Science.gov

Sample records for b-diketones 1-phenyl-3-methyl-4-benzoyl pyrazol-5-one

  1. Synthesis of 3-Methyl-4-(4-methylbenzoyl)-1-phenyl-pyrazol-5-One: How to Avoid O-Acylation

    ERIC Educational Resources Information Center

    Kurteva, Vanya B.; Petrova, Maria A.

    2015-01-01

    In this laboratory experiment, students synthesize 3-methyl-4-(4-methylbenzoyl)-1-phenyl-pyrazol-5-one by selective C-acylation of 3-methyl-1-phenyl-1H-pyrazol-5-one. Calcium hydroxide is used to push the tautomeric equilibrium toward the enol form, to protect the hydroxyl functionality as a complex, to trap the liberated hydrogen chloride, and to…

  2. In silico prediction of inhibitory effects of pyrazol-5-one and indazole derivatives on GSK3β kinase enzyme

    NASA Astrophysics Data System (ADS)

    Wang, Fangfang; Liu, Mengmeng; Liu, Jianling

    2012-09-01

    Glycogen synthase kinase-3 beta (GSK3β) plays an important role in a diverse number of regulatory pathways by phosphorylation of several different cellular targets and its inhibitors have been evaluated as promising drug candidates. In this work, 192 3-aryl-4-(arylhydrazono)-1H-pyrazol-5-one analogs (AHP) and indazoles (ID) derivatives possessing selective binding affinity for GSK3β kinase were studied using the 3D-QSAR/CoMFA/CoMSIA methodologies. The obtained CoMFA/CoMSIA models exhibit both good internal and external predictive abilities, i.e., Rcv2=0.551,Rpred2=0.698 for AHP derivatives and Rcv2=0.511,Rpred2=0.791 for ID analogs. Of paramount interest is the observation derived from the combination of molecular dynamics and molecular docking studies that Val135 and Asp133 are responsible for the binding recognition for AHP molecules, while residues Val135 and Pro136 are mainly involved in the specific ligand-kinase interactions for ID analogs. The developed models are seeking to be helpful for the rational design of novel potent GSK3β inhibitors.

  3. Influence of the amine salt anion on the synergic solvent extraction of praseodymium with mixtures of chelating extractants and tridodecylamine

    SciTech Connect

    Dukov, I.L.; Jordanov, V.M.

    1995-11-01

    The solvent extraction of Pr with thenoyltrifluoroacetone, (HTTA) or 1-phenyl-3-methyl-4-benzoyl-pyrazol-5-one(HP) and tridodecylammonium salt (TDAHA,A{sup -} = Cl{sup -},NO{sub 3}{sup -}, ClO{sub 4}{sup -}) in C{sub 6}H{sub 6} has been studied. The composition of the extracted species has been determined as Pr(TTA){sub 3} TDAHA and TDAH{sup +}[PrP{sub 4}]{sup -}. The values of the equilibrium constants, have been calculated. The extraction mechanism has been discussed on the basis of the experimental data. 34 refs., 6 figs., 2 tabs.

  4. Synthesis, Characterization, and Biological Activity of N′-[(Z)-(3-Methyl-5-oxo-1-phenyl-1,5-dihydro-4H-pyrazol-4-ylidene)(phenyl)methyl]benzohydrazide and Its Co(II), Ni(II), and Cu(II) Complexes

    PubMed Central

    Asegbeloyin, Jonnie N.; Ujam, Oguejiofo T.; Okafor, Emmanuel C.; Babahan, Ilknur; Coban, Esin Poyrazoglu; Özmen, Ali; Biyik, Halil

    2014-01-01

    Reaction of 1-phenyl-3-methyl-4-benzoyl-pyrazol-5-one and benzoyl hydrazide in refluxing ethanol gave N′-[(Z)-(3-methyl-5-oxo-1-phenyl-1,5-dihydro-4H-pyrazol-4-ylidene)(phenyl)methyl]benzohydrazide (HL1), which was characterized by NMR spectroscopy and single-crystal X-ray structure study. X-ray diffraction analyses of the crystals revealed a nonplanar molecule, existing in the keto-amine form, with intermolecular hydrogen bonding forming a seven-membered ring system. The reaction of HL1 with Co(II), Ni(II), and Cu(II) halides gave the corresponding complexes, which were characterized by elemental analysis, molar conductance, magnetic measurements, and infrared and electronic spectral studies. The compounds were screened for their in vitro cytotoxic activity against HL-60 human promyelocytic leukemia cells and antimicrobial activity against some bacteria and yeasts. Results showed that the compounds are potent against HL-60 cells with the IC50 value ≤5 μM, while some of the compounds were active against few studied Gram-positive bacteria. PMID:25332694

  5. Antibacterial, antifungal and in vitro antileukaemia activity of metal complexes with thiosemicarbazones

    PubMed Central

    Pahontu, Elena; Julea, Felicia; Rosu, Tudor; Purcarea, Victor; Chumakov, Yurie; Petrenco, Petru; Gulea, Aurelian

    2015-01-01

    1-phenyl-3-methyl-4-benzoyl-5-pyrazolone 4-ethyl-thiosemicarbazone (HL) and its copper(II), vanadium(V) and nickel(II) complexes: [Cu(L)(Cl)]·C2H5OH·(1), [Cu(L)2]·H2O (2), [Cu(L)(Br)]·H2O·CH3OH (3), [Cu(L)(NO3)]·2C2H5OH (4), [VO2(L)]·2H2O (5), [Ni(L)2]·H2O (6), were synthesized and characterized. The ligand has been characterized by elemental analyses, IR, 1H NMR and 13C NMR spectroscopy. The tridentate nature of the ligand is evident from the IR spectra. The copper(II), vanadium(V) and nickel(II) complexes have been characterized by different physico-chemical techniques such as molar conductivity, magnetic susceptibility measurements and electronic, infrared and electron paramagnetic resonance spectral studies. The structures of the ligand and its copper(II) (2, 4), and vanadium(V) (5) complexes have been determined by single-crystal X-ray diffraction. The composition of the coordination polyhedron of the central atom in 2, 4 and 5 is different. The tetrahedral coordination geometry of Cu was found in complex 2 while in complex 4, it is square planar, in complex 5 the coordination polyhedron of the central ion is distorted square pyramid. The in vitro antibacterial activity of the complexes against Escherichia coli, Salmonella abony, Staphylococcus aureus, Bacillus cereus and the antifungal activity against Candida albicans strains was higher for the metal complexes than for free ligand. The effect of the free ligand and its metal complexes on the proliferation of HL-60 cells was tested. PMID:25708540

  6. Coordination Chemistry of Europium(III) Ion Towards Acylpyrazolone Ligands.

    PubMed

    Atanassova, Maria; Kurteva, Vanya; Billard, Isabelle

    2015-01-01

    Two Eu(III) complexes were synthesized using 4-acylpyrazolone ligands: 3-methyl-4-(4-methylbenzoyl)-1-phenyl-pyrazol-5-one (HPMMBP) and 3-methyl-1-phenyl-4-(4-phenylbenzoyl)-pyrazol-5-one (HPPMBP). The composition of the obtained solid complexes was determined as Eu(PMMBP)3·C2H5OH and Eu(PPMBP)3·3H2O based on elemental analysis and was further studied by IR, NMR and TG-TSC data. The lanthanoid complexation in solid state and in solution during liquid-liquid extraction (molecular diluent and ionic liquid) is discussed.

  7. Synthesis, characterization, antimicrobial, DNA binding and cleavage studies of mixed ligand Cu(II), Co(II) complexes.

    PubMed

    Leela, D Shiva; Ushaiah, B; Anupama, G; Sunitha, M; Kumari, C Gyana

    2015-01-01

    The mixed ligand complexes MLA of Cu(II) and Co(II) with Schiff base derived from 4-amino antipyrine and 5-NO(2) salicylaldehyde (2,3 -dimethyl-1-phenyl-4-(2-hydroxy-5-nitro benzylideneamino)-pyrazol-5-one) as ONO donor (L) and A = 2,2 bipyridine (bpy),1,10 phenonthroline (1,10 phen) as N, N donor ligands have been prepared, owing to their biological and other applications. The structural features have arrived from their elemental analyses, magnetic susceptibility, molar conductance, Mass, IR, UV-VIS, powdered XRD and ESR spectral studies, that established MLA type of composition for the metal complexes. The electronic absorption spectral data of the complexes suggest an octahedral geometry around the central metal ion. The interaction of the complexes with Calf Thymus (CT) DNA has been studied using absorption spectra, viscosity measurements and fluorescence spectra. The binding constants (K(b)) of the complexes were determined as 2.1 × 10(6) M(-1) for complex 1, 2.5x10(6)M(-1) for complex 2, 1.16 × 10(6) M(-1) for complex 3,1.25x10(6)M(-1) for complex 4, DNA cleavage experiments performed on pBR-322 plasmids using metal complexes in the presence of H(2)O(2) showed that all the complexes afford a pronounced DNA cleavage. Molecular modelling studies were also performed to confirm the geometries of the complexes. The ligand and their metal complexes were screened for their antimicrobial activity against bacteria. The results showed that the metal complexes are biologically active. PMID:25548074