Science.gov

Sample records for b-value apparent diffusion-weighted

  1. High b-value Apparent Diffusion-Weighted Images from CURVE-ball DTI

    PubMed Central

    Peled, Sharon; Whalen, Stephen; Jolesz, Frence A.; Golby, Alexandra J.

    2009-01-01

    Purpose To investigate the utility of a proposed clinical diffusion imaging scheme for rapidly generating multiple b-value diffusion contrast in brain MRI with high SNR. Materials and Methods Our strategy for efficient image acquisition relies on the invariance property of the diffusion tensor eigenvectors to b-value. A simple addition to the conventional DTI data acquisition scheme used for tractography yields diffusion-weighted images at twice and three times the conventional b-value. An example from a neurosurgical brain tumor is shown. Apparent diffusion-weighted (ADW) images were calculated for b-values 800, 1600 and 2400 s/mm2, and a map of excess diffusive kurtosis was computed from the three ADW's. Results High b-value ADW images demonstrated decreased contrast between normal gray and white matter, while the heterogeneity and contrast of the lesion was emphasized relative to conventional b-value data. Kurtosis maps indicated the deviation from Gaussian diffusive behavior Conclusion DTI data with multiple b-values and good SNR can be acquired in clinically reasonable times. High b-value ADW images show increased contrast and add information to conventional DWI. Ambiguity in conventional b-value images over whether hyperintense signal results from abnormally low diffussion, or abnormally long T2, is better resolved in high b-value images. PMID:19557743

  2. Apparent Ultra-High b-Value Diffusion-Weighted Image Reconstruction via Hidden Conditional Random Fields.

    PubMed

    Shafiee, Mohammad Javad; Haider, Shahid A; Wong, Alexander; Lui, Dorothy; Cameron, Andrew; Modhafar, Ameen; Fieguth, Paul; Haider, Masoom A

    2015-05-01

    A promising, recently explored, alternative to ultra-high b-value diffusion weighted imaging (UHB-DWI) is apparent ultra-high b-value diffusion-weighted image reconstruction (AUHB-DWR), where a computational model is used to assist in the reconstruction of apparent DW images at ultra-high b -values. Firstly, we present a novel approach to AUHB-DWR that aims to improve image quality. We formulate the reconstruction of an apparent DW image as a hidden conditional random field (HCRF) in which tissue model diffusion parameters act as hidden states in this random field. The second contribution of this paper is a new generation of fully connected conditional random fields, called the hidden stochastically fully connected conditional random fields (HSFCRF) that allows for efficient inference with significantly reduced computational complexity via stochastic clique structures. The proposed AUHB-DWR algorithms, HCRF and HSFCRF, are evaluated quantitatively in nine different patient cases using Fisher's criteria, probability of error, and coefficient of variation metrics to validate its effectiveness for the purpose of improving intensity delineation between expert identified suspected cancerous and healthy tissue within the prostate gland. The proposed methods are also examined using a prostate phantom, where the apparent ultra-high b-value DW images reconstructed using the tested AUHB-DWR methods are compared with real captured UHB-DWI. The results illustrate that the proposed AUHB-DWR methods has improved reconstruction quality and improved intensity delineation compared with existing AUHB-DWR approaches.

  3. Low b-Value Diffusion-Weighted Cardiac Magnetic Resonance Imaging

    PubMed Central

    Rapacchi, Stanislas; Wen, Han; Viallon, Magalie; Grenier, Denis; Kellman, Peter; Croisille, Pierre; Pai, Vinay M.

    2012-01-01

    Objectives Diffusion-weighted imaging (DWI) using low b-values permits imaging of intravoxel incoherent motion in tissues. However, low b-value DWI of the human heart has been considered too challenging because of additional signal loss due to physiological motion, which reduces both signal intensity and the signal-to-noise ratio (SNR). We address these signal loss concerns by analyzing cardiac motion during a heartbeat to determine the time-window during which cardiac bulk motion is minimal. Using this information to optimize the acquisition of DWI data and combining it with a dedicated image processing approach has enabled us to develop a novel low b-value diffusion-weighted cardiac magnetic resonance imaging approach, which significantly reduces intravoxel incoherent motion measurement bias introduced by motion. Materials and Methods Simulations from displacement encoded motion data sets permitted the delineation of an optimal time-window with minimal cardiac motion. A number of single-shot repetitions of low b-value DWI cardiac magnetic resonance imaging data were acquired during this time-window under free-breathing conditions with bulk physiological motion corrected for by using nonrigid registration. Principal component analysis (PCA) was performed on the registered images to improve the SNR, and temporal maximum intensity projection (TMIP) was applied to recover signal intensity from time-fluctuant motion-induced signal loss. This PCATMIP method was validated with experimental data, and its benefits were evaluated in volunteers before being applied to patients. Results Optimal time-window cardiac DWI in combination with PCATMIP postprocessing yielded significant benefits for signal recovery, contrast-to-noise ratio, and SNR in the presence of bulk motion for both numerical simulations and human volunteer studies. Analysis of mean apparent diffusion coefficient (ADC) maps showed homogeneous values among volunteers and good reproducibility between free

  4. Effects of magnetic field strength and b value on the sensitivity and specificity of quantitative breast diffusion-weighted MRI

    PubMed Central

    Eghtedari, Mohammad; Fox, Patricia; Guvenc, Inanc; Yang, Wei T.; Dogan, Basak E.

    2016-01-01

    Background To evaluate the effect of b value or the magnetic field strength (B0) on the sensitivity and specificity of quantitative breast diffusion-weighted imaging (DWI). Methods A total of 126 patients underwent clinical breast MRI that included pre-contrast DWI imaging using b values of both 1,000 and 1,500 s/mm2 at either 1.5 T (n=86) or 3.0 T (n=40). Quantitative apparent diffusion coefficients (ADC) were measured and compared for 18 benign, 33 malignant lesions, and 126 normal breast tissues. Optimal ADCmean threshold for differentiating benign and malignant lesions was estimated and the effect of b values and B0 were examined using a generalized estimating equations (GEE) model. Results The optimal ADCmean threshold was 1.235×10–3 mm2/s for b value of 1,000 and 0.934×10–3 mm2/s for b value of 1,500. Using these thresholds, the sensitivities and specificities were 96% and 89% (b value =1,000, B0 =1.5 T), 89% and 98% (b value =1,000, B0 =3.0 T), 88% and 96% (b value =1,500, B0 =1.5 T), and 67% and 100% (b value =1,500, B0 =3.0 T). No significant difference was found between different B0 (P=0.26) or b values (P=0.28). Conclusions Better sensitivity is achieved with DWI of b value =1,000 than with b value =1,500. However, b value and B0 do not significantly impact diagnostic performance of DWI when using appropriate thresholds. PMID:27709073

  5. Optimization of b-Value Sampling for Diffusion-Weighted Imaging of the Kidney

    PubMed Central

    Zhang, Jeff L.; Sigmund, Eric E.; Rusinek, Henry; Chandarana, Hersh; Storey, Pippa; Chen, Qun; Lee, Vivian S.

    2016-01-01

    Diffusion-weighted imaging (DWI) involves data acquisitions at multiple b values. In this paper, we presented a method of selecting the b values that maximize estimation precision of the biexponential analysis of renal DWI data. We developed an error propagation factor for the biexponential model, and proposed to optimize the b-value samplings by minimizing the error propagation factor. A prospective study of four healthy human subjects (eight kidneys) was done to verify the feasibility of the proposed protocol and to assess the validity of predicted precision for DWI measures, followed by Monte Carlo simulations of DWI signals based on acquired data from renal lesions of 16 subjects. In healthy subjects, the proposed methods improved precision (P = 0.003) and accuracy (P < 0.001) significantly in region-of-interest based biexponential analysis. In Monte Carlo simulation of renal lesions, the b-sampling optimization lowered estimation error by at least 20–30% compared with uniformly distributed b values, and improved the differentiation between malignant and benign lesions significantly. In conclusion, the proposed method has the potential of maximizing the precision and accuracy of the biexponential analysis of renal DWI. PMID:21702062

  6. Hypercellularity Components of Glioblastoma Identified by High b-Value Diffusion-Weighted Imaging

    SciTech Connect

    Pramanik, Priyanka P.; Parmar, Hemant A.; Mammoser, Aaron G.; Junck, Larry R.; Kim, Michelle M.; Tsien, Christina I.; Lawrence, Theodore S.; Cao, Yue

    2015-07-15

    Purpose: Use of conventional magnetic resonance imaging (MRI) for target definition may expose glioblastomas (GB) to inadequate radiation dose coverage of the nonenhanced hypercellular subvolume. This study aimed to develop a technique to identify the hypercellular components of GB by using high b-value diffusion-weighted imaging (DWI) and to investigate its relationship with the prescribed 95% isodose volume (PDV) and progression-free survival (PFS). Methods and Materials: Twenty-one patients with GB underwent chemoradiation therapy post-resection and biopsy. Radiation therapy (RT) treatment planning was based upon conventional MRI. Pre-RT DWIs were acquired in 3 orthogonal directions with b-values of 0, 1000, and 3000 s/mm{sup 2}. Hypercellularity volume (HCV) was defined on the high b-value (3000 s/mm{sup 2}) DWI by a threshold method. Nonenhanced signified regions not covered by the Gd-enhanced gross tumor volume (GTV-Gd) on T1-weighted images. The PDV was used to evaluate spatial coverage of the HCV by the dose plan. Association between HCV and PFS or other clinical covariates were assessed using univariate proportional hazards regression models. Results: HCVs and nonenhanced HCVs varied from 0.58 to 67 cm{sup 3} (median: 9.8 cm{sup 3}) and 0.15 to 60 cm{sup 3} (median: 2.5 cm{sup 3}), respectively. Fourteen patients had incomplete dose coverage of the HCV, 6 of whom had >1 cm{sup 3} HCV missed by the 95% PDV (range: 1.01-25.4 cm{sup 3}). Of the 15 patients who progressed, 5 progressed earlier, within 6 months post-RT, and 10 patients afterward. Pre-RT HCVs within recurrent GTVs-Gd were 78% (range: 65%-89%) for the 5 earliest progressions but lower, 53% (range: 0%-85%), for the later progressions. HCV and nonenhanced HCV were significant negative prognostic indicators for PFS (P<.002 and P<.01, respectively). The hypercellularity subvolume not covered by the 95% PDV was a significant negative predictor for PFS (P<.05). Conclusions: High b-value DWI

  7. Diffusion Weighted MR Imaging to Evaluate Treatment Results after Volumetric MR-guided High Intensity Focused Ultrasound of Uterine Fibroids: Influence of Different B-values

    NASA Astrophysics Data System (ADS)

    Voogt, M. J.; Keserci, B.; Kim, Y. S.; Rhim, H.; Lim, H. K.; Mougenot, C.; Kohler, M. O.; van den Bosch, M. A.; Vincken, K. L.; Bartels, L. W.

    2011-09-01

    We have assessed the feasibility of using diffusion weighted MR imaging (DWI) and apparent diffusion coefficient (ADC) mapping using different b-value combinations to evaluate treatment results after volumetric magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) for uterine fibroids. Pre-treatment, directly post-treatment and 1 month follow-up DW images were obtained using b-values 0, 200, 400, 600 and 800 s/mm2. ADC maps were constructed for quantitative analysis of ablation results. Four different combinations of b-values were used to calculate the ADC. Directly after treatment ADC values decreased. Low b-values (0 and 200 s/mm2) resulted in the best contrast between non-perfused and perfused tissue. One month after treatment the average ADC was increased, now showing the best contrast on the high b-value ADC maps.

  8. Detection of chronic brain damage by diffusion-weighted imaging with multiple b values in patients with type 2 diabetes

    PubMed Central

    Liu, Tieli; Han, Yunpeng; Tang, Lemei; Wu, Jianlin; Miao, Yanwei; Gao, Bingbing; Shang, Jin

    2016-01-01

    Abstract The aim of the study was to evaluate the performance of parameters obtained from diffusion-weighted imaging (DWI) with multiple b values in the detection of chronic brain damage in patients with type 2 diabetes. We enrolled 30 patients with or without abnormalities on brain magnetic resonance imaging (lacunar infarction, leukoaraiosis, and/or brain atrophy) and 15 nondiabetic controls; obtained DWI parameters that included apparent diffusion coefficient (ADC), fast ADC (ADCfast), slow ADC (ADCslow), fraction of fast ADC (f), distributed diffusion coefficient (DDC), and stretched exponential (α); and performed receiver operating characteristic (ROC) analysis to evaluate the performance of parameters for the detection of chronic brain damage. The parameters ADC, ADCslow, f, and DDC were increased, whereas parameters ADCfast and α were decreased in type 2 diabetes patients compared with controls without diabetes. The centrum semiovale showed the most significant change in the evaluated parameters, and the changes in parameters ADCslow, f, and DDC were greater than the changes in other parameters. There was no significance between parameters of the biexponential model (ADCfast, ADCslow, f) and parameters of the stretched model (DDC, α), but parameters of both these models were superior to the parameter of monoexponential model (ADC). Moreover, ROC analysis showed that ADCslow of the centrum semiovale supplied by the anterior cerebral artery had the highest performance for detection of chronic brain damage (area under the ROC curve of 0.987, 93.3% sensitivity, and 100% specificity). Our study shows that DWI with multiple b values can quantitatively access chronic brain damage and may be used for detection and monitoring in type 2 diabetes patients. PMID:27583912

  9. Detection of chronic brain damage by diffusion-weighted imaging with multiple b values in patients with type 2 diabetes.

    PubMed

    Liu, Tieli; Han, Yunpeng; Tang, Lemei; Wu, Jianlin; Miao, Yanwei; Gao, Bingbing; Shang, Jin

    2016-08-01

    The aim of the study was to evaluate the performance of parameters obtained from diffusion-weighted imaging (DWI) with multiple b values in the detection of chronic brain damage in patients with type 2 diabetes.We enrolled 30 patients with or without abnormalities on brain magnetic resonance imaging (lacunar infarction, leukoaraiosis, and/or brain atrophy) and 15 nondiabetic controls; obtained DWI parameters that included apparent diffusion coefficient (ADC), fast ADC (ADCfast), slow ADC (ADCslow), fraction of fast ADC (f), distributed diffusion coefficient (DDC), and stretched exponential (α); and performed receiver operating characteristic (ROC) analysis to evaluate the performance of parameters for the detection of chronic brain damage.The parameters ADC, ADCslow, f, and DDC were increased, whereas parameters ADCfast and α were decreased in type 2 diabetes patients compared with controls without diabetes. The centrum semiovale showed the most significant change in the evaluated parameters, and the changes in parameters ADCslow, f, and DDC were greater than the changes in other parameters. There was no significance between parameters of the biexponential model (ADCfast, ADCslow, f) and parameters of the stretched model (DDC, α), but parameters of both these models were superior to the parameter of monoexponential model (ADC). Moreover, ROC analysis showed that ADCslow of the centrum semiovale supplied by the anterior cerebral artery had the highest performance for detection of chronic brain damage (area under the ROC curve of 0.987, 93.3% sensitivity, and 100% specificity).Our study shows that DWI with multiple b values can quantitatively access chronic brain damage and may be used for detection and monitoring in type 2 diabetes patients. PMID:27583912

  10. Diffusion-Weighted Imaging with Two Different b-Values in Detection of Solid Focal Liver Lesions

    PubMed Central

    Yang, Da-wei; Wang, Ke-yang; Yao, Xun; Ye, Hui-yi; Jiang, Tao; Liu, Yuan; Gao, Jia-yin; Chen, Min; Zhou, Cheng; Yang, Zheng-han

    2016-01-01

    One hundred and eighty-two consecutive patients with suspected liver disease were recruited to receive diffusion-weighted imaging (DWI) with two different b-values, in comparison with T2-weighted imaging (T2WI). The detection rate of three MR sequences in solid focal liver lesions (FLLs) and subgroup analyses were performed. Our prospective study found that DWI600 was equivalent to DWI100 and T2WI for the detection of solid FLLs overall but was significantly more accurate in the detection of malignant solid FLLs and lesions larger than 10 mm. PMID:27019851

  11. Optimised diffusion-weighting for measurement of apparent diffusion coefficient (ADC) in human brain.

    PubMed

    Xing, D; Papadakis, N G; Huang, C L; Lee, V M; Carpenter, T A; Hall, L D

    1997-01-01

    This work studies the effect of diffusion-weighting on the precision of measurements of the apparent diffusion coefficient (ADC, or D) by diffusion-weighted magnetic resonance imaging. The precision in the value of the ADC was described in terms of a diffusion-to-noise ratio (DNR) which was calculated as the signal-to-noise ratio in the resultant ADC. A theoretical analysis decomposed the DNR into the signal-to-noise ratio in the diffusion-weighted image and the sensitivity of diffusion-weighting, "KD". The latter reflects the effect of the sampling strategy in the diffusion-weighting domain on the DNR. The theoretical analysis demonstrated that optimal two-point diffusion-weighting could be achieved in the vicinity of zeta = D(b2-b1) = 1.1, where zeta is a non-dimensional parameter of diffusion-weighting, and b1 and b2 are the diffusion-weighting factors for the two-point diffusion-weighting. This approach also derived an optimised signal averaging scheme. The limitations and restrictions of the two-point scheme for in vivo ADC measurement were also considered; these included a detailed discussion on partial volume effects. The theory was verified by experiments on phantoms and on the brain of a healthy volunteer using a diffusion-weighted echo-planar imaging protocol. This led to an optimal two-point diffusion-weighting for ADC measurement in human brain using b1 = 300, and b2 = 1550 +/- 100 s/mm2. Such a two-point scheme successfully measured values of the ADC in gray matter, white matter and cerebrospinal fluid in human brain. It thus offers an alternative to the commonly used multiple-point schemes and has the advantage of requiring significantly shorter imaging times.

  12. A quantitative evaluation of diffusion-weighted MR imaging of focal hepatic lesions by using an optimal b-value for differentiation of malignant and benign tumors

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kim, Kwang

    2013-12-01

    In this study, we aimed to determine an optimized b-value for the characterization of focal hepatic lesions (malignant and benign tumors) and to perform a quantitative analysis of the results. To achieve this, we obtained diffusion-weighted images (DWIs) from 30 focal hepatic disease patients (liver metastasis: 20 patients, and liver hemangioma: 10 patients) by using a 1.5 T MR system and varying the b-value from 0 through 200. The experimental results revealed that at a b-value of 50, the DWIs of the lesions showed high signal-to-noise ratios (SNRs; SN R liver_meta . = 229.83 ± 19.08, SNR liver_hema . = 241.66 ± 29.02), high contrast-to-noise ratios (CNRs; CN R liver_meta . = 39.66 ± 3.87, C N R liver_hema . = 142.55 ± 12.97) and low signal intensities of the apparent diffusion coefficients (ADCs; ADC liver_meta . = 1.40 × 10-3 ± 0.29, ADC liver_hema . = 2.55 × 10-3 ± 0.92). The focal hepatic lesions were clearly depicted, with DW images and ADC maps corresponding well. Thus, we could present an optimized b-value ( b = 50) for the characterization of focal hepatic lesions. Additionally, the ADC values of liver lesions were found to be useful in differentiating benign from malignant tumors.

  13. Pretreatment prediction of brain tumors' response to radiation therapy using high b-value diffusion-weighted MRI.

    PubMed

    Mardor, Yael; Roth, Yiftach; Ochershvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael

    2004-01-01

    Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm(2) to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, R(D), reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and R(D) were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P <.002 and r = 0.77, P <.001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy.

  14. Pretreatment Prediction of Brain Tumors' Response to Radiation Therapy Using High b-Value Diffusion-Weighted MRI1

    PubMed Central

    Mardor, Yael; Roth, Yiftach; Ocherashvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael

    2004-01-01

    Abstract Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm2 to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, RD, reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and RD were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P < .002 and r = 0.77, P < .001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy. PMID:15140402

  15. Predicting Prostate Biopsy Outcomes: A Preliminary Investigation on Screening with Ultrahigh B-Value Diffusion-Weighted Imaging as an Innovative Diagnostic Biomarker

    PubMed Central

    Zhang, Kun; Shen, Yanguang; Zhang, Xu; Ma, Lu; Wang, Haiyi; An, Ningyu; Guo, Aitao; Ye, Huiyi

    2016-01-01

    Background Routine screening of prostate specific antigen (PSA) is no longer recommended because of a high rate of over-diagnosis of prostate cancer (PCa). Objective To evaluate the efficacy of diffusion-weighted magnetic resonance imaging (DW-MRI) for PCa detection, and to explore the clinical utility of ultrahigh b-value DW-MRI in predicting prostate biopsy outcomes. Methodology 73 male patients were selected for the study. They underwent 3T MRI using T2WI conventional DW-MRI with b-value 1000 s/mm2, and ultrahigh b-value DW-MRI with b-values of 2000 s/mm2 and 3000 s/mm2. Two radiologists evaluated individual prostate gland images on a 5-point rating scale using PI-RADS, for the purpose of region-specific comparisons among modalities. Sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV) and likelihood ratios (LR) were investigated for each MRI modality. The area under the receiver operating characteristic (ROC) curve (AUC) was also calculated. Results Results showed the improved diagnostic value of ultrahigh b-value DWI-MRI for detection of PCa when compared to other b values and conventional MRI protocols. Sensitivity values for 3000 s/mm2 in both peripheral zone (PZ) and transition zone (TZ) were significantly higher than those observed with conventional DW-MRI—Specificity values for 3000 s/mm2 in the TZ were significantly higher than other b-value images, whereas specificity values using 3000 s/mm2 in the PZ were not significantly higher than 2000 s/mm2 images. PPV and NPV between 3000 s/mm2 and the other three modalities were significantly higher for both PZ and TZ images. The PLRs and NLRs of b-value 3000 s/mm2 DW-MRI in the PZ and TZ were also recorded. ROC analysis showed greater AUCs for the b value 3000 s/mm2 DWI than for the other three modalities. Conclusions DW-MRI with a b-value of 3000 s/mm2 was found to be the most accurate and reliable MRI modality for PCa tumor detection and localization

  16. Liver lobe-based magnetic resonance diffusion-weighted imaging using multiple b values in patients with hepatitis B-related liver cirrhosis: association with the liver disease severity according to the Child-Pugh class

    PubMed Central

    Tang, Hong-Jie; Zhou, Li; Zhang, Xiao-Ming; Liu, Jun; Chen, Tian-Wu; Zeng, Nan-Lin; Wang, Dan; Li, Jie; Huang, Yu-Cheng; Tang, Yu-Lian; Hu, Jiani

    2015-01-01

    OBJECTIVE: To determine the associations of liver lobe-based magnetic resonance diffusion-weighted imaging findings using multiple b values with the presence and Child-Pugh class of cirrhosis in patients with hepatitis B. METHODS: Seventy-four cirrhotic patients with hepatitis B and 25 healthy volunteers underwent diffusion-weighted imaging using b values of 0, 500, 800 and 1000 sec/mm2. The apparent diffusion coefficients of individual liver lobes for b(0,500), b(0,800) and b(0,1000) were derived from the signal intensity averaged across images obtained using b values of 0 and 500 sec/mm2, 0 and 800 sec/mm2, or 0 and 1000 sec/mm2, respectively, and were statistically analyzed to evaluate cirrhosis. RESULTS: The apparent diffusion coefficients for b(0,500), b(0,800) and b(0,1000) inversely correlated with the Child-Pugh class in the left lateral liver lobe, the left medial liver lobe, the right liver lobe and the caudate lobe (r=–0.35 to –0.60, all p<0.05), except for the apparent diffusion coefficient for b(0,1000) in the left medial liver lobe (r=–0.17, p>0.05). Among these parameters, the apparent diffusion coefficient for b(0,500) in the left lateral liver lobe best differentiated normal from cirrhotic liver, with an area under the receiver operating characteristic curve of 0.989. The apparent diffusion coefficient for b(0,800) in the right liver lobe best distinguished Child-Pugh class A from B–C and A–B from C, with areas under the receiver operating characteristic curve of 0.732 and 0.747, respectively. CONCLUSION: Liver lobe-based apparent diffusion coefficients for b(0,500) and b(0,800) appear to be associated with the presence and Child-Pugh class of liver cirrhosis. PMID:26222818

  17. Accuracies and Contrasts of Models of the Diffusion-Weighted-Dependent Attenuation of the MRI Signal at Intermediate b-values

    PubMed Central

    Nicolas, Renaud; Sibon, Igor; Hiba, Bassem

    2015-01-01

    The diffusion-weighted-dependent attenuation of the MRI signal E(b) is extremely sensitive to microstructural features. The aim of this study was to determine which mathematical model of the E(b) signal most accurately describes it in the brain. The models compared were the monoexponential model, the stretched exponential model, the truncated cumulant expansion (TCE) model, the biexponential model, and the triexponential model. Acquisition was performed with nine b-values up to 2500 s/mm2 in 12 healthy volunteers. The goodness-of-fit was studied with F-tests and with the Akaike information criterion. Tissue contrasts were differentiated with a multiple comparison corrected nonparametric analysis of variance. F-test showed that the TCE model was better than the biexponential model in gray and white matter. Corrected Akaike information criterion showed that the TCE model has the best accuracy and produced the most reliable contrasts in white matter among all models studied. In conclusion, the TCE model was found to be the best model to infer the microstructural properties of brain tissue. PMID:26106263

  18. Diffusion-weighted MRI derived apparent diffusion coefficient identifies prognostically distinct subgroups of pediatric diffuse intrinsic pontine glioma.

    PubMed

    Lober, Robert M; Cho, Yoon-Jae; Tang, Yujie; Barnes, Patrick D; Edwards, Michael S; Vogel, Hannes; Fisher, Paul G; Monje, Michelle; Yeom, Kristen W

    2014-03-01

    While pediatric diffuse intrinsic pontine gliomas (DIPG) remain fatal, recent data have shown subgroups with distinct molecular biology and clinical behavior. We hypothesized that diffusion-weighted MRI can be used as a prognostic marker to stratify DIPG subsets with distinct clinical behavior. Apparent diffusion coefficient (ADC) values derived from diffusion-weighted MRI were computed in 20 consecutive children with treatment-naïve DIPG tumors. The median ADC for the cohort was used to stratify the tumors into low and high ADC groups. Survival, gender, therapy, and potential steroid effects were compared between the ADC groups. Median age at diagnosis was 6.6 (range 2.3-13.2) years, with median follow-up seven (range 1-36) months. There were 14 boys and six girls. Seventeen patients received radiotherapy, five received chemotherapy, and six underwent cerebrospinal fluid diversion. The median ADC of 1,295 × 10(-6) mm(2)/s for the cohort partitioned tumors into low or high diffusion groups, which had distinct median survivals of 3 and 13 months, respectively (log-rank p < 0.001). Low ADC tumors were found only in boys, whereas high ADC tumors were found in both boys and girls. Available tissue specimens in three low ADC tumors demonstrated high-grade histology, whereas one high ADC tumor demonstrated low-grade histology with a histone H3.1 K27M mutation and high-grade metastatic lesion at autopsy. ADC derived from diffusion-weighted MRI may identify prognostically distinct subgroups of pediatric DIPG. PMID:24522717

  19. Isotropic diffusion weighting for measurement of a high-resolution apparent diffusion coefficient map using a single radial scan in MRI

    NASA Astrophysics Data System (ADS)

    Seo, Hyunseok; Choi, Joonsung; Oh, Changheun; Han, Yeji; Park, HyunWook

    2014-10-01

    This work proposes an isotropic diffusion weighting method for a high-resolution diffusion-weighted image and for a high-resolution apparent diffusion coefficient (ADC) map using a single radial scan in MRI. By using a conventional radial imaging technique, a high-resolution diffusion-weighted (DW) image can be obtained at the cost of a long imaging time. To reduce the imaging time, the proposed method acquires a DW image by altering the diffusion gradient directions for each radial spoke. The acquisition order and directions of the diffusion gradients for an accurate DW image and an ADC map are also proposed by modifying the golden angle ratio in 3D space. In addition, an individual-direction diffusion-weighted (id-DW) image can also be obtained by a diffusion gradient direction, which is one of the multiple directions used in isotropic diffusion weighting. Computer simulations and experiment results show that the proposed method is more accurate and faster than the conventional radial diffusion-weighted imaging. This study suggests that the proposed isotropic diffusion-weighted imaging can be used to obtain a DW image and a high-resolution ADC map accurately in a single radial scan, while reducing the artifacts caused by the diffusion anisotropy, compared to the diffusion-weighted echo-planar-imaging.

  20. Intravoxel incoherent motion model–based analysis of diffusion-weighted magnetic resonance imaging with 3 b-values for response assessment in locoregional therapy of hepatocellular carcinoma

    PubMed Central

    Mürtz, Petra; Penner, Arndt-Hendrik; Pfeiffer, Anne-Kristina; Sprinkart, Alois M; Pieper, Claus C; König, Roy; Block, Wolfgang; Schild, Hans H; Willinek, Winfried A; Kukuk, Guido M

    2016-01-01

    Purpose The aim of this study was to evaluate an intravoxel incoherent motion (IVIM) model–based analysis of diffusion-weighted imaging (DWI) for assessing the response of hepatocellular carcinoma (HCC) to locoregional therapy. Patients and methods Respiratory-gated DWI (b=0, 50, and 800 s/mm2) was retrospectively analyzed in 25 patients who underwent magnetic resonance imaging at 1.5 T before and 6 weeks following the first cycle of transarterial chemoembolization therapy, transarterial ethanol-lipiodol embolization therapy, and transarterial radioembolization therapy. In addition to the determination of apparent diffusion coefficient, ADC(0,800), an estimation of the diffusion coefficient, D′, and the perfusion fraction, f′, was performed by using a simplified IVIM approach. Parameters were analyzed voxel-wise. Tumor response was assessed in a central slice by using a region of interest (ROI) covering the whole tumor. HCCs were categorized into two groups, responders and nonresponders, according to tumor size changes on first and second follow ups (if available) and changes of contrast-enhanced region on the first follow up. Results In total, 31 HCCs were analyzed: 17 lesions were assigned to responders and 14 were to nonresponders. In responders, ADC(0,800) and D′ were increased after therapy by ~30% (P=0.00004) and ~42% (P=0.00001), respectively, whereas f′ was decreased by ~37% (P=0.00094). No significant changes were found in nonresponders. Responders and nonresponders were better differentiated by changes in D′ than by changes in ADC(0,800) (area under the curve =0.878 vs 0.819 or 0.714, respectively). Conclusion In patients with HCCs undergoing embolization therapy, diffusion changes were better reflected by D′ than by conventional ADC(0,800), which is influenced by counteracting perfusion changes as assessed by f′. PMID:27799790

  1. Quantification of diffusion-weighted images (DWI) and apparent diffusion coefficient maps (ADC) in the detection of acute stroke

    NASA Astrophysics Data System (ADS)

    Tulipano, P. Karina; Millar, William S.; Imielinska, Celina; Liu, Xin; Rosiene, Joel; D'Ambrosio, Anthony L.

    2006-03-01

    Magnetic resonance (MR) imaging is an imaging modality that is used in the management and diagnosis of acute stroke. Common MR imaging techniques such as diffusion weighted imaging (DWI) and apparent diffusion coefficient maps (ADC) are used routinely in the diagnosis of acute infarcts. However, advances in radiology information systems and imaging protocols have led to an overload of image information that can be difficult to manage and time consuming. Automated techniques to assist in the identification of acute ischemic stroke can prove beneficial to 1) the physician by providing a mechanism for early detection and 2) the patient by providing effective stroke therapy at an early stage. We have processed DW images and ADC maps using a novel automated Relative Difference Map (RDM) method that was tailored to the identification and delineation of the stroke region. Results indicate that the technique can delineate regions of acute infarctions on DW images and ADC maps. A formal evaluation of the RDM algorithm was performed by comparing accuracy measurements between 1) expert generated ground truths with the RDM delineated DWI infarcts and 2) RDM delineated DWI infarcts with RDM delineated ADC infarcts. The accuracy measurements indicate that the RDM delineated DWI infarcts are comparable to the expert generated ground truths. The true positive volume fraction value (TPVF), between RDM delineated DWI and ADC infarcts, is nonzero for all cases with an acute infarct while the value for non-acute cases remains zero.

  2. Predicting liver metastasis of gastrointestinal tract cancer by diffusion-weighted imaging of apparent diffusion coefficient values

    PubMed Central

    Zheng, De-Xian; Meng, Shu-Chun; Liu, Qing-Jun; Li, Chuan-Ting; Shang, Xi-Dan; Zhu, Yu-Seng; Bai, Tian-Jun; Xu, Shi-Ming

    2016-01-01

    AIM: To determine if efficacy of chemotherapy on liver metastasis of gastrointestinal tract cancer can be predicted by apparent diffusion coefficient (ADC) values of diffusion-weighted imaging (DWI). METHODS: In total, 86 patients with liver metastasis of gastrointestinal tract cancer (156 metastatic lesions) diagnosed in our hospital were included in this study. The maximum diameters of these tumors were compared with each other before treatment, 2 wk after treatment, and 12 wk after treatment. Selected patients were classified as the effective group and the ineffective group, depending on the maximum diameter of the tumor after 12 wk of treatment; and the ADC values at different treatment times between the two groups were compared. Spearman rank correlation was used to analyze the relationship between ADC value and tumor diameter. Receiver operating characteristic curve (ROC curve) was used to analyze the ADC values before treatment to predict the patient’s sensitivity and specificity degree of efficacy to the chemotherapy. RESULTS: There was no difference in age between the two groups and in maximum tumor diameter before treatment and 2 wk after treatment. However, after 12 wk of treatment, maximum tumor diameter in the effective group was significantly lower than that in the ineffective group (P < 0.05). Before treatment, ADC values in the ineffective group were significantly higher than those in the effective group (P < 0.05). There was no difference in ADC values between the effective and ineffective groups after 2 and 12 wk of treatment. However, ADC values were significantly higher after 2 and 12 wk of treatment compared to before treatment in the effective group (P < 0.05). Spearman rank correlation analysis showed that ADC value before treatment and the reduced percentage of the maximum tumor diameter after 12 wk of treatment were negatively correlated, while the increase in the percentage of the ADC value 12 wk after treatment and the decrease in the

  3. Early Changes in Apparent Diffusion Coefficient From Diffusion-Weighted MR Imaging During Radiotherapy for Prostate Cancer

    SciTech Connect

    Park, Sung Yoon; Kim, Chan Kyo; Park, Byung Kwan; Park, Won; Park, Hee Chul; Han, Deok Hyun; Kim, Bohyun

    2012-06-01

    Purpose: To investigate the feasibility of diffusion-weighted MRI (DWI) as an early and reproducible change indicator in patients receiving radiotherapy for prostate cancer (PC). Methods and Materials: Eight consecutive patients with biopsy-proven PC underwent DWI at 3T. All patients who received external-beam radiotherapy had four serial MR scans, as follows: before therapy (PreTx); after 1 week of therapy (PostT1); after 3 weeks of therapy (PostT2); and 1 month after the completion of therapy (PostT3). At each time, the apparent diffusion coefficient (ADC) was measured in tumors and normal tissues. For reproducibility of the ADC measurement, five patients also had two separate pretreatment DWI scans at an interval of <2 weeks. Serum prostate-specific antigen (PSA) levels were evaluated at the same time as MR scans. Results: Thirteen tumors (peripheral zone = 10; transition zone = 3) were found. The mean ADC values for the tumors from PreTx to PostT3 were 0.86, 1.03, 1.15, and 1.26 Multiplication-Sign 10{sup -3} mm{sup 2}/s in sequence, respectively. Compared with PreTx, PostT1 (p = 0.005), PostT2 (p = 0.003), and PostT3 (p < 0.001) showed a significant increase in ADC values. The mean ADC values of the benign tissues from PreTx to PostT3 were 1.60, 1.58, 1.47, and 1.46 Multiplication-Sign 10{sup -3} mm{sup 2}/s in sequence, respectively. Reproducibility of ADC measurements was confirmed with a mean difference in ADC of -0.04 in peripheral zone and -0.017 in transition zone between two separate pretreatment MR scans. The mean PSA levels from PreTx to PostT3 were 9.05, 9.18, 9.25, and 4.11 ng/mL in sequence, respectively. Conclusions: DWI, as a reproducible biomarker, has the potential to evaluate the early therapeutic changes of PC to radiotherapy.

  4. Diffusion-weighted magnetic resonance imaging in cancer: Reported apparent diffusion coefficients, in-vitro and in-vivo reproducibility

    PubMed Central

    Jafar, Maysam M; Parsai, Arman; Miquel, Marc E

    2016-01-01

    There is considerable disparity in the published apparent diffusion coefficient (ADC) values across different anatomies. Institutions are increasingly assessing repeatability and reproducibility of the derived ADC to determine its variation, which could potentially be used as an indicator in determining tumour aggressiveness or assessing tumour response. In this manuscript, a review of selected articles published to date in healthy extra-cranial body diffusion-weighted magnetic resonance imaging is presented, detailing reported ADC values and discussing their variation across different studies. In total 115 studies were selected including 28 for liver parenchyma, 15 for kidney (renal parenchyma), 14 for spleen, 13 for pancreatic body, 6 for gallbladder, 13 for prostate, 13 for uterus (endometrium, myometrium, cervix) and 13 for fibroglandular breast tissue. Median ADC values in selected studies were found to be 1.28 × 10-3 mm2/s in liver, 1.94 × 10-3 mm2/s in kidney, 1.60 × 10-3 mm2/s in pancreatic body, 0.85 × 10-3 mm2/s in spleen, 2.73 × 10-3 mm2/s in gallbladder, 1.64 × 10-3 mm2/s and 1.31 × 10-3 mm2/s in prostate peripheral zone and central gland respectively (combined median value of 1.54×10-3 mm2/s), 1.44 × 10-3 mm2/s in endometrium, 1.53 × 10-3 mm2/s in myometrium, 1.71 × 10-3 mm2/s in cervix and 1.92 × 10-3 mm2/s in breast. In addition, six phantom studies and thirteen in vivo studies were summarized to compare repeatability and reproducibility of the measured ADC. All selected phantom studies demonstrated lower intra-scanner and inter-scanner variation compared to in vivo studies. Based on the findings of this manuscript, it is recommended that protocols need to be optimised for the body part studied and that system-induced variability must be established using a standardized phantom in any clinical study. Reproducibility of the measured ADC must also be assessed in a volunteer population, as variations are far more significant in vivo compared

  5. Estimation of optimal b-value sets for obtaining apparent diffusion coefficient free from perfusion in non-small cell lung cancer.

    PubMed

    Karki, Kishor; Hugo, Geoffrey D; Ford, John C; Olsen, Kathryn M; Saraiya, Siddharth; Groves, Robert; Weiss, Elisabeth

    2015-10-21

    The purpose of this study was to determine optimal sets of b-values in diffusion-weighted MRI (DW-MRI) for obtaining monoexponential apparent diffusion coefficient (ADC) close to perfusion-insensitive intravoxel incoherent motion (IVIM) model ADC (ADCIVIM) in non-small cell lung cancer. Ten subjects had 40 DW-MRI scans before and during radiotherapy in a 1.5 T MRI scanner. Respiratory triggering was applied to the echo-planar DW-MRI with TR ≈ 4500 ms, TE  =  74 ms, eight b-values of 0-1000 μs μm(-2), pixel size  =  1.98 × 1.98 mm(2), slice thickness  =  6 mm, interslice gap  =  1.2 mm, 7 axial slices and total acquisition time ≈6 min. One or more DW-MRI scans together covered the whole tumour volume. Monoexponential model ADC values using various b-value sets were compared to reference-standard ADCIVIM values using all eight b-values. Intra-scan coefficient of variation (CV) of active tumour volumes was computed to compare the relative noise in ADC maps. ADC values for one pre-treatment DW-MRI scan of each of the 10 subjects were computed using b-value pairs from DW-MRI images synthesized for b-values of 0-2000 μs μm(-2) from the estimated IVIM parametric maps and corrupted by various Rician noise levels. The square root of mean of squared error percentage (RMSE) of the ADC value relative to the corresponding ADCIVIM for the tumour volume of the scan was computed. Monoexponential ADC values for the b-value sets of 250 and 1000; 250, 500 and 1000; 250, 650 and 1000; 250, 800 and 1000; and 250-1000 μs μm(-2) were not significantly different from ADCIVIM values (p > 0.05, paired t-test). Mean error in ADC values for these sets relative to ADCIVIM were within 3.5%. Intra-scan CVs for these sets were comparable to that for ADCIVIM. The monoexponential ADC values for other sets-0-1000; 50-1000; 100-1000; 500-1000; and 250 and 800 μs μm(-2) were significantly different from the ADCIVIM values. From Rician noise

  6. Estimation of optimal b-value sets for obtaining apparent diffusion coefficient free from perfusion in non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Karki, Kishor; Hugo, Geoffrey D.; Ford, John C.; Olsen, Kathryn M.; Saraiya, Siddharth; Groves, Robert; Weiss, Elisabeth

    2015-10-01

    The purpose of this study was to determine optimal sets of b-values in diffusion-weighted MRI (DW-MRI) for obtaining monoexponential apparent diffusion coefficient (ADC) close to perfusion-insensitive intravoxel incoherent motion (IVIM) model ADC (ADCIVIM) in non-small cell lung cancer. Ten subjects had 40 DW-MRI scans before and during radiotherapy in a 1.5 T MRI scanner. Respiratory triggering was applied to the echo-planar DW-MRI with \\text{TR}≈ 4500 ms, TE  =  74 ms, eight b-values of 0-1000 μs μm-2, pixel size  =  1.98× 1.98 mm2, slice thickness  =  6 mm, interslice gap  =  1.2 mm, 7 axial slices and total acquisition time ≈6 min. One or more DW-MRI scans together covered the whole tumour volume. Monoexponential model ADC values using various b-value sets were compared to reference-standard ADCIVIM values using all eight b-values. Intra-scan coefficient of variation (CV) of active tumour volumes was computed to compare the relative noise in ADC maps. ADC values for one pre-treatment DW-MRI scan of each of the 10 subjects were computed using b-value pairs from DW-MRI images synthesized for b-values of 0-2000 μs μm-2 from the estimated IVIM parametric maps and corrupted by various Rician noise levels. The square root of mean of squared error percentage (RMSE) of the ADC value relative to the corresponding ADCIVIM for the tumour volume of the scan was computed. Monoexponential ADC values for the b-value sets of 250 and 1000; 250, 500 and 1000; 250, 650 and 1000; 250, 800 and 1000; and 250-1000 μs μm-2 were not significantly different from ADCIVIM values (p>0.05 , paired t-test). Mean error in ADC values for these sets relative to ADCIVIM were within 3.5%. Intra-scan CVs for these sets were comparable to that for ADCIVIM. The monoexponential ADC values for other sets—0-1000 50-1000 100-1000 500-1000 and 250 and 800 μs μm-2 were significantly different from the ADCIVIM values. From Rician noise simulation

  7. Estimation of optimal b-value sets for obtaining apparent diffusion coefficient free from perfusion in non-small cell lung cancer

    PubMed Central

    Karki, Kishor; Hugo, Geoffrey D.; Ford, John C.; Olsen, Kathryn M.; Saraiya, Siddharth; Groves, Robert; Weiss, Elisabeth

    2015-01-01

    The purpose of this study was to determine optimal sets of b-values in diffusion-weighted MRI (DW-MRI) for obtaining monoexponential apparent diffusion coefficient (ADC) close to perfusion-insensitive intravoxel incoherent motion (IVIM) model ADC (ADCIVIM) in non-small cell lung cancer. Ten subjects had 40 DW-MRI scans before and during radiotherapy in a 1.5T MRI scanner. Respiratory triggering was applied to the echo-planar DW-MRI with TR ≈ 4500 ms, TE = 74 ms, eight b-values of 0–1000 µs/µm2, pixel size = 1.98×1.98 mm2, slice thickness = 6 mm, interslice gap = 1.2 mm, 7 axial slices and total acquisition time ≈ 6 min. One or more DW-MRI scans together covered the whole tumour volume. Monoexponential model ADC values using various b-value sets were compared to reference-standard ADCIVIM values using all eight b-values. Intra-scan coefficient of variation (CV) of active tumour volumes was computed to compare the relative noise in ADC maps. ADC values for one pre-treatment DW-MRI scan of each of the 10 subjects were computed using b-value pairs from DW-MRI images synthesized for b-values of 0–2000 µs/µm2 from the estimated IVIM parametric maps and corrupted by various Rician noise levels. The square root of mean of squared error percentage (RMSE) of the ADC value relative to the corresponding ADCIVIM for the tumour volume of the scan was computed. Monoexponential ADC values for the b-value sets of 250 and 1000; 250, 500 and 1000; 250, 650 and 1000; 250, 800 and 1000; and 250–1000 µs/µm2 were not significantly different from ADCIVIM values (p > 0.05, paired t-test). Mean error in ADC values for these sets relative to ADCIVIM were within 3.5%. Intra-scan CVs for these sets were comparable to that for ADCIVIM. The monoexponential ADC values for other sets- 0–1000; 50–1000; 100–1000; 500–1000; and 250 and 800 µs/µm2 were significantly different from the ADCIVIM values. From Rician noise simulation using b-value pairs, there was a wide range of

  8. Applicable apparent diffusion coefficient of an orthotopic mouse model of gastric cancer by improved clinical MRI diffusion weighted imaging

    PubMed Central

    Sun, Jia; Zhang, Xiao-Peng; Li, Xiao-Ting; Tang, Lei; Cui, Yong; Zhang, Xiao-Yan; Sun, Ying-Shi

    2014-01-01

    In vivo imaging studies in animal models are hindered by variables that contribute to poor image quality and measurement reliability. As such we sought to improve the diffusion coefficient (ADC) of an orthotopic mouse model of gastric cancer in diffusion-weighted images (DWI) using alginate moulding and Ultrasonic coupling medium. BGC-823 human gastric cancer cells were subcutaneously injected into the abdomen of nude mice and 1 mm3 primary tumour was orthotopically transplanted. Alginate and coupling medium were applied to the mice and MRI (T2 and DWI) was performed for 6 weeks. Regions of interest (ROI) were drawn and liver and tumour ADC were evaluated. Using alginate moulding, the mean quality total score of DW imaging was 8.53; however, in control animals this value was 5.20 (p < 0.001). The coefficient of variation of ADC of liver in experimental and control groups were 0.071 and 0.270 (p < 0.001), respectively, suggesting this method may be helpful for DWI studies of important human diseases such as gastric cancer. PMID:25123166

  9. Automatic Detection and Quantification of Acute Cerebral Infarct by Fuzzy Clustering and Histographic Characterization on Diffusion Weighted MR Imaging and Apparent Diffusion Coefficient Map

    PubMed Central

    Tsai, Jang-Zern; Chen, Yu-Wei; Wang, Kuo-Wei; Wu, Hsiao-Kuang; Lin, Yun-Yu; Lee, Ying-Ying; Chen, Chi-Jen; Lin, Huey-Juan; Smith, Eric Edward; Hsin, Yue-Loong

    2014-01-01

    Determination of the volumes of acute cerebral infarct in the magnetic resonance imaging harbors prognostic values. However, semiautomatic method of segmentation is time-consuming and with high interrater variability. Using diffusion weighted imaging and apparent diffusion coefficient map from patients with acute infarction in 10 days, we aimed to develop a fully automatic algorithm to measure infarct volume. It includes an unsupervised classification with fuzzy C-means clustering determination of the histographic distribution, defining self-adjusted intensity thresholds. The proposed method attained high agreement with the semiautomatic method, with similarity index 89.9 ± 6.5%, in detecting cerebral infarct lesions from 22 acute stroke patients. We demonstrated the accuracy of the proposed computer-assisted prompt segmentation method, which appeared promising to replace the laborious, time-consuming, and operator-dependent semiautomatic segmentation. PMID:24738080

  10. Development of a diffusion-weighted MRI protocol for multicentre abdominal imaging and evaluation of the effects of fasting on measurement of apparent diffusion coefficients (ADCs) in healthy liver

    PubMed Central

    Papoutsaki, M-V; Ragheb, H; Morris, D M; Heerschap, A; ter Voert, E G W; Kuijer, J P A; Pieters, I C; Douglas, N H M; Orton, M; de souza, N M

    2015-01-01

    Objective: To assess the effect of fasting and eating on estimates of apparent diffusion coefficient (ADC) in the livers of healthy volunteers using a diffusion-weighted MRI protocol with b-values of 100, 500 and 900 s mm−2 in a multicentre study at 1.5 T. Methods: 20 volunteers were scanned using 4 clinical 1.5-T MR scanners. Volunteers were scanned after fasting for at least 4 h and after eating a meal; the scans were repeated on a subsequent day. Median ADC estimates were calculated from all pixels in three slices near the centre of the liver. Analysis of variance (ANOVA) was used to assess the difference between ADC estimates in fasted and non-fasted states and between ADC estimates on different days. Results: ANOVA showed no difference between ADC estimates in fasted and non-fasted states (p = 0.8) nor between ADC estimates on different days (p = 0.8). The repeatability of the measurements was good, with coefficients of variation of 5.1% and 4.6% in fasted and non-fasted states, respectively. Conclusion: There was no significant difference in ADC estimates between fasted and non-fasted measurements, indicating that the perfusion sensitivity of ADC estimates obtained from b-values of 100, 500 and 900 s mm−2 is sufficiently low that changes in blood flow in the liver after eating are undetectable beyond the variability in the measurements. Advances in knowledge: Assessment of the effect of prandial state on ADC estimates is critical, in order to determine the appropriate patient preparation for biological validation in clinical trials. PMID:25790061

  11. WE-G-18C-02: Estimation of Optimal B-Value Set for Obtaining Apparent Diffusion Coefficient Free From Perfusion in Non-Small Cell Lung Cancer

    SciTech Connect

    Karki, K; Hugo, G; Ford, J; Saraiya, S; Weiss, E; Olsen, K; Groves, R

    2014-06-15

    Purpose: Diffusion-weighted MRI (DW-MRI) is increasingly being investigated for radiotherapy planning and response assessment. Selection of a limited number of b-values in DW-MRI is important to keep geometrical variations low and imaging time short. We investigated various b-value sets to determine an optimal set for obtaining monoexponential apparent diffusion coefficient (ADC) close to perfusion-insensitive intravoxel incoherent motion (IVIM) model ADC (ADCIVIM) in nonsmall cell lung cancer. Methods: Seven patients had 27 DW-MRI scans before and during radiotherapy in a 1.5T scanner. Respiratory triggering was applied to the echo-planar DW-MRI with TR=4500ms approximately, TE=74ms, pixel size=1.98X1.98mm{sub 2}, slice thickness=4–6mm and 7 axial slices. Diffusion gradients were applied to all three axes producing traceweighted images with eight b-values of 0–1000μs/μm{sup 2}. Monoexponential model ADC values using various b-value sets were compared to ADCIVIM using all b-values. To compare the relative noise in ADC maps, intra-scan coefficient of variation (CV) of active tumor volumes was computed. Results: ADCIVIM, perfusion coefficient and perfusion fraction for tumor volumes were in the range of 880-1622 μm{sup 2}/s, 8119-33834 μm{sup 2}/s and 0.104–0.349, respectively. ADC values using sets of 250, 800 and 1000; 250, 650 and 1000; and 250–1000μs/μm{sup 2} only were not significantly different from ADCIVIM(p>0.05, paired t-test). Error in ADC values for 0–1000, 50–1000, 100–1000, 250–1000, 500–1000, and three b-value sets- 250, 500 and 1000; 250, 650 and 1000; and 250, 800 and 1000μs/μm{sup 2} were 15.0, 9.4, 5.6, 1.4, 11.7, 3.7, 2.0 and 0.2% relative to the reference-standard ADCIVIM, respectively. Mean intrascan CV was 20.2, 20.9, 21.9, 24.9, 32.6, 25.8, 25.4 and 24.8%, respectively, whereas that for ADCIVIM was 23.3%. Conclusion: ADC values of two 3 b-value sets

  12. Diffusion Weighted Imaging for Differentiating Benign from Malignant Orbital Tumors: Diagnostic Performance of the Apparent Diffusion Coefficient Based on Region of Interest Selection Method

    PubMed Central

    Xu, Xiao-Quan; Hu, Hao; Su, Guo-Yi; Liu, Hu; Shi, Hai-Bin

    2016-01-01

    Objective To evaluate the differences in the apparent diffusion coefficient (ADC) measurements based on three different region of interest (ROI) selection methods, and compare their diagnostic performance in differentiating benign from malignant orbital tumors. Materials and Methods Diffusion-weighted imaging data of sixty-four patients with orbital tumors (33 benign and 31 malignant) were retrospectively analyzed. Two readers independently measured the ADC values using three different ROIs selection methods including whole-tumor (WT), single-slice (SS), and reader-defined small sample (RDSS). The differences of ADC values (ADC-ROIWT, ADC-ROISS, and ADC-ROIRDSS) between benign and malignant group were compared using unpaired t test. Receiver operating characteristic curve was used to determine and compare their diagnostic ability. The ADC measurement time was compared using ANOVA analysis and the measurement reproducibility was assessed using Bland-Altman method and intra-class correlation coefficient (ICC). Results Malignant group showed significantly lower ADC-ROIWT, ADC-ROISS, and ADC-ROIRDSS than benign group (all p < 0.05). The areas under the curve showed no significant difference when using ADC-ROIWT, ADC-ROISS, and ADC-ROIRDSS as differentiating index, respectively (all p > 0.05). The ROISS and ROIRDSS required comparable measurement time (p > 0.05), while significantly shorter than ROIWT (p < 0.05). The ROISS showed the best reproducibility (mean difference ± limits of agreement between two readers were 0.022 [-0.080–0.123] × 10-3 mm2/s; ICC, 0.997) among three ROI methods. Conclusion Apparent diffusion coefficient values based on the three different ROI selection methods can help to differentiate benign from malignant orbital tumors. The results of measurement time, reproducibility and diagnostic ability suggest that the ROISS method are potentially useful for clinical practice. PMID:27587953

  13. The interaction between apparent diffusion coefficients and transverse relaxation rates of human brain metabolites and water studied by diffusion-weighted spectroscopy at 7 T.

    PubMed

    Branzoli, Francesca; Ercan, Ece; Webb, Andrew; Ronen, Itamar

    2014-05-01

    The dependence of apparent diffusion coefficients (ADCs) of molecules in biological tissues on an acquisition-specific timescale is a powerful mechanism for studying tissue microstructure. Unlike water, metabolites are confined mainly to intracellular compartments, thus providing higher specificity to tissue microstructure. Compartment-specific structural and chemical properties may also affect molecule transverse relaxation times (T₂). Here, we investigated the correlation between diffusion and relaxation for N-acetylaspartate, creatine and choline compounds in human brain white matter in vivo at 7 T, and compared them with those of water under the same experimental conditions. Data were acquired in a volume of interest in parietal white matter at two different diffusion times, Δ = 44 and 246 ms, using a matrix of three echo times (T(E)) and five diffusion weighting values (up to 4575 s/mm²). Significant differences in the dependence of the ADCs on T(E) were found between water and metabolites, as well as among the different metabolites. A significant decrease in water ADC as a function of TE was observed only at the longest diffusion time (p < 0.001), supporting the hypothesis that at least part of the restricted water pool can be associated with longer T₂, as suggested by previous studies in vitro. Metabolite data showed an increase of creatine (p < 0.05) and N-acetylaspartate (p < 0.05) ADCs with TE at Δ = 44 ms, and a decrease of creatine (p < 0.05) and N-acetylaspartate (p = 0.1) ADCs with TE at Δ = 246 ms. No dependence of choline ADC on TE was observed. The metabolite results suggest that diffusion and relaxation properties are dictated not only by metabolite distribution in different cell types, but also by other mechanisms, such as interactions with membranes, exchange between "free" and "bound" states or interactions with microsusceptibility gradients.

  14. Assessment of Treatment Response by Total Tumor Volume and Global Apparent Diffusion Coefficient Using Diffusion-Weighted MRI in Patients with Metastatic Bone Disease: A Feasibility Study

    PubMed Central

    Blackledge, Matthew D.; Collins, David J.; Tunariu, Nina; Orton, Matthew R.; Padhani, Anwar R.; Leach, Martin O.; Koh, Dow-Mu

    2014-01-01

    We describe our semi-automatic segmentation of whole-body diffusion-weighted MRI (WBDWI) using a Markov random field (MRF) model to derive tumor total diffusion volume (tDV) and associated global apparent diffusion coefficient (gADC); and demonstrate the feasibility of using these indices for assessing tumor burden and response to treatment in patients with bone metastases. WBDWI was performed on eleven patients diagnosed with bone metastases from breast and prostate cancers before and after anti-cancer therapies. Semi-automatic segmentation incorporating a MRF model was performed in all patients below the C4 vertebra by an experienced radiologist with over eight years of clinical experience in body DWI. Changes in tDV and gADC distributions were compared with overall response determined by all imaging, tumor markers and clinical findings at serial follow up. The segmentation technique was possible in all patients although erroneous volumes of interest were generated in one patient because of poor fat suppression in the pelvis, requiring manual correction. Responding patients showed a larger increase in gADC (median change = +0.18, range = −0.07 to +0.78×10−3 mm2/s) after treatment compared to non-responding patients (median change = −0.02, range = −0.10 to +0.05×10−3 mm2/s, p = 0.05, Mann-Whitney test), whereas non-responding patients showed a significantly larger increase in tDV (median change = +26%, range = +3 to +284%) compared to responding patients (median change = −50%, range = −85 to +27%, p = 0.02, Mann-Whitney test). Semi-automatic segmentation of WBDWI is feasible for metastatic bone disease in this pilot cohort of 11 patients, and could be used to quantify tumor total diffusion volume and median global ADC for assessing response to treatment. PMID:24710083

  15. Diffusion-weighted imaging in pediatric body magnetic resonance imaging.

    PubMed

    Chavhan, Govind B; Caro-Dominguez, Pablo

    2016-05-01

    Diffusion-weighted MRI is being increasingly used in pediatric body imaging. Its role is still emerging. It is used for detection of tumors and abscesses, differentiation of benign and malignant tumors, and detection of inflamed bowel segments in inflammatory bowel disease in children. It holds great promise in the assessment of therapy response in body tumors, with apparent diffusion coefficient (ADC) value as a potential biomarker. Significant overlap of ADC values of benign and malignant processes and less reproducibility of ADC measurements are hampering its widespread use in clinical practice. With standardization of the technique, diffusion-weighted imaging (DWI) is likely to be used more frequently in clinical practice. We discuss the principles and technique of DWI, selection of b value, qualitative and quantitative assessment, and current status of DWI in evaluation of disease processes in the pediatric body. PMID:27229502

  16. Apparent diffusion coefficient values detected by diffusion-weighted imaging in the prognosis of patients with locally advanced esophageal squamous cell carcinoma receiving chemoradiation

    PubMed Central

    Liu, Shu; Zhen, Fuxi; Sun, Nana; Chen, Jiayan; Cao, Yuandong; Zhang, Sheng; Cheng, Hongyan; Ge, Xiaolin; Sun, Xinchen

    2016-01-01

    Purpose Previous studies have demonstrated that apparent diffusion coefficient (ADC) values measured by magnetic resonance imaging have prognostic value in patients with esophageal squamous cell carcinoma (ESCC). However, the role of ADC needs to be validated in a cohort of Chinese ESCC patients. This study assessed the role of ADC in predicting the outcome of patients with ESCC treated only by chemoradiation in the People’s Republic of China. Patients and methods Seventy-three patients with local advanced ESCC were retrospectively analyzed in this study; none of the patients underwent surgery before or after chemoradiation. The ADC values of the primary tumors were determined by magnetic resonance imaging. The ADC values were then correlated with clinicopathological and other radiological parameters. Survival analysis was carried out to determine if ADC had an impact on survival of these patients. Results The median ADC value of the esophageal cancer tissue was 1.256*10−3 mm2/sec (range: 0.657–2.354*10−3 mm2/sec, interquartile range 0.606*10−3 mm2/sec). No clinicopathological or radiological parameters were associated with the ADC values except the sites of tumor tissues. ADC <1.076*10−3 mm2/sec predicted significantly worse survival in patients with ESCC (12.9 months vs undefined, P=0.0108). Conclusion The ADC value is a potent prognostic factor which can be used to predict the outcome of patients with ESCC treated only by chemoradiation. PMID:27703377

  17. An intravoxel oriented flow model for diffusion-weighted imaging of the kidney.

    PubMed

    Hilbert, Fabian; Bock, Maximilian; Neubauer, Henning; Veldhoen, Simon; Wech, Tobias; Bley, Thorsten Alexander; Köstler, Herbert

    2016-10-01

    By combining intravoxel incoherent motion (IVIM) and diffusion tensor imaging (DTI) we introduce a new diffusion model called intravoxel oriented flow (IVOF) that accounts for anisotropy of diffusion and the flow-related signal. An IVOF model using a simplified apparent flow fraction tensor (IVOFf ) is applied to diffusion-weighted imaging of human kidneys. The kidneys of 13 healthy volunteers were examined on a 3 T scanner. Diffusion-weighted images were acquired with six b values between 0 and 800 s/mm(2) and 30 diffusion directions. Diffusivity and flow fraction were calculated for different diffusion models. The Akaike information criterion was used to compare the model fit of the proposed IVOFf model to IVIM and DTI. In the majority of voxels the proposed IVOFf model with a simplified apparent flow fraction tensor performs better than IVIM and DTI. Mean diffusivity is significantly higher in DTI compared with models that account for the flow-related signal. The fractional anisotropy of diffusion is significantly reduced when flow fraction is considered to be anisotropic. Anisotropy of the apparent flow fraction tensor is significantly higher in the renal medulla than in the cortex region. The IVOFf model describes diffusion-weighted data in the human kidney more accurately than IVIM or DTI. The apparent flow fraction in the kidney proved to be anisotropic. PMID:27488570

  18. Diffusion Weighted MRI by Spatiotemporal Encoding: Analytical Description and In Vivo Validations

    PubMed Central

    Solomon, Eddy; Shemesh, Noam; Frydman, Lucio

    2016-01-01

    Diffusion-Weighted (DW) MRI is a powerful modality for studying microstructure in normal and pathological tissues. DW MRI, however, is of limited use in regions suffering from large magnetic field or chemical shift heterogeneities. Spatio-temporal encoding (SPEN) is a single-scan imaging technique that can deliver its information with a remarkable insensitivity to field inhomogeneities; this study explores the use of diffusion-weighted SPEN (dSPEN) MRI as an alternative for acquiring this kind of information. Owing to SPEN’s combined use of gradients and radiofrequency-swept pulses, spatially-dependent diffusion weightings arise in these sequences that are not present in conventional k-space DW MRI. In order to account for these phenomena an analytical formalism is presented that extends Stejskal & Tanner’s and Karlicek & Lowe’s work, to derive the b-values arising upon taking into account the effects of adiabatic pulses, of imaging as well as diffusion gradients, and of cross-terms between them. Excellent agreement is found between the new features predicted by these analytical and numerical derivations, and SPEN diffusion experiments in phantoms and in anisotropic ex vivo systems. Examinations of apparent diffusion coefficients in human breast volunteers also verify the advantages of the new methods in vivo, which exhibit substantial robustness vis-à-vis comparable DW echo planar imaging. PMID:23562003

  19. Enhanced diffusion weighting generated by selective adiabatic pulse trains

    NASA Astrophysics Data System (ADS)

    Sun, Ziqi; Bartha, Robert

    2007-09-01

    A theoretical description and experimental validation of the enhanced diffusion weighting generated by selective adiabatic full passage (AFP) pulse trains is provided. Six phantoms (Ph-1-Ph-6) were studied on a 4 T Varian/Siemens whole body MRI system. Phantoms consisted of 2.8 cm diameter plastic tubes containing a mixture of 10 μm ORGASOL polymer beads and 2 mM Gd-DTPA dissolved in 5% agar (Ph-1) or nickel(II) ammonium sulphate hexahydrate doped (56.3-0.8 mM) water solutions (Ph-2-Ph-6). A customized localization by adiabatic selective refocusing (LASER) sequence containing slice selective AFP pulse trains and pulsed diffusion gradients applied in the phase encoding direction was used to measure 1H 2O diffusion. The b-value associated with the LASER sequence was derived using the Bloch-Torrey equation. The apparent diffusion coefficients measured by LASER were comparable to those measured by a conventional pulsed gradient spin-echo (PGSE) sequence for all phantoms. Image signal intensity increased in Ph-1 and decreased in Ph-2-Ph-6 as AFP pulse train length increased while maintaining a constant echo-time. These experimental results suggest that such AFP pulse trains can enhance contrast between regions containing microscopic magnetic susceptibility variations and homogeneous regions in which dynamic dephasing relaxation mechanisms are dominant.

  20. Technique of diffusion weighted imaging and its application in stroke

    NASA Astrophysics Data System (ADS)

    Li, Enzhong; Tian, Jie; Han, Ying; Wang, Huifang; Li, Wu; He, Huiguang

    2003-05-01

    To study the application of diffusion weighted imaging and image post processing in the diagnosis of stroke, especially in acute stroke, 205 patients were examined by 1.5 T or 1.0 T MRI scanner and the images such as T1, T2 and diffusion weighted images were obtained. Image post processing was done with "3D Med System" developed by our lab to analyze data and acquire the apparent diffusion coefficient (ADC) map. In acute and subacute stage of stroke, the signal in cerebral infarction areas changed to hyperintensity in T2- and diffusion-weighted images, normal or hypointensity in T1-weighted images. In hyperacute stage, however, the signal was hyperintense just in the diffusion weighted imaes; others were normal. In the chronic stage, the signal in T1- and diffusion-weighted imaging showed hypointensity and hyperintensity in T2 weighted imaging. Because ADC declined obviously in acute and subacute stage of stroke, the lesion area was hypointensity in ADC map. With the development of the disease, ADC gradually recovered and then changed to hyperintensity in ADC map in chronic stage. Using diffusion weighted imaging and ADC mapping can make a diagnosis of stroke, especially in the hyperacute stage of stroke, and can differentiate acute and chronic stroke.

  1. PCATMIP: enhancing signal intensity in diffusion-weighted magnetic resonance imaging.

    PubMed

    Pai, V M; Rapacchi, S; Kellman, P; Croisille, P; Wen, H

    2011-06-01

    Diffusion-weighted MRI studies generally lose signal intensity to physiological motion, which can adversely affect quantification/diagnosis. Averaging over multiple repetitions, often used to improve image quality, does not eliminate the signal loss. In this article, PCATMIP, a combined principal component analysis and temporal maximum intensity projection approach, is developed to address this problem. Data are first acquired for a fixed number of repetitions. Assuming that physiological fluctuations of image intensities locally are likely temporally correlated unlike random noise, a local moving boxcar in the spatial domain is used to reconstruct low-noise images by considering the most relevant principal components in the temporal domain. Subsequently, a temporal maximum intensity projection yields a high signal-intensity image. Numerical and experimental studies were performed for validation and to determine optimal parameters for increasing signal intensity and minimizing noise. Subsequently, a combined principal component analysis and temporal maximum intensity projection approach was used to analyze diffusion-weighted porcine liver MRI scans. In these scans, the variability of apparent diffusion coefficient values among repeated measurements was reduced by 59% relative to averaging, and there was an increase in the signal intensity with higher intensity differences observed at higher b-values. In summary, a combined principal component analysis and temporal maximum intensity projection approach is a postprocessing approach that corrects for bulk motion-induced signal loss and improves apparent diffusion coefficient measurement reproducibility. PMID:21590803

  2. Correlation of diffusion-weighted MRI with whole mount radical prostatectomy specimens.

    PubMed

    Van As, N; Charles-Edwards, E; Jackson, A; Jhavar, S; Reinsberg, S; Desouza, N; Dearnaley, D; Bailey, M; Thompson, A; Christmas, T; Fisher, C; Corbishley, C; Sohaib, S

    2008-06-01

    The purpose of this study was to compare the apparent diffusion coefficient (ADC) of benign central gland (bCG), benign peripheral zone (bPZ) and cancer using diffusion-weighted MRI and whole mount specimens. 11 patients with biopsy-proven prostate cancer underwent diffusion-weighted MRI prior to radical prostatectomy. A single-shot echo planar image technique was used with b-values of 0 s mm(-2), 300 s mm(-2), 500 s mm(-2) and 800 s mm(-2). Whole mount specimens were compared with ADC maps. Areas of cancer, bCG and bPZ were identified, and regions of interest were drawn on ADC maps. Mean ADC values were recorded for all regions of interest, and paired t-tests were performed to compare mean values. Cancer was outlined in nine patients. In two patients, the tumours were too small to correlate with images; bCG was identified in 11 patients and bPZ was identified in 10 patients. Mean ADC values for bCG, bPZ and cancer were, 1.5 x 10(-3) mm(2) s(-1) (standard error (SE) = 0.04), 1.7 x 10(-3) mm(2) s(-1) (SE = 0.1), and 1.3 x 10(-3) mm(2) s(-1) (SE = 0.09), respectively. The most significant difference between benign tissue and cancer existed at b-values of 0-300 s mm(-2) (bCG vs cancer: mean difference = 0. 29, p = 0.001, 95% confidence interval (CI) = 0.17-0.41; bPZ vs cancer: mean difference = 0.34, p = 0.003, 95% CI = 0.18-0.61). In conclusion, we have confirmed, using whole mount verification, a significant difference in the ADC between benign tissue and cancer.

  3. Diffusion weighted imaging: Technique and applications

    PubMed Central

    Baliyan, Vinit; Das, Chandan J; Sharma, Raju; Gupta, Arun Kumar

    2016-01-01

    Diffusion weighted imaging (DWI) is a method of signal contrast generation based on the differences in Brownian motion. DWI is a method to evaluate the molecular function and micro-architecture of the human body. DWI signal contrast can be quantified by apparent diffusion coefficient maps and it acts as a tool for treatment response evaluation and assessment of disease progression. Ability to detect and quantify the anisotropy of diffusion leads to a new paradigm called diffusion tensor imaging (DTI). DTI is a tool for assessment of the organs with highly organised fibre structure. DWI forms an integral part of modern state-of-art magnetic resonance imaging and is indispensable in neuroimaging and oncology. DWI is a field that has been undergoing rapid technical evolution and its applications are increasing every day. This review article provides insights in to the evolution of DWI as a new imaging paradigm and provides a summary of current role of DWI in various disease processes. PMID:27721941

  4. Characterization of spinal cord white matter by suppressing signal from hindered space. A Monte Carlo simulation and an ex vivo ultrahigh-b diffusion-weighted imaging study

    NASA Astrophysics Data System (ADS)

    Sapkota, Nabraj; Yoon, Sook; Thapa, Bijaya; Lee, YouJung; Bisson, Erica F.; Bowman, Beth M.; Miller, Scott C.; Shah, Lubdha M.; Rose, John W.; Jeong, Eun-Kee

    2016-11-01

    Signal measured from white matter in diffusion-weighted imaging is difficult to interpret because of the heterogeneous structure of white matter. Characterization of the white matter will be straightforward if the signal contributed from the hindered space is suppressed and purely restricted signal is analyzed. In this study, a Monte Carlo simulation (MCS) of water diffusion in white matter was performed to understand the behavior of the diffusion-weighted signal in white matter. The signal originating from the hindered space of an excised pig cervical spinal cord white matter was suppressed using the ultrahigh-b radial diffusion-weighted imaging. A light microscopy image of a section of white matter was obtained from the excised pig cervical spinal cord for the MCS. The radial diffusion-weighted signals originating from each of the intra-axonal, extra-axonal, and total spaces were studied using the MCS. The MCS predicted that the radial diffusion-weighted signal remains almost constant in the intra-axonal space and decreases gradually to about 2% of its initial value in the extra-axonal space when the b-value is increased to 30,000 s /mm2 . The MCS also revealed that the diffusion-weighted signal for a b-value greater than 20,000 s /mm2 is mostly from the intra-axonal space. The decaying behavior of the signal-b curve obtained from ultrahigh-b diffusion-weighted imaging (bmax ∼ 30,000 s /mm2) of the excised pig cord was very similar to the decaying behavior of the total signal-b curve synthesized in the MCS. A mono-exponential plus constant fitting of the signal-b curve obtained from a white matter pixel estimated the values of constant fraction and apparent diffusion coefficient of decaying fraction as 0.32 ± 0.05 and (0.16 ± 0.01) × 10-3 mm2/s, respectively, which agreed well with the results of the MCS. The signal measured in the ultrahigh-b region (b > 20,000 s/mm2) is mostly from the restricted (intra-axonal) space. Integrity and intactness of the axons

  5. Diffusion weighted inner volume imaging of lumbar disks based on turbo-STEAM acquisition.

    PubMed

    Hiepe, Patrick; Herrmann, Karl-Heinz; Ros, Christian; Reichenbach, Jürgen R

    2011-09-01

    A magnetic resonance imaging (MRI) technique for diffusion weighted imaging (DWI) is described which, in contrast to echo planar imaging (EPI), is insensitive to off-resonance effects caused by tissue susceptibility differences, magnetic field inhomogeneities, or chemical shifts. The sequence combines a diffusion weighted (DW) spin-echo preparation and a stimulated echo acquisition mode (STEAM) module. Inner volume imaging (IVI) allows reduced rectangular field-of-view (FoV) in the phase encode direction, while suppressing aliasing artifacts that are usually the consequence of reduced FoVs. Sagittal turbo-STEAM images of the lumbar spine were acquired at 3.0T with 2.0 × 2.0 mm² in-plane resolution and 7 mm slice thickness with acquisition times of 407 ms per image. To calculate the apparent diffusion coefficient (ADC) in lumbar intervertebral disks (IVDs), the DW gradients were applied in three orthogonal gradient directions with b-values of 0 and 300 s/mm². For initial assessment of the ADC of normal and abnormal IVDs a pilot study with 8 subjects was performed. Mean ADC values of all normal IVDs were (2.27±0.40)×10⁻³ mm²/s and (1.89±0.34)×10⁻³ mm²/s for turbo-STEAM IVI and SE-EPI acquisition, respectively. Corresponding mean ADC values, averaged over all abnormal disks, were (1.93±0.39)×10⁻³ mm²/s and (1.51±0.46)×10⁻³ mm²/s, respectively, indicating a substantial ADC decrease (p<0.001).

  6. Diffusion-weighted imaging in the evaluation of odontogenic cysts and tumours

    PubMed Central

    Srinivasan, K; Seith Bhalla, A; Sharma, R; Kumar, A; Roychoudhury, A; Bhutia, O

    2012-01-01

    Objective The differentiation between keratocystic odontogenic tumour (KCOT) and other cystic/predominantly cystic odontogenic tumours is difficult on conventional CT and MR sequences as there is overlap in the imaging characteristics of these lesions. The purpose of this study was to evaluate the role of diffusion-weighted imaging (DWI) and to assess the performance of apparent diffusion coefficients (ADCs) in the differential diagnosis of odontogenic cysts and tumours. Methods 20 patients with odontogenic cysts and tumours of the maxillomandibular region were examined with DWI. Diffusion-weighted images were obtained with a single-shot echoplanar technique with b-values of 0, 500 and 1000 s mm−2. An ADC map was obtained at each slice position. Results The cystic areas of ameloblastoma (n=10) showed free diffusion with a mean ADC value of 2.192±0.33×10−3 mm2 s−1, whereas the solid areas showed restricted diffusion with a mean ADC value of 1.041±0.41×10−3 mm2 s−1. KCOT (n=5) showed restricted diffusion with a mean ADC value of 1.019±0.07×10−3 mm2 s−1. There was a significant difference between the ADC values of KCOT and cystic ameloblastoma (p<0.01, Mann–Whitney U-test). The cut-off with which KCOT and predominantly cystic ameloblastomas were optimally differentiated was 2.013×10−3 mm2 s−1, which yielded 100% sensitivity and 100% specificity. Conclusion DWI can be used to differentiate KCOT from cystic (or predominantly cystic) odontogenic tumours. PMID:22553294

  7. Diffusion-Weighted Magnetic Resonance Imaging in Monitoring Rectal Cancer Response to Neoadjuvant Chemoradiotherapy

    SciTech Connect

    Barbaro, Brunella; Vitale, Renata; Valentini, Vincenzo; Illuminati, Sonia; Vecchio, Fabio M.; Rizzo, Gianluca; Gambacorta, Maria Antonietta; Coco, Claudio; Crucitti, Antonio; Persiani, Roberto; Sofo, Luigi; Bonomo, Lorenzo

    2012-06-01

    Purpose: To prospectively monitor the response in patients with locally advanced nonmucinous rectal cancer after chemoradiotherapy (CRT) using diffusion-weighted magnetic resonance imaging. The histopathologic finding was the reference standard. Methods and Materials: The institutional review board approved the present study. A total of 62 patients (43 men and 19 women; mean age, 64 years; range, 28-83) provided informed consent. T{sub 2}- and diffusion-weighted magnetic resonance imaging scans (b value, 0 and 1,000 mm{sup 2}/s) were acquired before, during (mean 12 days), and 6-8 weeks after CRT. We compared the median apparent diffusion coefficients (ADCs) between responders and nonresponders and examined the associations with the Mandard tumor regression grade (TRG). The postoperative nodal status (ypN) was evaluated. The Mann-Whitney/Wilcoxon two-sample test was used to evaluate the relationships among the pretherapy ADCs, extramural vascular invasion, early percentage of increases in ADCs, and preoperative ADCs. Results: Low pretreatment ADCs (<1.0 Multiplication-Sign 10{sup -3}mm{sup 2}/s) were correlated with TRG 4 scores (p = .0011) and associated to extramural vascular invasion with ypN+ (85.7% positive predictive value for ypN+). During treatment, the mean percentage of increase in tumor ADC was significantly greater in the responders than in the nonresponders (p < .0001) and a >23% ADC increase had a 96.3% negative predictive value for TRG 4. In 9 of 16 complete responders, CRT-related tumor downsizing prevented ADC evaluations. The preoperative ADCs were significantly different (p = .0012) between the patients with and without downstaging (preoperative ADC {>=}1.4 Multiplication-Sign 10{sup -3}mm{sup 2}/s showed a positive and negative predictive value of 78.9% and 61.8%, respectively, for response assessment). The TRG 1 and TRG 2-4 groups were not significantly different. Conclusion: Diffusion-weighted magnetic resonance imaging seems to be a promising

  8. Diffusion-Weighted Magnetic Resonance Imaging as a Cancer Biomarker: Consensus and Recommendations

    PubMed Central

    Padhani, Anwar R; Liu, Guoying; Mu-Koh, Dow; Chenevert, Thomas L; Thoeny, Harriet C; Takahara, Taro; Dzik-Jurasz, Andrew; Ross, Brian D; Van Cauteren, Marc; Collins, David; Hammoud, Dima A; Rustin, Gordon JS; Taouli, Bachir; Choyke, Peter L

    2009-01-01

    On May 3, 2008, a National Cancer Institute (NCI)-sponsored open consensus conference was held in Toronto, Ontario, Canada, during the 2008 International Society for Magnetic Resonance in Medicine Meeting. Approximately 100 experts and stakeholders summarized the current understanding of diffusion-weighted magnetic resonance imaging (DW-MRI) and reached consensus on the use of DW-MRI as a cancer imaging biomarker. DW-MRI should be tested as an imaging biomarker in the context of well-defined clinical trials, by adding DW-MRI to existing NCI-sponsored trials, particularly those with tissue sampling or survival indicators. Where possible, DW-MRI measurements should be compared with histologic indices including cellularity and tissue response. There is a need for tissue equivalent diffusivity phantoms; meanwhile, simple fluid-filled phantoms should be used. Monoexponential assessments of apparent diffusion coefficient values should use two b values (> 100 and between 500 and 1000 mm2/sec depending on the application). Free breathing with multiple acquisitions is superior to complex gating techniques. Baseline patient reproducibility studies should be part of study designs. Both region of interest and histogram analysis of apparent diffusion coefficient measurements should be obtained. Standards for measurement, analysis, and display are needed. Annotated data from validation studies (along with outcome measures) should be made publicly available. Magnetic resonance imaging vendors should be engaged in this process. The NCI should establish a task force of experts (physicists, radiologists, and oncologists) to plan, organize technical aspects, and conduct pilot trials. The American College of Radiology Imaging Network infrastructure may be suitable for these purposes. There is an extraordinary opportunity for DW-MRI to evolve into a clinically valuable imaging tool, potentially important for drug development. PMID:19186405

  9. A Clustering Algorithm for Liver Lesion Segmentation of Diffusion-Weighted MR Images

    PubMed Central

    Jha, Abhinav K.; Rodríguez, Jeffrey J.; Stephen, Renu M.; Stopeck, Alison T.

    2010-01-01

    In diffusion-weighted magnetic resonance imaging, accurate segmentation of liver lesions in the diffusion-weighted images is required for computation of the apparent diffusion coefficient (ADC) of the lesion, the parameter that serves as an indicator of lesion response to therapy. However, the segmentation problem is challenging due to low SNR, fuzzy boundaries and speckle and motion artifacts. We propose a clustering algorithm that incorporates spatial information and a geometric constraint to solve this issue. We show that our algorithm provides improved accuracy compared to existing segmentation algorithms. PMID:21151837

  10. Distal Embolization After Stenting of the Vertebral Artery: Diffusion-Weighted Magnetic Resonance Imaging Findings

    SciTech Connect

    Canyigit, Murat; Arat, Anil Cil, Barbaros E.; Turkbey, Baris; Saatci, Isil; Cekirge, Saruhan; Balkanci, Ferhun

    2007-04-15

    Purpose. We retrospectively evaluated our experience with stenting of the vertebral artery in an effort to determine the risk of distal embolization associated with the procedure. Methods. Between June 2000 and May 2005, 35 patients with 38 stenting procedures for atherosclerotic disease of the vertebral origin in our institution were identified. The average age of the patients was 60.3 years (range 32-76 years). Sixteen of these patients (with 18 stents) had MR imaging of the brain with diffusion-weighted imaging and an apparent diffusion coefficient map within 2 days before and after procedure. Results. On seven of the 16 postprocedural diffusion-weighted MR images, a total of 57 new hyperintensities were visible. All these lesions were focal in nature. One patient demonstrated a new diffusion-weighted imaging abnormality in the anterior circulation without MR evidence of posterior circulation ischemia. Six of 16 patients had a total of 25 new lesions in the vertebrobasilar circulation in postprocedural diffusion-weighted MR images. One patient in this group was excluded from the final analysis because the procedure was complicated by basilar rupture during tandem stent deployment in the basilar artery. Hence, new diffusion-weighted imaging abnormalities were noted in the vertebrobasilar territory in 5 of 15 patients after 17 stenting procedures, giving a 29% rate of diffusion-weighted imaging abnormalities per procedure. No patient with bilateral stenting had new diffusion-weighted imaging abnormalities. Conclusion. Stenting of stenoses of the vertebral artery origin may be associated with a significant risk of asymptomatic distal embolization. Angiography, placement of the guiding catheter, inflation of the stent balloon, and crossing the lesion with guidewires or balloon catheters may potentially cause distal embolization. Further studies to evaluate measures to increase the safety of vertebral artery stenting, such as the use of distal protection devices or

  11. High b value DWI in evaluation of the hyperacute cerebral ischemia at 3T: A comparative study in an embolic canine stroke model

    PubMed Central

    Cheng, Qiguang; Xu, Xiaoquan; Zu, Qingquan; Lu, Shanshan; Yu, Jing; Liu, Xinglong; Wang, Bin; Shi, Haibin; Teng, Gaojun; Liu, Sheng

    2016-01-01

    Previous studies have indicated that the temporal change of relative diffusion weighted imaging (rDWI) signal intensity may help to determine the onset time of a stroke. Furthermore, several studies have indicated that high b value DWI offered improved detection rates for hyper-acute ischemic lesions compared with standard b value DWI. However, the temporal changes of the rDWI on high b value DWI remain unclear. Therefore, based on our embolic canine stroke model, we evaluated the temporal evolution of rDWI on high b value DWI, and further compared its diagnostic value in predicting the onset time of ischemic stroke with rDWI on standard b value DWI. Twelve canine MCAO models were established, and DWI was performed at 1, 2, 3, 4, 5 and 6 h after MCAO, with 3 b values of 1,000, 2,000 and 3,000. High b value DWI detected all ischemic lesions after 1 h, while standard b value did not detect the ischemic lesions in one dog at 1 h. With all three of the tested b values, rDWIs increased continuously within 6 h, while relative apparent diffusion coefficient (rADC) values rapidly decreased in 1 h, then became relatively stable. The area under the curve values for rDWI with b value of 1,000, 2,000 and 3,000, in predicting ischemic lesions within 3 h were 0.897, 0.929 and 0.938, while for rADC were 0.645, 0.583 and 0.599, respectively. Therefore, the results indicated that the rDWI was helpful in aging hyper-acute ischemic stroke, while rADC appeared not to be. High b value DWI had a higher detection rate for ischemic lesions and better predictive efficacy in determining the onset time of hyper-acute stroke. PMID:27446301

  12. A comparative quantitative analysis of magnetic susceptibility artifacts in echo planar and PROPELLER diffusion-weighted images

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Hwan; Lee, Hae-Kag; Yang, Han-Joon; Lee, Gui-Won; Park, Yong-Soon; Chung, Woon-Kwan

    2013-01-01

    In this study, the authors investigated whether periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) diffusion-weighted imaging (DWI) can remove magnetic susceptibility artifacts and compared apparent diffusion coefficient (ADC) values for PROPELLER DWI and the common echo planar (EP) DWI. Twenty patients that underwent brain MRI with a metal dental implant were selected. A 3.0T MR scanner was then used to obtain EP DWI, PROPELLER DWI, and corresponding apparent diffusion coefficient (ADC) maps for a b-value of 0 and 1,000 s/mm2. The frequencies of magnetic susceptibility artifacts in four parts of the brain (bilateral temporal lobes, pons, and orbit) were selected. In the ADC maps, we measured the ADC values of both sides of the temporal lobe and the pons. According to the study results, the frequency of magnetic susceptibility artifacts in PROPELLER DW images was lower than it was in EP DW images. In ADC maps, the ADC values of the bilateral temporal lobes and the pons were all higher in PROPELLER ADC maps than in EP ADC maps. Our findings show that when a high-field MRI machine is used, magnetic susceptibility artifacts can distort anatomical structures and produce high-intensity signals. Furthermore, our findings suggest that in many cases, PROPELLER DWI would be helpful in terms of achieving a correct diagnosis.

  13. Diffusion weighted vertical gradient and spin echo.

    PubMed

    Engström, Mathias; Bammer, Roland; Skare, Stefan

    2012-12-01

    In this work, diffusion weighting and parallel imaging is combined with a vertical gradient and spin echo data readout. This sequence was implemented and evaluated on healthy volunteers using a 1.5 and a 3 T whole-body MR system. As the vertical gradient and spin echo trajectory enables a higher k-space velocity in the phase-encoding direction than single-shot echo planar imaging, the geometrical distortions are reduced. When combined with parallel imaging such as generalized autocalibrating partially parallel acquisition, the geometric distortions are reduced even further, while also keeping the minimum echo time reasonably low. However, this combination of a diffusion preparation and multiple refocusing pulses during the vertical gradient and spin echo readout, generally violates the Carr-Purcell-Meiboom-Gill condition, which leads to interferences between echo pathways. To suppress the stimulated echo pathway, refocusing pulses with a sharper slice profiles and an odd/even crusher variation scheme were implemented and evaluated. Being a single-shot acquisition technique, the reconstructed images are robust to rigid-body head motion and spatially varying brain motion, both of which are common sources of artifacts in diffusion MRI.

  14. 3T diffusion-weighted MRI of the thyroid gland with reduced distortion: preliminary results

    PubMed Central

    Nagala, S; Priest, A N; McLean, M A; Jani, P; Graves, M J

    2013-01-01

    Objective: Single-shot diffusion-weighted (DW) echo planar imaging (EPI), which is commonly used for imaging the thyroid, is characterised by severe blurring and distortion. The objectives of this work were: 1, to show that a reduced-field of view (r-FOV) DW EPI technique can improve image quality; and 2, to investigate the effect of different reconstruction strategies on the resulting apparent diffusion coefficients (ADCs). Methods: We implemented a single-shot, r-FOV DW EPI technique with a two-dimensional radiofrequency excitation pulse for DW imaging of the thyroid at 3T. Images were reconstructed using root sum of squares (SOS) and an optimal-B1 reconstruction (OBR). Phantom and in vivo experiments were performed to compare r-FOV and conventional full-FOV DW EPI with root SOS and OBR. Results: r-FOV with OBR substantially improved image quality at 3T. In phantoms, r-FOV gave more accurate ADCs than full-FOV. In vivo r-FOV always gave lower ADC values with respect to the full-FOV technique irrespective of the reconstruction used and whether only two or multiple b-values were used to compute the ADCs. Conclusion: r-FOV DW EPI can reduce image blurring and distortion at the expense of a low signal-to-noise ratio. OBR is a promising reconstruction technique for accurate ADC measurements in lower signal-to-noise ratio regimes, although further studies are needed to characterise its performance. Advances in knowledge: DW imaging of the thyroid at 3T could potentially benefit from r-FOV acquisition strategies, such as the r-FOV DW EPI technique proposed in this paper. PMID:23770539

  15. Separation of extra- and intracellular metabolites using hyperpolarized 13C diffusion weighted MR

    NASA Astrophysics Data System (ADS)

    Koelsch, Bertram L.; Sriram, Renuka; Keshari, Kayvan R.; Leon Swisher, Christine; Van Criekinge, Mark; Sukumar, Subramaniam; Vigneron, Daniel B.; Wang, Zhen J.; Larson, Peder E. Z.; Kurhanewicz, John

    2016-09-01

    This work demonstrates the separation of extra- and intracellular components of glycolytic metabolites with diffusion weighted hyperpolarized 13C magnetic resonance spectroscopy. Using b-values of up to 15,000 s mm-2, a multi-exponential signal response was measured for hyperpolarized [1-13C] pyruvate and lactate. By fitting the fast and slow asymptotes of these curves, their extra- and intracellular weighted diffusion coefficients were determined in cells perfused in a MR compatible bioreactor. In addition to measuring intracellular weighted diffusion, extra- and intracellular weighted hyperpolarized 13C metabolites pools are assessed in real-time, including their modulation with inhibition of monocarboxylate transporters. These studies demonstrate the ability to simultaneously assess membrane transport in addition to enzymatic activity with the use of diffusion weighted hyperpolarized 13C MR. This technique could be an indispensible tool to evaluate the impact of microenvironment on the presence, aggressiveness and metastatic potential of a variety of cancers.

  16. Motion Compensated Abdominal Diffusion Weighted MRI by Simultaneous Image Registration and Model Estimation (SIR-ME).

    PubMed

    Kurugol, Sila; Freiman, Moti; Afacan, Onur; Domachevsky, Liran; Perez-Rossello, Jeannette M; Callahan, Michael J; Warfield, Simon K

    2015-01-01

    Non-invasive characterization of water molecule's mobility variations by quantitative analysis of diffusion-weighted MRI (DW-MRI) signal decay in the abdomen has the potential to serve as a biomarker in gastrointestinal and oncological applications. Accurate and reproducible estimation of the signal decay model parameters is challenging due to the presence of respiratory, cardiac, and peristalsis motion. Independent registration of each b-value image to the b-value=0 s/mm(2) image prior to parameter estimation might be sub-optimal because of the low SNR and contrast difference between images of varying b-value. In this work, we introduce a motion-compensated parameter estimation framework that simultaneously solves image registration and model estimation (SIR-ME) problems by utilizing the interdependence of acquired volumes along the diffusion weighting dimension. We evaluated the improvement in model parameters estimation accuracy using 16 in-vivo DW-MRI data sets of Crohn's disease patients by comparing parameter estimates obtained using the SIR-ME model to the parameter estimates obtained by fitting the signal decay model to the acquired DW-MRI images. The proposed SIR-ME model reduced the average root-mean-square error between the observed signal and the fitted model by more than 50%. Moreover, the SIR-ME model estimates discriminate between normal and abnormal bowel loops better than the standard parameter estimates.

  17. Diffusion weighted MRI by spatiotemporal encoding: Analytical description and in vivo validations

    NASA Astrophysics Data System (ADS)

    Solomon, Eddy; Shemesh, Noam; Frydman, Lucio

    2013-07-01

    Diffusion-weighted (DW) MRI is a powerful modality for studying microstructure in normal and pathological tissues. The accuracy derived from DW MRI depends on the acquisition of quality images, and on a precise assessment of the b-values involved. Conventional DW MRI tends to be of limited use in regions suffering from large magnetic field or chemical shift heterogeneities, which severely distort the MR images. In this study we propose novel sequences based on SPatio-temporal ENcoding (SPEN), which overcome such shortcomings owing to SPEN's inherent robustness to offsets. SPEN, however, relies on the simultaneous application of gradients and radiofrequency-swept pulses, which may impart different diffusion weightings along the spatial axes. These will be further complicated in DW measurements by the diffusion-sensitizing gradients, and will in general lead to complex, spatially-dependent b-values. This study presents a formalism for analyzing these diffusion-weighted SPEN (dSPEN) data, which takes into account the concomitant effects of adiabatic pulses, of the imaging as well as diffusion gradients, and of the cross-terms between them. These analytical b-values derivations are subject to experimental validations in phantom systems and ex vivo spinal cords. Excellent agreement is found between the theoretical predictions and these dSPEN experiments. The ensuing methodology is then demonstrated by in vivo mapping of diffusion in human breast - organs where conventional k-space DW acquisition methods are challenged by both field and chemical shift heterogeneities. These studies demonstrate the increased robustness of dSPEN vis-à-vis comparable DW echo planar imaging, and demonstrate the value of this new methodology for medium- or high-field diffusion measurements in heterogeneous systems.

  18. Quantitative investigative analysis of tumour separability in the prostate gland using ultra-high b-value computed diffusion imaging.

    PubMed

    Glaister, Jeffrey; Cameron, Andrew; Wong, Alexander; Haider, Masoom A

    2012-01-01

    High b-value diffusion-weighted imaging is a promising approach for diagnosing and localizing cancer in the prostate gland. However, ultra-high b-value imaging is difficult to achieve at a high signal-to-noise ratio due to hardware limitations. An alternative approach being recently discussed is computed diffusion-weighted imaging, which allows for estimation of ultra-high b-value images from a set of diffusion-weighted acquisitions with different magnetic gradient strengths. This paper presents a quantitative investigative analysis of the improvement in tumour separability in the prostate gland from using ultra-high b-value computed diffusion-weighted imaging. The analysis computes ultra-high b-value images for six patient cases and investigates the separability of the tumour from the normal prostate gland. Based on quantitative metrics such as expected probability of classification error and the Receiver Operating Characteristic (ROC), it was found that the use of ultra-high computed diffusion-weighted imaging may significantly improve tumour separability, with a b-value around 3000 providing optimal separability.

  19. Simple noise reduction for diffusion weighted images.

    PubMed

    Konishi, Yuto; Kanazawa, Yuki; Usuda, Takatoshi; Matsumoto, Yuki; Hayashi, Hiroaki; Matsuda, Tsuyoshi; Ueno, Junji; Harada, Masafumi

    2016-07-01

    Our purpose in this study was to reduce the noise in order to improve the SNR of Dw images with high b-value by using two correction schemes. This study was performed with use of phantoms made from water and sucrose at different concentrations, which were 10, 30, and 50 weight percent (wt%). In noise reduction for Dw imaging of the phantoms, we compared two correction schemes that are based on the Rician distribution and the Gaussian distribution. The highest error values for each concentration with use of the Rician distribution scheme were 7.3 % for 10 wt%, 2.4 % for 30 wt%, and 0.1 % for 50 wt%. The highest error values for each concentration with use of the Gaussian distribution scheme were 20.3 % for 10 wt%, 11.6 % for 30 wt%, and 3.4 % for 50 wt%. In Dw imaging, the noise reduction makes it possible to apply the correction scheme of Rician distribution. PMID:26984734

  20. Discrimination between different types of white matter edema with diffusion-weighted MR imaging.

    PubMed

    Ebisu, T; Naruse, S; Horikawa, Y; Ueda, S; Tanaka, C; Uto, M; Umeda, M; Higuchi, T

    1993-01-01

    Brain edema can be classified into three categories: vasogenic, cytotoxic, and interstitial. The mechanism of edema is thought to be different in each type. The authors studied the movement of water molecules in each type of white matter edema in a rat model by using diffusion-weighted magnetic resonance imaging. Conventional T2-weighted imaging did not allow distinction between the three types of white matter edema; the three types of edema were, however, distinguished by using diffusion-weighted imaging. The apparent diffusion coefficient (ADC) of water was different in each type of edema. Water molecules in cytotoxic edema induced by triethyl-tin intoxication showed a smaller and less anisotropic ADC than in normal white matter. In contrast, water in vasogenic edema induced by cold injury had a larger and more anisotropic ADC than in normal white matter. Water in interstitial edema due to kaolin-induced hydrocephalus had an anisotropic and very large ADC. PMID:8280975

  1. Conductivity tensor imaging of the brain using diffusion-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Sekino, Masaki; Yamaguchi, Kikuo; Iriguchi, Norio; Ueno, Shoogo

    2003-05-01

    Conductivity tensor images of the rat brain were obtained by a method based on diffusion-weighted magnetic resonance imaging (MRI). Diffusion-weighted images were acquired by a 4.7 T MRI system with motion probing gradients (MPGs) applied in three directions. Conductivities in each MPG direction were calculated from the fast component of the apparent diffusion coefficient and the fraction of the fast component, and two-dimensional conductivity tensor was estimated. Regions of interest (ROIs) were selected in the cortex and the corpus callosum. The mean conductivities in each ROI were 0.014 S/m and 0.018 S/m, respectively. The corpus callosum exhibited higher conductivity anisotropy resulting from anisotropic tissue structures such as axons and dendrites.

  2. [Diffusion Weighted Magnetic Resonance Imaging and its Application in Ophthalmology].

    PubMed

    Lindner, T; Langner, S; Paul, K; Pohlmann, A; Hadlich, S; Niendorf, T; Jünemann, A; Guthoff, R F; Stachs, O

    2015-12-01

    The value of diffusion-weighted magnet resonance imaging (DWI-MRI) has been demonstrated for an ever growing range of clinical indications. DWI is sensitive to the diffusion of water molecules and probes their random displacement within tissue. DWI provides both qualitative and quantitative information on tissue characteristics, e.g. tissue cellularity. This review provides an overview of diffusion-weighted imaging and its emerging applications in ophthalmology. The basic physics and technical foundations of DWI are introduced. The emerging applications of DWI are surveyed, particularly in diseases of the eye, orbit and optical nerve.

  3. Detection of head and neck squamous cell carcinoma with diffusion weighted MRI after (chemo)radiotherapy: Correlation between radiologic and histopathologic findings

    SciTech Connect

    Vandecaveye, Vincent; Keyzer, Frederik de; Nuyts, Sandra; Deraedt, Karen; Dirix, Piet; Hamaekers, Pascal; Vander Poorten, Vincent; Delaere, Pierre; Hermans, Robert . E-mail: Robert.Hermans@uzleuven.be

    2007-03-15

    Purpose: To investigate the value of diffusion weighted magnetic resonance imaging (DW-MRI) in differentiating persistent or recurrent head and neck squamous cell carcinoma (HNSCC) from nontumoral postradiotherapeutic alterations. Methods and Materials: In 26 patients with suspicion of persistent or recurrent HNSCC, MRI of the head and neck was performed, including routine turbo spin-echo (TSE) sequences and an additional echo-planar DW-MRI sequence, using a large range of b-values (0-1000 s/mm{sup 2}). Apparent diffusion coefficient (ADC) maps were calculated. In the suspect areas at the primary site and in the suspect lymph nodes, signal intensity was measured on the native b0 and b1000 images and ADC values were calculated for these tissues. The same was done for surrounding irradiated normal tissue. Imaging results were correlated to histopathology. Results: Signal intensity on native b0 images was significantly lower for HNSCC than for nontumoral postradiotherapeutic tissue (p < 0.0001), resulting in a sensitivity of 66.2%, specificity of 60.8%, and accuracy of 62.4%. Signal intensity on native b1000 images was significantly higher for HNSCC than for nontumoral tissue (p < 0.0001), resulting in a sensitivity of 71.6%, specificity of 71.3%, and accuracy of 71.4%. ADC values were significantly lower for HNSCC than for nontumoral tissue (p < 0.0001), resulting in a sensitivity of 94.6%, specificity of 95.9%, and accuracy of 95.5%. When compared with computed tomography, TSE-MRI and fluorodeoxyglucose-positron emission tomography, DW-MRI yielded fewer false-positive results in persistent primary site abnormalities and in persistent adenopathies, and aided in the detection of subcentimetric nodal metastases. Conclusions: Diffusion weighted-MRI accurately differentiates persistent or recurrent HNSCC from nontumoral tissue changes after (chemo)radiotherapy.

  4. Differentiation of Reactive and Tumor Metastatic Lymph Nodes with Diffusion-weighted and SPIO Enhanced MRI

    PubMed Central

    Zhang, Fan; Zhu, Lei; Huang, Xinglu; Niu, Gang; Chen, Siouan

    2012-01-01

    Objectives Determination of lymphatic metastasis is of great importance for both treatment planning and patient prognosis. We aim to distinguish tumor metastatic lymph nodes (TLNs) and reactive lymph nodes (RLNs) with diffusion-weighted and superparamagnetic iron oxide (SPIO) enhanced magnetic resonance imaging (MRI). Materials and methods Ipsilateral popliteal lymph node metastasis or lymphadenitis model was established by hock injection of either luciferase-expressing 4T1 murine breast cancer cells or Complete Freund Adjuvant (CFA) in male Balb/C mice. At different time points after inoculation, bioluminescence imaging, T2-weighted, diffusion-weighted and SPIO enhanced MRI were performed. Imaging findings were confirmed by histopathological staining. Results Size enlargement was observed in both TLNs and RLNs. At day 28, TLNs showed strong bioluminescence signal and bigger size than RLNs (p < 0.01). At early stages up to day 21, both TLNs and RLNs appeared homogeneous on diffusion-weighted imaging (DWI). At day 28, TLNs showed heterogeneous apparent diffusion coefficient (ADC) map with significantly higher average ADC value of 0.41 ± 0.03 × 10−3 mm2/s than that of RLNs (0.34 ± 0.02 10−3 mm2/s, p < 0.05). On SPIO enhanced MRI, both TLNs and RLNs showed distinct T2 signal reduction at day 21 after inoculation. At day 28, TLNs demonstrated partial uptake of the iron oxide particles, which was confirmed by Prussian blue staining. Conclusions Both diffusion-weighted and SPIO enhanced MRI can distinguish tumor metastatic lymph nodes from reactive lymph nodes. However, neither method is able to detect tumor metastasis to the draining lymph nodes at early stages. PMID:22588595

  5. Imaging hypothalamic activity using diffusion weighted magnetic resonance imaging in the mouse and human brain.

    PubMed

    Lizarbe, Blanca; Benítez, Ania; Sánchez-Montañés, Manuel; Lago-Fernández, Luis F; Garcia-Martin, María L; López-Larrubia, Pilar; Cerdán, Sebastián

    2013-01-01

    Hypothalamic appetite regulation is a vital homeostatic process underlying global energy balance in animals and humans, its disturbances resulting in feeding disorders with high morbidity and mortality. The objective evaluation of appetite remains difficult, very often restricted to indirect measurements of food intake and body weight. We report here, the direct, non-invasive visualization of hypothalamic activation by fasting using diffusion weighted magnetic resonance imaging, in the mouse brain as well as in a preliminary study in the human brain. The brain of fed or fasted mice or humans were imaged at 7 or 1.5 Tesla, respectively, by diffusion weighted magnetic resonance imaging using a complete range of b values (10diffusion weighted image data sets were registered and analyzed pixel by pixel using a biexponential model of diffusion, or a model-free Linear Discriminant Analysis approach. Biexponential fittings revealed statistically significant increases in the slow diffusion parameters of the model, consistent with a neurocellular swelling response in the fasted hypothalamus. Increased resolution approaches allowed the detection of increases in the diffusion parameters within the Arcuate Nucleus, Ventromedial Nucleus and Dorsomedial Nucleus. Independently, Linear Discriminant Analysis was able to classify successfully the diffusion data sets from mice and humans between fed and fasted states. Present results are consistent with increased glutamatergic neurotransmission during orexigenic firing, a process resulting in increased ionic accumulation and concomitant osmotic neurocellular swelling. This swelling response is spatially extendable through surrounding astrocytic networks until it becomes MRI detectable. Present findings open new avenues for the direct, non-invasive, evaluation of appetite disorders and other hypothalamic pathologies helping potentially in the development of the corresponding therapies.

  6. Imaging hypothalamic activity using diffusion weighted magnetic resonance imaging in the mouse and human brain.

    PubMed

    Lizarbe, Blanca; Benítez, Ania; Sánchez-Montañés, Manuel; Lago-Fernández, Luis F; Garcia-Martin, María L; López-Larrubia, Pilar; Cerdán, Sebastián

    2013-01-01

    Hypothalamic appetite regulation is a vital homeostatic process underlying global energy balance in animals and humans, its disturbances resulting in feeding disorders with high morbidity and mortality. The objective evaluation of appetite remains difficult, very often restricted to indirect measurements of food intake and body weight. We report here, the direct, non-invasive visualization of hypothalamic activation by fasting using diffusion weighted magnetic resonance imaging, in the mouse brain as well as in a preliminary study in the human brain. The brain of fed or fasted mice or humans were imaged at 7 or 1.5 Tesla, respectively, by diffusion weighted magnetic resonance imaging using a complete range of b values (10diffusion weighted image data sets were registered and analyzed pixel by pixel using a biexponential model of diffusion, or a model-free Linear Discriminant Analysis approach. Biexponential fittings revealed statistically significant increases in the slow diffusion parameters of the model, consistent with a neurocellular swelling response in the fasted hypothalamus. Increased resolution approaches allowed the detection of increases in the diffusion parameters within the Arcuate Nucleus, Ventromedial Nucleus and Dorsomedial Nucleus. Independently, Linear Discriminant Analysis was able to classify successfully the diffusion data sets from mice and humans between fed and fasted states. Present results are consistent with increased glutamatergic neurotransmission during orexigenic firing, a process resulting in increased ionic accumulation and concomitant osmotic neurocellular swelling. This swelling response is spatially extendable through surrounding astrocytic networks until it becomes MRI detectable. Present findings open new avenues for the direct, non-invasive, evaluation of appetite disorders and other hypothalamic pathologies helping potentially in the development of the corresponding therapies. PMID:23000787

  7. PCATMIP: Enhancing Signal Intensity in Diffusion-Weighted Magnetic Resonance Imaging

    PubMed Central

    Pai, V. M.; Rapacchi, S.; Kellman, P.; Croisille, P.; Wen, H.

    2010-01-01

    Diffusion-weighted MRI studies generally lose signal intensity to physiological motion which can adversely affect quantification/diagnosis. Averaging over multiple repetitions, often used to improve image quality, does not eliminate the signal loss. In this paper, PCATMIP, a combined principal component analysis (PCA) and temporal maximum intensity projection (TMIP) approach is developed to address this problem. Data is first acquired for a fixed number of repetitions. Assuming that physiological fluctuations of image intensities locally are likely temporally-correlated unlike random noise, a local moving boxcar in the spatial domain is used to reconstruct low-noise images by considering the most relevant principal components in the temporal domain. Subsequently, a temporal maximum intensity projection yields a high signal-intensity image. Numerical and experimental studies were performed for validation and to determine optimal parameters for increasing signal intensity and minimizing noise. Subsequently, PCATMIP was used to analyze diffusion-weighted porcine liver MRI scans. In these scans, the variability of ADC values among repeated measurements was reduced by 59% relative to averaging and there was an increase in the signal intensity with higher intensity differences observed at higher b-values. In summary, PCATMIP is a post-processing approach that corrects for bulk motion-induced signal loss and improves ADC measurement reproducibility. PMID:21590803

  8. Atypical pyogenic brain abscess evaluation by diffusion-weighted imaging: diagnosis with multimodality MR imaging.

    PubMed

    Ozbayrak, Mustafa; Ulus, Ozden Sila; Berkman, Mehmet Zafer; Kocagoz, Sesin; Karaarslan, Ercan

    2015-10-01

    Whether a brain abscess is apparent by imaging depends on the stage of the abscess at the time of imaging, as well as the etiology of the infection. Because conventional magnetic resonance imaging (MRI) is limited in its ability to distinguish brain abscesses from necrotic tumors, advanced techniques are required. The management of these two disease entities differs and can potentially affect the clinical outcome. We report a case having atypical imaging features of a pyogenic brain abscess on advanced MRI, in particular, on diffusion-weighted and perfusion imaging, in a patient with osteosarcoma undergoing chemotherapy.

  9. Single-Shot Echo-Planar Diffusion-Weighted MR Imaging at 3T and 1.5T for Differentiation of Benign Vertebral Fracture Edema and Tumor Infiltration

    PubMed Central

    Park, Hee Jin; Rho, Myung Ho; Chung, Eun Chul; Kim, Mi Sung; Kwon, Heon Ju; Youn, In Young

    2016-01-01

    Objective To compare the apparent diffusion coefficient (ADC) value using single-shot echo-planar imaging sequences at 3T and 1.5T for differentiation of benign fracture edema and tumor infiltration of the vertebral body. Materials and Methods A total of 46 spinal examinations were included in the 1.5T MRI group, and a total of 40 spinal examinations were included in the 3T MRI group. The ADC values of the lesion were measured and calculated. The diagnostic performance of the conventional MR image containing sagittal T2-weighted fat saturated image and each diffusion weighted image (DWI) with an ADC value with different b values were evaluated. Results The mean ADC value of the benign lesions was higher than that of the malignant lesions on 1.5T and 3T (p < 0.05). The sensitivity of the diagnostic performance was higher with an additional DWI in both 1.5T and 3T, but the sensitivities were similar with the addition of b values of 400 and 1000. The specificities of the diagnostic performances did not show significant differences (p value > 0.05). The diagnostic accuracies were higher when either of the DWIs (b values of 400 and 1000) was added to routine MR image for 1.5T and 3T. Statistical differences between 1.5T and 3T or between b values of 400 and 1000 were not seen. Conclusion The ADC values of the benign lesions were significantly higher than those of the malignant lesions on 1.5T and 3T. There was no statistically significant difference in the diagnostic performances when either of the DWIs (b values of 400 and 1000) was added to the routine MR image for 1.5T and 3T. PMID:27587948

  10. Basal ganglia intensity indices and diffusion weighted imaging in manganese-exposed welders

    PubMed Central

    Criswell, Susan R; Perlmutter, Joel S; Huang, John L; Golchin, Nima; Flores, Hubert P; Hobson, Angela; Aschner, Michael; Erikson, Keith M; Checkoway, Harvey; Racette, Brad A

    2013-01-01

    Objectives Manganese exposure leads to diffuse cerebral metal deposition with the highest concentration in the globus pallidus associated with increased T1-weighted MRI signal. T1 signal intensity in extra-pallidal basal ganglia (caudate and putamen) has not been studied in occupationally exposed workers. Diffusion weighted imaging is a non-invasive measure of neuronal damage and may provide a quantification of neurotoxicity associated with welding and manganese exposure. This study investigated extra-pallidal T1 basal ganglia signal intensity as a marker of manganese exposure and basal ganglia diffusion weighted imaging abnormalities as a potential marker of neurotoxicity. Methods A 3T MR case:control imaging study was performed on 18 welders and 18 age- and gender-matched controls. Basal ganglia regions of interest were identified for each subject. T1-weighted intensity indices and apparent diffusion coefficients were generated for each region. Results All regional indices were higher in welders than controls (p≤0.05). Combined basal ganglia (ρ=0.610), caudate (ρ=0.645), anterior (ρ=0.595) and posterior putamen (ρ=0.511) indices were more correlated with exposure than pallidal (ρ=0.484) index. Welder apparent diffusion coefficient values were lower than controls for globus pallidus (p=0.03) and anterior putamen (p=0.004). Conclusions Welders demonstrated elevated T1 indices throughout the basal ganglia. Combined basal ganglia, caudate and putamen indices were more correlated with exposure than pallidal index suggesting more inclusive basal ganglia sampling results in better exposure markers. Elevated indices were associated with diffusion weighted abnormalities in the pallidum and anterior putamen suggesting neurotoxicity in these regions. PMID:22447645

  11. WE-G-BRD-01: Diffusion Weighted MRI for Response Assessment of Inoperable Lung Tumors for Patients Undergoing SBRT Treatment

    SciTech Connect

    Tyagi, N; Wengler, K; Yorke, E; Hunt, M; Deasy, J; Rimner, A

    2014-06-15

    Purpose: To investigate early changes in tumor Apparent Diffusion Coefficients derived from diffusion weighted (DW)-MRI of lung cancer patients undergoing SBRT, as a possible early predictor of treatment response. Methods: DW-MRI scans were performed in this prospective phase I IRB-approved study of inoperable lung tumors at various time-points during the course of SBRT treatments. Axial DW scan using multi b-values ranging from 0–1000 s/mm{sup 2} were acquired in treatment position on a 3T Philips MR scanner during simulation, one hour after the first fraction (8 Gy), after a total of 5 fractions (40 Gy) and 4 weeks after SBRT delivery. A monoexponential model based on a least square fit from all b values was performed on a pixel-by-pixel basis and ADC was calculated. GTVs drawn on 4DCT for planning were mapped on the T2w MRI (acquired at exhale) after deformable registration. These volumes were then mapped on DWI scan for ADC calculation after rigid registration between the anatomical scan and diffusion scan. T2w scan on followup time points were deformably registered to the pretreatment T2 scan. Results: The first two patients in this study were analyzed. Median ADC values were 1.48, 1.48, 1.62 and 1.83 (10{sup −3}×) mm{sup 2}/s at pretreatment, after 8 Gy, after 40 Gy and 4 weeks posttreatment for the first patient and 1.57, 1.53, 1.66 and 1.72 (10{sup −3}×) mm{sup 2}/s for the second patient. ADC increased more significantly after 4 weeks of treatment rather than immediately post treatment, implying that late ADC value may be a better predictor of tumor response for SBRT treatment. The fraction of tumor pixels at high ADC values increased at 4 weeks post treatment. Conclusion: The observed increase in ADC values before the end of radiotherapy may be a surrogate for tumor response, but further patient accrual will be necessary to determine its value.

  12. Diffusion-Weighted MRI for the Assessment of Liver Fibrosis: Principles and Applications

    PubMed Central

    Attinà, Giancarlo; Fuccio Sanzà, Giovanni; Foti, Pietro Valerio; Ettorre, Giovanni Carlo; Milone, Pietro

    2015-01-01

    The importance of an early identification of hepatic fibrosis has been emphasized, in order to start therapy and obtain fibrosis regression. Biopsy is the gold-standard method for the assessment of liver fibrosis in chronic liver diseases, but it is limited by complications, interobserver variability, and sampling errors. Several noninvasive methods have been recently introduced into clinical routine, in order to detect liver fibrosis early. One of the most diffuse approaches is represented by diffusion-weighted liver MRI. In this review, the main technical principles are briefly reported in order to explain the rationale for clinical applications. In addition, roles of apparent diffusion coefficient, intravoxel incoherent motion, and relative apparent diffusion coefficient are also reported, showing their advantages and limits. PMID:25866819

  13. Diffusion Weighted Magnetic Resonance Imaging for the Characterization of Solitary Pulmonary Lesions

    PubMed Central

    Çakır, Çağlayan; Gençhellaç, Hakan; Temizöz, Osman; Polat, Ahmet; Şengül, Ersin; Duygulu, Gökhan

    2015-01-01

    Background: We evaluated the differential diagnosis of solitary pulmonary lesions on magnetic resonance imaging. Aims: To investigate the value of diffusion weighted imaging on the differential diagnosis of solitary pulmonary lesions. Study Design: Randomized prospective study. Methods: This prospective study included 48 solitary pulmonary nodules and masses (18 benign, 30 malignant). Single shot echo planar spin echo diffusion weighted imaging (DWI) was performed with two b factors (0 and 1000 s/mm2). Apparent diffusion coefficients (ADCs) were calculated. On diffusion weighted (DW) trace images, the signal intensities (SI) of the lesions were visually compared to the SI of the thoracic spinal cord using a 5-point scale: 1: hypointense, 2: moderately hypointense, 3: isointense, 4: moderately hyperintense, 5: significantly hyperintense. For the quantitative evaluation, the lesion to thoracic spinal signal intensity ratios and the ADCs of the lesions were compared between groups. Results: On visual evaluation, taking the density of the spinal cord as a reference, most benign lesions were found to be hypointense, while most of the malignant lesions were evaluated as hyperintense on DWI with a b factor of 1000 s/mm2. In contrast, on T2 weighted images, it was seen that the distinction of malignant lesions from benign lesions was not statistically significant. The ADCs of the malignant lesions were significantly lower than those of benign lesions (mean ADC was 2.02×10−3 mm2/s for malignant lesions, and 1.195×10−3±0.3 mm2/s for benign lesions). Setting the cut-off value at 1.5×10−3, ADC had a sensitivity of 86.7% and a specificity of 88.9% for the differentiation of benign lesions from malignant lesions. Conclusion: DWI may aid in the differential diagnosis of solitary pulmonary lesions. (ClinicalTrials.gov Identifier: NCT02482181) PMID:26740901

  14. WE-G-18C-09: Separating Perfusion and Diffusion Components From Diffusion Weighted MRI of Rectum Tumors Based On Intravoxel Incoherent Motion (IVIM) Analysis

    SciTech Connect

    Tyagi, N; Wengler, K; Mazaheri, Y; Hunt, M; Deasy, J; Gollub, M

    2014-06-15

    Purpose: Pseudodiffusion arises from the microcirculation of blood in the randomly oriented capillary network and contributes to the signal decay acquired using a multi-b value diffusion weighted (DW)-MRI sequence. This effect is more significant at low b-values and should be properly accounted for in apparent diffusion coefficient (ADC) calculations. The purpose of this study was to separate perfusion and diffusion component based on a biexponential and a segmented monoexponential model using IVIM analysis Methods. The signal attenuation is modeled as S(b) = S0[(1−f)exp(−bD) + fexp(−bD*)]. Fitting the biexponetial decay leads to the quantification of D, the true diffusion coefficient, D*, the pseudodiffusion coefficient, and f, the perfusion fraction. A nonlinear least squares fit and two segmented monoexponential models were used to derive the values for D, D*,‘and f. In the segmented approach b = 200 s/mm{sup 2} was used as the cut-off value for calculation of D. DW-MRI's of a rectum cancer patient were acquired before chemotherapy, before radiation therapy (RT), and 4 weeks into RT and were investigated as an example case. Results: Mean ADC for the tumor drawn on the DWI cases was 0.93, 1.0 and 1.13 10{sup −3}×mm{sup 2}/s before chemotherapy, before RT and 4 weeks into RT. The mean (D.10{sup −3} × mm{sup 2}/s, D* 10{sup −3} × mm{sup 2}/s, and f %) based on biexponential fit was (0.67, 18.6, and 27.2%), (0.72, 17.7, and 28.9%) and (0.83,15.1, and 30.7%) at these time points. The mean (D, D* f) based on segmented fit was (0.72, 10.5, and 12.1%), (0.72, 8.2, and 17.4%) and (.82, 8.1, 16.5%) Conclusion: ADC values are typically higher than true diffusion coefficients. For tumors with significant perfusion effect, ADC should be analyzed at higher b-values or separated from the perfusion component. Biexponential fit overestimates the perfusion fraction because of increased sensitivity to noise at low b-values.

  15. Diffusion-Weighted Magnetic Resonance Imaging to Evaluate Major Salivary Gland Function Before and After Radiotherapy

    SciTech Connect

    Dirix, Piet Keyzer, Frederik de; Vandecaveye, Vincent; Stroobants, Sigrid; Hermans, Robert; Nuyts, Sandra

    2008-08-01

    Purpose: To evaluate diffusion-weighted (DW)-MRI as a noninvasive tool to investigate major salivary gland function before and after radiotherapy (RT) for head and neck cancer (HNC). Methods and Materials: DW-MRI was performed in 8 HNC patients before and after parotid-sparing RT (mean dose to the contralateral parotid gland <26 Gy). A DW sequence was performed once at rest and then repeated continuously during salivary stimulation. Apparent diffusion coefficient (ADC) maps for both parotid and submandibular glands were calculated. Findings were compared with salivary gland scintigraphy. Results: Before RT, the mean ADC value at rest was significantly lower in the parotid than in the submandibular glands. During the first 5 min of stimulation, the ADC value of the salivary glands showed a decrease, followed by a steady increase until a peak ADC, significantly higher than the baseline value, was reached after a median of 17 min. The baseline ADC value at rest was significantly higher after RT than before RT in the nonspared salivary glands but not in the spared parotid glands. In the contralateral parotid glands, the same response was seen as before RT. This pattern was completely lost in the nonspared glands. These results corresponded with remaining or loss of salivary function, respectively, as confirmed by salivary gland scintigraphy. Conclusions: Diffusion-weighted-MRI allows noninvasive evaluation of functional changes in the major salivary glands after RT and is a promising tool for investigating radiation-induced xerostomia.

  16. [Effect of vibration caused by time-varying magnetic fields on diffusion-weighted MRI].

    PubMed

    Ogura, Akio; Maeda, Fumie; Miyai, Akira; Hayashi, Kohji; Hongoh, Takaharu

    2006-04-20

    Diffusion-weighted images (DWIs) with high b-factor in the body are often used to detect and diagnose cancer at MRI. The echo planar imaging (EPI) sequence and high motion probing gradient pulse are used at diffusion weighted imaging, causing high table vibration. The purpose of this study was to assess whether the diffusion signal and apparent diffusion coefficient (ADC) values are influenced by this vibration because of time-varying magnetic fields. Two DWIs were compared. In one, phantoms were fixed on the MRI unit's table transmitting the vibration. In the other, phantoms were supported in air, in the absence of vibration. The phantoms called "solution phantoms" were made from agarose of a particular density. The phantoms called "jelly phantoms" were made from agarose that was heated. The diffusion signal and ADC value of each image were compared. The results showed that the signal of DWI units using the solution phantom was not affected by vibration. However, the signal of DWI and ADC were increased in the low-density jelly phantom as a result of vibration, causing the jelly phantom to vibrate. The DWIs of vibrating regions such as the breast maybe be subject to error. A countermeasure seems to be to support the region adequately.

  17. DWI of Prostate Cancer: Optimal b-Value in Clinical Practice

    PubMed Central

    Manenti, Guglielmo; Vasili, Erald; Bonanno, Elena; Simonetti, Giovanni

    2014-01-01

    Aim. To compare the diagnostic performance of diffusion weighted imaging (DWI) using b-values of 1000 s/mm2 and 2000 s/mm2 at 3 Tesla (T) for the evaluation of clinically significant prostate cancer. Matherials and Methods. Seventy-eight prostate cancer patients underwent a 3T MRI scan followed by radical prostatectomy. DWI was performed using b-values of 0, 1000, and 2000 s/mm2 and qualitatively analysed by two radiologists. ADC maps were obtained at b-values of 1000 and 2000 s/mm2 and quantitatively analyzed in consensus. Results. For diagnosis of 78 prostate cancers the accuracy of DWI for the young reader was significantly greater at b = 2000 s/mm2 for the peripheral zone (PZ) but not for the transitional zone (TZ). For the experienced reader, DWI did not show significant differences in accuracy between b-values of 1000 and 2000 s/mm2. The quantitative analysis in the PZ and TZ was substantially superimposable between the two b-values, albeit with a higher accuracy with a b-value of 2000 s/mm2. Conclusions. With a b-value of 2000 s/mm2 at 3T both readers differentiated clinical significant cancer from benign tissue; higher b-values can be helpful for the less experienced readers. PMID:24693438

  18. Limitations and Prospects for Diffusion-Weighted MRI of the Prostate

    PubMed Central

    Bourne, Roger; Panagiotaki, Eleftheria

    2016-01-01

    Diffusion-weighted imaging (DWI) is the most effective component of the modern multi-parametric magnetic resonance imaging (mpMRI) scan for prostate pathology. DWI provides the strongest prediction of cancer volume, and the apparent diffusion coefficient (ADC) correlates moderately with Gleason grade. Notwithstanding the demonstrated cancer assessment value of DWI, the standard measurement and signal analysis methods are based on a model of water diffusion dynamics that is well known to be invalid in human tissue. This review describes the biophysical limitations of the DWI component of the current standard mpMRI protocol and the potential for significantly improved cancer assessment performance based on more sophisticated measurement and signal modeling techniques. PMID:27240408

  19. Diffusion-weighted and diffusion-tensor imaging of normal and diseased uterus

    PubMed Central

    Kara Bozkurt, Duygu; Bozkurt, Murat; Nazli, Mehmet Ali; Mutlu, Ilhan Nahit; Kilickesmez, Ozgur

    2015-01-01

    Owing to technical advances and improvement of the software, diffusion weighted imaging and diffusion tensor imaging (DWI and DTI) greatly improved the diagnostic value of magnetic resonance imaging (MRI) of the pelvic region. These imaging sequences can exhibit important tissue contrast on the basis of random diffusion (Brownian motion) of water molecules in tissues. Quantitative measurements can be done with DWI and DTI by apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values respectively. ADC and FA values may be changed by various physiological and pathological conditions providing additional information to conventional MRI. The quantitative DWI assists significantly in the differentiation of benign and malignant lesions. It can demonstrate the microstructural architecture and celluler density of the normal and diseased uterine zones. On the other hand, DWI and DTI are useful for monitoring the treatment outcome of the uterine lesions. In this review, we discussed advantages of DWI and DTI of the normal and diseased uterus. PMID:26217454

  20. Diffusion-weighted MR imaging in gynecologic cancers.

    PubMed

    Motoshima, Shigenobu; Irie, Hiroyuki; Nakazono, Takahiko; Kamura, Toshiharu; Kudo, Sho

    2011-12-01

    Diffusion-weighted imaging (DWI) reflects changes in proton mobility caused by pathological alterations of tissue cellularity, cellular membrane integrity, extracellular space perfusion, and fluid viscosity. Functional imaging is becoming increasingly important in the evaluation of cancer patients because of the limitations of morphologic imaging. DWI is being applied to the detection and characterization of tumors and the evaluation of treatment response in patients with cancer. The advantages of DWI include its cost-effectiveness and brevity of execution, its complete noninvasiveness, its lack of ionizing radiation, and the fact that it does not require injection of contrast material, thus enabling its use in patients with renal dysfunction. In this article, we describe the clinical application of DWI to gynecological disorders and its diagnostic efficacy therein. PMID:22247805

  1. Diffusion-Weighted Images Superresolution Using High-Order SVD

    PubMed Central

    Yang, Zhipeng; Hu, Jinrong; Peng, Jing; He, Peiyu

    2016-01-01

    The spatial resolution of diffusion-weighted imaging (DWI) is limited by several physical and clinical considerations, such as practical scanning times. Interpolation methods, which are widely used to enhance resolution, often result in blurred edges. Advanced superresolution scanning acquires images with specific protocols and long acquisition times. In this paper, we propose a novel single image superresolution (SR) method which introduces high-order SVD (HOSVD) to regularize the patch-based SR framework on DWI datasets. The proposed method was implemented on an adaptive basis which ensured a more accurate reconstruction of high-resolution DWI datasets. Meanwhile, the intrinsic dimensional decreasing property of HOSVD is also beneficial for reducing the computational burden. Experimental results from both synthetic and real DWI datasets demonstrate that the proposed method enhances the details in reconstructed high-resolution DWI datasets and outperforms conventional techniques such as interpolation methods and nonlocal upsampling. PMID:27635150

  2. Thoracic Splenosis after a Gunshot: Diffusion-Weighted MRI Findings

    PubMed Central

    Tutar, Onur; Bakan, Selim; Samanci, Cesur; Nurili, Fuat; Sayman, Haluk Burcak; Akman, Canan

    2015-01-01

    Summary Background Intrathoracic splenosis is a rare condition resulting from concomitant rupture of the spleen and left hemidiaphragm after a traumatic event involving the spleen and the diaphragma and is defined as autotransplantation of splenic tissue in thorax. Case Report The aim of this study was to present a case report of a combined intrathoracic and subcutaneous splenosis in a patient 19 years after penetrating trauma. She has left dorsal side pain and routine chest roentgenogram shows pleural nodular masses. The patient was referred to us for radiologic work up. Conclusions The MRI scans revealed the intrathoracic and subcutan masses as mainly hypointense on T1-weighted images and hyperintense on T2-weighted images and significant restriction in diffusion-weighted images. Scintigraphy revealed abnormal hot spots in subcutaneous tissue and diaphragmatic pleura of the left hemithorax. PMID:25745523

  3. Diffusion-Weighted Images Superresolution Using High-Order SVD.

    PubMed

    Wu, Xi; Yang, Zhipeng; Hu, Jinrong; Peng, Jing; He, Peiyu; Zhou, Jiliu

    2016-01-01

    The spatial resolution of diffusion-weighted imaging (DWI) is limited by several physical and clinical considerations, such as practical scanning times. Interpolation methods, which are widely used to enhance resolution, often result in blurred edges. Advanced superresolution scanning acquires images with specific protocols and long acquisition times. In this paper, we propose a novel single image superresolution (SR) method which introduces high-order SVD (HOSVD) to regularize the patch-based SR framework on DWI datasets. The proposed method was implemented on an adaptive basis which ensured a more accurate reconstruction of high-resolution DWI datasets. Meanwhile, the intrinsic dimensional decreasing property of HOSVD is also beneficial for reducing the computational burden. Experimental results from both synthetic and real DWI datasets demonstrate that the proposed method enhances the details in reconstructed high-resolution DWI datasets and outperforms conventional techniques such as interpolation methods and nonlocal upsampling. PMID:27635150

  4. Diffusion weighted image denoising using overcomplete local PCA.

    PubMed

    Manjón, José V; Coupé, Pierrick; Concha, Luis; Buades, Antonio; Collins, D Louis; Robles, Montserrat

    2013-01-01

    Diffusion Weighted Images (DWI) normally shows a low Signal to Noise Ratio (SNR) due to the presence of noise from the measurement process that complicates and biases the estimation of quantitative diffusion parameters. In this paper, a new denoising methodology is proposed that takes into consideration the multicomponent nature of multi-directional DWI datasets such as those employed in diffusion imaging. This new filter reduces random noise in multicomponent DWI by locally shrinking less significant Principal Components using an overcomplete approach. The proposed method is compared with state-of-the-art methods using synthetic and real clinical MR images, showing improved performance in terms of denoising quality and estimation of diffusion parameters. PMID:24019889

  5. Diffusion Weighted Image Denoising Using Overcomplete Local PCA

    PubMed Central

    Manjón, José V.; Coupé, Pierrick; Concha, Luis; Buades, Antonio; Collins, D. Louis; Robles, Montserrat

    2013-01-01

    Diffusion Weighted Images (DWI) normally shows a low Signal to Noise Ratio (SNR) due to the presence of noise from the measurement process that complicates and biases the estimation of quantitative diffusion parameters. In this paper, a new denoising methodology is proposed that takes into consideration the multicomponent nature of multi-directional DWI datasets such as those employed in diffusion imaging. This new filter reduces random noise in multicomponent DWI by locally shrinking less significant Principal Components using an overcomplete approach. The proposed method is compared with state-of-the-art methods using synthetic and real clinical MR images, showing improved performance in terms of denoising quality and estimation of diffusion parameters. PMID:24019889

  6. Diffusion-Weighted Images Superresolution Using High-Order SVD

    PubMed Central

    Yang, Zhipeng; Hu, Jinrong; Peng, Jing; He, Peiyu

    2016-01-01

    The spatial resolution of diffusion-weighted imaging (DWI) is limited by several physical and clinical considerations, such as practical scanning times. Interpolation methods, which are widely used to enhance resolution, often result in blurred edges. Advanced superresolution scanning acquires images with specific protocols and long acquisition times. In this paper, we propose a novel single image superresolution (SR) method which introduces high-order SVD (HOSVD) to regularize the patch-based SR framework on DWI datasets. The proposed method was implemented on an adaptive basis which ensured a more accurate reconstruction of high-resolution DWI datasets. Meanwhile, the intrinsic dimensional decreasing property of HOSVD is also beneficial for reducing the computational burden. Experimental results from both synthetic and real DWI datasets demonstrate that the proposed method enhances the details in reconstructed high-resolution DWI datasets and outperforms conventional techniques such as interpolation methods and nonlocal upsampling.

  7. Is 3-Tesla Gd-EOB-DTPA-Enhanced MRI with Diffusion-Weighted Imaging Superior to 64-Slice Contrast-Enhanced CT for the Diagnosis of Hepatocellular Carcinoma?

    PubMed Central

    Maiwald, Bettina; Lobsien, Donald; Kahn, Thomas; Stumpp, Patrick

    2014-01-01

    Objectives To compare 64-slice contrast-enhanced computed tomography (CT) with 3-Tesla magnetic resonance imaging (MRI) using Gd-EOB-DTPA for the diagnosis of hepatocellular carcinoma (HCC) and evaluate the utility of diffusion-weighted imaging (DWI) in this setting. Methods 3-phase-liver-CT was performed in fifty patients (42 male, 8 female) with suspected or proven HCC. The patients were subjected to a 3-Tesla-MRI-examination with Gd-EOB-DTPA and diffusion weighted imaging (DWI) at b-values of 0, 50 and 400 s/mm2. The apparent diffusion coefficient (ADC)-value was determined for each lesion detected in DWI. The histopathological report after resection or biopsy of a lesion served as the gold standard, and a surrogate of follow-up or complementary imaging techniques in combination with clinical and paraclinical parameters was used in unresected lesions. Diagnostic accuracy, sensitivity, specificity, and positive and negative predictive values were evaluated for each technique. Results MRI detected slightly more lesions that were considered suspicious for HCC per patient compared to CT (2.7 versus 2.3, respectively). ADC-measurements in HCC showed notably heterogeneous values with a median of 1.2±0.5×10−3 mm2/s (range from 0.07±0.1 to 3.0±0.1×10−3 mm2/s). MRI showed similar diagnostic accuracy, sensitivity, and positive and negative predictive values compared to CT (AUC 0.837, sensitivity 92%, PPV 80% and NPV 90% for MRI vs. AUC 0.798, sensitivity 85%, PPV 79% and NPV 82% for CT; not significant). Specificity was 75% for both techniques. Conclusions Our study did not show a statistically significant difference in detection in detection of HCC between MRI and CT. Gd-EOB-DTPA-enhanced MRI tended to detect more lesions per patient compared to contrast-enhanced CT; therefore, we would recommend this modality as the first-choice imaging method for the detection of HCC and therapeutic decisions. However, contrast-enhanced CT was not inferior in our study, so

  8. Diffusional anisotropy of the human brain assessed with diffusion-weighted MR: Relation with normal brain development and aging

    SciTech Connect

    Nomura, Toshiyuki; Sakuma, Hajime; Takeda, Kan; Tagami, Tomoyasu; Okuda, Yasuyuki; Nakagawa, Tsuyoshi )

    1994-02-01

    To analyze diffusional anisotropy in frontal and occipital white matter of human brain quantitatively as a function of age by using diffusion-weighted MR imaging. Ten neonates (<1 month), 13 infants (1-10 months), 9 children (1-11 years), and 16 adults (20-79 years) were examined. After taking axial spin-echo images of the brain, diffusion-sensitive gradients were added parallel or perpendicular to the orientation of nerve fibers. The apparent diffusion coefficient parallel to the nerve fibers (0) and that perpendicular to the fibers (90) were computed. The anisotropic ratio (90/0) was calculated as a function of age. Anisotropic ratios of frontal white matter were significantly larger in neonates as compared with infants, children, or adults. The ratios showed rapid decrease until 6 months and thereafter were identical in all subjects. In the occipital lobe, the ratios were also greater in neonates, but the differences from other age groups were not so prominent as in the frontal lobe. Comparing anisotropic ratios between frontal and occipital lobes, a significant difference was observed only in neonates. Diffusion-weighted images demonstrated that the myelination process starts earlier in the occipital lobe than in the frontal lobe. The changes of diffusional anisotropy in white matter are completed within 6 months after birth. Diffusion-weighted imaging provides earlier detection of brain myelination compared with the conventional T1- and T2-weighted images. 18 refs., 6 figs., 1 tab.

  9. Diffusion weighted magnetic resonance imaging and its recent trend-a survey.

    PubMed

    Chilla, Geetha Soujanya; Tan, Cher Heng; Xu, Chenjie; Poh, Chueh Loo

    2015-06-01

    Since its inception in 1985, diffusion weighted magnetic resonance imaging has been evolving and is becoming instrumental in diagnosis and investigation of tissue functions in various organs including brain, cartilage, and liver. Even though brain related pathology and/or investigation remains as the main application, diffusion weighted magnetic resonance imaging (DWI) is becoming a standard in oncology and in several other applications. This review article provides a brief introduction of diffusion weighted magnetic resonance imaging, challenges involved and recent advancements.

  10. New methods in Diffusion Weighted and Diffusion Tensor Imaging

    PubMed Central

    Bammer, Roland; Holdsworth, Samantha J.; Veldhuis, Wouter B.; Skare, Stefan T.

    2009-01-01

    Synopsis Considerable strides have been made by countless individual researchers in diffusion-weighted imaging (DWI) to push DWI from an experimental tool – limited to a few institutions with specialized instrumentation – to a powerful tool used routinely for diagnostic imaging. Despite its current success, the field of DWI constantly evolves and progress has been made on several fronts, awaiting adoption by vendors and clinical users to bring in the next generation of DWI. These developments are primarily comprised of improved robustness against patient and physiologic motion, increased spatial resolution, new biophysical and tissue models, and new clinical applications for DWI. This article aims to provide a succinct overview of some of these new developments and a description of some of the major challenges associated with DWI. Trying to understand some of these challenges is helpful not only to the technically savvy MRI user, but also to radiologists who are interested in the potential strengths and weaknesses of these techniques, what is in the “diffusion pipeline”, and in how to interpret artifacts on DWI scans. PMID:19406353

  11. Large deformation diffeomorphic registration of diffusion-weighted imaging data

    PubMed Central

    Zhang, Pei; Niethammer, Marc; Shen, Dinggang; Yap, Pew-Thian

    2014-01-01

    Registration plays an important role in group analysis of diffusion-weighted imaging (DWI) data. It can be used to build a reference anatomy for investigating structural variation or tracking changes in white matter. Unlike traditional scalar image registration where spatial alignment is the only focus, registration of DWI data requires both spatial alignment of structures and reorientation of local signal profiles. As such, DWI registration is much more complex and challenging than scalar image registration. Although a variety of algorithms has been proposed to tackle the problem, most of them are restricted by the zdiffusion model used for registration, making it difficult to fit to the registered data a different model. In this paper we describe a method that allows any diffusion model to be fitted after registration for subsequent multifaceted analysis. This is achieved by directly aligning DWI data using a large deformation diffeomorphic registration framework. Our algorithm seeks the optimal coordinate mapping by simultaneously considering structural alignment, local signal profile reorientation, and deformation regularization. Our algorithm also incorporates a multi-kernel strategy to concurrently register anatomical structures at different scales. We demonstrate the efficacy of our approach using in vivo data and report detailed qualitative and quantitative results in comparison with several different registration strategies. PMID:25106710

  12. Fiber-driven resolution enhancement of diffusion-weighted images.

    PubMed

    Yap, Pew-Thian; An, Hongyu; Chen, Yasheng; Shen, Dinggang

    2014-01-01

    Diffusion-weighted imaging (DWI), while giving rich information about brain circuitry, is often limited by insufficient spatial resolution and low signal-to-noise ratio (SNR). This paper describes an algorithm that will increase the resolution of DW images beyond the scan resolution, allowing for a closer investigation of fiber structures and more accurate assessment of brain connectivity. The algorithm is capable of generating a dense vector-valued field, consisting of diffusion data associated with the full set of diffusion-sensitizing gradients. The fundamental premise is that, to best preserve information, interpolation should always be performed along axonal fibers. To achieve this, at each spatial location, we probe neighboring voxels in various directions to gather diffusion information for data interpolation. Based on the fiber orientation distribution function (ODF), directions that are more likely to be traversed by fibers will be given greater weights during interpolation and vice versa. This ensures that data interpolation is only contributed by diffusion data coming from fibers that are aligned with a specific direction. This approach respects local fiber structures and prevents blurring resulting from averaging of data from significantly misaligned fibers. Evaluations suggest that this algorithm yields results with significantly less blocking artifacts, greater smoothness in anatomical structures, and markedly improved structural visibility.

  13. Diffusion weighted imaging in gynecological malignancies - present and future

    PubMed Central

    Manoharan, Dinesh; Das, Chandan J; Aggarwal, Ankita; Gupta, Arun K

    2016-01-01

    The management of gynaecological malignancies has undergone a significant change in recent years with our improved understanding of cancer biogenetics, development of new treatment regimens and enhanced screening. Due to the rapid blooming of newer methods and techniques in gynaecology, surgery and oncology the scope and the role of imaging has also widened. Functional imaging in the form of diffusion weighted imaging (DWI) has been recently found to be very useful in assessing various tumours. Its ability to identify changes in the molecular level has dramatically changed the diagnostic approach of radiologists which was solely based on morphological criteria. It can improve the diagnostic accuracy of conventional magnetic resonance imaging, lend a hand in assessing tumour response to treatment regimens and detect tumour recurrence with better spatial resolution, negative radiation and diagnostic accuracy compared to positron emission tomography scan. The ability to quantify the diffusion has also lead to potential prediction of tumour aggressiveness and grade which directly correlate with the patient prognosis and management. Hence, it has become imperative for a radiologist to understand the concepts of DWI and its present and evolving role. In this article we present a brief description of the basics of DWI followed by its role in evaluation of female gynaecological malignancies. PMID:27027614

  14. The diagnostic value of 1.5-T diffusion-weighted MR imaging in detecting 5 to 10 mm metastatic cervical lymph nodes of nasopharyngeal carcinoma

    PubMed Central

    Jin, Guan Qiao; Yang, Jun; Liu, Li Dong; Su, Dan Ke; Wang, Duo Ping; Zhao, Sheng Fa; Liao, Zhi Ling

    2016-01-01

    Abstract The aim of the study was to prospectively assess the diagnostic accuracy of 1.5 T diffusion-weighted imaging (DWI) for 5 to 10 mm metastatic cervical lymph nodes of patients with nasopharyngeal carcinoma (NPC). All patients with histopathologically confirmed NPC underwent DWI with 2 b values of 0 and 800 s/mm2 were enrolled. The shortest axial diameter and mean apparent diffusion coefficient (ADC) value were recorded when lymph nodes with a shortest axial diameter from 5 to 10 mm were measured. The correlation between the pathological diagnoses and mean ADC values in the benign and metastatic lymph nodes were compared using the Z test. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of DWI. Three hundred fourteen nodes of 52 patients with NPC consisted of 46.5% (146/314) metastatic lymph nodes and 53.5% (168/314) benign lymph nodes. The mean ADC value (×10–3 mm2/s) of benign lymph nodes was (1.110 ± 0.202), which was significantly higher than that of metastatic nodes (0.878 ± 0.159) (P < 0.05). The sensitivity, specificity, positive predictive value, and negative predictive value, accuracy for differentiating metastatic from benign lymph nodes using a cutoff ADC value of 0.924 × 10–3 mm2/s was 83.56%, 82.74%, 80.79%, 85.28%, and 82.80%, respectively. The area under the ROC curve was 0.851 (95% confidence intervals: 0.807–0.889). This study demonstrated that DWI is helpful in detecting 5 to 10 mm metastatic lymph nodes of patients with NPC. PMID:27512841

  15. Diffusion-Weighted Magnetic Resonance Imaging Early After Chemoradiotherapy to Monitor Treatment Response in Head-and-Neck Squamous Cell Carcinoma

    SciTech Connect

    Vandecaveye, Vincent; Dirix, Piet; De Keyzer, Frederik; Op de Beeck, Katya; Vander Poorten, Vincent; Hauben, Esther; Lambrecht, Maarten; Nuyts, Sandra; Hermans, Robert

    2012-03-01

    Purpose: To evaluate diffusion-weighted imaging (DWI) for assessment of treatment response in head and neck squamous cell carcinoma (HNSCC) three weeks after the end of chemoradiotherapy (CRT). Methods and Materials: Twenty-nine patients with HNSCC underwent magnetic resonance imaging (MRI) prior to and 3 weeks after CRT, including T{sub 2}-weighted and pre- and postcontrast T{sub 1}-weighted sequences and an echo-planar DWI sequence with six b values (0 to 1,000 s/mm{sup 2}), from which the apparent diffusion coefficient (ADC) was calculated. ADC changes 3 weeks posttreatment compared to baseline ( Increment ADC) between responding and nonresponding primary lesions and adenopathies were correlated with 2 years locoregional control and compared with a Mann-Whitney test. In a blinded manner, the Increment ADC was compared to conventional MRI 3 weeks post-CRT and the routinely implemented CT, on average 3 months post-CRT, which used size-related and morphological criteria. Positive and negative predictive values (PPV and NPV, respectively) were compared between the Increment ADC and anatomical imaging. Results: The Increment ADC of lesions with later tumor recurrence was significantly lower than lesions with complete remission for both primary lesions (-2.3% {+-} 0.3% vs. 80% {+-} 41%; p < 0.0001) and adenopathies (19.9% {+-} 32% vs. 63% {+-} 36%; p = 0.003). The Increment ADC showed a PPV of 89% and an NPV of 100% for primary lesions and a PPV of 70% and an NPV of 96% for adenopathies per neck side. DWI improved PPV and NPV compared to anatomical imaging. Conclusion: DWI with the Increment ADC 3 weeks after concluding CRT for HNSCC allows for early assessment of treatment response.

  16. Whole-body diffusion-weighted magnetic resonance imaging at 3 Tesla for early assessment of treatment response in non-Hodgkin lymphoma: a pilot study

    PubMed Central

    De Paepe, Katja; Bevernage, Charlotte; De Keyzer, Frederik; Wolter, Pascal; Gheysens, Olivier; Janssens, Ann; Oyen, Raymond; Verhoef, Gregor

    2013-01-01

    Abstract Objective: To evaluate 3 Tesla (T) whole-body diffusion-weighted magnetic resonance imaging (WB DWI) for early treatment assessment in aggressive non-Hodgkin lymphoma (NHL). Methods: Fourteen patients with NHL treated with standard chemotherapy underwent 3-T WB DWI before and 2 and 4 weeks during treatment, using b-values of 0–1000 s/mm2 from which the apparent diffusion coefficient (ADC) was calculated. Patient follow-up (average 20.3 months, range 15–23 months) was the reference standard. Volume and ADC changes between baseline and 2 weeks (Vratio2w, ADCratio2w) and 4 weeks (Vratio4w, ADCratio4w) of responding and non-responding lesions (lymph node and organ lesions) were compared using Mann–Whitney U tests. The per patient values of VratioN and ADCratioN to predict progression-free survival were determined with a log-rank test. Results: Eight patients showed complete remission and 6 showed tumour progression. The ADCratio2w and ADCratio4w differed significantly in lesions showing tumour progression versus complete remission (ADCratio2w = 4 ± 21% versus 119 ± 68%; ADCratio4w = 18 ± 61% versus 155 ± 78%; both P < 0.0001); the Vratio2w and Vratio4w did not (P > 0.05). Per body region, the ADCratio2w showed a negative predictive value of 100% and positive predictive value of 86%. Per patient, the ADCratio2w and ADCratio4w correlated significantly with progression-free survival (P < 0.05). Conclusion: 3-T WB DWI with ADC quantification may enable early treatment assessment of aggressive NHL. PMID:23466737

  17. Intravoxel Incoherent Motion MR Imaging in the Head and Neck: Correlation with Dynamic Contrast-Enhanced MR Imaging and Diffusion-Weighted Imaging

    PubMed Central

    Xu, Xiao Quan; Choi, Young Jun; Sung, Yu Sub; Yoon, Ra Gyoung; Jang, Seung Won; Park, Ji Eun; Heo, Young Jin; Baek, Jung Hwan

    2016-01-01

    Objective To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. Materials and Methods We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D* and model-free parameters from the DCE-MRI (wash-in, Tmax, Emax, initial AUC60, whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. Results No correlation was found between f or D* and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p < 0.001, r = 0.980) and muscles (p = 0.013, r = 0.542), despite its significantly higher value than D. The difference between ADC and D showed significant correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D* (p > 0.05, respectively). Conclusion Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck. PMID:27587952

  18. Role of diffusion weighted imaging in diagnosis of post transplant lymphoproliferative disorders: Case reports and review of literature

    PubMed Central

    Singh, A.; Das, C. J.; Gupta, A. K.; Bagchi, S.

    2016-01-01

    Post transplant lymphoproliferative disorder include a spectrum of conditions occurring in immunosuppressed post transplant recipients, lymphoma being the most ominous. 18F-fludeoxyglucose positron emission tomography with computed tomography CT) is the current imaging gold standard for lymphoma imaging as it allows both morphological and functional assessment. CT and/or conventional magnetic resonance imaging (MRI) are used for morphological evaluation in transplant recipients. Integrating diffusion weighted imaging with apparent diffusion coefficient analysis in MRI protocol enhances its sensitivity and may prove invaluable in response assessment in transplant recipients. PMID:27194838

  19. Diffusion Weighted Imaging in Acute Attacks of Multiple Sclerosis

    PubMed Central

    Davoudi, Yasmin; Foroughipour, Mohsen; Torabi, Reza; Layegh, Parvaneh; Matin, Nassim; Shoeibi, Ali

    2016-01-01

    Background Multiple sclerosis (MS) is one of the most common autoimmune disorders of the central nervous system. In spite of various imaging modalities, the definitive diagnosis of MS remains challenging. Objectives This study was designed to evaluate the usefulness of diffusion weighted imaging (DWI) in the diagnosis of acute MS attack and to compare its results with contrast enhanced MRI (CE-MRI). Patients and Methods In this cross sectional study, seventy patients with definite diagnosis of relapsing-remitting MS were included. CE-MRI using 0.1 mmol/kg gadolinium as well as DWI sequences were performed for all patients. The percentage of patients with positive DWI was compared with the results of CE-MRI and the consistency between the two imaging modalities was evaluated. Moreover, the relationship between the time of onset of patient’s symptoms and test results for both methods were investigated. Results CE-MRI yielded positive results for 61 (87%) patients and DWI yielded positive for 53 (76%) patients. In fifty patients (71.42%), both tests were positive and in six cases (8.57%), both were negative. The test results of three patients turned out to be positive in DWI, while they tested negative in CE-MRI. There was no significant relationship between the results of CE-MRI as well as DWI and the time of imaging from the onset of symptoms. Conclusion These data indicate that while CE-MRI will depict more positive results, there are cases in which DWI will show a positive result while CE-MRI is negative. We suggest that the combination of these two imaging modalities might yield more positive results in diagnosing acute MS attack giving rise to a more accurate diagnosis.

  20. Intravoxel incoherent motion diffusion-weighted imaging for monitoring chemotherapeutic efficacy in gastric cancer

    PubMed Central

    Song, Xiao-Li; Kang, Heoung Keun; Jeong, Gwang Woo; Ahn, Kyu Youn; Jeong, Yong Yeon; Kang, Yang Joon; Cho, Hye Jung; Moon, Chung Man

    2016-01-01

    AIM: To assess intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) for monitoring early efficacy of chemotherapy in a human gastric cancer mouse model. METHODS: IVIM-DWI was performed with 12 b-values (0-800 s/mm2) in 25 human gastric cancer-bearing nude mice at baseline (day 0), and then they were randomly divided into control and 1-, 3-, 5- and 7-d treatment groups (n = 5 per group). The control group underwent longitudinal MRI scans at days 1, 3, 5 and 7, and the treatment groups underwent subsequent MRI scans after a specified 5-fluorouracil/calcium folinate treatment. Together with tumor volumes (TV), the apparent diffusion coefficient (ADC) and IVIM parameters [true water molecular diffusion coefficient (D), perfusion fraction (f) and pseudo-related diffusion coefficient (D*)] were measured. The differences in those parameters from baseline to each measurement (ΔTV%, ΔADC%, ΔD%, Δf% and ΔD*%) were calculated. After image acquisition, tumor necrosis, microvessel density (MVD) and cellular apoptosis were evaluated by hematoxylin-eosin (HE), CD31 and terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) staining respectively, to confirm the imaging findings. Mann-Whitney test and Spearman's correlation coefficient analysis were performed. RESULTS: The observed relative volume increase (ΔTV%) in the treatment group were significantly smaller than those in the control group at day 5 (ΔTVtreatment% = 19.63% ± 3.01% and ΔTVcontrol% = 83.60% ± 14.87%, P = 0.008) and day 7 (ΔTVtreatment% = 29.07% ± 10.01% and ΔTVcontrol% = 177.06% ± 63.00%, P = 0.008). The difference in ΔTV% between the treatment and the control groups was not significant at days 1 and 3 after a short duration of treatment. Increases in ADC in the treatment group (ΔADC%treatment, median, 30.10% ± 18.32%, 36.11% ± 21.82%, 45.22% ± 24.36%) were significantly higher compared with the control group (ΔADC%control, median, 4.98% ± 3.39%, 6.26% ± 3

  1. The Role of Apparent Diffusion Coefficient Quantification in Differentiating Benign and Malignant Renal Masses by 3 Tesla Magnetic Resonance Imaging

    PubMed Central

    Göya, Cemil; Hamidi, Cihad; Bozkurt, Yaşar; Yavuz, Alpaslan; Kuday, Suzan; Gümüş, Hatice; Türkçü, Gül; Hattapoğlu, Salih; Bilici, Aslan

    2015-01-01

    Background: Diffusion-weighted magnetic resonance imaging (DWI) is a widely-accepted diagnostic modality whose efficacy has been investigated by numerous past studies in the differentiation of malignant lesions from benign entities. Aims: The aim of this study was to evaluate the efficiency of diffusion-weighted magnetic resonance imaging in the characterization of renal lesions. Study Design: Diagnostic accuracy study. Methods: A total of 137 patients with renal lesions were included in this study. The median apparent diffusion coefficient (ADC) values as well as the b 800 and b 1600 signal intensities of normal kidneys, solid components of mixed renal masses, and total cystic lesions were evaluated. Results: There were significant differences between the ADC values of lesions and normal renal parenchyma, and between the ADC values of benign and malignant renal lesions on DWIs at b values of 800 and 1600 s/mm2 (p<0.001 and p<0.001, respectively). There were significant differences between the ADC values of Bosniak Category 1 and 2 cysts and the ADC values of Bosniak Category 1 and 3 cysts on DWIs at b values of 800 s/mm2 (p<0.001) and 1600 s/mm2 (p<0.001). A cutoff value of 1.902 × 10−3 mm2/s for the ADC with a b value of 800 s/mm2 provided 88% sensitivity and 96% specificity for differentiation between benign and malignant renal lesions. A cutoff value of 1.623 × 10−3 mm2/s for the ADC with a b value of 1600 s/mm2 provided 79% sensitivity and 96% specificity (p<0.001) for the differentiation between benign and malignant renal lesions. Conclusion: Accurate assessment of renal masses is important for determining the necessity for surgical intervention. DWI provides additional value by differentiating benign from malignant renal tumors and can be added to routine kidney MRI protocols. PMID:26185715

  2. Diffusion-Weighted MRI Reflects Proliferative Activity in Primary CNS Lymphoma

    PubMed Central

    Meyer, Jonas; Gawlitza, Matthias; Frydrychowicz, Clara; Müller, Wolf; Preuss, Matthias; Bure, Lionel; Quäschling, Ulf; Hoffmann, Karl-Titus; Surov, Alexey

    2016-01-01

    Purpose To investigate if apparent diffusion coefficient (ADC) values within primary central nervous system lymphoma correlate with cellularity and proliferative activity in corresponding histological samples. Materials and Methods Echo-planar diffusion-weighted magnetic resonance images obtained from 21 patients with primary central nervous system lymphoma were reviewed retrospectively. Regions of interest were drawn on ADC maps corresponding to the contrast enhancing parts of the tumors. Biopsies from all 21 patients were histologically analyzed. Nuclei count, total nuclei area and average nuclei area were measured. The proliferation index was estimated as Ki-67 positive nuclei divided by total number of nuclei. Correlations of ADC values and histopathologic parameters were determined statistically. Results Ki-67 staining revealed a statistically significant correlation with ADCmin (r = -0.454, p = 0.038), ADCmean (r = -0.546, p = 0.010) and ADCmax (r = -0.515, p = 0.017). Furthermore, ADCmean correlated in a statistically significant manner with total nucleic area (r = -0.500, p = 0.021). Conclusion Low ADCmin, ADCmean and ADCmax values reflect a high proliferative activity of primary cental nervous system lymphoma. Low ADCmean values—in concordance with several previously published studies—indicate an increased cellularity within the tumor. PMID:27571268

  3. Prognostic role for diffusion-weighted imaging of pediatric optic pathway glioma.

    PubMed

    Yeom, K W; Lober, R M; Andre, J B; Fisher, P G; Barnes, P D; Edwards, M S B; Partap, S

    2013-07-01

    Optic pathway glioma (OPG) has an unpredictable course, with poor correlation between conventional imaging features and tumor progression. We investigated whether diffusion-weighted MRI (DWI) predicts the clinical behavior of these tumors. Twelve children with OPG (median age 2.7 years; range 0.4-6.2 years) were followed for a median 4.4 years with DWI. Progression-free survival (time to requiring therapy) was compared between tumors stratified by apparent diffusion coefficient (ADC) from initial pre-treatment scans. Tumors with baseline ADC greater than 1,400 × 10(-6) mm(2)/s required treatment earlier than those with lower ADC (log-rank p = 0.002). In some cases, ADC increased leading up to treatment, and declined following treatment with surgery, chemotherapy, or radiation. Baseline ADC was higher in tumors that eventually required treatment (1,562 ± 192 × 10(-6) mm(2)/s), compared with those conservatively managed (1,123 ± 114 × 10(-6) mm(2)/s) (Kruskal-Wallis test p = 0.013). Higher ADC predicted earlier tumor progression in this cohort and in some cases declined after therapy. Evaluation of OPG with DWI may therefore be useful for predicting tumor behavior and assessing treatment response. PMID:23673514

  4. Anomalous diffusion of brain metabolites evidenced by diffusion-weighted magnetic resonance spectroscopy in vivo

    PubMed Central

    Marchadour, Charlotte; Brouillet, Emmanuel; Hantraye, Philippe; Lebon, Vincent; Valette, Julien

    2012-01-01

    Translational displacement of molecules within cells is a key process in cellular biology. Molecular motion potentially depends on many factors, including active transport, cytosol viscosity and molecular crowding, tortuosity resulting from cytoskeleton and organelles, and restriction barriers. However, the relative contribution of these factors to molecular motion in the cytoplasm remains poorly understood. In this work, we designed an original diffusion-weighted magnetic resonance spectroscopy strategy to probe molecular motion at subcellular scales in vivo. This led to the first observation of anomalous diffusion, that is, dependence of the apparent diffusion coefficient (ADC) on the diffusion time, for endogenous intracellular metabolites in the brain. The observed increase of the ADC at short diffusion time yields evidence that metabolite motion is characteristic of hindered random diffusion rather than active transport, for time scales up to the dozen milliseconds. Armed with this knowledge, data modeling based on geometrically constrained diffusion was performed. Results suggest that metabolite diffusion occurs in a low-viscosity cytosol hindered by ∼2-μm structures, which is consistent with known intracellular organization. PMID:22929443

  5. Diffusion-weighted MRI findings and clinical correlations in sporadic Creutzfeldt-Jakob disease.

    PubMed

    Gao, Ting; Lyu, Jin-Hao; Zhang, Jia-Tang; Lou, Xin; Zhao, Wei; Xing, Xiao-Wei; Yang, Ming; Yao, Yan; Tan, Qing-Che; Tian, Cheng-Lin; Huang, Xu-Sheng; Ma, Lin; Yu, Sheng-Yuan

    2015-06-01

    The objective of this study is to investigate the hyperintense lesions on diffusion-weighted magnetic resonance imaging (DWI) and its clinical correlation in sporadic Creutzfeldt-Jakob disease (sCJD). Patients who suffered from sCJD and followed up at the Department of Neurology at the General Hospital of the People's Liberation Army during the period of June 1, 2007 to July 1, 2014 were reviewed. The location of the hyperintense lesions on DWI, apparent diffusion coefficient (ADC) values of the hyperintense lesions were correlated with symptoms and clinical course. A total of 58 sCJD patients and ten healthy controls were included. Hyperintense lesions on DWI were observed in all the patients. The patients with basal ganglia (BG) hyperintense lesions on DWI had shorter disease duration and higher incidence of myoclonus (92 versus 44 %) than those without BG hyperintense lesions. The patients with occipital cortex hyperintense lesions on DWI had shorter disease duration between symptom onset and akinetic mutism than those without these lesions. The lower of the BG ADC value the faster presence of akinetic mutism and the shorter disease duration the patients will have. The presence of BG and occipital cortex hyperintense lesions on DWI and BG ADC values is correlated with the clinical course and clinical symptoms. PMID:25860342

  6. Diffusion-weighted MR imaging in musculoskeletal radiology: applications in trauma, tumors, and inflammation.

    PubMed

    Bley, Thorsten A; Wieben, Oliver; Uhl, Markus

    2009-05-01

    Diffusion-weighted imaging is a noninvasive magnetic resonance technique that is capable of measuring icroscopic movement of water molecules (ie, random or Brownian motion) within biologic tissues. Diffusion weighting is achieved with a pulsed-field gradient that leaves "static" spins unaffected but causes dephasing of spin ensembles that experience different motion histories according to their diffusion paths, with respect to the direction of the gradient. This article focuses on the interesting opportunities of the use of diffusion weighted imaging in the diagnosis of musculoskeletal diseases, including trauma, tumor, and inflammation.

  7. Distinction Between Recurrent Glioma and Radiation Injury Using Magnetic Resonance Spectroscopy in Combination With Diffusion-Weighted Imaging

    SciTech Connect

    Zeng, Q.-S. . E-mail: nanwushan@yahoo.com; Li, C.-F.; Liu Hong; Zhen, J.-H.; Feng, D.-C.

    2007-05-01

    Purpose: The aim of this study was to explore the diagnostic effectiveness of magnetic resonance (MR) spectroscopy with diffusion-weighted imaging on the evaluation of the recurrent contrast-enhancing areas at the site of treated gliomas. Methods and Materials: In 55 patients who had new contrast-enhancing lesions in the vicinity of the previously resected and irradiated high-grade gliomas, two-dimensional MR spectroscopy and diffusion-weighted imaging were performed. Spectral data for N-acetylaspartate (NAA), choline (Cho), creatine (Cr), lipid (Lip), and lactate (Lac) were analyzed in conjunction with the apparent diffusion coefficient (ADC) in all patients. Diagnosis of these lesions was assigned by means of follow-up or histopathology. Results: The Cho/NAA and Cho/Cr ratios were significantly higher in recurrent tumor than in regions of radiation injury (p < 0.01). The ADC value and ADC ratios (ADC of contrast-enhancing lesion to matching structure in the contralateral hemisphere) were significantly higher in radiation injury regions than in recurrent tumor (p < 0.01). With MR spectroscopic data, two variables (Cho/NAA and Cho/Cr ratios) were shown to differentiate recurrent glioma from radiation injury, and 85.5% of total subjects were correctly classified into groups. However, with discriminant analysis of MR spectroscopy imaging plus diffusion-weighted imaging, three variables (Cho/NAA, Cho/Cr, and ADC ratio) were identified and 96.4% of total subjects were correctly classified. There was a significant difference between the diagnostic accuracy of the two discriminant analyses (Chi-square = 3.96, p = 0.046). Conclusion: Using discriminant analysis, this study found that MR spectroscopy in combination with ADC ratio, rather than ADC value, can improve the ability to differentiate recurrent glioma and radiation injury.

  8. Diffusion-weighted magnetic resonance imaging of the ulnar nerve in cubital tunnel syndrome.

    PubMed

    Iba, K; Wada, T; Tamakawa, M; Aoki, M; Yamashita, T

    2010-01-01

    Diffusion-weighted images based on magnetic resonance reveal the microstructure of tissues by monitoring the random movement of water molecules. In this study, we investigated whether this new technique could visualize pathologic lesions on ulnar nerve in cubital tunnel. Six elbows in six healthy males without any symptoms and eleven elbows in ten patients with cubital tunnel syndrome underwent on diffusion-weighted MRI. No signal from the ulnar nerve was detected in normal subjects. Diffusion-weighted MRI revealed positive signals from the ulnar nerve in all of the eleven elbows with cubital tunnel syndrome. In contrast, conventional T2W-MRI revealed high signal intensity in eight elbows and low signal intensity in three elbows. Three elbows with low signal MRI showed normal nerve conduction velocity of the ulnar nerve. Diffusion-weighted MRI appears to be an attractive technique for diagnosis of cubital tunnel syndrome in its early stages which show normal electrophysiological and conventional MRI studies.

  9. Diffusion-weighted line-scan echo-planar spectroscopic imaging technique to reduce motion artifacts in metabolite diffusion imaging.

    PubMed

    Bito, Yoshitaka; Hirata, Koji; Ebisu, Toshihiko; Kawai, Yuko; Otake, Yosuke; Hirata, Satoshi; Shirai, Toru; Soutome, Yoshihisa; Ochi, Hisaaki; Yamamoto, Etsuji; Umeda, Masahiro; Higuchi, Toshihiro; Tanaka, Chuzo

    2015-01-01

    Metabolite diffusion is expected to provide more specific microstructural and functional information than water diffusion. However, highly accurate measurement techniques have still not been developed, especially for reducing motion artifacts caused by cardiac pulsation and respiration. We developed a diffusion-weighted line-scan echo-planar spectroscopic imaging (DW-LSEPSI) technique to reduce such motion artifacts in measuring diffusion-weighted images (DWI) of metabolites. Our technique uses line-scan and echo-planar techniques to reduce phase errors induced by such motion during diffusion time. The phase errors are corrected using residual water signals in water suppression for each acquisition and at each spatial pixel specified by combining the line-scan and echo-planar techniques. We apply this technique to a moving phantom and a rat brain in vivo to demonstrate the reduction of motion artifacts in DWI and apparent diffusion coefficient (ADC) maps of metabolites. DW-LSEPSI will be useful for investigating a cellular diffusion environment using metabolites as probes.

  10. Diagnostic Performance of Diffusion-weighted Magnetic Resonance Imaging in Bone Malignancy

    PubMed Central

    Liu, Li-Peng; Cui, Long-Biao; Zhang, Xin-Xin; Cao, Jing; Chang, Ning; Tang, Xing; Qi, Shun; Zhang, Xiao-Liang; Yin, Hong; Zhang, Jian

    2015-01-01

    Abstract Current state-of-the-art nuclear medicine imaging methods (such as PET/CT or bone scintigraphy) may have insufficient sensitivity for predicting bone tumor, and substantial exposure to ionizing radiation is associated with the risk of secondary cancer development. Diffusion-weighted MRI (DW-MRI) is radiation free and requires no intravenous contrast media, and hence is more suitable for population groups that are vulnerable to ionizing radiation and/or impaired renal functions. This meta-analysis was conducted to investigate whether whole-body DW-MRI is a viable means in differentiating bone malignancy. Medline and Embase databases were searched from their inception to May 2015 without language restriction for studies evaluating DW-MRI for detection of bone lesions. Methodological quality was assessed by the quality assessment of diagnostic studies (QUADAS-2) instrument. Sensitivities, specificities, diagnostic odds ratio (DOR), and areas under the curve (AUC) were used as measures of the diagnostic accuracy. We combined the effects by using the random-effects mode. Potential threshold effects and publication bias were investigated. We included data from 32 studies with 1507 patients. The pooled sensitivity, specificity, and AUC were 0.95 (95% CI, 0.90–0.97), 0.92 (95% CI, 0.88–0.95), and 0.98 on a per-patient basis, and they were 0.91 (95% CI, 0.87–0.94), 0.94 (95% CI, 0.90–0.96), and 0.97 on a per-lesion basis. In subgroup analysis, there is no statistical significance found in the sensitivity and specificity of using DWI only and DWI combined with other morphological or functional imaging sequence in both basis (P > 0.05). A b value of 750 to 1000 s/mm2 enables higher AUC and DOR for whole-body imaging purpose when compared with other values in both basis either (P < 0.01). The ROC space did not show a curvilinear trend of points and a threshold effect was not observed. According to the Deek's plots, there was no publication bias on

  11. Neuronal damage in the interval form of CO poisoning determined by serial diffusion weighted magnetic resonance imaging plus 1H-magnetic resonance spectroscopy

    PubMed Central

    Murata, T; Kimura, H; Kado, H; Omori, M; Onizuka, J; Takahashi, T; Itoh, H; Wada, Y

    2001-01-01

    In a patient with the interval form of carbon monoxide (CO) poisoning diffusion weighted MRI and proton magnetic resonance spectroscopy (1H-MRS) were serially performed immediately after the appearance of delayed sequelae (the 23rd day after exposure). During the period in which few clear findings were evident on MRI T2 weighted images, a high signal area in the cerebral white matter and relative decrease in the apparent diffusion coefficient (ADCav) were already apparent on diffusion weighted images, with these findings thought to sensitively reflect the tissue injury associated with the onset of sequelae. The decrease in relative ADCav persisted until the 38th day after exposure. Subsequently, ADCav gradually increased, and in the cerebral white matter showed higher values in the 118th day after exposure than immediately after the onset of sequelae. During this period, on 1H-MRS choline containing compounds showed persistently high values throughout the course, with N-acetylaspartate depletion and the appearance of a lactate peak later in the course. These findings, with regional specificity in the cerebral white matter, reflect the developmental process of the white matter lesions in the interval form of CO poisoning in which demyelination progresses leading to neuronal necrosis. Serial diffusion weighted imaging plus 1H-MRS measurements are useful in determining the tissue damage and long term outcome of delayed sequelae associated with the interval form of CO poisoning.

 PMID:11459905

  12. Early Response of Hepatic Malignancies to Locoregional Therapy—Value of Diffusion-Weighted Magnetic Resonance Imaging and Proton Magnetic Resonance Spectroscopy

    PubMed Central

    Bonekamp, Susanne; Shen, Jialin; Salibi, Nouha; Lai, Hong C.; Geschwind, Jeff; Kamel, Ihab R.

    2015-01-01

    Purpose The objective of our study was to determine the usefulness of the diffusion-weighted magnetic resonance imaging and proton magnetic resonance spectroscopy (1H-MRS) of hepatic malignancies for the assessment of response to locoregional treatment. Methods Forty-four patients (29 men; mean age, 58 years) with hepatic malignancies were treated locally. Magnetic resonance imaging examinations obtained before and at 1 and 6 months after transarterial chemoembolization were analyzed retrospectively. Imaging criteria included change in tumor size, percentage of enhancement in the arterial and portal venous phases, diffusion-weighted magnetic resonance imaging apparent diffusion coefficients, and choline concentration by quantitative 1H-MRS. Response to treatment was grouped according to RECIST (Response Evaluation Criteria in Solid Tumors) and European Association for the Study of the Liver (EASL) criteria based on magnetic resonance imaging at 6 months after treatment. Statistical analysis used paired t test, Fisher exact test, and univariate and multivariate Cox proportional hazards models. Results Before treatment, the median tumor diameter was 6 cm; at 6 months after treatment, median tumor diameter was 5.1 cm. According to RECIST and EASL, 66% of the patients achieved partial response, 31% had stable disease, and 3% of the patients showed progressive disease. One month after transarterial chemoembolization, apparent diffusion coefficient increased (P < 0.14), and mean choline concentration of the tumors decreased (P < 0.008). Conclusions Diffusion-weighted imaging and hepatic choline levels by 1H-MRS could predict response to locoregional therapy. PMID:21412085

  13. Challenges in determining b value in the Northwest Geysers

    SciTech Connect

    Saltiel, S.; Boyle, K.; Majer, E.

    2011-02-01

    Past analyses of the Gutenberg-Richter b-value in the Geysers and other geothermal settings have revealed a deviation from the assumed linear relationship in log space between magnitude and the number of earthquakes. In this study of the Northwest Geysers, we found a gently-sloping discontinuity in the b-value curve. This is especially apparent when comparing the least-squares fit (LSQ) of the curve to the fit obtained by the maximum likelihood estimation (MLE), a widely-respected method of analyzing magnitude-frequency relationships. This study will describe the assumptions made when using each of these two methods and will also explore how they can be used in conjunction to investigate the characteristics of the observed b-value curve. To understand whether slope-fit differences in the LSQR and MLE methods is due to physical properties of the system or due to artifacts from errors in sampling, it is extremely important to consider the catalog completeness, magnitude bin size, number of events, and differences in source mechanisms for the events comprising the study volume. This work will hopefully lead to informative interpretations of frequency-magnitude curves for the Northwest Geysers, a geothermal area of ongoing high-volume coldwater injection and steam production. Through this statistical investigation of the catalog contents, we hope to better understand the dominant source mechanisms and the role of injected fluids in the creation of seismic clustering around nearly 60 wells of varying depths and injection volumes.

  14. Diagnostic significance of diffusion-weighted MRI in patients with cervical cancer: a meta-analysis.

    PubMed

    Hou, Bo; Xiang, Shi-Feng; Yao, Gen-Dong; Yang, Su-Jun; Wang, Yu-Fang; Zhang, Yi-Xin; Wang, Jun-Wei

    2014-12-01

    The aim of this meta-analysis is to demonstrate whether diffusion-weighted magnetic resonance imaging (DWI) could assist in the precise diagnosis of cervical cancer or not. Both English and Chinese electronic databases were searched for potential relevant studies followed by a comprehensive literature search without any language restriction. Two reviewers independently assessed the methodological quality of the included trials. Standardized mean difference (SMD) and its corresponding 95 % confidence interval (95 % CI) were calculated in this meta-analysis. We chose Version 12.0 STATA statistical software to analyze our statistical data. Thirteen eligible cohort studies were selected for statistical analysis, including 645 tumor tissues and 504 normal tissues. Combined SMD of apparent diffusion coefficient (ADC) suggested that the ADC value in cervical cancer tissues was significantly lower than that of normal tissue (SMD = 2.80, 95 % CI = 2.64 ~ 2.96, P < 0.001). Subgroup analysis stratified by ethnicity indicated a higher ADC value in the normal tissues compared to the cancer tissues in both the Asian and Caucasian subgroups (Asians: SMD = 2.83, 95 % CI = 2.64 ~ 3.02, P < 0.001; Caucasians: SMD = 2.73, 95 % CI = 2.45 ~ 3.01, P < 0.001, respectively). The results from the subgroup analysis by MRI machine type revealed a statistically significant difference in ADC value between normal cervical tissue and tumor tissues among all of the six MRI machine type subgroups (all P < 0.05). The main finding from our meta-analysis revealed that increased signal intensity on DWI and decreased signal on ADC seem to be useful in the diagnosis of cervical cancer. DWI could therefore be an important imaging tool in potentially identifying patients with cervical cancer.

  15. Prediction of background parenchymal enhancement on breast MRI using mammography, ultrasonography, and diffusion-weighted imaging

    PubMed Central

    Kawamura, Akiko; Satake, Hiroko; Ishigaki, Satoko; Ikeda, Mitsuru; Kimura, Reiko; Shimamoto, Kazuhiro; Naganawa, Shinji

    2015-01-01

    ABSTRACT This retrospective study assessed the effects of menopausal status and menstrual cycle on background parenchymal enhancement (BPE) of breast magnetic resonance imaging (MRI), and investigated whether the degree of BPE can be predicted by findings of mammography, ultrasonography (US), and diffusion-weighted MR imaging (DWI). There were 160 study patients (80 premenopausal, 80 postmenopausal). Degree of BPE was classified into minimal, mild, moderate, or marked. Mammographic density was classified into fatty, scattered, heterogeneously dense, and extremely dense. BP echotexture on US and BP intensity on DWI were visually classified as homogeneous or heterogeneous. Apparent diffusion coefficient (ADC) values of normal breast tissue were measured. Associations of the degree of BPE with menopausal status, menstrual cycle, or imaging features were evaluated by univariate and multivariate analyses. No significant correlation was found between mammographic density and BPE (p=0.085), whereas menopausal status (p=0.000), BP echotexture (p=0.000), and BP intensity on DWI (p= 0.000), and ADC values (p=0.000) showed significant correlations with BPE. Multivariate analysis showed that postmenopausal status was an independent predictor of minimal BPE (p=0.002, OR=3.743). In premenopausal women, there was no significant correlation between menstrual cycle and BPE, whereas BP echotexture was an independent predictor of whether BPE was less than mild or greater than moderate (p=0.001, OR=26.575). BPE on breast MRI is associated with menopausal status and the findings of US and DWI. Because premenopausal women with heterogeneous BP echotexture may be predicted to show moderate or marked BPE, scheduling of breast MRI should preferentially be adjusted to the menstrual cycle. PMID:26412889

  16. Diffusion-weighted Magnetic Resonance Imaging in the Diagnosis of Bone Tumors: Preliminary Results

    PubMed Central

    Pekcevik, Yeliz; Kahya, Mehmet Onur; Kaya, Ahmet

    2013-01-01

    Objective: The study aims to determine whether apparent diffusion coefficient (ADC) can help differentiate benign and malignant bone tumors. Materials and Methods: From January 2012 to February 2013, we prospectively included 26 patients. Of these 15 patients were male and 11 were female; ranging in age from 8 to 76 years (mean age, 34.5 years). Diffusion-weighted magnetic resonance (MR) imaging was obtained with a single-shot echo-planar imaging sequence using a 1.5T MR scanner. We grouped malignant lesions as primary, secondary, and primary tumor with chondroid matrix. The minimum ADC was measured in the tumors and mean minimum ADC values were selected for statistical analysis. ADC values were compared between malignant and benign tumors using the Mann-Whitney U-test and receiver operating curve analysis were done to determine optimal cut-off values. Results: The mean ADC values from the area with lowest ADC values of benign and malignant tumors were 1.99 ± 0.57 × 10−3 mm2/s and 1.02 ± 1.0 × 10−3 mm2/s, respectively. The mean minimum ADC values of benign and malignant tumors were statistically different (P = 0.029). With cut-off value of 1.37 (10−3 mm2/s), sensitivity was 77.8% and specificity was 82.4%, for distinguishing benign and malignant lesion. Benign and secondary malignant tumors showed statistically significant difference (P = 0.002). There was some overlap in ADC values between benign and malignant tumors. The mean minimum ADC values of benign and malignant chondroid tumors were high. Giant cell tumor, non-ossifying fibroma and fibrous dysplasia showed lower ADC values. Conclusion: Although there is some overlap, ADC values of benign and malignant bone tumors seem to be different. Further studies with larger patient groups are needed to find an optimal cut-off ADC value. PMID:24605258

  17. Diffusion-weighted imaging in extracranial head and neck schwannomas: A distinctive appearance

    PubMed Central

    Das, Abanti; Bhalla, Ashu S; Sharma, Raju; Kumar, Atin; Thakar, Alok; Goyal, Ankur

    2016-01-01

    Purpose: To evaluate the diffusion weighted (DW) magnetic resonance imaging (MRI) features of the extracranial schwannomas of head and neck. Materials and Methods: The MRI (including DWI) of 12 patients with pathologically proven head and neck schwannomas (4 men, 8 women, with mean age of 32.6 years; age range 16–50 years) were retrospectively evaluated. Images were analyzed for signal intensity and morphology on conventional sequences followed by the qualitative evaluation of DW images (DWI) and measurement of apparent diffusion coefficient (ADC) values. Results: Majority of the tumors were located in the parapharyngeal space (8/12). All but one showed heterogeneous appearance, with 10 tumors showing scattered areas of hemorrhage. Eight out of 12 tumors showed intensely hyperintense core surrounded by intermediate signal intensity peripheral rim (reverse target sign) on T2-weighted (T2W) images. On DWI, these eight tumors showed a distinctive appearance, resembling target sign on trace DWI and reverse target on ADC map. Out of the remaining four tumors, one showed uniformly restricted diffusion whereas three showed free diffusion. Mean ADC value in the central area of free diffusion was 2.277 × 10−3 mm2/s (range of 1.790 × 10 −3 to 2.605 × 10−3 mm2/s) whereas in the peripheral area was 1.117 × 10−3 mm2/s (range of 0.656 × 10−3 to 1.701 × 10−3 mm2/s). Rest of the schwannomas showing free diffusion had a mean ADC value of 1.971 × 10−3 mm2/s. Conclusion: Majority of the head and neck schwannomas showed a characteristic appearance of free diffusion in the centre and restricted diffusion in the periphery of the mass. PMID:27413271

  18. Investigations on the efficiency of cardiac-gated methods for the acquisition of diffusion-weighted images

    NASA Astrophysics Data System (ADS)

    Nunes, Rita G.; Jezzard, Peter; Clare, Stuart

    2005-11-01

    Diffusion-weighted images are inherently very sensitive to motion. Pulsatile motion of the brain can give rise to artifactual signal attenuation leading to over-estimation of the apparent diffusion coefficients, even with snapshot echo planar imaging. Such miscalculations can result in erroneous estimates of the principal diffusion directions. Cardiac gating can be performed to confine acquisition to the quiet portion of the cycle. Although effective, this approach leads to significantly longer acquisition times. On the other hand, it has been demonstrated that pulsatile motion is not significant in regions above the corpus callosum. To reduce acquisition times and improve the efficiency of whole brain cardiac-gated acquisitions, the upper slices of the brain can be imaged during systole, reserving diastole for those slices most affected by pulsatile motion. The merits and disadvantages of this optimized approach are investigated here, in comparison to a more standard gating method and to the non-gated approach.

  19. Value of Diffusion-Weighted Magnetic Resonance Imaging for Prediction and Early Assessment of Response to Neoadjuvant Radiochemotherapy in Rectal Cancer: Preliminary Results

    SciTech Connect

    Lambrecht, Maarten; Vandecaveye, Vincent; De Keyzer, Frederik; Roels, Sarah; Penninckx, Freddy; Van Cutsem, Eric; Filip, Claus; Haustermans, Karin

    2012-02-01

    Purpose: To evaluate diffusion-weighted magnetic resonance imaging (DWI) for response prediction before and response assessment during and early after preoperative radiochemotherapy (RCT) for locally advanced rectal cancer (LARC). Methods and Materials: Twenty patients receiving RCT for LARC underwent MRI including DWI before RCT, after 10-15 fractions and 1 to 2 weeks before surgery. Tumor volume and apparent diffusion coefficient (ADC; b-values: 0-1000 s/mm{sup 2}) were determined at all time points. Pretreatment tumor ADC and volume, tumor ADC change ( Increment ADC), and volume change ( Increment V) between pretreatment and follow-up examinations were compared with histopathologic findings after total mesorectal excision (pathologic complete response [pCR] vs. no pCR, ypT0-2 vs. ypT3-4, T-downstaging or not). The discriminatory capability of pretreatment tumor ADC and volume, Increment ADC, and Increment V for the detection of pCR was compared with receiver operating characteristics analysis. Results: Pretreatment ADC was significantly lower in patients with pCR compared with patients without (in mm{sup 2}/s: 0.94 {+-} 0.12 Multiplication-Sign 10{sup -3} vs. 1.19 {+-} 0.22 Multiplication-Sign 10{sup -3}, p = 0.003), yielding a sensitivity of 100% and specificity of 86% for detection of pCR. The volume reduction during and after RCT was significantly higher in patients with pCR compared with patients without (in %: {Delta}V{sub during}: -62 {+-} 16 vs. -33 {+-} 16, respectively, p = 0.015; and {Delta}V{sub post}: -86 {+-} 12 vs. -60 {+-} 21, p = 0.012), yielding a sensitivity of 83% and specificity of 71% for the {Delta}V{sub during} and, respectively, 83% and 86% for the {Delta}V{sub post}. The Increment ADC during ({Delta}ADC{sub during}) and after RCT ({Delta}ADC{sub post}) showed a significantly higher value in patients with pCR compared with patients without (in %: {Delta}ADC{sub during}: 72 {+-} 14 vs. 16 {+-} 12, p = 0.0006; and {Delta}ADC{sub post}: 88

  20. Demonstration of Non-Gaussian Restricted Diffusion in Tumor Cells Using Diffusion Time-Dependent Diffusion-Weighted Magnetic Resonance Imaging Contrast

    PubMed Central

    Hope, Tuva R.; White, Nathan S.; Kuperman, Joshua; Chao, Ying; Yamin, Ghiam; Bartch, Hauke; Schenker-Ahmed, Natalie M.; Rakow-Penner, Rebecca; Bussell, Robert; Nomura, Natsuko; Kesari, Santosh; Bjørnerud, Atle; Dale, Anders M.

    2016-01-01

    The diffusion-weighted magnetic resonance imaging (DWI) technique enables quantification of water mobility for probing microstructural properties of biological tissue and has become an effective tool for collecting information about the underlying pathology of cancerous tissue. Measurements using multiple b-values have indicated biexponential signal attenuation, ascribed to “fast” (high ADC) and “slow” (low ADC) diffusion components. In this empirical study, we investigate the properties of the diffusion time (Δ)-dependent components of the diffusion-weighted (DW) signal in a constant b-value experiment. A xenograft gliobastoma mouse was imaged using Δ = 11 ms, 20 ms, 40 ms, 60 ms, and b = 500–4000 s/mm2 in intervals of 500 s/mm2. Data were corrected for EPI distortions, and the Δ-dependence on the DW-signal was measured within three regions of interest [intermediate- and high-density tumor regions and normal-appearing brain (NAB) tissue regions]. In this study, we verify the assumption that the slow decaying component of the DW-signal is non-Gaussian and dependent on Δ, consistent with restricted diffusion of the intracellular space. As the DW-signal is a function of Δ and is specific to restricted diffusion, manipulating Δ at constant b-value (cb) provides a complementary and direct approach for separating the restricted from the hindered diffusion component. We found that Δ-dependence is specific to the tumor tissue signal. Based on an extended biexponential model, we verified the interpretation of the diffusion time-dependent contrast and successfully estimated the intracellular restricted ADC, signal volume fraction, and cell size within each ROI. PMID:27532028

  1. Demonstration of Non-Gaussian Restricted Diffusion in Tumor Cells Using Diffusion Time-Dependent Diffusion-Weighted Magnetic Resonance Imaging Contrast.

    PubMed

    Hope, Tuva R; White, Nathan S; Kuperman, Joshua; Chao, Ying; Yamin, Ghiam; Bartch, Hauke; Schenker-Ahmed, Natalie M; Rakow-Penner, Rebecca; Bussell, Robert; Nomura, Natsuko; Kesari, Santosh; Bjørnerud, Atle; Dale, Anders M

    2016-01-01

    The diffusion-weighted magnetic resonance imaging (DWI) technique enables quantification of water mobility for probing microstructural properties of biological tissue and has become an effective tool for collecting information about the underlying pathology of cancerous tissue. Measurements using multiple b-values have indicated biexponential signal attenuation, ascribed to "fast" (high ADC) and "slow" (low ADC) diffusion components. In this empirical study, we investigate the properties of the diffusion time (Δ)-dependent components of the diffusion-weighted (DW) signal in a constant b-value experiment. A xenograft gliobastoma mouse was imaged using Δ = 11 ms, 20 ms, 40 ms, 60 ms, and b = 500-4000 s/mm(2) in intervals of 500 s/mm(2). Data were corrected for EPI distortions, and the Δ-dependence on the DW-signal was measured within three regions of interest [intermediate- and high-density tumor regions and normal-appearing brain (NAB) tissue regions]. In this study, we verify the assumption that the slow decaying component of the DW-signal is non-Gaussian and dependent on Δ, consistent with restricted diffusion of the intracellular space. As the DW-signal is a function of Δ and is specific to restricted diffusion, manipulating Δ at constant b-value (cb) provides a complementary and direct approach for separating the restricted from the hindered diffusion component. We found that Δ-dependence is specific to the tumor tissue signal. Based on an extended biexponential model, we verified the interpretation of the diffusion time-dependent contrast and successfully estimated the intracellular restricted ADC, signal volume fraction, and cell size within each ROI. PMID:27532028

  2. 1H magnetic resonance spectroscopy and diffusion weighted imaging findings of medulloblastoma in 3.0T MRI: A retrospective analysis of 17 cases☆

    PubMed Central

    Wu, Guangyao; Pang, Haopeng; Ghimire, Prasanna; Liu, Guobing

    2012-01-01

    1H magnetic resonance spectroscopy and diffusion weighted imaging features of the cerebellar vermis in 17 medulloblastoma patients were retrospectively analyzed, and 17 healthy volunteers were selected as controls. 1H magnetic resonance spectroscopy showed that in all 17 medulloblastoma patients, N-acetyl aspartate and creatine peaks were significantly decreased, the choline peak was significantly increased, and there was evidence of a myo-inositol peak. Further, 11 patients showed a low taurine peak at 3.4 ppm, five patients showed a lipid peak at 0.9–1.3 ppm, and three patients showed a negative lactic acid peak at 1.33 ppm. Compared with the control group, the ratios of N-acetyl aspartate/choline and N-acetyl aspartate/creatine were significantly decreased, and the ratio of choline/creatine was increased, in medulloblastoma patients. Diffusion weighted imaging displayed hyperintensity and decreased apparent diffusion coefficient in medulloblastoma patients. These findings indicate that 1H magnetic resonance spectroscopy and diffusion weighted imaging are useful for qualitative diagnosis of medulloblastoma. PMID:25337109

  3. Conspicuity of Peripheral Zone Prostate Cancer on Computed Diffusion-Weighted Imaging: Comparison of cDWI1500, cDWI2000, and cDWI3000

    PubMed Central

    Vural, Metin; Ertaş, Gökhan; Onay, Aslıhan; Sağlıcan, Yeşim; Zengingönül, Hale Pınar; Akpek, Sergin

    2014-01-01

    Introduction and Objective. Disadvantages associated with direct high b-value measurements may be avoided with use of computed diffusion-weighted imaging (cDWI). The purpose of this study is to assess the diagnostic performance of cDWI image sets calculated for high b-values of 1500, 2000, and 3000 s/mm2. Materials and Methods. Twenty-eight patients who underwent multiparametric MRI of the prostate and radical prostatectomy consecutively were enrolled in this retrospective study. Using a software developed at our institute, cDWI1500, cDWI2000, and cDWI3000 image sets were generated by fitting a monoexponential model. Index lesions on cDWI image sets were scored by two radiologists in consensus considering lesion conspicuity, suppression of background prostate tissue, distortion, image set preferability, and contrast ratio measurements were performed. Results. Lesion detection rates are the same for computed b-values of 2000 and 3000 s/mm2 and are better than b-values of 1500 s/mm2. Best lesion conspicuity and best background prostate tissue suppression are provided by cDWI3000 image set. cDWI2000 image set provides the best zonal anatomical delineation and less distortion and was chosen as the most preferred image set. Average contrast ratio measured on these image sets shows almost a linear relation with the b-values. Conclusion. cDWI2000 image set with similar conspicuity and the same lesion detection rate, but better zonal anatomical delineation, and less distortion, was chosen as the preferable image set. PMID:25525603

  4. Clear Depiction of Inflammatory Abdominal Aortic Aneurysm with Diffusion-Weighted Magnetic Resonance Imaging

    SciTech Connect

    Orta Kilickesmez, Kadriye; Kilickesmez, Ozgur

    2010-04-15

    We report the case of an inflammatory abdominal aortic aneurysm incidentally detected clearly with diffusion-weighted magnetic resonance imaging (DW-MRI) during the examination of a patient with myelofibrosis with myeloid metaplasia that later converted to acute myeloid leukemia. DW-MRI revealed a hyperintense halo surrounding the abdominal aorta with aneurysmatic dilatation, establishing the diagnosis.

  5. Tensor Based Representation and Analysis of Diffusion-Weighted Magnetic Resonance Images

    ERIC Educational Resources Information Center

    Barmpoutis, Angelos

    2009-01-01

    Cartesian tensor bases have been widely used to model spherical functions. In medical imaging, tensors of various orders can approximate the diffusivity function at each voxel of a diffusion-weighted MRI data set. This approximation produces tensor-valued datasets that contain information about the underlying local structure of the scanned tissue.…

  6. Integrative analysis of diffusion-weighted MRI and genomic data to inform treatment of glioblastoma.

    PubMed

    Jajamovich, Guido H; Valiathan, Chandni R; Cristescu, Razvan; Somayajula, Sangeetha

    2016-09-01

    Gene expression profiling from glioblastoma (GBM) patients enables characterization of cancer into subtypes that can be predictive of response to therapy. An integrative analysis of imaging and gene expression data can potentially be used to obtain novel biomarkers that are closely associated with the genetic subtype and gene signatures and thus provide a noninvasive approach to stratify GBM patients. In this retrospective study, we analyzed the expression of 12,042 genes for 558 patients from The Cancer Genome Atlas (TCGA). Among these patients, 50 patients had magnetic resonance imaging (MRI) studies including diffusion weighted (DW) MRI in The Cancer Imaging Archive (TCIA). We identified the contrast enhancing region of the tumors using the pre- and post-contrast T1-weighted MRI images and computed the apparent diffusion coefficient (ADC) histograms from the DW-MRI images. Using the gene expression data, we classified patients into four molecular subtypes, determined the number and composition of genes modules using the gap statistic, and computed gene signature scores. We used logistic regression to find significant predictors of GBM subtypes. We compared the predictors for different subtypes using Mann-Whitney U tests. We assessed detection power using area under the receiver operating characteristic (ROC) analysis. We computed Spearman correlations to determine the associations between ADC and each of the gene signatures. We performed gene enrichment analysis using Ingenuity Pathway Analysis (IPA). We adjusted all p values using the Benjamini and Hochberg method. The mean ADC was a significant predictor for the neural subtype. Neural tumors had a significantly lower mean ADC compared to non-neural tumors ([Formula: see text]), with mean ADC of [Formula: see text] and [Formula: see text] for neural and non-neural tumors, respectively. Mean ADC showed an area under the ROC of 0.75 for detecting neural tumors. We found eight gene modules in the GBM cohort. The

  7. Role of diffusion-weighted magnetic resonance imaging in differentiating malignancies from benign ovarian tumors

    PubMed Central

    Fan, Xinhua; Zhang, Hongbin; Meng, Shuang; Zhang, Jing; Zhang, Chuge

    2015-01-01

    Objective: We conducted a case-control study to evaluate the diagnostic values of computed tomography (CT) and diffusion-weighted magnetic resonance imaging (DW-MRI) in differentiating malignancies from benign ovarian tumors and a meta-analysis to further confirm our results on DW-MRI. Methods: Totally 64 patients pathologically confirmed as ovarian cancer were included in this study. CT scan and DWI-MRI were performed and analyzed to get compared with pathological results, thereby assessing their accuracy, sensitivity and specificity. Meta-analysis was conducted by database searching and strict eligibility criteria, using STATA 12.0 (Stata Corp, College Station, TX, USA) software. Results: The accuracy, sensitivity, specificity, positive predictive value and negative predictive value for diagnosis of ovarian cancer in CT were 81.82%, 84.48%, 76.67%, 87.50% and 71.88%, respectively; those in DW-MRI were 89.77%, 93.10%, 83.33%, 91.53% and 86.21%, respectively. The Kappa coefficient of DW-MRI (K = 0.771) compared with pathological results was higher than CT (K = 0.602). The average apparent diffusion coefficient values of DW-MRI in diagnosis of benign and malignant ovarian tumors suggested statistically significant difference (1.325 ± 0.269×10-3 mm2/s vs. 0.878 ± 0.246×10-3 mm2/s, P < 0.001). Meta-analysis results showed that the combined sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and diagnostic odds ratio of DW-MRI in discriminating benign versus malignant ovarian tumors were 0.93, 0.88, 7.70, 0.08 and 101.24, respectively. The area under the summary receiver operating characteristic curve was 0.95. Conclusions: Both CT and DW-MRI were of great diagnostic value in differentiating malignancies from benign ovarian tumors, while DW-MRI was superior to CT with higher accuracy, sensitivity and specificity. PMID:26884905

  8. Efficacy of HGF carried by ultrasound microbubble-cationic nano-liposomes complex for treating hepatic fibrosis in a bile duct ligation rat model, and its relationship with the diffusion-weighted MRI parameters.

    PubMed

    Zhang, Shou-hong; Wen, Kun-ming; Wu, Wei; Li, Wen-yan; Zhao, Jian-nong

    2013-12-01

    Hepatic fibrosis is a major consequence of liver aggression. Finding novel ways for counteracting this damaging process, and for evaluating fibrosis with a non-invasive imaging approach, represent important therapeutic and diagnostic challenges. Hepatocyte growth factor (HGF) is an anti-fibrosis cell growth factor that induces apoptosis in activated hepatic stellate cells, reduces excessive collagen deposition, and stimulates hepatocyte regeneration. Thus, using HGF in gene therapy against liver fibrosis is an attractive approach. The aims of the present study were: (i) to explore the efficacy of treating liver fibrosis using HGF expression vector carried by a novel ultrasound microbubble delivery system; (ii) to explore the diagnostic interest of diffusion-weighted MRI (DWI-MRI) in evaluating liver fibrosis. We established a rat model of hepatic fibrosis. The rats were administered HGF linked to novel ultrasound micro-bubbles. Progression of hepatic fibrosis was evaluated by histopathology, hydroxyproline content, and DWI-MRI to determine the apparent diffusion coefficient (ADC). Our targeted gene therapy produced a significant anti-fibrosis effect, as shown by liver histology and significant reduction of hydroxyproline content. Moreover, using DWI-MRI, the b value (diffusion gradient factor) was equal to 300s/mm(2), and the ADC values significantly decreased as the severity of hepatic fibrosis increased. Using this methodology, F0-F2 could be distinguished from F3 and F4 (P<0.01). This is the first in vivo report of using an ultrasound microbubble-cationic nano-liposome complex for gene delivery. The data indicate that, this approach is efficient to counteract the fibrosis process. DWI-MRI appears a promising imaging technique for evaluating liver fibrosis.

  9. Pitfalls and Limitations of Diffusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Urinary Bladder Cancer.

    PubMed

    Lin, Wei-Ching; Chen, Jeon-Hor

    2015-06-01

    Adequately selecting a therapeutic approach for bladder cancer depends on accurate grading and staging. Substantial inaccuracy of clinical staging with bimanual examination, cystoscopy, and transurethral resection of bladder tumor has facilitated the increasing utility of magnetic resonance imaging to evaluate bladder cancer. Diffusion-weighted imaging (DWI) is a noninvasive functional magnetic resonance imaging technique. The high tissue contrast between cancers and surrounding tissues on DWI is derived from the difference of water molecules motion. DWI is potentially a useful tool for the detection, characterization, and staging of bladder cancers; it can also monitor posttreatment response and provide information on predicting tumor biophysical behaviors. Despite advancements in DWI techniques and the use of quantitative analysis to evaluate the apparent diffusion coefficient values, there are some inherent limitations in DWI interpretation related to relatively poor spatial resolution, lack of cancer specificity, and lack of standardized image acquisition protocols and data analysis procedures that restrict the application of DWI and reproducibility of apparent diffusion coefficient values. In addition, inadequate bladder distension, artifacts, thinness of bladder wall, cancerous mimickers of normal bladder wall and benign lesions, and variations in the manifestation of bladder cancer may interfere with diagnosis and monitoring of treatment. Recognition of these pitfalls and limitations can minimize their impact on image interpretation, and carefully applying the analyzed results and combining with pathologic grading and staging to clinical practice can contribute to the selection of an adequate treatment method to improve patient care.

  10. Diffusion restriction in the human spinal cord characterized in vivo with high b-value STEAM diffusion imaging.

    PubMed

    Rangwala, Novena A; Hackney, David B; Dai, Weiying; Alsop, David C

    2013-11-15

    Restricted or hindered motion of water across axonal membranes as characterized with diffusion-weighted (DW) imaging may be a potential marker of axonal damage in white matter (WM) injury due to trauma, neurodegeneration, or other causes. This study sought to determine whether high b-value DW imaging with a stimulated echo (STEAM) sequence could improve the spatially resolved assessment of tissue architecture in the human spinal cord in vivo. Diffusion times from 76 ms to 1000 ms and b-values of up to 14,750 s/mm(2) were used to acquire axial DW images in six healthy volunteers, and four additional healthy volunteers were studied with a protocol focused on high b-value, higher-resolution imaging. Mono-exponential, diffusional kurtosis, and mono-exponential with an additive constant (MEC) models were fit individually to diffusion decay curves obtained at different diffusion times. Diffusion restriction, characterized with the diffusional kurtosis and MEC models, was measured more precisely using higher b-value ranges. DW images at high b-value and fitting parameters using the large range of b-values available at the diffusion time of 1000 ms demonstrated signal and restriction differences between gray and white matter and even across white matter regions. These white matter differences may reflect variations in axonal density, diameter, or alignment. We conclude that high b-value DW imaging with a STEAM sequence on a conventional clinical scanner can provide accurate measures of diffusion hindrance and restriction in human spinal cord in vivo.

  11. COMPARISON OF THE COMPLETE FOURIER DIRECT MRI WITH EXISTING DIFFUSION WEIGHTED MRI METHODS

    PubMed Central

    Özcan, Alpay

    2011-01-01

    The Complete Fourier Direct (CFD) MRI method introduced in earlier work for modeling the diffusion weighted MRI signal is compared with the existing methods. The preservation of Hermitian symmetry in the diffusion weighted MRI signal without affecting its energy is the key point that differentiates CFD–MRI from the existing methods. By keeping the correct Fourier relationship intact, the joint distribution function is represented ‘as it is’, without any constraints, e.g. being symmetric. The necessity to model or assume models for spin motion and try to fit the model to the samples of the Fourier transform as in case of model matching methods is not required because the Discrete Fourier Transform applied to correctly processed signal in CFD–MRI gives more accurate results. PMID:21918715

  12. Analysis and comparison of motion-correction techniques in diffusion-weighted imaging.

    PubMed

    Trouard, T P; Sabharwal, Y; Altbach, M I; Gmitro, A F

    1996-01-01

    Motion continues to be a significant problem in MRI, producing image artifacts that can severely degrade image quality. In diffusion-weighted imaging (DWI), the problem is amplified by the presence of large gradient fields used to produce the diffusion weighting. Three correction methods applicable for correction of specific classes of motion are described and compared. The first is based on a generalised projection onto convex sets (GPOCS) postprocessing algorithm. The second technique uses the collection of navigator echoes to track phase errors. The third technique is based on a radial-scan data acquisition combined with a modified projection-reconstruction algorithm. Although each technique corrects well for translations, the radial-scan method proves to be more robust when more complex motions are present. A detailed description of the causes of MR data errors caused by rigid body motion is included as an appendix.

  13. The design of anisotropic diffusion phantoms for the validation of diffusion weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Fieremans, Els; DeDeene, Yves; Delputte, Steven; Özdemir, Mahir S.; Achten, Eric; Lemahieu, Ignace

    2008-10-01

    Diffusion weighted magnetic resonance imaging offers a non-invasive tool to explore the three-dimensional structure of brain white matter in clinical practice. Anisotropic diffusion hardware phantoms are useful for the quantitative validation of this technique. This study provides guidelines on how to manufacture anisotropic fibre phantoms in a reproducible way and which fibre material to choose to obtain a good quality of the diffusion weighted images. Several fibre materials are compared regarding their effect on the diffusion MR measurements of the water molecules inside the phantoms. The diffusion anisotropy influencing material properties are the fibre density and diameter, while the fibre surface relaxivity and magnetic susceptibility determine the signal-to-noise ratio. The effect on the T2-relaxation time of water in the phantoms has been modelled and the diffusion behaviour inside the fibre phantoms has been quantitatively evaluated using Monte Carlo random walk simulations.

  14. Axonal and glial microstructural information obtained with diffusion-weighted magnetic resonance spectroscopy at 7T

    PubMed Central

    Ronen, Itamar; Ercan, Ece; Webb, Andrew

    2013-01-01

    Diffusion-weighted magnetic resonance spectroscopy (DWS) offers unique access to compartment-specific microstructural information on tissue, and potentially sensitive detection of compartment-specific changes in disease. The specificity of DWS is, however, offset by its relative low sensitivity, intrinsic to all MRS-based methods, and further exacerbated by the signal loss due to the diffusion weighting and long echo times. In this work we first provide an experimental example for the type of compartment-specific information that can be obtained with DWS from a small volume of interest (VOI) in brain white matter. We then propose and discuss a strategy for the analysis of DWS data, which includes the use of models of diffusion in compartments with simple geometries. We conclude with a broader discussion of the potential role of DWS in the characterization of tissue microstructure and the complementarity of DWS with less-specific but more sensitive microstructural tools such as diffusion tensor imaging. PMID:23493316

  15. Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Ruthotto, L.; Kugel, H.; Olesch, J.; Fischer, B.; Modersitzki, J.; Burger, M.; Wolters, C. H.

    2012-09-01

    Diffusion-weighted magnetic resonance imaging is a key investigation technique in modern neuroscience. In clinical settings, diffusion-weighted imaging and its extension to diffusion tensor imaging (DTI) are usually performed applying the technique of echo-planar imaging (EPI). EPI is the commonly available ultrafast acquisition technique for single-shot acquisition with spatial encoding in a Cartesian system. A drawback of these sequences is their high sensitivity against small perturbations of the magnetic field, caused, e.g., by differences in magnetic susceptibility of soft tissue, bone and air. The resulting magnetic field inhomogeneities thus cause geometrical distortions and intensity modulations in diffusion-weighted images. This complicates the fusion with anatomical T1- or T2-weighted MR images obtained with conventional spin- or gradient-echo images and negligible distortion. In order to limit the degradation of diffusion-weighted MR data, we present here a variational approach based on a reference scan pair with reversed polarity of the phase- and frequency-encoding gradients and hence reversed distortion. The key novelty is a tailored nonlinear regularization functional to obtain smooth and diffeomorphic transformations. We incorporate the physical distortion model into a variational image registration framework and derive an accurate and fast correction algorithm. We evaluate the applicability of our approach to distorted DTI brain scans of six healthy volunteers. For all datasets, the automatic correction algorithm considerably reduced the image degradation. We show that, after correction, fusion with T1- or T2-weighted images can be obtained by a simple rigid registration. Furthermore, we demonstrate the improvement due to the novel regularization scheme. Most importantly, we show that it provides meaningful, i.e. diffeomorphic, geometric transformations, independent of the actual choice of the regularization parameters.

  16. Adaptive smoothing of multi-shell diffusion weighted magnetic resonance data by msPOAS

    PubMed Central

    Becker, S.M.A.; Tabelow, K.; Mohammadi, S.; Weiskopf, N.; Polzehl, J.

    2014-01-01

    We present a novel multi-shell position-orientation adaptive smoothing (msPOAS) method for diffusion weighted magnetic resonance data. Smoothing in voxel and diffusion gradient space is embedded in an iterative adaptive multiscale approach. The adaptive character avoids blurring of the inherent structures and preserves discontinuities. The simultaneous treatment of all q-shells improves the stability compared to single-shell approaches such as the original POAS method. The msPOAS implementation simplifies and speeds up calculations, compared to POAS, facilitating its practical application. Simulations and heuristics support the face validity of the technique and its rigorousness. The characteristics of msPOAS were evaluated on single and multi-shell diffusion data of the human brain. Significant reduction in noise while preserving the fine structure was demonstrated for diffusion weighted images, standard DTI analysis and advanced diffusion models such as NODDI. MsPOAS effectively improves the poor signal-to-noise ratio in highly diffusion weighted multi-shell diffusion data, which is required by recent advanced diffusion micro-structure models. We demonstrate the superiority of the new method compared to other advanced denoising methods. PMID:24680711

  17. Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast.

    PubMed

    Eichner, Cornelius; Cauley, Stephen F; Cohen-Adad, Julien; Möller, Harald E; Turner, Robert; Setsompop, Kawin; Wald, Lawrence L

    2015-11-15

    This project aims to characterize the impact of underlying noise distributions on diffusion-weighted imaging. The noise floor is a well-known problem for traditional magnitude-based diffusion-weighted MRI (dMRI) data, leading to biased diffusion model fits and inaccurate signal averaging. Here, we introduce a total-variation-based algorithm to eliminate shot-to-shot phase variations of complex-valued diffusion data with the intention to extract real-valued dMRI datasets. The obtained real-valued diffusion data are no longer superimposed by a noise floor but instead by a zero-mean Gaussian noise distribution, yielding dMRI data without signal bias. We acquired high-resolution dMRI data with strong diffusion weighting and, thus, low signal-to-noise ratio. Both the extracted real-valued and traditional magnitude data were compared regarding signal averaging, diffusion model fitting and accuracy in resolving crossing fibers. Our results clearly indicate that real-valued diffusion data enables idealized conditions for signal averaging. Furthermore, the proposed method enables unbiased use of widely employed linear least squares estimators for model fitting and demonstrates an increased sensitivity to detect secondary fiber directions with reduced angular error. The use of phase-corrected, real-valued data for dMRI will therefore help to clear the way for more detailed and accurate studies of white matter microstructure and structural connectivity on a fine scale.

  18. X-PROP: a fast and robust diffusion-weighted propeller technique.

    PubMed

    Li, Zhiqiang; Pipe, James G; Lee, Chu-Yu; Debbins, Josef P; Karis, John P; Huo, Donglai

    2011-08-01

    Diffusion-weighted imaging (DWI) has shown great benefits in clinical MR exams. However, current DWI techniques have shortcomings of sensitivity to distortion or long scan times or combinations of the two. Diffusion-weighted echo-planar imaging (EPI) is fast but suffers from severe geometric distortion. Periodically rotated overlapping parallel lines with enhanced reconstruction diffusion-weighted imaging (PROPELLER DWI) is free of geometric distortion, but the scan time is usually long and imposes high Specific Absorption Rate (SAR) especially at high fields. TurboPROP was proposed to accelerate the scan by combining signal from gradient echoes, but the off-resonance artifacts from gradient echoes can still degrade the image quality. In this study, a new method called X-PROP is presented. Similar to TurboPROP, it uses gradient echoes to reduce the scan time. By separating the gradient and spin echoes into individual blades and removing the off-resonance phase, the off-resonance artifacts in X-PROP are minimized. Special reconstruction processes are applied on these blades to correct for the motion artifacts. In vivo results show its advantages over EPI, PROPELLER DWI, and TurboPROP techniques.

  19. Reliability of diffusion weighted MR imaging in differentiating degenerative and infectious end plate changes

    PubMed Central

    Oztekin, Ozgur; Calli, Cem; Kitis, Omer; Adibelli, Zehra Hilal; Eren, Cemal Suat; Apaydin, Melda; Zileli, Mehmet; Yurtseven, Taskin

    2010-01-01

    Background The aim of the study was to investigate the value of diffusion weighted MR imaging in the diagnosis of Modic type 1 change, which may be confused with the acute infectious spondylodiscitis on conventional MR imaging. Patients and methods Twenty-seven patients with erosive intervertebral osteochondrosis, Modic type 1 and 18 patients with spondylodiscitis were included in this retrospective study. All images were acquired using on 1.5 Tesla MR units. Lumbar spinal MR imaging of 45 patients were retrieved from a digital database of a radiology record system and evaluated by one experienced radiologist. Patients with Modic type 1 change had CT slices obtained from the diseased disc space and the affected vertebrae. Results Bone marrow adjacent to the vertebral end plate in both Modic type 1 change and acute spondylodiscitis were hypointense on T1-weighted images. On T2-weighted images corresponding levels of vertebral end-plates showed hyperintense signal intensity in both group. All the patients with spondylodiscitis and Modic type 1 change were hyperintense and hypointense on diffusion-weighted MR images, respectively. Conclusions Our findings suggest that diffusion weighted MR imaging is an useful method in differentiating Modic type 1 changes from acute spondylodiscitis, both of which may mimic each other, either on clinical or conventional MRI findings. PMID:22933898

  20. Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast.

    PubMed

    Eichner, Cornelius; Cauley, Stephen F; Cohen-Adad, Julien; Möller, Harald E; Turner, Robert; Setsompop, Kawin; Wald, Lawrence L

    2015-11-15

    This project aims to characterize the impact of underlying noise distributions on diffusion-weighted imaging. The noise floor is a well-known problem for traditional magnitude-based diffusion-weighted MRI (dMRI) data, leading to biased diffusion model fits and inaccurate signal averaging. Here, we introduce a total-variation-based algorithm to eliminate shot-to-shot phase variations of complex-valued diffusion data with the intention to extract real-valued dMRI datasets. The obtained real-valued diffusion data are no longer superimposed by a noise floor but instead by a zero-mean Gaussian noise distribution, yielding dMRI data without signal bias. We acquired high-resolution dMRI data with strong diffusion weighting and, thus, low signal-to-noise ratio. Both the extracted real-valued and traditional magnitude data were compared regarding signal averaging, diffusion model fitting and accuracy in resolving crossing fibers. Our results clearly indicate that real-valued diffusion data enables idealized conditions for signal averaging. Furthermore, the proposed method enables unbiased use of widely employed linear least squares estimators for model fitting and demonstrates an increased sensitivity to detect secondary fiber directions with reduced angular error. The use of phase-corrected, real-valued data for dMRI will therefore help to clear the way for more detailed and accurate studies of white matter microstructure and structural connectivity on a fine scale. PMID:26241680

  1. Diffusion Weighted MR Imaging of Breast and Correlation of Prognostic Factors in Breast Cancer

    PubMed Central

    Kızıldağ Yırgın, İnci; Arslan, Gözde; Öztürk, Enis; Yırgın, Hakan; Taşdemir, Nihat; Gemici, Ayşegül Akdoğan; Kabul, Fatma Çelik; Kaya, Eyüp

    2016-01-01

    Background: Through Diffusion Weighted Imaging (DWI), information related to early molecular changes, changes in the permeability of cell membranes, and early morphologic and physiologic changes such as cell swelling can be obtained. Aims: We investigated the correlation between the prognostic factors of breast cancer and apparent diffusion coefficient (ADC) in DWI sequences of malignant lesions. Study Design: Retrospective cross-sectional study. Methods: Patients who were referred to our clinic between September 2012 and September 2013, who underwent dynamic breast MRI before or after biopsy and whose biopsy results were determined as malignant, were included in our study. Before the dynamic analysis, DWI sequences were taken. ADC relationship with all prognostic factors was investigated. Pearson correlation test was used to compare the numerical data, while Spearman correlation and Fisher exact tests were used to compare the categorical data. The advanced relationships were evaluated with linear regression analysis and univariate analysis. The efficiency of the parameters was evaluated using ROC analysis. The significance level (P) was accepted as 0.05. Results: In total, 41 female patients with an average age of 49.4 years (age interval 21–77) and 44 lesions were included into the study. In the Pearson correlation test, no statistically significant difference was determined between ADC and the patient’s age and tumor size. In the Spearman correlation test, a statistically significant difference was determined between nuclear grade (NG) and ADC (r=−0.424, p=0.04); no statistically significant correlation was observed between the other prognostic factors with each other and ADC values. In the linear regression analysis, the relationship of NG with ADC was found to be more significant alone than when comparing all parameters (corrected r2=0.196, p=0.005). Further evaluations between the NG and ADC correlation were carried out with ROC analysis. A

  2. Task-based evaluation of segmentation algorithms for diffusion-weighted MRI without using a gold standard.

    PubMed

    Jha, Abhinav K; Kupinski, Matthew A; Rodríguez, Jeffrey J; Stephen, Renu M; Stopeck, Alison T

    2012-07-01

    In many studies, the estimation of the apparent diffusion coefficient (ADC) of lesions in visceral organs in diffusion-weighted (DW) magnetic resonance images requires an accurate lesion-segmentation algorithm. To evaluate these lesion-segmentation algorithms, region-overlap measures are used currently. However, the end task from the DW images is accurate ADC estimation, and the region-overlap measures do not evaluate the segmentation algorithms on this task. Moreover, these measures rely on the existence of gold-standard segmentation of the lesion, which is typically unavailable. In this paper, we study the problem of task-based evaluation of segmentation algorithms in DW imaging in the absence of a gold standard. We first show that using manual segmentations instead of gold-standard segmentations for this task-based evaluation is unreliable. We then propose a method to compare the segmentation algorithms that does not require gold-standard or manual segmentation results. The no-gold-standard method estimates the bias and the variance of the error between the true ADC values and the ADC values estimated using the automated segmentation algorithm. The method can be used to rank the segmentation algorithms on the basis of both the ensemble mean square error and precision. We also propose consistency checks for this evaluation technique.

  3. Anisotropic diffusion of metabolites in peripheral nerve using diffusion weighted magnetic resonance spectroscopy at ultra-high field

    NASA Astrophysics Data System (ADS)

    Ellegood, Jacob; McKay, Ryan T.; Hanstock, Chris C.; Beaulieu, Christian

    2007-01-01

    Although the diffusivity and anisotropy of water has been investigated thoroughly in ordered axonal systems (i.e., nervous tissue), there have been very few studies on the directional dependence of diffusion of metabolites. In this study, the mean apparent diffusion coefficient (Trace/3 ADC) and fractional anisotropy (FA) values of the intracellular metabolites N-acetyl aspartate (NAA), creatine and phosphocreatine (tCr), choline (Cho), taurine (Tau), and glutamate and glutamine (Glx) were measured parallel and perpendicular to the length of excised frog sciatic nerve using a water suppressed, diffusion-weighted, spin-echo pulse sequence at 18.8 T. The degree of anisotropy (FA) of NAA (0.41 ± 0.09) was determined to be less than tCr (0.59 ± 0.07) and Cho (0.61 ± 0.11), which is consistent with previously reported human studies of white matter. In contrast, Glx diffusion was found to be almost isotropic with an FA value of 0.20 ± 0.06. The differences of FA between the metabolites is most likely due to their differing micro-environments and could be beneficial as an indicator of compartment specific changes with disease, information not readily available with water diffusion.

  4. Diffusion-weighted imaging-based probabilistic segmentation of high- and low-proliferative areas in high-grade gliomas

    PubMed Central

    Fritzsche, Klaus H.; Thieke, Christian; Klein, Jan; Parzer, Peter; Weber, Marc-André; Stieltjes, Bram

    2012-01-01

    Abstract The apparent diffusion coefficient (ADC) derived from diffusion-weighted imaging (DWI) correlates inversely with tumor proliferation rates. High-grade gliomas are typically heterogeneous and the delineation of areas of high and low proliferation is impeded by partial volume effects and blurred borders. Commonly used manual delineation is further impeded by potential overlap with cerebrospinal fluid and necrosis. Here we present an algorithm to reproducibly delineate and probabilistically quantify the ADC in areas of high and low proliferation in heterogeneous gliomas, resulting in a reproducible quantification in regions of tissue inhomogeneity. We used an expectation maximization (EM) clustering algorithm, applied on a Gaussian mixture model, consisting of pure superpositions of Gaussian distributions. Soundness and reproducibility of this approach were evaluated in 10 patients with glioma. High- and low-proliferating areas found using the clustering correspond well with conservative regions of interest drawn using all available imaging data. Systematic placement of model initialization seeds shows good reproducibility of the method. Moreover, we illustrate an automatic initialization approach that completely removes user-induced variability. In conclusion, we present a rapid, reproducible and automatic method to separate and quantify heterogeneous regions in gliomas. PMID:22487677

  5. Incorporation of diffusion-weighted magnetic resonance imaging data into a simple mathematical model of tumor growth

    NASA Astrophysics Data System (ADS)

    Atuegwu, N. C.; Colvin, D. C.; Loveless, M. E.; Xu, L.; Gore, J. C.; Yankeelov, T. E.

    2012-01-01

    We build on previous work to show how serial diffusion-weighted MRI (DW-MRI) data can be used to estimate proliferation rates in a rat model of brain cancer. Thirteen rats were inoculated intracranially with 9L tumor cells; eight rats were treated with the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea and five rats were untreated controls. All animals underwent DW-MRI immediately before, one day and three days after treatment. Values of the apparent diffusion coefficient (ADC) were calculated from the DW-MRI data and then used to estimate the number of cells in each voxel and also for whole tumor regions of interest. The data from the first two imaging time points were then used to estimate the proliferation rate of each tumor. The proliferation rates were used to predict the number of tumor cells at day three, and this was correlated with the corresponding experimental data. The voxel-by-voxel analysis yielded Pearson's correlation coefficients ranging from -0.06 to 0.65, whereas the region of interest analysis provided Pearson's and concordance correlation coefficients of 0.88 and 0.80, respectively. Additionally, the ratio of positive to negative proliferation values was used to separate the treated and control animals (p <0.05) at an earlier point than the mean ADC values. These results further illustrate how quantitative measurements of tumor state obtained non-invasively by imaging can be incorporated into mathematical models that predict tumor growth.

  6. [Examination of upper abdominal region in high spatial resolution diffusion-weighted imaging using 3-Tesla MRI].

    PubMed

    Terada, Masaki; Matsushita, Hiroki; Oosugi, Masanori; Inoue, Kazuyasu; Yaegashi, Taku; Anma, Takeshi

    2009-03-20

    The advantage of the higher signal-to-noise ratio (SNR) of 3-Tesla magnetic resonance imaging (3-Tesla) has the possibility of contributing to the improvement of high spatial resolution without causing image deterioration. In this study, we compared SNR and the apparent diffusion coefficient (ADC) value with 3-Tesla as the condition in the diffusion-weighted image (DWI) parameter of the 1.5-Tesla magnetic resonance imaging (1.5-Tesla) and we examined the high spatial resolution images in the imaging method [respiratory-triggering (RT) method and breath free (BF) method] and artifact (motion and zebra) in the upper abdominal region of DWI at 3-Tesla. We have optimized scan parameters based on phantom and in vivo study. As a result, 3-Tesla was able to obtain about 1.5 times SNR in comparison with the 1.5-Tesla, ADC value had few differences. Moreover, the RT method was effective in correcting the influence of respiratory movement in comparison with the BF method, and image improvement by the effective acquisition of SNR and reduction of the artifact were provided. Thus, DWI of upper abdominal region was a useful sequence for the high spatial resolution in 3-Tesla.

  7. Comparison of Intravoxel Incoherent Motion Diffusion-Weighted MR Imaging and Arterial Spin Labeling MR Imaging in Gliomas

    PubMed Central

    Zhang, Zhiqiang; Zhou, Zhenyu; Zhang, Zhongping; Zhang, Yong; Zhang, Zongjun

    2015-01-01

    Gliomas grading is important for treatment plan; we aimed to investigate the application of intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) in gliomas grading, by comparing with the three-dimensional pseudocontinuous arterial spin labeling (3D pCASL). 24 patients (13 high grade gliomas and 11 low grade gliomas) underwent IVIM DWI and 3D pCASL imaging before operation; maps of fast diffusion coefficient (D∗), slow diffusion coefficient (D), fractional perfusion-related volume (f), and apparent diffusion coefficient (ADC) as well as cerebral blood flow (CBF) were calculated and then coregistered to generate the corresponding parameter values. We found CBF and D∗ were higher in the high grade gliomas, whereas ADC, D, and f were lower (all P < 0.05). In differentiating the high from low grade gliomas, the maximum areas under the curves (AUC) of D∗, CBF, and ADC were 0.857, 0.85, and 0.902, respectively. CBF was negatively correlated with f in tumor (r = −0.619, P = 0.001). ADC was positively correlated with D in both tumor and white matter (r = 0.887, P = 0.000 and r = 0.824, P = 0.000, resp.). There was no correlation between CBF and D∗ in both tumor and white matter (P > 0.05). IVIM DWI showed more efficiency than 3D pCASL but less validity than conventional DWI in differentiating the high from low grade gliomas. PMID:25945328

  8. Major mouse placental compartments revealed by diffusion-weighted MRI, contrast-enhanced MRI, and fluorescence imaging

    PubMed Central

    Solomon, Eddy; Avni, Reut; Hadas, Ron; Raz, Tal; Garbow, Joel Richard; Bendel, Peter; Frydman, Lucio; Neeman, Michal

    2014-01-01

    Mammalian models, and mouse studies in particular, play a central role in our understanding of placental development. Magnetic resonance imaging (MRI) could be a valuable tool to further these studies, providing both structural and functional information. As fluid dynamics throughout the placenta are driven by a variety of flow and diffusion processes, diffusion-weighted MRI could enhance our understanding of the exchange properties of maternal and fetal blood pools—and thereby of placental function. These studies, however, have so far been hindered by the small sizes, the unavoidable motions, and the challenging air/water/fat heterogeneities, associated with mouse placental environments. The present study demonstrates that emerging methods based on the spatiotemporal encoding (SPEN) of the MRI information can robustly overcome these obstacles. Using SPEN MRI in combination with albumin-based contrast agents, we analyzed the diffusion behavior of developing placentas in a cohort of mice. These studies successfully discriminated the maternal from the fetal blood flows; the two orders of magnitude differences measured in these fluids’ apparent diffusion coefficients suggest a nearly free diffusion behavior for the former and a strong flow-based component for the latter. An intermediate behavior was observed by these methods for a third compartment that, based on maternal albumin endocytosis, was associated with trophoblastic cells in the interphase labyrinth. Structural features associated with these dynamic measurements were consistent with independent intravital and ex vivo fluorescence microscopy studies and are discussed within the context of the anatomy of developing mouse placentas. PMID:24969421

  9. Major mouse placental compartments revealed by diffusion-weighted MRI, contrast-enhanced MRI, and fluorescence imaging.

    PubMed

    Solomon, Eddy; Avni, Reut; Hadas, Ron; Raz, Tal; Garbow, Joel Richard; Bendel, Peter; Frydman, Lucio; Neeman, Michal

    2014-07-15

    Mammalian models, and mouse studies in particular, play a central role in our understanding of placental development. Magnetic resonance imaging (MRI) could be a valuable tool to further these studies, providing both structural and functional information. As fluid dynamics throughout the placenta are driven by a variety of flow and diffusion processes, diffusion-weighted MRI could enhance our understanding of the exchange properties of maternal and fetal blood pools--and thereby of placental function. These studies, however, have so far been hindered by the small sizes, the unavoidable motions, and the challenging air/water/fat heterogeneities, associated with mouse placental environments. The present study demonstrates that emerging methods based on the spatiotemporal encoding (SPEN) of the MRI information can robustly overcome these obstacles. Using SPEN MRI in combination with albumin-based contrast agents, we analyzed the diffusion behavior of developing placentas in a cohort of mice. These studies successfully discriminated the maternal from the fetal blood flows; the two orders of magnitude differences measured in these fluids' apparent diffusion coefficients suggest a nearly free diffusion behavior for the former and a strong flow-based component for the latter. An intermediate behavior was observed by these methods for a third compartment that, based on maternal albumin endocytosis, was associated with trophoblastic cells in the interphase labyrinth. Structural features associated with these dynamic measurements were consistent with independent intravital and ex vivo fluorescence microscopy studies and are discussed within the context of the anatomy of developing mouse placentas. PMID:24969421

  10. Diffusion-Weighted Imaging with Color-Coded Images: Towards a Reduction in Reading Time While Keeping a Similar Accuracy.

    PubMed

    Campos Kitamura, Felipe; de Medeiros Alves, Srhael; Antônio Tobaru Tibana, Luis; Abdala, Nitamar

    2016-01-01

    The aim of this study was to develop a diagnostic tool capable of providing diffusion and apparent diffusion coefficient (ADC) map information in a single color-coded image and to assess the performance of color-coded images compared with their corresponding diffusion and ADC map. The institutional review board approved this retrospective study, which sequentially enrolled 36 head MRI scans. Diffusion-weighted images (DWI) and ADC maps were compared to their corresponding color-coded images. Four raters had their interobserver agreement measured for both conventional (DWI) and color-coded images. Differences between conventional and color-coded images were also estimated for each of the 4 raters. Cohen's kappa and percent agreement were used. Also, paired-samples t-test was used to compare reading time for rater 1. Conventional and color-coded images had substantial or almost perfect agreement for all raters. Mean reading time of rater 1 was 47.4 seconds for DWI and 27.9 seconds for color-coded images (P = .00007). These findings are important because they support the role of color-coded images as being equivalent to that of the conventional DWI in terms of diagnostic capability. Reduction in reading time (which makes the reading easier) is also demonstrated for one rater in this study.

  11. Major mouse placental compartments revealed by diffusion-weighted MRI, contrast-enhanced MRI, and fluorescence imaging.

    PubMed

    Solomon, Eddy; Avni, Reut; Hadas, Ron; Raz, Tal; Garbow, Joel Richard; Bendel, Peter; Frydman, Lucio; Neeman, Michal

    2014-07-15

    Mammalian models, and mouse studies in particular, play a central role in our understanding of placental development. Magnetic resonance imaging (MRI) could be a valuable tool to further these studies, providing both structural and functional information. As fluid dynamics throughout the placenta are driven by a variety of flow and diffusion processes, diffusion-weighted MRI could enhance our understanding of the exchange properties of maternal and fetal blood pools--and thereby of placental function. These studies, however, have so far been hindered by the small sizes, the unavoidable motions, and the challenging air/water/fat heterogeneities, associated with mouse placental environments. The present study demonstrates that emerging methods based on the spatiotemporal encoding (SPEN) of the MRI information can robustly overcome these obstacles. Using SPEN MRI in combination with albumin-based contrast agents, we analyzed the diffusion behavior of developing placentas in a cohort of mice. These studies successfully discriminated the maternal from the fetal blood flows; the two orders of magnitude differences measured in these fluids' apparent diffusion coefficients suggest a nearly free diffusion behavior for the former and a strong flow-based component for the latter. An intermediate behavior was observed by these methods for a third compartment that, based on maternal albumin endocytosis, was associated with trophoblastic cells in the interphase labyrinth. Structural features associated with these dynamic measurements were consistent with independent intravital and ex vivo fluorescence microscopy studies and are discussed within the context of the anatomy of developing mouse placentas.

  12. Interobserver Reproducibility of Diffusion-Weighted MRI in Monitoring Tumor Response to Neoadjuvant Therapy in Esophageal Cancer

    PubMed Central

    Kwee, Robert M.; Dik, Alexander K.; Sosef, Meindert N.; Berendsen, Ralph C. M.; Sassen, Sander; Lammering, Guido; Clarijs, Ruud; Oostenbrug, Liekele E.; Blom, Rachel L. G. M.; Vliegen, Roy F. A.

    2014-01-01

    Objective To investigate the reproducibility of diffusion-weighted magnetic resonance imaging (DW-MRI) in assessing tumor response early in the course of neoadjuvant chemoradiotherapy in patients with operable esophageal cancer. Methods Eleven male patients (mean age 54.8 years) with newly diagnosed esophageal cancer underwent DW-MRI before and 10 days after start of chemoradiotherapy. Reproducibility of apparent diffusion coefficient (ADC) measurements by manual (freehand) and semi-automated volumetric methods was assessed. Results Interobserver reproducibility for the assessment of mean tumor ADC by the manual measurement method was good, with an ICC of 0.69 (95% CI, 0.36 to 0.85; P = 0.001). Interobserver reproducibility for the assessment of mean tumor ADC by the semi-automated volumetric measurement method was very good, with an ICC of 0.96 (95% CI, 0.91 to 0.98; P<0.001). Conclusion Semi-automated volumetric ADC measurements have higher reproducibility than manual ADC measurements in assessing tumor response to chemoradiotherapy in patients with esophageal adenocarcinoma. PMID:24704912

  13. Molecular imaging of water binding state and diffusion in breast cancer using diffuse optical spectroscopy and diffusion weighted MRI

    NASA Astrophysics Data System (ADS)

    Chung, So Hyun; Yu, Hon; Su, Min-Ying; Cerussi, Albert E.; Tromberg, Bruce J.

    2012-07-01

    Tissue water content and molecular microenvironment can provide important intrinsic contrast for cancer imaging. In this work, we examine the relationship between water optical spectroscopic features related to binding state and magnetic resonance imaging (MRI)-measured water diffusion dynamics. Broadband diffuse optical spectroscopic imaging (DOSI) and MR images were obtained from eight patients with locally-advanced infiltrating ductal carcinomas (tumor size=5.5±3.2 cm). A DOSI-derived bound water index (BWI) was compared to the apparent diffusion coefficient (ADC) of diffusion weighted (DW) MRI. BWI and ADC were positively correlated (R=0.90, p-value=0.003) and BWI and ADC both decreased as the bulk water content increased (R=-0.81 and -0.89, respectively). BWI correlated inversely with tumor size (R=-0.85, p-value=0.008). Our results suggest underlying sensitivity differences between BWI and ADC to water in different tissue compartments (e.g., extracellular vs cellular). These data highlight the potential complementary role of DOSI and DW-MRI in providing detailed information on the molecular disposition of water in breast tumors. Because DOSI is a portable technology that can be used at the bedside, BWI may provide a low-cost measure of tissue water properties related to breast cancer biology.

  14. The diagnostic value of biexponential apparent diffusion coefficients in myopathy.

    PubMed

    Ran, Jun; Liu, Yao; Sun, Dong; Morelli, John; Zhang, Ping; Wu, Gang; Sheng, Yuda; Xie, Ruyi; Zhang, Xiaoli; Li, Xiaoming

    2016-07-01

    To investigate the performance of a biexponential signal decay model using DWI in myopathies and to differentiate Polymyositis (PM)/Dermatomyositis (DM), Glycogen Storage Diseases (GSDs) and Muscular Dystrophies (MDs) utilizing diffusion-weighted imaging. 11 healthy volunteers (control group) and 46 patients with myopathy were enrolled in the retrospective study. 27 of 46 patients had PM/DM, 7 patients GSDs and 12 patients MDs. After conventional MR sequences, diffusion weighted imaging with a b-factor ranging from 0 to 1200 s/mm(2) was performed on both thighs. The intra-muscular signal-to-noise ratios (SNRs) on multiple-b DWI images were measured for 7 different muscles and compared among the different groups. The median T2 signal intensity and biexponential apparent diffusion coefficients (ADC), including standard ADC, fast ADC, and slow ADC values, were compared among the different groups. The intra-muscular SNRs were statistically significantly different depending on the b value, and also found among the 4 groups (p < 0.05). The median T2 signal intensity of the normal muscles in control group was statistically significantly lower than that of edematous muscles in the PM/DM, GSDs and MDs groups (p = 0.000), while there were no statistically significant differences among the PM/DM, GSDs, and MDs groups (p > 0.05). The median standard ADC value of the edematous muscles in GSDs was statistically significantly lower than that of normal muscles in the control group (p = 0.000) and the median ADC value of the edematous muscles in PM/DM patients was statistically significantly greater than that of the GSDs (p = 0.000) and MDs groups (p = 0.005). The median slow ADC value of the edematous muscles in MDs patients and PM/DM patients was statistically significantly greater than that of GSDs patients (p < 0.05). Intra-muscular SNR decay curves and biexponential ADC parameters are useful in distinguishing among PM/DM, GSDs, and MDs. PMID:27142711

  15. Metastatic meningioma: The role of whole‑body diffusion-weighted imaging

    PubMed Central

    Cabada, Teresa; Bermejo, Rebeca; Bacaicoa, Carmen; Martínez-Peñuela, Ana

    2011-01-01

    We report the case of a 74-year-old male patient with a completely resected anaplastic meningioma who developed multiple metastases two years later (subcutaneous tissue near the surgical area, cervical lymph nodes, lung, pleura and bones). The primary tumor and all of the metastases showed a significant restricted diffusion. Whole‑body diffusion-weighted imaging (DWI) was performed for assessment of the metastases. This case demonstrated the usefulness of this technique in screening extracranial metastases in patients with malignant meningiomas. PMID:22866153

  16. Anisotropy in high-resolution diffusion-weighted MRI and anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Hanyga, A.; Seredyńska, M.

    2012-07-01

    It is shown below that complex diffusion anisotropy observed in diffusion-weighted MRI can be fully accounted for by allowing for non-locality of the spatial operator in the diffusion equation. The anisotropy is represented by a distribution over directions on a sphere. It allows recognition of fiber tracts crossing at arbitrary angles. A simple generalization of the Stejskal-Tanner equation for the determination of the ODF is presented. Furthermore, an explicit solution of the Bloch-Torrey equation for an anisotropic time-fractional diffusion equation is obtained in terms of a generalized Mittag-Leffler type function.

  17. Diffusion-weighted Magnetic Resonance Imaging: What Makes Water Run Fast or Slow?

    PubMed Central

    Fornasa, Francesca

    2011-01-01

    Diffusion-Weighted Magnetic Resonance Imaging (DWI) obtains information useful in diagnosing several diseases through the measurement of random, Brownian diffusion of water molecules in tissues. This pictorial essay illustrates the main factors, i.e., ratio between the volume occupied by cells and the extracellular space, composition of the extracellular space, and temperature, that determine the rate of the water diffusion. The mechanism through which these influencing factors affect water diffusion is explained. Clinical and experimental examples, derived both from physiology and from non-human models, are described. PMID:21966624

  18. Diffusion-weighted Imaging Using Readout-segmented EPI Reveals Bony Metastases from Neuroblastoma.

    PubMed

    Hayes, Laura L; Alazraki, Adina; Wasilewski-Masker, Karen; Jones, Richard A; Porter, David A; Palasis, Susan

    2016-10-01

    Identifying neuroblastoma (NBL) metastases is crucial to treatment and prognosis. Metaiodobenzylguanidine and Tc99M bone scans are standard for identifying bony metastases but can underestimate disease. Diffusion-weighted imaging (DWI) of the spine has shown promise in evaluating bony metastases but has been limited by artifacts. Readout-segmented echo planar imaging is a technique for DWI that minimizes artifacts allowing for improved identification of spinal disease. This report illustrates the utility of DWI of the spine using readout-segmented echo planar imaging in the detection of bony NBL metastases in a child, lending support that DWI should be included in magnetic resonance imaging scans for NBL.

  19. Diffusion-weighted Imaging Using Readout-segmented EPI Reveals Bony Metastases from Neuroblastoma.

    PubMed

    Hayes, Laura L; Alazraki, Adina; Wasilewski-Masker, Karen; Jones, Richard A; Porter, David A; Palasis, Susan

    2016-10-01

    Identifying neuroblastoma (NBL) metastases is crucial to treatment and prognosis. Metaiodobenzylguanidine and Tc99M bone scans are standard for identifying bony metastases but can underestimate disease. Diffusion-weighted imaging (DWI) of the spine has shown promise in evaluating bony metastases but has been limited by artifacts. Readout-segmented echo planar imaging is a technique for DWI that minimizes artifacts allowing for improved identification of spinal disease. This report illustrates the utility of DWI of the spine using readout-segmented echo planar imaging in the detection of bony NBL metastases in a child, lending support that DWI should be included in magnetic resonance imaging scans for NBL. PMID:27571120

  20. Diffusion-Weighted Imaging Outside the Brain: Consensus Statement From an ISMRM-Sponsored Workshop

    PubMed Central

    Taouli, Bachir; Beer, Ambros J.; Chenevert, Thomas; Collins, David; Lehman, Constance; Matos, Celso; Padhani, Anwar R.; Rosenkrantz, Andrew B.; Shukla-Dave, Amita; Sigmund, Eric; Tanenbaum, Lawrence; Thoeny, Harriet; Thomassin-Naggara, Isabelle; Barbieri, Sebastiano; Corcuera-Solano, Idoia; Orton, Matthew; Partridge, Savannah C.; Koh, Dow-Mu

    2016-01-01

    The significant advances in magnetic resonance imaging (MRI) hardware and software, sequence design, and postprocessing methods have made diffusion-weighted imaging (DWI) an important part of body MRI protocols and have fueled extensive research on quantitative diffusion outside the brain, particularly in the oncologic setting. In this review, we summarize the most up-to-date information on DWI acquisition and clinical applications outside the brain, as discussed in an ISMRM-sponsored symposium held in April 2015. We first introduce recent advances in acquisition, processing, and quality control; then review scientific evidence in major organ systems; and finally describe future directions. PMID:26892827

  1. Incidence and Predictors of Catheterization-Related Cerebral Infarction on Diffusion-Weighted Magnetic Resonance Imaging

    PubMed Central

    Okano, Mitsumasa; Suu, Kanae; Kimura, Masahiro; Minamino-Muta, Eri; Nakane, Eisaku; Izumi, Toshiaki; Miyamoto, Shoichi; Haruna, Tetsuya; Ueyama, Koji

    2016-01-01

    Introduction. The aim of this study was to examine the incidence and risk factors of catheterization-related CI in the contemporary era, using diffusion-weighted magnetic resonance imaging. Methods. We retrospectively analyzed consecutive 84 patients who underwent MRI (magnetic resonance imaging) after 2.81 ± 2.4 days (mean ± SD) of catheterization via aortic arch. We categorized the patients by the presence or absence of acute CI determined by diffusion-weighted MRI and analyzed the incidence and predictors. Results. Of 84 patients that underwent MRI after catheterization, acute CI was determined in 27 (32.1%) patients. In univariate analysis, dyslipidemia, age, coronary artery disease, antiplatelet agents, number of catheters used, urgent settings, and interventional procedures were significantly different. Multivariate analysis revealed dyslipidemia (odds ratio [OR], 4.46; 95% confidence interval [CI], 1.41–16.03; p = 0.01), higher age (OR, 1.09; 95% CI, 1.007–1.19; p = 0.03), and the number of catheters used (OR, 2.21; 95% CI, 1.21–4.36; p = 0.01) as independent predictors of the incidence of catheterization-related acute CI. Conclusions. Dyslipidemia, higher age, and number of catheters used were independent predictors for acute CI after catheterization. These findings imply that managing dyslipidemia and comprehensive planning to minimize the numbers of catheters are important. PMID:27127790

  2. Segmentation of Hyperacute Cerebral Infarcts Based on Sparse Representation of Diffusion Weighted Imaging

    PubMed Central

    Zhang, Xiaodong; Jing, Shasha; Gao, Peiyi; Xue, Jing; Su, Lu; Li, Weiping; Ren, Lijie

    2016-01-01

    Segmentation of infarcts at hyperacute stage is challenging as they exhibit substantial variability which may even be hard for experts to delineate manually. In this paper, a sparse representation based classification method is explored. For each patient, four volumetric data items including three volumes of diffusion weighted imaging and a computed asymmetry map are employed to extract patch features which are then fed to dictionary learning and classification based on sparse representation. Elastic net is adopted to replace the traditional L0-norm/L1-norm constraints on sparse representation to stabilize sparse code. To decrease computation cost and to reduce false positives, regions-of-interest are determined to confine candidate infarct voxels. The proposed method has been validated on 98 consecutive patients recruited within 6 hours from onset. It is shown that the proposed method could handle well infarcts with intensity variability and ill-defined edges to yield significantly higher Dice coefficient (0.755 ± 0.118) than the other two methods and their enhanced versions by confining their segmentations within the regions-of-interest (average Dice coefficient less than 0.610). The proposed method could provide a potential tool to quantify infarcts from diffusion weighted imaging at hyperacute stage with accuracy and speed to assist the decision making especially for thrombolytic therapy. PMID:27746825

  3. A parallel imaging technique using mutual calibration for split-blade diffusion-weighted PROPELLER.

    PubMed

    Li, Zhiqiang; Pipe, James G; Aboussouan, Eric; Karis, John P; Huo, Donglai

    2011-03-01

    Split-blade diffusion-weighted periodically rotated overlapping parallel lines with enhanced reconstruction (DW-PROPELLER) was proposed to address the issues associated with diffusion-weighted echo planar imaging such as geometric distortion and difficulty in high-resolution imaging. The major drawbacks with DW-PROPELLER are its high SAR (especially at 3T) and violation of the Carr-Purcell-Meiboom-Gill condition, which leads to a long scan time and narrow blade. Parallel imaging can reduce scan time and increase blade width; however, it is very challenging to apply standard k-space-based techniques such as GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) to split-blade DW-PROPELLER due to its narrow blade. In this work, a new calibration scheme is proposed for k-space-based parallel imaging method without the need of additional calibration data, which results in a wider, more stable blade. The in vivo results show that this technique is very promising.

  4. [Diffusion-weighted MR imaging in a case of dissociative amnesia].

    PubMed

    Back, T; Haag, C; Buchberger, A; Mayer, T

    1998-10-01

    The differential diagnosis of psychogenic vs. organic amnestic syndromes may cause difficulty in certain cases. Here, we report a case of psychogenic amnesia which occurred after alcohol intoxication and mild head trauma. The initial memory deficit was very severe consisting of near-complete retrograde amnesia and anterograde amnesia covering 12 hours. The deficits resolved within a 4-week period of time. Brain CT and MRI scans revealed two circumscribed lesions of the right temporal lobe which were interpreted as old posttraumatic lesions. To ascertain the diagnosis, diffusion-weighted MR imaging (DWI) and brain perfusion SPECT were performed. The basal temporal lobes neither showed focal changes of perfusion, nor enhanced signal intensity on DWI as has been recently reported in patients with transient global amnesia. Later, the dissociative nature of the disorder could be confirmed by the exploration of recent psychological conflicts and the delayed type of recovery. We regard diffusion-weighted MRI as a powerful means to differentiate acute amnestic syndromes.

  5. Quantitative Analysis of Diffusion Weighted MR Images of Brain Tumor Using Signal Intensity Gradient Technique

    PubMed Central

    Shanbhag, S. S.; Udupi, G. R.; Patil, K. M.; Ranganath, K.

    2014-01-01

    The purpose of this study was to evaluate the role of diffusion weighted-magnetic resonance imaging (DW-MRI) in the examination and classification of brain tumors, namely, glioma and meningioma. Our hypothesis was that as signal intensity variations on diffusion weighted (DW) images depend on histology and cellularity of the tumor, analysing the signal intensity characteristics on DW images may allow differentiating between the tumor types. Towards this end the signal intensity variations on DW images of the entire tumor volume data of 20 subjects with glioma and 12 subjects with meningioma were investigated and quantified using signal intensity gradient (SIG) parameter. The relative increase in the SIG values (RSIG) for the subjects with glioma and meningioma was in the range of 10.08–28.36 times and 5.60–9.86 times, respectively, compared to their corresponding SIG values on the contralateral hemisphere. The RSIG values were significantly different between the subjects with glioma and meningioma (P < 0.01), with no overlap between RSIG values across the two tumors. The results indicate that the quantitative changes in the RSIG values could be applied in the differential diagnosis of glioma and meningioma, and their adoption in clinical diagnosis and treatment could be helpful and informative. PMID:27006934

  6. Diagnostic Performance of Diffusion-weighted Magnetic Resonance Imaging in Bone Malignancy: Evidence From a Meta-Analysis.

    PubMed

    Liu, Li-Peng; Cui, Long-Biao; Zhang, Xin-Xin; Cao, Jing; Chang, Ning; Tang, Xing; Qi, Shun; Zhang, Xiao-Liang; Yin, Hong; Zhang, Jian

    2015-11-01

    Current state-of-the-art nuclear medicine imaging methods (such as PET/CT or bone scintigraphy) may have insufficient sensitivity for predicting bone tumor, and substantial exposure to ionizing radiation is associated with the risk of secondary cancer development. Diffusion-weighted MRI (DW-MRI) is radiation free and requires no intravenous contrast media, and hence is more suitable for population groups that are vulnerable to ionizing radiation and/or impaired renal functions. This meta-analysis was conducted to investigate whether whole-body DW-MRI is a viable means in differentiating bone malignancy. Medline and Embase databases were searched from their inception to May 2015 without language restriction for studies evaluating DW-MRI for detection of bone lesions. Methodological quality was assessed by the quality assessment of diagnostic studies (QUADAS-2) instrument. Sensitivities, specificities, diagnostic odds ratio (DOR), and areas under the curve (AUC) were used as measures of the diagnostic accuracy. We combined the effects by using the random-effects mode. Potential threshold effects and publication bias were investigated. We included data from 32 studies with 1507 patients. The pooled sensitivity, specificity, and AUC were 0.95 (95% CI, 0.90-0.97), 0.92 (95% CI, 0.88-0.95), and 0.98 on a per-patient basis, and they were 0.91 (95% CI, 0.87-0.94), 0.94 (95% CI, 0.90-0.96), and 0.97 on a per-lesion basis. In subgroup analysis, there is no statistical significance found in the sensitivity and specificity of using DWI only and DWI combined with other morphological or functional imaging sequence in both basis (P > 0.05). A b value of 750 to 1000 s/mm enables higher AUC and DOR for whole-body imaging purpose when compared with other values in both basis either (P < 0.01). The ROC space did not show a curvilinear trend of points and a threshold effect was not observed. According to the Deek's plots, there was no publication bias on both basis. Our

  7. DWI based thermometry: the effects of b-values, resolutions, signal-to-noise ratio, and magnet strength.

    PubMed

    Sakai, Koji; Sakamoto, Ryo; Okada, Tomohisa; Sugimoto, Naozo; Togashi, Kaori

    2012-01-01

    Among MR methods, the most clinically applicable temperature measurement method at deep brain might be the diffusion-weighted image (DWI) thermometry. Although only applicable to cerebrospinal fluid (CSF), it is thought to be potentially useful in assessing the thermal pathophysiology of the brain in both patients and healthy subjects. The purpose of this study was to investigate the effects of b-value, pixel resolution, magnet strength and signal to noise ratio (SNR) for the DWI-thermometry with healthy volunteer. Formerly, an ADC from b=0 and b=1000 has been thought to be useful for diffusion thermometry, this study revealed b=200 to 800 was more appropriate for DWI thermometry. The SNR was strongly affected the results of DWI thermometry.

  8. Perianal Fistula With and Without Abscess: Assessment of Fistula Activity Using Diffusion-Weighted Magnetic Resonance Imaging

    PubMed Central

    Bakan, Selim; Olgun, Deniz Cebi; Kandemirli, Sedat Giray; Tutar, Onur; Samanci, Cesur; Dikici, Suleyman; Simsek, Osman; Rafiee, Babak; Adaletli, Ibrahim; Mihmanli, Ismail

    2015-01-01

    Background: Magnetic resonance imaging (MRI) is highly accurate for the depiction of both the primary tract of fistula and abscesses, in patients with perianal disease. In addition, MRI can be used to evaluate the activity of fistulas, which is a significant factor for determining the therapeutic strategy. Objectives: This study aimed to determine the usefulness of diffusion-weighted (DW) MRI for assessing activity and visibility of perianal fistula. Patients and Methods: Fifty-three patients with 56 perianal fistulas were included in the current retrospective study. The T2-weighted imaging (T2WI) and DWMRI were performed and apparent diffusion coefficient (ADC) values of fistulas were measured. Fistulas were classified into two groups: only perianal fistulas and fistulas accompanied by abscess. Fistulas were also classified into two groups, based on clinical findings: positive inflammatory activity (PIA) and negative inflammatory activity (NIA). Results: Mean ADC value (mm2/s) of PIA group was significantly lower than that of NIA group, regarding lesions in patients with abscess-associated fistulas (1.371 × 10-3 ± 0.168 × 10-3 vs. 1.586 × 10-3 ± 0.136 × 10-3; P = 0.036). No statistically significant difference was found in mean ADC values between PIA and NIA groups, in patients with only perianal fistulas (P = 0.507). Perianal fistula visibility was greater with combined evaluation of T2WI and DWMRI than with T2WI, for two reviewers (P = 0.046 and P = 0.014). Conclusion: The DWMRI is a useful technique for evaluating activity of fistulas with abscess. Perianal fistula visibility is greater with combined T2WI and DWMRI than T2WI alone. PMID:26715982

  9. Evaluating bronchodilator effects in chronic obstructive pulmonary disease using diffusion-weighted hyperpolarized helium-3 magnetic resonance imaging.

    PubMed

    Kirby, Miranda; Heydarian, Mohammadreza; Wheatley, Andrew; McCormack, David G; Parraga, Grace

    2012-02-01

    The objective of this study was to evaluate the regional effects of bronchodilator administration in chronic obstructive pulmonary disease (COPD) using hyperpolarized helium-3 ((3)He) MRI apparent diffusion coefficient (ADC). Ten COPD ex-smokers provided written, informed consent and underwent diffusion-weighted, hyperpolarized (3)He MRI, spirometry, and plethysmography before and 25 ± 2 min after bronchodilator administration. Pre- and postsalbutamol whole-lung (WL) ADC maps were generated and registered together to identify the lung regions containing the (3)He signal at both time points, and mean ADC within those regions of interest (ROI) was determined for a measurement of previously ventilated ROI ADC (ADC(P)). Lung ROI with (3)He signal at both time points was used as a binary mask on postsalbutamol WL ADC maps to obtain an ADC measurement for newly ventilated ROI (ADC(N)). Postsalbutamol, no significant differences were detected in WL ADC (P = 0.516). There were no significant differences between ADC(N) and ADC(P) postsalbutamol (P = 1.00), suggesting that the ADC(N) lung regions were not more emphysematous than the lung ROI participating in ventilation before bronchodilator administration. Postsalbutamol, a statistically significant decrease in ADC(P) (P = 0.01) was detected, and there were significant differences between ADC(P) in the most anterior and most posterior image slices (P = 0.02), suggesting a reduction in regional gas trapping following bronchodilator administration. Regional evaluation of tissue microstructure using hyperpolarized (3)He MRI ADC provides insights into lung alterations that accompany improvements in regional (3)He gas distribution after bronchodilator administration.

  10. Texture-based and diffusion-weighted discrimination of parotid gland lesions on MR images at 3.0 Tesla.

    PubMed

    Fruehwald-Pallamar, Julia; Czerny, Christian; Holzer-Fruehwald, Laura; Nemec, Stefan F; Mueller-Mang, Christina; Weber, Michael; Mayerhoefer, Marius E

    2013-11-01

    The purpose of this study was to evaluate whether texture-based analysis of standard MRI sequences and diffusion-weighted imaging can help in the discrimination of parotid gland masses. The MR images of 38 patients with a biopsy- or surgery-proven parotid gland mass were retrospectively analyzed. All patients were examined on the same 3.0 Tesla MR unit, with one standard protocol. The ADC (apparent diffusion coefficient) values of the tumors were measured with three regions of interest (ROIs) covering the entire tumor. Texture-based analysis was performed with the texture analysis software MaZda (version 4.7), with ROI measurements covering the entire tumor in three slices. COC (co-occurrence matrix), RUN (run-length matrix), GRA (gradient), ARM (auto-regressive model), and WAV (wavelet transform) features were calculated for all ROIs. Three subsets of 10 texture features each were used for a linear discriminant analysis (LDA) in combination with k nearest neighbor classification (k-NN). Using histology as a standard of reference, benign tumors, including subtypes, and malignant tumors were compared with regard to ADC and texture-based values, with a one-way analysis of variance with post-hoc t-tests. Significant differences were found in the mean ADC values between Warthin tumors and pleomorphic adenomas, as well as between Warthin tumors and benign lesions. Contrast-enhanced T1-weighted images contained the most relevant textural information for the discrimination between benign and malignant parotid masses, and also for the discrimination between pleomorphic adenomas and Warthin tumors. STIR images contained the least relevant texture features, particularly for the discrimination between pleomorphic adenomas and Warthin tumors. Texture analysis proved to differentiate benign from malignant lesions, as well as pleomorphic adenomas from Warthin tumors, based on standard T(1w) sequences (without and with contrast). Of all benign parotid masses, Warthin tumors had

  11. Statistical assessment of bi-exponential diffusion weighted imaging signal characteristics induced by intravoxel incoherent motion in malignant breast tumors

    PubMed Central

    Wong, Oi Lei; Lo, Gladys G.; Chan, Helen H. L.; Wong, Ting Ting; Cheung, Polly S. Y.

    2016-01-01

    Background The purpose of this study is to statistically assess whether bi-exponential intravoxel incoherent motion (IVIM) model better characterizes diffusion weighted imaging (DWI) signal of malignant breast tumor than mono-exponential Gaussian diffusion model. Methods 3 T DWI data of 29 malignant breast tumors were retrospectively included. Linear least-square mono-exponential fitting and segmented least-square bi-exponential fitting were used for apparent diffusion coefficient (ADC) and IVIM parameter quantification, respectively. F-test and Akaike Information Criterion (AIC) were used to statistically assess the preference of mono-exponential and bi-exponential model using region-of-interests (ROI)-averaged and voxel-wise analysis. Results For ROI-averaged analysis, 15 tumors were significantly better fitted by bi-exponential function and 14 tumors exhibited mono-exponential behavior. The calculated ADC, D (true diffusion coefficient) and f (pseudo-diffusion fraction) showed no significant differences between mono-exponential and bi-exponential preferable tumors. Voxel-wise analysis revealed that 27 tumors contained more voxels exhibiting mono-exponential DWI decay while only 2 tumors presented more bi-exponential decay voxels. ADC was consistently and significantly larger than D for both ROI-averaged and voxel-wise analysis. Conclusions Although the presence of IVIM effect in malignant breast tumors could be suggested, statistical assessment shows that bi-exponential fitting does not necessarily better represent the DWI signal decay in breast cancer under clinically typical acquisition protocol and signal-to-noise ratio (SNR). Our study indicates the importance to statistically examine the breast cancer DWI signal characteristics in practice. PMID:27709078

  12. Diffusion-weighted imaging in musculoskeletal radiology—clinical applications and future directions

    PubMed Central

    Bhojwani, Nicholas; Szpakowski, Peter; Partovi, Sasan; Maurer, Martin H.; Grosse, Ulrich; von Tengg-Kobligk, Hendrik; Zipp-Partovi, Lisa; Fergus, Nathan; Kosmas, Christos; Nikolaou, Konstantin

    2015-01-01

    Diffusion-weighted imaging (DWI) is an established diagnostic tool with regards to the central nervous system (CNS) and research into its application in the musculoskeletal system has been growing. It has been shown that DWI has utility in differentiating vertebral compression fractures from malignant ones, assessing partial and complete tears of the anterior cruciate ligament (ACL), monitoring tumor response to therapy, and characterization of soft-tissue and bone tumors. DWI is however less useful in differentiating malignant vs. infectious processes. As of yet, no definitive qualitative or quantitative properties have been established due to reasons ranging from variability in acquisition protocols to overlapping imaging characteristics. Even with these limitations, DWI can still provide clinically useful information, increasing diagnostic accuracy and improving patient management when magnetic resonance imaging (MRI) findings are inconclusive. The purpose of this article is to summarize recent research into DWI applications in the musculoskeletal system. PMID:26682143

  13. Comparison of stroke infarction between CT perfusion and diffusion weighted imaging: preliminary results

    NASA Astrophysics Data System (ADS)

    Abd. Rahni, Ashrani Aizzuddin; Arka, Israna Hossain; Chellappan, Kalaivani; Mukari, Shahizon Azura; Law, Zhe Kang; Sahathevan, Ramesh

    2016-03-01

    In this paper we present preliminary results of comparison of automatic segmentations of the infarct core, between that obtained from CT perfusion (based on time to peak parameter) and diffusion weighted imaging (DWI). For each patient, the two imaging volumes were automatically co-registered to a common frame of reference based on an acquired CT angiography image. The accuracy of image registration is measured by the overlap of the segmented brain from both images (CT perfusion and DWI), measured within their common field of view. Due to the limitations of the study, DWI was acquired as a follow up scan up to a week after initial CT based imaging. However, we found significant overlap of the segmented brain (Jaccard indices of approximately 0.8) and the percentage of infarcted brain tissue from the two modalities were still fairly highly correlated (correlation coefficient of approximately 0.9). The results are promising with more data needed in future for clinical inference.

  14. Echo planar diffusion-weighted imaging: possibilities and considerations with 12- and 32-channel head coils.

    PubMed

    Morelli, John N; Saettele, Megan R; Rangaswamy, Rajesh A; Vu, Lan; Gerdes, Clint M; Zhang, Wei; Ai, Fei

    2012-01-01

    Interest in clinical brain magnetic resonance imaging using 32-channel head coils for signal reception continues to increase. The present investigation assesses possibilities for improving diffusion-weighted image quality using a 32-channel in comparison to a conventional 12-channel coil. The utility of single-shot (ss) and an approach to readout-segmented (rs) echo planar imaging (EPI) are examined using both head coils. Substantial image quality improvements are found with rs-EPI. Imaging with a 32-channel head coil allows for implementation of greater parallel imaging acceleration factors or acquisition of scans at a higher resolution. Specifically, higher resolution imaging with rs-EPI can be achieved by increasing the number of readout segments without increasing echo-spacing or echo time to the degree necessary with ss-EPI - a factor resulting in increased susceptibility artifact and reduced signal-to-noise with the latter.

  15. The role of diffusion-weighted echo planar MRI in central nervous system infections regarding etiopathogeneses.

    PubMed

    Kıroğlu, Yılmaz; Karabulut, Nevzat; Alkan, Alpay

    2010-12-01

    Neuroimaging constitutes an important component in the diagnosis of the underlying infectious agents in central nervous system (CNS) infections. Despite the recent advances in neuroimaging evaluation, the diagnosis of unclear infectious CNS diseases remains a challenge. Conventional magnetic resonance imaging (MRI) is used in routine practice to identify abnormal areas involved in CNS infections. More recent MRI techniques, such as diffusion-weighted imaging (DWI), provide additional helpful information in the assessment of CNS infectious lesions compared with conventional MRI. This pictorial essay summarizes the clinical role of DWI in the demonstration of CNS infections including meningitis, encephalitis and pyogenic infections, and determination of the lesions compared with conventional MRI on the basis of physiopathologic phases of the infections.

  16. Evaluation of Angiographic and Technical Aspects of Carotid Stenting with Diffusion-Weighted Magnetic Resonance Imaging

    SciTech Connect

    Blasel, Stella Hattingen, Elke; Berkefeld, Joachim; Kurre, Wiebke; Morawe, Gerald; Zanella, Friedhelm; Rochemont, Richard Du Mesnil de

    2009-07-15

    The detection of clinically silent ischemic lesions on postprocedural diffusion-weighted magnetic resonance images has become a preferred method for the description of embolic risks. The purpose of this single-center study was to evaluate whether diffusion-weighted imaging (DWI) could determine material related or technical risk factors of filter-protected carotid stenting. Eighty-four patients with symptomatic severe ({>=}60%) carotid artery stenoses received filter-protected carotid stenting. Standard DWI (b = 1000) was performed within 48 h before and after carotid stenting. The occurrence and load of new postinterventional DWI lesions were assessed. Multivariate analysis was performed to determine risk factors associated with DWI lesions, with emphasis on technical factors such as use of different access devices (guiding catheter method vs. long carotid sheath method), type of stent (open-cell nitinol stent vs. closed-cell Wallstent), and protective device (filters with 80-{mu}m vs. 110-120-{mu}m pore size). Markers for generalized atherosclerosis and for degree and site of stenosis were assessed to allow comparison of adequate risk profiles. Access, protective device, and stent type were not significantly associated with new embolic DWI lesions when we compared patients with equivalent risk profiles (long carotid sheath method 48% [11 of 23] vs. guiding catheter method 44% [27 of 61], Wallstent 47% [15 of 32] vs. nitinol stent 44% [23 of 52], and small pore size filter 61% [11 of 18] vs. large pore size filter 41% [27 of 66]). Single-center DWI studies with a moderate number of cases are inadequate for proper assessment of the embolic risk of technical- or material-related risk factors in carotid stenting. Larger multicenter studies with more cases are needed.

  17. Sensitivity of Diffusion-Weighted STEAM MRI and EPI-DWI to Infratentorial Ischemic Stroke

    PubMed Central

    Hohenhaus, Marc; Kunze, Claudia; Schmidt, Wolf; Brunecker, Peter; Villringer, Kersten; Merboldt, Klaus-Dietmar; Frahm, Jens; Fiebach, Jochen B.

    2016-01-01

    Objectives To assess the sensitivity of stimulated echo acquisition mode diffusion weighted imaging (STEAM-DWI) to ischemic stroke in comparison to echo-planar imaging diffusion weighted imaging (EPI-DWI) in the infratentorial compartment. Methods Fifty-seven patients presenting with clinical features of infratentorial stroke underwent STEAM-DWI, high-resolution EPI-DWI (HR-DWI, 2.5 mm slice thickness) and low-resolution EPI-DWI (LR-DWI, 5 mm slice thickness). Four readers assessed the presence of ischemic lesions and artifacts. Agreement between sequences and interobserver agreement on the presence of ischemia were calculated. The sensitivities of the DWI sequences were calculated in 45 patients with a confirmed diagnosis of infratentorial stroke. Results Median time from symptom onset to imaging was 24 hours. STEAM-DWI agreed with LR-DWI in 89.5% of cases (kappa = 0.72, p<0.0001) and with HR-DWI in 89.5% of cases (kappa = 0.68, p<0.0001). STEAM-DWI showed fewer intraparenchymal artifacts (1/57) than HR-DWI (44/57) and LR-DWI (41/57). Ischemia was visible in 87% of cases for LR-DWI, 93% of cases for HR-DWI, and 89% of cases for STEAM-DWI. Interobserver agreement was good for STEAM-DWI (kappa = 0.62, p<0.0001). Conclusions Compared to the best currently available MR sequence for detecting ischemia (HR-DWI), STEAM-DWI shows fewer artifacts and a similar sensitivity to infratentorial stroke. PMID:27529697

  18. Assessment of non-Gaussian diffusion with singly and doubly stretched biexponential models of diffusion-weighted MRI (DWI) signal attenuation in prostate tissue.

    PubMed

    Hall, Matt G; Bongers, Andre; Sved, Paul; Watson, Geoffrey; Bourne, Roger M

    2015-04-01

    Non-Gaussian diffusion dynamics was investigated in the two distinct water populations identified by a biexponential model of diffusion in prostate tissue. Diffusion-weighted MRI (DWI) signal attenuation was measured ex vivo in two formalin-fixed prostates at 9.4 T with diffusion times Δ = 10, 20 and 40 ms, and b values in the range 0.017-8.2 ms/µm(2) . A conventional biexponential model was compared with models in which either the lower diffusivity component or both of the components of the biexponential were stretched. Models were compared using Akaike's Information Criterion (AIC) and a leave-one-out (LOO) test of model prediction accuracy. The doubly stretched (SS) model had the highest LOO prediction accuracy and lowest AIC (highest information content) in the majority of voxels at Δ = 10 and 20 ms. The lower diffusivity stretching factor (α2 ) of the SS model was consistently lower (range ~0.3-0.9) than the higher diffusivity stretching factor (α1 , range ~0.7-1.1), indicating a high degree of diffusion heterogeneity in the lower diffusivity environment, and nearly Gaussian diffusion in the higher diffusivity environment. Stretched biexponential models demonstrate that, in prostate tissue, the two distinct water populations identified by the simple biexponential model individually exhibit non-Gaussian diffusion dynamics.

  19. FDG-MicroPET and Diffusion-Weighted MR Image Evaluation of Early Changes After Radiofrequency Ablation in Implanted VX2 Tumors in Rabbits

    SciTech Connect

    Ohira, Tomohiro Okuma, Tomohisa; Matsuoka, Toshiyuki; Wada, Yasuhiro; Nakamura, Kenji; Watanabe, Yasuyoshi; Inoue, Yuichi

    2009-01-15

    The objective of this study was to evaluate the early changes after radiofrequency ablation (RFA) in VX2 rabbit tumors implanted into the back muscles by diffusion-weighted magnetic resonance (MR) imaging and {sup 18}F-2-fluoro-2-deoxy-D-glucose positron emission tomography ({sup 18}F-FDG PET). Percutaneous CT-guided RFA was conducted in seven rabbits with implanted VX2 tumors. VX2 tumors on the other side were untreated and served as the control. MR imaging was performed with a clinical 1.5-T instrument 2 days after RFA, and FDG-PET, using a high-resolution PET scanner for small animals, was obtained 3 days after the procedure. The mean apparent diffusion coefficient (ADC) values and radioactivity count of untreated and ablated tumors were calculated. Untreated VX2 tumors showed hyperintensity on T1-, T2-, and diffusion-weighted MR images, ring-enhanced on contrast-enhanced T1-weighted imaging, and ring-shaped FDG accumulation on FDG-PET. Ablated VX2 tumors showed slight hyperintensity on T1-, T2-, and diffusion-weighed images, slight enhancement on contrast-enhanced T1-weighted images, and low accumulation on FDG-PET. The ADC value of ablated VX2 tumors (1.52 {+-} 0.24 x 10{sup -3} mm{sup 2}/s) was significantly higher than that of untreated tumors (1.09 {+-} 0.12 x 10{sup -3}; p < 0.05). The tumor/muscle ratio of ablated tumors (0.5 {+-} 0.3) was significantly lower than that of untreated tumors (11.6 {+-} 3.2; p < 0.05). Histopathological examination confirmed the lack of viable tumor cells in the ablated lesions. The results indicate that both ADC value and FDG-PET are potentially useful markers for monitoring the early effects of RFA.

  20. Increasing the Accuracy of Volume and ADC Delineation for Heterogeneous Tumor on Diffusion-Weighted MRI: Correlation with PET/CT

    SciTech Connect

    Gong, Nan-Jie; Wong, Chun-Sing; Chu, Yiu-Ching; Guo, Hua; Huang, Bingsheng; Chan, Queenie

    2013-10-01

    Purpose: To improve the accuracy of volume and apparent diffusion coefficient (ADC) measurements in diffusion-weighted magnetic resonance imaging (MRI), we proposed a method based on thresholding both the b0 images and the ADC maps. Methods and Materials: In 21 heterogeneous lesions from patients with metastatic gastrointestinal stromal tumors (GIST), gross lesion were manually contoured, and corresponding volumes and ADCs were denoted as gross tumor volume (GTV) and gross ADC (ADC{sub g}), respectively. Using a k-means clustering algorithm, the probable high-cellularity tumor tissues were selected based on b0 images and ADC maps. ADC and volume of the tissues selected using the proposed method were denoted as thresholded ADC (ADC{sub thr}) and high-cellularity tumor volume (HCTV), respectively. The metabolic tumor volume (MTV) in positron emission tomography (PET)/computed tomography (CT) was measured using 40% maximum standard uptake value (SUV{sub max}) as the lower threshold, and corresponding mean SUV (SUV{sub mean}) was also measured. Results: HCTV had excellent concordance with MTV according to Pearson's correlation (r=0.984, P<.001) and linear regression (slope = 1.085, intercept = −4.731). In contrast, GTV overestimated the volume and differed significantly from MTV (P=.005). ADC{sub thr} correlated significantly and strongly with SUV{sub mean} (r=−0.807, P<.001) and SUV{sub max} (r=−0.843, P<.001); both were stronger than those of ADC{sub g}. Conclusions: The proposed lesion-adaptive semiautomatic method can help segment high-cellularity tissues that match hypermetabolic tissues in PET/CT and enables more accurate volume and ADC delineation on diffusion-weighted MR images of GIST.

  1. Characterization and Correction of Geometric Distortions in 814 Diffusion Weighted Images

    PubMed Central

    Treiber, Jeffrey Mark; White, Nathan S.; Steed, Tyler Christian; Bartsch, Hauke; Holland, Dominic; Farid, Nikdokht; McDonald, Carrie R.; Carter, Bob S.

    2016-01-01

    Introduction Diffusion Weighted Imaging (DWI), which is based on Echo Planar Imaging (EPI) protocols, is becoming increasingly important for neurosurgical applications. However, its use in this context is limited in part by significant spatial distortion inherent to EPI. Method We evaluated an efficient algorithm for EPI distortion correction (EPIC) across 814 DWI scans from 250 brain tumor patients and quantified the magnitude of geometric distortion for whole brain and multiple brain regions. Results Evaluation of the algorithm’s performance revealed significantly higher mutual information between T1-weighted pre-contrast images and corrected b = 0 images than the uncorrected b = 0 images (p < 0.001). The distortion magnitude across all voxels revealed a median EPI distortion effect of 2.1 mm, ranging from 1.2 mm to 5.9 mm, the 5th and 95th percentile, respectively. Regions adjacent to bone-air interfaces, such as the orbitofrontal cortex, temporal poles, and brain stem, were the regions most severely affected by DWI distortion. Conclusion Using EPIC to estimate the degree of distortion in 814 DWI brain tumor images enabled the creation of a topographic atlas of DWI distortion across the brain. The degree of displacement of tumors boundaries in uncorrected images is severe but can be corrected for using EPIC. Our results support the use of distortion correction to ensure accurate and careful application of DWI to neurosurgical practice. PMID:27027775

  2. Gradient preemphasis calibration in diffusion-weighted echo-planar imaging.

    PubMed

    Papadakis, N G; Martin, K M; Pickard, J D; Hall, L D; Carpenter, T A; Huang, C L

    2000-10-01

    This article describes a method which enables fast and objective pulse-sequence-specific preemphasis calibration, using standard pulse sequences and system hardware. The method is based on a k-space measurement technique, and has been applied to single-shot, diffusion-weighted, spin-echo, echo-planar imaging (DW-SE-EPI), which is particularly sensitive to eddy-current-induced image distortions. The efficiency of the technique was demonstrated not only by the reduction of eddy-current fields to a negligible level using full preemphasis compensation, but also by the fact that adjustment of the slow time-base alone sufficed for the practical elimination of image distortions in the DW-SE-EPI images and the subsequent diffusion tensor maps (in a phantom and a human brain). By seeking to eliminate directly the effect of eddy-current-induced phase shifts during the EPI data collection, the method is free of the complications and restrictions associated with other eddy-current correction techniques for DW-SE-EPI (such as acquisition of additional calibration scans, intense postprocessing, extensive pulse-sequence modifications), making their use redundant.

  3. New paradigm to assess brain cell morphology by diffusion-weighted MR spectroscopy in vivo

    PubMed Central

    Palombo, Marco; Ligneul, Clémence; Najac, Chloé; Le Douce, Juliette; Flament, Julien; Escartin, Carole; Hantraye, Philippe; Brouillet, Emmanuel; Bonvento, Gilles; Valette, Julien

    2016-01-01

    The brain is one of the most complex organs, and tools are lacking to assess its cellular morphology in vivo. Here we combine original diffusion-weighted magnetic resonance (MR) spectroscopy acquisition and novel modeling strategies to explore the possibility of quantifying brain cell morphology noninvasively. First, the diffusion of cell-specific metabolites is measured at ultra-long diffusion times in the rodent and primate brain in vivo to observe how cell long-range morphology constrains metabolite diffusion. Massive simulations of particles diffusing in synthetic cells parameterized by morphometric statistics are then iterated to fit experimental data. This method yields synthetic cells (tentatively neurons and astrocytes) that exhibit striking qualitative and quantitative similarities with histology (e.g., using Sholl analysis). With our approach, we measure major interspecies difference regarding astrocytes, whereas dendritic organization appears better conserved throughout species. This work suggests that the time dependence of metabolite diffusion coefficient allows distinguishing and quantitatively characterizing brain cell morphologies noninvasively. PMID:27226303

  4. Collaborative patch-based super-resolution for diffusion-weighted images.

    PubMed

    Coupé, Pierrick; Manjón, José V; Chamberland, Maxime; Descoteaux, Maxime; Hiba, Bassem

    2013-12-01

    In this paper, a new single image acquisition super-resolution method is proposed to increase image resolution of diffusion weighted (DW) images. Based on a nonlocal patch-based strategy, the proposed method uses a non-diffusion image (b0) to constrain the reconstruction of DW images. An extensive validation is presented with a gold standard built on averaging 10 high-resolution DW acquisitions. A comparison with classical interpolation methods such as trilinear and B-spline demonstrates the competitive results of our proposed approach in terms of improvements on image reconstruction, fractional anisotropy (FA) estimation, generalized FA and angular reconstruction for tensor and high angular resolution diffusion imaging (HARDI) models. Besides, first results of reconstructed ultra high resolution DW images are presented at 0.6×0.6×0.6 mm3 and 0.4×0.4×0.4 mm3 using our gold standard based on the average of 10 acquisitions, and on a single acquisition. Finally, fiber tracking results show the potential of the proposed super-resolution approach to accurately analyze white matter brain architecture.

  5. Characterizing brain anatomical connections using diffusion weighted MRI and graph theory.

    PubMed

    Iturria-Medina, Y; Canales-Rodríguez, E J; Melie-García, L; Valdés-Hernández, P A; Martínez-Montes, E; Alemán-Gómez, Y; Sánchez-Bornot, J M

    2007-07-01

    A new methodology based on Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) and Graph Theory is presented for characterizing the anatomical connections between brain gray matter areas. In a first step, brain voxels are modeled as nodes of a non-directed graph in which the weight of an arc linking two neighbor nodes is assumed to be proportional to the probability of being connected by nervous fibers. This probability is estimated by means of probabilistic tissue segmentation and intravoxel white matter orientational distribution function, obtained from anatomical MRI and DW-MRI, respectively. A new tractography algorithm for finding white matter routes is also introduced. This algorithm solves the most probable path problem between any two nodes, leading to the assessment of probabilistic brain anatomical connection maps. In a second step, for assessing anatomical connectivity between K gray matter structures, the previous graph is redefined as a K+1 partite graph by partitioning the initial nodes set in K non-overlapped gray matter subsets and one subset clustering the remaining nodes. Three different measures are proposed for quantifying anatomical connections between any pair of gray matter subsets: Anatomical Connection Strength (ACS), Anatomical Connection Density (ACD) and Anatomical Connection Probability (ACP). This methodology was applied to both artificial and actual human data. Results show that nervous fiber pathways between some regions of interest were reconstructed correctly. Additionally, mean connectivity maps of ACS, ACD and ACP between 71 gray matter structures for five healthy subjects are presented.

  6. Hepatocellular Carcinoma and Diffusion-Weighted MRI: Detection and Evaluation of Treatment Response

    PubMed Central

    Gluskin, Jill S; Chegai, Fabrizio; Monti, Serena; Squillaci, Ettore; Mannelli, Lorenzo

    2016-01-01

    Differentiating between cancerous tissue and healthy liver parenchyma could represent a challenge with the only conventional Magnetic Resonance (MR) imaging. Diffusion weighted imaging (DWI) exploits different tissue characteristics to conventional Magnetic Resonance Imaging (MRI) sequences that enhance hepatocellular carcinoma (HCC) detection, characterization, and post-treatment evaluation. Detection of HCC is improved by DWI, infact this technology increases conspicuity of lesions that might otherwise not be identified due to obscuration by adjacent vessels or due to low contrast between the lesion and background liver. It is important to remember that DWI combined with contrast-enhanced MRI has higher sensitivity than DWI alone, and that some patients are not eligible for use of contrast on CT and MRI; in these patients DWI has a prominent role. MRI has advanced beyond structural anatomic imaging to now showing pathophysiologic processes. DWI is a promising way to characterize lesions utilizing the inherent contrast within the liver and has the benefit of not requiring contrast injection. DWI improves detection and characterization of HCC. Proposed clinical uses for DWI include: assessing prognosis, predicting response, monitoring response to therapy, and distinguishing tumor recurrence from treatment effect. Ideally, DWI will help risk stratify patients and will participate in prognostic modeling. PMID:27471573

  7. Fast and accurate simulations of diffusion-weighted MRI signals for the evaluation of acquisition sequences

    NASA Astrophysics Data System (ADS)

    Rensonnet, Gaëtan; Jacobs, Damien; Macq, Benoît.; Taquet, Maxime

    2016-03-01

    Diffusion-weighted magnetic resonance imaging (DW-MRI) is a powerful tool to probe the diffusion of water through tissues. Through the application of magnetic gradients of appropriate direction, intensity and duration constituting the acquisition parameters, information can be retrieved about the underlying microstructural organization of the brain. In this context, an important and open question is to determine an optimal sequence of such acquisition parameters for a specific purpose. The use of simulated DW-MRI data for a given microstructural configuration provides a convenient and efficient way to address this problem. We first present a novel hybrid method for the synthetic simulation of DW-MRI signals that combines analytic expressions in simple geometries such as spheres and cylinders and Monte Carlo (MC) simulations elsewhere. Our hybrid method remains valid for any acquisition parameters and provides identical levels of accuracy with a computational time that is 90% shorter than that required by MC simulations for commonly-encountered microstructural configurations. We apply our novel simulation technique to estimate the radius of axons under various noise levels with different acquisition protocols commonly used in the literature. The results of our comparison suggest that protocols favoring a large number of gradient intensities such as a Cube and Sphere (CUSP) imaging provide more accurate radius estimation than conventional single-shell HARDI acquisitions for an identical acquisition time.

  8. Investigation of vibration-induced artifact in clinical diffusion-weighted imaging of pediatric subjects.

    PubMed

    Berl, Madison M; Walker, Lindsay; Modi, Pooja; Irfanoglu, M Okan; Sarlls, Joelle E; Nayak, Amritha; Pierpaoli, Carlo

    2015-12-01

    It has been reported that mechanical vibrations of the magnetic resonance imaging scanner could produce spurious signal dropouts in diffusion-weighted images resulting in artifactual anisotropy in certain regions of the brain with red appearance in the Directionally Encoded Color maps. We performed a review of the frequency of this artifact across pediatric studies, noting differences by scanner manufacturer, acquisition protocol, as well as weight and position of the subject. We also evaluated the ability of automated and quantitative methods to detect this artifact. We found that the artifact may be present in over 50% of data in certain protocols and is not limited to one scanner manufacturer. While a specific scanner had the highest incidence, low body weight and positioning were also associated with appearance of the artifact for both scanner types evaluated, making children potentially more susceptible than adults. Visual inspection remains the best method for artifact identification. Software for automated detection showed very low sensitivity (10%). The artifact may present inconsistently in longitudinal studies. We discuss a published case report that has been widely cited and used as evidence to set policy about diagnostic criteria for determining vegetative state. That report attributed longitudinal changes in anisotropy to white matter plasticity without considering the possibility that the changes were caused by this artifact. Our study underscores the need to check for the presence of this artifact in clinical studies, analyzes circumstances for when it may be more likely to occur, and suggests simple strategies to identify and potentially avoid its effects.

  9. Robust optimization of diffusion-weighted MRI protocols used for fiber reconstruction

    NASA Astrophysics Data System (ADS)

    Majumdar, S.; Udpa, S. S.; Raguin, L. G.

    2008-11-01

    Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) technique that employs diffusion-encoding gradients to sensitize the signal to the diffusion of water molecules. DWI allows the noninvasive and quantitative probing of opaque structures such as fibrous soft tissues. Model-based DWI post-processing algorithms, such as diffusion tensor imaging (DTI), solve an inverse problem to estimate from a series of DWI data a set of model parameters representing the diffusion process and the environment of the water molecules. DWI models connect the model parameters (e.g., fiber orientations for fibrous soft tissues) with the experimental parameters (e.g., strengths and directions of the 3-D diffusion-encoding gradients). For spinal cord injuries and skeletal muscle characterization, the fiber orientations within the imaged region can be approximately known a priori using localizer images. Then, we propose and implement a model-based robust optimization framework for two axisymmetric diffusion models, producing robust DWI protocols with respect to the approximate knowledge of the fiber orientations within the images, thereby reducing the uncertainty in the parameter estimates caused by experimental noise. Our goal is to improve the yield of quantitative DWI diagnostics used in clinical and preclinical trials by minimizing the experimental uncertainty.

  10. Evaluation of three inverse problem models to quantify skin microcirculation using diffusion-weighted MRI

    NASA Astrophysics Data System (ADS)

    Cordier, G.; Choi, J.; Raguin, L. G.

    2008-11-01

    Skin microcirculation plays an important role in diseases such as chronic venous insufficiency and diabetes. Magnetic resonance imaging (MRI) can provide quantitative information with a better penetration depth than other noninvasive methods, such as laser Doppler flowmetry or optical coherence tomography. Moreover, successful MRI skin studies have recently been reported. In this article, we investigate three potential inverse models to quantify skin microcirculation using diffusion-weighted MRI (DWI), also known as q-space MRI. The model parameters are estimated based on nonlinear least-squares (NLS). For each of the three models, an optimal DWI sampling scheme is proposed based on D-optimality in order to minimize the size of the confidence region of the NLS estimates and thus the effect of the experimental noise inherent to DWI. The resulting covariance matrices of the NLS estimates are predicted by asymptotic normality and compared to the ones computed by Monte-Carlo simulations. Our numerical results demonstrate the effectiveness of the proposed models and corresponding DWI sampling schemes as compared to conventional approaches.

  11. Robust optimal design of diffusion-weighted magnetic resonance experiments for skin microcirculation

    NASA Astrophysics Data System (ADS)

    Choi, J.; Raguin, L. G.

    2010-10-01

    Skin microcirculation plays an important role in several diseases including chronic venous insufficiency and diabetes. Magnetic resonance (MR) has the potential to provide quantitative information and a better penetration depth compared with other non-invasive methods such as laser Doppler flowmetry or optical coherence tomography. The continuous progress in hardware resulting in higher sensitivity must be coupled with advances in data acquisition schemes. In this article, we first introduce a physical model for quantifying skin microcirculation using diffusion-weighted MR (DWMR) based on an effective dispersion model for skin leading to a q-space model of the DWMR complex signal, and then design the corresponding robust optimal experiments. The resulting robust optimal DWMR protocols improve the worst-case quality of parameter estimates using nonlinear least squares optimization by exploiting available a priori knowledge of model parameters. Hence, our approach optimizes the gradient strengths and directions used in DWMR experiments to robustly minimize the size of the parameter estimation error with respect to model parameter uncertainty. Numerical evaluations are presented to demonstrate the effectiveness of our approach as compared to conventional DWMR protocols.

  12. Accelerating Fibre Orientation Estimation from Diffusion Weighted Magnetic Resonance Imaging Using GPUs

    PubMed Central

    Hernández, Moisés; Guerrero, Ginés D.; Cecilia, José M.; García, José M.; Inuggi, Alberto; Jbabdi, Saad; Behrens, Timothy E. J.; Sotiropoulos, Stamatios N.

    2013-01-01

    With the performance of central processing units (CPUs) having effectively reached a limit, parallel processing offers an alternative for applications with high computational demands. Modern graphics processing units (GPUs) are massively parallel processors that can execute simultaneously thousands of light-weight processes. In this study, we propose and implement a parallel GPU-based design of a popular method that is used for the analysis of brain magnetic resonance imaging (MRI). More specifically, we are concerned with a model-based approach for extracting tissue structural information from diffusion-weighted (DW) MRI data. DW-MRI offers, through tractography approaches, the only way to study brain structural connectivity, non-invasively and in-vivo. We parallelise the Bayesian inference framework for the ball & stick model, as it is implemented in the tractography toolbox of the popular FSL software package (University of Oxford). For our implementation, we utilise the Compute Unified Device Architecture (CUDA) programming model. We show that the parameter estimation, performed through Markov Chain Monte Carlo (MCMC), is accelerated by at least two orders of magnitude, when comparing a single GPU with the respective sequential single-core CPU version. We also illustrate similar speed-up factors (up to 120x) when comparing a multi-GPU with a multi-CPU implementation. PMID:23658616

  13. An adaptive diffusion-weighted whole-body magnetic resonance imaging scheme using the multistation approach

    NASA Astrophysics Data System (ADS)

    Han, Yeji

    2016-02-01

    Whole-body diffusion-weighted imaging (DWI) is a useful tool in oncology, which enables fast screening of disseminated tumors, lymph nodes or abscesses in the body. Multistation magnetic resonance imaging (MRI) or continuously moving table (CMT) MRI can be performed to overcome the limited field of view (FOV) of the magnet bore in whole-body DWI. Although CMT-MRI is regarded as a more advanced form of whole-body MRI, it cannot be widely used because most of the available MR systems are not equipped with the required hardware/software to perform CMT. Thus, optimizing the multistation approach for whole-body DWI, which is more widely available and easier to perform with the existing MR systems, is worthwhile. To improve the quality of DW images acquired with the multistation approach, we used different combinations of the built-in body RF coil and the phased-array surface RF coils for reception of the signals in whole-body DWI in this work. If different coils are selectively used in the extended FOV and appropriate reconstruction algorithms are exploited, the screening ability of whole-body DWI can be improved while minimizing the patient's discomfort and the artifacts due to physiological motions.

  14. [Diffusion-weighted MR imaging of meningeal involvement in Wegener's granulomatosis].

    PubMed

    Ito, Ai; Sasaki, Ryogen; Asahi, Masaru; Tomimoto, Hidekazu

    2014-01-01

    We report a 65-year-old female with meningeal involvement in Wegener's granulomatosis (WG). At 52 years of age, she was diagnosed as having WG by lung biopsy and elevated proteinase3 anti-neutrophil cytoplasmic antibody titer. She had been maintained on prednisolone. Three weeks before admission, she developed deterioration of mental status. On examination, neurological abnormalities included right hemiparesis, confusion, memory loss, psychomotor slowing and agraphia. CSF was normal. Diffusion-weighted images (DWI) showed high intensity lesions in the subarachnoid space over the left hemisphere. Fluid attenuated inversion recovery (FLAIR) images showed high intensity signal in the subarachnoid space with mild swelling of the cortex and abnormal meningeal enhancement corresponding to the high intensity area on DWI. She was treated with intravenous administration of methylprednisolone (1,000 mg/day for 3 days) and cyclophosphamide, and gradually improved in symptoms and abnormal hyperintensity on DWI. Involvement of the meninges in WG is rare. The dura mater is involved more frequently than the pia mater. Pathological findings of the meninges in WG has been reported to be granulomatous inflammation. Restricted diffusion in the subarachnoid space has been described to occur in a viscous mixture of proteins and inflammatory cells, similarly to the DWI hyperintensity in pyogenic abscesses. In our case, abnormal hyperintensity on DWI was interpreted as a dense inflammatory infiltrate in the leptomeninges. Therefore, DWI and FLAIR image have been shown to be useful for demonstration of leptomeningeal lesions in WG. PMID:25420562

  15. Turboprop+: enhanced Turboprop diffusion-weighted imaging with a new phase correction.

    PubMed

    Lee, Chu-Yu; Li, Zhiqiang; Pipe, James G; Debbins, Josef P

    2013-08-01

    Faster periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) diffusion-weighted imaging acquisitions, such as Turboprop and X-prop, remain subject to phase errors inherent to a gradient echo readout, which ultimately limits the applied turbo factor (number of gradient echoes between each pair of radiofrequency refocusing pulses) and, thus, scan time reductions. This study introduces a new phase correction to Turboprop, called Turboprop+. This technique employs calibration blades, which generate 2-D phase error maps and are rotated in accordance with the data blades, to correct phase errors arising from off-resonance and system imperfections. The results demonstrate that with a small increase in scan time for collecting calibration blades, Turboprop+ had a superior immunity to the off-resonance-related artifacts when compared to standard Turboprop and recently proposed X-prop with the high turbo factor (turbo factor = 7). Thus, low specific absorption rate and short scan time can be achieved in Turboprop+ using a high turbo factor, whereas off-resonance related artifacts are minimized.

  16. Hepatocellular Carcinoma and Diffusion-Weighted MRI: Detection and Evaluation of Treatment Response.

    PubMed

    Gluskin, Jill S; Chegai, Fabrizio; Monti, Serena; Squillaci, Ettore; Mannelli, Lorenzo

    2016-01-01

    Differentiating between cancerous tissue and healthy liver parenchyma could represent a challenge with the only conventional Magnetic Resonance (MR) imaging. Diffusion weighted imaging (DWI) exploits different tissue characteristics to conventional Magnetic Resonance Imaging (MRI) sequences that enhance hepatocellular carcinoma (HCC) detection, characterization, and post-treatment evaluation. Detection of HCC is improved by DWI, infact this technology increases conspicuity of lesions that might otherwise not be identified due to obscuration by adjacent vessels or due to low contrast between the lesion and background liver. It is important to remember that DWI combined with contrast-enhanced MRI has higher sensitivity than DWI alone, and that some patients are not eligible for use of contrast on CT and MRI; in these patients DWI has a prominent role. MRI has advanced beyond structural anatomic imaging to now showing pathophysiologic processes. DWI is a promising way to characterize lesions utilizing the inherent contrast within the liver and has the benefit of not requiring contrast injection. DWI improves detection and characterization of HCC. Proposed clinical uses for DWI include: assessing prognosis, predicting response, monitoring response to therapy, and distinguishing tumor recurrence from treatment effect. Ideally, DWI will help risk stratify patients and will participate in prognostic modeling. PMID:27471573

  17. Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory.

    PubMed

    Sacchet, Matthew D; Prasad, Gautam; Foland-Ross, Lara C; Thompson, Paul M; Gotlib, Ian H

    2015-01-01

    Recently, there has been considerable interest in understanding brain networks in major depressive disorder (MDD). Neural pathways can be tracked in the living brain using diffusion-weighted imaging (DWI); graph theory can then be used to study properties of the resulting fiber networks. To date, global abnormalities have not been reported in tractography-based graph metrics in MDD, so we used a machine learning approach based on "support vector machines" to differentiate depressed from healthy individuals based on multiple brain network properties. We also assessed how important specific graph metrics were for this differentiation. Finally, we conducted a local graph analysis to identify abnormal connectivity at specific nodes of the network. We were able to classify depression using whole-brain graph metrics. Small-worldness was the most useful graph metric for classification. The right pars orbitalis, right inferior parietal cortex, and left rostral anterior cingulate all showed abnormal network connectivity in MDD. This is the first use of structural global graph metrics to classify depressed individuals. These findings highlight the importance of future research to understand network properties in depression across imaging modalities, improve classification results, and relate network alterations to psychiatric symptoms, medication, and comorbidities.

  18. Localized reversible high signal intensities on diffusion-weighted MRI in hypoglycemia: A study of 70 cases

    PubMed Central

    Katoh, Masahito; Yoshino, Masami; Aoki, Takeshi; Abumiya, Takeo; Imamura, Hiroyuki; Aida, Toshimitsu

    2016-01-01

    Introduction: It is well-known that localized reversible high signal intensities in the splenium of the corpus callosum or the basal ganglia appear on diffusion-weighted MRI in the presence of hypoglycemia. The aim of this study was to clarify the incidence and significance of such high signal intensity lesions. Results: We analyzed 70 cases of hypoglycemia with consciousness disturbance referred to our outpatient office. Localized reversible high signal intensities on diffusion-weighted MRI were noted in 6 cases (8.6%). They were at the splenium of the corpus callosum in four cases (5.7%), and right frontal cortex and bilateral frontal white matter in one each. Convulsions were noted in five cases, and right hemiparesis was noted in three. None of the three cases of hemiparesis showed localized reversible high signal intensities on diffusion-weighted MRI. These lesions are reversible if the patients undergo treatment without delay. Conclusion: The significance of these lesions is still unclear. However, when a high signal intensity lesion that is not reasonable for the symptom is detected on diffusion-weighted MRI, an immediate check of the blood sugar level is mandatory. PMID:27695547

  19. Localized reversible high signal intensities on diffusion-weighted MRI in hypoglycemia: A study of 70 cases

    PubMed Central

    Katoh, Masahito; Yoshino, Masami; Aoki, Takeshi; Abumiya, Takeo; Imamura, Hiroyuki; Aida, Toshimitsu

    2016-01-01

    Introduction: It is well-known that localized reversible high signal intensities in the splenium of the corpus callosum or the basal ganglia appear on diffusion-weighted MRI in the presence of hypoglycemia. The aim of this study was to clarify the incidence and significance of such high signal intensity lesions. Results: We analyzed 70 cases of hypoglycemia with consciousness disturbance referred to our outpatient office. Localized reversible high signal intensities on diffusion-weighted MRI were noted in 6 cases (8.6%). They were at the splenium of the corpus callosum in four cases (5.7%), and right frontal cortex and bilateral frontal white matter in one each. Convulsions were noted in five cases, and right hemiparesis was noted in three. None of the three cases of hemiparesis showed localized reversible high signal intensities on diffusion-weighted MRI. These lesions are reversible if the patients undergo treatment without delay. Conclusion: The significance of these lesions is still unclear. However, when a high signal intensity lesion that is not reasonable for the symptom is detected on diffusion-weighted MRI, an immediate check of the blood sugar level is mandatory.

  20. Characterisation of in vivo ovarian cancer models by quantitative 1H magnetic resonance spectroscopy and diffusion-weighted imaging.

    PubMed

    Canese, Rossella; Pisanu, Maria Elena; Mezzanzanica, Delia; Ricci, Alessandro; Paris, Luisa; Bagnoli, Marina; Valeri, Barbara; Spada, Massimo; Venditti, Massimo; Cesolini, Albino; Rodomonte, Andrea; Giannini, Massimo; Canevari, Silvana; Podo, Franca; Iorio, Egidio

    2012-04-01

    Magnetic resonance imaging (MRI) and spectroscopy (MRS) offer powerful approaches for detecting physiological and metabolic alterations in malignancies and help investigate underlying molecular mechanisms. Research on epithelial ovarian carcinoma (EOC), the gynaecological malignancy with the highest death rate characterised by frequent relapse and onset of drug resistance, could benefit from application of these molecular imaging approaches. In this study, MRI/MRS were used to characterise solid tumour models obtained by subcutaneous (s.c.) or intraperitoneal (i.p.) implantation of human SKOV3.ip cells in severe combined immunodeficiency (SCID) mice. In vivo MRI/MRS, ex vivo magic-angle-spinning (MAS), and in vitro (1)H-NMR measurements were carried out at 4.7 T, 9.4 T, and 9.4/16.5 T, respectively. MRI evaluation was performed by T1-, T2-, and diffusion-weighted (DW) multislice spin-echo imaging. The in vivo (1)H spectra of all tumour models showed a prominent resonance of total choline-containing metabolites (tCho). Quantitative in vivo MRS of both i.p. and s.c. SKOV3.ip xenografts showed that the mean tCho content was in the 2.9-4.5 mM range, with a mean PCho/tCho ratio of 0.99 ± 0.01 [23 examinations, 14-34 days post injection (dpi)], in good agreement with ex vivo and in vitro analyses. Myo-inositol ranged between 11.7 and 17.0 mM, with a trend towards higher values in i.p. xenografts at 14-16 dpi. The average apparent diffusion coefficient (ADC) values of SKOV3.ip xenografts [1.64 ± 0.11 (n = 9, i.p.) and 1.58 ± 0.03 x10(-3) mm(2)/s (n = 7, s.c.)] were in agreement with values reported for tumours from patients with EOC, while the mean vascular signal fraction (VSF) was lower (≤ 4%), probably due to the more rapid growth of preclinical models. Both s.c. and i.p. xenografts are valuable preclinical models for monitoring biochemical and physiopathological changes associated with in vivo EOC tumour growth and response to therapy, which may serve as the

  1. Role of Diffusion-Weighted Magnetic Resonance Imaging in Predicting Sensitivity to Chemoradiotherapy in Muscle-Invasive Bladder Cancer

    SciTech Connect

    Yoshida, Soichiro; Koga, Fumitaka; Kobayashi, Shuichiro; Ishii, Chikako; Tanaka, Hiroshi; Tanaka, Hajime; Komai, Yoshinobu; Saito, Kazutaka; Masuda, Hitoshi; Fujii, Yasuhisa; Kawakami, Satoru; Kihara, Kazunori

    2012-05-01

    Purpose: In chemoradiation (CRT)-based bladder-sparing approaches for muscle invasive bladder cancer (MIBC), patients who respond favorably to induction CRT enjoy the benefits of bladder preservation, whereas nonresponders do not. Thus, accurate prediction of CRT sensitivity would optimize patient selection for bladder-sparing protocols. Diffusion-weighted MRI (DW-MRI) is a functional imaging technique that quantifies the diffusion of water molecules in a noninvasive manner. We investigated whether DW-MRI predicts CRT sensitivity of MIBC. Methods and Materials: The study cohort consisted of 23 MIBC patients (cT2/T3 = 7/16) who underwent induction CRT consisting of radiotherapy to the small pelvis (40 Gy) with two cycles of cisplatin (20 mg/day for 5 days), followed by partial or radical cystectomy. All patients underwent DW-MRI before the initiation of treatment. Associations of apparent diffusion coefficient (ADC) values with CRT sensitivity were analyzed. The proliferative potential of MIBC was also assessed by analyzing the Ki-67 labeling index (LI) in pretherapeutic biopsy specimens. Results: Thirteen patients (57%) achieved pathologic complete response (pCR) to CRT. These CRT-sensitive MIBCs showed significantly lower ADC values (median, 0.63 Multiplication-Sign 10{sup -3} mm{sup 2}/s; range, 0.43-0.77) than CRT-resistant (no pCR) MIBCs (median, 0.84 Multiplication-Sign 10{sup -3} mm{sup 2}/s; range, 0.69-1.09; p = 0.0003). Multivariate analysis identified ADC value as the only significant and independent predictor of CRT sensitivity (p < 0.0001; odds ratio per 0.001 Multiplication-Sign 10{sup -3} mm{sup 2}/s increase, 1.03; 95% confidence interval, 1.01-1.08). With a cutoff ADC value at 0.74 Multiplication-Sign 10{sup -3} mm{sup 2}/s, sensitivity/specificity/accuracy in predicting CRT sensitivity was 92/90/91%. Ki-67 LI was significantly higher in CRT-sensitive MIBCs (p = 0.0005) and significantly and inversely correlated with ADC values ({rho} = -0.67, p = 0

  2. Diffusion-weighted MRI for Staging and Evaluating Response in Diffuse Large B-cell Lymphoma: A Pilot Study

    PubMed Central

    Siegel, Marilyn J.; Jokerst, Clint E.; Rajderkar, Dhana; Hildebolt, Charles F.; Goyal, Sagun; Dehdashti, Farrokh; Johnston, Nina Wagner; Siegel, Barry A.

    2014-01-01

    Purpose To compare diffusion-weighted magnetic resonance imaging (DW-MRI) with positron emission tomography/computed tomography (PET/CT) for staging and evaluating treatment response in patients with diffuse large B-cell lymphoma (DLBCL). Materials and Methods Institutional review board approval was obtained for this study; all subjects gave informed consent. Twelve patients were imaged before treatment and 8 of these also were imaged after two cycles of chemotherapy using both DW-MRI and PET/CT. Up to six target lesions were selected at baseline for response assessment based on International Working Group criteria (nodes >1.5 cm long diameter and extranodal lesions >1cm long diameter). For pretreatment staging, visual analysis of the numbers of nodal and extranodal lesions based on PET/CT was performed. For interim response assessment after cycle 2 of chemotherapy, residual tumor sites were assessed visually and percentage changes in target lesion size, maximum standardized uptake value (SUVmax) and apparent diffusion coefficient (ADC) from pretreatment values were calculated. Results In 12 patients studied pretreatment, there were 46 nodal and 16 extranodal sites of lymphomatous involvement. Agreement between DW-MRI and PET/CT for overall lesion detection was 97% (60/62 tumor sites; 44/46 nodal and 16/16 extranodal lesions) and for Ann Arbor stage it was 100%. In the 8 patients who had interim assessment, 5 of their 49 tumor sites remained abnormal on visual analysis of both DW-MRI and PET/CT and there was one false-positive on DW-MRI. Of their 24 target lesions, mean pretreatment ADC value, tumor size and SUVmax were 772 μm2/s, 21.3 cm2 and 16.9 g/mL, respectively. At interim assessment of the same 24 target lesions, ADC values increased by 85% tumor size decreased by 74%, and SUVmax decreased by 83% (all p<0.01 versus baseline). Conclusion DW-MRI provides results comparable to those of PET/CT for staging and early response assessment in patients with DLBCL

  3. Quantification of fibrosis in infarcted swine hearts by ex vivo late gadolinium-enhancement and diffusion-weighted MRI methods

    NASA Astrophysics Data System (ADS)

    Pop, Mihaela; Ghugre, Nilesh R.; Ramanan, Venkat; Morikawa, Lily; Stanisz, Greg; Dick, Alexander J.; Wright, Graham A.

    2013-08-01

    Many have speculated that MRI signal characteristics can be used to identify regions of heterogeneous infarct associated with an arrhythmogenic substrate; however, direct evidence of this relationship is limited. The aim of this study was to demonstrate the remodelling characteristics of fibrosis by means of histology and high-resolution MR imaging. For this purpose, we performed whole-mount histology in heart samples (n = 9) collected from five swine at six weeks post-infarction and compared the extent of fibrosis in the infarcted areas delineated in these histological images with that obtained ex vivo by MRI using late gadolinium-enhancement (LGE) and diffusion-weighted imaging (DWI) methods. All MR images were obtained at a submillimetre resolution (i.e., voxel size of 0.6×0.6×1.2 mm3). Specifically, in the histology images, we differentiated moderate fibrosis (consisting of a mixture of viable and non-viable myocytes, known as border zone, BZ) from severe fibrosis (i.e., the dense scar). Correspondingly, tissue heterogeneities in the MR images were categorized by a Gaussian mixture model into healthy, BZ and scar. Our results showed that (a) both MRI methods were capable of qualitatively distinguishing sharp edges between dense scar and healthy tissue from regions of heterogeneous BZ; (b) the BZ and dense scar areas had intermediate-to-high increased values of signal intensity in the LGE images and of apparent diffusion coefficient in the DWI, respectively. In addition, as demonstrated by the Picrosirius Red and immunohistochemistry stains, the viable bundles in the BZ were clearly separated by thin collagen strands and had reduced expression of Cx43, whereas the core scar was composed of dense fibrosis. A quantitative analysis demonstrated that the comparison between BZ/scar extent in LGE and DWI to the corresponding areas identified in histology yielded very good correlations (i.e., for the scar identified by LGE, R2 was 0.96 compared to R2 = 0.93 for the

  4. Inter- and Intra-Observer Repeatability of Quantitative Whole-Body, Diffusion-Weighted Imaging (WBDWI) in Metastatic Bone Disease.

    PubMed

    Blackledge, Matthew D; Tunariu, Nina; Orton, Matthew R; Padhani, Anwar R; Collins, David J; Leach, Martin O; Koh, Dow-Mu

    2016-01-01

    Quantitative whole-body diffusion-weighted MRI (WB-DWI) is now possible using semi-automatic segmentation techniques. The method enables whole-body estimates of global Apparent Diffusion Coefficient (gADC) and total Diffusion Volume (tDV), both of which have demonstrated considerable utility for assessing treatment response in patients with bone metastases from primary prostate and breast cancers. Here we investigate the agreement (inter-observer repeatability) between two radiologists in their definition of Volumes Of Interest (VOIs) and subsequent assessment of tDV and gADC on an exploratory patient cohort of nine. Furthermore, each radiologist was asked to repeat his or her measurements on the same patient data sets one month later to identify the intra-observer repeatability of the technique. Using a Markov Chain Monte Carlo (MCMC) estimation method provided full posterior probabilities of repeatability measures along with maximum a-posteriori values and 95% confidence intervals. Our estimates of the inter-observer Intraclass Correlation Coefficient (ICCinter) for log-tDV and median gADC were 1.00 (0.97-1.00) and 0.99 (0.89-0.99) respectively, indicating excellent observer agreement for these metrics. Mean gADC values were found to have ICCinter = 0.97 (0.81-0.99) indicating a slight sensitivity to outliers in the derived distributions of gADC. Of the higher order gADC statistics, skewness was demonstrated to have good inter-user agreement with ICCinter = 0.99 (0.86-1.00), whereas gADC variance and kurtosis performed relatively poorly: 0.89 (0.39-0.97) and 0.96 (0.69-0.99) respectively. Estimates of intra-observer repeatability (ICCintra) demonstrated similar results: 0.99 (0.95-1.00) for log-tDV, 0.98 (0.89-0.99) and 0.97 (0.83-0.99) for median and mean gADC respectively, 0.64 (0.25-0.88) for gADC variance, 0.85 (0.57-0.95) for gADC skewness and 0.85 (0.57-0.95) for gADC kurtosis. Further investigation of two anomalous patient cases revealed that a very small

  5. Precursor times of abnormal b-values prior to mainshocks

    NASA Astrophysics Data System (ADS)

    Wang, Jeen-Hwa; Chen, Kou-Cheng; Leu, Peih-Lin; Chang, Chien-Hsin

    2016-07-01

    Seismic observations exhibit the presence of abnormal b-values prior to numerous earthquakes. The time interval from the appearance of abnormal b-values to the occurrence of mainshock is called the precursor time. There are two kinds of precursor times in use: the first one denoted by T is the time interval from the moment when the b-value starts to increase from the normal one to the abnormal one to the occurrence time of the forthcoming mainshock, and the second one denoted by T p is the time interval from the moment when the abnormal b-value reaches the peak one to the occurrence time of the forthcoming mainshock. Let T* be the waiting time from the moment when the abnormal b-value returned to the normal one to the occurrence time of the forthcoming mainshock. The precursor time, T (usually in days), has been found to be related to the magnitude, M, of the mainshock expected in a linear form as log( T) = q + rM where q and r are the coefficient and slope, respectively. In this study, the values of T, T p , and T* of 45 earthquakes with 3 ≤ M ≤ 9 occurred in various tectonic regions are compiled from or measured from the temporal variations in b-values given in numerous source materials. The relationships of T and T p , respectively, versus M are inferred from compiled data. The difference between the values of T and T p decreases with increasing M. In addition, the plots of T*/ T versus M, T* versus T, and T* versus T- T* will be made and related equations between two quantities will be inferred from given data.

  6. Spatially-constrained probability distribution model of incoherent motion (SPIM) for abdominal diffusion-weighted MRI.

    PubMed

    Kurugol, Sila; Freiman, Moti; Afacan, Onur; Perez-Rossello, Jeannette M; Callahan, Michael J; Warfield, Simon K

    2016-08-01

    Quantitative diffusion-weighted MR imaging (DW-MRI) of the body enables characterization of the tissue microenvironment by measuring variations in the mobility of water molecules. The diffusion signal decay model parameters are increasingly used to evaluate various diseases of abdominal organs such as the liver and spleen. However, previous signal decay models (i.e., mono-exponential, bi-exponential intra-voxel incoherent motion (IVIM) and stretched exponential models) only provide insight into the average of the distribution of the signal decay rather than explicitly describe the entire range of diffusion scales. In this work, we propose a probability distribution model of incoherent motion that uses a mixture of Gamma distributions to fully characterize the multi-scale nature of diffusion within a voxel. Further, we improve the robustness of the distribution parameter estimates by integrating spatial homogeneity prior into the probability distribution model of incoherent motion (SPIM) and by using the fusion bootstrap solver (FBM) to estimate the model parameters. We evaluated the improvement in quantitative DW-MRI analysis achieved with the SPIM model in terms of accuracy, precision and reproducibility of parameter estimation in both simulated data and in 68 abdominal in-vivo DW-MRIs. Our results show that the SPIM model not only substantially reduced parameter estimation errors by up to 26%; it also significantly improved the robustness of the parameter estimates (paired Student's t-test, p < 0.0001) by reducing the coefficient of variation (CV) of estimated parameters compared to those produced by previous models. In addition, the SPIM model improves the parameter estimates reproducibility for both intra- (up to 47%) and inter-session (up to 30%) estimates compared to those generated by previous models. Thus, the SPIM model has the potential to improve accuracy, precision and robustness of quantitative abdominal DW-MRI analysis for clinical applications. PMID

  7. Diffusion-weighted imaging in cancer: Physical foundations and applications of Restriction Spectrum Imaging

    PubMed Central

    White, Nathan S.; McDonald, Carrie; Farid, Niky; Kuperman, Josh; Karow, David; Schenker-Ahmed, Natalie M.; Bartsch, Hauke; Rakow-Penner, Rebecca; Holland, Dominic; Shabaik, Ahmed; Bjørnerud, Atle; Hope, Tuva; Hattangadi-Gluth, Jona; Liss, Michael; Parsons, J. Kellogg; Chen, Clark C.; Raman, Steve; Margolis, Daniel; Reiter, Robert E.; Marks, Leonard; Kesari, Santosh; Mundt, Arno J.; Kane, Chris J.; Carter, Bob S.; Bradley, William G.; Dale, Anders M.

    2014-01-01

    Diffusion weighted imaging (DWI) has been at the forefront of cancer imaging since the early 2000’s. Prior to its application in clinical oncology, this powerful technique had already achieved widespread recognition due to its utility in the diagnosis of cerebral infarction. Following this initial success, the ability of DWI to detect inherent tissue contrast began to be exploited in the field of oncology. Although the initial oncologic applications for tumor detection and characterization, assessing treatment response, and predicting survival were primarily in the field of neuro-oncology, the scope of DWI has since broadened to include oncologic imaging of the prostate gland, breast, and liver. Despite its growing success and application, misconceptions as to the underlying physical basis of the DWI signal exist among researchers and clinicians alike. In this review, we provide a detailed explanation of the biophysical basis of diffusion contrast, emphasizing the difference between hindered and restricted diffusion, and elucidating how diffusion parameters in tissue are derived from the measurements via the diffusion model. We describe one advanced DWI modeling technique, called Restriction Spectrum Imaging (RSI). This technique offers a more direct in vivo measure of tumor cells, due to its ability to distinguish separable pools of water within tissue based on their intrinsic diffusion characteristics. Using RSI as an example, we then highlight the ability of advanced DWI techniques to address key clinical challenges in neuro-oncology, including improved tumor conspicuity, distinguishing actual response to therapy from pseudoresponse, and delineation of white matter tracts in regions of peritumoral edema. We also discuss how RSI, combined with new methods for correction of spatial distortions inherent diffusion MRI scans, may enable more precise spatial targeting of lesions, with implications for radiation oncology, and surgical planning. PMID:25183788

  8. Implementation and assessment of diffusion-weighted partial Fourier readout-segmented echo-planar imaging.

    PubMed

    Frost, Robert; Porter, David A; Miller, Karla L; Jezzard, Peter

    2012-08-01

    Single-shot echo-planar imaging has been used widely in diffusion magnetic resonance imaging due to the difficulties in correcting motion-induced phase corruption in multishot data. Readout-segmented EPI has addressed the multishot problem by introducing a two-dimensional nonlinear navigator correction with online reacquisition of uncorrectable data to enable acquisition of high-resolution diffusion data with reduced susceptibility artifact and T*(2) blurring. The primary shortcoming of readout-segmented EPI in its current form is its long acquisition time (longer than similar resolution single-shot echo-planar imaging protocols by approximately the number of readout segments), which limits the number of diffusion directions. By omitting readout segments at one side of k-space and using partial Fourier reconstruction, readout-segmented EPI imaging times could be reduced. In this study, the effects of homodyne and projection onto convex sets reconstructions on estimates of the fractional anisotropy, mean diffusivity, and diffusion orientation in fiber tracts and raw T(2)- and trace-weighted signal are compared, along with signal-to-noise ratio results. It is found that projections onto convex sets reconstruction with 3/5 segments in a 2 mm isotropic diffusion tensor image acquisition and 9/13 segments in a 0.9 × 0.9 × 4.0 mm(3) diffusion-weighted image acquisition provide good fidelity relative to the full k-space parameters. This allows application of readout-segmented EPI to tractography studies, and clinical stroke and oncology protocols.

  9. Diffusion-weighted imaging in cancer: physical foundations and applications of restriction spectrum imaging.

    PubMed

    White, Nathan S; McDonald, Carrie; McDonald, Carrie R; Farid, Niky; Kuperman, Josh; Karow, David; Schenker-Ahmed, Natalie M; Bartsch, Hauke; Rakow-Penner, Rebecca; Holland, Dominic; Shabaik, Ahmed; Bjørnerud, Atle; Hope, Tuva; Hattangadi-Gluth, Jona; Liss, Michael; Parsons, J Kellogg; Chen, Clark C; Raman, Steve; Margolis, Daniel; Reiter, Robert E; Marks, Leonard; Kesari, Santosh; Mundt, Arno J; Kane, Christopher J; Kaine, Christopher J; Carter, Bob S; Bradley, William G; Dale, Anders M

    2014-09-01

    Diffusion-weighted imaging (DWI) has been at the forefront of cancer imaging since the early 2000s. Before its application in clinical oncology, this powerful technique had already achieved widespread recognition due to its utility in the diagnosis of cerebral infarction. Following this initial success, the ability of DWI to detect inherent tissue contrast began to be exploited in the field of oncology. Although the initial oncologic applications for tumor detection and characterization, assessing treatment response, and predicting survival were primarily in the field of neurooncology, the scope of DWI has since broadened to include oncologic imaging of the prostate gland, breast, and liver. Despite its growing success and application, misconceptions about the underlying physical basis of the DWI signal exist among researchers and clinicians alike. In this review, we provide a detailed explanation of the biophysical basis of diffusion contrast, emphasizing the difference between hindered and restricted diffusion, and elucidating how diffusion parameters in tissue are derived from the measurements via the diffusion model. We describe one advanced DWI modeling technique, called restriction spectrum imaging (RSI). This technique offers a more direct in vivo measure of tumor cells, due to its ability to distinguish separable pools of water within tissue based on their intrinsic diffusion characteristics. Using RSI as an example, we then highlight the ability of advanced DWI techniques to address key clinical challenges in neurooncology, including improved tumor conspicuity, distinguishing actual response to therapy from pseudoresponse, and delineation of white matter tracts in regions of peritumoral edema. We also discuss how RSI, combined with new methods for correction of spatial distortions inherent in diffusion MRI scans, may enable more precise spatial targeting of lesions, with implications for radiation oncology and surgical planning. See all articles in this

  10. Diffusion-weighted imaging in cancer: physical foundations and applications of restriction spectrum imaging.

    PubMed

    White, Nathan S; McDonald, Carrie; McDonald, Carrie R; Farid, Niky; Kuperman, Josh; Karow, David; Schenker-Ahmed, Natalie M; Bartsch, Hauke; Rakow-Penner, Rebecca; Holland, Dominic; Shabaik, Ahmed; Bjørnerud, Atle; Hope, Tuva; Hattangadi-Gluth, Jona; Liss, Michael; Parsons, J Kellogg; Chen, Clark C; Raman, Steve; Margolis, Daniel; Reiter, Robert E; Marks, Leonard; Kesari, Santosh; Mundt, Arno J; Kane, Christopher J; Kaine, Christopher J; Carter, Bob S; Bradley, William G; Dale, Anders M

    2014-09-01

    Diffusion-weighted imaging (DWI) has been at the forefront of cancer imaging since the early 2000s. Before its application in clinical oncology, this powerful technique had already achieved widespread recognition due to its utility in the diagnosis of cerebral infarction. Following this initial success, the ability of DWI to detect inherent tissue contrast began to be exploited in the field of oncology. Although the initial oncologic applications for tumor detection and characterization, assessing treatment response, and predicting survival were primarily in the field of neurooncology, the scope of DWI has since broadened to include oncologic imaging of the prostate gland, breast, and liver. Despite its growing success and application, misconceptions about the underlying physical basis of the DWI signal exist among researchers and clinicians alike. In this review, we provide a detailed explanation of the biophysical basis of diffusion contrast, emphasizing the difference between hindered and restricted diffusion, and elucidating how diffusion parameters in tissue are derived from the measurements via the diffusion model. We describe one advanced DWI modeling technique, called restriction spectrum imaging (RSI). This technique offers a more direct in vivo measure of tumor cells, due to its ability to distinguish separable pools of water within tissue based on their intrinsic diffusion characteristics. Using RSI as an example, we then highlight the ability of advanced DWI techniques to address key clinical challenges in neurooncology, including improved tumor conspicuity, distinguishing actual response to therapy from pseudoresponse, and delineation of white matter tracts in regions of peritumoral edema. We also discuss how RSI, combined with new methods for correction of spatial distortions inherent in diffusion MRI scans, may enable more precise spatial targeting of lesions, with implications for radiation oncology and surgical planning. See all articles in this

  11. Acoustic Emission, b-values and Foliation Plane Anisotropy

    NASA Astrophysics Data System (ADS)

    Sehizadeh, Mahdi; Nasseri, Mohammad H.; Ye, Sheng; Young, R. Paul

    2016-04-01

    The b-value and D-value are two parameters related to size and distance distribution of earthquakes. There are many different factors affecting b-value such as stress state, thermal gradients, focal mechanism and heterogeneity. For example, the literature shows that the b-value changes systematically with respect to the focal mechanism. In laboratory experiments, foliation planes introduce a weakness in samples and can be considered as a potential for rupture or pre-existing faults, so they may exhibit similar relationships. The D-value defines the degree of clustering of earthquakes and would be expected to have a defined relationship with respect to the anisotropy. Using a unique facility in the Rock Fracture Dynamics laboratory at the University of Toronto, three sets of polyaxial experiments have been performed on cubic samples with foliation planes systematically oriented at different angles to the principal stress direction. During these tests, samples were loaded under controlled true-triaxial stress conditions until they failed or had severe damage and acoustic emission events were recorded using 18 sensors around the samples. The paper describes how the combination of stress state and foliation planes affects the b-value and D-value under laboratory conditions.

  12. Facies Analysis and b-Value for Operationally Induced Microseismicity

    NASA Astrophysics Data System (ADS)

    Eaton, D. W. S.; Davidsen, J.; Maghsoudi, S.

    2015-12-01

    Operationally induced microseismicity reveals brittle failure processes that occur during hydraulic fracturing stimulation of a rockmass. The b-value of the magnitude-frequency distribution is commonly used to characterize the relative abundance of high- to low-magnitude events. In contrast to earthquake fault systems with b ~ 1, microseismicity that is directly associated with hydraulic fracturing is typically characterized by b > 1.5. Recent studies show that such unusually high b-values may be primarily controlled by scaling properties of mechanical bed thickness within the treatment zone, since the occurrence of fracture arrest at bedding boundaries gives rise to stratabound fracture networks. Stress variations also influence the b-value. These concepts provide a framework for microseismic facies analysis, a novel approach for interpretation of microseismicity that facilitates delineation of lithofacies units and stress compartments for characterization of unconventional reservoirs. Microseismic facies units are recognized on the basis of clustering analysis and recognition of distinct sets of microseismic attributes, which include b-value (and other magnitude statistics), duration, transience, seismic moment density and seismic moment release rate in addition to commonly reported characteristics of azimuth and dimensions. A case study is presented, in which microseismic facies analysis is applied to characterize an unconventional reservoir.

  13. In vivo isotropic 3D diffusion tensor mapping of the rat brain using diffusion-weighted 3D MP-RAGE MRI.

    PubMed

    Numano, Tomokazu; Homma, Kazuhiro; Iwasaki, Nobuaki; Hyodo, Koji; Nitta, Naotaka; Hirose, Takeshi

    2006-04-01

    The purpose of this study was to examine the potential of diffusion-weighted (DW) three-dimensional (3D) MP-RAGE MRI for diffusion-tensor mapping of the rat brain in vivo. A DW-3D-MP-RAGE (3D-DWI) sequence was implemented at 2.0 T using six gradient orientations and a b value of 1000 s/mm2. In this sequence, the preparation sequence with a "90 degrees RF-motion proving gradient (MPG): MPG-180 degrees RF-MPG-90 degrees RF" pulse train (DW driven equilibrium Fourier transform) was used to sensitize the magnetization to diffusion. A centric k-space acquisition order was necessary to minimize saturation effects (T1 contamination) from tissues with short relaxation time. The image matrix was 128x128x128 (interpolated from 64x64x64 acquisitions), which resulted in small isotropic DW image data (voxel size: 0.273x0.273x0.273 mm3). Moreover, 3D-DWI-derived maps of the fractional anisotropy (FA), relative anisotropy (RA) and main-diffusion direction were completely free of susceptibility-induced signal losses and geometric distortions. Two well-known commissural fibers, the corpus callosum and anterior commissure, were indicated and shown to be in agreement with the locations of these known stereotaxic atlases. The experiment took 45 min, and shorter times should be possible in clinical application. The 3D-DWI sequence allows for in vivo 3D diffusion-tensor mapping of the rat brain without motion artifacts and susceptibility to distortion. PMID:16563958

  14. Diffusion Weighted Magnetic Resonance Imaging Assessment of Blood Flow in the Microvasculature of Abdominal Organs

    NASA Astrophysics Data System (ADS)

    Truica, Loredana Sorina

    In this thesis, water diffusion in human liver and placenta is studied using diffusion weighted magnetic resonance imaging. For short, randomly oriented vascular segments, intravascular water motion is diffusion-like. For tissues with large vascular compartments the diffusion decay is bi-exponential with one component corresponding to diffusing water and the other to water in the microvasculature. This model, known as the intravoxel incoherent motion (IVIM) model, is seldom used with abdominal organs because of motion artifacts. This limitation was overcome for the experiments reported here by introducing: 1) parallel imaging, 2) navigator echo respiratory triggering (NRT), 3) a double echo diffusion sequence that inherently compensates for eddy current effects, 4) SPAIR fat suppression and 5) a superior approach to image analysis. In particular, the use of NRT allowed us to use a free breathing protocol instead of the previously required breath hold protocol. The resulting DWI images were of high quality and motion artifact free. Diffusion decays were measured over a larger portion of the decay than had previously been reported and the results are considerably better than those previously reported. For both studies, reliable measurements of the diffusion coefficient (D), pseudo-diffusion coefficient (D) and perfusion fraction (f), were obtained using a region of interest analysis as well as a pixel-by-pixel approach. To within experimental error, all patients had the same values of D (1.10 mum 2/ms +/- 0.16 mum2/ms), D* (46 mum2/ms +/- 17 mum2/ms) and f (44.0% +/- 6.9%) in liver and D (1.8 mum 2/ms +/- 0.2 mum2/ms), D* (30 mum 2/ms +/- 12 mmu2/ms), and f (40% +/- 6%) in the placenta. No dependence on gestational age was found for the placental study. Parametric maps of f and D* were consistent with blood flow patterns in both systems. The model worked well for both investigated organs even though their anatomical structures are quite different. A method for

  15. Polypoid endometriosis of post vaginal fornix: utility of MRI imaging of pelvis with diffusion weighted imaging for diagnosis.

    PubMed

    Tham, W P; Busmanis, I; Tan, W C; Kwek, J W

    2016-06-01

    Polypoid endometriosis is an uncommon variant of endometriosis which can mimic malignancy due to its presentation as masses. We present a case of polypoid endometriosis which simulated cervical malignancy both on clinical examination and on computed tomography (CT) scanning and discuss how magnetic resonance (MR) imaging, in particular Diffusion Weighted Imaging (DWI), can help to distinguish this condition from true malignancy and avoid invasive surgery. PMID:27495891

  16. Inter- and Intra-Observer Repeatability of Quantitative Whole-Body, Diffusion-Weighted Imaging (WBDWI) in Metastatic Bone Disease.

    PubMed

    Blackledge, Matthew D; Tunariu, Nina; Orton, Matthew R; Padhani, Anwar R; Collins, David J; Leach, Martin O; Koh, Dow-Mu

    2016-01-01

    Quantitative whole-body diffusion-weighted MRI (WB-DWI) is now possible using semi-automatic segmentation techniques. The method enables whole-body estimates of global Apparent Diffusion Coefficient (gADC) and total Diffusion Volume (tDV), both of which have demonstrated considerable utility for assessing treatment response in patients with bone metastases from primary prostate and breast cancers. Here we investigate the agreement (inter-observer repeatability) between two radiologists in their definition of Volumes Of Interest (VOIs) and subsequent assessment of tDV and gADC on an exploratory patient cohort of nine. Furthermore, each radiologist was asked to repeat his or her measurements on the same patient data sets one month later to identify the intra-observer repeatability of the technique. Using a Markov Chain Monte Carlo (MCMC) estimation method provided full posterior probabilities of repeatability measures along with maximum a-posteriori values and 95% confidence intervals. Our estimates of the inter-observer Intraclass Correlation Coefficient (ICCinter) for log-tDV and median gADC were 1.00 (0.97-1.00) and 0.99 (0.89-0.99) respectively, indicating excellent observer agreement for these metrics. Mean gADC values were found to have ICCinter = 0.97 (0.81-0.99) indicating a slight sensitivity to outliers in the derived distributions of gADC. Of the higher order gADC statistics, skewness was demonstrated to have good inter-user agreement with ICCinter = 0.99 (0.86-1.00), whereas gADC variance and kurtosis performed relatively poorly: 0.89 (0.39-0.97) and 0.96 (0.69-0.99) respectively. Estimates of intra-observer repeatability (ICCintra) demonstrated similar results: 0.99 (0.95-1.00) for log-tDV, 0.98 (0.89-0.99) and 0.97 (0.83-0.99) for median and mean gADC respectively, 0.64 (0.25-0.88) for gADC variance, 0.85 (0.57-0.95) for gADC skewness and 0.85 (0.57-0.95) for gADC kurtosis. Further investigation of two anomalous patient cases revealed that a very small

  17. Inter- and Intra-Observer Repeatability of Quantitative Whole-Body, Diffusion-Weighted Imaging (WBDWI) in Metastatic Bone Disease

    PubMed Central

    Blackledge, Matthew D.; Tunariu, Nina; Orton, Matthew R.; Padhani, Anwar R.; Collins, David J.; Leach, Martin O.; Koh, Dow-Mu

    2016-01-01

    Quantitative whole-body diffusion-weighted MRI (WB-DWI) is now possible using semi-automatic segmentation techniques. The method enables whole-body estimates of global Apparent Diffusion Coefficient (gADC) and total Diffusion Volume (tDV), both of which have demonstrated considerable utility for assessing treatment response in patients with bone metastases from primary prostate and breast cancers. Here we investigate the agreement (inter-observer repeatability) between two radiologists in their definition of Volumes Of Interest (VOIs) and subsequent assessment of tDV and gADC on an exploratory patient cohort of nine. Furthermore, each radiologist was asked to repeat his or her measurements on the same patient data sets one month later to identify the intra-observer repeatability of the technique. Using a Markov Chain Monte Carlo (MCMC) estimation method provided full posterior probabilities of repeatability measures along with maximum a-posteriori values and 95% confidence intervals. Our estimates of the inter-observer Intraclass Correlation Coefficient (ICCinter) for log-tDV and median gADC were 1.00 (0.97–1.00) and 0.99 (0.89–0.99) respectively, indicating excellent observer agreement for these metrics. Mean gADC values were found to have ICCinter = 0.97 (0.81–0.99) indicating a slight sensitivity to outliers in the derived distributions of gADC. Of the higher order gADC statistics, skewness was demonstrated to have good inter-user agreement with ICCinter = 0.99 (0.86–1.00), whereas gADC variance and kurtosis performed relatively poorly: 0.89 (0.39–0.97) and 0.96 (0.69–0.99) respectively. Estimates of intra-observer repeatability (ICCintra) demonstrated similar results: 0.99 (0.95–1.00) for log-tDV, 0.98 (0.89–0.99) and 0.97 (0.83–0.99) for median and mean gADC respectively, 0.64 (0.25–0.88) for gADC variance, 0.85 (0.57–0.95) for gADC skewness and 0.85 (0.57–0.95) for gADC kurtosis. Further investigation of two anomalous patient cases

  18. Can Dynamic Contrast-Enhanced MRI (DCE-MRI) and Diffusion-Weighted MRI (DW-MRI) Evaluate Inflammation Disease

    PubMed Central

    Zhu, Jianguo; Zhang, Faming; Luan, Yun; Cao, Peng; Liu, Fei; He, Wenwen; Wang, Dehang

    2016-01-01

    Abstract The aim of the study was to investigate diagnosis efficacy of dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI) in Crohn's disease (CD). To find out the correlations between functional MRI parameters including Ktrans, Kep, Ve, Vp, and apparent diffusion coefficient (ADC) with a serologic biomarker. The relationships between pharmacokinetic parameters and ADC were also studied. Thirty-two patients with CD (22 men, 10 women; mean age: 30.5 years) and 18 healthy volunteers without any inflammatory disease (10 men, 8 women; mean age, 34.11 years) were enrolled into this approved prospective study. Pearson analysis was used to evaluate the correlation between Ktrans, Kep, Ve, Vp, and C-reactive protein (CRP), ADC, and CRP respectively. The diagnostic efficacy of the functional MRI parameters in terms of sensitivity and specificity were analyzed by receiver operating characteristic (ROC) curve analyses. Optimal cut-off values of each functional MRI parameters for differentiation of inflammatory from normal bowel were determined according to the Youden criterion. Mean value of Ktrans in the CD group was significantly higher than that of normal control group. Similar results were observed for Kep and Ve. On the contrary, the ADC value was lower in the CD group than that in the control group. Ktrans and Ve were shown to be correlated with CRP (r = 0.725, P < 0.001; r = 0.533, P = 0.002), meanwhile ADC showed negative correlation with CRP (r = −0.630, P < 0.001). There were negative correlations between the pharmacokinetic parameters and ADC, such as Ktrans to ADC (r = −0.856, P < 0.001), and Ve to ADC (r = −0.451, P = 0.01). The area under the curve (AUC) was 0.994 for Ktrans (P < 0.001), 0.905 for ADC (P < 0.001), 0.806 for Ve (P < 0.001), and 0.764 for Kep (P = 0.002). The cut-off point of the Ktrans was found to be 0.931 min–1. This value provided the best trade-off between

  19. Diffusion-weighted magnetic resonance imaging for prediction of tumor response to neoadjuvant chemoradiotherapy using irinotecan plus S-1 for rectal cancer

    PubMed Central

    DOI, HIROSHI; BEPPU, NAOHITO; KATO, TAKASHI; NODA, MASASHI; YANAGI, HIDENORI; TOMITA, NAOHIRO; KAMIKONYA, NORIHIKO; HIROTA, SHOZO

    2015-01-01

    The purpose of this study was to investigate the clinical value of diffusion-weighted (DW) magnetic resonance imaging (MRI) as a predictor of tumor response in patients receiving neoadjuvant chemoradiotherapy (NA-CRT) for rectal cancer (RC) through measurement of the apparent diffusion coefficient (ADC) value in each tumor. Neoadjuvant radiotherapy with a total dose of 45 Gy in 25 fractions was performed in all 16 patients with RC, combined with irinotecan and S-1. MRI was performed before and after NA-CRT. Multiple factors were assessed to predict the pathological response to NA-CRT. The pathological response rate was determined in 9 patients (56.3%). Statistical analyses indicated that the ADC value prior to NA-CRT was significantly lower in patients with a better response to NA-CRT (P=0.023). A cut-off value of 0.750×10−3 mm2/sec obtained by a receiver operating characteristic curve analysis indicated a sensitivity of 77.8% and specificity of 85.7% for pathological responders to NA-CRT. In addition, the patients with lower ADC values exhibited a greater pathological response to NA-CRT (P=0.041). In conclusion, the ADC value of MRI of RC patients treated with NA-CRT followed by surgery may provide valuable information to predict the response to NA-CRT. PMID:26623064

  20. New Magnetic Resonance Imaging Index for Renal Fibrosis Assessment: A Comparison between Diffusion-Weighted Imaging and T1 Mapping with Histological Validation.

    PubMed

    Friedli, I; Crowe, L A; Berchtold, L; Moll, S; Hadaya, K; de Perrot, T; Vesin, C; Martin, P-Y; de Seigneux, S; Vallée, J-P

    2016-01-01

    A need exists to noninvasively assess renal interstitial fibrosis, a common process to all kidney diseases and predictive of renal prognosis. In this translational study, Magnetic Resonance Imaging (MRI) T1 mapping and a new segmented Diffusion-Weighted Imaging (DWI) technique, for Apparent Diffusion Coefficient (ADC), were first compared to renal fibrosis in two well-controlled animal models to assess detection limits. Validation against biopsy was then performed in 33 kidney allograft recipients (KARs). Predictive MRI indices, ΔT1 and ΔADC (defined as the cortico-medullary differences), were compared to histology. In rats, both T1 and ADC correlated well with fibrosis and inflammation showing a difference between normal and diseased kidneys. In KARs, MRI indices were not sensitive to interstitial inflammation. By contrast, ΔADC outperformed ΔT1 with a stronger negative correlation to fibrosis (R(2) = 0.64 against R(2) = 0.29 p < 0.001). ΔADC tends to negative values in KARs harboring cortical fibrosis of more than 40%. Using a discriminant analysis method, the ΔADC, as a marker to detect such level of fibrosis or higher, led to a specificity and sensitivity of 100% and 71%, respectively. This new index has potential for noninvasive assessment of fibrosis in the clinical setting. PMID:27439482

  1. Negative signals for adenomyomatosis of the gallbladder upon diffusion-weighted whole body imaging with background body signal suppression/T2-weighted image fusion analysis

    PubMed Central

    TOMIZAWA, MINORU; SHINOZAKI, FUMINOBU; FUGO, KAZUNORI; SUNAOSHI, TAKAFUMI; SUGIYAMA, ERIKO; KANO, DAISUKE; SHITE, MISAKI; HAGA, RYOUTA; FUKAMIZU, YOSHIYA; KAGAYAMA, SATOSHI; HASEGAWA, RUMIKO; SHIRAI, YOSHINORI; MOTOYOSHI, YASUFUMI; SUGIYAMA, TAKAO; YAMAMOTO, SHIGENORI; KISHIMOTO, TAKASHI; ISHIGE, NAOKI

    2016-01-01

    Differentiation between adenomyomatosis (ADM) and cancer of the gallbladder is necessary during diagnosis. Diffusion-weighted whole body imaging with background body signal suppression (DWIBS) images are able to indicate cancer and inflammation. The fusion of a DWIBS with a T2 weighted image (DWIBS/T2) facilitates both functional and anatomical investigations. In the present study, patient records and images from patients with surgically confirmed ADM from April 2012 to October 2014 were analyzed retrospectively. The enrolled patients, including 6 men (64.2±13.1 years) and 4 women (57.3±12.4 years) were subjected to DWIBS/T2 during routine clinical practice. The diagnosis of ADM was based on magnetic resonance cholangiopancreatography, transabdominal ultrasonography, and endoscopic ultrasonography; ADM was diagnosed definitively when cystic lesions were observed, indicating the Rokitansky-Aschoff sinus. A single patient was indicated to be positive by DWIBS/T2 imaging. The Rokitansky-Aschoff sinus revealed a relatively high signal intensity; however, it was not as strong as that of the spleen. The signal intensity was also high on an apparent diffusion coefficient map, suggesting T2 shine-through. The thickened wall displayed low signal intensity. The aforementioned results indicate that ADM may be negative upon DWIBS/T2 imaging; one false positive case was determined to be ADM, accompanied by chronic cholecystitis. The majority of patients with ADM displayed negative findings upon DWIBS/T2 imaging, and chronic cholecystitis may cause false positives. PMID:27168802

  2. New Magnetic Resonance Imaging Index for Renal Fibrosis Assessment: A Comparison between Diffusion-Weighted Imaging and T1 Mapping with Histological Validation

    PubMed Central

    Friedli, I.; Crowe, L. A.; Berchtold, L.; Moll, S.; Hadaya, K.; de Perrot, T.; Vesin, C.; Martin, P.-Y.; de Seigneux, S.; Vallée, J.-P.

    2016-01-01

    A need exists to noninvasively assess renal interstitial fibrosis, a common process to all kidney diseases and predictive of renal prognosis. In this translational study, Magnetic Resonance Imaging (MRI) T1 mapping and a new segmented Diffusion-Weighted Imaging (DWI) technique, for Apparent Diffusion Coefficient (ADC), were first compared to renal fibrosis in two well-controlled animal models to assess detection limits. Validation against biopsy was then performed in 33 kidney allograft recipients (KARs). Predictive MRI indices, ΔT1 and ΔADC (defined as the cortico-medullary differences), were compared to histology. In rats, both T1 and ADC correlated well with fibrosis and inflammation showing a difference between normal and diseased kidneys. In KARs, MRI indices were not sensitive to interstitial inflammation. By contrast, ΔADC outperformed ΔT1 with a stronger negative correlation to fibrosis (R2 = 0.64 against R2 = 0.29 p < 0.001). ΔADC tends to negative values in KARs harboring cortical fibrosis of more than 40%. Using a discriminant analysis method, the ΔADC, as a marker to detect such level of fibrosis or higher, led to a specificity and sensitivity of 100% and 71%, respectively. This new index has potential for noninvasive assessment of fibrosis in the clinical setting. PMID:27439482

  3. Significance of magnetic resonance angiography-diffusion weighted imaging mismatch in hyperacute cerebral infarction.

    PubMed

    Deguchi, Ichiro; Takeda, Hidetaka; Furuya, Daisuke; Dembo, Tomohisa; Nagoya, Harumitsu; Kato, Yuji; Ito, Yasuo; Fukuoka, Takuya; Maruyama, Hajime; Tanahashi, Norio

    2012-02-01

    Therapeutic results with respect to lesion size were analyzed and compared in patients with hyperacute cerebral infarction with and without major artery lesions on magnetic resonance angiography (MRA) and in those who did and did not receive intravenous (IV) tissue plasminogen activator (t-PA). Of the patients with cerebral infarction who visited the hospital within 3 hours of onset between April 2007 and September 2009, 127 patients with cerebral infarction in the anterior circulation region in whom head magnetic resonance imaging (diffusion-weighted imaging [DWI]) or MRA was performed (81 men and 46 women; mean age, 71 ± 11 years) were enrolled. Major artery lesions (+) were defined as internal carotid artery occlusion and middle cerebral artery (M1/M2 segment) occlusion and ≥50% stenosis. Based on the presence or absence of major artery lesions and the size of DWI lesions, the subjects were divided into 3 groups: MRA-DWI mismatch (+) group [major artery lesion (+) and DWI-ASPECTS ≥6], MRA-DWI mismatch (-) group [major artery lesion (+) and DWI-ASPECTS <6], and major artery lesion (-) group. IV t-PA was given to 21 of the 64 patients in the MRA-DWI mismatch (+) group, to 1 of the 24 patients in the MRA-DWI mismatch (-) group, and to 9 of the 39 patients in the major artery lesion (-) group. In the MRA-DWI mismatch (+) group (n = 64), the median National Institutes of Health Stroke Scale (NIHSS) score on admission was higher in t-PA-treated patients than in t-PA-untreated patients (15 vs 11). The modified Rankin scale (mRS) score at day 90 after onset was more favorable in t-PA-treated patients (0-2 in 10 patients [48%] and 3-6 in 11 patients [52%]) than in t-PA-untreated patients (0-2 in 12 patients [28%] and 3-6 in 31 patients [72%]). After adjusting for admission NIHSS score, there was a significant difference in outcome (mRS score) between t-PA-treated patients (0-2 in 10 patients [48%] and 3-6 in 11 patients [52%]) and t-PA-untreated patients (0-2 in 3

  4. Monitoring of the tumor response to nano-graphene oxide-mediated photothermal/photodynamic therapy by diffusion-weighted and BOLD MRI

    NASA Astrophysics Data System (ADS)

    Cao, Jianbo; An, Hengqing; Huang, Xinglu; Fu, Guifeng; Zhuang, Rongqiang; Zhu, Lei; Xie, Jin; Zhang, Fan

    2016-05-01

    Photothermal therapy (PTT) and photodynamic therapy (PDT) are promising cancer treatment modalities. Because each modality has its own set of advantages and limitations, there has been interest in developing methods that can co-deliver the two regimens for enhanced tumor treatment. Among the efforts, nano-graphene oxide-mediated phototherapies have recently attracted much attention. Nano-graphene oxide has a broad absorbance spectrum and can be loaded with photosensitizers, such as chlorin e6, with high efficiency. Chlorin e6-loaded and PEGylated nano-graphene (GO-PEG-Ce6) can be excited at 660 nm, 808 nm, or both, to induce PDT, PTT, or PDT/PTT combination. Despite the potential of the treatments, there is a lack of a diagnostic tool which can monitor their therapeutic response in a non-invasive and prognostic manner; such an ability is urgently needed for the transformation and translation of the technologies. In this study, we performed diffusion-weighted and blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI) after GO-PEG-Ce6-mediated PTT, PDT, or PTT/PDT. We found that after efficient PTT, there is a significant increase of the tumor apparent diffusion coefficient (ADC) value in diffusion-weighted imaging (DWI) maps; meanwhile, an efficient PDT led to an increase of in BOLD images. In both the cases, the amplitude of the increase was correlated with the treatment outcomes. More interestingly, a synergistic treatment efficacy was observed when the PTT/PDT combination was applied, and the combination was associated with a greater ADC and increase than when either modality was used alone. In particular, the PTT/PDT condition that induced the most dramatic short-term increase of the ADC value (>70%) caused the most effective tumor control in the long-run, with 60% of the treated animals being tumor-free after 60 days. These results suggest the great promise of the combination of DWI and BOLD MRI as a tool for accurate monitoring and prognosis

  5. A study on quantitative analyses before and after injection of contrast medium in spine examinations performed by using diffusion weighted image

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Hwan; Lee, Hae-Kag; Kim, Yong-Kyun; Dong, Kyung-Rae; Chung, Woon-Kwan; Joo, Kyu-Ji

    2013-02-01

    This study examined the changes in the signal-to-noise ratio (SNR), the contrast-to-noise ratio (CNR) and the apparent diffusion coefficient (ADC) of metastatic cancer in the lumbar region by using diffusion weighted image taken with a 1.5 T (Tesla) magnetic resonance (MR) scanner before and after injecting a contrast medium. The study enrolled 30 healthy people and 30 patients with metastatic spine cancer from patients who underwent a lumbar MRI scan from January 2011 to October 2012. A 1.5 T MR scanner was used to obtain the diffusion weighted images (DWIs) before and after injecting the contrast medium. In the group with metastatic spine cancer, the SNR and the CNR were measured in three parts among the L1-L5 lumbar vertebrae, which included the part with metastatic spine cancer, the area of the spine with spine cancer, and the area of spine under the region with cancer. In the acquired ADC map image, the SNRs and the ADCs of the three parts were measured in ADC map images. Among the healthy subjects, the measurements were conducted for the lumbar regions of L3-L5. According to the results, in the group with metastatic spine cancer, the SNR in the DWI before the contrast medium had been injected was lowest in the part with spine cancer. In the DWI after the contrast medium had been injected, the SNR and the CNR were increased in all three parts. In the ADC map image after the contrast medium had been injected, the SNR decreased in all three parts compared to the SNR before the contrast had been injected. The ADC after had been injected the contrast medium was decreased in all three parts compared to that before the contrast medium had been injected. In the healthy group, the SNR was increased in the L3-L5 lumbar regions in the DWI. In the ADC map image, the SNR in all the three parts was decreased in the DWI after injecting the contrast medium had been injected. The ADC in the ADC map image was also decreased in all three parts.

  6. The value of intravoxel incoherent motion model-based diffusion-weighted imaging for outcome prediction in resin-based radioembolization of breast cancer liver metastases

    PubMed Central

    Pieper, Claus Christian; Meyer, Carsten; Sprinkart, Alois Martin; Block, Wolfgang; Ahmadzadehfar, Hojjat; Schild, Hans Heinz; Mürtz, Petra; Kukuk, Guido Matthias

    2016-01-01

    Purpose To evaluate prognostic values of clinical and diffusion-weighted magnetic resonance imaging-derived intravoxel incoherent motion (IVIM) parameters in patients undergoing primary radioembolization for metastatic breast cancer liver metastases. Subjects and methods A total of 21 females (mean age 54 years, range 43–72 years) with liver-dominant metastatic breast cancer underwent standard liver magnetic resonance imaging (1.5 T, diffusion-weighted imaging with b-values of 0, 50, and 800 s/mm2) before and 4–6 weeks after radioembolization. The IVIM model-derived estimated diffusion coefficient D’ and the perfusion fraction f’ were evaluated by averaging the values of the two largest treated metastases in each patient. Kaplan–Meier and Cox regression analyses for overall survival (OS) were performed. Investigated parameters were changes in f’- and D’-values after therapy, age, sex, Eastern Cooperative Oncology Group (ECOG) status, grading of primary tumor, hepatic tumor burden, presence of extrahepatic disease, baseline bilirubin, previous bevacizumab therapy, early stasis during radioembolization, chemotherapy after radioembolization, repeated radioembolization and Response Evaluation Criteria in Solid Tumors (RECIST) response at 6-week follow-up. Results Median OS after radioembolization was 6 (range 1.5–54.9) months. In patients with therapy-induced decreasing or stable f’-values, median OS was significantly longer than in those with increased f’-values (7.6 [range 2.6–54.9] vs 2.6 [range 1.5–17.4] months, P<0.0001). Longer median OS was also seen in patients with increased D’-values (6 [range 1.6–54.9] vs 2.8 [range 1.5–17.4] months, P=0.008). Patients with remission or stable disease (responders) according to RECIST survived longer than nonresponders (7.2 [range 2.6–54.9] vs 2.6 [range 1.5–17.4] months, P<0.0001). An ECOG status ≤1 resulted in longer median OS than >1 (7.6 [range 2.6–54.9] vs 1.7 [range 1.5–4

  7. Simulations on the influence of myelin water in diffusion-weighted imaging

    NASA Astrophysics Data System (ADS)

    Harkins, K. D.; Does, M. D.

    2016-07-01

    While myelinated axons present an important barrier to water diffusion, many models used to interpret DWI signal neglect other potential influences of myelin. In this work, Monte Carlo simulations were used to test the sensitivity of DWI results to the diffusive properties of water within myelin. Within these simulations, the apparent diffusion coefficient (D app) varied slowly over several orders of magnitude of the coefficient of myelin water diffusion (D m), but exhibited important differences compared to D app values simulated that neglect D m (=0). Compared to D app, the apparent diffusion kurtosis (K app) was generally more sensitive to D m. Simulations also tested the sensitivity of D app and K app to the amount of myelin present. Unique variations in D app and K app caused by differences in the myelin volume fraction were diminished when myelin water diffusion was included. Also, expected trends in D app and K app with experimental echo time were reduced or inverted when accounting for myelin water diffusion, and these reduced/inverted trends were seen experimentally in ex vivo rat brain DWI experiments. In general, myelin water has the potential to subtly influence DWI results and bias models of DWI that neglect these components of white matter.

  8. Multi-modal pharmacokinetic modelling for DCE-MRI: using diffusion weighted imaging to constrain the local arterial input function

    NASA Astrophysics Data System (ADS)

    Hamy, Valentin; Modat, Marc; Shipley, Rebecca; Dikaios, Nikos; Cleary, Jon; Punwani, Shonit; Ourselin, Sebastien; Atkinson, David; Melbourne, Andrew

    2014-03-01

    The routine acquisition of multi-modal magnetic resonance imaging data in oncology yields the possibility of combined model fitting of traditionally separate models of tissue structure and function. In this work we hypothesise that diffusion weighted imaging data may help constrain the fitting of pharmacokinetic models to dynamic contrast enhanced (DCE) MRI data. Parameters related to tissue perfusion in the intra-voxel incoherent motion (IVIM) modelling of diffusion weighted MRI provide local information on how tissue is likely to perfuse that can be utilised to guide DCE modelling via local modification of the arterial input function (AIF). In this study we investigate, based on multi-parametric head and neck MRI of 8 subjects (4 with head and neck tumours), the benefit of incorporating parameters derived from the IVIM model within the DCE modelling procedure. Although we find the benefit of this procedure to be marginal on the data used in this work, it is conceivable that a technique of this type will be of greater use in a different application.

  9. Detection of Low-Signal Pulvinar Areas Using Diffusion-Weighted Imaging in Patients with Dementia Experiencing Visual Hallucinations

    PubMed Central

    Sugiura, Mayuko; Satoh, Masayuki; Tabei, Ken-ichi; Saito, Tomoki; Mori, Mutsuki; Abe, Makiko; Kida, Hirotaka; Maeda, Masayuki; Sakuma, Hajime; Tomimoto, Hidekazu

    2016-01-01

    Background Little research has been conducted regarding the role of pulvinar nuclei in the pathogenesis of visual hallucinations due to the difficulty of assessing abnormalities in this region using conventional magnetic resonance imaging (MRI). The present study aimed to retrospectively investigate the relative abilities of diffusion-weighted imaging (DWI), fluid-attenuated inversion recovery (FLAIR), and susceptibility-weighted imaging (SWI) to visualize the pulvinar and to ascertain the relationship between pulvinar visualization and visual hallucinations. Methods A retrospective analysis of 3T MRIs from 73 patients (31 males, 42 females; mean age 73.5 ± 12.7 years) of the Memory Clinic of Mie University Hospital was conducted. Correlations between pulvinar visualization and the following were analyzed: age, sex, education, hypertension, hyperlipidemia, diabetes mellitus, Mini-Mental State Examination score, Evans index, and visual hallucinations. Results DWI detected low-signal pulvinar areas in approximately half of the patients (52.1%). Participants with pulvinar visualization were significantly older, and the pulvinar was more frequently visualized in patients who had experienced visual hallucinations compared to those who had not. No significant association was observed between whole brain atrophy and pulvinar visualization. Conclusions The results of the present study indicate that diffusion-weighted 3T MRI is the most suitable method for the detection of pulvinar nuclei in patients with dementia experiencing visual hallucinations. PMID:27790244

  10. Spatial b-value variations in the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Barth, A.

    2012-04-01

    The natural seismicity of the Upper Rhine Graben (URG) is of growing interest for science and society, since the management of deep geothermal power plants requires local hazard assessment. The availability of new bulletin data and the combination of catalogues from Germany, France and Switzerland allows us to analyse the spatial changes in the magnitude-frequency distribution along the Graben axis in detail. We derive magnitude conversions between the different bulletins to obtain a uniform earthquake catalogue and decluster the data to extract fore- and aftershocks resulting in a Poissonian event distribution. Since the density of monitoring seismometers has improved over time, we determine several intervals of magnitude completeness. Generally, our catalogue is complete for magnitudes ML ≥ 2.0 since 1982 for the entire URG. To incorporate high magnitude events it is essential to use historic earthquake data. Those magnitudes are estimated by their macroseismic intensity distribution, and thus, they have a high uncertainty compared to instrumental magnitudes. We show that historic earthquake magnitudes are overestimated by 0.4 magnitude units in the URG. We apply a spatial window on the final dataset and move it along the Graben axis. For each set of 50 events we determine local variations of the magnitude frequency distribution after Gutenberg-Richter by a maximum likelihood estimation. The seismicity rate for ML ≥ 2.0 varies between 2 per year per 1000 km2 in the southern URG and 0.2 per year per 1000 km2 in the northern URG. The b-values vary between 0.8 and 1.4 with the highest values around Freiburg, showing a high variability of the magnitude distribution in the URG. Additionally, we examine the hypocentral depth distribution along the Graben, which results in a seismically active upper and lower crust in the southern and northern parts, separated by the central part with missing seismicity in the lower crust. According to the spatial distribution of b-values

  11. Differentiating Laryngeal Carcinomas from Precursor Lesions by Diffusion-Weighted Magnetic Resonance Imaging at 3.0 T: A Preliminary Study

    PubMed Central

    Shang, De-Sheng; Ruan, Ling-Xiang; Zhou, Shui-Hong; Bao, Yang-Yang; Cheng, Ke-Jia; Wang, Qin-Ying

    2013-01-01

    Background Diffusion-weighted magnetic resonance imaging (DWI) has been introduced in head and neck cancers. Due to limitations in the performance of laryngeal DWI, including the complex anatomical structure of the larynx leading to susceptibility effects, the value of DWI in differentiating benign from malignant laryngeal lesions has largely been ignored. We assessed whether a threshold for the apparent diffusion coefficient (ADC) was useful in differentiating preoperative laryngeal carcinomas from precursor lesions by turbo spin-echo (TSE) DWI and 3.0-T magnetic resonance. Methods We evaluated DWI and the ADC value in 33 pathologically proven laryngeal carcinomas and 17 precancerous lesions. Results The sensitivity, specificity, and accuracy were 81.8%, 64.7%, 76.0% by laryngostroboscopy, respectively. The sensitivity, specificity, and accuracy of conventional magnetic resonance imaging were 90.9%, 76.5%, 86.0%, respectively. Qualitative DWI analysis produced sensitivity, specificity, and accuracy values of 100.0, 88.2, and 96.0%, respectively. The ADC values were lower for patients with laryngeal carcinoma (mean 1.195±0.32×10−3 mm2/s) versus those with laryngeal precancerous lesions (mean 1.780±0.32×10−3 mm2/s; P<0.001). ROC analysis showed that the area under the curve was 0.956 and the optimum threshold for the ADC was 1.455×10−3 mm2/s, resulting in a sensitivity of 94.1%, a specificity of 90.9%, and an accuracy of 92.9%. Conclusions Despite some limitations, including the small number of laryngeal carcinomas included, DWI may detect changes in tumor size and shape before they are visible by laryngostroboscopy. The ADC values were lower for patients with laryngeal carcinoma than for those with laryngeal precancerous lesions. The proposed cutoff for the ADC may help distinguish laryngeal carcinomas from laryngeal precancerous lesions. PMID:23874693

  12. Cerebral edema induced in mice by a convulsive dose of soman. Evaluation through diffusion-weighted magnetic resonance imaging and histology

    SciTech Connect

    Testylier, Guy . E-mail: guytestylier@crssa.net; Lahrech, Hana; Montigon, Olivier; Foquin, Annie; Delacour, Claire; Bernabe, Denis; Segebarth, Christoph; Dorandeu, Frederic; Carpentier, Pierre

    2007-04-15

    Purpose: In the present study, diffusion-weighted magnetic resonance imaging (DW-MRI) and histology were used to assess cerebral edema and lesions in mice intoxicated by a convulsive dose of soman, an organophosphate compound acting as an irreversible cholinesterase inhibitor. Methods: Three hours and 24 h after the intoxication with soman (172 {mu}g/kg), the mice were anesthetized with an isoflurane/N{sub 2}O mixture and their brain examined with DW-MRI. After the imaging sessions, the mice were sacrificed for histological analysis of their brain. Results: A decrease in the apparent diffusion coefficient (ADC) was detected as soon as 3 h after the intoxication and was found strongly enhanced at 24 h. A correlation was obtained between the ADC change and the severity of the overall brain damage (edema and cellular degeneration): the more severe the damage, the stronger the ADC drop. Anesthesia was shown to interrupt soman-induced seizures and to attenuate edema and cell change in certain sensitive brain areas. Finally, brain water content was assessed using the traditional dry/wet weight method. A significant increase of brain water was observed following the intoxication. Conclusions: The ADC decrease observed in the present study suggests that brain edema in soman poisoning is mainly intracellular and cytotoxic. Since entry of water into Brain was also evidenced, this type of edema is certainly mixed with others (vasogenic, hydrostatic, osmotic). The present study confirms the potential of DW-MRI as a non-invasive tool for monitoring the acute neuropathological consequences (edema and neurodegeneration) of soman-induced seizures.

  13. Diagnostic Performance of Fused Diffusion-Weighted Imaging Using Unenhanced or Postcontrast T1-Weighted MR Imaging in Patients With Breast Cancer

    PubMed Central

    Shin, Hee Jung; Chae, Eun Young; Choi, Woo Jung; Ha, Su Min; Park, Jin Young; Shin, Ki Chang; Cha, Joo Hee; Kim, Hak Hee

    2016-01-01

    Abstract To evaluate the diagnostic performance of fused diffusion-weighted imaging (DWI) using either unenhanced (UFMR) or early postcontrast T1-weighted imaging (PCFMR) to detect and characterize breast lesions in patients with breast cancer. This retrospective observational study was approved by institutional review board in our hospital and informed consents were waived. We retrospectively selected 87 consecutive patients who underwent preoperative breast magnetic resonance imaging, including DWI and definitive surgery. Both UFMR and PCFMR were reviewed by 5 radiologists for detection, lesion size, Breast Imaging Reporting and Data System final assessment, the probability of malignancy, lesion conspicuity, and apparent diffusion coefficients. A total of 129 lesions were identified by at least 2 readers on UFMR or PCFMR. Of 645 potentially detected lesions, there were 528 (82%) with UFMR and 554 (86%) with PCFMR. Malignant lesions or index cancers showed significantly higher detection rates than benign or additional lesions on both UFMR and PCFMR (P < 0.05). Area under the characteristic curves (AUCs) for predicting malignancy ranged 0.927 to 0.986 for UFMR, and 0.936 to 0.993 for PCFMR, which was not significantly different. Lesion conspicuity was significantly higher on PCFMR than UFMR (8.59 ± 1.67 vs 9.19 ± 1.36, respectively; P < 0.05) across 5 readers. Mean intraclass correlation coefficients for lesion size on UFMR and PCFMR were 0.89 and 0.92, respectively. Detection rates of index malignant lesions were similar for UFMR and PCFMR. Interobserver agreement for final assessments was reliable across 5 readers. Diagnostic accuracy for predicting malignancy with UFMR versus PCFMR was similar, although lesion conspicuity was significantly greater with the latter. PMID:27124054

  14. Value of hepatic diffusion-weighted magnetic resonance imaging in evaluating liver fibrosis following transarterial chemoembolization with low doses of chemotherapy.

    PubMed

    Li, Hong; Li, Na; Xiang, Qin; Zhou, Yan

    2014-08-01

    The aim of the present study was to investigate the value of apparent diffusion coefficients (ADCs) measured with magnetic resonance (MR) diffusion-weighted imaging (DWI) in evaluating liver fibrosis and curative effects on hepatocellular carcinoma (HCC) following transcatheter arterial chemoembolization (TACE) with low doses of chemotherapy. In total, 84 patients with HCC not recommended for surgical resection underwent TACE. The patients were divided into small dose (n=46) and conventional dose (n=38) chemotherapy groups, and underwent MR-DWI prior to and following TACE. Examination of the four liver fibrosis indexes, hyaluronate, laminin, human procollagen type-III and collagen type-IV, as well as ADC values (b=600 sec/mm(2)), was conducted in the two groups. With small dose chemotherapy, the ADC values were not significantly different preoperatively and postoperatively (P>0.05). By contrast, with a conventional dose, statistically significant differences were observed between the preoperative and postoperative ADC values (P<0.01). ADC values in the small and conventional dose chemotherapy groups prior to the first cycle of TACE were 1.613±0.133×10(-3) and 1.488±0.248×10(-3) mm(2)/sec, respectively, while following four cycles of TACE, the ADC values were 1.598±0.147×10(-3) and 1.206±0.222×10(-3) mm(2)/sec, respectively. With regard to chemotherapy, the ADC values before and after TACE were significantly different (P<0.05). A significant negative correlation was observed between the ADC values and the fibrosis stage (P<0.05). Therefore, hepatic MR-DWI plays a key role in evaluating liver fibrosis following TACE with low doses of chemotherapy, resulting in improved curative effects of TACE. PMID:25009633

  15. Early Detection of Therapeutic Response to Hepatic Arterial Infusion Chemotherapy of Liver Metastases from Colorectal Cancer Using Diffusion-Weighted MR Imaging

    SciTech Connect

    Marugami, Nagaaki; Tanaka, Toshihiro Kitano, Satoru; Hirohashi, Shinji; Nishiofuku, Hideyuki; Takahashi, Aki; Sakaguchi, Hiroshi; Matsuoka, Masaki; Otsuji, Toshio; Takahama, Junko; Higashiura, Wataru; Kichikawa, Kimihiko

    2009-07-15

    The purpose of this study was to investigate whether diffusion-weighted magnetic resonance imaging (DWI) is useful for early detection of the response of hepatic colorectal metastases to hepatic arterial infusion chemotherapy (HAIC) with 5-fluorouracil (5-FU). The subjects were 12 patients with hepatic colorectal metastases. The indwelling catheter for HAIC was placed in the hepatic artery, and 1000 mg/m{sup 2} 5-FU was given repeatedly once a week. DWI was performed before and 9 days after HAIC. The minimum and mean apparent diffusion coefficient (ADC) values (minADC and meanADC) were measured. The relative change in ADC values (%ADC) and the relative change in tumor size on follow-up CT after 3 months (reduction ratio) were determined. Liver metastases were divided into two groups, responder and nonresponder. The correlation between %ADC and reduction ratio was determined, and %ADC was compared between the two groups. Eleven patients successfully completed HAIC over the 3-month period; 48 metastatic lesions were evaluated. Positive correlations were observed for relative change between %minADC and reduction ratio (r = 0.709) and between %meanADC and reduction ratio (r = 0.536). Both %minADC and %meanADC were significantly greater in the responder group than in the nonresponder group. With the threshold determined as < 3.5%, the receiver-operating curve analysis showed higher sensitivity and specificity values for %minADC (100% and 92.6%, respectively) than for %meanADC (66.7% and 74.1%, respectively). In conclusion, the relative change in minimum ADC values on DWI may be useful for early detection of the response of liver metastases to HAIC with 5-FU.

  16. The Role of Diffusion-Weighted Magnetic Resonance Imaging in the Treatment Response Evaluation of Hepatocellular Carcinoma Patients Treated With Radiation Therapy

    SciTech Connect

    Yu, Jeong Il; Park, Hee Chul; Lim, Do Hoon; Choi, Yunseon; Jung, Sang Hoon; Paik, Seung Woon; Kim, Seong Hyun; Jeong, Woo Kyoung; Kim, Young Kon

    2014-07-15

    Purpose: We investigated the role of diffusion-weighted magnetic resonance imaging (DW MRI) as a response evaluation indicator for hepatocellular carcinoma (HCC) treated with radiation therapy (RT). Methods and Materials: Inclusion criteria of this retrospective study were DW MRI acquisition within 1 month before and 3 to 5 months after RT. In total, 48 patients were enrolled. Two radiation oncologists measured the apparent diffusion coefficient (ADC). Possible predictive factors, including alteration of the ADC value before and 3 to 5 month after RT, in relation to local progression-free survival (LPFS) were analyzed and compared. Results: Three months after RT, 6 patients (12.5%) showed a complete response, and 27 patients (56.3%) showed a partial response when evaluated using the modified response evaluation criteria in solid tumors (mRECIST). The average ADC ± SD values were 1.21 ± 0.27 ( × 10{sup −3} mm{sup 2}/s) before and 1.41 ± 0.36 ( × 10{sup −3} mm{sup 2}/s) after RT (P<.001). The most significant prognostic factor related to LPFS was mRECIST (P<.001). The increment of ADC value (≥20%) was also a significant factor (P=.02), but RECIST (version 1.1; P=.11) was not. When RECIST was combined with the increment of ADC value (≥20%), the LPFS rates were significantly different between the groups (P=.004), and the area under the curve value (0.745) was comparable with that of mRECIST (0.765). Conclusions: ADC value change before and after RT in HCC was closely related to LPFS. ADC value and RECIST may substitute for mRECIST in patients who cannot receive contrast agents.

  17. Cortical Blindness and Retrograde Amnesia Following Cerebral Angiography Studied by Early Diffusion Weighted MR imaging. A Case Report.

    PubMed

    Roccatagliata, L; Taveira-Lopes, L; Rossignol, M-D; Biondi, A

    2009-12-14

    Cortical blindness is a well described neuro-ophthalmologic complication of angiography due to neurotoxicity following contrast media exposure. A rarer association with retrograde amnesia has also been reported. Since ischemic stroke due to embolism remains the most common aetiology of neurological complications of diagnostic and therapeutic arterial catheterisation, prompt identification of the mechanism responsible for the clinical symptoms is essential for patient management. Although CT and conventional MRI findings have been reported in this condition, experience with diffusion weighted (DW) sequences is lacking especially in cases associated with memory impairment. A 65-year-old man with tinnitus underwent cerebral angiography for suspicion of a dural arteriovenous fistula. During the procedure the patient developed complete loss of vision and rapidly became confused. Brain CT showed bilateral cortical enhancement in the occipital lobes. MR with DWI was performed 3.5 hours after angiography. Early DWI showed no signal abnormalities thereby excluding an ischaemic complication. Gradual improvement of visual function occurred over the next 24 hours. After 48 hours the patient was alert and orientated but profound retrograde amnesia persisted with no memory for the events of the day of angiography. CT follow-up at one year was normal. DWI is invaluable in the evaluation of patients with cortical blindness with or without memory deficits precipitated by angiography and may advance understanding of the pathophysiology. Diffusion-weighted MRI is crucial in differentiating neuro-ophthalmologic complications precipitated by intracortical contrast leakage after angiography from an ischaemic stroke needing a prompt and often invasive treatment. PMID:24209406

  18. Preoperative CT versus diffusion weighted magnetic resonance imaging of the liver in patients with rectal cancer; a prospective randomized trial

    PubMed Central

    Løgager, Vibeke B.; Skjoldbye, Bjørn; Møller, Jakob M.; Lorenzen, Torben; Rasmussen, Vera L.; Thomsen, Henrik S.; Mollerup, Talie H.; Okholm, Cecilie; Rosenberg, Jacob

    2016-01-01

    Introduction. Colorectal cancer is one of the most frequent cancers in the world and liver metastases are seen in up to 19% of patients with colorectal cancers. Detection of liver metastases is not only vital for sufficient treatment and survival, but also for a better estimation of prognosis. The aim of this study was to evaluate the feasibility of diffusion weighted MRI of the liver as part of a combined MR evaluation of patients with rectal cancers and compare it with the standard preoperative evaluation of the liver with CT. Methods. Consecutive patients diagnosed with rectal cancers were asked to participate in the study. Preoperative CT and diffusion weighted MR (DWMR) were compared to contrast enhanced laparoscopic ultrasound (CELUS). Results. A total of 35 patients were included, 15 patients in Group-1 having the standard CT evaluation of the liver and 20 patients in Group-2 having the standard CT evaluation of the liver and DWMR of the liver. Compared with CELUS, the per-patient sensitivity/specificity was 50/100% for CT, and for DWMR: 100/94% and 100/100% for Reader 1 and 2, respectively. The per-lesion sensitivity of CT and DWMR were 17% and 89%, respectively compared with CELUS. Furthermore, one patient had non-resectable metastases after DWMR despite being diagnosed with resectable metastases after CT. Another patient was diagnosed with multiple liver metastases during CELUS, despite a negative CT-scan. Discussion. DWMR is feasible for preoperative evaluation of liver metastases. The current standard preoperative evaluation with CT-scan results in disadvantages like missed metastases and futile operations. We recommend that patients with rectal cancer, who are scheduled for MR of the rectum, should have a DWMR of the liver performed at the same time. PMID:26793420

  19. In vivo High Angular Resolution Diffusion-Weighted Imaging of Mouse Brain at 16.4 Tesla

    PubMed Central

    Alomair, Othman I.; Brereton, Ian M.; Smith, Maree T.; Galloway, Graham J.; Kurniawan, Nyoman D.

    2015-01-01

    Magnetic Resonance Imaging (MRI) of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla) offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T1 and shorter T2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imaging (DWI) sequence is often used in high-field rodent brain MRI due to its immunity to these artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high angular resolution diffusion imaging (HARDI) with strong diffusion weighting (b >3000 s/mm2) and at least 30 diffusion-encoding directions are required. However, this results in long image acquisition times unsuitable for live animal imaging. In this study, we describe the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner sequence with echo-planar imaging (EPI) readout. EPI segmentation and partial Fourier encoding acceleration were applied to reduce the echo time (TE), thereby minimizing signal decay and distortion artefacts while maintaining a reasonably short acquisition time. The final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI, b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 μm2 in-plane resolution, 0.6 mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffusion tensor imaging (DTI) derived parameters were measured. High-quality images with high spatial and angular resolution, low distortion and low variability in DTI-derived parameters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of white matter (WM

  20. In vivo high angular resolution diffusion-weighted imaging of mouse brain at 16.4 Tesla.

    PubMed

    Alomair, Othman I; Brereton, Ian M; Smith, Maree T; Galloway, Graham J; Kurniawan, Nyoman D

    2015-01-01

    Magnetic Resonance Imaging (MRI) of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla) offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T1 and shorter T2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imaging (DWI) sequence is often used in high-field rodent brain MRI due to its immunity to these artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high angular resolution diffusion imaging (HARDI) with strong diffusion weighting (b >3000 s/mm2) and at least 30 diffusion-encoding directions are required. However, this results in long image acquisition times unsuitable for live animal imaging. In this study, we describe the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner sequence with echo-planar imaging (EPI) readout. EPI segmentation and partial Fourier encoding acceleration were applied to reduce the echo time (TE), thereby minimizing signal decay and distortion artefacts while maintaining a reasonably short acquisition time. The final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI, b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 μm2 in-plane resolution, 0.6 mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffusion tensor imaging (DTI) derived parameters were measured. High-quality images with high spatial and angular resolution, low distortion and low variability in DTI-derived parameters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of white matter (WM

  1. Diffusion-weighted and PET/MR Imaging after Radiation Therapy for Malignant Head and Neck Tumors.

    PubMed

    Varoquaux, Arthur; Rager, Olivier; Dulguerov, Pavel; Burkhardt, Karim; Ailianou, Angeliki; Becker, Minerva

    2015-01-01

    Interpreting imaging studies of the irradiated neck constitutes a challenge because of radiation therapy-induced tissue alterations, the variable appearances of recurrent tumors, and functional and metabolic phenomena that mimic disease. Therefore, morphologic magnetic resonance (MR) imaging, diffusion-weighted (DW) imaging, positron emission tomography with computed tomography (PET/CT), and software fusion of PET and MR imaging data sets are increasingly used to facilitate diagnosis in clinical practice. Because MR imaging and PET often yield complementary information, PET/MR imaging holds promise to facilitate differentiation of tumor recurrence from radiation therapy-induced changes and complications. This review focuses on clinical applications of DW and PET/MR imaging in the irradiated neck and discusses the added value of multiparametric imaging to solve diagnostic dilemmas. Radiologists should understand key features of radiation therapy-induced tissue alterations and potential complications seen at DW and PET/MR imaging, including edema, fibrosis, scar tissue, soft-tissue necrosis, bone and cartilage necrosis, cranial nerve palsy, and radiation therapy-induced arteriosclerosis, brain necrosis, and thyroid disorders. DW and PET/MR imaging also play a complementary role in detection of residual and recurrent disease. Interpretation pitfalls due to technical, functional, and metabolic phenomena should be recognized and avoided. Familiarity with DW and PET/MR imaging features of expected findings, potential complications, and treatment failure after radiation therapy increases diagnostic confidence when interpreting images of the irradiated neck. Online supplemental material is available for this article. PMID:26252192

  2. Phantom for assessment of fat suppression in large field-of-view diffusion-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Winfield, J. M.; Douglas, N. H. M.; deSouza, N. M.; Collins, D. J.

    2014-05-01

    We present the development and application of a phantom for assessment and optimization of fat suppression over a large field-of-view in diffusion-weighted magnetic resonance imaging at 1.5 T and 3 T. A Perspex cylinder (inner diameter 185 mm, height 300 mm) which contains a second cylinder (inner diameter 140 mm) was constructed. The inner cylinder was filled with water doped with copper sulphate and sodium chloride and the annulus was filled with corn oil, which closely matches the spectrum and longitudinal relaxation times of subcutaneous abdominal fat. Placement of the phantom on the couch at 45° to the z-axis presented an elliptical cross-section, which was of a similar size and shape to axial abdominal images. The use of a phantom for optimization of fat suppression allowed quantitative comparison between studies without the differences introduced by variability between human subjects. We have demonstrated that the phantom is suitable for selection of inversion delay times, spectral adiabatic inversion recovery delays and assessment of combinatorial methods of fat suppression. The phantom is valuable in protocol development and the assessment of new techniques, particularly in multi-centre trials.

  3. Bidirectional iterative parcellation of diffusion weighted imaging data: Separating cortical regions connected by the arcuate fasciculus and extreme capsule

    PubMed Central

    Patterson, Dianne K.; Van Petten, Cyma; Beeson, Pélagie M.; Rapcsak, Steven Z.; Plante, Elena

    2014-01-01

    This paper introduces a Bidirectional Iterative Parcellation (BIP) procedure designed to identify the location and size of connected cortical regions (parcellations) at both ends of a white matter tract in diffusion weighted images. The procedure applies the FSL option “probabilistic tracking with classification targets” in a bidirectional and iterative manner. To assess the utility of BIP, we applied the procedure to the problem of parcellating a limited set of well-established gray matter seed regions associated with the dorsal (arcuate fasciculus/superior longitudinal fasciculus) and ventral (extreme capsule fiber system) white matter tracts in the language networks of 97 participants. These left hemisphere seed regions and the two white matter tracts, along with their right hemisphere homologues, provided an excellent test case for BIP because the resulting parcellations overlap and their connectivity via the arcuate fasciculi and extreme capsule fiber systems are well studied. The procedure yielded both confirmatory and novel findings. Specifically, BIP confirmed that each tract connects within the seed regions in unique, but expected ways. Novel findings included increasingly left-lateralized parcellations associated with the arcuate fasciculus/superior longitudinal fasciculus as a function of age and education. These results demonstrate that BIP is an easily implemented technique that successfully confirmed cortical connectivity patterns predicted in the literature, and has the potential to provide new insights regarding the architecture of the brain. PMID:25173414

  4. Diffusion-weighted and PET/MR Imaging after Radiation Therapy for Malignant Head and Neck Tumors.

    PubMed

    Varoquaux, Arthur; Rager, Olivier; Dulguerov, Pavel; Burkhardt, Karim; Ailianou, Angeliki; Becker, Minerva

    2015-01-01

    Interpreting imaging studies of the irradiated neck constitutes a challenge because of radiation therapy-induced tissue alterations, the variable appearances of recurrent tumors, and functional and metabolic phenomena that mimic disease. Therefore, morphologic magnetic resonance (MR) imaging, diffusion-weighted (DW) imaging, positron emission tomography with computed tomography (PET/CT), and software fusion of PET and MR imaging data sets are increasingly used to facilitate diagnosis in clinical practice. Because MR imaging and PET often yield complementary information, PET/MR imaging holds promise to facilitate differentiation of tumor recurrence from radiation therapy-induced changes and complications. This review focuses on clinical applications of DW and PET/MR imaging in the irradiated neck and discusses the added value of multiparametric imaging to solve diagnostic dilemmas. Radiologists should understand key features of radiation therapy-induced tissue alterations and potential complications seen at DW and PET/MR imaging, including edema, fibrosis, scar tissue, soft-tissue necrosis, bone and cartilage necrosis, cranial nerve palsy, and radiation therapy-induced arteriosclerosis, brain necrosis, and thyroid disorders. DW and PET/MR imaging also play a complementary role in detection of residual and recurrent disease. Interpretation pitfalls due to technical, functional, and metabolic phenomena should be recognized and avoided. Familiarity with DW and PET/MR imaging features of expected findings, potential complications, and treatment failure after radiation therapy increases diagnostic confidence when interpreting images of the irradiated neck. Online supplemental material is available for this article.

  5. Strain rate dependency of oceanic intraplate earthquake b-values at extremely low strain rates

    NASA Astrophysics Data System (ADS)

    Sasajima, Ryohei; Ito, Takeo

    2016-06-01

    We discovered a clear positive dependence of oceanic intraplate earthquake (OCEQ) b-values on the age of the oceanic lithosphere. OCEQ b-values in the youngest (<10 Ma) oceanic lithosphere are around 1.0, while those in middle to old (>20 Ma) oceanic lithosphere exceed 1.5, which is significantly higher than the average worldwide earthquake b-value (around 1.0). On the other hand, the b-value of intraplate earthquakes in the Ninety East-Sumatra orogen, where oceanic lithosphere has an anomalously higher strain rate compared with normal oceanic lithosphere, is 0.93, which is significantly lower than the OCEQ b-value (about 1.9) with the same age (50-110 Ma). Thus, the variation in b-values relates to the strain rate of the oceanic lithosphere and is not caused by a difference in thermal structure. We revealed a negative strain rate dependency of the b-value at extremely low strain rates (<2 × 10-10/year), which can clearly explain the above b-values. We propose that the OCEQ b-value depends strongly on strain rate (either directly or indirectly) at extremely low strain rates. The high OCEQ b-values (>1.5) in oceanic lithosphere >20 Ma old imply that future improvement in seismic observation will capture many smaller magnitude OCEQs, which will provide valuable information on the evolution of the oceanic lithosphere and the driving mechanism of plate tectonics.

  6. Potential of Diffusion-Weighted Imaging in the Characterization of Malignant, Benign, and Healthy Breast Tissues and Molecular Subtypes of Breast Cancer

    PubMed Central

    Sharma, Uma; Sah, Rani G.; Agarwal, Khushbu; Parshad, Rajinder; Seenu, Vurthaluru; Mathur, Sandeep R.; Hari, Smriti; Jagannathan, Naranamangalam R.

    2016-01-01

    The role of apparent diffusion coefficient (ADC) in the diagnosis of breast cancer and its association with molecular biomarkers was investigated in 259 patients with breast cancer, 67 with benign pathology, and 54 healthy volunteers using diffusion-weighted imaging (DWI) at 1.5 T. In 59 breast cancer patients, dynamic contrast-enhanced MRI (DCEMRI) was also acquired. Mean ADC of malignant lesions was significantly lower (1.02 ± 0.17 × 10−3 mm2/s) compared to benign (1.57 ± 0.26 × 10−3 mm2/s) and healthy (1.78 ± 0.13 × 10−3 mm2/s) breast tissues. A cutoff ADC value of 1.23 × 10−3 mm2/s (sensitivity 92.5%; specificity 91.1%; area under the curve 0.96) to differentiate malignant from benign diseases was arrived by receiver operating curve analysis. In 10/59 breast cancer patients, indeterminate DCE curve was seen, while their ADC value was indicative of malignancy, implying the potential of the addition of DWI in increasing the specificity of DCEMRI data. Further, the association of ADC with tumor volume, stage, hormonal receptors [estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor (HER2)], and menopausal status was investigated. A significant difference was seen in tumor volume between breast cancer patients of stages IIA and IIIA, IIB and IIIA, and IIB and III (B + C), respectively (P < 0.05). Patients with early breast cancer (n = 52) had significantly lower ADC and tumor volume than those with locally advanced breast cancer (n = 207). No association was found in ADC and tumor volume with the menopausal status. Breast cancers with ER−, PR−, and triple-negative (TN) status showed a significantly larger tumor volume compared to ER+, PR+, and non-triple-negative (nTN) cancers, respectively. Also, TN tumors showed a significantly higher ADC compared to ER+, PR+, and nTN cancers. Patients with ER− and TN cancers were younger than those with ER+ and nTN cancers

  7. TU-C-12A-05: Repeatability Study of Reduced Field-Of-View Diffusion-Weighted MRI On Human Thyroid Gland

    SciTech Connect

    Shukla-Dave, A; Lu, Y; Hatzoglou, V; Stambuk, H; Mazaheri, Y; Banerjee, S; Shankaranarayanan, A; Deasy, J

    2014-06-15

    Purpose: To investigate the repeatability of reduced field-of-view diffusion-weighted imaging (rFOV DWI) in quantifying apparent diffusion coefficients (ADCs) for human thyroid glands in a clinical setting. Methods: Nine healthy human volunteers were enrolled and underwent 3T MRI exams. For each volunteer, 3 longitudinal exams (2 weeks apart) with 2 repetitive sessions within each exam, including rFOV and conventional full field-of-view (fFOV) DWI scans, were performed. In the acquired DWI images, a fixed-size region of interest (ROI; diameter=8mm) was placed on thyroid glands to calculate ADC. ADC was calculated using a monoexponential function with a noise correction scheme. The repeatability of ADC was assessed by using coefficient variation (CV) across sessions or exams, which was defined to be: r = 1-CV, 0 < r < 1, where CV=STD/m, STD is the standard deviation of ADC, and m is the average of ADC across sessions or exams. An experienced radiologist assessed and scored rFOV and fFOV DW images based on image characteristics (1, nondiagnostic; 2, poor; 3, satisfactory; 4, good; and 5, excellent).Analysis of variance (ANOVA) was performed to compare ADC values, CV of ADC, repeatability of ADC across sessions and exams, and radiologic scores between rFOV and fFOV DWI techniques. Results: There was no significant difference in ADC values across sessions and exams either in rFOV or fFOV DWI. The average CVs of both rFOV and fFOV DWI were less than 13%. The repeatability of ADC measurement between rFOV and fFOV DWI was not significantly different. The overall image quality was significantly higher with rFOV DWI than with fFOV DWI. Conclusion: This study suggested that ADCs from both rFOV and fFOV DWI were repeatable, but rFOV DWI had superior imaging quality for human thyroid glands in a clinical setting.

  8. The Impact of Diffusion-Weighted MRI on the Definition of Gross Tumor Volume in Radiotherapy of Non-Small-Cell Lung Cancer

    PubMed Central

    Fleckenstein, Jochen; Jelden, Michael; Kremp, Stephanie; Jagoda, Philippe; Stroeder, Jonas; Khreish, Fadi; Ezziddin, Samer; Buecker, Arno; Rübe, Christian; Schneider, Guenther K.

    2016-01-01

    Objective The study was designed to evaluate diffusion-weighted magnetic resonance imaging (DWI) vs. PET-CT of the thorax in the determination of gross tumor volume (GTV) in radiotherapy planning of non-small-cell lung cancer (NSCLC). Materials and Methods Eligible patients with NSCLC who were supposed to receive definitive radio(chemo)therapy were prospectively recruited. For MRI, a respiratory gated T2-weighted sequence in axial orientation and non-gated DWI (b = 0, 800, 1,400 and apparent diffusion coefficient map [ADC]) were acquired on a 1.5 Tesla scanner. Primary tumors were delineated on FDG-PET/CT (stGTV) and DWI images (dwGTV). The definition of stGTV was based on the CT and visually adapted to the FDG-PET component if indicated (e.g., in atelectasis). For DWI, dwGTV was visually determined and adjusted for anatomical plausibility on T2w sequences. Beside a statistical comparison of stGTV and dwGTB, spatial agreement was determined with the “Hausdorff-Distance” (HD) and the “Dice Similarity Coefficient” (DSC). Results Fifteen patients (one patient with two synchronous NSCLC) were evaluated. For 16 primary tumors with UICC stages I (n = 4), II (n = 3), IIIA (n = 2) and IIIB (n = 7) mean values for dwGTV were significantly larger than those of stGTV (76.6 ± 84.5 ml vs. 66.6 ± 75.2 ml, p<0.01). The correlation of stGTV and dwGTV was highly significant (r = 0.995, p<0.001). Yet, some considerable volume deviations between these two methods were observed (median 27.5%, range 0.4–52.1%). An acceptable agreement between dwGTV and stGTV regarding the spatial extent of primary tumors was found (average HD: 2.25 ± 0.7 mm; DC 0.68 ± 0.09). Conclusion The overall level of agreement between PET-CT and MRI based GTV definition is acceptable. Tumor volumes may differ considerably in single cases. DWI-derived GTVs are significantly, yet modestly, larger than their PET-CT based counterparts. Prospective studies to assess the safety and efficacy of DWI

  9. Diffusion-weighted MRI of breast lesions: a prospective clinical investigation of the quantitative imaging biomarker characteristics of reproducibility, repeatability, and diagnostic accuracy.

    PubMed

    Spick, Claudio; Bickel, Hubert; Pinker, Katja; Bernathova, Maria; Kapetas, Panagiotis; Woitek, Ramona; Clauser, Paola; Polanec, Stephan H; Rudas, Margaretha; Bartsch, Rupert; Helbich, Thomas H; Baltzer, Pascal A

    2016-10-01

    Diffusion-weighted MRI (DWI) provides insights into tissue microstructure by visualization and quantification of water diffusivity. Quantitative evaluation of the apparent diffusion coefficient (ADC) obtained from DWI has been proven helpful for differentiating between malignant and benign breast lesions, for cancer subtyping in breast cancer patients, and for prediction of response to neoadjuvant chemotherapy. However, to further establish DWI of breast lesions it is important to evaluate the quantitative imaging biomarker (QIB) characteristics of reproducibility, repeatability, and diagnostic accuracy. In this intra-individual prospective clinical study 40 consecutive patients with suspicious findings, scheduled for biopsy, underwent an identical 3T breast MRI protocol of the breast on two consecutive days (>24 h). Mean ADC of target lesions was assessed (two independent readers) in four separate sessions. Reproducibility, repeatability, and diagnostic accuracy between examinations (E1, E2), readers (R1, R2), and measurements (M1, M2) were assessed with intraclass correlation coefficients (ICCs), coefficients of variation (CVs), Bland-Altman plots, and receiver operating characteristic (ROC) analysis with calculation of the area under the ROC curve (AUC). The standard of reference was either histopathology (n = 38) or imaging follow-up of up to 24 months (n = 2). Eighty breast MRI examinations (median E1-E2, 2 ± 1.7 days, 95% confidence interval (CI) 1-2 days, range 1-11 days) in 40 patients (mean age 56, standard deviation (SD) ±14) were evaluated. In 55 target lesions (mean size 25.2 ± 20.8 (SD) mm, range 6-106 mm), mean ADC values were significantly (P < 0.0001) higher in benign (1.38, 95% CI 1.27-1.49 × 10(-3)  mm(2) /s) compared with malignant (0.86, 95% CI 0.81-0.91 × 10(-) (3)  mm(2) /s) lesions. Reproducibility and repeatability showed high agreement for repeated examinations, readers, and measurements (all ICCs >0.9, CVs 3

  10. Preoperative Diagnostic Strategy for Parotid Gland Tumors Using Diffusion-Weighted MRI and Technetium-99m Pertechnetate Scintigraphy: A Prospective Study

    PubMed Central

    Kikuchi, Masahiro; Koyasu, Sho; Shinohara, Shogo; Imai, Yukihiro; Hino, Megumu; Naito, Yasushi

    2016-01-01

    Objective Fine needle aspiration cytology (FNAC) for diagnosis of a parotid gland tumor is widely used but its sensitivity is low and non-diagnostic rate is relatively high. In contrast, core needle biopsy (CNB) has a higher sensitivity and lower rate of sampling errors but has a higher risk of injury to adjacent organs such as facial nerve than FNAC. Screening of patients with parotid gland tumors to identify cases of pleomorphic adenoma (PA) and Warthin tumor (WT) may allow CNB to be confined to patients without PA and WT. We established an algorithm for preoperative diagnosis and management of parotid gland tumor using diffusion-weighted MRI and 99mTc pertechnetate scintigraphy. This algorithm was developed with the goal of maximal reduction of the number of patients in whom CNB is required. The purpose of the study is to validate our algorithm prospectively. Methods A prospective study was conducted in 71 cases who were newly diagnosed with parotid gland tumor and 53 cases were enrolled in the study. In the algorithm, PA (high apparent diffusion coefficient (ADC) mean≥1.5×10−3 mm2/s) and non-PA (low ADCmean<1.5×10−3 mm2/s) cases are first distinguished based on the ADCmean on diffusion-weighed MRI. Second, among suspected non-PA cases, WT and non-WT are distinguished using technetium-99m pertechnetate scintigraphy. CNB is then performed only in probable non-PA and non-WT cases. Results Although CNB was only required in 40% (21/53) of all cases, we made a preoperative histopathological diagnosis with an accuracy of 87% (46/53) and we correctly diagnosed whether a tumor was benign or malignant with an accuracy of 96% (51/53). Preoperative surgical planning had to be changed during surgery in only one case (2%) Conclusions Our algorithm is valuable in terms of clinical practice with highly potential for preoperative diagnosis and with less risk of CNB procedure. PMID:26849569

  11. Quantitative diffusion-weighted magnetic resonance imaging in the assessment of myocardial fibrosis in hypertrophic cardiomyopathy compared with T1 mapping.

    PubMed

    Wu, Lian-Ming; Chen, Bing-Hua; Yao, Qiu-Ying; Ou, Yang-Rongzheng; Wu, Rui; Jiang, Meng; Hu, Jiani; An, Dong-Aolei; Xu, Jian-Rong

    2016-08-01

    To identify myocardial fibrosis in hypertrophic cardiomyopathy (HCM) subjects using quantitative cardiac diffusion-weighted imaging (DWI) and to compare its performance with native T1 mapping and extracellular volume (ECV). Thirty-eight HCM subjects (mean age, 53 ± 9 years) and 14 normal controls (mean age, 51 ± 8 years) underwent cardiac magnetic resonance imaging (CMRI) on a 3.0T magnetic resonance (MR) machine with DWI, T1 mapping and late gadolinium enhancement (LGE) imaging as the reference standard. The mean apparent diffusion coefficient (ADC), native T1 value and ECV were determined for each subject. Overall, the HCM subjects exhibited an increased native T1 value (1241.04 ± 78.50 ms), ECV (0.31 ± 0.03) and ADC (2.36 ± 0.34 s/mm(2)) compared with the normal controls (1114.60 ± 37.99 ms, 0.24 ± 0.04, and 1.62 ± 0.38 s/mm(2), respectively) (p < 0.05). DWI differentiated healthy and fibrotic myocardia with an area under the curve (AUC) of 0.93, while the AUCs of the native T1 values (0.93), (p > 0.05) and ECV (0.94), (p > 0.05) exhibited an equal differentiation ability. Both HCM LGE+ and HCM LGE- subjects had an increased native T1 value, ECV and ADC compared to the normal controls (p < 0.05). HCM LGE+ subjects exhibited an increased ECV (0.31 ± 0.04) and ADC (2.43 ± 0.36 s/mm(2)) compared to HCM LGE- subjects (p < 0.05). HCM LGE+ and HCM LGE- subjects had similar native T1 values (1250 ± 76.36 ms vs. 1213.98 ± 92.30 ms, respectively) (p > 0.05). ADC values were linearly associated with increased ECV (R(2) = 0.36) and native T1 values (R(2) = 0.40) among all subjects. DWI is a feasible alternative to native T1 mapping and ECV for the identification of myocardial fibrosis in patients with HCM. DWI and ECV can quantitatively characterize the extent of fibrosis in HCM LGE+ and HCM LGE- patients. PMID:27198892

  12. Characteristics of liver on magnetic resonance diffusion-weighted imaging: Dynamic and image pathological investigation in rabbit liver VX-2 tumor model

    PubMed Central

    Yuan, You-Hong; Xiao, En-Hua; Liu, Jian-Bin; He, Zhong; Jin, Ke; Ma, Cong; Xiang, Jun; Xiao, Jian-Hua; Chen, Wei-Jian

    2008-01-01

    AIM: To investigate dynamical and image pathological characteristics of the liver on magnetic resonance (MR) diffusion-weighted imaging (DWI) in the rabbit VX-2 tumor model. METHODS: Forty New Zealand rabbits were included in the study and VX-2 tumor piece was implanted intrahepatically. Fifteen animals received two intrahepatic implantations while 25 had one intrahepatical implantation. DWI, T1- and T2-weighted of magnetic resonance imaging (MRI) were carried out on the 7th and the 14th d after implantation and DWI was conducted, respectively on the 21th d. Ten VX-2 tumor samples were studied pathologically. RESULTS: The rate of lump detected by DWI, T1WI and T2WI was 78.7%, 10.7% and 53.5% (χ2 = 32.61, P < 0.001) on the 7th d after implantation and 95.8%, 54.3% and 82.9% (χ2 = 21.50, P < 0.001) on the 14th d. The signal of most VX-2 tumors on DWI was uniform and it was equal on the map of apparent diffusion coefficient (ADC). The signal of VX tumors did not decrease on the 7th d after implantation, most of them slowly growing during the week following implantation without significant cell dying within the tumor. VX-2 tumors grew increasingly within 14 d after implantation but the signal of most VX-2 tumors on DWI or on the map of ADC was uniform or uneven and ADC of VX tumors decreased obscurely or slightly because tumor necrosis was still not obvious. On the 21th d after implantation, the signal of most VX-2 tumors on DWI or on the map of ADC was uneven because tumor necrosis was evident and ADC of VX-2 tumor necrotic areas decreased. The areas of viable cells in VX-2 tumors manifested a high signal on DWI and a low signal on the map of ADC. The areas of dead cells or necrosis in VX-2 tumors manifested low signals on DWI and low, equal or high signals on the map of ADC but they manifested high signals on DWI and on the map of ADC at the same time when the areas of necrotic tumor became liquefied or cystic. The border of tumors on DWI appeared gradually

  13. Detection of acute nervous system injury with advanced diffusion-weighted MRI: a simulation and sensitivity analysis.

    PubMed

    Skinner, Nathan P; Kurpad, Shekar N; Schmit, Brian D; Budde, Matthew D

    2015-11-01

    Diffusion-weighted imaging (DWI) is a powerful tool to investigate the microscopic structure of the central nervous system (CNS). Diffusion tensor imaging (DTI), a common model of the DWI signal, has a demonstrated sensitivity to detect microscopic changes as a result of injury or disease. However, DTI and other similar models have inherent limitations that reduce their specificity for certain pathological features, particularly in tissues with complex fiber arrangements. Methods such as double pulsed field gradient (dPFG) and q-vector magic angle spinning (qMAS) have been proposed to specifically probe the underlying microscopic anisotropy without interference from the macroscopic tissue organization. This is particularly important for the study of acute injury, where abrupt changes in the microscopic morphology of axons and dendrites manifest as focal enlargements known as beading. The purpose of this work was to assess the relative sensitivity of DWI measures to beading in the context of macroscopic fiber organization and edema. Computational simulations of DWI experiments in normal and beaded axons demonstrated that, although DWI models can be highly specific for the simulated pathologies of beading and volume fraction changes in coherent fiber pathways, their sensitivity to a single idealized pathology is considerably reduced in crossing and dispersed fibers. However, dPFG and qMAS have a high sensitivity for beading, even in complex fiber tracts. Moreover, in tissues with coherent arrangements, such as the spinal cord or nerve fibers in which tract orientation is known a priori, a specific dPFG sequence variant decreases the effects of edema and improves specificity for beading. Collectively, the simulation results demonstrate that advanced DWI methods, particularly those which sample diffusion along multiple directions within a single acquisition, have improved sensitivity to acute axonal injury over conventional DTI metrics and hold promise for more

  14. Detecting Acute Myocardial Infarction by Diffusion-Weighted versus T2-Weighted Imaging and Myocardial Necrosis Markers

    PubMed Central

    Chen, Min; Li, Yongjun; Wang, YaLing; Zhang, Shijun; Wang, Zhen; Wang, Lin; Ju, Shenghong

    2016-01-01

    We used a porcine model of acute myocardial infarction to study the signal evolution of ischemic myocardium on diffusion-weighted magnetic resonance images (DWI). Eight Chinese miniature pigs underwent percutaneous left anterior descending or left circumflex coronary artery occlusion for 90 minutes followed by reperfusion, which induced acute myocardial infarction. We used DWI preprocedurally and hourly for 4 hours postprocedurally. We acquired turbo inversion recovery magnitude T2-weighted images (TIRM T2WI) and late gadolinium enhancement images from the DWI slices. We measured the serum myocardial necrosis markers myoglobin, creatine kinase-MB isoenzyme, and cardiac troponin I at the same time points as the magnetic resonance scanning. We used histochemical staining to confirm injury. All images were analyzed qualitatively. Contrast-to-noise ratio (the contrast between infarcted and healthy myocardium) and relative signal index were used in quantitative image analysis. We found that DWI identified myocardial signal abnormity early (<4 hr) after acute myocardial infarction and identified the infarct-related high signal more often than did TIRM T2WI: 7 of 8 pigs (87.5%) versus 3 of 8 (37.5%) (P=0.046). Quantitative image analysis yielded a significant difference in contrast-to-noise ratio and relative signal index between infarcted and normal myocardium on DWI. However, within 4 hours after infarction, the serologic myocardial injury markers were not significantly positive. We conclude that DWI can be used to detect myocardial signal abnormalities early after acute myocardial infarction—identifying the infarction earlier than TIRM T2WI and widely used clinical serologic biomarkers. PMID:27777517

  15. Interrelations of muscle functional MRI, diffusion-weighted MRI and (31) P-MRS in exercised lower back muscles.

    PubMed

    Hiepe, Patrick; Gussew, Alexander; Rzanny, Reinhard; Anders, Christoph; Walther, Mario; Scholle, Hans-Christoph; Reichenbach, Jürgen R

    2014-08-01

    Exercise-induced changes of transverse proton relaxation time (T2 ), tissue perfusion and metabolic turnover were investigated in the lower back muscles of volunteers by applying muscle functional MRI (mfMRI) and diffusion-weighted imaging (DWI) before and after as well as dynamic (31) P-MRS during the exercise. Inner (M. multifidus, MF) and outer lower back muscles (M. erector spinae, ES) were examined in 14 healthy young men performing a sustained isometric trunk-extension. Significant phosphocreatine (PCr) depletions ranging from 30% (ES) to 34% (MF) and Pi accumulations between 95% (left ES) and 120%-140% (MF muscles and right ES) were observed during the exercise, which were accompanied by significantly decreased pH values in all muscles (∆pH ≈ -0.05). Baseline T2 values were similar across all investigated muscles (approximately 27 ms at 3 T), but revealed right-left asymmetric increases (T2 ,inc ) after the exercise (right ES/MF: T2 ,inc  = 11.8/9.7%; left ES/MF: T2 ,inc  = 4.6/8.9%). Analyzed muscles also showed load-induced increases in molecular diffusion D (p = .007) and perfusion fraction f (p = .002). The latter parameter was significantly higher in the MF than in the ES muscles both at rest and post exercise. Changes in PCr (p = .03), diffusion (p < .01) and perfusion (p = .03) were strongly associated with T2,inc , and linear mixed model analysis revealed that changes in PCr and perfusion both affect T2,inc (p < .001). These findings support previous assumptions that T2 changes are not only an intra-cellular phenomenon resulting from metabolic stress but are also affected by increased perfusion in loaded muscles.

  16. Diffusion-Weighted MRI for Nodal Staging of Head and Neck Squamous Cell Carcinoma: Impact on Radiotherapy Planning

    SciTech Connect

    Dirix, Piet; Vandecaveye, Vincent; De Keyzer, Frederik; Op de beeck, Katya; Poorten, Vincent Vander; Delaere, Pierre; Verbeken, Eric; Hermans, Robert; Nuyts, Sandra

    2010-03-01

    Purpose: To evaluate the use of diffusion-weighted magnetic resonance imaging (DW-MRI) for nodal staging and its impact on radiotherapy (RT) planning. Methods and Materials: Twenty-two patients with locally advanced head and neck squamous cell carcinoma underwent contrast-enhanced computed tomography (CT), as well as MRI (with routine and DW sequences) prior to neck dissection. After topographic correlation, lymph nodes were evaluated microscopically with prekeratin immunostaining. Pathology results were correlated with imaging findings and an RT planning study was performed for these surgically treated patients. One set of target volumes was based on conventional imaging only, and another set was based on the corresponding DW-MRI images. A third reference set was contoured based solely on pathology results. Results: A sensitivity of 89% and a specificity of 97% per lymph node were found for DW-MRI. Nodal staging agreement between imaging and pathology was significantly stronger for DW-MRI (kappa = 0.97; 95% confidence interval [CI], 0.84-1.00) than for conventional imaging (kappa = 0.56; 95% CI, 0.16-0.96; p = 0.019, by McNemar's test). For both imaging modalities, the absolute differences between RT volumes and those obtained by pathology were calculated. Using an exact paired Wilcoxon test, the observed difference was significantly larger for conventional imaging than for DW-MRI for nodal gross tumor volume (p = 0.0013), as well as for nodal clinical target volume (p = 0.0415) delineation. Conclusions: These results suggest that DW-MRI is superior to conventional imaging for preradiotherapy nodal staging of head and neck squamous cell carcinoma, and provides a potential impact on organsparing and tumor control.

  17. Longitudinal development in the preterm thalamus and posterior white matter: MRI correlations between diffusion weighted imaging and T2 relaxometry.

    PubMed

    Melbourne, Andrew; Eaton-Rosen, Zach; Orasanu, Eliza; Price, David; Bainbridge, Alan; Cardoso, M Jorge; Kendall, Giles S; Robertson, Nicola J; Marlow, Neil; Ourselin, Sebastien

    2016-07-01

    Infants born prematurely are at increased risk of adverse neurodevelopmental outcome. The measurement of white matter tissue composition and structure can help predict functional performance. Specifically, measurements of myelination and indicators of myelination status in the preterm brain could be predictive of later neurological outcome. Quantitative imaging of myelin could thus serve to develop biomarkers for prognosis or therapeutic intervention; however, accurate estimation of myelin content is difficult. This work combines diffusion MRI and multi-component T2 relaxation measurements in a group of 37 infants born very preterm and scanned between 27 and 58 weeks equivalent gestational age. Seven infants have longitudinal data at two time points that we analyze in detail. Our aim is to show that measurement of the myelin water fraction is achievable using widely available pulse sequences and state-of-the-art algorithmic modeling of the MR imaging procedure and that a multi-component fitting routine to multi-shell diffusion weighted data can show differences in neurite density and local spatial arrangement in grey and white matter. Inference on the myelin water fraction allows us to demonstrate that the change in diffusion properties of the preterm thalamus is not solely due to myelination (that increase in myelin content accounts for about a third of the observed changes) whilst the decrease in the posterior white matter T2 has no significant component that is due to myelin water content. This work applies multi-modal advanced quantitative neuroimaging to investigate changing tissue properties in the longitudinal setting. Hum Brain Mapp 37:2479-2492, 2016. © 2016 Wiley Periodicals, Inc.

  18. Localization of specific language pathways using diffusion-weighted imaging tractography for presurgical planning of children with intractable epilepsy

    PubMed Central

    Jeong, Jeong-Won; Asano, Eishi; Juhász, Csaba; Chugani, Harry T.

    2015-01-01

    Summary Objective To examine whether diffusion-weighted imaging (DWI) tractography can detect multiple white matter pathways connected to language cortices, we employed a maximum a posteriori probability (MAP) classification method, which has been recently validated for the corticospinal tract. Methods DWI was performed in 12 normally developing children and 17 children with intractable focal epilepsy who underwent subsequent two-stage epilepsy surgery with intracranial functional mapping. First, whole-brain DWI tractography was performed to identify unique pathways originating from Broca’s area, premotor area, and Wernicke’s area on functional magnetic resonance imaging (fMRI) of normal children and intracranial electrical stimulation mapping (ESM) of children with epilepsy. Group averaging of these pathways based on fMRI was performed to construct the probability maps of language areas in standard MRI space. These maps were finally used to design a DWI-MAP classifier, which can automatically sort individual fibers originating from fMRI language areas as well as ESM language areas. Results In normally developing children, the DWI-MAP classifier predicted language-activation areas on fMRI with up to 77% accuracy. In children with focal epilepsy, the DWI-MAP classifier also showed high accuracy (up to 82%) for the fibers terminating in proximity to essential language areas determined by ESM. Decreased volumes in DWI-MAP–defined pathways after epilepsy surgery were associated with postoperative language deficits. Significance This study encourages further investigations to determine if DWI-MAP analysis can serve as a noninvasive diagnostic tool during pediatric presurgical planning by estimating not only the location of essential language cortices, but also the underlying fibers connecting these cortical areas. PMID:25489639

  19. Convergent connectivity and graded specialization in the rostral human temporal lobe as revealed by diffusion-weighted imaging probabilistic tractography.

    PubMed

    Binney, Richard J; Parker, Geoffrey J M; Lambon Ralph, Matthew A

    2012-10-01

    In recent years, multiple independent neuroscience investigations have implicated critical roles for the rostral temporal lobe in auditory and visual perception, language, and semantic memory. Although arising in the context of different cognitive functions, most of these suggest that there is a gradual convergence of sensory information in the temporal lobe that culminates in modality- and perceptually invariant representations at the most rostral aspect. Currently, however, too little is known regarding connectivity within the human temporal lobe to be sure of exactly how and where convergence occurs; existing hypotheses are primarily derived on the basis of cross-species generalizations from invasive nonhuman primate studies, the validity of which is unclear, especially where language function is concerned. In this study, we map the connectivity of the human rostral temporal lobe in vivo for the first time using diffusion-weighted imaging probabilistic tractography. The results indicate that convergence of sensory information in the temporal lobe is in fact a graded process that occurs along both its longitudinal and lateral axes and culminates in the most rostral limits. We highlight the consistency of our results with those of prior functional neuroimaging, computational modeling, and patient studies. By going beyond simple fasciculus reconstruction, we systematically explored the connectivity of specific temporal lobe areas to frontal and parietal language regions. In contrast to the graded within-temporal lobe connectivity, this intertemporal connectivity was found to dissociate across caudal, mid, and rostral subregions. Furthermore, we identified a basal rostral temporal region with very limited connectivity to areas outside the temporal lobe, which aligns with recent evidence that this subregion underpins the extraction of modality- and context-invariant semantic representations. PMID:22721379

  20. Lesion patterns and etiology of ischemia in the anterior inferior cerebellar artery territory involvement: a clinical - diffusion weighted - MRI study.

    PubMed

    Kumral, E; Kisabay, A; Ataç, C

    2006-04-01

    The topography and mechanism of stroke in the anterior inferior cerebellar artery (AICA) territory are delineated before, but the detailed clinical spectrum of lesions involving AICA territory was not studied by diffusion weighted imaging (DWI). We reviewed 1350 patients with posterior circulation ischemic stroke in our registry. We included patients if the diagnosis of AICA territory involvement was confirmed, and DWI, and magnetic resonance angiography were obtained in the 3 days of symptoms onset. The potential feeding arteries of the AICA territory were evaluated on magnetic resonance imaging (MRI) using a three-dimensional rotating cineoangiographic method. There were 23 consecutive patients with lesion involving AICA territory, six with isolated lesion in the AICA territory, six with posterior inferior cerebellar artery, 11 with multiple posterior circulation infarcts (MPCIs). The clinical feature of isolated AICA infarct was vertigo, tinnitus, dysmetria, ataxia, facial weakness, facial sensory deficits, lateral gaze palsy, and sensory-motor deficits in patients with pontine involvement. Patients with largest lesion extending to the anterior and inferolateral cerebellum showed mixed symptomatology of the lateral medullary (Wallenberg's syndrome) and AICA territory involvement. Patients with MPCIs presented various clinical pictures with consciousness disturbances and diverse clinical signs because of involvement of different anatomical structures. Large-artery atherosclerotic disease in the vertebrobasilar system was the main cause of stroke in 12 (52%) patients, cardioembolism (CE) in one (4%), and coexisting large-artery disease and a source of CE in four (17%). The main cause of stroke was atheromatous vertebrobasilar artery disease either in the distal vertebral or proximal basilar artery. The outcome was usually good except those with multiple lesions. The new MRI techniques and clinical correlations allow better definition of the diverse topographical

  1. Longitudinal development in the preterm thalamus and posterior white matter: MRI correlations between diffusion weighted imaging and T2 relaxometry

    PubMed Central

    Eaton‐Rosen, Zach; Orasanu, Eliza; Price, David; Bainbridge, Alan; Cardoso, M. Jorge; Kendall, Giles S.; Robertson, Nicola J.; Marlow, Neil; Ourselin, Sebastien

    2016-01-01

    Abstract Infants born prematurely are at increased risk of adverse neurodevelopmental outcome. The measurement of white matter tissue composition and structure can help predict functional performance. Specifically, measurements of myelination and indicators of myelination status in the preterm brain could be predictive of later neurological outcome. Quantitative imaging of myelin could thus serve to develop biomarkers for prognosis or therapeutic intervention; however, accurate estimation of myelin content is difficult. This work combines diffusion MRI and multi‐component T2 relaxation measurements in a group of 37 infants born very preterm and scanned between 27 and 58 weeks equivalent gestational age. Seven infants have longitudinal data at two time points that we analyze in detail. Our aim is to show that measurement of the myelin water fraction is achievable using widely available pulse sequences and state‐of‐the‐art algorithmic modeling of the MR imaging procedure and that a multi‐component fitting routine to multi‐shell diffusion weighted data can show differences in neurite density and local spatial arrangement in grey and white matter. Inference on the myelin water fraction allows us to demonstrate that the change in diffusion properties of the preterm thalamus is not solely due to myelination (that increase in myelin content accounts for about a third of the observed changes) whilst the decrease in the posterior white matter T2 has no significant component that is due to myelin water content. This work applies multi‐modal advanced quantitative neuroimaging to investigate changing tissue properties in the longitudinal setting. Hum Brain Mapp 37:2479–2492, 2016. © The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.. PMID:26996400

  2. Correlation of Choline/Creatine and Apparent Diffusion Coefficient values with the prognostic parameters of Head and Neck Squamous Cell Carcinoma.

    PubMed

    Razek, Ahmed Abdel Khalek Abdel; Nada, Nadia

    2016-04-01

    The aim of this study was to measure choline/creatine (Ch/Cr) levels through (1)H-MRS and apparent diffusion coefficient (ADC) values through diffusion-weighted MRI, and to correlate these values with the prognostic parameters of head and neck squamous cell carcinoma (HNSCC). The institutional review board approved this study and informed written consent was obtained from all study participants. A prospective study of 43 patients (31 men and 12 women; mean age, 65 years) with HNSCC was conducted. Single-voxel (1)H-MRS was performed at the tumor or metastatic cervical lymph node with point-resolved spectroscopy (PRESS) at TE = 135 ms. Diffusion-weighted MR images with b values of 0, 500 and 1000 s/mm(2) and contrast MRI of the head and neck were performed. The Ch/Cr levels and ADC values of HNSCC were calculated. The gross tumor volume (GTV) was also calculated. The degree of tumor differentiation was determined through pathological examination. The HNSCC Ch/Cr level was negatively correlated with the ADC value (r = -0.662, p = 0.001). There was a significant difference in the Ch/Cr and ADC values at different degrees of tumor differentiation (p = 0.003 and p = 0.001) and with different GTVs (p = 0.122 and p = 0.001). The following prognostic parameter categories were used: (i) poorly differentiated and undifferentiated versus well differentiated to moderately differentiated; and (ii) HNSCC with GTV < 30 cm(3) versus GTV > 30 cm(3). The cut-off values for Cho/Cr and ADC for each category were 1.83, 0.95 and 1.94, 0.99, respectively, and the areas under the curve were 0.771, 0.967 and 0.726, 0.795, respectively, for each category. We conclude that the Ch/Cr levels determined using (1)H-MRS and the ADC values are well correlated with several prognostic parameters of HNSCC.

  3. The diffusion-weighted imaging and 11-C-methionine positron emission tomography depiction of an endodermal cyst at the cervico-medullary junction.

    PubMed

    Riva, Marco; Rodriguez Y Baena, Riccardo; Pessina, Federico; Egesta, Lopci; Fernandes, Bethania; Galli, Carlo; Rossi, Marco; Bello, Lorenzo

    2015-01-01

    A case of a 52-year-old male with left-sided neck pain, vertigo and gait instability is reported. A MRI scan revealed an intra-dural mass at the cervico-medullary junction, further characterised by diffusion-weighted imaging and 11-C-methionine positron emission tomography. Pathological diagnosis was endodermal cyst. The clinico-surgical relevance of the imaging findings is discussed.

  4. Real-Time Correction of Rigid-Body-Motion-Induced Phase Errors for Diffusion-Weighted Steady State Free Precession Imaging

    PubMed Central

    O’Halloran, R; Aksoy, M; Aboussouan, E; Peterson, E; Van, A; Bammer, R

    2014-01-01

    Purpose Diffusion contrast in diffusion-weighted steady state free precession MRI is generated through the constructive addition of signal from many coherence pathways. Motion-induced phase causes destructive interference which results in loss of signal magnitude and diffusion contrast. In this work, a 3D navigator-based real-time correction of the rigid-body-motion-induced phase errors is developed for diffusion-weighted steady state free precession MRI. Methods The efficacy of the real-time prospective correction method in preserving phase coherence of the steady-state is tested in 3D phantom experiments and 3D scans of healthy human subjects. Results In nearly all experiments, the signal magnitude in images obtained with proposed prospective correction was higher than the signal magnitude in images obtained with no correction. In the human subjects the mean magnitude signal in the data was up to 30 percent higher with prospective motion correction than without. Prospective correction never resulted in a decrease in mean signal magnitude in either the data or in the images. Conclusions The proposed prospective motion correction method is shown to preserve the phase coherence of the steady state in diffusion-weighted steady state free precession MRI, thus mitigating signal magnitude losses that would confound the desired diffusion contrast. PMID:24715414

  5. Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes.

    PubMed

    Andersson, Jesper L R; Sotiropoulos, Stamatios N

    2015-11-15

    Diffusion MRI offers great potential in studying the human brain microstructure and connectivity. However, diffusion images are marred by technical problems, such as image distortions and spurious signal loss. Correcting for these problems is non-trivial and relies on having a mechanism that predicts what to expect. In this paper we describe a novel way to represent and make predictions about diffusion MRI data. It is based on a Gaussian process on one or several spheres similar to the Geostatistical method of "Kriging". We present a choice of covariance function that allows us to accurately predict the signal even from voxels with complex fibre patterns. For multi-shell data (multiple non-zero b-values) the covariance function extends across the shells which means that data from one shell is used when making predictions for another shell.

  6. Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes

    PubMed Central

    Andersson, Jesper L.R.; Sotiropoulos, Stamatios N.

    2015-01-01

    Diffusion MRI offers great potential in studying the human brain microstructure and connectivity. However, diffusion images are marred by technical problems, such as image distortions and spurious signal loss. Correcting for these problems is non-trivial and relies on having a mechanism that predicts what to expect. In this paper we describe a novel way to represent and make predictions about diffusion MRI data. It is based on a Gaussian process on one or several spheres similar to the Geostatistical method of “Kriging”. We present a choice of covariance function that allows us to accurately predict the signal even from voxels with complex fibre patterns. For multi-shell data (multiple non-zero b-values) the covariance function extends across the shells which means that data from one shell is used when making predictions for another shell. PMID:26236030

  7. The Role of 3 Tesla Diffusion-Weighted Imaging in the Differential Diagnosis of Benign versus Malignant Cervical Lymph Nodes in Patients with Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Pranno, Nicola; Sartori, Alessandro; Gigli, Silvia; Lo Mele, Luigi; Marsella, Luigi Tonino

    2014-01-01

    Objective. The aim of this study was to validate the role of diffusion-weighted imaging (DWI) at 3 Tesla in the differential diagnosis between benign and malignant laterocervical lymph nodes in patients with head and neck squamous cell carcinoma (HNSCC). Materials and Methods. Before undergoing surgery, 80 patients, with biopsy proven HNSCC, underwent a magnetic resonance exam. Sensitivity (Se) and specificity (Spe) of conventional criteria and DWI in detecting laterocervical lymph node metastases were calculated. Histological results from neck dissection were used as standard of reference. Results. In the 239 histologically proven metastatic lymphadenopathies, the mean apparent diffusion coefficient (ADC) value was 0.903 × 10−3 mm2/sec. In the 412 pathologically confirmed benign lymph nodes, an average ADC value of 1.650 × 10−3 mm2/sec was found. For differentiating between benign versus metastatic lymph nodes, DWI showed Se of 97% and Spe of 93%, whereas morphological criteria displayed Se of 61% and Spe of 98%. DWI showed an area under the ROC curve (AUC) of 0.964, while morphological criteria displayed an AUC of 0.715. Conclusions. In a DWI negative neck for malignant lymph nodes, the planned dissection could be converted to a wait-and-scan policy, whereas DWI positive neck would support the decision to perform a neck dissection. PMID:25003115

  8. Earthquake Apparent Stress Scaling

    NASA Astrophysics Data System (ADS)

    Walter, W. R.; Mayeda, K.; Ruppert, S.

    2002-12-01

    There is currently a disagreement within the geophysical community on the way earthquake energy scales with magnitude. One set of recent papers finds evidence that energy release per seismic moment (apparent stress) is constant (e.g. Choy and Boatwright, 1995; McGarr, 1999; Ide and Beroza, 2001). Another set of recent papers finds the apparent stress increases with magnitude (e.g. Kanamori et al., 1993 Abercrombie, 1995; Mayeda and Walter, 1996; Izutani and Kanamori, 2001). The resolution of this issue is complicated by the difficulty of accurately accounting for and determining the seismic energy radiated by earthquakes over a wide range of event sizes in a consistent manner. We have just started a project to reexamine this issue by analyzing aftershock sequences in the Western U.S. and Turkey using two different techniques. First we examine the observed regional S-wave spectra by fitting with a parametric model (Walter and Taylor, 2002) with and without variable stress drop scaling. Because the aftershock sequences have common stations and paths we can examine the S-wave spectra of events by size to determine what type of apparent stress scaling, if any, is most consistent with the data. Second we use regional coda envelope techniques (e.g. Mayeda and Walter, 1996; Mayeda et al, 2002) on the same events to directly measure energy and moment. The coda techniques corrects for path and site effects using an empirical Green function technique and independent calibration with surface wave derived moments. Our hope is that by carefully analyzing a very large number of events in a consistent manner using two different techniques we can start to resolve this apparent stress scaling issue. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  9. Short-term probabilistic earthquake risk assessment considering time-dependent b values

    NASA Astrophysics Data System (ADS)

    Gulia, Laura; Tormann, Thessa; Wiemer, Stefan; Herrmann, Marcus; Seif, Stefanie

    2016-02-01

    Laboratory experiments highlight a systematic b value decrease during the stress increase period before failure, and some large natural events are known to show a precursory decrease in the b value. However, short-term forecast models currently consider only the generic probability that an event can trigger subsequent seismicity in the near field. While the probability increase over a stationary Poissonian background is substantial, selected case studies have shown through cost-benefit analysis that the absolute main shock probability remains too low to warrant significant mitigation actions. We analyze the probabilities considering both changes in the seismicity rates and temporal changes in the b value. The precursory b value decrease in the 2009 L'Aquila case results in an additional fiftyfold probability increase for a M6.3 event. Translated into time-varying hazard and risk, these changes surpass the cost-benefit threshold for short-term evacuation.

  10. Cervical Gross Tumor Volume Dose Predicts Local Control Using Magnetic Resonance Imaging/Diffusion-Weighted Imaging—Guided High-Dose-Rate and Positron Emission Tomography/Computed Tomography—Guided Intensity Modulated Radiation Therapy

    SciTech Connect

    Dyk, Pawel; Jiang, Naomi; Sun, Baozhou; DeWees, Todd A.; Fowler, Kathryn J.; Narra, Vamsi; Garcia-Ramirez, Jose L.; Schwarz, Julie K.; Grigsby, Perry W.

    2014-11-15

    Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodes by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.

  11. Detection and implication of significant temporal b-value variation during earthquake sequences

    NASA Astrophysics Data System (ADS)

    Gulia, Laura; Tormann, Thessa; Schorlemmer, Danijel; Wiemer, Stefan

    2016-04-01

    Earthquakes tend to cluster in space and time and periods of increased seismic activity are also periods of increased seismic hazard. Forecasting models currently used in statistical seismology and in Operational Earthquake Forecasting (e.g. ETAS) consider the spatial and temporal changes in the activity rates whilst the spatio-temporal changes in the earthquake size distribution, the b-value, are not included. Laboratory experiments on rock samples show an increasing relative proportion of larger events as the system approaches failure, and a sudden reversal of this trend after the main event. The increasing fraction of larger events during the stress increase period can be mathematically represented by a systematic b-value decrease, while the b-value increases immediately following the stress release. We investigate whether these lab-scale observations also apply to natural earthquake sequences and can help to improve our understanding of the physical processes generating damaging earthquakes. A number of large events nucleated in low b-value regions and spatial b-value variations have been extensively documented in the past. Detecting temporal b-value evolution with confidence is more difficult, one reason being the very different scales that have been suggested for a precursory drop in b-value, from a few days to decadal scale gradients. We demonstrate with the results of detailed case studies of the 2009 M6.3 L'Aquila and 2011 M9 Tohoku earthquakes that significant and meaningful temporal b-value variability can be detected throughout the sequences, which e.g. suggests that foreshock probabilities are not generic but subject to significant spatio-temporal variability. Such potential conclusions require and motivate the systematic study of many sequences to investigate whether general patterns exist that might eventually be useful for time-dependent or even real-time seismic hazard assessment.

  12. On varying b-values with depth: results from computer-intensive tests for Southern California

    NASA Astrophysics Data System (ADS)

    Amorèse, D.; Grasso, J.-R.; Rydelek, P. A.

    2010-01-01

    The Gutenberg-Richter b-value is thought to reflect the stress conditions in the crust; therefore, spatial and/or temporal variations of the b-value can provide important information regarding crustal tectonics. We investigate the variation of b-value with depth in seven selected areas of Southern California. A previous study provided a detailed mapping of the variations of b with depth in California; our study is less systematic than this study. Our approach is more similar to the regional one used by Mori & Abercrombie. In comparison to these previous studies, our investigation indicates that the variability of b is often not statistically significant and that the decrease of b with depth should be interpreted with caution. The seismic catalogues used are subsets of a set of about 100000 seismic events recorded by the Southern California Seismic Network (SCSN) and relocated by Richards-Dinger & Shearer. We study the performance of Utsu's test compared to bootstrap tests for comparison of b-values. The results of our investigation also raise the question of the relevancy of Utsu's test when comparing b-values. Both simulations and real cases show that the Utsu's test is biased towards rejection of the null hypothesis in favour of the hypothesis that b-values are significantly different.

  13. Seismic b-Values, Bouguer Gravity and Heat Flow Data Beneath Eastern Anatolia, Turkey: Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Maden, Nafiz; Öztürk, Serkan

    2015-07-01

    In this paper, we analyze the relationships between the seismic b-values, Bouguer gravity and heat flow data in the Eastern Anatolia region of Turkey. For this purpose, spatial distributions of b-value, Bouguer gravity and heat flow have been presented for different depths and locations. In distinction to previous studies which have used only two parameters (gravity and seismic b-value or heat flow and seismic b-value), we have combined seismic b-values, Bouguer gravity and heat flow data to determine the new results on the active tectonics of the Eastern Anatolia region. Our analysis shows that there are significant and robust correlations amidst the heat flow data, Bouguer gravity anomaly and seismic b-values. The crustal structure is thick in areas where the large negative gravity anomalies and low b-values are observed. On the contrary, the regions with positive gravity anomalies and high b-values are likely to be associated with magma chambers or crustal low-velocity zones. We also provide some evidence suggesting that high b-values and high heat flow values can be related to the magmatic activities beneath the volcanic chain in the Eastern Pontide orogenic belt. Consequently, we have reached some conclusions for the Eastern Anatolia region: (1) The Moho to surface is rather thick and earthquakes are relatively smaller beneath the volcanic chain where the high heat flow values are observed, (2) a southward subduction model could have existed for the development of the Pontides during the late Mesozoic-Cenozoic era, (3) hot and unstable mantle lid zones or a lithosphere deprived of mantle under the study region is much more plausible, (4) a southward movement of the subduction plate and a northward extension of the Black Sea increase the state of stress along the trench axis and decrease the b-value, and (5) these movements may load the stress energy to the fault zones, thereby causing the catastrophic earthquakes in the Eastern Anatolia region.

  14. The apparent Universe

    NASA Astrophysics Data System (ADS)

    Binétruy, P.; Helou, A.

    2015-10-01

    We exploit the parallel between dynamical black holes and cosmological spacetimes to describe the evolution of Friedmann-Lemaître-Robertson-Walker universes from the point of view of an observer in terms of the dynamics of the apparent horizon. Using the Hayward-Kodama formalism of dynamical black holes, we clarify the role of the Clausius relation to derive the Friedmann equations for a Universe, in the spirit of Jacobson’s work on the thermodynamics of spacetime. We also show how dynamics at the horizon naturally leads to the quantum-mechanical process of Hawking radiation. We comment on the connection of this work with recent ideas to consider our observable Universe as a Bose-Einstein condensate and on the corresponding role of vacuum energy.

  15. Earthquake Apparent Stress Scaling

    NASA Astrophysics Data System (ADS)

    Mayeda, K.; Walter, W. R.

    2003-04-01

    There is currently a disagreement within the geophysical community on the way earthquake energy scales with magnitude. One set of recent papers finds evidence that energy release per seismic moment (apparent stress) is constant (e.g. Choy and Boatwright, 1995; McGarr, 1999; Ide and Beroza, 2001). Another set of recent papers finds the apparent stress increases with magnitude (e.g. Kanamori et al., 1993 Abercrombie, 1995; Mayeda and Walter, 1996; Izutani and Kanamori, 2001). The resolution of this issue is complicated by the difficulty of accurately accounting for and determining the seismic energy radiated by earthquakes over a wide range of event sizes in a consistent manner. We have just started a project to reexamine this issue by applying the same methodology to a series of datasets that spans roughly 10 orders in seismic moment, M0. We will summarize recent results using a coda envelope methodology of Mayeda et al, (2003) which provide the most stable source spectral estimates to date. This methodology eliminates the complicating effects of lateral path heterogeneity, source radiation pattern, directivity, and site response (e.g., amplification, f-max and kappa). We find that in tectonically active continental crustal areas the total radiated energy scales as M00.25 whereas in regions of relatively younger oceanic crust, the stress drop is generally lower and exhibits a 1-to-1 scaling with moment. In addition to answering a fundamental question in earthquake source dynamics, this study addresses how one would scale small earthquakes in a particular region up to a future, more damaging earthquake. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  16. Are volcanic seismic b-values high, and if so when?

    NASA Astrophysics Data System (ADS)

    Roberts, Nick S.; Bell, Andrew F.; Main, Ian G.

    2015-12-01

    The Gutenberg-Richter exponent b is a measure of the relative proportion of large and small earthquakes. It is commonly used to infer material properties such as heterogeneity, or mechanical properties such as the state of stress from earthquake populations. It is 'well known' that the b-value tends to be high or very high for volcanic earthquake populations relative to b = 1 for those of tectonic earthquakes, and that b varies significantly with time during periods of unrest. We first review the supporting evidence from 34 case studies, and identify weaknesses in this argument due predominantly to small sample size, the narrow bandwidth of magnitude scales available, variability in the methods used to assess the minimum or cutoff magnitude Mc, and to infer b. Informed by this, we use synthetic realisations to quantify the effect of choice of the cutoff magnitude on maximum likelihood estimates of b, and suggest a new work flow for this choice. We present the first quantitative estimate of the error in b introduced by uncertainties in estimating Mc, as a function of the number of events and the b-value itself. This error can significantly exceed the commonly-quoted statistical error in the estimated b-value, especially for the case that the underlying b-value is high. We apply the new methods to data sets from recent periods of unrest in El Hierro and Mount Etna. For El Hierro we confirm significantly high b-values of 1.5-2.5 prior to the 10 October 2011 eruption. For Mount Etna the b-values are indistinguishable from b = 1 within error, except during the flank eruptions at Mount Etna in 2001-2003, when 1.5 < b < 2.0. For the time period analysed, they are rarely lower than b = 1. Our results confirm that these volcano-tectonic earthquake populations can have systematically high b-values, especially when associated with eruptions. At other times they can be indistinguishable from those of tectonic earthquakes within the total error. The results have significant

  17. HOMOR: higher order model outlier rejection for high b-value MR diffusion data.

    PubMed

    Pannek, Kerstin; Raffelt, David; Bell, Christopher; Mathias, Jane L; Rose, Stephen E

    2012-11-01

    Diffusion MR images are prone to artefacts caused by head movement and cardiac pulsation. Previous techniques for the automated voxel-wise detection of signal intensity outliers have relied on the fit of the diffusion tensor to the data (RESTORE). However, the diffusion tensor cannot appropriately model more than a single fibre population, which may lead to inaccuracies when identifying outlier voxels in crossing fibre regions, particularly when high b-values are used to obtain increased angular contrast. HOMOR (higher order model outlier rejection) was developed to overcome this limitation and is introduced in this study. HOMOR is closely related to RESTORE, but employs a higher order model capable of resolving multiple fibre populations within a voxel. Using high b-value (b=3000 s/mm2) diffusion data from a population of 90 healthy participants, as well as simulations, HOMOR was found to identify a decreased number of outlier voxels compared to RESTORE primarily within areas of crossing, bending and fanning fibres. At lower b-values, however, RESTORE and HOMOR give similar results, which is demonstrated using diffusion data acquired at b=1000 s/mm2 in a mixed cohort. This study demonstrates that, although RESTORE is suitable for low b-value data, HOMOR is better suited for high b-value data. PMID:22819964

  18. Quantifying the effect of tissue deformation on diffusion-weighted MRI: a mathematical model and an efficient simulation framework applied to cardiac diffusion imaging

    NASA Astrophysics Data System (ADS)

    Mekkaoui, Imen; Moulin, Kevin; Croisille, Pierre; Pousin, Jerome; Viallon, Magalie

    2016-08-01

    Cardiac motion presents a major challenge in diffusion weighted MRI, often leading to large signal losses that necessitate repeated measurements. The diffusion process in the myocardium is difficult to investigate because of the unqualified sensitivity of diffusion measurements to cardiac motion. A rigorous mathematical formalism is introduced to quantify the effect of tissue motion in diffusion imaging. The presented mathematical model, based on the Bloch-Torrey equations, takes into account deformations according to the laws of continuum mechanics. Approximating this mathematical model by using finite elements method, numerical simulations can predict the sensitivity of the diffusion signal to cardiac motion. Different diffusion encoding schemes are considered and the diffusion weighted MR signals, computed numerically, are compared to available results in literature. Our numerical model can identify the existence of two time points in the cardiac cycle, at which the diffusion is unaffected by myocardial strain and cardiac motion. Of course, these time points depend on the type of diffusion encoding scheme. Our numerical results also show that the motion sensitivity of the diffusion sequence can be reduced by using either spin echo technique with acceleration motion compensation diffusion gradients or stimulated echo acquisition mode with unipolar and bipolar diffusion gradients.

  19. Quantifying the effect of tissue deformation on diffusion-weighted MRI: a mathematical model and an efficient simulation framework applied to cardiac diffusion imaging

    NASA Astrophysics Data System (ADS)

    Mekkaoui, Imen; Moulin, Kevin; Croisille, Pierre; Pousin, Jerome; Viallon, Magalie

    2016-08-01

    Cardiac motion presents a major challenge in diffusion weighted MRI, often leading to large signal losses that necessitate repeated measurements. The diffusion process in the myocardium is difficult to investigate because of the unqualified sensitivity of diffusion measurements to cardiac motion. A rigorous mathematical formalism is introduced to quantify the effect of tissue motion in diffusion imaging. The presented mathematical model, based on the Bloch–Torrey equations, takes into account deformations according to the laws of continuum mechanics. Approximating this mathematical model by using finite elements method, numerical simulations can predict the sensitivity of the diffusion signal to cardiac motion. Different diffusion encoding schemes are considered and the diffusion weighted MR signals, computed numerically, are compared to available results in literature. Our numerical model can identify the existence of two time points in the cardiac cycle, at which the diffusion is unaffected by myocardial strain and cardiac motion. Of course, these time points depend on the type of diffusion encoding scheme. Our numerical results also show that the motion sensitivity of the diffusion sequence can be reduced by using either spin echo technique with acceleration motion compensation diffusion gradients or stimulated echo acquisition mode with unipolar and bipolar diffusion gradients.

  20. Quantifying the effect of tissue deformation on diffusion-weighted MRI: a mathematical model and an efficient simulation framework applied to cardiac diffusion imaging.

    PubMed

    Mekkaoui, Imen; Moulin, Kevin; Croisille, Pierre; Pousin, Jerome; Viallon, Magalie

    2016-08-01

    Cardiac motion presents a major challenge in diffusion weighted MRI, often leading to large signal losses that necessitate repeated measurements. The diffusion process in the myocardium is difficult to investigate because of the unqualified sensitivity of diffusion measurements to cardiac motion. A rigorous mathematical formalism is introduced to quantify the effect of tissue motion in diffusion imaging. The presented mathematical model, based on the Bloch-Torrey equations, takes into account deformations according to the laws of continuum mechanics. Approximating this mathematical model by using finite elements method, numerical simulations can predict the sensitivity of the diffusion signal to cardiac motion. Different diffusion encoding schemes are considered and the diffusion weighted MR signals, computed numerically, are compared to available results in literature. Our numerical model can identify the existence of two time points in the cardiac cycle, at which the diffusion is unaffected by myocardial strain and cardiac motion. Of course, these time points depend on the type of diffusion encoding scheme. Our numerical results also show that the motion sensitivity of the diffusion sequence can be reduced by using either spin echo technique with acceleration motion compensation diffusion gradients or stimulated echo acquisition mode with unipolar and bipolar diffusion gradients. PMID:27385441

  1. A comparison of seismicity in world's subduction zones: Implication by the difference of b-values

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Ide, S.

    2013-12-01

    Since the pioneering study of Uyeda and Kanamori (1979), it has been thought that world's subduction zones can be classified into two types: Chile and Mariana types. Ruff and Kanamori (1980) suggested that the maximum earthquake size within each subduction zone correlates with convergence rate and age of subducting lithosphere. Subduction zones with younger lithosphere and larger convergence rates are associated with great earthquakes (Chile), while subduction zones with older lithosphere and smaller convergence rates have low seismicity (Mariana). However, these correlations are obscured after the 2004 Sumatra earthquake and the 2009 Tohoku earthquake. Furthermore, McCaffrey (2008) pointed out that the history of observation is much shorter than the recurrence times of very large earthquakes, suggesting a possibility that any subduction zone may produce earthquakes larger than magnitude 9. In the present study, we compare world's subduction zones in terms of b-values in the Gutenberg-Richer relation. We divided world's subduction zones into 146 regions, each of which is bordered by a trench section of about 500 km and extends for 200 km from the trench section in the direction of relative plate motion. In each region, earthquakes equal to or larger than M4.5 occurring during 1988-2009 were extracted from ISC catalog. We find a positive correlation between b-values and ages of subducting lithosphere, which is one of the two important variables discussed in Ruff and Kanamori (1980). Subduction zones with younger lithosphere are associated with high b-values and vice versa, while we cannot find a correlation between b-values and convergence rates. We used the ages determined by Müller et al. (2008) and convergence rate calculated using PB2002 (Bird, 2003) for convergence rate. We also found a negative correlation between b-values and the estimates of seismic coupling, which is defined as the ratio of the observed seismic moment release rate to the rate calculated

  2. Gutenberg-Richter b-value maximum likelihood estimation and sample size

    NASA Astrophysics Data System (ADS)

    Nava, F. A.; Márquez-Ramírez, V. H.; Zúñiga, F. R.; Ávila-Barrientos, L.; Quinteros, C. B.

    2016-06-01

    The Aki-Utsu maximum likelihood method is widely used for estimation of the Gutenberg-Richter b-value, but not all authors are conscious of the method's limitations and implicit requirements. The Aki/Utsu method requires a representative estimate of the population mean magnitude; a requirement seldom satisfied in b-value studies, particularly in those that use data from small geographic and/or time windows, such as b-mapping and b-vs-time studies. Monte Carlo simulation methods are used to determine how large a sample is necessary to achieve representativity, particularly for rounded magnitudes. The size of a representative sample weakly depends on the actual b-value. It is shown that, for commonly used precisions, small samples give meaningless estimations of b. Our results give estimates on the probabilities of getting correct estimates of b for a given desired precision for samples of different sizes. We submit that all published studies reporting b-value estimations should include information about the size of the samples used.

  3. Role of Diffusion-weighted Imaging in Acute Stroke Management using Low-field Magnetic Resonance Imaging in Resource-limited Settings

    PubMed Central

    Okorie, Chinonye K; Ogbole, Godwin I; Owolabi, Mayowa O; Ogun, Olufunmilola; Adeyinka, Abiodun; Ogunniyi, Adesola

    2015-01-01

    A variety of imaging modalities exist for the diagnosis of stroke. Several studies have been carried out to ascertain their contribution to the management of acute stroke and to compare the benefits and limitations of each modality. Diffusion-weighted imaging (DWI) has been described as the optimal imaging technique for diagnosing acute ischemic stroke, yet limited evidence is available on the value of DWI in the management of ischemic stroke with low-field magnetic resonance (MR) systems. Although high-field MR imaging (MRI) is desirable for DWI, low-field scanners provide an acceptable clinical compromise which is of importance to developing countries posed with the challenge of limited availability of high-field units. The purpose of this paper was to systematically review the literature on the usefulness of DWI in acute stroke management with low-field MRI scanners and present the experience in Nigeria. PMID:26709342

  4. Meningoencephalitis caused by Streptococcus pneumoniae: a diagnostic and therapeutic challenge. Diagnosis with diffusion-weighted MRI leading to treatment with corticosteroids.

    PubMed

    Jorens, Philippe G; Parizel, Paul M; Demey, Hendrik E; Smets, Katrien; Jadoul, Kris; Verbeek, M M; Wevers, R A; Cras, Patrick

    2005-10-01

    Streptococcus pneumoniae is a common cause of bacterial meningitis but only rarely causes other infections such as brain abscess, encephalitis, encephalomyelitis or meningoencephalitis. We report on three adult patients with meningoencephalitis caused by S. pneumoniae. In all three, CT and MRI revealed widespread brain lesions, suggesting extensive parenchymal injury. Diffusion-weighted MRI showed lesions with restricted diffusion, reflecting local areas of ischaemia with cytotoxic oedema secondary to an immunologically mediated necrotising vasculitis and thrombosis. High levels of markers of neuronal, glial and myelin damage were found in the cerebrospinal fluid. According to the literature, brain parenchyma lesions in adults with pneumococcal meningoencephalitis are often associated with death or severe neurological deficit. Our patients were treated with pulse doses of glucocorticoids: this resulted in dramatic clinical improvement and an excellent final neurological recovery.

  5. Earthquake swarm and b-value characterization of the Yellowstone volcano-tectonic system

    NASA Astrophysics Data System (ADS)

    Farrell, Jamie; Husen, Stephan; Smith, Robert B.

    2009-11-01

    The Yellowstone volcanic field, Yellowstone National Park, is one of the most seismically active areas of the western U.S., experiencing the deadly 1959 M7.5 Hebgen Lake, MT, earthquake adjacent to the 0.64-Ma caldera, as well as more than 30,000 earthquakes from 1973 to 2007. This well-recorded seismic activity offers the opportunity to study the temporal and spatial occurrence of earthquakes and extensive earthquake swarms and how they relate to active volcanic and tectonic processes. We characterize the distribution of earthquakes by analyzing the rate of occurrence characterized by the b-value. To accurately determine b-values, the earthquake catalog was filtered to identify statistically time- and spatially-dependent related events, defined as swarms, from independent single main and aftershocks. An algorithm was employed that identified 69 swarms for 1984-2006 based on inter-event times and spatial clustering. The swarms varied in duration from 1 to 46 days with the number of events varying from 30 to 722 with magnitudes of - 1.2 to 4.8. All of the swarm events as well as the 597 events triggered by the 2002 Denali fault, AK, earthquake were removed from the catalog for analysis. The catalog data were then filtered for a magnitude of completeness ( MCOMP) of 1.5 and the b-value distribution for the Yellowstone region was determined with the de-swarmed data. b-values ranged from 0.6 ± 0.1 to 1.5 ± 0.05 with the highest values associated with the youthful 150,000-year old Mallard Lake resurgent dome. These variations are interpreted to be related to variations in stresses accompanying the migration of magmatic and hydrothermal fluids. An area of high b-values (up to 1.3 ± 0.1) associated with the Hebgen Lake fault zone west of the Yellowstone caldera could be related to the transport of magmatic fluids out of the Yellowstone volcanic system or could be indicative of a relative low stress regime resulting from the stress release by the Hebgen Lake earthquake

  6. Spatio-temporal variations of b-value in and around north Pakistan

    NASA Astrophysics Data System (ADS)

    Rehman, Khaista; Ali, Asghar; Ahmed, Sajjad; Ali, Wajid; Ali, Aamir; Khan, Muhammad Younis

    2015-10-01

    The seismotectonic structure of north Pakistan has been formed by ongoing collision between the Eurasian and Indian plates. North Pakistan and the adjoining areas experienced many large earthquakes in the past, which resulted in considerable damages and loss of life. A magnitude-homogenous earthquake catalogue for north Pakistan and its surrounding areas for the instrumental period from 1964 to 2007 is used for analysis. We presented seismicity picture of the Hindukush-Pamir-Karakoram (HPK), Kohistan Island Arc (KIA) and Hazara-Kashmir-Himalayas (HKH) using various histograms and time series plots of the dataset. The b-value for each accreted domain is derived separately and investigated through a process of mutual correlation. Our computed temporal variation of b-value in Hazara region shows a significant decrease prior to 2005 Kashmir earthquake.

  7. Serum lipids and apolipoprotein B values, blood pressure and pulse rate in anorexia nervosa.

    PubMed

    Sánchez-Muniz, F J; Marcos, A; Varela, P

    1991-01-01

    Some risk factors associated with coronary heart disease (CHD) were evaluated in patients with different types of anorexia nervosa (AN). Anthropometric parameters, serum cholesterol, triglycerides and apoprotein (apo) B values, blood pressure and pulse rate were tested in 29 young female patients and 16 controls. Cholesterol, triglycerides and apo B were higher at the acute period of the illness (AN1), whereas at the chronic period the values of these parameters tended to normalize. Triglycerides were higher in patients who binge ate (bulimarexia). Systolic blood pressure decreased in all types of AN, while diastolic blood pressure decreased only in AN1; pulse rate was not altered. According to cholesterol and apo B values, AN patients may be at risk of CHD if they remain at low body weight. PMID:1855497

  8. Seismic b-Value and the Assessment of Ambient Stress in Northeast India

    NASA Astrophysics Data System (ADS)

    Khan, Prosanta Kumar; Ghosh, Manoj; Chakraborty, Partha Pratim; Mukherjee, Debdeep

    2011-10-01

    Seismicity data of northeast India, recorded between 1986 and 1999 by a local network, are analysed for estimation of b-values. Based on the obtained values, viz. low ( b ≤ 0.5), moderate (0.5 < b ≤ 0.7) and high ( b > 0.7), the study area is classified into different seismic-domains. An assessment of stress level is also carried out in identifying seismic-domains. Seismic activities, though mostly confined in some sectors, are presumably triggered by mutual interaction of the Shillong Plateau, Mikir Hills, Indo-Burman Ranges and the easternmost part of the Himalayas, and the contributions from deep-seated fractures cannot be ignored. The results resemble the seismic character of a foreland setting adjacent to a convergent margin. The b-values estimated for 240 square grids of dimension 0.6° × 0.6° over five seismic domains indicate wide variation. An analysis of cumulative seismic moment release ( M O) in different layers also indicates an anomaly in reference to the total seismic-energy budget of the five zones. The lower b-value and higher M O recorded at relatively lower depth (~30 km) towards the southwest of the study area might be associated with upward bulging of a strong lithosphere. The bulging is perhaps regionally compensated by the downward flexing of the descending Indian lithosphere beneath the Upper Assam area; features unequivocally observed in any foreland setup. Towards the north and east of the study area, random variations of in both b-value and M O along the converging zone suggest a varied tectonic environment with active interaction between the tectonic elements in these areas.

  9. Variability of the b value in the Gutenberg-Richter distribution

    NASA Astrophysics Data System (ADS)

    Godano, C.; Lippiello, E.; de Arcangelis, L.

    2014-12-01

    The b value of the Gutenberg-Richter (GR) distribution is estimated as a function of a threshold magnitude mth and it is found to depend on mth for magnitudes larger than the completeness magnitude mc. We identify a magnitude interval [mc, mm] where b is a decreasing function of mth followed by a regime of increasing b for large magnitudes. This is a common feature of experimental catalogues for different geographic areas. The increase at large mth is explained in terms of an upper magnitude cut-off in experimental catalogues due to finite size effects. We develop a rigorous mathematical framework to relate the decrease of b in the intermediate regime to the functional form of the distribution of the b values. We propose two hypotheses: The first is that the spatial and temporal variability of b leads to a b distribution peaked around its average value. The second is that main shocks and aftershocks are distributed according to the GR law with different b values, leading to a bimodal distribution of b. Simulated Epidemic Type Aftershock Sequences catalogues, generated according to this hypothesis, exhibit the same magnitude distribution of experimental ones. In alternative, we cannot exclude the b dependence on m caused by magnitudes not homogeneously evaluated in a seismic catalogue. In the latter scenario our results provide the correction terms to the estimated magnitudes.

  10. Synchronous b-value change and crustal deformation following the 2007 Noto Peninsula Earthquake, Japan

    NASA Astrophysics Data System (ADS)

    Iwata, T.

    2013-12-01

    Although a large number of studies have been made on temporal (and/or spatial) change in earthquake size distribution, the physical mechanics of the change is still unclear. This study shows the results of the analysis of the temporal variation in the b-value of the aftershock sequence of the 2007 Noto Peninsula Earthquake, Japan, and its relationship with the crustal deformation observed near the focal region. The method to estimate the temporal variation in the b-value is the same as Iwata[2008, 2012]. In this method, the statistical model representing a magnitude-frequency distribution of earthquakes covering the entire magnitude range [Ogata & Katsura, 1993, GJI] is introduced. The distribution model is represented as the product of the Gutenberg-Richter (GR) law and a detection rate function q(M), which is assumed to be the cumulative distribution function of the normal distribution [Ringdal, 1977]. In total, this statistical model has three parameters, and one of them is the b-value of the GR law. The temporal variations in the model parameters are estimated by adopting a Bayesian approach with a piecewise linear approximation and smoothness constraint. As a result of the Bayesian analysis, the b-value was low and was around 0.8 in the early stage of the aftershock activity. Then, it increased up to around 1.1 gradually, and the trend of the increase was terminated at the beginning of 2010. To explore the origin of the termination, geodetic records provided by GSI, Japan, were examined. Using cubic B-splines and a Bayesian approach with smoothness constraint, the trend and seasonality were extracted from the observed time-series and were decomposed. Consequently, we found that the trend obtained from the data at TOGI, which is the closest station to the main fault of the Noto earthquake, changed at the beginning of 2010. This change suggests that the direction and/or magnitude of the afterslip vector after the beginning of that year was different from before

  11. Reproducibility and optimization of in vivo human diffusion-weighted MRS of the corpus callosum at 3T and 7T

    PubMed Central

    Branzoli, Francesca; Webb, Andrew; Sati, Pascal; Reich, Daniel S.; Ronen, Itamar

    2016-01-01

    Diffusion-weighted MRS (DWS) of brain metabolites enables the study of cell-specific alterations in tissue microstructure by probing the diffusion of intracellular metabolites. In particular, the diffusion properties of neuronal N-acetylaspartate (NAA), typically co-measured with N-acetylaspartyl glutamate (NAAG) (NAA + NAAG = tNAA), have been shown to be sensitive to intraneuronal/axonal damage in pathologies such as stroke and multiple sclerosis. Lacking, so far, are empirical assessments of the reproducibility of DWS measures across time and subjects, as well as a systematic investigation of the optimal acquisition parameters for DWS experiments, both of which are sorely needed for clinical applications of the method. In this study, we acquired comprehensive single-volume DWS datasets of the human corpus callosum at 3T and 7T. We investigated the inter- and intra-subject variability of empirical and modeled diffusion properties of tNAA [Davg(tNAA) and Dmodel(tNAA), respectively]. Subsequently, we used a jackknife-like resampling approach to explore the variance of these properties in partial data subsets reflecting different total scan durations. The coefficients of variation (CV) and repeatability coefficients (CR) for Davg(tNAA) and Dmodel(tNAA) were calculated for both 3T and 7T, with overall lower variability in the 7T results. Although this work is limited to the estimation of the diffusion properties in the corpus callosum, we show that a careful choice of diffusion-weighting conditions at both field strengths allows the accurate measurement of tNAA diffusion properties in clinically relevant experimental time. Based on the resampling results, we suggest optimized acquisition schemes of 13-min duration at 3T and 10-min duration at 7T, whilst retaining low variability (CV ≈ 8%) for the tNAA diffusion measures. Power calculations for the estimation of Dmodel(tNAA) and Davg(tNAA) based on the suggested schemes show that less than 21 subjects per group are

  12. The Role of Diffusion-Weighted Imaging (DWI) in Locoregional Therapy Outcome Prediction and Response Assessment for Hepatocellular Carcinoma (HCC): The New Era of Functional Imaging Biomarkers

    PubMed Central

    Ludwig, Johannes M.; Camacho, Juan C.; Kokabi, Nima; Xing, Minzhi; Kim, Hyun S.

    2015-01-01

    Reliable response criteria are critical for the evaluation of therapeutic response in hepatocellular carcinoma (HCC). Current response assessment is mainly based on: (1) changes in size, which is at times unreliable and lag behind the result of therapy; and (2) contrast enhancement, which can be difficult to quantify in the presence of benign post-procedural changes and in tumors presenting with a heterogeneous pattern of enhancement. Given these challenges, functional magnetic resonance imaging (MRI) techniques, such as diffusion-weighted imaging (DWI) have been recently investigated, aiding specificity to locoregional therapy response assessment and outcome prediction. Briefly, DWI quantifies diffusion of water occurring naturally at a cellular level (Brownian movement), which is restricted in multiple neoplasms because of high cellularity. Disruption of cellular integrity secondary to therapy results in increased water diffusion across the injured membranes. This review will provide an overview of the current literature on DWI therapy response assessment and outcome prediction in HCC following treatment with locoregional therapies. PMID:26854170

  13. Separation of small metabolites and lipids in spectra from biopsies by diffusion-weighted HR-MAS NMR: a feasibility study.

    PubMed

    Diserens, G; Vermathen, M; Precht, C; Broskey, N T; Boesch, C; Amati, F; Dufour, J-F; Vermathen, P

    2015-01-01

    High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle.

  14. Diffusion-weighted whole-body imaging with background body signal suppression/T2-weighted image fusion of gastrointestinal cancers

    PubMed Central

    TOMIZAWA, MINORU; SHINOZAKI, FUMINOBU; FUGO, KAZUNORI; SUNAOSHI, TAKAFUMI; KANO, DAISUKE; TANAKA, SATOMI; OZAKI, AIKA; SUGIYAMA, ERIKO; SHITE, MISAKI; HAGA, RYOUTA; BABA, AKIRA; FUKAMIZU, YOSHIYA; FUJITA, TOSHIYUKI; KAGAYAMA, SATOSHI; HASEGAWA, RUMIKO; TOGAWA, AKIRA; SHIRAI, YOSHINORI; ICHIKI, NOBORU; MOTOYOSHI, YASUFUMI; SUGIYAMA, TAKAO; YAMAMOTO, SHIGENORI; KISHIMOTO, TAKASHI; ISHIGE, NAOKI

    2016-01-01

    Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS) yields positive results for cancer against the surrounding tissues. The combination of DWIBS and T2-weighted images (DWIBS/T2) in the diagnosis of gastrointestinal tract cancers was retrospectively analyzed in the present study. Patients were subjected to magnetic resonance imaging after cancer was diagnosed through specimens obtained via biopsy or endoscopic mucosal resection. Sixteen patients were assessed between July, 2012 and June, 2013 and the correlation between detection with DWIBS/T2 and T staging was analyzed. Regarding patients who underwent surgery, the correlation between detection with DWIBS/T2 and the diameter or depth of invasion was analyzed. All cancers that had advanced to >T2 stage were detectable by DWIBS/T2, whereas all cancers staged as T2) or invading beyond the muscularis propria. PMID:27330763

  15. Thromboembolic Events Associated with Electrolytic Detachment of Guglielmi Detachable Coils and Target Coils : Comparison with Use of Diffusion-Weighted MR Imaging

    PubMed Central

    Kim, Myeong Jin; Lim, Yong Cheol; Oh, Se-yang; Kim, Byung Moon; Kim, Bum-soo

    2013-01-01

    Objective The purpose of this study was to retrospectively evaluate and compare the incidence of diffusion-weighted image (DWI) lesions between the Guglielmi detachable coil (GDC) and the Target coil for treating unruptured intracranial aneurysm. Methods From 2010 to 2011, consecutive 222 patients with an intracranial aneurysm underwent coil embolization. Inclusion criterias were : 1) unruptured intracranial aneurysm, 2) one or more GDC or Target coils used with or without other coils, 3) DWI examination within 24 hours after coiling, and 4) coiling performed without a balloon or stent. Results Ninety patients (92 cases) met the inclusion criteria. DWI lesions were detected in 55 (61.1%) of 90 patients. In the GDC group (n=44), DWI lesions were detected in 31 (70.5%). The average number of DWI lesions was 5.0±8.7 (mean±SD; range, 1-40) in aneurysm-related territory. In the Target coil group (n=48), DWI lesions were detected in 24 (50.0%). The number of DWI lesion was 2.1±5.4 (range, 1-32) in aneurysm-related territory. There was no significant correlation between a number of coils and DWI lesions. No significant differences were also observed in the number of DWI lesions in each group. Conclusion The GDC and Target coils, which have an electrolytic detachable system, showed no differences in the incidence of DWI lesion. PMID:24044075

  16. Diffusion-Weighted Magnetic Resonance Imaging and ADC Maps in the Diagnosis of Intracranial Cystic or Necrotic Lesions. A Retrospective Study on 49 Patients.

    PubMed

    Greco Crasto, S; Soffietti, R; Rudà, R; Cassoni, P; Ducati, A; Davini, O; De Lucchi, R; Rizzo, L

    2007-12-31

    This study evaluated the usefulness of diffusion-weighted (DW) magnetic resonance imaging (MRI) and ADC maps in the differential diagnosis of brain abscesses from cystic or necrotic neoplasms. MR images of 49 patients with 54 lesions were examined retrospectively. All patients underwent conventional MRI and DWI, and ADC values were calculated by placing ROIs of 30 mm(2) manually over the cystic part of the lesions. On DWI, all cystic portions of abscesses were hyperintense. Mean ADC values were 0.48×10 mm(2)/s (range 0.41-0.54×10 mm/s) for pyogenic abscesses, 0.73×10 mm(2)/s (range 0.65-0.91×10 mm/s) for mycotic abscesses and 0.6 mm(2)/s for Nocardia abscess. Cystic areas appeared hypointense on DWI in 33/44 tumours (mean value ADC 1.96 mm(2)/s). Eleven tumours (11/44) appeared hyperintense on DWI: eight metastases from lung cancer (mean ADC value 0.86 mm(2)/s, range 0.75-1.2 mm(2)/s), two GBMs (mean 0.7 mm(2)/s, range 0.67-0.76 mm(2)/s) and one anaplastic astrocytoma (ADC value 1.24 mm(2)/s). ADC values may help in differentiating pyogenic abscess from brain tumors or metastatic lesions.

  17. [A case of cerebral cardioembolism successfully treated by Merci retriever despite a large ischemic change on diffusion-weighted MR imaging].

    PubMed

    Kouge, Junpei; Torii, Takako; Nakagaki, Hideaki; Matsumoto, Shoji; Kawajiri, Masakazu; Yamada, Takeshi

    2013-01-01

    A 63-year-old man with paroxysmal atrial fibrillation presented with aphasia (16:30) followed by right hemiplegia. The last known time that he was clinically well was 14:30. On admission (17:43), his baseline NIHSS score was 34. Head diffusion-weighted MR imaging (DWI) demonstrated large hyperintense signals throughout the left middle cerebral artery (MCA) territory. The left carotid angiogram (CAG) demonstrated occlusion of the left ICA 2 cm distal from the bifurcation. The right CAG showed a small branch laterally extending from the left anterior cerebral artery (ACA). Mechanical thrombectomy with a Merci retriever removed a large amount of thrombi after the first trial. The left ICA and MCA were recanalized to grade TICI 2b. The left hemiplegia was markedly improved, and he could walk independently. His NIHSS score was 11 at discharge. Revascularization therapy may improve a motor deficit in patients with possible penumbra of the precentral gyrus by collateral circulation from the ACA even if the ischemic lesion in the MCA territory is large on DWI.

  18. [Depiction of the cranial nerves around the cavernous sinus by 3D reversed FISP with diffusion weighted imaging (3D PSIF-DWI)].

    PubMed

    Ishida, Go; Oishi, Makoto; Jinguji, Shinya; Yoneoka, Yuichiro; Sato, Mitsuya; Fujii, Yukihiko

    2011-10-01

    To evaluate the anatomy of cranial nerves running in and around the cavernous sinus, we employed three-dimensional reversed fast imaging with steady-state precession (FISP) with diffusion weighted imaging (3D PSIF-DWI) on 3-T magnetic resonance (MR) system. After determining the proper parameters to obtain sufficient resolution of 3D PSIF-DWI, we collected imaging data of 20-side cavernous regions in 10 normal subjects. 3D PSIF-DWI provided high contrast between the cranial nerves and other soft tissues, fluid, and blood in all subjects. We also created volume-rendered images of 3D PSIF-DWI and anatomically evaluated the reliability of visualizing optic, oculomotor, trochlear, trigeminal, and abducens nerves on 3D PSIF-DWI. All 20 sets of cranial nerves were visualized and 12 trochlear nerves and 6 abducens nerves were partially identified. We also presented preliminary clinical experiences in two cases with pituitary adenomas. The anatomical relationship between the tumor and cranial nerves running in and around the cavernous sinus could be three-dimensionally comprehended by 3D PSIF-DWI and the volume-rendered images. In conclusion, 3D PSIF-DWI has great potential to provide high resolution "cranial nerve imaging", which visualizes the whole length of the cranial nerves including the parts in the blood flow as in the cavernous sinus region.

  19. Diffusion-weighted magnetic resonance imaging for non-neoplastic conditions in the hepatobiliary and pancreatic regions: pearls and potential pitfalls in imaging interpretation.

    PubMed

    Lee, Nam Kyung; Kim, Suk; Kim, Dong Uk; Seo, Hyung Ii; Kim, Hyun Sung; Jo, Hong Jae; Kim, Tae Un

    2015-03-01

    Potentially, diffusion-weighted magnetic resonance imaging (DWI) can assess the functional information on concerning the status of tissue cellularity, because increased cellularity is associated with impeded diffusion. DWI in the hepatobiliary and pancreatic regions has demonstrated the usefulness to detect malignant lesions and differentiate them from benign lesions. However, it has been shown more recently that there is some overlap in ADC values for benign and malignant neoplasms. Moreover, some non-neoplastic lesions in the hepatobiliary and pancreatic regions exhibit restricted diffusion on DWI, because of pus, inflammation, or high cellularity. Focal eosinophilic liver disease, hepatic inflammatory myofibroblastic tumor, granulomatous liver disease, acute cholecystitis, xanthogranulomatous cholecystitis, focal pancreatitis, or autoimmune pancreatitis frequently exhibit restricted diffusion on DWI, which may be confused with malignancy in the hepatobiliary and pancreatic regions. Thus, DWI should not be interpreted in isolation, but in conjunction with other conventional images, to avoid the diagnostic pitfalls of DWI. Nevertheless, the presence of diffusion restriction in the non-neoplastic lesions sometimes provides additional information regarding the diagnosis, in problematic patients where conventional images have yielded equivocal findings. DWI may help differentiate hepatic abscess from malignant necrotic tumors, gallbladder empyema from dense bile or sludge in the gallbladder, and pylephlebitis from bland thrombosis in the portal vein. Therefore, knowledge of DWI findings to conventional imaging findings of diffusion-restricted non-neoplastic conditions in the hepatobiliary and pancreatic regions helps establishing a correct diagnosis. PMID:25216848

  20. Staging of Primary Abdominal Lymphomas: Comparison of Whole-Body MRI with Diffusion-Weighted Imaging and 18F-FDG-PET/CT

    PubMed Central

    Stecco, Alessandro; Buemi, Francesco; Quagliozzi, Martina; Lombardi, Mariangela; Santagostino, Alberto; Sacchetti, Gian Mauro; Carriero, Alessandro

    2015-01-01

    Background. The purpose of this study was to compare the accuracy of whole-body MRI with diffusion-weighted sequences (WB-DW-MRI) with that of 18F-FDG-PET/CT in the staging of patients with primary gastrointestinal lymphoma. Methods. This retrospective study involved 17 untreated patients with primary abdominal gastrointestinal lymphoma. All patients underwent 18F-FDG-PET/CT and WB-DW-MRI. Histopathology findings or at least 6 months of clinical and radiological follow-up was the gold standard. The Musshoff-modified Ann Arbor system was used for staging, and diagnostic accuracy was evaluated on a per-node basis. Results. WB-DW-MRI exhibited 100% sensitivity, 96.3% specificity, and 96.1% and 100% positive and negative predictive values (PPV and NPV), respectively. The sensitivity, specificity, and PPV and NPV of PET/CT were 95.9%, 100%, and 100% and 96.4%, respectively. There were no statistically significant differences between the two techniques (p = 0.05). The weighted kappa agreement statistics with a 95% confidence interval were 0.97 (0.95–0.99) between the two MRI readers and 0.87 (0.82–0.92) between the two methods. Conclusions. WB-DW-MRI appears to have a comparable diagnostic value to 18F-FDG-PET/CT in staging patients with gastrointestinal lymphoma. PMID:26798331

  1. Development of Computerized Scheme for Adjustment of Display Grayscale in Brain Diffusion-Weighted Magnetic Resonance Images with Acute Ischemic Stroke

    NASA Astrophysics Data System (ADS)

    Nagashima, Hiroyuki; Harakawa, Tetsumi; Doi, Kunio

    We developed a computerized scheme for proper adjustment of display grayscale in brain diffusion-weighted magnetic resonance images (DWI) with acute ischemic stroke by using thalamic signal intensity on concurrent images (b0 image). In our computerized scheme, the gray level of b0 image was first normalized, and the brain region was segmented using thresholding and labeling techniques. The lateral inclination in b0 image was then corrected semi-automatically by rotating and shifting. Each of the thalamic positions was determined by using the coordinate information in the brain region. The average signal intensity of the thalamus was measured on the region of interest (ROI) selected, and the thalamus in one side with the low signal intensity was selected. The display grayscale in DWI was finally adjusted by using the signal intensity of the selected thalamus. The thalamus positions in all cases were confirmed to be included in the thalamic outline. In 30 training cases, the average error between the thalamic signal intensity obtained from the manual selection and the computerized scheme were 1.8%±1.5, and in 30 testing cases, 1.3%±1.2. Our computerized scheme has a potential in the determination of the display grayscale of brain DWI, and would be useful to radiologists in decision-making for radiological diagnosis.

  2. Metabolomics of Breast Cancer Using High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopy: Correlations with 18F-FDG Positron Emission Tomography-Computed Tomography, Dynamic Contrast-Enhanced and Diffusion-Weighted Imaging MRI

    PubMed Central

    Yoon, Haesung; Yoon, Dahye; Yun, Mijin; Choi, Ji Soo; Park, Vivian Youngjean; Kim, Eun-Kyung; Jeong, Joon; Koo, Ja Seung; Yoon, Jung Hyun; Moon, Hee Jung; Kim, Suhkmann; Kim, Min Jung

    2016-01-01

    Purpose Our goal in this study was to find correlations between breast cancer metabolites and conventional quantitative imaging parameters using high-resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) and to find breast cancer subgroups that show high correlations between metabolites and imaging parameters. Materials and methods Between August 2010 and December 2013, we included 53 female patients (mean age 49.6 years; age range 32–75 years) with a total of 53 breast lesions assessed by the Breast Imaging Reporting and Data System. They were enrolled under the following criteria: breast lesions larger than 1 cm in diameter which 1) were suspicious for malignancy on mammography or ultrasound (US), 2) were pathologically confirmed to be breast cancer with US-guided core-needle biopsy (CNB) 3) underwent 3 Tesla MRI with dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) and positron emission tomography-computed tomography (PET-CT), and 4) had an attainable immunohistochemistry profile from CNB. We acquired spectral data by HR-MAS MRS with CNB specimens and expressed the data as relative metabolite concentrations. We compared the metabolites with the signal enhancement ratio (SER), maximum standardized FDG uptake value (SUV max), apparent diffusion coefficient (ADC), and histopathologic prognostic factors for correlation. We calculated Spearman correlations and performed a partial least squares-discriminant analysis (PLS-DA) to further classify patient groups into subgroups to find correlation differences between HR-MAS spectroscopic values and conventional imaging parameters. Results In a multivariate analysis, the PLS-DA models built with HR-MAS MRS metabolic profiles showed visible discrimination between high and low SER, SUV, and ADC. In luminal subtype breast cancer, compared to all cases, high SER, ADV, and SUV were more closely clustered by visual assessment. Multiple metabolites were correlated with SER and SUV in

  3. Correlations between the MR Diffusion-weighted Image (DWI) and the bone mineral density (BMD) as a function of the soft tissue thickness-focus on phantom and patient

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Sam; Cho, Jae-Hwan; Lee, Hae-Kag; Lee, Sang-Jeong; Park, Cheol-Soo; Dong, Kyung-Rae; Park, Yong-Soon; Chung, Woon-Kwan; Lee, Jong-Woong; Kim, Ho-Sung; Kim, Eun-Hye; Kweon, Dae Cheol; Yeo, Hwa-Yeon

    2013-02-01

    In this study we used lumbar phantoms to determine if the BMD (bone mineral density) changes when only the thickness of soft tissue is increased. Second, we targeted osteoporosis patients to analyze the dependences of the changes in the SNR (signal-to-noise ratio) and the ADC (apparent diffusion coefficient) on changes in T-score. We used a bone mineral densitometer, phantoms such as an aluminum spine phantom (ASP), a Hologic spine phantom (HSP), and a European spine phantom (ESP), five sheets of acrylic panel, and a water bath to study the effects of changes in the thickness of soft tissue. First, we measured the ASP, the HSP and the ESP. For the measurement of the ASP, we filled it with water to increase the height by 0.5 cm starting from the baseline height. We then did three measurements for each height. For the measurements of the HSP and the ESP, we placed an acrylic panel on the phantom and then did three measurements at each height. We used the ASP to calculate the degree of precision of the standard mode and the thick mode at the maximum height of the water bath. To assess the degree of precision in the measurements of the three types of phantoms, we calculated precision errors and analyzed the correlation between the change in the thickness of soft tissue and the variables of the BMD. Using DWIs (diffusion weighted images), we targeted 30 healthy persons without osteoporosis and 30 patients with a finding of osteoporosis and measured the T-scores for the L1 — L4 (lumbar spine) segments of by the spine using the dual-energy X-ray absorptiometry (DXA) before classifying the measurement at each part of the spine as osteopenia or osteoporosis. We measured the signal intensity on all four parts of L1-L4 in the DWIs obtained using a 1.5T MR scanner and measured the ADC in the ADC map image. We compared changes in the SNR and the ADC for each group. The study results confirmed that an increase in the thickness of the soft tissue had a significant correlation

  4. The b-value as an earthquake precursor: Spatiotemporal variations for the NW Himalayan region, India

    NASA Astrophysics Data System (ADS)

    Sushil, R.; Kumar, S.

    2011-12-01

    The northwest Himalayan region and the adjoining regions fall in the most intense seismic zone. Earthquakes of varying intensities have hit the region in the past and similar threats remain imminent. In the last 105 years, the main earthquakes occurred are the Kangra earthquake of 1905 (Ms=8.0), the Kinnaur earthquake of 1975 (M=6.8), Dharchula earthquake of 1980 (Mw=6.5), Uttarkashi earthquake of 1991 (Mb=6.6), Chamoli earthquake of 1999 (Mb=6.8) and the Kashmir earthquake of 2005 (Mw=7.6), which resulted in tremendous loss of life and property. The earthquakes occurrence possesses non-linear relation with respect to space and size. Spatiotemporal variations in b-Value are determined from 3846 well-located earthquakes, recorded at 10-19 seismic stations in Northwest Himalaya during 1995-2011. A systematic study of b-values in NW Himalaya has shown that within the vicinity of forthcoming large earthquakes there is initially a decrease and then increase in b after that return to normal. The Uttarkashi earthquake (Mb=6.5) and Chamoli earthquake (Mb=6.8) shows the same phenomenon. The results of this analysis will be discussed during the presentation of this paper.

  5. Forecast experiment: do temporal and spatial b value variations along the Calaveras fault portend M ≥ 4.0 earthquakes?

    USGS Publications Warehouse

    Parsons, Tom

    2007-01-01

    The power law distribution of earthquake magnitudes and frequencies is a fundamental scaling relationship used for forecasting. However, can its slope (b value) be used on individual faults as a stress indicator? Some have concluded that b values drop just before large shocks. Others suggested that temporally stable low b value zones identify future large-earthquake locations. This study assesses the frequency of b value anomalies portending M ≥ 4.0 shocks versus how often they do not. I investigated M ≥ 4.0 Calaveras fault earthquakes because there have been 25 over the 37-year duration of the instrumental catalog on the most active southern half of the fault. With that relatively large sample, I conducted retrospective time and space earthquake forecasts. I calculated temporal b value changes in 5-km-radius cylindrical volumes of crust that were significant at 90% confidence, but these changes were poor forecasters of M ≥ 4.0 earthquakes. M ≥ 4.0 events were as likely to happen at times of high b values as they were at low ones. However, I could not rule out a hypothesis that spatial b value anomalies portend M ≥ 4.0 events; of 20 M ≥ 4 shocks that could be studied, 6 to 8 (depending on calculation method) occurred where b values were significantly less than the spatial mean, 1 to 2 happened above the mean, and 10 to 13 occurred within 90% confidence intervals of the mean and were thus inconclusive. Thus spatial b value variation might be a useful forecast tool, but resolution is poor, even on seismically active faults.

  6. Diagnostic performance of diffusion-weighted MRI for detection of pelvic metastatic lymph nodes in patients with cervical cancer: a systematic review and meta-analysis.

    PubMed

    Shen, G; Zhou, H; Jia, Z; Deng, H

    2015-08-01

    In recent years, diffusion-weighted (DW) MRI has emerged as a new technique for detecting the pelvic lymph metastases in patients with cervical cancer. The aim of this meta-analysis was to assess the diagnostic value of DW imaging (DWI) for benign/malignant discrimination of pelvic lymph nodes (LNs). Studies about DWI for the detection of metastatic LNs were searched in the PubMed, EMBASE, Web of Science, EBSCO, the Cochrane Library and three Chinese databases. Based on the extracted data, we determined pooled sensitivities, specificities and diagnostic odds ratios (DORs) across studies, calculated positive and negative likelihood ratios (LRs) and constructed summary receiver operating characteristic curves with area under the curve (AUC) and Q* obtained. We also analysed the heterogeneity between studies based on subgroup analysis, threshold effect and publication bias. In total, 15 studies involving 1021 patients met the inclusion criteria. The pooled sensitivity, specificity and DOR of DWI were 0.86 [95% confidence interval (CI), 0.84-0.89], 0.84 (95% CI, 0.83-0.86) and 47.21 (95% CI, 25.67-86.81), respectively. LR syntheses yielded overall positive LR of 6.55 (95% CI, 4.77-9.01) and negative LR of 0.17 (95% CI, 0.12-0.23). The AUC and Q* index were 0.9384 and 0.8754, respectively. The heterogeneity was relatively high between studies; however, there was no evidence for threshold effect and publication bias. DWI is beneficial in the pelvic nodal assessment in patients with cervical cancer. Large-scale, high-quality trials with standard protocols are required to evaluate its clinical value for discrimination of metastatic from non-metastatic pelvic LNs in patients with cervical cancer. Advances in knowledge include providing evidence to assess the role of DWI in nodal staging of cervical cancer.

  7. Comparison of [{sup 11}C]choline Positron Emission Tomography With T2- and Diffusion-Weighted Magnetic Resonance Imaging for Delineating Malignant Intraprostatic Lesions

    SciTech Connect

    Chang, Joe H.; Lim Joon, Daryl; Davis, Ian D.; Lee, Sze Ting; Hiew, Chee-Yan; Esler, Stephen; Gong, Sylvia J.; Wada, Morikatsu; Clouston, David; O'Sullivan, Richard; Goh, Yin P.; Bolton, Damien; Scott, Andrew M.; Khoo, Vincent

    2015-06-01

    Purpose: The purpose of this study was to compare the accuracy of [{sup 11}C]choline positron emission tomography (CHOL-PET) with that of the combination of T2-weighted and diffusion-weighted (T2W/DW) magnetic resonance imaging (MRI) for delineating malignant intraprostatic lesions (IPLs) for guiding focal therapies and to investigate factors predicting the accuracy of CHOL-PET. Methods and Materials: This study included 21 patients who underwent CHOL-PET and T2W/DW MRI prior to radical prostatectomy. Two observers manually delineated IPL contours for each scan, and automatic IPL contours were generated on CHOL-PET based on varying proportions of the maximum standardized uptake value (SUV). IPLs identified on prostatectomy specimens defined reference standard contours. The imaging-based contours were compared with the reference standard contours using Dice similarity coefficient (DSC), and sensitivity and specificity values. Factors that could potentially predict the DSC of the best contouring method were analyzed using linear models. Results: The best automatic contouring method, 60% of the maximum SUV (SUV{sub 60}) , had similar correlations (DSC: 0.59) with the manual PET contours (DSC: 0.52, P=.127) and significantly better correlations than the manual MRI contours (DSC: 0.37, P<.001). The sensitivity and specificity values were 72% and 71% for SUV{sub 60}; 53% and 86% for PET manual contouring; and 28% and 92% for MRI manual contouring. The tumor volume and transition zone pattern could independently predict the accuracy of CHOL-PET. Conclusions: CHOL-PET is superior to the combination of T2W/DW MRI for delineating IPLs. The accuracy of CHOL-PET is insufficient for gland-sparing focal therapies but may be accurate enough for focal boost therapies. The transition zone pattern is a new classification that may predict how well CHOL-PET delineates IPLs.

  8. Joint correction of Nyquist artifact and minuscule motion-induced aliasing artifact in interleaved diffusion weighted EPI data using a composite two-dimensional phase correction procedure.

    PubMed

    Chang, Hing-Chiu; Chen, Nan-Kuei

    2016-09-01

    Diffusion-weighted imaging (DWI) obtained with interleaved echo-planar imaging (EPI) pulse sequence has great potential of characterizing brain tissue properties at high spatial-resolution. However, interleaved EPI based DWI data may be corrupted by various types of aliasing artifacts. First, inconsistencies in k-space data obtained with opposite readout gradient polarities result in Nyquist artifact, which is usually reduced with 1D phase correction in post-processing. When there exist eddy current cross terms (e.g., in oblique-plane EPI), 2D phase correction is needed to effectively reduce Nyquist artifact. Second, minuscule motion induced phase inconsistencies in interleaved DWI scans result in image-domain aliasing artifact, which can be removed with reconstruction procedures that take shot-to-shot phase variations into consideration. In existing interleaved DWI reconstruction procedures, Nyquist artifact and minuscule motion-induced aliasing artifact are typically removed subsequently in two stages. Although the two-stage phase correction generally performs well for non-oblique plane EPI data obtained from well-calibrated system, the residual artifacts may still be pronounced in oblique-plane EPI data or when there exist eddy current cross terms. To address this challenge, here we report a new composite 2D phase correction procedure, which effective removes Nyquist artifact and minuscule motion induced aliasing artifact jointly in a single step. Our experimental results demonstrate that the new 2D phase correction method can much more effectively reduce artifacts in interleaved EPI based DWI data as compared with the existing two-stage artifact correction procedures. The new method robustly enables high-resolution DWI, and should prove highly valuable for clinical uses and research studies of DWI.

  9. Intraventricular cerebrospinal fluid temperature analysis using MR diffusion-weighted imaging thermometry in Parkinson's disease patients, multiple system atrophy patients, and healthy subjects

    PubMed Central

    Sumida, Kaoru; Sato, Noriko; Ota, Miho; Sakai, Koji; Nippashi, Yasumasa; Sone, Daichi; Yokoyama, Kota; Ito, Kimiteru; Maikusa, Norihide; Imabayashi, Etsuko; Matsuda, Hiroshi; Yamada, Kei; Murata, Miho; Kunimatsu, Akira; Ohtomo, Kuni

    2015-01-01

    Purpose We examined the temperature of the intraventricular cerebrospinal fluid (Tv) in patients with Parkinson's disease (PD) and those with multiple system atrophy (MSA) in comparison with healthy subjects, and we examined normal changes in this temperature with aging. Methods Tv was estimated by magnetic resonance (MR) diffusion-weighted imaging (DWI) thermometry in 36 PD patients (19 males, 17 females), 34 MSA patients (17 males, 17 females), 64 age-matched controls (27 men, 37 women), and 114 all-age adult controls (47 men, 67 women; 28–89 years old). The volume of lateral ventricles was also estimated using FreeSurfer in all subjects. Tv and ventricular volume data were compared among the PD and MSA patients and age-matched controls. We also evaluated the relationship between Tv and age in the 114 all-age controls, controlling for ventricular volume. Men and women were analyzed separately. Results The male PD and MSA patients had significantly higher Tv values compared to the male controls, with no significant difference in ventricular volume among them. There was no significant difference in Tv between the female patients and controls. In the all-age male controls, there was a significant negative correlation between Tv and age controlling for ventricular volume, and this was not observed in the women. Conclusion DWI thermometry is a useful and easy method for demonstrating an altered intracranial environment in male patients and healthy controls, but not in females. DWI thermometry can thus be used to help to explore the pathophysiology of Parkinsonian syndromes and to differentiate individuals affected by neurodegenerative disease with autonomic dysfunction from those without it. PMID:26085965

  10. Diffusion-weighted imaging–fluid-attenuated inversion recovery mismatch is associated with better neurologic response to intravenous thrombolytic therapy in acute ischemic stroke patients

    PubMed Central

    Jeong, Jong Yeong; Han, Sang Kuk; Shin, Dong Hyuk; Na, Ji Ung; Lee, Hyun Jung; Choi, Pil Cho; Lee, Jeong Hun

    2015-01-01

    Objective To investigate differences in the effect of intravenous (IV) thrombolysis regarding the mismatch of diffusion-weighted imaging–fluid-attenuated inversion recovery (DWI-FLAIR) among acute ischemic stroke patients who visited the emergency department (ED) within 3 hours from the onset of symptoms. Methods Among ED patients presenting with an acute ischemic stroke between January 2011 and May 2013 at a tertiary hospital, those who underwent magnetic resonance imaging before IV thrombolytic therapy were included in this retrospective study. Patients were divided into DWI-FLAIR mismatch and match groups. National Institutes of Health Stroke Scale (NIHSS) scores obtained initially, 24 hours after thrombolytic therapy, and on discharge, and early neurologic improvement (ENI) and major neurologic improvement (MNI) were compared. Results During the study period, 50 of the 213 acute ischemic stroke patients who presented to the ED were included. The DWI-FLAIR mismatch group showed a statistically significantly greater reduction in NIHSS both at 24 hours after thrombolytic therapy and upon discharge than did the match group (5.5 vs. 1.2, P<0.001; 6.0 vs. 2.3, P<0.01, respectively). Moreover, ENI and MNI were significantly greater for the DWI-FLAIR mismatch group than for the match group (27/36 vs. 2/14, P<0.001; 12/36 vs. 0/14, P=0.012, respectively). Conclusion Among acute ischemic stroke patients who visited the ED within 3 hours from the onset of symptoms, patients who showed DWI-FLAIR mismatch showed a significantly better response to IV thrombolytic therapy than did the DWI-FLAIR match group in terms of neurologic outcome.

  11. Multicentre multiobserver study of diffusion-weighted and fluid-attenuated inversion recovery MRI for the diagnosis of sporadic Creutzfeldt-Jakob disease: a reliability and agreement study.

    PubMed

    Fujita, Koji; Harada, Masafumi; Sasaki, Makoto; Yuasa, Tatsuhiko; Sakai, Kenji; Hamaguchi, Tsuyoshi; Sanjo, Nobuo; Shiga, Yusei; Satoh, Katsuya; Atarashi, Ryuichiro; Shirabe, Susumu; Nagata, Ken; Maeda, Tetsuya; Murayama, Shigeo; Izumi, Yuishin; Kaji, Ryuji; Yamada, Masahito; Mizusawa, Hidehiro

    2012-01-01

    Objectives To assess the utility of the display standardisation of diffusion-weighted MRI (DWI) and to compare the effectiveness of DWI and fluid-attenuated inversion recovery (FLAIR) MRI for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD). Design A reliability and agreement study. Setting Thirteen MRI observers comprising eight neurologists and five radiologists at two universities in Japan. Participants Data of 1.5-Tesla DWI and FLAIR were obtained from 29 patients with sCJD and 13 controls. Outcome measures Standardisation of DWI display was performed utilising b0 imaging. The observers participated in standardised DWI, variable DWI (the display adjustment was observer dependent) and FLAIR sessions. The observers independently assessed each MRI for CJD-related lesions, that is, hyperintensity in the cerebral cortex or striatum, using a continuous rating scale. Performance was evaluated by the area under the receiver operating characteristics curve (AUC). Results The mean AUC values were 0.84 (95% CI 0.81 to 0.87) for standardised DWI, 0.85 (95% CI 0.82 to 0.88) for variable DWI and 0.68 (95% CI 0.63 to 0.72) for FLAIR, demonstrating the superiority of DWI (p<0.05). There was a trend for higher intraclass correlations of standardised DWI (0.74, 95% CI 0.66 to 0.83) and variable DWI (0.72, 95% CI 0.62 to 0.81) than that of FLAIR (0.63, 95% CI 0.53 to 0.74), although the differences were not statistically significant. Conclusions Standardised DWI is as reliable as variable DWI, and the two DWI displays are superior to FLAIR for the diagnosis of sCJD. The authors propose that hyperintensity in the cerebral cortex or striatum on 1.5-Tesla DWI but not FLAIR can be a reliable diagnostic marker for sCJD.

  12. Analysis of factors influencing the degree of detectability on diffusion-weighted MRI and diffusion background signals in patients with invasive breast cancer.

    PubMed

    Hahn, Soo Yeon; Ko, Eun Sook; Han, Boo-Kyung; Lim, Yaeji; Gu, Seonhye; Ko, Eun Young

    2016-07-01

    To determine the factors influencing the degree of detectability of lesions and diffusion background signals on magnetic resonance diffusion-weighted imaging (DWI) in invasive breast cancer.Institutional review board approval was obtained and patient consent was waived. Patients with newly diagnosed invasive ductal carcinoma, who underwent preoperative breast magnetic resonance imaging with DWI were included in this study (n = 167). Lesion detectability on DWI and contrast-enhanced subtracted T1-weighted images, the degree of background parenchymal enhancement (BPE), and diffusion background signal were qualitatively rated. Detectability of lesions on DWI was compared with clinicopathological findings including menopausal status, mammographic density, and molecular subtype of breast cancer. Multivariate linear regression analysis was performed to determine variables independently associated with detectability of lesions on DWI and diffusion background signals.Univariate analysis showed that the detectability of lesions on DWI was significantly associated with lesion size (P = 0.001), diffuse background signal (P < 0.0001), and higher detectability scores for contrast-enhanced T1-weighted subtraction images (P = 0.000). The degree of diffusion background signal was significantly affected by age (P < 0.0001), BPE (P < 0.0001), mammographic density (P = 0.002), and menopausal status (P < 0.0001). On multivariate analysis, the diffusion background signal (P < 0.0001) and histologic grade (P < 0.0001) were correlated with the detectability on DWI of invasive breast cancer. Only BPE was correlated with the amount of diffusion background signal on DWI (P < 0.0001).For invasive breast cancers, detectability on DWI was significantly affected by the diffusion background signal. BPE, menopausal status, menstrual cycle, or mammographic density did not show statistically significant correlation with the diffusion detectability of lesions on DWI. PMID

  13. Multicentre multiobserver study of diffusion-weighted and fluid-attenuated inversion recovery MRI for the diagnosis of sporadic Creutzfeldt–Jakob disease: a reliability and agreement study

    PubMed Central

    Fujita, Koji; Sasaki, Makoto; Yuasa, Tatsuhiko; Sakai, Kenji; Hamaguchi, Tsuyoshi; Sanjo, Nobuo; Shiga, Yusei; Satoh, Katsuya; Atarashi, Ryuichiro; Shirabe, Susumu; Nagata, Ken; Maeda, Tetsuya; Murayama, Shigeo; Izumi, Yuishin; Kaji, Ryuji; Yamada, Masahito; Mizusawa, Hidehiro

    2012-01-01

    Objectives To assess the utility of the display standardisation of diffusion-weighted MRI (DWI) and to compare the effectiveness of DWI and fluid-attenuated inversion recovery (FLAIR) MRI for the diagnosis of sporadic Creutzfeldt–Jakob disease (sCJD). Design A reliability and agreement study. Setting Thirteen MRI observers comprising eight neurologists and five radiologists at two universities in Japan. Participants Data of 1.5-Tesla DWI and FLAIR were obtained from 29 patients with sCJD and 13 controls. Outcome measures Standardisation of DWI display was performed utilising b0 imaging. The observers participated in standardised DWI, variable DWI (the display adjustment was observer dependent) and FLAIR sessions. The observers independently assessed each MRI for CJD-related lesions, that is, hyperintensity in the cerebral cortex or striatum, using a continuous rating scale. Performance was evaluated by the area under the receiver operating characteristics curve (AUC). Results The mean AUC values were 0.84 (95% CI 0.81 to 0.87) for standardised DWI, 0.85 (95% CI 0.82 to 0.88) for variable DWI and 0.68 (95% CI 0.63 to 0.72) for FLAIR, demonstrating the superiority of DWI (p<0.05). There was a trend for higher intraclass correlations of standardised DWI (0.74, 95% CI 0.66 to 0.83) and variable DWI (0.72, 95% CI 0.62 to 0.81) than that of FLAIR (0.63, 95% CI 0.53 to 0.74), although the differences were not statistically significant. Conclusions Standardised DWI is as reliable as variable DWI, and the two DWI displays are superior to FLAIR for the diagnosis of sCJD. The authors propose that hyperintensity in the cerebral cortex or striatum on 1.5-Tesla DWI but not FLAIR can be a reliable diagnostic marker for sCJD. PMID:22290397

  14. Early Assessment of Colorectal Cancer Patients with Liver Metastases Treated with Antiangiogenic Drugs: The Role of Intravoxel Incoherent Motion in Diffusion-Weighted Imaging

    PubMed Central

    Granata, Vincenza; Fusco, Roberta; Catalano, Orlando; Filice, Salvatore; Amato, Daniela Maria; Nasti, Guglielmo; Avallone, Antonio; Izzo, Francesco; Petrillo, Antonella

    2015-01-01

    Purpose To assess the feasibility and effectiveness of quantitative intravoxel incoherent motion (IVIM) of Diffusion-weighted imaging (DWI) in the assessment of liver metastases treated with targeted chemotherapy agents. Methods 12 patients with unresectable liver metastases from colorectal cancer were enrolled and received neoadjuvant FOLFIRI (5-fluorouracil, leucovorin, irinotecan) plus bevacizumab therapy. DWI was performed for 36 metastases at baseline and after 14 days from starting the treatment. In addition to the basic IVIM metrics, the product between pseudo-diffusivity and perfusion fraction was considered as a descriptor roughly analogous to the flow. Median diffusion parameters of Region of Interest (ROI) were used as representative values for each lesion. Normalized parameters in comparison with the median value of spleen were also collected. The percentual change of the diffusion parameters was calculated. The response to chemotherapy was evaluated according the Response Evaluation Criteria in Solid Tumors (RECIST) as calculated on whole-body CT scan obtained three months after treatment. Mann Whitney test and Receiver operating characteristic (ROC) analysis were performed. Results 24 lesions were categorized as responding and 12 as not responding. There was no statistically significant difference among absolute and normalized diffusion parameters between the pretreatment and the post-treatment findings. Instead, the perfusion fraction (fp) values showed a statistical difference between responder and non-responder lesions: sensitivity and specificity of fp variation was 62% and 93%, respectively. Conclusions IVIM parameters represent a valuable tool in the evaluation of the anti-angiogenic therapy in patients with liver metastases from colorectal cancer. A percentage change of fp represents the most effective DWI marker in the assessment of tumor response. PMID:26566221

  15. Added value of diffusion-weighted MRI in detection of cervical cancer recurrence: comparison with morphologic and dynamic contrast-enhanced MRI sequences

    PubMed Central

    Lucas, Rita; Dias, João Lopes; Cunha, Teresa Margarida

    2015-01-01

    PURPOSE We aimed to evaluate the added value of diffusion-weighted imaging (DWI) to standard magnetic resonance imaging (MRI) for detecting post-treatment cervical cancer recurrence. The detection accuracy of T2-weighted (T2W) images was compared with that of T2W MRI combined with either dynamic contrast-enhanced (DCE) MRI or DWI. METHODS Thirty-eight women with clinically suspected uterine cervical cancer recurrence more than six months after treatment completion were examined with 1.5 Tesla MRI including T2W, DCE, and DWI sequences. Disease was confirmed histologically and correlated with MRI findings. The diagnostic performance of T2W imaging and its combination with either DCE or DWI were analyzed. Sensitivity, positive predictive value, and accuracy were calculated. RESULTS Thirty-six women had histologically proven recurrence. The accuracy for recurrence detection was 80% with T2W/DCE MRI and 92.1% with T2W/DWI. The addition of DCE sequences did not significantly improve the diagnostic ability of T2W imaging, and this sequence combination misclassified two patients as falsely positive and seven as falsely negative. The T2W/DWI combination revealed a positive predictive value of 100% and only three false negatives. CONCLUSION The addition of DWI to T2W sequences considerably improved the diagnostic ability of MRI. Our results support the inclusion of DWI in the initial MRI protocol for the detection of cervical cancer recurrence, leaving DCE sequences as an option for uncertain cases. PMID:26200480

  16. Functional Independence following Endovascular Treatment for Basilar Artery Occlusion despite Extensive Bilateral Pontine Infarcts on Diffusion-Weighted Imaging: Refuting a Self-Fulfilling Prophecy

    PubMed Central

    Haussen, Diogo C.; Oliveira, Renato A.C.; Patel, Vikas; Nogueira, Raul G.

    2016-01-01

    Background and Purpose Extensive brainstem diffusion-weighted imaging (DWI) hyperintensity has been associated with poor outcomes. We aim at documenting a series of patients with extensive DWI pontine lesions who achieved independence following endovascular therapy and aggressive medical therapy in the setting of posterior circulation basilar artery occlusion (BAO). Methods This is a retrospective endovascular database review of a single-operator experience over a 9-year period for patients with (1) complete BAO, (2) extensive bilateral pontine DWI changes and (3) 90-day modified Rankin scale 0–2. Results Three out of a total of 40 patients met the inclusion criteria. Case 1 was an 18-year-old male with National Institutes of Health Stroke Scale (NIHSS) 32 on admission, treated 25 h after symptom onset. Case 2 was a 56-year-old male with NIHSS 19, treated 10 h after onset. Case 3 was a 73-year-old male with NIHSS 29, treated 6 h after onset. Full endovascular reperfusion was achieved in all 3 patients. A literature review identified 9 additional cases of extensive pontine DWI changes and good outcome. These patients were young (32 ± 22 years), mostly males (69%), presented with a relatively low posterior circulation Acute Stroke Prognosis Early CT Score (6 ± 1), were treated relatively late from last known normal (13 ± 10 h) and were mostly (84%) treated with endovascular intervention. Conclusion Extensive bilateral pontine DWI lesions among patients with BAO are not an unequivocal indicator of poor prognosis. We advise strong caution when considering these findings in the treatment decision algorithm. PMID:27781047

  17. MR diffusion-weighted imaging-based subcutaneous tumour volumetry in a xenografted nude mouse model using 3D Slicer: an accurate and repeatable method

    PubMed Central

    Ma, Zelan; Chen, Xin; Huang, Yanqi; He, Lan; Liang, Cuishan; Liang, Changhong; Liu, Zaiyi

    2015-01-01

    Accurate and repeatable measurement of the gross tumour volume(GTV) of subcutaneous xenografts is crucial in the evaluation of anti-tumour therapy. Formula and image-based manual segmentation methods are commonly used for GTV measurement but are hindered by low accuracy and reproducibility. 3D Slicer is open-source software that provides semiautomatic segmentation for GTV measurements. In our study, subcutaneous GTVs from nude mouse xenografts were measured by semiautomatic segmentation with 3D Slicer based on morphological magnetic resonance imaging(mMRI) or diffusion-weighted imaging(DWI)(b = 0,20,800 s/mm2) . These GTVs were then compared with those obtained via the formula and image-based manual segmentation methods with ITK software using the true tumour volume as the standard reference. The effects of tumour size and shape on GTVs measurements were also investigated. Our results showed that, when compared with the true tumour volume, segmentation for DWI(P = 0.060–0.671) resulted in better accuracy than that mMRI(P < 0.001) and the formula method(P < 0.001). Furthermore, semiautomatic segmentation for DWI(intraclass correlation coefficient, ICC = 0.9999) resulted in higher reliability than manual segmentation(ICC = 0.9996–0.9998). Tumour size and shape had no effects on GTV measurement across all methods. Therefore, DWI-based semiautomatic segmentation, which is accurate and reproducible and also provides biological information, is the optimal GTV measurement method in the assessment of anti-tumour treatments. PMID:26489359

  18. Decade-scale decrease in b value prior to the M9-class 2011 Tohoku and 2004 Sumatra quakes

    NASA Astrophysics Data System (ADS)

    Nanjo, K. Z.; Hirata, N.; Obara, K.; Kasahara, K.

    2012-10-01

    The Gutenberg-Richter frequency-magnitude distribution of earthquakes has become well established in seismology. The slope of the relation between frequency and magnitude (b value) is typically 1, but it often shows variations around 1. Based on an analysis of seismicity prior to the 2011 Tohoku and 2004 Sumatra earthquakes (both in magnitude (M) 9 class), we show that the pronounced decade-scale decrease in b value was a common precursor to both mega-quakes around their hypocenters. This is the first report on M9-class quakes to confirm a change in b value, which has been predicted based on the results of laboratory experiments. We propose that the b value is an important indicator of an impending great earthquake, and has great potential in terms of predicting a future large quake off the Pacific coast of Hokkaido, Japan.

  19. Apparent causality affects perceived simultaneity.

    PubMed

    Kohlrausch, Armin; van Eijk, Rob; Juola, James F; Brandt, Inge; van de Par, Steven

    2013-10-01

    The present research addresses the question of how visual predictive information and implied causality affect audio-visual synchrony perception. Previous research has shown a systematic shift in the likelihood of observers to accept audio-leading stimulus pairs as being apparently simultaneous in variants of audio-visual stimulus pairs that differ in (1) the amount of visual predictive information available and (2) the apparent causal relation between the auditory and visual components. An experiment was designed to separate the predictability and causality explanations, and the results indicated that shifts in subjective simultaneity were explained completely by changes in the implied causal relations in the stimuli and that predictability had no added value. Together with earlier findings, these results further indicate that the observed shifts in subjective simultaneity due to causal relations among auditory and visual events do not reflect a mere change in response strategy, but rather result from early multimodal integration processes in event perception.

  20. Penrose inequality and apparent horizons

    SciTech Connect

    Ben-Dov, Ishai

    2004-12-15

    A spherically symmetric spacetime is presented with an initial data set that is asymptotically flat, satisfies the dominant energy condition, and such that on this initial data M<{radical}(A/16{pi}), where M is the total mass and A is the area of the apparent horizon. This provides a counterexample to a commonly stated version of the Penrose inequality, though it does not contradict the true Penrose inequality.

  1. An airplane illusion: apparent velocity determined by apparent distance.

    PubMed

    Hershenson, M; Samuels, S M

    1999-01-01

    When a small drone plane appears to be a normal-sized airplane, it appears to be very far away and moving too fast. This is the airplane illusion. In the illusory situation, familiar size determines the apparent size and distance of the plane. It sets the depth for the frontal-plane component of the perceived motion and the relative depth difference for the motion-in-depth component. Because these perceived distances are very large, the perceived velocities are very large in the respective directions. Cognition can override familiarity and produce a veridical perception of the drone.

  2. Evaluation of a Simplified Intravoxel Incoherent Motion (IVIM) Analysis of Diffusion-Weighted Imaging for Prediction of Tumor Size Changes and Imaging Response in Breast Cancer Liver Metastases Undergoing Radioembolization

    PubMed Central

    Pieper, Claus C.; Sprinkart, Alois M.; Meyer, Carsten; König, Roy; Schild, Hans H.; Kukuk, Guido M.; Mürtz, Petra

    2016-01-01

    Abstract To investigate the value of a simplified intravoxel incoherent motion (IVIM) analysis for evaluation of therapy-induced tumor changes and response of breast cancer liver metastases (mBRC) undergoing radioembolization. In 21 females (mean age 54 years, range 43–72) with mBRC tumor size changes and response evaluation criteria in solid tumors (RECIST) response to 26 primary radioembolization procedures were analyzed. Standard 1.5-T liver magnetic resonance imaging including respiratory-gated diffusion-weighted imaging (DWI) with b0 = 0 s/mm2, b1 = 50 s/mm2, b2 = 800 s/mm2 before and 6 weeks after each treatment was performed. In addition to the apparent diffusion coefficient (ADC)(0,800), the estimated diffusion coefficient D′ and the perfusion fraction f′ were determined using a simplified IVIM approach. For each radioembolization, the 2 largest treated metastases (if available) were analyzed. Lesions were categorized according to size changes into group A (reduction of longest diameter [LD]) and group B (LD increase) after 3 months. Radioembolization procedures were further categorized into “response” (partial response and stable disease) and “nonresponse” (progressive disease) according to RECIST after 3 months. ADC and D′ are given in 10−6 mm2/s. Forty-five metastases were analyzed. Thirty-two lesions were categorized as A; 13 as B. Before therapy, group A lesions showed significantly larger f′-values than B (P = 0.001), but ADC(0,800) and D′ did not differ. After therapy, in group A lesions the ADC(0,800)- and D′-values increased and f′ decreased (P < 0.0001); in contrast in group B lesions f′ increased (P = 0.001). Groups could be differentiated by preinterventional f′ and by changes of D′ and f′ between pre and postinterventional imaging (area under the curve [AUC] of 0.903, 0.747 and 1.0, respectively). Preinterventional parameters did not differ between responders and nonresponders

  3. Feasibility of 3.0 T diffusion-weighted nuclear magnetic resonance imaging in the evaluation of functional recovery of rats with complete spinal cord injury

    PubMed Central

    Zhang, Duo; Li, Xiao-hui; Zhai, Xu; He, Xi-jing

    2015-01-01

    Diffusion tensor imaging is a sensitive way to reflect axonal necrosis and degeneration, glial cell regeneration and demyelination following spinal cord injury, and to display microstructure changes in the spinal cord in vivo. Diffusion tensor imaging technology is a sensitive method to diagnose spinal cord injury; fiber tractography visualizes the white matter fibers, and directly displays the structural integrity and resultant damage of the fiber bundle. At present, diffusion tensor imaging is restricted to brain examinations, and is rarely applied in the evaluation of spinal cord injury. This study aimed to explore the fractional anisotropy and apparent diffusion coefficient of diffusion tensor magnetic resonance imaging and the feasibility of diffusion tensor tractography in the evaluation of complete spinal cord injury in rats. The results showed that the average combined scores were obviously decreased after spinal cord transection in rats, and then began to increase over time. The fractional anisotropy scores after spinal cord transection in rats were significantly lower than those in normal rats (P < 0.05); the apparent diffusion coefficient was significantly increased compared with the normal group (P < 0.05). Following spinal cord transection, fractional anisotropy scores were negatively correlated with apparent diffusion coefficient values (r = –0.856, P < 0.01), and positively correlated with the average combined scores (r = 0.943, P < 0.01), while apparent diffusion coefficient values had a negative correlation with the average combined scores (r = –0.949, P < 0.01). Experimental findings suggest that, as a non-invasive examination, diffusion tensor magnetic resonance imaging can provide qualitative and quantitative information about spinal cord injury. The fractional anisotropy score and apparent diffusion coefficient have a good correlation with the average combined scores, which reflect functional recovery after spinal cord injury. PMID:25878589

  4. Mean Apparent Propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure

    PubMed Central

    Özarslan, Evren; Koay, Cheng Guan; Shepherd, Timothy M.; Komlosh, Michal E.; İrfanoğlu, M. Okan; Pierpaoli, Carlo; Basser, Peter J.

    2014-01-01

    Diffusion-weighted magnetic resonance (MR) signals reflect information about underlying tissue microstructure and cytoarchitecture. We propose a quantitative, efficient, and robust mathematical and physical framework for representing diffusion-weighted MR imaging (MRI) data obtained in “q-space,” and the corresponding “mean apparent propagator (MAP)” describing molecular displacements in “r-space.” We also define and map novel quantitative descriptors of diffusion that can be computed robustly using this MAP-MRI framework. We describe efficient analytical representation of the three-dimensional q-space MR signal in a series expansion of basis functions that accurately describes diffusion in many complex geometries. The lowest order term in this expansion contains a diffusion tensor that characterizes the Gaussian displacement distribution, equivalent to diffusion tensor MRI (DTI). Inclusion of higher order terms enables the reconstruction of the true average propagator whose projection onto the unit “displacement” sphere provides an orientational distribution function (ODF) that contains only the orientational dependence of the diffusion process. The representation characterizes novel features of diffusion anisotropy and the non-Gaussian character of the three-dimensional diffusion process. Other important measures this representation provides include the return-to-the-origin probability (RTOP), and its variants for diffusion in one- and two-dimensions—the return-to-the-plane probability (RTPP), and the return-to-the-axis probability (RTAP), respectively. These zero net displacement probabilities measure the mean compartment (pore) volume and cross-sectional area in distributions of isolated pores irrespective of the pore shape. MAP-MRI represents a new comprehensive framework to model the three-dimensional q-space signal and transform it into diffusion propagators. Experiments on an excised marmoset brain specimen demonstrate that MAP

  5. Analysis of spatiotemporal variation in b-value for the Sunda arc using high precision earthquake location

    NASA Astrophysics Data System (ADS)

    Nugraha, Andri Dian; Shiddiqi, Hasbi Ash; Widiyantoro, Sri; Sutiyono, Handayani, Titi

    2016-05-01

    The Sunda arc is one of the most active tectonic regions, which has a complex tectonic setting due to different tectonic regimes and subduction geometry along this arc. We analyzed variation in b-value for this region in order to obtain better information regarding the state of stress in this region. For the first step, we relocated earthquake hypocenters taken from the BMKG catalog for the period 2009 - 2015 by employing a teleseismic double-difference (DD) relocation method and using a 3D velocity model. There are 10,440 earthquakes that were successfully relocated with greatly reduced residual errors. Based on its tectonic feature and earthquake distribution, we divided the study area into 8 regions, i.e. northern Sumatra, central Sumatra, southern Sumatra, Sunda strait, western Java, eastern Java, lesser Sunda islands, and Sunda-Banda transition zone. For b-value analysis we combined the BMKG catalog with the International Seismological Centre (ISC) catalog from 2006 to 2009 to obtain a longer time period. We analyzed the spatial variation in b-value for western sunda arc and found a low b-value that matches well with earthquake locations.

  6. Susceptibility-weighted imaging and diffusion-weighted imaging findings in central nervous system monomorphic B cell post-transplant lymphoproliferative disorder before and after treatment and comparison with primary B cell central nervous system lymphoma.

    PubMed

    Ginat, Daniel Thomas; Purakal, Alixandra; Pytel, Peter

    2015-11-01

    The purpose of this article is to review the MRI features of monomorphic central nervous system post-transplant lymphoproliferative disorder (CNS PTLD), including diffusion-weighted and susceptibility-weighted sequences before and after treatment and to compare the imaging findings with those of primary central nervous system B cell lymphoma (PCNS BCL). Retrospective review of the brain MRI characteristics in patients with pathology proven monomorphic CNS PTLD and PCNS BCL was performed. In particular, the enhancement, diffusion-weighted, susceptibility-weighted MRI characteristics of the lesions were evaluated. In addition, the diffusion-weighted, susceptibility-weighted MRI features after treatment for CNS PTLD were evaluated. A total of 12 lesions in six patients with CNS PTLD and 12 lesions in nine patients with PCNS BCL were identified on MRI. Among the CNS PTLD lesions with post-contrast images, 80 % demonstrated peripheral enhancement. All of the CNS PTLD lesions contained foci of intratumoral susceptibility signal (ITSS) and the average mean ADC values and ratios were 0.892 × 10(-3) mm(2)/s (standard deviation: 0.082 × 10(-3) mm(2)/s) and 1.19 (standard deviation: 0.15), respectively. On the other hand, 75 % of the PCNS BCL displayed diffuse enhancement, two cases (16.7 %) contained ITSS, and the mean ADC values and ratios were 0.721 × 10(-3) mm(2)/s (standard deviation: 0.093 × 10(-3) mm(2)/s), and 0.99 (standard deviation: 0.17), respectively. Thus, the presence of heterogeneous lesions with ITSS that do not necessarily have as extensive restricted diffusion as PCNS BCL is suggestive of CNS PTLD in the appropriate clinical setting. The preliminary data in this series suggests that diffusion-weighted imaging may serve as a useful biomarker for monitoring treatment response, in which successful treatment of CNS PTLD may result in increased ADC values. In addition, foci of susceptibility effect in CNS PTLD tend to persist or increase over the course of

  7. Data-driven spatial b value estimation with applications to California seismicity: To b or not to b

    NASA Astrophysics Data System (ADS)

    Kamer, Yavor; Hiemer, Stefan

    2015-07-01

    In this paper we present a penalized likelihood-based method for spatial estimation of Gutenberg-Richter's b value. Our method incorporates a nonarbitrary partitioning scheme based on Voronoi tessellation, which allows for the optimal partitioning of space using a minimum number of free parameters. By random placement of an increasing number of Voronoi nodes, we are able to explore the whole solution space in terms of model complexity. We obtain an overall likelihood for each model by estimating the b values in all Voronoi regions and calculating its joint likelihood using Aki's formula. Accounting for the number of free parameters, we then calculate the Bayesian Information Criterion for all random realizations. We investigate the ensemble of the best performing models and demonstrate the robustness and validity of our method through extensive synthetic tests. We apply our method to the seismicity of California using two different time spans of the Advanced National Seismic System catalog (1984-2014 and 2004-2014). The results show that for the last decade, the b value variation in the well-instrumented parts of mainland California is limited to the range of (0.94 ± 0.04-1.15 ± 0.06). Apart from the Geysers region, the observed variation can be explained by network-related discrepancies in the magnitude estimations. Our results suggest that previously reported spatial b value variations obtained using classical fixed radius or nearest neighbor methods are likely to have been overestimated, mainly due to subjective parameter choices. We envision that the likelihood-based model selection criteria used in this study can be a useful tool for generating improved earthquake forecasting models.

  8. Asperity generating upper crustal sources revealed by b value and isostatic residual anomaly grids in the area of Antofagasta, Chile

    NASA Astrophysics Data System (ADS)

    Sobiesiak, M.; Meyer, U.; Schmidt, S.; GöTze, H.-J.; Krawczyk, C. M.

    2007-12-01

    In our study we show that the locations of largest coseismic slip (asperities) on the fault plane of the Mw = 8.0 1995 Antofagasta earthquake in Northern Chile can be mapped by the spatial distribution of the seismic b value obtained from the aftershock sequence of the megathrust earthquake. These areas of high seismic moment release and concurrent high-b values are congruent with anomalies of the gravity isostatic residual (IR) field in the Antofagasta region. They are superimposed on the seismogenic part of the north Chilean subduction zone where the strongest coupling of the upper and lower plate is expected. The IR anomalies are interpreted to be caused by large Jurassic-Early Cretaceous batholiths which intruded into the upper crust. The observed positive correlations between high seismic b values, IR anomalies, and geologic structures enable us to propose a mechanical model for the generation of the asperities in the Antofagasta region. We suggest that the batholiths in conjunction with buoyant forces acting on the subducted slab of the Nazca plate are responsible for locking the interface where the asperities are located. This implies long-term conditions for the existence of the asperity generating tectonic situation. Concequently, the asperities around Antofagasta could be stationary features, at least for several seismic cycles. Hence we propose that the IR anomalies along the north Chilean convergent margin can be used as an indicator for high moment release and slip in future large earthquakes.

  9. Solitary fibrous tumor of the pleura: apparent diffusion coefficient (ADC) value and ADC map to predict malignant transformation.

    PubMed

    Inaoka, Tsutomu; Takahashi, Koji; Miyokawa, Naoyuki; Ohsaki, Yoshinobu; Aburano, Tamio

    2007-07-01

    Solitary fibrous tumors (SFTs) of the pleura are rare soft-tissue tumors that are presumed to be of mesenchymal origin. Most SFTs are histologically benign, but up to 20% of SFTs may be malignant. In addition, malignant transformation may occur within histologically benign SFTs, though it is rare. However, it is difficult to diagnose malignant SFTs of the pleura by means of conventional computed tomography and magnetic resonance imaging (MRI). In this article we present the first case of malignant SFT of the pleura in an 81-year-old man in which the apparent diffusion coefficient (ADC) value and ADC map based on diffusion-weighted MRI were very useful for identifying malignant transformation.

  10. Selenographic distribution of apparent crater depth

    NASA Astrophysics Data System (ADS)

    de Hon, R. A.

    If apparent crater depth is a function of crater diameter, then the frequencies of crater depth and diameter should be similar and the distribution of apparent depths of craters on the lunar surface should be random. Apparent depths of complex craters, which range from 0.2 to 4.3 km on the moon, exhibit little correlation with crater diameters. Crater frequency decreases at increasing diameters, but apparent crater depth displays a Gaussian distribution. The average crater depth for all young craters is 1.8 km. The mean depth of craters on the maria is 1.3 km, and the mean depth of craters on the highlands is 2.1 km. A contour map of apparent crater depths exhibits sufficient organization to suggest that the apparent crater depth is correlated to major lunar provinces. In general, regions of shallow craters are associated with basin interiors. Greater apparent depths are associated with highland terrains.

  11. Prediction of Response to Concurrent Chemoradiotherapy with Temozolomide in Glioblastoma: Application of Immediate Post-Operative Dynamic Susceptibility Contrast and Diffusion-Weighted MR Imaging

    PubMed Central

    Lee, Eun Kyoung; Yun, Tae Jin; Kang, Koung Mi; Kim, Tae Min; Lee, Se-Hoon; Park, Chul-Kee; Park, Sung-Hye; Kim, Il Han

    2015-01-01

    Objective To determine whether histogram values of the normalized apparent diffusion coefficient (nADC) and normalized cerebral blood volume (nCBV) maps obtained in contrast-enhancing lesions detected on immediate post-operative MR imaging can be used to predict the patient response to concurrent chemoradiotherapy (CCRT) with temozolomide (TMZ). Materials and Methods Twenty-four patients with GBM who had shown measurable contrast enhancement on immediate post-operative MR imaging and had subsequently undergone CCRT with TMZ were retrospectively analyzed. The corresponding histogram parameters of nCBV and nADC maps for measurable contrast-enhancing lesions were calculated. Patient groups with progression (n = 11) and non-progression (n = 13) at one year after the operation were identified, and the histogram parameters were compared between the two groups. Receiver operating characteristic (ROC) analysis was used to determine the best cutoff value for predicting progression. Progression-free survival (PFS) was determined with the Kaplan-Meier method and the log-rank test. Results The 99th percentile of the cumulative nCBV histogram (nCBV C99) on immediate post-operative MR imaging was a significant predictor of one-year progression (p = 0.033). ROC analysis showed that the best cutoff value for predicting progression after CCRT was 5.537 (sensitivity and specificity were 72.7% and 76.9%, respectively). The patients with an nCBV C99 of < 5.537 had a significantly longer PFS than those with an nCBV C99 of ≥ 5.537 (p = 0.026). Conclusion The nCBV C99 from the cumulative histogram analysis of the nCBV from immediate post-operative MR imaging may be feasible for predicting glioblastoma response to CCRT with TMZ. PMID:26576125

  12. Diffusion-Weighted Imaging for Pretreatment Evaluation and Prediction of Treatment Effect in Patients Undergoing CT-Guided Injection for Lumbar Disc Herniation

    PubMed Central

    Niu, Xiang-Ke; Bhetuwal, Anup

    2015-01-01

    Objective To determine whether a change in apparent diffusion coefficient (ADC) value could predict early response to CT-guided Oxygen-Ozone (O2-O3) injection therapy in patients with unilateral mono-radiculopathy due to lumbar disc herniation. Materials and Methods A total of 52 patients with unilateral mono-radiculopathy received a single intradiscal (3 mL) and periganglionic (5 mL) injection of an O2-O3 mixture. An ADC index of the involved side to the intact side was calculated using the following formula: pre-treatment ADC index = ([ADC involved side - ADC intact side] / ADC intact side) × 100. We analyzed the relationship between the pre-treatment Oswestry Disability Index (ODI) and the ADC index. In addition, the correlation between ODI recovery ratio and ADC index was investigated. The sensitivity and specificity of the ADC index for predicting response in O2-O3 therapy was determined. Results Oswestry Disability Index and the ADC index was not significantly correlated (r = -0.125, p = 0.093). The ADC index and ODI recovery ratio was significantly correlated (r = 0.819, p < 0.001). When using 7.10 as the cut-off value, the ADC index obtained a sensitivity of 86.3% and a specificity of 82.9% for predicting successful response to therapy around the first month of follow-up. Conclusion This preliminary study demonstrates that the patients with decreased ADC index tend to show poor improvement of clinical symptoms. The ADC index may be a useful indicator to predict early response to CT-guided O2-O3 injection therapy in patients with unilateral mono-radiculopathy due to lumbar disc herniation. PMID:26175588

  13. Apparent horizon in fluid-gravity duality

    SciTech Connect

    Booth, Ivan; Heller, Michal P.; Plewa, Grzegorz; Spalinski, Michal

    2011-05-15

    This article develops a computational framework for determining the location of boundary-covariant apparent horizons in the geometry of conformal fluid-gravity duality in arbitrary dimensions. In particular, it is shown up to second order and conjectured to hold to all orders in the gradient expansion that there is a unique apparent horizon which is covariantly expressible in terms of fluid velocity, temperature, and boundary metric. This leads to the first explicit example of an entropy current defined by an apparent horizon and opens the possibility that in the near-equilibrium regime there is preferred foliation of apparent horizons for black holes in asymptotically anti-de Sitter spacetimes.

  14. ≤ 1 Mining-Induced Earthquakes Around a Mining Front and b Value Invariance with Post-Blast Time

    NASA Astrophysics Data System (ADS)

    Naoi, Makoto; Nakatani, Masao; Horiuchi, Shigeki; Yabe, Yasuo; Philipp, Joachim; Kgarume, Thabang; Morema, Gilbert; Khambule, Sifiso; Masakale, Thabang; Ribeiro, Luiz; Miyakawa, Koji; Watanabe, Atsushi; Otsuki, Kenshiro; Moriya, Hirokazu; Murakami, Osamu; Kawakata, Hironori; Yoshimitsu, Nana; Ward, Anthony; Durrheim, Ray; Ogasawara, Hiroshi

    2014-10-01

    We investigated frequency-magnitude distribution (FMD) of acoustic emissions (AE) occurring near an active mining front in a South African gold mine, using a catalog developed from an AE network, which is capable of detecting AEs down to M W -5. When records of blasts were removed, FMDs of AEs obeyed a Gutenberg-Richter law with similar b values, not depending on post-blasting time from the initial 1-min interval through more than 30 h. This result denies a suggestion in a previous study ( Richardson and Jordan Bull Seismol Soc Am, 92:1766-1782, 2002) that new fractures generated by blasting disturb the size distribution of background events, which they interpreted as slip events on existing weak planes. Our AE catalog showed that the GR law with b ˜ 1.2 was valid between M W -3.7 and 0 for AEs around the mining front. Further, using the mine's seismic catalog, which covers a longer time period of the same area, we could extend the validity range of the GR law with the same b value up to M W 1.

  15. Data for evaluation of fast kurtosis strategies, b-value optimization and exploration of diffusion MRI contrast.

    PubMed

    Hansen, Brian; Jespersen, Sune Nørhøj

    2016-01-01

    Here we describe and provide diffusion magnetic resonance imaging (dMRI) data that was acquired in neural tissue and a physical phantom. Data acquired in biological tissue includes: fixed rat brain (acquired at 9.4 T) and spinal cord (acquired at 16.4 T) and in normal human brain (acquired at 3 T). This data was recently used for evaluation of diffusion kurtosis imaging (DKI) contrasts and for comparison to diffusion tensor imaging (DTI) parameter contrast. The data has also been used to optimize b-values for ex vivo and in vivo fast kurtosis imaging. The remaining data was obtained in a physical phantom with three orthogonal fiber orientations (fresh asparagus stems) for exploration of the kurtosis fractional anisotropy. However, the data may have broader interest and, collectively, may form the basis for image contrast exploration and simulations based on a wide range of dMRI analysis strategies. PMID:27576023

  16. Data for evaluation of fast kurtosis strategies, b-value optimization and exploration of diffusion MRI contrast

    PubMed Central

    Hansen, Brian; Jespersen, Sune Nørhøj

    2016-01-01

    Here we describe and provide diffusion magnetic resonance imaging (dMRI) data that was acquired in neural tissue and a physical phantom. Data acquired in biological tissue includes: fixed rat brain (acquired at 9.4 T) and spinal cord (acquired at 16.4 T) and in normal human brain (acquired at 3 T). This data was recently used for evaluation of diffusion kurtosis imaging (DKI) contrasts and for comparison to diffusion tensor imaging (DTI) parameter contrast. The data has also been used to optimize b-values for ex vivo and in vivo fast kurtosis imaging. The remaining data was obtained in a physical phantom with three orthogonal fiber orientations (fresh asparagus stems) for exploration of the kurtosis fractional anisotropy. However, the data may have broader interest and, collectively, may form the basis for image contrast exploration and simulations based on a wide range of dMRI analysis strategies. PMID:27576023

  17. Simultaneous estimation of b-values and detection rates of earthquakes for the application to aftershock probability forecasting

    NASA Astrophysics Data System (ADS)

    Katsura, K.; Ogata, Y.

    2004-12-01

    Reasenberg and Jones [Science, 1989, 1994] proposed the aftershock probability forecasting based on the joint distribution [Utsu, J. Fac. Sci. Hokkaido Univ., 1970] of the modified Omori formula of aftershock decay and Gutenberg-Richter law of magnitude frequency, where the respective parameters are estimated by the maximum likelihood method [Ogata, J. Phys. Earth, 1983; Utsu, Geophys Bull. Hokkaido Univ., 1965, Aki, Bull. Earthq. Res. Inst., 1965]. The public forecast has been implemented by the responsible agencies in California and Japan. However, a considerable difficulty in the above procedure is that, due to the contamination of arriving seismic waves, detection rate of aftershocks is extremely low during a period immediately after the main shock, say, during the first day, when the forecasting is most critical for public in the affected area. Therefore, for the forecasting of a probability during such a period, they adopt a generic model with a set of the standard parameter values in California or Japan. For an effective and realistic estimation, I propose to utilize the statistical model introduced by Ogata and Katsura [Geophys. J. Int., 1993] for the simultaneous estimation of the b-values of Gutenberg-Richter law together with detection-rate (probability) of earthquakes of each magnitude-band from the provided data of all detected events, where the both parameters are allowed for changing in time. Thus, by using all detected aftershocks from the beginning of the period, we can estimate the underlying modified Omori rate of both detected and undetected events and their b-value changes, taking the time-varying missing rates of events into account. The similar computation is applied to the ETAS model for complex aftershock activity or regional seismicity where substantial missing events are expected immediately after a large aftershock or another strong earthquake in the vicinity. Demonstrations of the present procedure will be shown for the recent examples

  18. Spatial distribution of the b value under the Popocatepetl volcano and its relation with the structure of the magma chamber

    NASA Astrophysics Data System (ADS)

    Garza-Girón, R.; Zuniga, R. R.

    2014-12-01

    The spatial distribution of the b value under volcanoes and other tectonic environments is not uniform but it rather shows pockets of anomalies related to different phenomena. We analyzed the frequency-magnitude distribution of the 2191 best located volcano-tectonic events with MD ≥ 2.1 under the Popocatepetl volcano and performed 2D and 3D maps using a griding technique. For the 3D mapping we used samples of 100 events within spherical volumes with radii ≤ 3 km. Also, only volumes with σ ≤ 0.3 were taken into account. Three main anomalies with b ≥ 2.2 were detected within a normal crust (b ≤ 1.6). The first anomaly is observed north of the crater summit at depths 4-8 km and comprises a volume of approximately 15 km3. The second lies slightly to the E and SE of the crater at depths between 2 and 5 km, and the third and latter anomaly is located SE of the summit at depths of 6-12 km and spans over a volume of 40 km3 (or greater). In any case, we interpret our high b values anomalies as regions were high pore pressures (low effective stresses), high thermal gradients and/or high heterogeneity take place due to the presence of a magmatic body nearby. Whilst we cannot know with certainty if the source of the anomaly located N of the crater is a dyke complex or a shallow magma chamber, we infer that the shallowest volume mapped is related to Popocatepetl's plumbing system. The greatest anomalous volume located at the SE is thought to represent the main shallow magma chamber, since it is located at depths similar to those found in other volcanoes in the world and correlates with previous geophysical studies carried out at Popocatepetl.

  19. Preoperative imaging in patients undergoing trachelectomy for cervical cancer: Validation of a combined T2- and diffusion-weighted endovaginal MRI technique at 3.0 T

    PubMed Central

    Downey, Katherine; Shepherd, John H.; Attygalle, Ayoma D.; Hazell, Steve; Morgan, Veronica A.; Giles, Sharon L.; Ind, Thomas E.J.; deSouza, Nandita M.

    2014-01-01

    Aim The aim of this study is to validate high-resolution endovaginal T2- and diffusion-weighted MRI measurements (tumour size, volume and length of uninvolved cervical canal) against histology in patients undergoing trachelectomy. Patients/interventions 55 consecutive patients 25–44 years with cervical cancer being considered for trachelectomy were prospectively assessed with endovaginal T2-W and diffusion-weighted MRI. Two independent observers blinded to histology recorded maximum tumour dimension, volume and distance from the superior aspect of the tumour to the internal os. Following trachelectomy, pathologist-outlined tumour sections were photographed with a set scale and similar measurements were recorded. Results Fifteen of 45 patients subsequently treated with fertility-sparing surgery had residual tumour (median histological volume: 0.28 cm3, IQR = 0.14–1.06 cm3). Sensitivity, specificity, positive and negative predictive values for detecting tumour: Observer1: 86.7%, 80.0%, 68.4%, and 92.3%, respectively; Observer2: 86.7%, 90.0%, 81.0%, and 93.1%, respectively. Size and volume correlated between observers (r = 0.96, 0.84, respectively, p < 0.0001). Size correlated between each observer and histology (observer 1 r = 0.91, p < 0.0001; observer 2 r = 0.93, p < 0.0001), volume did not (observer 1: r = 0.08, p = 0.6; observer 2: r = 0.21, p = 0.16); however, differences between observer measurements and histology were not significant (size p = 0.09, volume p = 0.15). Differences between MRI and histology estimates of endocervical canal length were not significant (p = 0.1 both observers). Conclusion In subcentimetre cervical cancers, endovaginal MRI correlates with pathology and is invaluable in assessing patients for fertility-sparing surgery. PMID:24582988

  20. On the Bartnik mass of apparent horizons

    NASA Astrophysics Data System (ADS)

    Mantoulidis, Christos; Schoen, Richard

    2015-10-01

    In this paper we characterize the intrinsic geometry of apparent horizons (outermost marginally outer trapped surfaces) in asymptotically flat spacetimes; that is, the Riemannian metrics on the two sphere which can arise. Furthermore we determine the minimal ADM mass of a spacetime containing such an apparent horizon. The results are conveniently formulated in terms of the quasi-local mass introduced by Bartnik (1989 Phys. Rev. Lett. 62 2346-8). The Hawking mass provides a lower bound for Bartnik’s quasilocal mass on apparent horizons by way of Penrose’s conjecture on time symmetric slices, proven in 1997 by Huisken and Ilmanen (2001 J. Differ. Geom. 59 353-437) and in full generality in 1999 by Bray (2001 J. Differ. Geom. 59 177-267). We compute Bartnik’s mass for all non-degenerate apparent horizons and show that it coincides with the Hawking mass. As a corollary we disprove a conjecture due to Gibbons in the spirit of Thorne’s hoop conjecture (Gibbons 2009 arXiv:0903.1580), and construct a new large class of examples of apparent horizons with the integral of the negative part of the Gauss curvature arbitrarily large.

  1. To b or not to b ?? A nonextensive view of b-value in the Gutenberg-Richter law.

    NASA Astrophysics Data System (ADS)

    Vallianatos, Filippos

    2014-05-01

    The Gutenberg-Richter (GR) (Gutenberg and Richter, 1944) law one of the cornerstones of modern seismology has been considered as a paradigm of manifestation of self-organized criticality since the dependence of the cumulative number of earthquakes with energy, i.e., the number of earthquakes with energy greater than E, behaves as a power law with the b value related to the critical exponent. A great number of seismic hazard studies have been originated as a result of this law. The Gutenberg-Richter (GR) law is an empirical relationship, which recent efforts relate it with general physical principles (Kagan and Knopoff, 1981; Wesnousky, 1999; Sarlis et al., 2010; Telesca, 2012; Vallianatos and Sammonds, 2013). Nonextensive statistical mechanics pioneered by Tsallis (Tsallis, 2009) provides a consistent theoretical framework for the studies of complex systems in their nonequilibrium stationary states, systems with multi fractal and self-similar structures, long-range interacting systems, etc. Earth is such system. In the present work we analyze the different pathways (originated in Sotolongo-Costa, A. Posadas , 2004; Silva et al., 2006) to extract the generalization of the G-R law as obtained in the frame of non extensive statistical physics. We estimate the b-value and we discuss its underline physics. This research has been funded by the European Union (European Social Fund) and Greek national resources under the framework of the "THALES Program: SEISMO FEAR HELLARC" project of the "Education & Lifelong Learning" Operational Programme. References Gutenberg, B. and C. F. Richter (1944). Bull. Seismol. Soc. Am. 34, 185-188. Kagan, Y. Y. and L. Knopoff (1981). J. Geophys. Res. 86, 2853-2862. Sarlis, N., E. Skordas and P. Varotsos (2010). Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 82 (2) , 021110. Silva, R., G. Franca, C. Vilar and J. Alcaniz (2006). Phys. Rev. E, 73, 026102 Sotolongo-Costa, O. and A. Posadas (2004). Phys. Rev. Lett., 92

  2. Additional Value of Diffusion-weighted MRI to Gd-EOB-DTPA-enhanced Hepatic MRI for the Detection of Liver Metastasis: the Difference Depending on the Experience of the Radiologists.

    PubMed

    Fukumoto, Wataru; Nakamura, Yuko; Higaki, Toru; Tatsugami, Fuminari; Iida, Makoto; Awai, Kazuo

    2015-06-01

    This retrospective study was to investigate whether adding diffusion-weighted imaging (DWI) to Gd-EOB-DTPA-enhanced MRI (EOB-MRI) improved the detection of liver metastasis in radiology resident and board-certified radiologist groups. It was approved by our institutional review board. We selected 18 patients with 35 liver metastases and 12 patients without liver tumors. Five board-certified radiologists and 5 radiology residents participated in the observer performance study. Each observer first interpreted T1- and T2-weighted-, plain-, arterial phase-, and hepatobiliary phase images and specified the location of the liver metastases. The software subsequently displayed the DWI images simultaneously and all participants repeated the reading. We used Jackknife alternative free-response receiver operating characteristic (JAFROC) analysis to compare the observer performance in detecting liver metastases. The mean values for the area under the curve (AUC) for EOB-MRI without and with DWI were 0.78 ± 0.13 [standard deviation: SD] and 0.87 ± 0.09, respectively, for the radiology residents, and the difference was statistically significant (p = 0.045). For the board- certified radiologists these values were 0.92 ± 0.02 and 0.96 ± 0.01, respectively, and the difference was not statistically significant (p = 0.092). EOB-MRI with DWI significantly improved the performance of radiology residents in the identification of liver metastases.

  3. Additional Value of Diffusion-weighted MRI to Gd-EOB-DTPA-enhanced Hepatic MRI for the Detection of Liver Metastasis: the Difference Depending on the Experience of the Radiologists.

    PubMed

    Fukumoto, Wataru; Nakamura, Yuko; Higaki, Toru; Tatsugami, Fuminari; Iida, Makoto; Awai, Kazuo

    2015-06-01

    This retrospective study was to investigate whether adding diffusion-weighted imaging (DWI) to Gd-EOB-DTPA-enhanced MRI (EOB-MRI) improved the detection of liver metastasis in radiology resident and board-certified radiologist groups. It was approved by our institutional review board. We selected 18 patients with 35 liver metastases and 12 patients without liver tumors. Five board-certified radiologists and 5 radiology residents participated in the observer performance study. Each observer first interpreted T1- and T2-weighted-, plain-, arterial phase-, and hepatobiliary phase images and specified the location of the liver metastases. The software subsequently displayed the DWI images simultaneously and all participants repeated the reading. We used Jackknife alternative free-response receiver operating characteristic (JAFROC) analysis to compare the observer performance in detecting liver metastases. The mean values for the area under the curve (AUC) for EOB-MRI without and with DWI were 0.78 ± 0.13 [standard deviation: SD] and 0.87 ± 0.09, respectively, for the radiology residents, and the difference was statistically significant (p = 0.045). For the board- certified radiologists these values were 0.92 ± 0.02 and 0.96 ± 0.01, respectively, and the difference was not statistically significant (p = 0.092). EOB-MRI with DWI significantly improved the performance of radiology residents in the identification of liver metastases. PMID:26211220

  4. Central Nervous System Lymphoma in a 3-Year-Old Male Suffering from a Severe Juvenile Xanthogranuloma – the Usefulness of Perfusion Weighted Imaging and Diffusion Weighted Imaging in the Diagnostics of Pediatric Brain Tumors

    PubMed Central

    Neska-Matuszewska, Małgorzata; Zimny, Anna; Kałwak, Krzysztof; Sąsiadek, Marek J.

    2015-01-01

    Summary Background Primary Central Nervous System Lymphomas (PCNSLs) are rare, malignant brain tumors derived from lymphocytes B. Juvenile xanthogranuloma (JXG) is a non-Langerhans histiocytic cell disorder in children which mostly affects the skin. Rare fatalities have been reported in extracutaneous manifestation. Brain magnetic resonance imaging (MRI) is a method of choice in the diagnostics of all neoplastic CNS lesions. Perfusion weighted imaging (PWI) and diffusion weighted imaging (DWI) allow for more detailed analysis of brain tumors including the rate of neoangiogenesis and cellularity. We presented a pediatric patient suffering from JXG with CNS involvement and the role of brain MRI including DWI and PWI in the evaluation of brain focal lesions. Case Report A 3-year-old male with severe JXG underwent two stem cell transplantations with a development of neurological complications. The patient underwent emergency CT and MRI which revealed a non-specific enhancing focal brain lesion. In DWI it showed restricted diffusion while PWI revealed low values of rCBV and the signal intensity curve returning above the baseline level. Advanced MRI techniques such as DWI and PWI suggested PCNSL. Stereotactic biopsy confirmed PCNSL due to Ebstein-Barr virus reactivation. Conclusions The use of advanced MRI sequences is important to differentiate brain lesions in pediatric patients. The use of PWI and DWI facilitated the diagnosis of PCNSL. It is important to remember that PCNSLs show a very typical pattern of changes visualized with MRI such as: usually strong homogenous enhancement, restricted diffusion and low perfusion. PMID:25624957

  5. High temperature strain gage apparent strain compensation

    NASA Technical Reports Server (NTRS)

    Holmes, Harlan K.; Moore, T. C., Sr.

    1992-01-01

    Once an installed strain gage is connected to a strain indicating device and the instrument is balanced, a subsequent change in temperature of the gage installation will generally produce a resistance change in the gage. This purely temperature-induced resistance will be registered by the indicating device as a strain and is referred to as 'apparent strain' to distinguish it from strain due to applied stress. One desirable technique for apparent strain compensation is to employ two identical gages with identical mounting procedures which are connected with a 'half bridge' configuration where gages see the same thermal environment but only one experiences a mechanical strain input. Their connection in adjacent arms of the bridge will then balance the thermally induced apparent strains and, in principle, only the mechanical strain remains. Two approaches that implement this technique are discussed.

  6. The spatiotemporal analysis of the minimum magnitude of completeness Mc and the Gutenberg-Richter law b-value parameter using the earthquake catalog of Greece

    NASA Astrophysics Data System (ADS)

    Popandopoulos, G. A.; Baskoutas, I.; Chatziioannou, E.

    2016-03-01

    Spatiotemporal mapping the minimum magnitude of completeness Mc and b-value of the Gutenberg-Richter law is conducted for the earthquake catalog data of Greece. The data were recorded by the seismic network of the Institute of Geodynamics of the National Observatory of Athens (GINOA) in 1970-2010 and by the Hellenic Unified Seismic Network (HUSN) in 2011-2014. It is shown that with the beginning of the measurements at HUSN, the number of the recorded events more than quintupled. The magnitude of completeness Mc of the earthquake catalog for 1970-2010 varies within 2.7 to 3.5, whereas starting from April 2011 it decreases to 1.5-1.8 in the central part of the region and fluctuates around the average of 2.0 in the study region overall. The magnitude of completeness Mc and b-value for the catalogs of the earthquakes recorded by the old (GINOA) and new (HUSN) seismic networks are compared. It is hypothesized that the magnitude of completeness Mc may affect the b-value estimates. The spatial distribution of the b-value determined from the HUSN catalog data generally agrees with the main geotectonic features of the studied territory. It is shown that the b-value is below 1 in the zones of compression and is larger than or equal to 1 in the zones dominated by extension. The established depth dependence of the b-value is pretty much consistent with the hypothesis of a brittle-ductile transition zone existing in the Earth's crust. It is assumed that the source depth of a strong earthquake can probably be estimated from the depth distribution of the b-value, which can be used for seismic hazard assessment.

  7. Means for improving apparent resolution of television

    NASA Technical Reports Server (NTRS)

    Hilborn, E. H.

    1967-01-01

    Technique using short term temporal integration characteristics of the observers visual system improves the apparent resolution of television video presentations. The raster is displaced slightly on each frame so the eye can integrate the information in each raster grain. This phase shift uses a switching time delay.

  8. The application of a new sampling theorem for non-bandlimited signals on the sphere: Improving the recovery of crossing fibers for low b-value acquisitions.

    PubMed

    Deslauriers-Gauthier, Samuel; Marziliano, Pina; Paquette, Michael; Descoteaux, Maxime

    2016-05-01

    Recent development in sampling theory now allows the sampling and reconstruction of certain non-bandlimited functions on the sphere, namely a sum of weighted Diracs. Because the signal acquired in diffusion Magnetic Resonance Imaging (dMRI) can be modeled as the convolution between a sampling kernel and two dimensional Diracs defined on the sphere, these advances have great potential in dMRI. In this work, we introduce a local reconstruction method for dMRI based on a new sampling theorem for non-bandlimited signals on the sphere. This new algorithm, named Spherical Finite Rate of Innovation (SFRI), is able to recover fibers crossing at very narrow angles with little dependence on the b-value. Because of its parametric formulation, SFRI can distinguish crossing fibers even when using a DTI-like acquisition (≈32 directions). This opens new perspective for low b-value and low number of gradient directions diffusion acquisitions and tractography studies. We evaluate the angular resolution of SFRI using state of the art synthetic data and compare its performance using in-vivo data. Our results show that, at low b-values, SFRI recovers crossing fibers not identified by constrained spherical deconvolution. We also show that low b-value results obtained using SFRI are similar to those obtained with constrained spherical deconvolution at a higher b-value.

  9. SU-E-P-33: Critical Role of T2-Weighted Imaging Combined with Diffusion-Weighted Imaging of MRI in Diagnosis of Loco-Regional Recurrent Esophageal Cancer After Radical Surgery

    SciTech Connect

    Deng, G; Qiao, L; Liang, N; Xie, J; Zhang, J; Luo, H; Zhang, J

    2015-06-15

    Purpose: We perform this study to investigate the diagnostic efficacy of T2-weighted MRI (T2WI) and diffusion-weighted MRI (DWI) in confirming local relapses of esophageal cancer in patients highly suspected of recurrence after eradicating surgery. Methods: Forty-two postoperative esophageal cancer patients with clinical suspicions of cancer recurrence underwent 3.0T MRI applying axial, coronal, sagittal T2WI and axial DWI sequences. Two experienced radiologists (R1 and R2) both used two methods (T2WI, T2WI+DWI) to observe the images, and graded the patients ranging from 1 to 5 to represent severity of the disease based on visual signal intensity (patients equal to or more than grade 3 was confirmed as recurrent disease) Results: 27/42patients were verified of recurrent disease by pathologic findings and/or imaging findings during follow-up. The sensitivity, specificity and accuracy of R1 applying T2WI+DWI are 96%, 87% and 93% versus 81%, 80% and 77% on T2WI, these figures by R2 were 96%, 93% and 95% versus 89%, 93% and 90%. The receiver operating curve (ROC) analyses suggest that both of the two readers can obtain better accuracy when adding DWI to T2WI compared with T2WI alone. Kappa test between R1 and R2 indicates excellent inter-observer agreement on T2WI+DWI. Conclusion: Standard T2WI in combination DWI can achieve better accuracy than T2WI alone in diagnosing local recurrence of esophageal cancer, and improve consistency between different readers.

  10. Apparent extended body motions in depth

    NASA Technical Reports Server (NTRS)

    Hecht, Heiko; Proffitt, Dennis R.

    1991-01-01

    Five experiments were designed to investigate the influence of three-dimensional (3-D) orientation change on apparent motion. Projections of an orientation-specific 3-D object were sequentially flashed in different locations and at different orientations. Such an occurrence could be resolved by perceiving a rotational motion in depth around an axis external to the object. Consistent with this proposal, it was found that observers perceived curved paths in depth. Although the magnitude of perceived trajectory curvature often fell short of that required for rotational motions in depth (3-D circularity), judgments of the slant of the virtual plane on which apparent motions occurred were quite close to the predictions of a model that proposes circular paths in depth.

  11. Comment: An Apparent Controversy in Auroral Physics

    NASA Astrophysics Data System (ADS)

    Haerendel, Gerhard

    2007-03-01

    In his article ``A turning point in auroral physics,'' Bryant argued against what he called the `standard' theory of auroral acceleration, according to which the electrons ``gain their energy from static electric fields,'' and offered wave acceleration as an alternative. Because of the importance of the process, not only for the aurora borealis but also for other cosmic plasmas, a clarification of this apparent controversy seems to be in place.

  12. Apparent Solar Tornado-Like Prominences

    NASA Astrophysics Data System (ADS)

    Panasenco, Olga; Martin, Sara F.; Velli, Marco

    2014-02-01

    Recent high-resolution observations from the Solar Dynamics Observatory (SDO) have reawakened interest in the old and fascinating phenomenon of solar tornado-like prominences. This class of prominences was first introduced by Pettit ( Astrophys. J. 76, 9, 1932), who studied them over many years. Observations of tornado prominences similar to the ones seen by SDO had already been documented by Secchi ( Le Soleil, 1877). High-resolution and high-cadence multiwavelength data obtained by SDO reveal that the tornado-like appearance of these prominences is mainly an illusion due to projection effects. We discuss two different cases where prominences on the limb might appear to have a tornado-like behavior. One case of apparent vortical motions in prominence spines and barbs arises from the (mostly) 2D counterstreaming plasma motion along the prominence spine and barbs together with oscillations along individual threads. The other case of apparent rotational motion is observed in a prominence cavity and results from the 3D plasma motion along the writhed magnetic fields inside and along the prominence cavity as seen projected on the limb. Thus, the "tornado" impression results either from counterstreaming and oscillations or from the projection on the plane of the sky of plasma motion along magnetic-field lines, rather than from a true vortical motion around an (apparent) vertical or horizontal axis. We discuss the link between tornado-like prominences, filament barbs, and photospheric vortices at their base.

  13. The Apparent Thermal Conductivity of Pozzolana Concrete

    NASA Astrophysics Data System (ADS)

    Bessenouci, M. Z.; Triki, N. E. Bibi; Khelladi, S.; Draoui, B.; Abene, A.

    The recent development of some lightweight construction materials, such as light concrete, can play an important role as an insulator, while maintaining sufficient levels of mechanical performance. The quality of insulation to provide depends on the climate, the exposure of the walls and also the materials used in the construction. The choice of a material to be used as an insulator, obviously, depends on its availability and its cost. This is a study of natural pozzolanas as basic components in building materials. It is intended to highlight their thermal advantage. It is economically advantageous to use pozzolana in substitution for a portion of the clinker as hydraulically active additions, as well as in compositions of lightweight concretes in the form of pozzolanic aggregate mixtures, which provide mechanical strengths that comply with current standards. A theoretical study is conducted on the apparent thermal conductivity of building materials, namely concrete containing pozzolana. Thermal modeling, apparent to that commonly used for porous materials, has been applied to pozzolana concrete. Experimental results on measurements of the apparent thermal conductivity of pozzolana concrete are reported in this study, using an approach that considers that concrete is composed of two solid ingredients, a binding matrix (hydrated cement paste) and all aggregates. A second comparative theoretical approach is used for the case where concrete consists of a solid phase and a fluid phase (air).

  14. Investigating the capability to resolve complex white matter structures with high b-value diffusion magnetic resonance imaging on the MGH-USC Connectom scanner.

    PubMed

    Fan, Qiuyun; Nummenmaa, Aapo; Witzel, Thomas; Zanzonico, Roberta; Keil, Boris; Cauley, Stephen; Polimeni, Jonathan R; Tisdall, Dylan; Van Dijk, Koene R A; Buckner, Randy L; Wedeen, Van J; Rosen, Bruce R; Wald, Lawrence L

    2014-11-01

    One of the major goals of the NIH Blueprint Human Connectome Project was to map and quantify the white matter connections in the brain using diffusion tractography. Given the prevalence of complex white matter structures, the capability of resolving local white matter geometries with multiple crossings in the diffusion magnetic resonance imaging (dMRI) data is critical. Increasing b-value has been suggested for delineation of the finer details of the orientation distribution function (ODF). Although increased gradient strength and duration increase sensitivity to highly restricted intra-axonal water, gradient strength limitations require longer echo times (TE) to accommodate the increased diffusion encoding times needed to achieve a higher b-value, exponentially lowering the signal-to-noise ratio of the acquisition. To mitigate this effect, the MGH-USC Connectom scanner was built with 300 mT/m gradients, which can significantly reduce the TE of high b-value diffusion imaging. Here we report comparisons performed across b-values based on q-ball ODF metrics to investigate whether high b-value diffusion imaging on the Connectom scanner can improve resolving complex white matter structures. The q-ball ODF features became sharper as the b-value increased, with increased power fraction in higher order spherical harmonic series of the ODF and increased peak heights relative to the overall size of the ODF. Crossing structures were detected in an increasingly larger fraction of white matter voxels and the spatial distribution of two-way and three-way crossing structures was largely consistent with known anatomy. Results indicate that dMRI with high diffusion encoding on the Connectom system is a promising tool to better characterize, and ultimately understand, the underlying structural organization and motifs in the human brain.

  15. Investigating the Capability to Resolve Complex White Matter Structures with High b-Value Diffusion Magnetic Resonance Imaging on the MGH-USC Connectom Scanner

    PubMed Central

    Nummenmaa, Aapo; Witzel, Thomas; Zanzonico, Roberta; Keil, Boris; Cauley, Stephen; Polimeni, Jonathan R.; Tisdall, Dylan; Van Dijk, Koene R.A.; Buckner, Randy L.; Wedeen, Van J.; Rosen, Bruce R.; Wald, Lawrence L.

    2014-01-01

    Abstract One of the major goals of the NIH Blueprint Human Connectome Project was to map and quantify the white matter connections in the brain using diffusion tractography. Given the prevalence of complex white matter structures, the capability of resolving local white matter geometries with multiple crossings in the diffusion magnetic resonance imaging (dMRI) data is critical. Increasing b-value has been suggested for delineation of the finer details of the orientation distribution function (ODF). Although increased gradient strength and duration increase sensitivity to highly restricted intra-axonal water, gradient strength limitations require longer echo times (TE) to accommodate the increased diffusion encoding times needed to achieve a higher b-value, exponentially lowering the signal-to-noise ratio of the acquisition. To mitigate this effect, the MGH-USC Connectom scanner was built with 300 mT/m gradients, which can significantly reduce the TE of high b-value diffusion imaging. Here we report comparisons performed across b-values based on q-ball ODF metrics to investigate whether high b-value diffusion imaging on the Connectom scanner can improve resolving complex white matter structures. The q-ball ODF features became sharper as the b-value increased, with increased power fraction in higher order spherical harmonic series of the ODF and increased peak heights relative to the overall size of the ODF. Crossing structures were detected in an increasingly larger fraction of white matter voxels and the spatial distribution of two-way and three-way crossing structures was largely consistent with known anatomy. Results indicate that dMRI with high diffusion encoding on the Connectom system is a promising tool to better characterize, and ultimately understand, the underlying structural organization and motifs in the human brain. PMID:25287963

  16. Apparent horizons in binary black hole spacetimes

    NASA Astrophysics Data System (ADS)

    Shoemaker, Deirdre Marie

    Over the last decade, advances in computing technology and numerical techniques have lead to the possible theoretical prediction of astrophysically relevant waveforms in numerical simulations. With the building of gravitational wave detectors such as the Laser Interferometric Gravitational-Wave Observatory, we stand at the epoch that will usher in the first experimental study of strong field general relativity. One candidate source for ground based detection of gravitational waveforms, the orbit and merger of two black holes, is of great interest to the relativity community. The binary black hole problem is the two-body problem in general relativity. It is a stringent dynamical test of the theory. The problem involves the evolution of the Einstein equation, a complex system of non-linear, dynamic, elliptic-hyperbolic equations intractable in closed form. Numerical relativists are now developing the technology to evolve the Einstein equation using numerical simulations. The generation of these numerical I codes is a ``theoretical laboratory'' designed to study strong field phenomena in general relativity. This dissertation reports the successful development and application of the first multiple apparent horizon tracker applied to the generic binary black hole problem. I have developed a method that combines a level set of surfaces with a curvature flow method. This method, which I call the level flow method, locates the surfaces of any apparent horizons in the spacetime. The surface location then is used to remove the singularities from the computational domain in the evolution code. I establish the following set of criteria desired in an apparent horizon tracker: (1)The robustness of the tracker due to its lack of dependence on small changes to the initial guess; (2)The generality of the tracker in its applicability to generic spacetimes including multiple back hole spacetimes; and (3)The efficiency of the tracker algorithm in CPU time. I demonstrate the apparent

  17. The predictive capacity of apparent diffusion coefficient (ADC) in response assessment of brain metastases following radiation.

    PubMed

    Jakubovic, Raphael; Zhou, Stephanie; Heyn, Chris; Soliman, Hany; Zhang, Liyang; Aviv, Richard; Sahgal, Arjun

    2016-03-01

    To investigate the predictive capacity of the apparent diffusion coefficient (ADC) as a biomarker of radiation response in brain metastases. Seventy brain metastases from 42 patients treated with either stereotactic radiosurgery or whole brain radiotherapy were imaged at baseline, 1 week, and 1 month post-treatment using diffusion-weighted MRI. Mean and median relative ADC for metastases was calculated by normalizing ADC measurements to baseline ADC. At 1 year post-treatment, or last available follow-up MRI, volume criteria determined final tumour response status. Uni- and multivariate analysis was used to account for factors associated with tumour response at 1 week and 1 month. A generalized estimating equations model took into consideration multiple tumours per subject. Optimal thresholds that distinguished responders from non-responders, as well as sensitivity and specificity were determined by receiver operator characteristic analysis and Youden's index. Lower relative ADC values distinguished responders from non-responders at 1 week and 1 month (P < 0.05). Optimal cut-off values for response were 1.060 at 1 week with a sensitivity and specificity of 75.0 and 56.3 %, respectively. At 1 month, the cut-off was 0.971 with a sensitivity and specificity of 70.0 and 68.8 %, respectively. A multivariate general estimating equations analysis identified no prior radiation [odds ratio (OR) 0.211 and 0.137, P = 0.033 and 0.0177], and a lower median relative ADC at 1 week and 1 month (OR 0.619 and 0.694, P = 0.0036 and 0.005), as predictors of tumour response. Lower relative ADC values at 1 week and 1 month following radiation distinguished responders from non-responders and may be a promising biomarker of early radiation response.

  18. Value of Apparent Diffusion Coefficient Values in Differentiating Malignant and Benign Breast Lesions

    PubMed Central

    Bozkurt Bostan, Tuğba; Koç, Gonca; Sezgin, Gülten; Altay, Canan; Fazıl Gelal, M.; Oyar, Orhan

    2016-01-01

    Background: Magnetic resonance imaging (MRI) has become a diagnostic and problem solving method for the breast examinations in addition to conventional breast examination methods. Diffusion-weighted imaging (DWI) adds valuable information to conventional MRI. Aims: Our aim was to show the impact of apparent diffusion coefficient (ADC) values acquired with DWI to differentiate benign and malignant breast lesions. Study Design: Diagnostic accuracy study. Methods: Forty-six women with 58 breast masses (35 malignant, 23 benign) were examined on a 1.5 T clinical MRI scanner. The morphologic characteristics of the lesions on conventional MRI sequences and contrast uptake pattern were assessed. ADC values of both lesions and normal breast parenchyma were measured. The ADC values obtained were statistically compared with the histopathologic results using Paired Samples t-Test. Results: Multiple lesions were detected in 12 (26%) of the patients, while only one lesion was detected in 34 (74%). Overall, 35 lesions out of 58 were histopathologically proven to be malignant. In the dynamic contrast-enhanced series, 5 of the malignant lesions were type 1, while 8 benign lesions revealed either type 2 or 3 time signal intensity curves (85% sensitivity, 56% spesifity). Mean ADC values were significantly different in malignant vs. benign lesions. (1.04±0.29×10−3 cm2/sec vs. 1.61±0.50×10−3 cm2/sec for the malignant and benign lesions, respectively, p=0.03). A cut-off value of 1.30×10−3 mm2/sec for ADC detected with receiver operating characteristic analysis yielded 89.1% sensitivity and 100% specificity for the differentiation between benign and malignant lesions. Conclusion: ADC values improve the diagnostic accuracy of solid breast lesions when evaluated with the conventional MRI sequences. Therefore, DWI should be incorporated to routine breast MRI protocol. PMID:27308073

  19. Apparent Diffusion Coefficient analysis of encephalitis: A comparative study with topographic evaluation and conventional MRI findings

    PubMed Central

    Katirag, Ahmet; Beker-Acay, Mehtap; Unlu, Ebru; Demirbas, Hayri; Demirturk, Nese

    2016-01-01

    Objective: Our purpose was to reveal the efficiency of diffusion weighted imaging (DWI) in the diagnosis of encephalitis, and to determine the relation between the apparent diffusion coefficient (ADC) values, the onset of the clinical symptoms, and the lesion extent. Methods: Conventional magnetic resonance imaging (MRI) was performed in 17 patients with encephalitis diagnosed on the basis of laboratory, clinical and radiologic findings during 2009 and 2015. Based on the duration between the onset of the symptoms and the brain MRI findings, the patients were divided into three groups. ADC values of the encephalitis lesion, the lesions’ topographic analysis score, deep gray matter involvement, patients’ clinical situation and the duration of the arrival to the clinic was examined. Results: Mean ADC values were 0,988±0,335 x10-3 mm2/s in group I (0-2 days), 1,045±0,347 x10-3 mm2/s in Group-II (3-7 days), 1,451±0,225 x10-3 mm2/s in Group-III (8 days and over). The relation between the ADC values and the duration of the arrival, topographic analysis score, the relation between the patients’ clinical situation and the deep gray matter involvement were found to be statistically significant. The deep gray matter involvement was demonstrated more clearly by FLAIR images when compared with DWI. Conclusion: Conventional MRI sequences may be insufficient in showing the encephalitis lesion. DWI must be added to the imaging modalities immediately in the cases suspected of having encephalitis. PMID:27375722

  20. Anomalously high b-values in the South Flank of Kilauea volcano, Hawaii: Evidence for the distribution of magma below Kilauea's East rift zone

    USGS Publications Warehouse

    Wyss, M.; Klein, F.; Nagamine, K.; Wiemer, S.

    2001-01-01

    The pattern of b-value of the frequency-magnitude relation, or mean magnitude, varies little in the Kaoiki-Hilea area of Hawaii, and the b-values are normal, with b = 0.8 in the top 10 km and somewhat lower values below that depth. We interpret the Kaoiki-Hilea area as relatively stable, normal Hawaiian crust. In contrast, the b-values beneath Kilauea's South Flank are anomalously high (b = 1.3-1.7) at depths between 4 and 8 km, with the highest values near the East Rift zone, but extending 5-8 km away from the rift. Also, the anomalously high b-values vary along strike, parallel to the rift zone. The highest b-values are observed near Hiiaka and Pauahi craters at the bend in the rift, the next highest are near Makaopuhi and also near Puu Kaliu. The mildest anomalies occur adjacent to the central section of the rift. The locations of the three major and two minor b-value anomalies correspond to places where shallow magma reservoirs have been proposed based on analyses of seismicity, geodetic data and differentiated lava chemistry. The existence of the magma reservoirs is also supported by magnetic anomalies, which may be areas of dike concentration, and self-potential anomalies, which are areas of thermal upwelling above a hot source. The simplest explanation of these anomalously high b-values is that they are due to the presence of active magma bodies beneath the East Rift zone at depths down to 8 km. In other volcanoes, anomalously high b-values correlate with volumes adjacent to active magma chambers. This supports a model of a magma body beneath the East Rift zone, which may widen and thin along strike, and which may reach 8 km depth and extend from Kilauea's summit to a distance of at least 40 km down rift. The anomalously high b-values at the center of the South Flank, several kilometers away from the rift, may be explained by unusually high pore pressure throughout the South Flank, or by anomalously strong heterogeneity due to extensive cracking, or by both

  1. Apparent magnitude of earthshine: a simple calculation

    NASA Astrophysics Data System (ADS)

    Agrawal, Dulli Chandra

    2016-05-01

    The Sun illuminates both the Moon and the Earth with practically the same luminous fluxes which are in turn reflected by them. The Moon provides a dim light to the Earth whereas the Earth illuminates the Moon with somewhat brighter light which can be seen from the Earth and is called earthshine. As the amount of light reflected from the Earth depends on part of the Earth and the cloud cover, the strength of earthshine varies throughout the year. The measure of the earthshine light is luminance, which is defined in photometry as the total luminous flux of light hitting or passing through a surface. The expression for the earthshine light in terms of the apparent magnitude has been derived for the first time and evaluated for two extreme cases; firstly, when the Sun’s rays are reflected by the water of the oceans and secondly when the reflector is either thick clouds or snow. The corresponding values are -1.30 and -3.69, respectively. The earthshine value -3.22 reported by Jackson lies within these apparent magnitudes. This paper will motivate the students and teachers of physics to look for the illuminated Moon by earthlight during the waning or waxing crescent phase of the Moon and to reproduce the expressions derived here by making use of the inverse-square law of radiation, Planck’s expression for the power in electromagnetic radiation, photopic spectral luminous efficiency function and expression for the apparent magnitude of a body in terms of luminous fluxes.

  2. Single scattering albedo, asymmetry parameter, apparent refractive index, and apparent soot content of dry atmospheric particles.

    PubMed

    Hänel, G

    1988-06-01

    Mean shortwave values of the single scattering albedo and the asymmetry parameter of dry atmospheric particles have been measured photometrically. From the single scattering albedo the mean shortwave value of the apparent complex refractive index and the apparent volume fraction of soot within the particulate matter are derived. From 275 measurements the mean value of the single scattering albedo is 0.835, the mean value of the apparent complex refractive index is 1.51-0.026i, and the mean value of the apparent volume fraction of soot is 5.8%. For seventy-seven cases of mostly urban particles the mean value of the asymmetry parameter is 0.39. The term apparent stands for appearing (but not necessarily) real or true. Reasons for this attribute are the idealizations necessary to get a value of the refractive index of atmospheric particles. Consequently the use of an apparent refractive index for modeling purposes is restricted as described in the concluding section.

  3. Osteosarcoma With Apparent Ewing Sarcoma Gene Rearrangement.

    PubMed

    Mathias, Melissa D; Chou, Alexander J; Meyers, Paul; Shukla, Neerav; Hameed, Meera; Agaram, Narasimhan; Wang, Lu; Berger, Michael F; Walsh, Michael; Kentsis, Alex

    2016-07-01

    Poorly differentiated round cell sarcomas present diagnostic challenges because of their variable morphology and lack of specific immunophenotypic markers. We present a case of a 15-year-old female with a tibial tumor that exhibited features of Ewing-like sarcoma, including apparent rearrangement of the EWSR1 gene. Hybridization capture-based next-generation DNA sequencing showed evidence of complex genomic rearrangements, absence of known pathogenic Ewing-like chromosome translocations, and deletions RB1, PTCH1, and ATRX, supporting the diagnosis of osteosarcoma. This illustrates the potential of clinical genomic profiling to improve diagnosis and enable specifically targeted therapies for cancers with complex pathologies. PMID:27352193

  4. Premature Ventricular Complexes in Apparently Normal Hearts.

    PubMed

    Luebbert, Jeffrey; Auberson, Denise; Marchlinski, Francis

    2016-09-01

    Premature ventricular complexes (PVCs) are consistently associated with worse prognosis and higher morbidity and mortality. This article reviews PVCs and their presentation in patients with an apparently normal heart. Patients with PVCs may be completely asymptomatic, whereas others may note severely disabling symptoms. Cardiomyopathy may occur with frequent PVCs. Diagnostic work-up is directed at obtaining 12-lead ECG to characterize QRS morphology, Holter monitor to assess frequency, and echo and advanced imaging to assess for early cardiomyopathy and exclude structural heart disease. Options for management include watchful waiting, medical therapy, or catheter ablation. Malignant variants of PVCs may induce ventricular fibrillation even in a normal heart. PMID:27521085

  5. Optimal Experiment Design for Monoexponential Model Fitting: Application to Apparent Diffusion Coefficient Imaging

    PubMed Central

    Alipoor, Mohammad; Maier, Stephan E.; Gu, Irene Yu-Hua; Mehnert, Andrew; Kahl, Fredrik

    2015-01-01

    The monoexponential model is widely used in quantitative biomedical imaging. Notable applications include apparent diffusion coefficient (ADC) imaging and pharmacokinetics. The application of ADC imaging to the detection of malignant tissue has in turn prompted several studies concerning optimal experiment design for monoexponential model fitting. In this paper, we propose a new experiment design method that is based on minimizing the determinant of the covariance matrix of the estimated parameters (D-optimal design). In contrast to previous methods, D-optimal design is independent of the imaged quantities. Applying this method to ADC imaging, we demonstrate its steady performance for the whole range of input variables (imaged parameters, number of measurements, and range of b-values). Using Monte Carlo simulations we show that the D-optimal design outperforms existing experiment design methods in terms of accuracy and precision of the estimated parameters. PMID:26839880

  6. Optimal Experiment Design for Monoexponential Model Fitting: Application to Apparent Diffusion Coefficient Imaging.

    PubMed

    Alipoor, Mohammad; Maier, Stephan E; Gu, Irene Yu-Hua; Mehnert, Andrew; Kahl, Fredrik

    2015-01-01

    The monoexponential model is widely used in quantitative biomedical imaging. Notable applications include apparent diffusion coefficient (ADC) imaging and pharmacokinetics. The application of ADC imaging to the detection of malignant tissue has in turn prompted several studies concerning optimal experiment design for monoexponential model fitting. In this paper, we propose a new experiment design method that is based on minimizing the determinant of the covariance matrix of the estimated parameters (D-optimal design). In contrast to previous methods, D-optimal design is independent of the imaged quantities. Applying this method to ADC imaging, we demonstrate its steady performance for the whole range of input variables (imaged parameters, number of measurements, and range of b-values). Using Monte Carlo simulations we show that the D-optimal design outperforms existing experiment design methods in terms of accuracy and precision of the estimated parameters.

  7. DT-MRI measurement of myolaminar structure: accuracy and sensitivity to time post-fixation, b-value and number of directions.

    PubMed

    Gilbert, Stephen H; Smaill, Bruce H; Walton, Richard D; Trew, Mark L; Bernus, Olivier

    2013-01-01

    DT-MRI has been widely used to quantify myocardial fiber and laminar orientations. These structural orientations influence both the spread of excitation and the reorganization of the myocardium during contraction and are altered in disease states. Studies have sought to validate DT-MRI but questions remain about the accuracy of the method and its sensitivity to the time post-fixation and imaging parameters, including b-value, number of diffusion directions and image voxel size. The advent of high-spatial resolution ex vivo MRI and structure tensor (ST) analysis provides a means of direct validation of DT-MRI and assessment of sensitivity to the b-value, the number of diffusion directions and the image voxel size. We find that, with the fixation method we used, structure does not change with time (up to 72 hours). We show that DT-MRI and ST/HR-MRI are markedly similar measures of fiber orientation but DT-MRI and ST are much less similar measures of laminar orientation. DT-MRI performance is not sensitive to the number of directions, with similar structural orientations measured with 6 or 12 directions. Likewise, DT-MRI performance is generally insensitive to b-value, but laminar measurement is moderately more accurate at b = 500 than for higher b-values.

  8. Apparent diffusion coefficient and fractional anisotropy of newly diagnosed grade II gliomas†

    PubMed Central

    Khayal, Inas S.; McKnight, Tracy R.; McGue, Colleen; Vandenberg, Scott; Lamborn, Kathleen R.; Chang, Susan M.; Cha, Soonmee; Nelson, Sarah J.

    2013-01-01

    Distinguishing between low-grade oligodendrogliomas (ODs) and astrocytomas (AC) is of interest for defining prognosis and stratifying patients to specific treatment regimens. The purpose of this study was to determine if the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) from diffusion imaging can help to differentiate between newly diagnosed grade II OD and AC subtypes and to evaluate the ADC and FA values for the mixed population of oligoastrocytomas (OA). Fifty-three patients with newly diagnosed grade II gliomas were studied using a 1.5T whole body scanner (23 ODs, 16 ACs, and 14 OAs). The imaging protocol included post-gadolinium T1-weighted images, T2-weighted images, and either three and/or six directional diffusion imaging sequence with b = 1000 s/mm2. Diffusion-weighted images were analyzed using in-house software to calculate maps of ADC and for six directional acquisitions, FA. The intensity values were normalized by values from normal appearing white matter (NAWM) to generate maps of normalized apparent diffusion coefficient (nADC) and normalized fractional anisotropy (nFA). The hyperintense region in the T2 weighted image was defined as the T2All region. A Mann–Whitney rank-sum test was performed on the 25th, median, and 75th nADC and nFA among the three subtypes. Logistic regression was performed to determine how well the nADC and nFA predict subtype. Lesions diagnosed as being OD had significantly lower nADC and significantly higher nFA, compared to AC. The nADC and nFA values individually classified the data with an accuracy of 87%. Combining the two did not enhance the classification. The patients with OA had nADC and nFA values between those of OD and AC. This suggests that ADC and FA may be helpful in directing tissue sampling to the most appropriate regions for taking biopsies in order to make a definitive diagnosis. PMID:19125391

  9. Field signature for apparently superluminal particle motion

    NASA Astrophysics Data System (ADS)

    Land, Martin

    2015-05-01

    In the context of Stueckelberg's covariant symplectic mechanics, Horwitz and Aharonovich [1] have proposed a simple mechanism by which a particle traveling below light speed almost everywhere may exhibit a transit time that suggests superluminal motion. This mechanism, which requires precise measurement of the particle velocity, involves a subtle perturbation affecting the particle's recorded time coordinate caused by virtual pair processes. The Stueckelberg framework is particularly well suited to such problems, because it permits pair creation/annihilation at the classical level. In this paper, we study a trajectory of the type proposed by Horwitz and Aharonovich, and derive the Maxwell 4-vector potential associated with the motion. We show that the resulting fields carry a signature associated with the apparent superluminal motion, providing an independent test for the mechanism that does not require direct observation of the trajectory, except at the detector.

  10. Apparent skepticism: capital punishment and medical evidence.

    PubMed

    Helminski, F

    1993-01-01

    In recent cases on the constitutionality of sentencing to death criminals who were younger than 18 years of age at the time of their crimes or who are mentally retarded, the US Supreme Court has rejected medical evidence that such persons categorically possess diminished culpability. Rather, the Court has accepted the public's "apparent skepticism" of such a scientific consensus in upholding the execution of capital offenders who are 16 years of age or older. The 1952 English case of Craig and Bentley sparked discussion of similar issues in the United Kingdom and contributed to the abolition of capital punishment for murder in that country. US courts should have more deference for such medical evidence, despite perceived widespread resistance to the conclusions of researchers that adolescents and mentally retarded persons categorically lack sufficient maturity, judgment, and deliberation to receive capital punishment and that they are not deterred from murder by the threat of execution.

  11. Apparent spontaneous joint restoration in hip osteoarthritis.

    PubMed

    Guyton, Gregory P; Brand, Richard A

    2002-11-01

    Dramatic spontaneous restoration of the joint space in osteoarthritis of the hip is rare, although limited fibrocartilaginous repair is common. Regeneration of the apparent radiographic joint space seems to be associated with peripheral osteophyte formation, but it is difficult to isolate other well-defined factors that promote it. Previous documentation of the phenomenon exists in scattered case reports before the era of widespread total hip replacement. Two recent cases are presented in which patients with bilateral disease had unilateral total hip replacement with simultaneous diminished pain in the contralateral hip accompanied by restoration of the radiographic joint space. Secondary stability, unloading, peripheral osteophyte formation, and other possible factors likely contribute to these unusual natural outcomes of coxarthrosis.

  12. Ambiguity in Tactile Apparent Motion Perception

    PubMed Central

    Liaci, Emanuela; Bach, Michael; Tebartz van Elst, Ludger; Heinrich, Sven P.; Kornmeier, Jürgen

    2016-01-01

    Background In von Schiller’s Stroboscopic Alternative Motion (SAM) stimulus two visually presented diagonal dot pairs, located on the corners of an imaginary rectangle, alternate with each other and induce either horizontal, vertical or, rarely, rotational motion percepts. SAM motion perception can be described by a psychometric function of the dot aspect ratio (“AR”, i.e. the relation between vertical and horizontal dot distances). Further, with equal horizontal and vertical dot distances (AR = 1) perception is biased towards vertical motion. In a series of five experiments, we presented tactile SAM versions and studied the role of AR and of different reference frames for the perception of tactile apparent motion. Methods We presented tactile SAM stimuli and varied the ARs, while participants reported the perceived motion directions. Pairs of vibration stimulators were attached to the participants’ forearms and stimulator distances were varied within and between forearms. We compared straight and rotated forearm conditions with each other in order to disentangle the roles of exogenous and endogenous reference frames. Results Increasing the tactile SAM’s AR biased perception towards vertical motion, but the effect was weak compared to the visual modality. We found no horizontal disambiguation, even for very small tactile ARs. A forearm rotation by 90° kept the vertical bias, even though it was now coupled with small ARs. A 45° rotation condition with crossed forearms, however, evoked a strong horizontal motion bias. Discussion Existing approaches to explain the visual SAM bias fail to explain the current tactile results. Particularly puzzling is the strong horizontal bias in the crossed-forearm conditions. In the case of tactile apparent motion, there seem to be no fixed priority rule for perceptual disambiguation. Rather the weighting of available evidence seems to depend on the degree of stimulus ambiguity, the current situation and on the perceptual

  13. Fiber estimation and tractography in diffusion MRI: development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values.

    PubMed

    Wilkins, Bryce; Lee, Namgyun; Gajawelli, Niharika; Law, Meng; Leporé, Natasha

    2015-04-01

    Advances in diffusion-weighted magnetic resonance imaging (DW-MRI) have led to many alternative diffusion sampling strategies and analysis methodologies. A common objective among methods is estimation of white matter fiber orientations within each voxel, as doing so permits in-vivo fiber-tracking and the ability to study brain connectivity and networks. Knowledge of how DW-MRI sampling schemes affect fiber estimation accuracy, tractography and the ability to recover complex white-matter pathways, differences between results due to choice of analysis method, and which method(s) perform optimally for specific data sets, all remain important problems, especially as tractography-based studies become common. In this work, we begin to address these concerns by developing sets of simulated diffusion-weighted brain images which we then use to quantitatively evaluate the performance of six DW-MRI analysis methods in terms of estimated fiber orientation accuracy, false-positive (spurious) and false-negative (missing) fiber rates, and fiber-tracking. The analysis methods studied are: 1) a two-compartment "ball and stick" model (BSM) (Behrens et al., 2003); 2) a non-negativity constrained spherical deconvolution (CSD) approach (Tournier et al., 2007); 3) analytical q-ball imaging (QBI) (Descoteaux et al., 2007); 4) q-ball imaging with Funk-Radon and Cosine Transform (FRACT) (Haldar and Leahy, 2013); 5) q-ball imaging within constant solid angle (CSA) (Aganj et al., 2010); and 6) a generalized Fourier transform approach known as generalized q-sampling imaging (GQI) (Yeh et al., 2010). We investigate these methods using 20, 30, 40, 60, 90 and 120 evenly distributed q-space samples of a single shell, and focus on a signal-to-noise ratio (SNR = 18) and diffusion-weighting (b = 1000 s/mm(2)) common to clinical studies. We found that the BSM and CSD methods consistently yielded the least fiber orientation error and simultaneously greatest detection rate of fibers. Fiber detection

  14. Fiber estimation and tractography in diffusion MRI: development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values.

    PubMed

    Wilkins, Bryce; Lee, Namgyun; Gajawelli, Niharika; Law, Meng; Leporé, Natasha

    2015-04-01

    Advances in diffusion-weighted magnetic resonance imaging (DW-MRI) have led to many alternative diffusion sampling strategies and analysis methodologies. A common objective among methods is estimation of white matter fiber orientations within each voxel, as doing so permits in-vivo fiber-tracking and the ability to study brain connectivity and networks. Knowledge of how DW-MRI sampling schemes affect fiber estimation accuracy, tractography and the ability to recover complex white-matter pathways, differences between results due to choice of analysis method, and which method(s) perform optimally for specific data sets, all remain important problems, especially as tractography-based studies become common. In this work, we begin to address these concerns by developing sets of simulated diffusion-weighted brain images which we then use to quantitatively evaluate the performance of six DW-MRI analysis methods in terms of estimated fiber orientation accuracy, false-positive (spurious) and false-negative (missing) fiber rates, and fiber-tracking. The analysis methods studied are: 1) a two-compartment "ball and stick" model (BSM) (Behrens et al., 2003); 2) a non-negativity constrained spherical deconvolution (CSD) approach (Tournier et al., 2007); 3) analytical q-ball imaging (QBI) (Descoteaux et al., 2007); 4) q-ball imaging with Funk-Radon and Cosine Transform (FRACT) (Haldar and Leahy, 2013); 5) q-ball imaging within constant solid angle (CSA) (Aganj et al., 2010); and 6) a generalized Fourier transform approach known as generalized q-sampling imaging (GQI) (Yeh et al., 2010). We investigate these methods using 20, 30, 40, 60, 90 and 120 evenly distributed q-space samples of a single shell, and focus on a signal-to-noise ratio (SNR = 18) and diffusion-weighting (b = 1000 s/mm(2)) common to clinical studies. We found that the BSM and CSD methods consistently yielded the least fiber orientation error and simultaneously greatest detection rate of fibers. Fiber detection

  15. Spatial Distribution of b-value of the Copahue volcano during 2012-2014 eruptive period: Relationship between magmatic and hydrothermal system

    NASA Astrophysics Data System (ADS)

    Lazo, Jonathan; Basualto, Daniel; Bengoa, Cintia; Cardona, Carlos; Franco, Luis; Gil-Cruz, Fernando; Hernández, Erasmo; Lara, Luis; Lundgren, Paul; Medina, Roxana; Morales, Sergio; Peña, Paola; Quijada, Jonathan; Samsonov, Sergey; San Martin, Juan; Valderrama, Oscar

    2015-04-01

    Temporal and spatial variations of b-value have been interpreted as regional stress changes on active tectonic zones or magma ascent and/or hydrothermal fluids mobilization that could affect to active volcanic arc. Increasing of fluids pressure, medium heterogeneities or temperature changes would be the cause of these variations. The Copahue volcano is a shield strato-volcano that has been edified on the western margin of the Caviahue Caldera, located in the international border between Chile and Argentina, which contain an important geothermic field and is located at a horse-tail structure of the Liquiñe-Ofqui Fault Zone. The pre-fracture nature of its basement, as well as an extensive geothermic field, would be producing very complex conditions to fluids movement that could be exploring to use the 'b' value of the recorded seismicity between 2012 and 2014. Based in the database of VT seismic events, we used 2.073 events to calculate the b-value to obtain the 2D and 3D distribution maps. Results showed two anomalous zones: the first one located 9 Km to NE of the active crater, 3-6 Km depth, with high b-values (>1.2) that is associated with a very high production rate of small earthquakes that could suggest a brittle zone, located in the active geothermal field. The second zone, showed a low b-values (~ 0.7), located to east of the volcano edifice at <3 Km depth, associated to a zone where were generated larger magnitude events, suggesting a zone with more stress accumulation that well correlated with the deformation center detected by InSAR measurements. This zone could be interpreted as the magmatic source that interacts with the shallow hydrothermal system. Thus, in a very complex setting as a volcano sitting on top of a geothermal system, the b-value offers a tool to understand the distribution of the seismic sources and hence a physical constrain for the coupled magmatic/hydrothermal system.

  16. Apparent speed increases at low luminance

    PubMed Central

    Vaziri-Pashkam, Maryam; Cavanagh, Patrick

    2009-01-01

    To investigate the effect of luminance on apparent speed, subjects adjusted the speed of a low-luminance rotating grating (0.31 cd/m2) to match that of a high-luminance one (1260 cd/m2). Above 4 Hz, subjects overestimated the speed of the low-luminance grating. This overestimation increased as a function of temporal rate and reached 30% around 10 Hz temporal rates. The speed overestimation became significant once the lower luminance was 2.4 log units lower than the high luminance comparison. Next the role of motion smear in speed overestimation was examined. First it was shown that the length of the perceived motion smear increased at low luminances. Second, the length of the visible smear was manipulated by changing the presentation time of the stimuli. Speed overestimation was reduced at shorter presentation times. Third the speed of a blurred stimulus was compared to a stimulus with sharp edges and the blurred stimulus was judged to move faster. These results indicate that the length of motion smear following a target contributes to its perceived speed and that this leads to speed overestimation at low luminance where motion traces lengthen because of increased persistence. PMID:19146275

  17. Curved apparent motion induced by amodal completion

    PubMed Central

    Feldman, Jacob; Singh, Manish

    2012-01-01

    We investigated whether amodal completion can bias apparent motion (AM) to deviate from its default straight path toward a longer curved path, which would violate the well-established principle that AM follows the shortest possible path. Observers viewed motion sequences of two alternating rectangular tokens positioned at the ends of a semicircular occluder, with varying interstimulus intervals (ISIs; 100–500 ms). At short ISIs, observers tended to report simple straight-path motion—that is, outside the occluder. But at long ISIs, they became increasingly likely to report a curved-path motion behind the occluder. This tendency toward reporting curved-path motion was influenced by the shape of tokens, display orientation, the gap between tokens and the occluder, and binocular depth cues. Our results suggest that the visual system tends to minimize unexplained absence of a moving object, as well as its path length, such that AM deviates from the shortest path when amodal integration of motion trajectory behind the curved occluder can account for the objective invisibility of the object during the ISI. PMID:22069082

  18. Apparent life-threatening event in infancy

    PubMed Central

    Choi, Hee Joung

    2016-01-01

    An apparent life-threatening event (ALTE) is defined as the combination of clinical presentations such as apnea, marked change in skin and muscle tone, gagging, or choking. It is a frightening event, and it predominantly occurs during infancy at a mean age of 1–3 months. The causes of ALTE are categorized into problems that are: gastrointestinal (50%), neurological (30%), respiratory (20%), cardiovascular (5%), metabolic and endocrine (2%–5%), or others such as child abuse. Up to 50% of ALTEs are idiopathic, where the cause cannot be diagnosed. Infants with an ALTE are often asymptomatic at hospital and there is no standard workup protocol for ALTE. Therefore, a detailed initial history and physical examination are important to determine the extent of the medical evaluation and treatment. Regardless of the cause of an ALTE, all infants with an ALTE should require hospitalization and continuous cardiorespiratory monitoring and evaluation for at least 24 hours. The natural course of ALTEs has seemed benign, and the outcome is generally associated with the affected infants' underlying disease. In conclusion, systemic diagnostic evaluation and adequate treatment increases the survival and quality of life for most affected infants. PMID:27721838

  19. An apparent hiatus in global warming?

    NASA Astrophysics Data System (ADS)

    Trenberth, Kevin E.; Fasullo, John T.

    2013-12-01

    Global warming first became evident beyond the bounds of natural variability in the 1970s, but increases in global mean surface temperatures have stalled in the 2000s. Increases in atmospheric greenhouse gases, notably carbon dioxide, create an energy imbalance at the top-of-atmosphere (TOA) even as the planet warms to adjust to this imbalance, which is estimated to be 0.5-1 W m-2 over the 2000s. Annual global fluctuations in TOA energy of up to 0.2 W m-2 occur from natural variations in clouds, aerosols, and changes in the Sun. At times of major volcanic eruptions the effects can be much larger. Yet global mean surface temperatures fluctuate much more than these can account for. An energy imbalance is manifested not just as surface atmospheric or ground warming but also as melting sea and land ice, and heating of the oceans. More than 90% of the heat goes into the oceans and, with melting land ice, causes sea level to rise. For the past decade, more than 30% of the heat has apparently penetrated below 700 m depth that is traceable to changes in surface winds mainly over the Pacific in association with a switch to a negative phase of the Pacific Decadal Oscillation (PDO) in 1999. Surface warming was much more in evidence during the 1976-1998 positive phase of the PDO, suggesting that natural decadal variability modulates the rate of change of global surface temperatures while sea-level rise is more relentless. Global warming has not stopped; it is merely manifested in different ways.

  20. Evaluation of Apparent Diffusion Coefficient Values in Spinal Tuberculosis by MRI

    PubMed Central

    Sachdeva, Primal

    2016-01-01

    Introduction Spinal tuberculosis presents a radiological challenge in many cases when it presents with atypical pattern of involvement and has to be distinguished from various differentials, which include metastases. In such cases Diffusion Weighted Imaging (DWI) with Apparent Diffusion Co-efficient (ADC) value may play a role in reaching towards a conclusion, thereby preventing unnecessary biopsy in such patients. Aim Measurement of mean ADC values in tubercular vertebrae and associated collection. Materials and Methods The study was comprised of 55 patients and was conducted on 3.0 TESLA Siemens machine Magnetom Verio. Patients either known to have tuberculosis or those with classic tuberculous findings were included in the study. All these patients were followed up for post-treatment confirmation and ADC value. All the patients underwent routine MRI along with DW-MRI sequence, ADC values and FNAC/ Biopsy if required. The ADC values were calculated from the involved vertebral bodies and surrounding soft tissue and also from normal vertebrae preferably from one above and below the affected vertebrae to establish ADC of normal vertebrae, which was helpful in treatment response in patients with antitubercular therapy. At least six ADC value was taken from affected vertebrae and soft tissue. Results The mean ADC value of tubercular vertebrae was found out to be 1.47 ± 0.25 x 10-3 mm2/sec, of adjacent soft tissue collection (abscess) was 1.94 ± 0.30 x 10-3 mm2/sec and normal vertebrae was 0.48 ± 0.16 x 10-3 mm2/sec. ADC value of post treated vertebrae decreased and complete resolution showed ADC near normal vertebrae. Conclusion Normal range of the ADC values in spinal tuberculosis and associated paravertebral collection may be helpful in the differentiation of spinal tuberculosis from lesions with spinal involvement which are not proven to be tuberculosis and who did not have the classical appearance of either tuberculosis or metastasis. But there exists a zone of

  1. High-frequency spectral falloff of earthquakes, fractal dimension of complex rupture, b value, and the scaling of strength on faults

    USGS Publications Warehouse

    Frankel, A.

    1991-01-01

    The high-frequency falloff ??-y of earthquake displacement spectra and the b value of aftershock sequences are attributed to the character of spatially varying strength along fault zones. I assume that the high frequency energy of a main shock is produced by a self-similar distribution of subevents, where the number of subevents with radii greater than R is proportional to R-D, D being the fractal dimension. In the model, an earthquake is composed of a hierarchical set of smaller earthquakes. The static stress drop is parameterized to be proportional to R??, and strength is assumed to be proportional to static stress drop. I find that a distribution of subevents with D = 2 and stress drop independent of seismic moment (?? = 0) produces a main shock with an ??-2 falloff, if the subevent areas fill the rupture area of the main shock. By equating subevents to "islands' of high stress of a random, self-similar stress field on a fault, I relate D to the scaling of strength on a fault, such that D = 2 - ??. Thus D = 2 corresponds to constant stress drop scaling (?? = 0) and scale-invariant fault strength. A self-similar model of aftershock rupture zones on a fault is used to determine the relationship between the b value, the size distribution of aftershock rupture zones, and the scaling of strength on a fault. -from Author

  2. Assessment of apparent diffusion coefficient values as predictor of aggressiveness in peripheral zone prostate cancer: comparison with Gleason score.

    PubMed

    Anwar, Shayan Sirat Maheen; Anwar Khan, Zahid; Shoaib Hamid, Rana; Haroon, Fahd; Sayani, Raza; Beg, Madiha; Khattak, Yasir Jamil

    2014-01-01

    Purpose. To determine association between apparent diffusion coefficient value on diffusion-weighted imaging and Gleason score in patients with prostate cancer. Methods. This retrospective case series was conducted at Radiology Department of Aga Khan University between June 2009 and June 2011. 28 patients with biopsy-proven prostate cancer were included who underwent ultrasound guided sextant prostate biopsy and MRI. MRI images were analyzed on diagnostic console and regions of interest were drawn. Data were entered and analyzed on SPSS 20.0. ADC values were compared with Gleason score using one-way ANOVA test. Results. In 28 patients, 168 quadrants were biopsied and 106 quadrants were positive for malignancy. 89 lesions with proven malignancy showed diffusion restriction. The mean ADC value for disease with a Gleason score of 6 was 935 mm(2)/s (SD = 248.4 mm(2)/s); Gleason score of 7 was 837 mm(2)/s (SD = 208.5 mm(2)/s); Gleason score of 8 was 614 mm(2)/s (SD = 108 mm(2)/s); and Gleason score of 9 was 571 mm(2)/s (SD = 82 mm(2)/s). Inverse relationship was observed between Gleason score and mean ADC values. Conclusion. DWI and specifically quantitative ADC values may help differentiate between low-risk (Gleason score, 6), intermediate-risk (Gleason score, 7), and high-risk (Gleason score 8 and 9) prostate cancers, indirectly determining the aggressiveness of the disease. PMID:24967293

  3. Apparent-Strain Correction for Combined Thermal and Mechanical Testing

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; O'Neil, Teresa L.

    2007-01-01

    Combined thermal and mechanical testing requires that the total strain be corrected for the coefficient of thermal expansion mismatch between the strain gage and the specimen or apparent strain when the temperature varies while a mechanical load is being applied. Collecting data for an apparent strain test becomes problematic as the specimen size increases. If the test specimen cannot be placed in a variable temperature test chamber to generate apparent strain data with no mechanical loads, coupons can be used to generate the required data. The coupons, however, must have the same strain gage type, coefficient of thermal expansion, and constraints as the specimen to be useful. Obtaining apparent-strain data at temperatures lower than -320 F is challenging due to the difficulty to maintain steady-state and uniform temperatures on a given specimen. Equations to correct for apparent strain in a real-time fashion and data from apparent-strain tests for composite and metallic specimens over a temperature range from -450 F to +250 F are presented in this paper. Three approaches to extrapolate apparent-strain data from -320 F to -430 F are presented and compared to the measured apparent-strain data. The first two approaches use a subset of the apparent-strain curves between -320 F and 100 F to extrapolate to -430 F, while the third approach extrapolates the apparent-strain curve over the temperature range of -320 F to +250 F to -430 F. The first two approaches are superior to the third approach but the use of either of the first two approaches is contingent upon the degree of non-linearity of the apparent-strain curve.

  4. Apparent mass and cross-axis apparent mass of standing subjects during exposure to vertical whole-body vibration

    NASA Astrophysics Data System (ADS)

    Subashi, G. H. M. J.; Matsumoto, Y.; Griffin, M. J.

    2006-05-01

    The effects of posture and vibration magnitude on the vertical apparent mass and the fore-and-aft cross-axis apparent mass of the standing human body during exposure to vertical vibration have been investigated. Twelve male subjects were exposed to random vertical vibration over the frequency range 2.0-20 Hz at three vibration magnitudes: 0.125, 0.25 and 0.5 m s -2 rms. Subjects stood in five different postures: upright, lordotic, anterior lean, knees bent and knees more bent. The vertical acceleration at the floor and the forces in the vertical and fore-and-aft directions at the floor were used to obtain the apparent mass and the cross-axis apparent mass. The resonance frequency of the apparent mass was significantly reduced with knees bent and knees more bent postures, but there were only minor effects on the resonance frequency by changing the position of the upper body. Considerable cross-axis apparent mass, up to about 30% of the static mass of subjects, was found. The cross-axis apparent mass was influenced by all postural changes used in the study. In all postures the resonance frequencies of the apparent mass and the cross-axis apparent mass tended to decrease with increasing vibration magnitude. This nonlinear characteristic tended to be less clear in some postures in which subjects increased muscle tension.

  5. High b-Value Diffusion MRI to Differentiate Recurrent Tumors from Posttreatment Changes in Head and Neck Squamous Cell Carcinoma: A Single Center Prospective Study

    PubMed Central

    Acampora, Angela; Manzo, Gaetana; Fenza, Giacomo; Busto, Giuseppina; Serino, Antonietta; Manto, Andrea

    2016-01-01

    Recently DW-MR Imaging has shown promising results in distinguishing between recurrent tumors and posttreatment changes in Head and Neck Squamous Cell Carcinoma (HNSSC). Aim of this study was to evaluate the diagnostic performances of DWI at high b-value (b = 2000 s/mm2) compared to standard b-value (b = 1000 s/mm2) and ADCratio values (ADCratio = ADC2000/ADC1000 × 100) to differentiate recurrent tumors from posttreatment changes after treatment of HSNCC. 20 patients (16 M, 4 F) underwent MR Imaging between 2 and 16 months (mean 7) after treatment. Besides morphological sequences, we performed single-shot echo-planar DWI at b = 1000 s/mm2 and b = 2000 s/mm2, and corresponding ADC maps were generated (ADC1000 and ADC2000, resp.). By considering contrast-enhanced T1-weighted images as references, ROIs were drawn in order to evaluate mean ADC1000, ADC2000, and ADCratio. The mean ADC1000 and ADC2000 in recurrent tumors were significantly lower than those in posttreatment changes (P = 0.001 and P = 0.016, resp.). Moreover, the mean ADCratio between the two groups showed a statistically significant difference (P = 0.002). Sensitivity, specificity, and accuracy of ADCratio were 82.0%, 100%, and 90%, respectively, by considering an optimal cutoff value of 65.5%. ADCratio is a promising value to differentiate between recurrent tumors and posttreatment changes in HNSCC and may be more useful than ADC1000 and ADC2000. PMID:27376081

  6. Damage assessed by wavelet scale bands and b-value in dynamical tests of a reinforced concrete slab monitored with acoustic emission

    NASA Astrophysics Data System (ADS)

    Zitto, Miguel E.; Piotrkowski, Rosa; Gallego, Antolino; Sagasta, Francisco; Benavent-Climent, Amadeo

    2015-08-01

    The complex Morlet Continuous Wavelet Transform (CWT) was applied to acoustic emission (AE) signals from dynamic tests conducted on a reinforced concrete slab with a shaking table. The steel reinforcement bars did not yield during the tests, but a severe loss of bond between reinforcement bars and surrounding concrete was detected. Comparison of the evolution of the scale position of maximum values of CWT coefficients and the histories of response acceleration obtained in different seismic simulations allowed us to identify the (45-64 kHz) frequency band corresponding to the fracture of concrete. The Cumulative Acoustic Emission Energy (CAE) obtained by reconstructing the AE signals in this scale (frequency) band was compared with the Cumulative Dissipated Energy (CDE) of the tested structure. The CDE is accepted as a good parameter for characterizing the mechanical damage in structures. A reasonably good agreement was found between the normalized histories of CAE and CDE. This made it possible to categorize the cracking of concrete as the main source of damage in the reinforced concrete slab. Conversely, the differences between the CAE and CDE curves observed for high levels of peak acceleration applied to the shaking table can be attributed to the deformation of the steel that formed the columns. The AE coming from the plastic deformation of the steel is not detected by CAE due to the threshold amplitude (45 dB) used in the AE monitoring, but the strain energy dissipated by the steel through plastic deformations is included in the CDE. Further, a study of the evolution of the b-value in the successive seismic simulations revealed that the b-value can capture the inception of severe cracking in the concrete, which the tests described in this study attributed mainly to the loss of bond between reinforcing steel and surrounding concrete.

  7. Multiple Weather Factors Affect Apparent Survival of European Passerine Birds

    PubMed Central

    Salewski, Volker; Hochachka, Wesley M.; Fiedler, Wolfgang

    2013-01-01

    Weather affects the demography of animals and thus climate change will cause local changes in demographic rates. In birds numerous studies have correlated demographic factors with weather but few of those examined variation in the impacts of weather in different seasons and, in the case of migrants, in different regions. Using capture-recapture models we correlated weather with apparent survival of seven passerine bird species with different migration strategies to assess the importance of selected facets of weather throughout the year on apparent survival. Contrary to our expectations weather experienced during the breeding season did not affect apparent survival of the target species. However, measures for winter severity were associated with apparent survival of a resident species, two short-distance/partial migrants and a long-distance migrant. Apparent survival of two short distance migrants as well as two long-distance migrants was further correlated with conditions experienced during the non-breeding season in Spain. Conditions in Africa had statistically significant but relatively minor effects on the apparent survival of the two long-distance migrants but also of a presumably short-distance migrant and a short-distance/partial migrant. In general several weather effects independently explained similar amounts of variation in apparent survival for the majority of species and single factors explained only relatively low amounts of temporal variation of apparent survival. Although the directions of the effects on apparent survival mostly met our expectations and there are clear predictions for effects of future climate we caution against simple extrapolations of present conditions to predict future population dynamics. Not only did weather explains limited amounts of variation in apparent survival, but future demographics will likely be affected by changing interspecific interactions, opposing effects of weather in different seasons, and the potential for

  8. Multiple weather factors affect apparent survival of European passerine birds.

    PubMed

    Salewski, Volker; Hochachka, Wesley M; Fiedler, Wolfgang

    2013-01-01

    Weather affects the demography of animals and thus climate change will cause local changes in demographic rates. In birds numerous studies have correlated demographic factors with weather but few of those examined variation in the impacts of weather in different seasons and, in the case of migrants, in different regions. Using capture-recapture models we correlated weather with apparent survival of seven passerine bird species with different migration strategies to assess the importance of selected facets of weather throughout the year on apparent survival. Contrary to our expectations weather experienced during the breeding season did not affect apparent survival of the target species. However, measures for winter severity were associated with apparent survival of a resident species, two short-distance/partial migrants and a long-distance migrant. Apparent survival of two short distance migrants as well as two long-distance migrants was further correlated with conditions experienced during the non-breeding season in Spain. Conditions in Africa had statistically significant but relatively minor effects on the apparent survival of the two long-distance migrants but also of a presumably short-distance migrant and a short-distance/partial migrant. In general several weather effects independently explained similar amounts of variation in apparent survival for the majority of species and single factors explained only relatively low amounts of temporal variation of apparent survival. Although the directions of the effects on apparent survival mostly met our expectations and there are clear predictions for effects of future climate we caution against simple extrapolations of present conditions to predict future population dynamics. Not only did weather explains limited amounts of variation in apparent survival, but future demographics will likely be affected by changing interspecific interactions, opposing effects of weather in different seasons, and the potential for

  9. Evolution of Apparent Diffusion Coefficient and Fractional Anisotropy in the Cerebrum of Asphyxiated Newborns Treated with Hypothermia over the First Month of Life.

    PubMed

    Kwan, Saskia; Boudes, Elodie; Benseler, Anouk; Gilbert, Guillaume; Saint-Martin, Christine; Shevell, Michael; Wintermark, Pia

    2015-01-01

    The objective of this study was to assess the evolution of diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI) over the first month of life in asphyxiated newborns treated with hypothermia and to compare it with that of healthy newborns. Asphyxiated newborns treated with hypothermia were enrolled prospectively; and the presence and extent of brain injury were scored on each MRI. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured in the basal ganglia, in the white matter and in the cortical grey matter. Sixty-one asphyxiated newborns treated with hypothermia had a total of 126 ADC and FA maps. Asphyxiated newborns developing brain injury eventually had significantly decreased ADC values on days 2-3 of life and decreased FA values around day 10 and 1 month of life compared with those not developing brain injury. Despite hypothermia treatment, asphyxiated newborns may develop brain injury that still can be detected with advanced neuroimaging techniques such as DWI and DTI as early as days 2-3 of life. A study of ADC and FA values over time may aid in the understanding of how brain injury develops in these newborns despite hypothermia treatment.

  10. Correlation of Early Reduction in the Apparent Diffusion Coefficient of Water with Blood Flow Reduction During Middle Cerebral Artery Occlusion in Rats

    PubMed Central

    Mancuso, Anthony; Karibe, Hiroshi; Rooney, William D.; Zarow, Gregory J.; Graham, Steven H.; Weiner, Michael W.; Weinstein, Philip R.

    2009-01-01

    To determine the relationship between reductions in the apparent diffusion coefficient of water (ADC) and in cerebral blood flow (CBF) during focal ischemia, we used diffusion-weighted magnetic resonance (D-MR) imaging and autoradiographic CBF analysis to examine rats subjected to 30 or 90 min of permanent middle cerebral artery (MCA) occlusion. In the 30-min occlusion group (n = l0), the area with substantially reduced ADC (15% or more below the contralateral level [ADCJ15]) corresponded best to the area with CBF below 25 ml/lOO g/min and was significantly smaller than the area with CBF below 50 m1/100 g/min (CBF50), a level associated with reduced protein synthesis and delayed necrosis (40 ± 13% versus 74 ± 8% of the ischemic hemisphere; P < 0.OOOl). In the 90-min occlusion group (n = 6), the ADC15 area corresponded best to the CBF30 to CBF35 area and was again significantly smaller than the CBF50 area (54 ± 13% versus 73 ± 20%, P < 0.05). Thus, the area of substantially reduced ADC at 30 and 90 min represents only 53% and 74%, respectively, of the tissue at risk for infarction. These findings indicate a potential limitation in using early D-MR imaging to predict stroke outcome. PMID:7500876

  11. The effect of visual apparent motion on audiovisual simultaneity.

    PubMed

    Kwon, Jinhwan; Ogawa, Ken-ichiro; Miyake, Yoshihiro

    2014-01-01

    Visual motion information from dynamic environments is important in multisensory temporal perception. However, it is unclear how visual motion information influences the integration of multisensory temporal perceptions. We investigated whether visual apparent motion affects audiovisual temporal perception. Visual apparent motion is a phenomenon in which two flashes presented in sequence in different positions are perceived as continuous motion. Across three experiments, participants performed temporal order judgment (TOJ) tasks. Experiment 1 was a TOJ task conducted in order to assess audiovisual simultaneity during perception of apparent motion. The results showed that the point of subjective simultaneity (PSS) was shifted toward a sound-lead stimulus, and the just noticeable difference (JND) was reduced compared with a normal TOJ task with a single flash. This indicates that visual apparent motion affects audiovisual simultaneity and improves temporal discrimination in audiovisual processing. Experiment 2 was a TOJ task conducted in order to remove the influence of the amount of flash stimulation from Experiment 1. The PSS and JND during perception of apparent motion were almost identical to those in Experiment 1, but differed from those for successive perception when long temporal intervals were included between two flashes without motion. This showed that the result obtained under the apparent motion condition was unaffected by the amount of flash stimulation. Because apparent motion was produced by a constant interval between two flashes, the results may be accounted for by specific prediction. In Experiment 3, we eliminated the influence of prediction by randomizing the intervals between the two flashes. However, the PSS and JND did not differ from those in Experiment 1. It became clear that the results obtained for the perception of visual apparent motion were not attributable to prediction. Our findings suggest that visual apparent motion changes temporal

  12. Apparent Ionic Charge in Electrolyte and Polyelectrolyte Solutions

    ERIC Educational Resources Information Center

    Magdelenat, H.; And Others

    1978-01-01

    Compares average displacements of charged particles under thermal motion alone with those obtained by the action of an external electric field to develop a concept of "apparent charge" to approximate actual structural charge in an electrolyte solution. (SL)

  13. Apparent Biological Motion in First and Third Person Perspective

    PubMed Central

    Scandola, Michele; Orvalho, Veronica; Candidi, Matteo

    2016-01-01

    Apparent biological motion is the perception of plausible movements when two alternating images depicting the initial and final phase of an action are presented at specific stimulus onset asynchronies. Here, we show lower subjective apparent biological motion perception when actions are observed from a first relative to a third visual perspective. These findings are discussed within the context of sensorimotor contributions to body ownership. PMID:27708754

  14. An Improved Comprehensive Model for the Apparent Viscosity of Blood

    NASA Astrophysics Data System (ADS)

    Jacobitz, Frank; Anderson, Spencer

    2008-11-01

    An improved comprehensive model for the apparent viscosity of blood is developed and used in simulations of the microcirculation in capillary bundles of rat spinotrapezius muscle fascia. In the microcirculation, the apparent viscosity of blood depends on the local vessel diameter, hematocrit, and shear rate. The proposed comprehensive model extends the apparent viscosity model developed by Pries, Secomb, Gaehtgens, and Gross (Circulation Research, 67, 826-834, 1990), which describes the effect of vessel diameter and hematocrit on the apparent viscosity. A shear thinning term is developed using the experimental data of Lipowsky, Usami, and Chien (Microvascular Research, 19, 297-319, 1980). Curve fits of this data can be combined with equations given in the Pries et al. work to create a system of equations that can be used to find the shear thinning factor. The simulations based on the improved apparent viscosity model use realistic vessel topology for the microvasculature, reconstructed from microscope images of tissue samples, and consider passive and active vessel properties. The numerical method is based on a Hagen-Poiseuille balance in the microvessels and a sparse matrix solver is used to obtain the solution. It was found that the inclusion of the shear factor decreases the overall flowrate in the capillary bundle. Many vessel connections in the fascia are characterized by relatively low shear rates and therefore increased apparent viscosity.

  15. Mapping of b-values, earthquake relocation, and Coulomb stress changes during 1992-2007 in the Murindó seismic zone, Colombia

    NASA Astrophysics Data System (ADS)

    Dionicio, Viviana; Sánchez, John J.

    2012-07-01

    Seismicity in the Murindó seismic zone, Colombia (6° to 8° and - 75.5° to - 78.0°) during 1992-2007 included the occurrence of the M W 6.6 foreshock on October 17, and M W 7.1 mainshock on October 18, 1992, and aftershocks, which caused severe damage throughout the region. We modeled this seismic sequence by means of Coulomb stress changes imparted by slip along two semi-vertical fault planes with left-lateral motion and subdivided slip. Seismicity thereafter (1993-2007) was characterized by earthquakes magnitude in the range 0.7-6.1 for which a magnitude of completeness M C = 2.7 was determined. b-values are relatively high to the south of the study region and relatively low to the north and northwest. The relocation of epicenters indicates that recent seismicity may be occurring on a fault that is yet to be mapped under the Atrato river valley. We conclude that the 1992 seismic sequence was a case of a major earthquake facilitated by the stress changes imparted during a strong rupture the previous day and that the aftershocks and background seismicity in the region can be explained by static Coulomb stress changes up to 50.1 bar. Our results have implications for hazard in Colombia and serve as basis to foster future investigations.

  16. On apparent temperature in low-frequency Alfvenic turbulence

    SciTech Connect

    Nariyuki, Yasuhiro

    2012-08-15

    Low-frequency, parallel propagating Alfvenic turbulence in collisionless plasmas is theoretically studied. Alfvenic turbulence is derived as an equilibrium state (Beltrami field) in the magnetohydrodynamic equations with the pressure anisotropy and multi-species of ions. It is shown that the conservation of the total 'apparent temperature' corresponds to the Bernoulli law. A simple model of the radially expanding solar wind including Alfvenic turbulence is also discussed. The conversion of the wave energy in the 'apparent temperature' into the 'real temperature' is facilitated with increasing radial distance.

  17. Measurement of Temperature Dependent Apparent Specific Heat Capacity in Electrosurgery.

    PubMed

    Karaki, Wafaa; Akyildiz, Ali; Borca Tasciuc, Diana-Andra; De, Suvranu

    2016-01-01

    This paper reports on the measurement of temperature dependent apparent specific heat of ex-vivo porcine liver tissue during radiofrequency alternating current heating for a large temperature range. The difference between spatial and temporal evolution of experimental temperature, obtained during electrosurgical heating by infrared thermometry, and predictions based on finite element modeling was minimized to obtain the apparent specific heat. The model was based on transient heat transfer with internal heat generation considering heat storage along with conduction. Such measurements are important to develop computational models for real time simulation of electrosurgical procedures. PMID:27046573

  18. Measurement of Temperature Dependent Apparent Specific Heat Capacity in Electrosurgery.

    PubMed

    Karaki, Wafaa; Akyildiz, Ali; Borca Tasciuc, Diana-Andra; De, Suvranu

    2016-01-01

    This paper reports on the measurement of temperature dependent apparent specific heat of ex-vivo porcine liver tissue during radiofrequency alternating current heating for a large temperature range. The difference between spatial and temporal evolution of experimental temperature, obtained during electrosurgical heating by infrared thermometry, and predictions based on finite element modeling was minimized to obtain the apparent specific heat. The model was based on transient heat transfer with internal heat generation considering heat storage along with conduction. Such measurements are important to develop computational models for real time simulation of electrosurgical procedures.

  19. Diagnostics of Apparent Wall Slip in Aqueous Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Wein, Ondřej; Tovčigrečko, Valentin V.; Sobolík, Václav; Večeř, Marek

    2009-07-01

    Two experimental methods, apparent-wall-slip (AWS) rotational viscometry with "Morse-taper" sensors and electrodiffusion (ED) flow diagnostics with auto-calibrated friction probes, are used to study velocity profiles in aqueous solutions of high-molecular polysaccharides. By comparing the velocity data from the both methods, estimates are obtained of depleted layer thickness in dependence on wall shear stress.

  20. An Apparent Paradox: Catt's Anomaly

    ERIC Educational Resources Information Center

    Pieraccini, M.; Selleri, S.

    2013-01-01

    Catt's anomaly is a sort of "thought experiment" (a "gedankenexperiment") where electrons seem to travel at the speed of light. Although its author argued with conviction for many years, it has a clear and satisfactory solution and it can be considered indubitably just an apparent paradox. Nevertheless, it is curious and…

  1. Bias of apparent tracer ages in heterogeneous environments.

    PubMed

    McCallum, James L; Cook, Peter G; Simmons, Craig T; Werner, Adrian D

    2014-01-01

    The interpretation of apparent ages often assumes that a water sample is composed of a single age. In heterogeneous aquifers, apparent ages estimated with environmental tracer methods do not reflect mean water ages because of the mixing of waters from many flow paths with different ages. This is due to nonlinear variations in atmospheric concentrations of the tracer with time resulting in biases of mixed concentrations used to determine apparent ages. The bias of these methods is rarely reported and has not been systematically evaluated in heterogeneous settings. We simulate residence time distributions (RTDs) and environmental tracers CFCs, SF6 , (85) Kr, and (39) Ar in synthetic heterogeneous confined aquifers and compare apparent ages to mean ages. Heterogeneity was simulated as both K-field variance (σ(2) ) and structure. We demonstrate that an increase in heterogeneity (increase in σ(2) or structure) results in an increase in the width of the RTD. In low heterogeneity cases, widths were generally on the order of 10 years and biases generally less than 10%. In high heterogeneity cases, widths can reach 100 s of years and biases can reach up to 100%. In cases where the temporal variations of atmospheric concentration of individual tracers vary, different patterns of bias are observed for the same mean age. We show that CFC-12 and CFC-113 ages may be used to correct for the mean age if analytical errors are small. PMID:23550995

  2. Discovery of an Apparent Nova in M81

    NASA Astrophysics Data System (ADS)

    Hornoch, K.; Alfaro, M. Diaz; Ordonez-Etxeberria, I.; Vaduvescu, O.

    2015-01-01

    We report the discovery of an apparent nova in M81 on a co-added 1600-s narrow-band H-alpha CCD image taken with the 2.5-m Isaac Newton Telescope (INT) + WFC at La Palma under ~2.4" seeing on 2015 Jan. 15.126 UT.

  3. A New Theory of Leadership: "Realwert" Versus Apparent Good.

    ERIC Educational Resources Information Center

    Lang, Donald

    1999-01-01

    "Realwert" ("real good") stems from an understanding of humanity's "raison d'etre"--treating others with respect and dignity. It can be contrasted with "apparent good," a condition wherein one mistakenly thinks real good is being pursued. Drawing on Aquinas and Hodginson, this paper argues for a "realwert" conception of educational leadership. (63…

  4. Apparent digestible energy value of crude glycerol fed to pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apparent digestible energy of crude glycerol, a co-product of biodiesel production, was determined in two studies conducted at the Iowa State University Swine Nutrition Research Farm, Ames, IA. In the first study, 24 barrows with an average body weight of 11.0 kg were fed 376 g/d of a basal corn...

  5. 20 CFR 653.113 - Processing apparent violations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Processing apparent violations. 653.113 Section 653.113 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR SERVICES OF THE EMPLOYMENT SERVICE SYSTEM Services for Migrant and Seasonal Farmworkers (MSFWs) §...

  6. Apparent LFE Magnitude-Frequency Distributions and the Tremor Source

    NASA Astrophysics Data System (ADS)

    Rubin, A. M.; Bostock, M. G.

    2015-12-01

    Over a decade since its discovery, it is disconcerting that we know so little about the kinematics of the tremor source. One could say we are hampered by low signal-to-noise ratio, but often the LFE signal is large and the "noise" is just other LFEs, often nearly co-located. Here we exploit this feature to better characterize the tremor source. A quick examination of LFE catalogs shows, unsurprisingly, that detected magnitudes are large when the background tremor amplitude is large. A simple interpretation is that small LFEs are missed when tremor is loud. An unanswered question is whether, in addition, there is a paucity of small LFEs when tremor is loud. Because we have both the LFE Green's function (from stacks) and some minimum bound on the overall LFE rate (from our catalogs), tremor waveforms provide a consistency check on any assumed magnitude-frequency (M-f) distribution. Beneath southern Vancouver Island, the magnitudes of >10^5 LFEs range from about 1.2-2.4 (Bostock et al. 2015). Interpreted in terms of a power-law distribution, the b-value is >5. But missed small events make even this large value only a lower bound. Binning by background tremor amplitude, and assuming a time-invariant M-f distribution, the b-value increases to >7, implying (e.g.) more than 10 million M>1.2 events for every M=2.2 event. Such numbers are inconsistent with the observed modest increase in tremor amplitude with LFE magnitude, as well as with geodetically-allowable slips. Similar considerations apply to exponential and log-normal moment-frequency distributions. Our preliminary interpretation is that when LFE magnitudes are large, the same portion of the fault is producing larger LFEs, rather than a greater rate of LFEs pulled from the same distribution. If correct, this distinguishes LFEs from repeating earthquakes, where larger background fault slip rates lead not to larger earthquakes but to more frequent earthquakes of similar magnitude. One possible explanation, that LFEs

  7. DTIPrep: quality control of diffusion-weighted images

    PubMed Central

    Oguz, Ipek; Farzinfar, Mahshid; Matsui, Joy; Budin, Francois; Liu, Zhexing; Gerig, Guido; Johnson, Hans J.; Styner, Martin

    2014-01-01

    In the last decade, diffusion MRI (dMRI) studies of the human and animal brain have been used to investigate a multitude of pathologies and drug-related effects in neuroscience research. Study after study identifies white matter (WM) degeneration as a crucial biomarker for all these diseases. The tool of choice for studying WM is dMRI. However, dMRI has inherently low signal-to-noise ratio and its acquisition requires a relatively long scan time; in fact, the high loads required occasionally stress scanner hardware past the point of physical failure. As a result, many types of artifacts implicate the quality of diffusion imagery. Using these complex scans containing artifacts without quality control (QC) can result in considerable error and bias in the subsequent analysis, negatively affecting the results of research studies using them. However, dMRI QC remains an under-recognized issue in the dMRI community as there are no user-friendly tools commonly available to comprehensively address the issue of dMRI QC. As a result, current dMRI studies often perform a poor job at dMRI QC. Thorough QC of dMRI will reduce measurement noise and improve reproducibility, and sensitivity in neuroimaging studies; this will allow researchers to more fully exploit the power of the dMRI technique and will ultimately advance neuroscience. Therefore, in this manuscript, we present our open-source software, DTIPrep, as a unified, user friendly platform for thorough QC of dMRI data. These include artifacts caused by eddy-currents, head motion, bed vibration and pulsation, venetian blind artifacts, as well as slice-wise and gradient-wise intensity inconsistencies. This paper summarizes a basic set of features of DTIPrep described earlier and focuses on newly added capabilities related to directional artifacts and bias analysis. PMID:24523693

  8. DTIPrep: quality control of diffusion-weighted images.

    PubMed

    Oguz, Ipek; Farzinfar, Mahshid; Matsui, Joy; Budin, Francois; Liu, Zhexing; Gerig, Guido; Johnson, Hans J; Styner, Martin

    2014-01-01

    In the last decade, diffusion MRI (dMRI) studies of the human and animal brain have been used to investigate a multitude of pathologies and drug-related effects in neuroscience research. Study after study identifies white matter (WM) degeneration as a crucial biomarker for all these diseases. The tool of choice for studying WM is dMRI. However, dMRI has inherently low signal-to-noise ratio and its acquisition requires a relatively long scan time; in fact, the high loads required occasionally stress scanner hardware past the point of physical failure. As a result, many types of artifacts implicate the quality of diffusion imagery. Using these complex scans containing artifacts without quality control (QC) can result in considerable error and bias in the subsequent analysis, negatively affecting the results of research studies using them. However, dMRI QC remains an under-recognized issue in the dMRI community as there are no user-friendly tools commonly available to comprehensively address the issue of dMRI QC. As a result, current dMRI studies often perform a poor job at dMRI QC. Thorough QC of dMRI will reduce measurement noise and improve reproducibility, and sensitivity in neuroimaging studies; this will allow researchers to more fully exploit the power of the dMRI technique and will ultimately advance neuroscience. Therefore, in this manuscript, we present our open-source software, DTIPrep, as a unified, user friendly platform for thorough QC of dMRI data. These include artifacts caused by eddy-currents, head motion, bed vibration and pulsation, venetian blind artifacts, as well as slice-wise and gradient-wise intensity inconsistencies. This paper summarizes a basic set of features of DTIPrep described earlier and focuses on newly added capabilities related to directional artifacts and bias analysis. PMID:24523693

  9. Crystalloids in apparent autophagic plastids: remnants of plastids or peroxisomes?

    PubMed

    Papini, Alessio; van Doorn, Wouter G

    2015-02-01

    Plant macroautophagy is carried out by autophagosome-type organelles. Recent evidence suggests that plastids also can carry out macroautophagy. The double membrane at the surface of plastids apparently invaginates, forming an intraplastidial space. This space contains a portion of cytoplasm that apparently becomes degraded. Here we report, in Tillandsia sp. and Aechmaea sp., the presence of almost square or diamond-shaped crystalloids inside what seems the intraplastidial space of autophagous plastids. The same type of crystalloids were observed in chloroplasts and other plastids, but were not found in the cytoplasm or the vacuole. Peroxisomes contained smaller and more irregularly shaped crystalloids compared to the ones observed in 'autophagous' plastids. It is hypothesized that plastids are able to sequester chloroplasts and other plastids. PMID:25462964

  10. Wavelength dependence of the apparent diameter of retinal blood vessels

    NASA Astrophysics Data System (ADS)

    Park, Robert; Twietmeyer, Karen; Chipman, Russell; Beaudry, Neil; Salyer, David

    2005-04-01

    Imaging of retinal blood vessels may assist in the diagnosis and monitoring of diseases such as glaucoma, diabetic retinopathy, and hypertension. However, close examination reveals that the contrast and apparent diameter of vessels are dependent on the wavelength of the illuminating light. In this study multispectral images of large arteries and veins within enucleated swine eyes are obtained with a modified fundus camera by use of intravitreal illumination. The diameters of selected vessels are measured as a function of wavelength by cross-sectional analysis. A fixed scale with spectrally independent dimension is placed above the retina to isolate the chromatic effects of the imaging system and eye. Significant apparent differences between arterial and venous diameters are found, with larger diameters observed at shorter wavelengths. These differences are due primarily to spectral absorption in the cylindrical blood column.

  11. True arterial system compliance estimated from apparent arterial compliance.

    PubMed

    Quick, C M; Berger, D S; Hettrick, D A; Noordergraaf, A

    2000-03-01

    A new method has been developed to estimate total arterial compliance from measured input pressure and flow. In contrast to other methods, this method does not rely on fitting the elements of a lumped model to measured data. Instead, it relies on measured input impedance and peripheral resistance to calculate the relationship of arterial blood volume to input pressure. Generally, this transfer function is a complex function of frequency and is called the apparent arterial compliance. At very low frequencies, the confounding effect of pulse wave reflection disappears, and apparent compliance becomes total arterial compliance. This study reveals that frequency components of pressure and flow below heart rate are generally necessary to obtain a valid estimate of compliance. Thus, the ubiquitous practice of estimating total arterial compliance from a single cardiac cycle is suspect under most circumstances, since a single cardiac cycle does not contain these frequencies. PMID:10784093

  12. Crystalloids in apparent autophagic plastids: remnants of plastids or peroxisomes?

    PubMed

    Papini, Alessio; van Doorn, Wouter G

    2015-02-01

    Plant macroautophagy is carried out by autophagosome-type organelles. Recent evidence suggests that plastids also can carry out macroautophagy. The double membrane at the surface of plastids apparently invaginates, forming an intraplastidial space. This space contains a portion of cytoplasm that apparently becomes degraded. Here we report, in Tillandsia sp. and Aechmaea sp., the presence of almost square or diamond-shaped crystalloids inside what seems the intraplastidial space of autophagous plastids. The same type of crystalloids were observed in chloroplasts and other plastids, but were not found in the cytoplasm or the vacuole. Peroxisomes contained smaller and more irregularly shaped crystalloids compared to the ones observed in 'autophagous' plastids. It is hypothesized that plastids are able to sequester chloroplasts and other plastids.

  13. Apparent disapperance of hypernatraemic dehydration from infant deaths in Sheffield.

    PubMed

    Sunderland, R; Emery, J L

    1979-09-01

    The death certificates and necropsy reports of the 1115 Sheffield infants who died under 2 years of age in 1969-78 were examined. This study showed the apparent disappearance of deaths with hypernatraemia and in particular deaths presenting as cot deaths. The fall in incidence may be as much the result of an intensive local campaign on child care and infant feeding as of the change in the composition of dried milk for baby feeding.

  14. Lead-Free Metamaterials with Enormous Apparent Piezoelectric Response.

    PubMed

    Zhou, Wanfeng; Chen, Pan; Pan, Qi; Zhang, Xiaotong; Chu, Baojin

    2015-11-01

    Lead-free flexoelectric piezoelectric metamaterials are created by applying an asymmetric chemical reduction to Na1/2 Bi1/2 TiO3 -BaTiO3 ceramics. The reduction induces two gradient-generating mechanisms, curvature structure and chemical inhomogeneity, and enhances the flexoelectric effect. The ceramics behave like piezoelectric materials, exhibiting an enormous and high-temperature stable apparent piezoelectric response, outperforming existing lead-oxide-based piezoelectrics.

  15. Mass density at geostationary orbit and apparent mass refilling

    NASA Astrophysics Data System (ADS)

    Denton, R. E.; Takahashi, Kazue; Amoh, Justice; Singer, H. J.

    2016-04-01

    We used the inferred equatorial mass density ρm,eq based on measurements of Alfvén wave frequencies measured by the GOES satellites during 1980-1991 in order to construct a number of different models of varying complexity for the equatorial mass density at geostationary orbit. The most complicated models are able to account for 66% of the variance with a typical variation from actual values of a factor of 1.56. The factors that influenced ρm,eq in the models were, in order of decreasing importance, the F10.7 EUV index, magnetic local time, the solar wind dynamic pressure Pdyn, the phase of the year, and the solar wind BZ (GSM Z direction). During some intervals, some of which were especially geomagnetically quiet, ρm,eq rose to values that were significantly higher than those predicted by our models. For 10 especially quiet intervals, we examined long-term (>1 day) apparent refilling, the increase in ρm,eq at a fixed location. We found that the behavior of ρm,eq varies for different events. In some cases, there is significant apparent refilling, whereas in other cases ρm,eq stays the same or even decreases slightly. Nevertheless, we showed that on average, ρm,eq increases exponentially during quiet intervals. There is variation of apparent refilling with respect to the phase of the solar cycle. On the third day of apparent refilling, ρm,eq has on average a similar value at solar maximum or solar minimum, but at solar maximum, ρm,eq begins with a larger value and rises relatively less than at solar minimum.

  16. Apparent Viscosity of Active Nematics in Poiseuille Flow

    NASA Astrophysics Data System (ADS)

    Cui, Zhenlu; Su, Jianbing; Zeng, Xiaoming

    2015-09-01

    A Leslie-Erickson continuum hydrodynamic for flowing active nematics has been used to characterize active particle systems such as bacterial suspensions. The behavior of such a system under a plane pressure-driven Poiseuille flow is analyzed. When plate anchoring is tangential and normal, we find the apparent viscosity formula indicating a significant difference between tangential anchoring and normal anchoring conditions for both active rodlike and discoid nematics.

  17. Apparent quantum efficiency effects in CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Gloeckler, M.; Sites, J. R.

    2004-04-01

    Quantum efficiency measurements of n-CdS/p-CdTe solar cells performed under nonstandard illumination, voltage bias, or both can be severely distorted by photogeneration and contact-barrier effects. In this work we will discuss the effects that are typically observed, the requirements needed to reproduce these effects with modeling tools, and the potential applications of apparent quantum efficiency analysis. Recently published experimental results are interpreted and reproduced using numerical simulation tools. The suggested model explains large negative apparent quantum efficiencies (≫100%) seen in the spectral range of 350-550 nm, modestly large negative apparent quantum efficiencies (>100%) in the spectral range of 800-850 nm, enhanced positive or negative response observed under red, blue, and white light bias, and photocurrent gain significantly different from unity. Some of these effects originate from the photogeneration in the highly compensated CdS window layer, some from photogeneration within the CdTe, and some are further modified by the height of the CdTe back-contact barrier.

  18. Apparent directional spectral emissivity determination of semitransparent materials

    NASA Astrophysics Data System (ADS)

    Chun-Yang, Niu; Hong, Qi; Ya-Tao, Ren; Li-Ming, Ruan

    2016-04-01

    An inverse estimation method and corresponding measurement system are developed to measure the apparent spectral directional emissivities of semitransparent materials. The normal spectral emissivity and transmissivity serve as input for the inverse analysis. Consequently, the refractive index and absorption coefficient of the semitransparent material could be retrieved by using the pseudo source adding method as the forward method and the stochastic particle swarm optimization algorithm as the inverse method. Finally, the arbitrary apparent spectral directional emissivity of semitransparent material is estimated by using the pseudo source adding method given the retrieval refractive index and absorption coefficient. The present system has the advantage of a simple experimental structure, high accuracy, and excellent capability to measure the emissivity in an arbitrary direction. Furthermore, the apparent spectral directional emissivity of sapphire at 773 K is measured by using this system in a spectral range of 3 μm–12 μm and a viewing range of 0°–90°. The present method paves the way for a new directional spectral emissivity measurement strategy. Project supported by the National Natural Science Foundation of China (Grant Nos. 51476043 and 51576053) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51421063).

  19. Social sampling explains apparent biases in judgments of social environments.

    PubMed

    Galesic, Mirta; Olsson, Henrik; Rieskamp, Jörg

    2012-12-01

    How people assess their social environments plays a central role in how they evaluate their life circumstances. Using a large probabilistic national sample, we investigated how accurately people estimate characteristics of the general population. For most characteristics, people seemed to underestimate the quality of others' lives and showed apparent self-enhancement, but for some characteristics, they seemed to overestimate the quality of others' lives and showed apparent self-depreciation. In addition, people who were worse off appeared to enhance their social position more than those who were better off. We demonstrated that these effects can be explained by a simple social-sampling model. According to the model, people infer how others are doing by sampling from their own immediate social environments. Interplay of these sampling processes and the specific structure of social environments leads to the apparent biases. The model predicts the empirical results better than alternative accounts and highlights the importance of considering environmental structure when studying human cognition. PMID:23104680

  20. Corrections of surface fissure effect on apparent resistivity measurements

    NASA Astrophysics Data System (ADS)

    Gance, J.; Sailhac, P.; Malet, J.-P.

    2015-02-01

    Electrical resistivity tomography (ERT) is a useful tool to detect and track water flow paths in the subsoil. However, measurements are strongly affected by subsurface heterogeneities such as fissures of different sizes and genesis (shrinking-swelling, macropores and deformation). In this work, we focus on surface fissures characterized by dimensions lower than the interelectrode spacing and correct their effect on apparent resistivity pseudo-sections by incorporating fissure geometry in the topography. We show that fissures with depths greater than 0.10 times the interelectrode spacing for a dipole-dipole array and equal to 0.16 for the gradient array and the Wenner-Schlumberger arrays create significant anomalies (greater than 5 per cent) in the pseudo-section. Surface fissure widths and dip angles have little effect with respect to the fissure depths which can increase the apparent resistivity up to 200 per cent. The clogging of the fissures with water or soil material decreases the anomaly effect linearly with the percentage of filling. The correction of apparent resistivity values is possible for relatively simple fissure geometries and only requires a manual survey of the surface fissures. It allows to improve the quality of the inverted resistivity section by mitigating the inversion artefacts and therefore a better interpretation.

  1. The apparent state of droplets on a rough surface

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoling; Lu, Tian

    2009-02-01

    The factors influencing the state and wetting transition of droplets on a rough surface are both complex and obscure. The change in wetting is directly reflected by changes under the contact condition of the droplets with the surface. The recent study about the wettability of the superhydrophobic surface under the condensing condition arouses the new understanding about the apparent state of droplets on a rough surface. In this work, to validate the existence of droplets in an intermediate state, a microscale pillar topological polydimethylsiloxane (PDMS) surface was manufactured and its wettability under various conditions was studied. According to the experimental data, it is proposed that the wetting state of a rough surface may be embodied using the contact area ratio of a solid/liquid/gas droplet with the projective plane. A general calculation model for the apparent contact angle of droplets is given and expressed diagrammatically. It is found that the measured apparent contact angles of droplets at different states on the surface falls within the range predicted by our proposed equation.

  2. Self-reversal and apparent magnetic excursions in Arctic sediments

    NASA Astrophysics Data System (ADS)

    Channell, J. E. T.; Xuan, C.

    2009-06-01

    The Arctic oceans have been fertile ground for the recording of apparent excursions of the geomagnetic field, implying that the high latitude field had unusual characteristics at least over the last 1-2 Myrs. Alternating field demagnetization of the natural remanent magnetization (NRM) of Core HLY0503-6JPC from the Mendeleev Ridge (Arctic Ocean) implies the presence of primary magnetizations with negative inclination apparently recording excursions in sediments deposited during the Brunhes Chron. Thermal demagnetization, on the other hand, indicates the presence of multiple (often anti-parallel) magnetization components with negative inclination components having blocking temperatures predominantly, but not entirely, below ~ 350 °C. Thermo-magnetic tests, X-ray diffraction (XRD) and scanning electron microscopy (SEM) indicate that the negative inclination components are carried by titanomaghemite, presumably formed by seafloor oxidation of titanomagnetite. The titanomaghemite apparently carries a chemical remanent magnetization (CRM) that is partially self-reversed relative to the detrital remanent magnetization (DRM) carried by the host titanomagnetite. The partial self-reversal could have been accomplished by ionic ordering during oxidation, thereby changing the balance of the magnetic moments in the ferrimagnetic sublattices.

  3. Coherent and random apparent stresses in periodically unsteady flows

    NASA Astrophysics Data System (ADS)

    Kehoe, Anthony Byrd

    1990-08-01

    The transitional flow field downstream of a smooth, symmetrically constricted Sylgard pipe was measured with a two color, two component Laser Doppler Anemometer for both pulsatile and steady flows. Vibrations in the flow system were induced with an exciter/shaker and were monitored with an accelerator. The vibration has little effect on the value of the maximum axial and radial turbulence intensities. A frequency domain signal processing technique to separate the disturbance velocity into coherent and random components was modified to guarantee that the sum of the decomposed velocity components equaled the original disturbance velocity. Results of the velocity separation demonstrated that the velocity disturbances prior to turbulent transition consisted almost entirely of coherent velocity fluctuations. The maximum apparent shear stress was found to occur just after the turbulent transition and consisted almost entirely of the random component. The data suggest that if the absolute magnitude of the apparent stress is the determining factor in red blood cell destruction, then the coherent apparent stress is not a significant destruction mechanism. However, the exact mechanism in hemolysis are not identified.

  4. Infants' perception of subjective contours from apparent motion.

    PubMed

    Yamaguchi, Masami K; Kanazawa, So; Okamura, Hiromi

    2008-01-01

    We examined infants' perception of subjective contours in Subjective-Contour-from-Apparent-Motion (SCAM) stimuli [e.g., Cicerone, C. M., Hoffman, D. D., Gowdy, P. D., & Kim, J. S. (1995). The perception of color from motion. Perception & Psychophysics, 57, 761-777] using the preferential looking technique. The SCAM stimulus is composed of random dots which are assigned two different colors. Circular region assigned one color moved apparently, keeping all dots' location unchanged. In the SCAM stimulus, adults can perceive subjective color spreading and subjective contours in apparent motion (http://c-faculty.chuo-u.ac.jp/ approximately ymasa/okamura/ibd_demo.html). In the present study, we conducted two experiments by using this type of SCAM stimulus. A total of thirty-six 3-8-month-olds participated. In experiment 1, we presented two stimuli to the infants side by side: a SCAM stimulus consisting of different luminance, and a non-SCAM stimulus consisting of isoluminance dots. The results indicated that the 5-8-month-olds showed preference for the SCAM stimuli. In experiments 2 and 3, we confirmed that the infants' preference for the SCAM stimulus was not generated by the local difference and local change made by luminance of dots but by the subjective contours. These results suggest that 5-8-month-olds were able to perceive subjective contours in the SCAM stimuli.

  5. Effect of surface fissure on apparent resistivity measurements

    NASA Astrophysics Data System (ADS)

    Sailhac, P.; Gance, J.; Malet, J.

    2013-12-01

    Fissures are features of interest, prone to create preferential flow path, modifying locally the soil hydrogeological behavior. Electrical Resistivity Tomography (ERT) is a suitable tool to monitor such preferential flow path. However, this technique is not efficient in the presence of surface fissure, due to a bad resistivity recovering around the fissure vicinity during the inversion process. Therefore, we propose a description of fissure effect on raw apparent resistivity on three resistivity arrays. The purposes of the study are multiple. First, we aim at making ERT users aware of surface fissure effect, and propose a first help to interpret basically resistivity pseudo sections. Second, we propose to ERT users to automatically conduct a surface fissure survey on the studied profile, in order to consider each fissure in a forward DC model and to suppress their effect. Finally, this study is only a first step toward 2D fissure shape inversion, and time-lapse monitoring of fissure drying and filling. In this study, we create a fissure model based on different geomorphological descriptors. After describing the FEM-DC forward modeling strategy, we investigate the fissure effect on pseudo section of apparent resistivity for a Wenner-Schlumberger (WS), a dipole-dipole (DD) and a gradient (GRAD) array. We determine a fissure detectability threshold for each array and perform a sensitivity analysis on the different fissure parameters (position, width, depth, dip angles...). The crack filling or drying effect is also investigated. The possibility to remove fissure effect and to propose a first interpretation of time-lapse data is illustrated on real data. This study show again the higher sensitivity of the DD array compared to the GRAD and WS arrays. Not only the maximal amplitude in the pseudo section is higher for the DD array, but also the anomaly pattern created by the fissure is much larger for this acquisition geometry. The minimal depth detectable for the DD

  6. Earthquake Apparent Stress Scaling for the 1999 Hector Mine Sequence

    NASA Astrophysics Data System (ADS)

    Walter, W. R.; Mayeda, K.

    2003-12-01

    There is currently a disagreement within the geophysical community on the way earthquake energy scales with magnitude. One set of studies finds evidence that energy release per seismic moment (apparent stress) is constant (e.g. Choy and Boatwright, 1995; McGarr, 1999; Ide and Beroza, 2001). Other studies find the apparent stress increases with magnitude (e.g. Kanamori et al., 1993; Abercrombie, 1995; Mayeda and Walter, 1996; Izutani and Kanamori, 2001). The resolution of this issue is complicated by the difficulty of accurately accounting for attenuation, radiation inhomogeneities, bandwidth and determining the seismic energy radiated by earthquakes over a wide range of event sizes in a consistent manner. We try to improve upon earlier results by using consistent techniques over common paths for a wide range of sizes and seismic phases. We have examined about 130 earthquakes from the Hector Mine earthquake sequence in Southern California. These earthquakes range in size from the October 16,1999 Mw=7.1 mainshock down to ML=3.0 aftershocks into 2000. The mainshock has unclipped Pg and Lg phases at a number of high quality regional stations (e.g. CMB, ELK, TUC) where we can use the common path to examine apparent stress scaling relations directly. We are careful to avoid any event selection bias that would be related to apparent stress values. We fix each stations path correction using the independent moment and energy estimates for the mainshock. We then use those corrections to determine the seismic energy for each event based on regional Lg spectra. We use a modeling technique (MDAC) based on a modified Brune (1970) spectral shape but without any assumptions of corner-frequency scaling (Walter and Taylor, 2002). We perform similar analysis using the Pg spectra. We find the energy estimates for the same events are consistent for Lg estimates, Pg estimates and the estimates using the independent regional coda envelope technique (Mayeda and Walter, 1996; Mayeda et al

  7. Gd-EOB-DTPA-Enhanced MR Imaging of the Liver: The Effect on T2 Relaxation Times and Apparent Diffusion Coefficient (ADC)

    PubMed Central

    Cieszanowski, Andrzej; Podgórska, Joanna; Rosiak, Grzegorz; Maj, Edyta; Grudziński, Ireneusz P.; Kaczyński, Bartosz; Szeszkowski, Wojciech; Milczarek, Krzysztof; Rowiński, Olgierd

    2016-01-01

    Summary Background To investigate the effect of gadoxetic acid disodium (Gd-EOB-DTPA) on T2 relaxation times and apparent diffusion coefficient (ADC) values of the liver and focal liver lesions on a 1.5-T system. Material/Methods Magnetic resonance (MR) studies of 50 patients with 35 liver lesions were retrospectively analyzed. All examinations were performed at 1.5T and included T2-weighted turbo spin-echo (TSE) and diffusion-weighted (DW) images acquired before and after intravenous administration of Gd-EOB-DTPA. To assess the effect of this hepatobiliary contrast agent on T2-weighted TSE images and DW images T2 relaxation times and ADC values of the liver and FLLs were calculated and compared pre- and post-injection. Results The mean T2 relaxation times of the liver and focal hepatic lesions were lower on enhanced than on unenhanced T2-weighted TSE images (decrease of 2.7% and 3.6% respectively), although these differences were not statistically significant. The mean ADC values of the liver showed statistically significant decrease (of 4.6%) on contrast-enhanced DW images, compared to unenhanced images (P>0.05). The mean ADC value of liver lesions was lower on enhanced than on unenhanced DW images, but this difference (of 2.9%) did not reach statistical significance. Conclusions The mean T2 relaxation times of the liver and focal liver lesions as well as the mean ADC values of liver lesions were not significantly different before and after administration of Gd-EOB-DTPA. Therefore, acquisition of T2-weighted and DW images between the dynamic contrast-enhanced examination and hepatobiliary phase is feasible and time-saving. PMID:27026795

  8. Pretreatment Apparent Diffusion Coefficient of the Primary Lesion Correlates With Local Failure in Head-and-Neck Cancer Treated With Chemoradiotherapy or Radiotherapy

    SciTech Connect

    Hatakenaka, Masamitsu; Nakamura, Katsumasa; Yabuuchi, Hidetake; Shioyama, Yoshiyuki; Matsuo, Yoshio; Ohnishi, Kayoko; Sunami, Shunya; Kamitani, Takeshi; Setoguchi, Taro; Yoshiura, Takashi; Nakashima, Torahiko; Nishikawa, Kei; Honda, Hiroshi

    2011-10-01

    Purpose: This study was performed to evaluate whether the apparent diffusion coefficient (ADC) of a primary lesion correlates with local failure in primary head-and-neck squamous cell carcinoma (HNSCC) treated with chemoradiotherapy or radiotherapy. Methods and Materials: We retrospectively studied 38 patients with primary HNSCC (12 oropharynx, 20 hypopharynx, 4 larynx, 2 oral cavity) treated with chemoradiotherapy or radiotherapy with radiation dose to gross tumor volume equal to or over 60 Gy and who underwent pretreatment magnetic resonance imaging, including diffusion-weighted imaging. Ten patients developed local failure during follow-up periods of 2.0 to 9.3 months, and the remaining 28 showed local control during follow-up periods of 10.5 to 31.7 months. The variables that could affect local failure (age, tumor volume, ADC, T stage, N stage, dose, treatment method, tumor location, and overall treatment time) were analyzed using logistic regression analyses for all 38 patients and for 17 patients with Stage T3 or T4 disease. Results: In univariate logistic analysis for all 38 cases, tumor volume, ADC, T stage, and treatment method showed significant (p < 0.05) associations with local failure. In multivariate analysis, ADC and T stage revealed significance (p < 0.01). In univariate logistic analysis for the 17 patients with Stage T3 or T4 disease, ADC and dose showed significant (p < 0.01) associations with local failure. In multivariate analysis, ADC alone showed significance (p < 0.05). Conclusions: The results suggest that pretreatment ADC, along with T stage, is a potential indicator of local failure in HNSCC treated with chemoradiotherapy or radiotherapy.

  9. Ultrasonic backscatter from cancellous bone: the apparent backscatter transfer function.

    PubMed

    Hoffmeister, Brent K; Mcpherson, Joseph A; Smathers, Morgan R; Spinolo, P Luke; Sellers, Mark E

    2015-12-01

    Ultrasonic backscatter techniques are being developed to detect changes in cancellous bone caused by osteoporosis. Many techniques are based on measurements of the apparent backscatter transfer function (ABTF), which represents the backscattered power from bone corrected for the frequency response of the measurement system. The ABTF is determined from a portion of the backscatter signal selected by an analysis gate of width τw delayed by an amount τd from the start of the signal. The goal of this study was to characterize the ABTF for a wide range of gate delays (1 μs ≤ τd ≤ 6 μs) and gate widths (1 μs ≤ τw ≤ 6 μs). Measurements were performed on 29 specimens of human cancellous bone in the frequency range 1.5 to 6.0 MHz using a broadband 5-MHz transducer. The ABTF was found to be an approximately linear function of frequency for most choices of τd and τw. Changes in τd and τw caused the frequency-averaged ABTF [quantified by apparent integrated backscatter (AIB)] and the frequency dependence of the ABTF [quantified by frequency slope of apparent backscatter (FSAB)] to change by as much as 24.6 dB and 6.7 dB/MHz, respectively. τd strongly influenced the measured values of AIB and FSAB and the correlation of AIB with bone density (-0.95 ≤ R ≤ +0.68). The correlation of FSAB with bone density was influenced less strongly by τd (-0.97 ≤ R ≤ -0.87). τw had a weaker influence than τd on the measured values of AIB and FSAB and the correlation of these parameters with bone density.

  10. Identifying apparent velocity changes in cross correlated microseism noise data

    NASA Astrophysics Data System (ADS)

    Friderike Volk, Meike; Bean, Christopher; Lokmer, Ivan; Pérez, Nemesio; Ibáñez, Jesús

    2015-04-01

    Currently there is a strong interest of using cross correlation of ambient noise to retrieve Green's functions. These are usually used to calculate the seismic wave velocity of the subsurface and therefore can be used for subsurface imaging or monitoring of various geological settings where we expect rapid velocity changes (e.g. reservoirs or volcanoes). The assumption of this method is that the wavefields which are correlated must be diffuse. This criterion is fulfilled if the ambient noise sources are uniformly distributed or the scattering in the medium is high enough to mitigate any source directivity. The location of the sources is usually unknown and it can change in time. These temporal and spatial variations of the microseism noise sources may lead to changes in the retrieved Green's functions, and so, to the apparent changes in seismic wave velocities. To further investigate the apparent changes in Green's functions we undertook an active seismic experiment in Tenerife lasting three months. A small airgun was used as an active source and was shooting repeatedly every 15 minutes. The shots and the microseism noise were recorded at several seismic stations at the same time. That data set gives us the opportunity to compare the changes in seismic wave velocity recovered through cross correlation of ambient noise and changes we measure through active shots from the airgun. The aim is to distinguish between apparent seismic velocity changes and seismic velocity changes caused by changes in the medium. We also use the data set to track the direction of the microseism noise sources to see if changes which are only recovered through cross correlation can be related to temporal and spatial variations of the microseism noise sources.

  11. Conservation strategies for species affected by apparent competition.

    PubMed

    Wittmer, Heiko U; Serrouya, Robert; Elbroch, L Mark; Marshall, Andrew J

    2013-04-01

    Apparent competition is an indirect interaction between 2 or more prey species through a shared predator, and it is increasingly recognized as a mechanism of the decline and extinction of many species. Through case studies, we evaluated the effectiveness of 4 management strategies for species affected by apparent competition: predator control, reduction in the abundances of alternate prey, simultaneous control of predators and alternate prey, and no active management of predators or alternate prey. Solely reducing predator abundances rapidly increased abundances of alternate and rare prey, but observed increases are likely short-lived due to fast increases in predator abundance following the cessation of control efforts. Substantial reductions of an abundant alternate prey resulted in increased predation on endangered huemul (Hippocamelus bisulcus) deer in Chilean Patagonia, which highlights potential risks associated with solely reducing alternate prey species. Simultaneous removal of predators and alternate prey increased survival of island foxes (Urocyon littoralis) in California (U.S.A.) above a threshold required for population recovery. In the absence of active management, populations of rare woodland caribou (Rangifer tarandus caribou) continued to decline in British Columbia, Canada. On the basis of the cases we examined, we suggest the simultaneous control of predators and alternate prey is the management strategy most likely to increase abundances and probabilities of persistence of rare prey over the long term. Knowing the mechanisms driving changes in species' abundances before implementing any management intervention is critical. We suggest scientists can best contribute to the conservation of species affected by apparent competition by clearly communicating the biological and demographic forces at play to policy makers responsible for the implementation of proposed management actions. PMID:23282104

  12. Apparently new "anophthalmia-plus" syndrome in sibs.

    PubMed

    Fryns, J P; Legius, E; Moerman, P; Vandenberghe, K; Van den Berghe, H

    1995-08-28

    The index patient of this report is a 17-week-gestation female fetus with bilateral anophthalmia, bilateral cleft lip/cleft palate, macrotia with bilateral lateral facial cleft, large open sacral neural tube defect, and uterus unicornis. Parents were normal and nonconsanguineous with an unremarkable family history. Their first child, a 4-year-old boy, is normal. The second child, a 2 1/2-year-old boy, has bilateral anophthalmia and an abnormal left ear with absent lobule as the sole additional anomaly. These 2 sibs seem to be the first examples of a new "anophthalmia-plus" syndrome apparently inherited as autosomal-recessive.

  13. Downscaling Smooth Tomographic Models: Separating Intrinsic and Apparent Anisotropy

    NASA Astrophysics Data System (ADS)

    Bodin, Thomas; Capdeville, Yann; Romanowicz, Barbara

    2016-04-01

    In recent years, a number of tomographic models based on full waveform inversion have been published. Due to computational constraints, the fitted waveforms are low pass filtered, which results in an inability to map features smaller than half the shortest wavelength. However, these tomographic images are not a simple spatial average of the true model, but rather an effective, apparent, or equivalent model that provides a similar 'long-wave' data fit. For example, it can be shown that a series of horizontal isotropic layers will be seen by a 'long wave' as a smooth anisotropic medium. In this way, the observed anisotropy in tomographic models is a combination of intrinsic anisotropy produced by lattice-preferred orientation (LPO) of minerals, and apparent anisotropy resulting from the incapacity of mapping discontinuities. Interpretations of observed anisotropy (e.g. in terms of mantle flow) requires therefore the separation of its intrinsic and apparent components. The "up-scaling" relations that link elastic properties of a rapidly varying medium to elastic properties of the effective medium as seen by long waves are strongly non-linear and their inverse highly non-unique. That is, a smooth homogenized effective model is equivalent to a large number of models with discontinuities. In the 1D case, Capdeville et al (GJI, 2013) recently showed that a tomographic model which results from the inversion of low pass filtered waveforms is an homogenized model, i.e. the same as the model computed by upscaling the true model. Here we propose a stochastic method to sample the ensemble of layered models equivalent to a given tomographic profile. We use a transdimensional formulation where the number of layers is variable. Furthermore, each layer may be either isotropic (1 parameter) or intrinsically anisotropic (2 parameters). The parsimonious character of the Bayesian inversion gives preference to models with the least number of parameters (i.e. least number of layers, and

  14. Note on apparent systematic and periodic errors in Geosat orbits

    NASA Technical Reports Server (NTRS)

    Sirkes, Ziv; Wunsch, Carl

    1990-01-01

    Apparent errors in Geosat orbits are estimated directly from the measurements. There are technical difficulties in such estimates from quasi-periodically gapped data. The dominant orbit errors display a line spectrum, in which the once/orbit error peak is split in a complex way into a series of narrow lines, with other errors being present as well. The spatial pattern of the errors is not random, displaying differences between mean ascending and descending orbits which are coherent over thousands of kilometers. Orbit errors do not decorrelate within a few orbit periods.

  15. Discovery of Three Apparent Novae in M81

    NASA Astrophysics Data System (ADS)

    Hornoch, K.; Vaduvescu, O.; Oers, P. van

    2013-02-01

    We report the discovery of three apparent novae in the M81 galaxy on a co-added 3200-s narrow-band H-alpha CCD image taken with the 2.5-m Isaac Newton Telescope (INT) + WFC at La Palma in ~1.4" seeing on Feb. 25.132 UT. The new objects are visible on individual 400-s frames and well visible on the co-added image (see the finding chart linked below), but are not present on numerous narrow-band H-alpha archival images from the INT down to limiting magnitude as faint as H-alpha = 22.5.

  16. Discovery of Two Apparent Novae in M81

    NASA Astrophysics Data System (ADS)

    Hornoch, K.; McCormac, J.; Vaduvescu, O.

    2013-06-01

    We report the discovery of two apparent novae in the M81 galaxy on a co-added 1600-s, narrow-band H-alpha CCD image taken with the 2.5-m Isaac Newton Telescope (INT) + WFC at La Palma in ~1.5" seeing on 2013 June 3.905 UT. The new objects are visible on individual 400-s frames and well visible on the co-added image (see the finding chart linked below), but are not present on numerous narrow-band H-alpha archival images from the INT down to a limiting magnitude as faint as H-alpha = 22.7.

  17. Discovery of an Apparent Nova in M81

    NASA Astrophysics Data System (ADS)

    Hornoch, K.; Vaduvescu, O.; Gonzalez, A.

    2013-04-01

    We report the discovery of an apparent nova in the M81 galaxy on a co-added 2000-s narrow-band H-alpha CCD image taken with the 2.5-m Isaac Newton Telescope (INT) + WFC at La Palma in ~1.4" seeing on Apr. 5.946 UT. The new object is visible on individual 400-s frames and well visible on the co-added image (see the finding chart linked below), but is not present on numerous narrow-band H-alpha archival images from the INT down to limiting magnitude as faint as H-alpha = 21.7.

  18. Study on Apparent Viscosity and Structure of Foaming Slag

    NASA Astrophysics Data System (ADS)

    Martinsson, Johan; Glaser, Björn; Sichen, Du

    2016-07-01

    Foaming slag was generated using induction heating. The foam was found non-Newtonian having much higher apparent viscosity compared to the dynamic viscosity of pure slag. Quenched foam was examined. The appearance of the foaming slag was very different from silicone oil-gas foam. The size of gas bubbles ranged from 0.1 to 4 mm (while in the case of silicone oil, 1 to 2 mm). The gas fraction in the foam was considerably lower than in the case of silicone oil.

  19. Mechanical Components from Highly Recoverable, Low Apparent Modulus Materials

    NASA Technical Reports Server (NTRS)

    Padula, Santo, II (Inventor); Noebe, Ronald D. (Inventor); Stanford, Malcolm K. (Inventor); DellaCorte, Christopher (Inventor)

    2015-01-01

    A material for use as a mechanical component is formed of a superelastic intermetallic material having a low apparent modulus and a high hardness. The superelastic intermetallic material is conditioned to be dimensionally stable, devoid of any shape memory effect and have a stable superelastic response without irrecoverable deformation while exhibiting strains of at least 3%. The method of conditioning the superelastic intermetallic material is described. Another embodiment relates to lightweight materials known as ordered intermetallics that perform well in sliding wear applications using conventional liquid lubricants and are therefore suitable for resilient, high performance mechanical components such as gears and bearings.

  20. Atrial Septal Aneurysm Presenting as Clubbing without Clinically Apparent Cyanosis.

    PubMed

    Goyal, Laxmi Kant; Banerjee, S; Yadav, R N; Singh, Gajraj; Ganguli, Sujata; Isran, Rohit

    2015-09-01

    Atrial septal aneurysm (ASA) is a localised "saccular" deformity which protrudes to the right or the left atrium or on both sides. It is a rare, but well recognised cardiac abnormality. It is usually an incidental finding or may presents as atrial arrhythmias or arterial embolism. Though it is an acyanotic congenital heart disease but it may result in significant right to left shunt and cyanosis. We describe a patient of ASA with atrial septal defect who presented with clubbing and right to left shunt without clinically apparent cyanosis. PMID:27608873

  1. Study on Apparent Viscosity and Structure of Foaming Slag

    NASA Astrophysics Data System (ADS)

    Martinsson, Johan; Glaser, Björn; Sichen, Du

    2016-10-01

    Foaming slag was generated using induction heating. The foam was found non-Newtonian having much higher apparent viscosity compared to the dynamic viscosity of pure slag. Quenched foam was examined. The appearance of the foaming slag was very different from silicone oil-gas foam. The size of gas bubbles ranged from 0.1 to 4 mm (while in the case of silicone oil, 1 to 2 mm). The gas fraction in the foam was considerably lower than in the case of silicone oil.

  2. On the thermodynamics of the cosmological apparent horizon

    NASA Astrophysics Data System (ADS)

    Pollock, M. D.

    2015-11-01

    It has been shown by Cai et al. that the apparent horizon of radius r0 in the cosmological Friedmann space-time emits radiation at the temperature T0 = 1/2π r0. Here, we derive this result from the Wheeler-DeWitt equation for the wave function of the Universe Ψ, starting from a classical gravitational Lagrangian L that contains a quadratic higher-derivative term R2 , the scalar component of which is non-tachyonic, by application of the horizon hypothesis and definition of the physical three-space on the time-slice dx0 = 0. We also extend our previous analysis of the Wheeler-DeWitt equation for the wave function Φ of the apparent horizon of the de Sitter space-time to include the case of a more general energy-momentum source, that generates an arbitrary Friedmann space-time, confirming the expression for T0 after application of the ADM formalism.

  3. Evaluation of apparent fracture toughness of articular cartilage and hydrogels

    PubMed Central

    Xiao, Yinghua; Rennerfeldt, Deena A.; Friis, Elizabeth A.; Gehrke, Stevin H.; Detamore, Michael S.

    2014-01-01

    Recently, biomaterials-based tissue-engineering strategies, including the use of hydrogels, have offered great promise for repairing articular cartilage. Mechanical failure testing in outcome analyses is of crucial clinical importance to the success of engineered constructs. Interpenetrating networks (IPNs) are gaining more attention, due to their superior mechanical integrity. This study provided a combination testing method of apparent fracture toughness, which was applied to both articular cartilage and hydrogels. The apparent fracture toughnesses of two groups, hydrogels and articular cartilage, were evaluated based on the modified single-edge notch test and ASTM standards on the single-edge notch test and compact tension test. The results demonstrated that the toughness for articular cartilage (348 ± 43 MPa/mm½) was much higher than that for hydrogels. With a toughness value of 10.8 ± 1.4 MPa/mm½, IPNs of agarose and poly(ethylene glycol) diacrylate (PEG-DA) looked promising. The IPNs were 1.4 times tougher than PEG-DA alone, although still over an order of magnitude less tough than cartilage. A new method was developed to evaluate hydrogels and cartilage in a manner that enabled a more relevant direct comparison for fracture testing of hydrogels for cartilage tissue engineering. Moreover, a target toughness value for cartilage of using this direct comparison method has been identified (348 ± 43 MPa/mm½), and the toughness discrepancy to be overcome between hydrogels and cartilage has been quantified. PMID:24700577

  4. Pore fluid pressure, apparent friction, and Coulomb failure

    USGS Publications Warehouse

    Beeler, N.M.; Simpson, R.W.; Hickman, S.H.; Lockner, D.A.

    2000-01-01

    Many recent studies of stress-triggered seismicity rely on a fault failure model with a single free parameter, the apparent coefficient of friction, presumed to be a material constant with possible values 0 ≤ μ′ ≤ 1. These studies may present a misleading view of fault strength and the role of pore fluid pressure in earthquake failure. The parameter μ′ is intended to incorporate the effects of both friction and pore pressure, but is a material constant only if changes in pore fluid pressure induced by changes in stress are proportional to the normal stress change across the potential failure plane. Although specific models of fault zones permit such a relation, neither is it known that fault zones within the Earth behave this way, nor is this behavior expected in all cases. In contrast, for an isotropic homogeneous poroelastic model the pore pressure changes are proportional to changes in mean stress, μ′ is not a material constant, and −∞ ≤ μ′ ≤ +∞. Analysis of the change in Coulomb failure stress for tectonically loaded reverse and strike-slip faults shows considerable differences between these two pore pressure models, suggesting that such models might be distinguished from one another using observations of triggered seismicity (e.g., aftershocks). We conclude that using the constant apparent friction model exclusively in studies of Coulomb failure stress is unwise and could lead to significant errors in estimated stress change and seismic hazard.

  5. Modelling apparent low thermal inertia by layered structure

    NASA Astrophysics Data System (ADS)

    Yoshida, Akari; Toyota, Takenori; Kurita, Kei

    2013-04-01

    Thermal inertia of planetary surface is a physical property that controls the diurnal and seasonal cycles in the surface temperature. At the same time it provides a unique window into geologic structure of the surface and the nature of geologic processes that shapes the planetary surface. Especially on Mars, it has been extensively derived from spacecraft remote-sensing observations. It shows existence of the area with very low thermal inertia in the equatorial and middle latitudes, which at the same time display complicated heterogeneous characteristics(Putzig and Mellon, 2007). This is one of the enigma about the surface state of Mars. Physical interpretation about the origin of this heterogeneous nature of the thermal inertia is needed. In this study, we discuss a possibility of apparent low thermal inertia when there exists a layered structure having contrasting thermal conductivities based on laboratory experiments. The layered structure we examined in the experiments are an acrylic plate(3.2mm , 5mm , 10mm in thickness) on top of Polystyrene foam block or vesiculated particle layer. In both cases the lower layer has lower thermal conductivity. They are heated periodically by a infrared lump from above(period from 10 to 600 sec.). We measured the temperature at the surface, bottom of the acrylic plate and inside the lower Polystyrene foam and the granular layer using the thermocouples and infrared thermometer. From amplitude of temperature variation, we estimated the thermal inertia. The important controlling factor in this experimental design is a thermal relaxation time of the surface layer, which is controlled by period of the applied heating cycle and the thickness. At the fixed layer thickness thermal structure changes drastically between the periods below and above the relaxation time. We estimated variation of apparent thermal inertia with period. In a homogeneous semi-infinite layer the amplitude of variation of the surface temperature induced by

  6. Observations that Constrain the Scaling of Apparent Stress

    NASA Astrophysics Data System (ADS)

    McGarr, A.; Fletcher, J. B.

    2002-12-01

    Slip models developed for major earthquakes are composed of distributions of fault slip, rupture time, and slip velocity time function over the rupture surface, as divided into many smaller subfaults. Using a recently-developed technique, the seismic energy radiated from each subfault can be estimated from the time history of slip there and the average rupture velocity. Total seismic energies, calculated by summing contributions from all of the subfaults, agree reasonably well with independent estimates based on seismic energy flux in the far-field at regional or teleseismic distances. Two recent examples are the 1999 Izmit, Turkey and the 1999 Hector Mine, California earthquakes for which the NEIS teleseismic measurements of radiated energy agree fairly closely with seismic energy estimates from several different slip models, developed by others, for each of these events. Similar remarks apply to the 1989 Loma Prieta, 1992 Landers, and 1995 Kobe earthquakes. Apparent stresses calculated from these energy and moment results do not indicate any moment or magnitude dependence. The distributions of both fault slip and seismic energy radiation over the rupture surfaces of earthquakes are highly inhomogeneous. These results from slip models, combined with underground and seismic observations of slip for much smaller mining-induced earthquakes, can provide stronger constraint on the possible scaling of apparent stress with moment magnitude M or seismic moment. Slip models for major earthquakes in the range M6.2 to M7.4 show maximum slips ranging from 1.6 to 8 m. Mining-induced earthquakes at depths near 2000 m in South Africa are associated with peak slips of 0.2 to 0.37 m for events of M4.4 to M4.6. These maximum slips, whether derived from a slip model or directly observed underground in a deep gold mine, scale quite definitively as the cube root of the seismic moment. In contrast, peak slip rates (maximum subfault slip/rise time) appear to be scale invariant. A 1.25 m

  7. Plant-mediated 'apparent effects' between mycorrhiza and insect herbivores.

    PubMed

    Gilbert, Lucy; Johnson, David

    2015-08-01

    Plants mediate indirect 'apparent' effects between above-ground herbivores and below-ground mutualistic mycorrhizal fungi. The herbivore-plant-mycorrhiza continuum is further complicated because signals produced by plants in response to herbivores can be transmitted to other plants via shared fungal networks below ground. Insect herbivores, such as aphids, probably affect the functioning of mycorrhizal fungi by changing the supply of recent photosynthate from plants to mycorrhizas, whereas there is evidence that mycorrhizas affect aphid fitness by changing plant signalling pathways, rather than only through improved nutrition. New knowledge of the transfer of signals through fungal networks between plant species means we now need a better understanding of how this process occurs in relation to the feeding preferences of herbivores to shape plant community composition and herbivore behaviour in nature.

  8. Galvanic apparent internal impedance: an intrinsic tissue property.

    PubMed

    Golberg, Alex; Rabinowitch, Haim D; Rubinsky, Boris

    2009-11-01

    Using basic galvanic cell principles, the ability of tissues to generate electrical current through electrolysis was characterized. Studying Zn/Cu electrolysis in animal organs revealed a fundamental and measurable tissue-specific property - the galvanic apparent internal impedance (GAII), that is most likely related to the salt bridge function of tissues delineated by electrodes. Further to the fundamental knowledge acquired, GAII enables a new diagnostic method to distinguish between tissue types and to determine their health status without a need for expensive calibration, as often required when external power source is used. We demonstrated the GAII sensitivity in detecting tissue ablation with microwave heating or irreversible electroporation. The results open the way for a novel, inexpensive self-powered tissue diagnostic system for a wide range of applications such as minimally invasive tissue health status, ischemia, hydration, real time intra-operative control of minimally invasive surgery, medical imaging, virtual biopsy and many others.

  9. Vitrectomy for bilateral macular schisis without apparent optic disc anomalies

    PubMed Central

    Andonegui, José; Maya, José Ramón; Echeverría, Marta; Alcaine, Araceli

    2016-01-01

    A 78-year-old man complained of bilateral visual acuity loss. Optical coherence tomography examination showed bilateral macular schisis with fluid accumulation in the external retinal layers without vitreous traction. Fundus examination and fluorescein angiography were normal in both eyes. Both eyes were treated by phacoemulsification, intraocular lens implantation, and vitrectomy without laser, gas exchange, or retinal fenestration. Slow and progressive fluid resorption and improvement in VA were observed in both eyes. Macular schisis similar to the one associated with optic disc anomalies is a possibility in patients without apparent disc anomalies. Vitrectomy without laser, gas, or retinal fenestration may be a good therapeutic option even in patients with a PVD preoperatively. PMID:27703873

  10. Apparent abundance and vertical profiles of ozone from OMEGA measurements

    NASA Astrophysics Data System (ADS)

    Altieri, F.; Zasova, L.; Grassi, D.; Bellucci, G.; Bibring, J.-P.; Formisano, V.; Ignatiev, N.; Drossart, P.; Encrenaz, T.; Fouchet, T.; OMEGA Team

    In this work we study the vertical and seasonal distribution of O2 by means the 1.27 micron day glow emission in the spectra acquired by OMEGA, the imaging spectrometer on board the ESA mission Mars Express. Limb OMEGA observations have been used to retrieve the vertical distribution of O3 up to 20 km, applying an "onion peeling" procedure. The quenching effect due to the collisions with the CO2 have been taken into account using simultaneously vertical CO2 profiles obtained by the PFS LWC data. OMEGA nadir observations have been used to map the latitude, local time and seasonal distribution of the apparent ozone abundance in the Martian atmosphere and results are discussed. We acknowledge the ESA Headquarters and IFSI-INAF for support to Russian CoIs and the Russian Foundation of Basic Research for grant RFFI 04-02-16856a.

  11. Random variability explains apparent global clustering of large earthquakes

    USGS Publications Warehouse

    Michael, A.J.

    2011-01-01

    The occurrence of 5 Mw ≥ 8.5 earthquakes since 2004 has created a debate over whether or not we are in a global cluster of large earthquakes, temporarily raising risks above long-term levels. I use three classes of statistical tests to determine if the record of M ≥ 7 earthquakes since 1900 can reject a null hypothesis of independent random events with a constant rate plus localized aftershock sequences. The data cannot reject this null hypothesis. Thus, the temporal distribution of large global earthquakes is well-described by a random process, plus localized aftershocks, and apparent clustering is due to random variability. Therefore the risk of future events has not increased, except within ongoing aftershock sequences, and should be estimated from the longest possible record of events.

  12. When luminance increment thresholds depend on apparent lightness.

    PubMed

    Maertens, Marianne; Wichmann, Felix A

    2013-05-31

    A fundamental question in visual perception research is whether the sensitivity to stimulus differences is limited by the sensory representation of the external stimulus, that is, the proximal stimulus, or by its perceptual representation, i.e., stimulus appearance. In the domain of lightness perception, the question translates into whether discrimination thresholds depend on the local luminance in the retinal image or on the apparent lightness of the corresponding image region. The majority of findings seem to indicate that sensitivity is limited by the sensory stimulus representation, which would imply different mechanisms for stimulus discrimination and appearance. We think this conclusion needs to be qualified. We report data suggesting that the relationship between discrimination and appearance judgments depends on how exactly they are being measured. We propose a theoretical account that provides a common mechanism for appearance and sensitivity. An interesting corollary of this model is that it also accounts for the perceptual phenomenon of assimilation.

  13. Species-barrier-independent prion replication in apparently resistant species

    NASA Astrophysics Data System (ADS)

    Hill, Andrew F.; Joiner, Susan; Linehan, Jackie; Desbruslais, Melanie; Lantos, Peter L.; Collinge, John

    2000-08-01

    Transmission of prions between mammalian species is thought to be limited by a "species barrier," which depends on differences in the primary structure of prion proteins in the infecting inoculum and the host. Here we demonstrate that a strain of hamster prions thought to be nonpathogenic for conventional mice leads to prion replication to high levels in such mice but without causing clinical disease. Prions pathogenic in both mice and hamsters are produced. These results demonstrate the existence of subclinical forms of prion infection with important public health implications, both with respect to iatrogenic transmission from apparently healthy humans and dietary exposure to cattle and other species exposed to bovine spongiform encephalopathy prions. Current definitions of the species barrier, which have been based on clinical end-points, need to be fundamentally reassessed.

  14. Pictet's experiment: The apparent radiation and reflection of cold

    NASA Astrophysics Data System (ADS)

    Evans, James; Popp, Brian

    1985-08-01

    Towards the end of the eighteenth century it was discovered by Marc-Auguste Pictet of Geneva that cold emanations from a flask of snow could be reflected and focused by mirrors in the same way as the emanations from a heated object. Pictet's discovery had an invigorating effect on research on radiant heat. We sketch the scientific milieu in which Pictet worked, describe the line of investigation that led him to his discovery, and summarize the theoretical explanations offered by Pictet and his contemporaries for this and related experiments. A simple qualitative explanation in modern terms is offered for the apparent radiation and reflection of cold. Finally, detailed directions are provided for replicating the experiment as a demonstration for the lecture hall.

  15. Use of aspartame by apparently healthy children and adolescents.

    PubMed

    Frey, G H

    1976-11-01

    This study was conducted to determine the effects and the differences, if any, resulting from the ingestion of aspartame (sweetener) versus sucrose. A 13-wk, double-blind study was conducted using 126 apparently healthy children and adolescents as panelists. Individuals were randomly assigned in a double-blind design to aspartame or sucrose in each of five age groups; dosage levels were assigned according to age and weight groups. Physical examinations and special eye examinations were performed at the beginning and end of the study. Other parameters determined including laboratory tests of liver and renal function, hematologic status, and plasma levels of phenylalanine and tyrosine. Clinically significant differences in laboratory parameters measured could not be demonstrated; all mean values were within normal limits. No unusual findings were observed in phenylalanine or tyrosine levels. All phenylpyruvic acid and methanol determinations were negative. No important physical changes occurred, and no product-related side effects were reported.

  16. Apparent viscosity during unyielding of a thixotropic yield stress fluid

    NASA Astrophysics Data System (ADS)

    Renardy, Yuriko; Maki, Kara

    2012-11-01

    We present a mathematical interpretation of a thixotropic yield stress fluid, based on a viscoelastic constitutive law in the limit of large relaxation time, together with a Newtonian solvent. The dynamics is initiated by a step-up or step-down in prescribed shear stress. There is no presumption of a yield stress, but nevertheless, we obtain yield stress behavior. The thixotropic behavior of the model arises from the multiple time scales which emerge in the limit of large relaxation time. These give rise to fast dynamics (elastic deformation) and slow dynamics (unyielding), in addition to yielded dynamics for shear flow. We present how the model predicts the evolution of apparent viscosity during unyielding. Supported by NSF-DMS, AWM.

  17. Solving the apparent diversity-accuracy dilemma of recommender systems

    PubMed Central

    Zhou, Tao; Kuscsik, Zoltán; Liu, Jian-Guo; Medo, Matúš; Wakeling, Joseph Rushton; Zhang, Yi-Cheng

    2010-01-01

    Recommender systems use data on past user preferences to predict possible future likes and interests. A key challenge is that while the most useful individual recommendations are to be found among diverse niche objects, the most reliably accurate results are obtained by methods that recommend objects based on user or object similarity. In this paper we introduce a new algorithm specifically to address the challenge of diversity and show how it can be used to resolve this apparent dilemma when combined in an elegant hybrid with an accuracy-focused algorithm. By tuning the hybrid appropriately we are able to obtain, without relying on any semantic or context-specific information, simultaneous gains in both accuracy and diversity of recommendations. PMID:20176968

  18. Prehypertension and Its Determinants in Apparently Healthy Young Adults

    PubMed Central

    Senthil, Sunandha

    2016-01-01

    Introduction High incidence of prehypertension is reported in medical undergraduates. Prehypertension may progress to hypertension and eventually cardiovascular disease, a leading cause of morbidity and mortality. Therefore, identifying the risk factors of hypertension in prehypertensive state may aid in effective control of blood pressure. Aim To find whether clustering of known risk factors of hypertension or certain individual risk factors alone affect blood pressure in young adults. Materials and Methods This was a cross-sectional study done in 84 apparently healthy medical students of either sex aged between 18-23 years. It included students with at least one known risk factor of hypertension. Blood pressure levels of 120 to 139/80 to 89 mm Hg were defined as prehypertension. The risk factors considered were male gender, family history of cardiovascular disease, sedentary life, general and central obesity, sleep quality, perceived stress and dietary pattern. Clustering of risk factors was assessed based on collective scoring system in which each risk factor was scored appropriately. Statistical analysis was done by unpaired t, Chi-square and Pearson correlation coefficient tests. The p<0.05 was considered significant. Results There was a positive correlation between total risk factor score and systolic blood pressure (r = 0.266, p = 0.015). Among the risk factors, frequency of males with systolic and diastolic prehypertension was higher compared to females (p <0.0001,= 0.022 respectively). Body mass index was higher in systolic and diastolic prehypertensives compared to normotensives (p <0.001, 0.002, respectively). Waist circumference was higher in systolic and diastolic prehypertensives compared to normotensives (p< 0.0001). Conclusion In apparently healthy young adults, male gender and obesity are the major risk factors of elevated blood pressure. PMID:27790426

  19. Apparent and true resistant hypertension: definition, prevalence and outcomes.

    PubMed

    Judd, E; Calhoun, D A

    2014-08-01

    Resistant hypertension, defined as blood pressure (BP) remaining above goal despite the use of > or =3 antihypertensive medications at maximally tolerated doses (one ideally being a diuretic) or BP that requires > or =4 agents to achieve control, has received more attention with increased efforts to improve BP control rates and the emergence of device-based therapies for hypertension. This classically defined resistant group consists of patients with true resistant hypertension, controlled resistant hypertension and pseudo-resistant hypertension. In studies where pseudo-resistant hypertension cannot be excluded (for example, 24-h ambulatory BP not obtained), the term apparent resistant hypertension has been used to identify 'apparent' lack of control on > or =3 medications. Large, well-designed studies have recently reported the prevalence of resistant hypertension. Pooling prevalence data from these studies and others within North America and Europe with a combined sample size of >600,000 hypertensive participants, the prevalence of resistant hypertension is 14.8% of treated hypertensive patients and 12.5% of all hypertensives. However, the prevalence of true resistant hypertension, defined as uncontrolled both by office and 24-h ambulatory BP monitoring with confirmed medication adherence, may be more meaningful in terms of identifying risk and estimating benefit from newer therapies like renal denervation. Rates of cardiovascular events and mortality follow mean 24-h ambulatory BPs in patients with resistant hypertension, and true resistant hypertension represents the highest risk. The prevalence of true resistant hypertension has not been directly measured in large trials; however, combined data from smaller studies suggest that true resistant hypertension is present in half of the patients with resistant hypertension who are uncontrolled in the office. Our pooled analysis shows prevalence rates of 10.1% and 7.9% for uncontrolled resistant hypertension among

  20. Apparent threshold of lead's effect on child intelligence

    SciTech Connect

    Rabinowitz, M.B. National Taiwan Univ., Taipei ); Wang, J.D.; Soong, W.T. )

    1992-05-01

    The developing human brain is perhaps the most sensitive of the many targets of lead toxicity. This particular sensitivity is a driving factor in setting health and environmental standards for lead. A recent compilation of studies of the association between lead and IQ has shown a consistent dose-response pattern across the range of reported exposures. In surveying the neurotoxicity of lead in humans and animals, there has been speculation of the existence of a threshold for these effects which may become apparent at lower lead levels. In that context we examined our data of tooth lead and IQ scores to determine whether there was any apparent threshold for this effect. This cohort's lead levels are among the lowest documented and provide the opportunity to extend downward the range of interest. Family factors are the strongest predictors of a child's intelligence, in particular the parent's intelligence. We therefore followed the model of Perino and Ernhart (1974) by examining whether at various levels of lead there is a disruption of the usual association between family and child intelligence. As noted by Bellinger and Needleman (1983), a difference in the correlations between parental and child intelligence in two groups, high and low lead, may be an artifact of other relationships among the predictor variables. Accordingly, they recommend a more appropriate test that would search for differences in the IQ deficits according to lead level, where the IQ deficit is the difference between a child's observed IQ and the IQ predicted from all available information about the child aside from lead. This is especially appropriate when the lead exposure correlates with the family's educational background. We examined our data this way. 12 refs., 1 fig., 2 tabs.

  1. On the apparent CO2 absorption by alkaline soils

    NASA Astrophysics Data System (ADS)

    Chen, X.; Wang, W. F.

    2014-02-01

    Alkaline soils in the Gubantonggut Desert were recently demonstrated socking away large quantities of CO2 in an abiotic form. This demands a better understanding of abiotic CO2 exchange in alkaline sites. Reaction of CO2 with the moisture or dew in the soil was conjectured as a potential mechanism. The main goal of this study is to determine the extent to which the dew deposition modulates Land-Atmosphere CO2 exchange at highly alkaline sites (pH ~ 10). Experiments were conducted at the most barren sites (canopy coverage < 5%) to cut down uncertainty. Dew quantities and soil CO2 fluxes were measured using a micro-lysimeters and an automated flux system (LI-COR, Lincoln, Nebraska, USA), respectively. There is an evident increase of dew deposition in nocturnal colder temperatures and decrease in diurnal warmer temperatures. Variations of soil CO2 flux are almost contrary, but the increase in diurnal warmer temperatures is obscure. It was shown that the accumulation and evaporation of dew in the soil motivates the apparent absorption and release of CO2. It was demonstrated that dew amounts in the soil has an exponential relation with the part in Fc beyond explanations of the worldwide utilized Q10 model. Therefore dew deposition in highly alkaline soils exerted a potential CO2 sink and can partly explain the apparent CO2 absorption. This implied a crucial component in the net ecosystem carbon balance (NECB) at alkaline sites which occupies approximately 5% of the Earth's land surface (7 million km). Further explorations for its mechanisms and representativeness over other arid climate systems have comprehensive perspectives in the quaternary research.

  2. Contribution of Chlorophyll Fluorescence to the Apparent Reflectance of Vegetation

    NASA Technical Reports Server (NTRS)

    Campbell, P. K. Entcheva; Middleton, E. M.; Kim, M. S.

    2007-01-01

    Current strategies for monitoring the physiologic status of terrestrial vegetation rely on remote sensing reflectance (R) measurements, whi ch provide estimates of relative vegetation vigor based primarily on chlorophyll content. Vegetation chlorophyll fluorescence (CF) offers a non-destructive alternative and a more direct approach for diagnosis of vegetation stress before a significant reduction in chlorophyll content has occurred. Thus, monitoring of vegetation vigor based on CF may allow earlier stress detection and more accurate carbon sequestra tion estimates, than is possible using R data alone. However, the observed apparent vegetation reflectance (Ra) in reality includes contrib utions from both the reflected and fluoresced radiation. The aim of t his study is to