, clonal deletion and anergy are key mechanisms of central B cell tolerance. Somatic mutation of antigen-activated B cells within the germinal center produces a second wave of autoreactivity; but the regulatory mechanisms that operate at this phase of B cell activation are poorly understood. We recently identified a post germinal center tolerance checkpoint, where receptor editing is re-induced to extinguish autoreactivity that is generated by somatic hypermutation. Re-induction of the recombinase genes RAG1 and RAG2 in antigen-activated B cells requires antigen to engage the B cell receptor and IL-7 to signal through the IL-7 receptor. We demonstrate that this process requires IL-6 to upregulate IL-7 receptor expression on post germinal center B cells. Diminishing IL-6 by blocking antibody or haplo-insufficiency leads to reduced expression of the IL-7 receptor and RAG and increased titers of anti-DNA antibodies following immunization with a peptide mimetope of DNA. The dependence on IL-6 to initiate receptor editing is B cell intrinsic. Interestingly, estradiol decreases IL-6 expression thereby increasing the anti-DNA response. Our data reveal a novel regulatory cascade to control post germinal center B cell autoreactivity.

  3. Clinicopathological features of aggressive B-cell lymphomas including B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell and Burkitt lymphomas: a study of 44 patients from Argentina.

    PubMed

    Bürgesser, María Virginia; Gualco, Gabriela; Diller, Ana; Natkunam, Yasodha; Bacchi, Carlos E

    2013-06-01

    Aggressive B-cell lymphomas incorporate a wide spectrum of lymphomas that pose challenges in diagnosis as well as treatment. We evaluated the clinicopathological features of 44 patients with aggressive B-cell lymphomas which were classified into 3 groups based on the World Health Organization 2008 classification as follows: including 30 cases of diffuse large B-cell lymphoma (DLBCL), 8 cases of Burkitt lymphoma (BL) and 6 cases of B-cell lymphoma, unclassifiable, with features intermediate between Burkitt lymphoma and diffuse large B-cell lymphoma (BCLU). Male predominance was observed in BL and BCLU groups and the mean age varied from 29 years in BL, 61 years in DLBCL and 70 years in BCLU. Patients with BCLU presented at more advanced stages and had a higher international prognostic index. By immunohistochemistry, they shared characteristics of both BL (including more frequent expression of SOX11) and DLBCL. FISH analyses showed three cases with more than one rearrangement: one MYC/BCL2 and two BCL2/BCL6, in addition to which one case with BCL2/IGH translocation and another with MYC rearrangement were also detected. The mean follow-up survival time of BCLU was 6.6 months, which was significantly shorter in comparison to DLBCL (31 months) and BL (30 months), respectively. The importance of recognizing this BCLU group relies on its different clinical course, poor prognosis and shorter survival than DLBCL and BL. An accurate diagnosis is critical for risk stratification and to improve therapeutic approaches and outcomes.

  4. Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes

    PubMed Central

    Scriber, Jon Mark

    2013-01-01

    Comprising 50%–75% of the world’s fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience) may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including “invasive species” in various ecosystems as they may become disrupted in different ways by rapid climate change. “Invasive genes” (into new species and populations) need to be recognized for their positive creative potential and addressed in conservation programs. “Genetic rescue” via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae) with their long-term historical data base (phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced “reshuffling” (recombinations) of species composition, genotypes, and genomes

  5. Production of RANKL by Memory B Cells

    PubMed Central

    Meednu, Nida; Zhang, Hengwei; Owen, Teresa; Sun, Wen; Wang, Victor; Cistrone, Christopher; Rangel-Moreno, Javier; Xing, Lianping; Anolik, Jennifer H.

    2016-01-01

    Objective Rheumatoid arthritis (RA) is a systemic autoimmune disease that often leads to joint damage. The mechanisms of bone damage in RA are complex, involving activation of bone-resorbing osteoclasts (OCs) by synoviocytes and Th17 cells. This study was undertaken to investigate whether B cells play a direct role in osteoclastogenesis through the production of RANKL, the essential cytokine for OC development. Methods RANKL production by total B cells or sorted B cell subpopulations in the peripheral blood and synovial tissue from healthy donors or anti–cyclic citrullinated peptide–positive patients with RA was examined by flow cytometry, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemical analysis. To define direct effects on osteoclastogenesis, B cells were cocultured with CD14+ monocytes, and OCs were enumerated by tartrate-resistant acid phosphatase staining. Results Healthy donor peripheral blood B cells were capable of expressing RANKL upon stimulation, with switched memory B cells (CD27+IgD−) having the highest propensity for RANKL production. Notably, switched memory B cells in the peripheral blood from RA patients expressed significantly more RANKL compared to healthy controls. In RA synovial fluid and tissue, memory B cells were enriched and spontaneously expressed RANKL, with some of these cells visualized adjacent to RANK+ OC precursors. Critically, B cells supported OC differentiation in vitro in a RANKL-dependent manner, and the number of OCs was higher in cultures with RA B cells than in those derived from healthy controls. Conclusion These findings reveal the critical importance of B cells in bone homeostasis and their likely contribution to joint destruction in RA. PMID:26554541

  6. Oxidative damage-induced PCNA complex formation is efficient in xeroderma pigmentosum group A but reduced in Cockayne syndrome group B cells.

    PubMed

    Balajee, A S; Dianova, I; Bohr, V A

    1999-11-15

    Proliferating cell nuclear antigen (PCNA), a processivity factor for DNA polymerases delta and epsilon, is essential for both DNA replication and repair. PCNA is required in the resynthesis step of nucleotide excision repair (NER). After UV irradiation, PCNA translocates into an insoluble protein complex, most likely associated with the nuclear matrix. It has not previously been investigated in vivo whether PCNA complex formation also takes place after oxidative stress. In this study, we have examined the involvement of PCNA in the repair of oxidative DNA damage. PCNA complex formation was studied in normal human cells after treatment with hydrogen peroxide, which generates a variety of oxidative DNA lesions. PCNA was detected by two assays, immunofluorescence and western blot analyses. We observed that PCNA redistributes from a soluble to a DNA-bound form during the repair of oxidative DNA damage. PCNA complex formation was analyzed in two human natural mutant cell lines defective in DNA repair: xeroderma pigmentosum group A (XP-A) and Cockayne syndrome group B (CS-B). XP-A cells are defective in overall genome NER while CS-B cells are defective only in the preferential repair of active genes. Immunofluorescent detection of PCNA complex formation was similar in normal and XP-A cells, but was reduced in CS-B cells. Consistent with this observation, western blot analysis in CS-B cells showed a reduction in the ratio of PCNA relocated as compared to normal and XP-A cells. The efficient PCNA complex formation observed in XP-A cells following oxidative damage suggests that formation of PCNA-dependent repair foci may not require the XPA gene product. The reduced PCNA complex formation observed in CS-B cells suggests that these cells are defective in the processing of oxidative DNA damage. PMID:10536158

  7. The CD40 ligand expressed by human B cells costimulates B cell responses.

    PubMed

    Grammer, A C; Bergman, M C; Miura, Y; Fujita, K; Davis, L S; Lipsky, P E

    1995-05-15

    The possibility that activated B cells might express a ligand for CD40 that was of functional importance for B cell responses was examined by using highly purified human peripheral blood B cells, as well as a variety of B lymphoblastoid cell lines and hybridomas. Following stimulation with the combination of a calcium ionophore and a phorbol ester, human B cells bound a soluble fusion protein containing the extracellular portion of CD40 and the Fc region of IgG1 (CD40.Ig). A variety of B cell lines and hybridomas also bound CD40.Ig, either constitutively or after activation. In addition, CD40.Ig specifically immunoprecipitated a 33-kDa glycoprotein from surface 125I-labeled activated B cells. The nucleotide sequence of the coding region of the CD40 ligand mRNA amplified by RT-PCR from activated T cells and B cell lines was identical. The CD40 ligand expressed on human B cells was important functionally because homotypic aggregation of CD40 ligand-expressing B cells was inhibited by the CD40.Ig construct. Additionally, RNA and DNA synthesis as well as Ig production by polyclonally activated, highly purified peripheral B cells and a variety of B cell lines were inhibited significantly by the CD40.Ig construct. Finally, B cell lines expressing the CD40 ligand induced Ig production from resting normal B cells in a CD40-dependent manner. These results indicate that human B cells express a ligand for CD40 that is identical with that expressed by activated T cells and that the B cell-expressed CD40 ligand plays an important role in facilitating responses of activated B cells.

  8. Molecular underpinning of B-cell anergy

    PubMed Central

    Yarkoni, Yuval; Getahun, Andrew; Cambier, John C.

    2010-01-01

    Summary A byproduct of the largely stochastic generation of a diverse B-cell specificity repertoire is production of cells that recognize autoantigens. Indeed, recent studies indicate that more than half of the primary repertoire consists of autoreactive B cells that must be silenced to prevent autoimmunity. While this silencing can occur by multiple mechanisms, it appears that most autoreactive B cells are silenced by anergy, wherein they populate peripheral lymphoid organs and continue to express unoccupied antigen receptors yet are unresponsive to antigen stimulation. Here we review molecular mechanisms that appear operative in maintaining the antigen unresponsiveness of anergic B cells. In addition, we present new data indicating that the failure of anergic B cells to mobilize calcium in response to antigen stimulation is not mediated by inactivation of stromal interacting molecule 1, a critical intermediary in intracellular store depletion-induced calcium influx. PMID:20727040

  9. A subset of two adherence systems, acute pro-inflammatory pap genes and invasion coding dra, fim, or sfa, increases the risk of Escherichia coli translocation to the bloodstream.

    PubMed

    Szemiako, K; Krawczyk, B; Samet, A; Śledzińska, A; Nowicki, B; Nowicki, S; Kur, J

    2013-12-01

    An analysis of the phylogenetic distribution and virulence genes of Escherichia coli isolates which predispose this bacteria to translocate from the urinary tract to the bloodstream is presented. One-dimensional analysis indicated that the occurrence of P fimbriae and α-hemolysin coding genes is more frequent among the E. coli which cause bacteremia. However, a two-dimensional analysis revealed that a combination of genes coding two adherence factors, namely, P + Dr, P + S, S + Dr, S + fim, and hemolysin + one adherence factor, were associated with bacteremia and, therefore, with the risk of translocation to the vascular system. The frequent and previously unrecognized co-existence of pro-inflammatory P fimbriae with the invasion promoting Dr adhesin in the same E. coli isolate may represent high-risk and potentially lethal pathogens.

  10. Involvement of the NUP98 gene in a chromosomal translocation t(11;20)(p15;q11.2) in a patient with acute monocytic leukemia (FAB-M5b).

    PubMed

    Kakazu, N; Shinzato, I; Arai, Y; Gotoh, S; Matsushita, A; Ishikawa, T; Nagai, K; Takahashi, T; Ohno, T; Tsuchiya, T; Ohki, M; Abe, T

    2001-07-01

    We report here a case of acute monocytic leukemia (M5b subtype according to the French-American-British [FAB] classification) with chromosomal translocation t(11;20)(p15;q11.2). Fluorescence in situ hybridization analysis with a probe for the NUP98 gene, which is located at chromosome band 11p15, showed that the probe hybridized to both derivative chromosomes 11 and 20 as well as to the remaining normal chromosome 11, indicating that the NUP98 gene was split and involved in this translocation. This is the first report of t(11;20)(p15;q11.2) involving the NUP98 gene in overt leukemia.

  11. Early B-cell-specific inactivation of ATM synergizes with ectopic CyclinD1 expression to promote pre-germinal center B-cell lymphomas in mice.

    PubMed

    Yamamoto, K; Lee, B J; Li, C; Dubois, R L; Hobeika, E; Bhagat, G; Zha, S

    2015-06-01

    Ataxia telangiectasia-mutated (ATM) kinase is a master regulator of the DNA damage response. ATM is frequently inactivated in human B-cell non-Hodgkin lymphomas, including ~50% of mantle cell lymphomas (MCLs) characterized by ectopic expression of CyclinD1. Here we report that early and robust deletion of ATM in precursor/progenitor B cells causes cell autonomous, clonal mature B-cell lymphomas of both pre- and post-germinal center (GC) origins. Unexpectedly, naive B-cell-specific deletion of ATM is not sufficient to induce lymphomas in mice, highlighting the important tumor suppressor function of ATM in immature B cells. Although EμCyclinD1 is not sufficient to induce lymphomas, EμCyclinD1 accelerates the kinetics and increases the incidence of clonal lymphomas in ATM-deficient B-cells and skews the lymphomas toward pre-GC-derived small lymphocytic neoplasms, sharing morphological features of human MCL. This is in part due to CyclinD1-driven expansion of ATM-deficient naive B cells with genomic instability, which promotes the deletions of additional tumor suppressor genes (i.e. Trp53, Mll2, Rb1 and Cdkn2a). Together these findings define a synergistic function of ATM and CyclinD1 in pre-GC B-cell proliferation and lymphomagenesis and provide a prototypic animal model to study the pathogenesis of human MCL. PMID:25676421

  12. Superenhancer reprogramming drives a B-cell-epithelial transition and high-risk leukemia.

    PubMed

    Hu, Yeguang; Zhang, Zhihong; Kashiwagi, Mariko; Yoshida, Toshimi; Joshi, Ila; Jena, Nilamani; Somasundaram, Rajesh; Emmanuel, Akinola Olumide; Sigvardsson, Mikael; Fitamant, Julien; El-Bardeesy, Nabeel; Gounari, Fotini; Van Etten, Richard A; Georgopoulos, Katia

    2016-09-01

    IKAROS is required for the differentiation of highly proliferative pre-B-cell precursors, and loss of IKAROS function indicates poor prognosis in precursor B-cell acute lymphoblastic leukemia (B-ALL). Here we show that IKAROS regulates this developmental stage by positive and negative regulation of superenhancers with distinct lineage affiliations. IKAROS defines superenhancers at pre-B-cell differentiation genes together with B-cell master regulators such as PAX5, EBF1, and IRF4 but is required for a highly permissive chromatin environment, a function that cannot be compensated for by the other transcription factors. IKAROS is also highly enriched at inactive enhancers of genes normally expressed in stem-epithelial cells. Upon IKAROS loss, expression of pre-B-cell differentiation genes is attenuated, while a group of extralineage transcription factors that are directly repressed by IKAROS and depend on EBF1 relocalization at their enhancers for expression is induced. LHX2, LMO2, and TEAD-YAP1, normally kept separate from native B-cell transcription regulators by IKAROS, now cooperate directly with them in a de novo superenhancer network with its own feed-forward transcriptional reinforcement. Induction of de novo superenhancers antagonizes Polycomb repression and superimposes aberrant stem-epithelial cell properties in a B-cell precursor. This dual mechanism of IKAROS regulation promotes differentiation while safeguarding against a hybrid stem-epithelial-B-cell phenotype that underlies high-risk B-ALL. PMID:27664237

  13. A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat.

    PubMed

    Qi, L L; Pumphrey, M O; Friebe, Bernd; Zhang, P; Qian, C; Bowden, R L; Rouse, M N; Jin, Y; Gill, B S

    2011-06-01

    Stem rust (Puccinia graminis f. sp. tritici Eriks. & E. Henn.) (the causal agent of wheat stem rust) race Ug99 (also designated TTKSK) and its derivatives have defeated several important stem rust resistance genes widely used in wheat (Triticum aestivum L.) production, rendering much of the worldwide wheat acreage susceptible. In order to identify new resistance sources, a large collection of wheat relatives and genetic stocks maintained at the Wheat Genetic and Genomic Resources Center was screened. The results revealed that most accessions of the diploid relative Dasypyrum villosum (L.) Candargy were highly resistant. The screening of a set of wheat-D. villosum chromosome addition lines revealed that the wheat-D. villosum disomic addition line DA6V#3 was moderately resistant to race Ug99. The objective of the present study was to produce and characterize compensating wheat-D. villosum whole arm Robertsonian translocations (RobTs) involving chromosomes 6D of wheat and 6V#3 of D. villosum through the mechanism of centric breakage-fusion. Seven 6V#3-specific EST-STS markers were developed for screening F(2) progeny derived from plants double-monosomic for chromosomes 6D and 6V#3. Surprisingly, although 6D was the target chromosome, all recovered RobTs involved chromosome 6A implying a novel mechanism for the origin of RobTs. Homozygous translocations (T6AS·6V#3L and T6AL·6V#3S) with good plant vigor and full fertility were selected from F(3) families. A stem rust resistance gene was mapped to the long arm 6V#3L in T6AS·6V#3L and was designated as Sr52. Sr52 is temperature-sensitive and is most effective at 16°C, partially effective at 24°C, and ineffective at 28°C. The T6AS·6V#3L stock is a new source of resistance to Ug99, is cytogenetically stable, and may be useful in wheat improvement.

  14. MRI phenotypes with high neurodegeneration are associated with peripheral blood B-cell changes.

    PubMed

    Comabella, Manuel; Cantó, Ester; Nurtdinov, Ramil; Río, Jordi; Villar, Luisa M; Picón, Carmen; Castilló, Joaquín; Fissolo, Nicolás; Aymerich, Xavier; Auger, Cristina; Rovira, Alex; Montalban, Xavier

    2016-01-15

    Little is known about the mechanisms leading to neurodegeneration in multiple sclerosis (MS) and the role of peripheral blood cells in this neurodegenerative component. We aimed to correlate brain radiological phenotypes defined by high and low neurodegeneration with gene expression profiling of peripheral blood mononuclear cells (PBMC) from MS patients. Magnetic resonance imaging (MRI) scans from 64 patients with relapsing-remitting MS (RRMS) were classified into radiological phenotypes characterized by low (N = 27) and high (N = 37) neurodegeneration according to the number of contrast-enhancing lesions, the relative volume of non-enhancing black holes on T1-weighted images, and the brain parenchymal fraction. Gene expression profiling was determined in PBMC using microarrays, and validation of selected genes was performed by polymerase chain reaction (PCR). B-cell immunophenotyping was conducted by flow cytometry. Microarray analysis revealed the B-cell specific genes FCRL1, FCRL2, FCRL5 (Fc receptor-like 1, 2 and 5 respectively), and CD22 as the top differentially expressed genes between patients with high and low neurodegeneration. Levels for these genes were significantly down-regulated in PBMC from patients with MRI phenotypes characterized by high neurodegeneration and microarray findings were validated by PCR. In patients with high neurodegeneration, immunophenotyping showed a significant increase in the expression of the B-cell activation markers CD80 in naïve B cells (CD45+/CD19+/CD27-/IgD+), unswitched memory B cells (CD45+/CD19+/CD27+/IgD+), and switched memory B cells (CD45+/CD19+/CD27+/IgD-), and CD86 in naïve and switched memory B cells. These results suggest that RRMS patients with radiological phenotypes showing high neurodegeneration have changes in B cells characterized by down-regulation of B-cell-specific genes and increased activation status. PMID:26604134

  15. Selected Lactic Acid-Producing Bacterial Isolates with the Capacity to Reduce Salmonella Translocation and Virulence Gene Expression in Chickens

    PubMed Central

    Yang, Xiaojian; Brisbin, Jennifer; Yu, Hai; Wang, Qi; Yin, Fugui; Zhang, Yonggang; Sabour, Parviz; Sharif, Shayan; Gong, Joshua

    2014-01-01

    Background Probiotics have been used to control Salmonella colonization/infection in chickens. Yet the mechanisms of probiotic effects are not fully understood. This study has characterized our previously-selected lactic acid-producing bacterial (LAB) isolates for controlling Salmonella infection in chickens, particularly the mechanism underlying the control. Methodology/Principal Findings In vitro studies were conducted to characterize 14 LAB isolates for their tolerance to low pH (2.0) and high bile salt (0.3–1.5%) and susceptibility to antibiotics. Three chicken infection trials were subsequently carried out to evaluate four of the isolates for reducing the burden of Salmonella enterica serovar Typhimurium in the broiler cecum. Chicks were gavaged with LAB cultures (106–7 CFU/chick) or phosphate-buffered saline (PBS) at 1 day of age followed by Salmonella challenge (104 CFU/chick) next day. Samples of cecal digesta, spleen, and liver were examined for Salmonella counts on days 1, 3, or 4 post-challenge. Salmonella in the cecum from Trial 3 was also assessed for the expression of ten virulence genes located in its pathogenicity island-1 (SPI-1). These genes play a role in Salmonella intestinal invasion. Tested LAB isolates (individuals or mixed cultures) were unable to lower Salmonella burden in the chicken cecum, but able to attenuate Salmonella infection in the spleen and liver. The LAB treatments also reduced almost all SPI-1 virulence gene expression (9 out of 10) in the chicken cecum, particularly at the low dose. In vitro treatment with the extracellular culture fluid from a LAB culture also down-regulated most SPI-1 virulence gene expression. Conclusions/Significance The possible correlation between attenuation of Salmonella infection in the chicken spleen and liver and reduction of Salmonella SPI-1 virulence gene expression in the chicken cecum by LAB isolates is a new observation. Suppression of Salmonella virulence gene expression in vivo can be one

  16. Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells.

    PubMed

    Ried, K; Finnis, M; Hobson, L; Mangelsdorf, M; Dayan, S; Nancarrow, J K; Woollatt, E; Kremmidiotis, G; Gardner, A; Venter, D; Baker, E; Richards, R I

    2000-07-01

    Fluorescence in situ hybridization of a tile path of DNA subclones has previously enabled the cyto-genetic definition of the minimal DNA sequence which spans the FRA16D common chromosomal fragile site, located at 16q23.2. Homozygous deletion of the FRA16D locus has been reported in adenocarcinomas of stomach, colon, lung and ovary. We have sequenced the 270 kb containing the FRA16D fragile site and the minimal homozygously deleted region in tumour cells. This sequence enabled localization of some of the tumour cell breakpoints to regions which contain AT-rich secondary structures similar to those associated with the FRA10B and FRA16B rare fragile sites. The FRA16D DNA sequence also led to the identification of an alternatively spliced gene, named FOR (fragile site FRA16D oxidoreductase), exons of which span both the fragile site and the minimal region of homozygous deletion. In addition, the complete DNA sequence of the FRA16D-containing FOR intron reveals no evidence of additional authentic transcripts. Alternatively spliced FOR transcripts (FOR I, FOR II and FOR III) encode proteins which share N-terminal WW domains and differ at their C-terminus, with FOR III having a truncated oxidoreductase domain. FRA16D-associated deletions selectively affect the FOR gene transcripts. Three out of five previously mapped translocation breakpoints in multiple myeloma are also located within the FOR gene. FOR is therefore the principle genetic target for DNA instability at 16q23.2 and perturbation of FOR function is likely to contribute to the biological consequences of DNA instability at FRA16D in cancer cells. PMID:10861292

  17. Evolution of a pentameral body plan was not linked to translocation of anterior Hox genes: the echinoderm HOX cluster revisited.

    PubMed

    Byrne, Maria; Martinez, Pedro; Morris, Valerie

    2016-01-01

    Echinodermata is a large phylum of marine invertebrates characterized by an adult, pentameral body plan. This morphology is clearly derived as all members of Deuterostomia (the superphylum to which they belong) have a bilateral body plan. The origin of the pentameral plan has been the subject of intense debate. It is clear that the ancestor of Echinodermata had a bilateral plan but how this ancestor transformed its body "architecture" in such a drastic manner is not clear. Data from the fossil record and ontogeny are sparse and, so far, not very informative. The sequencing of the sea urchin genome a decade ago opened the possibility that the pentameral body plan was a consequence of a broken Hox cluster and a series of papers dwelt on the putative relationship between Hox gene arrangements in the chromosomes and the origin of pentamery. This relationship, sound as it was, is challenged by the revelation that the sea star HOX cluster is, in fact, intact, thus falsifying the hypothesis of a direct relationship between HOX cluster arrangement and the origin of the pentameral body plan. Here, we explore the relationship between Hox gene arrangements and echinoderm body "architecture," the expression of Hox genes in development and alternative scenarios for the origin of pentamery, with putative roles for signaling centers in generating multiple axes.

  18. Evolution of a pentameral body plan was not linked to translocation of anterior Hox genes: the echinoderm HOX cluster revisited.

    PubMed

    Byrne, Maria; Martinez, Pedro; Morris, Valerie

    2016-01-01

    Echinodermata is a large phylum of marine invertebrates characterized by an adult, pentameral body plan. This morphology is clearly derived as all members of Deuterostomia (the superphylum to which they belong) have a bilateral body plan. The origin of the pentameral plan has been the subject of intense debate. It is clear that the ancestor of Echinodermata had a bilateral plan but how this ancestor transformed its body "architecture" in such a drastic manner is not clear. Data from the fossil record and ontogeny are sparse and, so far, not very informative. The sequencing of the sea urchin genome a decade ago opened the possibility that the pentameral body plan was a consequence of a broken Hox cluster and a series of papers dwelt on the putative relationship between Hox gene arrangements in the chromosomes and the origin of pentamery. This relationship, sound as it was, is challenged by the revelation that the sea star HOX cluster is, in fact, intact, thus falsifying the hypothesis of a direct relationship between HOX cluster arrangement and the origin of the pentameral body plan. Here, we explore the relationship between Hox gene arrangements and echinoderm body "architecture," the expression of Hox genes in development and alternative scenarios for the origin of pentamery, with putative roles for signaling centers in generating multiple axes. PMID:26763653

  19. Inducible resistance to Fas-mediated apoptosis in B cells.

    PubMed

    Rothstein, T L

    2000-12-01

    Apoptosis produced in B cells through Fas (APO-1, CD95) triggering is regulated by signals derived from other surface receptors: CD40 engagement produces upregulation of Fas expression and marked susceptibility to Fas-induced cell death, whereas antigen receptor engagement, or IL-4R engagement, inhibits Fas killing and in so doing induces a state of Fas-resistance, even in otherwise sensitive, CD40-stimulated targets. Surface immunoglobulin and IL-4R utilize at least partially distinct pathways to produce Fas-resistance that differentially depend on PKC and STAT6, respectively. Further, surface immunoglobulin signaling for inducible Fas-resistance bypasses Btk, requires NF-kappaB, and entails new macromolecular synthesis. Terminal effectors of B cell Fas-resistance include the known anti-apoptotic gene products, Bcl-xL and FLIP, and a novel anti-apoptotic gene that encodes FAIM (Fas Apoptosis Inhibitory Molecule). faim was identified by differential display and exists in two alternatively spliced forms; faim-S is broadly expressed, but faim-L expression is tissue-specific. The FAIM sequence is highly evolu- tionarily conserved, suggesting an important role for this molecule throughout phylogeny. Inducible resistance to Fas killing is hypothesized to protect foreign antigen-specific B cells during potentially hazardous interactions with FasL-bearing T cells, whereas autoreactive B cells fail to become Fas-resistant and are deleted via Fas-dependent cytotoxicity. Inadvertent or aberrant acquisition of Fas-resistance may permit autoreactive B cells to escape Fas deletion, and malignant lymphocytes to impede anti-tumor immunity.

  20. Translocation of DNA across bacterial membranes.

    PubMed Central

    Dreiseikelmann, B

    1994-01-01

    DNA translocation across bacterial membranes occurs during the biological processes of infection by bacteriophages, conjugative DNA transfer of plasmids, T-DNA transfer, and genetic transformation. The mechanism of DNA translocation in these systems is not fully understood, but during the last few years extensive data about genes and gene products involved in the translocation processes have accumulated. One reason for the increasing interest in this topic is the discussion about horizontal gene transfer and transkingdom sex. Analyses of genes and gene products involved in DNA transfer suggest that DNA is transferred through a protein channel spanning the bacterial envelope. No common model exists for DNA translocation during phage infection. Perhaps various mechanisms are necessary as a result of the different morphologies of bacteriophages. The DNA translocation processes during conjugation, T-DNA transfer, and transformation are more consistent and may even be compared to the excretion of some proteins. On the basis of analogies and homologies between the proteins involved in DNA translocation and protein secretion, a common basic model for these processes is presented. PMID:7968916

  1. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing.

    PubMed

    Richter, Julia; Schlesner, Matthias; Hoffmann, Steve; Kreuz, Markus; Leich, Ellen; Burkhardt, Birgit; Rosolowski, Maciej; Ammerpohl, Ole; Wagener, Rabea; Bernhart, Stephan H; Lenze, Dido; Szczepanowski, Monika; Paulsen, Maren; Lipinski, Simone; Russell, Robert B; Adam-Klages, Sabine; Apic, Gordana; Claviez, Alexander; Hasenclever, Dirk; Hovestadt, Volker; Hornig, Nadine; Korbel, Jan O; Kube, Dieter; Langenberger, David; Lawerenz, Chris; Lisfeld, Jasmin; Meyer, Katharina; Picelli, Simone; Pischimarov, Jordan; Radlwimmer, Bernhard; Rausch, Tobias; Rohde, Marius; Schilhabel, Markus; Scholtysik, René; Spang, Rainer; Trautmann, Heiko; Zenz, Thorsten; Borkhardt, Arndt; Drexler, Hans G; Möller, Peter; MacLeod, Roderick A F; Pott, Christiane; Schreiber, Stefan; Trümper, Lorenz; Loeffler, Markus; Stadler, Peter F; Lichter, Peter; Eils, Roland; Küppers, Ralf; Hummel, Michael; Klapper, Wolfram; Rosenstiel, Philip; Rosenwald, Andreas; Brors, Benedikt; Siebert, Reiner

    2012-12-01

    Burkitt lymphoma is a mature aggressive B-cell lymphoma derived from germinal center B cells. Its cytogenetic hallmark is the Burkitt translocation t(8;14)(q24;q32) and its variants, which juxtapose the MYC oncogene with one of the three immunoglobulin loci. Consequently, MYC is deregulated, resulting in massive perturbation of gene expression. Nevertheless, MYC deregulation alone seems not to be sufficient to drive Burkitt lymphomagenesis. By whole-genome, whole-exome and transcriptome sequencing of four prototypical Burkitt lymphomas with immunoglobulin gene (IG)-MYC translocation, we identified seven recurrently mutated genes. One of these genes, ID3, mapped to a region of focal homozygous loss in Burkitt lymphoma. In an extended cohort, 36 of 53 molecularly defined Burkitt lymphomas (68%) carried potentially damaging mutations of ID3. These were strongly enriched at somatic hypermutation motifs. Only 6 of 47 other B-cell lymphomas with the IG-MYC translocation (13%) carried ID3 mutations. These findings suggest that cooperation between ID3 inactivation and IG-MYC translocation is a hallmark of Burkitt lymphomagenesis.

  2. B-cell markers in malignant B-cell lymphoma with scleroderma-like manifestation.

    PubMed

    Van Joost, T; Stolz, E; Blog, F B; Van der Kwast, T H; Vuzevski, V D; Van Dongen, J M

    1984-12-01

    A case is described of malignant B-cell lymphoma with scleroderma-like manifestation. Using different monoclonals as B-cell markers the tumor appeared to be positive for surface immunoglobulins (SmIg) and for B2-antigen, but negative for intracytoplasmic immunoglobulin (CIg), BA2- and FMC7-antigens. Therefore, the tumor could be determined as a highly differentiated Sm-positive early B-cell type of B-cell lymphoma. In this clinically rare manifestation of cutaneous B-cell lymphoma aspects of the cell morphology and of cellular mediated immunity are briefly discussed.

  3. Gene expression identifies heterogeneity of metastatic behavior among high-grade non-translocation associated soft tissue sarcomas

    PubMed Central

    2014-01-01

    Background The biologic heterogeneity of soft tissue sarcomas (STS), even within histological subtypes, complicates treatment. In earlier studies, gene expression patterns that distinguish two subsets of clear cell renal carcinoma (RCC), serous ovarian carcinoma (OVCA), and aggressive fibromatosis (AF) were used to separate 73 STS into two or four groups with different probabilities of developing metastatic disease (PrMet). This study was designed to confirm our earlier observations in a larger independent data set. Methods We utilized these gene sets, hierarchical clustering (HC), and Kaplan-Meier analysis, to examine 309 STS, using Affymetrix chip expression profiling. Results HC using the combined AF-, RCC-, and OVCA-gene sets identified subsets of the STS samples. Analysis revealed differences in PrMet between the clusters defined by the first branch point of the clustering dendrogram (p = 0.048), and also among the four different clusters defined by the second branch points (p < 0.0001). Analysis also revealed differences in PrMet between the leiomyosarcomas (LMS), dedifferentiated liposarcomas (LipoD), and undifferentiated pleomorphic sarcomas (UPS) (p = 0.0004). HC of both the LipoD and UPS sample sets divided the samples into two groups with different PrMet (p = 0.0128, and 0.0002, respectively). HC of the UPS samples also showed four groups with different PrMet (p = 0.0007). HC found no subgroups of the LMS samples. Conclusions These data confirm our earlier studies, and suggest that this approach may allow the identification of more than two subsets of STS, each with distinct clinical behavior, and may be useful to stratify STS in clinical trials and in patient management. PMID:24950699

  4. Primary cutaneous B-cell lymphoma.

    PubMed

    Bogle, Melissa A; Riddle, Christy C; Triana, Emily M; Jones, Dan; Duvic, Madeleine

    2005-09-01

    Primary cutaneous B-cell lymphomas include extranodal marginal zone B-cell lymphoma, follicular lymphoma, large B-cell lymphoma, and, rarely, mantle cell lymphoma. Our purpose in conducting this review was to determine the clinical and behavioral characteristics of primary cutaneous B-cell lymphomas, their relationship to infectious triggers, and therapeutic response. We conducted a retrospective chart review of 23 adult patients presenting to the dermatology clinic at M. D. Anderson Cancer Center with primary cutaneous B-cell lymphoma between January 1999 and May 2003. Primary cutaneous B-cell lymphomas generally present on the head and neck, with the trunk and extremities afflicted to a lesser extent. Patients were found to have serologic evidence of prior infection with Borrelia burgdorferi (n = 10), Helicobacter pylori (n = 5), and Epstein-Barr virus (n = 6). Overall, treatment of primary cutaneous B-cell lymphoma should involve multiple modalities; however, specific treatment aimed at concurrent or suspected infection, particularly B burgdorferi, is a helpful adjunct and may achieve complete remission in a small subset of patients.

  5. Liver Fibrosis Occurs Through Dysregulation of MyD88-dependent Innate B cell Activity

    PubMed Central

    Thapa, Manoj; Chinnadurai, Raghavan; Velazquez, Victoria M.; Tedesco, Dana; Elrod, Elizabeth; Han, Jin-Hwan; Sharma, Prachi; Ibegbu, Chris; Gewirtz, Andrew; Anania, Frank; Pulendran, Bali; Suthar, Mehul S.; Grakoui, Arash

    2015-01-01

    Chronic liver disease mediated by activation of hepatic stellate cells (HSCs) leads to liver fibrosis. Here, we postulated that the immune regulatory properties of HSCs might promote the profibrogenic activity of B cells. Fibrosis is completely attenuated in carbon tetrachloride (CCl4)-treated B cell deficient μMT mice showing that B cells are required. The retinoic acid produced by HSCs augmented B cell survival, plasma cell marker CD138 expression, and IgG production. These activities were reversed following the addition of the retinoic acid inhibitor, LE540. Transcriptional profiling of fibrotic liver B cells revealed an increased expression of genes related to NF-κB activation, proinflammatory cytokine production and CD40 signaling suggesting that these B cells are activated and may be acting as inflammatory cells. Biological validation experiments also revealed increased activation (CD44 and CD86 expressions), constitutive IgG production and secretion of the proinflammatory cytokines TNF-α, MCP-1 and MIP1-α. Likewise targeted deletion of B-cell-intrinsic MyD88 signaling, an innate adaptor with involvement in RA signaling, resulted in reduced infiltration of migratory CD11c+ dendritic cells and Ly6C++ monocytes, and hence reduced liver pathology. Conclusion Our findings demonstrate that liver fibrosis occurs through a mechanism of HSC-mediated augmentation of innate B cell activity and highlight B cells as an important ‘first responders’ of the intrahepatic immune environment. PMID:25711908

  6. T cell activation by concanavalin A in the presence of cyclosporin A: immunosuppressor withdrawal induces NFATp translocation and interleukin-2 gene transcription.

    PubMed

    Bemer, V; Truffa-Bachi, P

    1996-07-01

    Cyclosporin A (CSA), an immunosuppressive agent used in organ transplantation and to treat some autoimmune diseases, blocks the Ca2+-dependent steps involved in T cell receptor triggering leading to interleukin (IL)-2 production. Considering that the early steps of T cell activation are insensitive to CSA, we asked whether the initial activation achieved in presence of this immunosuppressor could affect the capacity of the T cell to respond to a mitogenic restimulation. We found that T cells activated by concanavalin A (ConA) for 48 h in the presence of CSA retain the capacity to proliferate in response to ConA once the immunosuppressor is removed. These cells are able to transcribe anew the IL-2 gene, without the requirement of new protein synthesis, and to up-regulate the alpha chain of the IL-2 receptor. Furthermore, we present the first direct evidence that the nuclear factor AP-1 is present in the nucleus of the T cells primed for 48 h in presence of CSA and that withdrawal of the immunosuppressor leads to the translocation of NFATp from the cytoplasm to the nucleus.

  7. A new 17p13.3 microduplication including the PAFAH1B1 and YWHAE genes resulting from an unbalanced X;17 translocation.

    PubMed

    Hyon, Capucine; Marlin, Sandrine; Chantot-Bastaraud, Sandra; Mabboux, Philippe; Beaujard, Marie-Paule; Al Ageeli, Essam; Vazquez, Marie-Paule; Picard, Arnaud; Siffroi, Jean-Pierre; Portnoï, Marie-France

    2011-01-01

    Submicroscopic duplications of the genomic interval deleted in Miller-Dieker syndrome (MDS) were recently identified by array-based comparative genomic hybridization (a-CGH) studies, describing new genomic disorders in the MDS locus. These rearrangements of varying size, from 59-88 kb to 4 Mb, were non-recurrent, and appear to result from diverse molecular mechanisms. Only five patients had overlapping 17p13.3 duplications including the entire MDS critical region. We describe here a 13-year-old girl with a novel microduplication of the MDS critical region, involving the PAFAH1B1 and YWHAE genes. She presented with moderate psychomotor retardation, speech delay, behavioral problems, and bilateral cleft lip and palate, a previously unreported manifestation. Initially diagnosed as having an apparently simple terminal Xq26 deletion on standard cytogenetic analysis, she was found to have an associated terminal 4.2 Mb 17p13.3 submicroscopic duplication, identified by subtelomere FISH analysis, further characterized by high-resolution array CGH, resulting from an unbalanced X;17 translocation. Phenotypic comparison with the 5 other patients previously described, revealed common phenotypic features, such as hypotonia, mild to moderate developmental delay/mental retardation, speech abnormalities, behavioral problems, recurrent infections, relatively increase of body weight, discrete facial dysmorphism including downslanting palpebral fissures, broad midface, pointed chin, contributing to further delineate this new 17p13.3 microduplication syndrome.

  8. Nbs1 ChIP-Seq Identifies Off-Target DNA Double-Strand Breaks Induced by AID in Activated Splenic B Cells.

    PubMed

    Khair, Lyne; Baker, Richard E; Linehan, Erin K; Schrader, Carol E; Stavnezer, Janet

    2015-08-01

    Activation-induced cytidine deaminase (AID) is required for initiation of Ig class switch recombination (CSR) and somatic hypermutation (SHM) of antibody genes during immune responses. AID has also been shown to induce chromosomal translocations, mutations, and DNA double-strand breaks (DSBs) involving non-Ig genes in activated B cells. To determine what makes a DNA site a target for AID-induced DSBs, we identify off-target DSBs induced by AID by performing chromatin immunoprecipitation (ChIP) for Nbs1, a protein that binds DSBs, followed by deep sequencing (ChIP-Seq). We detect and characterize hundreds of off-target AID-dependent DSBs. Two types of tandem repeats are highly enriched within the Nbs1-binding sites: long CA repeats, which can form Z-DNA, and tandem pentamers containing the AID target hotspot WGCW. These tandem repeats are not nearly as enriched at AID-independent DSBs, which we also identified. Msh2, a component of the mismatch repair pathway and important for genome stability, increases off-target DSBs, similar to its effect on Ig switch region DSBs, which are required intermediates during CSR. Most of the off-target DSBs are two-ended, consistent with generation during G1 phase, similar to DSBs in Ig switch regions. However, a minority are one-ended, presumably due to conversion of single-strand breaks to DSBs during replication. One-ended DSBs are repaired by processes involving homologous recombination, including break-induced replication repair, which can lead to genome instability. Off-target DSBs, especially those present during S phase, can lead to chromosomal translocations, deletions and gene amplifications, resulting in the high frequency of B cell lymphomas derived from cells that express or have expressed AID.

  9. TEL gene is involved in myelodysplastic syndromes with either the typical t(5;12)(q33;p13) translocation or its variant t(10;12)(q24;p13).

    PubMed

    Wlodarska, I; Mecucci, C; Marynen, P; Guo, C; Franckx, D; La Starza, R; Aventin, A; Bosly, A; Martelli, M F; Cassiman, J J

    1995-05-15

    A t(5;12)(q33;p13) translocation is a recurrent chromosome abnormality in a subgroup of myeloid malignancies with features of both myeloproliferative disorders and myelodysplastic syndromes (MDSs). The molecular consequence of a t(5;12) is a fusion between the platelet-derived growth factor receptor-B gene on chromosome 5 and a novel ETS-like gene, TEL, on chromosome 12. We report on three patients with a t(5;12)(q33;p13) diagnosed as chronic myelomonocytic leukemia, and one case of a t(10;12)(q24;p13) in a progressive MDS, with eosinophilia and monocytosis. Involvement of the TEL gene in these chromosome translocations was investigated by fluorescence in situ hybridization (FISH) with cosmid probes containing selectively the 5' end or 3' end of TEL. Hybridization of these cosmids to the der(5)/der(10) or a der(12), respectively, demonstrated a rearrangement of TEL in both translocations, showing that the t(10;12) is a variant translocation of the t(5;12). Cloning of the fusion cDNA of one case of t(5;12) showed that the breakpoint occurred at the RNA level at exactly the same position as reported by Golub et al (Cell 77:307, 1994). In addition, the TEL gene on chromosome 12 could be localized between two probes previously mapped to 12p13, namely PRB1 and D12S178, leading to a better definition of the position of TEL in this chromosome region. Moreover, in the case involving chromosome 10, the breakpoint occurred between cKTN206 and cKTN312/LYT-10 at 10q24. Clinicohematological data in these studies as well as the restriction mapping of chromosomal breakpoints strongly suggest that (1) common features in MDSs involving the TEL gene are monocytosis and eosinophilia, (2) chromosomes other than no. 5 may be involved and at least a t(10;12)(q24;p13) variant chromosome translocation does exist in these MDSs, and (3) both standard and variant 12p/TEL translocations may be identified by FISH with appropriate probes.

  10. Clinicopathologic Characterization of Diffuse-Large-B-Cell Lymphoma with an Associated Serum Monoclonal IgM Component

    PubMed Central

    Scarpino, Stefania; Salerno, Gerardo; Tatarelli, Caterina; Talerico, Caterina; Lombardi, Mariangela; Monarca, Bruno; Amadori, Sergio; Ruco, Luigi

    2014-01-01

    Recently, diffuse-large-B-cell lymphoma (DLBCL) associated with serum IgM monoclonal component (MC) has been shown to be a very poor prognostic subset although, detailed pathological and molecular data are still lacking. In the present study, the clinicopathological features and survival of IgM-secreting DLBCL were analyzed and compared to non-secreting cases in a series of 151 conventional DLBCL treated with R-CHOP. IgM MC was detected in 19 (12.5%) out of 151 patients at disease onset. In 17 of these cases secretion was likely due to the neoplastic clone, as suggested by the expression of heavy chain IgM protein in the cytoplasm of tumor cells. In IgM-secreting cases immunoblastic features (p<.0001), non-GCB-type (p = .002) stage III-IV(p = .003), ≥2 extra nodal sites (p<.0001), bone-marrow (p = .002), central-nervous-system (CNS) involvement at disease onset or relapse (p<.0001), IPI-score 3–5 (p = .009) and failure to achieve complete remission (p = .005), were significantly more frequent. FISH analyses for BCL2, BCL6 and MYC gene rearrangements detected only two cases harboring BCL2 gene translocation and in one case a concomitant BCL6 gene translocation was also observed. None of the IgM-secreting DLBCL was found to have L265P mutation of MYD88 gene. Thirty-six month event-free (11.8% vs 66.4% p<.0001), progression-free (23.5% vs 75.7%, p<.0001) and overall (47.1% vs 74.8%, p<.0001) survivals were significantly worse in the IgM-secreting group. In multivariate analysis IgM-secreting (p = .005, expB = 0.339, CI = 0.160-0.716) and IPI-score 3–5 (p = .010, expB = 0.274, CI = 0.102–0.737) were the only significant factors for progression-free-survival. Notably, four relapsed patients, who were treated with salvage immmunochemotherapy combined with bortezomib or lenalidomide, achieved lasting remission. Our data suggests that IgM-secreting cases are a distinct subset of DLBCL, originating from activated-B-cells

  11. PDK1 regulates VDJ recombination, cell-cycle exit and survival during B-cell development.

    PubMed

    Venigalla, Ram K C; McGuire, Victoria A; Clarke, Rosemary; Patterson-Kane, Janet C; Najafov, Ayaz; Toth, Rachel; McCarthy, Pierre C; Simeons, Frederick; Stojanovski, Laste; Arthur, J Simon C

    2013-04-01

    Phosphoinositide-dependent kinase-1 (PDK1) controls the activation of a subset of AGC kinases. Using a conditional knockout of PDK1 in haematopoietic cells, we demonstrate that PDK1 is essential for B cell development. B-cell progenitors lacking PDK1 arrested at the transition of pro-B to pre-B cells, due to a cell autonomous defect. Loss of PDK1 decreased the expression of the IgH chain in pro-B cells due to impaired recombination of the IgH distal variable segments, a process coordinated by the transcription factor Pax5. The expression of Pax5 in pre-B cells was decreased in PDK1 knockouts, which correlated with reduced expression of the Pax5 target genes IRF4, IRF8 and Aiolos. As a result, Ccnd3 is upregulated in PDK1 knockout pre-B cells and they have an impaired ability to undergo cell-cycle arrest, a necessary event for Ig light chain rearrangement. Instead, these cells underwent apoptosis that correlated with diminished expression of the pro-survival gene Bcl2A1. Reintroduction of both Pax5 and Bcl2A1 together into PDK1 knockout pro-B cells restored their ability to differentiate in vitro into mature B cells.

  12. Identification of a negative regulatory role for spi-C in the murine B cell lineage.

    PubMed

    Li, Stephen K H; Solomon, Lauren A; Fulkerson, Patricia C; DeKoter, Rodney P

    2015-04-15

    Spi-C is an E26 transformation-specific family transcription factor that is highly related to PU.1 and Spi-B. Spi-C is expressed in developing B cells, but its function in B cell development and function is not well characterized. To determine whether Spi-C functions as a negative regulator of Spi-B (encoded by Spib), mice were generated that were germline knockout for Spib and heterozygous for Spic (Spib(-/-)Spic(+/-)). Interestingly, loss of one Spic allele substantially rescued B cell frequencies and absolute numbers in Spib(-/-) mouse spleens. Spib(-/-)Spic(+/-) B cells had restored proliferation compared with Spib(-/-) B cells in response to anti-IgM or LPS stimulation. Investigation of a potential mechanism for the Spib(-/-)Spic(+/-) phenotype revealed that steady-state levels of Nfkb1, encoding p50, were elevated in Spib(-/-)Spic(+/-) B cells compared with Spib(-/-) B cells. Spi-B was shown to directly activate the Nfkb1 gene, whereas Spi-C was shown to repress this gene. These results indicate a novel role for Spi-C as a negative regulator of B cell development and function.

  13. PDK1 regulates VDJ recombination, cell-cycle exit and survival during B-cell development.

    PubMed

    Venigalla, Ram K C; McGuire, Victoria A; Clarke, Rosemary; Patterson-Kane, Janet C; Najafov, Ayaz; Toth, Rachel; McCarthy, Pierre C; Simeons, Frederick; Stojanovski, Laste; Arthur, J Simon C

    2013-04-01

    Phosphoinositide-dependent kinase-1 (PDK1) controls the activation of a subset of AGC kinases. Using a conditional knockout of PDK1 in haematopoietic cells, we demonstrate that PDK1 is essential for B cell development. B-cell progenitors lacking PDK1 arrested at the transition of pro-B to pre-B cells, due to a cell autonomous defect. Loss of PDK1 decreased the expression of the IgH chain in pro-B cells due to impaired recombination of the IgH distal variable segments, a process coordinated by the transcription factor Pax5. The expression of Pax5 in pre-B cells was decreased in PDK1 knockouts, which correlated with reduced expression of the Pax5 target genes IRF4, IRF8 and Aiolos. As a result, Ccnd3 is upregulated in PDK1 knockout pre-B cells and they have an impaired ability to undergo cell-cycle arrest, a necessary event for Ig light chain rearrangement. Instead, these cells underwent apoptosis that correlated with diminished expression of the pro-survival gene Bcl2A1. Reintroduction of both Pax5 and Bcl2A1 together into PDK1 knockout pro-B cells restored their ability to differentiate in vitro into mature B cells. PMID:23463102

  14. Human regulatory B cells combine phenotypic and genetic hallmarks with a distinct differentiation fate.

    PubMed

    Lin, Wenyu; Cerny, Daniela; Chua, Edmond; Duan, Kaibo; Yi, June Tai Jing; Shadan, Nurhidaya Binte; Lum, Josephine; Maho-Vaillant, Maud; Zolezzi, Francesca; Wong, Siew Cheng; Larbi, Anis; Fink, Katja; Musette, Philippe; Poidinger, Michael; Calbo, Sébastien

    2014-09-01

    Regulatory B cells (B-reg) produce IL-10 and suppress inflammation in both mice and humans, but limited data on the phenotype and function of these cells have precluded detailed assessment of their contribution to host immunity. In this article, we report that human B-reg cannot be defined based on a phenotype composed of conventional B cell markers, and that IL-10 production can be elicited in both the CD27(+) memory population and naive B cell subset after only a brief stimulation in vitro. We therefore sought to obtain a better definition of IL-10-producing human B-regs using a multiparameter analysis of B cell phenotype, function, and gene expression profile. Exposure to CpG and anti-Ig are the most potent stimuli for IL-10 secretion in human B cells, but microarray analysis revealed that human B cells cotreated with these reagents resulted in only ∼0.7% of genes being differentially expressed between IL-10(+) and IL-10(-) cells. Instead, connectivity map analysis revealed that IL-10-secreting B cells are those undergoing specific differentiation toward a germinal center fate, and we identified a CD11c(+) B cell subset that was not capable of producing IL-10 even under optimal conditions. Our findings will assist in the identification of a broader range of human pro-B-reg populations that may represent novel targets for immunotherapy. PMID:25080484

  15. Impaired receptor editing in the primary B cell repertoire of BASH-deficient mice.

    PubMed

    Hayashi, Katsuhiko; Nojima, Takuya; Goitsuka, Ryo; Kitamura, Daisuke

    2004-11-15

    The editing of B cell Ag receptor (BCR) through successive rearrangements of Ig genes has been considered to be a major mechanism for the central B cell tolerance, which precludes appearance of self-reactive B cells, through studies using anti-self-Ig transgenic/knock-in mouse systems. However, contribution of the receptor editing in the development of the normal B cell repertoire remains unclear. In addition, the signaling pathway directing this event is unknown. In this study, we demonstrate that receptor editing in anti-DNA Ig knock-in mice is impaired in the absence of an adaptor protein BASH (BLNK/SLP-65) that is involved in BCR signaling. Remarkably, the supposed hallmarks of receptor editing such as Iglambda chain expression, recombination sequence rearrangements at Igkappa loci, and presence of in-frame VkappaJkappa joins in the Igkappa loci inactivated by the recombination sequence rearrangements, were all diminished in BASH-deficient mice with unmanipulated Ig loci. BCR ligation-induced Iglambda gene recombination in vitro was also impaired in BASH-deficient B cells. Furthermore, the BASH-deficient mice showed an excessive Ab response to a DNA carrier immunization, suggesting the presence of unedited DNA-reactive B cells in the periphery. These results not only define a signaling pathway required for receptor editing but indicate that the BCR-signaled receptor editing indeed operates in the development of normal B cell repertoire and contributes to establishing the B cell tolerance.

  16. Malaria-associated atypical memory B cells exhibit markedly reduced B cell receptor signaling and effector function

    PubMed Central

    Portugal, Silvia; Tipton, Christopher M; Sohn, Haewon; Kone, Younoussou; Wang, Jing; Li, Shanping; Skinner, Jeff; Virtaneva, Kimmo; Sturdevant, Daniel E; Porcella, Stephen F; Doumbo, Ogobara K; Doumbo, Safiatou; Kayentao, Kassoum; Ongoiba, Aissata; Traore, Boubacar; Sanz, Inaki; Pierce, Susan K; Crompton, Peter D

    2015-01-01

    Protective antibodies in Plasmodium falciparum malaria are only acquired after years of repeated infections. Chronic malaria exposure is associated with a large increase in atypical memory B cells (MBCs) that resemble B cells expanded in a variety of persistent viral infections. Understanding the function of atypical MBCs and their relationship to classical MBCs will be critical to developing effective vaccines for malaria and other chronic infections. We show that VH gene repertoires and somatic hypermutation rates of atypical and classical MBCs are indistinguishable indicating a common developmental history. Atypical MBCs express an array of inhibitory receptors and B cell receptor (BCR) signaling is stunted in atypical MBCs resulting in impaired B cell responses including proliferation, cytokine production and antibody secretion. Thus, in response to chronic malaria exposure, atypical MBCs appear to differentiate from classical MBCs becoming refractory to BCR-mediated activation and potentially interfering with the acquisition of malaria immunity. DOI: http://dx.doi.org/10.7554/eLife.07218.001 PMID:25955968

  17. Germline antibody V regions as determinants of clonal persistence and malignant growth in the B cell compartment.

    PubMed Central

    Förster, I; Gu, H; Rajewsky, K

    1988-01-01

    Antibody V gene expression was studied in a subpopulation of murine B cells (Ly1 B) which was enriched by cell transfer and had earlier been shown to persist in the immune system over long periods of time. Among 17 hybridomas derived from Ly1 B cells of two different mice, eight were progeny of only three different B cell precursors which apparently had expanded to clones of large size, in the absence of detectable somatic mutation of their antibody V regions. Furthermore, several clonally independent cells expressed identical, unmutated V genes. These data define a novel pathway of B cell development in which cells expressing a selected set of germline antibodies are continuously propagated in the organism. A Ly1 B cell leukemia derived from a similar transfer experiment expressed a VH gene that had been isolated in three independent Ly1 B cell hybridomas, suggesting that the leukemic cells had been equally selected in this pathway. Images PMID:3264787

  18. Enhanced Cultivation Of Stimulated Murine B Cells

    NASA Technical Reports Server (NTRS)

    Sammons, David W.

    1994-01-01

    Method of in vitro cultivation of large numbers of stimulated murine B lymphocytes. Cells electrofused with other cells to produce hybridomas and monoclonal antibodies. Offers several advantages: polyclonally stimulated B-cell blasts cultivated for as long as 14 days, hybridomas created throughout culture period, yield of hybridomas increases during cultivation, and possible to expand polyclonally in vitro number of B cells specific for antigenic determinants first recognized in vivo.

  19. Clonal relationships in recurrent B-cell lymphomas.

    PubMed

    Lee, Seung Eun; Kang, So Young; Yoo, Hae Yong; Kim, Seok Jin; Kim, Won Seog; Ko, Young Hyeh

    2016-03-15

    Immunoglobulin (Ig) gene rearrangements remain largely unmodified during the clonal expansion of neoplastic cells. We investigated the clonal relationships between lymphoma components at diagnosis and at relapse by analyzing Ig gene rearrangements. A BIOMED-2 multiplex polymerase chain reaction (PCR) assay was performed in 27 patients using formalin-fixed paraffin embedded tissues, with subsequent cloning and sequencing of the amplified Ig genes in 17 patients. All 27 cases of primary and corresponding relapsed tumors showed monoclonal rearrangements of the Ig genes by BIOMED-2 PCR. Whereas IgVH or IgVK fragment lengths were identical in 8/27 pairs (30%), fragment lengths differed in 19/27 pairs (70%). In 17 cases analyzed by sequencing, an identical VDJ gene rearrangement was confirmed in 4/4 pairs (100%) with the same fragment lengths and in 10/13 pairs (77%) with different fragment lengths. Four of 17 primary lymphomas had multiple VDJ rearrangements, and three of them showed an unrelated relapse. Unrelated relapse was observed in 1/8 mantle cell lymphomas, 1/5 diffuse large B-cell lymphomas, and a large B cell lymphoma developed in a patient with a small lymphocytic lymphoma. Unrelated relapses developed after a longer disease-free interval and tended to show poorer outcome compared with related relapse. In summary, relapse of a lymphoma from an unrelated clone is uncommon, but can occur in B-cell lymphomas. Clonal relationships should be determined by sequencing of the Ig genes, and not just by comparing the PCR product size. PMID:26848863

  20. Pathogenetic, Clinical, and Prognostic Features of Adult t(4;11)(q21;q23)/MLL-AF4 Positive B-Cell Acute Lymphoblastic Leukemia

    PubMed Central

    Marchesi, F.; Girardi, K.; Avvisati, G.

    2011-01-01

    Translocation t(4;11)(q21;q23) leading to formation of MLL-AF4 fusion gene is found in about 10% of newly diagnosed B-cell acute lymphoblastic leukemia (ALL) in adult patients. Patients expressing this chromosomal aberration present typical biological, immunophenotypic, and clinical features. This form of leukemia is universally recognized as high-risk leukemia and treatment intensification with allogeneic hematopoietic stem cell transplantation (HSCT) in first complete remission (CR) could be a valid option to improve prognosis, but data obtained from the literature are controversial. In this review, we briefly describe pathogenetic, clinical, and prognostic characteristics of adult t(4;11)(q21;q23)/MLL-AF4 positive ALL and provide a review of the clinical outcome reported by the most important cooperative groups worldwide. PMID:22190943

  1. Inactivation of Btk by insertion of lacZ reveals defects in B cell development only past the pre-B cell stage.

    PubMed Central

    Hendriks, R W; de Bruijn, M F; Maas, A; Dingjan, G M; Karis, A; Grosveld, F

    1996-01-01

    Bruton's tyrosine kinase (Btk) is a cytoplasmic protein kinase that is defective in X-linked agammaglobulinaemia in man and in X-linked immunodeficiency in the mouse. There is controversy regarding the stages of B cell development that are dependent on Btk function. To determine the point in B cell differentiation at which defects in Btk become apparent, we generated a mouse model by inactivating the Btk gene through an in-frame insertion of a lacZ reporter by homologous recombination in embryonic stem cells. The phenomenon of X-chromosome inactivation in Btk+/- heterozygous female mice enabled us to evaluate the competition between B cell progenitors expressing wild-type Btk and those expressing the Btk-/lacZ allele in each successive step of development. Although Btk was already expressed in pro-B cells, the first selective disadvantage only became apparent at the transition from small pre-B cells to immature B cells in the bone marrow. A second differentiation arrest was found during the maturation from IgD(low)IgM(high) to IgD(high)IgM(low) stages in the periphery. Our results show that Btk expression is essential at two distinct differentiation steps, both past the pre-B cell stage. Images PMID:8890160

  2. Essential control of early B-cell development by Mef2 transcription factors.

    PubMed

    Herglotz, Julia; Unrau, Ludmilla; Hauschildt, Friderike; Fischer, Meike; Kriebitzsch, Neele; Alawi, Malik; Indenbirken, Daniela; Spohn, Michael; Müller, Ursula; Ziegler, Marion; Schuh, Wolfgang; Jäck, Hans-Martin; Stocking, Carol

    2016-02-01

    The sequential activation of distinct developmental gene networks governs the ultimate identity of a cell, but the mechanisms involved in initiating downstream programs are incompletely understood. The pre-B-cell receptor (pre-BCR) is an important checkpoint of B-cell development and is essential for a pre-B cell to traverse into an immature B cell. Here, we show that activation of myocyte enhancer factor 2 (Mef2) transcription factors (TFs) by the pre-BCR is necessary for initiating the subsequent genetic network. We demonstrate that B-cell development is blocked at the pre-B-cell stage in mice deficient for Mef2c and Mef2d TFs and that pre-BCR signaling enhances the transcriptional activity of Mef2c/d through phosphorylation by the Erk5 mitogen-activating kinase. This activation is instrumental in inducing Krüppel-like factor 2 and several immediate early genes of the AP1 and Egr family. Finally, we show that Mef2 proteins cooperate with the products of their target genes (Irf4 and Egr2) to induce secondary waves of transcriptional regulation. Our findings uncover a novel role for Mef2c/d in coordinating the transcriptional network that promotes early B-cell development. PMID:26660426

  3. PU.1 cooperates with IRF4 and IRF8 to suppress pre-B-cell leukemia.

    PubMed

    Pang, S H M; Minnich, M; Gangatirkar, P; Zheng, Z; Ebert, A; Song, G; Dickins, R A; Corcoran, L M; Mullighan, C G; Busslinger, M; Huntington, N D; Nutt, S L; Carotta, S

    2016-06-01

    The Ets family transcription factor PU.1 and the interferon regulatory factor (IRF)4 and IRF8 regulate gene expression by binding to composite DNA sequences known as Ets/interferon consensus elements. Although all three factors are expressed from the onset of B-cell development, single deficiency of these factors in B-cell progenitors only mildly impacts on bone marrow B lymphopoiesis. Here we tested whether PU.1 cooperates with IRF factors in regulating early B-cell development. Lack of PU.1 and IRF4 resulted in a partial block in development the pre-B-cell stage. The combined deletion of PU.1 and IRF8 reduced recirculating B-cell numbers. Strikingly, all PU.1/IRF4 and ~50% of PU.1/IRF8 double deficient mice developed pre-B-cell acute lymphoblastic leukemia (B-ALL) associated with reduced expression of the established B-lineage tumor suppressor genes, Ikaros and Spi-B. These genes are directly regulated by PU.1/IRF4/IRF8, and restoration of Ikaros or Spi-B expression inhibited leukemic cell growth. In summary, we demonstrate that PU.1, IRF4 and IRF8 cooperate to regulate early B-cell development and to prevent pre-B-ALL formation.

  4. Histone modifications predispose genome regions to breakage and translocation

    PubMed Central

    Burman, Bharat; Zhang, Zhuzhu Z.; Pegoraro, Gianluca; Lieb, Jason D.; Misteli, Tom

    2015-01-01

    Chromosome translocations are well-established hallmarks of cancer cells and often occur at nonrandom sites in the genome. The molecular features that define recurrent chromosome breakpoints are largely unknown. Using a combination of bioinformatics, biochemical analysis, and cell-based assays, we identify here specific histone modifications as facilitators of chromosome breakage and translocations. We show enrichment of several histone modifications over clinically relevant translocation-prone genome regions. Experimental modulation of histone marks sensitizes genome regions to breakage by endonuclease challenge or irradiation and promotes formation of chromosome translocations of endogenous gene loci. Our results demonstrate that histone modifications predispose genome regions to chromosome breakage and translocations. PMID:26104467

  5. Regulated selection of germinal-center cells into the memory B cell compartment.

    PubMed

    Shinnakasu, Ryo; Inoue, Takeshi; Kometani, Kohei; Moriyama, Saya; Adachi, Yu; Nakayama, Manabu; Takahashi, Yoshimasa; Fukuyama, Hidehiro; Okada, Takaharu; Kurosaki, Tomohiro

    2016-07-01

    Despite the importance of memory B cells in protection from reinfection, how such memory cells are selected and generated during germinal-center (GC) reactions remains unclear. We found here that light-zone (LZ) GC B cells with B cell antigen receptors (BCRs) of lower affinity were prone to enter the memory B cell pool. Mechanistically, cells in this memory-prone fraction had higher expression of the transcriptional repressor Bach2 than that of their counterparts with BCRs of higher affinity. Haploinsufficiency of Bach2 resulted in reduced generation of memory B cells, independently of suppression of the gene encoding the transcription factor Blimp-1. Bach2 expression in GC cells was inversely correlated with the strength of help provided by T cells. Thus, we propose an instructive model in which weak help from T cells maintains relatively high expression of Bach2, which predisposes GC cells to enter the memory pool.

  6. Actin-Binding Protein 1 Regulates B Cell Receptor-Mediated Antigen Processing and Presentation in Response to B Cell Receptor Activation1

    PubMed Central

    Onabajo, Olusegun O.; Seeley, Margaret K.; Kale, Amruta; Qualmann, Britta; Kessels, Michael; Han, Jin; Tan, Tse-Hua; Song, Wenxia

    2010-01-01

    The BCR serves as both signal transducer and Ag transporter. Binding of Ags to the BCR induces signaling cascades and Ag processing and presentation, two essential cellular events for B cell activation. BCR-initiated signaling increases BCR-mediated Ag-processing efficiency by increasing the rate and specificity of Ag transport. Previous studies showed a critical role for the actin cytoskeleton in these two processes. In this study, we found that actin-binding protein 1 (Abp1/HIP-55/SH3P7) functioned as an actin-binding adaptor protein, coupling BCR signaling and Ag-processing pathways with the actin cytoskeleton. Gene knockout of Abp1 and overexpression of the Src homology 3 domain of Abp1 inhibited BCR-mediated Ag internalization, consequently reducing the rate of Ag transport to processing compartments and the efficiency of BCR-mediated Ag processing and presentation. BCR activation induced tyrosine phosphorylation of Abp1 and translocation of both Abp1 and dynamin 2 from the cytoplasm to plasma membrane, where they colocalized with the BCR and cortical F-actin. Mutations of the two tyrosine phosphorylation sites of Abp1 and depolymerization of the actin cytoskeleton interfered with BCR-induced Abp1 recruitment to the plasma membrane. The inhibitory effect of a dynamin proline-rich domain deletion mutant on the recruitment of Abp1 to the plasma membrane, coimmunoprecipitation of dynamin with Abp1, and coprecipitation of Abp1 with GST fusion of the dyanmin proline-rich domain demonstrate the interaction of Abp1 with dynamin 2. These results demonstrate that the BCR regulates the function of Abp1 by inducing Abp1 phosphorylation and actin cytoskeleton rearrangement, and that Abp1 facilitates BCR-mediated Ag processing by simultaneously interacting with dynamin and the actin cytoskeleton. The Journal of Immunology, 2008, 180: 6685–6695. PMID:18453588

  7. Physical mapping and cloning of a translocation in sugar beet (Beta vulgaris L) carrying a gene for nematode (Heterodera schachtii) resistance from B. procumbens.

    PubMed

    Kleine, M; Cai, D; Elbl, C; Herrmann, R G; Jung, C

    1995-03-01

    Two diploid (2n=18) sugar beet (Beta vulgaris L.) lines which carry monogenic traits for nematode (Heterodera schachtii Schm.) resistance located on translocations from the wild beet species Beta procumbens were investigated. Short interspersed repetitive DNA elements exclusively hybridizing with wild beet DNA were found to be dispersed around the translocations. The banding pattern as revealed by genomic Southern hybridization was highly conserved among translocation lines of different origins indicating that the translocations are not affected by recombination events with sugar beet chromosomes. Physical mapping revealed that the entire translocation is represented by a single Sal I fragment 300 kb in size. A representative YAC (yeast artifical chromosome) library consisting of approximately 13,000 recombinant clones (2.2 genome equivalents) with insert sizes ranging between 50 and 450 kb and an average of 130kb has been constructed from the resistant line A906001. Three recombinant YACs were isolated from this library using the wild beet-specific repetitive elements as probes for screening. Colinearity between YAC inserts and donor DNA was confirmed by DNA fingerprinting utilizing these repetitive probes. The YACs were arranged into two contigs with a total size of 215 kb; these represent a minimum of 72% of the translocation.

  8. Somatostatin Improved B Cells Mature in Macaques during Intestinal Ischemia-Reperfusion

    PubMed Central

    Liu, Ling; Tan, Qinghua; Hu, Bin; Wu, Hao; Wang, Chunhui; Liu, Rui; Tang, Chengwei

    2015-01-01

    adaptive immunity of B cells, greatly improved B cells mature in macaques during ischemia-reperfusion. Preventive supplements of somatostatin may greatly limit intestinal injury and bacterial translocation during ischemia-reperfusion. PMID:26222793

  9. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy.

    PubMed

    Li, Rui; Rezk, Ayman; Miyazaki, Yusei; Hilgenberg, Ellen; Touil, Hanane; Shen, Ping; Moore, Craig S; Michel, Laure; Althekair, Faisal; Rajasekharan, Sathy; Gommerman, Jennifer L; Prat, Alexandre; Fillatreau, Simon; Bar-Or, Amit

    2015-10-21

    B cells are not limited to producing protective antibodies; they also perform additional functions relevant to both health and disease. However, the relative contribution of functionally distinct B cell subsets in human disease, the signals that regulate the balance between such subsets, and which of these subsets underlie the benefits of B cell depletion therapy (BCDT) are only partially elucidated. We describe a proinflammatory, granulocyte macrophage-colony stimulating factor (GM-CSF)-expressing human memory B cell subset that is increased in frequency and more readily induced in multiple sclerosis (MS) patients compared to healthy controls. In vitro, GM-CSF-expressing B cells efficiently activated myeloid cells in a GM-CSF-dependent manner, and in vivo, BCDT resulted in a GM-CSF-dependent decrease in proinflammatory myeloid responses of MS patients. A signal transducer and activator of transcription 5 (STAT5)- and STAT6-dependent mechanism was required for B cell GM-CSF production and reciprocally regulated the generation of regulatory IL-10-expressing B cells. STAT5/6 signaling was enhanced in B cells of untreated MS patients compared with healthy controls, and B cells reemerging in patients after BCDT normalized their STAT5/6 signaling as well as their GM-CSF/IL-10 cytokine secretion ratios. The diminished proinflammatory myeloid cell responses observed after BCDT persisted even as new B cells reconstituted. These data implicate a proinflammatory B cell/myeloid cell axis in disease and underscore the rationale for selective targeting of distinct B cell populations in MS and other human autoimmune diseases. PMID:26491076

  10. Clinical Severity of PGK1 Deficiency Due To a Novel p.E120K Substitution Is Exacerbated by Co-inheritance of a Subclinical Translocation t(3;14)(q26.33;q12), Disrupting NUBPL Gene.

    PubMed

    David, Dezső; Almeida, Lígia S; Maggi, Maristella; Araújo, Carlos; Imreh, Stefan; Valentini, Giovanna; Fekete, György; Haltrich, Irén

    2015-01-01

    Carriers of cytogenetically similar, apparently balanced familial chromosome translocations not always exhibit the putative translocation-associated disease phenotype. Additional genetic defects, such as genomic imbalance at breakpoint regions or elsewhere in the genome, have been reported as the most plausible explanation.By means of comprehensive molecular and functional analyses, additional to careful dissection of the t(3;14)(q26.33;q12) breakpoints, we unveil a novel X-linked PGK1 mutation and examine the contribution of these to the extremely severe clinical phenotype characterized by hemolytic anemia and neuromyopathy.The 3q26.33 breakpoint is 40 kb from the 5' region of tetratricopeptide repeat domain 14 gene (TTC14), whereas the 14q12 breakpoint is within IVS6 of nucleotide-binding protein-like gene (NUBPL) that encodes a mitochondrial complex I assembly factor. Disruption of NUBPL in translocation carriers leads to a decrease in the corresponding mRNA accompanied by a decrease in protein level. Exclusion of pathogenic genomic imbalance and reassessment of familial clinical history indicate the existence of an additional causal genetic defect. Consequently, by WES a novel mutation, c.358G>A, p.E120K, in the X-linked phosphoglycerate kinase 1 (PGK1) was identified that segregates with the phenotype. Specific activity, kinetic properties, and thermal stability of this enzyme variant were severely affected. The novel PGK1 mutation is the primary genetic alteration underlying the reported phenotype as the translocation per se only results in a subclinical phenotype. Nevertheless, its co-inheritance presumably exacerbates PGK1-deficient phenotype, most likely due to a synergistic interaction of the affected genes both involved in cell energy supply. PMID:25814383

  11. Translocator protein (Tspo) gene promoter-driven green fluorescent protein synthesis in transgenic mice: an in vivo model to study Tspo transcription

    PubMed Central

    Wang, Hui-Jie; Fan, Jinjiang; Papadopoulos, Vassilios

    2013-01-01

    Translocator protein (TSPO), previously known as the peripheral-type benzodiazepine receptor, is a ubiquitous drug- and cholesterol-binding protein primarily found in the outer mitochondrial membrane as part of a mitochondrial cholesterol transport complex. TSPO is present at higher levels in steroid-synthesizing and rapidly proliferating tissues, and its biological role has been mainly linked to mitochondrial function, steroidogenesis, and cell proliferation/apoptosis. Aberrant TSPO levels have been linked to multiple diseases, including cancer, endocrine disorders, brain injury, neurodegeneration, ischemia-reperfusion injury, and inflammatory diseases. Investigation of the functions of this protein in vitro and in vivo have been mainly carried out using high-affinity drug ligands, such as isoquinoline carboxamides and benzodiazepines, and more recently, gene silencing methods. To establish a model to study the regulation of Tspo transcription in vivo, we generated a transgenic mouse model expressing green fluorescent protein (GFP) from Aequorea coerulescens under control of the Tspo promoter region (Tspo-AcGFP). The expression profiles of Tspo-AcGFP, endogenous TSPO, and Tspo mRNA were found to be well correlated. Tspo-AcGFP synthesis in the transgenic mice was seen in almost every tissue examined, and as with TSPO in wild-type mice, Tspo-AcGFP was highly expressed in steroidogenic cells of the endocrine and reproductive systems, epithelial cells of the digestive system, skeletal muscle, and other organs. In summary, this transgenic Tspo-AcGFP mouse model recapitulates endogenous Tspo expression patterns and could be a useful, tractable tool for monitoring the transcriptional regulation and function of Tspo in live animal experiments. PMID:22868914

  12. Dynamic Contrast-Enhanced CT Characterization of Xp11.2 Translocation/TFE3 Gene Fusions versus Papillary Renal Cell Carcinomas

    PubMed Central

    He, Jian; Zhou, Kefeng; Zhu, Bin; Zhang, Gutian; Li, Xiaogong; Guo, Hongqian; Gan, Weidong; Zhou, Zhengyang; Liu, Tian

    2015-01-01

    Purpose. To compare the differences of CT characteristics between renal cell carcinomas (RCCs) associated with Xp11.2 translocation/TFE3 gene fusions (Xp11.2 RCCs) and papillary cell renal cell carcinomas (PRCCs). Methods. CT images and clinical records of 64 patients (25 Xp11.2 RCCs, 15 type 1 and 24 type 2 PRCCs) were analyzed and compared retrospectively. Results. Xp11.2 RCC more frequently affected young (30.7 ± 8.7 years) women (16/25, 64%) with gross hematuria (12/25, 48%), while PRCC more frequently involved middle-aged (54.8 ± 11.1 years) men (28/39, 71.8%) asymptomatically. Xp11.2 RCC tended to be heterogeneous density with some showing circular calcification. Lesion sizes of Xp11.2 RCC (5.4 ± 2.2 cm) and type 2 PRCC (5.7 ± 2.5 cm) were significantly larger than that of type 1 PRCC (3.8 ± 1.8 cm). Xp11.2 RCC contained more cystic components (22/25, 88%) than type 1 PRCC (all solid) and type 2 PRCC (9/24, 36.0%). Type 1 PRCC (13/15, 86.7%) and Xp11.2 RCC (21/25, 84.0%) showed more clear boundary than type 2 PRCC (12/24, 50.0%). Conclusion. CT features including diameter, boundary, attenuation, nature, and circular calcification of the tumor, combined with demographic information and symptoms, may be useful to differentiate Xp11.2 RCC from different subtypes of PRCC. PMID:26636097

  13. B-cell monoclonality, Epstein Barr virus, and t(14;18) in myoepithelial sialadenitis and low-grade B-cell MALT lymphoma of the parotid gland.

    PubMed

    Diss, T C; Wotherspoon, A C; Speight, P; Pan, L; Isaacson, P G

    1995-05-01

    Low-grade mucosa-associated lymphoid tissue (MALT) type B-cell lymphomas of the salivary gland arise in a background of myoepithelial sialadenitis (MESA), usually in association with Sjögren's syndrome. The distinction between benign MESA and early lymphoma has proved difficult using histological criteria alone and the significance of B-cell monoclonality in this respect is controversial. We have used immunohistochemistry and polymerase chain reaction (PCR) amplification of immunoglobulin heavy-chain VDJ regions to assess clonality in biopsies from 45 patients with lymphoid infiltration of the parotid. Sequential biopsies spanning 3-18 years were available from seven patients, three of whom had developed disseminated nodal B-cell lymphoma. In light of previous studies, each biopsy was additionally analyzed for the presence of t(14;18) and Epstein Barr Virus (EBV) DNA using PCR. Monoclonality was detected in 34/45 cases. Comparison of histology with clonality confirmed earlier suggestions that the emergence of an identifiable population of centrocyte-like B cells around ducts or epithelial islands correlated with monoclonality. In six of seven patients with sequential biopsies PCR fragments of identical size were amplified from each biopsy, suggesting that demonstrable monoclonality in "lymphoepithelial" lymphoproliferative lesions of the salivary gland is indicative of lymphoma. No t(14;18) chromosome translocations were identified; EBV sequences were detected in three of 45 cases.

  14. Lack of glucocorticoid-induced leucine zipper (GILZ) deregulates B-cell survival and results in B-cell lymphocytosis in mice

    PubMed Central

    Bruscoli, Stefano; Biagioli, Michele; Sorcini, Daniele; Frammartino, Tiziana; Cimino, Monica; Sportoletti, Paolo; Mazzon, Emanuela; Bereshchenko, Oxana

    2015-01-01

    Glucocorticoids (GC) are widely used as antiinflammatory/immunosuppressive drugs and antitumor agents in several types of lymphoma and leukemia. Therapeutic doses of GC induce growth-suppressive and cytotoxic effects on various leukocytes including B cells. Molecular mechanisms of GC action include induction of GC target genes. Glucocorticoid-induced leucine zipper (GILZ) is a rapidly, potently, and invariably GC-induced gene. It mediates a number of GC effects, such as control of cell proliferation, differentiation, and apoptosis. Here we show that deletion of GILZ in mice leads to an accumulation of B lymphocytes in the bone marrow, blood, and lymphoid tissues. Gilz knockout (KO) mice develop a progressive nonlethal B lymphocytosis, with expansion of B220+ cells in the bone marrow and in the periphery, dependent on increased B-cell survival. Decreased B-cell apoptosis in mice lacking GILZ correlates with increased NF-κB transcriptional activity and Bcl-2 expression. B cell–specific gilz KO mice confirmed that the effect of GILZ deletion is B-cell self-intrinsic. These results establish GILZ as an important regulator of B-cell survival and suggest that the deregulation of GILZ expression could be implicated in the pathogenesis of B-cell disorders. PMID:26276664

  15. APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation.

    PubMed

    Merluzzi, Sonia; Gri, Giorgia; Gattei, Valter; Pagano, Michele; Pucillo, Carlo

    2008-08-01

    Apurinic/apyrimidinic endonuclease-1/Redox factor-1, a multifunctional DNA base excision repair and redox regulation enzyme, plays an important role in oxidative signalling, transcription factor regulation, and cell cycle control. Recently, we have demonstrated that following the triggering of CD40 on B cells, APE/Ref-1 translocates from the cytoplasm to the nucleus and regulates the activity of B cell-specific transcription factors. In the present paper we investigate whether APE/Ref-1 plays a role in controlling CD40-mediated B cell proliferation too. We demonstrate a concurrent increase in proliferation and decrease in apoptosis of primary mouse B cells activated by CD40 cross-linking and transfected with functional APE/Ref-1 antisense oligonucleotide. Moreover, we provide evidence that a redox-mediated signalling mechanism is involved in this process and we propose that APE/Ref-1, controlling the intracellular redox state, may also affect the cell cycle by inducing nucleus-cytoplasm redistribution of p21. Together, these findings suggest that APE/Ref-1 could act as a negative regulator in an adaptive response to elevated ROS levels following CD40 cross-linking. Considering the important role of ROS and APE/Ref-1 in CD40-mediated B cell proliferation, our data will contribute to understand the mechanisms of tumor escape and suggest APE/Ref-1 as a novel target for tumor therapeutic approaches.

  16. TSPAN33 is a novel marker of activated and malignant B cells

    PubMed Central

    Luu, Van Phi; Hevezi, Peter; Vences-Catalan, Felipe; Maravillas-Montero, Jose Luis; White, Clayton Alexander; Casali, Paolo; Llorente, Luis; Jakez-Ocampo, Juan; Lima, Guadalupe; Vilches-Cisneros, Natalia; Flores-Gutiérrez, Juan Pablo; Santos-Argumedo, Leopoldo; Zlotnik, Albert

    2014-01-01

    We have identified Tspan33 as a gene encoding a transmembrane protein exhibiting a restricted expression pattern including expression in activated B cells. TSPAN33 is a member of the tetraspanin family. TSPAN33 is not expressed in resting B cells, but is strongly induced in primary human B cells following activation. Human 2E2 cells, a Burkitt’s lymphoma-derived B cell model of activation and differentiation, also upregulate TSPAN33 upon activation. TSPAN33 is expressed in several lymphomas including Hodgkin’s and Diffuse large B Cell Lymphoma. TSPAN33 is also expressed in some autoimmune diseases where B cells participate in the pathology, including rheumatoid arthritis patients, systemic lupus erythematosus (SLE), and in spleen B cells from MRL/Faslpr/lpr mice (a mouse model of SLE). We conclude that TSPAN33 may be used as a diagnostic biomarker or as a target for therapeutic antibodies for treatment of certain B cell lymphomas or autoimmune diseases. PMID:24211713

  17. The unexpected evolution of a case of diffuse large B-cell non-Hodgkin lymphoma.

    PubMed

    Găman, Amelia; Bold, Adriana; Găman, G

    2011-01-01

    The diffuse large B-cell lymphoma (DLBCL) represents the most common type of aggressive non-Hodgkin's lymphoma with a heterogeneous morphology, biology and clinical presentation. Gene expression profiling studies identified three distinct molecular subtypes of DLCBL arisen from B-cells at different stages of differentiation: germinal center B-cell-like (GCB) DLBCL, activated B-cell-like (ABC) DLBCL, primary mediastinal B-cell lymphoma (PMBL). The most relevant oncogenic pathways in diffuse large B-cell lymphoma are: deregulated B-cell receptor/proliferation signaling, BCL6 and NF-kB constitutive expression, defects in apoptosis and neoangiogenesis. The treatment of DLBCL has been completely modified in the last ten years by combination of anti-CD20 monoclonal antibody (rituximab) and CHOP chemotherapy, which is now the first line therapy. In the last years, there have been reported several cases of progressive multifocal leukoencephalopathy (PML) at patients with rheumatoid arthritis treated with rituximab. Progressive multifocal leukoencephalopathy is possible as an adverse reaction to rituximab at patients treated with R-CHOP for diffuse large B-cell lymphoma. PMID:21655667

  18. DNase I hypersensitive sites flank the mouse class II major histocompatibility complex during B cell development.

    PubMed Central

    Carson, S

    1991-01-01

    The mouse class II major histocompatibility complex (MHC) encodes a polymorphic, multigene family important in the immune response, and is expressed mainly on mature B cells, on certain types of dendritic cells and is also inducible by gamma-interferon on antigen presenting cells. To study the regulatory elements which control this expression pattern, we have examined the chromatin structure flanking the class II MHC region, in particular during B cell differentiation. Using a panel of well-characterised mouse cell lines specific for different stages of B cell development (pre-B, B, plasma cell) as well as non-B cell lines, we have mapped the DNase I hypersensitive (DHS) sites adjacent to the mouse MHC class II region. The results presented show, for the first time that there are specific hypersensitive sites flanking the class II MHC locus during pre B cell, B cell and plasma cell stages of B cell differentiation, irrespective of the status of class II MHC expression. These hypersensitive sites are not found in T cell, fibroblast or uninduced myelomonocytic cell lines. This suggests that these DHS sites define a developmentally stable, chromatin structure, which can be used as a marker of B cell lineage commitment and may indicate that a combination of these hypersensitive sites reflect regulatory proteins involved in the immediate expression of a particular class II MHC gene or possibly control of the entire locus. Images PMID:1923768

  19. Targeting the B cell receptor signaling pathway in B lymphoid malignancies

    PubMed Central

    Buchner, Maike; Müschen, Markus

    2014-01-01

    PURPOSE OF REVIEW Normal B cells that failed to productively rearrange immunoglobulin V region genes, encoding a functional B cell receptor (BCR) are destined to die. Likewise, the majority of B cell malignancies remain dependent on functional BCR signaling, while in some subtypes BCR expression is missing and, apparently, counterselected. Here we summarize recent the experimental evidence for the importance of BCR signaling and clinical concepts to target the BCR pathway in B cell leukemia and lymphoma. RECENT FINDINGS While the dependency on pre-BCR signaling in pre-B acute lymphoblastic leukemia (ALL) seems to be limited to few ALL subtypes (e.g. TCF3-PBX1), most mature B cell lymphomas rely on BCR signaling provided by different stimuli e.g. tonic B cell signaling, chronic (auto)-antigen exposure, and self-binding properties of the BCR. The finding that in chronic lymphocytic leukemia (CLL), BCRs bind to an epitope on the BCR itself unravels a novel concept for CLL pathogenesis. SUMMARY Targeting of the B cell receptor tyrosine kinases SYK, BTK, and PI3K achieve promising clinical responses in various mature B cell malignancies and might also be useful in defined subsets of ALL. However, further understanding of the BCR signal integration in the different disease groups are required to accurately predict, which groups of patients will benefit from BCR pathway-inhibition. PMID:24811161

  20. A novel selection system for chromosome translocations in Saccharomyces cerevisiae.

    PubMed Central

    Tennyson, Rachel B; Ebran, Nathalie; Herrera, Anissa E; Lindsley, Janet E

    2002-01-01

    Chromosomal translocations are common genetic abnormalities found in both leukemias and solid tumors. While much has been learned about the effects of specific translocations on cell proliferation, much less is known about what causes these chromosome rearrangements. This article describes the development and use of a system that genetically selects for rare translocation events using the yeast Saccharomyces cerevisiae. A translocation YAC was created that contains the breakpoint cluster region from the human MLL gene, a gene frequently involved in translocations in leukemia patients, flanked by positive and negative selection markers. A translocation between the YAC and a yeast chromosome, whose breakpoint falls within the MLL DNA, physically separates the markers and forms the basis for the selection. When RAD52 is deleted, essentially all of the selected and screened cells contain simple translocations. The detectable translocation rates are the same in haploids and diploids, although the mechanisms involved and true translocation rates may be distinct. A unique double-strand break induced within the MLL sequences increases the number of detectable translocation events 100- to 1000-fold. This novel system provides a tractable assay for answering basic mechanistic questions about the development of chromosomal translocations. PMID:11973293

  1. Sophoricoside isolated from Sophora japonica ameliorates contact dermatitis by inhibiting NF-κB signaling in B cells.

    PubMed

    Lee, Hong Kyung; Kim, Hyung Sook; Kim, Yeon Jin; Kim, Ji Sung; Park, Yoon Soo; Kang, Jong Soon; Yuk, Dong Yeon; Hong, Jin Tae; Kim, Youngsoo; Han, Sang-Bae

    2013-03-01

    Sophoricoside (SOPH) is an isoflavone isolated from Sophora japonica (Leguminosae). In this study, the inhibitory effect of SOPH on contact dermatitis was investigated. At dosages of 3 and 10 mg/kg, SOPH ameliorated 2,4-dinitrochlorobenzene-induced acute and chronic contact dermatitis by 50-70%. As cellular targets, SOPH mainly affected the functions of B cells rather than T cells, macrophages and dendritic cells. As signaling targets, SOPH inhibited the phosphorylation and degradation of IκBα/β and the nuclear translocation of NF-κB p65 in B cells, but not in dendritic cells and macrophages. SOPH did not affect the phosphorylation of ERK, p38, and JNK MAPKs, in B cells, dendritic cells, and macrophages. Taken together, these results suggest that SOPH ameliorates contact dermatitis by inhibiting mainly NF-κB signaling in B cells. PMID:23415872

  2. Somatic Rearrangement in B cells: It’s (mostly) Nuclear Physics

    PubMed Central

    Aiden, Erez Lieberman; Casellas, Rafael

    2015-01-01

    We discuss how principles of nuclear architecture drive typical gene rearrangements in B lymphocytes, whereas translocation hotspots and recurrent lesions reflect the extent of AID-mediated DNA damage and selection. PMID:26276627

  3. Emerging immunotherapy and strategies directly targeting B cells for the treatment of diffuse large B-cell lymphoma.

    PubMed

    Witkowska, Magdalena; Smolewski, Piotr

    2015-01-01

    During the last decade, significant prolonged survival in diffusive large B-cell lymphoma (DLBCL) has been observed. The efficacy of initial treatment improved mostly due to addition of a chimeric anti-CD20 monoclonal antibody (rituximab) to standard chemotherapeutic regimens. Moreover, accurate understanding of DLBCL pathogenesis and remarkable progress in gene expression profiling have led to the development of a variety of tumor-specific regimens. Novel agents target directly the pathways involved in signal transduction, lead to apoptosis and cancer cells differentiation. In this article, we mainly focus on new treatment options, such as monoclonal antibodies, tyrosine kinase inhibitors and immunomodulatory drugs, currently investigated in aggressive B-cell lymphoma with particular attention to DLBCL type.

  4. Human norovirus culture in B cells.

    PubMed

    Jones, Melissa K; Grau, Katrina R; Costantini, Veronica; Kolawole, Abimbola O; de Graaf, Miranda; Freiden, Pamela; Graves, Christina L; Koopmans, Marion; Wallet, Shannon M; Tibbetts, Scott A; Schultz-Cherry, Stacey; Wobus, Christiane E; Vinjé, Jan; Karst, Stephanie M

    2015-12-01

    Human noroviruses (HuNoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HuNoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HuNoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-Sydney HuNoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HuNoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. Analysis of infection or attachment samples, including RNA extraction and RT-qPCR, requires ∼6 h.

  5. Chromosomal translocation engineering to recapitulate primary events of human cancer.

    PubMed

    Forster, A; Pannell, R; Drynan, L; Cano, F; Chan, N; Codrington, R; Daser, A; Lobato, N; Metzler, M; Nam, C-H; Rodriguez, S; Tanaka, T; Rabbitts, T

    2005-01-01

    Mouse models of human cancers are important for understanding determinants of overt disease and for "preclinical" development of rational therapeutic strategies; for instance, based on macrodrugs. Chromosomal translocations underlie many human leukemias, sarcomas, and epithelial tumors. We have developed three technologies based on homologous recombination in mouse ES cells to mimic human chromosome translocations. The first, called the knockin method, allows creation of fusion genes like those typical of translocations of human leukemias and sarcomas. Two new conditional chromosomal translocation mimics have been developed. The first is a method for generating reciprocal chromosomal translocations de novo using Cre-loxP recombination (translocator mice). In some cases, there is incompatible gene orientation and the translocator model cannot be applied. We have developed a different model (invertor mice) for these situations. This method consists of introducing an inverted cDNA cassette into the intron of a target gene and bringing the cassette into the correct transcriptional orientation by Cre-loxP recombination. We describe experiments using the translocator model to generate MLL-mediated neoplasias and the invertor method to generate EWS-ERG-mediated cancer. These methods mimic the situation found in human chromosome translocations and provide the framework for design and study of human chromosomal translocations in mice.

  6. A recurrent dominant negative E47 mutation causes agammaglobulinemia and BCR(-) B cells.

    PubMed

    Boisson, Bertrand; Wang, Yong-Dong; Bosompem, Amma; Ma, Cindy S; Lim, Annick; Kochetkov, Tatiana; Tangye, Stuart G; Casanova, Jean-Laurent; Conley, Mary Ellen

    2013-11-01

    Approximately 90% of patients with isolated agammaglobulinemia and failure of B cell development have mutations in genes required for signaling through the pre–B cell and B cell receptors. The nature of the gene defect in the majority of remaining patients is unknown. We recently identified 4 patients with agammaglobulinemia and markedly decreased numbers of peripheral B cells. The B cells that could be detected had an unusual phenotype characterized by the increased expression of CD19 but the absence of a B cell receptor. Genetic studies demonstrated that all 4 patients had the exact same de novo mutation in the broadly expressed transcription factor E47. The mutant protein (E555K) was stable in patient-derived EBV-transformed cell lines and cell lines transfected with expression vectors. E555K in the transfected cells localized normally to the nucleus and resulted in a dominant negative effect when bound to DNA as a homodimer with wild-type E47. Mutant E47 did permit DNA binding by a tissue-specific heterodimeric DNA-binding partner, myogenic differentiation 1 (MYOD). These findings document a mutational hot-spot in E47 and represent an autosomal dominant form of agammaglobulinemia. Further, they indicate that E47 plays a critical role in enforcing the block in development of B cell precursors that lack functional antigen receptors. PMID:24216514

  7. Cryptic translocation t(5;11)(q35;p15.5) with involvement of the NSD1 and NUP98 genes without 5q deletion in childhood acute myeloid leukemia.

    PubMed

    Panarello, Claudio; Rosanda, Cristina; Morerio, Cristina

    2002-11-01

    The cryptic translocation t(5;11)(q35;p15.5), which creates a NSD1-NUP98 fusion gene, has been associated with a deletion of the long arm of chromosome 5, del(5q), in pediatric acute myeloid leukemia (AML) patients with differentiated phenotype. We screened five pediatric cases of AML with apparently normal karyotype by use of fluorescence in situ hybridization analysis and detected one case with early myeloid phenotype and poor clinical outcome, but with the same breakpoints and no del(5q). These findings point to the involvement of t(5;11) as an early event in leukemogenesis. Screening for this translocation in AML patients with apparently normal karyotype at onset is recommended.

  8. The DNA Damage Response Regulates RAG1/2 Expression in Pre-B Cells through ATM-FOXO1 Signaling.

    PubMed

    Ochodnicka-Mackovicova, Katarina; Bahjat, Mahnoush; Maas, Chiel; van der Veen, Amélie; Bloedjes, Timon A; de Bruin, Alexander M; van Andel, Harmen; Schrader, Carol E; Hendriks, Rudi W; Verhoeyen, Els; Bende, Richard J; van Noesel, Carel J M; Guikema, Jeroen E J

    2016-10-01

    The recombination activating gene (RAG) 1 and RAG2 protein complex introduces DNA breaks at Tcr and Ig gene segments that are required for V(D)J recombination in developing lymphocytes. Proper regulation of RAG1/2 expression safeguards the ordered assembly of Ag receptors and the development of lymphocytes, while minimizing the risk for collateral damage. The ataxia telangiectasia mutated (ATM) kinase is involved in the repair of RAG1/2-mediated DNA breaks and prevents their propagation. The simultaneous occurrence of RAG1/2-dependent and -independent DNA breaks in developing lymphocytes exposed to genotoxic stress increases the risk for aberrant recombinations. In this study, we assessed the effect of genotoxic stress on RAG1/2 expression in pre-B cells and show that activation of the DNA damage response resulted in the rapid ATM-dependent downregulation of RAG1/2 mRNA and protein expression. We show that DNA damage led to the loss of FOXO1 binding to the enhancer region of the RAG1/2 locus (Erag) and provoked FOXO1 cleavage. We also show that DNA damage caused by RAG1/2 activity in pre-B cells was able to downmodulate RAG1/2 expression and activity, confirming the existence of a negative feedback regulatory mechanism. Our data suggest that pre-B cells are endowed with a protective mechanism that reduces the risk for aberrant recombinations and chromosomal translocations when exposed to DNA damage, involving the ATM-dependent regulation of FOXO1 binding to the Erag enhancer region. PMID:27559048

  9. Physiology in conservation translocations.

    PubMed

    Tarszisz, Esther; Dickman, Christopher R; Munn, Adam J

    2014-01-01

    Conservation translocations aim to restore species to their indigenous ranges, protect populations from threats and/or reinstate ecosystem functions. They are particularly important for the conservation and management of rare and threatened species. Despite tremendous efforts and advancement in recent years, animal conservation translocations generally have variable success, and the reasons for this are often uncertain. We suggest that when little is known about the physiology and wellbeing of individuals either before or after release, it will be difficult to determine their likelihood of survival, and this could limit advancements in the science of translocations for conservation. In this regard, we argue that physiology offers novel approaches that could substantially improve translocations and associated practices. As a discipline, it is apparent that physiology may be undervalued, perhaps because of the invasive nature of some physiological measurement techniques (e.g. sampling body fluids, surgical implantation). We examined 232 publications that dealt with translocations of terrestrial vertebrates and aquatic mammals and, defining 'success' as high or low, determined how many of these studies explicitly incorporated physiological aspects into their protocols and monitoring. From this review, it is apparent that physiological evaluation before and after animal releases could progress and improve translocation/reintroduction successes. We propose a suite of physiological measures, in addition to animal health indices, for assisting conservation translocations over the short term and also for longer term post-release monitoring. Perhaps most importantly, we argue that the incorporation of physiological assessments of animals at all stages of translocation can have important welfare implications by helping to reduce the total number of animals used. Physiological indicators can also help to refine conservation translocation methods. These approaches fall under a

  10. Physiology in conservation translocations

    PubMed Central

    Tarszisz, Esther; Dickman, Christopher R.; Munn, Adam J.

    2014-01-01

    Conservation translocations aim to restore species to their indigenous ranges, protect populations from threats and/or reinstate ecosystem functions. They are particularly important for the conservation and management of rare and threatened species. Despite tremendous efforts and advancement in recent years, animal conservation translocations generally have variable success, and the reasons for this are often uncertain. We suggest that when little is known about the physiology and wellbeing of individuals either before or after release, it will be difficult to determine their likelihood of survival, and this could limit advancements in the science of translocations for conservation. In this regard, we argue that physiology offers novel approaches that could substantially improve translocations and associated practices. As a discipline, it is apparent that physiology may be undervalued, perhaps because of the invasive nature of some physiological measurement techniques (e.g. sampling body fluids, surgical implantation). We examined 232 publications that dealt with translocations of terrestrial vertebrates and aquatic mammals and, defining ‘success’ as high or low, determined how many of these studies explicitly incorporated physiological aspects into their protocols and monitoring. From this review, it is apparent that physiological evaluation before and after animal releases could progress and improve translocation/reintroduction successes. We propose a suite of physiological measures, in addition to animal health indices, for assisting conservation translocations over the short term and also for longer term post-release monitoring. Perhaps most importantly, we argue that the incorporation of physiological assessments of animals at all stages of translocation can have important welfare implications by helping to reduce the total number of animals used. Physiological indicators can also help to refine conservation translocation methods. These approaches fall

  11. Large anaplastic spinal B-cell lymphoma in a cat.

    PubMed

    Flatland, Bente; Fry, Michael M; Newman, Shelley J; Moore, Peter F; Smith, Joanne R; Thomas, William B; Casimir, Roslyn H

    2008-12-01

    A 5-year-old female spayed domestic shorthair cat was presented for evaluation of tetraparesis. The neurologic lesion was localized to the cervical spinal segment (C1-C6). A left axillary mass was identified, and the results of fine needle aspiration cytology indicated malignant round cell neoplasia of possible histiocytic origin. The cells were large, had marked anisocytosis and anisokaryosis, occasional bi- and multinucleation, and cytoplasmic vacuolation. Euthanasia was performed due to the poor prognosis associated with severe, progressive neurologic signs and a malignant neoplasm. Postmortem examination revealed spinal cord compression and an extradural mass at the C1-C2 spinal segment, with neoplastic cells in the adjacent vertebral bodies, surrounding skeletal muscle, left axillary lymph node, and bone marrow from the right femur. The initial histologic diagnosis was anaplastic sarcoma, but immunohistochemical results indicated the cells were CD20+ and CD45R+ and CD3-, compatible with a diagnosis of B-cell lymphoma. CD79a staining was nonspecific and uninterpretable. Weak to moderate CD18 positivity and E-cadherin positivity were also observed. Clonality of the B-cell population could not be demonstrated using PCR testing for antigen receptor gene rearrangement. To the authors' knowledge, this is the first reported case of a feline spinal anaplastic B-cell lymphoma exhibiting bi- and multinucleated cells. The prognostic significance of this cell morphology and immunophenotype is unknown.

  12. APOBEC3 enzymes restrict marginal zone B cells

    PubMed Central

    Beck-Engeser, Gabriele B.; Winkelmann, Rebecca; Wheeler, Matthew L.; Shansab, Maryam; Yu, Philipp; Wünsche, Sarah; Walchhütter, Anja; Metzner, Mirjam; Vettermann, Christian; Eilat, Dan; DeFranco, Anthony; Jäck, Hans-Martin; Wabl, Matthias

    2016-01-01

    In general, a long-lasting immune response to viruses is achieved when they are infectious and replication-competent. In the mouse, the neutralizing antibody response to Friend murine leukemia virus is contributed by an allelic form of the enzyme Apobec3 (abbreviated A3). This is counterintuitive, because A3 directly controls viremia before the onset of adaptive anti-viral immune responses. It suggests that A3 also affects the antibody response directly. Here we studied the relative size of cell populations of the adaptive immune system as a function of A3 activity. We created a transgenic mouse that expresses all seven human A3 enzymes (hA3) and compared it to wild-type and mouse A3 (mA3)-deficient mice. A3 enzymes decreased the number of marginal zone (MZ) B cells, but not the number of follicular B or T cells. When mA3 was knocked out, the retroelement hitchhiker-1 and sialyl transferases encoded by genes close to it were overexpressed three and two orders of magnitude, respectively. We suggest that A3 shifts the balance, from the fast antibody response mediated by MZ B cells with little affinity maturation, to a more sustained germinal center B-cell response, which drives affinity maturation and, thereby, a better neutralizing response. PMID:25501566

  13. Large anaplastic spinal B-cell lymphoma in a cat.

    PubMed

    Flatland, Bente; Fry, Michael M; Newman, Shelley J; Moore, Peter F; Smith, Joanne R; Thomas, William B; Casimir, Roslyn H

    2008-12-01

    A 5-year-old female spayed domestic shorthair cat was presented for evaluation of tetraparesis. The neurologic lesion was localized to the cervical spinal segment (C1-C6). A left axillary mass was identified, and the results of fine needle aspiration cytology indicated malignant round cell neoplasia of possible histiocytic origin. The cells were large, had marked anisocytosis and anisokaryosis, occasional bi- and multinucleation, and cytoplasmic vacuolation. Euthanasia was performed due to the poor prognosis associated with severe, progressive neurologic signs and a malignant neoplasm. Postmortem examination revealed spinal cord compression and an extradural mass at the C1-C2 spinal segment, with neoplastic cells in the adjacent vertebral bodies, surrounding skeletal muscle, left axillary lymph node, and bone marrow from the right femur. The initial histologic diagnosis was anaplastic sarcoma, but immunohistochemical results indicated the cells were CD20+ and CD45R+ and CD3-, compatible with a diagnosis of B-cell lymphoma. CD79a staining was nonspecific and uninterpretable. Weak to moderate CD18 positivity and E-cadherin positivity were also observed. Clonality of the B-cell population could not be demonstrated using PCR testing for antigen receptor gene rearrangement. To the authors' knowledge, this is the first reported case of a feline spinal anaplastic B-cell lymphoma exhibiting bi- and multinucleated cells. The prognostic significance of this cell morphology and immunophenotype is unknown. PMID:19055573

  14. Setd1a regulates progenitor B-cell-to-precursor B-cell development through histone H3 lysine 4 trimethylation and Ig heavy-chain rearrangement

    PubMed Central

    Tusi, Betsabeh Khoramian; Deng, Changwang; Salz, Tal; Zeumer, Leilani; Li, Yangqiu; So, Chi Wai Eric; Morel, Laurence M.; Qiu, Yi; Huang, Suming

    2015-01-01

    SETD1A is a member of trithorax-related histone methyltransferases that methylate lysine 4 at histone H3 (H3K4). We showed previously that Setd1a is required for mesoderm specification and hematopoietic lineage differentiation in vitro. However, it remains unknown whether or not Setd1a controls specific hematopoietic lineage commitment and differentiation during animal development. Here, we reported that homozygous Setd1a knockout (KO) mice are embryonic lethal. Loss of the Setd1a gene in the hematopoietic compartment resulted in a blockage of the progenitor B-cell-to-precursor B-cell development in bone marrow (BM) and B-cell maturation in spleen. The Setd1a-cKO (conditional knockout) mice exhibited an enlarged spleen with disrupted spleen architecture and leukocytopenia. Mechanistically, Setd1a deficiency in BM reduced the levels of H3K4me3 at critical B-cell gene loci, including Pax5 and Rag1/2, which are critical for the IgH (Ig heavy-chain) locus contractions and rearrangement. Subsequently, the differential long-range looped interactions of the enhancer Eμ with proximal 5′ DH region and 3′ regulatory regions as well as with Pax5-activated intergenic repeat elements and 5′ distal VH genes were compromised by the Setd1a-cKO. Together, our findings revealed a critical role of Setd1a and its mediated epigenetic modifications in regulating the IgH rearrangement and B-cell development.—Tusi, B. K., Deng, C., Salz, T., Zeumer, L., Li, Y., So, C. W. E., Morel, L. M., Qiu, Y., Huang, S. Setd1a regulates progenitor B-cell-to-precursor B-cell development through histone H3 lysine 4 trimethylation and Ig heavy-chain rearrangement. PMID:25550471

  15. Epstein-Barr virus-positive diffuse large B-cell lymphoma in children: a disease reminiscent of Epstein-Barr virus-positive diffuse large B-cell lymphoma of the elderly.

    PubMed

    Uccini, Stefania; Al-Jadiry, Mazin F; Scarpino, Stefania; Ferraro, Daniela; Alsaadawi, Adel R; Al-Darraji, Amir F; Moleti, Maria Luisa; Testi, Anna Maria; Al-Hadad, Salma A; Ruco, Luigi

    2015-05-01

    Pediatric Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (EBV+ DLBCL) is a rare disease in nonimmunocompromised hosts. In a review of 231 cases of malignant lymphoma (87 Hodgkin lymphoma and 144 non-Hodgkin lymphoma) occurring in Iraqi children, 7 cases (5% of NHLs) were classified as EBV+ DLBCL. Six children presented with nodal disease, and 1 presented with extranodal localization (bone). In all cases, the disease was at an advanced clinical stage (III/IV). Evidence of immunodeficiency (Evans syndrome and selective IgA deficiency) was observed in a single case. Two cases were "monomorphic" with immunoblastic histology, and 5 cases were "polymorphic" with histologic aspects reminiscent of nodular lymphocyte-predominant Hodgkin lymphoma (2 cases) and of CD30+ classical Hodgkin lymphoma (3 cases). In all cases, tumor cells were EBV infected (EBER+/LMP-1+), were medium-large B-cells (CD20+/CD79a+/PAX-5+/BOB-1+/OCT-2+) of non-germinal center (non-GC) origin (CD10-/MUM-1+), and had high proliferative activity (50%-70%). Chromosomal translocations involving BCL2, MYC, and IGH genes were not observed. IGH monoclonality could be demonstrated in 3 of 3 investigated cases. Six cases of EBV-negative DLBCL (4% of NHL) were present in the same series. All had monomorphic histology with centroblastic/immunoblastic morphology; 3 cases were of GC type and 3 of non-GC type. Our findings indicate that in Iraq, DLBCLs are 9% of NHLs. Moreover, 2 different types of the disease do exist; the EBV-positive cases, with strong histologic and immunohistochemical resemblance with EBV+ DLBCL of the elderly, and the EBV-negative cases, which are similar to the pediatric DLBCL usually observed in Western populations. PMID:25704629

  16. Laboratory and Data Analysis Methods for Characterization of Human B Cell Repertoires by High-Throughput DNA Sequencing.

    PubMed

    Wang, Chen; Liu, Yi; Roskin, Krishna M; Jackson, Katherine J L; Boyd, Scott D

    2015-01-01

    High-throughput DNA sequencing techniques have greatly accelerated the pace of research into the repertoires of antibody and T cell receptor gene rearrangements that confer antigen specificity to adaptive immune responses. Studies of aging-related changes in human B cell repertoires have benefited from the ability to detect and quantify thousands to millions of B cell clones in human samples, and study the mutational lineages and isotype switching relationships within each clonal lineage. Correlation of repertoire analysis with antibody gene data from antigen-specific B cells is poised to give much greater insight into clinically relevant B cell responses and memory storage. Here, we describe strategies for preparing and analyzing human antibody gene libraries for studying B cell repertoires. PMID:26420720

  17. Interaction of Staphylococci with Human B cells

    PubMed Central

    Nygaard, Tyler K.; Kobayashi, Scott D.; Freedman, Brett; Porter, Adeline R.; Voyich, Jovanka M.; Otto, Michael; Schneewind, Olaf; DeLeo, Frank R.

    2016-01-01

    Staphylococcus aureus is a leading cause of human infections worldwide. The pathogen produces numerous molecules that can interfere with recognition and binding by host innate immune cells, an initial step required for the ingestion and subsequent destruction of microbes by phagocytes. To better understand the interaction of this pathogen with human immune cells, we compared the association of S. aureus and S. epidermidis with leukocytes in human blood. We found that a significantly greater proportion of B cells associated with S. epidermidis relative to S. aureus. Complement components and complement receptors were important for the binding of B cells with S. epidermidis. Experiments using staphylococci inactivated by ultraviolet radiation and S. aureus isogenic deletion mutants indicated that S. aureus secretes molecules regulated by the SaeR/S two-component system that interfere with the ability of human B cells to bind this bacterium. We hypothesize that the relative inability of B cells to bind S. aureus contributes to the microbe’s success as a human pathogen. PMID:27711145

  18. Pathobiology of primary mediastinal B-cell lymphoma.

    PubMed

    Pileri, Stefano A; Zinzani, Pier L; Gaidano, Gianluca; Falini, Brunangelo; Gaulard, Philippe; Zucca, Emanuele; Sabattini, Elena; Ascani, Stefano; Rossi, Maura; Cavalli, Franco

    2003-01-01

    Controversy still exists over the response to therapy and prognosis of patients with primary mediastinal B-cell lymphoma (PMBL). Recent data from the International Extranodal Lymphoma Study Group (IELSG) suggest that a MACOP-B (methotrexate, adriamycin, cyclophosphamide, vincristine, prednisone, bleomycin) chemotherapy regimen followed by radiotherapy may be a better induction strategy than other previously used treatments. Although the pathobiology of PMBL has been widely studied, its precise histology, phenotype, and molecular characteristics are still not clear. To date, phenotypic analysis has revealed the following phenotype: positivity for CD45 and CD20, but negativity for CD3, CD10, CD21, Class I/II major histocompatibility antigens, and a variety of other immunohistochemical markers. CD79a is generally detected, despite an absence of surface immunoglobulins (Igs). CD30 staining is observed in most cases, but is weaker and less homogeneous than in classic Hodgkin's lymphoma or anaplastic large cell lymphoma. BCL-2 protein is usually expressed but there are few data describing the expression of MUM1/IRF4, PAX5/BSAP, BCL-6, or the B-cell transcription factors BOB.1, Oct-2, and PU.1. Cytogenetic studies reveal gains in segments of chromosome 9p, including amplification of the REL proto-oncogene and the tyrosine kinase gene JAK2. Other molecular findings include: C-myc mutations or rearrangements, p53 mutations, IgV(H), gene mutations, and bcl-2 and mal over-expression. bcl-6 mutations and bcl-2 gene rearrangements are generally absent, suggesting that PMBL is of pre-germinal center (GC) origin. However, two recent reports show isotype-switched Ig genes with a high frequency of somatic hypermutations as well as variants in the 5' noncoding region of the bcl-6 gene. The IELSG collected 137 PMBL cases for extensive pathologic review. Histologically, the lymphomatous growth was predominantly diffuse with sclerosis that induced compartmentalized cell aggregation. It

  19. Genomic Landscape of Primary Mediastinal B-Cell Lymphoma Cell Lines.

    PubMed

    Dai, Haiping; Ehrentraut, Stefan; Nagel, Stefan; Eberth, Sonja; Pommerenke, Claudia; Dirks, Wilhelm G; Geffers, Robert; Kalavalapalli, Srilaxmi; Kaufmann, Maren; Meyer, Corrina; Faehnrich, Silke; Chen, Suning; Drexler, Hans G; MacLeod, Roderick A F

    2015-01-01

    Primary mediastinal B-Cell lymphoma (PMBL) is a recently defined entity comprising ~2-10% non-Hodgkin lymphomas (NHL). Unlike most NHL subtypes, PMBL lacks recurrent gene rearrangements to serve as biomarkers or betray target genes. While druggable, late chemotherapeutic complications warrant the search for new targets and models. Well characterized tumor cell lines provide unlimited material to serve as preclinical resources for verifiable analyses directed at the discovery of new biomarkers and pathological targets using high throughput microarray technologies. The same cells may then be used to seek intelligent therapies directed at clinically validated targets. Four cell lines have emerged as potential PMBL models: FARAGE, KARPAS-1106P, MEDB-1 and U-2940. Transcriptionally, PMBL cell lines cluster near c(lassical)-HL and B-NHL examples showing they are related but separate entities. Here we document genomic alterations therein, by cytogenetics and high density oligonucleotide/SNP microarrays and parse their impact by integrated global expression profiling. PMBL cell lines were distinguished by moderate chromosome rearrangement levels undercutting cHL, while lacking oncogene translocations seen in B-NHL. In total 61 deletions were shared by two or more cell lines, together with 12 amplifications (≥4x) and 72 homozygous regions. Integrated genomic and transcriptional profiling showed deletions to be the most important class of chromosome rearrangement. Lesions were mapped to several loci associated with PMBL, e.g. 2p15 (REL/COMMD1), 9p24 (JAK2, CD274), 16p13 (SOCS1, LITAF, CIITA); plus new or tenuously associated loci: 2p16 (MSH6), 6q23 (TNFAIP3), 9p22 (CDKN2A/B), 20p12 (PTPN1). Discrete homozygous regions sometimes substituted focal deletions accompanied by gene silencing implying a role for epigenetic or mutational inactivation. Genomic amplifications increasing gene expression or gene-activating rearrangements were respectively rare or absent. Our findings

  20. Genomic Landscape of Primary Mediastinal B-Cell Lymphoma Cell Lines.

    PubMed

    Dai, Haiping; Ehrentraut, Stefan; Nagel, Stefan; Eberth, Sonja; Pommerenke, Claudia; Dirks, Wilhelm G; Geffers, Robert; Kalavalapalli, Srilaxmi; Kaufmann, Maren; Meyer, Corrina; Faehnrich, Silke; Chen, Suning; Drexler, Hans G; MacLeod, Roderick A F

    2015-01-01

    Primary mediastinal B-Cell lymphoma (PMBL) is a recently defined entity comprising ~2-10% non-Hodgkin lymphomas (NHL). Unlike most NHL subtypes, PMBL lacks recurrent gene rearrangements to serve as biomarkers or betray target genes. While druggable, late chemotherapeutic complications warrant the search for new targets and models. Well characterized tumor cell lines provide unlimited material to serve as preclinical resources for verifiable analyses directed at the discovery of new biomarkers and pathological targets using high throughput microarray technologies. The same cells may then be used to seek intelligent therapies directed at clinically validated targets. Four cell lines have emerged as potential PMBL models: FARAGE, KARPAS-1106P, MEDB-1 and U-2940. Transcriptionally, PMBL cell lines cluster near c(lassical)-HL and B-NHL examples showing they are related but separate entities. Here we document genomic alterations therein, by cytogenetics and high density oligonucleotide/SNP microarrays and parse their impact by integrated global expression profiling. PMBL cell lines were distinguished by moderate chromosome rearrangement levels undercutting cHL, while lacking oncogene translocations seen in B-NHL. In total 61 deletions were shared by two or more cell lines, together with 12 amplifications (≥4x) and 72 homozygous regions. Integrated genomic and transcriptional profiling showed deletions to be the most important class of chromosome rearrangement. Lesions were mapped to several loci associated with PMBL, e.g. 2p15 (REL/COMMD1), 9p24 (JAK2, CD274), 16p13 (SOCS1, LITAF, CIITA); plus new or tenuously associated loci: 2p16 (MSH6), 6q23 (TNFAIP3), 9p22 (CDKN2A/B), 20p12 (PTPN1). Discrete homozygous regions sometimes substituted focal deletions accompanied by gene silencing implying a role for epigenetic or mutational inactivation. Genomic amplifications increasing gene expression or gene-activating rearrangements were respectively rare or absent. Our findings

  1. Genomic Landscape of Primary Mediastinal B-Cell Lymphoma Cell Lines

    PubMed Central

    Nagel, Stefan; Eberth, Sonja; Pommerenke, Claudia; Dirks, Wilhelm G.; Geffers, Robert; Kalavalapalli, Srilaxmi; Kaufmann, Maren; Meyer, Corrina; Faehnrich, Silke; Chen, Suning; Drexler, Hans G.; MacLeod, Roderick A. F.

    2015-01-01

    Primary mediastinal B-Cell lymphoma (PMBL) is a recently defined entity comprising ~2–10% non-Hodgkin lymphomas (NHL). Unlike most NHL subtypes, PMBL lacks recurrent gene rearrangements to serve as biomarkers or betray target genes. While druggable, late chemotherapeutic complications warrant the search for new targets and models. Well characterized tumor cell lines provide unlimited material to serve as preclinical resources for verifiable analyses directed at the discovery of new biomarkers and pathological targets using high throughput microarray technologies. The same cells may then be used to seek intelligent therapies directed at clinically validated targets. Four cell lines have emerged as potential PMBL models: FARAGE, KARPAS-1106P, MEDB-1 and U-2940. Transcriptionally, PMBL cell lines cluster near c(lassical)-HL and B-NHL examples showing they are related but separate entities. Here we document genomic alterations therein, by cytogenetics and high density oligonucleotide/SNP microarrays and parse their impact by integrated global expression profiling. PMBL cell lines were distinguished by moderate chromosome rearrangement levels undercutting cHL, while lacking oncogene translocations seen in B-NHL. In total 61 deletions were shared by two or more cell lines, together with 12 amplifications (≥4x) and 72 homozygous regions. Integrated genomic and transcriptional profiling showed deletions to be the most important class of chromosome rearrangement. Lesions were mapped to several loci associated with PMBL, e.g. 2p15 (REL/COMMD1), 9p24 (JAK2, CD274), 16p13 (SOCS1, LITAF, CIITA); plus new or tenuously associated loci: 2p16 (MSH6), 6q23 (TNFAIP3), 9p22 (CDKN2A/B), 20p12 (PTPN1). Discrete homozygous regions sometimes substituted focal deletions accompanied by gene silencing implying a role for epigenetic or mutational inactivation. Genomic amplifications increasing gene expression or gene-activating rearrangements were respectively rare or absent. Our findings

  2. Incorporation of an aggregation-induced-emissive tetraphenylethene derivative into cationic gene delivery vehicles manifested the nuclear translocation of uncomplexed DNA.

    PubMed

    Han, Xiongqi; Chen, Qixian; Lu, Hongguang; Guo, Pan; Li, Wei; Wu, Guolin; Ma, Jianbiao; Gao, Hui

    2016-03-11

    A fluorophore displaying aggregation-induced emission was introduced at the terminus of branched polyethylenimine (PEI). The formulated polyplex not only demonstrated an improved safety profile and preserved transfection activity but also importantly indicated that the uncomplexed naked DNA rather than the polyplexes translocated into the nucleus.

  3. Receptor editing and marginal zone B cell development are regulated by the helix-loop-helix protein, E2A.

    PubMed

    Quong, Melanie W; Martensson, Annica; Langerak, Anton W; Rivera, Richard R; Nemazee, David; Murre, Cornelis

    2004-04-19

    Previous studies have indicated that the E2A gene products are required to initiate B lineage development. Here, we demonstrate that E2A(+/-) B cells that express an autoreactive B cell receptor fail to mature due in part to an inability to activate secondary immunoglobulin (Ig) light chain gene rearrangement. Both RAG1/2 gene expression and RS deletion are severely defective in E2A(+/-) mice. Additionally, we demonstrate that E2A(+/-) mice show an increase in the proportion of marginal zone B cells with a concomitant decrease in the proportion of follicular B cells. In contrast, Id3-deficient splenocytes show a decline in the proportion of marginal zone B cells. Based on these observations, we propose that E-protein activity regulates secondary Ig gene rearrangement at the immature B cell stage and contributes to cell fate determination of marginal zone B cells. Additionally, we propose a model in which E-proteins enforce the developmental checkpoint at the immature B cell stage.

  4. Applied Protein and Molecular Techniques for Characterization of B Cell Neoplasms in Horses

    PubMed Central

    Badial, Peres R.; Tallmadge, Rebecca L.; Miller, Steven; Stokol, Tracy; Richards, Kristy; Borges, Alexandre S.

    2015-01-01

    Mature B cell neoplasms cover a spectrum of diseases involving lymphoid tissues (lymphoma) or blood (leukemia), with an overlap between these two presentations. Previous studies describing equine lymphoid neoplasias have not included analyses of clonality using molecular techniques. The objective of this study was to use molecular techniques to advance the classification of B cell lymphoproliferative diseases in five adult equine patients with a rare condition of monoclonal gammopathy, B cell leukemia, and concurrent lymphadenopathy (lymphoma/leukemia). The B cell neoplasms were phenotypically characterized by gene and cell surface molecule expression, secreted immunoglobulin (Ig) isotype concentrations, Ig heavy-chain variable (IGHV) region domain sequencing, and spectratyping. All five patients had hyperglobulinemia due to IgG1 or IgG4/7 monoclonal gammopathy. Peripheral blood leukocyte immunophenotyping revealed high proportions of IgG1- or IgG4/7-positive cells and relative T cell lymphopenia. Most leukemic cells lacked the surface B cell markers CD19 and CD21. IGHG1 or IGHG4/7 gene expression was consistent with surface protein expression, and secreted isotype and Ig spectratyping revealed one dominant monoclonal peak. The mRNA expression of the B cell-associated developmental genes EBF1, PAX5, and CD19 was high compared to that of the plasma cell-associated marker CD38. Sequence analysis of the IGHV domain of leukemic cells revealed mutated Igs. In conclusion, the protein and molecular techniques used in this study identified neoplastic cells compatible with a developmental transition between B cell and plasma cell stages, and they can be used for the classification of equine B cell lymphoproliferative disease. PMID:26311245

  5. Selective autoantibody production by Yaa+ B cells in autoimmune Yaa(+)- Yaa- bone marrow chimeric mice

    PubMed Central

    1991-01-01

    The accelerated autoimmune syndrome observed in BXSB/MpJ male mice is associated with the presence on the Y chromosome of an as yet unidentified mutant gene, designated Y chromosome-linked autoimmune acceleration (Yaa). To study the mechanisms by which the Yaa gene accelerates and/or induces the production of autoantibodies, we have developed double-congenic bone marrow chimeras containing B cells from autoimmune males carrying the Yaa gene, and from nonautoimmune male or female mice lacking it and differing by the Igh allotype. The analysis of the allotype of total immunoglobulins and anti-DNA antibodies in Yaa+ male-normal female (Yaa-) chimeric mice revealed that the selective activation of B cells from autoimmune Yaa+ male mice was responsible for the hypergammaglobulinemia and autoantibody production. This phenomenon was not due to an anti-HY interaction between female T helper cells and male B cells, because first, Yaa+ B cells were selectively stimulated to produce autoantibodies in Yaa+ male-Yaa- male chimeric mice; and second, normal male and female chimeras failed to develop an autoimmune syndrome. In addition, the fact that both B cell populations in Yaa(+)-Yaa- chimeras similarly responded to a foreign antigen, human IgG, argues against the possibility that the selective activation of Yaa+ B cells may be due to their hyper-responsiveness to T helper signals. We propose that a cognate interaction of T helper cells with Yaa+ B cells, because of possible T cell recognition of a Yaa-related molecule expressed on Yaa+ B cells, may be responsible for the acceleration and/or induction of autoantibodies in BXSB/MpJ mice. PMID:1834759

  6. B cell receptor editing in tolerance and autoimmunity.

    PubMed

    Luning Prak, Eline T; Monestier, Marc; Eisenberg, Robert A

    2011-01-01

    Receptor editing is the process of ongoing antibody gene rearrangement in a lymphocyte that already has a functional antigen receptor. The expression of a functional antigen receptor will normally terminate further rearrangement (allelic exclusion). However, lymphocytes with autoreactive receptors have a chance at escaping negative regulation by "editing" the specificities of their receptors with additional antibody gene rearrangements. As such, editing complicates the Clonal Selection Hypothesis because edited cells are not simply endowed for life with a single, invariant antigen receptor. Furthermore, if the initial immunoglobulin gene is not inactivated during the editing process, allelic exclusion is violated and the B cell can exhibit two specificities. Here, we describe the discovery of editing, the pathways of receptor editing at the heavy (H) and light (L) chain loci, and current evidence regarding how and where editing happens and what effects it has on the antibody repertoire.

  7. Diffuse Large B-Cell Lymphoma Classification System That Associates Normal B-Cell Subset Phenotypes With Prognosis

    PubMed Central

    Dybkær, Karen; Bøgsted, Martin; Falgreen, Steffen; Bødker, Julie S.; Kjeldsen, Malene K.; Schmitz, Alexander; Bilgrau, Anders E.; Xu-Monette, Zijun Y.; Li, Ling; Bergkvist, Kim S.; Laursen, Maria B.; Rodrigo-Domingo, Maria; Marques, Sara C.; Rasmussen, Sophie B.; Nyegaard, Mette; Gaihede, Michael; Møller, Michael B.; Samworth, Richard J.; Shah, Rajen D.; Johansen, Preben; El-Galaly, Tarec C.; Young, Ken H.; Johnsen, Hans E.

    2015-01-01

    Purpose Current diagnostic tests for diffuse large B-cell lymphoma use the updated WHO criteria based on biologic, morphologic, and clinical heterogeneity. We propose a refined classification system based on subset-specific B-cell–associated gene signatures (BAGS) in the normal B-cell hierarchy, hypothesizing that it can provide new biologic insight and diagnostic and prognostic value. Patients and Methods We combined fluorescence-activated cell sorting, gene expression profiling, and statistical modeling to generate BAGS for naive, centrocyte, centroblast, memory, and plasmablast B cells from normal human tonsils. The impact of BAGS-assigned subtyping was analyzed using five clinical cohorts (treated with cyclophosphamide, doxorubicin, vincristine, and prednisone [CHOP], n = 270; treated with rituximab plus CHOP [R-CHOP], n = 869) gathered across geographic regions, time eras, and sampling methods. The analysis estimated subtype frequencies and drug-specific resistance and included a prognostic meta-analysis of patients treated with first-line R-CHOP therapy. Results Similar BAGS subtype frequencies were assigned across 1,139 samples from five different cohorts. Among R-CHOP–treated patients, BAGS assignment was significantly associated with overall survival and progression-free survival within the germinal center B-cell–like subclass; the centrocyte subtype had a superior prognosis compared with the centroblast subtype. In agreement with the observed therapeutic outcome, centrocyte subtypes were estimated as being less resistant than the centroblast subtype to doxorubicin and vincristine. The centroblast subtype had a complex genotype, whereas the centrocyte subtype had high TP53 mutation and insertion/deletion frequencies and expressed LMO2, CD58, and stromal-1–signature and major histocompatibility complex class II–signature genes, which are known to have a positive impact on prognosis. Conclusion Further development of a diagnostic platform using

  8. New case of trichorinophalangeal syndrome-like phenotype with a de novo t(2;8)(p16.1;q23.3) translocation which does not disrupt the TRPS1 gene

    PubMed Central

    2014-01-01

    Background Trichorhinophalangeal syndrome (TRPS) is a rare autosomal dominant genetic disorder characterised by distinctive craniofacial and skeletal abnormalities. TRPS is generally associated with mutations in the TRPS1 gene at 8q23.3 or microdeletions of the 8q23.3-q24.11 region. However, three deletions affecting the same chromosome region and a familial translocation t(8;13) co-segregating with TRPS, which do not encompass or disrupt the TRPS1 gene, have been reported. A deregulated expression of TRPS1 has been hypothesised as cause of the TRPS phenotype of these patients. Case presentation We report the clinical and molecular characterisation of a 57-year-old Caucasian woman carrying the t(2;8)(p16.1;q23.3) de novo balanced translocation. The proband presented with peculiar clinical features (severe craniofacial dysmorphism, alopecia universalis, severe scoliosis, mitral valve prolapse, mild mental impairment and normal growth parameters) that partially overlap with TRPS I. Mutational and array CGH analyses ruled out any genetic defect affecting TRPS1 or genomic alteration at the translocation breakpoint or elsewhere in the genome. Breakpoint mapping excluded disruption of TRPS1, and revealed that the chromosome 8q23.3 breakpoint was located within the IVS10 of the long intergenic non-coding RNA LINC00536, at approximately 300 kb from the TRPS1 5’ end. Conversely, the 2p16.1 breakpoint mapped within a LINE sequence, in a region that lacks transcriptional regulatory elements. As a result of the translocation, nucleotide base pair additions and deletions were detected at both breakpoint junction fragments, and an evolutionarily conserved VISTA enhancer element from 2p16.1 was relocated at approximately 325 kb from the TRPS1 promoter. Conclusions We suggest that the disruption of the genomic architecture of cis regulatory elements downstream the TRPS1 5′ region, combined with the translocation of a novel enhancer element nearby TRPS1, might be the

  9. Defining chromosomal translocation risks in cancer.

    PubMed

    Hogenbirk, Marc A; Heideman, Marinus R; de Rink, Iris; Velds, Arno; Kerkhoven, Ron M; Wessels, Lodewyk F A; Jacobs, Heinz

    2016-06-28

    Chromosomal translocations are a hallmark of cancer. Unraveling the molecular mechanism of these rare genetic events requires a clear distinction between correlative and causative risk-determinants, where technical and analytical issues can be excluded. To meet this goal, we performed in-depth analyses of publicly available genome-wide datasets. In contrast to several recent reports, we demonstrate that chromosomal translocation risk is causally unrelated to promoter stalling (Spt5), transcriptional activity, or off-targeting activity of the activation-induced cytidine deaminase. Rather, an open chromatin configuration, which is not promoter-specific, explained the elevated translocation risk of promoter regions. Furthermore, the fact that gene size directly correlates with the translocation risk in mice and human cancers further demonstrated the general irrelevance of promoter-specific activities. Interestingly, a subset of translocations observed in cancer patients likely initiates from double-strand breaks induced by an access-independent process. Together, these unexpected and novel insights are fundamental in understanding the origin of chromosome translocations and, consequently, cancer. PMID:27303044

  10. Defining chromosomal translocation risks in cancer

    PubMed Central

    Hogenbirk, Marc A.; Heideman, Marinus R.; de Rink, Iris; Velds, Arno; Kerkhoven, Ron M.; Wessels, Lodewyk F. A.; Jacobs, Heinz

    2016-01-01

    Chromosomal translocations are a hallmark of cancer. Unraveling the molecular mechanism of these rare genetic events requires a clear distinction between correlative and causative risk-determinants, where technical and analytical issues can be excluded. To meet this goal, we performed in-depth analyses of publicly available genome-wide datasets. In contrast to several recent reports, we demonstrate that chromosomal translocation risk is causally unrelated to promoter stalling (Spt5), transcriptional activity, or off-targeting activity of the activation-induced cytidine deaminase. Rather, an open chromatin configuration, which is not promoter-specific, explained the elevated translocation risk of promoter regions. Furthermore, the fact that gene size directly correlates with the translocation risk in mice and human cancers further demonstrated the general irrelevance of promoter-specific activities. Interestingly, a subset of translocations observed in cancer patients likely initiates from double-strand breaks induced by an access-independent process. Together, these unexpected and novel insights are fundamental in understanding the origin of chromosome translocations and, consequently, cancer. PMID:27303044

  11. Rituximab does not reset defective early B cell tolerance checkpoints.

    PubMed

    Chamberlain, Nicolas; Massad, Christopher; Oe, Tyler; Cantaert, Tineke; Herold, Kevan C; Meffre, Eric

    2016-01-01

    Type 1 diabetes (T1D) patients show abnormalities in early B cell tolerance checkpoints, resulting in the accumulation of large numbers of autoreactive B cells in their blood. Treatment with rituximab, an anti-CD20 mAb that depletes B cells, has been shown to preserve β cell function in T1D patients and improve other autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. However, it remains largely unknown how anti-B cell therapy thwarts autoimmunity in these pathologies. Here, we analyzed the reactivity of Abs expressed by single, mature naive B cells from 4 patients with T1D before and 52 weeks after treatment to determine whether rituximab resets early B cell tolerance checkpoints. We found that anti-B cell therapy did not alter the frequencies of autoreactive and polyreactive B cells, which remained elevated in the blood of all patients after rituximab treatment. Moreover, the limited proliferative history of autoreactive B cells after treatment revealed that these clones were newly generated B cells and not self-reactive B cells that had escaped depletion and repopulated the periphery through homeostatic expansion. We conclude that anti-B cell therapy may provide a temporary dampening of autoimmune processes through B cell depletion. However, repletion with autoreactive B cells may explain the relapse that occurs in many autoimmune patients after anti-B cell therapy. PMID:26642366

  12. A Brucella Virulence Factor Targets Macrophages to Trigger B-cell Proliferation*

    PubMed Central

    Spera, Juan M.; Herrmann, Claudia K.; Roset, Mara S.; Comerci, Diego J.; Ugalde, Juan E.

    2013-01-01

    Brucella spp. and Trypanosoma cruzi are two intracellular pathogens that have no evolutionary common origins but share a similar lifestyle as they establish chronic infections for which they have to circumvent the host immune response. Both pathogens have a virulence factor (prpA in Brucella and tcPrac in T. cruzi) that induces B-cell proliferation and promotes the establishment of the chronic phase of the infectious process. We show here that, even though PrpA promotes B-cell proliferation, it targets macrophages in vitro and is translocated to the cytoplasm during the intracellular replication phase. We observed that PrpA-treated macrophages induce the secretion of a soluble factor responsible for B-cell proliferation and identified nonmuscular myosin IIA (NMM-IIA) as a receptor required for binding and function of this virulence factor. Finally, we show that the Trypanosoma cruzi homologue of PrpA also targets macrophages to induce B-cell proliferation through the same receptor, indicating that this virulence strategy is conserved between a bacterial and a protozoan pathogen. PMID:23720774

  13. IgH sequences in common variable immune deficiency reveal altered B cell development and selection**

    PubMed Central

    Roskin, Krishna M.; Simchoni, Noa; Liu, Yi; Lee, Ji-Yeun; Seo, Katie; Hoh, Ramona A.; Pham, Tho; Park, Joon H.; Furman, David; Dekker, Cornelia L.; Davis, Mark M.; James, Judith A.; Nadeau, Kari C.; Cunningham-Rundles, Charlotte; Boyd, Scott D.

    2015-01-01

    Common variable immune deficiency (CVID) is the most common symptomatic primary immune deficiency, affecting ∼1 in 25,000 persons. These patients suffer from impaired antibody responses, autoimmunity, and susceptibility to lymphoid cancers. To explore the cellular basis for these clinical phenotypes, we conducted high-throughput DNA sequencing of immunoglobulin heavy chain gene rearrangements from 93 CVID patients and 105 control subjects and sorted naïve and memory B cells from 13 of the CVID patients and 10 of the control subjects. CVID patients showed abnormal VDJ rearrangement and abnormal formation of complementarity determining region 3 (CDR3). We observed decreased selection against antibodies with long CDR3 regions in memory repertoires and decreased V gene replacement, offering possible mechanisms for increased patient autoreactivity. Our data indicate that patient immunodeficiency might derive both from decreased diversity of the naïve B cell pool and decreased somatic hypermutation in memory repertoires. CVID patients also exhibited abnormal clonal expansion of unmutated B cells relative to controls. Although impaired B cell germinal center activation is commonly viewed as causative in CVID, these data indicate that CVID B cells diverge from controls as early as the pro-B cell stage and suggest possible explanations for the increased incidence of autoimmunity, immunodeficiency, and lymphoma CVID patients. PMID:26311730

  14. MicroRNA profiles of t(14;18)–negative follicular lymphoma support a late germinal center B-cell phenotype

    PubMed Central

    Leich, Ellen; Zamo, Alberto; Horn, Heike; Haralambieva, Eugenia; Puppe, Bernhard; Gascoyne, Randy D.; Chan, Wing-Chung; Braziel, Rita M.; Rimsza, Lisa M.; Weisenburger, Dennis D.; Delabie, Jan; Jaffe, Elaine S.; Fitzgibbon, Jude; Staudt, Louis M.; Mueller-Hermelink, Hans-Konrad; Calaminici, Mariarita; Campo, Elias; Ott, German; Hernández, Luis

    2011-01-01

    A total of 90% of follicular lymphomas (FLs) harbor the translocation t(14;18) leading to deregulated BCL2 expression. Conversely, 10% of FLs lack the t(14;18), and the majority of these FLs do not express BCL2. The molecular features of t(14;18)–negative FLs remain largely unknown. We performed microRNA expression analysis in 32 FL grades 1 to 3A, including 17 t(14;18)–positive FLs, 9 t(14;18)–negative FLs without BCL2 expression, and 6 t(14;18)–negative FLs with BCL2 expression. MicroRNA profiles were correlated with corresponding mRNA expression patterns, and potential targets were investigated by quantitative PCR and immunohistochemistry in an independent validation series of 83 FLs. Statistical analysis identified 17 microRNAs that were differentially expressed between t(14;18)–positive FLs and t(14;18)–negative FLs. The down-regulation of miR-16, miR-26a, miR-101, miR-29c, and miR138 in the t(14;18)-negative FL subset was associated with profound mRNA expression changes of potential target genes involving cell cycle control, apoptosis, and B-cell differentiation. miR-16 target CHEK1 showed increased expression in t(14;18)-negative FLs, whereas TCL1A expression was reduced, in line with a partial loss of the germinal center B-cell phenotype in this FL subset. In conclusion, t(14;18)–negative FL have distinct microRNA profiles that are associated with an increased proliferative capacity and a “late” germinal center B-cell phenotype. PMID:21960592

  15. Receptor editing can lead to allelic inclusion and development of B cells that retain antibodies reacting with high avidity autoantigens.

    PubMed

    Liu, Sucai; Velez, Maria-Gabriela; Humann, Jessica; Rowland, Sarah; Conrad, Frank J; Halverson, Regina; Torres, Raul M; Pelanda, Roberta

    2005-10-15

    Receptor editing is a major B cell tolerance mechanism that operates by secondary Ig gene rearrangements to change the specificity of autoreactive developing B cells. In the 3-83Igi mouse model, receptor editing operates in every autoreactive anti-H-2K(b) B cell, providing a novel receptor without additional cell loss. Despite the efficiency of receptor editing in generating nonautoreactive Ag receptors, we show in this study that this process does not inactivate the autoantibody-encoding gene(s) in every autoreactive B cell. In fact, receptor editing can generate allelically and isotypically included B cells that simultaneously express the original autoreactive and a novel nonautoreactive Ag receptors. Such dual Ab-expressing B cells differentiate into transitional and mature B cells retaining the expression of the autoantibody despite the high avidity interaction between the autoantibody and the self-Ag in this system. Moreover, we find that these high avidity autoreactive B cells retain the autoreactive Ag receptor within the cell as a consequence of autoantigen engagement and through a Src family kinase-dependent process. Finally, anti-H-2K(b) IgM autoantibodies are found in the sera of older 3-83Igi mice, indicating that dual Ab-expressing autoreactive B cells are potentially functional and capable of differentiating into IgM autoantibody-secreting plasma cells under certain circumstances. These results demonstrate that autoreactive B cells reacting with ubiquitous membrane bound autoantigens can bypass mechanisms of central tolerance by coexpressing nonautoreactive Abs. These dual Ab-expressing autoreactive B cells conceal their autoantibodies within the cell manifesting a superficially tolerant phenotype that can be partially overcome to secrete IgM autoantibodies.

  16. Cavitary pulmonary involvement of diffuse large B-cell lymphoma transformed from extra nodal marginal zone B-cell lymphoma MALT type.

    PubMed

    Yamane, Hiromichi; Ohsawa, Masahiro; Shiote, Yasuhiro; Umemura, Shigeki; Suwaki, Toshimitsu; Shirakawa, Atsuko; Kamei, Haruhito; Takigawa, Nagio; Kiura, Katsuyuki

    2011-12-01

    We describe a case of pulmonary diffuse large B-cell lymphoma (DLBCL), which was thought to arise from extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma). A 68-year-old woman presented with a 2-month history of cough and bloody sputum. The chest X-ray and computed tomography revealed a mass with cavitation in the right lower lobe. Transbronchial biopsy specimens revealed a granulomatous infiltration without malignant cells. However, diagnosis of MALT lymphoma was established from gastric biopsy specimen. Subsequently, a right lower lobectomy was performed because of hemoptysis. Examination of the resected specimen revealed a diffuse large B-cell lymphoma, which was considered to have transformed from MALT lymphoma, because both lung and stomach lesions had the chromosomal translocation t(11;18)(q21;q21) in common. In addition, there were no nodules, masses, alveolar or interstitial infiltrates in the lung fields, which are usually observed in the case of marginal zone B-cell lymphoma of bronchial mucosa-associated lymphoid tissue. These findings indicate that involvement of DLBCL have to be considered in patients with MALT lymphoma and cavitary lesion of the lung. PMID:26189744

  17. Advances in Human B Cell Phenotypic Profiling

    PubMed Central

    Kaminski, Denise A.; Wei, Chungwen; Qian, Yu; Rosenberg, Alexander F.; Sanz, Ignacio

    2012-01-01

    To advance our understanding and treatment of disease, research immunologists have been called-upon to place more centralized emphasis on impactful human studies. Such endeavors will inevitably require large-scale study execution and data management regulation (“Big Biology”), necessitating standardized and reliable metrics of immune status and function. A well-known example setting this large-scale effort in-motion is identifying correlations between eventual disease outcome and T lymphocyte phenotype in large HIV-patient cohorts using multiparameter flow cytometry. However, infection, immunodeficiency, and autoimmunity are also characterized by correlative and functional contributions of B lymphocytes, which to-date have received much less attention in the human Big Biology enterprise. Here, we review progress in human B cell phenotyping, analysis, and bioinformatics tools that constitute valuable resources for the B cell research community to effectively join in this effort. PMID:23087687

  18. Regulation of follicular B cell differentiation by the related E26 transformation-specific transcription factors PU.1, Spi-B, and Spi-C.

    PubMed

    DeKoter, Rodney P; Geadah, Marc; Khoosal, Sonam; Xu, Li S; Thillainadesan, Gobi; Torchia, Joseph; Chin, Shu Shien; Garrett-Sinha, Lee Ann

    2010-12-15

    Splenic B-2 cells can be divided into two major subsets: follicular (FO) and marginal zone (MZ) B cells. FO and MZ B cells are generated from immature transitional B cells. Few transcription factors have been identified that regulate FO B cell differentiation. The highly related proteins PU.1, Spi-B, and Spi-C are transcription factors of the E26-transformation-specific family and are important for B cell differentiation and function. To determine whether these proteins play a role in the differentiation of FO B cells, we performed a detailed analysis of splenic B cells in mice with inactivating mutations in the genes encoding PU.1 (Sfpi1) or Spi-B (Spib). Sfpi1(+/-) Spib(-/-) (PUB) mice had a 9-fold reduction in the frequency of CD23(+) FO B cells compared with that of wild-type mice. In contrast, PUB mice had a 2-fold increase in the frequency of MZ B cells that was confirmed by immunofluorescence staining. Expression of Spi-C in Eμ-Spi-C transgenic PUB mice partially rescued frequencies of CD23(+) B cells. Gene expression analysis, in vitro reporter assays, and chromatin immunoprecipitation experiments showed that transcription of the Fcer2a gene encoding CD23 is activated by PU.1, Spi-B, and Spi-C. These results demonstrate that FO B cell differentiation is regulated by the E26-transformation-specific transcription factors PU.1, Spi-B, and Spi-C.

  19. Progesterone receptor-NFκB complex formation is required for progesterone-induced NFκB nuclear translocation and binding onto the p53 promoter.

    PubMed

    Hsu, Sung-Po; Yang, Ho-Ching; Kuo, Chun-Ting; Wen, Heng-Ching; Chen, Li-Ching; Huo, Yen-Nien; Lee, Wen-Sen

    2015-01-01

    We previously demonstrated that progesterone (P4) up-regulates p53 expression in human umbilical venous endothelial cells (HUVECs) through P4 receptor (PR) activation of extranuclear signaling pathways. However, the involvement of nuclear PR in P4-increased p53 expression is still unclear. Here, the molecular mechanism underlying PR-regulated p53 expression in HUVECs was investigated. Treatment with P4 increased nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor, α phosphorylation (IκBα and nuclear factor-κB (NFκB) nuclear translocation. Interestingly, P4 also increased PR-A, but not PR-B, nuclear translocation in HUVECs. Immunoprecipitation assay illustrated that P4 increased the formation of PR-A-NFκB complex in both the cytosol and the nucleus of HUVEC. Chromatin immunoprecipitation assay showed an interaction between PR and the NFκB binding motif on the p53 promoter. Ablation of the NFκB binding motif in the p53 promoter completely abolished P4-increased p53 promoter activity. In the absence of P4, overexpression of NFκB did not increase NFκB nuclear translocation. In contrast, treatment of NFκB-overexpressing HUVECs with P4 for only 4 hours, which is much shorter than the time (21.5 h) required for P4-induced IκBα phosphorylation, increased NFκB nuclear translocation. Blockade of PR activity abolished this effect. Taken together, these results uncover a novel role of PR for P4-induced NFκB nuclear translocation and suggest that PR-A-NFκB complex formation is required for NFκB nuclear translocation and binding onto the p53 promoter in HUVECs. Our data indicate that both nuclear and extranuclear signaling pathways of PR are involved in P4-regulated p53 expression in HUVECs. PMID:25353185

  20. Progesterone receptor-NFκB complex formation is required for progesterone-induced NFκB nuclear translocation and binding onto the p53 promoter.

    PubMed

    Hsu, Sung-Po; Yang, Ho-Ching; Kuo, Chun-Ting; Wen, Heng-Ching; Chen, Li-Ching; Huo, Yen-Nien; Lee, Wen-Sen

    2015-01-01

    We previously demonstrated that progesterone (P4) up-regulates p53 expression in human umbilical venous endothelial cells (HUVECs) through P4 receptor (PR) activation of extranuclear signaling pathways. However, the involvement of nuclear PR in P4-increased p53 expression is still unclear. Here, the molecular mechanism underlying PR-regulated p53 expression in HUVECs was investigated. Treatment with P4 increased nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor, α phosphorylation (IκBα and nuclear factor-κB (NFκB) nuclear translocation. Interestingly, P4 also increased PR-A, but not PR-B, nuclear translocation in HUVECs. Immunoprecipitation assay illustrated that P4 increased the formation of PR-A-NFκB complex in both the cytosol and the nucleus of HUVEC. Chromatin immunoprecipitation assay showed an interaction between PR and the NFκB binding motif on the p53 promoter. Ablation of the NFκB binding motif in the p53 promoter completely abolished P4-increased p53 promoter activity. In the absence of P4, overexpression of NFκB did not increase NFκB nuclear translocation. In contrast, treatment of NFκB-overexpressing HUVECs with P4 for only 4 hours, which is much shorter than the time (21.5 h) required for P4-induced IκBα phosphorylation, increased NFκB nuclear translocation. Blockade of PR activity abolished this effect. Taken together, these results uncover a novel role of PR for P4-induced NFκB nuclear translocation and suggest that PR-A-NFκB complex formation is required for NFκB nuclear translocation and binding onto the p53 promoter in HUVECs. Our data indicate that both nuclear and extranuclear signaling pathways of PR are involved in P4-regulated p53 expression in HUVECs.

  1. B Cell Lymphoma mimicking Rheumatoid Arthritis.

    PubMed

    Cosatti, M A; Pisoni, C N; Altuve, J L; Lorente, C

    2016-01-01

    Non Hodking´s lymphoma (NHL) may involve bones but synovial involvement is uncommon. We describe a patient who presented with polyarthritis, sicca symptoms and rash suggestive of rheumatoid arthritis. An atypical skin rash prompted skin and synovial biopsies. A diagnosis of synovial and skin malignant large B-cell lymphoma anaplastic subtype was performed. Chemotherapy with dexamethasone, vincristine and rituximab was started. Following treatment the patient had complete resolution of cutaneous and articular lymphoma manifestations. PMID:27419896

  2. New insights in the regulation of human B cell differentiation

    PubMed Central

    Schmidlin, Heike; Diehl, Sean A.; Blom, Bianca

    2009-01-01

    B lymphocytes provide the cellular basis of the humoral immune response. All stages of this process, from B cell activation to formation of germinal centers and differentiation into memory B cells or plasma cells, are influenced by extrinsic signals and controlled by transcriptional regulation. Compared to naïve B cells, memory B cells display a distinct expression profile, which allows for their rapid secondary responses. Indisputably, many B cell malignancies result from aberrations in the circuitry controlling B cell function, particularly during the GC reaction. Here we review new insights into memory B cell subtypes, recent literature on transcription factors regulating human B cell differentiation, and further evidence for B cell lymphomagenesis emanating from errors during the GC cell reactions. PMID:19447676

  3. Germinal center B cells and mixed leukocyte reactions

    SciTech Connect

    Monfalcone, A.P.; Kosco, M.H.; Szakal, A.K.; Tew, J.G. )

    1989-09-01

    The present study was undertaken to determine if germinal center (GC) B cells are sufficiently activated to stimulate mixed leukocyte reactions (MLR). Percoll density fractionation and a panning technique with peanut agglutinin (PNA) were used to isolate GC B cells from the lymph nodes of immune mice. The GC B cells were treated with mitomycin C or irradiation and used to stimulate allogeneic or syngeneic splenic T cells in the MLR. Controls included high-density (HD) B cells prepared from spleens of the same mice and HD B cells activated with lipopolysaccharide (LPS) and dextran sulfate. GC B cells bound high amount sof PNA (i.e., PNAhi). Similarly, the LPS-dextran sulfate-activated B cells were PNAhi. Treatment with neuraminidase rendered the PNAlo HD B cells PNAhi. GC B cells and the LPS-dextran sulfate-activated HD B cells stimulated a potent MLR, while the untreated HD B cells did not. However, following neuraminidase treatment, the resulting PNAhi HD B cell population was able to induce an MLR. The PNA marker appeared to be an indicator of stimulatory activity, but incubating the cells with PNA to bind the cell surface ligand did not interfere with the MLR. GC B cells were also capable of stimulating a syngeneic MLR in most experiments although this was not consistently obtained. It appears that germinal centers represent a unique in vivo microenvironment that provides the necessary signals for B cells to become highly effective antigen-presenting cells.

  4. Lipoxin A₄ modulates adaptive immunity by decreasing memory B-cell responses via an ALX/FPR2-dependent mechanism.

    PubMed

    Ramon, Sesquile; Bancos, Simona; Serhan, Charles N; Phipps, Richard P

    2014-02-01

    Specialized proresolving mediators are endogenous bioactive lipid molecules that play a fundamental role in the regulation of inflammation and its resolution. Lipoxins and other specialized proresolving mediators have been identified in important immunological tissues including bone marrow, spleen, and blood. Lipoxins regulate functions of the innate immune system including the promotion of monocyte recruitment and increase macrophage phagocytosis of apoptotic neutrophils. A major knowledge gap is whether lipoxins influence adaptive immune cells. Here, we analyzed the actions of lipoxin A₄ (LXA₄) and its receptor ALX/FPR2 on human and mouse B cells. LXA₄ decreased IgM and IgG production on activated human B cells through ALX/FPR2-dependent signaling, which downregulated NF-κB p65 nuclear translocation. LXA₄ also inhibited human memory B-cell antibody production and proliferation, but not naïve B-cell function. Lastly, LXA₄ decreased antigen-specific antibody production in an OVA immunization mouse model. To our knowledge, this is the first description of the actions of lipoxins on human B cells, demonstrating a link between resolution signals and adaptive immunity. Regulating antibody production is crucial to prevent unwanted inflammation. Harnessing the ability of lipoxins to decrease memory B-cell antibody production can be beneficial to threat inflammatory and autoimmune disorders.

  5. Identification and characterization of OSTL (RNF217) encoding a RING-IBR-RING protein adjacent to a translocation breakpoint involving ETV6 in childhood ALL

    PubMed Central

    Fontanari Krause, Luciana M.; Japp, Anna Sophia; Krause, Alexandre; Mooster, Jana; Chopra, Martin; Müschen, Markus; Bohlander, Stefan K.

    2014-01-01

    Genomic aberrations involving ETV6 on band 12p13 are amongst the most common chromosomal abnormalities in human leukemia. The translocation t(6;12)(q23;13) in a childhood B-cell acute lymphoblastic leukemia (ALL) cell line fuses ETV6 with the putative long non-coding RNA gene STL. Linking STL properties to leukemia has so far been difficult. Here, we describe a novel gene, OSTL (annotated as RNF217 in Genbank), which shares the first exon and a CpG island with STL but is transcribed in the opposite direction. Human RNF217 codes for a highly conserved RING finger protein and is mainly expressed in testis and skeletal muscle with different splice variants. RNF217 shows regulated splicing in B cell development, and is expressed in a number of human B cell leukemia cell lines, primary human chronic myeloid leukemia, acute myeloid leukemia with normal karyotype and acute T-ALL samples. Using a yeast two-hybrid screen, we identified the anti-apoptotic protein HAX1 to interact with RNF217. This interaction could be mapped to the C-terminal RING finger motif of RNF217. We propose that some of the recurring aberrations involving 6q might deregulate the expression of RNF217 and result in imbalanced apoptosis signalling via HAX1, promoting leukemia development. PMID:25298122

  6. Class-switched B cells display response to therapeutic B-cell depletion in rheumatoid arthritis

    PubMed Central

    Möller, Burkhard; Aeberli, Daniel; Eggli, Stefan; Fuhrer, Martin; Vajtai, Istvan; Vögelin, Esther; Ziswiler, Hans-Rudolf; Dahinden, Clemens A; Villiger, Peter M

    2009-01-01

    Introduction Reconstitution of peripheral blood (PB) B cells after therapeutic depletion with the chimeric anti-CD20 antibody rituximab (RTX) mimics lymphatic ontogeny. In this situation, the repletion kinetics and migratory properties of distinct developmental B-cell stages and their correlation to disease activity might facilitate our understanding of innate and adaptive B-cell functions in rheumatoid arthritis (RA). Methods Thirty-five 'RTX-naïve' RA patients with active arthritis were treated after failure of tumour necrosis factor blockade in an open-label study with two infusions of 1,000 mg RTX. Prednisone dose was tapered according to clinical improvement from a median of 10 mg at baseline to 5 mg at 9 and 12 months. Conventional disease-modifying antirheumatic drugs were kept stable. Subsets of CD19+ B cells were assessed by flow cytometry according to their IgD and CD27 surface expression. Their absolute number and relative frequency in PB were followed every 3 months and were determined in parallel in synovial tissue (n = 3) or synovial fluid (n = 3) in the case of florid arthritis. Results Six of 35 patients fulfilled the European League Against Rheumatism criteria for moderate clinical response, and 19 others for good clinical response. All PB B-cell fractions decreased significantly in number (P < 0.001) after the first infusion. Disease activity developed independently of the total B-cell number. B-cell repopulation was dominated in quantity by CD27-IgD+ 'naïve' B cells. The low number of CD27+IgD- class-switched memory B cells (MemB) in the blood, together with sustained reduction of rheumatoid factor serum concentrations, correlated with good clinical response. Class-switched MemB were found accumulated in flaring joints. Conclusions The present data support the hypothesis that control of adaptive immune processes involving germinal centre-derived, antigen, and T-cell-dependently matured B cells is essential for successful RTX treatment. PMID

  7. The contribution of HGAL/GCET2 in immunohistological algorithms: a comparative study in 424 cases of nodal diffuse large B-cell lymphoma.

    PubMed

    Gualco, Gabriela; Bacchi, Lívia M; Domeny-Duarte, Pollyanna; Natkunam, Yasodha; Bacchi, Carlos E

    2012-11-01

    Diffuse large B-cell lymphoma can be subclassified into at least two molecular subgroups by gene expression profiling: germinal center B-cell like and activated B-cell like diffuse large B-cell lymphoma. Several immunohistological algorithms have been proposed as surrogates to gene expression profiling at the level of protein expression, but their reliability has been an issue of controversy. Furthermore, the proportion of misclassified cases of germinal center B-cell subgroup by immunohistochemistry, in all reported algorithms, is higher compared with germinal center